pyspark.ml package¶
ML Pipeline APIs¶
DataFrame-based machine learning APIs to let users quickly assemble and configure practical machine learning pipelines.
-
class
pyspark.ml.
Transformer
[source]¶ Abstract class for transformers that transform one dataset into another.
New in version 1.3.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using
copy.copy()
, and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance New in version 1.4.0.
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
transform
(dataset, params=None)[source]¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
-
class
pyspark.ml.
Estimator
[source]¶ Abstract class for estimators that fit models to data.
New in version 1.3.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using
copy.copy()
, and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance New in version 1.4.0.
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
fit
(dataset, params=None)[source]¶ Fits a model to the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Returns: fitted model(s)
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
-
class
pyspark.ml.
Model
[source]¶ Abstract class for models that are fitted by estimators.
New in version 1.4.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using
copy.copy()
, and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance New in version 1.4.0.
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
-
class
pyspark.ml.
Pipeline
(stages=None)[source]¶ A simple pipeline, which acts as an estimator. A Pipeline consists of a sequence of stages, each of which is either an
Estimator
or aTransformer
. WhenPipeline.fit()
is called, the stages are executed in order. If a stage is anEstimator
, itsEstimator.fit()
method will be called on the input dataset to fit a model. Then the model, which is a transformer, will be used to transform the dataset as the input to the next stage. If a stage is aTransformer
, itsTransformer.transform()
method will be called to produce the dataset for the next stage. The fitted model from aPipeline
is aPipelineModel
, which consists of fitted models and transformers, corresponding to the pipeline stages. If stages is an empty list, the pipeline acts as an identity transformer.New in version 1.3.0.
-
copy
(extra=None)[source]¶ Creates a copy of this instance.
Parameters: extra – extra parameters Returns: new instance New in version 1.4.0.
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Returns: fitted model(s)
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
save
(path)[source]¶ Save this ML instance to the given path, a shortcut of write().save(path).
New in version 2.0.0.
-
setStages
(value)[source]¶ Set pipeline stages.
Parameters: value – a list of transformers or estimators Returns: the pipeline instance New in version 1.3.0.
-
stages
= Param(parent='undefined', name='stages', doc='a list of pipeline stages')¶
-
-
class
pyspark.ml.
PipelineModel
(stages)[source]¶ Represents a compiled pipeline with transformers and fitted models.
New in version 1.3.0.
-
copy
(extra=None)[source]¶ Creates a copy of this instance.
Parameters: extra – extra parameters Returns: new instance New in version 1.4.0.
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
save
(path)[source]¶ Save this ML instance to the given path, a shortcut of write().save(path).
New in version 2.0.0.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
pyspark.ml.param module¶
-
class
pyspark.ml.param.
Param
(parent, name, doc, typeConverter=None)[source]¶ A param with self-contained documentation.
New in version 1.3.0.
-
class
pyspark.ml.param.
Params
[source]¶ Components that take parameters. This also provides an internal param map to store parameter values attached to the instance.
New in version 1.3.0.
-
copy
(extra=None)[source]¶ Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using
copy.copy()
, and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance New in version 1.4.0.
-
explainParam
(param)[source]¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()[source]¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)[source]¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getOrDefault
(param)[source]¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
hasParam
(paramName)[source]¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
pyspark.ml.feature module¶
-
class
pyspark.ml.feature.
Binarizer
(threshold=0.0, inputCol=None, outputCol=None)[source]¶ Binarize a column of continuous features given a threshold.
>>> df = spark.createDataFrame([(0.5,)], ["values"]) >>> binarizer = Binarizer(threshold=1.0, inputCol="values", outputCol="features") >>> binarizer.transform(df).head().features 0.0 >>> binarizer.setParams(outputCol="freqs").transform(df).head().freqs 0.0 >>> params = {binarizer.threshold: -0.5, binarizer.outputCol: "vector"} >>> binarizer.transform(df, params).head().vector 1.0 >>> binarizerPath = temp_path + "/binarizer" >>> binarizer.save(binarizerPath) >>> loadedBinarizer = Binarizer.load(binarizerPath) >>> loadedBinarizer.getThreshold() == binarizer.getThreshold() True
New in version 1.4.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getInputCol
()¶ Gets the value of inputCol or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getOutputCol
()¶ Gets the value of outputCol or its default value.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
inputCol
= Param(parent='undefined', name='inputCol', doc='input column name.')¶
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
outputCol
= Param(parent='undefined', name='outputCol', doc='output column name.')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
setParams
(self, threshold=0.0, inputCol=None, outputCol=None)[source]¶ Sets params for this Binarizer.
New in version 1.4.0.
-
threshold
= Param(parent='undefined', name='threshold', doc='threshold in binary classification prediction, in range [0, 1]')¶
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
Bucketizer
(splits=None, inputCol=None, outputCol=None, handleInvalid='error')[source]¶ Maps a column of continuous features to a column of feature buckets.
>>> values = [(0.1,), (0.4,), (1.2,), (1.5,), (float("nan"),), (float("nan"),)] >>> df = spark.createDataFrame(values, ["values"]) >>> bucketizer = Bucketizer(splits=[-float("inf"), 0.5, 1.4, float("inf")], ... inputCol="values", outputCol="buckets") >>> bucketed = bucketizer.setHandleInvalid("keep").transform(df).collect() >>> len(bucketed) 6 >>> bucketed[0].buckets 0.0 >>> bucketed[1].buckets 0.0 >>> bucketed[2].buckets 1.0 >>> bucketed[3].buckets 2.0 >>> bucketizer.setParams(outputCol="b").transform(df).head().b 0.0 >>> bucketizerPath = temp_path + "/bucketizer" >>> bucketizer.save(bucketizerPath) >>> loadedBucketizer = Bucketizer.load(bucketizerPath) >>> loadedBucketizer.getSplits() == bucketizer.getSplits() True >>> bucketed = bucketizer.setHandleInvalid("skip").transform(df).collect() >>> len(bucketed) 4
New in version 1.4.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getHandleInvalid
()[source]¶ Gets the value of
handleInvalid
or its default value.New in version 2.1.0.
-
getInputCol
()¶ Gets the value of inputCol or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getOutputCol
()¶ Gets the value of outputCol or its default value.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
handleInvalid
= Param(parent='undefined', name='handleInvalid', doc="how to handle invalid entries. Options are 'skip' (filter out rows with invalid values), 'error' (throw an error), or 'keep' (keep invalid values in a special additional bucket).")¶
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
inputCol
= Param(parent='undefined', name='inputCol', doc='input column name.')¶
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
outputCol
= Param(parent='undefined', name='outputCol', doc='output column name.')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
setHandleInvalid
(value)[source]¶ Sets the value of
handleInvalid
.New in version 2.1.0.
-
setParams
(self, splits=None, inputCol=None, outputCol=None, handleInvalid="error")[source]¶ Sets params for this Bucketizer.
New in version 1.4.0.
-
splits
= Param(parent='undefined', name='splits', doc='Split points for mapping continuous features into buckets. With n+1 splits, there are n buckets. A bucket defined by splits x,y holds values in the range [x,y) except the last bucket, which also includes y. The splits should be of length >= 3 and strictly increasing. Values at -inf, inf must be explicitly provided to cover all Double values; otherwise, values outside the splits specified will be treated as errors.')¶
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
ChiSqSelector
(numTopFeatures=50, featuresCol='features', outputCol=None, labelCol='label', selectorType='numTopFeatures', percentile=0.1, fpr=0.05)[source]¶ Note
Experimental
Chi-Squared feature selection, which selects categorical features to use for predicting a categorical label.
>>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame( ... [(Vectors.dense([0.0, 0.0, 18.0, 1.0]), 1.0), ... (Vectors.dense([0.0, 1.0, 12.0, 0.0]), 0.0), ... (Vectors.dense([1.0, 0.0, 15.0, 0.1]), 0.0)], ... ["features", "label"]) >>> selector = ChiSqSelector(numTopFeatures=1, outputCol="selectedFeatures") >>> model = selector.fit(df) >>> model.transform(df).head().selectedFeatures DenseVector([18.0]) >>> model.selectedFeatures [2] >>> chiSqSelectorPath = temp_path + "/chi-sq-selector" >>> selector.save(chiSqSelectorPath) >>> loadedSelector = ChiSqSelector.load(chiSqSelectorPath) >>> loadedSelector.getNumTopFeatures() == selector.getNumTopFeatures() True >>> modelPath = temp_path + "/chi-sq-selector-model" >>> model.save(modelPath) >>> loadedModel = ChiSqSelectorModel.load(modelPath) >>> loadedModel.selectedFeatures == model.selectedFeatures True
New in version 2.0.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
featuresCol
= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Returns: fitted model(s)
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
fpr
= Param(parent='undefined', name='fpr', doc='The highest p-value for features to be kept.')¶
-
getFeaturesCol
()¶ Gets the value of featuresCol or its default value.
-
getLabelCol
()¶ Gets the value of labelCol or its default value.
-
getNumTopFeatures
()[source]¶ Gets the value of numTopFeatures or its default value.
New in version 2.0.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getOutputCol
()¶ Gets the value of outputCol or its default value.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
getSelectorType
()[source]¶ Gets the value of selectorType or its default value.
New in version 2.1.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
labelCol
= Param(parent='undefined', name='labelCol', doc='label column name.')¶
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
numTopFeatures
= Param(parent='undefined', name='numTopFeatures', doc='Number of features that selector will select, ordered by ascending p-value. If the number of features is < numTopFeatures, then this will select all features.')¶
-
outputCol
= Param(parent='undefined', name='outputCol', doc='output column name.')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
percentile
= Param(parent='undefined', name='percentile', doc='Percentile of features that selector will select, ordered by ascending p-value.')¶
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
selectorType
= Param(parent='undefined', name='selectorType', doc='The selector type of the ChisqSelector. Supported options: numTopFeatures (default), percentile and fpr.')¶
-
setFeaturesCol
(value)¶ Sets the value of
featuresCol
.
-
setFpr
(value)[source]¶ Sets the value of
fpr
. Only applicable when selectorType = “fpr”.New in version 2.1.0.
-
setNumTopFeatures
(value)[source]¶ Sets the value of
numTopFeatures
. Only applicable when selectorType = “numTopFeatures”.New in version 2.0.0.
-
setParams
(self, numTopFeatures=50, featuresCol="features", outputCol=None, labelCol="labels", selectorType="numTopFeatures", percentile=0.1, fpr=0.05)[source]¶ Sets params for this ChiSqSelector.
New in version 2.0.0.
-
setPercentile
(value)[source]¶ Sets the value of
percentile
. Only applicable when selectorType = “percentile”.New in version 2.1.0.
-
setSelectorType
(value)[source]¶ Sets the value of
selectorType
.New in version 2.1.0.
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
ChiSqSelectorModel
(java_model=None)[source]¶ Note
Experimental
Model fitted by
ChiSqSelector
.New in version 2.0.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
selectedFeatures
¶ List of indices to select (filter).
New in version 2.0.0.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
CountVectorizer
(minTF=1.0, minDF=1.0, vocabSize=262144, binary=False, inputCol=None, outputCol=None)[source]¶ Extracts a vocabulary from document collections and generates a
CountVectorizerModel
.>>> df = spark.createDataFrame( ... [(0, ["a", "b", "c"]), (1, ["a", "b", "b", "c", "a"])], ... ["label", "raw"]) >>> cv = CountVectorizer(inputCol="raw", outputCol="vectors") >>> model = cv.fit(df) >>> model.transform(df).show(truncate=False) +-----+---------------+-------------------------+ |label|raw |vectors | +-----+---------------+-------------------------+ |0 |[a, b, c] |(3,[0,1,2],[1.0,1.0,1.0])| |1 |[a, b, b, c, a]|(3,[0,1,2],[2.0,2.0,1.0])| +-----+---------------+-------------------------+ ... >>> sorted(model.vocabulary) == ['a', 'b', 'c'] True >>> countVectorizerPath = temp_path + "/count-vectorizer" >>> cv.save(countVectorizerPath) >>> loadedCv = CountVectorizer.load(countVectorizerPath) >>> loadedCv.getMinDF() == cv.getMinDF() True >>> loadedCv.getMinTF() == cv.getMinTF() True >>> loadedCv.getVocabSize() == cv.getVocabSize() True >>> modelPath = temp_path + "/count-vectorizer-model" >>> model.save(modelPath) >>> loadedModel = CountVectorizerModel.load(modelPath) >>> loadedModel.vocabulary == model.vocabulary True
New in version 1.6.0.
-
binary
= Param(parent='undefined', name='binary', doc='Binary toggle to control the output vector values. If True, all nonzero counts (after minTF filter applied) are set to 1. This is useful for discrete probabilistic models that model binary events rather than integer counts. Default False')¶
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Returns: fitted model(s)
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
getInputCol
()¶ Gets the value of inputCol or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getOutputCol
()¶ Gets the value of outputCol or its default value.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
inputCol
= Param(parent='undefined', name='inputCol', doc='input column name.')¶
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
minDF
= Param(parent='undefined', name='minDF', doc='Specifies the minimum number of different documents a term must appear in to be included in the vocabulary. If this is an integer >= 1, this specifies the number of documents the term must appear in; if this is a double in [0,1), then this specifies the fraction of documents. Default 1.0')¶
-
minTF
= Param(parent='undefined', name='minTF', doc="Filter to ignore rare words in a document. For each document, terms with frequency/count less than the given threshold are ignored. If this is an integer >= 1, then this specifies a count (of times the term must appear in the document); if this is a double in [0,1), then this specifies a fraction (out of the document's token count). Note that the parameter is only used in transform of CountVectorizerModel and does not affect fitting. Default 1.0")¶
-
outputCol
= Param(parent='undefined', name='outputCol', doc='output column name.')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
setParams
(self, minTF=1.0, minDF=1.0, vocabSize=1 << 18, binary=False, inputCol=None, outputCol=None)[source]¶ Set the params for the CountVectorizer
New in version 1.6.0.
-
vocabSize
= Param(parent='undefined', name='vocabSize', doc='max size of the vocabulary. Default 1 << 18.')¶
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
CountVectorizerModel
(java_model=None)[source]¶ Model fitted by
CountVectorizer
.New in version 1.6.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
vocabulary
¶ An array of terms in the vocabulary.
New in version 1.6.0.
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
DCT
(inverse=False, inputCol=None, outputCol=None)[source]¶ A feature transformer that takes the 1D discrete cosine transform of a real vector. No zero padding is performed on the input vector. It returns a real vector of the same length representing the DCT. The return vector is scaled such that the transform matrix is unitary (aka scaled DCT-II).
See also
>>> from pyspark.ml.linalg import Vectors >>> df1 = spark.createDataFrame([(Vectors.dense([5.0, 8.0, 6.0]),)], ["vec"]) >>> dct = DCT(inverse=False, inputCol="vec", outputCol="resultVec") >>> df2 = dct.transform(df1) >>> df2.head().resultVec DenseVector([10.969..., -0.707..., -2.041...]) >>> df3 = DCT(inverse=True, inputCol="resultVec", outputCol="origVec").transform(df2) >>> df3.head().origVec DenseVector([5.0, 8.0, 6.0]) >>> dctPath = temp_path + "/dct" >>> dct.save(dctPath) >>> loadedDtc = DCT.load(dctPath) >>> loadedDtc.getInverse() False
New in version 1.6.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getInputCol
()¶ Gets the value of inputCol or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getOutputCol
()¶ Gets the value of outputCol or its default value.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
inputCol
= Param(parent='undefined', name='inputCol', doc='input column name.')¶
-
inverse
= Param(parent='undefined', name='inverse', doc='Set transformer to perform inverse DCT, default False.')¶
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
outputCol
= Param(parent='undefined', name='outputCol', doc='output column name.')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
setParams
(self, inverse=False, inputCol=None, outputCol=None)[source]¶ Sets params for this DCT.
New in version 1.6.0.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
ElementwiseProduct
(scalingVec=None, inputCol=None, outputCol=None)[source]¶ Outputs the Hadamard product (i.e., the element-wise product) of each input vector with a provided “weight” vector. In other words, it scales each column of the dataset by a scalar multiplier.
>>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([(Vectors.dense([2.0, 1.0, 3.0]),)], ["values"]) >>> ep = ElementwiseProduct(scalingVec=Vectors.dense([1.0, 2.0, 3.0]), ... inputCol="values", outputCol="eprod") >>> ep.transform(df).head().eprod DenseVector([2.0, 2.0, 9.0]) >>> ep.setParams(scalingVec=Vectors.dense([2.0, 3.0, 5.0])).transform(df).head().eprod DenseVector([4.0, 3.0, 15.0]) >>> elementwiseProductPath = temp_path + "/elementwise-product" >>> ep.save(elementwiseProductPath) >>> loadedEp = ElementwiseProduct.load(elementwiseProductPath) >>> loadedEp.getScalingVec() == ep.getScalingVec() True
New in version 1.5.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getInputCol
()¶ Gets the value of inputCol or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getOutputCol
()¶ Gets the value of outputCol or its default value.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
inputCol
= Param(parent='undefined', name='inputCol', doc='input column name.')¶
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
outputCol
= Param(parent='undefined', name='outputCol', doc='output column name.')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
scalingVec
= Param(parent='undefined', name='scalingVec', doc='Vector for hadamard product.')¶
-
setParams
(self, scalingVec=None, inputCol=None, outputCol=None)[source]¶ Sets params for this ElementwiseProduct.
New in version 1.5.0.
-
setScalingVec
(value)[source]¶ Sets the value of
scalingVec
.New in version 2.0.0.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
HashingTF
(numFeatures=262144, binary=False, inputCol=None, outputCol=None)[source]¶ Maps a sequence of terms to their term frequencies using the hashing trick. Currently we use Austin Appleby’s MurmurHash 3 algorithm (MurmurHash3_x86_32) to calculate the hash code value for the term object. Since a simple modulo is used to transform the hash function to a column index, it is advisable to use a power of two as the numFeatures parameter; otherwise the features will not be mapped evenly to the columns.
>>> df = spark.createDataFrame([(["a", "b", "c"],)], ["words"]) >>> hashingTF = HashingTF(numFeatures=10, inputCol="words", outputCol="features") >>> hashingTF.transform(df).head().features SparseVector(10, {0: 1.0, 1: 1.0, 2: 1.0}) >>> hashingTF.setParams(outputCol="freqs").transform(df).head().freqs SparseVector(10, {0: 1.0, 1: 1.0, 2: 1.0}) >>> params = {hashingTF.numFeatures: 5, hashingTF.outputCol: "vector"} >>> hashingTF.transform(df, params).head().vector SparseVector(5, {0: 1.0, 1: 1.0, 2: 1.0}) >>> hashingTFPath = temp_path + "/hashing-tf" >>> hashingTF.save(hashingTFPath) >>> loadedHashingTF = HashingTF.load(hashingTFPath) >>> loadedHashingTF.getNumFeatures() == hashingTF.getNumFeatures() True
New in version 1.3.0.
-
binary
= Param(parent='undefined', name='binary', doc='If True, all non zero counts are set to 1. This is useful for discrete probabilistic models that model binary events rather than integer counts. Default False.')¶
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getInputCol
()¶ Gets the value of inputCol or its default value.
-
getNumFeatures
()¶ Gets the value of numFeatures or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getOutputCol
()¶ Gets the value of outputCol or its default value.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
inputCol
= Param(parent='undefined', name='inputCol', doc='input column name.')¶
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
numFeatures
= Param(parent='undefined', name='numFeatures', doc='number of features.')¶
-
outputCol
= Param(parent='undefined', name='outputCol', doc='output column name.')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
setNumFeatures
(value)¶ Sets the value of
numFeatures
.
-
setParams
(self, numFeatures=1 << 18, binary=False, inputCol=None, outputCol=None)[source]¶ Sets params for this HashingTF.
New in version 1.3.0.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
IDF
(minDocFreq=0, inputCol=None, outputCol=None)[source]¶ Compute the Inverse Document Frequency (IDF) given a collection of documents.
>>> from pyspark.ml.linalg import DenseVector >>> df = spark.createDataFrame([(DenseVector([1.0, 2.0]),), ... (DenseVector([0.0, 1.0]),), (DenseVector([3.0, 0.2]),)], ["tf"]) >>> idf = IDF(minDocFreq=3, inputCol="tf", outputCol="idf") >>> model = idf.fit(df) >>> model.idf DenseVector([0.0, 0.0]) >>> model.transform(df).head().idf DenseVector([0.0, 0.0]) >>> idf.setParams(outputCol="freqs").fit(df).transform(df).collect()[1].freqs DenseVector([0.0, 0.0]) >>> params = {idf.minDocFreq: 1, idf.outputCol: "vector"} >>> idf.fit(df, params).transform(df).head().vector DenseVector([0.2877, 0.0]) >>> idfPath = temp_path + "/idf" >>> idf.save(idfPath) >>> loadedIdf = IDF.load(idfPath) >>> loadedIdf.getMinDocFreq() == idf.getMinDocFreq() True >>> modelPath = temp_path + "/idf-model" >>> model.save(modelPath) >>> loadedModel = IDFModel.load(modelPath) >>> loadedModel.transform(df).head().idf == model.transform(df).head().idf True
New in version 1.4.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Returns: fitted model(s)
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
getInputCol
()¶ Gets the value of inputCol or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getOutputCol
()¶ Gets the value of outputCol or its default value.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
inputCol
= Param(parent='undefined', name='inputCol', doc='input column name.')¶
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
minDocFreq
= Param(parent='undefined', name='minDocFreq', doc='minimum number of documents in which a term should appear for filtering')¶
-
outputCol
= Param(parent='undefined', name='outputCol', doc='output column name.')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
setMinDocFreq
(value)[source]¶ Sets the value of
minDocFreq
.New in version 1.4.0.
-
setParams
(self, minDocFreq=0, inputCol=None, outputCol=None)[source]¶ Sets params for this IDF.
New in version 1.4.0.
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
IDFModel
(java_model=None)[source]¶ Model fitted by
IDF
.New in version 1.4.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
idf
¶ Returns the IDF vector.
New in version 2.0.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
IndexToString
(inputCol=None, outputCol=None, labels=None)[source]¶ A
Transformer
that maps a column of indices back to a new column of corresponding string values. The index-string mapping is either from the ML attributes of the input column, or from user-supplied labels (which take precedence over ML attributes). SeeStringIndexer
for converting strings into indices.New in version 1.6.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getInputCol
()¶ Gets the value of inputCol or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getOutputCol
()¶ Gets the value of outputCol or its default value.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
inputCol
= Param(parent='undefined', name='inputCol', doc='input column name.')¶
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
labels
= Param(parent='undefined', name='labels', doc='Optional array of labels specifying index-string mapping. If not provided or if empty, then metadata from inputCol is used instead.')¶
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
outputCol
= Param(parent='undefined', name='outputCol', doc='output column name.')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
setParams
(self, inputCol=None, outputCol=None, labels=None)[source]¶ Sets params for this IndexToString.
New in version 1.6.0.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
MaxAbsScaler
(inputCol=None, outputCol=None)[source]¶ Rescale each feature individually to range [-1, 1] by dividing through the largest maximum absolute value in each feature. It does not shift/center the data, and thus does not destroy any sparsity.
>>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([(Vectors.dense([1.0]),), (Vectors.dense([2.0]),)], ["a"]) >>> maScaler = MaxAbsScaler(inputCol="a", outputCol="scaled") >>> model = maScaler.fit(df) >>> model.transform(df).show() +-----+------+ | a|scaled| +-----+------+ |[1.0]| [0.5]| |[2.0]| [1.0]| +-----+------+ ... >>> scalerPath = temp_path + "/max-abs-scaler" >>> maScaler.save(scalerPath) >>> loadedMAScaler = MaxAbsScaler.load(scalerPath) >>> loadedMAScaler.getInputCol() == maScaler.getInputCol() True >>> loadedMAScaler.getOutputCol() == maScaler.getOutputCol() True >>> modelPath = temp_path + "/max-abs-scaler-model" >>> model.save(modelPath) >>> loadedModel = MaxAbsScalerModel.load(modelPath) >>> loadedModel.maxAbs == model.maxAbs True
New in version 2.0.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Returns: fitted model(s)
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
getInputCol
()¶ Gets the value of inputCol or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getOutputCol
()¶ Gets the value of outputCol or its default value.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
inputCol
= Param(parent='undefined', name='inputCol', doc='input column name.')¶
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
outputCol
= Param(parent='undefined', name='outputCol', doc='output column name.')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
setParams
(self, inputCol=None, outputCol=None)[source]¶ Sets params for this MaxAbsScaler.
New in version 2.0.0.
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
MaxAbsScalerModel
(java_model=None)[source]¶ Model fitted by
MaxAbsScaler
.New in version 2.0.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
maxAbs
¶ Max Abs vector.
New in version 2.0.0.
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
MinMaxScaler
(min=0.0, max=1.0, inputCol=None, outputCol=None)[source]¶ Rescale each feature individually to a common range [min, max] linearly using column summary statistics, which is also known as min-max normalization or Rescaling. The rescaled value for feature E is calculated as,
Rescaled(e_i) = (e_i - E_min) / (E_max - E_min) * (max - min) + min
For the case E_max == E_min, Rescaled(e_i) = 0.5 * (max + min)
Note
Since zero values will probably be transformed to non-zero values, output of the transformer will be DenseVector even for sparse input.
>>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([(Vectors.dense([0.0]),), (Vectors.dense([2.0]),)], ["a"]) >>> mmScaler = MinMaxScaler(inputCol="a", outputCol="scaled") >>> model = mmScaler.fit(df) >>> model.originalMin DenseVector([0.0]) >>> model.originalMax DenseVector([2.0]) >>> model.transform(df).show() +-----+------+ | a|scaled| +-----+------+ |[0.0]| [0.0]| |[2.0]| [1.0]| +-----+------+ ... >>> minMaxScalerPath = temp_path + "/min-max-scaler" >>> mmScaler.save(minMaxScalerPath) >>> loadedMMScaler = MinMaxScaler.load(minMaxScalerPath) >>> loadedMMScaler.getMin() == mmScaler.getMin() True >>> loadedMMScaler.getMax() == mmScaler.getMax() True >>> modelPath = temp_path + "/min-max-scaler-model" >>> model.save(modelPath) >>> loadedModel = MinMaxScalerModel.load(modelPath) >>> loadedModel.originalMin == model.originalMin True >>> loadedModel.originalMax == model.originalMax True
New in version 1.6.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Returns: fitted model(s)
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
getInputCol
()¶ Gets the value of inputCol or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getOutputCol
()¶ Gets the value of outputCol or its default value.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
inputCol
= Param(parent='undefined', name='inputCol', doc='input column name.')¶
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
max
= Param(parent='undefined', name='max', doc='Upper bound of the output feature range')¶
-
min
= Param(parent='undefined', name='min', doc='Lower bound of the output feature range')¶
-
outputCol
= Param(parent='undefined', name='outputCol', doc='output column name.')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
setParams
(self, min=0.0, max=1.0, inputCol=None, outputCol=None)[source]¶ Sets params for this MinMaxScaler.
New in version 1.6.0.
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
MinMaxScalerModel
(java_model=None)[source]¶ Model fitted by
MinMaxScaler
.New in version 1.6.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
originalMax
¶ Max value for each original column during fitting.
New in version 2.0.0.
-
originalMin
¶ Min value for each original column during fitting.
New in version 2.0.0.
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
NGram
(n=2, inputCol=None, outputCol=None)[source]¶ A feature transformer that converts the input array of strings into an array of n-grams. Null values in the input array are ignored. It returns an array of n-grams where each n-gram is represented by a space-separated string of words. When the input is empty, an empty array is returned. When the input array length is less than n (number of elements per n-gram), no n-grams are returned.
>>> df = spark.createDataFrame([Row(inputTokens=["a", "b", "c", "d", "e"])]) >>> ngram = NGram(n=2, inputCol="inputTokens", outputCol="nGrams") >>> ngram.transform(df).head() Row(inputTokens=['a', 'b', 'c', 'd', 'e'], nGrams=['a b', 'b c', 'c d', 'd e']) >>> # Change n-gram length >>> ngram.setParams(n=4).transform(df).head() Row(inputTokens=['a', 'b', 'c', 'd', 'e'], nGrams=['a b c d', 'b c d e']) >>> # Temporarily modify output column. >>> ngram.transform(df, {ngram.outputCol: "output"}).head() Row(inputTokens=['a', 'b', 'c', 'd', 'e'], output=['a b c d', 'b c d e']) >>> ngram.transform(df).head() Row(inputTokens=['a', 'b', 'c', 'd', 'e'], nGrams=['a b c d', 'b c d e']) >>> # Must use keyword arguments to specify params. >>> ngram.setParams("text") Traceback (most recent call last): ... TypeError: Method setParams forces keyword arguments. >>> ngramPath = temp_path + "/ngram" >>> ngram.save(ngramPath) >>> loadedNGram = NGram.load(ngramPath) >>> loadedNGram.getN() == ngram.getN() True
New in version 1.5.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getInputCol
()¶ Gets the value of inputCol or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getOutputCol
()¶ Gets the value of outputCol or its default value.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
inputCol
= Param(parent='undefined', name='inputCol', doc='input column name.')¶
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
n
= Param(parent='undefined', name='n', doc='number of elements per n-gram (>=1)')¶
-
outputCol
= Param(parent='undefined', name='outputCol', doc='output column name.')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
setParams
(self, n=2, inputCol=None, outputCol=None)[source]¶ Sets params for this NGram.
New in version 1.5.0.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
Normalizer
(p=2.0, inputCol=None, outputCol=None)[source]¶ - Normalize a vector to have unit norm using the given p-norm.
>>> from pyspark.ml.linalg import Vectors >>> svec = Vectors.sparse(4, {1: 4.0, 3: 3.0}) >>> df = spark.createDataFrame([(Vectors.dense([3.0, -4.0]), svec)], ["dense", "sparse"]) >>> normalizer = Normalizer(p=2.0, inputCol="dense", outputCol="features") >>> normalizer.transform(df).head().features DenseVector([0.6, -0.8]) >>> normalizer.setParams(inputCol="sparse", outputCol="freqs").transform(df).head().freqs SparseVector(4, {1: 0.8, 3: 0.6}) >>> params = {normalizer.p: 1.0, normalizer.inputCol: "dense", normalizer.outputCol: "vector"} >>> normalizer.transform(df, params).head().vector DenseVector([0.4286, -0.5714]) >>> normalizerPath = temp_path + "/normalizer" >>> normalizer.save(normalizerPath) >>> loadedNormalizer = Normalizer.load(normalizerPath) >>> loadedNormalizer.getP() == normalizer.getP() True
New in version 1.4.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getInputCol
()¶ Gets the value of inputCol or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getOutputCol
()¶ Gets the value of outputCol or its default value.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
inputCol
= Param(parent='undefined', name='inputCol', doc='input column name.')¶
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
outputCol
= Param(parent='undefined', name='outputCol', doc='output column name.')¶
-
p
= Param(parent='undefined', name='p', doc='the p norm value.')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
setParams
(self, p=2.0, inputCol=None, outputCol=None)[source]¶ Sets params for this Normalizer.
New in version 1.4.0.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
OneHotEncoder
(dropLast=True, inputCol=None, outputCol=None)[source]¶ A one-hot encoder that maps a column of category indices to a column of binary vectors, with at most a single one-value per row that indicates the input category index. For example with 5 categories, an input value of 2.0 would map to an output vector of [0.0, 0.0, 1.0, 0.0]. The last category is not included by default (configurable via
dropLast
) because it makes the vector entries sum up to one, and hence linearly dependent. So an input value of 4.0 maps to [0.0, 0.0, 0.0, 0.0].Note
This is different from scikit-learn’s OneHotEncoder, which keeps all categories. The output vectors are sparse.
See also
StringIndexer
for converting categorical values into category indices>>> stringIndexer = StringIndexer(inputCol="label", outputCol="indexed") >>> model = stringIndexer.fit(stringIndDf) >>> td = model.transform(stringIndDf) >>> encoder = OneHotEncoder(inputCol="indexed", outputCol="features") >>> encoder.transform(td).head().features SparseVector(2, {0: 1.0}) >>> encoder.setParams(outputCol="freqs").transform(td).head().freqs SparseVector(2, {0: 1.0}) >>> params = {encoder.dropLast: False, encoder.outputCol: "test"} >>> encoder.transform(td, params).head().test SparseVector(3, {0: 1.0}) >>> onehotEncoderPath = temp_path + "/onehot-encoder" >>> encoder.save(onehotEncoderPath) >>> loadedEncoder = OneHotEncoder.load(onehotEncoderPath) >>> loadedEncoder.getDropLast() == encoder.getDropLast() True
New in version 1.4.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
dropLast
= Param(parent='undefined', name='dropLast', doc='whether to drop the last category')¶
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getInputCol
()¶ Gets the value of inputCol or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getOutputCol
()¶ Gets the value of outputCol or its default value.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
inputCol
= Param(parent='undefined', name='inputCol', doc='input column name.')¶
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
outputCol
= Param(parent='undefined', name='outputCol', doc='output column name.')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
setParams
(self, dropLast=True, inputCol=None, outputCol=None)[source]¶ Sets params for this OneHotEncoder.
New in version 1.4.0.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
PCA
(k=None, inputCol=None, outputCol=None)[source]¶ PCA trains a model to project vectors to a lower dimensional space of the top
k
principal components.>>> from pyspark.ml.linalg import Vectors >>> data = [(Vectors.sparse(5, [(1, 1.0), (3, 7.0)]),), ... (Vectors.dense([2.0, 0.0, 3.0, 4.0, 5.0]),), ... (Vectors.dense([4.0, 0.0, 0.0, 6.0, 7.0]),)] >>> df = spark.createDataFrame(data,["features"]) >>> pca = PCA(k=2, inputCol="features", outputCol="pca_features") >>> model = pca.fit(df) >>> model.transform(df).collect()[0].pca_features DenseVector([1.648..., -4.013...]) >>> model.explainedVariance DenseVector([0.794..., 0.205...]) >>> pcaPath = temp_path + "/pca" >>> pca.save(pcaPath) >>> loadedPca = PCA.load(pcaPath) >>> loadedPca.getK() == pca.getK() True >>> modelPath = temp_path + "/pca-model" >>> model.save(modelPath) >>> loadedModel = PCAModel.load(modelPath) >>> loadedModel.pc == model.pc True >>> loadedModel.explainedVariance == model.explainedVariance True
New in version 1.5.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Returns: fitted model(s)
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
getInputCol
()¶ Gets the value of inputCol or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getOutputCol
()¶ Gets the value of outputCol or its default value.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
inputCol
= Param(parent='undefined', name='inputCol', doc='input column name.')¶
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
k
= Param(parent='undefined', name='k', doc='the number of principal components')¶
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
outputCol
= Param(parent='undefined', name='outputCol', doc='output column name.')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
setParams
(self, k=None, inputCol=None, outputCol=None)[source]¶ Set params for this PCA.
New in version 1.5.0.
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
PCAModel
(java_model=None)[source]¶ Model fitted by
PCA
. Transforms vectors to a lower dimensional space.New in version 1.5.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
explainedVariance
¶ Returns a vector of proportions of variance explained by each principal component.
New in version 2.0.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
pc
¶ Returns a principal components Matrix. Each column is one principal component.
New in version 2.0.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
PolynomialExpansion
(degree=2, inputCol=None, outputCol=None)[source]¶ Perform feature expansion in a polynomial space. As said in wikipedia of Polynomial Expansion, “In mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition”. Take a 2-variable feature vector as an example: (x, y), if we want to expand it with degree 2, then we get (x, x * x, y, x * y, y * y).
>>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([(Vectors.dense([0.5, 2.0]),)], ["dense"]) >>> px = PolynomialExpansion(degree=2, inputCol="dense", outputCol="expanded") >>> px.transform(df).head().expanded DenseVector([0.5, 0.25, 2.0, 1.0, 4.0]) >>> px.setParams(outputCol="test").transform(df).head().test DenseVector([0.5, 0.25, 2.0, 1.0, 4.0]) >>> polyExpansionPath = temp_path + "/poly-expansion" >>> px.save(polyExpansionPath) >>> loadedPx = PolynomialExpansion.load(polyExpansionPath) >>> loadedPx.getDegree() == px.getDegree() True
New in version 1.4.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
degree
= Param(parent='undefined', name='degree', doc='the polynomial degree to expand (>= 1)')¶
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getInputCol
()¶ Gets the value of inputCol or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getOutputCol
()¶ Gets the value of outputCol or its default value.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
inputCol
= Param(parent='undefined', name='inputCol', doc='input column name.')¶
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
outputCol
= Param(parent='undefined', name='outputCol', doc='output column name.')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
setParams
(self, degree=2, inputCol=None, outputCol=None)[source]¶ Sets params for this PolynomialExpansion.
New in version 1.4.0.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
QuantileDiscretizer
(numBuckets=2, inputCol=None, outputCol=None, relativeError=0.001, handleInvalid='error')[source]¶ Note
Experimental
QuantileDiscretizer takes a column with continuous features and outputs a column with binned categorical features. The number of bins can be set using the
numBuckets
parameter. The bin ranges are chosen using an approximate algorithm (see the documentation forapproxQuantile()
for a detailed description). The precision of the approximation can be controlled with therelativeError
parameter. The lower and upper bin bounds will be -Infinity and +Infinity, covering all real values.>>> values = [(0.1,), (0.4,), (1.2,), (1.5,), (float("nan"),), (float("nan"),)] >>> df = spark.createDataFrame(values, ["values"]) >>> qds = QuantileDiscretizer(numBuckets=2, ... inputCol="values", outputCol="buckets", relativeError=0.01, handleInvalid="error") >>> qds.getRelativeError() 0.01 >>> bucketizer = qds.fit(df) >>> qds.setHandleInvalid("keep").fit(df).transform(df).count() 6 >>> qds.setHandleInvalid("skip").fit(df).transform(df).count() 4 >>> splits = bucketizer.getSplits() >>> splits[0] -inf >>> print("%2.1f" % round(splits[1], 1)) 0.4 >>> bucketed = bucketizer.transform(df).head() >>> bucketed.buckets 0.0 >>> quantileDiscretizerPath = temp_path + "/quantile-discretizer" >>> qds.save(quantileDiscretizerPath) >>> loadedQds = QuantileDiscretizer.load(quantileDiscretizerPath) >>> loadedQds.getNumBuckets() == qds.getNumBuckets() True
New in version 2.0.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Returns: fitted model(s)
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
getHandleInvalid
()[source]¶ Gets the value of
handleInvalid
or its default value.New in version 2.1.0.
-
getInputCol
()¶ Gets the value of inputCol or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getOutputCol
()¶ Gets the value of outputCol or its default value.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
getRelativeError
()[source]¶ Gets the value of relativeError or its default value.
New in version 2.0.0.
-
handleInvalid
= Param(parent='undefined', name='handleInvalid', doc='how to handle invalid entries. Options are skip (filter out rows with invalid values), error (throw an error), or keep (keep invalid values in a special additional bucket).')¶
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
inputCol
= Param(parent='undefined', name='inputCol', doc='input column name.')¶
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
numBuckets
= Param(parent='undefined', name='numBuckets', doc='Maximum number of buckets (quantiles, or categories) into which data points are grouped. Must be >= 2.')¶
-
outputCol
= Param(parent='undefined', name='outputCol', doc='output column name.')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
relativeError
= Param(parent='undefined', name='relativeError', doc='The relative target precision for the approximate quantile algorithm used to generate buckets. Must be in the range [0, 1].')¶
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
setHandleInvalid
(value)[source]¶ Sets the value of
handleInvalid
.New in version 2.1.0.
-
setNumBuckets
(value)[source]¶ Sets the value of
numBuckets
.New in version 2.0.0.
-
setParams
(self, numBuckets=2, inputCol=None, outputCol=None, relativeError=0.001, handleInvalid="error")[source]¶ Set the params for the QuantileDiscretizer
New in version 2.0.0.
-
setRelativeError
(value)[source]¶ Sets the value of
relativeError
.New in version 2.0.0.
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
RegexTokenizer
(minTokenLength=1, gaps=True, pattern='\s+', inputCol=None, outputCol=None, toLowercase=True)[source]¶ A regex based tokenizer that extracts tokens either by using the provided regex pattern (in Java dialect) to split the text (default) or repeatedly matching the regex (if gaps is false). Optional parameters also allow filtering tokens using a minimal length. It returns an array of strings that can be empty.
>>> df = spark.createDataFrame([("A B c",)], ["text"]) >>> reTokenizer = RegexTokenizer(inputCol="text", outputCol="words") >>> reTokenizer.transform(df).head() Row(text='A B c', words=['a', 'b', 'c']) >>> # Change a parameter. >>> reTokenizer.setParams(outputCol="tokens").transform(df).head() Row(text='A B c', tokens=['a', 'b', 'c']) >>> # Temporarily modify a parameter. >>> reTokenizer.transform(df, {reTokenizer.outputCol: "words"}).head() Row(text='A B c', words=['a', 'b', 'c']) >>> reTokenizer.transform(df).head() Row(text='A B c', tokens=['a', 'b', 'c']) >>> # Must use keyword arguments to specify params. >>> reTokenizer.setParams("text") Traceback (most recent call last): ... TypeError: Method setParams forces keyword arguments. >>> regexTokenizerPath = temp_path + "/regex-tokenizer" >>> reTokenizer.save(regexTokenizerPath) >>> loadedReTokenizer = RegexTokenizer.load(regexTokenizerPath) >>> loadedReTokenizer.getMinTokenLength() == reTokenizer.getMinTokenLength() True >>> loadedReTokenizer.getGaps() == reTokenizer.getGaps() True
New in version 1.4.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
gaps
= Param(parent='undefined', name='gaps', doc='whether regex splits on gaps (True) or matches tokens (False)')¶
-
getInputCol
()¶ Gets the value of inputCol or its default value.
-
getMinTokenLength
()[source]¶ Gets the value of minTokenLength or its default value.
New in version 1.4.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getOutputCol
()¶ Gets the value of outputCol or its default value.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
inputCol
= Param(parent='undefined', name='inputCol', doc='input column name.')¶
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
minTokenLength
= Param(parent='undefined', name='minTokenLength', doc='minimum token length (>= 0)')¶
-
outputCol
= Param(parent='undefined', name='outputCol', doc='output column name.')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
pattern
= Param(parent='undefined', name='pattern', doc='regex pattern (Java dialect) used for tokenizing')¶
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
setMinTokenLength
(value)[source]¶ Sets the value of
minTokenLength
.New in version 1.4.0.
-
setParams
(self, minTokenLength=1, gaps=True, pattern="s+", inputCol=None, outputCol=None, toLowercase=True)[source]¶ Sets params for this RegexTokenizer.
New in version 1.4.0.
-
setToLowercase
(value)[source]¶ Sets the value of
toLowercase
.New in version 2.0.0.
-
toLowercase
= Param(parent='undefined', name='toLowercase', doc='whether to convert all characters to lowercase before tokenizing')¶
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
RFormula
(formula=None, featuresCol='features', labelCol='label', forceIndexLabel=False)[source]¶ Note
Experimental
Implements the transforms required for fitting a dataset against an R model formula. Currently we support a limited subset of the R operators, including ‘~’, ‘.’, ‘:’, ‘+’, and ‘-‘. Also see the R formula docs.
>>> df = spark.createDataFrame([ ... (1.0, 1.0, "a"), ... (0.0, 2.0, "b"), ... (0.0, 0.0, "a") ... ], ["y", "x", "s"]) >>> rf = RFormula(formula="y ~ x + s") >>> model = rf.fit(df) >>> model.transform(df).show() +---+---+---+---------+-----+ | y| x| s| features|label| +---+---+---+---------+-----+ |1.0|1.0| a|[1.0,1.0]| 1.0| |0.0|2.0| b|[2.0,0.0]| 0.0| |0.0|0.0| a|[0.0,1.0]| 0.0| +---+---+---+---------+-----+ ... >>> rf.fit(df, {rf.formula: "y ~ . - s"}).transform(df).show() +---+---+---+--------+-----+ | y| x| s|features|label| +---+---+---+--------+-----+ |1.0|1.0| a| [1.0]| 1.0| |0.0|2.0| b| [2.0]| 0.0| |0.0|0.0| a| [0.0]| 0.0| +---+---+---+--------+-----+ ... >>> rFormulaPath = temp_path + "/rFormula" >>> rf.save(rFormulaPath) >>> loadedRF = RFormula.load(rFormulaPath) >>> loadedRF.getFormula() == rf.getFormula() True >>> loadedRF.getFeaturesCol() == rf.getFeaturesCol() True >>> loadedRF.getLabelCol() == rf.getLabelCol() True >>> str(loadedRF) 'RFormula(y ~ x + s) (uid=...)' >>> modelPath = temp_path + "/rFormulaModel" >>> model.save(modelPath) >>> loadedModel = RFormulaModel.load(modelPath) >>> loadedModel.uid == model.uid True >>> loadedModel.transform(df).show() +---+---+---+---------+-----+ | y| x| s| features|label| +---+---+---+---------+-----+ |1.0|1.0| a|[1.0,1.0]| 1.0| |0.0|2.0| b|[2.0,0.0]| 0.0| |0.0|0.0| a|[0.0,1.0]| 0.0| +---+---+---+---------+-----+ ... >>> str(loadedModel) 'RFormulaModel(ResolvedRFormula(label=y, terms=[x,s], hasIntercept=true)) (uid=...)'
New in version 1.5.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
featuresCol
= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Returns: fitted model(s)
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
forceIndexLabel
= Param(parent='undefined', name='forceIndexLabel', doc='Force to index label whether it is numeric or string')¶
-
formula
= Param(parent='undefined', name='formula', doc='R model formula')¶
-
getFeaturesCol
()¶ Gets the value of featuresCol or its default value.
-
getForceIndexLabel
()[source]¶ Gets the value of
forceIndexLabel
.New in version 2.1.0.
-
getLabelCol
()¶ Gets the value of labelCol or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
labelCol
= Param(parent='undefined', name='labelCol', doc='label column name.')¶
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
setFeaturesCol
(value)¶ Sets the value of
featuresCol
.
-
setForceIndexLabel
(value)[source]¶ Sets the value of
forceIndexLabel
.New in version 2.1.0.
-
setParams
(self, formula=None, featuresCol="features", labelCol="label", forceIndexLabel=False)[source]¶ Sets params for RFormula.
New in version 1.5.0.
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
RFormulaModel
(java_model=None)[source]¶ Note
Experimental
Model fitted by
RFormula
. Fitting is required to determine the factor levels of formula terms.New in version 1.5.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
SQLTransformer
(statement=None)[source]¶ Implements the transforms which are defined by SQL statement. Currently we only support SQL syntax like ‘SELECT ... FROM __THIS__’ where ‘__THIS__’ represents the underlying table of the input dataset.
>>> df = spark.createDataFrame([(0, 1.0, 3.0), (2, 2.0, 5.0)], ["id", "v1", "v2"]) >>> sqlTrans = SQLTransformer( ... statement="SELECT *, (v1 + v2) AS v3, (v1 * v2) AS v4 FROM __THIS__") >>> sqlTrans.transform(df).head() Row(id=0, v1=1.0, v2=3.0, v3=4.0, v4=3.0) >>> sqlTransformerPath = temp_path + "/sql-transformer" >>> sqlTrans.save(sqlTransformerPath) >>> loadedSqlTrans = SQLTransformer.load(sqlTransformerPath) >>> loadedSqlTrans.getStatement() == sqlTrans.getStatement() True
New in version 1.6.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
statement
= Param(parent='undefined', name='statement', doc='SQL statement')¶
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
StandardScaler
(withMean=False, withStd=True, inputCol=None, outputCol=None)[source]¶ Standardizes features by removing the mean and scaling to unit variance using column summary statistics on the samples in the training set.
The “unit std” is computed using the corrected sample standard deviation, which is computed as the square root of the unbiased sample variance.
>>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([(Vectors.dense([0.0]),), (Vectors.dense([2.0]),)], ["a"]) >>> standardScaler = StandardScaler(inputCol="a", outputCol="scaled") >>> model = standardScaler.fit(df) >>> model.mean DenseVector([1.0]) >>> model.std DenseVector([1.4142]) >>> model.transform(df).collect()[1].scaled DenseVector([1.4142]) >>> standardScalerPath = temp_path + "/standard-scaler" >>> standardScaler.save(standardScalerPath) >>> loadedStandardScaler = StandardScaler.load(standardScalerPath) >>> loadedStandardScaler.getWithMean() == standardScaler.getWithMean() True >>> loadedStandardScaler.getWithStd() == standardScaler.getWithStd() True >>> modelPath = temp_path + "/standard-scaler-model" >>> model.save(modelPath) >>> loadedModel = StandardScalerModel.load(modelPath) >>> loadedModel.std == model.std True >>> loadedModel.mean == model.mean True
New in version 1.4.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Returns: fitted model(s)
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
getInputCol
()¶ Gets the value of inputCol or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getOutputCol
()¶ Gets the value of outputCol or its default value.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
inputCol
= Param(parent='undefined', name='inputCol', doc='input column name.')¶
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
outputCol
= Param(parent='undefined', name='outputCol', doc='output column name.')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
setParams
(self, withMean=False, withStd=True, inputCol=None, outputCol=None)[source]¶ Sets params for this StandardScaler.
New in version 1.4.0.
-
withMean
= Param(parent='undefined', name='withMean', doc='Center data with mean')¶
-
withStd
= Param(parent='undefined', name='withStd', doc='Scale to unit standard deviation')¶
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
StandardScalerModel
(java_model=None)[source]¶ Model fitted by
StandardScaler
.New in version 1.4.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
mean
¶ Mean of the StandardScalerModel.
New in version 2.0.0.
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
std
¶ Standard deviation of the StandardScalerModel.
New in version 2.0.0.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
StopWordsRemover
(inputCol=None, outputCol=None, stopWords=None, caseSensitive=False)[source]¶ A feature transformer that filters out stop words from input.
Note
null values from input array are preserved unless adding null to stopWords explicitly.
>>> df = spark.createDataFrame([(["a", "b", "c"],)], ["text"]) >>> remover = StopWordsRemover(inputCol="text", outputCol="words", stopWords=["b"]) >>> remover.transform(df).head().words == ['a', 'c'] True >>> stopWordsRemoverPath = temp_path + "/stopwords-remover" >>> remover.save(stopWordsRemoverPath) >>> loadedRemover = StopWordsRemover.load(stopWordsRemoverPath) >>> loadedRemover.getStopWords() == remover.getStopWords() True >>> loadedRemover.getCaseSensitive() == remover.getCaseSensitive() True
New in version 1.6.0.
-
caseSensitive
= Param(parent='undefined', name='caseSensitive', doc='whether to do a case sensitive comparison over the stop words')¶
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getCaseSensitive
()[source]¶ Gets the value of
caseSensitive
or its default value.New in version 1.6.0.
-
getInputCol
()¶ Gets the value of inputCol or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getOutputCol
()¶ Gets the value of outputCol or its default value.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
inputCol
= Param(parent='undefined', name='inputCol', doc='input column name.')¶
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
static
loadDefaultStopWords
(language)[source]¶ Loads the default stop words for the given language. Supported languages: danish, dutch, english, finnish, french, german, hungarian, italian, norwegian, portuguese, russian, spanish, swedish, turkish
New in version 2.0.0.
-
outputCol
= Param(parent='undefined', name='outputCol', doc='output column name.')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
setCaseSensitive
(value)[source]¶ Sets the value of
caseSensitive
.New in version 1.6.0.
-
setParams
(self, inputCol=None, outputCol=None, stopWords=None, caseSensitive=false)[source]¶ Sets params for this StopWordRemover.
New in version 1.6.0.
-
stopWords
= Param(parent='undefined', name='stopWords', doc='The words to be filtered out')¶
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
StringIndexer
(inputCol=None, outputCol=None, handleInvalid='error')[source]¶ A label indexer that maps a string column of labels to an ML column of label indices. If the input column is numeric, we cast it to string and index the string values. The indices are in [0, numLabels), ordered by label frequencies. So the most frequent label gets index 0.
>>> stringIndexer = StringIndexer(inputCol="label", outputCol="indexed", handleInvalid='error') >>> model = stringIndexer.fit(stringIndDf) >>> td = model.transform(stringIndDf) >>> sorted(set([(i[0], i[1]) for i in td.select(td.id, td.indexed).collect()]), ... key=lambda x: x[0]) [(0, 0.0), (1, 2.0), (2, 1.0), (3, 0.0), (4, 0.0), (5, 1.0)] >>> inverter = IndexToString(inputCol="indexed", outputCol="label2", labels=model.labels) >>> itd = inverter.transform(td) >>> sorted(set([(i[0], str(i[1])) for i in itd.select(itd.id, itd.label2).collect()]), ... key=lambda x: x[0]) [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'a'), (4, 'a'), (5, 'c')] >>> stringIndexerPath = temp_path + "/string-indexer" >>> stringIndexer.save(stringIndexerPath) >>> loadedIndexer = StringIndexer.load(stringIndexerPath) >>> loadedIndexer.getHandleInvalid() == stringIndexer.getHandleInvalid() True >>> modelPath = temp_path + "/string-indexer-model" >>> model.save(modelPath) >>> loadedModel = StringIndexerModel.load(modelPath) >>> loadedModel.labels == model.labels True >>> indexToStringPath = temp_path + "/index-to-string" >>> inverter.save(indexToStringPath) >>> loadedInverter = IndexToString.load(indexToStringPath) >>> loadedInverter.getLabels() == inverter.getLabels() True
New in version 1.4.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Returns: fitted model(s)
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
getHandleInvalid
()¶ Gets the value of handleInvalid or its default value.
-
getInputCol
()¶ Gets the value of inputCol or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getOutputCol
()¶ Gets the value of outputCol or its default value.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
handleInvalid
= Param(parent='undefined', name='handleInvalid', doc='how to handle invalid entries. Options are skip (which will filter out rows with bad values), or error (which will throw an error). More options may be added later.')¶
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
inputCol
= Param(parent='undefined', name='inputCol', doc='input column name.')¶
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
outputCol
= Param(parent='undefined', name='outputCol', doc='output column name.')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
setHandleInvalid
(value)¶ Sets the value of
handleInvalid
.
-
setParams
(self, inputCol=None, outputCol=None, handleInvalid="error")[source]¶ Sets params for this StringIndexer.
New in version 1.4.0.
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
StringIndexerModel
(java_model=None)[source]¶ Model fitted by
StringIndexer
.New in version 1.4.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
labels
¶ Ordered list of labels, corresponding to indices to be assigned.
New in version 1.5.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
Tokenizer
(inputCol=None, outputCol=None)[source]¶ A tokenizer that converts the input string to lowercase and then splits it by white spaces.
>>> df = spark.createDataFrame([("a b c",)], ["text"]) >>> tokenizer = Tokenizer(inputCol="text", outputCol="words") >>> tokenizer.transform(df).head() Row(text='a b c', words=['a', 'b', 'c']) >>> # Change a parameter. >>> tokenizer.setParams(outputCol="tokens").transform(df).head() Row(text='a b c', tokens=['a', 'b', 'c']) >>> # Temporarily modify a parameter. >>> tokenizer.transform(df, {tokenizer.outputCol: "words"}).head() Row(text='a b c', words=['a', 'b', 'c']) >>> tokenizer.transform(df).head() Row(text='a b c', tokens=['a', 'b', 'c']) >>> # Must use keyword arguments to specify params. >>> tokenizer.setParams("text") Traceback (most recent call last): ... TypeError: Method setParams forces keyword arguments. >>> tokenizerPath = temp_path + "/tokenizer" >>> tokenizer.save(tokenizerPath) >>> loadedTokenizer = Tokenizer.load(tokenizerPath) >>> loadedTokenizer.transform(df).head().tokens == tokenizer.transform(df).head().tokens True
New in version 1.3.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getInputCol
()¶ Gets the value of inputCol or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getOutputCol
()¶ Gets the value of outputCol or its default value.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
inputCol
= Param(parent='undefined', name='inputCol', doc='input column name.')¶
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
outputCol
= Param(parent='undefined', name='outputCol', doc='output column name.')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
setParams
(self, inputCol=None, outputCol=None)[source]¶ Sets params for this Tokenizer.
New in version 1.3.0.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
VectorAssembler
(inputCols=None, outputCol=None)[source]¶ A feature transformer that merges multiple columns into a vector column.
>>> df = spark.createDataFrame([(1, 0, 3)], ["a", "b", "c"]) >>> vecAssembler = VectorAssembler(inputCols=["a", "b", "c"], outputCol="features") >>> vecAssembler.transform(df).head().features DenseVector([1.0, 0.0, 3.0]) >>> vecAssembler.setParams(outputCol="freqs").transform(df).head().freqs DenseVector([1.0, 0.0, 3.0]) >>> params = {vecAssembler.inputCols: ["b", "a"], vecAssembler.outputCol: "vector"} >>> vecAssembler.transform(df, params).head().vector DenseVector([0.0, 1.0]) >>> vectorAssemblerPath = temp_path + "/vector-assembler" >>> vecAssembler.save(vectorAssemblerPath) >>> loadedAssembler = VectorAssembler.load(vectorAssemblerPath) >>> loadedAssembler.transform(df).head().freqs == vecAssembler.transform(df).head().freqs True
New in version 1.4.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getInputCols
()¶ Gets the value of inputCols or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getOutputCol
()¶ Gets the value of outputCol or its default value.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
inputCols
= Param(parent='undefined', name='inputCols', doc='input column names.')¶
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
outputCol
= Param(parent='undefined', name='outputCol', doc='output column name.')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
setParams
(self, inputCols=None, outputCol=None)[source]¶ Sets params for this VectorAssembler.
New in version 1.4.0.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
VectorIndexer
(maxCategories=20, inputCol=None, outputCol=None)[source]¶ Class for indexing categorical feature columns in a dataset of Vector.
- This has 2 usage modes:
- Automatically identify categorical features (default behavior)
- This helps process a dataset of unknown vectors into a dataset with some continuous features and some categorical features. The choice between continuous and categorical is based upon a maxCategories parameter.
- Set maxCategories to the maximum number of categorical any categorical feature should have.
- E.g.: Feature 0 has unique values {-1.0, 0.0}, and feature 1 values {1.0, 3.0, 5.0}. If maxCategories = 2, then feature 0 will be declared categorical and use indices {0, 1}, and feature 1 will be declared continuous.
- Index all features, if all features are categorical
- If maxCategories is set to be very large, then this will build an index of unique values for all features.
- Warning: This can cause problems if features are continuous since this will collect ALL unique values to the driver.
- E.g.: Feature 0 has unique values {-1.0, 0.0}, and feature 1 values {1.0, 3.0, 5.0}. If maxCategories >= 3, then both features will be declared categorical.
This returns a model which can transform categorical features to use 0-based indices.
- Index stability:
- This is not guaranteed to choose the same category index across multiple runs.
- If a categorical feature includes value 0, then this is guaranteed to map value 0 to index 0. This maintains vector sparsity.
- More stability may be added in the future.
- TODO: Future extensions: The following functionality is planned for the future:
- Preserve metadata in transform; if a feature’s metadata is already present, do not recompute.
- Specify certain features to not index, either via a parameter or via existing metadata.
- Add warning if a categorical feature has only 1 category.
- Add option for allowing unknown categories.
>>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([(Vectors.dense([-1.0, 0.0]),), ... (Vectors.dense([0.0, 1.0]),), (Vectors.dense([0.0, 2.0]),)], ["a"]) >>> indexer = VectorIndexer(maxCategories=2, inputCol="a", outputCol="indexed") >>> model = indexer.fit(df) >>> model.transform(df).head().indexed DenseVector([1.0, 0.0]) >>> model.numFeatures 2 >>> model.categoryMaps {0: {0.0: 0, -1.0: 1}} >>> indexer.setParams(outputCol="test").fit(df).transform(df).collect()[1].test DenseVector([0.0, 1.0]) >>> params = {indexer.maxCategories: 3, indexer.outputCol: "vector"} >>> model2 = indexer.fit(df, params) >>> model2.transform(df).head().vector DenseVector([1.0, 0.0]) >>> vectorIndexerPath = temp_path + "/vector-indexer" >>> indexer.save(vectorIndexerPath) >>> loadedIndexer = VectorIndexer.load(vectorIndexerPath) >>> loadedIndexer.getMaxCategories() == indexer.getMaxCategories() True >>> modelPath = temp_path + "/vector-indexer-model" >>> model.save(modelPath) >>> loadedModel = VectorIndexerModel.load(modelPath) >>> loadedModel.numFeatures == model.numFeatures True >>> loadedModel.categoryMaps == model.categoryMaps True
New in version 1.4.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Returns: fitted model(s)
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
getInputCol
()¶ Gets the value of inputCol or its default value.
-
getMaxCategories
()[source]¶ Gets the value of maxCategories or its default value.
New in version 1.4.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getOutputCol
()¶ Gets the value of outputCol or its default value.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
inputCol
= Param(parent='undefined', name='inputCol', doc='input column name.')¶
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
maxCategories
= Param(parent='undefined', name='maxCategories', doc='Threshold for the number of values a categorical feature can take (>= 2). If a feature is found to have > maxCategories values, then it is declared continuous.')¶
-
outputCol
= Param(parent='undefined', name='outputCol', doc='output column name.')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
setMaxCategories
(value)[source]¶ Sets the value of
maxCategories
.New in version 1.4.0.
-
setParams
(self, maxCategories=20, inputCol=None, outputCol=None)[source]¶ Sets params for this VectorIndexer.
New in version 1.4.0.
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
class
pyspark.ml.feature.
VectorIndexerModel
(java_model=None)[source]¶ Model fitted by
VectorIndexer
.- Transform categorical features to use 0-based indices instead of their original values.
- Categorical features are mapped to indices.
- Continuous features (columns) are left unchanged.
This also appends metadata to the output column, marking features as Numeric (continuous), Nominal (categorical), or Binary (either continuous or categorical). Non-ML metadata is not carried over from the input to the output column.
This maintains vector sparsity.
New in version 1.4.0.
-
categoryMaps
¶ Feature value index. Keys are categorical feature indices (column indices). Values are maps from original features values to 0-based category indices. If a feature is not in this map, it is treated as continuous.
New in version 1.4.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
numFeatures
¶ Number of features, i.e., length of Vectors which this transforms.
New in version 1.4.0.
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
class
pyspark.ml.feature.
VectorSlicer
(inputCol=None, outputCol=None, indices=None, names=None)[source]¶ This class takes a feature vector and outputs a new feature vector with a subarray of the original features.
The subset of features can be specified with either indices (setIndices()) or names (setNames()). At least one feature must be selected. Duplicate features are not allowed, so there can be no overlap between selected indices and names.
The output vector will order features with the selected indices first (in the order given), followed by the selected names (in the order given).
>>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([ ... (Vectors.dense([-2.0, 2.3, 0.0, 0.0, 1.0]),), ... (Vectors.dense([0.0, 0.0, 0.0, 0.0, 0.0]),), ... (Vectors.dense([0.6, -1.1, -3.0, 4.5, 3.3]),)], ["features"]) >>> vs = VectorSlicer(inputCol="features", outputCol="sliced", indices=[1, 4]) >>> vs.transform(df).head().sliced DenseVector([2.3, 1.0]) >>> vectorSlicerPath = temp_path + "/vector-slicer" >>> vs.save(vectorSlicerPath) >>> loadedVs = VectorSlicer.load(vectorSlicerPath) >>> loadedVs.getIndices() == vs.getIndices() True >>> loadedVs.getNames() == vs.getNames() True
New in version 1.6.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getInputCol
()¶ Gets the value of inputCol or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getOutputCol
()¶ Gets the value of outputCol or its default value.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
indices
= Param(parent='undefined', name='indices', doc='An array of indices to select features from a vector column. There can be no overlap with names.')¶
-
inputCol
= Param(parent='undefined', name='inputCol', doc='input column name.')¶
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
names
= Param(parent='undefined', name='names', doc='An array of feature names to select features from a vector column. These names must be specified by ML org.apache.spark.ml.attribute.Attribute. There can be no overlap with indices.')¶
-
outputCol
= Param(parent='undefined', name='outputCol', doc='output column name.')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
setParams
(inputCol=None, outputCol=None, indices=None, names=None)[source]¶ setParams(self, inputCol=None, outputCol=None, indices=None, names=None): Sets params for this VectorSlicer.
New in version 1.6.0.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
Word2Vec
(vectorSize=100, minCount=5, numPartitions=1, stepSize=0.025, maxIter=1, seed=None, inputCol=None, outputCol=None, windowSize=5, maxSentenceLength=1000)[source]¶ Word2Vec trains a model of Map(String, Vector), i.e. transforms a word into a code for further natural language processing or machine learning process.
>>> sent = ("a b " * 100 + "a c " * 10).split(" ") >>> doc = spark.createDataFrame([(sent,), (sent,)], ["sentence"]) >>> word2Vec = Word2Vec(vectorSize=5, seed=42, inputCol="sentence", outputCol="model") >>> model = word2Vec.fit(doc) >>> model.getVectors().show() +----+--------------------+ |word| vector| +----+--------------------+ | a|[0.09461779892444...| | b|[1.15474212169647...| | c|[-0.3794820010662...| +----+--------------------+ ... >>> from pyspark.sql.functions import format_number as fmt >>> model.findSynonyms("a", 2).select("word", fmt("similarity", 5).alias("similarity")).show() +----+----------+ |word|similarity| +----+----------+ | b| 0.25053| | c| -0.69805| +----+----------+ ... >>> model.transform(doc).head().model DenseVector([0.5524, -0.4995, -0.3599, 0.0241, 0.3461]) >>> word2vecPath = temp_path + "/word2vec" >>> word2Vec.save(word2vecPath) >>> loadedWord2Vec = Word2Vec.load(word2vecPath) >>> loadedWord2Vec.getVectorSize() == word2Vec.getVectorSize() True >>> loadedWord2Vec.getNumPartitions() == word2Vec.getNumPartitions() True >>> loadedWord2Vec.getMinCount() == word2Vec.getMinCount() True >>> modelPath = temp_path + "/word2vec-model" >>> model.save(modelPath) >>> loadedModel = Word2VecModel.load(modelPath) >>> loadedModel.getVectors().first().word == model.getVectors().first().word True >>> loadedModel.getVectors().first().vector == model.getVectors().first().vector True
New in version 1.4.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Returns: fitted model(s)
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
getInputCol
()¶ Gets the value of inputCol or its default value.
-
getMaxIter
()¶ Gets the value of maxIter or its default value.
-
getMaxSentenceLength
()[source]¶ Gets the value of maxSentenceLength or its default value.
New in version 2.0.0.
-
getNumPartitions
()[source]¶ Gets the value of numPartitions or its default value.
New in version 1.4.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getOutputCol
()¶ Gets the value of outputCol or its default value.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
getSeed
()¶ Gets the value of seed or its default value.
-
getStepSize
()¶ Gets the value of stepSize or its default value.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
inputCol
= Param(parent='undefined', name='inputCol', doc='input column name.')¶
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
maxIter
= Param(parent='undefined', name='maxIter', doc='max number of iterations (>= 0).')¶
-
maxSentenceLength
= Param(parent='undefined', name='maxSentenceLength', doc='Maximum length (in words) of each sentence in the input data. Any sentence longer than this threshold will be divided into chunks up to the size.')¶
-
minCount
= Param(parent='undefined', name='minCount', doc="the minimum number of times a token must appear to be included in the word2vec model's vocabulary")¶
-
numPartitions
= Param(parent='undefined', name='numPartitions', doc='number of partitions for sentences of words')¶
-
outputCol
= Param(parent='undefined', name='outputCol', doc='output column name.')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
seed
= Param(parent='undefined', name='seed', doc='random seed.')¶
-
setMaxSentenceLength
(value)[source]¶ Sets the value of
maxSentenceLength
.New in version 2.0.0.
-
setNumPartitions
(value)[source]¶ Sets the value of
numPartitions
.New in version 1.4.0.
-
setParams
(self, minCount=5, numPartitions=1, stepSize=0.025, maxIter=1, seed=None, inputCol=None, outputCol=None, windowSize=5, maxSentenceLength=1000)[source]¶ Sets params for this Word2Vec.
New in version 1.4.0.
-
setVectorSize
(value)[source]¶ Sets the value of
vectorSize
.New in version 1.4.0.
-
setWindowSize
(value)[source]¶ Sets the value of
windowSize
.New in version 2.0.0.
-
stepSize
= Param(parent='undefined', name='stepSize', doc='Step size to be used for each iteration of optimization (>= 0).')¶
-
vectorSize
= Param(parent='undefined', name='vectorSize', doc='the dimension of codes after transforming from words')¶
-
windowSize
= Param(parent='undefined', name='windowSize', doc='the window size (context words from [-window, window]). Default value is 5')¶
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.feature.
Word2VecModel
(java_model=None)[source]¶ Model fitted by
Word2Vec
.New in version 1.4.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
findSynonyms
(word, num)[source]¶ Find “num” number of words closest in similarity to “word”. word can be a string or vector representation. Returns a dataframe with two fields word and similarity (which gives the cosine similarity).
New in version 1.5.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
getVectors
()[source]¶ Returns the vector representation of the words as a dataframe with two fields, word and vector.
New in version 1.5.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
pyspark.ml.classification module¶
-
class
pyspark.ml.classification.
LogisticRegression
(featuresCol='features', labelCol='label', predictionCol='prediction', maxIter=100, regParam=0.0, elasticNetParam=0.0, tol=1e-06, fitIntercept=True, threshold=0.5, thresholds=None, probabilityCol='probability', rawPredictionCol='rawPrediction', standardization=True, weightCol=None, aggregationDepth=2, family='auto')[source]¶ Logistic regression. This class supports multinomial logistic (softmax) and binomial logistic regression.
>>> from pyspark.sql import Row >>> from pyspark.ml.linalg import Vectors >>> bdf = sc.parallelize([ ... Row(label=1.0, weight=2.0, features=Vectors.dense(1.0)), ... Row(label=0.0, weight=2.0, features=Vectors.sparse(1, [], []))]).toDF() >>> blor = LogisticRegression(maxIter=5, regParam=0.01, weightCol="weight") >>> blorModel = blor.fit(bdf) >>> blorModel.coefficients DenseVector([5.5...]) >>> blorModel.intercept -2.68... >>> mdf = sc.parallelize([ ... Row(label=1.0, weight=2.0, features=Vectors.dense(1.0)), ... Row(label=0.0, weight=2.0, features=Vectors.sparse(1, [], [])), ... Row(label=2.0, weight=2.0, features=Vectors.dense(3.0))]).toDF() >>> mlor = LogisticRegression(maxIter=5, regParam=0.01, weightCol="weight", ... family="multinomial") >>> mlorModel = mlor.fit(mdf) >>> print(mlorModel.coefficientMatrix) DenseMatrix([[-2.3...], [ 0.2...], [ 2.1... ]]) >>> mlorModel.interceptVector DenseVector([2.0..., 0.8..., -2.8...]) >>> test0 = sc.parallelize([Row(features=Vectors.dense(-1.0))]).toDF() >>> result = blorModel.transform(test0).head() >>> result.prediction 0.0 >>> result.probability DenseVector([0.99..., 0.00...]) >>> result.rawPrediction DenseVector([8.22..., -8.22...]) >>> test1 = sc.parallelize([Row(features=Vectors.sparse(1, [0], [1.0]))]).toDF() >>> blorModel.transform(test1).head().prediction 1.0 >>> blor.setParams("vector") Traceback (most recent call last): ... TypeError: Method setParams forces keyword arguments. >>> lr_path = temp_path + "/lr" >>> blor.save(lr_path) >>> lr2 = LogisticRegression.load(lr_path) >>> lr2.getMaxIter() 5 >>> model_path = temp_path + "/lr_model" >>> blorModel.save(model_path) >>> model2 = LogisticRegressionModel.load(model_path) >>> blorModel.coefficients[0] == model2.coefficients[0] True >>> blorModel.intercept == model2.intercept True
New in version 1.3.0.
-
aggregationDepth
= Param(parent='undefined', name='aggregationDepth', doc='suggested depth for treeAggregate (>= 2).')¶
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
elasticNetParam
= Param(parent='undefined', name='elasticNetParam', doc='the ElasticNet mixing parameter, in range [0, 1]. For alpha = 0, the penalty is an L2 penalty. For alpha = 1, it is an L1 penalty.')¶
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
family
= Param(parent='undefined', name='family', doc='The name of family which is a description of the label distribution to be used in the model. Supported options: auto, binomial, multinomial')¶
-
featuresCol
= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Returns: fitted model(s)
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
fitIntercept
= Param(parent='undefined', name='fitIntercept', doc='whether to fit an intercept term.')¶
-
getAggregationDepth
()¶ Gets the value of aggregationDepth or its default value.
-
getElasticNetParam
()¶ Gets the value of elasticNetParam or its default value.
-
getFeaturesCol
()¶ Gets the value of featuresCol or its default value.
-
getFitIntercept
()¶ Gets the value of fitIntercept or its default value.
-
getLabelCol
()¶ Gets the value of labelCol or its default value.
-
getMaxIter
()¶ Gets the value of maxIter or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
getPredictionCol
()¶ Gets the value of predictionCol or its default value.
-
getProbabilityCol
()¶ Gets the value of probabilityCol or its default value.
-
getRawPredictionCol
()¶ Gets the value of rawPredictionCol or its default value.
-
getRegParam
()¶ Gets the value of regParam or its default value.
-
getStandardization
()¶ Gets the value of standardization or its default value.
-
getThreshold
()[source]¶ Get threshold for binary classification.
If
thresholds
is set with length 2 (i.e., binary classification), this returns the equivalent threshold: 11+thresholds(0)thresholds(1). Otherwise, returnsthreshold
if set or its default value if unset.New in version 1.4.0.
-
getThresholds
()[source]¶ If
thresholds
is set, return its value. Otherwise, ifthreshold
is set, return the equivalent thresholds for binary classification: (1-threshold, threshold). If neither are set, throw an error.New in version 1.5.0.
-
getTol
()¶ Gets the value of tol or its default value.
-
getWeightCol
()¶ Gets the value of weightCol or its default value.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
labelCol
= Param(parent='undefined', name='labelCol', doc='label column name.')¶
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
maxIter
= Param(parent='undefined', name='maxIter', doc='max number of iterations (>= 0).')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
predictionCol
= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶
-
probabilityCol
= Param(parent='undefined', name='probabilityCol', doc='Column name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities.')¶
-
rawPredictionCol
= Param(parent='undefined', name='rawPredictionCol', doc='raw prediction (a.k.a. confidence) column name.')¶
-
read
()¶ Returns an MLReader instance for this class.
-
regParam
= Param(parent='undefined', name='regParam', doc='regularization parameter (>= 0).')¶
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
setAggregationDepth
(value)¶ Sets the value of
aggregationDepth
.
-
setElasticNetParam
(value)¶ Sets the value of
elasticNetParam
.
-
setFeaturesCol
(value)¶ Sets the value of
featuresCol
.
-
setFitIntercept
(value)¶ Sets the value of
fitIntercept
.
-
setParams
(self, featuresCol="features", labelCol="label", predictionCol="prediction", maxIter=100, regParam=0.0, elasticNetParam=0.0, tol=1e-6, fitIntercept=True, threshold=0.5, thresholds=None, probabilityCol="probability", rawPredictionCol="rawPrediction", standardization=True, weightCol=None, aggregationDepth=2, family="auto")[source]¶ Sets params for logistic regression. If the threshold and thresholds Params are both set, they must be equivalent.
New in version 1.3.0.
-
setPredictionCol
(value)¶ Sets the value of
predictionCol
.
-
setProbabilityCol
(value)¶ Sets the value of
probabilityCol
.
-
setRawPredictionCol
(value)¶ Sets the value of
rawPredictionCol
.
-
setStandardization
(value)¶ Sets the value of
standardization
.
-
setThreshold
(value)[source]¶ Sets the value of
threshold
. Clears value ofthresholds
if it has been set.New in version 1.4.0.
-
setThresholds
(value)[source]¶ Sets the value of
thresholds
. Clears value ofthreshold
if it has been set.New in version 1.5.0.
-
standardization
= Param(parent='undefined', name='standardization', doc='whether to standardize the training features before fitting the model.')¶
-
threshold
= Param(parent='undefined', name='threshold', doc='Threshold in binary classification prediction, in range [0, 1]. If threshold and thresholds are both set, they must match.e.g. if threshold is p, then thresholds must be equal to [1-p, p].')¶
-
thresholds
= Param(parent='undefined', name='thresholds', doc="Thresholds in multi-class classification to adjust the probability of predicting each class. Array must have length equal to the number of classes, with values > 0, excepting that at most one value may be 0. The class with largest value p/t is predicted, where p is the original probability of that class and t is the class's threshold.")¶
-
tol
= Param(parent='undefined', name='tol', doc='the convergence tolerance for iterative algorithms (>= 0).')¶
-
weightCol
= Param(parent='undefined', name='weightCol', doc='weight column name. If this is not set or empty, we treat all instance weights as 1.0.')¶
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.classification.
LogisticRegressionModel
(java_model=None)[source]¶ Model fitted by LogisticRegression.
New in version 1.3.0.
-
coefficientMatrix
¶ Model coefficients.
New in version 2.1.0.
-
coefficients
¶ Model coefficients of binomial logistic regression. An exception is thrown in the case of multinomial logistic regression.
New in version 2.0.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
evaluate
(dataset)[source]¶ Evaluates the model on a test dataset.
Parameters: dataset – Test dataset to evaluate model on, where dataset is an instance of pyspark.sql.DataFrame
New in version 2.0.0.
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
hasSummary
¶ Indicates whether a training summary exists for this model instance.
New in version 2.0.0.
-
intercept
¶ Model intercept of binomial logistic regression. An exception is thrown in the case of multinomial logistic regression.
New in version 1.4.0.
-
interceptVector
¶ Model intercept.
New in version 2.1.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
numClasses
¶ Number of classes (values which the label can take).
New in version 2.1.0.
-
numFeatures
¶ Returns the number of features the model was trained on. If unknown, returns -1
New in version 2.1.0.
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
summary
¶ Gets summary (e.g. accuracy/precision/recall, objective history, total iterations) of model trained on the training set. An exception is thrown if trainingSummary is None.
New in version 2.0.0.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.classification.
LogisticRegressionSummary
(java_obj=None)[source]¶ Note
Experimental
Abstraction for Logistic Regression Results for a given model.
New in version 2.0.0.
-
featuresCol
¶ Field in “predictions” which gives the features of each instance as a vector.
New in version 2.0.0.
-
labelCol
¶ Field in “predictions” which gives the true label of each instance.
New in version 2.0.0.
-
predictions
¶ Dataframe outputted by the model’s transform method.
New in version 2.0.0.
-
probabilityCol
¶ Field in “predictions” which gives the probability of each class as a vector.
New in version 2.0.0.
-
-
class
pyspark.ml.classification.
LogisticRegressionTrainingSummary
(java_obj=None)[source]¶ Note
Experimental
Abstraction for multinomial Logistic Regression Training results. Currently, the training summary ignores the training weights except for the objective trace.
New in version 2.0.0.
-
featuresCol
¶ Field in “predictions” which gives the features of each instance as a vector.
New in version 2.0.0.
-
labelCol
¶ Field in “predictions” which gives the true label of each instance.
New in version 2.0.0.
-
objectiveHistory
¶ Objective function (scaled loss + regularization) at each iteration.
New in version 2.0.0.
-
predictions
¶ Dataframe outputted by the model’s transform method.
New in version 2.0.0.
-
probabilityCol
¶ Field in “predictions” which gives the probability of each class as a vector.
New in version 2.0.0.
-
totalIterations
¶ Number of training iterations until termination.
New in version 2.0.0.
-
-
class
pyspark.ml.classification.
BinaryLogisticRegressionSummary
(java_obj=None)[source]¶ Note
Experimental
Binary Logistic regression results for a given model.
New in version 2.0.0.
-
areaUnderROC
¶ Computes the area under the receiver operating characteristic (ROC) curve.
Note
This ignores instance weights (setting all to 1.0) from LogisticRegression.weightCol. This will change in later Spark versions.
New in version 2.0.0.
-
fMeasureByThreshold
¶ Returns a dataframe with two fields (threshold, F-Measure) curve with beta = 1.0.
Note
This ignores instance weights (setting all to 1.0) from LogisticRegression.weightCol. This will change in later Spark versions.
New in version 2.0.0.
-
featuresCol
¶ Field in “predictions” which gives the features of each instance as a vector.
New in version 2.0.0.
-
labelCol
¶ Field in “predictions” which gives the true label of each instance.
New in version 2.0.0.
-
pr
¶ Returns the precision-recall curve, which is a Dataframe containing two fields recall, precision with (0.0, 1.0) prepended to it.
Note
This ignores instance weights (setting all to 1.0) from LogisticRegression.weightCol. This will change in later Spark versions.
New in version 2.0.0.
-
precisionByThreshold
¶ Returns a dataframe with two fields (threshold, precision) curve. Every possible probability obtained in transforming the dataset are used as thresholds used in calculating the precision.
Note
This ignores instance weights (setting all to 1.0) from LogisticRegression.weightCol. This will change in later Spark versions.
New in version 2.0.0.
-
predictions
¶ Dataframe outputted by the model’s transform method.
New in version 2.0.0.
-
probabilityCol
¶ Field in “predictions” which gives the probability of each class as a vector.
New in version 2.0.0.
-
recallByThreshold
¶ Returns a dataframe with two fields (threshold, recall) curve. Every possible probability obtained in transforming the dataset are used as thresholds used in calculating the recall.
Note
This ignores instance weights (setting all to 1.0) from LogisticRegression.weightCol. This will change in later Spark versions.
New in version 2.0.0.
-
roc
¶ Returns the receiver operating characteristic (ROC) curve, which is a Dataframe having two fields (FPR, TPR) with (0.0, 0.0) prepended and (1.0, 1.0) appended to it.
See also
Note
This ignores instance weights (setting all to 1.0) from LogisticRegression.weightCol. This will change in later Spark versions.
New in version 2.0.0.
-
-
class
pyspark.ml.classification.
BinaryLogisticRegressionTrainingSummary
(java_obj=None)[source]¶ Note
Experimental
Binary Logistic regression training results for a given model.
New in version 2.0.0.
-
areaUnderROC
¶ Computes the area under the receiver operating characteristic (ROC) curve.
Note
This ignores instance weights (setting all to 1.0) from LogisticRegression.weightCol. This will change in later Spark versions.
New in version 2.0.0.
-
fMeasureByThreshold
¶ Returns a dataframe with two fields (threshold, F-Measure) curve with beta = 1.0.
Note
This ignores instance weights (setting all to 1.0) from LogisticRegression.weightCol. This will change in later Spark versions.
New in version 2.0.0.
-
featuresCol
¶ Field in “predictions” which gives the features of each instance as a vector.
New in version 2.0.0.
-
labelCol
¶ Field in “predictions” which gives the true label of each instance.
New in version 2.0.0.
-
objectiveHistory
¶ Objective function (scaled loss + regularization) at each iteration.
New in version 2.0.0.
-
pr
¶ Returns the precision-recall curve, which is a Dataframe containing two fields recall, precision with (0.0, 1.0) prepended to it.
Note
This ignores instance weights (setting all to 1.0) from LogisticRegression.weightCol. This will change in later Spark versions.
New in version 2.0.0.
-
precisionByThreshold
¶ Returns a dataframe with two fields (threshold, precision) curve. Every possible probability obtained in transforming the dataset are used as thresholds used in calculating the precision.
Note
This ignores instance weights (setting all to 1.0) from LogisticRegression.weightCol. This will change in later Spark versions.
New in version 2.0.0.
-
predictions
¶ Dataframe outputted by the model’s transform method.
New in version 2.0.0.
-
probabilityCol
¶ Field in “predictions” which gives the probability of each class as a vector.
New in version 2.0.0.
-
recallByThreshold
¶ Returns a dataframe with two fields (threshold, recall) curve. Every possible probability obtained in transforming the dataset are used as thresholds used in calculating the recall.
Note
This ignores instance weights (setting all to 1.0) from LogisticRegression.weightCol. This will change in later Spark versions.
New in version 2.0.0.
-
roc
¶ Returns the receiver operating characteristic (ROC) curve, which is a Dataframe having two fields (FPR, TPR) with (0.0, 0.0) prepended and (1.0, 1.0) appended to it.
See also
Note
This ignores instance weights (setting all to 1.0) from LogisticRegression.weightCol. This will change in later Spark versions.
New in version 2.0.0.
-
totalIterations
¶ Number of training iterations until termination.
New in version 2.0.0.
-
-
class
pyspark.ml.classification.
DecisionTreeClassifier
(featuresCol='features', labelCol='label', predictionCol='prediction', probabilityCol='probability', rawPredictionCol='rawPrediction', maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity='gini', seed=None)[source]¶ Decision tree learning algorithm for classification. It supports both binary and multiclass labels, as well as both continuous and categorical features.
>>> from pyspark.ml.linalg import Vectors >>> from pyspark.ml.feature import StringIndexer >>> df = spark.createDataFrame([ ... (1.0, Vectors.dense(1.0)), ... (0.0, Vectors.sparse(1, [], []))], ["label", "features"]) >>> stringIndexer = StringIndexer(inputCol="label", outputCol="indexed") >>> si_model = stringIndexer.fit(df) >>> td = si_model.transform(df) >>> dt = DecisionTreeClassifier(maxDepth=2, labelCol="indexed") >>> model = dt.fit(td) >>> model.numNodes 3 >>> model.depth 1 >>> model.featureImportances SparseVector(1, {0: 1.0}) >>> model.numFeatures 1 >>> model.numClasses 2 >>> print(model.toDebugString) DecisionTreeClassificationModel (uid=...) of depth 1 with 3 nodes... >>> test0 = spark.createDataFrame([(Vectors.dense(-1.0),)], ["features"]) >>> result = model.transform(test0).head() >>> result.prediction 0.0 >>> result.probability DenseVector([1.0, 0.0]) >>> result.rawPrediction DenseVector([1.0, 0.0]) >>> test1 = spark.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"]) >>> model.transform(test1).head().prediction 1.0
>>> dtc_path = temp_path + "/dtc" >>> dt.save(dtc_path) >>> dt2 = DecisionTreeClassifier.load(dtc_path) >>> dt2.getMaxDepth() 2 >>> model_path = temp_path + "/dtc_model" >>> model.save(model_path) >>> model2 = DecisionTreeClassificationModel.load(model_path) >>> model.featureImportances == model2.featureImportances True
New in version 1.4.0.
-
cacheNodeIds
= Param(parent='undefined', name='cacheNodeIds', doc='If false, the algorithm will pass trees to executors to match instances with nodes. If true, the algorithm will cache node IDs for each instance. Caching can speed up training of deeper trees. Users can set how often should the cache be checkpointed or disable it by setting checkpointInterval.')¶
-
checkpointInterval
= Param(parent='undefined', name='checkpointInterval', doc='set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the cache will get checkpointed every 10 iterations.')¶
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
featuresCol
= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Returns: fitted model(s)
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
getCacheNodeIds
()¶ Gets the value of cacheNodeIds or its default value.
-
getCheckpointInterval
()¶ Gets the value of checkpointInterval or its default value.
-
getFeaturesCol
()¶ Gets the value of featuresCol or its default value.
-
getImpurity
()¶ Gets the value of impurity or its default value.
New in version 1.6.0.
-
getLabelCol
()¶ Gets the value of labelCol or its default value.
-
getMaxBins
()¶ Gets the value of maxBins or its default value.
-
getMaxDepth
()¶ Gets the value of maxDepth or its default value.
-
getMaxMemoryInMB
()¶ Gets the value of maxMemoryInMB or its default value.
-
getMinInfoGain
()¶ Gets the value of minInfoGain or its default value.
-
getMinInstancesPerNode
()¶ Gets the value of minInstancesPerNode or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
getPredictionCol
()¶ Gets the value of predictionCol or its default value.
-
getProbabilityCol
()¶ Gets the value of probabilityCol or its default value.
-
getRawPredictionCol
()¶ Gets the value of rawPredictionCol or its default value.
-
getSeed
()¶ Gets the value of seed or its default value.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
impurity
= Param(parent='undefined', name='impurity', doc='Criterion used for information gain calculation (case-insensitive). Supported options: entropy, gini')¶
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
labelCol
= Param(parent='undefined', name='labelCol', doc='label column name.')¶
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
maxBins
= Param(parent='undefined', name='maxBins', doc='Max number of bins for discretizing continuous features. Must be >=2 and >= number of categories for any categorical feature.')¶
-
maxDepth
= Param(parent='undefined', name='maxDepth', doc='Maximum depth of the tree. (>= 0) E.g., depth 0 means 1 leaf node; depth 1 means 1 internal node + 2 leaf nodes.')¶
-
maxMemoryInMB
= Param(parent='undefined', name='maxMemoryInMB', doc='Maximum memory in MB allocated to histogram aggregation. If too small, then 1 node will be split per iteration, and its aggregates may exceed this size.')¶
-
minInfoGain
= Param(parent='undefined', name='minInfoGain', doc='Minimum information gain for a split to be considered at a tree node.')¶
-
minInstancesPerNode
= Param(parent='undefined', name='minInstancesPerNode', doc='Minimum number of instances each child must have after split. If a split causes the left or right child to have fewer than minInstancesPerNode, the split will be discarded as invalid. Should be >= 1.')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
predictionCol
= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶
-
probabilityCol
= Param(parent='undefined', name='probabilityCol', doc='Column name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities.')¶
-
rawPredictionCol
= Param(parent='undefined', name='rawPredictionCol', doc='raw prediction (a.k.a. confidence) column name.')¶
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
seed
= Param(parent='undefined', name='seed', doc='random seed.')¶
-
setCacheNodeIds
(value)¶ Sets the value of
cacheNodeIds
.
-
setCheckpointInterval
(value)¶ Sets the value of
checkpointInterval
.
-
setFeaturesCol
(value)¶ Sets the value of
featuresCol
.
-
setMaxMemoryInMB
(value)¶ Sets the value of
maxMemoryInMB
.
-
setMinInfoGain
(value)¶ Sets the value of
minInfoGain
.
-
setMinInstancesPerNode
(value)¶ Sets the value of
minInstancesPerNode
.
-
setParams
(self, featuresCol="features", labelCol="label", predictionCol="prediction", probabilityCol="probability", rawPredictionCol="rawPrediction", maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="gini", seed=None)[source]¶ Sets params for the DecisionTreeClassifier.
New in version 1.4.0.
-
setPredictionCol
(value)¶ Sets the value of
predictionCol
.
-
setProbabilityCol
(value)¶ Sets the value of
probabilityCol
.
-
setRawPredictionCol
(value)¶ Sets the value of
rawPredictionCol
.
-
supportedImpurities
= ['entropy', 'gini']¶
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.classification.
DecisionTreeClassificationModel
(java_model=None)[source]¶ Model fitted by DecisionTreeClassifier.
New in version 1.4.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
depth
¶ Return depth of the decision tree.
New in version 1.5.0.
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
featureImportances
¶ Estimate of the importance of each feature.
This generalizes the idea of “Gini” importance to other losses, following the explanation of Gini importance from “Random Forests” documentation by Leo Breiman and Adele Cutler, and following the implementation from scikit-learn.
- This feature importance is calculated as follows:
- importance(feature j) = sum (over nodes which split on feature j) of the gain, where gain is scaled by the number of instances passing through node
- Normalize importances for tree to sum to 1.
Note
Feature importance for single decision trees can have high variance due to correlated predictor variables. Consider using a
RandomForestClassifier
to determine feature importance instead.New in version 2.0.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
numClasses
¶ Number of classes (values which the label can take).
New in version 2.1.0.
-
numFeatures
¶ Returns the number of features the model was trained on. If unknown, returns -1
New in version 2.1.0.
-
numNodes
¶ Return number of nodes of the decision tree.
New in version 1.5.0.
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
toDebugString
¶ Full description of model.
New in version 2.0.0.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.classification.
GBTClassifier
(featuresCol='features', labelCol='label', predictionCol='prediction', maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, lossType='logistic', maxIter=20, stepSize=0.1, seed=None, subsamplingRate=1.0)[source]¶ Gradient-Boosted Trees (GBTs) learning algorithm for classification. It supports binary labels, as well as both continuous and categorical features.
The implementation is based upon: J.H. Friedman. “Stochastic Gradient Boosting.” 1999.
Notes on Gradient Boosting vs. TreeBoost: - This implementation is for Stochastic Gradient Boosting, not for TreeBoost. - Both algorithms learn tree ensembles by minimizing loss functions. - TreeBoost (Friedman, 1999) additionally modifies the outputs at tree leaf nodes based on the loss function, whereas the original gradient boosting method does not. - We expect to implement TreeBoost in the future: SPARK-4240
Note
Multiclass labels are not currently supported.
>>> from numpy import allclose >>> from pyspark.ml.linalg import Vectors >>> from pyspark.ml.feature import StringIndexer >>> df = spark.createDataFrame([ ... (1.0, Vectors.dense(1.0)), ... (0.0, Vectors.sparse(1, [], []))], ["label", "features"]) >>> stringIndexer = StringIndexer(inputCol="label", outputCol="indexed") >>> si_model = stringIndexer.fit(df) >>> td = si_model.transform(df) >>> gbt = GBTClassifier(maxIter=5, maxDepth=2, labelCol="indexed", seed=42) >>> model = gbt.fit(td) >>> model.featureImportances SparseVector(1, {0: 1.0}) >>> allclose(model.treeWeights, [1.0, 0.1, 0.1, 0.1, 0.1]) True >>> test0 = spark.createDataFrame([(Vectors.dense(-1.0),)], ["features"]) >>> model.transform(test0).head().prediction 0.0 >>> test1 = spark.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"]) >>> model.transform(test1).head().prediction 1.0 >>> model.totalNumNodes 15 >>> print(model.toDebugString) GBTClassificationModel (uid=...)...with 5 trees... >>> gbtc_path = temp_path + "gbtc" >>> gbt.save(gbtc_path) >>> gbt2 = GBTClassifier.load(gbtc_path) >>> gbt2.getMaxDepth() 2 >>> model_path = temp_path + "gbtc_model" >>> model.save(model_path) >>> model2 = GBTClassificationModel.load(model_path) >>> model.featureImportances == model2.featureImportances True >>> model.treeWeights == model2.treeWeights True >>> model.trees [DecisionTreeRegressionModel (uid=...) of depth..., DecisionTreeRegressionModel...]
New in version 1.4.0.
-
cacheNodeIds
= Param(parent='undefined', name='cacheNodeIds', doc='If false, the algorithm will pass trees to executors to match instances with nodes. If true, the algorithm will cache node IDs for each instance. Caching can speed up training of deeper trees. Users can set how often should the cache be checkpointed or disable it by setting checkpointInterval.')¶
-
checkpointInterval
= Param(parent='undefined', name='checkpointInterval', doc='set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the cache will get checkpointed every 10 iterations.')¶
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
featuresCol
= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Returns: fitted model(s)
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
getCacheNodeIds
()¶ Gets the value of cacheNodeIds or its default value.
-
getCheckpointInterval
()¶ Gets the value of checkpointInterval or its default value.
-
getFeaturesCol
()¶ Gets the value of featuresCol or its default value.
-
getLabelCol
()¶ Gets the value of labelCol or its default value.
-
getMaxBins
()¶ Gets the value of maxBins or its default value.
-
getMaxDepth
()¶ Gets the value of maxDepth or its default value.
-
getMaxIter
()¶ Gets the value of maxIter or its default value.
-
getMaxMemoryInMB
()¶ Gets the value of maxMemoryInMB or its default value.
-
getMinInfoGain
()¶ Gets the value of minInfoGain or its default value.
-
getMinInstancesPerNode
()¶ Gets the value of minInstancesPerNode or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
getPredictionCol
()¶ Gets the value of predictionCol or its default value.
-
getSeed
()¶ Gets the value of seed or its default value.
-
getStepSize
()¶ Gets the value of stepSize or its default value.
-
getSubsamplingRate
()¶ Gets the value of subsamplingRate or its default value.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
labelCol
= Param(parent='undefined', name='labelCol', doc='label column name.')¶
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
lossType
= Param(parent='undefined', name='lossType', doc='Loss function which GBT tries to minimize (case-insensitive). Supported options: logistic')¶
-
maxBins
= Param(parent='undefined', name='maxBins', doc='Max number of bins for discretizing continuous features. Must be >=2 and >= number of categories for any categorical feature.')¶
-
maxDepth
= Param(parent='undefined', name='maxDepth', doc='Maximum depth of the tree. (>= 0) E.g., depth 0 means 1 leaf node; depth 1 means 1 internal node + 2 leaf nodes.')¶
-
maxIter
= Param(parent='undefined', name='maxIter', doc='max number of iterations (>= 0).')¶
-
maxMemoryInMB
= Param(parent='undefined', name='maxMemoryInMB', doc='Maximum memory in MB allocated to histogram aggregation. If too small, then 1 node will be split per iteration, and its aggregates may exceed this size.')¶
-
minInfoGain
= Param(parent='undefined', name='minInfoGain', doc='Minimum information gain for a split to be considered at a tree node.')¶
-
minInstancesPerNode
= Param(parent='undefined', name='minInstancesPerNode', doc='Minimum number of instances each child must have after split. If a split causes the left or right child to have fewer than minInstancesPerNode, the split will be discarded as invalid. Should be >= 1.')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
predictionCol
= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
seed
= Param(parent='undefined', name='seed', doc='random seed.')¶
-
setCacheNodeIds
(value)¶ Sets the value of
cacheNodeIds
.
-
setCheckpointInterval
(value)¶ Sets the value of
checkpointInterval
.
-
setFeaturesCol
(value)¶ Sets the value of
featuresCol
.
-
setMaxMemoryInMB
(value)¶ Sets the value of
maxMemoryInMB
.
-
setMinInfoGain
(value)¶ Sets the value of
minInfoGain
.
-
setMinInstancesPerNode
(value)¶ Sets the value of
minInstancesPerNode
.
-
setParams
(self, featuresCol="features", labelCol="label", predictionCol="prediction", maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, lossType="logistic", maxIter=20, stepSize=0.1, seed=None, subsamplingRate=1.0)[source]¶ Sets params for Gradient Boosted Tree Classification.
New in version 1.4.0.
-
setPredictionCol
(value)¶ Sets the value of
predictionCol
.
-
setSubsamplingRate
(value)¶ Sets the value of
subsamplingRate
.New in version 1.4.0.
-
stepSize
= Param(parent='undefined', name='stepSize', doc='Step size to be used for each iteration of optimization (>= 0).')¶
-
subsamplingRate
= Param(parent='undefined', name='subsamplingRate', doc='Fraction of the training data used for learning each decision tree, in range (0, 1].')¶
-
supportedLossTypes
= ['logistic']¶
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.classification.
GBTClassificationModel
(java_model=None)[source]¶ Model fitted by GBTClassifier.
New in version 1.4.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
featureImportances
¶ Estimate of the importance of each feature.
Each feature’s importance is the average of its importance across all trees in the ensemble The importance vector is normalized to sum to 1. This method is suggested by Hastie et al. (Hastie, Tibshirani, Friedman. “The Elements of Statistical Learning, 2nd Edition.” 2001.) and follows the implementation from scikit-learn.
New in version 2.0.0.
-
getNumTrees
¶ Number of trees in ensemble.
New in version 2.0.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
numFeatures
¶ Returns the number of features the model was trained on. If unknown, returns -1
New in version 2.1.0.
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
toDebugString
¶ Full description of model.
New in version 2.0.0.
-
totalNumNodes
¶ Total number of nodes, summed over all trees in the ensemble.
New in version 2.0.0.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
treeWeights
¶ Return the weights for each tree
New in version 1.5.0.
-
trees
¶ Trees in this ensemble. Warning: These have null parent Estimators.
New in version 2.0.0.
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.classification.
RandomForestClassifier
(featuresCol='features', labelCol='label', predictionCol='prediction', probabilityCol='probability', rawPredictionCol='rawPrediction', maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity='gini', numTrees=20, featureSubsetStrategy='auto', seed=None, subsamplingRate=1.0)[source]¶ Random Forest learning algorithm for classification. It supports both binary and multiclass labels, as well as both continuous and categorical features.
>>> import numpy >>> from numpy import allclose >>> from pyspark.ml.linalg import Vectors >>> from pyspark.ml.feature import StringIndexer >>> df = spark.createDataFrame([ ... (1.0, Vectors.dense(1.0)), ... (0.0, Vectors.sparse(1, [], []))], ["label", "features"]) >>> stringIndexer = StringIndexer(inputCol="label", outputCol="indexed") >>> si_model = stringIndexer.fit(df) >>> td = si_model.transform(df) >>> rf = RandomForestClassifier(numTrees=3, maxDepth=2, labelCol="indexed", seed=42) >>> model = rf.fit(td) >>> model.featureImportances SparseVector(1, {0: 1.0}) >>> allclose(model.treeWeights, [1.0, 1.0, 1.0]) True >>> test0 = spark.createDataFrame([(Vectors.dense(-1.0),)], ["features"]) >>> result = model.transform(test0).head() >>> result.prediction 0.0 >>> numpy.argmax(result.probability) 0 >>> numpy.argmax(result.rawPrediction) 0 >>> test1 = spark.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"]) >>> model.transform(test1).head().prediction 1.0 >>> model.trees [DecisionTreeClassificationModel (uid=...) of depth..., DecisionTreeClassificationModel...] >>> rfc_path = temp_path + "/rfc" >>> rf.save(rfc_path) >>> rf2 = RandomForestClassifier.load(rfc_path) >>> rf2.getNumTrees() 3 >>> model_path = temp_path + "/rfc_model" >>> model.save(model_path) >>> model2 = RandomForestClassificationModel.load(model_path) >>> model.featureImportances == model2.featureImportances True
New in version 1.4.0.
-
cacheNodeIds
= Param(parent='undefined', name='cacheNodeIds', doc='If false, the algorithm will pass trees to executors to match instances with nodes. If true, the algorithm will cache node IDs for each instance. Caching can speed up training of deeper trees. Users can set how often should the cache be checkpointed or disable it by setting checkpointInterval.')¶
-
checkpointInterval
= Param(parent='undefined', name='checkpointInterval', doc='set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the cache will get checkpointed every 10 iterations.')¶
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
featureSubsetStrategy
= Param(parent='undefined', name='featureSubsetStrategy', doc='The number of features to consider for splits at each tree node. Supported options: auto, all, onethird, sqrt, log2, (0.0-1.0], [1-n].')¶
-
featuresCol
= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Returns: fitted model(s)
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
getCacheNodeIds
()¶ Gets the value of cacheNodeIds or its default value.
-
getCheckpointInterval
()¶ Gets the value of checkpointInterval or its default value.
-
getFeatureSubsetStrategy
()¶ Gets the value of featureSubsetStrategy or its default value.
New in version 1.4.0.
-
getFeaturesCol
()¶ Gets the value of featuresCol or its default value.
-
getImpurity
()¶ Gets the value of impurity or its default value.
New in version 1.6.0.
-
getLabelCol
()¶ Gets the value of labelCol or its default value.
-
getMaxBins
()¶ Gets the value of maxBins or its default value.
-
getMaxDepth
()¶ Gets the value of maxDepth or its default value.
-
getMaxMemoryInMB
()¶ Gets the value of maxMemoryInMB or its default value.
-
getMinInfoGain
()¶ Gets the value of minInfoGain or its default value.
-
getMinInstancesPerNode
()¶ Gets the value of minInstancesPerNode or its default value.
-
getNumTrees
()¶ Gets the value of numTrees or its default value.
New in version 1.4.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
getPredictionCol
()¶ Gets the value of predictionCol or its default value.
-
getProbabilityCol
()¶ Gets the value of probabilityCol or its default value.
-
getRawPredictionCol
()¶ Gets the value of rawPredictionCol or its default value.
-
getSeed
()¶ Gets the value of seed or its default value.
-
getSubsamplingRate
()¶ Gets the value of subsamplingRate or its default value.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
impurity
= Param(parent='undefined', name='impurity', doc='Criterion used for information gain calculation (case-insensitive). Supported options: entropy, gini')¶
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
labelCol
= Param(parent='undefined', name='labelCol', doc='label column name.')¶
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
maxBins
= Param(parent='undefined', name='maxBins', doc='Max number of bins for discretizing continuous features. Must be >=2 and >= number of categories for any categorical feature.')¶
-
maxDepth
= Param(parent='undefined', name='maxDepth', doc='Maximum depth of the tree. (>= 0) E.g., depth 0 means 1 leaf node; depth 1 means 1 internal node + 2 leaf nodes.')¶
-
maxMemoryInMB
= Param(parent='undefined', name='maxMemoryInMB', doc='Maximum memory in MB allocated to histogram aggregation. If too small, then 1 node will be split per iteration, and its aggregates may exceed this size.')¶
-
minInfoGain
= Param(parent='undefined', name='minInfoGain', doc='Minimum information gain for a split to be considered at a tree node.')¶
-
minInstancesPerNode
= Param(parent='undefined', name='minInstancesPerNode', doc='Minimum number of instances each child must have after split. If a split causes the left or right child to have fewer than minInstancesPerNode, the split will be discarded as invalid. Should be >= 1.')¶
-
numTrees
= Param(parent='undefined', name='numTrees', doc='Number of trees to train (>= 1).')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
predictionCol
= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶
-
probabilityCol
= Param(parent='undefined', name='probabilityCol', doc='Column name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities.')¶
-
rawPredictionCol
= Param(parent='undefined', name='rawPredictionCol', doc='raw prediction (a.k.a. confidence) column name.')¶
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
seed
= Param(parent='undefined', name='seed', doc='random seed.')¶
-
setCacheNodeIds
(value)¶ Sets the value of
cacheNodeIds
.
-
setCheckpointInterval
(value)¶ Sets the value of
checkpointInterval
.
-
setFeatureSubsetStrategy
(value)¶ Sets the value of
featureSubsetStrategy
.New in version 1.4.0.
-
setFeaturesCol
(value)¶ Sets the value of
featuresCol
.
-
setMaxMemoryInMB
(value)¶ Sets the value of
maxMemoryInMB
.
-
setMinInfoGain
(value)¶ Sets the value of
minInfoGain
.
-
setMinInstancesPerNode
(value)¶ Sets the value of
minInstancesPerNode
.
-
setParams
(self, featuresCol="features", labelCol="label", predictionCol="prediction", probabilityCol="probability", rawPredictionCol="rawPrediction", maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, seed=None, impurity="gini", numTrees=20, featureSubsetStrategy="auto", subsamplingRate=1.0)[source]¶ Sets params for linear classification.
New in version 1.4.0.
-
setPredictionCol
(value)¶ Sets the value of
predictionCol
.
-
setProbabilityCol
(value)¶ Sets the value of
probabilityCol
.
-
setRawPredictionCol
(value)¶ Sets the value of
rawPredictionCol
.
-
setSubsamplingRate
(value)¶ Sets the value of
subsamplingRate
.New in version 1.4.0.
-
subsamplingRate
= Param(parent='undefined', name='subsamplingRate', doc='Fraction of the training data used for learning each decision tree, in range (0, 1].')¶
-
supportedFeatureSubsetStrategies
= ['auto', 'all', 'onethird', 'sqrt', 'log2']¶
-
supportedImpurities
= ['entropy', 'gini']¶
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.classification.
RandomForestClassificationModel
(java_model=None)[source]¶ Model fitted by RandomForestClassifier.
New in version 1.4.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
featureImportances
¶ Estimate of the importance of each feature.
Each feature’s importance is the average of its importance across all trees in the ensemble The importance vector is normalized to sum to 1. This method is suggested by Hastie et al. (Hastie, Tibshirani, Friedman. “The Elements of Statistical Learning, 2nd Edition.” 2001.) and follows the implementation from scikit-learn.
New in version 2.0.0.
-
getNumTrees
¶ Number of trees in ensemble.
New in version 2.0.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
numClasses
¶ Number of classes (values which the label can take).
New in version 2.1.0.
-
numFeatures
¶ Returns the number of features the model was trained on. If unknown, returns -1
New in version 2.1.0.
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
toDebugString
¶ Full description of model.
New in version 2.0.0.
-
totalNumNodes
¶ Total number of nodes, summed over all trees in the ensemble.
New in version 2.0.0.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
treeWeights
¶ Return the weights for each tree
New in version 1.5.0.
-
trees
¶ Trees in this ensemble. Warning: These have null parent Estimators.
New in version 2.0.0.
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.classification.
NaiveBayes
(featuresCol='features', labelCol='label', predictionCol='prediction', probabilityCol='probability', rawPredictionCol='rawPrediction', smoothing=1.0, modelType='multinomial', thresholds=None, weightCol=None)[source]¶ Naive Bayes Classifiers. It supports both Multinomial and Bernoulli NB. Multinomial NB can handle finitely supported discrete data. For example, by converting documents into TF-IDF vectors, it can be used for document classification. By making every vector a binary (0/1) data, it can also be used as Bernoulli NB. The input feature values must be nonnegative.
>>> from pyspark.sql import Row >>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([ ... Row(label=0.0, weight=0.1, features=Vectors.dense([0.0, 0.0])), ... Row(label=0.0, weight=0.5, features=Vectors.dense([0.0, 1.0])), ... Row(label=1.0, weight=1.0, features=Vectors.dense([1.0, 0.0]))]) >>> nb = NaiveBayes(smoothing=1.0, modelType="multinomial", weightCol="weight") >>> model = nb.fit(df) >>> model.pi DenseVector([-0.81..., -0.58...]) >>> model.theta DenseMatrix(2, 2, [-0.91..., -0.51..., -0.40..., -1.09...], 1) >>> test0 = sc.parallelize([Row(features=Vectors.dense([1.0, 0.0]))]).toDF() >>> result = model.transform(test0).head() >>> result.prediction 1.0 >>> result.probability DenseVector([0.32..., 0.67...]) >>> result.rawPrediction DenseVector([-1.72..., -0.99...]) >>> test1 = sc.parallelize([Row(features=Vectors.sparse(2, [0], [1.0]))]).toDF() >>> model.transform(test1).head().prediction 1.0 >>> nb_path = temp_path + "/nb" >>> nb.save(nb_path) >>> nb2 = NaiveBayes.load(nb_path) >>> nb2.getSmoothing() 1.0 >>> model_path = temp_path + "/nb_model" >>> model.save(model_path) >>> model2 = NaiveBayesModel.load(model_path) >>> model.pi == model2.pi True >>> model.theta == model2.theta True >>> nb = nb.setThresholds([0.01, 10.00]) >>> model3 = nb.fit(df) >>> result = model3.transform(test0).head() >>> result.prediction 0.0
New in version 1.5.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
featuresCol
= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Returns: fitted model(s)
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
getFeaturesCol
()¶ Gets the value of featuresCol or its default value.
-
getLabelCol
()¶ Gets the value of labelCol or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
getPredictionCol
()¶ Gets the value of predictionCol or its default value.
-
getProbabilityCol
()¶ Gets the value of probabilityCol or its default value.
-
getRawPredictionCol
()¶ Gets the value of rawPredictionCol or its default value.
-
getThresholds
()¶ Gets the value of thresholds or its default value.
-
getWeightCol
()¶ Gets the value of weightCol or its default value.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
labelCol
= Param(parent='undefined', name='labelCol', doc='label column name.')¶
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
modelType
= Param(parent='undefined', name='modelType', doc='The model type which is a string (case-sensitive). Supported options: multinomial (default) and bernoulli.')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
predictionCol
= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶
-
probabilityCol
= Param(parent='undefined', name='probabilityCol', doc='Column name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities.')¶
-
rawPredictionCol
= Param(parent='undefined', name='rawPredictionCol', doc='raw prediction (a.k.a. confidence) column name.')¶
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
setFeaturesCol
(value)¶ Sets the value of
featuresCol
.
-
setParams
(self, featuresCol="features", labelCol="label", predictionCol="prediction", probabilityCol="probability", rawPredictionCol="rawPrediction", smoothing=1.0, modelType="multinomial", thresholds=None, weightCol=None)[source]¶ Sets params for Naive Bayes.
New in version 1.5.0.
-
setPredictionCol
(value)¶ Sets the value of
predictionCol
.
-
setProbabilityCol
(value)¶ Sets the value of
probabilityCol
.
-
setRawPredictionCol
(value)¶ Sets the value of
rawPredictionCol
.
-
setThresholds
(value)¶ Sets the value of
thresholds
.
-
smoothing
= Param(parent='undefined', name='smoothing', doc='The smoothing parameter, should be >= 0, default is 1.0')¶
-
thresholds
= Param(parent='undefined', name='thresholds', doc="Thresholds in multi-class classification to adjust the probability of predicting each class. Array must have length equal to the number of classes, with values > 0, excepting that at most one value may be 0. The class with largest value p/t is predicted, where p is the original probability of that class and t is the class's threshold.")¶
-
weightCol
= Param(parent='undefined', name='weightCol', doc='weight column name. If this is not set or empty, we treat all instance weights as 1.0.')¶
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.classification.
NaiveBayesModel
(java_model=None)[source]¶ Model fitted by NaiveBayes.
New in version 1.5.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
numClasses
¶ Number of classes (values which the label can take).
New in version 2.1.0.
-
numFeatures
¶ Returns the number of features the model was trained on. If unknown, returns -1
New in version 2.1.0.
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
pi
¶ log of class priors.
New in version 2.0.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
theta
¶ log of class conditional probabilities.
New in version 2.0.0.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.classification.
MultilayerPerceptronClassifier
(featuresCol='features', labelCol='label', predictionCol='prediction', maxIter=100, tol=1e-06, seed=None, layers=None, blockSize=128, stepSize=0.03, solver='l-bfgs', initialWeights=None)[source]¶ Classifier trainer based on the Multilayer Perceptron. Each layer has sigmoid activation function, output layer has softmax. Number of inputs has to be equal to the size of feature vectors. Number of outputs has to be equal to the total number of labels.
>>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([ ... (0.0, Vectors.dense([0.0, 0.0])), ... (1.0, Vectors.dense([0.0, 1.0])), ... (1.0, Vectors.dense([1.0, 0.0])), ... (0.0, Vectors.dense([1.0, 1.0]))], ["label", "features"]) >>> mlp = MultilayerPerceptronClassifier(maxIter=100, layers=[2, 2, 2], blockSize=1, seed=123) >>> model = mlp.fit(df) >>> model.layers [2, 2, 2] >>> model.weights.size 12 >>> testDF = spark.createDataFrame([ ... (Vectors.dense([1.0, 0.0]),), ... (Vectors.dense([0.0, 0.0]),)], ["features"]) >>> model.transform(testDF).show() +---------+----------+ | features|prediction| +---------+----------+ |[1.0,0.0]| 1.0| |[0.0,0.0]| 0.0| +---------+----------+ ... >>> mlp_path = temp_path + "/mlp" >>> mlp.save(mlp_path) >>> mlp2 = MultilayerPerceptronClassifier.load(mlp_path) >>> mlp2.getBlockSize() 1 >>> model_path = temp_path + "/mlp_model" >>> model.save(model_path) >>> model2 = MultilayerPerceptronClassificationModel.load(model_path) >>> model.layers == model2.layers True >>> model.weights == model2.weights True >>> mlp2 = mlp2.setInitialWeights(list(range(0, 12))) >>> model3 = mlp2.fit(df) >>> model3.weights != model2.weights True >>> model3.layers == model.layers True
New in version 1.6.0.
-
blockSize
= Param(parent='undefined', name='blockSize', doc='Block size for stacking input data in matrices. Data is stacked within partitions. If block size is more than remaining data in a partition then it is adjusted to the size of this data. Recommended size is between 10 and 1000, default is 128.')¶
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
featuresCol
= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Returns: fitted model(s)
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
getFeaturesCol
()¶ Gets the value of featuresCol or its default value.
-
getInitialWeights
()[source]¶ Gets the value of initialWeights or its default value.
New in version 2.0.0.
-
getLabelCol
()¶ Gets the value of labelCol or its default value.
-
getMaxIter
()¶ Gets the value of maxIter or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
getPredictionCol
()¶ Gets the value of predictionCol or its default value.
-
getSeed
()¶ Gets the value of seed or its default value.
-
getTol
()¶ Gets the value of tol or its default value.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
initialWeights
= Param(parent='undefined', name='initialWeights', doc='The initial weights of the model.')¶
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
labelCol
= Param(parent='undefined', name='labelCol', doc='label column name.')¶
-
layers
= Param(parent='undefined', name='layers', doc='Sizes of layers from input layer to output layer E.g., Array(780, 100, 10) means 780 inputs, one hidden layer with 100 neurons and output layer of 10 neurons.')¶
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
maxIter
= Param(parent='undefined', name='maxIter', doc='max number of iterations (>= 0).')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
predictionCol
= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
seed
= Param(parent='undefined', name='seed', doc='random seed.')¶
-
setFeaturesCol
(value)¶ Sets the value of
featuresCol
.
-
setInitialWeights
(value)[source]¶ Sets the value of
initialWeights
.New in version 2.0.0.
-
setParams
(self, featuresCol="features", labelCol="label", predictionCol="prediction", maxIter=100, tol=1e-6, seed=None, layers=None, blockSize=128, stepSize=0.03, solver="l-bfgs", initialWeights=None)[source]¶ Sets params for MultilayerPerceptronClassifier.
New in version 1.6.0.
-
setPredictionCol
(value)¶ Sets the value of
predictionCol
.
-
solver
= Param(parent='undefined', name='solver', doc='The solver algorithm for optimization. Supported options: l-bfgs, gd.')¶
-
stepSize
= Param(parent='undefined', name='stepSize', doc='Step size to be used for each iteration of optimization (>= 0).')¶
-
tol
= Param(parent='undefined', name='tol', doc='the convergence tolerance for iterative algorithms (>= 0).')¶
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.classification.
MultilayerPerceptronClassificationModel
(java_model=None)[source]¶ Model fitted by MultilayerPerceptronClassifier.
New in version 1.6.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
layers
¶ array of layer sizes including input and output layers.
New in version 1.6.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
numFeatures
¶ Returns the number of features the model was trained on. If unknown, returns -1
New in version 2.1.0.
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
weights
¶ the weights of layers.
New in version 2.0.0.
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.classification.
OneVsRest
(featuresCol='features', labelCol='label', predictionCol='prediction', classifier=None, weightCol=None)[source]¶ Note
Experimental
Reduction of Multiclass Classification to Binary Classification. Performs reduction using one against all strategy. For a multiclass classification with k classes, train k models (one per class). Each example is scored against all k models and the model with highest score is picked to label the example.
>>> from pyspark.sql import Row >>> from pyspark.ml.linalg import Vectors >>> df = sc.parallelize([ ... Row(label=0.0, features=Vectors.dense(1.0, 0.8)), ... Row(label=1.0, features=Vectors.sparse(2, [], [])), ... Row(label=2.0, features=Vectors.dense(0.5, 0.5))]).toDF() >>> lr = LogisticRegression(maxIter=5, regParam=0.01) >>> ovr = OneVsRest(classifier=lr) >>> model = ovr.fit(df) >>> [x.coefficients for x in model.models] [DenseVector([3.3925, 1.8785]), DenseVector([-4.3016, -6.3163]), DenseVector([-4.5855, 6.1785])] >>> [x.intercept for x in model.models] [-3.64747..., 2.55078..., -1.10165...] >>> test0 = sc.parallelize([Row(features=Vectors.dense(-1.0, 0.0))]).toDF() >>> model.transform(test0).head().prediction 1.0 >>> test1 = sc.parallelize([Row(features=Vectors.sparse(2, [0], [1.0]))]).toDF() >>> model.transform(test1).head().prediction 0.0 >>> test2 = sc.parallelize([Row(features=Vectors.dense(0.5, 0.4))]).toDF() >>> model.transform(test2).head().prediction 2.0
New in version 2.0.0.
-
classifier
= Param(parent='undefined', name='classifier', doc='base binary classifier')¶
-
copy
(extra=None)[source]¶ Creates a copy of this instance with a randomly generated uid and some extra params. This creates a deep copy of the embedded paramMap, and copies the embedded and extra parameters over.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance New in version 2.0.0.
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
featuresCol
= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Returns: fitted model(s)
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
getClassifier
()¶ Gets the value of classifier or its default value.
New in version 2.0.0.
-
getFeaturesCol
()¶ Gets the value of featuresCol or its default value.
-
getLabelCol
()¶ Gets the value of labelCol or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
getPredictionCol
()¶ Gets the value of predictionCol or its default value.
-
getWeightCol
()¶ Gets the value of weightCol or its default value.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
labelCol
= Param(parent='undefined', name='labelCol', doc='label column name.')¶
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
predictionCol
= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶
-
save
(path)[source]¶ Save this ML instance to the given path, a shortcut of write().save(path).
New in version 2.0.0.
-
setClassifier
(value)¶ Sets the value of
classifier
.Note
Only LogisticRegression and NaiveBayes are supported now.
New in version 2.0.0.
-
setFeaturesCol
(value)¶ Sets the value of
featuresCol
.
-
setParams
(featuresCol=None, labelCol=None, predictionCol=None, classifier=None, weightCol=None)[source]¶ setParams(self, featuresCol=None, labelCol=None, predictionCol=None, classifier=None, weightCol=None): Sets params for OneVsRest.
New in version 2.0.0.
-
setPredictionCol
(value)¶ Sets the value of
predictionCol
.
-
weightCol
= Param(parent='undefined', name='weightCol', doc='weight column name. If this is not set or empty, we treat all instance weights as 1.0.')¶
-
-
class
pyspark.ml.classification.
OneVsRestModel
(models)[source]¶ Note
Experimental
Model fitted by OneVsRest. This stores the models resulting from training k binary classifiers: one for each class. Each example is scored against all k models, and the model with the highest score is picked to label the example.
New in version 2.0.0.
-
classifier
= Param(parent='undefined', name='classifier', doc='base binary classifier')¶
-
copy
(extra=None)[source]¶ Creates a copy of this instance with a randomly generated uid and some extra params. This creates a deep copy of the embedded paramMap, and copies the embedded and extra parameters over.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance New in version 2.0.0.
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
featuresCol
= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
-
getClassifier
()¶ Gets the value of classifier or its default value.
New in version 2.0.0.
-
getFeaturesCol
()¶ Gets the value of featuresCol or its default value.
-
getLabelCol
()¶ Gets the value of labelCol or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
getPredictionCol
()¶ Gets the value of predictionCol or its default value.
-
getWeightCol
()¶ Gets the value of weightCol or its default value.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
labelCol
= Param(parent='undefined', name='labelCol', doc='label column name.')¶
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
predictionCol
= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶
-
save
(path)[source]¶ Save this ML instance to the given path, a shortcut of write().save(path).
New in version 2.0.0.
-
setClassifier
(value)¶ Sets the value of
classifier
.Note
Only LogisticRegression and NaiveBayes are supported now.
New in version 2.0.0.
-
setFeaturesCol
(value)¶ Sets the value of
featuresCol
.
-
setPredictionCol
(value)¶ Sets the value of
predictionCol
.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
weightCol
= Param(parent='undefined', name='weightCol', doc='weight column name. If this is not set or empty, we treat all instance weights as 1.0.')¶
-
pyspark.ml.clustering module¶
-
class
pyspark.ml.clustering.
BisectingKMeans
(featuresCol='features', predictionCol='prediction', maxIter=20, seed=None, k=4, minDivisibleClusterSize=1.0)[source]¶ A bisecting k-means algorithm based on the paper “A comparison of document clustering techniques” by Steinbach, Karypis, and Kumar, with modification to fit Spark. The algorithm starts from a single cluster that contains all points. Iteratively it finds divisible clusters on the bottom level and bisects each of them using k-means, until there are k leaf clusters in total or no leaf clusters are divisible. The bisecting steps of clusters on the same level are grouped together to increase parallelism. If bisecting all divisible clusters on the bottom level would result more than k leaf clusters, larger clusters get higher priority.
>>> from pyspark.ml.linalg import Vectors >>> data = [(Vectors.dense([0.0, 0.0]),), (Vectors.dense([1.0, 1.0]),), ... (Vectors.dense([9.0, 8.0]),), (Vectors.dense([8.0, 9.0]),)] >>> df = spark.createDataFrame(data, ["features"]) >>> bkm = BisectingKMeans(k=2, minDivisibleClusterSize=1.0) >>> model = bkm.fit(df) >>> centers = model.clusterCenters() >>> len(centers) 2 >>> model.computeCost(df) 2.000... >>> model.hasSummary True >>> summary = model.summary >>> summary.k 2 >>> summary.clusterSizes [2, 2] >>> transformed = model.transform(df).select("features", "prediction") >>> rows = transformed.collect() >>> rows[0].prediction == rows[1].prediction True >>> rows[2].prediction == rows[3].prediction True >>> bkm_path = temp_path + "/bkm" >>> bkm.save(bkm_path) >>> bkm2 = BisectingKMeans.load(bkm_path) >>> bkm2.getK() 2 >>> model_path = temp_path + "/bkm_model" >>> model.save(model_path) >>> model2 = BisectingKMeansModel.load(model_path) >>> model2.hasSummary False >>> model.clusterCenters()[0] == model2.clusterCenters()[0] array([ True, True], dtype=bool) >>> model.clusterCenters()[1] == model2.clusterCenters()[1] array([ True, True], dtype=bool)
New in version 2.0.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
featuresCol
= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Returns: fitted model(s)
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
getFeaturesCol
()¶ Gets the value of featuresCol or its default value.
-
getMaxIter
()¶ Gets the value of maxIter or its default value.
-
getMinDivisibleClusterSize
()[source]¶ Gets the value of minDivisibleClusterSize or its default value.
New in version 2.0.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
getPredictionCol
()¶ Gets the value of predictionCol or its default value.
-
getSeed
()¶ Gets the value of seed or its default value.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
k
= Param(parent='undefined', name='k', doc='The desired number of leaf clusters. Must be > 1.')¶
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
maxIter
= Param(parent='undefined', name='maxIter', doc='max number of iterations (>= 0).')¶
-
minDivisibleClusterSize
= Param(parent='undefined', name='minDivisibleClusterSize', doc='The minimum number of points (if >= 1.0) or the minimum proportion of points (if < 1.0) of a divisible cluster.')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
predictionCol
= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
seed
= Param(parent='undefined', name='seed', doc='random seed.')¶
-
setFeaturesCol
(value)¶ Sets the value of
featuresCol
.
-
setMinDivisibleClusterSize
(value)[source]¶ Sets the value of
minDivisibleClusterSize
.New in version 2.0.0.
-
setParams
(self, featuresCol="features", predictionCol="prediction", maxIter=20, seed=None, k=4, minDivisibleClusterSize=1.0)[source]¶ Sets params for BisectingKMeans.
New in version 2.0.0.
-
setPredictionCol
(value)¶ Sets the value of
predictionCol
.
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.clustering.
BisectingKMeansModel
(java_model=None)[source]¶ Model fitted by BisectingKMeans.
New in version 2.0.0.
-
clusterCenters
()[source]¶ Get the cluster centers, represented as a list of NumPy arrays.
New in version 2.0.0.
-
computeCost
(dataset)[source]¶ Computes the sum of squared distances between the input points and their corresponding cluster centers.
New in version 2.0.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
hasSummary
¶ Indicates whether a training summary exists for this model instance.
New in version 2.1.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
summary
¶ Gets summary (e.g. cluster assignments, cluster sizes) of the model trained on the training set. An exception is thrown if no summary exists.
New in version 2.1.0.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.clustering.
BisectingKMeansSummary
(java_obj=None)[source]¶ Note
Experimental
Bisecting KMeans clustering results for a given model.
New in version 2.1.0.
-
cluster
¶ DataFrame of predicted cluster centers for each training data point.
New in version 2.1.0.
-
clusterSizes
¶ Size of (number of data points in) each cluster.
New in version 2.1.0.
-
featuresCol
¶ Name for column of features in predictions.
New in version 2.1.0.
-
k
¶ The number of clusters the model was trained with.
New in version 2.1.0.
-
predictionCol
¶ Name for column of predicted clusters in predictions.
New in version 2.1.0.
-
predictions
¶ DataFrame produced by the model’s transform method.
New in version 2.1.0.
-
-
class
pyspark.ml.clustering.
KMeans
(featuresCol='features', predictionCol='prediction', k=2, initMode='k-means||', initSteps=2, tol=0.0001, maxIter=20, seed=None)[source]¶ K-means clustering with a k-means++ like initialization mode (the k-means|| algorithm by Bahmani et al).
>>> from pyspark.ml.linalg import Vectors >>> data = [(Vectors.dense([0.0, 0.0]),), (Vectors.dense([1.0, 1.0]),), ... (Vectors.dense([9.0, 8.0]),), (Vectors.dense([8.0, 9.0]),)] >>> df = spark.createDataFrame(data, ["features"]) >>> kmeans = KMeans(k=2, seed=1) >>> model = kmeans.fit(df) >>> centers = model.clusterCenters() >>> len(centers) 2 >>> model.computeCost(df) 2.000... >>> transformed = model.transform(df).select("features", "prediction") >>> rows = transformed.collect() >>> rows[0].prediction == rows[1].prediction True >>> rows[2].prediction == rows[3].prediction True >>> model.hasSummary True >>> summary = model.summary >>> summary.k 2 >>> summary.clusterSizes [2, 2] >>> kmeans_path = temp_path + "/kmeans" >>> kmeans.save(kmeans_path) >>> kmeans2 = KMeans.load(kmeans_path) >>> kmeans2.getK() 2 >>> model_path = temp_path + "/kmeans_model" >>> model.save(model_path) >>> model2 = KMeansModel.load(model_path) >>> model2.hasSummary False >>> model.clusterCenters()[0] == model2.clusterCenters()[0] array([ True, True], dtype=bool) >>> model.clusterCenters()[1] == model2.clusterCenters()[1] array([ True, True], dtype=bool)
New in version 1.5.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
featuresCol
= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Returns: fitted model(s)
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
getFeaturesCol
()¶ Gets the value of featuresCol or its default value.
-
getMaxIter
()¶ Gets the value of maxIter or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
getPredictionCol
()¶ Gets the value of predictionCol or its default value.
-
getSeed
()¶ Gets the value of seed or its default value.
-
getTol
()¶ Gets the value of tol or its default value.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
initMode
= Param(parent='undefined', name='initMode', doc='The initialization algorithm. This can be either "random" to choose random points as initial cluster centers, or "k-means||" to use a parallel variant of k-means++')¶
-
initSteps
= Param(parent='undefined', name='initSteps', doc='The number of steps for k-means|| initialization mode. Must be > 0.')¶
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
k
= Param(parent='undefined', name='k', doc='The number of clusters to create. Must be > 1.')¶
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
maxIter
= Param(parent='undefined', name='maxIter', doc='max number of iterations (>= 0).')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
predictionCol
= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
seed
= Param(parent='undefined', name='seed', doc='random seed.')¶
-
setFeaturesCol
(value)¶ Sets the value of
featuresCol
.
-
setParams
(self, featuresCol="features", predictionCol="prediction", k=2, initMode="k-means||", initSteps=2, tol=1e-4, maxIter=20, seed=None)[source]¶ Sets params for KMeans.
New in version 1.5.0.
-
setPredictionCol
(value)¶ Sets the value of
predictionCol
.
-
tol
= Param(parent='undefined', name='tol', doc='the convergence tolerance for iterative algorithms (>= 0).')¶
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.clustering.
KMeansModel
(java_model=None)[source]¶ Model fitted by KMeans.
New in version 1.5.0.
-
clusterCenters
()[source]¶ Get the cluster centers, represented as a list of NumPy arrays.
New in version 1.5.0.
-
computeCost
(dataset)[source]¶ Return the K-means cost (sum of squared distances of points to their nearest center) for this model on the given data.
New in version 2.0.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
hasSummary
¶ Indicates whether a training summary exists for this model instance.
New in version 2.1.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
summary
¶ Gets summary (e.g. cluster assignments, cluster sizes) of the model trained on the training set. An exception is thrown if no summary exists.
New in version 2.1.0.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.clustering.
GaussianMixture
(featuresCol='features', predictionCol='prediction', k=2, probabilityCol='probability', tol=0.01, maxIter=100, seed=None)[source]¶ GaussianMixture clustering. This class performs expectation maximization for multivariate Gaussian Mixture Models (GMMs). A GMM represents a composite distribution of independent Gaussian distributions with associated “mixing” weights specifying each’s contribution to the composite.
Given a set of sample points, this class will maximize the log-likelihood for a mixture of k Gaussians, iterating until the log-likelihood changes by less than convergenceTol, or until it has reached the max number of iterations. While this process is generally guaranteed to converge, it is not guaranteed to find a global optimum.
Note
For high-dimensional data (with many features), this algorithm may perform poorly. This is due to high-dimensional data (a) making it difficult to cluster at all (based on statistical/theoretical arguments) and (b) numerical issues with Gaussian distributions.
>>> from pyspark.ml.linalg import Vectors
>>> data = [(Vectors.dense([-0.1, -0.05 ]),), ... (Vectors.dense([-0.01, -0.1]),), ... (Vectors.dense([0.9, 0.8]),), ... (Vectors.dense([0.75, 0.935]),), ... (Vectors.dense([-0.83, -0.68]),), ... (Vectors.dense([-0.91, -0.76]),)] >>> df = spark.createDataFrame(data, ["features"]) >>> gm = GaussianMixture(k=3, tol=0.0001, ... maxIter=10, seed=10) >>> model = gm.fit(df) >>> model.hasSummary True >>> summary = model.summary >>> summary.k 3 >>> summary.clusterSizes [2, 2, 2] >>> weights = model.weights >>> len(weights) 3 >>> model.gaussiansDF.show() +--------------------+--------------------+ | mean| cov| +--------------------+--------------------+ |[0.82500000140229...|0.005625000000006...| |[-0.4777098016092...|0.167969502720916...| |[-0.4472625243352...|0.167304119758233...| +--------------------+--------------------+ ... >>> transformed = model.transform(df).select("features", "prediction") >>> rows = transformed.collect() >>> rows[4].prediction == rows[5].prediction True >>> rows[2].prediction == rows[3].prediction True >>> gmm_path = temp_path + "/gmm" >>> gm.save(gmm_path) >>> gm2 = GaussianMixture.load(gmm_path) >>> gm2.getK() 3 >>> model_path = temp_path + "/gmm_model" >>> model.save(model_path) >>> model2 = GaussianMixtureModel.load(model_path) >>> model2.hasSummary False >>> model2.weights == model.weights True >>> model2.gaussiansDF.show() +--------------------+--------------------+ | mean| cov| +--------------------+--------------------+ |[0.82500000140229...|0.005625000000006...| |[-0.4777098016092...|0.167969502720916...| |[-0.4472625243352...|0.167304119758233...| +--------------------+--------------------+ ...
New in version 2.0.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
featuresCol
= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Returns: fitted model(s)
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
getFeaturesCol
()¶ Gets the value of featuresCol or its default value.
-
getMaxIter
()¶ Gets the value of maxIter or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
getPredictionCol
()¶ Gets the value of predictionCol or its default value.
-
getProbabilityCol
()¶ Gets the value of probabilityCol or its default value.
-
getSeed
()¶ Gets the value of seed or its default value.
-
getTol
()¶ Gets the value of tol or its default value.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
k
= Param(parent='undefined', name='k', doc='Number of independent Gaussians in the mixture model. Must be > 1.')¶
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
maxIter
= Param(parent='undefined', name='maxIter', doc='max number of iterations (>= 0).')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
predictionCol
= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶
-
probabilityCol
= Param(parent='undefined', name='probabilityCol', doc='Column name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities.')¶
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
seed
= Param(parent='undefined', name='seed', doc='random seed.')¶
-
setFeaturesCol
(value)¶ Sets the value of
featuresCol
.
-
setParams
(self, featuresCol="features", predictionCol="prediction", k=2, probabilityCol="probability", tol=0.01, maxIter=100, seed=None)[source]¶ Sets params for GaussianMixture.
New in version 2.0.0.
-
setPredictionCol
(value)¶ Sets the value of
predictionCol
.
-
setProbabilityCol
(value)¶ Sets the value of
probabilityCol
.
-
tol
= Param(parent='undefined', name='tol', doc='the convergence tolerance for iterative algorithms (>= 0).')¶
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.clustering.
GaussianMixtureModel
(java_model=None)[source]¶ Model fitted by GaussianMixture.
New in version 2.0.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
gaussiansDF
¶ Retrieve Gaussian distributions as a DataFrame. Each row represents a Gaussian Distribution. The DataFrame has two columns: mean (Vector) and cov (Matrix).
New in version 2.0.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
hasSummary
¶ Indicates whether a training summary exists for this model instance.
New in version 2.1.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
summary
¶ Gets summary (e.g. cluster assignments, cluster sizes) of the model trained on the training set. An exception is thrown if no summary exists.
New in version 2.1.0.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
weights
¶ Weight for each Gaussian distribution in the mixture. This is a multinomial probability distribution over the k Gaussians, where weights[i] is the weight for Gaussian i, and weights sum to 1.
New in version 2.0.0.
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.clustering.
GaussianMixtureSummary
(java_obj=None)[source]¶ Note
Experimental
Gaussian mixture clustering results for a given model.
New in version 2.1.0.
-
cluster
¶ DataFrame of predicted cluster centers for each training data point.
New in version 2.1.0.
-
clusterSizes
¶ Size of (number of data points in) each cluster.
New in version 2.1.0.
-
featuresCol
¶ Name for column of features in predictions.
New in version 2.1.0.
-
k
¶ The number of clusters the model was trained with.
New in version 2.1.0.
-
predictionCol
¶ Name for column of predicted clusters in predictions.
New in version 2.1.0.
-
predictions
¶ DataFrame produced by the model’s transform method.
New in version 2.1.0.
-
probability
¶ DataFrame of probabilities of each cluster for each training data point.
New in version 2.1.0.
-
probabilityCol
¶ Name for column of predicted probability of each cluster in predictions.
New in version 2.1.0.
-
-
class
pyspark.ml.clustering.
LDA
(featuresCol='features', maxIter=20, seed=None, checkpointInterval=10, k=10, optimizer='online', learningOffset=1024.0, learningDecay=0.51, subsamplingRate=0.05, optimizeDocConcentration=True, docConcentration=None, topicConcentration=None, topicDistributionCol='topicDistribution', keepLastCheckpoint=True)[source]¶ Latent Dirichlet Allocation (LDA), a topic model designed for text documents.
Terminology:
- “term” = “word”: an el
- “token”: instance of a term appearing in a document
- “topic”: multinomial distribution over terms representing some concept
- “document”: one piece of text, corresponding to one row in the input data
- Original LDA paper (journal version):
- Blei, Ng, and Jordan. “Latent Dirichlet Allocation.” JMLR, 2003.
Input data (featuresCol): LDA is given a collection of documents as input data, via the featuresCol parameter. Each document is specified as a
Vector
of length vocabSize, where each entry is the count for the corresponding term (word) in the document. Feature transformers such aspyspark.ml.feature.Tokenizer
andpyspark.ml.feature.CountVectorizer
can be useful for converting text to word count vectors.>>> from pyspark.ml.linalg import Vectors, SparseVector >>> from pyspark.ml.clustering import LDA >>> df = spark.createDataFrame([[1, Vectors.dense([0.0, 1.0])], ... [2, SparseVector(2, {0: 1.0})],], ["id", "features"]) >>> lda = LDA(k=2, seed=1, optimizer="em") >>> model = lda.fit(df) >>> model.isDistributed() True >>> localModel = model.toLocal() >>> localModel.isDistributed() False >>> model.vocabSize() 2 >>> model.describeTopics().show() +-----+-----------+--------------------+ |topic|termIndices| termWeights| +-----+-----------+--------------------+ | 0| [1, 0]|[0.50401530077160...| | 1| [0, 1]|[0.50401530077160...| +-----+-----------+--------------------+ ... >>> model.topicsMatrix() DenseMatrix(2, 2, [0.496, 0.504, 0.504, 0.496], 0) >>> lda_path = temp_path + "/lda" >>> lda.save(lda_path) >>> sameLDA = LDA.load(lda_path) >>> distributed_model_path = temp_path + "/lda_distributed_model" >>> model.save(distributed_model_path) >>> sameModel = DistributedLDAModel.load(distributed_model_path) >>> local_model_path = temp_path + "/lda_local_model" >>> localModel.save(local_model_path) >>> sameLocalModel = LocalLDAModel.load(local_model_path)
New in version 2.0.0.
-
checkpointInterval
= Param(parent='undefined', name='checkpointInterval', doc='set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the cache will get checkpointed every 10 iterations.')¶
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
docConcentration
= Param(parent='undefined', name='docConcentration', doc='Concentration parameter (commonly named "alpha") for the prior placed on documents\' distributions over topics ("theta").')¶
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
featuresCol
= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Returns: fitted model(s)
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
getCheckpointInterval
()¶ Gets the value of checkpointInterval or its default value.
-
getDocConcentration
()[source]¶ Gets the value of
docConcentration
or its default value.New in version 2.0.0.
-
getFeaturesCol
()¶ Gets the value of featuresCol or its default value.
-
getKeepLastCheckpoint
()[source]¶ Gets the value of
keepLastCheckpoint
or its default value.New in version 2.0.0.
-
getLearningDecay
()[source]¶ Gets the value of
learningDecay
or its default value.New in version 2.0.0.
-
getLearningOffset
()[source]¶ Gets the value of
learningOffset
or its default value.New in version 2.0.0.
-
getMaxIter
()¶ Gets the value of maxIter or its default value.
-
getOptimizeDocConcentration
()[source]¶ Gets the value of
optimizeDocConcentration
or its default value.New in version 2.0.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
getSeed
()¶ Gets the value of seed or its default value.
-
getSubsamplingRate
()[source]¶ Gets the value of
subsamplingRate
or its default value.New in version 2.0.0.
-
getTopicConcentration
()[source]¶ Gets the value of
topicConcentration
or its default value.New in version 2.0.0.
-
getTopicDistributionCol
()[source]¶ Gets the value of
topicDistributionCol
or its default value.New in version 2.0.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
k
= Param(parent='undefined', name='k', doc='The number of topics (clusters) to infer. Must be > 1.')¶
-
keepLastCheckpoint
= Param(parent='undefined', name='keepLastCheckpoint', doc='(For EM optimizer) If using checkpointing, this indicates whether to keep the last checkpoint. If false, then the checkpoint will be deleted. Deleting the checkpoint can cause failures if a data partition is lost, so set this bit with care.')¶
-
learningDecay
= Param(parent='undefined', name='learningDecay', doc='Learning rate, set as anexponential decay rate. This should be between (0.5, 1.0] to guarantee asymptotic convergence.')¶
-
learningOffset
= Param(parent='undefined', name='learningOffset', doc='A (positive) learning parameter that downweights early iterations. Larger values make early iterations count less')¶
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
maxIter
= Param(parent='undefined', name='maxIter', doc='max number of iterations (>= 0).')¶
-
optimizeDocConcentration
= Param(parent='undefined', name='optimizeDocConcentration', doc='Indicates whether the docConcentration (Dirichlet parameter for document-topic distribution) will be optimized during training.')¶
-
optimizer
= Param(parent='undefined', name='optimizer', doc='Optimizer or inference algorithm used to estimate the LDA model. Supported: online, em')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
seed
= Param(parent='undefined', name='seed', doc='random seed.')¶
-
setCheckpointInterval
(value)¶ Sets the value of
checkpointInterval
.
-
setDocConcentration
(value)[source]¶ Sets the value of
docConcentration
.>>> algo = LDA().setDocConcentration([0.1, 0.2]) >>> algo.getDocConcentration() [0.1..., 0.2...]
New in version 2.0.0.
-
setFeaturesCol
(value)¶ Sets the value of
featuresCol
.
-
setK
(value)[source]¶ Sets the value of
k
.>>> algo = LDA().setK(10) >>> algo.getK() 10
New in version 2.0.0.
-
setKeepLastCheckpoint
(value)[source]¶ Sets the value of
keepLastCheckpoint
.>>> algo = LDA().setKeepLastCheckpoint(False) >>> algo.getKeepLastCheckpoint() False
New in version 2.0.0.
-
setLearningDecay
(value)[source]¶ Sets the value of
learningDecay
.>>> algo = LDA().setLearningDecay(0.1) >>> algo.getLearningDecay() 0.1...
New in version 2.0.0.
-
setLearningOffset
(value)[source]¶ Sets the value of
learningOffset
.>>> algo = LDA().setLearningOffset(100) >>> algo.getLearningOffset() 100.0
New in version 2.0.0.
-
setOptimizeDocConcentration
(value)[source]¶ Sets the value of
optimizeDocConcentration
.>>> algo = LDA().setOptimizeDocConcentration(True) >>> algo.getOptimizeDocConcentration() True
New in version 2.0.0.
-
setOptimizer
(value)[source]¶ Sets the value of
optimizer
. Currenlty only support ‘em’ and ‘online’.>>> algo = LDA().setOptimizer("em") >>> algo.getOptimizer() 'em'
New in version 2.0.0.
-
setParams
(featuresCol='features', maxIter=20, seed=None, checkpointInterval=10, k=10, optimizer='online', learningOffset=1024.0, learningDecay=0.51, subsamplingRate=0.05, optimizeDocConcentration=True, docConcentration=None, topicConcentration=None, topicDistributionCol='topicDistribution', keepLastCheckpoint=True)[source]¶ setParams(self, featuresCol=”features”, maxIter=20, seed=None, checkpointInterval=10, k=10, optimizer=”online”, learningOffset=1024.0, learningDecay=0.51, subsamplingRate=0.05, optimizeDocConcentration=True, docConcentration=None, topicConcentration=None, topicDistributionCol=”topicDistribution”, keepLastCheckpoint=True):
Sets params for LDA.
New in version 2.0.0.
-
setSubsamplingRate
(value)[source]¶ Sets the value of
subsamplingRate
.>>> algo = LDA().setSubsamplingRate(0.1) >>> algo.getSubsamplingRate() 0.1...
New in version 2.0.0.
-
setTopicConcentration
(value)[source]¶ Sets the value of
topicConcentration
.>>> algo = LDA().setTopicConcentration(0.5) >>> algo.getTopicConcentration() 0.5...
New in version 2.0.0.
-
setTopicDistributionCol
(value)[source]¶ Sets the value of
topicDistributionCol
.>>> algo = LDA().setTopicDistributionCol("topicDistributionCol") >>> algo.getTopicDistributionCol() 'topicDistributionCol'
New in version 2.0.0.
-
subsamplingRate
= Param(parent='undefined', name='subsamplingRate', doc='Fraction of the corpus to be sampled and used in each iteration of mini-batch gradient descent, in range (0, 1].')¶
-
topicConcentration
= Param(parent='undefined', name='topicConcentration', doc='Concentration parameter (commonly named "beta" or "eta") for the prior placed on topic\' distributions over terms.')¶
-
topicDistributionCol
= Param(parent='undefined', name='topicDistributionCol', doc='Output column with estimates of the topic mixture distribution for each document (often called "theta" in the literature). Returns a vector of zeros for an empty document.')¶
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
class
pyspark.ml.clustering.
LDAModel
(java_model=None)[source]¶ Latent Dirichlet Allocation (LDA) model. This abstraction permits for different underlying representations, including local and distributed data structures.
New in version 2.0.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
describeTopics
(maxTermsPerTopic=10)[source]¶ Return the topics described by their top-weighted terms.
New in version 2.0.0.
-
estimatedDocConcentration
()[source]¶ Value for
LDA.docConcentration
estimated from data. If Online LDA was used andLDA.optimizeDocConcentration
was set to false, then this returns the fixed (given) value for theLDA.docConcentration
parameter.New in version 2.0.0.
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isDistributed
()[source]¶ Indicates whether this instance is of type DistributedLDAModel
New in version 2.0.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
logLikelihood
(dataset)[source]¶ Calculates a lower bound on the log likelihood of the entire corpus. See Equation (16) in the Online LDA paper (Hoffman et al., 2010).
WARNING: If this model is an instance of
DistributedLDAModel
(produced whenoptimizer
is set to “em”), this involves collecting a largetopicsMatrix()
to the driver. This implementation may be changed in the future.New in version 2.0.0.
-
logPerplexity
(dataset)[source]¶ Calculate an upper bound bound on perplexity. (Lower is better.) See Equation (16) in the Online LDA paper (Hoffman et al., 2010).
WARNING: If this model is an instance of
DistributedLDAModel
(produced whenoptimizer
is set to “em”), this involves collecting a largetopicsMatrix()
to the driver. This implementation may be changed in the future.New in version 2.0.0.
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
topicsMatrix
()[source]¶ Inferred topics, where each topic is represented by a distribution over terms. This is a matrix of size vocabSize x k, where each column is a topic. No guarantees are given about the ordering of the topics.
WARNING: If this model is actually a
DistributedLDAModel
instance produced by the Expectation-Maximization (“em”) optimizer, then this method could involve collecting a large amount of data to the driver (on the order of vocabSize x k).New in version 2.0.0.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
-
class
pyspark.ml.clustering.
LocalLDAModel
(java_model=None)[source]¶ Local (non-distributed) model fitted by
LDA
. This model stores the inferred topics only; it does not store info about the training dataset.New in version 2.0.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
describeTopics
(maxTermsPerTopic=10)¶ Return the topics described by their top-weighted terms.
New in version 2.0.0.
-
estimatedDocConcentration
()¶ Value for
LDA.docConcentration
estimated from data. If Online LDA was used andLDA.optimizeDocConcentration
was set to false, then this returns the fixed (given) value for theLDA.docConcentration
parameter.New in version 2.0.0.
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isDistributed
()¶ Indicates whether this instance is of type DistributedLDAModel
New in version 2.0.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
logLikelihood
(dataset)¶ Calculates a lower bound on the log likelihood of the entire corpus. See Equation (16) in the Online LDA paper (Hoffman et al., 2010).
WARNING: If this model is an instance of
DistributedLDAModel
(produced whenoptimizer
is set to “em”), this involves collecting a largetopicsMatrix()
to the driver. This implementation may be changed in the future.New in version 2.0.0.
-
logPerplexity
(dataset)¶ Calculate an upper bound bound on perplexity. (Lower is better.) See Equation (16) in the Online LDA paper (Hoffman et al., 2010).
WARNING: If this model is an instance of
DistributedLDAModel
(produced whenoptimizer
is set to “em”), this involves collecting a largetopicsMatrix()
to the driver. This implementation may be changed in the future.New in version 2.0.0.
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
topicsMatrix
()¶ Inferred topics, where each topic is represented by a distribution over terms. This is a matrix of size vocabSize x k, where each column is a topic. No guarantees are given about the ordering of the topics.
WARNING: If this model is actually a
DistributedLDAModel
instance produced by the Expectation-Maximization (“em”) optimizer, then this method could involve collecting a large amount of data to the driver (on the order of vocabSize x k).New in version 2.0.0.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
vocabSize
()¶ Vocabulary size (number of terms or words in the vocabulary)
New in version 2.0.0.
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.clustering.
DistributedLDAModel
(java_model=None)[source]¶ Distributed model fitted by
LDA
. This type of model is currently only produced by Expectation-Maximization (EM).This model stores the inferred topics, the full training dataset, and the topic distribution for each training document.
New in version 2.0.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
describeTopics
(maxTermsPerTopic=10)¶ Return the topics described by their top-weighted terms.
New in version 2.0.0.
-
estimatedDocConcentration
()¶ Value for
LDA.docConcentration
estimated from data. If Online LDA was used andLDA.optimizeDocConcentration
was set to false, then this returns the fixed (given) value for theLDA.docConcentration
parameter.New in version 2.0.0.
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getCheckpointFiles
()[source]¶ If using checkpointing and
LDA.keepLastCheckpoint
is set to true, then there may be saved checkpoint files. This method is provided so that users can manage those files.Note
Removing the checkpoints can cause failures if a partition is lost and is needed by certain
DistributedLDAModel
methods. Reference counting will clean up the checkpoints when this model and derivative data go out of scope.:return List of checkpoint files from training
New in version 2.0.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isDistributed
()¶ Indicates whether this instance is of type DistributedLDAModel
New in version 2.0.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
logLikelihood
(dataset)¶ Calculates a lower bound on the log likelihood of the entire corpus. See Equation (16) in the Online LDA paper (Hoffman et al., 2010).
WARNING: If this model is an instance of
DistributedLDAModel
(produced whenoptimizer
is set to “em”), this involves collecting a largetopicsMatrix()
to the driver. This implementation may be changed in the future.New in version 2.0.0.
-
logPerplexity
(dataset)¶ Calculate an upper bound bound on perplexity. (Lower is better.) See Equation (16) in the Online LDA paper (Hoffman et al., 2010).
WARNING: If this model is an instance of
DistributedLDAModel
(produced whenoptimizer
is set to “em”), this involves collecting a largetopicsMatrix()
to the driver. This implementation may be changed in the future.New in version 2.0.0.
-
logPrior
()[source]¶ Log probability of the current parameter estimate: log P(topics, topic distributions for docs | alpha, eta)
New in version 2.0.0.
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
toLocal
()[source]¶ Convert this distributed model to a local representation. This discards info about the training dataset.
WARNING: This involves collecting a large
topicsMatrix()
to the driver.New in version 2.0.0.
-
topicsMatrix
()¶ Inferred topics, where each topic is represented by a distribution over terms. This is a matrix of size vocabSize x k, where each column is a topic. No guarantees are given about the ordering of the topics.
WARNING: If this model is actually a
DistributedLDAModel
instance produced by the Expectation-Maximization (“em”) optimizer, then this method could involve collecting a large amount of data to the driver (on the order of vocabSize x k).New in version 2.0.0.
-
trainingLogLikelihood
()[source]¶ Log likelihood of the observed tokens in the training set, given the current parameter estimates: log P(docs | topics, topic distributions for docs, Dirichlet hyperparameters)
- Notes:
- This excludes the prior; for that, use
logPrior()
. - Even with
logPrior()
, this is NOT the same as the data log likelihood given the hyperparameters. - This is computed from the topic distributions computed during training. If you call
logLikelihood()
on the same training dataset, the topic distributions will be computed again, possibly giving different results.
- This excludes the prior; for that, use
New in version 2.0.0.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
vocabSize
()¶ Vocabulary size (number of terms or words in the vocabulary)
New in version 2.0.0.
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
pyspark.ml.linalg module¶
MLlib utilities for linear algebra. For dense vectors, MLlib
uses the NumPy array
type, so you can simply pass NumPy arrays
around. For sparse vectors, users can construct a SparseVector
object from MLlib or pass SciPy scipy.sparse
column vectors if
SciPy is available in their environment.
-
class
pyspark.ml.linalg.
DenseVector
(ar)[source]¶ A dense vector represented by a value array. We use numpy array for storage and arithmetics will be delegated to the underlying numpy array.
>>> v = Vectors.dense([1.0, 2.0]) >>> u = Vectors.dense([3.0, 4.0]) >>> v + u DenseVector([4.0, 6.0]) >>> 2 - v DenseVector([1.0, 0.0]) >>> v / 2 DenseVector([0.5, 1.0]) >>> v * u DenseVector([3.0, 8.0]) >>> u / v DenseVector([3.0, 2.0]) >>> u % 2 DenseVector([1.0, 0.0])
-
dot
(other)[source]¶ Compute the dot product of two Vectors. We support (Numpy array, list, SparseVector, or SciPy sparse) and a target NumPy array that is either 1- or 2-dimensional. Equivalent to calling numpy.dot of the two vectors.
>>> dense = DenseVector(array.array('d', [1., 2.])) >>> dense.dot(dense) 5.0 >>> dense.dot(SparseVector(2, [0, 1], [2., 1.])) 4.0 >>> dense.dot(range(1, 3)) 5.0 >>> dense.dot(np.array(range(1, 3))) 5.0 >>> dense.dot([1.,]) Traceback (most recent call last): ... AssertionError: dimension mismatch >>> dense.dot(np.reshape([1., 2., 3., 4.], (2, 2), order='F')) array([ 5., 11.]) >>> dense.dot(np.reshape([1., 2., 3.], (3, 1), order='F')) Traceback (most recent call last): ... AssertionError: dimension mismatch
-
norm
(p)[source]¶ Calculates the norm of a DenseVector.
>>> a = DenseVector([0, -1, 2, -3]) >>> a.norm(2) 3.7... >>> a.norm(1) 6.0
-
squared_distance
(other)[source]¶ Squared distance of two Vectors.
>>> dense1 = DenseVector(array.array('d', [1., 2.])) >>> dense1.squared_distance(dense1) 0.0 >>> dense2 = np.array([2., 1.]) >>> dense1.squared_distance(dense2) 2.0 >>> dense3 = [2., 1.] >>> dense1.squared_distance(dense3) 2.0 >>> sparse1 = SparseVector(2, [0, 1], [2., 1.]) >>> dense1.squared_distance(sparse1) 2.0 >>> dense1.squared_distance([1.,]) Traceback (most recent call last): ... AssertionError: dimension mismatch >>> dense1.squared_distance(SparseVector(1, [0,], [1.,])) Traceback (most recent call last): ... AssertionError: dimension mismatch
-
values
¶ Returns a list of values
-
-
class
pyspark.ml.linalg.
SparseVector
(size, *args)[source]¶ A simple sparse vector class for passing data to MLlib. Users may alternatively pass SciPy’s {scipy.sparse} data types.
-
dot
(other)[source]¶ Dot product with a SparseVector or 1- or 2-dimensional Numpy array.
>>> a = SparseVector(4, [1, 3], [3.0, 4.0]) >>> a.dot(a) 25.0 >>> a.dot(array.array('d', [1., 2., 3., 4.])) 22.0 >>> b = SparseVector(4, [2], [1.0]) >>> a.dot(b) 0.0 >>> a.dot(np.array([[1, 1], [2, 2], [3, 3], [4, 4]])) array([ 22., 22.]) >>> a.dot([1., 2., 3.]) Traceback (most recent call last): ... AssertionError: dimension mismatch >>> a.dot(np.array([1., 2.])) Traceback (most recent call last): ... AssertionError: dimension mismatch >>> a.dot(DenseVector([1., 2.])) Traceback (most recent call last): ... AssertionError: dimension mismatch >>> a.dot(np.zeros((3, 2))) Traceback (most recent call last): ... AssertionError: dimension mismatch
-
indices
= None¶ A list of indices corresponding to active entries.
-
norm
(p)[source]¶ Calculates the norm of a SparseVector.
>>> a = SparseVector(4, [0, 1], [3., -4.]) >>> a.norm(1) 7.0 >>> a.norm(2) 5.0
-
numNonzeros
()[source]¶ Number of nonzero elements. This scans all active values and count non zeros.
-
size
= None¶ Size of the vector.
-
squared_distance
(other)[source]¶ Squared distance from a SparseVector or 1-dimensional NumPy array.
>>> a = SparseVector(4, [1, 3], [3.0, 4.0]) >>> a.squared_distance(a) 0.0 >>> a.squared_distance(array.array('d', [1., 2., 3., 4.])) 11.0 >>> a.squared_distance(np.array([1., 2., 3., 4.])) 11.0 >>> b = SparseVector(4, [2], [1.0]) >>> a.squared_distance(b) 26.0 >>> b.squared_distance(a) 26.0 >>> b.squared_distance([1., 2.]) Traceback (most recent call last): ... AssertionError: dimension mismatch >>> b.squared_distance(SparseVector(3, [1,], [1.0,])) Traceback (most recent call last): ... AssertionError: dimension mismatch
-
values
= None¶ A list of values corresponding to active entries.
-
-
class
pyspark.ml.linalg.
Vectors
[source]¶ Factory methods for working with vectors.
Note
Dense vectors are simply represented as NumPy array objects, so there is no need to covert them for use in MLlib. For sparse vectors, the factory methods in this class create an MLlib-compatible type, or users can pass in SciPy’s
scipy.sparse
column vectors.-
static
dense
(*elements)[source]¶ Create a dense vector of 64-bit floats from a Python list or numbers.
>>> Vectors.dense([1, 2, 3]) DenseVector([1.0, 2.0, 3.0]) >>> Vectors.dense(1.0, 2.0) DenseVector([1.0, 2.0])
-
static
sparse
(size, *args)[source]¶ Create a sparse vector, using either a dictionary, a list of (index, value) pairs, or two separate arrays of indices and values (sorted by index).
Parameters: - size – Size of the vector.
- args – Non-zero entries, as a dictionary, list of tuples, or two sorted lists containing indices and values.
>>> Vectors.sparse(4, {1: 1.0, 3: 5.5}) SparseVector(4, {1: 1.0, 3: 5.5}) >>> Vectors.sparse(4, [(1, 1.0), (3, 5.5)]) SparseVector(4, {1: 1.0, 3: 5.5}) >>> Vectors.sparse(4, [1, 3], [1.0, 5.5]) SparseVector(4, {1: 1.0, 3: 5.5})
-
static
-
class
pyspark.ml.linalg.
DenseMatrix
(numRows, numCols, values, isTransposed=False)[source]¶ Column-major dense matrix.
pyspark.ml.recommendation module¶
-
class
pyspark.ml.recommendation.
ALS
(rank=10, maxIter=10, regParam=0.1, numUserBlocks=10, numItemBlocks=10, implicitPrefs=False, alpha=1.0, userCol='user', itemCol='item', seed=None, ratingCol='rating', nonnegative=False, checkpointInterval=10, intermediateStorageLevel='MEMORY_AND_DISK', finalStorageLevel='MEMORY_AND_DISK')[source]¶ Alternating Least Squares (ALS) matrix factorization.
ALS attempts to estimate the ratings matrix R as the product of two lower-rank matrices, X and Y, i.e. X * Yt = R. Typically these approximations are called ‘factor’ matrices. The general approach is iterative. During each iteration, one of the factor matrices is held constant, while the other is solved for using least squares. The newly-solved factor matrix is then held constant while solving for the other factor matrix.
This is a blocked implementation of the ALS factorization algorithm that groups the two sets of factors (referred to as “users” and “products”) into blocks and reduces communication by only sending one copy of each user vector to each product block on each iteration, and only for the product blocks that need that user’s feature vector. This is achieved by pre-computing some information about the ratings matrix to determine the “out-links” of each user (which blocks of products it will contribute to) and “in-link” information for each product (which of the feature vectors it receives from each user block it will depend on). This allows us to send only an array of feature vectors between each user block and product block, and have the product block find the users’ ratings and update the products based on these messages.
For implicit preference data, the algorithm used is based on “Collaborative Filtering for Implicit Feedback Datasets”,, adapted for the blocked approach used here.
Essentially instead of finding the low-rank approximations to the rating matrix R, this finds the approximations for a preference matrix P where the elements of P are 1 if r > 0 and 0 if r <= 0. The ratings then act as ‘confidence’ values related to strength of indicated user preferences rather than explicit ratings given to items.
>>> df = spark.createDataFrame( ... [(0, 0, 4.0), (0, 1, 2.0), (1, 1, 3.0), (1, 2, 4.0), (2, 1, 1.0), (2, 2, 5.0)], ... ["user", "item", "rating"]) >>> als = ALS(rank=10, maxIter=5, seed=0) >>> model = als.fit(df) >>> model.rank 10 >>> model.userFactors.orderBy("id").collect() [Row(id=0, features=[...]), Row(id=1, ...), Row(id=2, ...)] >>> test = spark.createDataFrame([(0, 2), (1, 0), (2, 0)], ["user", "item"]) >>> predictions = sorted(model.transform(test).collect(), key=lambda r: r[0]) >>> predictions[0] Row(user=0, item=2, prediction=-0.13807615637779236) >>> predictions[1] Row(user=1, item=0, prediction=2.6258413791656494) >>> predictions[2] Row(user=2, item=0, prediction=-1.5018409490585327) >>> als_path = temp_path + "/als" >>> als.save(als_path) >>> als2 = ALS.load(als_path) >>> als.getMaxIter() 5 >>> model_path = temp_path + "/als_model" >>> model.save(model_path) >>> model2 = ALSModel.load(model_path) >>> model.rank == model2.rank True >>> sorted(model.userFactors.collect()) == sorted(model2.userFactors.collect()) True >>> sorted(model.itemFactors.collect()) == sorted(model2.itemFactors.collect()) True
New in version 1.4.0.
-
alpha
= Param(parent='undefined', name='alpha', doc='alpha for implicit preference')¶
-
checkpointInterval
= Param(parent='undefined', name='checkpointInterval', doc='set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the cache will get checkpointed every 10 iterations.')¶
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
finalStorageLevel
= Param(parent='undefined', name='finalStorageLevel', doc='StorageLevel for ALS model factors.')¶
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Returns: fitted model(s)
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
getCheckpointInterval
()¶ Gets the value of checkpointInterval or its default value.
-
getFinalStorageLevel
()[source]¶ Gets the value of finalStorageLevel or its default value.
New in version 2.0.0.
-
getImplicitPrefs
()[source]¶ Gets the value of implicitPrefs or its default value.
New in version 1.4.0.
-
getIntermediateStorageLevel
()[source]¶ Gets the value of intermediateStorageLevel or its default value.
New in version 2.0.0.
-
getMaxIter
()¶ Gets the value of maxIter or its default value.
-
getNumItemBlocks
()[source]¶ Gets the value of numItemBlocks or its default value.
New in version 1.4.0.
-
getNumUserBlocks
()[source]¶ Gets the value of numUserBlocks or its default value.
New in version 1.4.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
getPredictionCol
()¶ Gets the value of predictionCol or its default value.
-
getRegParam
()¶ Gets the value of regParam or its default value.
-
getSeed
()¶ Gets the value of seed or its default value.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
implicitPrefs
= Param(parent='undefined', name='implicitPrefs', doc='whether to use implicit preference')¶
-
intermediateStorageLevel
= Param(parent='undefined', name='intermediateStorageLevel', doc="StorageLevel for intermediate datasets. Cannot be 'NONE'.")¶
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
itemCol
= Param(parent='undefined', name='itemCol', doc='column name for item ids. Ids must be within the integer value range.')¶
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
maxIter
= Param(parent='undefined', name='maxIter', doc='max number of iterations (>= 0).')¶
-
nonnegative
= Param(parent='undefined', name='nonnegative', doc='whether to use nonnegative constraint for least squares')¶
-
numItemBlocks
= Param(parent='undefined', name='numItemBlocks', doc='number of item blocks')¶
-
numUserBlocks
= Param(parent='undefined', name='numUserBlocks', doc='number of user blocks')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
predictionCol
= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶
-
rank
= Param(parent='undefined', name='rank', doc='rank of the factorization')¶
-
ratingCol
= Param(parent='undefined', name='ratingCol', doc='column name for ratings')¶
-
read
()¶ Returns an MLReader instance for this class.
-
regParam
= Param(parent='undefined', name='regParam', doc='regularization parameter (>= 0).')¶
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
seed
= Param(parent='undefined', name='seed', doc='random seed.')¶
-
setCheckpointInterval
(value)¶ Sets the value of
checkpointInterval
.
-
setFinalStorageLevel
(value)[source]¶ Sets the value of
finalStorageLevel
.New in version 2.0.0.
-
setImplicitPrefs
(value)[source]¶ Sets the value of
implicitPrefs
.New in version 1.4.0.
-
setIntermediateStorageLevel
(value)[source]¶ Sets the value of
intermediateStorageLevel
.New in version 2.0.0.
-
setNonnegative
(value)[source]¶ Sets the value of
nonnegative
.New in version 1.4.0.
-
setNumBlocks
(value)[source]¶ Sets both
numUserBlocks
andnumItemBlocks
to the specific value.New in version 1.4.0.
-
setNumItemBlocks
(value)[source]¶ Sets the value of
numItemBlocks
.New in version 1.4.0.
-
setNumUserBlocks
(value)[source]¶ Sets the value of
numUserBlocks
.New in version 1.4.0.
-
setParams
(self, rank=10, maxIter=10, regParam=0.1, numUserBlocks=10, numItemBlocks=10, implicitPrefs=False, alpha=1.0, userCol="user", itemCol="item", seed=None, ratingCol="rating", nonnegative=False, checkpointInterval=10, intermediateStorageLevel="MEMORY_AND_DISK", finalStorageLevel="MEMORY_AND_DISK")[source]¶ Sets params for ALS.
New in version 1.4.0.
-
setPredictionCol
(value)¶ Sets the value of
predictionCol
.
-
userCol
= Param(parent='undefined', name='userCol', doc='column name for user ids. Ids must be within the integer value range.')¶
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.recommendation.
ALSModel
(java_model=None)[source]¶ Model fitted by ALS.
New in version 1.4.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
itemFactors
¶ a DataFrame that stores item factors in two columns: id and features
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
rank
¶ rank of the matrix factorization model
New in version 1.4.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
userFactors
¶ a DataFrame that stores user factors in two columns: id and features
New in version 1.4.0.
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
pyspark.ml.regression module¶
-
class
pyspark.ml.regression.
AFTSurvivalRegression
(featuresCol='features', labelCol='label', predictionCol='prediction', fitIntercept=True, maxIter=100, tol=1e-06, censorCol='censor', quantileProbabilities=[0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99], quantilesCol=None, aggregationDepth=2)[source]¶ Note
Experimental
Accelerated Failure Time (AFT) Model Survival Regression
Fit a parametric AFT survival regression model based on the Weibull distribution of the survival time.
See also
>>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([ ... (1.0, Vectors.dense(1.0), 1.0), ... (0.0, Vectors.sparse(1, [], []), 0.0)], ["label", "features", "censor"]) >>> aftsr = AFTSurvivalRegression() >>> model = aftsr.fit(df) >>> model.predict(Vectors.dense(6.3)) 1.0 >>> model.predictQuantiles(Vectors.dense(6.3)) DenseVector([0.0101, 0.0513, 0.1054, 0.2877, 0.6931, 1.3863, 2.3026, 2.9957, 4.6052]) >>> model.transform(df).show() +-----+---------+------+----------+ |label| features|censor|prediction| +-----+---------+------+----------+ | 1.0| [1.0]| 1.0| 1.0| | 0.0|(1,[],[])| 0.0| 1.0| +-----+---------+------+----------+ ... >>> aftsr_path = temp_path + "/aftsr" >>> aftsr.save(aftsr_path) >>> aftsr2 = AFTSurvivalRegression.load(aftsr_path) >>> aftsr2.getMaxIter() 100 >>> model_path = temp_path + "/aftsr_model" >>> model.save(model_path) >>> model2 = AFTSurvivalRegressionModel.load(model_path) >>> model.coefficients == model2.coefficients True >>> model.intercept == model2.intercept True >>> model.scale == model2.scale True
New in version 1.6.0.
-
aggregationDepth
= Param(parent='undefined', name='aggregationDepth', doc='suggested depth for treeAggregate (>= 2).')¶
-
censorCol
= Param(parent='undefined', name='censorCol', doc='censor column name. The value of this column could be 0 or 1. If the value is 1, it means the event has occurred i.e. uncensored; otherwise censored.')¶
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
featuresCol
= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Returns: fitted model(s)
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
fitIntercept
= Param(parent='undefined', name='fitIntercept', doc='whether to fit an intercept term.')¶
-
getAggregationDepth
()¶ Gets the value of aggregationDepth or its default value.
-
getFeaturesCol
()¶ Gets the value of featuresCol or its default value.
-
getFitIntercept
()¶ Gets the value of fitIntercept or its default value.
-
getLabelCol
()¶ Gets the value of labelCol or its default value.
-
getMaxIter
()¶ Gets the value of maxIter or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
getPredictionCol
()¶ Gets the value of predictionCol or its default value.
-
getQuantileProbabilities
()[source]¶ Gets the value of quantileProbabilities or its default value.
New in version 1.6.0.
-
getQuantilesCol
()[source]¶ Gets the value of quantilesCol or its default value.
New in version 1.6.0.
-
getTol
()¶ Gets the value of tol or its default value.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
labelCol
= Param(parent='undefined', name='labelCol', doc='label column name.')¶
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
maxIter
= Param(parent='undefined', name='maxIter', doc='max number of iterations (>= 0).')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
predictionCol
= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶
-
quantileProbabilities
= Param(parent='undefined', name='quantileProbabilities', doc='quantile probabilities array. Values of the quantile probabilities array should be in the range (0, 1) and the array should be non-empty.')¶
-
quantilesCol
= Param(parent='undefined', name='quantilesCol', doc='quantiles column name. This column will output quantiles of corresponding quantileProbabilities if it is set.')¶
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
setAggregationDepth
(value)¶ Sets the value of
aggregationDepth
.
-
setFeaturesCol
(value)¶ Sets the value of
featuresCol
.
-
setFitIntercept
(value)¶ Sets the value of
fitIntercept
.
-
setParams
(featuresCol='features', labelCol='label', predictionCol='prediction', fitIntercept=True, maxIter=100, tol=1e-06, censorCol='censor', quantileProbabilities=[0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99], quantilesCol=None, aggregationDepth=2)[source]¶ setParams(self, featuresCol=”features”, labelCol=”label”, predictionCol=”prediction”, fitIntercept=True, maxIter=100, tol=1E-6, censorCol=”censor”, quantileProbabilities=[0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99], quantilesCol=None, aggregationDepth=2):
New in version 1.6.0.
-
setPredictionCol
(value)¶ Sets the value of
predictionCol
.
-
setQuantileProbabilities
(value)[source]¶ Sets the value of
quantileProbabilities
.New in version 1.6.0.
-
setQuantilesCol
(value)[source]¶ Sets the value of
quantilesCol
.New in version 1.6.0.
-
tol
= Param(parent='undefined', name='tol', doc='the convergence tolerance for iterative algorithms (>= 0).')¶
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.regression.
AFTSurvivalRegressionModel
(java_model=None)[source]¶ Note
Experimental
Model fitted by
AFTSurvivalRegression
.New in version 1.6.0.
-
coefficients
¶ Model coefficients.
New in version 2.0.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
intercept
¶ Model intercept.
New in version 1.6.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
scale
¶ Model scale paramter.
New in version 1.6.0.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.regression.
DecisionTreeRegressor
(featuresCol='features', labelCol='label', predictionCol='prediction', maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity='variance', seed=None, varianceCol=None)[source]¶ Decision tree learning algorithm for regression. It supports both continuous and categorical features.
>>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([ ... (1.0, Vectors.dense(1.0)), ... (0.0, Vectors.sparse(1, [], []))], ["label", "features"]) >>> dt = DecisionTreeRegressor(maxDepth=2, varianceCol="variance") >>> model = dt.fit(df) >>> model.depth 1 >>> model.numNodes 3 >>> model.featureImportances SparseVector(1, {0: 1.0}) >>> model.numFeatures 1 >>> test0 = spark.createDataFrame([(Vectors.dense(-1.0),)], ["features"]) >>> model.transform(test0).head().prediction 0.0 >>> test1 = spark.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"]) >>> model.transform(test1).head().prediction 1.0 >>> dtr_path = temp_path + "/dtr" >>> dt.save(dtr_path) >>> dt2 = DecisionTreeRegressor.load(dtr_path) >>> dt2.getMaxDepth() 2 >>> model_path = temp_path + "/dtr_model" >>> model.save(model_path) >>> model2 = DecisionTreeRegressionModel.load(model_path) >>> model.numNodes == model2.numNodes True >>> model.depth == model2.depth True >>> model.transform(test1).head().variance 0.0
New in version 1.4.0.
-
cacheNodeIds
= Param(parent='undefined', name='cacheNodeIds', doc='If false, the algorithm will pass trees to executors to match instances with nodes. If true, the algorithm will cache node IDs for each instance. Caching can speed up training of deeper trees. Users can set how often should the cache be checkpointed or disable it by setting checkpointInterval.')¶
-
checkpointInterval
= Param(parent='undefined', name='checkpointInterval', doc='set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the cache will get checkpointed every 10 iterations.')¶
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
featuresCol
= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Returns: fitted model(s)
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
getCacheNodeIds
()¶ Gets the value of cacheNodeIds or its default value.
-
getCheckpointInterval
()¶ Gets the value of checkpointInterval or its default value.
-
getFeaturesCol
()¶ Gets the value of featuresCol or its default value.
-
getImpurity
()¶ Gets the value of impurity or its default value.
New in version 1.4.0.
-
getLabelCol
()¶ Gets the value of labelCol or its default value.
-
getMaxBins
()¶ Gets the value of maxBins or its default value.
-
getMaxDepth
()¶ Gets the value of maxDepth or its default value.
-
getMaxMemoryInMB
()¶ Gets the value of maxMemoryInMB or its default value.
-
getMinInfoGain
()¶ Gets the value of minInfoGain or its default value.
-
getMinInstancesPerNode
()¶ Gets the value of minInstancesPerNode or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
getPredictionCol
()¶ Gets the value of predictionCol or its default value.
-
getSeed
()¶ Gets the value of seed or its default value.
-
getVarianceCol
()¶ Gets the value of varianceCol or its default value.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
impurity
= Param(parent='undefined', name='impurity', doc='Criterion used for information gain calculation (case-insensitive). Supported options: variance')¶
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
labelCol
= Param(parent='undefined', name='labelCol', doc='label column name.')¶
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
maxBins
= Param(parent='undefined', name='maxBins', doc='Max number of bins for discretizing continuous features. Must be >=2 and >= number of categories for any categorical feature.')¶
-
maxDepth
= Param(parent='undefined', name='maxDepth', doc='Maximum depth of the tree. (>= 0) E.g., depth 0 means 1 leaf node; depth 1 means 1 internal node + 2 leaf nodes.')¶
-
maxMemoryInMB
= Param(parent='undefined', name='maxMemoryInMB', doc='Maximum memory in MB allocated to histogram aggregation. If too small, then 1 node will be split per iteration, and its aggregates may exceed this size.')¶
-
minInfoGain
= Param(parent='undefined', name='minInfoGain', doc='Minimum information gain for a split to be considered at a tree node.')¶
-
minInstancesPerNode
= Param(parent='undefined', name='minInstancesPerNode', doc='Minimum number of instances each child must have after split. If a split causes the left or right child to have fewer than minInstancesPerNode, the split will be discarded as invalid. Should be >= 1.')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
predictionCol
= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
seed
= Param(parent='undefined', name='seed', doc='random seed.')¶
-
setCacheNodeIds
(value)¶ Sets the value of
cacheNodeIds
.
-
setCheckpointInterval
(value)¶ Sets the value of
checkpointInterval
.
-
setFeaturesCol
(value)¶ Sets the value of
featuresCol
.
-
setMaxMemoryInMB
(value)¶ Sets the value of
maxMemoryInMB
.
-
setMinInfoGain
(value)¶ Sets the value of
minInfoGain
.
-
setMinInstancesPerNode
(value)¶ Sets the value of
minInstancesPerNode
.
-
setParams
(self, featuresCol="features", labelCol="label", predictionCol="prediction", maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="variance", seed=None, varianceCol=None)[source]¶ Sets params for the DecisionTreeRegressor.
New in version 1.4.0.
-
setPredictionCol
(value)¶ Sets the value of
predictionCol
.
-
setVarianceCol
(value)¶ Sets the value of
varianceCol
.
-
supportedImpurities
= ['variance']¶
-
varianceCol
= Param(parent='undefined', name='varianceCol', doc='column name for the biased sample variance of prediction.')¶
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.regression.
DecisionTreeRegressionModel
(java_model=None)[source]¶ Model fitted by
DecisionTreeRegressor
.New in version 1.4.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
depth
¶ Return depth of the decision tree.
New in version 1.5.0.
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
featureImportances
¶ Estimate of the importance of each feature.
This generalizes the idea of “Gini” importance to other losses, following the explanation of Gini importance from “Random Forests” documentation by Leo Breiman and Adele Cutler, and following the implementation from scikit-learn.
- This feature importance is calculated as follows:
- importance(feature j) = sum (over nodes which split on feature j) of the gain, where gain is scaled by the number of instances passing through node
- Normalize importances for tree to sum to 1.
Note
Feature importance for single decision trees can have high variance due to correlated predictor variables. Consider using a
RandomForestRegressor
to determine feature importance instead.New in version 2.0.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
numFeatures
¶ Returns the number of features the model was trained on. If unknown, returns -1
New in version 2.1.0.
-
numNodes
¶ Return number of nodes of the decision tree.
New in version 1.5.0.
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
toDebugString
¶ Full description of model.
New in version 2.0.0.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.regression.
GBTRegressor
(featuresCol='features', labelCol='label', predictionCol='prediction', maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemoryInMB=256, cacheNodeIds=False, subsamplingRate=1.0, checkpointInterval=10, lossType='squared', maxIter=20, stepSize=0.1, seed=None, impurity='variance')[source]¶ Gradient-Boosted Trees (GBTs) learning algorithm for regression. It supports both continuous and categorical features.
>>> from numpy import allclose >>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([ ... (1.0, Vectors.dense(1.0)), ... (0.0, Vectors.sparse(1, [], []))], ["label", "features"]) >>> gbt = GBTRegressor(maxIter=5, maxDepth=2, seed=42) >>> print(gbt.getImpurity()) variance >>> model = gbt.fit(df) >>> model.featureImportances SparseVector(1, {0: 1.0}) >>> model.numFeatures 1 >>> allclose(model.treeWeights, [1.0, 0.1, 0.1, 0.1, 0.1]) True >>> test0 = spark.createDataFrame([(Vectors.dense(-1.0),)], ["features"]) >>> model.transform(test0).head().prediction 0.0 >>> test1 = spark.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"]) >>> model.transform(test1).head().prediction 1.0 >>> gbtr_path = temp_path + "gbtr" >>> gbt.save(gbtr_path) >>> gbt2 = GBTRegressor.load(gbtr_path) >>> gbt2.getMaxDepth() 2 >>> model_path = temp_path + "gbtr_model" >>> model.save(model_path) >>> model2 = GBTRegressionModel.load(model_path) >>> model.featureImportances == model2.featureImportances True >>> model.treeWeights == model2.treeWeights True >>> model.trees [DecisionTreeRegressionModel (uid=...) of depth..., DecisionTreeRegressionModel...]
New in version 1.4.0.
-
cacheNodeIds
= Param(parent='undefined', name='cacheNodeIds', doc='If false, the algorithm will pass trees to executors to match instances with nodes. If true, the algorithm will cache node IDs for each instance. Caching can speed up training of deeper trees. Users can set how often should the cache be checkpointed or disable it by setting checkpointInterval.')¶
-
checkpointInterval
= Param(parent='undefined', name='checkpointInterval', doc='set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the cache will get checkpointed every 10 iterations.')¶
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
featuresCol
= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Returns: fitted model(s)
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
getCacheNodeIds
()¶ Gets the value of cacheNodeIds or its default value.
-
getCheckpointInterval
()¶ Gets the value of checkpointInterval or its default value.
-
getFeaturesCol
()¶ Gets the value of featuresCol or its default value.
-
getImpurity
()¶ Gets the value of impurity or its default value.
New in version 1.4.0.
-
getLabelCol
()¶ Gets the value of labelCol or its default value.
-
getMaxBins
()¶ Gets the value of maxBins or its default value.
-
getMaxDepth
()¶ Gets the value of maxDepth or its default value.
-
getMaxIter
()¶ Gets the value of maxIter or its default value.
-
getMaxMemoryInMB
()¶ Gets the value of maxMemoryInMB or its default value.
-
getMinInfoGain
()¶ Gets the value of minInfoGain or its default value.
-
getMinInstancesPerNode
()¶ Gets the value of minInstancesPerNode or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
getPredictionCol
()¶ Gets the value of predictionCol or its default value.
-
getSeed
()¶ Gets the value of seed or its default value.
-
getStepSize
()¶ Gets the value of stepSize or its default value.
-
getSubsamplingRate
()¶ Gets the value of subsamplingRate or its default value.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
impurity
= Param(parent='undefined', name='impurity', doc='Criterion used for information gain calculation (case-insensitive). Supported options: variance')¶
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
labelCol
= Param(parent='undefined', name='labelCol', doc='label column name.')¶
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
lossType
= Param(parent='undefined', name='lossType', doc='Loss function which GBT tries to minimize (case-insensitive). Supported options: squared, absolute')¶
-
maxBins
= Param(parent='undefined', name='maxBins', doc='Max number of bins for discretizing continuous features. Must be >=2 and >= number of categories for any categorical feature.')¶
-
maxDepth
= Param(parent='undefined', name='maxDepth', doc='Maximum depth of the tree. (>= 0) E.g., depth 0 means 1 leaf node; depth 1 means 1 internal node + 2 leaf nodes.')¶
-
maxIter
= Param(parent='undefined', name='maxIter', doc='max number of iterations (>= 0).')¶
-
maxMemoryInMB
= Param(parent='undefined', name='maxMemoryInMB', doc='Maximum memory in MB allocated to histogram aggregation. If too small, then 1 node will be split per iteration, and its aggregates may exceed this size.')¶
-
minInfoGain
= Param(parent='undefined', name='minInfoGain', doc='Minimum information gain for a split to be considered at a tree node.')¶
-
minInstancesPerNode
= Param(parent='undefined', name='minInstancesPerNode', doc='Minimum number of instances each child must have after split. If a split causes the left or right child to have fewer than minInstancesPerNode, the split will be discarded as invalid. Should be >= 1.')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
predictionCol
= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
seed
= Param(parent='undefined', name='seed', doc='random seed.')¶
-
setCacheNodeIds
(value)¶ Sets the value of
cacheNodeIds
.
-
setCheckpointInterval
(value)¶ Sets the value of
checkpointInterval
.
-
setFeaturesCol
(value)¶ Sets the value of
featuresCol
.
-
setMaxMemoryInMB
(value)¶ Sets the value of
maxMemoryInMB
.
-
setMinInfoGain
(value)¶ Sets the value of
minInfoGain
.
-
setMinInstancesPerNode
(value)¶ Sets the value of
minInstancesPerNode
.
-
setParams
(self, featuresCol="features", labelCol="label", predictionCol="prediction", maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemoryInMB=256, cacheNodeIds=False, subsamplingRate=1.0, checkpointInterval=10, lossType="squared", maxIter=20, stepSize=0.1, seed=None, impurity="variance")[source]¶ Sets params for Gradient Boosted Tree Regression.
New in version 1.4.0.
-
setPredictionCol
(value)¶ Sets the value of
predictionCol
.
-
setSubsamplingRate
(value)¶ Sets the value of
subsamplingRate
.New in version 1.4.0.
-
stepSize
= Param(parent='undefined', name='stepSize', doc='Step size to be used for each iteration of optimization (>= 0).')¶
-
subsamplingRate
= Param(parent='undefined', name='subsamplingRate', doc='Fraction of the training data used for learning each decision tree, in range (0, 1].')¶
-
supportedImpurities
= ['variance']¶
-
supportedLossTypes
= ['squared', 'absolute']¶
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.regression.
GBTRegressionModel
(java_model=None)[source]¶ Model fitted by
GBTRegressor
.New in version 1.4.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
featureImportances
¶ Estimate of the importance of each feature.
Each feature’s importance is the average of its importance across all trees in the ensemble The importance vector is normalized to sum to 1. This method is suggested by Hastie et al. (Hastie, Tibshirani, Friedman. “The Elements of Statistical Learning, 2nd Edition.” 2001.) and follows the implementation from scikit-learn.
New in version 2.0.0.
-
getNumTrees
¶ Number of trees in ensemble.
New in version 2.0.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
numFeatures
¶ Returns the number of features the model was trained on. If unknown, returns -1
New in version 2.1.0.
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
toDebugString
¶ Full description of model.
New in version 2.0.0.
-
totalNumNodes
¶ Total number of nodes, summed over all trees in the ensemble.
New in version 2.0.0.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
treeWeights
¶ Return the weights for each tree
New in version 1.5.0.
-
trees
¶ Trees in this ensemble. Warning: These have null parent Estimators.
New in version 2.0.0.
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.regression.
GeneralizedLinearRegression
(labelCol='label', featuresCol='features', predictionCol='prediction', family='gaussian', link=None, fitIntercept=True, maxIter=25, tol=1e-06, regParam=0.0, weightCol=None, solver='irls', linkPredictionCol=None)[source]¶ Note
Experimental
Generalized Linear Regression.
Fit a Generalized Linear Model specified by giving a symbolic description of the linear predictor (link function) and a description of the error distribution (family). It supports “gaussian”, “binomial”, “poisson” and “gamma” as family. Valid link functions for each family is listed below. The first link function of each family is the default one.
- “gaussian” -> “identity”, “log”, “inverse”
- “binomial” -> “logit”, “probit”, “cloglog”
- “poisson” -> “log”, “identity”, “sqrt”
- “gamma” -> “inverse”, “identity”, “log”
See also
>>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([ ... (1.0, Vectors.dense(0.0, 0.0)), ... (1.0, Vectors.dense(1.0, 2.0)), ... (2.0, Vectors.dense(0.0, 0.0)), ... (2.0, Vectors.dense(1.0, 1.0)),], ["label", "features"]) >>> glr = GeneralizedLinearRegression(family="gaussian", link="identity", linkPredictionCol="p") >>> model = glr.fit(df) >>> transformed = model.transform(df) >>> abs(transformed.head().prediction - 1.5) < 0.001 True >>> abs(transformed.head().p - 1.5) < 0.001 True >>> model.coefficients DenseVector([1.5..., -1.0...]) >>> model.numFeatures 2 >>> abs(model.intercept - 1.5) < 0.001 True >>> glr_path = temp_path + "/glr" >>> glr.save(glr_path) >>> glr2 = GeneralizedLinearRegression.load(glr_path) >>> glr.getFamily() == glr2.getFamily() True >>> model_path = temp_path + "/glr_model" >>> model.save(model_path) >>> model2 = GeneralizedLinearRegressionModel.load(model_path) >>> model.intercept == model2.intercept True >>> model.coefficients[0] == model2.coefficients[0] True
New in version 2.0.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
family
= Param(parent='undefined', name='family', doc='The name of family which is a description of the error distribution to be used in the model. Supported options: gaussian (default), binomial, poisson and gamma.')¶
-
featuresCol
= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Returns: fitted model(s)
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
fitIntercept
= Param(parent='undefined', name='fitIntercept', doc='whether to fit an intercept term.')¶
-
getFeaturesCol
()¶ Gets the value of featuresCol or its default value.
-
getFitIntercept
()¶ Gets the value of fitIntercept or its default value.
-
getLabelCol
()¶ Gets the value of labelCol or its default value.
-
getLinkPredictionCol
()[source]¶ Gets the value of linkPredictionCol or its default value.
New in version 2.0.0.
-
getMaxIter
()¶ Gets the value of maxIter or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
getPredictionCol
()¶ Gets the value of predictionCol or its default value.
-
getRegParam
()¶ Gets the value of regParam or its default value.
-
getSolver
()¶ Gets the value of solver or its default value.
-
getTol
()¶ Gets the value of tol or its default value.
-
getWeightCol
()¶ Gets the value of weightCol or its default value.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
labelCol
= Param(parent='undefined', name='labelCol', doc='label column name.')¶
-
link
= Param(parent='undefined', name='link', doc='The name of link function which provides the relationship between the linear predictor and the mean of the distribution function. Supported options: identity, log, inverse, logit, probit, cloglog and sqrt.')¶
-
linkPredictionCol
= Param(parent='undefined', name='linkPredictionCol', doc='link prediction (linear predictor) column name')¶
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
maxIter
= Param(parent='undefined', name='maxIter', doc='max number of iterations (>= 0).')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
predictionCol
= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶
-
read
()¶ Returns an MLReader instance for this class.
-
regParam
= Param(parent='undefined', name='regParam', doc='regularization parameter (>= 0).')¶
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
setFeaturesCol
(value)¶ Sets the value of
featuresCol
.
-
setFitIntercept
(value)¶ Sets the value of
fitIntercept
.
-
setLinkPredictionCol
(value)[source]¶ Sets the value of
linkPredictionCol
.New in version 2.0.0.
-
setParams
(self, labelCol="label", featuresCol="features", predictionCol="prediction", family="gaussian", link=None, fitIntercept=True, maxIter=25, tol=1e-6, regParam=0.0, weightCol=None, solver="irls", linkPredictionCol=None)[source]¶ Sets params for generalized linear regression.
New in version 2.0.0.
-
setPredictionCol
(value)¶ Sets the value of
predictionCol
.
-
solver
= Param(parent='undefined', name='solver', doc="the solver algorithm for optimization. If this is not set or empty, default value is 'auto'.")¶
-
tol
= Param(parent='undefined', name='tol', doc='the convergence tolerance for iterative algorithms (>= 0).')¶
-
weightCol
= Param(parent='undefined', name='weightCol', doc='weight column name. If this is not set or empty, we treat all instance weights as 1.0.')¶
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
class
pyspark.ml.regression.
GeneralizedLinearRegressionModel
(java_model=None)[source]¶ Note
Experimental
Model fitted by
GeneralizedLinearRegression
.New in version 2.0.0.
-
coefficients
¶ Model coefficients.
New in version 2.0.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
evaluate
(dataset)[source]¶ Evaluates the model on a test dataset.
Parameters: dataset – Test dataset to evaluate model on, where dataset is an instance of pyspark.sql.DataFrame
New in version 2.0.0.
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
hasSummary
¶ Indicates whether a training summary exists for this model instance.
New in version 2.0.0.
-
intercept
¶ Model intercept.
New in version 2.0.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
numFeatures
¶ Returns the number of features the model was trained on. If unknown, returns -1
New in version 2.1.0.
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
summary
¶ Gets summary (e.g. residuals, deviance, pValues) of model on training set. An exception is thrown if trainingSummary is None.
New in version 2.0.0.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.regression.
GeneralizedLinearRegressionSummary
(java_obj=None)[source]¶ Note
Experimental
Generalized linear regression results evaluated on a dataset.
New in version 2.0.0.
-
aic
¶ Akaike’s “An Information Criterion”(AIC) for the fitted model.
New in version 2.0.0.
-
degreesOfFreedom
¶ Degrees of freedom.
New in version 2.0.0.
-
deviance
¶ The deviance for the fitted model.
New in version 2.0.0.
-
dispersion
¶ The dispersion of the fitted model. It is taken as 1.0 for the “binomial” and “poisson” families, and otherwise estimated by the residual Pearson’s Chi-Squared statistic (which is defined as sum of the squares of the Pearson residuals) divided by the residual degrees of freedom.
New in version 2.0.0.
-
nullDeviance
¶ The deviance for the null model.
New in version 2.0.0.
-
predictionCol
¶ Field in
predictions
which gives the predicted value of each instance. This is set to a new column name if the original model’s predictionCol is not set.New in version 2.0.0.
-
predictions
¶ Predictions output by the model’s transform method.
New in version 2.0.0.
-
rank
¶ The numeric rank of the fitted linear model.
New in version 2.0.0.
-
residualDegreeOfFreedom
¶ The residual degrees of freedom.
New in version 2.0.0.
-
residualDegreeOfFreedomNull
¶ The residual degrees of freedom for the null model.
New in version 2.0.0.
-
-
class
pyspark.ml.regression.
GeneralizedLinearRegressionTrainingSummary
(java_obj=None)[source]¶ Note
Experimental
Generalized linear regression training results.
New in version 2.0.0.
-
aic
¶ Akaike’s “An Information Criterion”(AIC) for the fitted model.
New in version 2.0.0.
-
coefficientStandardErrors
¶ Standard error of estimated coefficients and intercept.
If
GeneralizedLinearRegression.fitIntercept
is set to True, then the last element returned corresponds to the intercept.New in version 2.0.0.
-
degreesOfFreedom
¶ Degrees of freedom.
New in version 2.0.0.
-
deviance
¶ The deviance for the fitted model.
New in version 2.0.0.
-
dispersion
¶ The dispersion of the fitted model. It is taken as 1.0 for the “binomial” and “poisson” families, and otherwise estimated by the residual Pearson’s Chi-Squared statistic (which is defined as sum of the squares of the Pearson residuals) divided by the residual degrees of freedom.
New in version 2.0.0.
-
nullDeviance
¶ The deviance for the null model.
New in version 2.0.0.
-
numIterations
¶ Number of training iterations.
New in version 2.0.0.
-
pValues
¶ Two-sided p-value of estimated coefficients and intercept.
If
GeneralizedLinearRegression.fitIntercept
is set to True, then the last element returned corresponds to the intercept.New in version 2.0.0.
-
predictionCol
¶ Field in
predictions
which gives the predicted value of each instance. This is set to a new column name if the original model’s predictionCol is not set.New in version 2.0.0.
-
predictions
¶ Predictions output by the model’s transform method.
New in version 2.0.0.
-
rank
¶ The numeric rank of the fitted linear model.
New in version 2.0.0.
-
residualDegreeOfFreedom
¶ The residual degrees of freedom.
New in version 2.0.0.
-
residualDegreeOfFreedomNull
¶ The residual degrees of freedom for the null model.
New in version 2.0.0.
-
residuals
(residualsType='deviance')¶ Get the residuals of the fitted model by type.
Parameters: residualsType – The type of residuals which should be returned. Supported options: deviance (default), pearson, working, and response. New in version 2.0.0.
-
solver
¶ The numeric solver used for training.
New in version 2.0.0.
-
tValues
¶ T-statistic of estimated coefficients and intercept.
If
GeneralizedLinearRegression.fitIntercept
is set to True, then the last element returned corresponds to the intercept.New in version 2.0.0.
-
-
class
pyspark.ml.regression.
IsotonicRegression
(featuresCol='features', labelCol='label', predictionCol='prediction', weightCol=None, isotonic=True, featureIndex=0)[source]¶ Currently implemented using parallelized pool adjacent violators algorithm. Only univariate (single feature) algorithm supported.
>>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([ ... (1.0, Vectors.dense(1.0)), ... (0.0, Vectors.sparse(1, [], []))], ["label", "features"]) >>> ir = IsotonicRegression() >>> model = ir.fit(df) >>> test0 = spark.createDataFrame([(Vectors.dense(-1.0),)], ["features"]) >>> model.transform(test0).head().prediction 0.0 >>> model.boundaries DenseVector([0.0, 1.0]) >>> ir_path = temp_path + "/ir" >>> ir.save(ir_path) >>> ir2 = IsotonicRegression.load(ir_path) >>> ir2.getIsotonic() True >>> model_path = temp_path + "/ir_model" >>> model.save(model_path) >>> model2 = IsotonicRegressionModel.load(model_path) >>> model.boundaries == model2.boundaries True >>> model.predictions == model2.predictions True
New in version 1.6.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
featureIndex
= Param(parent='undefined', name='featureIndex', doc='The index of the feature if featuresCol is a vector column, no effect otherwise.')¶
-
featuresCol
= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Returns: fitted model(s)
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
getFeaturesCol
()¶ Gets the value of featuresCol or its default value.
-
getLabelCol
()¶ Gets the value of labelCol or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
getPredictionCol
()¶ Gets the value of predictionCol or its default value.
-
getWeightCol
()¶ Gets the value of weightCol or its default value.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
isotonic
= Param(parent='undefined', name='isotonic', doc='whether the output sequence should be isotonic/increasing (true) orantitonic/decreasing (false).')¶
-
labelCol
= Param(parent='undefined', name='labelCol', doc='label column name.')¶
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
predictionCol
= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
setFeatureIndex
(value)[source]¶ Sets the value of
featureIndex
.
-
setFeaturesCol
(value)¶ Sets the value of
featuresCol
.
-
setParams
(featuresCol='features', labelCol='label', predictionCol='prediction', weightCol=None, isotonic=True, featureIndex=0)[source]¶ setParams(self, featuresCol=”features”, labelCol=”label”, predictionCol=”prediction”, weightCol=None, isotonic=True, featureIndex=0): Set the params for IsotonicRegression.
-
setPredictionCol
(value)¶ Sets the value of
predictionCol
.
-
weightCol
= Param(parent='undefined', name='weightCol', doc='weight column name. If this is not set or empty, we treat all instance weights as 1.0.')¶
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.regression.
IsotonicRegressionModel
(java_model=None)[source]¶ Model fitted by
IsotonicRegression
.New in version 1.6.0.
-
boundaries
¶ Boundaries in increasing order for which predictions are known.
New in version 1.6.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
predictions
¶ Predictions associated with the boundaries at the same index, monotone because of isotonic regression.
New in version 1.6.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.regression.
LinearRegression
(featuresCol='features', labelCol='label', predictionCol='prediction', maxIter=100, regParam=0.0, elasticNetParam=0.0, tol=1e-06, fitIntercept=True, standardization=True, solver='auto', weightCol=None, aggregationDepth=2)[source]¶ Linear regression.
The learning objective is to minimize the squared error, with regularization. The specific squared error loss function used is: L = 1/2n ||A coefficients - y||^2^
This supports multiple types of regularization:
- none (a.k.a. ordinary least squares)
- L2 (ridge regression)
- L1 (Lasso)
- L2 + L1 (elastic net)
>>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([ ... (1.0, 2.0, Vectors.dense(1.0)), ... (0.0, 2.0, Vectors.sparse(1, [], []))], ["label", "weight", "features"]) >>> lr = LinearRegression(maxIter=5, regParam=0.0, solver="normal", weightCol="weight") >>> model = lr.fit(df) >>> test0 = spark.createDataFrame([(Vectors.dense(-1.0),)], ["features"]) >>> abs(model.transform(test0).head().prediction - (-1.0)) < 0.001 True >>> abs(model.coefficients[0] - 1.0) < 0.001 True >>> abs(model.intercept - 0.0) < 0.001 True >>> test1 = spark.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"]) >>> abs(model.transform(test1).head().prediction - 1.0) < 0.001 True >>> lr.setParams("vector") Traceback (most recent call last): ... TypeError: Method setParams forces keyword arguments. >>> lr_path = temp_path + "/lr" >>> lr.save(lr_path) >>> lr2 = LinearRegression.load(lr_path) >>> lr2.getMaxIter() 5 >>> model_path = temp_path + "/lr_model" >>> model.save(model_path) >>> model2 = LinearRegressionModel.load(model_path) >>> model.coefficients[0] == model2.coefficients[0] True >>> model.intercept == model2.intercept True >>> model.numFeatures 1
New in version 1.4.0.
-
aggregationDepth
= Param(parent='undefined', name='aggregationDepth', doc='suggested depth for treeAggregate (>= 2).')¶
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
elasticNetParam
= Param(parent='undefined', name='elasticNetParam', doc='the ElasticNet mixing parameter, in range [0, 1]. For alpha = 0, the penalty is an L2 penalty. For alpha = 1, it is an L1 penalty.')¶
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
featuresCol
= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Returns: fitted model(s)
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
fitIntercept
= Param(parent='undefined', name='fitIntercept', doc='whether to fit an intercept term.')¶
-
getAggregationDepth
()¶ Gets the value of aggregationDepth or its default value.
-
getElasticNetParam
()¶ Gets the value of elasticNetParam or its default value.
-
getFeaturesCol
()¶ Gets the value of featuresCol or its default value.
-
getFitIntercept
()¶ Gets the value of fitIntercept or its default value.
-
getLabelCol
()¶ Gets the value of labelCol or its default value.
-
getMaxIter
()¶ Gets the value of maxIter or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
getPredictionCol
()¶ Gets the value of predictionCol or its default value.
-
getRegParam
()¶ Gets the value of regParam or its default value.
-
getSolver
()¶ Gets the value of solver or its default value.
-
getStandardization
()¶ Gets the value of standardization or its default value.
-
getTol
()¶ Gets the value of tol or its default value.
-
getWeightCol
()¶ Gets the value of weightCol or its default value.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
labelCol
= Param(parent='undefined', name='labelCol', doc='label column name.')¶
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
maxIter
= Param(parent='undefined', name='maxIter', doc='max number of iterations (>= 0).')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
predictionCol
= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶
-
read
()¶ Returns an MLReader instance for this class.
-
regParam
= Param(parent='undefined', name='regParam', doc='regularization parameter (>= 0).')¶
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
setAggregationDepth
(value)¶ Sets the value of
aggregationDepth
.
-
setElasticNetParam
(value)¶ Sets the value of
elasticNetParam
.
-
setFeaturesCol
(value)¶ Sets the value of
featuresCol
.
-
setFitIntercept
(value)¶ Sets the value of
fitIntercept
.
-
setParams
(self, featuresCol="features", labelCol="label", predictionCol="prediction", maxIter=100, regParam=0.0, elasticNetParam=0.0, tol=1e-6, fitIntercept=True, standardization=True, solver="auto", weightCol=None, aggregationDepth=2)[source]¶ Sets params for linear regression.
New in version 1.4.0.
-
setPredictionCol
(value)¶ Sets the value of
predictionCol
.
-
setStandardization
(value)¶ Sets the value of
standardization
.
-
solver
= Param(parent='undefined', name='solver', doc="the solver algorithm for optimization. If this is not set or empty, default value is 'auto'.")¶
-
standardization
= Param(parent='undefined', name='standardization', doc='whether to standardize the training features before fitting the model.')¶
-
tol
= Param(parent='undefined', name='tol', doc='the convergence tolerance for iterative algorithms (>= 0).')¶
-
weightCol
= Param(parent='undefined', name='weightCol', doc='weight column name. If this is not set or empty, we treat all instance weights as 1.0.')¶
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
class
pyspark.ml.regression.
LinearRegressionModel
(java_model=None)[source]¶ Model fitted by
LinearRegression
.New in version 1.4.0.
-
coefficients
¶ Model coefficients.
New in version 2.0.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
evaluate
(dataset)[source]¶ Evaluates the model on a test dataset.
Parameters: dataset – Test dataset to evaluate model on, where dataset is an instance of pyspark.sql.DataFrame
New in version 2.0.0.
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
hasSummary
¶ Indicates whether a training summary exists for this model instance.
New in version 2.0.0.
-
intercept
¶ Model intercept.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
numFeatures
¶ Returns the number of features the model was trained on. If unknown, returns -1
New in version 2.1.0.
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
summary
¶ Gets summary (e.g. residuals, mse, r-squared ) of model on training set. An exception is thrown if trainingSummary is None.
New in version 2.0.0.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.regression.
LinearRegressionSummary
(java_obj=None)[source]¶ Note
Experimental
Linear regression results evaluated on a dataset.
New in version 2.0.0.
-
coefficientStandardErrors
¶ Standard error of estimated coefficients and intercept. This value is only available when using the “normal” solver.
If
LinearRegression.fitIntercept
is set to True, then the last element returned corresponds to the intercept.See also
New in version 2.0.0.
-
devianceResiduals
¶ The weighted residuals, the usual residuals rescaled by the square root of the instance weights.
New in version 2.0.0.
-
explainedVariance
¶ Returns the explained variance regression score. explainedVariance = 1 - variance(y - hat{y}) / variance(y)
See also
Note
This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.
New in version 2.0.0.
-
featuresCol
¶ Field in “predictions” which gives the features of each instance as a vector.
New in version 2.0.0.
-
labelCol
¶ Field in “predictions” which gives the true label of each instance.
New in version 2.0.0.
-
meanAbsoluteError
¶ Returns the mean absolute error, which is a risk function corresponding to the expected value of the absolute error loss or l1-norm loss.
Note
This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.
New in version 2.0.0.
-
meanSquaredError
¶ Returns the mean squared error, which is a risk function corresponding to the expected value of the squared error loss or quadratic loss.
Note
This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.
New in version 2.0.0.
-
numInstances
¶ Number of instances in DataFrame predictions
New in version 2.0.0.
-
pValues
¶ Two-sided p-value of estimated coefficients and intercept. This value is only available when using the “normal” solver.
If
LinearRegression.fitIntercept
is set to True, then the last element returned corresponds to the intercept.See also
New in version 2.0.0.
-
predictionCol
¶ Field in “predictions” which gives the predicted value of the label at each instance.
New in version 2.0.0.
-
predictions
¶ Dataframe outputted by the model’s transform method.
New in version 2.0.0.
-
r2
¶ Returns R^2^, the coefficient of determination.
See also
Wikipedia coefficient of determination <http://en.wikipedia.org/wiki/Coefficient_of_determination>
Note
This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.
New in version 2.0.0.
-
residuals
¶ Residuals (label - predicted value)
New in version 2.0.0.
-
rootMeanSquaredError
¶ Returns the root mean squared error, which is defined as the square root of the mean squared error.
Note
This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.
New in version 2.0.0.
-
tValues
¶ T-statistic of estimated coefficients and intercept. This value is only available when using the “normal” solver.
If
LinearRegression.fitIntercept
is set to True, then the last element returned corresponds to the intercept.See also
New in version 2.0.0.
-
-
class
pyspark.ml.regression.
LinearRegressionTrainingSummary
(java_obj=None)[source]¶ Note
Experimental
Linear regression training results. Currently, the training summary ignores the training weights except for the objective trace.
New in version 2.0.0.
-
coefficientStandardErrors
¶ Standard error of estimated coefficients and intercept. This value is only available when using the “normal” solver.
If
LinearRegression.fitIntercept
is set to True, then the last element returned corresponds to the intercept.See also
New in version 2.0.0.
-
devianceResiduals
¶ The weighted residuals, the usual residuals rescaled by the square root of the instance weights.
New in version 2.0.0.
-
explainedVariance
¶ Returns the explained variance regression score. explainedVariance = 1 - variance(y - hat{y}) / variance(y)
See also
Note
This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.
New in version 2.0.0.
-
featuresCol
¶ Field in “predictions” which gives the features of each instance as a vector.
New in version 2.0.0.
-
labelCol
¶ Field in “predictions” which gives the true label of each instance.
New in version 2.0.0.
-
meanAbsoluteError
¶ Returns the mean absolute error, which is a risk function corresponding to the expected value of the absolute error loss or l1-norm loss.
Note
This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.
New in version 2.0.0.
-
meanSquaredError
¶ Returns the mean squared error, which is a risk function corresponding to the expected value of the squared error loss or quadratic loss.
Note
This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.
New in version 2.0.0.
-
numInstances
¶ Number of instances in DataFrame predictions
New in version 2.0.0.
-
objectiveHistory
¶ Objective function (scaled loss + regularization) at each iteration. This value is only available when using the “l-bfgs” solver.
See also
New in version 2.0.0.
-
pValues
¶ Two-sided p-value of estimated coefficients and intercept. This value is only available when using the “normal” solver.
If
LinearRegression.fitIntercept
is set to True, then the last element returned corresponds to the intercept.See also
New in version 2.0.0.
-
predictionCol
¶ Field in “predictions” which gives the predicted value of the label at each instance.
New in version 2.0.0.
-
predictions
¶ Dataframe outputted by the model’s transform method.
New in version 2.0.0.
-
r2
¶ Returns R^2^, the coefficient of determination.
See also
Wikipedia coefficient of determination <http://en.wikipedia.org/wiki/Coefficient_of_determination>
Note
This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.
New in version 2.0.0.
-
residuals
¶ Residuals (label - predicted value)
New in version 2.0.0.
-
rootMeanSquaredError
¶ Returns the root mean squared error, which is defined as the square root of the mean squared error.
Note
This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.
New in version 2.0.0.
-
tValues
¶ T-statistic of estimated coefficients and intercept. This value is only available when using the “normal” solver.
If
LinearRegression.fitIntercept
is set to True, then the last element returned corresponds to the intercept.See also
New in version 2.0.0.
-
totalIterations
¶ Number of training iterations until termination. This value is only available when using the “l-bfgs” solver.
See also
New in version 2.0.0.
-
-
class
pyspark.ml.regression.
RandomForestRegressor
(featuresCol='features', labelCol='label', predictionCol='prediction', maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity='variance', subsamplingRate=1.0, seed=None, numTrees=20, featureSubsetStrategy='auto')[source]¶ Random Forest learning algorithm for regression. It supports both continuous and categorical features.
>>> from numpy import allclose >>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([ ... (1.0, Vectors.dense(1.0)), ... (0.0, Vectors.sparse(1, [], []))], ["label", "features"]) >>> rf = RandomForestRegressor(numTrees=2, maxDepth=2, seed=42) >>> model = rf.fit(df) >>> model.featureImportances SparseVector(1, {0: 1.0}) >>> allclose(model.treeWeights, [1.0, 1.0]) True >>> test0 = spark.createDataFrame([(Vectors.dense(-1.0),)], ["features"]) >>> model.transform(test0).head().prediction 0.0 >>> model.numFeatures 1 >>> model.trees [DecisionTreeRegressionModel (uid=...) of depth..., DecisionTreeRegressionModel...] >>> model.getNumTrees 2 >>> test1 = spark.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"]) >>> model.transform(test1).head().prediction 0.5 >>> rfr_path = temp_path + "/rfr" >>> rf.save(rfr_path) >>> rf2 = RandomForestRegressor.load(rfr_path) >>> rf2.getNumTrees() 2 >>> model_path = temp_path + "/rfr_model" >>> model.save(model_path) >>> model2 = RandomForestRegressionModel.load(model_path) >>> model.featureImportances == model2.featureImportances True
New in version 1.4.0.
-
cacheNodeIds
= Param(parent='undefined', name='cacheNodeIds', doc='If false, the algorithm will pass trees to executors to match instances with nodes. If true, the algorithm will cache node IDs for each instance. Caching can speed up training of deeper trees. Users can set how often should the cache be checkpointed or disable it by setting checkpointInterval.')¶
-
checkpointInterval
= Param(parent='undefined', name='checkpointInterval', doc='set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the cache will get checkpointed every 10 iterations.')¶
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
featureSubsetStrategy
= Param(parent='undefined', name='featureSubsetStrategy', doc='The number of features to consider for splits at each tree node. Supported options: auto, all, onethird, sqrt, log2, (0.0-1.0], [1-n].')¶
-
featuresCol
= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Returns: fitted model(s)
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
getCacheNodeIds
()¶ Gets the value of cacheNodeIds or its default value.
-
getCheckpointInterval
()¶ Gets the value of checkpointInterval or its default value.
-
getFeatureSubsetStrategy
()¶ Gets the value of featureSubsetStrategy or its default value.
New in version 1.4.0.
-
getFeaturesCol
()¶ Gets the value of featuresCol or its default value.
-
getImpurity
()¶ Gets the value of impurity or its default value.
New in version 1.4.0.
-
getLabelCol
()¶ Gets the value of labelCol or its default value.
-
getMaxBins
()¶ Gets the value of maxBins or its default value.
-
getMaxDepth
()¶ Gets the value of maxDepth or its default value.
-
getMaxMemoryInMB
()¶ Gets the value of maxMemoryInMB or its default value.
-
getMinInfoGain
()¶ Gets the value of minInfoGain or its default value.
-
getMinInstancesPerNode
()¶ Gets the value of minInstancesPerNode or its default value.
-
getNumTrees
()¶ Gets the value of numTrees or its default value.
New in version 1.4.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
getPredictionCol
()¶ Gets the value of predictionCol or its default value.
-
getSeed
()¶ Gets the value of seed or its default value.
-
getSubsamplingRate
()¶ Gets the value of subsamplingRate or its default value.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
impurity
= Param(parent='undefined', name='impurity', doc='Criterion used for information gain calculation (case-insensitive). Supported options: variance')¶
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
labelCol
= Param(parent='undefined', name='labelCol', doc='label column name.')¶
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
maxBins
= Param(parent='undefined', name='maxBins', doc='Max number of bins for discretizing continuous features. Must be >=2 and >= number of categories for any categorical feature.')¶
-
maxDepth
= Param(parent='undefined', name='maxDepth', doc='Maximum depth of the tree. (>= 0) E.g., depth 0 means 1 leaf node; depth 1 means 1 internal node + 2 leaf nodes.')¶
-
maxMemoryInMB
= Param(parent='undefined', name='maxMemoryInMB', doc='Maximum memory in MB allocated to histogram aggregation. If too small, then 1 node will be split per iteration, and its aggregates may exceed this size.')¶
-
minInfoGain
= Param(parent='undefined', name='minInfoGain', doc='Minimum information gain for a split to be considered at a tree node.')¶
-
minInstancesPerNode
= Param(parent='undefined', name='minInstancesPerNode', doc='Minimum number of instances each child must have after split. If a split causes the left or right child to have fewer than minInstancesPerNode, the split will be discarded as invalid. Should be >= 1.')¶
-
numTrees
= Param(parent='undefined', name='numTrees', doc='Number of trees to train (>= 1).')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
predictionCol
= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
seed
= Param(parent='undefined', name='seed', doc='random seed.')¶
-
setCacheNodeIds
(value)¶ Sets the value of
cacheNodeIds
.
-
setCheckpointInterval
(value)¶ Sets the value of
checkpointInterval
.
-
setFeatureSubsetStrategy
(value)¶ Sets the value of
featureSubsetStrategy
.New in version 1.4.0.
-
setFeaturesCol
(value)¶ Sets the value of
featuresCol
.
-
setMaxMemoryInMB
(value)¶ Sets the value of
maxMemoryInMB
.
-
setMinInfoGain
(value)¶ Sets the value of
minInfoGain
.
-
setMinInstancesPerNode
(value)¶ Sets the value of
minInstancesPerNode
.
-
setParams
(self, featuresCol="features", labelCol="label", predictionCol="prediction", maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="variance", subsamplingRate=1.0, seed=None, numTrees=20, featureSubsetStrategy="auto")[source]¶ Sets params for linear regression.
New in version 1.4.0.
-
setPredictionCol
(value)¶ Sets the value of
predictionCol
.
-
setSubsamplingRate
(value)¶ Sets the value of
subsamplingRate
.New in version 1.4.0.
-
subsamplingRate
= Param(parent='undefined', name='subsamplingRate', doc='Fraction of the training data used for learning each decision tree, in range (0, 1].')¶
-
supportedFeatureSubsetStrategies
= ['auto', 'all', 'onethird', 'sqrt', 'log2']¶
-
supportedImpurities
= ['variance']¶
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.regression.
RandomForestRegressionModel
(java_model=None)[source]¶ Model fitted by
RandomForestRegressor
.New in version 1.4.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
featureImportances
¶ Estimate of the importance of each feature.
Each feature’s importance is the average of its importance across all trees in the ensemble The importance vector is normalized to sum to 1. This method is suggested by Hastie et al. (Hastie, Tibshirani, Friedman. “The Elements of Statistical Learning, 2nd Edition.” 2001.) and follows the implementation from scikit-learn.
New in version 2.0.0.
-
getNumTrees
¶ Number of trees in ensemble.
New in version 2.0.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
numFeatures
¶ Returns the number of features the model was trained on. If unknown, returns -1
New in version 2.1.0.
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
toDebugString
¶ Full description of model.
New in version 2.0.0.
-
totalNumNodes
¶ Total number of nodes, summed over all trees in the ensemble.
New in version 2.0.0.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
treeWeights
¶ Return the weights for each tree
New in version 1.5.0.
-
trees
¶ Trees in this ensemble. Warning: These have null parent Estimators.
New in version 2.0.0.
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
pyspark.ml.tuning module¶
-
class
pyspark.ml.tuning.
ParamGridBuilder
[source]¶ Builder for a param grid used in grid search-based model selection.
>>> from pyspark.ml.classification import LogisticRegression >>> lr = LogisticRegression() >>> output = ParamGridBuilder() \ ... .baseOn({lr.labelCol: 'l'}) \ ... .baseOn([lr.predictionCol, 'p']) \ ... .addGrid(lr.regParam, [1.0, 2.0]) \ ... .addGrid(lr.maxIter, [1, 5]) \ ... .build() >>> expected = [ ... {lr.regParam: 1.0, lr.maxIter: 1, lr.labelCol: 'l', lr.predictionCol: 'p'}, ... {lr.regParam: 2.0, lr.maxIter: 1, lr.labelCol: 'l', lr.predictionCol: 'p'}, ... {lr.regParam: 1.0, lr.maxIter: 5, lr.labelCol: 'l', lr.predictionCol: 'p'}, ... {lr.regParam: 2.0, lr.maxIter: 5, lr.labelCol: 'l', lr.predictionCol: 'p'}] >>> len(output) == len(expected) True >>> all([m in expected for m in output]) True
New in version 1.4.0.
-
addGrid
(param, values)[source]¶ Sets the given parameters in this grid to fixed values.
New in version 1.4.0.
-
-
class
pyspark.ml.tuning.
CrossValidator
(estimator=None, estimatorParamMaps=None, evaluator=None, numFolds=3, seed=None)[source]¶ K-fold cross validation performs model selection by splitting the dataset into a set of non-overlapping randomly partitioned folds which are used as separate training and test datasets e.g., with k=3 folds, K-fold cross validation will generate 3 (training, test) dataset pairs, each of which uses 2/3 of the data for training and 1/3 for testing. Each fold is used as the test set exactly once.
>>> from pyspark.ml.classification import LogisticRegression >>> from pyspark.ml.evaluation import BinaryClassificationEvaluator >>> from pyspark.ml.linalg import Vectors >>> dataset = spark.createDataFrame( ... [(Vectors.dense([0.0]), 0.0), ... (Vectors.dense([0.4]), 1.0), ... (Vectors.dense([0.5]), 0.0), ... (Vectors.dense([0.6]), 1.0), ... (Vectors.dense([1.0]), 1.0)] * 10, ... ["features", "label"]) >>> lr = LogisticRegression() >>> grid = ParamGridBuilder().addGrid(lr.maxIter, [0, 1]).build() >>> evaluator = BinaryClassificationEvaluator() >>> cv = CrossValidator(estimator=lr, estimatorParamMaps=grid, evaluator=evaluator) >>> cvModel = cv.fit(dataset) >>> cvModel.avgMetrics[0] 0.5 >>> evaluator.evaluate(cvModel.transform(dataset)) 0.8333...
New in version 1.4.0.
-
copy
(extra=None)[source]¶ Creates a copy of this instance with a randomly generated uid and some extra params. This copies creates a deep copy of the embedded paramMap, and copies the embedded and extra parameters over.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance New in version 1.4.0.
-
estimator
= Param(parent='undefined', name='estimator', doc='estimator to be cross-validated')¶
-
estimatorParamMaps
= Param(parent='undefined', name='estimatorParamMaps', doc='estimator param maps')¶
-
evaluator
= Param(parent='undefined', name='evaluator', doc='evaluator used to select hyper-parameters that maximize the validator metric')¶
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Returns: fitted model(s)
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
getEstimator
()¶ Gets the value of estimator or its default value.
-
getEstimatorParamMaps
()¶ Gets the value of estimatorParamMaps or its default value.
-
getEvaluator
()¶ Gets the value of evaluator or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
getSeed
()¶ Gets the value of seed or its default value.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
numFolds
= Param(parent='undefined', name='numFolds', doc='number of folds for cross validation')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
seed
= Param(parent='undefined', name='seed', doc='random seed.')¶
-
setEstimatorParamMaps
(value)¶ Sets the value of
estimatorParamMaps
.
-
-
class
pyspark.ml.tuning.
CrossValidatorModel
(bestModel, avgMetrics=[])[source]¶ CrossValidatorModel contains the model with the highest average cross-validation metric across folds and uses this model to transform input data. CrossValidatorModel also tracks the metrics for each param map evaluated.
New in version 1.4.0.
-
avgMetrics
= None¶ Average cross-validation metrics for each paramMap in CrossValidator.estimatorParamMaps, in the corresponding order.
-
bestModel
= None¶ best model from cross validation
-
copy
(extra=None)[source]¶ Creates a copy of this instance with a randomly generated uid and some extra params. This copies the underlying bestModel, creates a deep copy of the embedded paramMap, and copies the embedded and extra parameters over.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance New in version 1.4.0.
-
estimator
= Param(parent='undefined', name='estimator', doc='estimator to be cross-validated')¶
-
estimatorParamMaps
= Param(parent='undefined', name='estimatorParamMaps', doc='estimator param maps')¶
-
evaluator
= Param(parent='undefined', name='evaluator', doc='evaluator used to select hyper-parameters that maximize the validator metric')¶
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getEstimator
()¶ Gets the value of estimator or its default value.
-
getEstimatorParamMaps
()¶ Gets the value of estimatorParamMaps or its default value.
-
getEvaluator
()¶ Gets the value of evaluator or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
getSeed
()¶ Gets the value of seed or its default value.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
seed
= Param(parent='undefined', name='seed', doc='random seed.')¶
-
setEstimatorParamMaps
(value)¶ Sets the value of
estimatorParamMaps
.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
-
class
pyspark.ml.tuning.
TrainValidationSplit
(estimator=None, estimatorParamMaps=None, evaluator=None, trainRatio=0.75, seed=None)[source]¶ Note
Experimental
Validation for hyper-parameter tuning. Randomly splits the input dataset into train and validation sets, and uses evaluation metric on the validation set to select the best model. Similar to
CrossValidator
, but only splits the set once.>>> from pyspark.ml.classification import LogisticRegression >>> from pyspark.ml.evaluation import BinaryClassificationEvaluator >>> from pyspark.ml.linalg import Vectors >>> dataset = spark.createDataFrame( ... [(Vectors.dense([0.0]), 0.0), ... (Vectors.dense([0.4]), 1.0), ... (Vectors.dense([0.5]), 0.0), ... (Vectors.dense([0.6]), 1.0), ... (Vectors.dense([1.0]), 1.0)] * 10, ... ["features", "label"]) >>> lr = LogisticRegression() >>> grid = ParamGridBuilder().addGrid(lr.maxIter, [0, 1]).build() >>> evaluator = BinaryClassificationEvaluator() >>> tvs = TrainValidationSplit(estimator=lr, estimatorParamMaps=grid, evaluator=evaluator) >>> tvsModel = tvs.fit(dataset) >>> evaluator.evaluate(tvsModel.transform(dataset)) 0.8333...
New in version 2.0.0.
-
copy
(extra=None)[source]¶ Creates a copy of this instance with a randomly generated uid and some extra params. This copies creates a deep copy of the embedded paramMap, and copies the embedded and extra parameters over.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance New in version 2.0.0.
-
estimator
= Param(parent='undefined', name='estimator', doc='estimator to be cross-validated')¶
-
estimatorParamMaps
= Param(parent='undefined', name='estimatorParamMaps', doc='estimator param maps')¶
-
evaluator
= Param(parent='undefined', name='evaluator', doc='evaluator used to select hyper-parameters that maximize the validator metric')¶
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Returns: fitted model(s)
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
getEstimator
()¶ Gets the value of estimator or its default value.
-
getEstimatorParamMaps
()¶ Gets the value of estimatorParamMaps or its default value.
-
getEvaluator
()¶ Gets the value of evaluator or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
getSeed
()¶ Gets the value of seed or its default value.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
seed
= Param(parent='undefined', name='seed', doc='random seed.')¶
-
setEstimatorParamMaps
(value)¶ Sets the value of
estimatorParamMaps
.
-
setParams
(estimator=None, estimatorParamMaps=None, evaluator=None, trainRatio=0.75, seed=None)[source]¶ setParams(self, estimator=None, estimatorParamMaps=None, evaluator=None, trainRatio=0.75, seed=None): Sets params for the train validation split.
New in version 2.0.0.
-
setTrainRatio
(value)[source]¶ Sets the value of
trainRatio
.New in version 2.0.0.
-
trainRatio
= Param(parent='undefined', name='trainRatio', doc='Param for ratio between train and validation data. Must be between 0 and 1.')¶
-
-
class
pyspark.ml.tuning.
TrainValidationSplitModel
(bestModel, validationMetrics=[])[source]¶ Note
Experimental
Model from train validation split.
New in version 2.0.0.
-
bestModel
= None¶ best model from cross validation
-
copy
(extra=None)[source]¶ Creates a copy of this instance with a randomly generated uid and some extra params. This copies the underlying bestModel, creates a deep copy of the embedded paramMap, and copies the embedded and extra parameters over. And, this creates a shallow copy of the validationMetrics.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance New in version 2.0.0.
-
estimator
= Param(parent='undefined', name='estimator', doc='estimator to be cross-validated')¶
-
estimatorParamMaps
= Param(parent='undefined', name='estimatorParamMaps', doc='estimator param maps')¶
-
evaluator
= Param(parent='undefined', name='evaluator', doc='evaluator used to select hyper-parameters that maximize the validator metric')¶
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getEstimator
()¶ Gets the value of estimator or its default value.
-
getEstimatorParamMaps
()¶ Gets the value of estimatorParamMaps or its default value.
-
getEvaluator
()¶ Gets the value of evaluator or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
getSeed
()¶ Gets the value of seed or its default value.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
seed
= Param(parent='undefined', name='seed', doc='random seed.')¶
-
setEstimatorParamMaps
(value)¶ Sets the value of
estimatorParamMaps
.
-
transform
(dataset, params=None)¶ Transforms the input dataset with optional parameters.
Parameters: - dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
- params – an optional param map that overrides embedded params.
Returns: transformed dataset
New in version 1.3.0.
- dataset – input dataset, which is an instance of
-
validationMetrics
= None¶ evaluated validation metrics
-
pyspark.ml.evaluation module¶
-
class
pyspark.ml.evaluation.
Evaluator
[source]¶ Base class for evaluators that compute metrics from predictions.
New in version 1.4.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using
copy.copy()
, and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance New in version 1.4.0.
-
evaluate
(dataset, params=None)[source]¶ Evaluates the output with optional parameters.
Parameters: - dataset – a dataset that contains labels/observations and predictions
- params – an optional param map that overrides embedded params
Returns: metric
New in version 1.4.0.
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isLargerBetter
()[source]¶ Indicates whether the metric returned by
evaluate()
should be maximized (True, default) or minimized (False). A given evaluator may support multiple metrics which may be maximized or minimized.New in version 1.5.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
-
class
pyspark.ml.evaluation.
BinaryClassificationEvaluator
(rawPredictionCol='rawPrediction', labelCol='label', metricName='areaUnderROC')[source]¶ Note
Experimental
Evaluator for binary classification, which expects two input columns: rawPrediction and label. The rawPrediction column can be of type double (binary 0/1 prediction, or probability of label 1) or of type vector (length-2 vector of raw predictions, scores, or label probabilities).
>>> from pyspark.ml.linalg import Vectors >>> scoreAndLabels = map(lambda x: (Vectors.dense([1.0 - x[0], x[0]]), x[1]), ... [(0.1, 0.0), (0.1, 1.0), (0.4, 0.0), (0.6, 0.0), (0.6, 1.0), (0.6, 1.0), (0.8, 1.0)]) >>> dataset = spark.createDataFrame(scoreAndLabels, ["raw", "label"]) ... >>> evaluator = BinaryClassificationEvaluator(rawPredictionCol="raw") >>> evaluator.evaluate(dataset) 0.70... >>> evaluator.evaluate(dataset, {evaluator.metricName: "areaUnderPR"}) 0.83... >>> bce_path = temp_path + "/bce" >>> evaluator.save(bce_path) >>> evaluator2 = BinaryClassificationEvaluator.load(bce_path) >>> str(evaluator2.getRawPredictionCol()) 'raw'
New in version 1.4.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
evaluate
(dataset, params=None)¶ Evaluates the output with optional parameters.
Parameters: - dataset – a dataset that contains labels/observations and predictions
- params – an optional param map that overrides embedded params
Returns: metric
New in version 1.4.0.
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getLabelCol
()¶ Gets the value of labelCol or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
getRawPredictionCol
()¶ Gets the value of rawPredictionCol or its default value.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isLargerBetter
()¶ Indicates whether the metric returned by
evaluate()
should be maximized (True, default) or minimized (False). A given evaluator may support multiple metrics which may be maximized or minimized.New in version 1.5.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
labelCol
= Param(parent='undefined', name='labelCol', doc='label column name.')¶
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
metricName
= Param(parent='undefined', name='metricName', doc='metric name in evaluation (areaUnderROC|areaUnderPR)')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
rawPredictionCol
= Param(parent='undefined', name='rawPredictionCol', doc='raw prediction (a.k.a. confidence) column name.')¶
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
setMetricName
(value)[source]¶ Sets the value of
metricName
.New in version 1.4.0.
-
setParams
(self, rawPredictionCol="rawPrediction", labelCol="label", metricName="areaUnderROC")[source]¶ Sets params for binary classification evaluator.
New in version 1.4.0.
-
setRawPredictionCol
(value)¶ Sets the value of
rawPredictionCol
.
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.evaluation.
RegressionEvaluator
(predictionCol='prediction', labelCol='label', metricName='rmse')[source]¶ Note
Experimental
Evaluator for Regression, which expects two input columns: prediction and label.
>>> scoreAndLabels = [(-28.98343821, -27.0), (20.21491975, 21.5), ... (-25.98418959, -22.0), (30.69731842, 33.0), (74.69283752, 71.0)] >>> dataset = spark.createDataFrame(scoreAndLabels, ["raw", "label"]) ... >>> evaluator = RegressionEvaluator(predictionCol="raw") >>> evaluator.evaluate(dataset) 2.842... >>> evaluator.evaluate(dataset, {evaluator.metricName: "r2"}) 0.993... >>> evaluator.evaluate(dataset, {evaluator.metricName: "mae"}) 2.649... >>> re_path = temp_path + "/re" >>> evaluator.save(re_path) >>> evaluator2 = RegressionEvaluator.load(re_path) >>> str(evaluator2.getPredictionCol()) 'raw'
New in version 1.4.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
evaluate
(dataset, params=None)¶ Evaluates the output with optional parameters.
Parameters: - dataset – a dataset that contains labels/observations and predictions
- params – an optional param map that overrides embedded params
Returns: metric
New in version 1.4.0.
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getLabelCol
()¶ Gets the value of labelCol or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
getPredictionCol
()¶ Gets the value of predictionCol or its default value.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isLargerBetter
()¶ Indicates whether the metric returned by
evaluate()
should be maximized (True, default) or minimized (False). A given evaluator may support multiple metrics which may be maximized or minimized.New in version 1.5.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
labelCol
= Param(parent='undefined', name='labelCol', doc='label column name.')¶
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
metricName
= Param(parent='undefined', name='metricName', doc='metric name in evaluation - one of:\n rmse - root mean squared error (default)\n mse - mean squared error\n r2 - r^2 metric\n mae - mean absolute error.')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
predictionCol
= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
setMetricName
(value)[source]¶ Sets the value of
metricName
.New in version 1.4.0.
-
setParams
(self, predictionCol="prediction", labelCol="label", metricName="rmse")[source]¶ Sets params for regression evaluator.
New in version 1.4.0.
-
setPredictionCol
(value)¶ Sets the value of
predictionCol
.
-
write
()¶ Returns an MLWriter instance for this ML instance.
-
-
class
pyspark.ml.evaluation.
MulticlassClassificationEvaluator
(predictionCol='prediction', labelCol='label', metricName='f1')[source]¶ Note
Experimental
Evaluator for Multiclass Classification, which expects two input columns: prediction and label.
>>> scoreAndLabels = [(0.0, 0.0), (0.0, 1.0), (0.0, 0.0), ... (1.0, 0.0), (1.0, 1.0), (1.0, 1.0), (1.0, 1.0), (2.0, 2.0), (2.0, 0.0)] >>> dataset = spark.createDataFrame(scoreAndLabels, ["prediction", "label"]) ... >>> evaluator = MulticlassClassificationEvaluator(predictionCol="prediction") >>> evaluator.evaluate(dataset) 0.66... >>> evaluator.evaluate(dataset, {evaluator.metricName: "accuracy"}) 0.66... >>> mce_path = temp_path + "/mce" >>> evaluator.save(mce_path) >>> evaluator2 = MulticlassClassificationEvaluator.load(mce_path) >>> str(evaluator2.getPredictionCol()) 'prediction'
New in version 1.5.0.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Parameters: extra – Extra parameters to copy to the new instance Returns: Copy of this instance
-
evaluate
(dataset, params=None)¶ Evaluates the output with optional parameters.
Parameters: - dataset – a dataset that contains labels/observations and predictions
- params – an optional param map that overrides embedded params
Returns: metric
New in version 1.4.0.
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
New in version 1.4.0.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
New in version 1.4.0.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: extra – extra param values Returns: merged param map New in version 1.4.0.
-
getLabelCol
()¶ Gets the value of labelCol or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 1.4.0.
-
getParam
(paramName)¶ Gets a param by its name.
New in version 1.4.0.
-
getPredictionCol
()¶ Gets the value of predictionCol or its default value.
-
hasDefault
(param)¶ Checks whether a param has a default value.
New in version 1.4.0.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
New in version 1.4.0.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
New in version 1.4.0.
-
isLargerBetter
()¶ Indicates whether the metric returned by
evaluate()
should be maximized (True, default) or minimized (False). A given evaluator may support multiple metrics which may be maximized or minimized.New in version 1.5.0.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
New in version 1.4.0.
-
labelCol
= Param(parent='undefined', name='labelCol', doc='label column name.')¶
-
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
metricName
= Param(parent='undefined', name='metricName', doc='metric name in evaluation (f1|weightedPrecision|weightedRecall|accuracy)')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.New in version 1.3.0.
-
predictionCol
= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶
-
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of write().save(path).
-
setMetricName
(value)[source]¶ Sets the value of
metricName
.New in version 1.5.0.
-
setParams
(self, predictionCol="prediction", labelCol="label", metricName="f1")[source]¶ Sets params for multiclass classification evaluator.
New in version 1.5.0.
-
setPredictionCol
(value)¶ Sets the value of
predictionCol
.
-
write
()¶ Returns an MLWriter instance for this ML instance.
-