
THE DEFINITIVE GUIDES TO THE
X WINDOW SYSTEM

VOLUME SIX B

Motif Reference Manual

for Motif 2.1

Open Source Edition

Antony Fountain and Paula Ferguson

Motif Reference Manual, Open Source Edition

by Antony Fountain and Paula Ferguson

December 2001

Copyright 1993, 2000, 2001 O’Reilly & Associates, Inc. and Antony Fountain. This
material may be distributed only subject to the terms and conditions set forth in the
Open Publication License, v1.0 or later (the latest version is presently available at
http://www.opencontent.org/openpub/).

This is a modified version of the Motif Reference Manual, Second Edition, published
by O’Reilly & Associates in February 2000. The source files for the Second Edition can
be found at http://www.oreilly.com/openbook/motif/. A description of the
modifications is contained in the Preface to the Open Source Edition.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and O’Reilly & Associates, Inc. was aware of a trademark claim, the designations have
been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions, or for damages resulting from the
use of the information contained herein.

Motif Reference Manual iii

Contents

Preface . v

Section 1 - Motif Functions and Macros . 1

Section 2 - Motif and Xt Widget Classes . 557

Section 3 - Mrm Functions . 961

Section 4 - Mrm Clients . 999

Section 5 - UIL File Format . 1033

Section 6 - UIL Data Types . 1053

Section 7 - UIL Functions .1113

Appendix A - Function Summaries .1125

Appendix B - Data Types .1159

Appendix C - Table of Motif Resources .1199

Appendix D Table of UIL Objects . 1225

Appendix E - New Features in Motif 2.0 and 2.1 1233

Contents

Motif Reference Manual iv

Motif Reference Manual v

Preface

Preface to the Open Source Edition

Many thanks to all at O’Reilly and Associates for releasing this, Volume 6B, and the
companion Volume 6A, the Motif Programming Manual, in open source. Both have
been extensively revised for Motif 2.1; this, the Motif Reference Manual, has had
several alterations to the 2nd edition as printed:

• all the function prototypes and examples have been converted to strict ANSI format
• the UIL sections have been restored
• the Xt Session Shell is documented
• many bug patches have been folded in
• new examples have been added to Motif 2.1 procedure sections
• the book sources have been converted from the original troff into FrameMaker and PDF

formats

Removing the UIL portions from the original printed second edition was a hard
decision; the Motif 2.1 toolkit was a much expanded library since previous versions of
the book, and something had to give - the book was over a thousand pages as it was.
However, an electronic copy does not have the same space restrictions as the printed
tome, and so these materials, originally in the Motif 1.2 version of the manual, have
been restored. They also have been reworked for Motif 2.1.

Antony J. Fountain

Preface to the Second Edition

What to put in, and what to leave out, of this update to the Motif Reference Manual
was the hardest decision of all. The guiding principle has been to consider for whom
this material is intended. This is a Programmer’s Reference, and not a Widget Author’s
handbook. Accordingly, those aspects of the new Trait mechanisms which an
application programmer needs to know have been included, but the Xme utilities have
not. Specifying a Trait as a well-defined piece of behaviour which a widget supports,
it is enough to know which traits a Widget Class supports, and how this affects objects
in the widget instance hierarchy. How a Trait is implemented, and which methods are
associated with the given Trait, are generally the domain of the widget author. Hence
it is recorded that the VendorShell holds the XmQTspecifyRenderTableTrait, and that
this means that widget classes further down the widget instance hierarchy inherit
default Render Table information from the VendorShell. This is all that the Application
Programmer needs to know: the rest is silence.

Preface

vi Motif Reference Manual

Conversely, the Motif Input Method utilities have been included. Although mostly
defined originally in the Motif 1.2 release, and although the Motif widget classes
generally handle connections to an Input Method when and where this is required, there
is an important exception. The Motif Drawing Area does not register itself with an Input
Method automatically, and hence anyone who needs to directly implement
internationalized input for this widget class most certainly would need to know about
the XmIm functions. The World does not all speak English: for these reasons, the XmIm
functions are included in the Manual.

A brief note concerning the status of Motif as the premier Unix toolkit. A number of
alternative toolkits have arisen, particularly in the Linux domain, which offer an X-based
windowing system for the Unix, and other, platforms. I refer principally to the likes of
Qt, and GTK+. These on the whole dispense with the Xt layer, in order to provide small,
lightweight GUI components which are, from the application programmer’s perspective,
relatively easy to port to non-Unix domains. Although admirable in many ways, these
suffer from one crucial drawback, precisely because Xt has been excluded: there is no
object component model associated with any of the objects which can be created in an
interface1. Compare and contrast with something like JavaBeans, where a GUI builder
can be designed which can dynamically load and query objects from whatever source,
and from thence inspect the attributes of the object, construct resource panels, and
generate code for the components, all without any external configuration. Based on Xt,
Motif also has this important property: I can in principle dynamically load into my GUI
builder any third party component, construct an internal attribute list, present resource
panels for object configuration to the user, and from there generate source code. Just by
interrogating the widget class. All the commercial GUI builders available for Motif
support this.

The newer alternative Linux toolkits do not have this introspective quality. Writing GUI
builders happens to be what I do for a living: sad to say, I cannot write one for these
toolkits precisely because these is no component model at the object level. Not
surprisingly, no third party component market exists for the toolkits either: there is no
GUI builder into which these components can be dynamically slotted. Each needs the
other, but there is nothing which allows them to talk. In the absence of either a
commercial component market, or a dynamic GUI builder, there remains serious
question marks concerning the scalability of the alternative toolkits, whatever merits
they hold. The only alternatives are to write all the code by hand, or pass control of the

1.True at the moment of writing. It is still true that all the information required to dynamically introspect an object’s entire
resource set, particularly if user-defined and not built-in to the basic set, is not completely forthcoming. Introspecting
third party components remains troublesome for a dynamic GUI builder.

Preface

Motif Reference Manual vii

application to a private piece of hobbyware which masquerades as a support
environment. Ironically, the advent of Java has cemented Motif: the JDK relies on Motif
for the native implementation on the Unix platform. Until such time as a native toolkit
surfaces which has this important introspective property, Motif remains what it has
long been, the only native toolkit for Unix which supports large scale internationalized
applications.1

About the Motif Toolkit

The Motif toolkit, from the Open Software Foundation (OSF), is based on the X Toolkit
Intrinsics (Xt), which is the standard mechanism on which many of the toolkits written
for the X Window System are based. Xt provides a library of user-interface objects
called widgets and gadgets, which provide a convenient interface for creating and
manipulating X windows, colormaps, events, and other cosmetic attributes of the
display. In short, widgets can be thought of as building blocks that the programmer
uses to construct a complete application.

However, the widgets that Xt provides are generic in nature and impose no user-
interface policy whatsoever. Providing the look and feel of an interface is the job of a
user-interface toolkit such as Motif. Motif provides a complete set of widgets that are
designed to implement the application look and feel specified in the Motif Style Guide
and the Motif Application Environment Specification. The Motif toolkit also includes a
library of functions for creating and manipulating the widgets and other aspects of the
user interface.

The Motif toolkit has other components in addition to the widget set and related
functions. Motif provides a User Interface Language (UIL) for describing the initial
state of a user interface. UIL is designed to permit rapid prototyping of the user
interface for an application. The Motif Resource Manager (Mrm) functions provide the
interface between C language application code and UIL. Motif also provides the Motif
Window Manager (mwm). The appearance and behavior of this window manager is
designed to be compatible with the appearance and behavior of the Motif widget set.

About This Manual

This manual contains reference material on the Motif toolkit. This edition is based on
Motif 2.1, which is the latest major release of the Motif toolkit. Motif 1.2 is based on

1.The contents of this paragraph were true at the moment of writing. There is now a commercial GUI builder for the
Linux toolkits; whether it survives in a free software environment remains to be seen. It is still true that the large scale
commercial concerns continue to use Motif for their native Unix toolkit.

Preface

viii Motif Reference Manual

Release 6 of the Xlib and Xt specifications (X11R6). This release of Motif provides many
new features, including new widget classes and several new functions. In order to cover
all of the material, it became necessary to split Volume Six into two separate manuals, a
programming manual and a reference manual. Volume Six A is the Motif Programming
Manual and Volume Six B is the Motif Reference Manual.

This manual is part of the sixth volume in the O’Reilly & Associates X Window System
Series. It includes reference pages for each of the Motif functions and macros, for the
Motif and Xt Intrinsics widget classes, for the Mrm functions, for the Motif clients, and
for the UIL file format, data types, and functions. A permuted index and numerous quick
reference appendices are also provided.

Volume Six B includes reference pages for all of the new functions and widgets in Motif
2.0 and 2.1. When the functionality of an existing routine or widget has changed in Motif
2.0 or 2.1, the reference page explains the differences between the two versions. Volume
Six B also provides a complete set of reference material for UIL and Mrm, which was not
covered in the previous edition.

Volumes Six A and B are designed to be used together. Volume Six A provides a
complete programmer’s guide to the Motif toolkit. Each chapter of the book covers a
particular component of the Motif toolkit. Each chapter includes basic tutorial material
about creating and manipulating the component, intermediate-level information about
the configurable aspects of the component, and any advanced programming topics that
are relevant. The chapters also provide numerous programming examples.

To get the most out of the examples in Volume Six A, you will need the exact calling
sequences of each function from Volume Six B. To understand fully how to use each of
the routines described in Volume Six B, all but the most experienced Motif programmers
will need the explanations and examples in Volume Six A.

While the Motif toolkit is based on Xt, the focus of this manual is on Motif itself, not on
the X Toolkit Intrinsics. Reference pages for the Xt widget classes are included here to
provide a complete picture of the widget class hierarchy. Many reference pages mention
related Xt routines, but the functionality of these routines is not described. Detailed
information about Xt is provided by Volume 4, X Toolkit Intrinsics Programming Manual,
Motif Edition, and Volume 5, X Toolkit Intrinsics Reference Manual.

How This Manual is Organized

Volume Six B is designed to make it easy and fast to look up virtually any fact about the
Motif toolkit. It contains reference pages and numerous helpful appendices.

Preface

Motif Reference Manual ix

The book is organized as follows:

Preface Describes the organization of the book and the conventions it fol-
lows.

Section 1 Motif Functions and Macros, contains reference pages for all of
Motif functions and macros.

Section 2 Motif and Xt Widget Classes, contains reference pages for the
widget classes defined by the Motif toolkit and the X Toolkit Intrin-
sics.

Section 3 Mrm Functions, contains reference pages for the Motif Resource
Manager functions that are used in conjuctions with the User Inter-
face Language.

Section 4 Motif Clients, contains reference pages for the Motif clients: mwm,
uil, and xmbind.

Section 5 UIL File Format, contains reference pages that describe the file for-
mat of a User Interface Language module.

Section 6 UIL Data Types, contains reference pages for the data types sup-
ported by the User Interface Language.

Section 7 UIL Functions, contains reference pages for the User Interface Lan-
guage functions.

Appendix A Function Summaries, provides quick reference tables that list each
Motif function alphabetically and also by functional groups.

Appendix B Data Types, lists and explains in alphabetical order the structures,
enumerated types, and other typedefs used for arguments to Motif
and Mrm functions.

Appendix C Table of Motif Resources, lists all of the resources provided by
Motif and Xt widget classes, along with their types and the classes
that define them.

Appendix D Table of UIL Objects, lists all of the objects supported by the User
Interface Language, along with their corresponding Motif widget
classes.

Appendix E New Features in Motif 1.2, lists the new functions, widget classes,
and widget resources in Motif 1.2.

Index Should help you to find what you need to know.

Preface

Motif Reference Manual x

Assumptions

This book assumes that the reader is familiar with the C programming language and
the concepts and architecture of the X Toolkit, which are presented in Volume 4, X
Toolkit Intrinsics Programming Manual, Motif Edition, and Volume 5, X Toolkit Intrinsics
Reference Manual. A basic understanding of the X Window System is also useful. For
some advanced topics, the reader may need to consult Volume 1, Xlib Programming
Manual, and Volume 2, Xlib Reference Manual.

Related Documents

The following books on the X Window System are available from O’Reilly &
Associates, Inc.:

Volume Zero X Protocol Reference Manual

Volume One Xlib Programming Manual

Volume Two Xlib Reference Manual

Volume Three X Window System User’s Guide, Motif Edition

Volume Four X Toolkit Intrinsics Programming Manual, Motif
Edition

Volume Five X Toolkit Intrinsics Reference Manual

Volume Six A Motif Programming Manual

Volume Seven XView Programming Manual with accompany-
ing reference volume.

Volume Eight X Window System Administrator’s Guide

PHIGS Programming Manual

PHIGS Reference Manual

PEXlib Programming Manual

PEXlib Reference Manual

Quick Reference The X Window System in a Nutshell

Programming Supplement for Release 6 of the X Window System

Conventions Used in This Book

Italic is used for:

Preface

Motif Reference Manual xi

• UNIX pathnames, filenames, program names, user command names, options for user
commands, and variable expressions in syntax sections.

• New terms where they are defined.

Constant Width Font is used for:

• Anything that would be typed verbatim into code, such as examples of source code and
text on the screen.

• Variables, data structures (and fields), symbols (defined constants and bit flags), functions,
macros, and a general assortment of anything relating to the C programming language.

• All functions relating to Motif, Xt, and Xlib.
• Names of subroutines in example programs.

Constant Width Italic Font is used for:

• Arguments to functions, since they could be typed in code as shown but are arbitrary
names that could be changed.

Helvetica Italic is used for:

• Titles of examples, figures, and tables.

Boldface is used for:

• Chapter headings, section headings, and the names of buttons and menus.

We’d Like to Hear From You

We have tested and verified all of the information in this book to the best of our ability,
but you may find that features have changed (or even that we have made mistakes!).
Please let us know about any errors you find, as well as your suggestions for future
editions, by writing:

O’Reilly & Associates, Inc.

103 Morris Street, Suite A

Sebastopol, CA 95472

1-800-998-9938 (in the US or Canada)

1-707-829-0515 (international/local)

1-707-829-0104 (FAX)

Preface

Motif Reference Manual xii

Acknowledgements

This book developed out of the realization that it would be impossible to update the
first edition of Volume Six to cover Motif 1.2 without dividing the original book into
two books. Dan Heller, David Flanagan, Adrian Nye, and Tim O’Reilly all provided
valuable suggestions on how best to expand the original reference appendices into a
full-fledged reference manual.

The Motif reference pages in this book are based on the reference appendices from the
first edition, which were developed by Daniel Gilly. His work meant that I didn’t have
to start from scratch, and thus saved many hours of toil. The OSF/Motif reference
material also provided a helpful foundation from which to explore the complexities of
the Motif toolkit. Many of the Motif examples in the book were borrowed from the first
edition of Volume Six. These example were written by Dan Heller, although they have
been updated for Motif 1.2

Dave Brennan, of HaL Computer Systems, took on the unenviable task of learning
everything there is to know about UIL and Mrm, so that he could write the UIL
reference material. He did a great job.

Adrian Nye deserves special recognition for freeing me to work on this project, when
I’m sure that he had other projects he would have liked to send my way. I don’t think
either one of us had any idea how involved this update project would become. The
other inhabitants of the "writer’s block" at O’Reilly & Associates, Valerie Quercia,
Linda Mui, and Ellie Cutler, provided support that kept me sane while I was working
on the book. Extra gratitude goes to Linda Mui for her work on the cross references and
the reference tables; her knowledge of various tools prevented me from doing things
the hard way. Tim O’Reilly also provided editorial support that improved the quality
of the reference material.

Special thanks go to the people who worked on the production of this book. The final
form of this book is the work of the staff at O’Reilly & Associates. The authors would
like to thank Chris Reilly for the figures, Ellie Cutler for indexing, Lenny Muellner for
tools support, Eileen Kramer for copy editing and production of the final copy, and
Clairemarie Fisher O’Leary for final proofing and printing. Thanks also to Donna
Woonteiler for her patience in answering my questions and helping me to understand
the production process.

Despite the efforts of all of these people, the authors alone are responsible for any
errors or omissions that remain.

Paula M. Ferguson

Preface

Motif Reference Manual xiii

Acknowledgements to the Motif 2.1 Edition

Many thanks to all at IST who gave me the time and opportunity to perform this work.
I would like to thank all those who reviewed the material, which in a Reference Manual
of this type is a tedious but necessary task: a very big "Thank You" to Andy Bartlett
who took the trouble of sitting down with the Motif sources whilst pouring over every
technical detail, and to Tricia Lovell who reviewed the format at particularly short
notice.

A special thanks also to Richard Offer and Doug Rand from Silicon Graphics, and
Mark Riches for casting expert and independent eyes over the materials. I would also
like to thank Andy Lovell and Derek Lambert for allowing and freeing me up to
perform the task. To the rest of the company, who have had to wait whilst yet another
batch of print jobs ran to completion, all I can say is "Sorry".

A very big “Thank You” indeed to all at O’Reilly for allowing me to undertake this
important task, and especially to Paula Ferguson, my editor: I could not have done this
without you.

But to my wife Emma, who put up with some seriously late nights over a long period,
goes the biggest "Thank You" of all. This would not have happened without any of you,
and I am extremely grateful.

Antony J. Fountain

Acknowledgements to the Open Source Edition

Again, many thanks to all at IST who helped me convert the original troff to Frame and
PDF formats. A special thank you to Denise Huxtable who enlightened me on the
mysteries of Reference Pages, Indexes, and Tables of Contents. Denise also performed
much of the cross-referencing in the manual. Thank you also to Ruth Lambert, who
showed me how to mark up the document sources.

Again, a very big “Thank You” to all at O’Reilly, and Paula Fergusson in particular, for
helping this open source edition come about.

And again, to my wife Emma: a big kiss, and I’ll be home real soon now.

Antony J. Fountain

Motif Reference Manual 1

Section 1 - Motif Functions and Macros

This page describes the format and contents of each reference page in Section 1,
which covers the Motif functions and macros.

Name
Function – a brief description of the function.

Synopsis

This section shows the signature of the function: the names and types of the argu-
ments, and the type of the return value. If header file other than <Xm/Xm.h> is
needed to declare the function, it is shown in this section as well.

Inputs
This subsection describes each of the function arguments that pass information to
the function.

Outputs
This subsection describes any of the function arguments that are used to return
information from the function. These arguments are always of some pointer type,
so you should use the C address-of operator (&) to pass the address of the varia-
ble in which the function will store the return value. The names of these argu-
ments are sometimes suffixed with _return to indicate that values are returned in
them. Some arguments both supply and return a value; they will be listed in this
section and in the "Inputs" section above. Finally, note that because the list of
function arguments is broken into "Input" and "Output" sections, they do not
always appear in the same order that they are passed to the function. See the
function signature for the actual calling order.

Returns
This subsection explains the return value of the function, if any.

Availability
This section appears for functions that were added in Motif 2.0 and later, and also
for functions that are now superseded by other, preferred, functions.

Description
This section explains what the function does and describes its arguments and
return value. If you’ve used the function before and are just looking for a
refresher, this section and the synopsis above should be all you need.

Usage
This section appears for most functions and provides less formal information
about the function: when and how you might want to use it, things to watch out
for, and related functions that you might want to consider.

Motif Functions and Macros

2 Motif Reference Manual

Example
This section appears for some of the most commonly used Motif functions, and
provides an example of their use.

Structures
This section shows the definition of any structures, enumerated types, typedefs,
or symbolic constants used by the function.

Procedures
This section shows the syntax of any prototype procedures used by the function.

See Also
This section refers you to related functions, widget classes, and clients. The num-
bers in parentheses following each reference refer to the sections of this book in
which they are found.

Motif Functions and Macros XmActivateProtocol

Motif Reference Manual 3

Name
XmActivateProtocol – activate a protocol.

Synopsis

#include <Xm/Protocols.h>

void XmActivateProtocol (Widget shell, Atom property, Atom protocol)

Inputs
shell - Specifies the widget associated with the protocol property.
property - Specifies the property that holds the protocol data.
protocol - Specifies the protocol atom.

Description
XmActivateProtocol () activates the specified protocol. If the shell is real-
ized, XmActivateProtocol () updates its protocol handlers and the specified
property. If the protocol is active, the protocol atom is stored in property; if the
protocol is inactive, the protocol atom is not stored in property.

Usage
A protocol is a communication channel between applications. Protocols are sim-
ply atoms, stored in a property on the top-level shell window for the application.
XmActivateProtocol () makes the shell able to respond to ClientMessage
events that contain the specified protocol. Before you can activate a protocol, the
protocol must be added to the shell with XmAddProtocols (). Protocols are
automatically activated when they are added. The inverse routine is XmDeacti-
vateProtocol ().

See Also
XmActivateWMProtocol (1), XmAddProtocols (1) XmDeactivate-
Protocol (1), XmInternAtom (1), VendorShell (2).

XmActivateWMProtocol Motif Functions and Macros

4 Motif Reference Manual

Name
XmActivateWMProtocol – activate the XA_WM_PROTOCOLS protocol.

Synopsis

#include <Xm/Protocols.h>

void XmActivateWMProtocol (Widget shell, Atom protocol)

Inputs
shell - Specifies the widget associated with the protocol property.
protocol - Specifies the protocol atom.

Description
XmActivateWMProtocol () is a convenience routine that calls XmActi-
vateProtocol () with property set to XA_WM_PROTOCOL, the window
manager protocol property.

Usage
The property XA_WM_PROTOCOLS is a set of predefined protocols for com-
munication between clients and window managers. Before you can activate the
protocols, they must be added to the shell with XmAddProtocols () or XmAd-
dWMProtocols (). Protocols are automatically activated when they are added.
The inverse routine is XmDeactivateWMProtocol ().

See Also
XmActivateProtocol (1), XmAddProtocols (1),
XmAddWMProtocols (1), XmDeactivateWMProtocol (1),
XmInternAtom (1), VendorShell (2).

Motif Functions and Macros XmAddProtocolCallback

Motif Reference Manual 5

Name
XmAddProtocolCallback – add client callbacks to a protocol.

Synopsis

#include <Xm/Protocols.h>

void XmAddProtocolCallback (Widget shell,
Atom property,
Atom protocol,
XtCallbackProc callback,
XtPointer closure)

Inputs
shell - Specifies the widget associated with the protocol property.
property - Specifies the property that holds the protocol data.
protocol - Specifies the protocol atom.
callback - Specifies the procedure to invoke when the protocol message

 is received.
closure - Specifies any client data that is passed to the callback.

Description
XmAddProtocolCallback() adds client callbacks to a protocol. The routine veri-
fies that the protocol is registered, and if it is not, it calls XmAddProtocols().
XmAddProtocolCallback() adds the callback to the internal list of callbacks, so
that it is called when the corresponding client message is received.

Usage
A protocol is a communication channel between applications. Protocols are sim-
ply atoms, stored in a property on the top-level shell window for the application.
To communicate using a protocol, a client sends a ClientMessage event contain-
ing a property and protocol, and the receiving client responds by calling the asso-
ciated protocol callback routine. XmAddProtocolCallback() allows you to
register these callback routines.

See Also
XmAddProtocols (1), XmAddWMProtocolCallback (1),
XmInternAtom (1), VendorShell (2).

XmAddProtocols Motif Functions and Macros

6 Motif Reference Manual

Name
XmAddProtocols – add protocols to the protocol manager.

Synopsis

#include <Xm/Protocols.h>

void XmAddProtocols (Widget shell, Atom property, Atom *protocols, Cardinal
num_protocols)

Inputs
shell Specifies the widget associated with the protocol property.
property Specifies the property that holds the protocol data.
protocols Specifies a list of protocol atoms.
num_protocols Specifies the number of atoms in protocols.

Description
XmAddProtocols () registers a list of protocols to be stored in the specified
property of the specified shell widget. The routine adds the protocols to the pro-
tocol manager and allocates the internal tables that are needed for the protocol.

Usage
A protocol is a communication channel between applications. Protocols are sim-
ply atoms, stored in a property on the top-level shell window for the application.
XmAddProtocols () allows you to add protocols that can be understood by
your application. The inverse routine is XmRemoveProtocols (). To commu-
nicate using a protocol, a client sends a ClientMessage event containing a prop-
erty and protocol, and the receiving client responds by calling the associated
protocol callback routine. Use XmAddProtocolCallback () to add a call-
back function to be executed when a client message event containing the speci-
fied protocol atom is received.

See Also
XmAddProtocolCallback (1), XmAddWMProtocols (1),
XmInternAtom (1), XmRemoveProtocols (1), VendorShell (2).

Motif Functions and Macros XmAddTabGroup

Motif Reference Manual 7

Name
XmAddTabGroup – add a widget to a list of tab groups.

Synopsis

void XmAddTabGroup (Widget tab_group)

Inputs
tab_group Specifies the widget to be added.

Availability
In Motif 1.1, XmAddTabGroup() is obsolete. It has been superceded by setting
XmNnavigationType to XmEXCLUSIVE_TAB_GROUP.

Description
XmAddTabGroup() makes the specified widget a separate tab group. This rou-
tine is retained for compatibility with Motif 1.0 and should not be used in newer
applications. If traversal behavior needs to be changed, this should be done
directly by setting the XmNnavigationType resource, which is defined by Man-
ager and Primitive.

Usage
A tab group is a group of widgets that can be traversed using the keyboard rather
than the mouse. Users move from widget to widget within a single tab group by
pressing the arrow keys. Users move between different tab groups by pressing
the Tab or Shift-Tab keys. If the tab_group widget is a manager, its children are
all members of the tab group (unless they are made into separate tab groups). If
the widget is a primitive, it is its own tab group. Certain widgets must not be
included with other widgets within a tab group. For example, each List, Scroll-
bar, OptionMenu, or multi-line Text widget must be placed in a tab group by
itself, since these widgets define special behavior for the arrow or Tab keys,
which prevents the use of these keys for widget traversal. The inverse routine is
XmRemoveTabGroup().

See Also
XmGetTabGroup (1), XmRemoveTabGroup(1),
XmManager(2), XmPrimitive (2).

XmAddToPostFromList Motif Functions and Macros

8 Motif Reference Manual

Name
XmAddToPostFromList – make a menu accessible from a widget.

Synopsis

#include <Xm/RowColumn.h>

void XmAddToPostFromList (Widget menu, Widget widget)

Inputs
menu Specifies a menu widget
widget Specifies the widget from which to make menu accessible

Availability
In Motif 2.0 and later, the function prototype is removed from RowColumn.h,
although there is otherwise no indication that the procedure is obsolete.

Description
XmAddToPostFromList () is a convenience function which makes menu
accessible from widget. There is no limit to how many widgets may share the
same menu. The event sequence required to popup the menu is the same in each
widget context.

Usage
Rather than creating a new and identical hierarchy for each context in which a
pulldown or popup menu is required, a single menu can be created and shared. If
the type of the menu is XmMENU_PULLDOWN, the value of the XmNsubMen-
uId resource of widget is set to menu. If the type of the menu is
XmMENU_POPUP, button and key press event handlers are added to widget in
order to post the menu.

There are implicit assumptions that widget is a CascadeButton or CascadeBut-
tonGadget when menu is XmMENU_PULLDOWN, and that widget is not a
Gadget when menu is XmMENU_POPUP. These are not checked by the proce-
dure.

See Also
XmGetPostedFromWidget (1), XmRemoveFromPostFromList (1),
XmCascadeButton (2), XmCascadeButtonGadget (2), XmGadget(2),
XmPopupMenu(2), XmPulldownMenu (2), XmRowColumn(2).

Motif Functions and Macros XmAddWMProtocolCallback

Motif Reference Manual 9

Name
XmAddWMProtocolCallback – add client callbacks to an
XA_WM_PROTOCOLS protocol.

Synopsis

#include <Xm/Protocols.h>

void XmAddWMProtocolCallback (Widget shell,
Atom protocol,
XtCallbackProc callback,
XtPointer closure)

Inputs
shell Specifies the widget associated with the protocol property.
protocol Specifies the protocol atom.
callback Specifies the procedure to invoke when the protocol message

 is received.
closure Specifies any client data that is passed to the callback.

Description
XmAddWMProtocolCallback () is a convenience routine that calls XmAd-
dProtocolCallback () with property set to XA_WM_PROTOCOL, the win-
dow manager protocol property.

Usage
The property XA_WM_PROTOCOLS is a set of predefined protocols for com-
munication between clients and window managers. To communicate using a pro-
tocol, a client sends a ClientMessage event containing a property and protocol,
and the receiving client responds by calling the associated protocol callback rou-
tine. XmAddWMProtocolCallback () allows you to register these callback
routines with the window manager protocol property. The inverse routine is
XmRemoveWMProtocolCallback ().

Example
The following code fragment shows the use of XmAddWMProtocolCall-
back () to save the state of an application using the WM_SAVE_YOURSELF
protocol:

Atom wm_save_yourself;

wm_save_yourself = XInternAtom 1 (XtDisplay
(toplevel),

1.From Motif 2.0, XmInternAtom() is marked for deprecation.

XmAddWMProtocolCallback Motif Functions and Macros

10 Motif Reference Manual

"WM_SAVE_YOURSELF
", False);

XmAddWMProtocols (toplevel, &wm_save_yourself, 1);

XmAddWMProtocolCallback (toplevel,
wm_save_yourself,
save_state, toplevel);

save_state is a callback routine that saves the state of the application.

See Also
XmAddProtocolCallback (1), XmInternAtom (1),
XmRemoveWMProtocolCallback (1), VendorShell (2).

Motif Functions and Macros XmAddWMProtocols

Motif Reference Manual 11

Name
XmAddWMProtocols – add the XA_WM_PROTOCOLS protocols to the proto-
col manager.

Synopsis

#include <Xm/Protocols.h>

void XmAddWMProtocols (Widget shell, Atom *protocols, Cardinal
num_protocols)

Inputs
shell Specifies the widget associated with the protocol property.
protocols Specifies a list of protocol atoms.
num_protocols Specifies the number of atoms in protocols.

Description
XmAddWMProtocols() is a convenience routine that calls XmAddProtocols()
with property set to XA_WM_PROTOCOL, the window manager protocol prop-
erty.

Usage
The property XA_WM_PROTOCOLS is a set of predefined protocols for com-
munication between clients and window managers. XmAddWMProtocols ()
allows you to add this protocol so that it can be understood by your application.
The inverse routine is XmRemoveWMProtocols (). To communicate using a
protocol, a client sends a ClientMessage event containing a property and proto-
col, and the receiving client responds by calling the associated protocol callback
routine. Use XmAddWMProtocolCallback () to add a callback function to
be executed when a client message event containing the specified protocol atom
is received.

Example

The following code fragment shows the use of XmAddWMProtocols () to add the
window manager protocols, so that the state of an application can be saved using the
WM_SAVE_YOURSELF protocol:

Atom wm_save_yourself;

wm_save_yourself = XmInternAtom (XtDisplay
(toplevel),
"WM_SAVE_YOURSELF
", False);

XmAddWMProtocols (toplevel, &wm_save_yourself, 1);

XmAddWMProtocols Motif Functions and Macros

12 Motif Reference Manual

XmAddWMProtocolCallback (toplevel,
wm_save_yourself,
save_state, toplevel);

save_state is a callback routine that saves the state of the application.

See Also
XmAddProtocols (1), XmAddWMProtocolCallback (1),
XmInternAtom (1), XmRemoveWMProtocols (1), VendorShell (2).

Motif Functions and Macros XmCascadeButtonHighlight

Motif Reference Manual 13

Name
XmCascadeButtonHighlight, XmCascadeButtonGadgetHighlight – set the high-
light state of a CascadeButton.

Synopsis

#include <Xm/CascadeB.h>

void XmCascadeButtonHighlight (Widget cascadeButton, Boolean highlight)

#include <Xm/CascadeBG.h>

void XmCascadeButtonGadgetHighlight (Widget cascadeButton, Boolean high-
light)

Inputs
cascadeButton Specifies the CascadeButton or CascadeButtonGadget.
highlight Specifies the highlight state.

Description
XmCascadeButtonHighlight () sets the state of the shadow highlight
around the specified cascadeButton, which can be a CascadeButton or a Cascade-
ButtonGadget.

XmCascadeButtonGadgetHighlight () sets the highlight state of the
specified cascadeButton, which must be a CascadeButtonGadget.

Both routines draw the shadow if highlight is True and erase the shadow if high-
light is False.

Usage
CascadeButtons do not normally display a shadow like other buttons, so the high-
light shadow is often used to show that the button is armed. XmCascadeBut-
tonHighlight () and XmCascadeButtonGadgetHighlight () provide a
way for you to cause the shadow to be displayed.

See Also
XmCascadeButton (2), XmCascadeButtonGadget (2).

XmChangeColor Motif Functions and Macros

14 Motif Reference Manual

Name
XmChangeColor – update the colors for a widget.

Synopsis

void XmChangeColor (Widget widget, Pixel background)

Inputs
widget Specifies the widget whose colors are to be changed.
background Specifies the background color.

Description
XmChangeColor () changes all of the colors for the specified widget based on
the new background color. The routine recalculates the foreground color, the
select color, the arm color, the trough color, and the top and bottom shadow
colors and updates the corresponding resources for the widget.

Usage
XmChangeColor () is a convenience routine for changing all of the colors for a
widget, based on the background color. Without the routine, an application would
have to call XmGetColors () to get the new colors and then set the XmNfore-
ground, XmNtopShadowColor, XmNbottomShadowColor, XmNtroughColor,
XmNarmColor, XmNselectColor resources for the widget with XtSetVal-
ues (). The XmNhighlightColor is set to the value of the XmNforeground.

XmChangeColor () calls XmGetColors () internally to allocate the required
pixels. In Motif 1.2 and earlier, this uses the default color calculation procedure
unless a customized color calculation procedure has been set with XmSet-
ColorCalculation (). In Motif 2.0 and later, color calculation can be speci-
fied on a per-screen basis, and any specified XmNcolorCalculationProc
procedure of the XmScreen object associated with the widget is used in prefer-
ence.

See Also
XmGetColorCalculation(1), XmGetColors(1),
XmSetColorCalculation(1), XmScreen(2).

Motif Functions and Macros XmClipboardBeginCopy

Motif Reference Manual 15

Name
XmClipboardBeginCopy – set up storage for a clipboard copy operation.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardBeginCopy (Display *display,
Window window,
XmString clip_label,
Widget widget,
VoidProc callback,
long *item_id)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-

play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
clip_label Specifies a label that is associated with the data item.
widget Specifies the widget that receives messages requesting data that has

been passed by name.
callback Specifies the callback function that is called when the clipboard

needs data that has been passed by name.

Outputs
item_id Returns the ID assigned to the data item.

Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description
XmClipboardBeginCopy () is a convenience routine that calls XmClip-
boardStartCopy () with identical arguments and with a timestamp of Cur-
rentTime.

Usage
XmClipboardBeginCopy () can be used to start a normal copy operation or a
copy-by-name operation. In order to pass data by name, the widget and callback
arguments to XmClipboardBeginCopy () must be specified.

Procedures
The VoidProc has the following format:

typedef void (*VoidProc) (Widget widget, int *data_id, int *private_id, int
* reason)

XmClipboardBeginCopy Motif Functions and Macros

16 Motif Reference Manual

The VoidProc takes four arguments. The first argument, widget, is the widget
passed to the callback routine, which is the same widget as passed to XmClip-
boardBeginCopy (). The data_id argument is the ID of the data item that is
returned by XmClipboardCopy () and private_id is the private data passed to
XmClipboardCopy().

The reason argument takes the value XmCR_CLIPBOARD_DATA_REQUEST,
which indicates that the data must be copied to the clipboard, or
XmCR_CLIPBOARD_DATA_DELETE, which indicates that the client can
delete the data from the clipboard. Although the last three parameters are pointers
to integers, the values are read-only and changing them has no effect.

See Also
XmClipboardCancelCopy (1), XmClipboardCopy (1),
XmClipboardCopyByName (1), XmClipboardEndCopy (1),
XmClipboardStartCopy (1).

Motif Functions and Macros XmClipboardCancelCopy

Motif Reference Manual 17

Name
XmClipboardCancelCopy – cancel a copy operation to the clipboard.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardCancelCopy (Display *display, Window window, long item_id)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
item_id Specifies the ID of the data item.

Returns
ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, or ClipboardFail on failure.

Description
XmClipboardCancelCopy () cancels the copy operation that is in progress
and frees temporary storage that has been allocated for the operation. The func-
tion returns ClipboardFail if XmClipboardStartCopy () has not been called
or if the data item has too many formats.

Usage
A call to XmClipboardCancelCopy () is valid only between calls to
XmClipboardStartCopy () and XmClipboardEndCopy (). XmClip-
boardCancelCopy () can be called instead of XmClipboardEndCopy ()
when you need to terminate a copying operation before it completes. If you have
previously locked the clipboard, XmClipboardCancelCopy () unlocks it, so
you should not call XmClipboardUnlock ().

See Also
XmClipboardBeginCopy (1), XmClipboardCopy (1),
XmClipboardEndCopy (1), XmClipboardStartCopy (1).

XmClipboardCopy Motif Functions and Macros

18 Motif Reference Manual

Name
XmClipboardCopy – copy a data item to temporary storage for later copying to
the clipboard.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardCopy (Display *display,
Window window,
long item_id,
char *format_name,
XtPointer buffer,
unsigned long length,
long private_id,
long *data_id)

Inputs
display Specifies a connection to an X server; returned from XOpenD-
isplay() or XtDisplay().
window Specifies a window ID that identifies the client to the clip-
board.
item_id Specifies the ID of the data item.
format_name Specifies the name of the format of the data item.
buffer Specifies the buffer from which data is copied to the clipboard.
length Specifies the length of the data being copied to the clipboard.
private_id Specifies the private data that is stored with the data item.

Outputs
data_id Returns an ID for a data item that is passed by name.

Returns
ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, or ClipboardFail on failure.

Description
XmClipboardCopy () copies the data item specified by buffer to temporary
storage. The data item is moved to the clipboard data structure when XmClip-
boardEndCopy () is called. The item_id is the ID of the data item returned by
XmClipboardStartCopy () and format_name is a string that describes the
type of the data.

Motif Functions and Macros XmClipboardCopy

Motif Reference Manual 19

Since the data item is not actually stored in the clipboard until XmClip-
boardEndCopy () is called, multiple calls to XmClipboardCopy() add data item
formats to the same data item or will append data to an existing format. The func-
tion returns ClipboardFail if XmClipboardStartCopy () has not been called
or if the data item has too many formats.

Usage
XmClipboardCopy () is called between calls to XmClipboardStart-
Copy() and XmClipboardEndCopy (). If you need to make multiple calls to
XmClipboardCopy () to copy a large amount of data, you should call
XmClipboardLock () to lock the clipboard for the duration of the copy opera-
tion.

When there is a large amount of clipboard data and the data is unlikely to be
retrieved, it can be copied to the clipboard by name. Since the data itself is not
copied to the clipboard until it is requested with a retrieval operation, copying by
name can improve performance. To pass data by name, call XmClipboard-
Copy() with buffer specified as NULL. A unique number is returned in data_id
that identifies the data item for later use. When another application requests data
that has been passed by name, a callback requesting the actual data will be sent to
the application that owns the data and the owner must then call XmClipboard-
CopyByName() to transfer the data to the clipboard. Once data that is passed by
name has been deleted from the clipboard, a callback notifies the owner that the
data is no longer needed.

Example
The following callback shows the sequence of calls needed to copy data to the
clipboard:

void to_clipbd (Widget widget,

XtPointer client_data,

XtPointer call_data)

{

long item_id = 0;

int status;

XmString clip_label;

char buffer[32];

Display *dpy = XtDisplayOfObject (widget);

Window window = XtWindowOfObject (widget);

XmClipboardCopy Motif Functions and Macros

20 Motif Reference Manual

char *data = (char *) client_data;

(void) sprintf (buffer, "%s", data);

clip_label = XmStringCreateLocalized ("Data");

/* start a copy; retry until unlocked */

do

status = XmClipboardStartCopy (dpy, window,
clip_label,

CurrentTime,
NULL, NULL,
&item_id);

while (status == ClipboardLocked);

XmStringFree (clip_label);

/* copy the data; retry until unlocked */

do {

status = XmClipboardCopy (dpy, window,
item_id, "STRING",
(XtPointer) buffer,

(unsigned long) strlen
(buffer) + 1,

(long) 0, (long *) 0);

} while (status == ClipboardLocked);

/* end the copy; retry until unlocked */

do

status = XmClipboardEndCopy (dpy, window,
item_id);

while (status == ClipboardLocked);

}

See Also
XmClipboardBeginCopy (1), XmClipboardCancelCopy (1),
XmClipboardCopyByName (1), XmClipboardEndCopy (1),
XmClipboardStartCopy (1).

Motif Functions and Macros XmClipboardCopyByName

Motif Reference Manual 21

Name
XmClipboardCopyByName – copy a data item passed by name.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardCopyByName (Display *display,
 Window window,
long data_id,
XtPointer buffer,
unsigned long length,
long private_id)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
data_id Specifies the ID number assigned to the data item by XmClip-
boardCopy().
buffer Specifies the buffer from which data is copied to the clipboard.
length Specifies the length of the data being copied to the clipboard.
private_id Specifies the private data that is stored with the data item.

Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description
XmClipboardCopyByName () copies the actual data to the clipboard for a data
item that has been previously passed by name. The data that is copied is specified
by buffer. The data_id is the ID assigned to the data item by XmClipboard-
Copy().

Usage
XmClipboardCopyByName () is typically used for incremental copying; new
data is appended to existing data with each call to XmClipboardCopyBy-
Name(). If you need to make multiple calls to XmClipboardCopyByName ()
to copy a large amount of data, you should call XmClipboardLock () to lock
the clipboard for the duration of the copy operation.

Copying by name improves performance when there is a large amount of clip-
board data and when this data is likely never to be retrieved, since the data itself
is not copied to the clipboard until it is requested with a retrieval operation. Data
is passed by name when XmClipboardCopy () is called with a buffer value of
NULL. When a client requests the data passed by name, the callback registered

XmClipboardCopyByName Motif Functions and Macros

22 Motif Reference Manual

by XmClipboardStartCopy () is invoked. See XmClipboardStart-
Copy() for more information about the format of the callback. This callback calls
XmClipboardCopyByName () to copy the actual data to the clipboard.

Example
The following XmCutPasteProc callback shows the use of XmClipboard-
CopyByName() to copy data passed by name:

void copy_by_name (Widget widget,
long *data_id,
long *private_id;
int *reason)

{
Display *dpy = XtDisplay (toplevel);
Window window = XtWindow (toplevel);
int status;
char buffer[32];

if (*reason == XmCR_CLIPBOARD_DATA_REQUEST) {
(void) sprintf (buffer, "stuff");

do
status = XmClipboardCopyByName (dpy, win-

dow, *data_id,
(XtPointer) buffer,
(unsigned long)
strlen (buffer)+1,
*private_id);

while (status != ClipboardSuccess);
}

See Also
XmClipboardBeginCopy (1), XmClipboardCopy (1),
XmClipboardEndCopy (1), XmClipboardStartCopy (1).

Motif Functions and Macros XmClipboardEndCopy

Motif Reference Manual 23

Name

XmClipboardEndCopy – end a copy operation to the clipboard.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardEndCopy (Display *display, Window window, long item_id)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
item_id Specifies the ID of the data item.

Returns
ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, or ClipboardFail on failure.

Description
XmClipboardEndCopy () locks the clipboard, places data that has been accu-
mulated by calling XmClipboardCopy () into the clipboard data structure, and
then unlocks the clipboard. The item_id is the ID of the data item returned by
XmClipboardStartCopy(). The function returns ClipboardFail if XmClip-
boardStartCopy () has not been called previously.

Usage
XmClipboardEndCopy () frees temporary storage that was allocated by
XmClipboardStartCopy (). XmClipboardStartCopy () must be called
before XmClipboardEndCopy (), which does not need to be called if
XmClipboardCancelCopy () has already been called.

Example
The following callback shows the sequence of calls needed to copy data to the
clipboard:

static void to_clipbd (Widget widget,
XtPointer client_data,
XtPointer call_data)

{
long item_id = 0;
int status;
XmString clip_label;
char buffer[32];
Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);

XmClipboardEndCopy Motif Functions and Macros

24 Motif Reference Manual

char *data = (char *) client_data;

(void) sprintf (buffer, "%s", data);
clip_label = XmStringCreateLocalized ("Data");

/* start a copy; retry until unlocked */
do

status = XmClipboardStartCopy (dpy, window,
clip_label,

CurrentTime,
NULL, NULL,
&item_id);

while (status == ClipboardLocked);
XmStringFree (clip_label);

/* copy the data; retry until unlocked */
do

status = XmClipboardCopy (dpy, window,
item_id, "STRING",

(XtPointer) buffer,
(unsigned
long)strlen(buffer)+1,
0, NULL);

while (status == ClipboardLocked);

/* end the copy; retry until unlocked */
do

status = XmClipboardEndCopy (dpy, window,
item_id);

while (status == ClipboardLocked);
}

See Also
XmClipboardBeginCopy (1), XmClipboardCancelCopy (1),
XmClipboardCopy (1), XmClipboardCopyByName (1),
XmClipboardStartCopy (1).

Motif Functions and Macros XmClipboardEndRetrieve

Motif Reference Manual 25

Name
XmClipboardEndRetrieve – end a copy operation from the clipboard.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardEndRetrieve (Display *display, Window window)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.

Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description
XmClipboardEndRetrieve() ends the incremental copying of data from the clip-
board.

Usage
A call to XmClipboardEndRetrieve () is preceded by a call to XmClip-
boardStartRetrieve (), which begins the incremental copy, and calls to
XmClipboardRetrieve (), which incrementally retrieve the data items from
clipboard storage. XmClipboardStartRetrieve () locks the clipboard and
it remains locked until XmClipboardEndRetrieve () is called.

Example
The following code fragment shows the sequence of calls needed to perform an
incremental retrieve. Note that this code does not store the data as it is retrieved:

int status;
unsigned long received;
char buffer[32];
Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);

do
status = XmClipboardStartRetrieve (dpy, window,
CurrentTime);

while (status == ClipboardLocked);

do {
/* retrieve data from clipboard */
status = XmClipboardRetrieve (dpy, window,

XmClipboardEndRetrieve Motif Functions and Macros

26 Motif Reference Manual

"STRING",
(XtPointer) buffer,
(unsigned long)
sizeof (buffer),
&received,
(long *) 0);

} while (status == ClipboardTruncate);

status = XmClipboardEndRetrieve (dpy, window);

See Also
XmClipboardRetrieve (1), XmClipboardStartRetrieve (1).

Motif Functions and Macros XmClipboardInquireCount

Motif Reference Manual 27

Name
XmClipboardInquireCount – get the number of data item formats available on
the clipboard.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardInquireCount (Display *display,
Window window,
int *count,
unsigned long *max_length)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.

Outputs
count Returns the number of data item formats available for the data on
the clipboard.
max_length Returns the maximum length of data item format names.

Returns
ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, or ClipboardNoData if there is no data on the clipboard.

Description
XmClipboardInquireCount () returns the number of data formats available
for the current clipboard data item and the length of its longest format name. The
count includes the formats that were passed by name. If there are no formats
available, count is 0 (zero).

Usage
To inquire about the formats of the data on the clipboard, you use XmClip-
boardInquireCount () and XmClipboardInquireFormat () in con-
junction. XmClipboardInquireCount () returns the number of formats for
the data item and XmClipboardInquireFormat () allows you to iterate
through all of the formats.

See Also
XmClipboardInquireFormat (1).

XmClipboardInquireFormat Motif Functions and Macros

28 Motif Reference Manual

Name
XmClipboardInquireFormat – get the specified clipboard data format name.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardInquireFormat (Display *display,
Window window,
int index,
XtPointer format_name_buf,
unsigned long buffer_len,
unsigned long *copied_len)

Inputs
display Specifies a connection to an X server; returned from XOpenD-
isplay() or XtDisplay().
window Specifies a window ID that identifies the client to the clip-
board.
index Specifies the index of the format name to retrieve.
buffer_len Specifies the length of format_name_buf in bytes.

Outputs
format_name_buf Returns the format name.
copied_len Returns the length (in bytes) of the string copied to
format_name_buf.

Returns
ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, ClipboardTruncate if format_name_buf is not long enough
to hold the returned data, or ClipboardNoData if there is no data on the clipboard.

Description
XmClipboardInquireFormat () returns a format name for the current data
item in the clipboard. The format name returned is specified by index, where 1
refers to the first format. If index exceeds the number of formats for the data item,
then XmClipboardInquireFormat () returns a value of 0 (zero) in the
copied_len argument. XmClipboardInquireFormat () returns the format
name in the format_name_buf argument. This argument is a buffer of a fixed
length that is allocated by the programmer. If the buffer is not large enough to
hold the format name, the routine copies as much of the format name as will fit in
the buffer and returns ClipboardTruncate.

Motif Functions and Macros XmClipboardInquireFormat

Motif Reference Manual 29

Usage
To inquire about the formats of the data on the clipboard, you use XmClip-
boardInquireCount () and XmClipboardInquireFormat () in con-
junction. XmClipboardInquireCount () returns the number of formats for
the data item and XmClipboardInquireFormat () allows you to iterate
through all of the formats.

See Also
XmClipboardInquireCount (1).

XmClipboardInquireLength Motif Functions and Macros

30 Motif Reference Manual

Name
XmClipboardInquireLength – get the length of the data item on the clipboard.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardInquireLength (Display *display,
Window window,
char *format_name,
unsigned long *length)

Inputs
display Specifies a connection to an X server; returned from XOpenD-
isplay() or XtDisplay().
window Specifies a window ID that identifies the client to the clip-
board.
format_name Specifies the format name for the data.

Outputs
length Returns the length of the data item for the specified format.

Returns
ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, or ClipboardNoData if there is no data on the clipboard for
the requested format.

Description
XmClipboardInquireLength () returns the length of the data stored under
the specified format_name for the current clipboard data item. If no data is found
corresponding to format_name or if there is no item on the clipboard, XmClip-
boardInquireLength () returns a length of 0 (zero). When a data item is
passed by name, the length of the data is assumed to be passed in a call to
XmClipboardCopy (), even though the data has not yet been transferred to the
clipboard.

Usage
XmClipboardInquireLength () provides a way for an application to find
out how much data is on the clipboard, so that it can allocate a buffer that is large
enough to retrieve the data with one call to XmClipboardRetrieve ().

Example
The following code fragment demonstrates how to use XmClipboardIn-
quireLength () to retrieve all of the data on the clipboard:

int status;
unsigned long recvd, length;

Motif Functions and Macros XmClipboardInquireLength

Motif Reference Manual 31

char *data;
Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);

do
status = XmClipboardInquireLength (dpy, window,

"STRING",
&length);

while (status == ClipboardLocked);

if (length != 0) {
data = XtMalloc ((unsigned) (length+1) * sizeof
(char));

do
status = XmClipboardRetrieve (dpy, window,

"STRING",
(XtPointer)
data,
(unsigned long)
length+1,
&recvd, (long *)
0);

while (status == ClipboardLocked);

if (status != ClipboardSuccess || recvd !=
length) {

XtWarning ("Failed to receive all clipboard
data");

}
}

See Also
XmClipboardRetrieve (1).

XmClipboardInquirePendingItems Motif Functions and Macros

32 Motif Reference Manual

Name
XmClipboardInquirePendingItems – get a list of pending data ID/private ID
pairs.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardInquirePendingItems (Display *display,
Window window,
char

* format_name,
XmClipboardPendingList *item_list,
unsigned long *count)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
format_name Specifies the format name for the data.

Outputs
item_list Returns an array of data_id/private_id pairs for the specified for-
mat.
count Returns the number of items in the item_list array.

Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description
XmClipboardInquirePendingItems () returns for the specified
format_name a list of pending data items, represented by data_id/private_id
pairs. The data_id and private_id arguments are specified in the clipboard func-
tions for copying and retrieving. A data item is considered pending under these
conditions: the application that owns the data item originally passed it by name,
the application has not yet copied the data, and the data item has not been deleted
from the clipboard. If there are no pending items for the specified format_name,
the routine returns a count of 0 (zero). The application is responsible for freeing
the memory that is allocated by XmClipboardInquirePendingItems () to
store the list. Use XtFree() to free the memory.

Usage
An application should call XmClipboardInquirePendingItems() before exiting, to
determine whether data that has been passed by name should be copied to the
clipboard.

Motif Functions and Macros XmClipboardInquirePendingItems

Motif Reference Manual 33

Structures
The XmClipboardPendingList is defined as follows:

typedef struct {
long DataId;
long PrivateId;

} XmClipboardPendingRec, *XmClipboardPendingList;

See Also
XmClipboardStartCopy (1).

XmClipboardLock Motif Functions and Macros

34 Motif Reference Manual

Name

XmClipboardLock – lock the clipboard.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardLock (Display *display, Window window)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.

Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description
XmClipboardLock () locks the clipboard on behalf of an application, which
prevents access to the clipboard by other applications. If the clipboard has
already been locked by another application, the routine returns ClipboardLocked.
If the same application has already locked the clipboard, the lock level is
increased.

Usage
An application uses XmClipboardLock () to ensure that clipboard data is not
changed by calls to clipboard functions by other applications. An application
does not need to lock the clipboard between calls to XmClipboardStar-
tRetrieve () and XmClipboardEndRetrieve (), because the clipboard is
locked automatically between these calls. XmClipboardUnlock () allows
other applications to access the clipboard again.

See Also
XmClipboardEndCopy (1), XmClipboardEndRetrieve (1),
XmClipboardStartCopy (1), XmClipboardStartRetrieve (1),
XmClipboardUnlock (1).

Motif Functions and Macros XmClipboardRegisterFormat

Motif Reference Manual 35

Name
XmClipboardRegisterFormat – register a new format for clipboard data items.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardRegisterFormat (Display *display, char *format_name, int
format_length)

Inputs
display Specifies a connection to an X server; returned from XOpenD-
isplay() or XtDisplay().
format_name Specifies the string name for the format.
format_length Specifies the length of the format in bits (0, 8, 16, or 32).

Returns
ClipboardSuccess on success, ClipboardBadFormat if the format is not properly
specified, ClipboardLocked if the clipboard is locked by another application, or
ClipboardFail on failure.

Description
XmClipboardRegisterFormat () registers a new format having the speci-
fied format_name and format_length. XmClipboardRegisterFormat ()
returns ClipboardFail if the format is already registered with the specified length
or ClipboardBadFormat if format_name is NULL or format_length is not 0, 8,
16, or 32 bits.

Usage
XmClipboardRegisterFormat () is used by applications that support cut-
ting and pasting of arbitrary data types. Every format that is stored on the clip-
board needs to have a length associated with it, so that clipboard operations
between applications that run on platforms with different byte-swapping orders
function properly. Format types that are defined by the ICCCM are preregistered.
If format_length is 0, XmClipboardRegisterFormat () searches through
the preregistered format types, and returns ClipboardSuccess if format_name is
found, ClipboardFail otherwise.

If you are registering your own data structure as a format, you should choose an
appropriate name, and use 32 as the format size.

See Also
XmClipboardStartCopy (1).

XmClipboardRetrieve Motif Functions and Macros

36 Motif Reference Manual

Name
XmClipboardRetrieve – retrieve a data item from the clipboard.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardRetrieve (Display *display,
Window window,
char *format_name,
XtPointer buffer,
unsigned long length,
unsigned long *num_bytes,
long *private_id)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
format_name Specifies the format name for the data.
buffer Specifies the buffer to which the clipboard data is copied.
length Specifies the length of buffer.

Outputs
num_bytes Returns the number of bytes of data copied into buffer.
private_id Returns the private data that was stored with the data item.

Returns
ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, ClipboardTruncate if buffer is not long enough to hold the
returned data, or ClipboardNoData if there is no data on the clipboard for the
requested format.

Description
XmClipboardRetrieve () fetches the current data item from the clipboard
and copies it to the specified buffer. The format_name specifies the type of data
being retrieved. The num_bytes parameter returns the amount of data that is cop-
ied into buffer. The routine returns ClipboardTruncate when all of the data does
not fit in the buffer, to indicate that more data remains to be copied.

Usage
XmClipboardRetrieve () can be used to retrieve data in one large piece or in
multiple smaller pieces. To retrieve data in one chunk, call XmClipboardIn-
quireLength () to determine the size of the data on the clipboard. Multiple
calls to XmClipboardRetrieve () with the same format_name, between calls
to XmClipboardStartRetrieve () and XmClipboardEndRetrieve (),

Motif Functions and Macros XmClipboardRetrieve

Motif Reference Manual 37

copy data incrementally. Since the clipboard is locked by a call to XmClip-
boardStartRetrieve (), it is suggested that your application call any clip-
board inquiry routines between this call and the first call to

XmClipboardRetrieve ()1.

Example
The following code fragment shows the sequence of calls needed to perform an
incremental retrieve. Note that this code does not store the data as it is retrieved:

int status;
unsigned long received;
char buffer[32];
Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);

do
status = XmClipboardStartRetrieve (dpy, window,
CurrentTime);

while (status == ClipboardLocked);

do {
/* retrieve data from clipboard */
status = XmClipboardRetrieve (dpy, window,
"STRING",

(XtPointer) buffer,
(unsigned long)
sizeof (buffer),
&received,
(long *) 0);

} while (status == ClipboardTruncate);

status = XmClipboardEndRetrieve (dpy, window);

See Also
XmClipboardEndRetrieve (1), XmClipboardInquireLength (1),
XmClipboardLock (1), XmClipboardStartRetrieve (1),
XmClipboardUnlock (1).

1.Erroneously given as ClipboardRetrieve() in 1st and 2nd editions.

XmClipboardStartCopy Motif Functions and Macros

38 Motif Reference Manual

Name
XmClipboardStartCopy – set up storage for a clipboard copy operation.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardStartCopy (Display *display,
 Window window,
XmString clip_label,
Time timestamp,
Widget widget,
XmCutPasteProc callback,
long *item_id)

Inputs
display Specifies a connection to an X server; returned from XOpenD-

isplay() or XtDisplay().
window Specifies a window ID that identifies the client to the clip-

board.
clip_label Specifies a label that is associated with the data item.
timestamp Specifies the time of the event that triggered the copy opera-

tion.
widget Specifies the widget that receives messages requesting data

that has been passed by name.
callback Specifies the callback function that is called when the clip-

board needs data that has been passed by name.

Outputs
item_id Returns the ID assigned to the data item.

Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description
XmClipboardStartCopy () creates the storage and data structures that
receive clipboard data. During a cut or copy operation, an application calls this
function to initiate the operation. The data that is copied to the structures
becomes the next clipboard data item.

Several arguments to XmClipboardStartCopy () provide identifying infor-
mation. The window argument specifies the window that identifies the application
to the clipboard; an application should pass the same window ID to each clip-
board routine that it calls. clip_label assigns a text string to the data item that
could be used as the label for a clipboard viewing window. The timestamp passed

Motif Functions and Macros XmClipboardStartCopy

Motif Reference Manual 39

to the routine must be a valid timestamp. The item_id argument returns a number
that identifies the data item. An application uses this number to specify the data
item in other clipboard calls.

Usage
Since copying a large piece of data to the clipboard can take a long time and it is
possible that the data will never be requested by another application, the clip-
board copy routines provide a mechanism to copy data by name. When a clip-
board data item is passed by name, the application does not need to copy the data
to the clipboard until it has been requested by another application. In order to
pass data by name, the widget and callback arguments to XmClipboard-
StartCopy () must be specified. widget specifies the ID of the widget that
receives messages requesting that data be passed by name. All of the message
handling is done by the clipboard operations, so any valid widget ID can be used.
callback specifies the procedure that is invoked when the clipboard needs the data
that was passed by name and when the data item is removed from the clipboard.
The callback function copies the actual data to the clipboard using XmClip-
boardCopyByName ().

Example
The following routines show the sequence of calls needed to copy data by name.
The to_clipbd callback shows the copying of data and copy_by_name shows the
callback that actually copies the data:

void copy_by_name (Widget widget,
long *data_id,
long *private_id,
int *reason)

{
Display *dpy = XtDisplay (toplevel);
Window window = XtWindow (toplevel);
int status;
char buffer[32];

if (*reason == XmCR_CLIPBOARD_DATA_REQUEST) {
(void) sprintf (buffer, "stuff");

do
status = XmClipboardCopyByName (dpy, win-
dow, *data_id,

(XtPointer) buffer,
(unsigned long)
strlen (buffer)+1,
*private_id);

XmClipboardStartCopy Motif Functions and Macros

40 Motif Reference Manual

while (status != ClipboardSuccess);
}

}

void to_clipbd (Widget widget,
XtPointer client_data,
XtPointer call_data)

{
unsigned long item_id = 0;
int status;
XmString clip_label;
Display *dpy = XtDisplayOfObject
(widget);
Window window = XtWindowOfObject
(widget);
unsigned long size = DATA_SIZE;
char *data = (char *) client_data;

clip_label = XmStringCreateLocalized ("Data");

/* start a copy; retry until unlocked */
do

status = XmClipboardStartCopy (dpy, window,
clip_label,

CurrentTime,
widget,
copy_by_name,
&item_id);

while (status == ClipboardLocked);
XmStringFree (clip_label);

/* copy the data; retry until unlocked */
do

status = XmClipboardCopy (dpy, window,
item_id,

"STRING", NULL,
size, 0, NULL);

while (status == ClipboardLocked);

/* end the copy; retry until unlocked */
do

status = XmClipboardEndCopy (dpy, window,
item_id);

while (status == ClipboardLocked);
}

Motif Functions and Macros XmClipboardStartCopy

Motif Reference Manual 41

Procedures
The XmCutPasteProc has the following format:

typedef void (*XmCutPasteProc) (Widget widget, long *data_id, long
*private_id, int *reason)

An XmCutPasteProc takes four arguments. The first argument, widget, is the
widget passed to the callback routine, which is the same widget as passed to
XmClipboardBeginCopy (). The data_id argument is the ID of the data item
that is returned by XmClipboardCopy () and private_id is the private data
passed to XmClipboardCopy ().

The reason argument takes the value XmCR_CLIPBOARD_DATA_REQUEST,
which indicates that the data must be copied to the clipboard, or
XmCR_CLIPBOARD_DATA_DELETE, which indicates that the client can
delete the data from the clipboard. Although the last three parameters are pointers
to integers, the values are read-only and changing them has no effect.

See Also
XmClipboardBeginCopy (1), XmClipboardCancelCopy (1),
XmClipboardCopy(1) , XmClipboardCopyByName (1),
XmClipboardEndCopy (1), XmClipboardLock (1),
XmClipboardRegisterFormat (1), XmClipboardUndoCopy (1),
XmClipboardUnlock (1), XmClipboardWithdrawFormat (1).

XmClipboardStartRetrieve Motif Functions and Macros

42 Motif Reference Manual

Name
XmClipboardStartRetrieve – start a clipboard retrieval operation.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardStartRetrieve (Display *display, Window window, Time times-
tamp)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
timestamp Specifies the time of the event that triggered the retrieval opera-
tion.

Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description
XmClipboardStartRetrieve () starts a clipboard retrieval operation by
telling the clipboard that an application is ready to start copying data from the
clipboard. XmClipboardStartRetrieve () locks the clipboard until
XmClipboardEndRetrieve () is called. The window argument specifies the
window that identifies the application to the clipboard; an application should pass
the same window ID to each clipboard routine that it calls. The timestamp passed
to the routine must be a valid timestamp.

Usage
Multiple calls to XmClipboardRetrieve () with the same format_name,
between calls to XmClipboardStartRetrieve () and XmClipboardEn-
dRetrieve (), copy data incrementally.

Example
The following code fragment shows the sequence of calls needed to perform an
incremental retrieve. Note that this code does not store the data as it is retrieved:

int status;
unsigned long received;
char buffer[32];
Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);

do

Motif Functions and Macros XmClipboardStartRetrieve

Motif Reference Manual 43

status = XmClipboardStartRetrieve (dpy, window,
CurrentTime);

while (status == ClipboardLocked);

do {
/* retrieve data from clipboard */
status = XmClipboardRetrieve (dpy, window,
"STRING",

(XtPointer) buffer,
(unsigned long)
sizeof (buffer),
&received,
(long *) 0);

} while (status == ClipboardTruncate);

status = XmClipboardEndRetrieve (dpy, window);

See Also
XmClipboardEndRetrieve (1), XmClipboardInquireCount (1),
XmClipboardInquireFormat (1), XmClipboardInquireLength (1),
XmClipboardInquirePendingItems (1), XmClipboardLock (1),
XmClipboardRetrieve (1), XmClipboardUnlock (1).

XmClipboardUndoCopy Motif Functions and Macros

44 Motif Reference Manual

Name
XmClipboardUndoCopy – remove the last item copied to the clipboard.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardUndoCopy (Display *display, Window window)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.

Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description
XmClipboardUndoCopy () deletes the item most recently placed on the clip-
board, provided that the application that originally placed the item has matching
values for display and window. If the values do not match, no action is taken. The
routine also restores any data item that was deleted from the clipboard by the call
to XmClipboardCopy ().

Usage
Motif maintains a two-deep stack of items that have been placed on the clip-
board. Once an item has been copied to the clipboard, the copy can be undone by
calling XmClipboardUndoCopy (). Calling this routine twice undoes the last
undo operation.

See Also
XmClipboardBeginCopy (1), XmClipboardCopy (1),
XmClipboardCopyByName (1), XmClipboardEndCopy (1),
XmClipboardStartCopy (1).

Motif Functions and Macros XmClipboardUnlock

Motif Reference Manual 45

Name
XmClipboardUnlock – unlock the clipboard.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardUnlock (Display *display, Window window, Boolean
remove_all_locks)

Inputs
display Specifies a connection to an X server; returned from

XOpenDisplay() or XtDisplay().
window Specifies a window ID that identifies the client to the clip-

board.
remove_all_locks Specifies whether nested locks should be removed.

Returns
ClipboardSuccess on success or ClipboardFail if the clipboard is not locked or if
it is locked by another application.

Description
XmClipboardUnlock () unlocks the clipboard, which allows other applica-
tions to access it. If remove_all_locks is True, all nested locks are removed. If it
is False, only one level of lock is removed.

Usage
Multiple calls to XmClipboardLock () can increase the lock level, and nor-
mally, each XmClipboardLock () call requires a corresponding call to
XmClipboardUnlock (). However, by setting remove_all_locks to True,
nested locks can be removed with a single call.

See Also
XmClipboardBeginCopy (1), XmClipboardCancelCopy (1),
XmClipboardEndCopy (1), XmClipboardEndRetrieve \(1)
XmClipboardLock (1), XmClipboardStartCopy (1),
XmClipboardStartRetrieve (1).

XmClipboardWithdrawFormat Motif Functions and Macros

46 Motif Reference Manual

Name
XmClipboardWithdrawFormat – indicate that an application does not want to
supply a data item any longer.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardWithdrawFormat (Display *display, Window window, long
data_id)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
data_id Specifies the ID for the passed-by-name data item.

Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description
XmClipboardWithdrawFormat () withdraws a data item that has been
passed by name from the clipboard. The data_id is the ID that was assigned to
the item when it was passed by XmClipboardCopy ().

Usage
Despite its name, XmClipboardWithdrawFormat () does not remove a for-
mat specification from the clipboard. The routine provides an application with a
way to withdraw data of a particular format from the clipboard.

See Also
XmClipboardBeginCopy (1), XmClipboardCopy (1),
XmClipboardCopyByName (1), XmClipboardStartCopy (1).

Motif Functions and Macros XmComboBoxAddItem

Motif Reference Manual 47

Name
XmComboBoxAddItem – add a compound string to the ComboBox list.

Synopsis

#include <Xm/ComboBox.h>

void XmComboBoxAddItem (Widget widget, XmString item, int position,
Boolean unique)

Inputs
widget Specifies the ComboBox widget.
item Specifies the compound string that is added to the ComboBox list.
position Specifies the position at which to add the new item.
unique Specifies whether the item must be unique in the list.

Availability
Motif 2.1 and later.

Description
XmComboBoxAddItem() is a convenience routine that adds an item into a
ComboBox list. XmComboBoxAddItem() inserts the specified item into the list
component of the ComboBox widget at the specified position. A position value of
1 indicates the first location in the list, a position value of 2 indicates the second
location, and so forth. A value of 0 (zero) specifies the last location in the list. If
the value exceeds the current number of items in the list, the item is silently
appended. If unique is true, the item is only added if it does not already appear in
the list.

Usage
In order to use this routine, a compound string must be created for the item. The
routine calls XmListAddItemUnselected () to insert the item into the list
component. The ComboBox list takes a copy of the supplied item. It is the
responsibility of the programmer to reclaim the space by calling XmStringFree()
at an appropriate point.

See Also
XmComboBoxSelectItem (1), XmComboBoxSetItem (1),
XmComboBoxDeletePos (1), XmComboBoxUpdate(1), XmComboBox(2).

XmComboBoxDeletePos Motif Functions and Macros

48 Motif Reference Manual

Name
XmComboBoxDeletePos – delete an item at the specified position from a Com-
boBox list.

Synopsis

#include <Xm/ComboBox.h>

void XmComboBoxDeletePos (Widget widget, int position)

Inputs
widget Specifies the ComboBox widget.
position Specifies the position from which to delete an item.

Availability
Motif 2.1 and later.

Description
XmComboBoxDeletePos () removes the item at the specified position from the
ComboBox list. The first location within the list is at position 1, the second list
item is at position 2, and so forth. A position value of 0 (zero) specifies the last
location in the list. If the ComboBox list does not have an item at the specified
position, a warning message is displayed.

Usage
XmComboBoxDeletePos () is a convenience routine that allows you to remove
an item from a ComboBox list. The routine calls XmListDeletePos () on the
list component of the ComboBox.

See Also
XmComboBoxAddItem(1), XmComboBoxSelectItem (1),
XmComboBoxSetItem (1), XmComboBoxUpdate(1), XmComboBox(2).

Motif Functions and Macros XmComboBoxSelectItem

Motif Reference Manual 49

Name
XmComboBoxSelectItem – select an item from a ComboBox list.

Synopsis

#include <Xm/ComboBox.h>

void XmComboBoxSelectItem (Widget widget, XmString item)

Inputs
widget Specifies the ComboBox widget.
item Specifies the item that is to be selected.

Availability
Motif 2.1 and later.

Description
XmComboBoxSelectItem () selects the first occurrence of the specified item
in the ComboBox list. If the item is found within the list, the value is also inserted
into the ComboBox text field. Otherwise, a warning message is displayed.

Usage
XmComboBoxSelectItem () is a convenience routine that allows you to select
an item in the ComboBox list. In order to use this routine, a compound string
must be created for the item. No ComboBox selection callbacks are invoked as a
result of calling this procedure. The routine internally calls XmListSelect-
Pos() on the list component of the ComboBox, after performing a linear search
through the XmNitems of the list: the item parameter is used only for the search
and is not directly used as the newly selected item. It is the responsibility of the
programmer to reclaim any allocated memory for the compound string item by
calling XmStringFree () at an appropriate time.

See Also
XmComboBoxAddItem(1), XmComboBoxDeletePos (1),
XmComboBoxSetItem (1), XmComboBoxUpdate(1), XmComboBox(2).

XmComboBoxSetItem Motif Functions and Macros

50 Motif Reference Manual

Name
XmComboBoxSetItem – select and make visible an item from a ComboBox list.

Synopsis

#include <Xm/ComboBox.h>

void XmComboBoxSetItem (Widget widget, XmString item)

Inputs
widget Specifies the ComboBox widget.
item Specifies the item that is to be selected.

Availability
Motif 2.1 and later.

Description
XmComboBoxSetItem () selects the first occurrence of the specified item in the
ComboBox list, and makes the selection the first visible item in the list. If the
item is found within the list, the value is also inserted into the ComboBox text
field. Otherwise, a warning message is displayed.

Usage
XmComboBoxSetItem () is a convenience routine that allows you to select an
item in the ComboBox. In order to use this routine, a compound string must be
created for the item. No ComboBox selection callbacks are invoked as a result of
calling this procedure. The routine internally calls XmListSelectPos () on
the list component of the ComboBox, after performing a linear search through
the XmNitems of the list: the item parameter is used only for the search and is not
directly used as the newly selected item. It is the responsibility of the program-
mer to reclaim any allocated memory for the compound string item by calling
XmStringFree () at an appropriate time.

See Also
XmComboBoxAddItem(1), XmComboBoxDeletePos (1),
XmComboBoxSelectItem (1), XmComboBoxUpdate(1), XmComboBox(2).

Motif Functions and Macros XmComboBoxUpdate

Motif Reference Manual 51

Name
XmComboBoxUpdate – update the ComboBox list after changes to component
widgets.

Synopsis

#include <Xm/ComboBox.h>

void XmComboBoxUpdate (Widget widget)

Inputs
widget Specifies the ComboBox widget.

Availability
Motif 2.0 and later.

Description
XmComboBoxUpdate() updates the ComboBox to reflect the state of compo-
nent child widgets. This may be required where the programmer has directly
modified the contents or resources of the ComboBox list component rather than
through resources and functions of the ComboBox itself.

Usage
XmComboBoxUpdate() is a convenience routine that synchronizes the internal
state of the ComboBox with that of the component list and text field. In particu-
lar, the value of XmNselectedPosition is reset to the value taken from the internal
list. In addition, if the text field is unchanged, the XmNitems and XmNitemCount
resources of the list are queried and used in conjunction with the recalculated
XmNselectedPosition to reset the ComboBox selected item.

This routine should be called, for example, when the component list is directly
manipulated to change the selected item without notifying the ComboBox
directly.

See Also
XmComboBoxAddItem(1), XmComboBoxSelectItem (1),
XmComboBoxSetItem (1), XmComboBoxDeletePos (1), XmComboBox(2).

XmCommandAppendValue Motif Functions and Macros

52 Motif Reference Manual

Name
XmCommandAppendValue – append a compound string to the command.

Synopsis

#include <Xm/Command.h>

void XmCommandAppendValue (Widget widget, XmString command)

Inputs
widget Specifies the Command widget.
command Specifies the string that is appended.

Description
XmCommandAppendValue() appends the specified command to the end of the
string that is displayed on the command line of the specified Command widget.

Usage
XmCommandAppendValue() is a convenience routine that changes the value
of the XmNcommand resource of the Command widget. In order to use this rou-
tine, a compound string must be created for the command. The widget internally
copies command, and it is the responsibility of the programmer to reclaim any
allocated memory for the compound string at an appropriate time.

See Also
XmCommandSetValue(1), XmCommand(2).

Motif Functions and Macros XmCommandError

Motif Reference Manual 53

Name
XmCommandError – display an error message in a Command widget.

Synopsis

#include <Xm/Command.h>

void XmCommandError (Widget widget, XmString error)

Inputs
widget Specifies the Command widget.
error Specifies the error message to be displayed.

Description
XmCommandError() displays an error message in the history region of the
specified Command widget. The error string remains displayed until the next
command takes effect.

Usage
XmCommandError() displays the error message as one of the items in the
XmNhistoryItems list. When the next command is entered, the error message is
deleted from the list. In order to use this routine, a compound string must be cre-
ated for the error item. The widget internally copies error, and it is the responsi-
bility of the programmer to reclaim any allocated memory for the compound
string at an appropriate time.

See Also
XmCommand(2).

XmCommandGetChild Motif Functions and Macros

54 Motif Reference Manual

Name
XmCommandGetChild – get the specified child of a Command widget.

Synopsis

#include <Xm/Command.h>

Widget XmCommandGetChild (Widget widget, unsigned char child)

Inputs
widget Specifies the Command widget.
child Specifies a type of child of the Command widget.

Returns
The widget ID of the specified child of the Command widget.

Availability
As of Motif 2.0, the abstract child fetch routines in the toolkit are generally con-
sidered deprecated. Although XmCommandGetChild () continues to work, you
should prefer XtNameToWidget () to access children of the XmCommand
component.

Description
XmCommandGetChild() returns the widget ID of the specified child of the Com-
mand widget.

Usage
The child XmDIALOG_COMMAND_TEXT specifies the command text entry
area, XmDIALOG_PROMPT_LABEL specifies the prompt label for the com-
mand line, XmDIALOG_HISTORY_LIST specifies the command history list,
and XmDIALOG_WORK_AREA specifies any work area child that has been
added to the Command widget. For more information on the different children of
the Command widget, see the manual page in Section 2, Motif and Xt Widget
Classes.

Structures
The possible values for child are:

XmDIALOG_COMMAND_TEXT XmDIALOG_HISTORY_LIST
XmDIALOG_PROMPT_LABEL XmDIALOG_WORK_AREA

Motif Functions and Macros XmCommandGetChild

Motif Reference Manual 55

Widget Hierarchy
The following names are associated with the Command children:

“Selection” XmDIALOG_PROMPT_LABEL
“Text” XmDIALOG_COMMAND_TEXT

“ItemsList”1 XmDIALOG_HISTORY_LIST

See Also
XmCommand(2).

1.The List is not a direct descendant of the Command widget, but of an intermediary ScrolledList. Therefore if fetching
the widget via XtNameToWidget(), you should use the value “*ItemsList”.

XmCommandSetValue Motif Functions and Macros

56 Motif Reference Manual

Name
XmCommandSetValue – replace the command string.

Synopsis

#include <Xm/Command.h>

void XmCommandSetValue (Widget widget, XmString command)

Inputs
widget Specifies the Command widget.
command Specifies the string that is displayed.

Description
XmCommandSetValue() replaces the currently displayed command-line text
of the specified Command widget with the string specified by command. Specify-
ing a zero-length string clears the command line.

Usage
XmCommandSetValue() is a convenience routine that changes the value of the
XmNcommand resource of the Command widget. In order to use this routine, a
compound string must be created for the command. The widget internally copies
command, and it is the responsibility of the programmer to reclaim any allocated
memory for the compound string at an appropriate time.

See Also
XmCommandAppendValue(1), XmCommand(2).

Motif Functions and Macros XmContainerCopy

Motif Reference Manual 57

Name
XmContainerCopy – copy the Container primary selection onto the clipboard.

Synopsis
#include <Xm/Container.h>

Boolean XmContainerCopy (Widget container, Time timestamp)

Inputs
container Specifies a Container widget.
timestamp Specifies the server time at which to modify the selection.

Returns
True if the Container selection is transferable to the clipboard, False otherwise.

Availability
Motif 2.0 and later.

Description
XmContainerCopy () copies the primary selection from a Container widget to
the clipboard. The primary selection of a Container widget consists of a set of
selected Container items.

If there are no selected Container items within container, or if the container
widget does not own the primary selection, or if container cannot gain ownership
of the clipboard selection, the function returns False.

Usage
XmContainerCopy () is a convenience routine that copies a Container primary
selection to the clipboard. The procedures identified by the XmNconvertCallback
list of the Container are called to transfer the selection: the selection member of
the XmConvertCallbackStruct passed to callbacks has the value CLIPBOARD,
and the parm member is set to XmCOPY. See XmTransfer (1) for specific
details of the XmConvertCallbackStruct, and of the Uniform Transfer Model
(UTM) in general.

See Also
XmContainerCut (1), XmContainerCopyLink (1),
XmContainerGetItemChildren (1), XmContainerPaste (1),
XmContainerPasteLink (1), XmContainerRelayout (1),
XmContainerReorder (1), XmTransfer (1), XmContainer (2).

XmContainerCopyLink Motif Functions and Macros

58 Motif Reference Manual

Name
XmContainerCopyLink – copy links to the Container primary selection onto the
clipboard.

Synopsis

#include <Xm/Container.h>

Boolean XmContainerCopyLink (Widget container, Time timestamp)

Inputs
container Specifies a Container widget.
timestamp Specifies a time stamp at which to modify the selection.

Returns
True if the Container selection is transferable to the clipboard, False otherwise.

Availability
Motif 2.0 and later.

Description
XmContainerCopyLink () copies links to the primary selection of a Con-
tainer widget onto the clipboard. The primary selection of a Container widget
consists of a set of selected Container items.

If there are no selected Container items within container, or if the container
widget does not own the primary selection, or if container cannot gain ownership
of the clipboard selection, the function returns False.

Usage
XmContainerCopyLink () is a convenience routine that copies links to a
Container primary selection to the clipboard. The procedures identified by the
XmNconvertCallback list of the Container are called, possibly many times: the
selection member of the XmConvertCallbackStruct passed to callbacks has the
value CLIPBOARD, and the parm member is set to XmLINK. See XmTrans-
fer (1) for specific details of the XmConvertCallbackStruct, and of the Uniform
Transfer Model (UTM) in general.

See Also
XmContainerCut (1), XmContainerCopy (1),
XmContainerGetItemChildren (1), XmContainerPaste (1),
XmContainerPasteLink (1), XmContainerRelayout (1),
XmContainerReorder (1), XmTransfer (1), XmContainer (2).

Motif Functions and Macros XmContainerCut

Motif Reference Manual 59

Name
XmContainerCut – cuts the Container primary selection onto the clipboard.

Synopsis

#include <Xm/Container.h>

Boolean XmContainerCut (Widget container, Time timestamp)

Inputs
container Specifies a Container widget.
timestamp Specifies the time at which to modify the selection.

Returns
True if the Container selection is transferable to the clipboard, False otherwise.

Availability
Motif 2.0 and later.

Description
XmContainerCut () cuts the primary selection from a Container widget onto
the clipboard. The primary selection of a Container widget consists of a set of
selected Container items.

If there are no selected Container items within container, or if the container
widget does not own the primary selection, or if container cannot gain ownership
of the clipboard selection, the function returns False.

Usage
XmContainerCut () is a convenience routine that moves a Container primary
selection onto the clipboard, then removes the primary selection. The procedures
identified by the XmNconvertCallback list of the Container are invoked to move
the selection to the clipboard: the selection member of the XmConvertCallback-
Struct passed to callbacks has the value CLIPBOARD, and the parm member is
set to XmMOVE. Thereafter, if the data was transferred, the convert callbacks are
invoked again to delete the primary selection: the selection member is set to
CLIPBOARD, and the target member is set to DELETE. See XmTransfer (1)
for specific details of the XmConvertCallbackStruct, and of the Uniform Transfer
Model (UTM) in general.

See Also
XmContainerCopy (1), XmContainerCopyLink (1),
XmContainerGetItemChildren (1), XmContainerPaste (1),
XmContainerPasteLink (1), XmContainerRelayout (1),
XmContainerReorder (1), XmTransfer (1), XmContainer (2).

XmContainerGetItemChildren Motif Functions and Macros

60 Motif Reference Manual

Name
XmContainerGetItemChildren – find the children of a Container item.

Synopsis

#include <Xm/Container.h>

int XmContainerGetItemChildren (Widget container, Widget item, WidgetList
* item_children)

Inputs
container Specifies a Container widget.
item A child of the Container which holds the XmQTcontainerItem
trait.

Outputs
item_children The list of logical children associated with the item.

Returns
The number of logical children within the item_children list.

Availability
Motif 2.0 and later.

Description
XmContainerGetItemChildren () constructs a list of Container items
which have item as a logical parent. item must hold the XmQTcontainerItem
trait: an IconGadget child of container, for example. A widget is a logical child of
item if the value of its constraint resource XmNentryParent is equal to item. con-
tainer is the Container widget which has item as a child, and the list of logical
children of item is placed in item_children. The function returns the number of
logical children found.

Usage
XmContainerGetItemChildren () is a convenience routine which allo-
cates a WidgetList to contain the set of all Container children whose XmNen-
tryParent resource matches that of a designated item.

If item is NULL, or if item is not a child of container, or if item has no logical
children, the item_children parameter is not set and the function returns 0.

Storage for the returned WidgetList is allocated by the function, and it is the
responsibility of the programmer to free the memory using XtFree () at an
appropriate point.

Motif Functions and Macros XmContainerGetItemChildren

Motif Reference Manual 61

See Also
XmContainerCut (1), XmContainerCopy (1),
XmContainerCopyLink (1), XmContainerPaste (1),
XmContainerPasteLink (1), XmContainerRelayout (1),
XmContainerReorder (1), XmContainer (2).

XmContainerPaste Motif Functions and Macros

62 Motif Reference Manual

Name
XmContainerPaste – pastes the clipboard selection into a Container.

Synopsis

#include <Xm/Container.h>

Boolean XmContainerPaste (Widget container)

Inputs
container Specifies a Container widget.

Returns
True if the clipboard selection is transferable to the Container, False otherwise.

Availability
Motif 2.0 and later.

Description
XmContainerPaste () initiates data transfer of the clipboard primary selec-
tion to the container widget.

If data is transferred from the clipboard, the function returns True, otherwise
False.

Usage
XmContainerPaste () is a convenience routine that initiates copying of the
clipboard primary selection to a Container widget. The procedures identified by
the XmNdestinationCallback list of the Container are called: the selection mem-
ber of the XmDestinationCallbackStruct passed to callbacks has the value CLIP-
BOARD, and the operation member is set to XmCOPY.
XmContainerPaste () does not transfer data itself: it is the responsibility of
the programmer to supply a destination callback which will copy the clipboard
selection into the Container. See XmTransfer (1) for specific details of the
XmDestinationCallbackStruct, and of the Uniform Transfer Model (UTM) in
general.

See Also
XmContainerCut (1), XmContainerCopy (1),
XmContainerCopyLink (1), XmContainerGetItemChildren (1),
XmContainerPasteLink (1), XmContainerRelayout (1),
XmContainerReorder (1), XmTransfer (1), XmContainer (2).

Motif Functions and Macros XmContainerPasteLink

Motif Reference Manual 63

Name
XmContainerPasteLink – copies links from the clipboard selection into a Con-
tainer.

Synopsis

#include <Xm/Container.h>

Boolean XmContainerPasteLink (Widget container)

Inputs
container Specifies a Container widget.

Returns
True if the clipboard selection is transferable to the Container, False otherwise.

Availability
Motif 2.0 and later.

Description
XmContainerPasteLink () initiates data transfer of the clipboard primary
selection to the container widget.

If data is transferred from the clipboard, the function returns True, otherwise
False.

Usage
XmContainerPasteLink () is a convenience routine that initiates copying
links from the clipboard primary selection into a Container widget. The proce-
dures identified by the XmNdestinationCallback list of the Container are called:
the selection member of the XmDestinationCallbackStruct passed to callbacks
has the value CLIPBOARD, and the operation member is set to XmLINK.
XmContainerPasteLink () does not transfer data itself: it is the responsibil-
ity of the programmer to supply a destination callback which will link the clip-
board selection into the Container. See XmTransfer (1) for specific details of
the XmConvertCallbackStruct, and of the Uniform Transfer Model (UTM) in
general.

See Also
XmContainerCut (1), XmContainerCopy (1),
XmContainerCopyLink (1), XmContainerGetItemChildren (1),
XmContainerPaste (1), XmContainerRelayout (1),
XmContainerReorder (1), XmTransfer (1), XmContainer (2).

XmContainerRelayout Motif Functions and Macros

64 Motif Reference Manual

Name
XmContainerRelayout – force relayout of a Container widget.

Synopsis

#include <Xm/Container.h>

void XmContainerRelayout (Widget container)

Inputs
container Specifies a Container widget.

Availability
Motif 2.0 and later.

Description
XmContainerRelayout () forces the container widget to recalculate the lay-
out of all Container items.

Usage
XmContainerRelayout () is a convenience routine that recalculates the grid
layout of a Container. The function has no effect if the widget is not realized, if
XmNlayoutType is not XmSPATIAL, or if XmNspatialStyle is XmNONE.

The function does not cause geometry management effects when performing the
relayout, although the Container window is completely cleared and redrawn if
the widget is realized.

XmContainerRelayout () utilizes the place_item method of the Container
widget class. If this is NULL in any derived class, XmContainerRelayout ()
will have no effect upon the layout of Container items.

See Also
XmContainerCut (1), XmContainerCopy (1),
XmContainerCopyLink (1), XmContainerGetItemChildren (1),
XmContainerPaste (1), XmContainerPasteLink (1),
XmContainerReorder (1), XmContainer (2).

Motif Functions and Macros XmContainerReorder

Motif Reference Manual 65

Name
XmContainerReorder – reorder children of a Container.

Synopsis

#include <Xm/Container.h>

void XmContainerReorder (Widget container, WidgetList item_list, int
item_count)

Inputs
container Specifies a Container widget.
item_list Specifies a list of Container child widgets.
item_count Specifies the number of widgets in item_list.

Availability
Motif 2.0 and later.

Description
XmContainerReorder () reorders an item_list set of items of a Container.
item_count is the number of items within the item_list array.

Usage
XmContainerReorder () is a convenience routine that reorders Container
items according to the value of the XmNpositionIndex constraint resource of
each item, using a quicksort algorithm. If the XmNlayoutType is XmOUTLINE
or XmDETAIL, the Container will subsequently relayout all the items within the
widget.

Neither relayout nor reorder is performed if item_count is less than or equal to 1;
there is no error checking performed on item_list to compare it with NULL, or to
ensure that it matches the number of items specified by item_count.

See Also
XmContainerCut (1), XmContainerCopy (1),
XmContainerCopyLink (1), XmContainerGetItemChildren (1),
XmContainerPaste (1), XmContainerPasteLink (1),
XmContainerRelayout (1), XmContainer (1).

XmConvertStringToUnits Motif Functions and Macros

66 Motif Reference Manual

Name
XmConvertStringToUnits – convert a string to an integer, optionally translating
the units.

Synopsis

int XmConvertStringToUnits (Screen *screen,
String spec,
int orientation,
int unit_type,
XtEnum *error_return)

Inputs
screen Specifies a pointer to the screen structure.
spec Specifies a value to be converted.
orientation Specifies whether to use horizontal or vertical screen reso-

lution. Pass either XmHORIZONTAL or XmVERTI-
CAL.

unit_type The units required for the result.

Outputs
error_return Returns the error status of the conversion.

Returns
The converted value.

Availability
Motif 2.0 and later.

Description
XmConvertStringToUnits () converts a string spec into an integer. The
conversion of spec is into the units specified by unit_type. Resolution for the con-
version is determined from the screen, and orientation determines whether the
horizontal or vertical screen resolution is used. The converted value is returned
by the function. The error_return parameter is set by the function to indicate any
error in the conversion process.

Usage
XmConvertStringToUnits () converts a string into an integer, translating
the units of the original string into those specified by unit_type. If the screen is
NULL, or if orientation is an invalid value, or if an invalid unit_type is supplied,
or if the string spec is not parsable, the function returns 0 (zero), and error_return
is set True. Otherwise, error_return is set False, and the function returns the con-
verted value.

The string spec is assumed to be in the following format:

Motif Functions and Macros XmConvertStringToUnits

Motif Reference Manual 67

<float> <unit>

where <float> is a floating point number. The <unit> specification is optional: if
omitted, the default unit of XmPIXELS is used. Otherwise, <unit> is one of the
following strings:

pix pixel pixels
in inch inches
cm centimeter centimeters
mm millimeter millimeters
pt point points
fu font_unit font_units

Structures
The possible values for unit_type are:

XmPIXELS XmCENTIMETERS XmMILLIME-
TERS
Xm100TH_MILLIMETERS XmINCHES
Xm1000TH_INCHES
XmPOINTS Xm100TH_POINTS
XmFONT_UNITS
Xm100TH_FONT_UNITS

Example
The following are valid string specifications:

3.1415926 pix
-3.1 pt
6.3
0.3 font_units
1

See Also
XmConvertUnits (1), XmScreen (2).

XmConvertUnits Motif Functions and Macros

68 Motif Reference Manual

Name
XmConvertUnits – convert a value to a specified unit type.

Synopsis

int XmConvertUnits (Widget widget,
int orientation,
int from_unit_type,
int from_value,
int to_unit_type)

Inputs
widget Specifies the widget for which to convert the data.
orientation Specifies the screen orientation that is used in the conver-

sion. Pass either XmHORIZONTAL or XmVERTICAL.
from_unit_type Specifies the unit type of the value that is being converted.
from_value Specifies the value that is being converted.
to_unit_type Specifies the new unit type of the value.

Returns
The converted value or 0 (zero) if the input parameters are not specified correctly.

Description
XmConvertUnits () converts the value specified in from_value into the equiva-
lent value in a different unit of measurement. This function returns the resulting
value if successful; it returns 0 (zero) if widget is NULL or if incorrect values are
supplied for orientation or conversion unit arguments. orientation matters only
when conversion values are font units, which are measured differently in the hor-
izontal and vertical dimensions.

Usage
XmConvertUnits () allows an application to manipulate resolution-independ-
ent values. XmPIXELS specifies a normal pixel value,
Xm100TH_MILLIMETERS specifies a value in terms of 1/100 of a millimeter,
Xm1000TH_INCHES specifies a value in terms of 1/1000 of an inch,
Xm100TH_POINTS specifies a value in terms of 1/100 of a point (1/72 of an
inch), and Xm100TH_FONT_UNITS specifies a value in terms of 1/100 of a font
unit. A font unit has horizontal and vertical components which are specified by
the XmScreen resources XmNhorizontalFontUnit and XmNverticalFontUnit.

Structures
The possible values for from_unit_type and to_unit_type are:

XmPIXELS XmCENTIMETERS
XmMILLIMETERS Xm100TH_MILLIMETERS
XmINCHES Xm1000TH_INCHES

Motif Functions and Macros XmConvertUnits

Motif Reference Manual 69

XmPOINTS Xm100TH_POINTS
XmFONT_UNITS Xm100TH_FONT_UNITS

The values XmPOINTS, XmINCHES, XmCENTIMETERS, XmFONT_UNITS,
and XmMILLIMETERS are available in Motif 2.0 and later.

See Also
XmSetFontUnits (1), XmScreen (2).

XmCreate<Emphasis>Object<Default Para Font> Motif Functions and Macros

70 Motif Reference Manual

Name
XmCreateObject – create an instance of a particular widget class or compound
object.

Synopsis

Simple Widgets
#include <Xm/ArrowB.h>
Widget XmCreateArrowButton (Widget parent, char *name, ArgList argv, Car-
dinal argc)

#include <Xm/ArrowBG.h>
Widget XmCreateArrowButtonGadget (Widget parent, char *name, ArgList
argv, Cardinal argc)

#include <Xm/BulletinB.h>
Widget XmCreateBulletinBoard (Widget parent, char *name, ArgList argv, Car-
dinal argc)

#include <Xm/CascadeB.h>
Widget XmCreateCascadeButton (Widget parent, char *name, ArgList argv,
Cardinal argc)

#include <Xm/CascadeBG.h>
Widget XmCreateCascadeButtonGadget (Widget parent, char *name, ArgList
argv, Cardinal argc)

#include <Xm/Command.h>
Widget XmCreateCommand (Widget parent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/ComboBox.h>
Widget XmCreateComboBox (Widget parent, char *name, ArgList argv, Cardi-
nal argc)
Widget XmCreateDropDownComboBox (Widget parent, char *name, ArgList
argv, Cardinal argc)
Widget XmCreateDropDownList (Widget parent, char *name, ArgList argv, Car-
dinal argc)

#include <Xm/Container.h>
Widget XmCreateContainer (Widget parent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/DialogS.h>
Widget XmCreateDialogShell (Widget parent, char *name, ArgList argv, Cardi-
nal argc)

Motif Functions and Macros XmCreate<Emphasis>Object<Default Para Font>

Motif Reference Manual 71

#include <Xm/DragIcon.h>
Widget XmCreateDragIcon (Widget parent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/DrawingA.h>
Widget XmCreateDrawingArea (Widget parent, char *name, ArgList argv, Car-
dinal argc)

#include <Xm/DrawnB.h>
Widget XmCreateDrawnButton (Widget parent, char *name, ArgList argv, Car-
dinal argc)

#include <Xm/FileSB.h>
Widget XmCreateFileSelectionBox (Widget parent, char *name, ArgList argv,
Cardinal argc)

#include <Xm/Form.h>
Widget XmCreateForm (Widget parent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/Frame.h>
Widget XmCreateFrame (Widget parent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/GrabShell.h>
Widget XmCreateGrabShell (Widget parent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/IconG.h>
Widget XmCreateIconGadget (Widget parent, char *name, ArgList argv, Cardi-
nal argc)

#include <Xm/Label.h>
Widget XmCreateLabel (Widget parent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/LabelG.h>
Widget XmCreateLabelGadget (Widget parent, char *name, ArgList argv, Cardi-
nal argc)

#include <Xm/List.h>
Widget XmCreateList (Widget parent, char *name, ArgList argv, Cardinal argc)

#include <Xm/MainW.h>
Widget XmCreateMainWindow (Widget parent, char *name, ArgList argv, Car-
dinal argc)

#include <Xm/MenuShell.h>

XmCreate<Emphasis>Object<Default Para Font> Motif Functions and Macros

72 Motif Reference Manual

Widget XmCreateMenuShell (Widget parent, char *name, ArgList argv, Cardi-
nal argc)

#include <Xm/MessageB.h>
Widget XmCreateMessageBox (Widget parent, char *name, ArgList argv, Cardi-
nal argc)

#include <Xm/Notebook.h>
Widget XmCreateNotebook (Widget parent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/PanedW.h>
Widget XmCreatePanedWindow (Widget parent, char *name, ArgList argv, Car-
dinal argc)

#include <Xm/PushB.h>
Widget XmCreatePushButton (Widget parent, char *name, ArgList argv, Cardi-
nal argc)

#include <Xm/PushBG.h>
Widget XmCreatePushButtonGadget (Widget parent, char *name, ArgList argv,
Cardinal argc)

#include <Xm/RowColumn.h>
Widget XmCreateRowColumn (Widget parent, char *name, ArgList argv, Cardi-
nal argc)
Widget XmCreateRadioBox (Widget parent, char *name, ArgList argv, Cardinal
argc)
Widget XmCreateWorkArea (Widget parent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/Scale.h>
Widget XmCreateScale (Widget parent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/ScrollBar.h>
Widget XmCreateScrollBar (Widget parent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/ScrolledW.h>
Widget XmCreateScrolledWindow (Widget parent, char *name, ArgList argv,
Cardinal argc)

#include <Xm/SelectioB.h>
Widget XmCreateSelectionBox (Widget parent, char *name, ArgList argv, Car-
dinal argc)

Motif Functions and Macros XmCreate<Emphasis>Object<Default Para Font>

Motif Reference Manual 73

#include <Xm/Separator.h>
Widget XmCreateSeparator (Widget parent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/SeparatoG.h>
Widget XmCreateSeparatorGadget (Widget parent, char *name, ArgList argv,
Cardinal argc)

#include <Xm/SSpinB.h>
Widget XmCreateSimpleSpinBox (Widget parent, char *name, ArgList argv,
Cardinal argc)

#include <Xm/SpinB.h>
Widget XmCreateSpinBox (Widget parent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/Text.h>
Widget XmCreateText (Widget parent, char *name, ArgList argv, Cardinal argc)

#include <Xm/TextF.h>
Widget XmCreateTextField (Widget parent, char *name, ArgList argv, Cardinal
argc)

#include <Xm/ToggleB.h>
Widget XmCreateToggleButton (Widget parent, char *name, ArgList argv, Car-
dinal argc)

#include <Xm/ToggleBG.h>
Widget XmCreateToggleButtonGadget (Widget parent, char *name, ArgList
argv, Cardinal argc)

Dialog Objects
#include <Xm/BulletinB.h>
Widget XmCreateBulletinBoardDialog (Widget parent, char *name, ArgList
argv, Cardinal argc)

#include <Xm/FileSB.h>
Widget XmCreateFileSelectionDialog (Widget parent, char *name, ArgList argv,
Cardinal argc)

#include <Xm/Form.h>
Widget XmCreateFormDialog (Widget parent, char *name, ArgList argv, Cardi-
nal argc)

#include <Xm/MessageB.h>
Widget XmCreateErrorDialog (Widget parent, char *name, ArgList argv, Cardi-
nal argc)

XmCreate<Emphasis>Object<Default Para Font> Motif Functions and Macros

74 Motif Reference Manual

Widget XmCreateInformationDialog (Widget parent, char *name, ArgList argv,
Cardinal argc)
Widget XmCreateMessageDialog (Widget parent, char *name, ArgList argv,
Cardinal argc)
Widget XmCreateQuestionDialog (Widget parent, char *name, ArgList argv,
Cardinal argc)
Widget XmCreateTemplateDialog (Widget parent, char *name, ArgList argv,
Cardinal argc)
Widget XmCreateWarningDialog (Widget parent, char *name, ArgList argv,
Cardinal argc)
Widget XmCreateWorkingDialog (Widget parent, char *name, ArgList argv,
Cardinal argc)

#include <Xm/SelectioB.h>
Widget XmCreatePromptDialog (Widget parent, char *name, ArgList argv, Car-
dinal argc)
Widget XmCreateSelectionDialog (Widget parent, char *name, ArgList argv,
Cardinal argc)

#include <Xm/Command.h>
Widget XmCreateCommandDialog (Widget parent, char *name, ArgList argv,
Cardinal argc)

Menu Objects
#include <Xm/RowColumn.h>
Widget XmCreateMenuBar (Widget parent, char *name, ArgList argv, Cardinal
argc)
Widget XmCreateOptionMenu (Widget parent, char *name, ArgList argv, Cardi-
nal argc)
Widget XmCreatePopupMenu (Widget parent, char *name, ArgList argv, Cardi-
nal argc)
Widget XmCreatePulldownMenu (Widget parent, char *name, ArgList argv,
Cardinal argc)

Simple Menu Objects
#include <Xm/Xm.h>
Widget XmCreateSimpleCheckBox (Widget parent, char *name, ArgList argv,
Cardinal argc)
Widget XmCreateSimpleMenuBar (Widget parent, char *name, ArgList argv,
Cardinal argc)
Widget XmCreateSimpleOptionMenu (Widget parent, char *name, ArgList argv,
Cardinal argc)
Widget XmCreateSimplePopupMenu (Widget parent, char *name, ArgList argv,
Cardinal argc)

Motif Functions and Macros XmCreate<Emphasis>Object<Default Para Font>

Motif Reference Manual 75

Widget XmCreateSimplePulldownMenu (Widget parent, char *name, ArgList
argv, Cardinal argc)
Widget XmCreateSimpleRadioBox (Widget parent, char *name, ArgList argv,
Cardinal argc)

Scrolled Objects
#include <Xm/List.h>
Widget XmCreateScrolledList (Widget parent, char *name, ArgList argv, Cardi-
nal argc)

#include <Xm/Text.h>
Widget XmCreateScrolledText (Widget parent, char *name, ArgList argv, Cardi-
nal argc)

Inputs
parent Specifies the widget ID of the parent of the new widget.
name Specifies the string name of the new widget for resource lookup.
argv Specifies the resource name/value pairs used in creating the
widget.
argc Specifies the number of name/value pairs in argv.

Returns
The simple widget creation routines return the widget ID of the widget that is
created. The dialog creation routines return the widget ID of the widget that is
created as a child of the DialogShell. The menu creation routines return the
widget ID of the RowColumn widget that is created. The scrolled object creation
routines return the widget ID of the List or Text widget.

Availability
XmCreateDragIcon () and XmCreateTemplateDialog () are only avail-
able in Motif 1.2 and later.

XmCreateGrabShell (), XmCreateIconGadget (), XmCreateCom-
boBox (),
XmCreateDropDownComboBox (), XmCreateDropDownList (), XmCre-
ateNotebook (), XmCreateContainer (), and XmCreateSpinBox () are
available from Motif 2.0 onwards.

XmCreateSimpleSpinBox () is available from Motif 2.1 and onwards.

Description
The XmCreate *() routines are convenience routines for creating an instance of
a particular widget class or a particular compound object. Each creation routine
takes the same four arguments: the parent’s widget ID, the name of the new
widget, a list of resource name/value pairs, and the number of name/value pairs.

XmCreate<Emphasis>Object<Default Para Font> Motif Functions and Macros

76 Motif Reference Manual

The simple creation routines create a single widget with the default resource set-
tings for the widget class, except for XmCreateRadioBox () and XmCreate-
WorkArea (), which create specially configured RowColumn widgets.

The dialog creation routines are convenience routines for creating a particular
unmanaged widget as a child of a DialogShell. The parent argument specifies
the parent of the DialogShell and name specifies the string name of the particular
widget that is created. The name of the DialogShell is the string that results from
appending "_popup" to the name of the widget. The routines return the widget ID
of the widget that is created as the child of the DialogShell.

The menu creation routines are convenience routines for creating particular types
of menu objects. Each routine creates a RowColumn widget with specific
resource settings that configure the widget to operate as the particular type of
menu. XmCreatePopupMenu () and XmCreatePulldownMenu () create
the RowColumn widget as the child of a MenuShell.

Except for XmCreateSimpleSpinBox (), the simple menu creation routines
are convenience routines for creating particular configurations of RowColumn
widgets and their children. For example, XmCreateSimpleCheckBox () cre-
ates a CheckBox with ToggleButtonGadgets as its children.

XmCreateScrolledList () and XmCreateScrolledText () are conven-
ience routines that create a List or Text widget as the child of a ScrolledWindow.
The parent argument specifies the parent of the ScrolledWindow and name spec-
ifies the string name of the List or Text widget. The name of the ScrolledWindow
is the string that results from appending "SW" to the name of the widget. The
routines return the widget ID of the List or Text widget.

Usage
Each widget or compound object that can be created with an XmCreate *() rou-
tine can also be created using XtCreateWidget (). The simple Motif creation
routines are simply veneers to XtCreateWidget (). The rest of the Motif cre-
ation routines create multiple widgets and/or set specific widget resources. In
order to use XtCreateWidget () to create these objects, you need to have a
complete understanding of the compound object that you are trying to create. For
more information on each widget and compound object that can be created, see
the appropriate manual page in Section 2, Motif and Xt Widget Classes.

Motif Functions and Macros XmCreate<Emphasis>Object<Default Para Font>

Motif Reference Manual 77

See Also
XmArrowButtonGadget(2), XmArrowButton(2),
XmBulletinBoardDialog(2), XmBulletinBoard(2),
XmCascadeButtonGadget(2), XmCascadeButton(2),
XmCheckBox(2), XmComboBox(2), XmCommand(2),
XmCommandDialog(2), XmContainer(2), XmDialogShell(2),
XmDragIcon(2), XmDrawingArea(2), XmDrawnButton(2),
XmErrorDialog(2), XmFileSelectionBox(2),
XmFileSelectionDialog(2), XmFormDialog(2), XmForm(2),
XmFrame(2), XmGrabShell(2), XmIconGadget(2),
XmInformationDialog(2), XmLabelGadget(2), XmLabel(2),
XmList(2), XmMainWindow(2), XmMenuBar(2),
XmMenuShell(2), XmMessageBox(2), XmMessageDialog(2),
XmNotebook(2), XmOptionMenu(2), XmPanedWindow(2),
XmPopupMenu(2), XmPromptDialog(2),
XmPulldownMenu(2), XmPushButtonGadget(2)
XmPushButton(2), XmQuestionDialog(2), XmRadioBox(2),
XmRowColumn(2), XmScale(2), XmScrollBar(2),
XmScrolledList(2), XmScrolledText(2),
XmScrolledWindow(2), XmSelectionBox(2),
XmSelectionDialog(2), XmSeparatorGadget(2),
XmSeparator(2), XmSpinBox(2), XmSimpleSpinBox(2),
XmTemplateDialog(2), XmTextField(2), XmText(2),
XmToggleButtonGadget(2), XmToggleButton(2),
XmWarningDialog(2), XmWorkingDialog(2).

XmCvtByteStreamToXmString Motif Functions and Macros

78 Motif Reference Manual

Name
XmCvtByteStreamToXmString – convert a byte stream to a compound string.

Synopsis

XmString XmCvtByteStreamToXmString (unsigned char *property)

Inputs
property Specifies a byte stream.

Returns
An allocated compound string.

Availability
Motif 2.0 and later.

Description
XmCvtByteStreamToXmString () converts a stream of bytes to a compound
string. The function is typically used by the destination of a data transfer opera-
tion.

Usage
XmCvtByteStreamToXmString () converts a compound string in byte
stream format into an XmString. The function allocates storage for the returned
compound string, and it is the responsibility of the programmer to free the allo-
cated memory by calling XmStringFree () at an appropriate point.

See Also
XmCvtXmStringToByteStream (1), XmStringFree (1),

Motif Functions and Macros XmCvtCTToXmString

Motif Reference Manual 79

Name
XmCvtCTToXmString – convert compound text to a compound string.

Synopsis

XmString XmCvtCTToXmString (char *text)

Inputs
text Specifies the compound text that is to be converted.

Returns
The converted compound string.

Description
XmCvtCTToXmString () converts the specified text string from compound text
format, which is an X Consortium Standard defined in Compound Text Encoding,
to a Motif compound string. The routine assumes that the compound text is
NULL-terminated and NULLs within the compound text are handled correctly. If
text contains horizontal tabulation (HT) control characters, the result is unde-
fined. XmCvtCTToXmString () allocates storage for the converted compound
string. The application is responsible for freeing this storage using XmString-
Free().

Usage
Compound text is an encoding that is designed to represent text from any locale.
Compound text strings identify their encoding using embedded escape
sequences. The compound text representation was standardized for X11R4 for
use as a text interchange format for interclient communication. An application
must call XtAppInitialize () before calling XmCvtCTToXmString (). The
conversion of compound text to compound strings is implementation dependent.
XmCvtCTToXmString () is the complement of XmCvtXmStringToCT ().

See Also
XmCvtXmStringToCT (1).

XmCvtStringToUnitType Motif Functions and Macros

80 Motif Reference Manual

Name
XmCvtStringToUnitType – convert a string to a unit-type value.

Synopsis

void XmCvtStringToUnitType (XrmValuePtr args,
Cardinal *num_args,
XrmValue *from_val,
XrmValue *to_val)

Inputs
args Specifies additional XrmValue arguments that are need to perform
the conversion.
num_args Specifies the number of items in args.
from_val Specifies value to convert.

Outputs
to_val Returns the converted value.

Availability
In Motif 1.2, XmCvtStringToUnitType () is obsolete. It has been super-
seded by a new resource converter that uses the RepType facility.

Description
XmCvtStringToUnitType () converts the string specified in from_val to one
of the unit-type values: XmPIXELS, Xm100TH_MILLIMETERS,
Xm1000TH_INCHES, Xm100TH_POINTS, or Xm100TH_FONT_UNITS.
This value is returned in to_val.

Usage
XmCvtStringToUnitType () should not be called directly; it should be
installed as a resource converter using the R3 routine XtAddConverter (). The
routine only needs to be installed if the XmNunitType resource for a widget is
being set in a resource file. In this case, XmCvtStringToUnitType () must be
installed with XtAddConverter () before the widget is created. Use the fol-
lowing call to XtAddConverter () to install the converter:

XtAddConverter (XmRString, XmRUnitType, XmCvtStringToUnitType,
NULL, 0);

In Motif 1.2, the use of XmCvtStringToUnitType () as a resource converter
is obsolete. A new resource converter that uses the RepType facility has replaced
the routine.

See Also
XmGadget(2), XmManager(2), XmPrimitive (2).

Motif Functions and Macros XmCvtTextPropertyToXmStringTable

Motif Reference Manual 81

Name
XmCvtTextPropertyToXmStringTable – convert an XTextProperty to a Com-
pound String Table.

Synopsis

#include <Xm/TxtPropCv.h>

int XmCvtTextPropertyToXmStringTable (Display *display,
XTextProperty *text_prop,
XmStringTable

*str_table_return,
int *count_return)

Inputs
display Specifies the connection to the X server.
text_prop Specifies a pointer to an XTextProperty structure.

Outputs
str_table_return The XmStringTable array converted from text_prop.
count_return The number of XmStrings in str_table_return.

Returns
Success if the conversion succeeded, XLocaleNotSupported if the current locale
is unsupported, XConverterNotFound if no converter is available in the current
locale.

Availability
Motif 2.0 and later.

Description
XmCvtTextPropertyToXmStringTable () converts the data specified
within text_prop into an array of XmStrings, returned through str_table_return.
The number of XmStrings in the array is returned in count_return.

Usage
The XmCvtTextPropertyToXmStringTable () function converts data
specified within an XTextProperty structure into an XmStringTable. The data to
be converted is the value member of text_prop, where value is an array of bytes,
consisting of a series of concatenated items, each NULL separated. The number
of such items is given by the nitems member of text_prop. The last item is termi-
nated by two NULL bytes. The interpretation of each item depends upon the
encoding member of text_prop.

If the encoding member of text_prop is COMPOUND_TEXT, the data is con-
verted using the function XmCvtCTToXmString (). If encoding is
COMPOUND_STRING, the data is converted using the function XmCvt-

XmCvtTextPropertyToXmStringTable Motif Functions and Macros

82 Motif Reference Manual

ByteStreamToXmString (). Conversion requires that a converter has been
registered for the current locale, otherwise the function returns XConverterNot-
Found. If encoding is XA_STRING, each returned XmString is converted
through XmStringGenerate () with a tag of "ISO8859-1" and a text type of
XmCHARSET_TEXT. If encoding is that of the current locale, each returned
XmString is converted through XmStringGenerate () with a tag of
_MOTIF_DEFAULT_LOCALE, and a text type of XmMULTIBYTE_TEXT. For
other values of encoding, the function returns XLocaleNotSupported.

XmCvtTextPropertyToXmStringTable () returns allocated storage, and
it is the responsibility of the programmer to free the utilized memory at an appro-
priate point by freeing each element of the array through XmStringFree (),
and subsequently the array itself through XtFree ().

Structures
The XTextProperty structure is defined in <X11/Xutil.h> as follows:

typedef struct {
unsigned char *value; /* same as Property routines */
Atom encoding; /* the property type */
int format; /* property data format: 8, 16, or 32. */
unsigned long nitems; /* number of data items in value */

} XTextProperty;

See Also
XmCvtByteStreamToXmString (1), XmCvtCTToXmString (1),
XmStringFree (1), XmStringGenerate (1).

Motif Functions and Macros XmCvtXmStringTableToTextProperty

Motif Reference Manual 83

Name
XmCvtXmStringTableToTextProperty – convert an XmStringTable to an XText-
Property.

Synopsis

#include <Xm/TxtPropCv.h>

int XmCvtXmStringTableToTextProperty (Display *dis-
play,

XmStringTable
string_table,

int count,
XmICCEncodingStyle style,
XTextProperty

*prop_return)

Inputs
display Specifies the connection to the X server.
string_table Specifies an array of compound strings.
count Specifies the number of compound strings in string_table.
style Specifies the encoding style from which to convert
string_table.

Outputs
prop_return The XTextProperty structure converted from string_table.

Returns
Success if the conversion succeeded, XLocaleNotSupported if the current locale
is unsupported.

Availability
Motif 2.0 and later.

Description
XmCvtXmStringTableToTextProperty () is the inverse function to
XmCvtTextPropertyToXmStringTable (). It converts an array of com-
pound strings, specified by string_table, into the elements of an XTextProperty
structure. The number of compound strings within the string_table is given by
count.

Usage
XmCvtXmStringTableToTextProperty () converts an XmStringTable
into the elements of an XTextProperty structure. The encoding member contains
an Atom representing the requested style. The value member contains a list of the

XmCvtXmStringTableToTextProperty Motif Functions and Macros

84 Motif Reference Manual

converted items, each separated by NULL bytes, and terminated by two NULL
bytes, the nitems member is the number of such items converted.

If style is XmSTYLE_COMPOUND_STRING, encoding is
_MOTIF_COMPOUND_STRING, and value contains a list of XmStrings in
byte stream format.

If style is XmSTYLE_COMPOUND_TEXT, encoding is COMPOUND_TEXT,
and value contains compound text items.

If style is XmSTYLE_LOCALE, encoding is the Atom representing the encoding
for the current locale. value contains items converted into the current locale.

If style is XmSTYLE_STRING, encoding is STRING, and value contains items
converted into ISO8859-1 strings.

If style is XmSTYLE_TEXT, and all the XmStrings in string_table are converti-
ble into the encoding for the current locale, the function behaves as though style
is XmSTYLE_LOCALE. Otherwise, the function behaves as though style is
XmSTYLE_COMPOUND_TEXT.

If style is XmSTYLE_STANDARD_ICC_TEXT, and all the XmStrings in
string_table are convertible as though the style is XmSTYLE_STRING, the func-
tion behaves as though style is indeed XmSTYLE_STRING. Otherwise, the
function behaves as though style is XmSTYLE_COMPOUND_TEXT.

XmCvtXmStringTableToTextProperty () returns XLocaleNotSupported
if the conversion cannot be performed within the current locale, or if style is not
valid. Otherwise, the function returns Success.

Structures
The XTextProperty structure is defined in <X11/Xutil.h> as follows:

typedef struct {
unsigned char *value; /* same as Property routines */
Atom encoding; /* property type */
int format; /* property data format: 8, 16, or 32 */
unsigned long nitems; /* number of data items in value */

} XTextProperty;

The possible values of the XmICCEncodingStyle parameter style are:

XmSTYLE_COMPOUND_STRING
XmSTYLE_COMPOUND_TEXT
XmSTYLE_LOCALE
XmSTYLE_STANDARD_ICC_TEXT
XmSTYLE_STRING
XmSTYLE_TEXT

Motif Functions and Macros XmCvtXmStringTableToTextProperty

Motif Reference Manual 85

See Also
XmCvtByteStreamToXmString (1), XmCvtCTToXmString (1),
XmCvtTextPropertyToStringTable (1), XmStringFree (1),
XmStringGenerate (1).

XmCvtXmStringToByteStream Motif Functions and Macros

86 Motif Reference Manual

Name
XmCvtXmStringToByteStream – convert a compound string to byte stream for-
mat.

Synopsis

unsigned int XmCvtXmStringToByteStream (XmString string, unsigned char
** prop_return)

Inputs
string Specifies the compound string that is to be converted.

Outputs
prop_return The converted compound string in byte stream format.

Returns
The number of bytes in the byte stream.

Availability
Motif 2.0 and later.

Description
XmCvtXmStringToByteStream () converts a compound string string into a
stream of bytes, returning the number of bytes required for the conversion. The
byte stream is returned in prop_return. The function is the inverse of XmCvt-
ByteStreamToXmString ().

Usage
XmCvtXmStringToByteStream () converts an XmString into byte stream
format. If prop_return is not NULL, the function places into prop_return the con-
verted string, and returns its length in bytes. If prop_return is NULL, the number
of bytes is calculated and returned, but no conversion is performed.

XmCvtXmStringToByteStream () returns allocated storage in prop_return,
and it is the responsibility of the programmer to free the utilized memory at an
appropriate point by calling XtFree ().

See Also
XmCvtByteStreamToXmString (1).

Motif Functions and Macros XmCvtXmStringToCT

Motif Reference Manual 87

Name
XmCvtXmStringToCT – convert a compound string to compound text.

Synopsis

char * XmCvtXmStringToCT (XmString string)

Inputs
string Specifies the compound string that is to be converted.

Returns
The converted compound text string.

Description
XmCvtXmStringToCT () converts the specified Motif compound string to a
string in X11 compound text format, which is described in the X Consortium
Standard Compound Text Encoding.

Usage
Compound text is an encoding that is designed to represent text from any locale.
Compound text strings identify their encoding using embedded escape
sequences. The compound text representation was standardized for X11R4 for
use as a text interchange format for interclient communication. XmCvtXm-
StringToCT () is the complement of XmCvtCTToXmString ().

In Motif 1.2 and later, an application must not call XmCvtXmStringToCT ()
until after XtAppInitialize () is called, so that the locale is established cor-
rectly. The routine uses the font list tag of each compound string segment to
select a compound text format for the segment. A mapping between font list tags
and compound text encoding formats is stored in a registry.

If the compound string segment tag is associated with
XmFONTLIST_DEFAULT_TAG in the registry, the converter calls XmbTex-
tListToTextProperty () with the XCompoundTextStyle encoding style and
uses the resulting compound text for the segment. If the compound string seg-
ment tag is mapped to a registered MIT charset, the routine creates the compound
text using the charset as defined in the X Consortium Standard Compound Text
Encoding. If the compound string segment tag is associated with a charset that is
not XmFONTLIST_DEFAULT_TAG or a registered charset, the converter cre-
ates the compound text using the charset and the text as an "extended segment"
with a variable number of octets per character. If the compound string segment
tag is not mapped in the registry, the result depends upon the implementation.

See Also
XmCvtCTToXmString (1), XmMapSegmentEncoding (1),
XmRegisterSegmentEncoding (1).

XmDeactivateProtocol Motif Functions and Macros

88 Motif Reference Manual

Name
XmDeactivateProtocol – deactivate a protocol.

Synopsis

#include <Xm/Protocols.h>

void XmDeactivateProtocol (Widget shell, Atom property, Atom protocol)

Inputs
shell Specifies the widget associated with the protocol property.
property Specifies the property that holds the protocol data.
protocol Specifies the protocol atom.

Description
XmDeactivateProtocol () deactivates the specified protocol without
removing it. If the shell is realized, XmDeactivateProtocol () updates its
protocol handlers and the specified property. A protocol may be active or inac-
tive. If protocol is active, the protocol atom is stored in property; if protocol is
inactive, the protocol atom is not stored in property.

Usage
A protocol is a communication channel between applications. Protocols are sim-
ply atoms, stored in a property on the top-level shell window for the application.
XmDeactivateProtocol () allows a client to temporarily stop participating
in the communication. The inverse routine is XmActivateProtocol ().

See Also
XmActivateProtocol (1), XmDeactivateWMProtocol (1),
XmInternAtom (1), VendorShell (2).

Motif Functions and Macros XmDeactivateWMProtocol

Motif Reference Manual 89

Name
XmDeactivateWMProtocol – deactivate the XA_WM_PROTOCOLS protocol.

Synopsis

#include <Xm/Protocols.h>

void XmDeactivateWMProtocol (Widget shell, Atom protocol)

Inputs
shell Specifies the widget associated with the protocol property.
protocol Specifies the protocol atom.

Description
XmDeactivateWMProtocol () is a convenience routine that calls XmDeac-
tivateProtocol () with property set to XA_WM_PROTOCOL, the window
manager protocol property.

Usage
The property XA_WM_PROTOCOLS is a set of predefined protocols for com-
munication between clients and window managers. XmDeactivateWMPro-
tocol () allows a client to temporarily stop participating in the communication
with the window manager. The inverse routine is XmActivateWMProto-
col ().

See Also
XmActivateWMProtocol (1), XmDeactivateProtocol (1),
XmInternAtom (1), VendorShell (2).

XmDestroyPixmap Motif Functions and Macros

90 Motif Reference Manual

Name
XmDestroyPixmap – remove a pixmap from the pixmap cache.

Synopsis

Boolean XmDestroyPixmap (Screen *screen, Pixmap pixmap)

Inputs
screen Specifies the screen on which the pixmap is located.
pixmap Specifies the pixmap.

Returns
True on success or False if there is no matching pixmap and screen in the cache.

Description
XmDestroyPixmap () removes the specified pixmap from the pixmap cache
when it is no longer needed. A pixmap is not completely freed until there are no
further reference to it.

Usage
The pixmap cache maintains a per-client list of the pixmaps that are in use.
Whenever a pixmap is requested using XmGetPixmap (), an internal reference
counter for the pixmap is incremented. XmDestroyPixmap () decrements this
counter, so that when it reaches 0 (zero), the pixmap is removed from the cache.

See Also
XmGetPixmap (1), XmInstallImage (1), XmUninstallImage (1).

Motif Functions and Macros XmDirectionMatch

Motif Reference Manual 91

Name
XmDirectionMatch – compare two directions.

Synopsis

Boolean XmDirectionMatch (XmDirection dir_1, XmDirection dir_2)

Inputs
dir_1 Specifies a direction.
dir_2 Specifies a direction to compare with dir_1.

Returns
True if the directions match, otherwise False.

Availability
Motif 2.0 and later.

Description
XmDirectionMatch () is a convenience function which compares two direc-
tion values, dir_1 and dir_2, returning True or False, depending upon whether the
values are a logical match for each other.

Usage
An XmDirection consists of three parts: a horizontal component, a vertical com-
ponent, and an order of precedence between each. XmDirection values match if
both the horizontal components and vertical components of each are logically the
same, and the order between the components is the same. If one value does not
have a horizontal component, this always matches the horizontal component of
the other value. Similarly, if one value has no vertical component, the vertical
component in the other value is automatically considered to match. Where a
match is found between the directions, the function returns True, otherwise False.

For example, suppose dir_1 is XmTOP_TO_BOTTOM_LEFT_TO_RIGHT.
This has a vertical component XmTOP_TO_BOTTOM, a horizontal component
XmLEFT_TO_RIGHT, the vertical component being first in the order of prece-
dence. If dir_2 is XmLEFT_TO_RIGHT, this has no vertical component, which
automatically matches the vertical component of dir_1. The horizontal compo-
nents are identical, and therefore the two directions are considered a match (it is
also a match if dir_1 is XmLEFT_TO_RIGHT_TOP_TO_BOTTOM). If dir_2 is
XmRIGHT_TO_LEFT, or XmTOP_TO_BOTTOM_RIGHT_TO_LEFT, no
match is found because the horizontal components differ, and the function returns
False. If dir_2 is XmLEFT_TO_RIGHT_TOP_TO_BOTTOM, the function also
returns False because the horizontal and vertical components, although fully
specified and equal in value, have different orders of precedence.

XmDirectionMatch Motif Functions and Macros

92 Motif Reference Manual

Structures
Valid XmDirection values for each of dir_1 and dir_2 are:

XmLEFT_TO_RIGHT XmRIGHT_TO_LEFT
XmBOTTOM_TO_TOP XmTOP_TO_BOTTOM
XmBOTTOM_TO_TOP_LEFT_TO_RIGHT
XmBOTTOM_TO_TOP_RIGHT_TO_LEFT
XmTOP_TO_BOTTOM_LEFT_TO_RIGHT
XmTOP_TO_BOTTOM_RIGHT_TO_LEFT
XmLEFT_TO_RIGHT_BOTTOM_TO_TOP
XmRIGHT_TO_LEFT_BOTTOM_TO_TOP
XmLEFT_TO_RIGHT_TOP_TO_BOTTOM
XmRIGHT_TO_LEFT_TOP_TO_BOTTOM

See Also
XmDirectionMatchPartial (1),
XmDirectionToStringDirection (1),
XmStringDirectionToDirection (1),

Motif Functions and Macros XmDirectionMatchPartial

Motif Reference Manual 93

Name
XmDirectionMatchPartial – partially compare two directions.

Synopsis

Boolean XmDirectionMatchPartial (XmDirection dir_1, XmDirection dir_2,
XmDirection mask)

Inputs
dir_1 Specifies a direction.
dir_2 Specifies another direction to compare with dir_1.
mask Specifies whether the horizontal component

(XmHORIZONTAL_MASK), vertical component
(XmVERTICAL_MASK), or the order of component precedence
(XmPRECEDENCE_MASK) is compared.

Returns
True if the directions match, otherwise False.

Availability
Motif 2.0 and later.

Description
XmDirectionMatchPartial () is a convenience function which compares
two direction values, dir_1 and dir_2 according to the comparison rule specified
in mask.

Usage
An XmDirection consists of three logical parts: a horizontal component, a verti-
cal component, and an order of precedence between each. The function compares
corresponding logical parts of two XmDirection values. If mask is
XmHORIZONTAL_MASK, the horizontal components of dir_1 and dir_2 are
compared. If mask is XmVERTICAL_MASK, the vertical components are com-
pared. If mask is XmPRECEDENCE_MASK, the order of precedence between
the horizontal and vertical components is compared. If one value does not have a
particular logical part, this always matches the logical part in the second value.
Where a match is found, the function returns True, otherwise False.

For example, suppose dir_1 is XmTOP_TO_BOTTOM_LEFT_TO_RIGHT, and
that dir_2 is XmBOTTOM_TO_TOP_LEFT_TO_RIGHT. If mask is
XmHORIZONTAL_MASK, the two values match because each has an equiva-
lent horizontal component (XmLEFT_TO_RIGHT). If mask is
XmVERTICAL_MASK, there is no match because each has different vertical
components. If mask is XmPRECEDENCE_MASK, the two values are a match
because each has the vertical component before the horizontal.

XmDirectionMatchPartial Motif Functions and Macros

94 Motif Reference Manual

Structures
Valid XmDirection values for each of dir_1 and dir_1 are:

XmLEFT_TO_RIGHT XmRIGHT_TO_LEFT
XmBOTTOM_TO_TOP XmTOP_TO_BOTTOM
XmBOTTOM_TO_TOP_LEFT_TO_RIGHT
XmBOTTOM_TO_TOP_RIGHT_TO_LEFT
XmTOP_TO_BOTTOM_LEFT_TO_RIGHT
XmTOP_TO_BOTTOM_RIGHT_TO_LEFT
XmLEFT_TO_RIGHT_BOTTOM_TO_TOP
XmRIGHT_TO_LEFT_BOTTOM_TO_TOP
XmLEFT_TO_RIGHT_TOP_TO_BOTTOM
XmRIGHT_TO_LEFT_TOP_TO_BOTTOM

See Also
XmDirectionMatch (1), XmDirectionToStringDirection (1),
XmStringDirectionToDirection (1),

Motif Functions and Macros XmDirectionToStringDirection

Motif Reference Manual 95

Name
XmDirectionToStringDirection – convert a direction to a string direction.

Synopsis

XmStringDirection XmDirectionToStringDirection (XmDirection direction)

Inputs
direction Specifies the direction to be converted.

Returns
The equivalent XmStringDirection.

Availability
Motif 2.0 and later.

Description
XmDirectionToStringDirection () converts an XmDirection value spec-
ified by direction into an XmStringDirection value.

Usage
XmDirectionToStringDirection () converts between the XmDirection
and XmStringDirection data types. If direction has a horizontal component, that
component is converted. If the horizontal component is XmLEFT_TO_RIGHT,
the function returns XmSTRING_DIRECTION_LEFT_TO_RIGHT. If the hori-
zontal component is XmRIGHT_TO_LEFT, the function returns
XmSTRING_DIRECTION_RIGHT_TO_LEFT. If direction has no horizontal
component, the function returns XmSTRING_DIRECTION_DEFAULT.

For example, if direction is XmRIGHT_TO_LEFT_TOP_TO_BOTTOM, the
horizontal component is XmRIGHT_TO_LEFT, and the return value is
XmSTRING_DIRECTION_RIGHT_TO_LEFT. If direction is
XmBOTTOM_TO_TOP, the value has only a vertical component, and the func-
tion returns XmSTRING_DIRECTION_DEFAULT.

See Also
XmDirectionMatch (1), XmDirectionMatchPartial (1),
XmStringDirectionToDirection (1).

XmDragCancel Motif Functions and Macros

96 Motif Reference Manual

Name
XmDragCancel – cancel a drag operation.

Synopsis

#include <Xm/DragDrop.h>

void XmDragCancel (Widget dragcontext)

Inputs
dragcontext Specifies the ID of the DragContext object for the drag operation

that is being cancelled.

Description
XmDragCancel () cancels the drag operation that is in progress for the specified
dragcontesxt. If the DragContext has any actions pending, they are terminated.
The routine can only be called by the client that initiated the drag operation.
XmDragCancel () frees the DragContext object associated with the drag opera-
tion.

Usage
XmDragCancel () allows an initiating client to cancel a drag operation if it
decides that the operation should not continue for whatever reason. Calling
XmDragCancel () is equivalent to the user pressing KCancel during the drag.
The XmNdropStartCallback informs the initiating client of the cancellation by
setting the dropAction field to XmDROP_CANCEL. So that it can undo any
drag-under effects under the dynamic protocol, the receiving client gets an
XmCR_DROP_SITE_LEAVE_MESSAGE when the drag is cancelled.

See Also
XmDragStart (1), XmDragContext (2).

Motif Functions and Macros XmDragStart

Motif Reference Manual 97

Name

XmDragStart – start a drag operation.

Synopsis
#include <Xm/DragDrop.h>

Widget XmDragStart (Widget widget, XEvent *event, ArgList arglist, Cardinal
argcount)

Inputs
widget Specifies the widget or gadget that contains the data that is being

dragged.
event Specifies the event that caused the drag operation.
arglist Specifies the resource name/value pairs used in creating the Drag-

Context.
argcount Specifies the number of name/value pairs in arglist.

Returns
The ID of the DragContext object that is created.

Availability
In Motif 2.0 and later, XmDragStart () is subsumed into the Uniform Transfer
Model (UTM). The Motif widget classes do not call XmDragStart () directly,
but install the XmQTtransfer trait to provide data transfer and conversion, and
initiate the drag through UTM mechanisms which calls XmDragStart () inter-
nally.

Description
XmDragStart () starts a drag operation by creating and returning a DragCon-
text object. The DragContext stores information that the toolkit needs to process
a drag transaction. The DragContext object is widget-like, in that it uses
resources to specify its attributes. The toolkit frees the DragContext upon com-
pletion of the drag and drop operation.

The widget argument to XmDragStart () should be the smallest widget that
contains the source data for the drag operation. The event that starts the drag
operation must be a ButtonPress event. The arglist and argcount parameters work
as for any creation routine; any DragContext resources that are not set by the
arguments are retrieved from the resource database or set to their default values.

Usage
Motif supports the drag and drop model of selection actions. In a widget that acts
as a drag source, a user can make a selection and then drag the selection, using
BTransfer, to other widgets that are registered as drop sites. These drop sites can
be in the same application or another application.

XmDragStart Motif Functions and Macros

98 Motif Reference Manual

The Text and TextField widgets, the List widget, and Label and its subclasses are
set up to act as drag sources by the toolkit. In order for another widget to act as a
drag source, it must have a translation for BTransfer. The action routine for the
translation calls XmDragStart (), either directly or indirectly through the UTM,
to initiate the drag and drop operation.

The only DragContext resource that must be specified when XmDragStart () is
called is the XmNconvertProc procedure. This resource specifies a procedure of
type XtConvertSelectionIncrProc that converts the source data to the format(s)
requested by the receiving client. The specification of the other resources, such as
those for operations and drag-over visuals, is optional. For more information
about the DragContext object, see the manual page in Section 2, Motif and Xt
Widget Classes].

Example
The following routines show the use of XmDragStart () in setting up a Scroll-
Bar to function as a drag source. When the ScrollBar is created, the translations
are overridden to invoke StartDrag when BTransfer is pressed. ConvertProc,
which is not shown here, is set up by StartDrag to perform the translation of the
scrollbar data into compound text format.

/*
** XmSCOMPOUND_TEXT is defined in Motif 2.0 and
later
*/
#ifndef XmSCOMPOUND_TEXT
#define XmSCOMPOUND_TEXT "COMPOUND_TEXT"
#endif /* XmSCOMPOUND_TEXT */

/* global variable */
Atom COMPOUND_TEXT;

/* start the drag operation */
static void StartDrag(Widget widget,

XEvent *event,
String *params,
Cardinal *num_params)

{
Arg args[10];
int n = 0;
Atom exportList[1];

exportList[0] = COMPOUND_TEXT;

Motif Functions and Macros XmDragStart

Motif Reference Manual 99

XtSetArg (args[n], XmNexportTargets,
exportList); n++;
XtSetArg (args[n], XmNnumExportTargets, XtNumber
(exportList));
n++;
XtSetArg (args[n], XmNdragOperations,
XmDROP_COPY); n++;
XtSetArg (args[n], XmNconvertProc, ConvertProc);
n++;
XtSetArg (args[n], XmNclientData, widget); n++;

XmDragStart (widget, event, args, n);
}

/* define translations and actions */
static char dragTranslations[] =

"#override <Btn2Down>: StartDrag()";

static XtActionsRec dragActions[] =
{ {"StartDrag", (XtActionProc) StartDrag} };

void main (unsigned int argc, char **argv)
{

Arg args[10];
int n;
Widget top, bboard, scrollbar;
XtAppContext app;
XtTranslations parsed_trans;

XtSetLanguageProc (NULL, (XtLanguageProc) NULL,
NULL);

top = XtAppInitialize (&app, "Drag", NULL, 0,
&argc, argv, NULL, NULL,
0);

COMPOUND_TEXT = XInternAtom (XtDisplay (widget),
XmSCOMPOUND_TEXT,
False);

n = 0;
bboard = XmCreateBulletinBoard (top, "bboard",
args, n);
XtManageChild (bboard);

/* override button two press to start a drag */

XmDragStart Motif Functions and Macros

100 Motif Reference Manual

parsed_trans = XtParseTranslationTable
(dragTranslations);
XtAppAddActions (app, dragActions, XtNumber
(dragActions));

n = 0;
XtSetArg (args[n], XmNtranslations,
parsed_trans); n++;
XtSetArg (args[n], XmNorientation, XmHORIZON-
TAL); n++;
XtSetArg (args[n], XmNwidth, 100); n++;
scrollbar = XmCreateScrollBar (bboard, "scroll-
bar", args, n);
XtManageChild (scrollbar);

XtRealizeWidget (top);
XtAppMainLoop (app);

}

See Also
XmDragCancel (1), XmTransfer (1), XmDragContext (2).

Motif Functions and Macros XmDropSiteConfigureStackingOrder

Motif Reference Manual 101

Name
XmDropSiteConfigureStackingOrder – change the stacking order of a drop site.

Synopsis

#include <Xm/DragDrop.h>

void XmDropSiteConfigureStackingOrder (Widget widget, Widget sibling, Car-
dinal stack_mode)

Inputs
widget Specifies the widget ID associated with the drop site.
sibling Specifies an optional widget ID of a sibling drop site.
stack_mode Specifies the stacking position. Pass either XmABOVE or
XmBELOW.

Description
XmDropSiteConfigureStackingOrder () changes the stacking order of a
drop site relative to its siblings. The routine changes the stacking order of the
drop site associated with the specified widget. The stacking order is changed only
if the drop sites associated with widget and sibling are siblings in both the widget
hierarchy and the drop site hierarchy. The parent of both of the widgets must be
registered as a composite drop site.

If sibling is specified, the stacking order of the drop site is changed relative to the
stack position of the drop site associated with sibling, based on the value of
stack_mode. If stack_mode is XmABOVE, the drop site is positioned just above
the sibling; if stack_mode is XmBELOW, the drop site is positioned just below
the sibling. If sibling is not specified, a stack_mode of XmABOVE causes the

drop site to be placed at the top of the stack, while a stack_mode of XmBELOW1
causes it to be placed at the bottom of the stack.

Usage
A drop site for drag and drop operations can be a composite drop site, which
means that it has children which are also drop sites. The stacking order of the
drop sites controls clipping of drag-under effects during a drag and drop opera-
tion. When drop sites overlap, the drag-under effects of the drop sites lower in the
stacking order are clipped by the drop sites above them, regardless of whether or
not the drop sites are active. You can use XmDropSiteConfigure-
StackingOrder () to modify the stacking order. Use XmDropSiteQueryS-
tackingOrder () to get the current stacking order.

See Also
XmDropSiteQueryStackingOrder(1),
XmDropSiteRegister(1), XmDropSite(2)

1.Erroneously given as BELOW in 1st and 2nd editions.

XmDropSiteEndUpdate Motif Functions and Macros

102 Motif Reference Manual

Name
XmDropSiteEndUpdate – end an update of multiple drop sites.

Synopsis

#include <Xm/DragDrop.h>

void XmDropSiteEndUpdate (Widget widget)

Inputs
widget Specifies any widget in the hierarchy associated with the drop sites
that are to be updated.

Description
XmDropSiteEndUpdate () finishes an update of multiple drop sites. The
widget parameter specifies a widget in the widget hierarchy that contains all of
the widgets associated with the drop sites being updated. The routine uses widget
to identify the shell that contains all of the drop sites.

Usage
XmDropSiteEndUpdate () is used with XmDropSiteStartUpdate () and
XmDropSiteUpdate () to update information about multiple drop sites in the
DropSite registry. XmDropSiteStartUpdate () starts the update processing,
XmDropSiteUpdate () is called multiple times to update information about
different drop sites, and XmDropSiteEndUpdate () completes the processing.
These routines optimize the updating of drop site information. Calls to XmDrop-
SiteStartUpdate () and XmDropSiteEndUpdate () can be nested recur-
sively.

See Also
XmDropSiteStartUpdate (1), XmDropSiteUpdate (1),
XmDropSite (2).

Motif Functions and Macros XmDropSiteQueryStackingOrder

Motif Reference Manual 103

Name
XmDropSiteQueryStackingOrder – get the stacking order of a drop site.

Synopsis

#include <Xm/DragDrop.h>

Status XmDropSiteQueryStackingOrder (Widgetwidget,
Widget *parent_return,
Widget **child_returns,
Cardinal *num_child_returns)

Inputs
widget Specifies the widget ID associated with a composite drop
site.

Outputs
parent_return Returns the widget ID of the parent of the specified
widget.
child_returns Returns a list of the children of widget that are registered
as drop sites.
num_child_returns Returns the number of children in child_returns.

Returns
A non-zero value on success or 0 (zero) on failure.

Description
XmDropSiteQueryStackingOrder () retrieves information about the
stacking order of drop sites. For the specified widget, the routine returns its parent
and a list of its children that are registered as drop sites. The children are returned
in child_returns, which lists the children in the current stacking order, with the
lowest child in the stacking order at the beginning of the list and the top child at
the end of the list. XmDropSiteQueryStackingOrder () allocates storage
for the list of returned children. The application is responsible for managing this
storage, which can be freed using XtFree (). The routine returns a non-zero
value on success or 0 (zero) on failure.

XmDropSiteQueryStackingOrder Motif Functions and Macros

104 Motif Reference Manual

Usage
A drop site for drag and drop operations can be a composite drop site, which
means that it has children which are also drop sites. The stacking order of the
drop sites controls clipping of drag-under effects during a drag and drop opera-
tion. When drop sites overlap, the drag-under effects of the drop sites lower in the
stacking order are clipped by the drop sites above them, regardless of whether or
not the drop sites are active. Use XmDropSiteQueryStackingOrder () to
get the current stacking order for a composite drop site. You can use XmDrop-
SiteConfigureStackingOrder () to modify the stacking order.

Text, TextField, and Container widgets are automatically registered as drop sites
by the Motif toolkit.

See Also
XmDropSiteConfigureStackingOrder (1),
XmDropSiteRegister (1), XmDropSite (2).

Motif Functions and Macros XmDropSiteRegister

Motif Reference Manual 105

Name
XmDropSiteRegister – register a drop site.

Synopsis

#include <Xm/DragDrop.h>

void XmDropSiteRegister (Widget widget, ArgList arglist, Cardinal argcount)

Inputs
widget Specifies the widget ID that is to be associated with the drop site.
arglist Specifies the resource name/value pairs used in registering the drop
site.
argcount Specifies the number of name/value pairs in arglist.

Availability
In Motif 2.0 and later, XmDropSiteRegister () is subsumed into the Uniform
Transfer Model (UTM). The Motif widget classes do not call XmDropSi-
teRegister () directly, but initiate the site through UTM mechanisms which
call XmDropSiteRegister () internally. The callbacks specified by the
XmNdestinationCallback resource of a widget handle the data drop.

Description
XmDropSiteRegister () registers the specified widget as a drop site, which
means the widget has a drop site associated with it in the DropSite registry. Drop
sites are widget-like, in that they use resources to specify their attributes. The
arglist and argcount parameters work as for any creation routine; any drop site
resources that are not set by the arguments are retrieved from the resource data-
base or set to their default values. If the drop site is registered with XmNdrop-
SiteActivity set to XmDROP_SITE_ACTIVE and XmNdropProc set to NULL,
the routine generates a warning message.

Usage
Motif supports the drag and drop model of selection actions. In a widget that acts
as a drag source, a user can make a selection and then drag the selection, using
BTransfer, to other widgets that are registered as drop sites. The DropSite regis-
try stores information about all of the drop sites for a display. Text and TextField
widgets are automatically registered as drop sites when they are created. An
application can register other widgets as drop sites using XmDropSiteRegis-
ter (). Once a widget is registered as a drop site, it can participate in drag and
drop operations. A drop site can be removed from the registry using XmDrop-
SiteUnregister (). When a drop site is removed, the widget no longer partic-
ipates in drag and drop operations.

XmDropSiteRegister Motif Functions and Macros

106 Motif Reference Manual

A drop site for drag and drop operations can be a composite drop site, which
means that it has children which are also drop sites. If the drop site being regis-
tered is a descendant of a widget that has already been registered as a drop site,
the XmNdropSiteType resource of the ancestor must be set to
XmDROP_SITE_COMPOSITE. A composite drop site must be registered as a
drop site before its descendants are registered. The stacking order of the drop
sites controls clipping of drag-under effects during a drag and drop operation.
When drop sites overlap, the drag-under effects of the drop sites lower in the
stacking order are clipped by the drop sites above them, regardless of whether or
not the drop sites are active. When a descendant drop site is registered, it is
stacked above all of its sibling drop sites that have already been registered.

Example
The following routine shows the use of XmDropSiteRegister () to register a
Label widget as a drop site. When a drop operation occurs in the Label, the Han-
dleDrop routine, which is not shown here, handles the drop:

/* global variable */
Atom COMPOUND_TEXT;

void main (unsigned int argc, char **argv)
{

Arg args[10];
int n;
Widget top, bb, label;
XtAppContext app;
Atom importList[1];

XtSetLanguageProc (NULL, (XtLanguageProc) NULL,
NULL);
top = XtAppInitialize (&app, "Drop", NULL, 0,

&argc, argv, NULL, NULL,
0);

n = 0;
bb = XmCreateBulletinBoard (top, "bb", args, n);
XtManageChild (bb);

COMPOUND_TEXT = XInternAtom (XtDisplay (top),
"COMPOUND_TEXT",
False);

n = 0;
label = XmCreateLabel (bb, "Drop Here", args,
n);

Motif Functions and Macros XmDropSiteRegister

Motif Reference Manual 107

XtManageChild (label);

/* register the label as a drop site */
importList[0] = COMPOUND_TEXT;

n = 0;
XtSetArg (args[n], XmNimportTargets,
importList); n++;
XtSetArg (args[n], XmNnumImportTargets, XtNumber
(importList)); n++;
XtSetArg (args[n], XmNdropSiteOperations,
XmDROP_COPY); n++;
XtSetArg (args[n], XmNdropProc, HandleDrop);
n++;
XmDropSiteRegister (label, args, n);

XtRealizeWidget (top);
XtAppMainLoop (app);

}

See Also
XmDropSiteConfigureStackingOrder (1),
XmDropSiteEndUpdate (1), XmDropSiteQueryStackingOrder (1),
XmDropSiteRetrieve (1), XmDropSiteStartUpdate (1),
XmDropSiteUpdate (1), XmDropSiteUnregister (1),
XmTransfer (1), XmDisplay (2), XmDropSite (2), XmScreen (2).

XmDropSiteRetrieve Motif Functions and Macros

108 Motif Reference Manual

Name
XmDropSiteRetrieve – get the resource values for a drop site.

Synopsis

#include <Xm/DragDrop.h>

void XmDropSiteRetrieve (Widget widget, ArgList arglist, Cardinal argcount)

Inputs
widget Specifies the widget ID associated with the drop site.
arglist Specifies the resource name/address pairs that contain the resource

names and addresses into which the resource values are stored.
argcount Specifies the number of name/value pairs in arglist.

Description
XmDropSiteRetrieve () gets the specified resources for the drop site associ-
ated with the specified widget. Drop sites are widget-like, in that they use
resources to specify their attributes. The arglist and argcount parameters work as
for XtGetValues ().

Usage
XmDropSiteRetrieve () can be used to get the current attributes of a drop
site from the DropSite registry. The DropSite registry stores information about all
of the drop sites for a display. An initiating client can also use XmDropSiteR-
etrieve () to retrieve information about the current drop site by passing the
DragContext for the operation to the routine. The initiator can access all of the

drop site resources except XmNdragProc and XmNdropProc1 using this tech-
nique.

See Also
XmDropSiteRegister (1), XmDropSiteUpdate (1), XmDropSite (2).

1.Erroneously given as XmdropProc in 1st and 2nd editions.

Motif Functions and Macros XmDropSiteStartUpdate

Motif Reference Manual 109

Name
XmDropSiteStartUpdate – start an update of multiple drop sites.

Synopsis

#include <Xm/DragDrop.h>

void XmDropSiteStartUpdate (Widget widget)

Inputs
widget Specifies any widget in the hierarchy associated with the drop sites
that are to be updated.

Description
XmDropSiteStartUpdate () begins an update of multiple drop sites. The
widget parameter specifies a widget in the widget hierarchy that contains all of
the widgets associated with the drop sites being updated. The routine uses widget
to identify the shell that contains all of the drop sites.

Usage
XmDropSiteStartUpdate () is used with XmDropSiteUpdate () and
XmDropSiteEndUpdate () to update information about multiple drop sites in
the DropSite registry. XmDropSiteStartUpdate () starts the update process-
ing, XmDropSiteUpdate () is called multiple times to update information
about different drop sites, and XmDropSiteEndUpdate () completes the
processing. These routines optimize the updating of drop site information. Calls
to XmDropSiteStartUpdate () and XmDropSiteEndUpdate () can be
nested recursively.

See Also
XmDropSiteEndUpdate (1), XmDropSiteUpdate (1), XmDropSite (2).

XmDropSiteUnregister Motif Functions and Macros

110 Motif Reference Manual

Name
XmDropSiteUnregister – remove a drop site.

Synopsis

#include <Xm/DragDrop.h>

void XmDropSiteUnregister (Widget widget)

Inputs
widget Specifies the widget ID associated with the drop site.

Description
XmDropSiteUnregister () removes the drop site associated with the speci-
fied widget from the DropSite registry. After the routine is called, the widget can-
not be the receiver in a drag and drop operation. The routine frees all of the
information associated with the drop site.

Usage
Motif supports the drag and drop model of selection actions. In a widget that acts
as a drag source, a user can make a selection and then drag the selection, using
BTransfer, to other widgets that are registered as drop sites. Once a widget is
registered as a drop site with XmDropSiteRegister (), it can participate in
drag and drop operations. Text and TextField widgets are automatically regis-
tered as drop sites when they are created. XmDropSiteUnregister () pro-
vides a way to remove a drop site from the registry, so that the widget no longer
participates in drag and drop operations.

See Also
XmDropSiteRegister (1), XmDropSite (2).

Motif Functions and Macros XmDropSiteUpdate

Motif Reference Manual 111

Name
XmDropSiteUpdate – change the resource values for a drop site.

Synopsis

#include <Xm/DragDrop.h>

void XmDropSiteUpdate (Widget widget, ArgList arglist, Cardinal argcount)

Inputs
widget Specifies the widget ID associated with the drop site.
arglist Specifies the resource name/value pairs used in updating the drop
site.
argcount Specifies the number of name/value pairs in arglist.

Description
XmDropSiteUpdate () changes the resources for the drop site associated with
the specified widget. Drop sites are widget-like, in that they use resources to
specify their attributes. The arglist and argcount parameters work as for XtSet-
Values ().

Usage
XmDropSiteUpdate () can be used by itself to update the attributes of a drop
site. The routine can also be used with XmDropSiteStartUpdate () and
XmDropSiteEndUpdate () to update information about multiple drop sites in
the DropSite registry. XmDropSiteStartUpdate () starts the update
processing, XmDropSiteUpdate () is called multiple times to update informa-
tion about different drop sites, and XmDropSiteEndUpdate () completes the
processing. The DropSite registry stores information about all of the drop sites
for a display. These routines optimize the updating of drop site information by
sending all of the updates at once, rather than processing each one individually.

See Also
XmDropSiteEndUpdate (1), XmDropSiteRegister (1),
XmDropSiteStartUpdate (1), XmDropSiteUnregister (1),
XmDropSite (2).

XmDropTransferAdd Motif Functions and Macros

112 Motif Reference Manual

Name
XmDropTransferAdd – add drop transfer entries to a drop operation.

Synopsis

#include <Xm/DragDrop.h>

void XmDropTransferAdd (Widget drop_transfer,
XmDropTransferEntryRec *transfers,
Cardinal num_transfers)

Inputs
drop_transfer Specifies the ID of the DropTransfer object to which the entries
are being added.
transfers Specifies the additional drop transfer entries.
num_transfer Specifies the number of drop transfer entries in transfers.

Availability
In Motif 2.0 and later, the drag and drop mechanisms are rationalized as part of
the Uniform Transfer Model. Motif widget classes do not call XmDropTrans-
ferAdd () directly, but call XmTransferValue() to transfer data to a destination.
XmTransferValue () calls XmDropTransferAdd () internally as the need
arises.

Description
XmDropTransferAdd () specifies a list of additional drop transfer entries that
are to be processed during a drop operation. The widget argument specifies the
DropTransfer object associated with the drop operation. transfers is an array of
XmDropTransferEntryRec structures that specifies the targets of the additional
drop transfer operations. XmDropTransferAdd () can be used to modify the
DropTransfer object until the last call to the XmNtransferProc is made. After the
last call, the result of modifying the DropTransfer object is undefined.

Usage
The toolkit uses the DropTransfer object to manage the transfer of data from the
drag source to the drop site during a drag and drop operation. XmDropTrans-
ferAdd () provides a way for a drop site to specify additional target formats after
a drop operation has started. The routine adds the entries to the XmNdropTrans-
fers resource. The attributes of a DropTransfer object can also be manipulated
with XtSetValues () and XtGetValues ().

Motif Functions and Macros XmDropTransferAdd

Motif Reference Manual 113

Structures
XmDropTransferEntryRec is defined as follows:

typedef struct {
XtPointer client_data; /* data passed to the transfer proc */
Atom target; /* target format of the transfer */

} XmDropTransferEntryRec, *XmDropTransferEntry;

See Also
XmDropTransferStart (1), XmTransferValue (1),
XmDragContext (2), XmDropTransfer (2).

XmDropTransferStart Motif Functions and Macros

114 Motif Reference Manual

Name
XmDropTransferStart – start a drop operation.

Synopsis

#include <Xm/DragDrop.h>

Widget XmDropTransferStart (Widget widget, ArgList arglist, Cardinal arg-
count)

Inputs
widget Specifies the ID of the DragContext object associated with the
operation.
arglist Specifies the resource name/value pairs used in creating the
DropTransfer.
argcount Specifies the number of name/value pairs in arglist.

Returns
The ID of the DropTransfer object that is created.

Availability
In Motif 2.0 and later, the drag and drop mechanisms are rationalized as part of
the Uniform Transfer Model. XmDropTransferStart () is called on request
internally as the need arises by the destination callback handlers, or through the
XmTransferValue () and XmTransferDone () functions.

Description
XmDropTransferStart () starts a drop operation by creating and returning a
DropTransfer object. The DropTransfer stores information that the toolkit needs
to process a drop transaction. The DropTransfer is widget-like, in that it uses
resources to specify its attributes. The toolkit frees the DropTransfer upon com-
pletion of the drag and drop operation.

The widget argument to XmDropTransferStart () is the DragContext object
associated with the drag operation. The arglist and argcount parameters work as
for any creation routine; any DropTransfer resources that are not set by the argu-
ments are retrieved from the resource database or set to their default values.

Usage
Motif 1.2 supports the drag and drop model of selection actions. In a widget that
acts as a drag source, a user can make a selection and then drag the selection,
using BTransfer, to other widgets that are registered as drop sites. These drop
sites can be in the same application or another application. The toolkit uses the
DropTransfer object to manage the transfer of data from the drag source to the
drop site. XmDropTransferStart() is typically called from within the XmNdrop-
Proc procedure of the drop site.

Motif Functions and Macros XmDropTransferStart

Motif Reference Manual 115

The attributes of a DropTransfer object can be manipulated with XtSetVal-
ues () and XtGetValues () until the last call to the XmNtransferProc proce-
dure is made. You can also use XmDropTransferAdd () to add drop transfer
entries to be processed. After the last call to XmNtransferProc, the result of using
the DropTransfer object is undefined. For more information about the Drop-
Transfer object, see the manual page in Section 2, Motif and Xt Widget Classes.

Example
The following routine shows the use of XmDropTransferStart () in the
HandleDrop routine, which is the XmNdropProc procedure for a Label widget
that is being used as a drop site. The data transfer procedure TransferProc()
which presumably translates the data in the Label into compound text format, is
not shown.

/* global variable */
Atom COMPOUND_TEXT;

static void HandleDrop(Widget widget,
XtPointer client_data,
XtPointer call_data)

{
XmDropProcCallback DropData;
XmDropTransferEntryRec transferEntries[1];
XmDropTransferEntry transferList;
Arg args[10];
int n;

DropData = (XmDropProcCallback) call_data;

n = 0;

if ((DropData->dropAction != XmDROP) ||
(DropData->operation != XmDROP_COPY)) {

XtSetArg (args[n], XmNtransferStatus,
XmTRANSFER_FAILURE);
n++;

}
else {

transferEntries[0].target = COMPOUND_TEXT;
transferEntries[0].client_data = (XtPointer)
widget;
transferList = transferEntries;
XtSetArg (args[n], XmNdropTransfers, trans-
ferEntries); n++;
XtSetArg (args[n], XmNnumDropTransfers,

XmDropTransferStart Motif Functions and Macros

116 Motif Reference Manual

XtNumber (transferEntries)); n++;
XtSetArg (args[n], XmNtransferProc, Transfer-
Proc); n++;

}

 XmDropTransferStart (DropData->dragContext,
args, n);
}

See Also
XmDropTransferAdd (1), XmTransferValue (1), XmTransferDone (1),
XmDragContext (2), XmDropTransfer (2).

Motif Functions and Macros XmFileSelectionBoxGetChild

Motif Reference Manual 117

Name
XmFileSelectionBoxGetChild – get the specified child of a FileSelectionBox
widget.

Synopsis

#include <Xm/FileSB.h>

Widget XmFileSelectionBoxGetChild (Widget widget, unsigned char child)

Inputs
widget Specifies the FileSelectionBox widget.
child Specifies the child of the FileSelectionBox widget. Possible values

are defined below.

Returns
The widget ID of the specified child of the FileSelectionBox.

Availability
From Motif 2.0, XmFileSelectionBoxGetChild () is deprecated code.
XtNameToWidget () is the preferred method of accessing children of the
widget.

Description
XmFileSelectionBoxGetChild () returns the widget ID of the specified
child of the FileSelectionBox widget.

Usage
XmDIALOG_APPLY_BUTTON, XmDIALOG_CANCEL_BUTTON,
XmDIALOG_HELP_BUTTON, and XmDIALOG_OK_BUTTON specify the
action buttons in the widget. XmDIALOG_DEFAULT_BUTTON specifies the
current default button. XmDIALOG_DIR_LIST and
XmDIALOG_DIR_LIST_LABEL specify the directory list and its label, while
XmDIALOG_LIST and XmDIALOG_LIST_LABEL specify the file list and its
label. XmDIALOG_FILTER_LABEL and XmDIALOG_FILTER_TEXT spec-
ify the filter text entry area and its label, while XmDIALOG_TEXT and
XmDIALOG_SELECTION_LABEL specify the file text entry area and its label.
XmDIALOG_SEPARATOR specifies the separator and
XmDIALOG_WORK_AREA specifies any work area child that has been added
to the FileSelectionBox.

In Motif 2.0 and later, if the resource XmNpathMode is
XmPATH_MODE_RELATIVE, the directory pattern specification is displayed in
two text fields, rather than the single filter text entry area. When this is the case,
the pattern is displayed in the original filter text area, and the directory portion is
displayed in an additional text field called DirText. The Label associated with the

XmFileSelectionBoxGetChild Motif Functions and Macros

118 Motif Reference Manual

DirText child is called DirL. No corresponding mask has been defined to access
this extra text field or its Label through XmFileSelectionBoxGetChild ():
XtNameToWidget () should be used to access the DirText widget ID when
required.

For more information on the different children of the FileSelectionBox, see the
manual page in Section 2, Motif and Xt Widget Classes.

Widget Hierarchy

As of Motif 2.0, most Motif composite child fetch routines are marked as depre-
cated. However, since it is not possible to fetch the
XmDIALOG_DEFAULT_BUTTON or XmDIALOG_WORK_AREA children

using a public interface except through XmSelectionBoxGetChild()1, the routine
should not be considered truly deprecated. For consistency with the preferred
new style, when fetching all other child values, consider giving preference to the
Intrinsics routine XtNameToWidget(), passing one of the following names as the
second parameter:

“Apply” (XmDIALOG_APPLY_BUTTON)
“Cancel” (XmDIALOG_CANCEL_BUTTON)
“OK” (XmDIALOG_OK_BUTTON)
“Separator” (XmDIALOG_SEPARATOR)
“Help” (XmDIALOG_HELP_BUTTON)
“Symbol” (XmDIALOG_SYMBOL_LABEL)
“Message” (XmDIALOG_MESSAGE_LABEL)

“*ItemsList”2 (XmDIALOG_LIST)
“Items” (XmDIALOG_LIST_LABEL)
“Selection” (XmDIALOG_SELECTION_LABEL)
“Text” (XmDIALOG_TEXT)

“*DirList“ 3 (XmDIALOG_DIR_LIST)
“Dir“ (XmDIALOG_DIR_LIST_LABEL)
“FilterLabel“ (XmDIALOG_FILTER_LABEL)
“FilterText“ (XmDIALOG_FILTER_TEXT)
“DirL“ (no macro - must use XtNameToWidget()))
“DirText“ (no macro - must use XtNameToWidget())

1.Called internally by XmFileSelectionBoxGetChild().

2.The “*” is important: the Files List is not a direct child of the SelectionBox, but of a ScrolledList.

3.As above; the Directories list is a child of a ScrolledWindow, not the SelectionBox itself.

Motif Functions and Macros XmFileSelectionBoxGetChild

Motif Reference Manual 119

CDE variants of the Motif 2.1 toolkit may support a ComboBox in place of the
Directory Text field (DirText). This is known as “DirComboBox”, and also has

no defined public macro1:

“DirComboBox” (no macro - must use XtNameToWidget())

Structures
The possible values for child are:

XmDIALOG_APPLY_BUTTON XmDIALOG_LIST
XmDIALOG_CANCEL_BUTTON XmDIALOG_LIST_LABEL
XmDIALOG_DEFAULT_BUTTON XmDIALOG_OK_BUTTON
XmDIALOG_DIR_LIST
XmDIALOG_SELECTION_LABEL
XmDIALOG_DIR_LIST_LABEL XmDIALOG_SEPARATOR
XmDIALOG_FILTER_LABEL XmDIALOG_TEXT
XmDIALOG_FILTER_TEXT XmDIALOG_WORK_AREA
XmDIALOG_HELP_BUTTON

See Also
XmFileSelectionBox (2).

1.The ComboBox, containing a List of directories, is enabled if the CDE resource XmNenableFsbPickList is true.

XmFileSelectionDoSearch Motif Functions and Macros

120 Motif Reference Manual

Name
XmFileSelectionDoSearch – start a directory search.

Synopsis

#include <Xm/FileSB.h>

void XmFileSelectionDoSearch (Widget widget, XmString dirmask)

Inputs
widget Specifies the FileSelectionBox widget.
dirmask Specifies the directory mask that is used in the directory search.

Description
XmFileSelectionDoSearch () starts a directory and file search for the
specified FileSelectionBox widget. dirmask is a text pattern that can include
wildcard characters. XmFileSelectionDoSearch () updates the lists of
directories and files that are displayed by the FileSelectionBox. If dirmask is non-
NULL, the routine restricts the search to directories that match the dirmask.

Usage
XmFileSelectionDoSearch ()1 allows you to force a FileSelectionBox to
reinitialize itself, which is useful if you want to set the directory mask directly.

See Also
XmFileSelectionBox (2).

1.Erroneously given as XmFileSelectionBoxDoSearch() in 1st and 2nd editions.

Motif Functions and Macros XmFontListAdd

Motif Reference Manual 121

Name
XmFontListAdd – create a new font list.

Synopsis

XmFontList XmFontListAdd (XmFontList oldlist, XFontStruct *font, XmString-
CharSet charset)

Inputs
oldlist Specifies the font list to which font is added.
font Specifies the font structure.
charset Specifies a tag that identifies the character set for the font.

Returns
The new font list, oldlist if font or charset is NULL, or NULL if oldlist is NULL.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively. To maintain backwards compatibility, the XmFontList is re-implemented
as a render table.

Description
XmFontListAdd () makes a new font list by adding the font structure specified
by font to the old font list. The routine returns the new font list and deallocates
oldlist. charset specifies the character set that is associated with the font. It can
be XmSTRING_DEFAULT_CHARSET, which takes the character set from the
current language environment, but this value may be removed from future ver-
sions of Motif.

XmFontListAdd () searches the font list cache for a font list that matches the
new font list. If the routine finds a matching font list, it returns that font list and
increments its reference count. Otherwise, the routine allocates space for the new
font list and caches it. In either case, the application is responsible for managing
the memory associated with the font list. When the application is done using the
font list, it must be freed using XmFontListFree ().

XmFontListAdd Motif Functions and Macros

122 Motif Reference Manual

Usage
In Motif 1.1 and 1.2, a font list contains entries that describe the fonts that are in
use. In Motif 1.1, each entry associates a font and a character set. In Motif 1.2,
each entry consists of a font or a font set and an associated tag. In Motif 2.0 and
later, the XmFontList is implemented using the XmRenderTable type. XmRendi-
tion objects within a render table represent the font entries. XmFontListAdd ()
returns a reference counted render table.

XmFontListAdd () is retained for compatibility with Motif 1.2 and should not
be used in newer applications.

See Also
XmFontListAppendEntry (1), XmFontListFree (1),
XmRenderTableAddRenditions (1), XmRenditionCreate (1),
XmRendition (2).

Motif Functions and Macros XmFontListAppendEntry

Motif Reference Manual 123

Name
XmFontListAppendEntry – append a font entry to a font list.

Synopsis

XmFontList XmFontListAppendEntry (XmFontList oldlist, XmFontListEntry
entry)

Inputs
oldlist Specifies the font list to which entry is appended.
entry Specifies the font list entry.

Returns
The new font list or oldlist if entry is NULL.

Availability
Motif 1.2 and later. In Motif 2.0 and later, the XmFontList and XmFontListEntry
are obsolete. They are superseded by the XmRenderTable type and the XmRendi-
tion object respectively.

Description
XmFontListAppendEntry () makes a new font list by appending the speci-
fied entry to the old font list. If oldlist is NULL, the routine creates a new font list
that contains the single entry. XmFontListAppendEntry () returns the new
font list and deallocates oldlist. The application is responsible for freeing the font
list entry using XmFontListEntryFree ().

XmFontListAppendEntry () searches the font list cache for a font list that
matches the new font list. If the routine finds a matching font list, it returns that
font list and increments its reference count. Otherwise, the routine allocates
space for the new font list and caches it. In either case, the application is respon-
sible for managing the memory associated with the font list. When the applica-
tion is done using the font list, it should be freed using XmFontListEntryFree().

Usage
In Motif 1.2, a font list contains font list entries, where each entry consists of a
font or font set and an associated tag. Before a font list can be added to a font list,
it has to be created with XmFontListEntryCreate () or XmFontListEn-
tryLoad (). In Motif 2.0 and later, the XmFontList is an alias for the
XmRenderTable type. XmRendition objects within a render table represent the
font entries. XmFontListAppendEntry () returns a reference counted render
table.

XmFontListAppendEntry () is retained for compatibility with Motif 1.2 and
should not be used in newer applications.

XmFontListAppendEntry Motif Functions and Macros

124 Motif Reference Manual

See Also
XmFontListEntryCreate (1), XmFontListEntryFree (1),
XmFontListEntryLoad (1), XmFontListFree (1),
XmFontListRemoveEntry (1), XmRenderTableAddRenditions (1),
XmRenditionCreate (1), XmRendition (2).

Motif Functions and Macros XmFontListCopy

Motif Reference Manual 125

Name
XmFontListCopy – copy a font list.

Synopsis

XmFontList XmFontListCopy (XmFontList fontlist)

Inputs
fontlist Specifies the font list to be copied.

Returns
The new font list or NULL if fontlist is NULL.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListCopy () makes and returns a copy of fontlist.

The routine searches the font list cache for the font list, returns the font list, and
increments its reference count. The application is responsible for managing the
memory associated with the font list. When the application is done using the font
list, it should be freed using XmFontListFree ().

Usage
A font list contains entries that describe the fonts that are in use. In Motif 1.1,
each entry associates a font and a character set. In Motif 1.2, each entry consists
of a font or a font set and an associated tag. In Motif 2.0 and later, the
XmFontList is an alias for the XmRenderTable type. XmRendition objects within
a render table represent the font entries. XmFontListCopy () is a convenience
routine which calls XmRenderTableCopy () to copy and return a reference
counted render table.

XmFontListCopy () makes a correct copy of the font list regardless of the type
of entries in the list.

When a font list is assigned to a widget, the widget makes a copy of the font list,
so it is safe to free the font list. When you retrieve a font list from a widget using
XtGetValues (), you should not alter the font list directly. If you need to make
changes to the font list, use XmFontListCopy () to make a copy of the font list
and then change the copy.

XmFontListCopy () is retained for compatibility with Motif 1.2 and should not
be used in newer applications.

XmFontListCopy Motif Functions and Macros

126 Motif Reference Manual

See Also
XmFontListFree(1), XmRenderTableCopy(1),
XmRenditionCreate(1), XmRendition(2)

Motif Functions and Macros XmFontListCreate

Motif Reference Manual 127

Name
XmFontListCreate – create a font list.

Synopsis

XmFontList XmFontListCreate (XFontStruct *font, XmStringCharSet charset)

Inputs
font Specifies the font structure.
charset Specifies a tag that identifies the character set for the font.

Returns
The new font list or NULL if font or charset is NULL.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListCreate () creates a new font list that contains a single entry with
the specified font and charset. charset specifies the character set that is associated
with the font. It can be XmSTRING_DEFAULT_CHARSET, which takes the
character set from the current language environment, but this value may be
removed from future versions of Motif.

XmFontListCreate () searches the font list cache for a font list that matches
the new font list. If the routine finds a matching font list, it returns that font list
and increments its reference count. Otherwise, the routine allocates space for the
new font list and caches it. In either case, the application is responsible for man-
aging the memory associated with the font list. When the application is done
using the font list, it should be freed using XmFontListFree ().

Usage
A font list contains entries that describe the fonts that are in use. In Motif 1.1,
each entry associates a font and a character set. In Motif 1.2, each entry consists
of a font or a font set and an associated tag. In Motif 2.0 and later, the
XmFontList is an alias for the XmRenderTable type. XmRendition objects within
a render table represent the font entries. XmFontListCreate () is a conven-
ience routine which calls XmRenditionCreate() to create a rendition object for
the font. The rendition object is added to a render table by the XmRenderTab-
leAddRenditions () function. The render table is returned.

XmFontListCreate () is retained for compatibility with Motif 1.2 and should
not be used in newer applications.

XmFontListCreate Motif Functions and Macros

128 Motif Reference Manual

XmFontListCreate () is not multi-thread safe if the application has multiple
application contexts. In Motif 2.1, the function XmFontListCreate_r () is to
be preferred within multi-threaded applications.

Fonts must not be shared between displays in a multi-threaded environment.

See Also
XmFontListAppendEntry (1), XmRenderTableAddRenditions (1),
XmRenditionCreate (1), XmRendition (2).

Motif Functions and Macros XmFontListCreate_r

Motif Reference Manual 129

Name
XmFontListCreate_r – create a font list in a thread-safe manner.

Synopsis

XmFontList XmFontListCreate_r (XFontStruct *font, XmStringCharSet charset,
Widget widget)

Inputs
font Specifies the font structure.
charset Specifies a tag that identifies the character set for the font.
widget Specifies a widget.

Returns
The new font list or NULL if font or charset is NULL.

Availability
Motif 2.1 and later.

Description
XmFontListCreate_r () is identical to XmFontListCreate (), except that
it is multi-thread safe. The additional widget parameter is used to obtain a lock
upon the application context associated with widget. The older routine
XmFontListCreate () is not safe in threaded environments which have multi-
ple application contexts.

Usage
The widget does not need to be the widget which uses font. It must be on the
same display. The sharing of fonts or fontlists across multiple displays is not safe
for multi-threaded applications.

Although the XmFontList is obsolete in Motif 2.0 and later,
XmFontListCreate_r () is provided for backwards compatibility with appli-
cations, using the XmFontList interface, which are intended to run in multi-
threaded environments. XmFontListCreate_r () should not be used in appli-
cations using the newer XmRendition and XmRenderTable interface.

See Also
XmFontListCreate (1), XmRendition (2).

XmFontListEntryCreate Motif Functions and Macros

130 Motif Reference Manual

Name
XmFontListEntryCreate – create a font list entry.

Synopsis

XmFontListEntry XmFontListEntryCreate (char *tag, XmFontType type,
XtPointer font)

Inputs
tag Specifies the tag for the font list entry.
type Specifies the type of the font argument. Pass either

XmFONT_IS_FONT or XmFONT_IS_FONTSET.
font Specifies the font or font set.

Returns
A font list entry.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively. To maintain backwards compatibility, the XmFontList is re-implemented
as a render table.

Description
XmFontListEntryCreate () makes a font list entry that contains the speci-
fied font, which is identified by tag. type indicates whether font specifies an
XFontSet or a pointer to an XFontStruct. tag is a NULL-terminated string that
identifies the font list entry. It can have the value
XmFONTLIST_DEFAULT_TAG, which identifies the default font list entry in a
font list.

XmFontListEntryCreate () allocates space for the new font list entry. The
application is responsible for managing the memory associated with the font list
entry. When the application is done using the font list entry, it should be freed
using XmFontListEntryFree ().

Usage
In Motif 1.2, a font list contains font list entries, where each entry consists of a
font or font set and an associated tag. XmFontListEntryCreate () creates a
font list entry using an XFontStruct returned by XLoadQueryFont () or an
XFontSet returned by XCreateFontSet (). The routine does not copy the font
structure, so the XFontStruct or XFontSet must not be freed until all references to
it have been freed. The font list entry can be added to a font list using
XmFontListAppendEntry ().

Motif Functions and Macros XmFontListEntryCreate

Motif Reference Manual 131

In Motif 2.0 and later, the XmFontList is an alias for the XmRenderTable type.
XmRendition objects within a render table represent the font entries.
XmFontListEntryCreate () returns a rendition object.

XmFontListEntryCreate () is not multi-thread safe if the application has
multiple application contexts. In Motif 2.1, the function
XmFontListEntryCreate_r () is to be preferred within multi-threaded
applications.

Fonts must not be shared between displays in a multi-threaded environment.

XmFontListEntryCreate () is retained for compatibility with Motif 1.2 and
should not be used in newer applications.

Example
The following code fragment shows how to create font list entries using
XmFontListEntryCreate():

Widget toplevel;
XFontStruct *font1, *font2; /* Previously loaded
fonts */
XFontSet fontset3; /* Previously created
font sets */
XmFontListEntry entry1, entry2, entry3;
XmFontList fontlist;

entry1 = XmFontListEntryCreate("tag1", XmFONT_IS_FONT,
font1);
entry2 = XmFontListEntryCreate("tag2", XmFONT_IS_FONT,
font2);
entry3 = XmFontListEntryCreate("tag3",
XmFONT_IS_FONTSET, fontset3);
fontlist = XmFontListAppendEntry (NULL, entry1);
fontlist = XmFontListAppendEntry (fontlist, entry2);
fontlist = XmFontListAppendEntry (fontlist, entry3);

/* Bug in Motif 1.2.1: see XmFontListEntryFree() */
#if ((XmVERSION == 1) && (XmREVISION == 2) &&
(XmUPDATE_LEVEL == 1))

XtFree (entry1);
XtFree (entry2);
XtFree (entry3);

#else /* Motif 1.2.1 */
XmFontListEntryFree (entry1);
XmFontListEntryFree (entry2);

XmFontListEntryCreate Motif Functions and Macros

132 Motif Reference Manual

XmFontListEntryFree (entry3);
#endif /* Motif 1.2.1 */

XtVaCreateManagedWidget ("widget_name", xmLabelWidget-
Class, toplevel, XmNfontList,
fontlist, NULL);

XmFontListFree (fontlist);
...

See Also
XmFontListAppendEntry (1), XmFontListEntryFree (1),
XmFontListEntryCreate_r (1), XmFontListEntryGetFont (1),
XmFontListEntryGetTag (1), XmFontListEntryLoad (1),
XmFontListRemoveEntry (1), XmRenditionCreate (1),
XmRendition (2).

Motif Functions and Macros XmFontListEntryCreate_r

Motif Reference Manual 133

Name
XmFontListEntryCreate_r – create a font list entry in a thread-safe manner.

Synopsis

XmFontListEntry XmFontListEntryCreate_r (char *tag,
XmFontType type,
XtPointer font,
Widget widget)

Inputs
tag Specifies the tag for the font list entry.
type Specifies the type of the font argument. Pass either

XmFONT_IS_FONT or XmFONT_IS_FONTSET.
font Specifies the font or font set.
widget Specifies a widget.

Returns
A font list entry.

Availability
Motif 2.1 and later.

Description
XmFontListEntryCreate_r () is in all respects identical to XmFontLis-
tEntryCreate (), except that XmFontListEntryCreate_r () is provided
for multi-threaded applications: the additional widget parameter is used to obtain
a lock upon an application context. The older routine XmFontListEntry-
Create () is not safe in threaded environments which have multiple application
contexts.

Usage
The widget does not need to be the widget which uses font. It must be on the
same display. The sharing of fonts or fontlists across multiple displays is not safe
for multi-threaded applications.

Although the XmFontList is obsolete in Motif 2.0 and later,
XmFontListEntryCreate_r () is provided for backwards compatibility
with applications, using the XmFontList interface, which are intended to run in
multi-threaded environments. XmFontListEntryCreate_r () should not be
used in applications using the newer XmRendition and XmRenderTable inter-
face.

See Also
XmFontListEntryCreate (1), XmRendition (2).

XmFontListEntryFree Motif Functions and Macros

134 Motif Reference Manual

Name
XmFontListEntryFree – free the memory used by a font list entry.

Synopsis

void XmFontListEntryFree (XmFontListEntry *entry)

Inputs
entry Specifies the address of the font list entry that is to be freed.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListEntryFree () deallocates storage used by the specified font list
entry. The routine does not free the XFontSet or XFontStruct data structure asso-
ciated with the font list entry.

Usage
In Motif 1.2, a font list contains font list entries, where each entry consists of a
font or font set and an associated tag. A font list entry can be created using
XmFontListEntryCreate () or XmFontListEntryLoad () and then
appended to a font list with XmFontListAppendEntry (). Once the entry has
been appended to the necessary font lists, it should be freed using XmFontLis-
tEntryFree ().

In Motif 1.2.1, there is a bug in XmFontListEntryFree () that causes it to
free the font or font set, rather than the font list entry. As a workaround for this
specific version, you can use XtFree () to free the font list entry.

In Motif 2.0 and later, the XmFontList is an alias for the XmRenderTable type.
XmRendition objects within a render table represent the font entries.
XmFontListEntryFree () is a simple convenience routine which calls
XmRenditionFree ().

XmFontListEntryFree () is retained for compatibility with Motif 1.2 and
should not be used in newer applications.

See Also
XmFontListAppendEntry (1), XmFontListEntryCreate (1),
XmFontListEntryLoad (1), XmFontListNextEntry (1),
XmFontListRemoveEntry (1), XmRenditionFree (1),
XmRendition (2).

Motif Functions and Macros XmFontListEntryGetFont

Motif Reference Manual 135

Name
XmFontListEntryGetFont – get the font information from a font list entry.

Synopsis

XtPointer XmFontListEntryGetFont (XmFontListEntry entry, XmFontType
* type_return)

Inputs
entry Specifies the font list entry.

Outputs
type_return Returns the type of the font information that is returned. Valid

types are XmFONT_IS_FONT or XmFONT_IS_FONTSET.

Returns
An XFontSet or a pointer to an XFontStruct.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListEntryGetFont () retrieves the font information for the specified
font list entry. When the font list entry contains a font, type_return is
XmFONT_IS_FONT and the routine returns a pointer to an XFontStruct. When
the font list entry contains a font set, type_return is XmFONT_IS_FONTSET
and the routine returns the XFontSet. The XFontSet or XFontStruct that is
returned is not a copy of the data structure, so it must not be freed by an applica-
tion.

Usage
The XmFontList and XmFontListEntry types are opaque, so if an application
needs to perform any processing on a font list, it has to use special functions to
cycle through the font list entries and retrieve information about them. These rou-
tines use a XmFontContext to maintain an arbitrary position in a font list.
XmFontListEntryGetFont () can be used to get the font structure for a font
list entry once it has been retrieved from the font list using XmFontListNex-
tEntry ().

In Motif 2.0 and later, the XmFontList is an alias for the XmRenderTable type.
XmRendition objects within a render table represent the font entries.
XmFontListEntryGetFont () is a convenience routine which fetches the
XmNfont and XmNfontType values of the rendition object represented by entry.
The values are fetched through the function XmRenditionRetrieve ().

XmFontListEntryGetFont Motif Functions and Macros

136 Motif Reference Manual

type_return is set to the value of the XmNfontType resource, and the function
XmFontListEntryGetFont () returns the value of the XmNfont resource of
the rendition object.

XmFontListEntryGetFont ()1 is retained for compatibility with Motif 1.2
and should not be used in newer applications.

See Also
XmFontListEntryCreate (1), XmFontListEntryGetTag (1),
XmFontListEntryLoad (1), XmFontListNextEntry (1),
XmRenditionRetrieve (1), XmRendition (2).

1.Erroneously given as XmFontListGetFont() in 2nd edition.

Motif Functions and Macros XmFontListEntryGetTag

Motif Reference Manual 137

Name
XmFontListEntryGetTag – get the tag of a font list entry.

Synopsis

char* XmFontListEntryGetTag (XmFontListEntry entry)

Inputs
entry Specifies the font list entry.

Returns
The tag for the font list entry.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListEntryGetTag () retrieves the tag of the specified font list entry.
The routine allocates storage for the tag string; the application is responsible for
freeing the memory using XtFree ().

Usage
The XmFontList and XmFontListEntry types are opaque, so if an application
needs to perform any processing on a font list, it has to use special functions to
cycle through the font list entries and retrieve information about them. These rou-
tines use a XmFontContext to maintain an arbitrary position in a font list.
XmFontListEntryGetTag () can be used to get the tag of a font list entry
once it has been retrieved from the font list using XmFontListNextEntry ().

In Motif 2.0 and later, the XmFontList is an alias for the XmRenderTable type.
XmRendition objects within a render table represent the font entries.
XmFontListEntryGetTag () is a convenience routine which fetches and
returns a copy of the XmNtag value of the rendition object represented by entry.
The value is fetched through the function XmRenditionRetrieve ().

XmFontListEntryGetTag ()1 is retained for compatibility with Motif 1.2
and should not be used in newer applications.

See Also
XmFontListEntryCreate (1), XmFontListEntryGetFont (1),
XmFontListEntryLoad (1), XmFontListNextEntry (1),
XmRenditionRetrieve (1), XmRendition (2).

1.Erroneously given as XmFontListGetTag() in 2nd edition.

XmFontListEntryLoad Motif Functions and Macros

138 Motif Reference Manual

Name
XmFontListEntryLoad – load a font or create a font set and then create a font list
entry.

Synopsis

XmFontListEntry XmFontListEntryLoad (Display *display,
char *font_name,
XmFontType type,
char *tag)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-

play () or XtDisplay ().
font_name Specifies an X Logical Font Description (XLFD) string.
type Specifies the type of font_name. Pass either XmFONT_IS_FONT or

XmFONT_IS_FONTSET.
tag Specifies the tag for the font list entry.

Returns
A font list entry or NULL if the font cannot be found or the font set cannot be
created.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListEntryLoad () either loads a font or creates a font set depending
on the value of type and then creates a font list entry that contains the font data
and the specified tag. font_name is an XLFD string which is parsed as either a
font name or a base font name list. tag is a NULL-terminated string that identifies
the font list entry. It can have the value XmFONTLIST_DEFAULT_TAG, which
identifies the default font list entry in a font list.

If type is set to XmFONT_IS_FONT, the routine uses the XtCvtStringTo-
FontStruct () converter to load the font struct specified by font_name. If the
value of type is XmFONT_IS_FONTSET, XmFontListEntryLoad uses the
XtCvtStringToFontSet () converter to create a font set in the current
locale.

XmFontListEntryLoad () allocates space for the new font list entry. The
application is responsible for managing the memory associated with the font list
entry. When the application is done using the font list entry, it should be freed
using XmFontListEntryFree ().

Motif Functions and Macros XmFontListEntryLoad

Motif Reference Manual 139

Usage
In Motif 1.2, a font list contains font list entries, where each entry consists of a
font or font set and an associated tag. XmFontListEntryLoad () sets up the
font data and creates a font list entry. The font list entry can be added to a font list
using XmFontListAppendEntry ().

In Motif 2.0 and later, the XmFontList is an alias for the XmRenderTable type.
XmRendition objects within a render table represent the font entries.
XmFontListEntryLoad () is a convenience routine which creates and returns
a rendition object whose XmNfontName resource is set to font_name, and XmN-
fontType value is type. The rendition object is created with an XmNloadModel of
XmLOAD_IMMEDIATE.

XmFontListEntryLoad () is retained for compatibility with Motif 1.2 and
should not be used in newer applications.

See Also
XmFontListAppendEntry (1), XmFontListEntryCreate (1),
XmFontListEntryFree (1), XmFontListEntryGetFont (1),
XmFontListEntryGetTag (1), XmFontListRemoveEntry (1),
XmRenditionCreate (1), XmRendition (2).

XmFontListFree Motif Functions and Macros

140 Motif Reference Manual

Name
XmFontListFree – free the memory used by a font list.

Synopsis

void XmFontListFree (XmFontList fontlist)

Inputs
fontlist Specifies the font list that is to be freed.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListFree () deallocates storage used by the specified fontlist. The rou-
tine does not free the XFontSet or XFontStruct data structures associated with the
font list.

Usage

A font list contains entries that describe the fonts that are in use. In Motif 1.1,
each entry associates a font and a character set. In Motif 1.2, each entry consists
of a font or a font set and an associated tag. XmFontListFree () frees the stor-
age used by the font list but does not free the associated font data structures. In
Motif 2.0 and later, the XmFontList is an alias for the XmRenderTable type.
XmRendition objects within a render table represent the font entries.
XmFontListFree () is a convenience function which simply calls
XmRenderTableFree ().

It is important to call XmFontListFree () rather than XtFree () because
Motif caches font lists. A call to XmFontListFree () decrements the reference
count for the font list; the font list is not actually freed until the reference count
reaches 0 (zero).

XmFontListFree () is retained for compatibility with Motif 1.2 and should not
be used in newer applications.

See Also
XmFontListAppendEntry (1), XmFontListCopy (1),
XmFontListEntryFree (1), XmFontListRemoveEntry (1),
XmRenderTableFree (1).

Motif Functions and Macros XmFontListFreeFontContext

Motif Reference Manual 141

Name
XmFontListFreeFontContext – free a font context.

Synopsis

void XmFontListFreeFontContext (XmFontContext context)

Inputs
context Specifies the font list context that is to be freed.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListFreeFontContext () deallocates storage used by the specified
font list context.

Usage
The XmFontList type is opaque, so if an application needs to perform any
processing on a font list, it has to use special functions to cycle through the font
list. These routines use a XmFontContext to maintain an arbitrary position in a
font list. XmFontListFreeFontContext () is the last of the three font con-
text routines that an application should call when processing a font list, as it frees
the font context data structure. An application begins by calling XmFontLis-
tInitFontContext () to create a font context and then makes repeated calls
to XmFontListNextEntry () or XmFontListGetNextFont () to cycle
through the font list.

XmFontListFreeFontContext () is retained for compatibility with Motif
1.2, and should not be used in newer applications.

See Also
XmFontListGetNextFont (1), XmFontListInitFontContext (1),
XmFontListNextEntry (1), XmRenderTableAddRendition (1),
XmRenditionCreate (1), XmRendition (2).

XmFontListGetNextFont Motif Functions and Macros

142 Motif Reference Manual

Name
XmFontListGetNextFont – retrieve information about the next font list element.

Synopsis

Boolean XmFontListGetNextFont (XmFontContext context,
XmStringCharSet *charset,
XFontStruct **font)

Inputs
context Specifies the font context for the font list.

Outputs
charset Returns the tag that identifies the character set for the font.
font Returns the font structure for the current font list element.

Returns
True if the values being returned are valid or False otherwise.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListGetNextFont () returns the character set and font for the next
element of the font list. context is the font context created by XmFontListIn-
itFontContext (). The first call to XmFontListGetNextFont () returns
the first font list element. Repeated calls to XmFontListGetNextFont ()
using the same context access successive font list elements. The routine returns
False when it has reached the end of the font list.

Usage

A font list contains entries that describe the fonts that are in use. In Motif 1.1,
each entry associates a font and a character set. In Motif 1.2, each entry consists
of a font or a font set and an associated tag. In Motif 2.0 and later, the
XmFontList is an alias for the XmRenderTable type. XmRendition objects within
a render table represent the font entries. The XmFontContext is an opaque type
which contains an index into the renditions of a render table.

If the routine is called with a font context that contains a font set, it returns the
first font of the font set.

The XmFontList type is opaque, so if an application needs to perform any
processing on a font list, it has to use special functions to cycle through the font
list. These routines use a XmFontContext to maintain an arbitrary position in a

Motif Functions and Macros XmFontListGetNextFont

Motif Reference Manual 143

font list. XmFontListGetNextFont () cycles through the fonts in a font list.
XmFontListInitFontContext () is called first to create the font context.
When an application is done processing the font list, it should call
XmFontListFreeFontContext () with the same context to free the allo-
cated data.

XmFontListGetNextFont () is retained for compatibility with Motif 1.2,
and should not be used in newer applications.

See Also
XmFontListFreeFontContext (1),
XmFontListInitFontContext (1),
XmFontListNextEntry (1), XmRendition (2).

XmFontListInitFontContext Motif Functions and Macros

144 Motif Reference Manual

Name
XmFontListInitFontContext – create a font context.

Synopsis

Boolean XmFontListInitFontContext (XmFontContext *context, XmFontList
fontlist)

Inputs
fontlist Specifies the font list.

Outputs
context Returns the allocated font context structure.

Returns
True if the font context is allocated or False otherwise.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListInitFontContext () creates a font context for the specified
fontlist. This font context allows an application to access the information that is
stored in the font list. XmFontListInitFontContext () allocates space for
the font context. The application is responsible for managing the memory associ-
ated with the font context. When the application is done using the font context, it
should be freed using XmFontListFreeFontContext ().

Usage
The XmFontList type is opaque, so if an application needs to perform any
processing on a font list, it has to use special functions to cycle through the font
list. These routines use a XmFontContext to maintain an arbitrary position in a
font list. XmFontListInitFontContext () is the first of the three font con-
text routines that an application should call when processing a font list, as it cre-
ates the font context data structure. The context is passed to
XmFontListNextEntry () or XmFontListGetNextFont () to cycle
through the font list. When an application is done processing the font list, it
should call XmFontListFreeFontContext () with the same context to free
the allocated data.

Motif Functions and Macros XmFontListInitFontContext

Motif Reference Manual 145

In Motif 2.0 and later, the XmFontList is an alias for the XmRenderTable type.
XmRendition objects within a render table represent the font entries. The
XmFontContext is an opaque type which contains an index into the renditions of
a render table.

XmFontListInitFontContext () is retained for compatibility with Motif
1.2, and should not be used in newer applications.

See Also
XmFontListFreeFontContext (1), XmFontListGetNextFont (1),
XmFontListInitFontContext (1), XmFontListNextEntry (1),
XmRendition (2).

XmFontListNextEntry Motif Functions and Macros

146 Motif Reference Manual

Name
XmFontListNextEntry – retrieve the next font list entry in a font list.

Synopsis

XmFontListEntry XmFontListNextEntry (XmFontContext context)

Inputs
context Specifies the font context for the font list.

Returns
A font list entry or NULL if the context refers to an invalid entry or if it is at the
end of the font list.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListNextEntry () returns the next font list entry in a font list. con-
text is the font context created by XmFontListInitFontContext (). The
first call to XmFontListNextEntry () returns the first entry in the font list.
Repeated calls to XmFontListNextEntry () using the same context access
successive font list entries. The routine returns NULL when it has reached the
end of the font list.

Usage
In Motif 1.2, a font list contains font list entries, where each entry consists of a
font or font set and an associated tag. In Motif 2.0 and later, the XmFontList is
an alias for the XmRenderTable type. XmRendition objects within a render table
represent the font entries. The XmFontContext is an opaque type which contains
an index into the renditions of a render table.

The XmFontList and XmFontListEntry types are opaque, so if an application
needs to perform any processing on a font list, it has to use special functions to
cycle through the font list entries and retrieve information about them. These rou-
tines use a XmFontContext to maintain an arbitrary position in a font list.
XmFontListInitFontContext () is called first to create the font context.
XmFontListNextEntry () cycles through the font entries in a font list.
XmFontListEntryGetFont () and XmFontListEntryGetTag () access
the information in a font list entry. When an application is done processing the
font list, it should call XmFontListFreeFontContext () with the same con-
text to free the allocated data.

Motif Functions and Macros XmFontListNextEntry

Motif Reference Manual 147

XmFontListNextEntry() is retained for compatibility with Motif 1.2, and should
not be used in newer applications.

See Also
XmFontListEntryFree (1), XmFontListEntryGetFont (1),
XmFontListEntryGetTag (1), XmFontListFreeFontContext (1),
XmFontListInitFontContext (1), XmRendition (2).

XmFontListRemoveEntry Motif Functions and Macros

148 Motif Reference Manual

Name
XmFontListRemoveEntry – remove a font list entry from a font list.

Synopsis

XmFontList XmFontListRemoveEntry (XmFontList oldlist, XmFontListEntry
entry)

Inputs
oldlist Specifies the font list from which entry is removed.
entry Specifies the font list entry.

Returns
The new font list, oldlist if entry is NULL or no entries are removed, or NULL if
oldlist is NULL.

Availability
In Motif 2.0 and later, the XmFontList and XmFontListEntry are obsolete. They
are superseded by the XmRenderTable type and the XmRendition object respec-
tively.

Description
XmFontListRemoveEntry () makes a new font list by removing any entries
in oldlist that match the specified entry. The routine returns the new font list and
deallocates oldlist. XmFontListRemoveEntry () does not deallocate the font
list entry, so the application should free the storage using XmFontListEntry-
Free ().

XmFontListRemoveEntry () searches the font list cache for a font list that
matches the new font list. If the routine finds a matching font list, it returns that
font list and increments its reference count. Otherwise, the routine allocates
space for the new font list and caches it. In either case, the application is respon-
sible for managing the memory associated with the font list. When the applica-
tion is done using the font list, it should be freed using XmFontListFree ().

Usage
In Motif 1.2, a font list contains font list entries, where each entry consists of a
font or font set and an associated tag. In Motif 2.0 and later, the XmFontList is
an alias for the XmRenderTable type. XmRendition objects within a render table
represent the font entries. The XmFontContext is an opaque type which contains
an index into the renditions of a render table.

An application can use XmFontListRemoveEntry () to remove a font list
entry from a font list. If an application needs to process the font list to determine
which entries to remove, it can use XmFontListInitFontContext () and
XmFontListNextEntry () to cycle through the entries in the font list.

Motif Functions and Macros XmFontListRemoveEntry

Motif Reference Manual 149

XmFontListRemoveEntry () is retained for compatibility with Motif 1.2,
and should not be used in newer applications.

See Also
XmFontListAppendEntry (1), XmFontListEntryCreate (1),
XmFontListEntryFree (1), XmFontListEntryLoad (1),
XmFontListFree (1), XmRendition (2).

XmGetAtomName Motif Functions and Macros

150 Motif Reference Manual

Name
XmGetAtomName – get the string representation of an atom.

Synopsis

#include <Xm/AtomMgr.h>

String XmGetAtomName (Display *display, Atom atom)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
atom Specifies the atom for the property name to be returned.

Returns
The string that represents atom.

Availability
In Motif 2.0 and later, XGetAtomName() is preferred.

Description
XmGetAtomName() returns the string that is used to represent a given atom.
This routine works like Xlib’s XGetAtomName() routine, but the Motif routine
provides the added feature of client-side caching. XmGetAtomName() allocates
space for the returned string; the application is responsible for freeing this stor-
age using XtFree () when the atom is no longer needed.

Usage
An Atom is a number that identifies a property. Properties also have string names.
XmGetAtomName() returns the string name specified in the original call to
XmInternAtom () or XInternAtom (), or for predefined atoms, a string ver-
sion of the symbolic constant without the XA_ attached.

In Motif 2.0 and later, XmGetAtomName() is no more than a convenience rou-
tine which calls XGetAtomName(). While XmGetAtomName() is not yet obso-
lete, XGetAtomName() is to be preferred.

See Also
XmInternAtom (1).

Motif Functions and Macros XmGetColorCalculation

Motif Reference Manual 151

Name
XmGetColorCalculation – get the procedure that calculates default colors.

Synopsis

XmColorProc XmGetColorCalculation (void)

Returns
The procedure that calculates default colors.

Description
XmGetColorCalculation () returns the procedure that calculates the default
foreground, top and bottom shadow, and select colors. The procedure calculates
these colors based on the background color that is passed to the procedure.

Usage
Motif widgets rely on the use of shadowed borders to achieve their three-dimen-
sional appearance. The top and bottom shadow colors are lighter and darker
shades of the background color; these colors are reversed to make a component
appear raised out of the screen or recessed into the screen. The select color is a
slightly darker shade of the background color that indicates that a component is
selected. The default foreground color is either black or white, depending on
which color provides the most contrast with the background color. XmGet-
ColorCalculation () returns the procedure that calculates these colors. Use
XmSetColorCalculation () to change the calculation procedure.

In Motif 2.0 and later, color calculation procedures can be specified on a per-
screen basis by specifying a value for the XmScreen object XmNcolorCalcula-
tionProc resource. Where a particular XmScreen does not have an assigned cal-
culator, the procedure specified by XmGetColorCalculation () is used as
the default.

Procedures
The XmColorProc has the following syntax:

typedef void (*XmColorProc) (XColor *bg_color, /* specifies the
background color */

XColor *fg_color, /* returns the fore-
ground color */

XColor *sel_color, /* returns the select
color */

XColor *ts_color, /* returns the top
shadow color */

XColor *bs_color) /* returns the bot-
tom shadow color */

XmGetColorCalculation Motif Functions and Macros

152 Motif Reference Manual

An XmColorProc takes five arguments. The first argument, bg_color, is a pointer
to an XColor structure that specifies the background color. The red, green, blue,
and pixel fields in the structure contain valid values. The rest of the arguments are
pointers to XColor structures for the colors that are to be calculated. The proce-
dure fills in the red, green, and blue fields in these structures.

See Also
XmChangeColor (1), XmGetColors (1), XmSetColorCalculation (1).
XmScreen (2).

Motif Functions and Macros XmGetColors

Motif Reference Manual 153

Name
XmGetColors – update the colors for a widget.

Synopsis

void XmGetColors (Screen *screen,
Colormap color_map,
Pixel background,
Pixel *foreground_return,
Pixel *top_shadow_return,
Pixel *bottom_shadow_return,
Pixel *select_return)

Inputs
screen Specifies the screen for which colors are to be allocated.
color_map Specifies a Colormap from which the colors are allocated.
background Specifies the background from which to calculate allocated
colors.

Outputs
foreground_return Specifies an address into which the foreground Pixel
is returned.
top_shadow_return Specifies an address into which the top shadow Pixel
is returned.
bottom_shadow_return Specifies an address into which the bottom shadow
Pixel is returned.
select_return Specifies an address into which the select Pixel is
returned.

Description
XmGetColors () allocates and returns a set of pixels within a Colormap associ-
ated with a given screen for use as the foreground, top shadow, bottom shadow,
and select colors of a widget. The returned values are calculated based upon a
supplied background.

Usage
XmGetColors () allocates a set of pixels from a colormap. The pixels required
are based upon a supplied background pixel. If any return address is specified as
NULL, the relevant pixel is not allocated. In Motif 1.2 and earlier, pixels are allo-
cated using the current color calculation procedure, which can be specified using
XmSetColorCalculation (). In Motif 2.0 and later, per-screen color calcu-
lation procedures are supported: if the XmNcolorCalculationProc resource of the
XmScreen object associated with screen is not NULL, the procedure specified by
the resource is used to calculate the pixels. Otherwise, the current color calcula-
tion procedure is used.

XmGetColors Motif Functions and Macros

154 Motif Reference Manual

See Also
XmGetColorCalculation (1), XmSetColorCalculation (1).
XmScreen (2).

Motif Functions and Macros XmGetDestination

Motif Reference Manual 155

Name
XmGetDestination – get the current destination widget.

Synopsis

Widget XmGetDestination (Display *display)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().

Returns
The widget ID of the current destination widget or NULL if there is no current
destination widget.

Description
XmGetDestination () returns the widget ID of the current destination widget
for the specified display. The destination widget is usually the widget most
recently changed by a select, edit, insert, or paste operation. XmGetDestina-
tion () identifies the widget that serves as the destination for quick paste opera-
tions and some clipboard routines. This routine returns NULL if there is no
current destination, which occurs when no edit operations have been performed
on a widget.

Usage
XmGetDestination() provides a way for an application to retrieve the widget that
would be acted on by various selection operations, so that the application can do
any necessary processing before the operation occurs.

See Also
XmGetFocusWidget (1), XmGetTabGroup (1).

XmGetDragContext Motif Functions and Macros

156 Motif Reference Manual

Name
XmGetDragContext – get information about a drag and drop operation.

Synopsis

#include <Xm/DragDrop.h>

Widget XmGetDragContext (Widget widget, Time timestamp)

Inputs
widget Specifies a widget on the display where the drag and drop opera-
tion is taking place.
timestamp Specifies a timestamp that identifies a DragContext.

Returns
The ID of the DragContext object or NULL if no active DragContext is found.

Availability
Motif 1.2 and later.

Description
XmGetDragContext () retrieves the DragContext object associated with the
display of the specified widget that is active at the specified timestamp. When
more that one drag operation has been started on a display, a timestamp can
uniquely identify the active DragContext. If the specified timestamp corresponds
to a timestamp processed between the beginning and end of a single drag and
drop operation, XmGetDragContext () returns the DragContext associated
with the operation. If there is no active DragContext for the time-stamp, the rou-
tine returns NULL.

Usage
Motif 1.2 and later supports the drag and drop model of selection actions. Every
drag and drop operation has a DragContext object associated with it that stores
information about the drag operation. Both the initiating and the receiving clients
use information in the DragContext to process the drag transaction. The Drag-
Context object is widget-like, in that it uses resources to specify its attributes.
These resources can be checked using XtGetValues () and modified using
XtSetValues ().

XmGetDragContext () provides a way for an application to retrieve a Drag-
Context object. The application can then use XtGetValues () and XtSet-
Values () to manipulate the DragContext.

See Also
XmDragCancel (1), XmDragStart (1), XmDragContext (2).

Motif Functions and Macros XmGetFocusWidget

Motif Reference Manual 157

Name
XmGetFocusWidget – get the widget that has the keyboard focus.

Synopsis

Widget XmGetFocusWidget (Widget widget)

Inputs
widget Specifies the widget whose hierarchy is to be traversed.

Returns
The widget ID of the widget with the keyboard focus or NULL if no widget has
the focus.

Availability
Motif 1.2 and later.

Description
XmGetFocusWidget () returns the widget ID of the widget that has keyboard
focus in the widget hierarchy that contains the specified widget. The routine
searches the widget hierarchy that contains the specified widget up to the nearest
shell ancestor. XmGetFocusWidget () returns the widget in the hierarchy that
currently has the focus, or the widget that last had the focus when the user navi-
gated to another hierarchy. If no widget in the hierarchy has the focus, the routine
returns NULL.

Usage
XmGetFocusWidget() provides a means of determining the widget that currently
has the keyboard focus, which can be useful if you are trying to control keyboard
navigation in an application.

See Also
XmGetTabGroup (1), XmGetVisibility (1), XmIsTraversable (1),
XmProcessTraversal (1).

XmGetMenuCursor Motif Functions and Macros

158 Motif Reference Manual

Name
XmGetMenuCursor – get the current menu cursor.

Synopsis

Cursor XmGetMenuCursor (Display *display)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().

Returns
The cursor ID for the current menu cursor or None if no cursor has been defined.

Availability
In Motif 1.2 and later, XmGetMenuCursor () is obsolete. It has been super-
seded by getting the Screen resource XmNmenuCursor.

Description
XmGetMenuCursor () returns the cursor ID of the menu cursor currently in use
by the application on the specified display. The routine returns the cursor for the
default screen of the display. If the cursor is not yet defined because the applica-
tion called the routine before any menus were created, then XmGetMenuCursor()
returns the value None.

Usage
The menu cursor is the pointer shape that is used whenever a menu is posted.
This cursor can be different from the normal pointer shape. In Motif 1.2 and later,
the new Screen object has a resource, XmNmenuCursor, that specifies the menu
cursor. XmGetMenuCursor () is retained for compatibility with Motif 1.1 and
should not be used in newer applications.

See Also
XmSetMenuCursor (1), XmScreen (2).

Motif Functions and Macros XmGetPixmap

Motif Reference Manual 159

Name
XmGetPixmap – create and return a pixmap.

Synopsis

Pixmap XmGetPixmap (Screen *screen, char *image_name, Pixel foreground,
Pixel background)

Inputs
screen Specifies the screen on which the pixmap is to be drawn.
image_name Specifies the string name of the image used to make the pixmap.
foreground Specifies the foreground color that is combined with the image
when it is a bitmap.
background Specifies the background color that is combined with the image
when it is a bitmap.

Returns
A pixmap on success or XmUNSPECIFIED_PIXMAP when the specified
image_name cannot be found.

Description
XmGetPixmap () generates a pixmap, stores it in the pixmap cache, and returns
its resource ID. Before the routine actually creates the pixmap, it checks the pix-
map cache for a pixmap that matches the specified image_name, screen, fore-
ground, and background. If a match is found, the reference count for the pixmap
is incremented and the resource ID for the pixmap is returned. If no pixmap is
found, XmGetPixmap () checks the image cache for a image that matches the
specified image_name. If a matching image is found, it is used to create the pix-
map that is returned.

When no matches are found, XmGetPixmap () begins a search for an X10 or
X11 bitmap file, using image_name as the filename. If a file is found, its contents
are read, converted into an image, and cached in the image cache. Then, the
image is used to generate a pixmap that is subsequently cached and returned. The
depth of the pixmap is the default depth of the screen. If image_name specifies a
bitmap, the foreground and background colors are combined with the image. If
no file is found, the routine returns XmUNSPECIFIED_PIXMAP.

Usage
When image_name starts with a slash (/), it specifies a full pathname and
XmGetPixmap () opens the specified file. Otherwise, image_name specifies a
filename which causes XmGetPixmap () to look for the file using a search path.
In Motif 1.2 and earlier, the XBMLANGPATH environment variable specifies the
search path for X bitmap files. In Motif 2.0 and later, the environment variables
XMICONSEARCHPATH and XMICONBMSEARCHPATH specify search

XmGetPixmap Motif Functions and Macros

160 Motif Reference Manual

paths for pixmap files: XMICONSEARCHPATH is used if a color server is run-
ning, XMICONBMSEARCHPATH otherwise, and XBMLANGPATH is used as
a fallback.

The search path can contain the substitution character %B, where image_name is
substituted for %B. The search path can also use the substitution characters
accepted by XtResolvePathname (), where %T is mapped to bitmaps and %S
is mapped to NULL.

If XBMLANGPATH is not set, XmGetPixmap () uses a default search path. If
the XAPPLRESDIR environment variable is set, the routine searches the follow-
ing paths:

%B
$XAPPLRESDIR/%L/bitmaps/%N/%B /usr/lib/X11/%L/bitmaps/%N/
%B
$XAPPLRESDIR/%l_%t/bitmaps/%N/%B /usr/lib/X11/%l_%t/bitmaps/
%N/%B
$XAPPLRESDIR/%l/bitmaps/%N/%B /usr/lib/X11/%l/bitmaps/%N/
%B
$XAPPLRESDIR/bitmaps/%N/%B /usr/lib/X11/bitmaps/%N/%B
$XAPPLRESDIR/%L/bitmaps/%B /usr/lib/X11/%L/bitmaps/%B
$XAPPLRESDIR/%l_%t/bitmaps/%B /usr/lib/X11/%l_%t/bitmaps/
%B
$XAPPLRESDIR/%l/bitmaps/%B /usr/lib/X11/%l/bitmaps/%B
$XAPPLRESDIR/bitmaps/%B /usr/lib/X11/bitmaps/%B

/usr/include/X11/bitmaps/%B
$HOME/bitmaps/%B $HOME/%B

If XAPPLRESDIR is not set, XmGetPixmap () searches the same paths, except
that XAPPLRESDIR is replaced by HOME. These search paths are vendor-
dependent and a vendor may use different directories for /usr/lib/X11 and /usr/
include/X11. In the search paths, the image name is substituted for %B, the
class name of the application is substituted for %N, the language string of the dis-
play is substituted for %L, the language component of the language string is sub-
stituted for %l, and the territory string is substituted for %t.

See Also
XmDestroyPixmap (1), XmGetPixmapByDepth (1),
XmInstallImage (1), XmUninstallImage (1).

Motif Functions and Macros XmGetPixmapByDepth

Motif Reference Manual 161

Name
XmGetPixmapByDepth – create and return a pixmap of the specified depth.

Synopsis

Pixmap XmGetPixmapByDepth (Screen *screen,
char *image_name,
Pixel foreground,
Pixel background,
int depth)

Inputs
screen Specifies the screen on which the pixmap is to be drawn.
image_name Specifies the string name of the image used to make the pixmap.
foreground Specifies the foreground color that is combined with the image
when it is a bitmap.
background Specifies the background color that is combined with the image
when it is a bitmap.
depth Specifies the depth of the pixmap.

Returns
A pixmap on success or XmUNSPECIFIED_PIXMAP when the specified
image_name cannot be found.

Availability
Motif 1.2 and later.

Description
XmGetPixmapByDepth () generates a pixmap, stores it in the pixmap cache,
and returns its resource ID. Before the routine actually creates the pixmap, it
checks the pixmap cache for a pixmap that matches the specified image_name,
screen, foreground, background, and depth. If a match is found, the reference
count for the pixmap is incremented and the resource ID for the pixmap is
returned. If no pixmap is found, XmGetPixmapByDepth () checks the image
cache for a image that matches the specified image_name. If a matching image is
found, it is used to create the pixmap that is returned.

When no matches are found, XmGetPixmapByDepth () begins a search for an
X10 or X11 bitmap file, using image_name as the filename. If a file is found, its
contents are read, converted into an image, and cached in the image cache. Then,
the image is used to generate a pixmap that is subsequently cached and returned.
The depth of the pixmap is the specified depth. If image_name specifies a bitmap,
the foreground and background colors are combined with the image. If no file is
found, the routine returns XmUNSPECIFIED_PIXMAP.

XmGetPixmapByDepth Motif Functions and Macros

162 Motif Reference Manual

Usage
XmGetPixmapByDepth () works just like XmGetPixmap () except that the
depth of the pixmap can be specified. With XmGetPixmap (), the depth of the
returned pixmap is the default depth of the screen. See XmGetPixmap () for an
explanation of the search path that is used to find the image.

See Also
XmDestroyPixmap (1), XmGetPixmap (1), XmInstallImage (1),
XmUninstallImage (1).

Motif Functions and Macros XmGetPostedFromWidget

Motif Reference Manual 163

Name
XmGetPostedFromWidget – get the widget that posted a menu.

Synopsis

#include <Xm/RowColumn.h>

Widget XmGetPostedFromWidget (Widget menu)

Inputs
menu Specifies the menu widget.

Returns
The widget ID of the widget that posted the menu.

Description
XmGetPostedFromWidget () returns the widget from which the specified
menu is posted. The value that is returned depends on the type of menu that is
specified. For a PopupMenu, the routine returns the widget from which menu is
popped up. For a PulldownMenu, the routine returns the RowColumn widget
from which menu is pulled down. For cascading submenus, the returned widget is
the original RowColumn widget at the top of the menu system. For tear-off
menus in Motif 1.2 and later, XmGetPostedFromWidget () returns the widget
from which the menu is torn off.

Usage
If an application uses the same menu in different contexts, it can use XmGet-
PostedFromWidget () in an activate callback to determine the context in
which the menu callback should be interpreted.

See Also
XmRowColumn(2), XmPopupMenu(2), XmPulldownMenu (2).

XmGetScaledPixmap Motif Functions and Macros

164 Motif Reference Manual

Name
XmGetScaledPixmap – create and return a scaled pixmap.

Synopsis

Pixmap XmGetScaledPixmap (Widget widget,
char *image_name,
Pixel foreground,
Pixel background,
int depth,
double scaling_ratio)

Inputs
widget Specifies a widget.
image_name Specifies the string name of the image used to make the pix-
map.
foreground Specifies the foreground color that is combined with the image
when it is a bitmap.
background Specifies the background color that is combined with the
image when it is a bitmap.
depth Specifies the depth of the pixmap.
scaling_ratio Specifies a scaling ratio applied to the pixmap.

Returns
A pixmap on success or XmUNSPECIFIED_PIXMAP when the specified
image_name cannot be found.

Availability
Motif 2.1 and later.

Description
XmGetScaledPixmap () is similar to XmGetPixmapByDepth () except that
the returned pixmap is scaled.

Usage
widget is used to find a PrintShell by wandering up the widget hierarchy, and sec-
ondly to find a Screen on which to create the pixmap. If scaling_ratio is zero
and an ancestral PrintShell is found, the ratio applied is given by

(printer resolution / default pixmap resolution)
where the default pixmap resolution is the XmNdefaultPixmapResolution
resource of the PrintShell, and the printer resolution is fetched by the PrintShell
using Xp extensions to communicate with the XPrint server. The default value of
the PrintShell XmNdefaultPixmapResolution resource is 100.

Motif Functions and Macros XmGetScaledPixmap

Motif Reference Manual 165

At present, any resolution specified within the pixmap file itself is currently
ignored, although it is intended that this should take precedence over any Print-
Shell setting.
Although otherwise fully documented, the function does not have a functional
prototype in any of the supplied public headers.

See Also
XmDestroyPixmap (1), XmGetPixmapByDepth (1), XmPrintShell (2).

XmGetSecondaryResourceData Motif Functions and Macros

166 Motif Reference Manual

Name
XmGetSecondaryResourceData – retrieve secondary widget resource data.

Synopsis

Cardinal XmGetSecondaryResourceData (WidgetClass
widget_class,

XmSecondaryResourceData
** secondary_data_return)

Inputs
widget_class Specifies the widget class.

Outputs
secondary_data_return Returns an array of XmSecondaryResourceData
pointers.

Returns
The number of secondary resource data structures associated with the widget
class.

Availability
Motif 1.2 and later.

Description
XmGetSecondaryResourceData () provides access to the secondary widget
resource data associated with a widget class. Some Motif widget classes have
resources that are not accessible with the functions XtGetResourceList ()
and XtGetConstraintResourceList (). If the specified widget_class has
secondary resources, XmGetSecondaryResourceData () provides descrip-
tions of the resources in one or more data structures and returns the number such
structures. If the widget_class does not have secondary resources, the routine
returns 0 (zero) and the value of secondary_data_return is undefined.
If the widget_class has secondary resources, XmGetSecondaryResource-
Data() allocates an array of pointers to the corresponding data structures. The
application is responsible for freeing the allocated memory using XtFree (). The
resource list in each structure (the value of the resources field), the structures, and
the array of pointers to the structures all need to be freed.

Motif Functions and Macros XmGetSecondaryResourceData

Motif Reference Manual 167

Usage
XmGetSecondaryResourceData ()1 only returns the secondary resources
for a widget class if the class has been initialized. You can initialize a widget
class by creating an instance of the class or any of its subclass. VendorShell and
Text are two Motif widget classes that have secondary resources. The two fields
in the XmSecondaryResourceData structure that are of interest to an application
are resources and num_resources. These fields contain a list of the secondary
resources and the number of such resources.
Most applications do not need to query a widget class for the resources it sup-
ports. XmGetSecondaryResourceData () is intended to support interface
builders and applications like editres that allow a user to view the available
resources and set them interactively. Use XtGetResourceList () and
XtGetConstraintResourceList () to get the regular and constraint
resources for a widget class.

Example
The following code fragment shows the use of XmGetSecondaryResource-
Data () to print the names of the secondary resources of the VendorShell widget:

XmSecondaryResourceData *res; Cardinal num_res, i,
j;

if (num_res = XmGetSecondaryResourceData (vendor-
Shell-
WidgetCl
ass,
&res)) {

for (i = 0; i < num_res; i++) {
for (j = 0; j < res[i]->num_resources; j++) {

printf ("%s\n", res[i]-
>resources[j].resource_name);

}
XtFree ((char*) res[i]->resources);
XtFree ((char*) res[i]);

}
XtFree ((char*) res);

}

1.Erroneously given as XmGetSecondaryResources() in 1st and 2nd edition.

XmGetSecondaryResourceData Motif Functions and Macros

168 Motif Reference Manual

Structures
The XmSecondaryResourceData structure is defined as follows:

typedef struct {
XmResourceBaseProc base_proc;
XtPointer client_data;
String name;
String res_class;
XtResourceList resources;
Cardinal num_resources;

}XmSecondaryResourceDataRec, *XmSecondaryResourceData;

See Also
VendorShell (2), XmText (2).

Motif Functions and Macros XmGetTabGroup

Motif Reference Manual 169

Name
XmGetTabGroup – get the tab group for a widget.

Synopsis

Widget XmGetTabGroup (Widget widget)

Inputs
widget Specifies the widget whose tab group is to be returned.

Returns
The widget ID of the tab group of widget.

Availability
Motif 1.2 and later.

Description
XmGetTabGroup () returns the widget ID of the widget that is the tab group for
the specified widget. If widget is a tab group or a shell, the routine returns widget.
If widget is not a tab group and no ancestor up to the nearest shell ancestor is a
tab group, the routine returns the nearest shell ancestor. Otherwise, XmGetTab-
Group () returns the nearest ancestor of widget that is a tab group.

Usage
XmGetTabGroup () provides a way to find out the tab group for a particular
widget in an application. A tab group is a group of widgets that can be traversed
using the keyboard rather than the mouse. Users move from widget to widget
within a single tab group by pressing the arrow keys. Users move between differ-
ent tab groups by pressing the Tab or Shift-Tab keys. If the tab group widget is a
manager, its children are all members of the tab group (unless they are made into
separate tab groups). If the widget is a primitive, it is its own tab group. Certain
widgets must not be included with other widgets within a tab group. For example,
each List, ScrollBar, OptionMenu, or multi-line Text widget must be placed in a
tab group by itself, since these widgets define special behavior for the arrow or
Tab keys, which prevents the use of these keys for widget traversal.

See Also
XmGetFocusWidget (1), XmGetVisibility (1), XmIsTraversable (1),
XmProcessTraversal (1), XmManager(2), XmPrimitive (2).

XmGetTearOffControl Motif Functions and Macros

170 Motif Reference Manual

Name
XmGetTearOffControl – get the tear-off control for a menu.

Synopsis

#include <Xm/RowColumn.h>

Widget XmGetTearOffControl (Widget menu)

Inputs
menu Specifies the RowColumn widget whose tear-off control is to be
returned.

Returns
The widget ID of the tear-off control or NULL if no tear-off control exists.

Availability
Motif 1.2 and later.

Description
XmGetTearOffControl () retrieves the widget ID of the widget that is the
tear-off control for the specified menu. When the XmNtearOffModel resource of
a RowColumn widget is set to XmTEAR_OFF_ENABLED for a PulldownMenu
or a PopupMenu, the RowColumn creates a tear-off button for the menu. The
tear-off button, which contains a dashed line by default, is the first element in the
menu. When the button is activated, the menu is torn off. If the specified menu
does not have a tear-off control, XmGetTearOffControl () returns NULL.

Usage
In Motif 1.2, a RowColumn that is configured as a PopupMenu or a Pulldown-
Menu supports tear-off menus. When a menu is torn off, it remains on the screen
after a selection is made so that additional selections can be made. The tear-off
control is a button that has a Separator-like appearance. Once you retrieve the
widget ID of the tear-off control, you can set resources to specify its appearance.
You can specify values for the following resources: XmNbackground, XmNback-
groundPixmap, XmNbottomShadowColor, XmNforeground, XmNheight, XmN-
margin, XmNseparatorType, XmNshadowThickness, and XmNtopShadowColor.
You can also set these resources in a resource file by using the name of the con-
trol, which is TearOffControl.

See Also
XmRepTypeInstallTearOffModelConverter (1), XmPopupMenu(2),
XmPulldownMenu (2), XmRowColumn(2), XmSeparator (2).

Motif Functions and Macros XmGetVisibility

Motif Reference Manual 171

Name
XmGetVisibility – determine whether or not a widget is visible.

Synopsis

XmVisibility XmGetVisibility (Widget widget)

Inputs
widget Specifies the widget whose visibility state is to be returned.

Returns
XmVISIBILITY_UNOBSCURED if widget is completely visi-
ble, XmVISIBILITY_PARTIALLY_OBSCURED if widget is partially visible,
XmVISIBILITY_FULLY_OBSCURED or if widget is not visible.

Availability
Motif 1.2 and later.

Description
XmGetVisibility () determines whether or not the specified widget is visi-
ble. The routine returns XmVISIBILITY_UNOBSCURED if the entire rectangu-
lar area of the widget is visible. It returns
XmVISIBILITY_PARTIALLY_OBSCURED if a part of the rectangular area of
the widget is obscured by its ancestors. XmGetVisibility () returns
XmVISIBILITY_FULLY_OBSCURED if the widget is completely obscured by
its ancestors or if it is not visible for some other reason, such as if it is unmapped
or unrealized.

Usage
XmGetVisibility() provides a way for an application to find out the visibility state
of a particular widget. This information can be used to help determine whether or
not a widget is eligible to receive the keyboard focus. In order for a widget to
receive the keyboard focus, it and all of its ancestors must not be in the process of
being destroyed and they must be sensitive to input. The widget and its ancestors
must also have their XmNtraversalOn resources set to True. If the widget is view-
able, which means that it and its ancestors are managed, mapped, and realized
and some part of the widget is visible, then the widget is eligible to receive the
keyboard focus. A fully-obscured widget is not eligible to receive the focus
unless part of it is within the work area of a ScrolledWindow with an XmNscroll-
ingPolicy of XmAUTOMATIC that has an XmNtraverseObscuredCallback.

XmGetVisibility Motif Functions and Macros

172 Motif Reference Manual

Structures
XmVisibility is defined as follows:

typedef enum {
XmVISIBILITY_UNOBSCURED,
XmVISIBILITY_PARTIALLY_OBSCURED,
XmVISIBILITY_FULLY_OBSCURED

} XmVisibility;

See Also
XmGetFocusWidget (1), XmGetTabGroup (1), XmIsTraversable (1),
XmProcessTraversal (1), XmManager(2), XmScrolledWindow (2).

Motif Functions and Macros XmGetXmDisplay

Motif Reference Manual 173

Name
XmGetXmDisplay – get the Display object for a display.

Synopsis

#include <Xm/Display.h>

Widget XmGetXmDisplay (Display *display)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().

Returns
The Display object for the display.

Availability
Motif 1.2 and later.

Description
XmGetXmDisplay () retrieves the Display object for the specified display.

Usage
In Motif 1.2, the Display object stores display-specific information for use by the
toolkit. An application has a Display object for each display it accesses. When an
application creates its first shell on a display, typically by calling XtAppIni-
tialize () or XtAppCreateShell (), a Display object is created automati-
cally. There is no way to create a Display independently. Use
XmGetXmDisplay () to get the ID of the Display object, so that you can use
XtGetValues () and XtSetValues () to access and modify Display
resources.

See Also
XmDisplay (2), XmScreen (2).

XmGetXmScreen Motif Functions and Macros

174 Motif Reference Manual

Name
XmGetXmScreen – get the Screen object for a screen.

Synopsis

Widget XmGetXmScreen (Screen *screen)

Inputs
screen Specifies a screen on a display; returned by XtScreen ().

Returns
The Screen object for the screen.

Availability
Motif 1.2 and later.

Description
XmGetXmScreen() retrieves the Screen object for the specified screen.

Usage
In Motif 1.2, the Screen object stores screen-specific information for use by the
toolkit. An application has a Screen object for each screen that it accesses. When
an application creates its first shell on a screen, typically by calling XtAppIni-
tialize () or XtAppCreateShell (), a Screen object is created automati-
cally. There is no way to create a Screen independently. Use
XmGetXmScreen() to get the ID of the Screen object, so that you can use
XtGetValues () and XtSetValues () to access and modify Screen resources.

See Also
XmDisplay (2), XmScreen (2).

Motif Functions and Macros XmIm

Motif Reference Manual 175

Name
XmIm – introduction to input methods.

Synopsis

Public Header:
<Xm/XmIm.h>

Functions/Macros:
XmImCloseXIM (), XmImFreeXIC (), XmImGetXIC (), XmIm-
GetXIM (),
XmImMbLookupString (), XmImMbResetIC (), XmImRegister (),
XmImSetFocusValues (), XmImSetValues (), XmImSetXIC (),
XmImUnregister (), XmImUnsetFocus (), XmImVaSetFocusVal-
ues (),
XmImVaSetValues ()

Availability
Motif 1.2 and later.

Description
Many languages are ideographic, and have considerably more characters than
there are keys on the keyboard: the Ascii keyboard was not originally designed
for languages that are not based upon the Latin alphabet. For such languages, in
order to provide a mapping between the alphabet and the keyboard, it is neces-
sary to represent particular characters by a key sequence rather than a single key-
stroke. An input method is the means by which X maps between the characters of
the language, and the representative key sequences. The most common use of an
input method is in implementing language-independent text widget input. As the
user types the key sequences, the input method displays the actual keystrokes
until the sequence completes a character, when the required character is dis-
played in the text widget. The process of composing a character from a key
sequence is called pre-editing.
In order to facilitate pre-editing, the input method may maintain several areas on
the screen: a status area, a pre-edit area, and an auxiliary area. The status area is
an output-only window which provides feedback on the interaction with the input
method. The pre-edit area displays the keyboard sequence as it is typed. The aux-
iliary area is used for popup menus, or for providing customized controls
required by the particular input method. The location of the pre-edit area is deter-
mined by the XmNpreeditType resource of VendorShell. The value OnTheSpot
displays the key sequence as it is typed into the destination text widget itself.
OverTheSpot superimposes an editing window over the top of the text widget.
OffTheSpot creates a dedicated editing window, usually at the bottom of the dia-

XmIm Motif Functions and Macros

176 Motif Reference Manual

log. Root uses a pre-edit window which is a child of the root window of the dis-
play.
To control the interaction between the application and the input method, X
defines a structure called an input context, which the programmer can fetch and
manipulate where the need arises. Each widget registered with the input method
has an associated input context, which may or may not be shared amongst the
registered widgets. Motif extends the mechanisms provided by the lower level X
libraries, and provides a caching mechanism whereby input contexts are shared
between widgets.

Usage
Input methods are usually supplied by the vendors of the hardware, and the appli-
cation generally connects to the input method without the need for any special
coding by the programmer. The Motif widgets are fully capable of connecting to
an input method when required, and although Motif provides a functional inter-
face to enable the programmer to interact with an input method, the interface is
not required for the Motif widgets. The exceptions are where the programmer is
writing new widgets, or where internationalized input is required for the Drawin-
gArea.

XmImRegister () registers a widget with an input method. XmImSetVal-
ues () manipulates an input context by registering callbacks which respond to
specific states. XmImSetFocusValues () is similar, except that after the input
context has been modified, the focus is reset to the widget providing the input.
XmImMbLookupString () performs the necessary key sequence to character
translation on behalf of the input widget. XmImUnRegister () unregisters the
widget with the input method. Typically, XmImRegister () is called within the
Initialize method of a widget, XmImUnRegister () is called by the Destroy
method, and XmImMbLookupString () is called within an action or callback
routine of the widget in response to an event. These are the primary functions
which a programmer may need to call, and are all that are required to implement
internationalized input for the Motif text widget.

Note that an input method does not need to support all styles of XmNpreedit-
Type.

See Also
XmImCloseXIM (1), XmImFreeXIC (1), XmImGetXIM (1),
XmImGetXIC (1), XmImMbLookupString (1), XmImMbResetIC (1),
XmImRegister (1), XmImSetFocusValues (1), XmImSetValues (1),
XmImSetXIC (1), XmImUnregister (1), XmImUnsetFocus (1),
XmImVaSetFocusValues (1), XmImVaSetValues(1).

Motif Functions and Macros XmImCloseXIM

Motif Reference Manual 177

Name
XmImCloseXIM – close all input contexts.

Synopsis

#include <Xm/XmIm.h>

void XmImCloseXIM (Widget widget)

Inputs
widget Specifies a widget used to determine the display connection.

Availability
Motif 2.0 and later.

Description
XmImCloseXIM () is a convenience function which closes all input contexts
associated with the current input method. The widget parameter is used to iden-
tify the XmDisplay object of the application.

Usage
XmImCloseXIM () uses the widget parameter to deduce the input method associ-
ated with the XmDisplay object. The application’s connection to the input
method is closed, and all widgets which are registered with any input context
associated with the input method are unregistered. In order to close the input con-
text associated with a single widget, rather than closing down all connections, use
XmImUnregister().

The Motif widgets internally register and unregister themselves with the input
manager using XmImRegister() and XmImUnregister () as required. The Ven-
dorShell calls XmImCloseXIM () within its Destroy method once the last Ven-
dorShell is destroyed in order to clean up the connection to the input method. An
application which dynamically switches between input methods in a multi-lan-
guage application may need to invoke XmImCloseXIM () because Motif only
supports a single input method at any given instance. Application programmers
will not normally need to use XmImCloseXIM () directly.

See Also
XmImRegister (1), XmImUnregister (1), XmIm(1).

XmImFreeXIC Motif Functions and Macros

178 Motif Reference Manual

Name
XmImFreeXIC – free an input context.

Synopsis

#include <Xm/XmIm.h>

void XmImFreeXIC (Widget widget, XIC xic)

Inputs
widget Specifies a widget from which the input context registry is
deduced.
xic Specifies the input context which is to be freed.

Availability
Motif 2.0 and later.

Description
XmImFreeXIC () is a convenience function which unregisters all widgets associ-
ated with the input context xic, and then frees the input context.

Usage
XmImFreeXIC () uses the widget parameter to deduce an ancestral VendorShell,
from which the X input context registry is found. All widgets associated with the
input context xic within the registry are unregistered, and the input context is
freed.

See Also
XmImGetXIC (1), XmImRegister (1). XmImSetXIC (1),
XmImUnregister (1), XmIm(1).

Motif Functions and Macros XmImGetXIC

Motif Reference Manual 179

Name
XmImGetXIC – create an input context for a widget.

Synopsis

#include <Xm/XmIm.h>

XIC XmImGetXIC (Widget widget, XmInputPolicy input_policy, ArgList
arglist, Cardinal argcount)

Inputs
widget Specifies a widget for which the input context is required.
input_policy Specifies the policy for creating input contexts.
arglist Specifies a list of arguments consisting of name/value pairs.
argcount Specifies the number of arguments in arglist.

Returns
The input context associated with widget.

Availability
Motif 2.0 and later.

Description
XmImGetXIC () creates and registers a new input context for a widget, depend-
ing upon the input_policy. If input_policy is XmPER_WIDGET, a new input con-
text is created for the widget. If the value is XmPER_SHELL, a new input
context is created only if an input context associated with the ancestral shell of
widget does not already exist, otherwise the widget is registered with the existing
input context. If the policy is XmINHERIT_POLICY, the input policy is inher-
ited by taking the value of the XmNinputPolicy resource from the nearest ances-
tral VendorShell. The set of attributes for the input context is specified through
the resource list arglist, each element of the list being a structure containing a
name/value pair. The number of elements within the list is given by argcount.
The name/value pairs are passed through to the function XCreateIC () if the
input context is created. XmImGetXIC () returns either the input context which is
newly created if the input policy is XmPER_WIDGET, otherwise it returns the
shared context.

XmImGetXIC Motif Functions and Macros

180 Motif Reference Manual

Usage
In Motif 1.2, the supported attributes for configuring the created input context are
XmNbackground, XmNforeground, XmNbackgroundPixmap, XmNspotLoca-
tion, XmNfontList, and XmNarea.

In Motif 2.0 and later, the list is extended to include XmNpreeditCaretCallback,
XmNpreeditDoneCallback, XmNpreeditDrawCallback, and XmNpreeditStart-
Callback resources.

You are referred to the XCreateIC () entry within the Xlib Reference Manual
for the interpretation of each of the resource types. The function allocates storage
associated with the created input context, and it is the responsibility of the pro-
grammer to reclaim the space at a suitable point by calling XmImFreeXIC ().

Structures
The enumerated type XmInputPolicy has the following possible values:

XmINHERIT_POLICY
XmPER_WIDGET
XmPER_SHELL

See Also
XmImFreeXIC (1), XmImSetXIC (1), XmIm(1).

Motif Functions and Macros XmImGetXIM

Motif Reference Manual 181

Name
XmImGetXIM – retrieve the input method for a widget.

Synopsis
#include <Xm/XmIm.h>

XIM XmImGetXIM (Widget widget)

Inputs
widget Specifies a widget registered with the input manager.

Returns
The input method associated with widget.

Availability
Motif 1.2 and later.

Description
XmImGetXIM() returns a pointer to an opaque data structure which represents
the input method which the input manager has opened for the specified widget.

Usage
Widgets are normally registered with the input manager through a call to XmIm-
Register (). If no input method is associated with the widget, the procedure
uses any specified XmNinputMethod resource of the nearest ancestral Vendor-
Shell in order to open an input method. If the resource is NULL, the input
method associated with the current locale is opened. If no input method can be
opened, the function returns NULL.

XmImGetXIM() allocates storage for the opaque data structure which is
returned, and it is the responsibility of the programmer to reclaim the space by a
call to XmImCloseXIM () at a suitable point. XmImGetXIM() is not a procedure
which an application programmer needs to use: the routine is of more use to the
programmer of new widgets.

See Also
XmImRegister (1), XmImCloseXIM (1), XmIm(1).

XmImMbLookupString Motif Functions and Macros

182 Motif Reference Manual

Name
XmImMbLookupString – retrieve a composed string from an input method.

Synopsis

#include <Xm/XmIm.h>

int XmImMbLookupString (Widget widget,
XKeyPressedEvent *event,
char *buffer,
int num_bytes,
KeySym *keysym,
int *status)

Inputs
widget Specifies a widget registered with the input manager.
event Specifies a key press event.
num_bytes Specifies the length of the buffer array.

Outputs
buffer Returns the composed string.
keysym Returns any keysym associated with the input keyboard event.
status Returns the status of the lookup.

Returns
The length of the composed string in bytes.

Availability
Motif 1.2 and later.

Description
XmImMbLookupString () translates an event into a composed character, and/
or a keysym, using the input context associated with a given widget. Any com-
posed string which can be deduced from the event is placed in buffer; the com-
posed string consists of multi-byte characters in the encoding of the locale of the
input context. If a keysym is associated with the event, this is returned at the
address specified by keysym. The function returns the number of bytes placed
into buffer.

Motif Functions and Macros XmImMbLookupString

Motif Reference Manual 183

Usage
A widget is registered with an input method through the function XmImRegis-
ter (). If no input context is associated with the widget, the function uses
XLookupString () to map the key event into composed text. Otherwise the
function calls XmbLookupString () with the input context as the first parame-
ter. If the programmer is not interested in keysym values, a NULL value can be
passed as the keysym parameter. XmImMbLookupString () places into buffer
any composed character string associated with the key event: if the event at the
given point in the input sequence does not signify a unique character in the lan-
guage of the current locale, the function returns zero: subsequent key events may
be required before a character is composed.

Structures
The possible values returned in status are the same as those returned from
XmbLookupString (): you are referred to the Xlib Reference Manual for a full
description and interpretation of the values.

XBufferOverflow /* buffer size insufficient to hold composed sequence */
XLookupNone /* no character sequence matching the input exists */
XLookupChars /* input characters were composed */
XLookupKeysym /* input is keysym rather than composed character */
XLookupBoth /* both a keysym and composed character are returned */

See Also
XmImRegister (1), XmIm(1).

XmImMbResetIC Motif Functions and Macros

184 Motif Reference Manual

Name
XmImMbResetIC – reset an input context.

Synopsis

#include <Xm/XmIm.h>

void XmImMbResetIC (Widget widget, char **mb_text)

Inputs
widget Specifies a widget registered with the Input Manager.

Outputs
mb_text Returns pending input on the input context.

Availability
Motif 2.0 and later.

Description
XmImMbResetIC () resets the input context associated with a widget.

Usage
XmImMbResetIC () is a convenience function which resets an input context to
the initial state. The function is no more than a wrapper onto the function
XmbResetIC (), which clears the pre-edit area and updates the status area of the
input context. The return value of XmbResetIC () is placed into the address
specified by mb_text. This data is implementation dependent, and may be NULL.
If data is returned, the programmer is responsible for freeing it by calling
XFree ().

See Also
XmImRegister (1), XmIm(1).

Motif Functions and Macros XmImRegister

Motif Reference Manual 185

Name
XmImRegister – register a widget with an Input Manager.

Synopsis

#include <Xm/XmIm.h>

void XmImRegister (Widget widget, unsigned int reserved)

Inputs
widget Specifies a widget to register with the input manager.
reserved This parameter is current unused.

Availability
Motif 1.2 and later.

Description
XmImRegister () is a convenience function which registers a widget with the
input manager to establish a connection to the current input method. The function
is called when an application needs to specially arrange for internationalized
input to a widget.

Usage
The Motif widgets internally register themselves with the input manager as
required. Only a programmer who is writing a new widget, or who requires inter-
nationalized input for the DrawingArea needs to call XmImRegister () directly.
If the VendorShell ancestor containing the widget already has an associated input
context, the function simply returns. Otherwise, the XmNinputPolicy resource of
the nearest VendorShell ancestor is fetched to determine whether to share an
existing input context. The function opens an input method by inspecting the
XmNinputMethod resource of the VendorShell. If the resource is NULL, a
default input method is opened using information from the current locale. XmIm-
Register () should not be called twice using the same widget parameter with-
out unregistering the widget from the input method first.

The programmer is responsible for closing down the connection to the input
method by calling XmImUnregister (). The Destroy method of the widget is
an appropriate place to call this.

See Also
XmImUnregister (1), XmIm(1).

XmImSetFocusValues Motif Functions and Macros

186 Motif Reference Manual

Name
XmImSetFocusValues – set the values and focus for an input context.

Synopsis

#include <Xm/XmIm.h>

void XmImSetFocusValues (Widget widget, ArgList arglist, Cardinal argcount)

Inputs
widget Specifies a widget registered with the input manager.
arglist Specifies a list of resources consisting of name/value pairs.
argcount Specifies the number of arguments in arglist.

Availability
Motif 1.2 and later.

Description
XmImSetFocusValues () notifies the input manager that a widget has
received the input focus. If the previous values of the input context associated
with the widget do not allow the context to be reused, the old context is unregis-
tered, and a new one registered with the widget.

Usage
XmImSetFocusValues () is identical in all respects to XmImSetValues (),
except that after the input context has been reset, the focus window attribute of
the input context is set to the window of the input widget.

The Motif widgets invoke XmImSetFocusValues () as and when required.
For example, the Text and TextField widgets automatically invoke XmImSetFo-
cusValues() in response to FocusIn and EnterNotify events. A programmer who
is implementing internationalized input for a DrawingArea or creating a new
widget may need to call this function when the widget receives the input focus.

See Also
XmImRegister (1), XmImSetValues (1), XmIm(1).

Motif Functions and Macros XmImSetValues

Motif Reference Manual 187

Name
XmImSetValues – set the values for an input context.

Synopsis

#include <Xm/XmIm.h>

void XmImSetValues (Widget widget, ArgList arglist, Cardinal argcount)

Inputs
widget Specifies a widget registered with the Input Manager.
arglist Specifies a list of resources consisting of name/value pairs.
argcount Specifies the number of arguments in arglist.

Availability
Motif 1.2 and later.

Description
XmImSetValues () sets the attributes for the input context associated with the
specified widget. The set of attributes to be modified is specified through the
resource list arglist, each element of the list being a structure containing a name/
value pair. The number of elements within the list is given by argcount.

Usage
XmImSetValues () is a convenience routine which invokes XSetICValues ()
in order to configure an input context. You are referred to the Xlib Reference
Manual for the set of attributes supported by XSetICValues (), and for their
interpretation.

The Motif widgets invoke XmImSetValues () as and when required. For exam-
ple, the Text and TextField widgets automatically invoke XmImSetValues ()
when the widget is resized or the font changed. A programmer who is imple-
menting internationalized input for a DrawingArea or creating a new widget may
need to call this function when, for example, the widget needs to reconfigure the
spot location.

See Also
XmImSetFocusValues (1), XmImRegister (1), XmIm(1).

XmImSetXIC Motif Functions and Macros

188 Motif Reference Manual

Name
XmImSetXIC – register a widget with an existing input context.

Synopsis

#include <Xm/XmIm.h>

XIC XmImSetXIC (Widget widget, XIC xic)

Inputs
widget Specifies a widget to be registered with the input context.
xic Specifies an input context where the widget is to be registered.

Returns
The input context where the widget is registered.

Availability
Motif 2.0 and later.

Description
XmImSetXIC () is a convenience function which registers a widget with an input
context. If the widget is registered with another input context, the widget is firstly
unregistered with that context. The widget is then registered with the input con-
text xic. If xic is NULL, the function creates a new input context and registers the
widget with it. The function returns the input context where the widget is regis-
tered.

Usage
XmImSetXIC () allocates storage when it creates a new input context, and it is
the responsibility of the programmer to free the space at an appropriate point by
calling XmImFreeXIC ().

See Also
XmImFreeXIC (1), XmImRegister (1), XmIm(1).

Motif Functions and Macros XmImUnregister

Motif Reference Manual 189

Name
XmImUnregister – unregister the input context for a widget.

Synopsis

#include <Xm/XmIm.h>

void XmImUnregister (Widget widget)

Inputs
widget Specifies a widget whose input context is to be unregistered.

Availability
Motif 1.2 and later.

Description
XmImUnregister () is a convenience function which unregisters the input con-
text associated with a given widget. The function is the inverse of XmImRegis-
ter (), which is called when an application needs to specially arrange for
internationalized input to a widget.

Usage
The Motif widgets internally register themselves with the input manager as
required. Only a programmer who is writing a new widget, or who requires inter-
nationalized input for the DrawingArea needs to call XmImRegister () directly.
Where XmImRegister () has been called by the application, it is the responsi-
bility of the programmer to also call XmImUnregister (), usually within the
Destroy () method of the widget for which internationalized input is required.
XmImUnregister () uses the widget parameter to deduce the input method
associated with a display connection. Any input context associated with the input
method is unregistered.

See Also
XmImRegister (1), XmIm(1).

XmImUnsetFocus Motif Functions and Macros

190 Motif Reference Manual

Name
XmImUnsetFocus – unset focus for input context.

Synopsis

#include <Xm/XmIm.h>

void XmImUnsetFocus (Widget widget)

Inputs
widget Specifies a widget which has lost the input focus.

Availability
Motif 1.2 and later.

Description
XmImUnsetFocus () notifies the input manager that a widget has lost the input
focus.

Usage
XmImUnsetFocus () is a convenience routine which invokes XUnsetICFo-
cus () using the input context associated with the specified widget. The input
method is notified that no more input is expected from the widget.

The Motif widgets invoke XmImUnsetFocus () as and when required. For
example, the Text and TextField widgets automatically invoke XmImUnsetFo-

cus ()1 in response to FocusOut and LeaveNotify events. A programmer who is
implementing internationalized input for a DrawingArea or creating a new
widget may need to call this function when the widget loses the input focus.

See Also
XmImSetFocusValues (1), XmImVaSetFocusValues (1), XmIm(1).

1.Erroneously given as XmUnsetFocus() in 2nd edition.

Motif Functions and Macros XmImVaSetFocusValues

Motif Reference Manual 191

Name
XmImVaSetFocusValues – set the values and focus for an input context.

Synopsis

#include <Xm/XmIm.h>

void XmImVaSetFocusValues (Widget widget,....,NULL)

Inputs
widget Specifies a widget registered with the Input Manager.
..., NULL A NULL-terminated variable-length list of resource name/value
pairs.

Availability
Motif 1.2 and later.

Description
XmImVaSetFocusValues () notifies the input manager that a widget has
received the input focus. If the previous values of the input context associated
with the widget do not allow the context to be reused, the old context is unregis-
tered, and a new one registered with the widget.

Usage
XmImVaSetFocusValues () is simply a convenience routine with a variable
length argument list which constructs internal arglist and argcount parameters to
a XmImSetFocusValues () call.

See Also
XmImSetFocusValues (1).

XmImVaSetValues Motif Functions and Macros

192 Motif Reference Manual

Name
XmImVaSetValues – set the values for an input context.

Synopsis

#include <Xm/XmIm.h>

void XmImVaSetValues (Widget widget,...,NULL)

Inputs
widget Specifies a widget registered with the Input Manager.
...,NULL A NULL-terminated variable-length list of resource name/value
pairs.

Availability
Motif 1.2 and later.

Description
XmImVaSetValues ()1 sets the attributes for the input context associated with
the specified widget.

Usage
XmImVaSetValues () is simply a convenience routine with a variable length
argument list which constructs internal arglist and argcount parameters to a
XmImSetValues () call.

See Also
XmImSetValues (1).

1.Erroneously given as XmImSetValues() in 2nd edition.

Motif Functions and Macros XmInstallImage

Motif Reference Manual 193

Name
XmInstallImage – install an image in the image cache.

Synopsis

Boolean XmInstallImage (XImage *image, char *image_name)

Inputs
image Specifies the image to be installed.
image_name Specifies the string name of the image.

Returns
True on success or False if image or image_name is NULL or image_name dupli-
cates an image name already in the cache.

Description
XmInstallImage () installs the specified image in the image cache. The image
can later be used to create a pixmap. When the routine installs the image, it does
not make a copy of the image, so an application should not destroy the image
until it has been uninstalled. The routine also expands the resource converter that
handles images so that image_name can be used in a resource file. In order to
allow references from a resource file, XmInstallImage () must be called to
install an image before any widgets that use the image are created.

Usage
An application can use XmInstallImage () to install and cache images, so that
the images can be shared throughout the application. Once an image is installed,
it can be used to create a pixmap with XmGetPixmap (). The toolkit provides the
following pre-installed images that can be referenced in a resource file or used to
create a pixmap:

Image Name Image Description

background Solid background tile

25_foreground A 25% foreground, 75% background tile

50_foreground A 50% foreground, 50% background tile

75_foreground A 75% foreground, 25% background tile

horizontal_tile Horizontal lines tile, in Motif 1.2.3 and later.

vertical_tile Vertical lines tile, in Motif 1.2.3 and later.

horizontal As horizontal_tile: maintained for 1.2.2 compatibility.

vertical As vertical_tile: maintained for 1.2.2 compatibility.

slant_right Right slanting lines tile

slant_left Left slanting lines tile

XmInstallImage Motif Functions and Macros

194 Motif Reference Manual

Example
You might use the following code to define and install an image:

#define bitmap_width 16
#define bitmap_height 16

static char bitmap_bits[] = {
0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00,
0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00,
0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF,
0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF

};

static XImage ximage = {
bitmap_width, /* width */
bitmap_height, /* height */
0, /* xoffset */
XYBitmap, /* format */
bitmap_bits, /* data */
MSBFirst, /* byte_order */
8, /* bitmap_unit */
LSBFirst, /* bitmap_bit_order */
8, /* bitmap_pad */
1, /* depth */
2, /* bytes_per_line */
NULL /* obdata */

};
...
XmInstallImage (&ximage, "image_name");
...

See Also
XmDestroyPixmap (1), XmGetPixmap (1), XmUninstallImage (1).

menu_cascade An arrow pointing to the right, in Motif 2.0 and later.

menu_cascade_rtol An arrow pointing to the left, in Motif 2.0 and later.

menu_checkmark A tick mark, in Motif 2.0 and later.

menu_dash A horizontal line, in Motif 2.0 and later.

collapsed A filled arrow pointing to the right, in Motif 2.0 and later.

collapsed_rtol A filled arrow pointing to the left, in Motif 2.0 and later.

expanded A filled arrow pointing downwards, in Motif 2.0 and later.

Image Name Image Description

Motif Functions and Macros XmInternAtom

Motif Reference Manual 195

Name
XmInternAtom – return an atom for a given property name string.

Synopsis

#include <Xm/AtomMgr.h>

Atom XmInternAtom (Display *display, String name, Boolean only_if_exists)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-

play() or XtDisplay().
name Specifies the string name of the property for which you want the

atom.
only_if_exists Specifies a Boolean value that indicates whether or not the atom

is created if it does not exist.

Returns
An atom on success or None.

Availability
In Motif 2.0 and later, XInternAtom () is preferred.

Description
XmInternAtom () returns the atom that corresponds to the given property
name. This routine works like Xlib’s XInternAtom () routine, but the Motif
routine provides the added feature of client-side caching. If no atom exists with
the specified name and only_if_exists is True, XmInternAtom () does not create
a new atom; it simply returns None. If only_if_exists is False, the routine creates
the atom and returns it.

Usage
An atom is a number that identifies a property. Properties also have string names.
XmInternAtom() returns the atom associated with a property if it exists, or it may
create the atom if it does not exist. The atom remains defined even after the client
that defined it has exited. An atom does not become undefined until the last con-
nection to the X server closes. Predefined atoms are defined in <X11/Xatom.h>
and begin with the prefix XA_. Predefined atoms do not need to be interned with
XmInternAtom ().

In Motif 2.0 and later, XmInternAtom () is no more than a convenience routine
which calls XInternAtom (). While XmInternAtom () is not yet officially
obsolete, XInternAtom () is to be preferred.

See Also
XmGetAtomName(1).

XmIsMotifWMRunning Motif Functions and Macros

196 Motif Reference Manual

Name
XmIsMotifWMRunning – check whether the Motif Window Manager (mwm) is
running.

Synopsis

Boolean XmIsMotifWMRunning (Widget shell)

Inputs
shell Specifies the shell widget whose screen is queried.

Returns
True if mwm is running or False otherwise.

Description
XmIsMotifWMRunning () checks for the presence of the
_MOTIF_WM_INFO property on the root window of the screen of the specified
shell to determine whether the Motif Window Manager (mwm) is running on the
screen.

Usage
mwm defines additional types of communication between itself and client pro-
grams. This communication is optional, so an application should not depend on
the communication or the presence of mwm for any functionality. XmIsMo-
tifWMRunning () allows an application to check if mwm is running and act
accordingly.

See Also
mwm(4).

Motif Functions and Macros XmIs<Emphasis>Object<Default Para Font>

Motif Reference Manual 197

Name
XmIsObject – determine whether a widget is a subclass of a class.

Synopsis

#include <Xm/Gadget.h>
Boolean XmIsGadget (Widget widget)

#include <Xm/Manager.h>
Boolean XmIsManager (Widget widget)

#include <Xm/Primitive.h>
Boolean XmIsPrimitive (Widget widget)

#include <Xm/ArrowB.h>
Boolean XmIsArrowButton (Widget widget)

#include <Xm/ArrowBG.h>
Boolean XmIsArrowButtonGadget (Widget widget)

#include <Xm/BulletinB.h>
Boolean XmIsBulletinBoard (Widget widget)

#include <Xm/CascadeB.h>
Boolean XmIsCascadeButton (Widget widget)

#include <Xm/CascadeBG.h>
Boolean XmIsCascadeButtonGadget (Widget widget)

#include <Xm/ComboBox.h>
Boolean XmIsComboBox (Widget widget)

#include <Xm/Command.h>
Boolean XmIsCommand (Widget widget)

#include <Xm/Container.h>
Boolean XmIsContainer (Widget widget)

#include <Xm/DialogS.h>
Boolean XmIsDialogShell (Widget widget)

#include <Xm/Display.h>
Boolean XmIsDisplay (Widget widget)

#include <Xm/DragC.h>
Boolean XmIsDragContext (Widget widget)

#include <Xm/DragIcon.h>
Boolean XmIsDragIconObjectClass (Widget widget)

XmIs<Emphasis>Object<Default Para Font> Motif Functions and Macros

198 Motif Reference Manual

#include <Xm/DrawingA.h>
Boolean XmIsDrawingArea (Widget widget)

#include <Xm/DrawnB.h>
Boolean XmIsDrawnButton (Widget widget)

#include <Xm/DropSMgr.h>
Boolean XmIsDropSiteManager (Widget widget)

#include <Xm/DropTrans.h>
Boolean XmIsDropTransfer (Widget widget)

#include <Xm/FileSB.h>
Boolean XmIsFileSelectionBox (Widget widget)

#include <Xm/Form.h>
Boolean XmIsForm (Widget widget)

#include <Xm/Frame.h>
Boolean XmIsFrame (Widget widget)

#include <Xm/GrabShell.h>
Boolean XmIsGrabShell (Widget widget)

#include <Xm/IconG.h>
Boolean XmIsIconGadget (Widget widget)

#include <Xm/Label.h>
Boolean XmIsLabel (Widget widget)

#include <Xm/LabelG.h>
Boolean XmIsLabelGadget (Widget widget)

#include <Xm/List.h>
Boolean XmIsList (Widget widget)

#include <Xm/MainW.h>
Boolean XmIsMainWindow (Widget widget)

#include <Xm/MenuShell.h>
Boolean XmIsMenuShell (Widget widget)

#include <Xm/MessageB.h>
Boolean XmIsMessageBox (Widget widget)

#include <Xm/Notebook.h>
Boolean XmIsNotebook (Widget widget)

#include <Xm/PanedW.h>
Boolean XmIsPanedWindow (Widget widget)

Motif Functions and Macros XmIs<Emphasis>Object<Default Para Font>

Motif Reference Manual 199

#include <Xm/PrintS.h>
Boolean XmIsPrintShell (Widget widget)

#include <Xm/PushB.h>
Boolean XmIsPushButton (Widget widget)

#include <Xm/PushBG.h>
Boolean XmIsPushButtonGadget (Widget widget)

#include <Xm/RowColumn.h>
Boolean XmIsRowColumn (Widget widget)

#include <Xm/Scale.h>
Boolean XmIsScale (Widget widget)

#include <Xm/Screen.h>
Boolean XmIsScreen (Widget widget)

#include <Xm/ScrollBar.h>
Boolean XmIsScrollBar (Widget widget)

#include <Xm/ScrolledW.h>
Boolean XmIsScrolledWindow (Widget widget)

#include <Xm/SelectioB.h>
Boolean XmIsSelectionBox (Widget widget)

#include <Xm/Separator.h>
Boolean XmIsSeparator (Widget widget)

#include <Xm/SeparatoG.h>
Boolean XmIsSeparatorGadget (Widget widget)

#include <Xm/Text.h>
Boolean XmIsText (Widget widget)

#include <Xm/TextF.h>
Boolean XmIsTextField (Widget widget)

#include <Xm/ToggleB.h>
Boolean XmIsToggleButton (Widget widget)

#include <Xm/ToggleBG.h>
Boolean XmIsToggleButtonGadget (Widget widget)

#include <Xm/VendorS.h>
Boolean XmIsVendorShell (Widget widget)

Inputs
widget Specifies the widget ID of the widget whose class is to be checked.

XmIs<Emphasis>Object<Default Para Font> Motif Functions and Macros

200 Motif Reference Manual

Returns
True if widget is of the specified class or False otherwise.

Availability
XmIsDisplay (), XmIsDragContext (), XmIsDragIconObject-
Class (), XmIsDropSiteManager (), XmIsDropTransfer (), and
XmIsScreen () are only available in Motif 1.2 and later.

XmIsComboBox(), XmIsContainer (), XmIsNotebook (), XmIsIcon-
Gadget (), and XmIsGrabShell () are available in Motif 2.0 and later.

XmIsPrintShell () is available in Motif 2.1. Note that although the SpinBox
class is available in Motif 2.0, and the SimpleSpinBox class in Motif 2.1, neither

XmIsSpinBox () nor XmIsSimpleSpinBox () are defined. 1

Description
The XmIs*() routines are macros that check the class of the specified widget. The
macros returns True if widget is of the specified class or a subclass of the speci-
fied class. Otherwise, the macros return False.

Usage
An application can use the XmIs*() macros to check the class of a particular
widget. All of the macros use XtIsSubclass () to determine the class of the
widget.

Example
The missing macro XmIsSpinBox () could be defined as follows:

#include <Xm/SpinB.h>
#ifndef XmIsSpinBox
#define XmIsSpinBox(w) XtIsSubclass(w, xmSpinBoxWidgetClass)
#endif /* XmIsSpinBox */

1.Be warned that certain platforms, although they ship the PrintShell headers, do not compile the component into the
native Motif toolkit. Sun Solaris is a case in point.

Motif Functions and Macros XmIs<Emphasis>Object<Default Para Font>

Motif Reference Manual 201

See Also
XmCreateObject(1), VendorShell(2), XmArrowButton(2),
XmArrowButtonGadget(2), XmBulletinBoard(2),
XmCascadeButton(2), XmCascadeButtonGadget(2),
XmComboBox(2), XmCommand(2), XmContainer(2),
XmDialogShell(2), XmDisplay(2), XmDragContext(2),
XmDragIcon(2), XmDrawingArea(2), XmDrawnButton(2),
XmDropSite(2), XmDropTransfer(2),
XmFileSelectionBox(2), XmForm(2), XmFrame(2),
XmGadget(2), XmGrabShell(2), XmIconGadget(2),
XmLabel(2), XmLabelGadget(2), XmList(2),
XmMainWindow(2), XmManager(2), XmMenuShell(2),
XmMessageBox(2), XmNotebook(2), XmPanedWindow(2),
XmPrimitive(2), XmPrintShell(2), XmPushButton(2),
XmPushButtonGadget(2), XmRowColumn(2), XmScale(2),
XmScreen(2), XmScrollBar(2), XmScrolledWindow(2),
XmSelectionBox(2), XmSeparator(2),
XmSeparatorGadget(2), XmSpinBox(2),
XmSimpleSpinBox(2), XmText(2), XmTextField(2),
XmToggleButton(2), XmToggleButtonGadget(2).

XmIsTraversable Motif Functions and Macros

202 Motif Reference Manual

Name
XmIsTraversable – determine whether or not a widget can receive the keyboard
focus.

Synopsis

Boolean XmIsTraversable (Widget widget)

Inputs
widget Specifies the widget whose traversability state is to be returned.

Returns
True if widget is eligible to receive the keyboard focus or False otherwise.

Availability
Motif 1.2 and later.

Description
XmIsTraversable () determines whether or not the specified widget can
receive the keyboard focus. The routine returns True if the widget is eligible to
receive the keyboard focus; otherwise it returns False.

Usage
In order for a widget to receive the keyboard focus, it and all of its ancestors must
not be in the process of being destroyed and they must be sensitive to input. The
widget and its ancestors must also have their XmNtraversalOn resources set to
True. If the widget is viewable, which means that it and its ancestors are man-
aged, mapped, and realized and some part of the widget is visible, then the
widget is eligible to receive the keyboard focus. A fully-obscured widget is not
eligible to receive the focus unless part of it is within the work area of a Scrolled-
Window with an XmNscrollingPolicy of XmAUTOMATIC that has an XmNtra-
verseObscuredCallback.

Primitive widgets and gadgets can receive the keyboard focus, while most man-
ager widgets cannot, even if they have traversable children. However, some man-
agers may be eligible to receive the keyboard focus under certain conditions. For
example, a DrawingArea can receive the keyboard focus if it meets the condi-
tions above and it does not have any children with the XmNtraversalOn resource
set to True.

See Also
XmGetFocusWidget (1), XmGetTabGroup (1), XmGetVisibility (1),
XmProcessTraversal (1), XmManager(2), XmScrolledWindow (2).

Motif Functions and Macros XmListAddItem

Motif Reference Manual 203

Name
XmListAddItem, XmListAddItems – add an item/items to a list.

Synopsis

#include <Xm/List.h>

void XmListAddItem (Widget widget, XmString item, int position)
void XmListAddItems (Widget widget, XmString *items, int item_count, int
position)

Inputs
widget Specifies the List widget.
item Specifies the item that is to be added.
items Specifies a list of items that are to be added.
item_count Specifies the number of items to be added.
position Specifies the position at which to add the new item(s).

Description
XmListAddItem () inserts the specified item into the list, while XmListAd-
dItems () inserts the specified list of items. If item_count is smaller than the
number of items, only the first item_count items of the array are added. The posi-
tion argument specifies the location of the new item(s) in the list. A position
value of 1 indicates the first item, a position value of 2 indicates the second item,
and so on. A value of 0 (zero) specifies the last item in the list. An inserted item
appears selected if it matches an item in the XmNselectedItems list.

Usage
XmListAddItem () and XmListAddItems () are convenience routines that
allow you to add items to a list. The routines add items to the list by internally
manipulating the arrays of compound strings specified by the XmNitems,
XmNitemCount, XmNselectedItems, and XmNselectedItemCount resources. If
an item being added to the list duplicates an item that is already selected, the new
item appears as selected. You should only use these routines if the list supports
multiple selections and you want to select the new items whose duplicates are
already selected. In order to add items with these routines, you have to create a
compound string for each item.

See Also
XmListAddItemUnselected (1), XmListReplaceItems (1),
XmListReplaceItemsPos (1),
XmListReplaceItemsPosUnselected (1),
XmListReplacePositions (1), XmList (2).

XmListAddItemUnselected Motif Functions and Macros

204 Motif Reference Manual

Name
XmListAddItemUnselected, XmListAddItemsUnselected – add an item/items to
a list.

Synopsis

#include <Xm/List.h>

void XmListAddItemUnselected (Widget widget, XmString item, int position)
void XmListAddItemsUnselected (Widget widget, XmString *items, int
item_count, int position)

Inputs
widget Specifies the List widget.
item Specifies the item that is to be added.
items Specifies a list of items that are to be added.
item_count Specifies the number of items to be added.
position Specifies the position at which to add the new item(s).

Availability
XmListAddItemsUnselected () is only available in Motif 1.2 and later.

Description
XmListAddItemUnselected () inserts the specified item into the list, while
XmListAddItemsUnselected () inserts the specified list of items. If
item_count is smaller than the number of items, only the first item_count items of
the array are added. The position argument specifies the location of the new
item(s) in the list. A position value of 1 indicates the first item, a position value
of 2 indicates the second item, and so on. A value of 0 (zero) specifies the last
item in the list. An inserted item does not appear selected, even if it matches an
item in the XmNselectedItems list.

Usage
XmListAddItemUnselected () and XmListAddItemsUnselected ()
are convenience routines that allow you to add items to a list. These routines add
items to the list by internally manipulating the array of compound strings speci-
fied by the XmNitems and XmNitemCount resources. If an item being added to
the list duplicates an item that is already selected, the new item does not appear
as selected. In order to add items with these routines, you have to create a com-
pound string for each item.

Example
The following callback routine shows how to use of XmListAddItemUnse-
lected() to insert an item into a list in alphabetical order:

void add_item (Widget text_w,

Motif Functions and Macros XmListAddItemUnselected

Motif Reference Manual 205

XtPointer client_data,
XtPointer call_data)

{
char *text, *newtext = XmTextFieldGetString
(text_w);
XmString str, *strlist;
int u_bound, l_bound = 0;
Widget list_w = (Widget) client_data;

/* newtext is the text typed in the TextField
widget */
if (!newtext || !*newtext) {

XtFree (newtext);
return;

}

/* get the current entries (and number of entries)
from the List */
XtVaGetValues (list_w, XmNitemCount, &u_bound,

XmNitems, &strlist, NULL);

u_bound--;

/* perform binary search */
while (u_bound >= l_bound) {

int i = l_bound + (u_bound - l_bound)/2;

text = (char *) XmStringUnparse (strlist[i],
NULL,
XmCHARSET_TEXT,
XmCHARSET_TEXT,
NULL, 0,
XmOUTPUT_ALL);

if (!text)
break;

if (strcmp (text, newtext) > 0)
u_bound = i-1;

else
l_bound = i+1;

XtFree (text);
}

/* insert item at appropriate location */

XmListAddItemUnselected Motif Functions and Macros

206 Motif Reference Manual

str = XmStringCreateLocalized (newtext);
XmListAddItemUnselected (list_w, str, l_bound+1);
XmStringFree (str);
XtFree (newtext);

}

See Also
XmListAddItem (1), XmListReplaceItems (1),
XmListReplaceItemsPos (1),
XmListReplaceItemsPosUnselected (1),
XmListReplaceItemsUnselected (1),
XmListReplacePositions (1), XmList (2).

Motif Functions and Macros XmListDeleteAllItems

Motif Reference Manual 207

Name
XmListDeleteAllItems – delete all of the items from a list.

Synopsis

#include <Xm/List.h>

void XmListDeleteAllItems (Widget widget)

Inputs
widget Specifies the List widget.

Description
XmListDeleteAllItems () removes all of the items from the specified List
widget.

Usage
XmListDeleteAllItems () is a convenience routine that allows you to
remove all of the items from a list. The routine removes items from the list by
internally manipulating the array of compound strings specified by the
XmNitems and XmNitemCount resources.

See Also
XmListDeleteItem (1), XmListDeleteItemsPos (1),
XmListDeletePos (1), XmListDeletePositions (1), XmList (2).

XmListDeleteItem Motif Functions and Macros

208 Motif Reference Manual

Name
XmListDeleteItem, XmListDeleteItems – delete an item/items from a list.

Synopsis

#include <Xm/List.h>

void XmListDeleteItem (Widget widget, XmString item)
void XmListDeleteItems (Widget widget, XmString *items, int item_count)

Inputs
widget Specifies the List widget.
item Specifies the item that is to be deleted.
items Specifies a list of items that are to be deleted.
item_count Specifies the number of items to be deleted.

Description
XmListDeleteItem ()1 removes the first occurrence of the specified item
from the list, while XmListDeleteItems () removes the first occurrence of
each of the elements of items. If an item does not exist, a warning message is dis-
played.

Usage
XmListDeleteItem () and XmListDeleteItems () are convenience rou-
tines that allow you to remove items from a list. The routines remove items from
the list by internally manipulating the array of compound strings specified by the
XmNitems and XmNitemCount resources. If there is more than one occurrence
of an item in the list, the routines only remove the first occurrence. In order to
remove items with these routines, you have to create a compound string for each
item. The routines use a linear search to locate the items to be deleted.

See Also
XmListDeleteAllItems (1), XmListDeleteItemsPos (1),
XmListDeletePos (1), XmListDeletePositions (1), XmList (2).

1.Erroneously given as ListDeleteItem() in 1st and 2nd editions.

Motif Functions and Macros XmListDeleteItemsPos

Motif Reference Manual 209

Name
XmListDeleteItemsPos – delete items starting at a specified position from a list.

Synopsis

#include <Xm/List.h>

void XmListDeleteItemsPos (Widget widget, int item_count, int position)

Inputs
widget Specifies the List widget.
item_count Specifies the number of items to be deleted.
position Specifies the position from which to delete items.

Description
XmListDeleteItemsPos () removes item_count items from the list, starting
at the specified position. A position value of 1 indicates the first item, a position
value of 2 indicates the second item, and so on. If the number of items between
position and the end of the list is less than item_count, the routine deletes all of
the items up through the last item in the list.

Usage
XmListDeleteItemsPos () is a convenience routine that allows you to
remove items from a list. The routine removes items from the list by internally
manipulating the array of compound strings specified by the XmNitems and
XmNitemCount resources. Since you are specifying the position of the items to
be removed, you do not have to create compound strings for the items. The rou-
tine does not have to search for the items, so it avoids the linear search that is
used by XmListDeleteItems().

See Also
XmListDeleteAllItems (1), XmListDeleteItem (1),
XmListDeletePos (1), XmListDeletePositions (1), XmList (2).

XmListDeletePos Motif Functions and Macros

210 Motif Reference Manual

Name
XmListDeletePos – delete an item at the specified position from a list.

Synopsis

#include <Xm/List.h>

void XmListDeletePos (Widget widget, int position)

Inputs
widget Specifies the List widget.
position Specifies the position from which to delete an item.

Description
XmListDeletePos () removes the item at the specified position from the list.
A position value of 1 indicates the first item, a position value of 2 indicates the
second item, and so on. A value of 0 (zero) specifies the last item in the list. If the
list does not have the specified position, a warning message is displayed.

Usage
XmListDeletePos () is a convenience routine that allows you to remove an
item from a list. The routine removes items from the list by internally manipulat-
ing the array of compound strings specified by the XmNitems and XmNitem-
Count resources. Since you are specifying the position of the item to be removed,
you do not have to create a compound string for the item. The routine does not
have to search for the item, so it avoids the linear search that is used by
XmListDeleteItem ().

See Also
XmListDeleteAllItems (1), XmListDeleteItem (1),
XmListDeleteItemsPos (1), XmListDeletePositions (1),
XmList (2).

Motif Functions and Macros XmListDeletePositions

Motif Reference Manual 211

Name
XmListDeletePositions – delete items at the specified positions from a list.

Synopsis

#include <Xm/List.h>

void XmListDeletePositions (Widget widget, int *position_list, int
position_count)

Inputs
widget Specifies the List widget.
position_list Specifies a list of positions from which to delete items.
position_count Specifies the number of positions to be deleted.

Availability
Motif 1.2 and later.

Description
XmListDeletePositions () removes the items that appear at the positions
specified in position_list from the list. A position value of 1 indicates the first
item, a value of 2 indicates the second item, and so on. If the list does not have
the specified position, a warning message is displayed. If position_count is
smaller than the number of positions in position_list, only the first position_count
items of the array are deleted.

Usage
XmListDeletePositions () is a convenience routine that allows you to
remove items from a list. The routine remove the items by modifying the
XmNitems and XmNitemCount resources. Since you are specifying the positions
of the items to be removed, you do not have to create compound strings for the
items. The routine does not have to search for the items, so it avoids the linear
search that is used by XmListDeleteItems ().

See Also
XmListDeleteAllItems (1), XmListDeleteItem (1),
XmListDeleteItemsPos (1), XmListDeletePos (1), XmList (2).

XmListDeselectAllItems Motif Functions and Macros

212 Motif Reference Manual

Name
XmListDeselectAllItems – deselect all items in a list.

Synopsis

#include <Xm/List.h>

void XmListDeselectAllItems (Widget widget)

Inputs
widget Specifies the List widget.

Description
XmListDeselectAllItems () unhighlights all of the selected items in the
specified widget and removes these items from the XmNselectedItems list. If the
list is in normal mode, the item with the keyboard focus remains selected; if the
list is in add mode, all of the items are deselected.

Usage
XmListDeselectAllItems () is a convenience routine that allows you to
deselect all of the items in a list. The routine deselects items in the list by inter-
nally manipulating the array of compound strings specified by the XmNselecte-
dItems and XmNselectedItemCount resources. This routine does not invoke any
selection callbacks for the list when the items are deselected.

See Also
XmListDeselectItem (1), XmListDeselectPos (1),
XmListSelectItem (1), XmListSelectPos (1),
XmListUpdateSelectedList (1), XmList (2).

Motif Functions and Macros XmListDeselectItem

Motif Reference Manual 213

Name

XmListDeselectItem – deselect an item from a list.

Synopsis

#include <Xm/List.h>

void XmListDeselectItem (Widget widget, XmString item)

Inputs
widget Specifies the List widget.
item Specifies the item that is to be deselected.

Description
XmListDeselectItem () unhighlights and removes from the XmNselecte-
dItems list the first occurrence of the specified item.

Usage
XmListDeselectItem () is a convenience routine that allows you to deselect
an item in a list. The routine deselects items in the list by internally manipulating
the array of compound strings specified by the XmNselectedItems and XmNse-
lectedItemCount resources. This routine does not invoke any selection callbacks
for the list when the item is deselected. If there is more than one occurrence of an
item in the list, the routine only deselects the first occurrence. In order to deselect
an item with this routine, you have to create a compound string for the item. The
routine uses a linear search to locate the item to be deselected.

See Also
XmListDeselectAllItems (1), XmListDeselectPos (1),
XmListSelectItem (1), XmListSelectPos (1),
XmListUpdateSelectedList (1), XmList (2).

XmListDeselectPos Motif Functions and Macros

214 Motif Reference Manual

Name
XmListDeselectPos – deselect an item at the specified position from a list.

Synopsis

#include <Xm/List.h>

void XmListDeselectPos (Widget widget, int position)

Inputs
widget Specifies the List widget.
position Specifies the position at which to deselect an item.

Description
XmListDeselectPos () unhighlights the item at the specified position in the
list and removes the item from the XmNselectedItems list. A position value of 1
indicates the first item, a position value of 2 indicates the second item, and so on.
A value of 0 (zero) specifies the last item in the list. If the list does not have the
specified position, the routine does nothing.

Usage
XmListDeselectPos () is a convenience routine that allows you to deselect
an item in a list. The routine deselects items in the list by internally manipulating
the array of compound strings specified by the XmNselectedItems and XmNse-
lectedItemCount resources. This routine does not invoke any selection callbacks
for the list when the item is deselected. Since you are specifying the position of
the item to be deselected, you do not have to create a compound string for the
item. The routine does not have to search for the item, so it avoids the linear
search that is used by XmListDeselectItem ().

See Also
XmListDeselectAllItems (1), XmListDeselectPos (1),
XmListGetSelectedPos (1), XmListPosSelected (1),
XmListSelectItem (1), XmListSelectPos (1),
XmListUpdateSelectedList (1), XmList (2).

Motif Functions and Macros XmListGetKbdItemPos

Motif Reference Manual 215

Name
XmListGetKbdItemPos – get the position of the item in a list that has the location
cursor.

Synopsis

#include <Xm/List.h>

int XmListGetKbdItemPos (Widget widget)

Inputs
widget Specifies the List widget.

Returns
The position of the item that has the location cursor.

Availability
Motif 1.2 and later.

Description
XmListGetKbdItemPos () retrieves the position of the item in the specified
List widget that has the location cursor. A returned value of 1 indicates the first
item, a value of 2 indicates the second item, and so on. The value 0 (zero) speci-
fies that the list is empty.

Usage
XmListGetKbdItemPos () provides a way to determine which item in a list
has the keyboard focus. This information is useful if you need to perform actions
based on the position of the location cursor in the list.

See Also
XmListSetAddMode (1), XmListSetKbdItemPos (1), XmList (2).

XmListGetMatchPos Motif Functions and Macros

216 Motif Reference Manual

Name
XmListGetMatchPos – get all occurrences of an item in a list.

Synopsis

#include <Xm/List.h>

Boolean XmListGetMatchPos (Widget widget, XmString item, int
** position_list, int *position_count)

Inputs
widget Specifies the List widget.
item Specifies the item whose positions are to be retrieved.

Outputs
position_list Returns a list of the positions of the item.
position_count Returns the number of items in position_list.

Returns
True if the item is in the list or False otherwise.

Description
XmListGetMatchPos () determines whether the specified item exists in the
list. If the list contains item, the routine returns True and position_list returns a
list of positions that specify the location(s) of the item. A position value of 1 indi-
cates the first item, a position value of 2 indicates the second item, and so on.
XmListGetMatchPos () allocates storage for the position_list array when the
item is found; the application is responsible for freeing this storage using
XtFree (). If the list does not contain item, the routine returns False, and
position_count is set to zero. In Motif 1.2.3 and earlier, the value of position_list
is undefined if item is not within the list. From Motif 1.2.4 and later, position_list
is set to NULL.

Usage
XmListGetMatchPos () is a convenience routine that provides a way to locate
all of the occurrences of an item in a list. Alternatively, you could obtain this
information yourself using the XmNitems resource and XmListItemPos ().

Example
The following code fragments show the use of XmListGetMatchPos ():

Widget list_w;
int *pos_list;
int pos_cnt, i;
char *choice = "A Sample Text String";
XmString str = XmStringCreateLocalized
(choice);

Motif Functions and Macros XmListGetMatchPos

Motif Reference Manual 217

if (!XmListGetMatchPos (list_w, str, &pos_list,
&pos_cnt))

XtWarning ("Can’t get items in list");
else {

printf ("%s exists at %d positions:", choice,
pos_cnt);

for (i = 0; i < pos_cnt; i++)
printf (" %d", pos_list[i]);

puts ("");

XtFree (pos_list);
}

XmStringFree (str);

See Also
XmListGetSelectedPos (1), XmList (2).

XmListGetSelectedPos Motif Functions and Macros

218 Motif Reference Manual

Name
XmListGetSelectedPos – get the positions of the selected items in a list.

Synopsis

#include <Xm/List.h>

Boolean XmListGetSelectedPos (Widget widget, int ** position_list, int
*position_count)

Inputs
widget Specifies the List widget.

Outputs
position_list Returns a list of the positions of the selected items.
position_count Returns the number of items in position_list.

Returns
True if there are selected items in the list or False otherwise.

Description
XmListGetSelectedPos () determines whether there are any selected items
in the list. If the list has selected items, the routine returns True and position_list
returns a list of positions that specify the location(s) of the items. A position
value of 1 indicates the first item, a position value of 2 indicates the second item,
and so on. XmListGetSelectedPos () allocates storage for the position_list
array when there are selected items; the application is responsible for freeing this
storage using XtFree(). If the list does not contain any selected items, the routine
returns False and position_count is set to zero. In Motif 1.2.3 and earlier, the
value of position_list is undefined if there are no selected items within the list.
From Motif 1.2.4 and later, position_list is set to NULL.

Usage
XmListGetSelectedPos () is a convenience routine that provides a way to
determine the positions of all of the selected items in a list. Alternatively, you
could obtain this information yourself using the XmNselectedItems resource and
XmListItemPos ().

See Also
XmListGetMatchPos (1), XmList (2).

Motif Functions and Macros XmListItemExists

Motif Reference Manual 219

Name
XmListItemExists – determine if a specified item is in a list.

Synopsis

#include <Xm/List.h>

Boolean XmListItemExists (Widget widget, XmString item)

Inputs
widget Specifies the List widget.
item Specifies the item whose presence in the list is checked.

Returns
True if the item is in the list or False otherwise.

Description
XmListItemExists () determines whether the list contains the specified item.
The routine returns True if the item is present and False if it is not.

Usage
XmListItemExists () is a convenience routine that determines whether or not
an item is in a list. In order to use the routine, you have to create a compound
string for the item. The routine uses a linear search to locate the item. You may be
able to obtain this information more effectively by searching the XmNitems list
using your own search procedure.

See Also
XmListGetMatchPos (1), XmListItemPos (1), XmList (2).

XmListItemPos Motif Functions and Macros

220 Motif Reference Manual

Name
XmListItemPos – return the position of an item in a list.

Synopsis

#include <Xm/List.h>

int XmListItemPos (Widget widget, XmString item)

Inputs
widget Specifies the List widget.
item Specifies the item whose position is returned.

Returns
The position of the item in the list or 0 (zero) if the item is not in the list.

Description
XmListItemPos () returns the position of the first occurrence of the specified
item in the list. A position value of 1 indicates the first item, a position value of 2
indicates the second item, and so on. If item is not in the list, XmListItem-
Pos() returns 0 (zero).

Usage
XmListItemPos () is a convenience routine that finds the position of an item in
a list. If there is more than one occurrence of the item in the list, the routine only
returns the position of the first occurrence. In order to use the routine, you have
to create a compound string for the item. The routine uses a linear search to
locate the item.

Example
The following routines show how to make sure that a given item in a list is visi-
ble:

void MakePosVisible (Widget list_w, int item_no)
{

int top, visible;

XtVaGetValues (list_w, XmNtopItemPosition,
&top,

XmNvisibleItemCount,
&visible,

NULL);

if (item_no < top)
XmListSetPos (list_w, item_no);

else if (item_no >= top+visible)
XmListSetBottomPos (list_w, item_no);

Motif Functions and Macros XmListItemPos

Motif Reference Manual 221

}

void MakeItemVisible (Widget list_w, XmString item)
{

int item_no = XmListItemPos (list_w, item);

if (item_no > 0)
MakePosVisible (list_w, item_no);

}

See Also
XmListItemExists (1), XmListPosSelected (1), XmList (2).

XmListPosSelected Motif Functions and Macros

222 Motif Reference Manual

Name
XmListPosSelected – check if the item at a specified position is selected in a list.

Synopsis

#include <Xm/List.h>

Boolean XmListPosSelected (Widget widget, int position)

Inputs
widget Specifies the List widget.
position Specifies the position that is checked.

Returns
True if the item is selected or False if the item is not selected or the position is
invalid.

Availability
Motif 1.2 and later.

Description
XmListPosSelected () determines whether or not the list item at the speci-
fied position is selected. A position value of 1 indicates the first item, a position
value of 2 indicates the second item, and so on. The value 0 (zero) specifies the
last item in the list. The routine returns True if the list item is selected. It returns
False if the item is not selected or the list does not have the specified position.

Usage
XmListPosSelected() is a convenience routine that lets you check if an item at a
particular position is selected. Alternatively, you could check the list of positions
returned by XmListGetSelectedPos () to see if the item at a position is
selected.

See Also
XmListDeselectPos (1), XmListGetSelectedPos (1),
XmListSelectPos (1), XmListUpdateSelectedList (1), XmList (2).

Motif Functions and Macros XmListPosToBounds

Motif Reference Manual 223

Name
XmListPosToBounds – return the bounding box of an item at the specified posi-
tion in a list.

Synopsis

#include <Xm/List.h>

Boolean XmListPosToBounds (Widget widget,
int position,
Position *x,
Position *y,
Dimension *width,
Dimension *height)

Inputs
widget Specifies the List widget.
position Specifies the position of the item for which to return the bounding
box.

Outputs
x Returns the x-coordinate of the bounding box for the item.
y Returns the y-coordinate of the bounding box for the item.
width Returns the width of the bounding box for the item.
height Returns the height of the bounding box for the item.

Returns
True if item at the specified position is visible or False otherwise.

Availability
Motif 1.2 and later.

Description
XmListPosToBounds () returns the bounding box of the item at the specified
position in the list. A position value of 1 indicates the first item, a position value
of 2 indicates the second item, and so on. A value of 0 (zero) specifies the last
item in the list. The routine returns the x and y coordinates of the upper left corner
of the bounding box in relation to the upper left corner of the List widget.
XmListPosToBounds () also returns the width and height of the bounding
box. Passing a NULL value for any of the x, y, width, or height parameters indi-
cates that the value for the parameter should not be returned. If the item at the
specified position is not visible, XmListPosToBounds () returns False and the
return values are undefined.

XmListPosToBounds Motif Functions and Macros

224 Motif Reference Manual

Usage
XmListPosToBounds () provides a way to determine the bounding box of an
item in a list. This information is useful if you want to perform additional event
processing or draw special graphics for the list item.

See Also
XmListYToPos (1), XmList (2).

Motif Functions and Macros XmListReplaceItems

Motif Reference Manual 225

Name
XmListReplaceItems – replace specified items in a list.

Synopsis

#include <Xm/List.h>

void XmListReplaceItems (Widget widget,
XmString *old_items,
int item_count,
XmString *new_items)

Inputs
widget Specifies the List widget.
old_items Specifies a list of the items that are to be replaced.
item_count Specifies the number of items that are to be replaced.
new_items Specifies a list of the new items.

Description
XmListReplaceItems () replaces the first occurrence of each item in the
old_items list with the corresponding item from the new_items list. If an item in
the old_items list does not exist in the specified List widget, the corresponding

item in new_items1 is skipped. If item_count is smaller than the number of
old_items or new_items, only the first item_count items are replaced. A new item
appears selected if it matches an item in the XmNselectedItems list.

Usage
XmListReplaceItems () is a convenience routine that allows you to replace
particular items in a list. The routine replaces items by manipulating the array of
compound strings specified by the XmNitems and XmNitemCount resources. If a
new item duplicates an item that is already selected, the new item appears as
selected. You should only use this routine if the list supports multiple selections
and you want to select the new items whose duplicates are already selected. In
order to replace items with this routine, you have to create compound strings for
all of the old and new items. The routine uses a linear search to locate the items to
be replaced.

See Also
XmListAddItem (1), XmListAddItemUnselected (1),
XmListReplaceItemsPos (1),
XmListReplaceItemsPosUnselected (1),
XmListReplaceItemsUnselected (1),
XmListReplacePositions (1), XmList (2).

1.Erroneously given as new_list in 1st and 2nd edition.

XmListReplaceItemsPos Motif Functions and Macros

226 Motif Reference Manual

Name
XmListReplaceItemsPos – replace specified items in a list.

Synopsis

#include <Xm/List.h>

void XmListReplaceItemsPos (Widget widget, XmString *new_items, int
item_count, int position)

Inputs
widget Specifies the List widget.
new_items Specifies a list of the new items.
item_count Specifies the number of items that are to be replaced.
position Specifies the position at which to replace items.

Description
XmListReplaceItemsPos () replaces a consecutive number of items in the
list with items from the new_items list. The first item that is replaced is located at
the specified position and each subsequent item is replaced by the corresponding
item from new_items. A position value of 1 indicates the first item, a position
value of 2 indicates the second item, and so on. If item_count is smaller than the
number of new_items, only the first item_count items are replaced. If the number
of items between position and the end of the list is less than item_count, the rou-
tine replaces all of the items up through the last item in the list. A new item
appears selected if it matches an item in the XmNselectedItems list.

Usage
XmListReplaceItemsPos () is a convenience routine that allows you to
replace a contiguous sequence of items in a list. The routine replaces items by
manipulating the array of compound strings specified by the XmNitems and
XmNitemCount resources. If a new item duplicates an item that is already
selected, the new item appears as selected. You should only use this routine if the
list supports multiple selections and you want to select the new items whose
duplicates are already selected. In order to replace items with this routine, you
have to create compound strings for all of the new items. The routine does not
have to search for the items, so it avoids the linear searches that are used by
XmListReplaceItems ().

See Also
XmListAddItem (1), XmListAddItemUnselected (1),
XmListReplaceItems (1),
XmListReplaceItemsPosUnselected (1),
XmListReplaceItemsUnselected (1),
XmListReplacePositions (1), XmList (2).

Motif Functions and Macros XmListReplaceItemsPosUnselected

Motif Reference Manual 227

Name
XmListReplaceItemsPosUnselected – replace specified items in a list.

Synopsis

#include <Xm/List.h>

void XmListReplaceItemsPosUnselected (Widget widget,
XmString *new_items,
int item_count,
int position)

Inputs
widget Specifies the List widget.
new_items Specifies a list of the new items.
item_count Specifies the number of items that are to be replaced.
position Specifies the position at which to replace items.

Availability
Motif 1.2 and later.

Description
XmListReplaceItemsPosUnselected () replaces a consecutive number
of items in the list with items from the new_items list. The first item that is
replaced is located at the specified position and each subsequent item is replaced
by the corresponding item from new_items. A position value of 1 indicates the
first item, a position value of 2 indicates the second item, and so on. If item_count
is smaller than the number of new_items, only the first item_count items are
replaced. If the number of items between position and the end of the list is less
than item_count, the routine replaces all of the items up through the last item in
the list. A new item does not appear selected, even if it matches an item in the
XmNselectedItems list.

Usage
XmListReplaceItemsPosUnselected () is a convenience routine that
allows you to replace a contiguous sequence of items in a list. The routine
replaces items by modifying the array of compound strings specified through the
XmNitems and XmNitemCount resources. If a new item duplicates an item that
is already selected, the new item does not appear as selected. In order to replace
items with this routine, you have to create compound strings for all of the new
items. The routine does not have to search for the items, so it avoids the linear
searches that are used by XmListReplaceItemsUnselected ().

XmListReplaceItemsPosUnselected Motif Functions and Macros

228 Motif Reference Manual

See Also
XmListAddItem (1), XmListAddItemUnselected (1),
XmListReplaceItems (1), XmListReplaceItemsPos (1),
XmListReplaceItemsUnselected (1),
XmListReplacePositions (1), XmList (2).

Motif Functions and Macros XmListReplaceItemsUnselected

Motif Reference Manual 229

Name
XmListReplaceItemsUnselected – replace specified items in a list.

Synopsis

#include <Xm/List.h>

void XmListReplaceItemsUnselected (Widget widget,
XmString *old_items,
int item_count,
XmString *new_items)

Inputs
widget Specifies the List widget.
old_items Specifies a list of the items that are to be replaced.
item_count Specifies the number of items that are to be replaced.
new_items Specifies a list of the new items.

Availability
Motif 1.2 and later.

Description
XmListReplaceItemsUnselected () replaces the first occurrence of each
item in the old_items list with the corresponding item from the new_items list. If
an item in the old_items list does not exist in the specified List widget, the corre-

sponding item in new_items1 is skipped. If item_count is smaller than the number
of old_items or new_items, only the first item_count items are replaced. A new
item does not appear selected, even if it matches an item in the XmNselecte-
dItems list.

Usage
XmListReplaceItemsUnselected () is a convenience routine that allows
you to replace particular items in a list. The routine replaces items by modifying
the array of compound strings specified through the XmNitems and XmNitem-
Count resources. If a new item duplicates an item that is already selected, the new
item does not appear as selected. In order to replace items with this routine, you
have to create compound strings for all of the old and new items. The routine uses
a linear search to locate the items to be replaced.

See Also
XmListAddItem(1), XmListAddItemUnselected(1),
XmListReplaceItems(1), XmListReplaceItemsPos(1),
XmListReplaceItemsPosUnselected(1),
XmListReplacePositions(1), XmList(2).

1.Erroneously given as new_list in 1st and 2nd editions.

XmListReplacePositions Motif Functions and Macros

230 Motif Reference Manual

Name
XmListReplacePositions – replace items at the specified positions in a list.

Synopsis

#include <Xm/List.h>

void XmListReplacePositions (Widget widget, int *position_list, XmString
* item_list, int item_count)

Inputs
widget Specifies the List widget.
position_list Specifies a list of positions at which to replace items.
item_list Specifies a list of the new items.
item_count Specifies the number of items that are to be replaced.

Availability
Motif 1.2 and later.

Description
XmListReplacePositions () replaces the items that appear at the positions
specified in position_list with the corresponding items from item_list. A position
value of 1 indicates the first item, a value of 2 indicates the second item, and so
on. If the list does not have the specified position, a warning message is dis-
played. If item_count is smaller than the number of positions in position_list,
only the first item_count items are replaced. A new item appears selected if it
matches an item in the XmNselectedItems list.

Usage
XmListReplacePositions () is a convenience routine that allows you to
replace items at particular positions in a list. The routine replaces items by modi-
fying the array of compound strings specified through the XmNitems and
XmNitemCount resources. If a new item duplicates an item that is already
selected, the new item appears as selected. You should only use this routine if the
list supports multiple selections and you want to select the new items whose
duplicates are already selected. In order to replace items with this routine, you
have to create compound strings for all of the new items. The routine does not
have to search for the items, so it avoids the linear searches that are used by
XmListReplaceItems ().

See Also
XmListAddItem (1), XmListAddItemUnselected (1),
XmListReplaceItems (1), XmListReplaceItemsPos (1),
XmListReplaceItemsPosUnselected (1),
XmListReplaceItemsUnselected (1), XmList (2).

Motif Functions and Macros XmListSelectItem

Motif Reference Manual 231

Name
XmListSelectItem – select an item from a list.

Synopsis

#include <Xm/List.h>

void XmListSelectItem (Widget widget, XmString item, Boolean notify)

Inputs
widget Specifies the List widget.
item Specifies the item that is to be selected.
notify Specifies whether or not the selection callback is invoked.

Description
XmListSelectItem () highlights and selects the first occurrence of the speci-
fied item in the list. If the XmNselectionPolicy resource of the list is
XmMULTIPLE_SELECT, the routine toggles the selection state of item. For any
other selection policy, XmListSelectItem () replaces the currently selected
item(s) with item. The XmNselectedItems resource specifies the current selection
of the list. If notify is True, XmListSelectItem () invokes the selection call-
back for the current selection policy.

Usage
XmListSelectItem () is a convenience routine that allows you to select an
item in a list. The routine selects the item by modifying the array of compound
strings specified by the XmNselectedItems and XmNselectedItemCount
resources. In order to select an item with this routine, you have to create a com-
pound string for the item. The routine uses a linear search to locate the item to be
selected. XmListSelectItem() only allows you to select a single item; there are no
routines for selecting multiple items. If you need to select more than one item,
use XtSetValues () to set XmNselectedItems and XmNselectedItemCount.

The notify parameter indicates whether or not the selection callbacks for the cur-
rent selection policy are invoked. You can avoid redundant code by setting this
parameter to True. If you are calling XmListSelectItem () from a selection
callback routine, you probably want to set the parameter to False to avoid the
possibility of an infinite loop. Calling XmListSelectItem () with notify set to
True causes the callback routines to be invoked in a way that is indistinguishable
from a user-initiated selection action.

See Also
XmListDeselectAllItems (1), XmListDeselectItem (1),
XmListDeselectPos (1), XmListSelectPos (1),
XmListUpdateSelectedList (1), XmList (2).

XmListSelectPos Motif Functions and Macros

232 Motif Reference Manual

Name
XmListSelectPos – select an item at the specified position from a list.

Synopsis

#include <Xm/List.h>

void XmListSelectPos (Widget widget, int position, Boolean notify)

Inputs
widget Specifies the List widget.
position Specifies the position of the item that is to be selected.
notify Specifies whether or not the selection callback is invoked.

Description
XmListSelectPos () highlights and selects the item at the specified position
in the list. A position value of 1 indicates the first item, a position value of 2 indi-
cates the second item, and so on. A value of 0 (zero) specifies the last item in the
list. If the XmNselectionPolicy resource of the list is XmMULTIPLE_SELECT,
the routine toggles the selection state of the item. For any other selection policy,
XmListSelectPos () replaces the currently selected item with the specified
item. The XmNselectedItems resource lists the current selection of the list. If
notify is True, XmListSelectPos () invokes the selection callback for the cur-
rent selection policy.

Usage
XmListSelectPos () is a convenience routine that allows you to select an item
at a particular position in a list. The routine selects the item by modifying the
array of compound strings specified through the XmNselectedItems and XmNse-
lectedItemCount resources. Since you are specifying the position of the item to
be selected, you do not have to create a compound string for the item. The routine
does not have to search for the item, so it avoids the linear search that is used by
XmListSelectItem (). XmListSelectPos () only allows you to select a
single item; there are no routines for selecting multiple items. If you need to
select more than one item, use XtSetValues() to set XmNselectedItems and
XmNselectedItemCount.

The notify parameter indicates whether or not the selection callbacks for the cur-
rent selection policy are invoked. You can avoid redundant code by setting this
parameter to True. If you are calling XmListSelectPos() from a selection callback
routine, you probably want to set the parameter to False to avoid the possibility of
an infinite loop. Calling XmListSelectPos () with notify set to True causes
the callback routines to be invoked in a way that is indistinguishable from a user-
initiated selection action.

Motif Functions and Macros XmListSelectPos

Motif Reference Manual 233

See Also
XmListDeselectAllItems (1), XmListDeselectItem (1),
XmListDeselectPos (1), XmListGetSelectedPos (1),
XmListPosSelected (1), XmListSelectItem (1), XmList (2).

XmListSetAddMode Motif Functions and Macros

234 Motif Reference Manual

Name
XmListSetAddMode – set add mode in a list.

Synopsis

#include <Xm/List.h>

void XmListSetAddMode (Widget widget, Boolean mode)

Inputs
widget Specifies the List widget.
mode Specifies whether to set add mode on or off.

Description
XmListSetAddMode () sets the state of add mode when the XmNselectionPol-
icy is XmEXTENDED_SELECT. If mode is True, add mode is turned on; if
mode is False, add mode is turned off. When a List widget is in add mode, the
user can move the location cursor without disturbing the current selection.

Usage
XmListSetAddMode() provides a way to change the state of add mode in a list.
The distinction between normal mode and add mode is only important for mak-
ing keyboard-based selections. In normal mode, the location cursor and the selec-
tion move together, while in add mode, the location cursor and the selection can
be separate.

See Also
XmListGetKbdItemPos (1), XmListSetKbdItemPos (1), XmList (2).

Motif Functions and Macros XmListSetBottomItem

Motif Reference Manual 235

Name
XmListSetBottomItem – set the last visible item in a list.

Synopsis

#include <Xm/List.h>

void XmListSetBottomItem (Widget widget, XmString item)

Inputs
widget Specifies the List widget.
item Specifies the item that is made the last visible item.

Description
XmListSetBottomItem () scrolls the List widget so that the first occurrence
of the specified item appears as the last visible item in the list.

Usage
XmListSetBottomItem () provides a way to make sure that a particular item
is visible in a list. The routine changes the viewable portion of the list so that the
specified item is displayed at the bottom of the viewport. If there is more than one
occurrence of the item in the list, the routine uses the first occurrence. In order to
use this routine, you have to create a compound string for the item. The routine
uses a linear search to locate the item.

See Also
XmListSetBottomPos (1), XmListSetHorizPos (1),
XmListSetItem (1), XmListSetPos (1), XmList (2).

XmListSetBottomPos Motif Functions and Macros

236 Motif Reference Manual

Name
XmListSetBottomPos – set the last visible item in a list.

Synopsis

#include <Xm/List.h>

void XmListSetBottomPos (Widget widget, int position)

Inputs
widget Specifies the List widget.
position Specifies the position of the item that is made the last visible item.

Description
XmListSetBottomPos () scrolls the List widget so that the item at the speci-
fied position appears as the last visible item in the list. A position value of 1 indi-
cates the first item, a position value of 2 indicates the second item, and so on. A
value of 0 (zero) specifies the last item in the list.

Usage
XmListSetBottomPos () provides a way to make sure that an item at a partic-
ular position is visible in a list. The routine changes the viewable portion of the
list so that the item at the specified position is displayed at the bottom of the
viewport. Since you are specifying the position of the item, you do not have to
create a compound string for the item. The routine does not have to search for the
item, so it avoids the linear search that is used by XmListSetBottomItem ().

Example
The following routine shows how to make sure that an item at a given position in
a list is visible:

void MakePosVisible (Widget list_w, int item_no)
{

int top, visible;

XtVaGetValues (list_w, XmNtopItemPosition, &top, XmNvisibleItem-
Count, &visible, NULL);

if (item_no < top)
XmListSetPos (list_w, item_no);

else if (item_no >= top+visible)
XmListSetBottomPos (list_w, item_no);

}

See Also
XmListSetBottomItem (1), XmListSetHorizPos (1),
XmListSetItem (1), XmListSetPos (1), XmList (2).

Motif Functions and Macros XmListSetHorizPos

Motif Reference Manual 237

Name
XmListSetHorizPos – set the horizontal position of a list.

Synopsis

#include <Xm/List.h>

void XmListSetHorizPos (Widget widget, int position)

Inputs
widget Specifies the List widget.
position Specifies the horizontal position.

Description
XmListSetHorizPos () scrolls the list to the specified horizontal position. If
XmNlistSizePolicy is set to XmCONSTANT or XmRESIZE_IF_POSSIBLE and
the horizontal scroll bar is visible, XmListSetHorizPos () sets the XmNvalue
resource of the horizontal scroll bar to the specified position and updates the visi-
ble area of the list.

Usage
When a list item is too long to fit horizontally inside the viewing area of a List
widget, the widget either expands horizontally or adds a horizontal scroll bar,
depending on the value of the XmNlistSizePolicy resource. Calling XmListSe-
tHorizPos () is equivalent to the user moving the horizontal scroll bar to the
specified location.

See Also
XmListSetBottomItem (1), XmListSetBottomPos (1),
XmListSetItem (1), XmListSetPos (1), XmList (2).

XmListSetItem Motif Functions and Macros

238 Motif Reference Manual

Name
XmListSetItem – set the first visible item in a list.

Synopsis

#include <Xm/List.h>

void XmListSetItem (Widget widget, XmString item)

Inputs
widget Specifies the List widget.
item Specifies the item that is made the first visible item.

Description
XmListSetItem () scrolls the List widget so that the first occurrence of the
specified item appears as the first visible item in the list.

Usage
XmListSetItem () provides a way to make sure that a particular item is visible
in a list. The routine changes the viewable portion of the list so that the specified
item is displayed at the top of the viewport. Using this routine is equivalent to set-
ting the XmNtopItemPosition resource. If there is more than one occurrence of
the item in the list, the routine uses the first occurrence. In order to use this rou-
tine, you have to create a compound string for the item. The routine uses a linear
search to locate the item.

See Also
XmListSetBottomItem (1), XmListSetBottomPos (1),
XmListSetHorizPos (1), XmListSetPos (1), XmList (2).

Motif Functions and Macros XmListSetKbdItemPos

Motif Reference Manual 239

Name
XmListSetKbdItemPos – set the position of the location cursor in a list.

Synopsis

#include <Xm/List.h>

Boolean XmListSetKbdItemPos (Widget widget, int position)

Inputs
widget Specifies the List widget.
position Specifies the position where the location cursor is set.

Returns
True on success or False if there is not item at position or the list is empty.

Availability
Motif 1.2 and later.

Description
XmListSetKbdItemPos () sets the location cursor at the specified position. A
position value of 1 indicates the first item, a position value of 2 indicates the sec-
ond item, and so on. A value of 0 (zero) specifies the last item in the list. The rou-
tine does not check the selection state of the item at the specified location.

Usage
XmListSetKbdItemPos () provides a way to change which item in a list has
the keyboard focus. The routine is useful if you need to make sure that particular
item has the keyboard focus at a given time, such as when the list first receives
the keyboard focus.

See Also
XmListGetKbdItemPos (1), XmListSetAddMode (1), XmList (2).

XmListSetPos Motif Functions and Macros

240 Motif Reference Manual

Name
XmListSetPos – sets the first visible item in a list.

Synopsis

#include <Xm/List.h>

void XmListSetPos (Widget widget, int position)

Inputs
widget Specifies the List widget.
position Specifies the position of the item that is made the first visible item.

Description
XmListSetPos () scrolls the List widget so that the item at the specified posi-
tion appears as the first visible item in the list. A position value of 1 indicates the
first item, a position value of 2 indicates the second item, and so on. A value of 0
(zero) specifies the last item in the list.

Usage
XmListSetPos () provides a way to make sure that an item at a particular loca-
tion is visible in a list. The routine changes the viewable portion of the list so that
the item at the specified position is displayed at the top of the viewport. Using
this routine is equivalent to setting the XmNtopItemPosition resource. Since you
are specifying the position of the item, you do not have to create a compound
string for the item. The routine does not have to search for the item, so it avoids
the linear search that is used by XmListSetItem ().

Example
The following routine shows how to make sure that an item at a given position in
a list is visible:

void MakePosVisible (Widget list_w, int item_no)
{

int top, visible;

XtVaGetValues (list_w, XmNtopItemPosition, &top, XmNvisibleItem-
Count, &visible, NULL);

if (item_no < top)
XmListSetPos (list_w, item_no);

else if (item_no >= top+visible)
XmListSetBottomPos (list_w, item_no);

}

See Also
XmListSetBottomItem(1), XmListSetBottomPos(1),
XmListSetHorizPos(1), XmListSetItem(1), XmList(2).

Motif Functions and Macros XmListUpdateSelectedList

Motif Reference Manual 241

Name
XmListUpdateSelectedList – update the list of selected items in a list.

Synopsis

#include <Xm/List.h>

void XmListUpdateSelectedList (Widget widget)

Inputs
widget Specified the List widget.

Availability
Motif 1.2 and later.

Description
XmListUpdateSelectedList () updates the array of compound strings
specified through the XmNselectedItems resource. The routine frees the current
selected array, and then traverses the array of compound strings specified by the
XmNitems resource, adding each currently selected item to the XmNselecte-
dItems list.

Usage
XmListUpdateSelectedList () provides a way to update the list of
selected items in a list. This routine is useful if the actual items that are selected
are not synchronized with the value of the XmNselectedItems resource. This situ-
ation might arise if you are using internal list functions and modifying internal
data structures. If you are using the defined list routines, the situation should
never occur.

See Also
XmListDeselectAllItems (1), XmListDeselectItem (1),
XmListDeselectPos (1), XmListGetSelectedPos (1),
XmListPosSelected (1), XmListSelectItem (1),
XmListSelectPos (1), XmList (2).

XmListYToPos Motif Functions and Macros

242 Motif Reference Manual

Name
XmListYToPos – get the position of the item at the specified y-coordinate in a
list.

Synopsis
#include <Xm/List.h>

int XmListYToPos (Widget widget, Position y)

Inputs
widget Specifies the List widget.
y Specifies the y-coordinate.

Returns
The position of the item at the specified y-coordinate.

Availability
Motif 1.2 and later.

Description
XmListYToPos () retrieves the position of the item at the specified y-coordinate
in the list. The y-coordinate is specified in the coordinate system of the list. A
returned value of 1 indicates the first item, a value of 2 indicates the second item,
and so on. The value 0 (zero) specifies that there is no item at the specified loca-
tion.

As of Motif 1.2, a return value of 0 (zero) indicates the first item, a value of 1
indicates the second item, and so on. In Motif 1.2.3 and earlier, the value that is
returned may not be a valid position in the list, so an application should check the
value with respect to the value of XmNitemCount before using it. In Motif 1.2.4
and later, the returned position may not exceed the value of XmNitemCount.

Usage
XmListYToPos () provides a way to translate a y-coordinate into a list position.
This routine is useful if you are processing events that report a pointer position
and you need to convert the location of the event into an item position.

See Also
XmListPosToBounds (1), XmList (2).

Motif Functions and Macros XmMainWindowSep1

Motif Reference Manual 243

Name
XmMainWindowSep1, XmMainWindowSep2, XmMainWindowSep3 – get the
widget ID of a MainWindow Separator.

Synopsis

#include <Xm/MainW.h>

Widget XmMainWindowSep1 (Widget widget)
Widget XmMainWindowSep2 (Widget widget)
Widget XmMainWindowSep3 (Widget widget)

Inputs
widget Specifies the MainWindow widget.

Returns
The widget ID of the particular MainWindow Separator.

Availability
In Motif 2.0 and later, these routines are marked as deprecated.

Description
XmMainWindowSep1() returns the widget ID of the MainWindow widget’s
first Separator, which is located directly below the MenuBar.
XmMainWindowSep2() returns the widget ID of the second Separator in the
Main Window, which is between the Command and ScrolledWindow widgets.
XmMainWindowSep3() returns the widget ID of the MainWindow’s third Sep-
arator, which is located just above the message window. The three Separator
widgets in a MainWindow are visible only when the XmNshowSeparator
resource is set to True.

Usage
XmMainWindowSep1(), XmMainWindowSep2(), and
XmMainWindowSep3() provide access to the three Separator widgets that can
be displayed by a MainWindow widget. With the widget IDs, you can change the
visual attributes of the individual Separators.

In Motif 2.0 and later, the function XtNameToWidget () is the preferred
method of obtaining the MainWindow components. You should pass widget as
the first parameter, and "Separator1", "Separator2", or "Separator3" as the second
parameter to this procedure.

See Also
XmMainWindowSetAreas (1), XmMainWindow(2),
XmScrolledWindow (2).

XmMainWindowSetAreas Motif Functions and Macros

244 Motif Reference Manual

Name
XmMainWindowSetAreas – specify the children for a MainWindow.

Synopsis

#include <Xm/MainW.h>

void XmMainWindowSetAreas (Widgetwidget,
Widget menu_bar,
Widget command_window,
Widget horizontal_scrollbar,
Widget vertical_scrollbar,
Widget work_region)

Inputs
widget Specifies the MainWindow widget.
menu_bar Specifies the widget ID of the MenuBar.
command_window Specifies the widget ID of the command window.
horizontal_scrollbar Specifies the widget ID of the horizontal ScrollBar.
vertical_scrollbar Specifies the widget ID of the vertical ScrollBar.
work_region Specifies the widget ID of the work window.

Availability
In Motif 2.0 and later, the procedure is marked as deprecated.

Description
XmMainWindowSetAreas () sets up the standard regions of the MainWindow
widget for an application. The MainWindow must be created before the routine is
called. XmMainWindowSetAreas () specifies the MenuBar, the work window,
the command window, and the horizontal and vertical ScrollBars for the Main-
Window. If an application does not have one of these regions, the corresponding
argument can be specified as NULL. Each region may have child widgets, and
this routine determines which of those children will be actively managed by the
MainWindow.

Usage
Each of the MainWindow regions is associated with a MainWindow resource;
XmMainWindowSetAreas () sets the associated resources. The associated
resources that correspond to the last five arguments to the routine are XmNmenu-
Bar, XmNcommand, XmNhorizontalScrollBar, XmNverticalScrollBar, and
XmNworkWindow. XmMainWindowSetAreas () does not provide a way to
set up the message area; this region must be set up by specifying the XmNmes-
sageWindow resource.

Motif Functions and Macros XmMainWindowSetAreas

Motif Reference Manual 245

If an application does not call XmMainWindowSetAreas (), the widget may
still set some of the standard regions. When a MenuBar child is added to a Main-
Window, if XmNmenuBar has not been set, it is set to the MenuBar child. When
a Command child is added to a MainWindow, if XmNcommand has not been set,
it is set to the Command child. If ScrollBars are added as children, the XmNhori-
zontalScrollBar and XmNverticalScrollBar resources may be set if they have not
already been specified. Any child that is not one of these types is used for the
XmNworkWindow. If you want to be certain about which widgets are used for
the different regions, it is wise to call XmMainWindowSetAreas () explicitly.

In Motif 2.0 and later, XmMainWindowSetAreas (), is deprecated. The pro-
grammer should use XtSetValues () in order to specify the XmNcommand-
Window, XmNmenuBar, XmNworkWindow, XmNhorizontalScrollBar, and
XmNverticalScrollBar resources of the MainWindow. XmMainWindowSe-
tAreas () does not handle the XmNmessageWindow resource in any case.

Example
The following code fragment shows how to set some of the regions of a Main-
Window:

Widget top, main_w, menubar, command_w, text_w, scrolled_text_w;
Arg args[4];

main_w = XtVaCreateManagedWidget("main_w", xmMainWindowWidget-
Class, top, NULL);
menubar = XmCreateMenuBar (main_w, "menubar", NULL, 0);
XtManageChild (menubar);

XtSetArg (args[0], XmNrows, 24);
XtSetArg (args[1], XmNcolumns, 80);
XtSetArg (args[2], XmNeditable, False);
XtSetArg (args[3], XmNeditMode, XmMULTI_LINE_EDIT);
text_w = XmCreateScrolledText (main_w, "text_w", args, 4);
XtManageChild (text_w);

scrolled_text_w = XtParent (text_w);
command_w = XmCreateText (main_w, "command_w", (Arg *) 0, 0);
XtManageChild (command_w);

#if (XmVERSION > 1)
XtVaSetValues (main_w,

XmNmenuBar, menubar,
XmNcommandWindow, command_w,
XmNhorizontalScrollBar, NULL,
XmNverticalScrollBar, NULL,

XmMainWindowSetAreas Motif Functions and Macros

246 Motif Reference Manual

XmNworkWindow, scrolled_text_w,
0);

#else /* XmVERSION > 1 */
XmMainWindowSetAreas (main_w, menubar, command_w, NULL, NULL,
scrolled_text_w);
#endif /* XmVERSION > 1 */

See Also
XmMainWindowSep(1), XmMainWindow(2), XmScrolledWindow (2).

Motif Functions and Macros XmMapSegmentEncoding

Motif Reference Manual 247

Name
XmMapSegmentEncoding – get the compound text encoding format for a font
list element tag.

Synopsis

char * XmMapSegmentEncoding (char *fontlist_tag)

Inputs
fontlist_tag Specifies the compound string font list element tag.

Returns
A character string that contains a copy of the compound text encoding format or
NULL if the font list element tag is not found in the registry.

Availability
Motif 1.2 and later.

Description
XmMapSegmentEncoding () retrieves the compound text encoding format
associated with the specified fontlist_tag. The toolkit stores the mappings
between compound text encodings and font list elements tags in a registry.
XmMapSegmentEncoding () searches the registry for a compound text encod-
ing format associated with the specified fontlist_tag and returns a copy of the for-
mat. If fontlist_tag is not in the registry, the routine returns NULL.
XmMapSegmentEncoding () allocates storage for the returned character
string; the application is responsible for freeing the storage using XtFree().

Usage
Compound text is an encoding that is designed to represent text from any locale.
Compound text strings identify their encoding using embedded escape
sequences. The compound text representation was standardized for X11R4 for
use as a text interchange format for interclient communication.

XmCvtXmStringToCT () converts a compound string into compound text by
using the font list tag of each compound string segment to select a compound text
format from the registry for the segment. XmMapSegmentEncoding () pro-
vides a way for an application to determine the compound text format that would
be used for a particular font list element tag.

See Also
XmCvtXmStringToCT (1), XmRegisterSegmentEncoding (1).

XmMenuPosition Motif Functions and Macros

248 Motif Reference Manual

Name
XmMenuPosition – position a popup menu.

Synopsis

#include <Xm/RowColumn.h>

void XmMenuPosition (Widget menu, XButtonPressedEvent *event)

Inputs
menu Specifies the PopupMenu.
event Specifies the event that was passed to the action procedure manag-
ing the PopupMenu.

Description
XmMenuPosition () positions a popup menu, using the values of the x_root
and y_root fields from the specified event. An application must call this routine
before managing the popup menu, except when the application is positioning the
menu itself.

Usage
The event parameter for XmMenuPosition () is defined to be of type XButton-
PressedEvent *; using another type of event might lead to toolkit problems. The
x_root and y_root fields in the event structure are used to position the menu at the
location of the mouse button press. You can modify these fields to position the
menu at another location.

In Motif 2.0 and later, a menu whose XmNpopupEnabled resource is
XmPOPUP_AUTOMATIC or XmPOPUP_AUTOMATIC_RECURSIVE has an
installed event handler which calls XmMenuPosition () directly without the
need for an application to intervene in posting the menu.

Example
The following routine shows the use of an event handler to post a popup menu.

void PostIt (Widget w, XtPointer client_data, XEvent *event, Boolean *dispatch)
{

Widget popup = (Widget) client_data;
XButtonPressedEvent *bevent = (XButtonPressedEvent *) event;

if ((bevent->type != ButtonPress) && (bevent->button != 3))
return;

XmMenuPosition (popup, bevent);
XtManageChild (popup);

}

Motif Functions and Macros XmMenuPosition

Motif Reference Manual 249

...
extern Widget some_widget; /* Where the menu is posted */
extern Widget my_menu; /* The menu to post */

XtAddEventHandler(some_widget, ButtonPressMask, False, PostIt, (XtPointer)
my_menu) ;

See Also
XmRowColumn(2), XmPopupMenu(2).

XmMessageBoxGetChild Motif Functions and Macros

250 Motif Reference Manual

Name
XmMessageBoxGetChild – get the specified child of a MessageBox widget.

Synopsis

#include <Xm/MessageB.h>

Widget XmMessageBoxGetChild (Widget widget, unsigned char child)

Inputs
widget Specifies the MessageBox widget.
child Specifies the child of the MessageBox widget. Pass one of the val-
ues from the list below.

Returns
The widget ID of the specified child of the MessageBox.

Availability
As of Motif 2.0, the toolkit abstract child fetch routines are marked for depreca-
tion. You should give preference to XtNameToWidget (), except when fetching
the MessageBox default button.

Description
XmMessageBoxGetChild () returns the widget ID of the specified child of the
MessageBox widget.

Usage
The child values XmDIALOG_CANCEL_BUTTON,
XmDIALOG_HELP_BUTTON, and XmDIALOG_OK_BUTTON specify the
action buttons in the widget. A child value of
XmDIALOG_DEFAULT_BUTTON specifies the current default button. The
value XmDIALOG_SYMBOL_LABEL specifies the label used to display the
message symbol, while XmDIALOG_MESSAGE_LABEL specifies the message
label. XmDIALOG_SEPARATOR specifies the separator that is positioned
between the message and the action buttons. For more information on the differ-
ent children of the MessageBox, see the manual page in Section 2, Motif and Xt
Widget Classes.

Widget Hierarchy

As of Motif 2.0, most Motif composite child fetch routines are marked as depre-
cated. However, since it is not possible to fetch the
XmDIALOG_DEFAULT_BUTTON child using a public interface except
through XmMessageBoxGetChild (), the routine should not be considered
truly deprecated. For consistency with the preferred new style, when fetching all
other child values, consider giving preference to the Intrinsics routine XtNam-
eToWidget (), passing one of the following names as the second parameter:

Motif Functions and Macros XmMessageBoxGetChild

Motif Reference Manual 251

“Cancel” (XmDIALOG_CANCEL_BUTTON)
“OK” (XmDIALOG_OK_BUTTON)
“Separator” (XmDIALOG_SEPARATOR)
“Help” (XmDIALOG_HELP_BUTTON)
“Symbol” (XmDIALOG_SYMBOL_LABEL)
“Message” (XmDIALOG_MESSAGE_LABEL)

Structures
The possible values for child are:

XmDIALOG_CANCEL_BUTTON XmDIALOG_OK_BUTTON
XmDIALOG_DEFAULT_BUTTON XmDIALOG_SEPARATOR
XmDIALOG_HELP_BUTTON
XmDIALOG_SYMBOL_LABEL
XmDIALOG_MESSAGE_LABEL

See Also
XmBulletinBoard (2), XmBulletinBoardDialog(2), XmErrorDialog (2),
XmInformationDialog (2), XmManager(2), XmMessageBox(2),
XmMessageDialog (2), XmQuestionDialog (2),
XmTemplateDialog (2), XmWarningDialog (2),
XmWorkingDialog (2).

XmNotebookGetPageInfo Motif Functions and Macros

252 Motif Reference Manual

Name
XmNotebookGetPageInfo – return information about a Notebook page.

Synopsis

#include <Xm/Notebook.h>

XmNotebookPageStatus XmNotebookGetPageInfo (Widget
widget,

int
page_number,

XmNotebookPageInfo
*page_info)

Inputs
widget Specifies the Notebook widget.
page_number Specifies a logical page number.

Outputs
page_info Returns a structure into which the requested page information is
placed.

Returns
The status of the search for the requested information.

Availability
Motif 2.0 and later.

Description
XmNotebookGetPageInfo () returns information associated with a logical
page of the Notebook.

The Notebook searches through the list of its children, looking for those which
are associated with the logical page number specified by page_number. The
Notebook principally searches for page children, but collects data in passing on
any status area child with a matching logical number, or major and minor tab
children whose logical page number does not exceed page_number. The function
returns within the page_info structure the data collected for each of the child
widget types.

If the requested page_number is greater than the value of the Notebook XmNlast-
PageNumber resource, or less than the Notebook XmNfirstPageNumber value,
the function returns XmPAGE_INVALID.

Otherwise, if exactly one matching page child is found, the function returns
XmPAGE_FOUND. If more than one matching page child is found, the routine
returns XmPAGE_DUPLICATED. For no matching page child, the return value
is XmPAGE_EMPTY.

Motif Functions and Macros XmNotebookGetPageInfo

Motif Reference Manual 253

Usage

XmNotebookGetPageInfo performs a linear search through the children of the
Notebook for widgets whose XmNpageNumber constraint resource matches the
requested page_number. If a matching child is found with the XmNnotebook-
ChildType resource set to XmPAGE, the widget ID is stored within the
page_widget element of the page_info structure. If a matching child is of type
XmSTATUS_AREA, the widget ID is placed in the status_area_widget element.
If during the search a child widget is found which is of type XmMAJOR_TAB,
and the logical page number of the child does not exceed page_number, the
widget ID is stored within the major_tab_widget element. Again, if a child
widget is found of type XmMINOR_TAB, and the logical page number of the
child does not exceed page_number, the widget ID is stored within the
minor_tab_widget element of page_info.

The page_widget, status_area_widget, major_tab_widget, and minor_tab_widget
elements of the page_info structure are set during the search as each Notebook
child is compared, even if no XmPAGE child is found, or if page_number
exceeds the Notebook first and last page resources. An element of the page_info
structure can be NULL if no child of the associated type is found with a logical
page number which meets the matching criteria.

The Notebook automatically sorts children into ascending logical page order, and
the search is terminated as soon as any child has a logical page number which
exceeds the requested page_number.

Structures
XmNotebookPageInfo is defined as follows:

typedef struct {
int page_number; /* the requested page number */
Widget page_widget; /* any matching page widget */
Widget status_area_widget; /* any matching status area widget */
Widget major_tab_widget; /* the nearest major tab widget */
Widget minor_tab_widget; /* the nearest minor tab widget */

} XmNotebookPageInfo;

A XmNotebookPageStatus can have one of the following values:

XmPAGE_FOUND XmPAGE_INVALID
XmPAGE_EMPTY XmPAGE_DUPLICATED

See Also
XmNotebook (2).

XmObjectAtPoint Motif Functions and Macros

254 Motif Reference Manual

Name
XmObjectAtPoint – determine the child nearest to a point.

Synopsis

#include <Xm/Xm.h>

Widget XmObjectAtPoint (Widget widget, Position x, Position y)

Inputs
widget Specifies a composite widget.
x Specifies an X coordinate relative to the widget left side.
y Specifies an Y coordinate relative to the widget top side.

Returns
The widget most closely associated with the coordinate x, y.

Availability
Motif 2.0 or later.

Description
XmObjectAtPoint () searches the list of children of widget, and returns the
widget ID of the child associated with the x, y coordinate. x and y are interpreted
as pixel values, relative to the top left of the Manager widget.

Usage
XmObjectAtPoint () calls the object_at_point method associated with a Man-
ager widget, in order to determine the child of the Manager most closely associ-
ated with the coordinate specified by x and y. Each widget class may override the
object_at_point method inherited from Manager, to redefine what is meant by
"associated".

The default Manager class method returns the last managed gadget which con-
tains the coordinate.

The DrawingArea overrides the default method, and performs a simple linear
search for the first managed child, widget or gadget, which contains the coordi-
nate.

The Container overrides the object_at_point method, by searching through the
list of logical child nodes, using any XmQTpointIn trait held by each child to
determine a logical match with the coordinate. If no XmQTpointIn is held by the
child, the Container simply checks whether the coordinate is within the child
dimensions. The IconGadget holds the XmQTpointIn trait, although neither this
fact nor the trait itself is otherwise documented.

See Also
XmContainer (2), XmDrawingArea (2), XmGadget(2),
XmIconGadget (2), XmManager(2).

Motif Functions and Macros XmOptionButtonGadget

Motif Reference Manual 255

Name
XmOptionButtonGadget – get the CascadeButtonGadget in an option menu

Synopsis

#include <Xm/RowColumn.h>

Widget XmOptionButtonGadget (Widget option_menu)

Inputs
option_menu Specifies the option menu.

Returns
The widget ID of the internal CascadeButtonGadget.

Description
XmOptionButtonGadget () returns the widget ID for the internal Cascade-
ButtonGadget that is created when the specified option_menu widget is created.
An option menu is a RowColumn widget containing two gadgets: a CascadeBut-
tonGadget that displays the current selection and posts the submenu and a Label-
Gadget that displays the XmNlabelString resource.

Usage
XmOptionButtonGadget () provides a way for an application to access the
internal CascadeButtonGadget that is part of an option menu. Once you have
retrieved the gadget, you can alter its appearance. In Motif 1.2, you can also spec-
ify resources for the gadget using the widget name OptionButton.

See Also
XmOptionLabelGadget (1), XmCascadeButtonGadget (2),
XmLabelGadget (2), XmOptionMenu (2), XmRowColumn(2).

XmOptionLabelGadget Motif Functions and Macros

256 Motif Reference Manual

Name
XmOptionLabelGadget – get the LabelGadget in an option menu.

Synopsis

#include <Xm/RowColumn.h>

Widget XmOptionLabelGadget (Widget option_menu)

Inputs
option_menu Specifies the option menu.

Description
XmOptionLabelGadget () returns the widget ID for the internal LabelGadget
that is created when the specified option_menu widget is created. An option
menu is a RowColumn widget containing two gadgets: a LabelGadget that dis-
plays the XmNlabelString resource, and a CascadeButtonGadget that displays
the current selection and posts the submenu.

Usage
XmOptionLabelGadget () provides a way for an application to access the
internal LabelGadget that is part of an option menu. Once you have retrieved the
gadget, you can alter its appearance. In Motif 1.2, you can also specify resources
for the gadget using the widget name OptionLabel.

See Also
XmOptionButtonGadget (1), XmCascadeButtonGadget (2),
XmLabelGadget (2), XmOptionMenu (2), XmRowColumn(2).

Motif Functions and Macros XmParseMappingCreate

Motif Reference Manual 257

Name
XmParseMappingCreate – create a parse mapping.

Synopsis

XmParseMapping XmParseMappingCreate (Arg *arg_list, Cardinal arg_count)

Inputs
arg_list Specifies an argument list, consisting of resource name/value pairs.
arg_count Specifies the number of arguments in arg_list.

Returns
An allocated parse mapping.

Availability
Motif 2.0 and later.

Description
XmParseMappingCreate () creates a parse mapping, which is an entry in a
parse table. A parse mapping consists minimally of a match pattern, and a substi-
tution pattern or procedure, which can be used by string parsing functions in
order to compare against and subsequently transform text. A parse mapping is
created through a resource style argument list, where arg_list is an array of
resource name/value pairs, and arg_count is the number of such pairs.

Usage
A parse table is an array of parse mappings. XmParseMappingCreate () cre-
ates a parse mapping using a resource style parameter list. The parse table can
subsequently be passed to XmStringParseText () in order to filter or modify
an input string.

XmParseMappingCreate () allocates storage associated with the returned
parse mapping object. It is the responsibility of the programmer to free the allo-
cated memory by a call to XmParseMappingFree () at the appropriate
moment.

Example
The following code fragment creates a parse mapping which performs a simple
swap of occurrences of two characters within an input string:

char *swapover (char *input, /* input string */
char *a, /* only first character in array used */
char *b) /* only first character in array used */

{
XmString tmp;
XmParseMapping parse_mapping;

XmParseMappingCreate Motif Functions and Macros

258 Motif Reference Manual

XmParseTable parse_table = (XmParseTable) XtCalloc (2, sizeof
(XmParseMapping));
Cardinal parse_table_index = 0;
Arg argv[4];
Cardinal argc = 0;
char *output = (char *) 0;

/* create a XmParseMapping object to swap *a with *b */

argc = 0;
tmp = XmStringCreateLocalized (a);
XtSetArg (argv[argc], XmNincludeStatus, XmINSERT);
argc++;
XtSetArg (argv[argc], XmNsubstitute, tmp);
argc++;
XtSetArg (argv[argc], XmNpattern, b);
argc++;
XtSetArg (argv[argc], XmNpatternType, XmCHARSET_TEXT);
argc++;
parse_mapping = XmParseMappingCreate (argv, argc);
parse_table[parse_table_index++] = parse_mapping;
XmStringFree (tmp);

/* create a XmParseMapping object to swap *b with *a */
argc = 0;
tmp = XmStringCreateLocalized (b);
XtSetArg (argv[argc], XmNincludeStatus, XmINSERT);
argc++;
XtSetArg (argv[argc], XmNsubstitute, tmp);
argc++;
XtSetArg (argv[argc], XmNpattern, a);
argc++;
XtSetArg (argv[argc], XmNpatternType, XmCHARSET_TEXT);
argc++;
parse_mapping = XmParseMappingCreate (argv, argc);
parse_table[parse_table_index++] = parse_mapping;
XmStringFree (tmp);

/* substitute using the XmParseMapping. */

tmp = XmStringParseText ((XtPointer) input, NULL, NULL,
XmCHARSET_TEXT,
parse_table, parse_table_index, NULL);

XmParseTableFree (parse_table, parse_table_index);

Motif Functions and Macros XmParseMappingCreate

Motif Reference Manual 259

/* convert XmString to String */
if (tmp != (XmString) 0) {

output = (char *) XmStringUnparse (tmp, NULL,
XmCHARSET_TEXT,
XmCHARSET_TEXT, NULL,

0, XmOUTPUT_ALL);1

XmStringFree (tmp);
}

return output;
}

See Also
XmParseMappingFree(1), XmParseMappingGetValues(1),
XmParseMappingSetValues(1), XmParseTableFree(1),
XmStringParseText(1), XmStringUnparse(1),
XmParseMapping(2).

1.The code sample in the 2nd edition used XmStringGetLtoR () to convert the compound string. Xm-
StringGetLtoR () is deprecated as of Motif 2.0.

XmParseMappingFree Motif Functions and Macros

260 Motif Reference Manual

Name
XmParseMappingFree – free the memory used by a parse mapping.

Synopsis
void XmParseMappingFree (XmParseMapping parse_mapping)

Inputs
parse_mapping Specifies a parse mapping.

Availability
Motif 2.0 and later.

Description
XmParseMappingFree () deallocates storage used by the specified parse map-
ping object.

Usage
The XmParseMapping type is opaque, and represents an entry in a parse table,
which can be used for transforming text. A parse mapping is created by
XmParseMappingCreate (), which allocates storage for the object repre-
sented by the type, and it is the responsibility of the programmer to reclaim the
memory when the parse mapping is no longer required.

It is important to call XmParseMappingFree () rather than XtFree () upon
redundant parse mappings, otherwise compound strings internally referenced by
the object are not deallocated.

See Also
XmParseMappingCreate (1), XmParseMappingGetValues (1),
XmParseMappingSetValues (1), XmParseTableFree (1),
XmStringParseText (1), XmParseMapping (2).

Motif Functions and Macros XmParseMappingGetValues

Motif Reference Manual 261

Name
XmParseMappingGetValues – fetch resources from a parse mapping object.

Synopsis

void XmParseMappingGetValues (XmParseMappingparse_mapping,
Arg *arg_list,
Cardinal arg_count)

Inputs
parse_mapping Specifies a parse mapping object.
arg_count Specifies the number of arguments in the list arg_list.

Outputs
arg_list Specifies the argument list of name/value pairs that contain the

resource names and addresses into which the resource values
are to be stored.

Availability
Motif 2.0 and later.

Description
XmParseMappingGetValues () fetches selected attributes from
parse_mapping. The set of attributes retrieved is specified through the resource
list arg_list, each element of the list being a structure containing a name/value
pair. The number of elements within the list is given by arg_count.

Usage
If the XmNsubstitute attribute of the parse mapping is retrieved, the procedure
returns a copy of the internal value. It is the responsibility of the programmer to
recover the allocated space at a suitable point by calling XmStringFree ().

Example
The following code illustrates fetching the values from an XmParseMapping:

XtPointer pattern;
XmTextType pattern_type;
XmString substitute;
XmParseProc parse_proc;
XtPointer client_data;
XmIncludeStatus include_status;
Arg argv[6];
Cardinal argc = 0;

/* construct a resource-style argument list for all XmParseMapping values */
XtSetArg (argv[argc], XmNpattern, &pattern); argc++;
XtSetArg (argv[argc], XmNpatternType, &pattern_type); argc++;

XmParseMappingGetValues Motif Functions and Macros

262 Motif Reference Manual

XtSetArg (argv[argc], XmNsubstitute, &substitute); argc++;
XtSetArg (argv[argc], XmNinvokeParseProc, &parse_proc); argc++;
XtSetArg (argv[argc], XmNclientData, &client_data); argc++;
XtSetArg (argv[argc], XmNincludeStatus, &include_status); argc++;

/* fetch the values. parse_mapping here is an unspecified XmParseMapping */
XmParseMappingGetValues (parse_mapping, argv, argc);
...
/* XmParseMappingGetValues returns a copy of the XmNsubstitute value */
/* which must be freed when no longer required by the application */
XmStringFree (substitute);

See Also
XmParseMappingCreate (1), XmParseMappingFree (1),
XmParseMappingSetValues (1), XmParseTableFree (1),
XmParseMapping (2).

Motif Functions and Macros XmParseMappingSetValues

Motif Reference Manual 263

Name
XmParseMappingSetValues – sets resources for a parse mapping object.

Synopsis

void XmParseMappingSetValues (XmParseMappingparse_mapping,
Arg *arg_list,
Cardinal arg_count)

Inputs
parse_mapping Specifies a parse mapping object.
arg_list Specifies the list of name/value pairs containing resources to

be modified.
arg_count Specifies the number of arguments in the list arg_list.

Availability
Motif 2.0 and later.

Description
XmParseMappingSetValues () sets selected attributes within
parse_mapping. The set of attributes which is modified is specified through the
resource list arg_list, each element of the list being a structure containing a
name/value pair. The number of elements within the list is given by arg_count.

Usage
If the XmNsubstitute attribute of the parse mapping is set, the procedure inter-
nally takes a copy of the supplied value. It is the responsibility of the programmer
to recover the allocated space at a suitable point by calling XmStringFree ().

Example
The following skeleton code illustrates changing the values of a parse mapping:

XmIncludeStatus map_tab (XtPointer *in_out,
XtPointer text_end, /* unused

*/
XmTextType type, /* unused

*/
XmStringTag tag, /* unused

*/
XmParseMapping entry, /* unused

*/
int pattern_length, /* unused

*/
XmString *str_out,

XmParseMappingSetValues Motif Functions and Macros

264 Motif Reference Manual

XtPointer call_data) /* unused
*/
{

/* Insert an XmString Tab component into the output stream */
*str_out = XmStringComponentCreate (XmSTRING_COMPONENT_TAB,
0, NULL);
*in_out = (*in_out + 1);

return XmINSERT;

}

/* change a parse mapping to invoke the above parse procedure */
void set_parse_tab_mapping (XmParseMapping parse_mapping)
{

Arg argv[4];
Cardinal argc = 0;

/* construct resource-style argument list for XmParseMapping values */
XtSetArg (argv[argc], XmNpattern, "\t");
argc++;
XtSetArg (argv[argc], XmNpatternType, XmCHARSET_TEXT);
argc++;
XtSetArg (argv[argc], XmNincludeStatus, XmINVOKE);
argc++;
XtSetArg (argv[argc], XmNinvokeParseProc, map_tab);
argc++;

/* change the values */
XmParseMappingSetValues (parse_mapping, argv, argc);

}

See Also
XmParseMappingCreate (1), XmParseMappingFree (1),
XmParseMappingGetValues (1), XmParseTableFree (1),
XmParseMapping (2),

Motif Functions and Macros XmParseTableFree

Motif Reference Manual 265

Name
XmParseTableFree – free the memory used by a parse table.

Synopsis

void XmParseTableFree (XmParseTable parse_table, Cardinal parse_count)

Inputs
parse_table Specifies a parse table.
parse_count Specifies the number of entries in the parse table.

Availability
Motif 2.0 and later.

Description
XmParseTableFree () deallocates storage used by the specified parse_table.
In addition, the function deallocates storage used by any parse mapping elements
of the table. parse_count indicates the number of mapping elements within the
table.

Usage
A parse table is an array of XmParseMapping objects. The XmParseMapping is
an opaque type, which is used when transforming text. Each parse mapping
object allocates memory in addition to any memory allocated by the parse table
array. It is important to call XmParseTableFree () rather than XtFree ()
when deallocating storage associated with a parse table, otherwise objects con-
stituent within the array, and compound strings internally referenced by the parse
mapping objects, are not deallocated. The function should be called when a parse
table is no longer needed.

Example
/* Allocate a parse table */
XmParseTable parse_table = (XmParseTable) XtCalloc (2, sizeof
(XmParseMapping));
Cardinal parse_table_index = 0;
XmParseMapping parse_mapping;
Arg argv[MAX_ARGS];
Cardinal argc = 0;

/* Create a XmParseMapping object */
argc = 0;
...
parse_mapping = XmParseMappingCreate (argv, argc);

/* Insert into parse table */
parse_table[parse_table_index++] = parse_mapping;

XmParseTableFree Motif Functions and Macros

266 Motif Reference Manual

/* Create another XmParseMapping object */
argc = 0;
...
parse_mapping = XmParseMappingCreate (argv, argc);

/* Insert into parse table */
parse_table[parse_table_index++] = parse_mapping;

/* Use the XmParseTable. */
tmp = XmStringParseText ((XtPointer) input, NULL, NULL,

XmCHARSET_TEXT, parse_table,
parse_table_index, NULL);

/* Free the parse table: this also frees the parse mappings */
XmParseTableFree (parse_table, parse_table_index);

See Also
XmParseMappingCreate (1), XmParseMappingFree (1),
XmParseMappingGetValues (1), XmParseMappingSetValues (1),
XmParseMapping (2).

Motif Functions and Macros XmPrintPopupPDM

Motif Reference Manual 267

Name
XmPrintPopupPDM – notify the Print Display Manager.

Synopsis

#include <Xm/Print.h>

XtEnum XmPrintPopupPDM (Widget print_shell, Widget video_shell)

Inputs
print_shell Specifies a PrintShell widget.
video_shell Specifies the widget on whose behalf the PDM dialog is
required.

Returns
Returns XmPDM_NOTIFY_SUCCESS if the PDM was notified,
XmPDM_NOTIFY_FAIL otherwise.

Availability
Motif 2.1 and later.

Note that not all operating system vendors incorporate the XmPrintShell within

the native Motif toolkit.1

Description
XmPrintPopupPDM () sends a notification to start a Print Display Manager for
the application. The notification is issued to either the display associated with
print_shell, or the display of video_shell, depending upon the value of the envi-
ronment variable XPDMDISPLAY. XPDMDISPLAY can only be set to "print"
or "video". If the value is "print", the notification is sent to the display of
print_shell, and similarly the value "video" sends the notification to the display
of video_shell. If the notification could be sent, the function returns
XmPDM_NOTIFY_SUCCESS, otherwise the return value is
XmPDM_NOTIFY_FAIL.

Usage
XmPrintPopupPDM () is a convenience function which issues a notification
through the X selection mechanisms in order to start a Print Dialog Manager. The
notification is issued asynchronously: the return value
XmPDM_NOTIFY_SUCCESS indicates that the message has successfully been
issued, not that any PDM is now initialized. In order to track the status of the
PDM, the programmer registers an XmNpdmNotificationCallback with the
widget print_shell, which must be an instance of the PrintShell widget class. To
ensure that the contents of the video_shell is not modified whilst the PDM is ini-

1.Sun Solaris being a case in point.

XmPrintPopupPDM Motif Functions and Macros

268 Motif Reference Manual

tializing, XmPrintPopupPDM () creates an input-only window over the top of
video_shell, and the window is only removed when the PDM indicates that it is
present, or if the selection XmIPDM_START times out. The timeout period is set
at two minutes.

See Also
XmPrintSetup (1), XmPrintToFile (1), XmRedisplayWidget (1),
XmPrintShell (2).

Motif Functions and Macros XmPrintSetup

Motif Reference Manual 269

Name
XmPrintSetup – create a Print Shell widget.

Synopsis

#include <Xm/Print.h>

Widget XmPrintSetup (Widget video_widget,
Screen *print_screen,
String name
ArgList arg_list,
Cardinal arg_count)

Inputs
video_widget Specifies a widget from which video application data is

fetched.
print_screen Specifies the screen on which the PrintShell is created.
name Specifies the name of the created PrintShell.
arg_list Specifies an argument list of name/value pairs that contain

resources for the PrintShell.
arg_count Specifies the number of arguments in the list arg_list.

Returns
The created PrintShell, or NULL if no ApplicationShell can be found from
video_widget,

Availability
Motif 2.1 and later.

Note that not all operating system vendors incorporate the PrintShell in their

native toolkit.1

Description
XmPrintSetup () creates a PrintShell widget with the given name on the
screen print_screen. The new PrintShell is returned to the application. Resources
which configure the new print shell are supplied through an array of structures
which contain name/value pairs. The array of resources is arg_list, and the
number of items in the array is arg_count.

Usage
XmPrintSetup () creates a new ApplicationShell on the screen specified by
print_screen, and thereafter creates a PrintShell as a popup child. The new Appli-
cationShell is created with the same name and class as the ApplicationShell from
which video_widget is descended. The XmNmappedWhenManaged resource of

1.For example, Sun Solaris includes the headers, but does not compile the widget into the Motif library.

XmPrintSetup Motif Functions and Macros

270 Motif Reference Manual

the PrintShell is set to False under the assumption that subsequent notification of
the start of a job or page is the correct time to map the widget. The print shell is
finally realized, and returned.

See Also
XmPrintPopupPDM (1), XmPrintToFile (1), XmRedisplayWidget (1),
XmPrintShell (2).

Motif Functions and Macros XmPrintToFile

Motif Reference Manual 271

Name
XmPrintToFile – save X Print Server data to file.

Synopsis

#include <Xm/Print.h>

XtEnum XmPrintToFile (Display *display,
String file_name,
XPFinishProc finish_proc,
XPointer client_data)

Inputs
display Specifies the print connection to the X server.
file_name Specifies the name of the file to contain the print output.
finish_proc Specifies a procedure called when printing is finished.
client_data Specifies application data to be passed to finish_proc.

Returns
True if printing can be initiated, otherwise False.

Availability
Motif 2.1 and later.

Note that not all operating system vendors incorporate the XmPrintShell in their

native toolkits.1

Description
XmPrintToFile () is a convenience function which provides a simple interface
onto the X Print mechanisms, in order to save print data to the file file_name.
Printing takes place asynchronously, and the programmer receives notification of
the status of the printing task by supplying finish_proc, which is called when the
task is finished. The display parameter is the print connection to the X server, and
is used to deduce an application name and class.

Usage
If XmPrintToFile () cannot open the file file_name for writing, create a pipe,
or fork off a child process, the procedure returns False. An application name and
class is deduced using the display parameter, and these are used by the child
process, which creates a new application context, and opens a new display con-
nection using the same name and class as the application process. Data is
retrieved from the X server through a call to XpGetDocumentData (). The par-
ent process does not wait for the child to complete, but returns immediately after

1.For example, Sun Solaris supply the widget headers, but do not compile the component into the Motif library.

XmPrintToFile Motif Functions and Macros

272 Motif Reference Manual

initiating the child process. The return value True therefore does not mean that
the print task is complete, merely that the task is initiated.

The application is notified of task completion by supplying an XPFinishProc.
The status parameter passed to the finish procedure when the task is completed is
set to XPGetDocFinished on successful completion. If for any reason the child
process fails to print the data, the file file_name is both closed and removed. The
file is closed in any case prior to calling the XPFinishProc.

XpStartJob () must be called by the application before XmPrintToFile ()
can be called.

Structures
An XPFinishProc is specified as follows:

typedef void (*XPFinishProc)(Display *display,
XPContext context,
XPGetDocStatus status,
XPointer client_data);

If status is XPGetDocFinished, the print task has completed successfully.

See Also
XmPrintPopupPDM (1), XmPrintSetup (1), XmRedisplayWidget (1),
XmPrintShell (2).

Motif Functions and Macros XmProcessTraversal

Motif Reference Manual 273

Name
XmProcessTraversal – set the widget that has the keyboard focus.

Synopsis

Boolean XmProcessTraversal (Widget widget, XmTraversalDirection direction)

Inputs
widget Specifies the widget whose hierarchy is to be traversed.
direction Specifies the direction in which to traverse the hierarchy. Pass one

of the values from the list below.

Returns
True on success or False otherwise.

Description
XmProcessTraversal () causes the input focus to change to another widget
under application control, rather than as a result of keyboard traversal events
from a user. widget specifies the widget whose hierarchy is traversed up to the
shell widget. If that shell has the keyboard focus, XmProcessTraversal ()
changes the keyboard focus immediately. If that shell does not have the focus, the
routine does not have an effect until the shell receives the focus.

The direction argument specifies the nature of the traversal to be made. In each
case, the routine locates the hierarchy that contains the specified widget and then
performs the action that is particular to the direction. If the new setting succeeds,
XmProcessTraversal () returns True. The routine returns False if the key-
board focus policy is not XmEXPLICIT, if no traversable items exist, or if the
arguments are invalid.

Usage
For XmTRAVERSE_CURRENT, if the tab group that contains widget is inac-
tive, it is made the active tab group. If widget is in the active tab group, it is given
the keyboard focus; if widget is the active tab group, the first traversable item in it
is given the keyboard focus. For XmTRAVERSE_UP, XmTRAVERSE_DOWN,
XmTRAVERSE_LEFT, and XmTRAVERSE_RIGHT, in the hierarchy that con-
tains widget, the item in the specified direction from the active item is given the
keyboard focus. For XmTRAVERSE_NEXT and XmTRAVERSE_PREV, in the
hierarchy that contains widget, the next and previous items in child order from
the active item are given keyboard focus. For XmTRAVERSE_HOME, in the
hierarchy that contains widget, the first traversable item is given the keyboard
focus. For XmTRAVERSE_NEXT_TAB_GROUP and
XmTRAVERSE_PREV_TAB_GROUP, in the hierarchy that contains widget, the
next and previous tab groups from the active tab group are given the keyboard
focus.

XmProcessTraversal Motif Functions and Macros

274 Motif Reference Manual

In Motif 2.0 and later, new XmTraversalDirection values
XmTRAVERSE_GLOBALLY_FORWARD and
XmTRAVERSE_GLOBALLY_BACKWARD are provided in order to imple-
ment the XmDisplay resource XmNenableButtonTab. If enabled, for
XmTRAVERSE_GLOBALLY_FORWARD navigation proceeds to the next (or
downwards, depending upon orientation) item within the current tab group,
unless the current location is the last item in the group, when navigation is into
the next tab group. Similarly, for XmTRAVERSE_GLOBALLY_BACKWARD
navigation proceeds to the previous (or upwards) item in the current tab group,
unless the current location is the first item in the group, when navigation is into
the previous tab group. The interpretation of the direction values
XmTRAVERSE_GLOBALLY_FORWARD and
XmTRAVERSE_GLOBALLY_BACKWARD is reversed where XmNlayoutDi-
rection is XmRIGHT_TO_LEFT.

XmProcessTraversal () does not allow traversal to widgets in different
shells or widgets that are not mapped. Calling XmProcessTraversal ()
inside a XmNfocusCallback causes a segmentation fault.

Example
The following code fragments shows the use of XmProcessTraversal () as a
callback routine for a text widget. When the user presses the Return key, the key-
board focus is advanced to the next input area:

Widget form, label, text;

form = XtVaCreateWidget ("form", xmFormWidgetClass, parent,
XmNorientation, XmHORIZONTAL,
NULL);

label = XtVaCreateManagedWidget ("label", xmLabelGadgetClass, form,
XmNleftAttachment, XmATTACH_FORM,
XmNtopAttachment, XmATTACH_FORM,
XmNbottomAttachment, XmATTACH_FORM,
NULL);

text = XtVaCreateManagedWidget ("text", xmTextWidgetClass, form,
XmNleftAttachment,
XmATTACH_WIDGET,
XmNleftWidget, label,
XmNtopAttachment, XmATTACH_FORM,
XmNrightAttachment, XmATTACH_FORM,
XmNbottomAttachment, XmATTACH_FORM,
NULL);

XtAddCallback (text, XmNactivateCallback,

Motif Functions and Macros XmProcessTraversal

Motif Reference Manual 275

XmProcessTraversal, (XtPointer)
XmTRAVERSE_NEXT_TAB_GROUP);

XtManageChild (form);

Structures
The possible values for direction are:

XmTRAVERSE_CURRENT XmTRAVERSE_NEXT
XmTRAVERSE_UP XmTRAVERSE_PREV
XmTRAVERSE_DOWN XmTRAVERSE_HOME
XmTRAVERSE_LEFT
XmTRAVERSE_NEXT_TAB_GROUP
XmTRAVERSE_RIGHT
XmTRAVERSE_PREV_TAB_GROUP
XmTRAVERSE_GLOBALLY_FORWARD
XmTRAVERSE_GLOBALLY_BACKWARD

See Also
XmGetFocusWidget (1), XmGetTabGroup (1), XmGetVisibility (1),
XmIsTraversable (1).

XmRedisplayWidget Motif Functions and Macros

276 Motif Reference Manual

Name
XmRedisplayWidget – force widget exposure for printing.

Synopsis

#include <Xm/Print.h>

void XmRedisplayWidget (Widget widget)

Inputs
widget Specifies the widget to redisplay.

Availability
Motif 2.1 and later.

Note that not all operating system vendors compile the XmPrintShell into their

native Motif toolkits.1

Description
XmRedisplayWidget () forces widget to redisplay itself by invoking the
expose method of the widget. The routine is a convenience function which hides
the internals of the X11R6 Xp mechanisms, which use widget exposure in order
to implement printing.

Usage
XmRedisplayWidget () constructs a region which corresponds precisely to
the location and area occupied by a widget. The expose method of the widget is
called directly using the region in order to redisplay the widget. XmRedis-
playWidget () is synchronous in effect. Asynchronous printing is performed
by creating a PrintShell, and specifying XmNstartJobCallback, XmNendJobCall-
back, and XmNpageSetupCallback procedures which are invoked in response to
X Print events as they arrive.

XmRedisplayWidget () is not multi-thread safe, nor is the widget parameter
fully validated: it is implicitly assumed to be the descendant of a PrintShell.

1.Sun Solaris supplied the widget headers, but the widget itself is compiled out of the Motif library.

Motif Functions and Macros XmRedisplayWidget

Motif Reference Manual 277

Example
The following code synchronously prints the contents of a text widget:

Widget app_shell, app_text;
Screen print_screen;
Display print_display;
Widget print_shell, print_form, print_text;
short rows;
int lines, pages, page;
char *data;
...
/* create a connection to the X Print server */
print_shell = XmPrintSetup (app_shell, print_screen, "PrintShell", NULL, 0);

/* create a suitable print hierarchy */
print_form = XmCreateForm (print_shell,...);
print_text = XmCreateText (print_form,...);

/* configure and manage the print hierarchy */
...
/* copy the video text to the print text */
/* what is copied depends upon whether it is */
/* contents and/or visuals that are printed */
...
data = XmTextGetString (app_text);
XmTextSetString (print_text, data);
XtFree (data);
...
/* start a print job */
print_display = XtDisplay (print_shell);
XpStartJob (print_display, XPSpool);

/* deduce number of logical pages in the print text widget */
XtVaGetValues (print_text, XmNrows, &rows, XmNtotalLines, &lines, 0);

for (page = 0, pages = lines / rows; page < pages; page++) {
/* start of page notification */
XpStartPage (print_display, XtWindow (print_shell), False);

/* force the print text to expose itself */
XmRedisplayWidget (print_text);

/* end of page notification */
XpEndPage (print_display);

/* scroll to next page */

XmRedisplayWidget Motif Functions and Macros

278 Motif Reference Manual

XmTextScroll (print_text, rows);
}

/* end of print job notification */
XpEndJob (print_display);
...

See Also
XmPrintPopupPDM (1), XmPrintSetup (1), XmPrintToFile (1),
XmPrintShell (2).

Motif Functions and Macros XmRegisterSegmentEncoding

Motif Reference Manual 279

Name
XmRegisterSegmentEncoding – register a compound text encoding format for a
font list element tag.

Synopsis

char *XmRegisterSegmentEncoding (char *fontlist_tag, char *ct_encoding)

Inputs
fontlist_tag Specifies the compound string font list element tag.
ct_encoding Specifies the compound text character set.

Returns
The old compound text encoding format for a previously-registered font list ele-
ment tag or NULL for a new font list element tag.

Availability
Motif 1.2 and later.

Description
XmRegisterSegmentEncoding () registers the specified compound text
encoding format ct_encoding for the specified fontlist_tag. Both fontlist_tag and
ct_encoding must be NULL-terminated ISO8859-1 strings. If the font list tag is
already associated with a compound text encoding format, registering the font list
tag again overwrites the previous entry and the routine returns the previous com-
pound text format. If the font list tag is has not been registered before, the routine
returns NULL. If ct_encoding is NULL, the font list tag is unregistered. If
ct_encoding is the reserved value XmFONTLIST_DEFAULT_TAG, the font list
tag is mapped to the code set of the current locale. XmRegisterSegmentEn-
coding () allocates storage if the routine returns a character string; the applica-
tion is responsible for freeing the storage using XtFree ().

Usage
Compound text is an encoding that is designed to represent text from any locale.
Compound text strings identify their encoding using embedded escape
sequences. The compound text representation was standardized for X11R4 for
use as a text interchange format for interclient communication.

XmCvtXmStringToCT () converts a compound string into compound text. The
routine uses the font list tag of each compound string segment to select a com-
pound text format for the segment. A mapping between font list tags and com-
pound text encoding formats is stored in a registry.
XmRegisterSegmentEncoding () provides a way for an application to map
particular font list element tags to compound text encoding formats.

See Also
XmCvtXmStringToCT (1), XmMapSegmentEncoding (1).

XmRemoveFromPostFromList Motif Functions and Macros

280 Motif Reference Manual

Name
XmRemoveFromPostFromList – make a menu inaccessible from a widget.

Synopsis

#include <Xm/RowColumn.h>

void XmRemoveFromPostFromList (Widget menu, Widget widget)

Inputs
menu Specifies a menu widget
widget Specifies the widget which no longer posts menu.

Availability
In Motif 2.0 and later, the functional prototype is removed from RowColumn.h,

although there is otherwise no indication that the procedure is obsolete. 1

Description
XmRemoveFromPostFromList () is the inverse of the procedure XmAddTo-
PostFromWidget (). The menu hierarchy associated with menu is made inac-
cessible from widget.

Usage
If the type of menu is XmMENU_PULLDOWN, the XmNsubMenuId resource
of widget is set to NULL. If the type of menu is XmMENU_POPUP, event han-
dlers presumably added to widget by XmAddToPostFromWidget() in order to
post the menu are removed.

No check is made to ensure that the XmNsubMenuId resource of widget is origi-
nally set to menu before clearing the value. Passing the wrong menu into the pro-
cedure can therefore have unwanted effects. There are implicit assumptions that
widget is a CascadeButton or CascadeButtonGadget when menu is
XmMENU_PULLDOWN, and that widget is not a Gadget when menu is
XmMENU_POPUP. These are not checked by the procedure.

See Also
XmAddToPostFromList (1), XmGetPostedFromWidget (1),
XmPopupMenu(2), XmPulldownMenu (2), XmRowColumn(2).

1.This is true of Motif 2.1.10, although the header reference is restored in the OpenMotif 2.1.30.

Motif Functions and Macros XmRemoveProtocolCallback

Motif Reference Manual 281

Name
XmRemoveProtocolCallback – remove client callback from a protocol.

Synopsis

#include <Xm/Protocols.h>

void XmRemoveProtocolCallback (Widget shell,
Atom property,
Atom protocol,
XtCallbackProc callback,
XtPointer closure)

Inputs
shell Specifies the widget associated with the protocol property.
property Specifies the property that holds the protocol data.
protocol Specifies the protocol atom.
callback Specifies the procedure that is to be removed.
closure Specifies any client data that is passed to the callback.

Description
XmRemoveProtocolCallback () removes the specified callback from the
list of callback procedures that are invoked when the client message correspond-
ing to protocol is received.

Usage
A protocol is a communication channel between applications. Protocols are sim-
ply atoms, stored in a property on the top-level shell window for the application.
To communicate using a protocol, a client sends a ClientMessage event contain-
ing a property and protocol, and the receiving client responds by calling the asso-
ciated protocol callback routine. XmRemoveProtocolCallback () allows
you to unregister one of these callback routines. The inverse routine is XmAd-
dProtocolCallback ().

See Also
XmAddProtocolCallback (1), XmInternAtom (1),
XmRemoveWMProtocolCallback (1), VendorShell (2).

XmRemoveProtocols Motif Functions and Macros

282 Motif Reference Manual

Name
XmRemoveProtocols – remove protocols from the protocol manager.

Synopsis

#include <Xm/Protocols.h>

void XmRemoveProtocols (Widget shell, Atom property, Atom *protocols, Car-
dinal num_protocols)

Inputs
shell Specifies the widget associated with the protocol property.
property Specifies the property that holds the protocol data.
protocols Specifies a list of protocol atoms.
num_protocols Specifies the number of atoms in protocols.

Description
XmRemoveProtocols () removes the specified protocols from the protocol
manager and deallocates the internal tables for the protocols. If the specified shell
is realized and at least one of the protocols is active, the routine also updates the
handlers and the property. The inverse routine is XmAddProtocols ().

Usage
A protocol is a communication channel between applications. Protocols are sim-
ply atoms, stored in a property on the top-level shell window for the application.
XmRemoveProtocols () allows you eliminate protocols that can be under-
stood by your application. The inverse routine is XmAddProtocols().

See Also
XmAddProtocols (1), XmInternAtom (1), XmRemoveWMProtocols (1),
VendorShell (2).

Motif Functions and Macros XmRemoveTabGroup

Motif Reference Manual 283

Name
XmRemoveTabGroup – remove a widget from a list of tab groups.

Synopsis

void XmRemoveTabGroup (Widget tab_group)

Inputs
tab_group Specifies the widget to be removed.

Availability
In Motif 1.1, XmRemoveTabGroup() is obsolete. It has been superseded by set-
ting XmNnavigationType to XmNONE.

Description
XmRemoveTabGroup() removes the specified tab_group widget from the list
of tab groups associated with the widget hierarchy. This routine is retained for
compatibility with Motif 1.0 and should not be used in newer applications. If
traversal behavior needs to be changed, this should be done by setting the XmN-
navigationType resource directly.

Usage
A tab group is a group of widgets that can be traversed using the keyboard rather
than the mouse. Users move from widget to widget within a single tab group by
pressing the arrow keys. Users move between different tab groups by pressing the
Tab or Shift-Tab keys. The inverse routine is XmAddTabGroup().

See Also
XmAddTabGroup(1), XmGetTabGroup (1), XmManager(2),
XmPrimitive (2).

XmRemoveWMProtocolCallback Motif Functions and Macros

284 Motif Reference Manual

Name
XmRemoveWMProtocolCallback – remove client callbacks from a
XA_WM_PROTOCOLS protocol.

Synopsis

#include <Xm/Protocols.h>

void XmRemoveWMProtocolCallback (Widget shell,
Atom protocol,
XtCallbackProc callback,
XtPointer closure)

Inputs
shell Specifies the widget associated with the protocol property.
protocol Specifies the protocol atom.
callback Specifies the procedure that is to be removed.
closure Specifies any client data that is passed to the callback.

Description
XmRemoveWMProtocolCallback () is a convenience routine that calls
XmRemoveProtocolCallback () with property set to
XA_WM_PROTOCOL, the window manager protocol property.

Usage
The property XA_WM_PROTOCOLS is a set of predefined protocols for com-
munication between clients and window managers. To communicate using a pro-
tocol, a client sends a ClientMessage event containing a property and protocol,
and the receiving client responds by calling the associated protocol callback rou-
tine. XmRemoveWMProtocolCallback () allows you to unregister one of
these callback routines with the window manager protocol property. The inverse
routine is XmAddWMProtocolCallback ().

See Also
XmAddProtocolCallback (1), XmAddWMProtocolCallback (1),
XmInternAtom (1), XmRemoveProtocolCallback (1),
VendorShell (2).

Motif Functions and Macros XmRemoveWMProtocols

Motif Reference Manual 285

Name
XmRemoveWMProtocols – remove the XA_WM_PROTOCOLS protocols from
the protocol manager.

Synopsis

#include <Xm/Protocols.h>

void XmRemoveWMProtocols (Widget shell, Atom *protocols, Cardinal
num_protocols)

Inputs
shell Specifies the widget associated with the protocol property.
protocols Specifies a list of protocol atoms.
num_protocols Specifies the number of atoms in protocols.

Description
XmRemoveWMProtocols () is a convenience routine that calls XmRemove-
Protocols () with property set to XA_WM_PROTOCOL, the window man-
ager protocol property. The inverse routine is XmAddWMProtocols ().

Usage
The property XA_WM_PROTOCOLS is a set of predefined protocols for com-
munication between clients and window managers. XmRemoveWMProto-
cols () allows you to remove this protocol so that it is no longer understood by
your application. The inverse routine is XmAddWMProtocols ().

See Also
XmAddProtocols (1), XmAddWMProtocols (1), XmInternAtom (1),
XmRemoveProtocols (1), VendorShell (2).

XmRenderTableAddRenditions Motif Functions and Macros

286 Motif Reference Manual

Name
XmRenderTableAddRenditions – add renditions to a render table.

Synopsis

XmRenderTable XmRenderTableAddRenditions (XmRenderTable
old_table,

XmRendition
*new_renditions,

 Cardinal
new_rendition_count,

XmMergeMode
merge_mode)

Inputs
old_table Specifies a render table.
new_renditions Specifies an array of renditions to merge with the
render table.
new_rendition_count Specifies the number of renditions in the array.
merge_mode Specifies the action to take if entries have the same
tag.

Returns
The newly allocated merged render table.

Availability
Motif 2.0 and later.

Description
A render table is a set of renditions which can be used to specify the way in
which XmStrings are drawn. XmRenderTableAddRenditions () creates a
new render table by merging the list of renditions specified by new_renditions
into the renditions contained within old_table. If a rendition with the same tag is
found in both old_table and new_renditions, merge_mode is used to give prece-
dence. The new render table is returned.

If old_table is NULL, a new render table is allocated which contains only the
renditions of new_renditions. If new_renditions is NULL or new_rendition_count
is zero, the old_table is returned unmodified. If a rendition within old_table has
the same tag as one within new_renditions, merge_mode determines how to
resolve the conflict. If merge_mode is XmMERGE_REPLACE, the rendition
within old_table is ignored, and the rendition within new_renditions is added to
the new table. If the mode is XmMERGE_SKIP, the new table contains the rendi-
tion from old_table, and that from new_renditions is ignored. If the mode is
XmMERGE_NEW, the rendition within new_renditions is used, except that

Motif Functions and Macros XmRenderTableAddRenditions

Motif Reference Manual 287

where any resources of the rendition are unspecified, the value is copied from the
matching rendition from the old_table. A resource is unspecified if the value is
XmAS_IS or NULL. Lastly, if the mode is XmMERGE_OLD, it is the old_table
rendition which is added to the new table, and any unspecified resources are
taken from the new rendition.

Usage

The reference count for the original table is decremented and deallocated where
necessary, and a newly allocated render table containing the merged data is
returned. It is the responsibility of the programmer to reclaim the allocated mem-
ory for the returned render table by calling XmRenderTableFree () at a suita-
ble point.

Example
The following specimen code creates a set of renditions and merges them into an
unspecified render table:

XmRendition new_renditions[2];
XmRenderTable new_table;
Arg argv[4];
Cardinal argc = 0;
Pixel fg =...;
Pixel bg =...;

XtSetArg (argv[argc], XmNfontName, "fixed");
argc++;
XtSetArg (argv[argc], XmNfontType, XmFONT_IS_FONT);
argc++;
XtSetArg (argv[argc], XmNloadModel, XmLOAD_DEFERRED);
argc++;
new_renditions[0] = XmRenditionCreate (widget,
XmFONTLIST_DEFAULT_TAG, argv, argc);

argc = 0;
XtSetArg (argv[argc], XmNrenditionBackground, bg); argc++;
XtSetArg (argv[argc], XmNrenditionForeground, fg); argc++;
new_renditions[1] = XmRenditionCreate (widget, "colors", argv, argc);
new_table = XmRenderTableAddRenditions (old_table, new_renditions, 2,
XmMERGE_REPLACE);)

XmRenderTableAddRenditions Motif Functions and Macros

288 Motif Reference Manual

See Also
XmRenderTableCopy (1), XmRenderTableFree (1),
XmRenderTableGetRendition (1),
XmRenderTableGetRenditions (1), XmRenderTableGetTags (1),
XmRenderTableRemoveRenditions (1), XmRenditionCreate (1),
XmRenditionFree (1), XmRenditionRetrieve (1),
XmRenditionUpdate (1), XmRendition (2).

Motif Functions and Macros XmRenderTableCopy

Motif Reference Manual 289

Name
XmRenderTableCopy – copy a render table.

Synopsis

XmRenderTable XmRenderTableCopy (XmRenderTable old_table, XmString-
Tag *tags, int tag_count)

Inputs
old_table Specifies the table containing the renditions to be copied.
tags Specifies an array of tags. Renditions with matching tags are
copied.
tag_count Specifies the number of items within the tags array.

Returns
A new render table containing renditions with matching tags, or NULL.

Availability
Motif 2.0 and later.

Description
An XmRenderTable is an array of XmRendition objects, which are used to render
compound strings. XmRenderTableCopy () creates a newly allocated render
table by copying renditions from an existing table, old_table. An array of tags
can be supplied which acts as a filter: only those renditions from old_table which
have a matching XmNtag resource are copied. The number of items within any
tags array is specified through tag_count. If tags is NULL, all of the renditions
within old_table are copied. If old_table is NULL, the function returns NULL.

Usage
The function allocates storage for the returned render table, including storage for
each of the newly copied renditions. It is the responsibility of the programmer to
reclaim the memory at an appropriate point by calling XmRenderTable-
Free ().

In Motif 2.0 and later, the XmRenderTable supersedes the XmFontList, which is
now considered obsolete. For backwards compatibility, the XmFontList opaque
type is implemented through the render table.

See Also
XmRenderTableAddRenditions (1), XmRenderTableFree (1),
XmRenderTableGetRendition (1),
XmRenderTableGetRenditions (1), XmRenderTableGetTags (1),
XmRenderTableRemoveRenditions (1), XmRenditionCreate (1),
XmRenditionFree (1), XmRenditionRetrieve (1),
XmRenditionUpdate (1), XmRendition (2).

XmRenderTableCvtFromProp Motif Functions and Macros

290 Motif Reference Manual

Name
XmRenderTableCvtFromProp – convert from a string representation into a
render table.

Synopsis

XmRenderTable XmRenderTableCvtFromProp (Widget widget, char *property,
unsigned int length)

Inputs
widget Specifies a destination widget in a data transfer.
property Specifies the render table in string representation format.
length Specifies the number of bytes in the property string.

Returns
The converted render table.

Availability
Motif 2.0 and later.

Description
XmRenderTableCvtFromProp () converts a string representation of a render
table into an XmRenderTable. The string representation to be converted is given
by property, and the size of the string in bytes is length.

Usage
Typically, the procedure is used within the destination callback of widget when it
is the target of a data transfer. The inverse function XmRenderTableCvtTo-
Prop () is called by the convert procedures of the source of the data transfer.
XmRenderTableCvtFromProp () returns allocated memory, and it is the
responsibility of the programmer to reclaim the space at a suitable point by call-
ing XmRenderTableFree ().

See Also
XmRenderTableCvtToProp (1), XmRenderTableFree (1),
XmRendition (2).

Motif Functions and Macros XmRenderTableCvtToProp

Motif Reference Manual 291

Name
XmRenderTableCvtToProp – convert a render table into a string representation.

Synopsis

unsigned int XmRenderTableCvtToProp (Widget widget,
XmRenderTable render_table,
char

** property_return)

Inputs
widget Specifies a source widget for the render table.
render_table Specifies the render table to convert.

Outputs
property_return Returns the string representation of the converted render
table.

Returns
The number of bytes in the converted string representation.

Availability
Motif 2.0 and later.

Description
XmRenderTableCvtToProp () converts an XmRenderTable render_table
into a string representation at the address specified by property_return. The
length of the converted string is returned.

Usage
Typically, the procedure is used within the convert callback of widget when it is
the source of a data transfer. The procedure returns allocated memory within
property_return, and it is the responsibility of the programmer to reclaim the
space at a suitable point by calling XtFree ().

The standard built-in conversion routines within the Uniform Transfer Model
internally call XmRenderTableCvtToProp () when asked to convert the
_MOTIF_RENDER_TABLE selection.

See Also
XmRenderTableCvtFromProp (1), XmRendition (2).

XmRenderTableFree Motif Functions and Macros

292 Motif Reference Manual

Name
XmRenderTableFree – free the memory used by a render table.

Synopsis

void XmRenderTableFree (XmRenderTable table)

Inputs
table Specifies the render table to free.

Availability
Motif 2.0 and later.

Description
XmRenderTableFree () is a convenience function which deallocates space
used by the render table table.

Usage
Render tables, and the renditions which they contain, are reference counted. It is
important to call XmRenderTableFree () on a render table rather than
XtFree () so that each rendition in the table is properly deallocated. Motif
caches and shares render tables and the renditions which they contain, and so an
improper XtFree() would not respect any sharing currently in place.
XmRenderTableFree () does not actually free the render table until the refer-
ence count is zero.

See Also
XmRenderTableAddRenditions (1), XmRenderTableCopy (1),
XmRenderTableRemoveRenditions (1), XmRenditionCreate (1),
XmRenditionFree (1), XmRendition (2).

Motif Functions and Macros XmRenderTableGetRendition

Motif Reference Manual 293

Name
XmRenderTableGetRendition – search a render table for a matching rendition.

Synopsis

XmRendition XmRenderTableGetRendition (XmRenderTable table, XmString-
Tag tag)

Inputs
table Specifies the render table to search.
tag Specifies the tag with which to find a rendition.

Returns
A Rendition which matches tag, otherwise NULL.

Availability
Motif 2.0 and later.

Description
XmRenderTableGetRendition () is a convenience function which searches
table, and returns the rendition which matches tag.

Usage
XmRenderTableGetRendition () performs a linear search through the ren-
ditions contained within table, comparing the XmNtag resource value with the

search string given by tag. If no match is found, any XmNnoRenditionCallback1
callbacks registered with the XmDisplay object are invoked, supplying the table
as the render_table element of the XmDisplayCallbackStruct passed to the call-
backs. If the callbacks modify the render_table element, the linear search is
restarted. A copy of any matching rendition is returned, otherwise NULL.

XmRenderTableGetRendition () allocates space for the returned rendition,
and it is the responsibility of the programmer to reclaim the space at a suitable
point by calling XmRenditionFree ().

See Also
XmRenderTableAddRenditions (1),
XmRenderTableGetRenditions (1),
XmRenderTableRemoveRenditions (1), XmRenditionFree (1),
XmRendition (2).

1.Erroneously given as XmNnoRendition in 2nd edition.

XmRenderTableGetRenditions Motif Functions and Macros

294 Motif Reference Manual

Name
XmRenderTableGetRenditions – search a render table for matching renditions.

Synopsis

XmRendition *XmRenderTableGetRenditions (XmRenderTabletable,
XmStringTag *tags,
Cardinal tag_count)

Inputs
table Specifies the render table to search.
tags Specifies an array of tags for which matching renditions are
required.
tag_count Specifies the number of items in tags.

Returns
The array of renditions which have matching tags.

Availability
Motif 2.0 and later.

Description
XmRenderTableGetRenditions () searches table for all renditions which
have a tag that matches an entry within the list tags. If the table is NULL, or if
tags is NULL, or if tag_count is zero, the function returns NULL. Otherwise,
the function returns an allocated array of matching rendition objects.

Usage
XmRenderTableGetRenditions () iterates through a set of tags, compar-
ing in turn each tag with the group of renditions contained within a render table.

If no match is found when comparing a tag, any XmNnoRenditionCallback1 call-
backs registered with the XmDisplay object are invoked, supplying the table as
the render_table element of the XmDisplayCallbackStruct passed to the call-
backs. If the callbacks modify the render_table element, the linear search is
restarted for that tag.

The documentation states that the function returns an allocated array, renditions
being copied into the array at the same index of the matching tag within the tags
array. For example, if the third tag in tags matches a rendition, that rendition is
copied into the third element of the returned array. If any tag in the tags list does
not match any rendition in the table, that slot in the returned array is set to NULL.

The sources, however, do not match the documentation: renditions are copied
into the array in the order which they are matched, ignoring any slots which do

1.Erroneously given as XmNnoRendition in 2nd edition.

Motif Functions and Macros XmRenderTableGetRenditions

Motif Reference Manual 295

not match. Thus if the first tag in tags results in a NULL match, any rendition
found from the second tag is placed into the first slot. If the number of matched
renditions is less than the number of supplied tags, then memory for the returned
array is reallocated to match the number of found renditions. In the absence of a
XmNnoRenditionCallback callback, it is not possible to deduce the size of the
returned rendition array.

The function allocates space for both the returned rendition array and the constit-
uent renditions, and it is the responsibility of the programmer to reclaim the
space at a suitable point by calling XmRenditionFree () on each of the ele-
ments in the returned array, and subsequently XtFree () on the array itself.

Example
The following specimen code illustrates the basic outline of a call to
XmRenderTableGetRenditions ():

XmRendition *match_renditions;
XmStringTag tags[MAX_TAGS];
int i;

tags[0] = XmFONTLIST_DEFAULT_TAG;
tags[1] = XmS; /* "" */

...
/* search an unspecified render table */
match_renditions = XmRenderTableGetRenditions (render_table, tags,
MAX_TAGS);

/* use the matched set of renditions */
...

/* free the returned space */
if (match_renditions != NULL) {

/* ASSUMPTION: XtNumber (match_renditions) == MAX_TAGS */
/* Not a valid assumption if a tag does not match */

for (i = 0; i < MAX_TAGS; i++) {
XmRenditionFree (match_renditions[i]);

}

XtFree (match_renditions);
}

See Also
XmRenderTableAddRenditions (1), XmRenderTableGetRendition (1),
XmRenderTableRemoveRenditions (1), XmRenditionFree (1),
XmRendition (2).

XmRenderTableGetTags Motif Functions and Macros

296 Motif Reference Manual

Name
XmRenderTableGetTags – fetch the list of rendition tags from a render table.

Synopsis

int XmRenderTableGetTags (XmRenderTable table, XmStringTag **tag_list)

Inputs
table Specifies the render table.

Outputs
tag_list Returns the list of rendition tags.

Returns
The number of tags within the returned tag_list.

Availability
Motif 2.0 and later.

Description
XmRenderTableGetTags () is a convenience function which iterates through
a render table, collecting all the tags from the individual renditions within the
table, and returning them to the programmer. The number of tags placed at the
address tag_list by the function is returned.

Usage
XmRenderTableGetTags () allocates an array, and places in the array a copy
of the XmNtag resource for each rendition within the table. The array is returned
at the address specified by the tag_list parameter. If the table is NULL, tag_list is
initialized to NULL, and the function returns zero. It is the responsibility of the
programmer to reclaim the space by calling XtFree () on each of the items
within the allocated array, and then subsequently calling XtFree () on the array
itself.

Example
The following specimen code illustrates the basic outline of a call to
XmRenderTableGetTags ():

XmStringTag *tags;
int count, i;

/* fetch the tags from an unspecified render table */
count = XmRenderTableGetTags (render_table, &tags);

/* use the tags */
...

/* free the returned space */

Motif Functions and Macros XmRenderTableGetTags

Motif Reference Manual 297

if (tags != (XmStringTag *) 0) {
for (i = 0; i < count; i++) {

XtFree (tags[i]);
}

XtFree (tags);
}

See Also
XmRenditionFree (1), XmRendition (2).

XmRenderTableRemoveRenditions Motif Functions and Macros

298 Motif Reference Manual

Name
XmRenderTableRemoveRenditions – copy a render table, excluding specified
renditions.

Synopsis

XmRenderTable XmRenderTableRemoveRenditions (XmRenderTable
old_table,

XmStringTag *tags,
int

tag_count)

Inputs
old_table Specifies a render table.
tags Specifies an array of rendition tags. Any rendition which

matches an item in the array is not copied from old_table.
tag_count Specifies the number of items in the tags array.

Returns
A new render table with matching renditions removed.

Availability
Motif 2.0 and later.

Description
XmRenderTableRemoveRenditions () creates a new render table by copy-
ing from old_table only those renditions which do not have a tag matching items
within the array tags. If tags is NULL, or if tag_count is zero, or if no renditions
are removed, the function returns the old_table unmodified. Otherwise,
old_table is deallocated, and the reference counts for any excluded renditions are
decremented, before the function returns the newly allocated render table.

Usage
A rendition is not copied into the returned table if it has a XmNtag resource value
the same as any item within the tags list. When the returned render table differs
from the original old_table parameter, the function allocates space for the new
table, and it is the responsibility of the programmer to reclaim the space by call-
ing XmRenderTableFree ().

See Also
XmRenderTableAddRenditions (1), XmRenderTableFree (1),
XmRendition (2).

Motif Functions and Macros XmRenditionCreate

Motif Reference Manual 299

Name
XmRenditionCreate – create a rendition object.

Synopsis

XmRendition XmRenditionCreate (Widget widget, XmStringTag tag, Arg
*arglist, Cardinal argcount)

Inputs
widget Specifies a widget.
tag Specifies a tag for the rendition object.
arglist Specifies an argument list, consisting of resource name/value pairs.
argcount Specifies the number of arguments in arglist.

Returns
The new rendition object.

Availability
Motif 2.0 and later.

Description
XmRenditionCreate () creates a new rendition object, which can be used as
an entry in a render table used for rendering XmStrings. widget is used to find a
connection to the X server and an application context. tag is used as the XmNtag
resource of the new rendition object. Resources for the new object are supplied in
the arglist array.

Usage
The implementation of XmRendition is through a pseudo widget: although not a
true widget, the object has resources and a resource style interface for setting and
fetching values of the rendition. Typically, a rendition is merged into an existing
render table through the function XmRenderTableAddRenditions (). Com-
pound strings are rendered by successively matching tags within the compound
string with the XmNtag resources of renditions in the table, and then using the
resources of matched renditions to display the string components.

XmRenditionCreate () allocates storage for the returned rendition object. It
is the responsibility of the programmer to reclaim the storage at a suitable point
by calling XmRenditionFree (). Renditions are reference counted, and it is
important to call XmRenditionFree () rather than XtFree () in order to main-
tain the references.

Example
The following specimen code creates a pair of renditions and merges them into
an unspecified render table:

XmRendition new_renditions[2];

XmRenditionCreate Motif Functions and Macros

300 Motif Reference Manual

XmRenderTable new_table;
Arg argv[4];
Cardinal argc = 0;
Pixel fg =...;
Pixel bg =...;

/* create a rendition with fonts specified */
argc = 0;
XtSetArg (argv[argc], XmNfontName, "fixed");
argc++;
XtSetArg (argv[argc], XmNfontType, XmFONT_IS_FONT);
argc++;
XtSetArg (argv[argc], XmNloadModel, XmLOAD_DEFERRED);
argc++;
new_renditions[0] = XmRenditionCreate (widget,
XmFONTLIST_DEFAULT_TAG, argv, argc);

/* create a rendition with line style specified */
argc = 0;
XtSetArg (argv[argc], XmNrenditionBackground, bg);
argc++;
XtSetArg (argv[argc], XmNrenditionForeground, fg);
argc++;
XtSetArg (argv[argc], XmNunderlineType, XmSINGLE_LINE);
argc++;
XtSetArg (argv[argc], XmNstrikethruType, XmSINGLE_LINE);
argc++;
new_renditions[1] = XmRenditionCreate (widget, "lineStyle", argv, argc);

/* merge into an unspecified render table */
new_table = XmRenderTableAddRenditions (old_table, new_renditions, 2,
XmMERGE_REPLACE);

See Also
XmRenderTableAddRenditions (1), XmRenditionFree (1),
XmRenditionRetrieve (1), XmRenditionUpdate (1),
XmRendition (2).

Motif Functions and Macros XmRenditionFree

Motif Reference Manual 301

Name
XmRenditionFree – free the memory used by a rendition.

Synopsis

void XmRenditionFree (XmRendition rendition)

Inputs
rendition Specifies the rendition that is to be freed.

Availability
Motif 2.0 and later.

Description
XmRenditionFree () deallocates storage used by the specified rendition. The
routine does not free any XFontSet or XFontStruct data structures associated
with the rendition object.

Usage
XmRenditionFree () frees the storage used by the rendition object, but does
not free font data structures associated with the XmNfont resource of the object.
It is important to call XmRenditionFree () rather than XtFree () because
Motif reference counts rendition objects. XmRenditionFree () decrements the
reference count for the rendition; the rendition is not actually freed until the ref-
erence count reaches 0 (zero).

See Also
XmRenditionCreate (1), XmRendition (2).

XmRenditionRetrieve Motif Functions and Macros

302 Motif Reference Manual

Name
XmRenditionRetrieve – fetch rendition object resources.

Synopsis

void XmRenditionRetrieve (XmRendition rendition, Arg *arg_list, Cardinal
arg_count)

Inputs
rendition Specifies the rendition whose resources are fetched.
arg_count Specifies the number of arguments in arg_list.

Outputs
arg_list Specifies an argument list, consisting of resource name/value pairs.

Availability
Motif 2.0 and later.

Description
XmRenditionRetrieve () fetches selective resource values of a rendition
object. The set of resources retrieved is specified through the resource list
arg_list, each element of the list being a structure containing a name/value pair.
The number of elements within the list is given by arg_count.

Usage
XmRenditionRetrieve () directly returns the values of the rendition
resources, and not copies of them. The programmer should not inadvertently
modify a returned value, but should take a copy of any pointer-valued resource
which is to be changed. For example, the XmNtag and XmNfontName resources
should be copied into a separate address space before modifying or manipulating
the values.

If the XmNloadModel of the rendition object is XmLOAD_DEFERRED, and the
font specified by the XmNfont resource is NULL, but the XmNfontName value is
not NULL, and if the programmer has specified that the font is to be retrieved
within arg_list, then XmRenditionRetrieve () automatically changes the
load model to XmLOAD_IMMEDIATE and directly calls a procedure to load the
font indicated by XmNfontName before returning the requested resource values.

Example
The following specimen code illustrates fetching resources from an unspecified
rendition object:

Pixel bg;
Pixel fg;
XtPointer font;
String font_name;

Motif Functions and Macros XmRenditionRetrieve

Motif Reference Manual 303

XmFontType font_type;
unsigned char load_model;
unsigned char strike_type;
XmTabList tab_list;
XmStringTag tag;
unsigned char ul_type;
Arg av[10];
Cardinal ac = 0;

XtSetArg (av[ac], XmNrenditionForeground, &fg); ac++;
XtSetArg (av[ac], XmNrenditionBackground, &bg); ac++;
XtSetArg (av[ac], XmNfont, &font); ac++;
XtSetArg (av[ac], XmNfontName, &font_name); ac++;
XtSetArg (av[ac], XmNfontType, &font_type); ac++;
XtSetArg (av[ac], XmNloadModel, &load_model); ac++;
XtSetArg (av[ac], XmNstrikethruType, &strike_type); ac++;
XtSetArg (av[ac], XmNtabList, &tab_list); ac++;
XtSetArg (av[ac], XmNtag, &tag); ac++;
XtSetArg (av[ac], XmNunderlineType, &ul_type); ac++;

XmRenditionRetrieve (rendition, av, ac);

See Also
XmRenditionCreate (1), XmRenditionFree (1),
XmRenditionUpdate (1), XmRendition (2).

XmRenditionRetrieve Motif Functions and Macros

304 Motif Reference Manual

Name
XmRenditionUpdate – set rendition object resources.

Synopsis

void XmRenditionUpdate (XmRendition rendition, Arg *arg_list, Cardinal
arg_count)

Inputs
rendition Specifies the rendition whose resources are to be changed.
arg_list Specifies an argument list, consisting of resource name/value pairs.
arg_count Specifies the number of arguments within arg_list.

Availability
Motif 2.0 and later.

Description
XmRenditionUpdate () is a convenience function which sets the resources for
a rendition object. The attributes to change are specified through an array of
name/value pairs, similar to the resource-style interface of XtSetValues ().

Usage
Modifying the value of the XmNfontName resource initially resets the XmNfont
resource to NULL, irrespective of whether the load model for the new font is
XmLOAD_IMMEDIATE or XmLOAD_DEFERRED.

Example
The following specimen code illustrates setting resources for an unspecified ren-
dition object:

Pixel bg =...;
Pixel fg =...;
Arg av[10];
Cardinal ac = 0;

XtSetArg (av[ac], XmNrenditionForeground, fg);
ac++;
XtSetArg (av[ac], XmNrenditionBackground, bg);
ac++;
XtSetArg (av[ac], XmNfontType, XmFONT_IS_FONT);
ac++;
XtSetArg (av[ac], XmNfontName, "fixed");
ac++;
XtSetArg (av[ac], XmNloadModel, XmLOAD_DEFERRED);
ac++;

Motif Functions and Macros XmRenditionRetrieve

Motif Reference Manual 305

XtSetArg (av[ac], XmNstrikethruType, XmSINGLE_LINE);
ac++;
XtSetArg (av[ac], XmNunderlineType, XmSINGLE_LINE);
ac++;

XmRenditionUpdate (rendition, av, ac);

See Also
XmRenditionCreate (1), XmRenditionFree (1),
XmRenditionRetrieve (1), XmRendition (2).

XmRepTypeAddReverse Motif Functions and Macros

306 Motif Reference Manual

Name
XmRepTypeAddReverse – install the reverse converter for a representation type.

Synopsis

#include <Xm/RepType.h>

void XmRepTypeAddReverse (XmRepTypeId rep_type_id)

Inputs
rep_type_id Specifies the ID number of the representation type.

Availability
Motif 1.2 and later.

Description
XmRepTypeAddReverse () installs a reverse converter for a previously regis-
tered representation type. The reverse converter converts numerical representa-
tion type values to string values. The rep_type_id argument specifies the ID
number of the representation type. If the representation type contains duplicate
values, the reverse converter uses the first name in the value_names list that
matches the specified numeric value.

Usage
In Motif 1.2 and later, the representation type manager provides support for han-
dling many of the tasks related to enumerated values. This facility installs
resource converters that convert a string value to its numerical representation.
The representation type manager can also be queried to get information about the
registered types. This facility is especially useful for interface builders and appli-
cations like editres that allow a user to set resources interactively. XmRep-
TypeAddReverse () provides a way for an application to install a converter
that converts numeric values to their string values.

See Also
XmRepTypeGetId (1), XmRepTypeRegister (1).

Motif Functions and Macros XmRepTypeGetId

Motif Reference Manual 307

Name
XmRepTypeGetId – get the ID number of a representation type.

Synopsis

#include <Xm/RepType.h>

XmRepTypeId XmRepTypeGetId (String rep_type)

Inputs
rep_type Specifies the string name of a representation type.

Returns
The ID number of the representation type or XmREP_TYPE_INVALID if the
representation type is not registered.

Availability
Motif 1.2 and later.

Description
XmRepTypeGetId () retrieves the ID number of the specified representation
type rep_type from the representation type manager. The rep_type string is the
string name of a representation type that has been registered with XmRepTy-
peRegister (). XmRepTypeGetId () returns the ID number if the represen-
tation type has been registered. This value is used in other representation type
manager routines to identify a particular type. Otherwise, the routine returns
XmREP_TYPE_INVALID.

Usage
In Motif 1.2 and later, the representation type manager provides support for han-
dling many of the tasks related to enumerated values. This facility installs
resource converters that convert a string value to its numerical representation.
The representation type manager can also be queried to get information about the
registered types. This facility is especially useful for interface builders and appli-
cations like editres that allow a user to set resources interactively. XmRep-
TypeGetId () provides a way for an application get the ID of a representation
type, which can be used to identify the type to other representation manager rou-
tine.

See Also
XmRepTypeGetNameList (1), XmRepTypeGetRecord (1),
XmRepTypeGetRegistered (1), XmRepTypeRegister (1).

XmRepTypeGetNameList Motif Functions and Macros

308 Motif Reference Manual

Name
XmRepTypeGetNameList – get the list of value names for a representation type.

Synopsis

#include <Xm/RepType.h>

String * XmRepTypeGetNameList (XmRepTypeId rep_type_id, Boolean
use_uppercase_format)

Inputs
rep_type_id Specifies the ID number of the representation type.
use_uppercase_format Specifies whether or not the names are in uppercase char-
acters.

Returns
A pointer to an array of value names.

Availability
Motif 1.2 and later.

Description
XmRepTypeGetNameList () retrieves the list of value names associated with
the specified rep_type_id. The routine returns a pointer to a NULL-terminated
list of value names for the representation type, where each value name is a
NULL-terminated string. If use_uppercase_format is True, the value names are
in uppercase characters with Xm prefixes. Otherwise, the value names are in low-
ercase characters without Xm prefixes. XmRepTypeGetNameList () allocates
storage for the returned data. The application is responsible for freeing the stor-
age using XtFree () on each of the elements in the returned array, and subse-
quently upon the array pointer itself.

Usage
In Motif 1.2 and later, the representation type manager provides support for han-
dling many of the tasks related to enumerated values. This facility installs
resource converters that convert a string value to its numerical representation.
The representation type manager can also be queried to get information about the
registered types. This facility is especially useful for interface builders and appli-
cations like editres that allow a user to set resources interactively. XmRep-
TypeGetNameList () provides a way for an application to get the named
values for a particular representation type.

See Also
XmRepTypeGetId (1), XmRepTypeGetRecord (1),
XmRepTypeGetRegistered (1), XmRepTypeRegister (1).

Motif Functions and Macros XmRepTypeGetRecord

Motif Reference Manual 309

Name
XmRepTypeGetRecord – get information about a representation type.

Synopsis

#include <Xm/RepType.h>

XmRepTypeEntry XmRepTypeGetRecord (XmRepTypeId rep_type_id)

Inputs
rep_type_id Specifies the ID number of the representation type.

Returns
A pointer to a representation type entry structure.

Availability
Motif 1.2 and later.

Description
XmRepTypeGetRecord () retrieves information about the representation type
specified by rep_type_id. The routine returns a XmRepTypeEntry, which is a
pointer to a representation type entry structure. This structure contains informa-
tion about the value names and values for the enumerated type. XmRep-
TypeGetRecord () allocates storage for the returned data. The application is
responsible for freeing the storage using XtFree ().

Usage
In Motif 1.2 and later, the representation type manager provides support for han-
dling many of the tasks related to enumerated values. This facility installs
resource converters that convert a string value to its numerical representation.
The representation type manager can also be queried to get information about the
registered types. This facility is especially useful for interface builders and appli-
cations like editres that allow a user to set resources interactively. XmRep-
TypeGetRecord () provides a way for an application to retrieve information
about a particular representation type.

Structures
The XmRepTypeEntry is defined as follows:

typedef struct {
String rep_type_name; /* name of representation type */
String *value_names; /* array of value names */
unsigned char *values; /* array of numeric values */
unsigned char num_values; /* number of values */
Boolean reverse_installed; /* reverse converter installed flag */
XmRepTypeId rep_type_id; /* representation type ID */

XmRepTypeGetRecord Motif Functions and Macros

310 Motif Reference Manual

} XmRepTypeEntryRec, *XmRepTypeEntry, XmRepTypeListRec, *XmRep-
TypeList;

See Also
XmRepTypeGetId(1), XmRepTypeGetNameList(1),

XmRepTypeGetRegistered(1), XmRepTypeRegister(1).

Motif Functions and Macros XmRepTypeGetRegistered

Motif Reference Manual 311

Name
XmRepTypeGetRegistered – get the registered representation types.

Synopsis

#include <Xm/RepType.h>

XmRepTypeList XmRepTypeGetRegistered (void)

Returns
A pointer to the registration list of representation types.

Availability
Motif 1.2 and later.

Description
XmRepTypeGetRegistered () retrieves the whole registration list for the
representation type manager. The routine returns a copy of the registration list,
which contains information about all of the registered representation types. The
registration list is an array of XmRepTypeList structures, where each structure
contains information about the value names and values for a single representation
type. The end of the registration list is indicated by a NULL pointer in the
rep_type_name field. XmRepTypeGetRegistered allocates storage for the
returned data. The application is responsible for freeing this storage using
XtFree (). The list of value names (the value of the value_names field), the list
of values (the value of the values field), and the array of structures all need to be
freed.

Usage
In Motif 1.2 and later, the representation type manager provides support for han-
dling many of the tasks related to enumerated values. This facility installs
resource converters that convert a string value to its numerical representation.
The representation type manager can also be queried to get information about the
registered types. This facility is especially useful for interface builders and appli-
cations like editres that allow a user to set resources interactively. XmRep-
TypeGetRegistered () provides a way for an application to get information
about all of the registered representation types.

Example
The following code fragment shows the use of XmRepTypeGetRegis-
tered () to print the value names and values of all of the registered representa-
tion types:

XmRepTypeList replist; int i;
replist = XmRepTypeGetRegistered();

XmRepTypeGetRegistered Motif Functions and Macros

312 Motif Reference Manual

while (replist->rep_type_name != NULL) {
printf ("Representation type name: %s\n", replist->rep_type_name);
printf ("Value names and associated values: \n");

for (i = 0; i < replist->num_values; i++) {
printf ("%s: ", replist->value_names[i]);
printf ("%d\n", replist->values[i]);

}

replist++;
XtFree ((char *)replist->values);
XtFree ((char *)replist->value_names);

}

XtFree ((char *)replist);

Structures
The XmRepTypeList is defined as follows:

typedef struct {
String rep_type_name; /* name of representation type
*/
String *value_names; /* array of value names */
unsigned char *values; /* array of numeric values */
unsigned char num_values; /* number of values */
Boolean reverse_installed; /* reverse converter installed flag
*/
XmRepTypeId rep_type_id; /* representation type ID */

} XmRepTypeEntryRec, *XmRepTypeEntry, XmRepTypeListRec, *XmRep-
TypeList;

See Also
XmRepTypeGetRecord (1), XmRepTypeGetNameList (1),
XmRepTypeRegister (1).

Motif Functions and Macros XmRepTypeInstallTearOffModelConverter

Motif Reference Manual 313

Name
XmRepTypeInstallTearOffModelConverter – install the resource converter for
the RowColumn XmNtearOffModel resource.

Synopsis

#include <Xm/RepType.h>

void XmRepTypeInstallTearOffModelConverter (void)

Availability
Motif 1.2 and later. In Motif 2.0 and later, the converter for the XmNtearOff-
Model resource is internally installed, and this function is obsolete.

Description
XmRepTypeInstallTearOffModelConverter () installs the resource
converter for the RowColumn XmNtearOffModel resource. This resource con-
trols whether or not PulldownMenus and PopupMenus in an application can be
torn off. Once the converter is installed, the value of XmNtearOffModel can be
specified in a resource file.

Usage
In Motif 1.2, a RowColumn that is configured as a PopupMenu or a Pulldown-
Menu supports tear-off menus. When a menu is torn off, it remains on the screen
after a selection is made so that additional selections can be made. A menu pane
that can be torn off contains a tear-off button at the top of the menu. The
XmNtearOffModel resource controls whether or not tear-off functionality is
available for a menu. This resource can take the values
XmTEAR_OFF_ENABLED or XmTEAR_OFF_DISABLED.

In Motif 1.2, the resource converter for XmNtearOffModel is not installed by
default. Some existing applications depend on receiving a callback when a menu
is mapped; since torn-off menus are always mapped, these applications might fail
if a user is allowed to enable tear-off menus from a resource file. XmRepTy-
peInstallTearOffModelConverter () registers the converter that allows
the resource to be set from a resource file.

See Also
XmRowColumn(2).

XmRepTypeRegister Motif Functions and Macros

314 Motif Reference Manual

Name
XmRepTypeRegister – register a representation type resource.

Synopsis

#include <Xm/RepType.h>

XmRepTypeId XmRepTypeRegister (String rep_type,
String *value_names,
unsigned char *values,
unsigned char num_values)

Inputs
rep_type Specifies the string name for the representation type.
value_names Specifies an array of value names for the representation type.

IP values 1i Specifies an array of values for the representa-
tion type.

num_values Specifies the number of items in value_names and values.

Returns
The ID number of the representation type.

Availability
Motif 1.2 and later.

Description
XmRepTypeRegister () registers a representation type with the representation
type manager. The representation type manager provides resource conversion
facilities for enumerated values. XmRepTypeRegister () installs a resource
converter that converts string values to numerical representation type values. The
strings in the value_names array specify the value names for the representation
type. The strings are specified in lowercase characters, with underscore charac-
ters separating words and without Xm prefixes.

If the values argument is NULL, the order of the strings in the value_names array
determines the numerical values for the enumerated type. In this case, the names
are assigned consecutive values starting with 0 (zero). If values is non-NULL, it
is used to assign values to the names. Each name in the value_names array is
assigned the corresponding value in the values array, so it is possible to have non-
consecutive values or duplicate names for the same value.

XmRepTypeRegister () returns the ID number that is assigned to the repre-
sentation type. This value is used in other representation type manager routines to
identify a particular type. A representation type can only be registered once. If a
type is registered more than once, the behavior of the representation type man-
ager is undefined.

Motif Functions and Macros XmRepTypeRegister

Motif Reference Manual 315

Usage
In Motif 1.2 and later, the representation type manager provides support for han-
dling many of the tasks related to enumerated values. This facility installs
resource converters that convert a string value to its numerical representation.
The representation type manager can also be queried to get information about the
registered types. This facility is especially useful for interface builders and appli-
cations like editres that allow a user to set resources interactively. XmRepTy-
peRegister () provides a way for an application to register representation
types for application-specific resources or for new widget classes.

See Also
XmRepTypeAddReverse (1), XmRepTypeGetId (1),
XmRepTypeGetNameList (1), XmRepTypeGetRecord (1),
XmRepTypeGetRegistered (1), XmRepTypeValidValue (1).

XmRepTypeValidValue Motif Functions and Macros

316 Motif Reference Manual

Name
XmRepTypeValidValue – determine the validity of a numerical value for a repre-
sentation type.

Synopsis

#include <Xm/RepType.h>

Boolean XmRepTypeValidValue (XmRepTypeIdrep_type_id,
unsigned char test_value,
Widget enable_default_warning)

Inputs
rep_type_id Specifies the ID number of the representation type.
test_value Specifies the value that is to be tested.
enable_default_warning Specifies a widget that is used to generate a default
warning message.

Returns
True if the specified value is valid or False otherwise.

Availability
Motif 1.2 and later.

Description
XmRepTypeValidValue () checks the validity of the specified test_value for
the representation type specified by rep_type_id. The routine returns True if the
value is valid. Otherwise, it returns False. If the enable_default_warning parame-
ter is non-NULL, XmRepTypeValidValue () uses the specified widget to gen-
erate a default warning message if the value is invalid. If enable_default_warning
is NULL, no default warning message is provided.

Usage
In Motif 1.2 and later, the representation type manager provides support for han-
dling many of the tasks related to enumerated values. This facility installs
resource converters that convert a string value to its numerical representation.
The representation type manager can also be queried to get information about the
registered types. This facility is especially useful for interface builders and appli-
cations like editres that allow a user to set resources interactively. XmRepType-
ValidValue () provides a way for an application to check if a value is valid for
a particular representation type.

See Also
XmRepTypeGetId (1), XmRepTypeRegister (1).

Motif Functions and Macros XmResolveAllPartOffsets

Motif Reference Manual 317

Name
XmResolveAllPartOffsets – ensure upward-compatible widgets and applications.

Synopsis

void XmResolveAllPartOffsets (WidgetClass widget_class,
XmOffsetPtr *offset,
XmOffsetPtr *constraint_offset)

Inputs
widget_class Specifies the widget class pointer.

Outputs
offset Returns the widget offset record.
constraint_offset Returns the constraint offset record.

Description
XmResolveAllPartOffsets () ensures that an application or a widget will
be upwardly compatible with the records in a widget structure. In other words, if
the size of a widget structure changes in the future, this routine can be used to
calculate the locations of the new offsets. This routine and XmResolvePart-
Offsets () are similar. During the creation of a widget, both routines modify the
widget structure by allocating an array of offset values. XmResolvePartOffsets()
affects only the widget instance record, while XmResolveAllPartOff-
sets () affects the widget instance and constraint records.

Usage
If you are subclassing a Motif widget, you should use XmResolveAllPart-
Offsets () and XmResolvePartOffsets () to ensure that your widget will
be compatible with future releases of the toolkit.

See Also
XmResolvePartOffsets (1).

XmResolvePartOffsets Motif Functions and Macros

318 Motif Reference Manual

Name
XmResolvePartOffsets – ensure upward-compatible widgets and applications.

Synopsis

void XmResolvePartOffsets (WidgetClass widget_class, XmOffsetPtr *offset)

Inputs
widget_class Specifies the widget class pointer.

Outputs
offset Returns the widget offset record.

Description
XmResolvePartOffsets () ensures that an application or a widget will be
upwardly compatible with the records in a widget structure. In other words, if the
size of a widget structure changes in the future, this routine can be used to calcu-
late the locations of the new offsets. This routine and XmResolveAllPart-
Offsets () are similar. During the creation of a widget, both routines modify the
widget structure by allocating an array of offset values. XmResolvePart-
Offsets () affects only the widget instance record, while XmResolveAll-
PartOffsets () affects the widget instance and constraint records.

Usage
If you are subclassing a Motif widget, you should use XmResolvePartOff-
sets () and XmResolveAllPartOffsets () to ensure that your widget will
be compatible with future releases of the toolkit.

See Also
XmResolveAllPartOffsets (1).

Motif Functions and Macros XmScaleGetValue

Motif Reference Manual 319

Name
XmScaleGetValue – get the slider value for a Scale widget.

Synopsis

#include <Xm/Scale.h>

void XmScaleGetValue (Widget widget, int *value_return)

Inputs
widget Specifies the Scale widget.

Outputs
value_return Returns the current slider position for the Scale.

Description
XmScaleGetValue () returns the current position of the slider within the spec-
ified Scale widget.

Usage
XmScaleGetValue () is a convenience routine that returns the value of the
XmNvalue resource for the Scale widget. Calling the routine is equivalent to call-
ing XtGetValues () for that resource, although XmScaleGetValue ()
accesses the value through the widget instance structure rather than through
XtGetValues ().

See Also
XmScaleSetValue (1), XmScale (2).

XmScaleSetTicks Motif Functions and Macros

320 Motif Reference Manual

Name
XmScaleSetTicks – set tick marks for a Scale widget.

Synopsis

#include <Xm/Scale.h>

void XmScaleSetTicks (Widget widget,
int big_every,
Cardinal num_med,
Cardinal num_small,
Dimension size_big,
Dimension size_med,
Dimension size_small)

Inputs
widget Specifies a scale widget.
big_every Specifies the number of scale values between large ticks.
num_med Specifies the number of medium-sized ticks between the large
tick marks.
num_small Specifies the number of small-sized ticks between the
medium-sized tick marks.
size_big Specifies the size of the large ticks.
size_med Specifies the size of the medium ticks.
size_small Specifies the size of the small ticks.

Availability
Motif 2.0 and later.

Description
XmScaleSetTicks() places tick marks along the edges of a Scale widget. Ticks
may be of three types: big, medium, and small, and the size (in pixels) of each
type is specified by size_big, size_med, and size_small respectively. The location
of each big tick is given by big_every, which simply specifies the number of scale
values between each big tick. The number of medium-sized ticks between each
big tick is given by num_med, and the number of small-sized ticks between each
medium-sized tick is num_small.

Usage
XmScaleSetTicks() is a convenience function which places tick marks along the
edge of a Scale by creating a series of SeparatorGadget children at evenly spaced
intervals. If size_big is zero, XmScaleSetTicks() simply returns. If size_med or
size_small is zero, num_med and num_small are forced to zero respectively. The
number of medium and small tick marks required may be zero, but the number of
large tick marks must not be less than 2.

Motif Functions and Macros XmScaleSetTicks

Motif Reference Manual 321

SeparatorGadgets are created with the names "BigTic", "MedTic", and "Small-
Tic", the XmNseparatorType resource of each is forced to XmSINGLE_LINE.
XmScaleSetTicks() does not delete any existing ticks when invoked on any par-
ticular Scale, neither does the Scale recalculate proper positions for the tick
marks if the scale orientation is changed after tick marks are added. In each case,
existing tick marks must be erased and subsequently redrawn or re-specified.

Example
The following code ensures that any tick marks are erased before adding new
ticks to a Scale:

#include <Xm/Scale.h>
#include <Xm/SeparatoG.h>

void ScaleEraseSetTicks (Widget scale,
int big_every,
Cardinal num_med,
Cardinal num_small,
Dimension size_big,
Dimension size_med,
Dimension size_med)

{
WidgetList children = (WidgetList) 0;
Cardinal num_children = (Cardinal) 0;
int i;
String name;

/* fetch scale children. */
XtVaGetValues (scale, XmNchildren, &children, XmNnumChildren,
&num_children, 0)

/* destroy old ticks. */
/* some optimization to reuse correctly */
/* placed ticks might be in order here... */
for (i = 0; i < num_children; i++) {

if (XmIsSeparatorGadget (children[i])) {
if ((name = XtName (children[i])) != (String) 0) {

if ((strcmp (name, "BigTic") == 0) ||
(strcmp (name, "MedTic") == 0) ||
(strcmp (name, "SmallTic") == 0)) {
XtDestroyWidget (children[i]);}

}
}

}

XmScaleSetTicks Motif Functions and Macros

322 Motif Reference Manual

/* create new ticks. */
XmScaleSetTicks (scale, big_every, num_med, num_small, size_big,
size_med, size_small);

}

See Also
XmScaleSetValues (1). XmScale (2), XmSeparatorGadget (2).

Motif Functions and Macros XmScaleSetValue

Motif Reference Manual 323

Name
XmScaleSetValue – set the slider value for a Scale widget.

Synopsis

#include <Xm/Scale.h>

void XmScaleSetValue (Widget widget, int value)

Inputs
widget Specifies the Scale widget.
value Specifies the value of the slider.

Description
XmScaleSetValue () sets the current position of the slider to value in the
specified Scale widget. The value must be in the range XmNminimum to XmN-
maximum.

Usage
XmScaleSetValue () is a convenience routine that sets the value of the XmN-
value resource for the Scale widget. Calling the routine is equivalent to calling
XtSetValues () for that resource, although XmScaleSetValue () accesses
the value through the widget instance structure rather than through XtSetVal-
ues ().

See Also
XmScaleGetValue (1), XmScale (2).

XmScrollBarGetValues Motif Functions and Macros

324 Motif Reference Manual

Name
XmScrollBarGetValues – get information about the current state of a ScrollBar
widget.

Synopsis

#include <Xm/ScrollBar.h>

void XmScrollBarGetValues (Widget widget,
int *value_return,
int *slider_size_return,
int * increment_return,
int *page_increment_return)

Inputs
widget Specifies the ScrollBar widget.

Outputs
value_return Returns the current slider position.
slider_size_return Returns the current size of the slider.
increment_return Returns the current increment and decrement level.
page_increment_return Returns the current page increment and decrement
level.

Description
XmScrollBarGetValues () returns the current state information for the spec-
ified ScrollBar widget. This information consists of the position and size of the
slider, as well as the increment and page increment values.

Usage
XmScrollBarGetValues () is a convenience routine that returns the values
of the XmNvalue, XmNsliderSize, XmNincrement, and XmNpageIncrement
resources for the ScrollBar widget. Calling the routine is equivalent to calling
XtGetValues () for those resources, although XmScrollBarGetValues ()
accesses the values through the widget instance structure rather than through
XtGetValues ().

See Also
XmScrollBarSetValues (1), XmScrollBar (2).

Motif Functions and Macros XmScrollBarSetValues

Motif Reference Manual 325

Name
XmScrollBarSetValues – set the current state of a ScrollBar widget.

Synopsis

#include <Xm/ScrollBar.h>

void XmScrollBarSetValues (Widget widget,
int value,
int slider_size,
int increment,
int page_increment,
Boolean notify)

Inputs
widget Specifies the ScrollBar widget.
value Specifies the slider position.
slider_size Specifies the size of the slider.
increment Specifies the increment and decrement level.
page_increment Specifies the page increment and decrement level.
notify Specifies whether or not the value changed callback is
invoked.

Description
XmScrollBarSetValues () sets the current state of the specified ScrollBar
widget. The position of the slider is set to value, which must be in the range
XmNminimum to XmNmaximum minus XmNsliderSize. The size of the slider is
set to slider_size, which must be between 1 and the size of the scroll region. The
increment and page increment values are set to increment and page_increment,
respectively.

If notify is True, XmScrollBarSetValues () invokes the XmNval-
ueChangedCallback for the ScrollBar when the state is set.

Usage
XmScrollBarSetValues () is a convenience routine that sets the values of
the XmNvalue, XmNsliderSize, XmNincrement, and XmNpageIncrement
resources for the ScrollBar widget. Calling the routine is equivalent to calling
XtSetValues () for those resources, although XmScrollBarSetValues ()
accesses the values through the widget instance structure rather than through
XtSetValues ().

The notify parameter indicates whether or not the value changed callbacks for the
ScrollBar are invoked. You can avoid redundant code by setting this parameter to
True. If you are calling XmScrollBarSetValues () from a value changed

XmScrollBarSetValues Motif Functions and Macros

326 Motif Reference Manual

callback routine, you probably want to set the parameter to False to avoid the
possibility of an infinite loop. Calling XmScrollBarSetValues () with notify
set to True causes the callback routines to be invoked in a way that is indistin-
guishable from a user-initiated adjustment to the ScrollBar.

See Also
XmScrollBarGetValues (1), XmScrollBar (2).

Motif Functions and Macros XmScrolledWindowSetAreas

Motif Reference Manual 327

Name
XmScrolledWindowSetAreas – specify the children for a scrolled window.

Synopsis

#include <Xm/ScrolledW.h>

void XmScrolledWindowSetAreas (Widget widget,
Widget horizontal_scrollbar,
Widget vertical_scrollbar,
Widget work_region)

Inputs
widget Specifies the ScrolledWindow widget.
horizontal_scrollbar Specifies the widget ID of the horizontal ScrollBar.
vertical_scrollbar Specifies the widget ID of the vertical ScrollBar.
work_region Specifies the widget ID of the work window.

Availability
In Motif 2.0 and later, XmScrolledWindowSetAreas () is obsolete.

Description
XmScrolledWindowSetAreas () sets up the standard regions of a Scrolled-
Window widget for an application. The ScrolledWindow must be created before
the routine is called. XmScrolledWindowSetAreas () specifies the horizon-
tal and vertical ScrollBars and the work window region. If a particular Scrolled-
Window does not have one of these regions, the corresponding argument can be
specified as NULL.

Usage
Each of the ScrolledWindow regions is associated with a ScrolledWindow
resource; XmScrolledWindowSetAreas () sets the associated resources.
The resources that correspond to the last three arguments to the routine are XmN-
horizontalScrollBar, XmNverticalScrollBar, and XmNworkWindow, respec-
tively.

If an application does not call XmScrolledWindowSetAreas (), the widget
may still set some of the standard regions. If ScrollBars are added as children,
the XmNhorizontalScrollBar and XmNverticalScrollBar resources may be set if
they have not already been specified. Any child that is not a ScrollBar is used for
the XmNworkWindow. If you want to be certain about which widgets are used
for the different regions, it is wise to call XmScrolledWindowSetAreas ()
explicitly.

In Motif 2.0 and later, the function is obsolete, and the programmer should spec-
ify the XmNhorizontalScrollBar, XmNverticalScrollBar, and XmNworkWindow

XmScrolledWindowSetAreas Motif Functions and Macros

328 Motif Reference Manual

resources directly through a call to XtSetValues (). Although ostensibly main-
tained for backwards compatibility, the implementation of XmScrolledWin-
dowSetAreas () in Motif 2.0 and later is not Motif 1.2 compatible. In Motif
1.2, supplying a NULL value for any of the scrollbar or work window parameters
directly sets the internal component to NULL. In Motif 2.0 and later, supplying a
NULL value causes that parameter to be ignored, leaving the internal component
intact.

Example
The following code fragment shows how to set the regions of a ScrolledWindow:

Widget toplevel, scrolled_w, drawing_a, vsb, hsb;
int view_width, view_height;

scrolled_w = XtVaCreateManagedWidget ("scrolled_w", xmScrolledWindow-
WidgetClass, toplevel,

XmNscrollingPolicy,
XmAPPLICATION_DEFINED,
XmNvisualPolicy, XmVARIABLE,
NULL);

drawing_a = XtVaCreateManagedWidget ("drawing_a", xmDrawingAreaWidg-
etClass, scrolled_w,

XmNwidth, view_width,
XmNheight, view_height,
NULL);

vsb = XtVaCreateManagedWidget ("vsb", xmScrollBarWidgetClass, scrolled_w,
XmNorientation, XmVERTICAL,
NULL);

hsb = XtVaCreateManagedWidget ("hsb", xmScrollBarWidgetClass, scrolled_w,
XmNorientation, XmHORIZONTAL,
NULL);

XmScrolledWindowSetAreas (scrolled_w, hsb, vsb, drawing_a);

See Also
XmScrolledWindow (2).

Motif Functions and Macros XmScrollVisible

Motif Reference Manual 329

Name
XmScrollVisible – make an obscured child of a ScrolledWindow visible.

Synopsis

#include <Xm/ScrolledW.h>

void XmScrollVisible (Widget scrollw_widget,
Widget widget,
Dimension left_right_margin,
Dimension top_bottom_margin)

Inputs
scrollw_widget Specifies the ScrolledWindow widget.
widget Specifies the widget ID of the widget that is to be made

visible.
left_right_margin Specifies the distance between the widget and the left or

right edge of the viewport if the ScrolledWindow is
scrolled horizontally.

top_bottom_margin Specifies the distance between the widget and the top or
bottom edge of the viewport if the ScrolledWindow is
scrolled vertically.

Availability
Motif 1.2 and later.

Description
XmScrollVisible () scrolls the specified ScrolledWindow scrollw_widget so
that the obscured or partially obscured widget becomes visible in the work area
viewport. widget must be a descendent of scrollw_widget. The routine repositions
the work area of the ScrolledWindow and sets the margins between the widget
and the viewport boundaries based on left_right_margin and top_bottom_margin
if necessary.

Usage
XmScrollVisible () provides a way for an application to ensure that a partic-
ular child of a ScrolledWindow is visible. In order for the routine to work, the
XmNscrollingPolicy of the ScrolledWindow widget must be set to XmAUTO-
MATIC. This routine is designed to be used in the XmNtraverseObscureCallback
for a ScrolledWindow.

See Also
XmScrolledWindow (2).

XmSelectionBoxGetChild Motif Functions and Macros

330 Motif Reference Manual

Name
XmSelectionBoxGetChild – get the specified child of a SelectionBox widget.

Synopsis

#include <Xm/SelectioB.h>

Widget XmSelectionBoxGetChild (Widget widget, unsigned char child)

Inputs
widget Specifies the SelectionBox widget.
child Specifies the child of the SelectionBox widget. Pass one of the val-
ues from the list below.

Returns
The widget ID of the specified child of the SelectionBox.

Availability
As of Motif 2.0, the toolkit abstract child fetch routines are marked for depreca-
tion. You should give preference to XtNameToWidget (), except when fetching
the SelectionBox default button or work area.

Description
XmSelectionBoxGetChild () returns the widget ID of the specified child of
the SelectionBox widget.

Usage
XmDIALOG_APPLY_BUTTON, XmDIALOG_CANCEL_BUTTON,
XmDIALOG_HELP_BUTTON, and XmDIALOG_OK_BUTTON specify the
action buttons in the widget. XmDIALOG_DEFAULT_BUTTON specifies the
current default button. XmDIALOG_LIST and XmDIALOG_LIST_LABEL
specify the list and its label. XmDIALOG_TEXT and
XmDIALOG_SELECTION_LABEL specify the selection text entry area and its
label. XmDIALOG_SEPARATOR specifies the separator and
XmDIALOG_WORK_AREA specifies any work area child that has been added
to the SelectionBox. For more information on the different children of the Selec-
tionBox, see the manual page in Section 2, Motif and Xt Widget Classes.

Widget Hierarchy

As of Motif 2.0, most Motif composite child fetch routines are marked as depre-
cated. However, since it is not possible to fetch the
XmDIALOG_DEFAULT_BUTTON or XmDIALOG_WORK_AREA children
using a public interface except through XmSelectionBoxGetChild(), the routine
should not be considered truly deprecated. For consistency with the preferred
new style, when fetching all other child values, consider giving preference to the

Motif Functions and Macros XmSelectionBoxGetChild

Motif Reference Manual 331

Intrinsics routine XtNameToWidget(), passing one of the following names as the
second parameter:

“Apply” (XmDIALOG_APPLY_BUTTON)
“Cancel” (XmDIALOG_CANCEL_BUTTON)
“OK” (XmDIALOG_OK_BUTTON)
“Separator” (XmDIALOG_SEPARATOR)
“Help” (XmDIALOG_HELP_BUTTON)
“Symbol” (XmDIALOG_SYMBOL_LABEL)
“Message” (XmDIALOG_MESSAGE_LABEL)

“*ItemsList”1 (XmDIALOG_LIST)
“Items” (XmDIALOG_LIST_LABEL)
“Selection” (XmDIALOG_SELECTION_LABEL)
“Text” (XmDIALOG_TEXT)

Structures
The possible values for child are:

XmDIALOG_APPLY_BUTTON
XmDIALOG_OK_BUTTON
XmDIALOG_CANCEL_BUTTON
XmDIALOG_SELECTION_LABEL
XmDIALOG_DEFAULT_BUTTON XmDIALOG_SEPARATOR
XmDIALOG_HELP_BUTTON XmDIALOG_TEXT
XmDIALOG_LIST
XmDIALOG_WORK_AREA
XmDIALOG_LIST_LABEL

See Also
XmPromptDialog (2), XmSelectionBox (2).

1.The “*” is important: the List is not a direct child of the SelectionBox, but of a ScrolledList.

XmSetColorCalculation Motif Functions and Macros

332 Motif Reference Manual

Name
XmSetColorCalculation – set the procedure that calculates default colors.

Synopsis

XmColorProc XmSetColorCalculation (XmColorProc color_proc)

Inputs
color_proc Specifies the procedure that is used for color calculation.

Returns
The previous color calculation procedure.

Description
XmSetColorCalculation () sets the procedure called by XmGetColors ()1
that calculates the default foreground, top and bottom shadow, and selection
colors. The procedure calculates these colors based on the background color that
has been passed to the procedure. If color_proc is NULL, this routine restores the
default color calculation procedure. XmSetColorCalculation () returns the
color calculation procedure that was in use when the routine was called. Both
XmGetColors () and XmChangeColor () use the color calculation procedure.

Usage
Motif widgets rely on the use of shadowed borders to create their three-dimen-
sional appearance. The top and bottom shadow colors are lighter and darker
shades of the background color; these colors are reversed to make a component
appear raised out of the screen or recessed into the screen. The select color is a
slightly darker shade of the background color that indicates that a component is
selected. The foreground color is either black or white, depending on which color
provides the most contrast with the background color. XmSetColorCalcula-
tion () sets the procedure that calculates these colors. Use XmGetColorCal-
culation () to get the default color calculation procedure.

In Motif 2.0 and later, per-screen color calculation procedures are supported: if
the XmNcolorCalculationProc resource of the XmScreen object associated with
a given widget is not NULL, the procedure specified by the resource is used to
calculate color in preference to any procedure which may have been specified by
XmSetColorCalculation ().

Procedures
The XmColorProc has the following syntax:

typedef void (*XmColorProc) (XColor *bg_color, /* specifies the back-
ground color */

1.Erroneously missing from 1st and 2nd editions.

Motif Functions and Macros XmSetColorCalculation

Motif Reference Manual 333

XColor *fg_color, /* returns the fore-
ground color */

XColor *sel_color, /* returns the select
color */

XColor *ts_color, /* returns the top
shadow color */

XColor *bs_color) /* returns the bottom
shadow color */

An XmColorProc takes five arguments. The first argument, bg_color, is a pointer
to an XColor structure that specifies the background color. The red, green, blue,
and pixel fields in the structure contain valid values. The rest of the arguments are
pointers to XColor structures for the colors that are to be calculated. The proce-
dure fills in the red, green, and blue fields in these structures.

See Also
XmChangeColor (1), XmGetColorCalculation (1), XmGetColors (1).
XmScreen (2).

XmSetFontUnit Motif Functions and Macros

334 Motif Reference Manual

Name
XmSetFontUnit – set the font unit values.

Synopsis

void XmSetFontUnit (Display *display, int font_unit_value)

Inputs
display Specifies a connection to an X server; returned from XOpenD-
isplay() or XtDisplay().
font_unit_value Specifies the value for both horizontal and vertical font units.

Availability
In Motif 1.2 and later, XmSetFontUnit () is obsolete. It has been superseded
by setting the Screen resources XmNhorizontalFontUnit and XmNverticalFontU-
nit.

Description
XmSetFontUnit () sets the value of the horizontal and vertical font units for all
of the screens on the display. This routine is retained for compatibility with Motif
1.1 and should not be used in newer applications.

Usage
Font units are a resolution-independent unit of measurement that are based on the
width and height characteristics of a particular font. The default horizontal and
vertical font unit values are based on the XmNfont resource, which in Motif 1.2,
is a resource of the Screen object. An application can override these default val-
ues by calling XmSetFontUnit (). The values should be set before any widgets
that use resolution-independent data are created.

See Also
XmConvertUnits (1), XmSetFontUnits (1), XmGadget(2),
XmManager(2), XmPrimitive (2), XmScreen (2).

Motif Functions and Macros XmSetFontUnits

Motif Reference Manual 335

Name
XmSetFontUnits – set the font unit values.

Synopsis

void XmSetFontUnits (Display *display, int h_value, int v_value)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
h_value Specifies the value for horizontal font units.
v_value Specifies the value for vertical font units.

Availability
In Motif 1.2 and later, XmSetFontUnits () is obsolete. It has been superseded
by setting the Screen resources XmNhorizontalFontUnit and XmNverticalFontU-
nit.

Description
XmSetFontUnits () sets the value of the horizontal and vertical font units to
h_value and v_value respectively. The routine sets the font units for all of the
screens on the display. This routine is retained for compatibility with Motif 1.1
and should not be used in newer applications.

Usage
Font units are a resolution-independent unit of measurement that are based on the
width and height characteristics of a particular font. The default horizontal and
vertical font unit values are based on the XmNfont resource, which in Motif 1.2
and later, is a resource of the Screen object. An application can override these
default values by calling XmSetFontUnits (). The values should be set before
any widgets that use resolution-independent data are created.

See Also
XmConvertUnits (1), XmSetFontUnit (1), XmGadget(2),
XmManager(2), XmPrimitive (2), XmScreen (2).

XmSetMenuCursor Motif Functions and Macros

336 Motif Reference Manual

Name
XmSetMenuCursor – set the current menu cursor.

Synopsis

void XmSetMenuCursor (Display *display, Cursor cursorId)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
cursorId Specifies the cursor ID for the menu cursor.

Availability
In Motif 1.2 and later, XmSetMenuCursor () is obsolete. It has been super-
seded by setting the Screen resource XmNmenuCursor.

Description
XmSetMenuCursor () sets the menu cursor for an application. The routine sets
the cursor for all screens on the specified display. The specified cursor is shown
whenever the application is using a Motif menu on the specified display. This
routine is retained for compatibility with Motif 1.1 and should not be used in
newer applications.

Usage
The menu cursor is the pointer shape that is used whenever a menu is posted.
This cursor can be different from the normal pointer shape. In Motif 1.2 and later,
the new Screen object has a resource, XmNmenuCursor, that specifies the menu
cursor. XmSetMenuCursor () is retained for compatibility with Motif 1.1 and
should not be used in newer applications.

See Also
XmGetMenuCursor (1), XmScreen (2).

Motif Functions and Macros XmSetProtocolHooks

Motif Reference Manual 337

Name
XmSetProtocolHooks – set prehooks and posthooks for a protocol.

Synopsis

#include <Xm/Protocols.h>

void XmSetProtocolHooks (Widget shell,
Atom property,
Atom protocol,
XtCallbackProc prehook,
XtPointer pre_closure,
XtCallbackProc posthook,
XtPointer post_closure)

Inputs
shell Specifies the widget associated with the protocol property.
property Specifies the property that holds the protocol data.
protocol Specifies the protocol atom.
prehook Specifies the procedure to invoke before the client callbacks.
pre_closure Specifies any client data that is passed to the prehook.
posthook Specifies the procedure to invoke after the client callbacks.
post_closure Specifies any client data that is passed to the posthook.

Description
XmSetProtocolHooks () allows pre- and post-procedures to be invoked in
addition to the regular callback procedures that are performed when the Motif
window manager sends a protocol message. The prehook procedure is invoked
before calling the procedures on the client’s callback list, whereas the posthook
procedure is invoked after calling the procedures on the client’s callback list. This
routine gives shells more control flow, since callback procedures aren’t necessar-
ily executed in any particular order.

Usage
A protocol is a communication channel between applications. Protocols are sim-
ply atoms, stored in a property on the top-level shell window for the application.
To communicate using a protocol, a client sends a ClientMessage event contain-
ing a property and protocol, and the receiving client responds by calling the asso-
ciated protocol callback routine. XmSetProtocolHooks () gives an
application more control over the flow of callback procedures, since callbacks are
not necessarily invoked in any particular order.

See Also
XmAddProtocolCallback (1), XmRemoveProtocolCallback (1),
XmSetWMProtocolHooks (1), VendorShell (2).

XmSetWMProtocolHooks Motif Functions and Macros

338 Motif Reference Manual

Name
XmSetWMProtocolHooks – set prehooks and posthooks for the
XA_WM_PROTOCOLS protocol.

Synopsis

#include <Xm/Protocols.h>

void XmSetWMProtocolHooks (Widget shell,
Atom protocol,
XtCallbackProc prehook,
XtPointer pre_closure,
XtCallbackProc posthook,
XtPointer post_closure)

Inputs
shell Specifies the widget associated with the protocol property.
protocol Specifies the protocol atom.
prehook Specifies the procedure to invoke before the client callbacks.
pre_closure Specifies any client data that is passed to the prehook.
posthook Specifies the procedure to invoke after the client callbacks.
post_closure Specifies any client data that is passed to the posthook.

Description
XmSetWMProtocolHooks ()1 is a convenience routine that calls XmSetPro-
tocolHooks () with property set to XA_WM_PROTOCOL, the window man-
ager protocol property.

Usage
The property XA_WM_PROTOCOLS is a set of predefined protocols for com-
munication between clients and window managers. To communicate using a
protocol, a client sends a ClientMessage event containing a property and proto-
col, and the receiving client responds by calling the associated protocol callback
routine. XmSetWMProtocolHooks () gives an application more control over
the flow of callback procedures, since callbacks are not necessarily invoked in
any particular order.

See Also
XmAddWMProtocolCallback (1), XmInternAtom (1),
XmRemoveWMProtocolCallback (1), XmSetProtocolHooks (1),
VendorShell (2).

1.Erroneously given as XmSetXmProtocolHooks() in 1st and 2nd editions.

Motif Functions and Macros XmSimpleSpinBoxAddItem

Motif Reference Manual 339

Name
XmSimpleSpinBoxAddItem – add an item to a SimpleSpinBox.

Synopsis

#include <Xm/SSpinB.h>

void XmSimpleSpinBoxAddItem (Widget widget, XmString item, int position)

Inputs
widget Specifies a SimpleSpinBox widget.
item Specifies an item to add.
position Specifies the position at which to add the new item.

Availability
Motif 2.1 and later.

Description
XmSimpleSpinBoxAddItem () adds an item to a SimpleSpinBox widget at a
given position within the list of values which the widget may display. If position
is zero, or if position is greater than the number of items in the list, the item is
appended to the list of values.

Usage
XmSimpleSpinBoxAddItem () is a convenience routine that adds an item to
the list of items which a SimpleSpinBox may display. In order to add an item to
the SimpleSpinBox, a compound string must be created. XmSimpleSpinBox-
AddItem () adds the item to the SimpleSpinBox by manipulating the XmNval-
ues, XmNnumValues, and XmNposition resources of the widget. If the
XmNspinBoxChildType resource of the widget is not XmSTRING, or if the item
is NULL, the procedure simply returns without modifying the array of values.

The SimpleSpinBox widget takes a copy of the supplied item; the programmer is
responsible for freeing the compound string at an appropriate point by calling
XmStringFree ().

Example
The following procedure simply appends an item onto the end of a SimpleSpin-
Box list:

void SimpleSpinBoxAppend (Widget spinb, char *item)
{

XmString xms = XmStringGenerate ((XtPointer)
value,

XmFONTLIST_DEF
AULT_TAG,

XmSimpleSpinBoxAddItem Motif Functions and Macros

340 Motif Reference Manual

XmCHARSET_TEXT,
NULL);

XmSimpleSpinBoxAddItem (spinb, xms, 0);
XmStringFree (xms);

}

See Also
XmSimpleSpinBoxDeletePos (1), XmSimpleSpinBoxSetItem (1),
XmStringFree (1), XmSimpleSpinBox (2).

Motif Functions and Macros XmSimpleSpinBoxDeletePos

Motif Reference Manual 341

Name
XmSimpleSpinBoxDeletePos – delete an item at the specified position from a
SimpleSpinBox.

Synopsis

#include <Xm/SSpinB.h>

void XmSimpleSpinBoxDeletePos (Widget widget, int position)

Inputs
widget Specifies a SimpleSpinBox widget.
position Specifies the position at which to delete an item.

Availability
Motif 2.1 and later.

Description
XmSimpleSpinBoxDeletePos () deletes an item at a given position from a
SimpleSpinBox widget. A value of 1 indicates the first item, 2 is the second item,
and so on. The last item in the list can be specified by passing a position of zero.

Usage
XmSimpleSpinBoxDeletePos () is a convenience function which deletes an
item from the set of values associated with a SimpleSpinBox. The function
directly manipulates the XmNvalues, XmNnumValues, and XmNposition
resources of the widget. If the XmNspinBoxChildType resource of the widget is
not XmSTRING, the function simply returns without modifying the array of val-
ues.

See Also
XmSimpleSpinBoxAddItem (1), XmSimpleSpinBoxSetItem (1),
XmSimpleSpinBox (2).

XmSimpleSpinBoxSetItem Motif Functions and Macros

342 Motif Reference Manual

Name
XmSimpleSpinBoxSetItem – set an item in a SimpleSpinBox.

Synopsis

#include <Xm/SSpinB.h>

void XmSimpleSpinBoxSetItem (Widget widget, XmString item)

Inputs
widget Specifies a SimpleSpinBox widget.
item Specifies the item to set.

Availability
Motif 2.1 and later.

Description
XmSimpleSpinBoxSetItem () makes an item in a SimpleSpinBox widget
the current value.

Usage
XmSimpleSpinBoxSetItem () is a convenience routine that selects one of
the SimpleSpinBox values. The item must exist within the XmNvalues array of
the widget, otherwise a warning message is displayed. The function modifies the
XmNposition resource of the widget if the item is found. No check is performed
to ensure that the XmNspinBoxChildType resource of the SimpleSpinBox is
XmSTRING.

See Also
XmSimpleSpinBoxAddItem (1), XmSimpleSpinBoxDeletePos (1),
XmSimpleSpinBox (2).

Motif Functions and Macros XmSpinBoxValidatePosition

Motif Reference Manual 343

Name
XmSpinBoxValidatePosition – validate the current value of a SpinBox.

Synopsis

#include <Xm/SpinB.h>

int XmSpinBoxValidatePosition (Widget text_field, int *position_value)

Inputs
text_field Specifies a text field child of a SpinBox widget.

Outputs
position_value Returns the position of the current value.

Returns
The status of the validation.

Availability
Motif 2.1 and later.

Description
XmSpinBoxValidatePosition () checks that the text_field child of a Spin-
Box has a valid position value, and places the validated value of the text_field at
the address position_value. If the position is valid, the function returns
XmVALID_VALUE. Otherwise the function returns XmCURRENT_VALUE,
XmMAXIMUM_VALUE, XmMINIMUM_VALUE, or
XmINCREMENT_VALUE, depending upon a comparison of the current posi-
tion and other constraint resources of the text_field.

Usage
XmSpinBoxValidatePosition () can be used to ensure that the user has
entered a valid value into an editable textual child of a SpinBox. If text_field is
NULL, or if text_field does not hold the XmQTaccessTextual trait, or if the
XmNspinBoxChildType of this widget is not XmNUMERIC the function returns
XmCURRENT_VALUE. The current value of the text field is fetched as a float-
ing point number, then converted into an integer using the XmNdecimalPoints
resource: digits after the decimal place are simply truncated. The current value is
subsequently compared against the XmNminimumValue and XmNmaximum-
Value resources: if less than XmNminimumValue, position_value is set to the
value of XmNminimumValue, and the function returns XmMINIMUM_VALUE,
or if the current value is more than XmNmaximumValue, position_value is set to
the value of XmNmaximumValue, and the function returns
XmMAXIMUM_VALUE. Lastly, the function checks that the current value falls
between XmNminimumValue and XmNmaximumValue on an interval specified

XmSpinBoxValidatePosition Motif Functions and Macros

344 Motif Reference Manual

by the XmNincrementValue resource. That is, the current value is a member of
the set:

{
XmNminimumValue,
XmNminimumValue + XmNincrementValue,
XmNminimumValue + (2 * XmNincrementValue),
XmNminimumValue + (3 * XmNincrementValue),
...
XmNminimumValue + (n * XmNincrementValue),
...
XmNmaximumValue

}

If the current value does not fall within the set, the position_value is set to the
nearest item in the set which is not more than the current value, and the function
returns XmINCREMENT_VALUE. If all checks pass, the position_value is set to
the current value, and the function returns XmVALID_VALUE.

The SpinBox does not modify the contents of text_field when performing the val-
idation.

Structures
The returned status has the following values:

XmCURRENT_VALUE XmINCREMENT_VALUE
XmMAXIMUM_VALUE XmMINIMUM_VALUE
XmVALID_VALUE

See Also
XmSpinBox (2).

Motif Functions and Macros XmStringBaseline

Motif Reference Manual 345

Name
XmStringBaseline – get the baseline spacing for a compound string.

Synopsis

Dimension XmStringBaseline (XmFontList fontlist, XmString string)

Inputs
fontlist Specifies the font list for the compound string.
string Specifies the compound string.

Returns
The distance, in pixels, from the top of the character box to the baseline of the
first line of text.

Availability
In Motif 2.0 and later, the XmFontList is obsolete. It is superseded by the
XmRenderTable, to which it has become an alias.

Description
XmStringBaseline () returns the distance, in pixels, from the top of the char-
acter box to the baseline of the first line of text in string. If string is created with
XmStringCreateSimple (), then fontlist must begin with the font associated
with the character set from the current language environment, otherwise the
result is undefined.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringBaseline () provides information that is useful if you need to
render a compound string. Motif widgets render compound string automatically,
so you only need to worry about rendering them yourself if you are writing your
own widget. The routine is also useful if you want to get the dimensions of a
compound string rendered with a particular font.

See Also
XmStringComponentCreate (1), XmStringExtent (1),
XmStringHeight (1), XmStringWidth (1), XmRendition (2).

XmStringByteCompare Motif Functions and Macros

346 Motif Reference Manual

Name
XmStringByteCompare – compare two compound strings byte-by-byte.

Synopsis

Boolean XmStringByteCompare (XmString string1, XmString string2)

Inputs
string1 Specifies a compound string.
string2 Specifies another compound string.

Returns
True if the two compound strings are byte-by-byte identical or False otherwise.

Description
XmStringByteCompare () compares the compound strings string1 and
string2 byte by byte. If the strings are equivalent, it returns True; otherwise it
returns False. If two compound strings are created with XmStringCreateLo-
calized () in the same language environment, using the same character string,
the strings are byte-for-byte equal. Similarly, if two compound strings are created
with XmStringCreate () using the same font list element tag and character
string, the strings are equal.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringByteCompare () is one of a number of routines that allow an appli-
cation to manipulate compound strings as it would regular character strings.

When a compound string is placed into a widget, the string is sometimes con-
verted to an internal format, which provides faster processing but strips out
redundant information. As a result, when an application retrieves the compound
string from the widget by calling XtGetValues (), the returned string does not
necessarily match the original string byte-for-byte. This situation occurs most
often with Label widgets and its subclasses.

See Also
XmStringComponentCreate (1), XmStringCompare (1).

Motif Functions and Macros XmStringByteStreamLength

Motif Reference Manual 347

Name
XmStringByteStreamLength – calculates the length of a byte stream.

Synopsis

unsigned int XmStringByteStreamLength (unsigned char *string)

Inputs
string Specifies a string in byte stream format.

Returns
The length, in bytes, of the string.

Availability
Motif 2.0 and later.

Description
XmStringByteStreamLength () calculates and returns the length of a byte
stream string in bytes, including any header information. The string is presumed
to be a compound string which has been converted into byte stream format.

Usage
Since the returned value includes the size of the stream header, the function
returns a non-zero value even if string is NULL. The function is primarily used as
part of data transfer operations, for example in transferring compound string
tables to and from the clipboard or other widgets.

See Also
XmCvtXmStringToByteStream (1),
XmCvtByteStreamToXmString (1).

XmStringCompare Motif Functions and Macros

348 Motif Reference Manual

Name
XmStringCompare – compare two compound strings.

Synopsis

Boolean XmStringCompare (XmString string1, XmString string2)

Inputs
string1 Specifies a compound string.
string2 Specifies another compound string.

Returns
True if the two compound strings are semantically equivalent or False otherwise.

Description
XmStringCompare () compares the compound strings string1 and string2
semantically. If the strings are equivalent, it returns True; otherwise it returns
False. XmStringCompare () is similar to XmStringByteCompare () but
less restrictive. Two compound string are semantically equivalent if they have the
same text components, font list element tags, directions, and separators.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringCompare () is one of a number of routines that allow an application
to manipulate compound strings as it would regular character strings.

See Also
XmStringcomponentCreate (1), XmStringByteCompare (1).

Motif Functions and Macros XmStringComponentCreate

Motif Reference Manual 349

Name
XmStringComponentCreate – create a compound string consisting of a single
component.

Synopsis

XmString XmStringComponentCreate (XmStringComponentTypetype,
unsigned int length,
XtPointer value)

Inputs
type Specifies the type of component to create.
length Specifies the length, in bytes, of value.
value Specifies the value of the component.

Returns
A new compound string, or NULL.

Availability
Motif 2.0 and later.

Description
XmStringComponentCreate () creates a new compound string consisting of
a component of the type specified by type, which contains the given value.

Usage
If type is not a valid component type, or if length is greater than zero and value is
NULL, then the function returns NULL. Otherwise, the function returns an allo-
cated compound string. It is the responsibility of the programmer to reclaim the
utilized space at an appropriate point by calling XmStringFree ().

Structures
The string component type can have one of the following values:

XmSTRING_COMPONENT_CHARSET
XmSTRING_COMPONENT_TEXT
XmSTRING_COMPONENT_LOCALE_TEXT
XmSTRING_COMPONENT_DIRECTION
XmSTRING_COMPONENT_SEPARATOR
XmSTRING_COMPONENT_TAB
XmSTRING_COMPONENT_END
XmSTRING_COMPONENT_UNKNOWN
XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
XmSTRING_COMPONENT_WIDECHAR_TEXT
XmSTRING_COMPONENT_LAYOUT_PUSH
XmSTRING_COMPONENT_LAYOUT_POP

XmStringComponentCreate Motif Functions and Macros

350 Motif Reference Manual

XmSTRING_COMPONENT_RENDITION_BEGIN
XmSTRING_COMPONENT_RENDITION_END

Example
The following code illustrates basic compound string creation by concatenating
elements from an array of strings:

XmString create_xmstring_from_array (char **array, int count, Boolean tab)
{

XmString txt, sep;
XmString xms = (XmString) 0;
XmStringComponentType sep_type;
int i;

if (tab) {
sep_type = XmSTRING_COMPONENT_TAB;

}
else {

sep_type = XmSTRING_COMPONENT_SEPARATOR;
}

for (i = 0; i < count; i++) {
txt = XmStringComponentCreate

(XmSTRING_COMPONENT_TE
XT, strlen (array[i]), (XtPointer)
array[i]);

xms = XmStringConcatAndFree (xms, txt);

if (i < count) {
/* another item after this... */
sep = XmStringComponentCreate (sep_type, 0, NULL);
xms = XmStringConcatAndFree (xms, sep);

}
}

/* caller must free this */
return xms;

}

See Also
XmStringConcatAndFree (1), XmStringFree (1).

Motif Functions and Macros XmStringConcat

Motif Reference Manual 351

Name
XmStringConcat – concatenate two compound strings.

Synopsis

XmString XmStringConcat (XmString string1, XmString string2)

Inputs
string1 Specifies a compound string.
string2 Specifies another compound string.

Returns
A new compound string.

Description
XmStringConcat () returns the compound string formed by appending string2
to string1, leaving the original compound strings unchanged. Storage for the
result is allocated within the routine and should be freed by calling XmString-
Free (). Management of the allocated memory is the responsibility of the appli-
cation.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringConcat () is one of a number of routines that allow an application to
manipulate compound strings as it would regular character strings.

See Also
XmStringComponentCreate (1), XmStringCopy (1),
XmStringNConcat (1), XmStringNCopy (1).

XmStringConcatAndFree Motif Functions and Macros

352 Motif Reference Manual

Name
XmStringConcatAndFree – concatenate two compound strings.

Synopsis

XmString XmStringConcatAndFree (XmString string1, XmString string2)

Inputs
string1 Specifies a compound string.
string2 Specifies another compound string.

Returns
A new compound string.

Availability
Motif 2.0 and later.

Description
XmStringConcatAndFree () is similar to XmStringConcat () in that each
returns a compound string formed by appending string2 to string1. XmString-
ConcatAndFree () differs from XmStringConcat () by freeing the original
compound strings. Storage for the result is allocated within the routine and
should be freed by calling XmStringFree (). Management of the allocated
memory is the responsibility of the application.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, and locale components.

Example
The following code constructs a simple compound string out of piecemeal sub-
components:

XmString xms;
XmString xms_temp;

xms = XmStringGenerate((XtPointer) “Multiple”,
XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
NULL);

xms_temp = XmStringComponentCreate
(XmSTRING_COMP
ONENT_TAB, 0,
NULL);

xms = XmStringConcatAndFree(xms, xms_temp);

Motif Functions and Macros XmStringConcatAndFree

Motif Reference Manual 353

xms_temp = XmStringGenerate((XtPointer) “Column”,
XmFONTLIST_DEFAULT_TAG
,
XmCHARSET_TEXT,
NULL);

xms = XmStringConcatAndFree (xms, xms_temp);
xms_temp = XmStringComponentCreate

(XmSTRING_COMP
ONENT_TAB, 0,
NULL);

xms = XmStringConcatAndFree (xms, xms_temp);
xms_temp = XmStringGenerate((XtPointer) “Format”,

XmFONTLIST_DEFAULT_TAG
,
XmCHARSET_TEXT,
NULL);

xms = XmStringConcatAndFree (xms, xms_temp);

See Also
XmStringComponentCreate (1), XmStringCopy (1),
XmStringConcat (1), XmStringNConcat (1), XmStringNCopy (1).

XmStringCopy Motif Functions and Macros

354 Motif Reference Manual

Name
XmStringCopy – copy a compound string.

Synopsis

XmString XmStringCopy (XmString string)

Inputs
string Specifies a compound string.

Returns
A new compound string.

Description
XmStringCopy () copies the compound string string and returns the copy, leav-
ing the original compound string unchanged. Storage for the result is allocated by
the routine and should be freed by calling XmStringFree (). Management of
the allocated memory is the responsibility of the application.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringCopy () is one of a number of routines that allow an application to
manipulate compound strings as it would regular character strings.

See Also
XmStringComponentCreate (1), XmStringConcat (1),
XmStringNConcat (1), XmStringNCopy (1).

Motif Functions and Macros XmStringCreate

Motif Reference Manual 355

Name
XmStringCreate – create a compound string.

Synopsis

XmString XmStringCreate (char *text, XmStringCharSet tag)

Inputs
text Specifies the text component of the compound string.
tag Specifies the font list element tag.

Returns
A new compound string.

Description
XmStringCreate () creates a compound string containing two components: a
text component composed of text and the font list element tag specified by tag.
text must be a NULL-terminated string. tag can have the value
XmFONTLIST_DEFAULT_TAG, which identifies a locale-encoded text seg-
ment. Storage for the returned compound string is allocated by the routine and
should be freed by calling XmStringFree (). Management of the allocated
memory is the responsibility of the application.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringCreate () allows you to create a compound string composed of a
font list element tag and a text component.

In Motif 1.1, compound strings use character set identifiers rather than font list
element tags. The character set identifier for a compound string can have the
value XmSTRING_DEFAULT_CHARSET, which takes the character set from
the current language environment, but this value may be removed from future
versions of Motif.

XmStringCreate () creates a compound string with no specified direction.
The default direction may be taken from the XmNstringDirection resource of the
parent of the widget that contains the compound string. If you need a string with
a direction other than the default direction, use XmStringDirectionCre-
ate () to create a direction string and concatenate it with the compound string
containing the text.

XmStringCreate Motif Functions and Macros

356 Motif Reference Manual

Example
The following code fragment shows how to create compound strings using
XmStringCreate ():

Widget toplevel;
XmString s1, s2, s3, text, tmp;
String string1 = "This is a string", string2 = "that contains three", string3 =
"separate fonts.";

s1 = XmStringCreate (string1, "tag1");
s2 = XmStringCreate (string2, "tag2");
s3 = XmStringCreate (string3, XmFONTLIST_DEFAULT_TAG);

tmp = XmStringConcatAndFree (s1, s2);
text = XmStringConcatAndFree (tmp, s3);

XtVaCreateManagedWidget ("widget_name", xmLabelWidgetClass, toplevel,
XmNlabelString, text, NULL);

XmStringFree (text);

See Also
XmStringBaseline (1), XmStringByteCompare (1),
XmStringCompare (1), XmStringConcat (1),
XmStringComponentCreate (1), XmStringCopy (1),
XmStringCreateLocalized (1), XmStringCreateLtoR (1),
XmStringCreateSimple (1), XmStringDirectionCreate (1),
XmStringDraw (1), XmStringDrawImage (1),
XmStringDrawUnderline (1), XmStringEmpty (1),
XmStringExtent (1), XmStringFree (1), XmStringFreeContext (1),
XmStringGetLtoR (1), XmStringGetNextComponent (1),
XmStringGetNextSegment (1), XmStringHasSubstring (1),
XmStringHeight (1), XmStringInitContext (1),
XmStringLength (1), XmStringLineCount (1),
XmStringNConcat (1), XmStringNCopy (1),
XmStringPeekNextComponent (1), XmStringSegmentCreate (1),
XmStringSeparatorCreate (1), XmStringWidth (1).

Motif Functions and Macros XmStringCreateLocalized

Motif Reference Manual 357

Name
XmStringCreateLocalized – create a compound string in the current locale.

Synopsis

XmString XmStringCreateLocalized (String text)

Inputs
text Specifies the text component of the compound string.

Returns
A new compound string.

Availability
Motif 1.2 and later.

Description
XmStringCreateLocalized () creates a compound string containing two
components: a text component composed of text and the font list element tag
XmFONTLIST_DEFAULT_TAG, which identifies a locale-encoded text seg-
ment. text must be a NULL-terminated string. Storage for the returned compound
string is allocated by the routine and should be freed by calling XmString-
Free (). Management of the allocated memory is the responsibility of the appli-
cation.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringCreateLocalized () creates the identical compound string that
would result from calling XmStringCreate with
XmFONTLIST_DEFAULT_TAG as the font list entry tag.

Example
The following program shows how to create a compound string in the current
locale and use it as the label for a PushButton:

#include <Xm/RowColumn.h>
#include <Xm/PushB.h>

String fallbacks[] = { "*fontList:9x15=tag", NULL };

main (int argc, char *argv[])
{

Widget toplevel, rowcol;
XtAppContext app;

XmStringCreateLocalized Motif Functions and Macros

358 Motif Reference Manual

XmString text;

XtSetLanguageProc (NULL, (XtLanguageProc) NULL, NULL);

toplevel = XtVaAppInitialize (&app, argv[0], NULL, 0, &argc, argv, fall-
backs, NULL);
rowcol = XtVaCreateWidget ("rowcol", xmRowColumnWidgetClass,
toplevel, NULL);

text = XmStringCreateLocalized ("Testing, testing...");
XtVaCreateManagedWidget ("pb", xmPushButtonWidgetClass, rowcol,

XmNlabelString, text, NULL);

XmStringFree (text);
XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

See Also
XmStringComponentCreate (1), XmStringCreate (1),
XmStringFree (1).

Motif Functions and Macros XmStringCreateLtoR

Motif Reference Manual 359

Name
XmStringCreateLtoR – create a compound string.

Synopsis

XmString XmStringCreateLtoR (char *text, XmStringCharSet tag)

Inputs
text Specifies the text component of the compound string.
tag Specifies the font list element tag.

Returns
A new compound string.

Availability
In Motif 2.0 and later, this function is obsolete, and is replaced by the function
XmStringGenerate ().

Description
XmStringCreateLtoR () creates a compound string containing two compo-
nents: a text component composed of text and the font list element tag specified
by tag. text must be a NULL-terminated string. In addition, XmStringCre-
ateLtoR () searches for newline characters (\n) in text. Each time a newline is
found, the characters up to the newline are placed into a compound string seg-
ment followed by a separator component. The routine does not add a separator
component to the end of the compound string. The default direction of the string
is left to right and the assumed encoding is 8-bit characters rather than 16-bit
characters.

tag can have the value XmFONTLIST_DEFAULT_TAG, which identifies a
locale-encoded text segment. Storage for the returned compound string is allo-
cated by the routine and should be freed by calling XmStringFree (). Manage-
ment of the allocated memory is the responsibility of the application.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringCreateLtoR () allows you to create a compound string composed
of a font list element tag and a multi-line text component.

XmStringCreateLtoR Motif Functions and Macros

360 Motif Reference Manual

In Motif 1.1, compound strings use character set identifiers rather than font list
element tags. The character set identifier for a compound string can have the
value XmSTRING_DEFAULT_CHARSET, which takes the character set from
the current language environment, but this value may be removed from future
versions of Motif.

See Also
XmStringComponentCreate (1), XmStringCreate (1),
XmStringFree (1). XmStringGenerate (1).

Motif Functions and Macros XmStringCreateSimple

Motif Reference Manual 361

Name
XmStringCreateSimple – create a compound string in the current language envi-
ronment.

Synopsis

XmString XmStringCreateSimple (char *text)

Inputs
text Specifies the text component of the compound string.

Returns
A new compound string.

Availability
In Motif 1.2, XmStringCreateSimple () is obsolete. It has been superseded
by XmStringCreateLocalized ().

Description
XmStringCreateSimple () creates a compound string containing two com-
ponents: a text component composed of text and a character set identifier derived
from the LANG environment variable or from a vendor-specific default, which is
usually ISO8859-1. text must be a NULL-terminated string. Storage for the
returned compound string is allocated by the routine and should be freed by call-
ing XmStringFree (). Management of the allocated memory is the responsibil-
ity of the application.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components. In
Motif 1.1, compound strings use character set identifiers rather than font list ele-
ment tags. XmStringCreateSimple () is retained for compatibility with
Motif 1.1 and should not be used in newer applications.

See Also
XmStringComponentCreate (1), XmStringCreate (1),
XmStringCreateLocalized (1), XmStringFree (1).

XmStringDirectionCreate Motif Functions and Macros

362 Motif Reference Manual

Name
XmStringDirectionCreate – create a compound string containing a direction
component.

Synopsis

XmString XmStringDirectionCreate (XmStringDirection direction)

Inputs
direction Specifies the value of the direction component. Pass either

XmSTRING_DIRECTION_L_TO_R,
XmSTRING_DIRECTION_R_TO_L or
XmSTRING_DIRECTION_DEFAULT.

Returns
A new compound string.

Description
XmStringDirectionCreate () creates a compound string containing a sin-
gle component, which is a direction component with the specified direction
value. If the direction is XmSTRING_DIRECTION_DEFAULT, the widget
where the compound string is rendered controls the direction. Storage for the
returned compound string is allocated by the routine and should be freed by call-
ing XmStringFree (). Management of the allocated memory is the responsibil-
ity of the application.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringDirectionCreate () allows you to create a string direction com-
ponent that can be concatenated with a compound string containing other compo-
nents.

See Also
XmStringComponentCreate (1), XmStringCreate (1),
XmStringFree (1).

Motif Functions and Macros XmStringDirectionToDirection

Motif Reference Manual 363

Name
XmStringDirectionToDirection – converts a string direction to a direction.

Synopsis

XmDirection XmStringDirectionToDirection (XmStringDirection
string_direction)

Inputs
string_direction Specifies the string direction to be converted.

Returns
The converted direction.

Availability
Motif 2.0 and later.

Description
XmStringDirectionToDirection () converts an XmStringDirection
value specified by string_direction into an XmDirection value.

Usage
XmStringDirectionToDirection () converts between the XmStringDi-
rection and XmDirection data types. If string_direction is
XmSTRING_DIRECTION_LEFT_TO_RIGHT, the function returns
XmLEFT_TO_RIGHT. If string_direction is
XmSTRING_DIRECTION_RIGHT_TO_LEFT, the function returns
XmRIGHT_TO_LEFT. Otherwise, the function returns
XmDIRECTION_DEFAULT.

See Also
XmStringDirectionCreate (1).

XmStringDraw Motif Functions and Macros

364 Motif Reference Manual

Name
XmStringDraw – draw a compound string.

Synopsis

void XmStringDraw (Display *display,
Window window,
XmFontList fontlist,
XmString string,
GC gc,
Position x,
Position y,
Dimension width,
unsigned char alignment,
unsigned char layout_direction,
XRectangle *clip)

Inputs
display Specifies a connection to an X server; returned from

XOpenDisplay() or XtDisplay().
window Specifies the window where the string is drawn.
fontlist Specifies the font list for drawing the string.
string Specifies a compound string.
gc Specifies the graphics context that is used to draw the string.
x Specifies the x-coordinate of the rectangle that will contain

the string.
y Specifies the y-coordinate of the rectangle that will contain

the string.
width Specifies the width of the rectangle that will contain the

string.
alignment Specifies the alignment of the string in the rectangle. Pass

one of the following values:
XmALIGNMENT_BEGINNING,
XmALIGNMENT_CENTER, or
XmALIGNMENT_END.

layout_direction Specifies the layout direction of the string segments. Pass
XmSTRING_DIRECTION_L_TO_R,
XmSTRING_DIRECTION_R_TO_L, or
XmSTRING_DIRECTION_DEFAULT.

clip Specifies an clip rectangle that restricts the area where the
string will be drawn.

Motif Functions and Macros XmStringDraw

Motif Reference Manual 365

Availability
In Motif 2.0 and later, the XmFontList is obsolete, and is replaced by the
XmRenderTable, to which it is an alias.

Description
XmStringDraw () draws the compound string specified by string by rendering
the foreground pixels for each character. If string is created with
XmStringCreateSimple (), then fontlist must begin with the font associated
with the character set from the current language environment, otherwise the
result is undefined.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringDraw () provides a means of rendering a compound string that is
analogous to the Xlib string rendering routines. Motif widgets render compound
string automatically, so you only need to worry about rendering them yourself if
you are writing your own widget.

In Motif 1.2 or later, if a segment of a compound string is associated with a font
list entry that is a font set, the font member of the gc is left in an undefined state
by the underlying call to XmbDrawString (). If a segment of the compound
string is not associated with a font set, the gc must contain a valid font member.
The gc must be created using XtAllocateGC (); graphics contexts created with
XtGetGC () are not valid.

See Also
XmStringDrawImage (1), XmStringDrawUnderline (1),
XmRendition (2).

XmStringDrawImage Motif Functions and Macros

366 Motif Reference Manual

Name
XmStringDrawImage – draw a compound string.

Synopsis

void XmStringDrawImage (Display *display,
Window window,
XmFontList fontlist,
XmString string,
GC gc,
Position x,
Position y,
Dimension width,
unsigned char alignment,
unsigned char layout_direction,
XRectangle *clip)

Inputs
display Specifies a connection to an X server; returned from

XOpenDisplay() or XtDisplay().
window Specifies the window where the string is drawn.
fontlist Specifies the font list for drawing the string.
string Specifies a compound string.
gc Specifies the graphics context that is used to draw the

string.
x Specifies the x-coordinate of the rectangle that will con-

tain the string.
y Specifies the y-coordinate of the rectangle that will con-

tain the string.
width Specifies the width of the rectangle that will contain the

string.
alignment Specifies the alignment of the string in the rectangle. Pass

one of the following values:
XmALIGNMENT_BEGINNING,
XmALIGNMENT_CENTER, or
XmALIGNMENT_END.

layout_direction Specifies the layout direction of the string segments. Pass
XmSTRING_DIRECTION_L_TO_R,
XmSTRING_DIRECTION_R_TO_L, or
XmSTRING_DIRECTION_DEFAULT.

clip Specifies an clip rectangle that restricts the area where the
string will be drawn.

Motif Functions and Macros XmStringDrawImage

Motif Reference Manual 367

Availability
In Motif 2.0 and later, the XmFontList is obsolete, and is replaced by the
XmRenderTable, to which it is an alias.

Description
XmStringDrawImage () draws the compound string specified by string by
painting the foreground and background pixels for each character. If string is cre-
ated with XmStringCreateSimple (), then fontlist must begin with the font
associated with the character set from the current language environment, other-
wise the result is undefined.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringDrawImage () provides a means of rendering a compound string
that is analogous to the Xlib string rendering routines. Motif widgets render com-
pound string automatically, so you only need to worry about rendering them
yourself if you are writing your own widget.

In Motif 1.2 or later, if a segment of a compound string is associated with a font
list entry that is a font set, the font member of the gc is left in an undefined state
by the underlying call to XmbDrawImageString (). If a segment of the com-
pound string is not associated with a font set, the gc must contain a valid font
member. The gc must be created using XtAllocateGC (); graphics contexts
created with XtGetGC () are not valid.

See Also
XmStringDraw (1), XmStringDrawUnderline (1), XmRendition (2).

XmStringDrawUnderline Motif Functions and Macros

368 Motif Reference Manual

Name
XmStringDrawUnderline – draw a compound string with an underlined sub-
string.

Synopsis

void XmStringDrawUnderline (Display *display,
Window window,
XmFontList fontlist,
XmString string,
GC gc,
Position x,
Position y,
Dimension width,
unsigned char alignment,
unsigned char layout_direction,
XRectangle *clip,
XmString underline)

Inputs
display Specifies a connection to an X server; returned from

XOpenDisplay() or XtDisplay().
window Specifies the window where the string is drawn.
fontlist Specifies the font list for drawing the string.
string Specifies a compound string.
gc Specifies the graphics context that is used to draw the string.
x Specifies the x-coordinate of the rectangle that will contain

the string.
y Specifies the y-coordinate of the rectangle that will contain

the string.
width Specifies the width of the rectangle that will contain the

string.
alignment Specifies the alignment of the string in the rectangle. Pass

one of the following values:
XmALIGNMENT_BEGINNING,
XmALIGNMENT_CENTER, or
XmALIGNMENT_END.

layout_direction Specifies the layout direction of the string segments. Pass
XmSTRING_DIRECTION_L_TO_R,
XmSTRING_DIRECTION_R_TO_L, or
XmSTRING_DIRECTION_DEFAULT.

clip Specifies an clip rectangle that restricts the area where the
string will be drawn.

Motif Functions and Macros XmStringDrawUnderline

Motif Reference Manual 369

underline Specifies the substring that is to be underlined.

Availability
In Motif 2.0 and later, the XmFontList is obsolete, and is replaced by the
XmRenderTable, to which it is an alias.

Description
XmStringDrawUnderline () is similar to XmStringDraw (), but it also
draws an underline beneath the first matching substring underline that is con-
tained within string. If string is created with XmStringCreateSimple (),
then fontlist must begin with the font associated with the character set from the
current language environment, otherwise the result is undefined.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringDrawUnderline () provides a means of rendering a compound
string and underlining a substring within it. Motif widgets render compound
string automatically, so you only need to worry about rendering them yourself if
you are writing your own widget.

In Motif 1.2 and later, if a segment of a compound string is associated with a font
list entry that is a font set, the font member of the gc is left in an undefined state
by the underlying call to XmbDrawString (). If a segment of the compound
string is not associated with a font set, the gc must contain a valid font member.
The gc must be created using XtAllocateGC (); graphics contexts created with
XtGetGC () are not valid.

See Also
XmStringDraw (1), XmStringDrawImage (1), XmRendition (2).

XmStringEmpty Motif Functions and Macros

370 Motif Reference Manual

Name
XmStringEmpty – determine whether there are text segments in a compound
string.

Synopsis

Boolean XmStringEmpty (XmString string)

Inputs
string Specifies a compound string.

Returns
True if there are no text segments in the string or False otherwise.

Description
XmStringEmpty () returns True if no text segments exist in the specified string
and False otherwise. If the routine is passed NULL, it returns True.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringEmpty () is one of a number of routines that allow an application to
manipulate compound strings as it would regular character strings.

See Also
XmStringLength (1), XmStringLineCount (1).

Motif Functions and Macros XmStringExtent

Motif Reference Manual 371

Name
XmStringExtent – get the smallest rectangle that contains a compound string.

Synopsis

void XmStringExtent (XmFontList fontlist, XmString string, Dimension *width,
Dimension *height)

Inputs
fontlist Specifies the font list for the compound string.
string Specifies the compound string.

Outputs
width Returns the width of the containing rectangle.
height Returns the height of the containing rectangle.

Availability
In Motif 2.0 and later, the XmFontList is obsolete, and is replaced by the
XmRenderTable, to which it is an alias.

Description
XmStringExtent () calculates the size of the smallest rectangle that can
enclose the specified compound string and returns the width and height of the
rectangle in pixels. If string is created with XmStringCreateSimple (), then
fontlist must begin with the font from the character set of the current language
environment, otherwise the result is undefined.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringExtent () provides information that is useful if you need to render a
compound string. Motif widgets render compound string automatically, so you
only need to worry about rendering them yourself if you are writing your own
widget. The routine is also useful if you want to get the dimensions of a com-
pound string rendered with a particular font.

See Also
XmStringBaseline (1), XmStringHeight (1), XmStringWidth (1),
XmRendition (2).

XmStringFree Motif Functions and Macros

372 Motif Reference Manual

Name
XmStringFree – free the memory used by a compound string.

Synopsis

void XmStringFree (XmString string)

Inputs
string Specifies the compound string.

Description
XmStringFree () frees the memory used by the specified compound string.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components. All of
the routines that return a compound string allocate memory for the string. An
application is responsible for this storage; XmStringFree () provides a way to
free the memory.

When XtGetValues () is called for a resource that contains an XmString, a
copy of the compound string is returned. The allocated storage is again the
responsibility of the application and can be freed using XmStringFree ().

Example
The following code fragment shows the use of XmStringFree ():

Widget toplevel, rowcol, pb;
XmString str;
char *text;

rowcol = XtVaCreateWidget ("rowcol", xmRowColumnWidgetClass, toplevel,
NULL);

str = XmStringCreateLocalized ("Testing, testing...");
pb = XtVaCreateManagedWidget ("pb", xmPushButtonWidgetClass, rowcol,

XmNlabelString, str, NULL);
XmStringFree (str);
...
XtVaGetValues (pb, XmNlabelString, &str, NULL);
text = (char *) XmStringUnparse (str, NULL,

XmCHARSET_TEXT,
XmCHARSET_TEXT,

NULL, 0, XmOUTPUT_ALL)1;

Motif Functions and Macros XmStringFree

Motif Reference Manual 373

printf ("PushButton’s label is %s\n", text);
XmStringFree (str);
XtFree (text);

See Also
XmStringCreate (1), XmStringCreateLocalized (1),
XmStringCreateLtoR (1), XmStringCreateSimple (1),
XmStringDirectionCreate (1), XmStringSegmentCreate (1),
XmStringSeparatorCreate (1).

1.Erroneously given as XmStringGetLtoR() in 2nd edition. XmStringGetLtoR() is deprecated from Motif 2.0 onwards.

XmStringFreeContext Motif Functions and Macros

374 Motif Reference Manual

Name
XmStringFreeContext – free a string context.

Synopsis

void XmStringFreeContext (XmStringContext context)

Inputs
context Specifies the string context that is to be freed.

Description
XmStringFreeContext () deallocates the string context structure specified
by context.

Usage
The XmString type is opaque, so if an application needs to perform any process-
ing on a compound string, it has to use special functions to cycle through the
string. These routines use a XmStringContext to maintain an arbitrary position in
a compound string. XmStringFreeContext() is the last of the string context rou-
tines that an application should call when processing a compound string, as it
frees the string context data structure. An application begins by calling
XmStringInitContext() to create a string context and then makes repeated calls to
either XmStringGetNextComponent() or XmStringGetNextSegment() to cycle
through the compound string.

The most common use of these routines is in converting a compound string to a
regular character string when the compound string uses multiple fontlist element
tags or it has a right-to-left orientation.

Example
The following code fragment shows how to convert a compound string into a
character string:

XmString str;
XmStringContext context;
char *text, buf[128], *p;
XmStringCharSet tag;
XmStringDirection direction;
Boolean separator;

XtVaGetValues (widget, XmNlabelString, &str, NULL);

if (!XmStringInitContext (&context, str)) {
XmStringFree (str);
XtWarning ("Can’t convert compound string.");
return;

Motif Functions and Macros XmStringFreeContext

Motif Reference Manual 375

}

/* p keeps a running pointer thru buf as text is read */ p = buf;
while (XmStringGetNextSegment (context, &text, &tag, &direction, &separa-
tor)) {

/* copy text into p and advance to the end of the string */
p += (strlen (strcpy (p, text)));

if (separator == True) {
/* if there’s a separator... */
*p++ = ’\n’;
p = 0; / add newline and null-terminate */

}
XtFree (text); /* we’re done with the text; free it */

}

XmStringFreeContext (context);
XmStringFree (str);

printf ("Compound string:\n%s\n", buf);

See Also
XmStringInitContext (1), XmStringGetNextSegment (1),
XmStringGetNextComponent (1),
XmStringPeekNextComponent (1).

XmStringGenerate Motif Functions and Macros

376 Motif Reference Manual

Name
XmStringGenerate – generate a compound string.

Synopsis

XmString XmStringGenerate (XtPointer text,
XmStringTag tag,
XmTextType type,
XmStringTag rendition)

Inputs
text Specifies the data forming the value of the compound string.
tag Specifies the tag used in creating the compound string.
type Specifies the type of text.
rendition Specifies a rendition tag.

Returns
A new compound string.

Availability
Motif 2.0 and later.

Description
XmStringGenerate () is a convenience function which invokes XmString-
ParseText () using a default parse table in order to convert text into a com-
pound string. The default parse table maps tab characters to
XmSTRING_COMPONENT_TAB, and newline characters to
XmSTRING_COMPONENT_SEPARATOR components of the compound
string. If a rendition tag is specified, the resulting compound string is placed
within matching components of type XmSTRING_RENDITION_BEGIN and
XmSTRING_RENDITION_END which contain the rendition. The type of the
input text is specified by type, and is one of XmCHARSET_TEXT,
XmWIDECHAR_TEXT, or XmMULTIBYTE_TEXT. type also specifies the
type of the tag which is used in creating the compound string. If tag is NULL
and the input text is of type XmCHARSET_TEXT, then the compound string is
created with the tag set to XmFONTLIST_DEFAULT_TAG. If tag is NULL and
the input text is of type XmWIDECHAR_TEXT or XmMULTIBYTE_TEXT,
then the tag used is constructed from the value of
_MOTIF_DEFAULT_LOCALE.

Usage
The function returns allocated storage, and it is the responsibility of the program-
mer to reclaim the space by calling XmStringFree () at an appropriate point.

Motif Functions and Macros XmStringGenerate

Motif Reference Manual 377

In Motif 2.0 and later, in common with other objects, the compound string is
manipulated as a reference counted data structure. XmString functions prior to
Motif 2.0 handle ASN.1 strings, and the data structures are only used internally.

Example
The following code converts data taken from a Text widget into a compound
string:

XmString convert_text (Widget text)
{

/* ignoring widechar text values */
char *value = XmTextGetString (text);
XmString xms = (XmString) 0;

if (value) {
xms = XmStringGenerate ((XtPointer) value,

XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT, NULL);

XtFree (value);
}
/* caller must free this */
return xms;

}

See Also
XmStringFree(1), XmStringPutRendition (1), XmRendition (2).

XmStringGetLtoR Motif Functions and Macros

378 Motif Reference Manual

Name
XmStringGetLtoR – get a text segment from a compound string.

Synopsis

Boolean XmStringGetLtoR (XmString string, XmStringCharSet tag, char **text)

Inputs
string Specifies the compound string.
tag Specifies the font list element tag.

Outputs
text Returns the NULL-terminated character string.

Returns
True if there is a matching text segment or False otherwise.

Availability
In Motif 2.0 and later, the function is obsolete, and is replaced by XmStrin-
gUnparse ().

Description
XmStringGetLtoR () looks for a text segment in string that matches the font
list element tag specified by tag. tag can have the value
XmFONTLIST_DEFAULT_TAG, which identifies a locale-encoded text seg-
ment. The routine returns True if a text segment is found. text returns a pointer to
the NULL-terminated character string that contains the text from the segment.
Storage for the returned character string is allocated by the routine and should be
freed by calling XtFree (). Management of the allocated memory is the respon-
sibility of the application.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringGetLtoR () allows you to retrieve a character string from a com-
pound string, so that you can use the string with the standard C string manipula-
tion functions.

In Motif 1.1, compound strings use character set identifiers rather than font list
element tags. The character set identifier for a compound string can have the
value XmSTRING_DEFAULT_CHARSET, which takes the character set from
the current language environment, but this value may be removed from future
versions of Motif.

Motif Functions and Macros XmStringGetLtoR

Motif Reference Manual 379

XmStringGetLtoR () gets the first text segment from the compound string that
is associated with the specified tag. If the string contains multiple font list ele-
ment tags, you must cycle through the compound string and retrieve each seg-
ment individually in order to retrieve the entire string. The routine only gets
strings with a left-to-right orientation.

See Also
XmStringCreate (1), XmStringCreateLtoR (1),
XmStringGetNextSegment (1), XmStringUnparse (1).

XmStringGetNextComponent Motif Functions and Macros

380 Motif Reference Manual

Name
XmStringGetNextComponent – retrieves information about the next compound
string
component.

Synopsis

XmStringComponentType
XmStringGetNextComponent (XmStringContext context,

char **text,
XmStringCharSet *tag,
XmStringDirection *direction,
XmStringComponentType *unknown_tag,
unsigned short

*unknown_length,
unsigned char

** unknown_value)

Inputs
context Specifies the string context for the compound string.

Outputs
text Returns the NULL-terminated string for a text component.
tag Returns the font list element tag for a tag component.
direction Returns the string direction for a direction component.
unknown_tag Returns the tag of an unknown component.
unknown_length Returns the length of an unknown component.
unknown_value Returns the value of an unknown component.

Returns
The type of the compound string component. The type is one of the values
described below.

Availability
In Motif 2.0 and later, XmStringGetNextComponent () is obsolete, and is
replaced by XmStringGetNextTriple ().

Description
XmStringGetNextComponent () reads the next component in the compound
string specified by context and returns the type of component found. The return
value indicates which, if any, of the output parameters are valid. Storage for the
returned values is allocated by the routine and must be freed by the application
using XtFree ().

For the type XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG, the
font list element tag is returned in tag. In Motif 2.0 and later, the type

Motif Functions and Macros XmStringGetNextComponent

Motif Reference Manual 381

XmSTRING_COMPONENT_CHARSET is obsolete and is retained for compat-
ibility with Motif 1.2. The type indicates that the character set identifier is
returned in tag. XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
replaces XmSTRING_COMPONENT_CHARSET.

For the string component types XmSTRING_COMPONENT_TEXT and
XmSTRING_COMPONENT_LOCALE_TEXT, the text string is returned in
text. For XmSTRING_COMPONENT_DIRECTION, the direction is returned in
direction. Only one of tag, text, and direction can be valid at any one time.

The type XmSTRING_COMPONENT_SEPARATOR indicates that the next
component is a separator, while XmSTRING_COMPONENT_END specifies the
end of the compound string. For type
XmSTRING_COMPONENT_UNKNOWN, the tag, length, and value of the
unknown component are returned in the corresponding arguments.

Usage
The XmString type is opaque, so if an application needs to perform any process-
ing on a compound string, it has to use special functions to cycle through the
string. These routines use a XmStringContext to maintain an arbitrary position in
a compound string. XmStringInitContext () is called first to create the
string context. XmStringGetNextComponent () cycles through the compo-
nents in the compound string. When an application is done processing the string,
it should call XmStringFreeContext () with the same context to free the
allocated data.

Structures
A XmStringComponentType can have one of the following values:

XmSTRING_COMPONENT_CHARSET
XmSTRING_COMPONENT_TEXT
XmSTRING_COMPONENT_LOCALE_TEXT
XmSTRING_COMPONENT_DIRECTION
XmSTRING_COMPONENT_SEPARATOR
XmSTRING_COMPONENT_END
XmSTRING_COMPONENT_UNKNOWN

In Motif 2.0 and later, the following additional types are defined:

XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
XmSTRING_COMPONENT_WIDECHAR_TEXT
XmSTRING_COMPONENT_LAYOUT_PUSH
XmSTRING_COMPONENT_LAYOUT_POP
XmSTRING_COMPONENT_RENDITION_BEGIN
XmSTRING_COMPONENT_RENDITION_END

XmStringGetNextComponent Motif Functions and Macros

382 Motif Reference Manual

See Also
XmStringFreeContext (1), XmStringGetNextTriple (1),
XmStringGetNextSegment (1), XmStringInitContext (1),
XmStringPeekNextComponent (1).

Motif Functions and Macros XmStringGetNextSegment

Motif Reference Manual 383

Name
XmStringGetNextSegment – retrieves information about the next compound
string segment.

Synopsis

Boolean XmStringGetNextSegment (XmStringContextcontext,
char **text,
XmStringCharSet *charset,
XmStringDirection *direction,
Boolean *separator)

Inputs
context Specifies the string context for the compound string.

Outputs
text Returns the NULL-terminated string for the segment.
tag Returns the font list element tag for the segment.
direction Returns the string direction for the segment.
separator Returns whether or not the next component is a separator.

Returns
True if a valid segment is located or False otherwise.

Availability
In Motif 2.0 and later, the function is obsolete, and is replaced by
XmStringGetNextTriple ().

Description
XmStringGetNextSegment () retrieves the text string, font list element tag,
and direction for the next segment of the compound string specified by context.
The routine returns True if a valid segment is retrieved; otherwise, it returns
False. Storage for the returned text is allocated by the routine and must be freed
by the application using XtFree ().

Usage
The XmString type is opaque, so if an application needs to perform any process-
ing on a compound string, it has to use special functions to cycle through the
string. These routines use a XmStringContext to maintain an arbitrary position in
a compound string. XmStringInitContext () is called first to create the
string context. XmStringGetNextSegment () cycles through the segments
in the compound string. The Boolean separator can be used to determine whether
or not the next component in the compound string is a separator. When an appli-
cation is done processing the string, it should call XmStringFreeContext ()
with the same context to free the allocated data.

XmStringGetNextSegment Motif Functions and Macros

384 Motif Reference Manual

The most common use of these routines is in converting a compound string to a
regular character string when the compound string uses multiple fontlist element
tags or it has a right-to-left orientation.

See Also
XmStringFreeContext (1), XmStringGetLtoR (1),
XmStringGetNextComponent (1), XmStringGetNextTriple (1),
XmStringInitContext (1), XmStringPeekNextComponent (1),
XmStringPeekNextTriple (1).

Motif Functions and Macros XmStringGetNextTriple

Motif Reference Manual 385

Name
XmStringGetNextTriple – retrieve information about the next component.

Synopsis

XmStringComponentType
XmStringGetNextTriple (XmStringContext context, unsigned int *length,
XtPointer *value)

Inputs
context Specifies the string context for the compound string.

Outputs
length Returns the length of the value of the component.
value Returns the value of the component.

Returns
The type of the component.

Availability
Motif 2.0 and later.

Description

XmStringGetNextTriple () is a convenience function which returns the type,
length, and value of the next component within the compound string associated with
context. The context is an opaque structure used for walking along compound strings
one component at a time, and is initialized through a call to
XmStringInitContext ().

Usage
If either of value or length are NULL pointers, the function immediately returns
XmSTRING_COMPONENT_END without fetching the next string segment.
Otherwise, value is initially set to point to NULL, and length is reset to zero, and
the next segment is processed. The function allocates memory for the returned
value, which should be reclaimed at an appropriate point by calling XtFree ().

Structures
An XmStringComponentType can have one of the following values:

XmSTRING_COMPONENT_CHARSET
XmSTRING_COMPONENT_TEXT
XmSTRING_COMPONENT_LOCALE_TEXT
XmSTRING_COMPONENT_DIRECTION
XmSTRING_COMPONENT_SEPARATOR
XmSTRING_COMPONENT_END
XmSTRING_COMPONENT_UNKNOWN

XmStringGetNextTriple Motif Functions and Macros

386 Motif Reference Manual

In Motif 2.0 and later, the following additional types are defined:

XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
XmSTRING_COMPONENT_WIDECHAR_TEXT
XmSTRING_COMPONENT_LAYOUT_PUSH
XmSTRING_COMPONENT_LAYOUT_POP
XmSTRING_COMPONENT_RENDITION_BEGIN
XmSTRING_COMPONENT_RENDITION_END

Example
The following code fragment shows how to convert a compound string into a
character string:

XmString str;
XmStringContext context;
char *text, buf[128], *p;
XmStringComponentType type;
unsigned int len;

/* Fetch the Compound String from somewhere */
XtVaGetValues (widget, XmNlabelString, &str, NULL);

if (!XmStringInitContext (&context, str)) {
XmStringFree (str);
XtWarning ("Can’t convert compound string.");
return;

}

/* p keeps a running pointer through buf as text is read */
p = buf;

/* Ignoring locale or widechar text for simplicity */
while ((type = XmStringGetNextTriple (context, &len, &text)) !=
XmSTRING_COMPONENT_END)
{

switch (type) {
case XmSTRING_COMPONENT_TAB :

*p++ = ’\t’;
break;

case XmSTRING_COMPONENT_SEPARATOR :
*p++ = ’\n’;
*p = ’\0’;
break;

case XmSTRING_COMPONENT_TEXT :
(void) strcpy (p, text);

Motif Functions and Macros XmStringGetNextTriple

Motif Reference Manual 387

p += len;
break;

}
XtFree (text);

}

XmStringFreeContext (context);
XmStringFree (str);
printf ("Compound string:\n%s\n", buf);

See Also
XmStringFreeContext (1), XmStringGetNextComponent (1),
XmStringGetNextSegment (1), XmStringInitContext (1),
XmStringPeekNextComponent (1), XmStringPeekNextTriple (1).

XmStringHasSubstring Motif Functions and Macros

388 Motif Reference Manual

Name
XmStringHasSubstring – determine whether a compound string contains a sub-
string.

Synopsis

Boolean XmStringHasSubstring (XmString string, XmString substring)

Inputs
string Specifies the compound string.
substring Specifies the substring.

Returns
True if string contains substring or False otherwise.

Description
XmStringHasSubstring () determines whether the compound string sub-
string is contained within any single segment of the compound string string. sub-
string must have only a single segment. The routine returns True if the string
contains the substring and False otherwise.

If two compound strings are created with XmStringCreateLocalized () in
the same language environment and they satisfy the above condition,
XmStringHasSubstring () returns True. If two strings are created with
XmStringCreate () using the same character set and they satisfy the condi-
tion, the routine also returns True. When comparing a compound string created
by XmStringCreate () with a compound string created by XmStringCrea-
teSimple () the result is undefined.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringHasSubstring () is one of a number of routines that allow an
application to manipulate compound strings as it would regular character strings.

See Also
XmStringEmpty (1), XmStringLength (1), XmStringLineCount (1).

Motif Functions and Macros XmStringHeight

Motif Reference Manual 389

Name
XmStringHeight – get the line height of a compound string.

Synopsis

Dimension XmStringHeight (XmFontList fontlist, XmString string)

Inputs
fontlist Specifies the font list for the compound string.
string Specifies the compound string.

Returns
The height of the compound string.

Availability
In Motif 2.0 and later, the XmFontList is obsolete, and is replaced by the
XmRenderTable, to which it is an alias.

Description
XmStringHeight () returns the height, in pixels, of the specified compound
string. If string contains multiple lines, where a separator component delimits
each line, then the total height of all of the lines is returned. If string is created
with XmStringCreateSimple (), then fontlist must begin with the font from
the character set of the current language environment, otherwise the result is
undefined.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringHeight () provides information that is useful if you need to render a
compound string. Motif widgets render compound string automatically, so you
only need to worry about rendering them yourself if you are writing your own
widget. The routine is also useful if you want to get the dimensions of a com-
pound string rendered with a particular font.

See Also
XmStringBaseline (1), XmStringExtent (1), XmStringWidth (1),
XmRendition (2).

XmStringInitContext Motif Functions and Macros

390 Motif Reference Manual

Name
XmStringInitContext – create a string context.

Synopsis

Boolean XmStringInitContext (XmStringContext *context, XmString string)

Inputs
string Specifies the compound string.

Outputs
context Returns the allocated string context structure.

Returns
True if the string context is allocated or False otherwise.

Description
XmStringInitContext () creates a string context for the specified com-
pound string. This string context allows an application to access the contents of a
compound string.

Usage
The XmString type is opaque, so if an application needs to perform any process-
ing on a compound string, it has to use special functions to cycle through the
string. These routines use a XmStringContext to maintain an arbitrary position in
a compound string. XmStringInitContext () is the first of the three string
context routines that an application should call when processing a compound
string, as it creates the string context data structure. The context is passed to
XmStringGetNextTriple () to cycle through the compound string. When an
application is done processing the string, it should call XmStringFreeCon-
text () with the same context to free the allocated data.

The most common use of these routines is in converting a compound string to a
regular character string when the compound string uses multiple fontlist element
tags or it has a right-to-left orientation.

Example
The following code fragment shows how to convert a compound string into a
character string:

XmString str;
XmStringContext context;
char *text, buf[128], *p;
XmStringComponentType type;
unsigned int len;

/* Fetch the Compound String from somewhere */

Motif Functions and Macros XmStringInitContext

Motif Reference Manual 391

XtVaGetValues (widget, XmNlabelString, &str, NULL);

if (!XmStringInitContext (&context, str)) {
XmStringFree (str);
XtWarning ("Can’t convert compound string.");
return;

}

/* p keeps a running pointer through buf as text is read */
p = buf;

/* Ignoring locale or widechar text for simplicity */
while ((type = XmStringGetNextTriple (context, &len, &text)) !=
XmSTRING_COMPONENT_END)
{

switch (type) {
case XmSTRING_COMPONENT_TAB :

*p++ = ’\t’;
break;

case XmSTRING_COMPONENT_SEPARATOR :
*p++ = ’\n’;
*p = ’\0’;
break;

case XmSTRING_COMPONENT_TEXT :
(void) strcpy (p, text);
p += len;
break;

}

XtFree (text);
}

XmStringFreeContext (context);
XmStringFree (str);
printf ("Compound string:\n%s\n", buf);

See Also
XmStringFreeContext (1), XmStringGetNextComponent (1),
XmStringGetNextTriple (1), XmStringGetNextSegment (1),
XmStringPeekNextComponent (1), XmStringPeekNextTriple (1).

XmStringIsVoid Motif Functions and Macros

392 Motif Reference Manual

Name
XmStringIsVoid – determine whether there are valid segments in a compound
string.

Synopsis

Boolean XmStringIsVoid (XmString string)

Inputs
string Specifies a compound string.

Returns
True if there are no segments in the string or False otherwise.

Availability
XmStringIsVoid () is available from Motif 2.0 or later.

Description
XmStringIsVoid () checks to see whether there any text, tab, or separator seg-
ments within the specified string. If the routine is passed NULL, it returns True.
If the string contains text, tab or separator components, it returns False. Other-
wise, it returns True.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, and locale components.

See Also
XmStringEmpty (1), XmStringLength (1), XmStringLineCount (1).

Motif Functions and Macros XmStringLength

Motif Reference Manual 393

Name
XmStringLength – get the length of a compound string.

Synopsis

int XmStringLength (XmString string)

Inputs
string Specifies the compound string.

Returns
The length of the compound string.

Availability
In Motif 2.0 and later, the function is obsolete, and is replaced by XmString-
ByteStreamLength ().

Description
XmStringLength () returns the length, in bytes, of the specified compound
string. The calculation includes the length of all tags, direction indicators, and
separators. The routine returns 0 (zero) if the structure of string is invalid.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringLength () is one of a number of routines that allow an application to
manipulate compound strings as it would regular character strings. However, this
routine cannot be used to get the length of the text represented by the compound
string; it is not the same as strlen().

See Also
XmStringByteStreamLength (1), XmStringEmpty (1),
XmStringLineCount (1).

XmStringLineCount Motif Functions and Macros

394 Motif Reference Manual

Name
XmStringLineCount – get the number of lines in a compound string.

Synopsis

int XmStringLineCount (XmString string)

Inputs
string Specifies the compound string.

Returns
The number of lines in the compound string.

Description
XmStringLineCount() returns the number of lines in the specified compound
string. The line count is determined by adding 1 to the number of separators in
the string.

Usage
In Motif 1.2 and later, a compound string is composed of one or more segments,
where each segment can contain a font list element tag, a string direction, and a
text component. In Motif 2.0 and later, the set of available segments is extended
to include, amongst other items, tab, rendition, direction, locale components.
XmStringLineCount () provides information that is useful in laying out com-
ponents that display compound strings.

Example
The following routine shows how to read the contents of a file into a buffer and
then convert the buffer into a compound string. The routine also returns the
number of lines in the compound string:

XmString ConvertFileToXmString (char *filename, int *lines)
{

struct stat statb;
int fd, len, lines;
char *text;
XmString str;

*lines = 0;

if ((fd = open (filename, O_RDONLY)) < 0) {
XtWarning ("internal error -- can’t open file");
return (XmString) 0;

}

if ((fstat (fd, &statb) == -1) || !(text = XtMalloc ((len = statb.st_size) + 1))) {
XtWarning("internal error -- can’t show text");

Motif Functions and Macros XmStringLineCount

Motif Reference Manual 395

(void) close (fd);
return (XmString) 0;

}

(void) read (fd, text, len);
text[len] = ‘\0’;
str = XmStringGenerate ((XtPointer) text, XmFONTLIST_DEFAULT_TAG,

XmCHARSET_TEXT, NULL);1

XtFree (text);
(void) close (fd);
*lines = XmStringLineCount (str);
return str;

}

See Also
XmStringEmpty (1), XmStringLength (1).

1.Erroneously given as XmStringCreateLtoR() in 2nd edition. XmStringCreateLtoR() is deprecated from Motif 2.0 on-
wards.

XmStringNConcat Motif Functions and Macros

396 Motif Reference Manual

Name
XmStringNConcat – concatenate a specified portion of a compound string to
another compound string.

Synopsis

XmString XmStringNConcat (XmString string1, XmString string2, int
num_bytes)

Inputs
string1 Specifies a compound string.
string2 Specifies the compound string that is appended.
num_bytes Specifies the number of bytes of string2 that are appended.

Returns
A new compound string.

Availability
In Motif 2.0 and later, the function is obsolete, and is only maintained for back-
wards compatibility.

Description
XmStringNConcat () returns the compound string formed by appending bytes
from string2 to the end of string1, leaving the original compound strings
unchanged. num_bytes of string are appended, which includes tags, directional
indicators, and separators. Storage for the result is allocated within this routine
and should be freed by calling XmStringFree (). Management of the allocated
memory is the responsibility of the application.

If num_bytes is less than the length of string2, the resulting string could be
invalid. In this case, XmStringNConcat () appends as many bytes as possible,
up to a maximum of num_bytes, to ensure the creation of a valid string.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringNConcat () is one of a number of routines that allow an application
to manipulate compound strings as it would regular character strings.

See Also
XmStringConcat (1), XmStringCopy (1), XmStringNCopy (1).

Motif Functions and Macros XmStringNCopy

Motif Reference Manual 397

Name
XmStringNCopy – copy a specified portion of a compound string.

Synopsis

XmString XmStringNCopy (XmString string, int num_bytes)

Inputs
string Specifies a compound string.
num_bytes Specifies the number of bytes of string that are copied.

Returns
A new compound string.

Availability
In Motif 2.0 and later, the function is obsolete, and is only maintained for back-
wards compatibility.

Description
XmStringNCopy () copies num_bytes bytes from the compound string string
and returns the resulting copy, leaving the original string unchanged. The number
of bytes copied includes tags, directional indicators, and separators. Storage for
the result is allocated within this routine and should be freed by calling
XmStringFree (). Management of the allocated memory is the responsibility
of the application.

If num_bytes is less than the length of string, the resulting string could be invalid.
In this case, XmStringNCopy () copies as many bytes as possible, up to a max-
imum of num_bytes to ensure the creation of a valid string.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringNCopy () is one of a number of routines that allow an application to
manipulate compound strings as it would regular character strings.

See Also
XmStringConcat (1), XmStringCopy (1), XmStringNConcat (1).

XmStringParseText Motif Functions and Macros

398 Motif Reference Manual

Name
XmStringParseText – convert a string to a compound string.

Synopsis

XmString XmStringParseText (XtPointer text,
XtPointer *text_end,
XmStringTag tag,
XmTextType type,
XmParseTable parse_table,
Cardinal parse_count,
XtPointer client_data)

Inputs
text Specifies a string to be converted.
text_end Specifies a pointer into text where parsing is to finish.
tag Specifies the tag to be used in creating the compound string.
type Specifies the type of the text and the tag.
parse_table Specifies a table used for matching characters in the input text.
parse_count Specifies the number of items in the parse_table.
client_data Specifies application data to pass to any parse procedures
within the parse_table.

Outputs
text_end Returns a location within the text where parsing finished.

Returns
The converted compound string.

Availability
Motif 2.0 and later.

Description
XmStringParseText () converts the string specified by text into a compound
string. A parse_table can be specified which consists of a set of mappings to con-
trol the conversion process. The contents of the string to be converted can be in
one of a number of formats: simple characters, multibyte, or wide characters. The
type parameter specifies the type of the input text, and is also used to interpret the
tag which is used in creating text components within the returned compound
string. text_end is both an input and an output parameter: as an input parameter, it
specifies a location within text where parsing is to terminate; as an output param-
eter, it points to a location within text where parsing actually finished. Supplying
NULL for text_end is interpreted to mean that parsing should stop at the occur-
rence of a null byte.

Motif Functions and Macros XmStringParseText

Motif Reference Manual 399

Usage
If type is XmCHARSET_TEXT, the input text is assumed to consist of a simple
array of characters, and the tag is interpreted as the name of a charset to use in
constructing the returned compound string. If tag is NULL, a default charset
using XmFONTLIST_DEFAULT_TAG is used.

If the type is XmMULTIBYTE_TEXT or XmWIDECHAR_TEXT, the input text
is assumed to be in multibyte or widechar text format respectively, and the tag is
interpreted as a locale specifier. The tag should either be specified as NULL or
_MOTIF_DEFAULT_LOCALE: if NULL, a locale component with a value of
_MOTIF_DEFAULT_LOCALE is created in any case.

A parse table can be specified for controlling the conversion process. A parse
table consists of a set of XmParseMapping objects, which have match pattern,
substitution pattern and parse procedure components. The head of the input
stream is compared against elements within the parse table, and if there is a cor-
respondence between the input and a parse mapping match pattern, the parse
mapping object is used to construct the output compound string at that point in
the conversion, either by directly inserting the substitution pattern, or by invoking
the parse procedure of the mapping object. The parse mapping specifies how the
input pointer is advanced, and the process is repeated, comparing the head of the
input against the parse table. At the end of the conversion, the text_end parameter
is set to point to the location within the input text where parsing actually termi-
nated. Depending upon the way in which the parse table interacts with the input
text, the returned text_end may not be the same location which the programmer
specified if more or less of the input text is consumed.

An implicit automatic conversion takes place where there is no matching parse
mapping object for the head of the input. In other words, it is not necessary to
provide a parse table to convert everything: parse tables are only required where
specific inputs need to be handled specially. XmStringParseText () uses an
internal parse mapping which handles changes in string direction in the absence
of a supplied mapping for the task. A parse mapping handles string direction
changes if the XmNpattern resource of the object is equal to
XmDIRECTION_CHANGE.

XmStringParseText () allocates memory for the returned compound string.
It is the responsibility of the programmer to reclaim the space through a call to
XmStringFree () at an appropriate point.

XmStringParseText Motif Functions and Macros

400 Motif Reference Manual

Example
The following specimen code converts an input string containing tab and newline
characters into a compound string:

XmParseTable parse_table = (XmParseTable) XtCalloc (2, sizeof
(XmParseMapping));
XmString tmp;
XmString output;
Arg av[4];
Cardinal ac;

/* map \t to a tab component */
tmp = XmStringComponentCreate (XmSTRING_COMPONENT_TAB, 0,
NULL);
ac = 0;
XtSetArg (av[ac], XmNincludeStatus, XmINSERT); ac++;
XtSetArg (av[ac], XmNsubstitute, tmp); ac++;
XtSetArg (av[ac], XmNpattern, "\t"); ac++;
parse_table[0] = XmParseMappingCreate (av, ac);
XmStringFree (tmp);

/* map \n to a separator component */
tmp = XmStringSeparatorCreate();
ac = 0;
XtSetArg (av[ac], XmNincludeStatus, XmINSERT); ac++;
XtSetArg (av[ac], XmNsubstitute, tmp); ac++;
XtSetArg (av[ac], XmNpattern, "\n"); ac++;
parse_table[1] = XmParseMappingCreate (av, ac);
XmStringFree (tmp);

/* convert the (unspecified) input string into a compound string *
 output = XmStringParseText (input, NULL, NULL, XmCHARSET_TEXT,
parse_table, 2, NULL);
XmParseTableFree (parse_table);

See Also
XmStringFree(1), XmStringGenerate (1), XmStringUnparse (1).
XmParseMapping (2).

Motif Functions and Macros XmStringPeekNextComponent

Motif Reference Manual 401

Name
XmStringPeekNextComponent – returns the type of the next compound string
component.

Synopsis

XmStringComponentType XmStringPeekNextComponent (XmStringContext
context)

Inputs
context Specifies the string context for the compound string.

Returns
The type of the compound string component. The type is one of the values
described below.

Availability
In Motif 2.0 and later, the function is obsolete, and XmStringPeekNextTri-
ple () is preferred.

Description
XmStringPeekNextComponent () checks the next component in the com-
pound string specified by context and returns the type of the component found.
The routine shows what would be returned by a call to XmStringGetNext-
Component (), without actually updating context.

The returned type XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
indicates that the next component is a font list element tag. In Motif 1.2, the type
XmSTRING_COMPONENT_-CHARSET is obsolete and is retained for compat-
ibility with Motif 1.1. The type indicates that the next component is a character
set identifier. XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
replaces XmSTRING_COMPONENT_CHARSET.

The types XmSTRING_COMPONENT_TEXT and
XmSTRING_COMPONENT_LOCALE_TEXT specify that the next component
is text. XmSTRING_COMPONENT_DIRECTION indicates that the next com-
ponent is a string direction component.

The type XmSTRING_COMPONENT_SEPARATOR indicates that the next
component is a separator, while XmSTRING_COMPONENT_END specifies the
end of the compound string. The type
XmSTRING_COMPONENT_UNKNOWN, indicates that the type of the next
component is unknown.

XmStringPeekNextComponent Motif Functions and Macros

402 Motif Reference Manual

Usage
The XmString type is opaque, so if an application needs to perform any process-
ing on a compound string, it has to use special functions to cycle through the
string. These routines use a XmStringContext to maintain an arbitrary position in
a compound string. XmStringInitContext () is called first to create the
string context. XmStringPeekNextComponent () peeks at the next compo-
nent in the compound string without cycling through the component. When an
application is done processing the string, it should call XmStringFreeCon-
text () with the same context to free the allocated data.

Structures
A XmStringComponentType can have one of the following values:

XmSTRING_COMPONENT_CHARSET
XmSTRING_COMPONENT_TEXT
XmSTRING_COMPONENT_LOCALE_TEXT
XmSTRING_COMPONENT_DIRECTION
XmSTRING_COMPONENT_SEPARATOR
XmSTRING_COMPONENT_END
XmSTRING_COMPONENT_UNKNOWN

In Motif 2.0 and later, the following additional types are defined:

XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
XmSTRING_COMPONENT_WIDECHAR_TEXT
XmSTRING_COMPONENT_LAYOUT_PUSH
XmSTRING_COMPONENT_LAYOUT_POP
XmSTRING_COMPONENT_RENDITION_BEGIN
XmSTRING_COMPONENT_RENDITION_END

See Also
XmStringFreeContext (1), XmStringGetNextComponent (1),
XmStringGetNextSegment (1), XmStringPeekNextTriple (1),
XmStringInitContext (1).

Motif Functions and Macros XmStringPeekNextTriple

Motif Reference Manual 403

Name
XmStringPeekNextTriple – retrieve the type of the next component.

Synopsis

XmStringComponentType XmStringPeekNextTriple (XmStringContext context)

Inputs
context Specifies the string context for the compound string.

Returns
The type of the next component.

Availability
Motif 2.0 and later.

Description
XmStringPeekNextTriple () returns the type of the next component with-
out updating the compound string context.

Usage
An XmStringContext is an opaque data type which is used for walking along a
compound string one component at a time. It is initialized by a call to XmString-
InitContext. Each successive call to XmStringGetNextComponent () adjusts
the string context to point to the next component. XmStringPeekNextTri-
ple () returns the type of the next component without adjusting the context, and
thus it can be used to look ahead into the compound string.

Structures
The string component type can have one of the following values:

XmSTRING_COMPONENT_CHARSET
XmSTRING_COMPONENT_TEXT
XmSTRING_COMPONENT_LOCALE_TEXT
XmSTRING_COMPONENT_DIRECTION
XmSTRING_COMPONENT_SEPARATOR
XmSTRING_COMPONENT_END
XmSTRING_COMPONENT_UNKNOWN
XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
XmSTRING_COMPONENT_WIDECHAR_TEXT
XmSTRING_COMPONENT_LAYOUT_PUSH
XmSTRING_COMPONENT_LAYOUT_POP
XmSTRING_COMPONENT_RENDITION_BEGIN
XmSTRING_COMPONENT_RENDITION_END

XmStringPeekNextTriple Motif Functions and Macros

404 Motif Reference Manual

See Also
XmStringFreeContext (1), XmStringGetNextComponent (1),
XmStringGetNextSegment (1), XmStringInitContext (1),
XmStringPeekNextComponent (1).

Motif Functions and Macros XmStringPutRendition

Motif Reference Manual 405

Name
XmStringPutRendition – add rendition components to a compound string.

Synopsis

XmString XmStringPutRendition (XmString string, XmStringTag rendition)

Inputs
string Specifies a compound string which requires rendition components.
rendition Specifies a tag used to create the rendition components.

Returns
A newly allocated compound string with rendition components.

Availability
Motif 2.0 and later.

Description
XmStringPutRendition () is a convenience function which places
XmSTRING_COMPONENT_RENDITION_BEGIN and
XmSTRING_COMPONENT_RENDITION_END components containing ren-
dition around a compound string. The string is not modified by the procedure,
which takes a copy.

Usage
XmStringPutRendition () allocates space for the returned compound
string, and it is the responsibility of the programmer to reclaim the space at an
appropriate point by calling XmStringFree ().

See Also
XmStringFree (1).

XmStringSegmentCreate Motif Functions and Macros

406 Motif Reference Manual

Name
XmStringSegmentCreate – create a compound string segment.

Synopsis

XmString XmStringSegmentCreate (char *text,
XmStringCharSet tag,
XmStringDirection direction,
Boolean separator)

Inputs
text Specifies the text component of the compound string segment.
tag Specifies the font list element tag.
direction Specifies the value of the direction component. Pass either

XmSTRING_DIRECTION_L_TO_R or
XmSTRING_DIRECTION_R_TO_L.

separator Specifies whether or not a separator is added to the compound
string.

Returns
A new compound string.

Availability
In Motif 2.0 and later, the function is deprecated. A combination of XmString-
ComponentCreate () and XmStringConcat () is preferred.

Description
XmStringSegmentCreate () creates a compound string segment that con-
tains the specified text, tag, and direction. If separator is True, a separator is
added to the segment, following the text. If separator is False, the compound
string segment does not contain a separator. Storage for the returned compound
string is allocated by the routine and should be freed by calling XmString-
Free (). Management of the allocated memory is the responsibility of the appli-
cation.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringSegmentCreate () allows you to create a single segment that can
be concatenated with a compound string containing other segments.

See Also
XmStringCreate (1), XmStringFree (1).

Motif Functions and Macros XmStringSeparatorCreate

Motif Reference Manual 407

Name
XmStringSeparatorCreate – create a compound string containing a separator
component.

Synopsis

XmString XmStringSeparatorCreate (void)

Returns
A new compound string.

Description
XmStringSeparatorCreate () creates and returns a compound string con-
taining a separator as its only component.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringSeparatorCreate () allows you to create a separator component
that can be concatenated with a compound string containing other components.

See Also
XmStringCreate (1), XmStringFree (1),
XmStringSegmentCreate (1).

XmStringTableParseStringArray Motif Functions and Macros

408 Motif Reference Manual

Name
XmStringTableParseStringArray – convert an array of strings into a compound
string table.

Synopsis

XmStringTable XmStringTableParseStringArray (XtPointer *strings,
Cardinal count,
XmStringTag tag,
XmTextType type,
XmParseTable

parse_table,
Cardinal

parse_count,
XtPointer

client_data)

Inputs
strings Specifies an array of strings.
count Specifies the number of items in strings.
tag Specifies the tag used to create the resulting compound string
table.
type Specifies the type of each input string, and the tag.
parse_table Specifies a parse table to control the conversion process.
parse_count Specifies the number of parse mappings in parse_table.
client_data Specifies application data to pass to parse procedures within the
parse_table.

Returns
An array of compound strings.

Availability
Motif 2.0 and later.

Description
XmStringTableParseStringArray () converts an array of strings into an
array of compound strings. XmStringTableParseStringArray () is no
more than a convenience function which allocates space for an table of com-
pound strings, and subsequently calls XmStringParseText () iteratively on
each item within the strings array to convert the item into a compound string.
Each converted item is placed within the allocated table at a corresponding loca-
tion to its position in the strings array. A parse_table can be specified which
consists of a set of mappings to control the conversion process. The contents of
each of the strings to be converted can be in one of a number of formats: simple
characters, multibyte, or wide characters. The type parameter specifies the type of

Motif Functions and Macros XmStringTableParseStringArray

Motif Reference Manual 409

the input strings, and is also used to interpret the tag which is used in creating
text components within the returned compound string array.

Usage
The function calls XmStringParseText () passing NULL as the text_end
(second) parameter: each item within the array of strings is converted until the
occurrence of a terminating null byte. XmStringTableParseStringAr-
ray () returns allocated storage: the elements within the returned table are com-
pound strings allocated by the internal call to XmStringParseText (), and
these should each be freed at an appropriate point through XmStringFree ().
XmStringTableParseStringArray () also allocates space for the table
itself, and this should subsequently be freed using XtFree ().

Structures
The XmTextType type parameter can take one of the following values:

XmCHARSET_TEXT
XmMULTIBYTE_TEXT
XmWIDECHAR_TEXT

See Also
XmStringFree (1), XmStringGenerate (1), XmStringParseText (1),
XmStringTableUnparse (1), XmParseMapping (2).

XmStringTableProposeTablist Motif Functions and Macros

410 Motif Reference Manual

Name
XmStringTableProposeTablist – create a tab list for a compound string table.

Synopsis

XmTabList XmStringTableProposeTablist (XmStringTable strings,
Cardinal string_count,
Widget widget,
float padding,
XmOffsetModel

offset_model)

Inputs
strings Specifies an array of compound strings.
string_count Specifies the number of items in strings.
widget Specifies a widget from which rendition information is calcu-
lated.
padding Specifies a separation between columns.
offset_model Specifies whether tabs are created at absolute or relative off-
sets.

Returns
A new XmTabList.

Availability
Motif 2.0 and later.

Description
XmStringTableProposeTablist () creates an XmTabList value which
can be used to specify how an array of tabbed compound strings is aligned into
columns.

A compound string is tabbed if it contains an XmSTRING_COMPONENT_TAB
component between textual components: each text component forms an individ-
ual column entry. The strings are rendered with respect to a tab list: each tab con-
tains a floating point offset which specifies the starting location of a column.
XmStringTableProposeTablist () creates a tab list appropriate for laying
out the given strings in a multi-column format.

The XmNunitType resource of widget is used to calculate the units in which the
tab calculation is performed. Extra spacing between each column is specified by
the padding parameter, and this is also interpreted in terms of the unit type of
widget. The offset_model determines whether the floating point positions calcu-
lated for each tab in the returned XmTabList are at absolute locations (XmAB-
SOLUTE), or relative to the previous tab (XmRELATIVE).

Motif Functions and Macros XmStringTableProposeTablist

Motif Reference Manual 411

Usage
The tab list created by XmStringTableProposeTablist () can be applied
to the render table of the widget where the strings are to be displayed by modify-
ing the XmNtabList resource of an existing rendition through the procedure
XmRenditionUpdate (). Alternatively, a new rendition can be created using
XmRenditionCreate (), and thereafter merged into the widget render table
using XmRenderTableAddRenditions ().

XmStringTableProposeTablist () returns allocated storage, and it is the
responsibility of the programmer to reclaim the allocated space at a suitable point
by calling XmTabListFree ().

If no render table is associated with widget, XmStringTableProposeTab-
list () invokes internal routines to deduce a default render table: these routines
are not multi-thread safe.

See Also
XmTabCreate (1), XmTabFree (1), XmTabListCopy (1),
XmTabListFree (1), XmRenderTableAddRenditions (1),
XmRenditionCreate (1), XmRenditionUpdate (1), XmRendition (2).

XmStringTableToXmString Motif Functions and Macros

412 Motif Reference Manual

Name
XmStringTableToXmString – convert compound string table to compound string.

Synopsis

XmString
XmStringTableToXmString (XmStringTable table, Cardinal count, XmString
break_component)

Inputs
table Specifies an array of compound strings.
count Specified the number of items in the table.
break_component Specifies a compound string used to separate converted table
items.

Returns
A compound string.

Availability
Motif 2.0 and later.

Description
XmStringTableToXmString () is a convenience function which converts a
table of compound strings into a single compound string. A
break_component can be inserted between each component converted from
the table in order to separate each.

Usage
XmStringTableToXmString () simply walks along the array of items within
the table, concatenating a copy of each item to the result, along with a copy of the
break_component. The break_component can be NULL, although a component
of type XmSTRING_COMPONENT_TAB or
XmSTRING_COMPONENT_SEPARATOR is a suitable choice. The function
returns allocated storage, and it is the responsibility of the programmer to reclaim
the space by calling XmStringFree () at a suitable point.

Example
The following code illustrates a basic call to XmStringTableToXm-
String ():

extern XmString table table ;
extern int table_count ;
XmString xms;
XmString break_component;

/* create a break component */

Motif Functions and Macros XmStringTableToXmString

Motif Reference Manual 413

break_component = XmStringComponentCreate
(XmSTRING_COMPONEN
T_SEPARATOR, 0,

NULL)1;

/* convert an (unspecified) compound string table */
xms = XmStringTableToXmString (table, table_count, break_component);

/* use the compound string */
...

/* free the allocated space */
XmStringFree (xms);

See Also
XmStringConcat (1), XmStringCopy (1), XmStringFree (1),
XmStringToXmStringTable (1).

1.Erroneously given as XmComponentCreate() in 2nd edition. XmStringSeparatorCreate() would do here equally well.

XmStringTableUnparse Motif Functions and Macros

414 Motif Reference Manual

Name
XmStringTableUnparse – convert a compound string table to an array of strings.

Synopsis

XtPointer *XmStringTableUnparse (XmStringTable table,
Cardinal count,
XmStringTag tag,
XmTextType tag_type,
XmTextType output_type,
XmParseTable parse_table,
Cardinal parse_count,
XmParseModel parse_model)

Inputs
table Specifies the compound string table to unparse.
count Specifies the number of compound strings in table.
tag Specifies which text segments to unparse.
tag_type Specifies the type of tag.
output_type Specifies the type of conversion required.
parse_table Specifies a parse table to control the conversion.
parse_count Specifies the number of parse mappings in parse_table.
parse_model Specifies how non-text components are converted.

Returns
An allocated string array containing the unparsed contents of the compound
strings.

Availability
Motif 2.0 and later.

Description
XmStringTableUnparse () is a convenience function which unparses an
array of compound strings. The XmStringTable table is converted into a string
array, whose contents is determined by output_type, which can be
XmCHARSET_TEXT, XmWIDECHAR_TEXT, or XmMULTIBYTE_TEXT.
Only those text components within the table which match tag are converted:
NULL converts all text components. An XmParseTable can be supplied which
acts as a filter: each parse mapping in the table contains a pattern which must
match a text component of the compound string if that component is to be con-
verted.

parse_model determines how non-text components of string are handled when
matching against parse_table. If the value is XmOUTPUT_ALL, all components
are taken into account in the conversion process. If the value is

Motif Functions and Macros XmStringTableUnparse

Motif Reference Manual 415

XmOUTPUT_BETWEEN, any non-text components which are not between two
text components are ignored. If the value is XmOUTPUT_BEGINNING, any
non-text components which do not precede a text component are ignored. Simi-
larly, the value XmOUTPUT_END specifies that any non-text components which
do not follow a text component are ignored. XmOUTPUT_BOTH is a combina-
tion of XmOUTPUT_BEGINNING and XmOUTPUT_END. The number of
items within the returned string array is identical to the supplied number of com-
pound strings. Each converted string occupies the same index in the returned
array as the index of the source compound string in table.

Usage
XmStringTableUnparse () is the logical inverse of the routine XmString-
TableParseStringArray (). It simply invokes XmStringUnparse () on
each of the elements in the supplied table. The function returns allocated storage,
both for the returned array, and for each element within the array. It is the respon-
sibility of the programmer to reclaim the storage at an appropriate point by call-
ing XtFree () on each element in the array and upon the array itself.

Structures
An XmParseModel has the following possible values:

XmOUTPUT_ALL
XmOUTPUT_BEGINNING
XmOUTPUT_BETWEEN
XmOUTPUT_BOTH
XmOUTPUT_END

See Also
XmStringFree (1), XmStringParseText (1), XmStringUnparse (1),
XmParseMapping (2).

XmStringToXmStringTable Motif Functions and Macros

416 Motif Reference Manual

Name
XmStringToXmStringTable – convert a compound string to a compound string
table.

Synopsis

Cardinal XmStringToXmStringTable (XmString string, XmString break_comp,
XmStringTable *table)

Inputs
string Specifies a compound string.
break_comp Specifies a component which indicates where to split string into

an individual table element.

Outputs
table Returns the converted compound string table.

Returns
The number of elements in the converted compound string table.

Availability
Motif 2.0 and later.

Description
XmStringToXmStringTable () is a convenience function which converts an
XmString string into an array of compound strings. break_comp is a component
which is used to determine how to split the string into individual items: compo-
nents in string are considered to form contiguous sequences delimited by
break_comp, each sequence forming a separate entry in the converted string
table. Any component from string which matches the delimiting break_comp is
not copied into the converted table. If break_comp is NULL, the returned com-
pound string table contains a single entry: a copy of the original string.

Usage
XmStringToXmStringTable () is the inverse function to XmStringTab-
leToXmString (). A break_comp component of type
XmSTRING_COMPONENT_TAB or
XmSTRING_COMPONENT_SEPARATOR is the most useful choice. The func-
tion returns allocated storage, and it is the responsibility of the programmer to
reclaim the space by calling XmStringFree () on each element in the table, and
then XtFree () on the table itself.

Example
The following code illustrates a basic call to XmStringToXmStringTa-
ble ():

extern XmString xms;

Motif Functions and Macros XmStringToXmStringTable

Motif Reference Manual 417

Cardinal count;
XmStringTable table;
XmString break_component;
int i;

/* create a break component */
break_component = XmStringComponentCreate

(XmSTRING_COMPONEN
T_SEPARATOR, 0,

NULL)1;

/* convert an (unspecified) compound string */
count = XmStringToXmStringTable (xms, break_component, &table);

/* use the table */
...

/* free the allocated space */
for (i = 0; i < count; i++) {

XmStringFree (table[i]);
}

XtFree ((char *) table);

See Also
XmStringFree (1), XmStringTableToXmString (1).

1.Erroneously given as XmComponentCreate() in 2nd edition. XmStringSeparatorCreate() could be used equally well.

XmStringUnparse Motif Functions and Macros

418 Motif Reference Manual

Name
XmStringUnparse – convert a compound string into a string.

Synopsis

XtPointer XmStringUnparse (XmString string,
XmStringTag tag,
XmTextType tag_type,
XmTextType output_type,
XmParseTable parse_table,
Cardinal parse_count,
XmParseModel parse_model)

Inputs
string Specifies the compound string to unparse.
tag Specifies which text segments of string to unparse.
tag_type Specifies the type of tag.
output_type Specifies the type of conversion required.
parse_table Specifies a parse table to control the conversion.
parse_count Specifies the number of parse mappings in parse_table.
parse_model Specifies how non-text components are converted.

Returns
An allocated string containing the unparsed contents of a compound string.

Availability
Motif 2.0 and later.

Description
XmStringUnparse () is a convenience function which unparses a compound
string. The XmString string is converted into a string, whose contents is deter-
mined by output_type, which can be XmCHARSET_TEXT,
XmWIDECHAR_TEXT, or XmMULTIBYTE_TEXT. Only those text compo-
nents within the string which match tag are converted: NULL converts all text
components. An XmParseTable can be supplied which acts as a filter: each parse
mapping in the table contains a pattern which must match a text component of
the compound string if that component is to be converted. parse_model deter-
mines how non-text components of string are handled when matching against
parse_table. If the value is XmOUTPUT_ALL, all non-text components are used
in the conversion process. If the value is XmOUTPUT_BETWEEN, any non-text
components which fall between text components are used. If the value is
XmOUTPUT_BEGINNING, non-text components which precede a text compo-
nent are utilized. Similarly, XmOUTPUT_END uses non-text components which
follow a text component. XmOUTPUT_BOTH is a combination of
XmOUTPUT_BEGINNING and XmOUTPUT_END.

Motif Functions and Macros XmStringUnparse

Motif Reference Manual 419

Usage
XmStringUnparse () is the logical inverse of the routine XmStringParse-
Text (). The function returns allocated storage, and it is the responsibility of the
programmer to reclaim the storage by calling XtFree () at an appropriate point.

Structures
An XmParseModel has the following possible values:

XmOUTPUT_ALL
XmOUTPUT_BEGINNING
XmOUTPUT_BETWEEN
XmOUTPUT_BOTH
XmOUTPUT_END

Example
The following specimen code outlines a basic call to XmStringUnparse (),
which converts separator and tab components into the output:

XmParseTable parse_table = (XmParseTable) XtCalloc (2, sizeof
(XmParseMapping));
XmString tmp;
XmString output;
char *string;
Arg av[4];
Cardinal ac;

/* map tab component to \t */
tmp = XmStringComponentCreate (XmSTRING_COMPONENT_TAB, 0,
NULL);
ac = 0;
XtSetArg (av[ac], XmNincludeStatus, XmINSERT); ac++;
XtSetArg (av[ac], XmNsubstitute, tmp); ac++;
XtSetArg (av[ac], XmNpattern, "\t"); ac++;
parse_table[0] = XmParseMappingCreate (av, ac);
XmStringFree (tmp);

/* map separator component to \n */
tmp = XmStringSeparatorCreate();
ac = 0;
XtSetArg (av[ac], XmNincludeStatus, XmINSERT); ac++;
XtSetArg (av[ac], XmNsubstitute, tmp); ac++;
XtSetArg (av[ac], XmNpattern, "\n"); ac++;
parse_table[1] = XmParseMappingCreate (av, ac);
XmStringFree (tmp);

XmStringUnparse Motif Functions and Macros

420 Motif Reference Manual

/* convert the (unspecified) compound string */
string = (char *) XmStringUnparse (xms, NULL, XmCHARSET_TEXT,

XmCHARSET_TEXT, parse_table, 2,
XmOUTPUT_ALL);

/* use the converted string */
....

/* free the allocated space */
XtFree (string);

/* Free the parse table: this also frees the parse mappings */
XmParseTableFree (parse_table, 2);

See Also
XmStringFree (1), XmStringParseText (1),
XmStringTableUnparse (1), XmParseMapping (2).

Motif Functions and Macros XmStringWidth

Motif Reference Manual 421

Name
XmStringWidth – get the width of the longest line of text in a compound string.

Synopsis

Dimension XmStringWidth (XmFontList fontlist, XmString string)

Inputs
fontlist Specifies the font list for the compound string.
string Specifies the compound string.

Returns
The width of the compound string.

Availability
In Motif 2.0 and later, the XmFontList is obsolete, and is replaced by the
XmRenderTable, to which it is an alias.

Description
XmStringWidth () returns the width, in pixels, of the longest line of text in the
specified compound string. Lines in the compound string are delimited by sepa-
rator components. If string is created with XmStringCreateSimple (), then
fontlist must begin with the font from the character set of the current language
environment, otherwise the result is undefined.

Usage
In Motif 1.2, a compound string is composed of one or more segments, where
each segment can contain a font list element tag, a string direction, and a text
component. In Motif 2.0 and later, the set of available segments is extended to
include, amongst other items, tab, rendition, direction, locale components.
XmStringWidth () provides information that is useful if you need to render a
compound string. Motif widgets render compound strings automatically, so you
only need to worry about rendering them yourself if you are writing your own
widget. The routine is also useful if you want to get the dimensions of a com-
pound string rendered with a particular font.

See Also
XmStringBaseline (1), XmStringExtent (1), XmStringHeight (1).

XmTabCreate Motif Functions and Macros

422 Motif Reference Manual

Name
XmTabCreate – create a tab stop.

Synopsis

XmTab XmTabCreate (float value,
unsigned char units,
XmOffsetModel offset_model,
unsigned char alignment,
char *decimal)

Inputs
value Specifies the value to be used in calculating the location of a tab
stop.
units Specifies the units in which value is expressed.
offset_model Specifies whether the tab is at an absolute position, or relative to
the previous tab.
alignment Specifies how text should be aligned to this tab stop.
decimal Specifies the multibyte character in the current locale to be used
as a decimal point.

Returns
An XmTab object.

Availability
Motif 2.0 and later.

Description
XmTabCreate () creates a tab stop at the position specified by value, which is
expressed in terms of units. If value is less than 0 (zero), a warning is displayed,
and value is reset to 0.0. The offset_model determines whether the tab position is
an absolute location (XmABSOLUTE) calculated from the start of any render-
ing, or relative to the previous tab stop (XmRELATIVE). alignment specifies
how text is aligned with respect to the tab location: at present only
XmALIGNMENT_BEGINNING is supported. decimal is a multibyte character
which describes the decimal point character in the current locale.

Usage
A tab stop can be created, and inserted into an XmTabList through the function
XmTabListInsertTabs (). The tab list is used to render a multi-column lay-
out of compound strings by specifying the list as the XmNtabList resource of a
rendition object within a render table associated with a widget. The decimal
parameter is currently unused.

Motif Functions and Macros XmTabCreate

Motif Reference Manual 423

XmTabCreate () allocates storage for the object which it returns. It is the
responsibility of the programmer to free the memory at an appropriate point by a
call to XmTabFree ().

Structures
The XmOffsetModel type has the following possible values:

XmABSOLUTE XmRELATIVE

Valid values for the units parameter are:

XmPIXELS
Xm100TH_MILLIMETERS XmMILLIMETERS
Xm1000TH_INCHES XmINCHES
Xm100TH_FONT_UNITS XmFONT_UNITS
Xm100TH_POINTS XmPOINTS
XmCENTIMETERS

Example
The following code creates a multi-column arrangement of compound strings; it
creates a set of XmTab objects, which are then inserted into an XmRendition
object. The XmRendition object is added to a render table:

extern Widget widget;
int i;
Arg argv[3];
XmTab tabs[MAX_COLUMNS];
XmTabList tab_list = (XmTabList) 0;
XmRendition rendition;
XmRenderTable render_table;

/* Create the XmTab objects */
for (i = 0 ; i < MAX_COLUMNS ; i++) {

tabs[i] = XmTabCreate ((float) 1.5,
XmINCHES,
((i == 0) ? XmABSOLUTE :
XmRELATIVE),
XmALIGNMENT_BEGINNING,
“.”);

}

/* Add them to an XmTabList */
tab_list = XmTabListInsertTabs (NULL, tabs,
MAX_COLUMNS, 0);

/* Put the XmTabList into an XmRendition object */

XmTabCreate Motif Functions and Macros

424 Motif Reference Manual

i = 0;
XtSetArg (argv[i], XmNtabList, tab_list); i++;
XtSetArg (argv[i], XmNfontName, “fixed”); i++;
XtSetArg (argv[i], XmNfontType, XmFONT_IS_FONT);
i++;
rendition = XmRenditionCreate (widget,NULL,argv,
i);

/* Add the XmRendition object into an XmRenderTable
*/
render_table = XmRenderTableAddRenditions (NULL,

&rendi-
tion,
1,
XmMERGE
_NEW);

/* Apply to the widget */
XtVaSetValues (widget, XmNrenderTable,
render_table, NULL);
...

/* Free Up - render table applied to widget takes a
reference
** counted copy of everything
*/
for (i = 0 ; i < MAX_COLUMNS ; i++) {

XmTabFree (tabs[i]);
}
XmTabListFree (tab_list);
XmRenditionFree (rendition);
XmRenderTableFree (render_table);

See Also
XmTabFree (1), XmTabGetValues (1), XmTabListInsertTabs (1),
XmTabSetValue (1), XmRenditionCreate (1),
XmRenderTableAddRenditions (1), XmRendition (2).

Motif Functions and Macros XmTabFree

Motif Reference Manual 425

Name
XmTabFree – free the memory used by an XmTab object.

Synopsis

void XmTabFree (XmTab tab)

Inputs
tab Specifies an XmTab object.

Availability
Motif 2.0 and later.

Description
XmTabFree () reclaims the memory associated with tab, previously allocated by
a call to XmTabCreate ().

Usage
A tab stop can be created using XmTabCreate (), and inserted into an XmTab-
List through the function XmTabListInsertTabs (). The tab list is used to
render a multi-column layout of compound strings by specifying the list as the
XmNtabList resource of a rendition object within a render table associated with
a widget.

See Also
XmTabCreate (1), XmRendition (2).

XmTabGetValues Motif Functions and Macros

426 Motif Reference Manual

Name
XmTabGetValues – fetch the value of an XmTab object.

Synopsis

float XmTabGetValues (XmTab tab,
unsigned char *units,
XmOffsetModel *offset_model,
unsigned char *alignment,
char **decimal)

Inputs
tab Specifies an XmTab object.

Outputs
units Returns the units in which the tab stop is calculated.
offset_model Returns the offset model.
alignment Returns the text alignment with respect to the tab stop.
decimal Returns the multibyte character used to represent the decimal
point.

Returns
The distance, expressed in units, which the tab is offset.

Availability
Motif 2.0 and later.

Description
XmTabGetValues () retrieves the data associated with a tab stop object. The
function returns the position value of a tab stop, which is expressed in terms of
units. The offset_model determines whether the tab position is an absolute loca-
tion (XmABSOLUTE) calculated from the start of any rendering, or relative to
the previous tab stop (XmRELATIVE). alignment specifies how text is aligned
with respect to the tab location: at present only XmALIGNMENT_BEGINNING
is supported. decimal is a multibyte character which describes the decimal point
character in the current locale.

Usage
A tab stop can be created using the function XmTabCreate (), and inserted into
an XmTabList through the function XmTabListInsertTabs (). The tab list is
used to render a multi-column layout of compound strings by specifying the list
as the XmNtabList resource of a rendition object within a render table associated
with a widget. The decimal value is currently unused.

Structures
The XmOffsetModel type has the following possible values:

Motif Functions and Macros XmTabGetValues

Motif Reference Manual 427

XmABSOLUTE XmRELATIVE

Valid values for units are:

XmPIXELS
Xm100TH_MILLIMETERS XmMILLIMETERS
Xm1000TH_INCHES XmINCHES
Xm100TH_FONT_UNITS XmFONT_UNITS
Xm100TH_POINTS XmPOINTS
XmCENTIMETERS

See Also
XmTabCreate (1), XmTabSetValue (1), XmRendition (2).

XmTabListCopy Motif Functions and Macros

428 Motif Reference Manual

Name
XmTabListCopy – copy an XmTabList object.

Synopsis

XmTabList XmTabListCopy (XmTabList tab_list, int offset, Cardinal count)1

Inputs
tab_list Specifies the tab list to copy.
offset Specifies an index into the tab list from which to start copying.
count Specifies the number of tab stops to copy.

Returns
A new tab list containing tabs copied from tab_list.

Availability
Motif 2.0 and later.

Description
XmTabListCopy () is a convenience function which creates a new XmTabList
by copying portions of an existing tab_list. If tab_list is NULL, the function sim-
ply returns NULL. Otherwise, a new tab list is allocated, and selected tabs are
copied, depending on the offset and count parameters. count specifies the number
of tabs to copy, and offset determines where in the original list to start. If offset is
zero, tabs are copied from the beginning of tab_list. If offset is negative, tabs are
copied in reverse order from the end of tab_list. If count is zero, all tabs from off-
set to the end of tab_list are copied.

Usage
A tab stop can be created using the function XmTabCreate (), and inserted into
an XmTabList through the function XmTabListInsertTabs (). The tab list is
used to render a multi-column layout of compound strings by specifying the list
as the XmNtabList resource of a rendition object within a render table associated
with a widget.

XmTabListCopy () allocates storage for the object which it returns. It is the
responsibility of the programmer to free the memory at an appropriate point by a
call to XmTabListFree ().

See Also
XmTabCreate (1), XmTabListFree (1), XmTabListInsertTabs (1),
XmRendition (2).

1.Erroneously given as XmTabListTabCopy() in 2nd edition.

Motif Functions and Macros XmTabListFree

Motif Reference Manual 429

Name
XmTabListFree – free the memory used by a tab list.

Synopsis

void XmTabListFree (XmTabList tab_list)

Inputs
tab_list Specified the tab list to free.

Availability
Motif 2.0 and later.

Description
XmTabListFree () reclaims the space used by an XmTabList object, tab_list.

Usage
In common with other objects in Motif 2.0 and later, the tab (XmTab) and tab list
(XmTabList) are dynamically allocated data structures which must be freed when
no longer required. For example, XmStringTableProposeTablist ()
dynamically creates a tab list for rendering a multi-column compound string
table which must be subsequently deallocated.

It is important to call XmTabListFree () instead of XtFree () because
XmTabListFree () also reclaims storage for each of the elements in the tab list.

See Also
XmStringTableProposeTablist (1), XmTabCreate (1),
XmTabListInsertTabs (1), XmRendition (2).

XmTabListGetTab Motif Functions and Macros

430 Motif Reference Manual

Name
XmTabListGetTab – retrieve a tab from a tab list

Synopsis

XmTab XmTabListGetTab (XmTabList tab_list, Cardinal position)

Inputs
tab_list Specifies a tab list.
position Specifies the position of the required tab within the tab_list.

Returns
A copy of the required tab.

Availability
Motif 2.0 and later.

Description
XmTabListGetTab () returns a copy of a tab from the XmTabList specified by
tab_list. position determines where in the list of tabs the required tab is copied
from. The first tab within tab_list is at position zero, the second tab at position 1,
and so on. If position is not less than the number of tabs within the list, XmTab-
ListGetTab () returns NULL.

Usage
A tab stop can be created using the function XmTabCreate (), and inserted into
an XmTabList through the function XmTabListInsertTabs (). The tab list is
used to render a multi-column layout of compound strings by specifying the list
as the XmNtabList resource of a rendition object within a render table associated
with a widget.

XmTabListGetTab () returns a copy of the tab within the original tab list, and
it is the responsibility of the programmer to reclaim the space at a suitable point
by calling XmTabFree ().

See Also
XmTabCreate (1), XmTabFree (1), XmTabListInsertTabs (1),
XmRendition (2).

Motif Functions and Macros XmTabListInsertTabs

Motif Reference Manual 431

Name
XmTabListInsertTabs – insert tabs into a tab list.

Synopsis

XmTabList XmTabListInsertTabs (XmTabList tab_list, XmTab *tabs, Cardinal
tab_count, int position)

Inputs
tab_list Specifies the tab list into which tabs are added.
tabs Specifies an array of tabs to add.
tab_count Specifies the number of tabs within the tabs array.
position Specifies an index into tab_list at which to insert the tabs.

Returns
A newly allocated tab list.

Availability
Motif 2.0 and later.

Description
XmTabListInsertTabs () creates a new tab list by merging a set of tabs into
a tab_list at a given position. If tabs is NULL, or tab_count is zero, the function
returns the original tab_list. If position is zero, the new tabs are inserted at the
head of the new tab list, if position is 1, they are inserted after the first tab, and so
forth. If position is greater than the number of tabs in tab_list, the new tabs are
appended. If position is negative, the new tabs are inserted in reverse order at the
end of the original list, so that the first new tab becomes the last tab in the new
list.

Usage
A tab stop can be created using the function XmTabCreate (), and inserted into
an XmTabList through the function XmTabListInsertTabs (). The tab list is
used to render a multi-column layout of compound strings by specifying the list
as the XmNtabList resource of a rendition object within a render table associated
with a widget.

XmTabListInsertTabs () returns allocated storage, and it is the responsibil-
ity of the programmer to reclaim the space at a suitable point by calling XmTab-
ListFree ().

See Also
XmTabCreate (1), XmTabFree (1), XmTabListFree (1),
XmTabListInsertTabs (1), XmRendition (2).

XmTabListRemoveTabs Motif Functions and Macros

432 Motif Reference Manual

Name
XmTabListRemoveTabs – copy a tab list, excluding specified tabs.

Synopsis

XmTabList XmTabListRemoveTabs (XmTabListold_list,
Cardinal *position_list,
Cardinal position_count)

Inputs
old_list Specifies the tab list to copy.
position_list Specifies an array of tab positions to exclude.
position_count Specifies the length of position_list.

Returns
A copy of old_list, with the specified positions excluded.

Availability
Motif 2.0 and later.

Description
XmTabListRemoveTabs () removes tabs from a old_list by allocating a new
tab list which contains all the tabs of the original list except for those at specific
positions within a position_list. The first tab within a tab list is at position zero,
the second tab at position 1, and so on. If old_list is NULL, or if position_list is
NULL, or if position_count is zero, the function returns old_list unmodified. Oth-
erwise old_list is freed, as are any excluded tab elements, before the newly allo-
cated tab list is returned.

Usage
A tab stop can be created using the function XmTabCreate (), and inserted into
an XmTabList through the function XmTabListInsertTabs (). The tab list is
used to render a multi-column layout of compound strings by specifying the list
as the XmNtabList resource of a rendition object within a render table associated
with a widget.

When the returned tab list differs from the original old_list parameter, XmTab-
ListRemoveTabs () returns allocated storage, and it is the responsibility of the
programmer to reclaim the space at a suitable point by calling XmTabList-
Free ().

See Also
XmTabCreate (1), XmTabFree (1), XmTabListFree (1),
XmTabListInsertTabs (1), XmRendition (2).

Motif Functions and Macros XmTabListReplacePositions

Motif Reference Manual 433

Name
XmTabListReplacePositions – copy a tab list, replacing tabs at specified posi-
tions.

Synopsis

XmTabList XmTabListReplacePositions (XmTabList old_list,
Cardinal *position_list,
XmTab *tabs,
Cardinal tab_count)

Inputs
old_list Specifies the tab list to modify.
position_list Specifies an array of positions at which to replace the tabs.
tabs Specifies the tabs which replace those in old_list.
tab_count Specifies the number of tabs and positions.

Returns
A new tab list with tabs replaced at specified positions.

Availability
Motif 2.0 and later.

Description
XmTabListReplacePositions () creates a newly allocated tab list which
contains all the original tabs in old_list, except that at any position contained
within position_list, the corresponding tab from tabs is used instead of the origi-
nal. That is, at the first position specified within position_list, the original tab is
replaced by the first tab within tabs. The first tab within a tab list is at position
zero, the second tab at position 1, and so on. If old_list is NULL, or if tabs is
NULL, or if position_list is NULL, or if tab_count is zero, the function returns
old_list unmodified. Otherwise old_list is freed, as are any replaced tab elements,
before the newly allocated tab list is returned.

Usage
A tab stop can be created using the function XmTabCreate (), and inserted into
an XmTabList through the function XmTabListInsertTabs (). The tab list is
used to render a multi-column layout of compound strings by specifying the list
as the XmNtabList resource of a rendition object within a render table associated
with a widget.

When the returned tab list differs from the original old_list parameter, XmTab-
ListReplacePositions () returns allocated storage, and it is the responsi-
bility of the programmer to reclaim the space at a suitable point by calling
XmTabListFree ()

XmTabListReplacePositions Motif Functions and Macros

434 Motif Reference Manual

See Also
XmTabCreate (1), XmTabFree (1), XmTabListFree (1),
XmTabListInsertTabs (1), XmTabListRemoveTabs (1),
XmRendition (2).

Motif Functions and Macros XmTabListTabCount

Motif Reference Manual 435

Name
XmTabListTabCount – count the number of tabs in a tab list.

Synopsis

Cardinal XmTabListTabCount (XmTabList tab_list)

Inputs
tab_list The tab list to count.

Returns
The number of tab stops in tab_list.

Availability
Motif 2.0 and later.

Description
XmTabListTabCount ()1 is a convenience function which counts the number
of XmTab objects contained within tab_list. If tab_list is NULL, the function
returns zero.

Usage
A tab stop can be created using the function XmTabCreate (), and inserted into
an XmTabList through the function XmTabListInsertTabs (). The tab list is
used to render a multi-column layout of compound strings by specifying the list
as the XmNtabList resource of a rendition object within a render table associated
with a widget.

See Also
XmTabCreate (1), XmTabFree (1), XmTabListFree (1),
XmTabListInsertTabs (1), XmTabListRemoveTabs (1),
XmRendition *(s2.

1.Erroneously given as XmTabListCount() in 2nd edition.

XmTabSetValue Motif Functions and Macros

436 Motif Reference Manual

Name
XmTabSetValue – set the value of a tab stop.

Synopsis

void XmTabSetValue (XmTab tab, float value)

Inputs
tab Specifies the tab to modify.
value Specifies the new value for the tab stop.

Availability
Motif 2.0 and later.

Description
XmTabSetValue () sets the value associated with an XmTab object. The value
is a floating point quantity which either represents an absolute distance from the
start of the current rendition, or a value relative to the previous tab stop. The off-
set model specified when the tab is created determines whether value is relative
or absolute. If value is less than 0 (zero), a warning message is displayed and the
function returns without modifying the tab.

Usage
A tab stop can be created using the function XmTabCreate (), and inserted into
an XmTabList through the function XmTabListInsertTabs (). The tab list is
used to render a multi-column layout of compound strings by specifying the list
as the XmNtabList resource of a rendition object within a render table associated
with a widget.

See Also
XmTabCreate (1), XmTabListInsertTabs (1), XmRendition (2).

Motif Functions and Macros XmTargetsAreCompatible

Motif Reference Manual 437

Name
XmTargetsAreCompatible – determine whether or not the target types of a drag
source and a drop site match.

Synopsis

#include <Xm/DragDrop.h>

Boolean XmTargetsAreCompatible (Display *display,
Atom *export_targets,
Cardinal num_export_targets,
Atom *import_targets,
Cardinal num_import_targets)

Inputs
display Specifies a connection to an X server; returned from

XOpenDisplay() or XtDisplay().
export_targets Specifies the list of target atoms to which the drag

source can convert the data.
num_export_targets Specifies the number of items in export_targets.
import_targets Specifies the list of target atoms that are accepted by the

drop site.
num_import_targets Specifies the number of items in import_targets.

Returns
True if there is a compatible target or False otherwise.

Availability
Motif 1.2 and later.

Description
XmTargetsAreCompatible () determines whether or not the import targets
of a drop site match any of the export targets of a drag source. The routine returns
True if the two objects have at least one target in common; otherwise it returns
False.

Usage
Motif 1.2 and later supports the drag and drop model of selection actions. In a
widget that acts as a drag source, a user can make a selection and then drag the
selection, using BTransfer, to other widgets that are registered as drop sites.
These drop sites can be in the same application or another application. In order
for a drag and drop operation to succeed, the drag source and the drop site must
both be able to handle data in the same format. XmTargetsAreCompati-
ble () provides a way for an application to check if a drag source and a drop site
support compatible formats.

See Also
XmDragContext (1), XmDropSite (1).

XmTextClearSelection Motif Functions and Macros

438 Motif Reference Manual

Name
XmTextClearSelection, XmTextFieldClearSelection – clear the primary selec-
tion.

Synopsis

#include <Xm/Text.h>

void XmTextClearSelection (Widget widget, Time time)

#include <Xm/TextF.h>

void XmTextFieldClearSelection (Widget widget, Time time)

Inputs
widget Specifies the Text or TextField widget.
time Specifies the time of the event that caused the request.

Description
XmTextClearSelection () and XmTextFieldClearSelection () clear
the primary selection in the specified widget. XmTextClearSelection ()
works when widget is a Text widget or a TextField widget, while XmText-
FieldClearSelection () only works for a TextField widget. For each rou-
tine, time specifies the server time of the event that caused the request to clear the
selection.

Usage
XmTextClearSelection () and XmTextFieldClearSelection () pro-
vide a convenient way to deselect the text selection in a Text or TextField widget.
If no text is selected, the routines do nothing. Any text that is stored in the clip-
board or selection properties remains; the routines affect the selected text in the
widget only. If you are calling one of these routines from a callback routine, you
probably want to use the time field from the event pointer in the callback struc-
ture as the value of the time parameter. You can also use the value CurrentTime,
but there is no guarantee that using this time prevents race conditions between
multiple clients that are trying to use the clipboard.

Example
The following callback routine for the items on an Edit menu (Cut, Copy, Link ,
Paste, and Clear) shows the use of XmTextClearSelection():

Widget text_w, status;

void cut_paste (Widget widget, XtPointer client_data, XtPointer call_data)
{

int num = (int) client_data;
XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;

Motif Functions and Macros XmTextClearSelection

Motif Reference Manual 439

Boolean result = True;

switch (num) {
case 0: result = XmTextCut (text_w, cbs->event->xbutton.time);break;
case 1: result = XmTextCopy (text_w, cbs->event->xbutton.time);
break;
case 2: result = XmTextCopyLink (text_w, cbs->event->xbutton.time);
break;
case 3: result = XmTextPaste (text_w);break
case 4: XmTextClearSelection (text_w, cbs->event->xbutton.time);
break;

}

if (result == False)
XmTextSetString (status, "There is no selection.");

else
XmTextSetString (status, NULL);

}

See Also
XmTextCopy (1), XmTextCopyLink (1), XmTextCut (1),
XmTextGetSelection (1), XmTextGetSelectionPosition (1),
XmTextGetSelectionWcs (1), XmTextSetSelection (1), XmText (2),
XmTextField (2).

XmTextCopy Motif Functions and Macros

440 Motif Reference Manual

Name
XmTextCopy, XmTextFieldCopy – copy the primary selection to the clipboard.

Synopsis

#include <Xm/Text.h>

Boolean XmTextCopy (Widget widget, Time time)

#include <Xm/TextF.h>

Boolean XmTextFieldCopy (Widget widget, Time time)

Inputs
widget Specifies the Text or TextField widget.
time Specifies the time of the event that caused the request.

Returns
True on success or False otherwise.

Description
XmTextCopy () and XmTextFieldCopy () copy the primary selection in the
specified widget to the clipboard. XmTextCopy () works when widget is a Text
widget or a TextField widget, while XmTextFieldCopy () only works for a
TextField widget. For each routine, time specifies the server time of the event that
caused the request to copy the selection. Both routines return True if successful.
If the primary selection is NULL, if it is not owned by the specified widget, or if
the function cannot obtain ownership of the clipboard selection, the routines
return False.

In Motif 2.0 and later, XmTextCopy () interfaces with the Uniform Transfer
Model by indirectly invoking the XmNconvertCallback procedures of the widget.

Usage
XmTextCopy () and XmTextFieldCopy () copy the text that is selected in a
Text or TextField widget and place it on the clipboard. If you are calling one of
these routines from a callback routine, you probably want to use the time field
from the event pointer in the callback structure as the value of the time parameter.
You can also use the value CurrentTime, but there is no guarantee that using this
time prevents race conditions between multiple clients that are trying to use the
clipboard.

Example
The following callback routine for the items on an Edit menu (Cut, Copy, Link ,
Paste, PasteLink, and Clear) shows the use of XmTextCopy ():

Widget text_w, status;

Motif Functions and Macros XmTextCopy

Motif Reference Manual 441

void cut_paste (Widget widget, XtPointer client_data, XtPointer call_data)
{

int num = (int) client_data;
XmAnyCallbackStruct*cbs = (XmAnyCallbackStruct *) call_data;
Boolean result = True;

switch (num) {
case 0: result = XmTextCut (text_w, cbs->event->xbutton.time);break;
case 1: result = XmTextCopy (text_w, cbs->event->xbutton.time);
break;
case 2: result = XmTextCopyLink (text_w, cbs->event->xbutton.time);
break;
case 3: result = XmTextPaste (text_w);break;
case 4: result = XmTextPasteLink (text_w);break;
case 5: XmTextClearSelection (text_w, cbs->event->xbutton.time);
break;

}

if (result == False)
XmTextSetString (status, "There is no selection.");

else
XmTextSetString (status, NULL);

}

See Also
XmTextClearSelection (1), XmTextCopyLink (1), XmTextCut (1),
XmTextGetSelection (1), XmTextGetSelectionWcs (1),
XmTextPaste (1), XmTextPasteLink (1), XmTextRemove(1),
XmTextSetSelection (1), XmText (2), XmTextField (2).

XmTextCopyLink Motif Functions and Macros

442 Motif Reference Manual

Name
XmTextCopyLink, XmTextFieldCopyLink – copy the primary selection to the
clipboard.

Synopsis

#include <Xm/Text.h>

Boolean XmTextCopyLink (Widget widget, Time time)

#include <Xm/TextF.h>

Boolean XmTextFieldCopyLink (Widget widget, Time time)

Inputs
widget Specifies the Text or TextField widget.
time Specifies the time of the event that caused the request.

Returns
True on success or False otherwise.

Availability
Motif 2.0 and later.

Description
XmTextCopyLink () and XmTextFieldCopyLink () copy a link to the pri-
mary selection in the specified widget to the clipboard. XmTextCopyLink ()
works when widget is a Text widget or a TextField widget, while XmText-
FieldCopyLink () only works for a TextField widget. For each routine, time
specifies the server time of the event that caused the request to copy the selection.
Both routines return True if successful. If the primary selection is NULL, if it is
not owned by the specified widget, or if the function cannot obtain ownership of
the clipboard selection, the routines return False.

XmTextCopyLink () and XmTextFieldCopyLink () interface with the Uni-
form Transfer Model by indirectly invoking XmNconvertCallback procedures for
the widget. The Text widget itself does not copy links: convert procedures which
the programmer provides are responsible for copying the link to the clipboard.

Usage

XmTextCopyLink () and XmTextFieldCopyLink () copy links to the text
that is selected in a Text or TextField widget and place it on the clipboard. If you
are calling one of these routines from a callback routine, you probably want to
use the time field from the event pointer in the callback structure as the value of
the time parameter. You can also use the value CurrentTime, but there is no guar-
antee that using this time prevents race conditions between multiple clients that
are trying to use the clipboard.

Motif Functions and Macros XmTextCopyLink

Motif Reference Manual 443

Example
The following callback routine for the items on an Edit menu (Cut, Copy, Link ,
Paste, PasteLink, and Clear) shows the use of XmTextCopyLink ():

Widget text_w, status;

void cut_paste (Widget widget, XtPointer client_data, XtPointer call_data)
{
int num = (int) client_data;
XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;
Boolean result = True;

switch (num) {
case 0: result = XmTextCut (text_w, cbs->event->xbutton.time);break;
case 1: result = XmTextCopy (text_w, cbs->event->xbutton.time);
break;
case 2: result = XmTextCopyLink (text_w, cbs->event->xbutton.time);
break;
case 3: result = XmTextPaste (text_w);break;
case 4: result = XmTextPasteLink (text_w);break;
case 5: XmTextClearSelection (text_w, cbs->event->xbutton.time);
break;

}

if (result == False)
XmTextSetString (status, "There is no selection.");

else
XmTextSetString (status, NULL);

}

See Also
XmTextClearSelection (1), XmTextCopy (1), XmTextCut (1),
XmTextGetSelection (1), XmTextGetSelectionWcs (1),
XmTextPaste (1), XmTextPasteLink (1), XmTextRemove(1),
XmTextSetSelection (1), XmText (2), XmTextField (2).

XmTextCut Motif Functions and Macros

444 Motif Reference Manual

Name
XmTextCut, XmTextFieldCut – copy the primary selection to the clipboard and
remove the selected text.

Synopsis

#include <Xm/Text.h>

Boolean XmTextCut (Widget widget, Time time)

#include <Xm/TextF.h>

Boolean XmTextFieldCut (Widget widget, Time time)

Inputs
widget Specifies the Text or TextField widget.
time Specifies the time of the event that caused the request.

Returns
True on success or False otherwise.

Description
XmTextCut () and XmTextFieldCut () copy the primary selection in the
specified widget to the clipboard and then delete the primary selection.
XmTextCut () works when widget is a Text widget or a TextField widget, while
XmTextFieldCut () only works for a TextField widget. For each routine, time
specifies the server time of the event that caused the request to cut the selection.
Both routines return True if successful. If the widget is not editable, if the pri-
mary selection is NULL or if it is not owned by the specified widget, or if the
function cannot obtain ownership of the clipboard selection, the routines return
False.

XmTextCut () and XmTextFieldCut () also invoke the callback routines for
the XmNvalueChangedCallback, the XmNmodifyVerifyCallback, and the XmN-
modifyVerifyCallbackWcs callbacks for the specified widget. If both verification
callbacks are present, the XmNmodifyVerifyCallback procedures are invoked
first and the results are passed to the XmNmodifyVerifyCallbackWcs procedures.

In Motif 2.0 and later, XmTextCut () interfaces with the Uniform Transfer
Model by indirectly invoking the XmNconvertCallback procedures of the widget,
firstly to transfer the selection to the clipboard, and secondly to delete the selec-
tion.

Usage
XmTextCut () and XmTextFieldCut () copy the text that is selected in a Text
or TextField widget, place it on the clipboard, and then delete the selected text. If
you are calling one of these routines from a callback routine, you probably want

Motif Functions and Macros XmTextCut

Motif Reference Manual 445

to use the time field from the event pointer in the callback structure as the value
of the time parameter. You can also use the value CurrentTime, but there is no
guarantee that using this time prevents race conditions between multiple clients
that are trying to use the clipboard.

Example
The following callback routine for the items on an Edit menu (Cut, Copy, Link ,
Paste, and PasteLink, Clear) shows the use of XmTextCut ():

Widget text_w, status;

void cut_paste (Widget widget, XtPointer client_data, XtPointer call_data)
{

int num = (int) client_data;
XmAnyCallbackStruct*cbs = (XmAnyCallbackStruct *) call_data;
Boolean result = True;

switch (num) {
case 0: result = XmTextCut (text_w, cbs->event->xbutton.time);break;
case 1: result = XmTextCopy (text_w, cbs->event->xbutton.time);
break;
case 2: result = XmTextCopyLink (text_w, cbs->event->xbutton.time);
break;
case 3: result = XmTextPaste (text_w);break;
case 4: result = XmTextPasteLink (text_w);break;
case 5: XmTextClearSelection (text_w, cbs->event->xbutton.time);
break;

}

if (result == False)
XmTextSetString (status, "There is no selection.");

else
XmTextSetString (status, NULL);

}

See Also
XmTextClearSelection (1), XmTextCopy (1), XmTextCopyLink (1),
XmTextGetSelection (1), XmTextGetSelectionWcs (1),
XmTextPaste (1), XmTextPasteLink (1), XmTextRemove(1),
XmTextSetSelection (1), XmText (2), XmTextField (2).

XmTextDisableRedisplay Motif Functions and Macros

446 Motif Reference Manual

Name
XmTextDisableRedisplay – prevent visual update of a Text widget.

Synopsis

#include <Xm/Text.h>

void XmTextDisableRedisplay (Widget widget)

Inputs
widget Specifies the Text widget.

Availability
Motif 1.2 and later.

Description
XmTextDisableRedisplay () temporarily inhibits visual update of the spec-
ified Text widget. Even if the visual attributes of the widget have been modified,
the appearance remains unchanged until XmTextEnableRedisplay () is
called.

Usage
XmTextDisableRedisplay () and XmTextEnableRedisplay () allow
an application to make multiple changes to a Text widget without immediate vis-
ual updates. When multiple changes are made with redisplay enabled, visual
flashing often occurs. These routines eliminate this problem.

See Also
XmTextEnableRedisplay (1), XmUpdateDisplay (1), XmText (2).

Motif Functions and Macros XmTextEnableRedisplay

Motif Reference Manual 447

Name
XmTextEnableRedisplay – allow visual update of a Text widget.

Synopsis
#include <Xm/Text.h>

void XmTextEnableRedisplay (Widget widget)

Inputs
widget Specifies the Text widget.

Availability
Motif 1.2 and later.

Description
XmTextEnableRedisplay () allows the specified Text widget to update its
visual appearance. This routine is used in conjunction with XmTextDisable-
Redisplay (), which prevents visual update of the Text widget. When XmTex-
tEnableRedisplay () is called, the widget modifies its visuals to reflect all of
the changes since the last call to XmTextDisableRedisplay (). All future
changes that affect the visual appearance are displayed immediately.

Usage
XmTextDisableRedisplay () and XmTextEnableRedisplay () allow
an application to make multiple changes to a Text widget without immediate vis-
ual updates. When multiple changes are made with redisplay enabled, visual
flashing often occurs. These routines eliminate this problem.

See Also
XmTextDisableRedisplay (1), XmUpdateDisplay (1), XmText *(s2.

XmTextFindString Motif Functions and Macros

448 Motif Reference Manual

Name

XmTextFindString – find the beginning position of a text string.

Synopsis

#include <Xm/Xm.h>

Boolean XmTextFindString (Widget widget,
XmTextPosition start,
char *string,
XmTextDirection direction,
XmTextPosition *position)

Inputs
widget Specifies the Text widget.
start Specifies the position from which the search begins.
string Specifies the string for which to search.
direction Specifies the direction of the search. Pass either

XmTEXT_FORWARD or XmTEXT_BACKWARD.

Outputs
position Returns the position where the search string starts.

Returns
True if the string is found or False otherwise.

Availability
Motif 1.2 and later.

Description
XmTextFindString () finds the beginning position of the specified string in
the Text widget. Depending on the value of direction, the routine searches for-
ward or backward from the specified start position for the first occurrence of
string. If XmTextFindString () finds a match, it returns True and position
specifies the position of the first character of the string as the number of charac-
ters from the beginning of the text, where the first character position is 0 (zero). If
a match is not found, the routine returns False and the value of position is unde-
fined.

Usage
XmTextFindString () is a convenience routine that searches the text in a Text
widget for a particular string. Without the routine, the search must be performed
using the standard string manipulation routines.

Motif Functions and Macros XmTextFindString

Motif Reference Manual 449

Example
The following routine shows the use of XmTextFindString () to locate a
string in a text editing window. The search string is specified by the user in a sin-
gle-line Text widget:

Widget text_w, search_w;

void search_text (void)
{

char *search_pat = (char *) 0;
XmTextPosition pos, search_pos;
Boolean found = False;

if (!(search_pat = XmTextGetString (search_w)) || !*search_pat) {
XtFree (search_pat);
return;

}

/* find next occurrence from current position -- wrap if necessary */
pos = XmTextGetCursorPosition (text_w);
found = XmTextFindString (text_w, pos, search_pat,
XmTEXT_FORWARD, &search_pos);

if (!found)
found = XmTextFindString (text_w, 0, search_pat,
XmTEXT_FORWARD, &search_pos);

if (found)
XmTextSetInsertionPosition (text_w, search_pos);

XtFree (search_pat);
}

See Also
XmTextFindStringWcs (1), XmTextGetSubstring (1),
XmTextGetSubstringWcs (1), XmText (2).

Motif Functions and Macros

Motif Reference Manual 450

Name
XmTextFindStringWcs – find the beginning position of a wide-character string in
a Text widget.

Synopsis

#include <Xm/Text.h>

Boolean XmTextFindStringWcs (Widget widget,
XmTextPosition start,
wchar_t *wcstring,
XmTextDirection direction,
XmTextPosition *position)

Inputs
widget Specifies the Text widget.
start Specifies the position from which the search begins.
wcstring Specifies the wide-character string for which to search.
direction Specifies the direction of the search. Pass either

XmTEXT_FORWARD or XmTEXT_BACKWARD.

Outputs
position Returns the position where the search string starts.

Returns
True if the string is found or False otherwise.

Availability
Motif 1.2 and later.

Description
XmTextFindStringWcs () finds the beginning position of the specified wide-
character wcstring in the Text widget. Depending on the value of direction, the
routine searches forward or backward from the specified start position for the
first occurrence of wcstring. If XmTextFindStringWcs () finds a match, it
returns True and position specifies the position of the first character of the string
as the number of characters from the beginning of the text, where the first charac-
ter position is 0 (zero). If a match is not found, the routine returns False and the
value of position is undefined.

Usage
In Motif 1.2, the Text widget supports wide-character strings. XmTextFind-
StringWcs () is a convenience routine that searches the text in a Text widget for
a particular wide-character string. The routine converts the wide-character string
into a multi-byte string and then performs the search. Without the routine, the
search must be performed using the standard string manipulation routines.

Motif Functions and Macros

Motif Reference Manual 451

See Also
XmTextFindString (1), XmTextGetSubstring (1),
XmTextGetSubstringWcs (1), XmText (2).

Motif Functions and Macros

Motif Reference Manual 452

Name
XmTextGetBaseline, XmTextFieldGetBaseline – get the position of the baseline.

Synopsis

#include <Xm/Text.h>

int XmTextGetBaseline (Widget widget)

#include <Xm/TextF.h>

int XmTextFieldGetBaseline (Widget widget)

Inputs
widget Specifies the Text or TextField widget.

Returns
The baseline position.

Description
XmTextGetBaseline () returns the y coordinate of the baseline of the first
line of text in the specified Text widget, while XmTextFieldGetBaseline ()
returns the y coordinate of the baseline for the text in the specified TextField
widget. XmTextGetBaseline () works when widget is a Text widget or a
TextField widget, while XmTextFieldGetBaseline () only works for a Tex-
tField widget. For each routine, the returned value is relative to the top of the
widget and it accounts for the margin height, shadow thickness, highlight thick-
ness, and font ascent of the first font in the font list.

Usage
XmTextGetBaseline () and XmTextFieldGetBaseline () provide infor-
mation that is useful when you are laying out an application and trying to align
different components.

See Also
XmTextGetCenterline (1), XmWidgetGetBaselines (1),
XmWidgetGetDisplayRect (1), XmText (2), XmTextField (2).

Motif Functions and Macros

Motif Reference Manual 453

Name
XmTextGetCenterline – get the height of vertical text.

Synopsis

#include <Xm/Text.h>

int XmTextGetCenterline (Widget widget)

Inputs
widget Specifies the Text widget.

Returns
The center line x position.

Availability
Motif 2.1 and later.

Description
XmTextGetCenterline () calculates the x coordinate of the centerline in a
Text widget containing vertical text. If the layout direction of the Text widget
does not match XmTOP_TO_BOTTOM_RIGHT_TO_LEFT the function returns
zero. Otherwise the procedure calculates the x position of the centerline relative
to the left of the Text. The margin width, shadow thickness, and the width of the
font are taken into consideration when performing the calculation.

Usage
XmTextGetCenterline () provides information that is useful when you are
laying out an application and trying to align different components.

See Also
XmTextGetBaseline (1), XmWidgetGetCenterlines (1),
XmWidgetGetDisplayRect (1), XmText (2), XmTextField (2).

Motif Functions and Macros

Motif Reference Manual 454

Name
XmTextGetCursorPosition, XmTextFieldGetCursorPosition – get the position of
the insertion cursor.

Synopsis

#include <Xm/Text.h>

XmTextPosition XmTextGetCursorPosition (Widget widget)

#include <Xm/TextF.h>

XmTextPosition XmTextFieldGetCursorPosition (Widget widget)

Inputs
widget Specifies the Text or TextField widget.

Returns
The value of the XmNcursorPosition resource.

Description
XmTextGetCursorPosition () and XmTextFieldGetCursorPosi-
tion () return the value of the XmNcursorPosition resource for the specified
widget. XmTextGetCursorPosition () works when widget is a Text
widget or a TextField widget, while XmTextFieldGetCursorPosition ()
only works for a TextField widget. For each routine, the value specifies the loca-
tion of the insertion cursor as the number of characters from the beginning of the
text, where the first character position is 0 (zero).

Usage
XmTextGetCursorPosition () and XmTextFieldGetCursorPosi-
tion () are convenience routines that return the value of the XmNcursorPosition
resource for a Text or TextField widget. Calling one of the routines is equivalent
to calling XtGetValues () for the resource, although the routines access the
value through the widget instance structures rather than through XtGetVal-
ues ().

See Also
XmTextGetInsertionPosition (1),
XmTextSetCursorPosition (1),
XmTextSetInsertionPosition (1), XmTextShowPosition (1),
XmText (2), XmTextField (2).

Motif Functions and Macros

Motif Reference Manual 455

Name
XmTextGetEditable, XmTextFieldGetEditable – get the edit permission state.

Synopsis

#include <Xm/Text.h>

Boolean XmTextGetEditable (Widget widget)

#include <Xm/TextF.h>

Boolean XmTextFieldGetEditable (Widget widget)

Inputs
widget Specifies the Text or TextField widget.

Returns
The state of the XmNeditable resource.

Description
XmTextGetEditable () and XmTextFieldGetEditable () return the
value of the XmNeditable resource for the specified Text or TextField widget.
XmTextGetEditable () works when widget is a Text widget or a TextField
widget, while XmTextFieldGetEditable () only works for a TextField
widget.

Usage
By default, the XmNeditable resource is True, which means that a user can edit
the text string. Setting the resource to False makes a text area read-only.
XmTextGetEditable () and XmTextFieldGetEditable () are conven-
ience routines that return the value of the XmNeditable resource for a Text or
TextField widget. Calling one of the routines is equivalent to calling XtGet-
Values () for the resource, although the routines access the value through the
widget instance structures rather than through XtGetValues ().

See Also
XmTextSetEditable (1), XmText (2), XmTextField (2).

Motif Functions and Macros

Motif Reference Manual 456

Name
XmTextGetInsertionPosition, XmTextFieldGetInsertionPosition – get the posi-
tion of the insertion cursor.

Synopsis

#include <Xm/Text.h>

XmTextPosition XmTextGetInsertionPosition (Widget widget)

#include <Xm/TextF.h>

XmTextPosition XmTextFieldGetInsertionPosition (Widget widget)

Inputs
widget Specifies the Text or TextField widget.

Returns
The value of the XmNcursorPosition resource.

Description
The functions, XmTextGetInsertionPosition () and XmTextFieldG-
etInsertionPosition (), return the value of the XmNcursorPosition
resource for the specified widget. XmTextGetInsertionPosition () works
when widget is a Text widget or a TextField widget, while XmTextFieldGet-
InsertionPosition () only works for a TextField widget. For each routine,
the value specifies the location of the insertion cursor as the number of characters
from the beginning of the text, where the first character position is 0 (zero).

Usage
The functions, XmTextGetInsertionPosition () and XmTextFieldG-
etInsertionPosition (), are convenience routines that return the value of
the XmNcursorPosition resource for a Text or TextField widget. Calling one of
the routines is equivalent to calling XtGetValues () for the resource, although
the routines access the value through the widget instance structures rather than
through XtGetValues ().

See Also
XmTextGetCursorPosition (1),
XmTextSetInsertionPosition (1),
XmTextSetCursorPosition (1), XmTextShowPosition (1),
XmText (2), XmTextField (2).

Motif Functions and Macros

Motif Reference Manual 457

Name
XmTextGetLastPosition, XmTextFieldGetLastPosition – get the position of the
last character of text.

Synopsis

#include <Xm/Text.h>

XmTextPosition XmTextGetLastPosition (Widget widget)

#include <Xm/TextF.h>

XmTextPosition XmTextFieldGetLastPosition (Widget widget)

Inputs
widget Specifies the Text or TextField widget.

Returns
The position of the last text character.

Description
XmTextGetLastPosition () and XmTextFieldGetLastPosition ()
return the position of the last character of text in the specified widget. XmText-
GetLastPosition () works when widget is a Text widget or a TextField
widget, while XmTextFieldGetLastPosition () only works for a Text-
Field widget. For each routine, the returned value specifies the position as the
number of characters from the beginning of the text, where the first character
position is 0 (zero).

Usage
XmTextGetLastPosition () and XmTextFieldGetLastPosition ()
are convenience routines that return the number of characters of text in a Text or
TextField widget.

See Also
XmTextGetCursorPosition (1),
XmTextGetInsertionPosition (1), XmTextGetTopCharacter (1),
XmTextScroll (1), XmTextSetCursorPosition (1),
XmTextSetInsertionPosition (1), XmTextSetTopCharacter (1),
XmTextShowPosition (1), XmText (2), XmTextField (2).

Motif Functions and Macros

Motif Reference Manual 458

Name
XmTextGetMaxLength, XmTextFieldGetMaxLength – get the maximum possi-
ble length of a text string.

Synopsis

#include <Xm/Text.h>

int XmTextGetMaxLength (Widget widget)

#include <Xm/TextF.h>

int XmTextFieldGetMaxLength (Widget widget)

Inputs
widget Specifies the Text or TextField widget.

Returns
The value of the XmNmaxLength resource.

Description
XmTextGetMaxLength () and XmTextFieldGetMaxLength () return the
value of the XmNmaxLength resource for the specified Text or TextField widget.
XmTextGetMaxLength () works when widget is a Text widget or a TextField
widget, while XmTextFieldGetMaxLength () only works for a TextField
widget. For each routine, the returned value specifies the maximum allowable
length of a text string that a user can enter from the keyboard.

Usage
XmTextGetMaxLength () and XmTextFieldGetMaxLength () are con-
venience routines that return the value of the XmNmaxLength resource for a Text
or TextField widget. Calling one of the routines is equivalent to calling XtGet-
Values () for the resource, although the routines access the value through the
widget instance structures rather than through XtGetValues ().

See Also
XmTextSetMaxLength (1), XmText (2), XmTextField (2).

Motif Functions and Macros

Motif Reference Manual 459

Name
XmTextGetSelection, XmTextFieldGetSelection – get the value of the primary
selection.

Synopsis

#include <Xm/Text.h>

char * XmTextGetSelection (Widget widget)

#include <Xm/TextF.h>

char * XmTextFieldGetSelection (Widget widget)

Inputs
widget Specifies the Text or TextField widget.

Returns
A string containing the primary selection.

Description
XmTextGetSelection () and XmTextFieldGetSelection () return a
pointer to a character string containing the primary selection in the specified
widget. XmTextGetSelection () works when widget is a Text widget or a
TextField widget, while XmTextFieldGetSelection () only works for a
TextField widget. For each routine, if no text is selected in the widget, the
returned value is NULL. Storage for the returned string is allocated by the routine
and should be freed by calling XtFree (). Management of the allocated memory
is the responsibility of the application.

Usage
XmTextGetSelection () and XmTextFieldGetSelection () provide a
convenient way to get the current selection from a Text or TextField widget.

See Also
XmTextGetSelectionPosition (1), XmTextGetSelectionWcs (1),
XmTextSetSelection (1), XmText (2), XmTextField (2).

Motif Functions and Macros

Motif Reference Manual 460

Name
XmTextGetSelectionPosition, XmTextFieldGetSelectionPosition – get the posi-
tion of the primary selection.

Synopsis

#include <Xm/Text.h>

Boolean XmTextGetSelectionPosition (Widget widget,
XmTextPosition *left,
XmTextPosition *right)

#include <Xm/TextF.h>

Boolean XmTextFieldGetSelectionPosition (Widget widget,
XmTextPosition *left,
XmTextPosition *right)

Inputs
widget Specifies the Text or TextField widget.

Outputs
left Returns the position of the left boundary of the primary selection.
right Returns the position of the right boundary of the primary selection.

Returns
True if widget owns the primary selection or False otherwise.

Description
The functions, XmTextGetSelectionPosition () and XmTextFieldG-
etSelectionPosition () return the left and right boundaries of the primary
selection for the specified widget. XmTextGetSelectionPosition ()
works when widget is a Text widget or a TextField widget, while XmText-
FieldGetSelectionPosition () only works for a TextField widget. Each
boundary value specifies the position as the number of characters from the begin-
ning of the text, where the first character position is 0 (zero). Each routine returns
True if the specified Text or TextField widget owns the primary selection; other-
wise, the routine returns False and the values of left and right are undefined.

Usage
The functions, XmTextGetSelectionPosition () and XmTextFieldG-
etSelectionPosition (), provide a convenient way to get the position of
the current selection from a Text or TextField widget.

See Also
XmTextGetSelection (1), XmTextGetSelectionWcs (1),
XmTextSetSelection (1), XmText (2), XmTextField (2).

Motif Functions and Macros

Motif Reference Manual 461

Name
XmTextGetSelectionWcs, XmTextFieldGetSelectionWcs – get the wide-charac-
ter value of the primary selection.

Synopsis

#include <Xm/Text.h>

wchar_t * XmTextGetSelectionWcs (Widget widget)

#include <Xm/TextF.h>

wchar_t * XmTextFieldGetSelectionWcs (Widget widget)

Inputs
widget Specifies the Text or TextField widget.

Returns
A wide-character string containing the primary selection.

Availability
Motif 1.2 and later.

Description
XmTextGetSelectionWcs () and XmTextFieldGetSelectionWcs ()
return a pointer to a wide-character string containing the primary selection in the
specified widget. XmTextGetSelectionWcs () works when widget is a Text
widget or a TextField widget, while XmTextFieldGetSelectionWcs ()
only works for a TextField widget. For each routine, if no text is selected in the
widget, the returned value is NULL. Storage for the returned wide-character
string is allocated by the routine and should be freed by calling XtFree (). Man-
agement of the allocated memory is the responsibility of the application.

Usage
In Motif 1.2, the Text and TextField widgets support wide-character strings.
XmTextGetSelectionWcs () and XmTextFieldGetSelectionWcs ()
provide a convenient way to get the current selection in wide-character format
from a Text or TextField widget.

See Also
XmTextGetSelection (1), XmTextGetSelectionPosition (1),
XmTextSetSelection (1), XmText (2), XmTextField (2).

Motif Functions and Macros

Motif Reference Manual 462

Name
XmTextGetSource – get the text source.

Synopsis

#include <Xm/Text.h>

XmTextSource XmTextGetSource (Widget widget)

Inputs
widget Specifies the Text widget.

Returns
The source of the Text widget.

Description
XmTextGetSource () returns the source of the specified Text widget. Every
Text widget has an XmTextSource data structure associated with it that functions
as the text source and sink.

Usage
Multiple text widgets can share the same text source, which means that editing in
one of the widgets is reflected in all of the others. XmTextGetSource ()
retrieves the source for a widget; this source can then be used to set the source of
another Text widget using XmTextSetSource (). XmTextGetSource () is a
convenience routine that returns the value of the XmNsource resource for the
Text widget. Calling the routine is equivalent to calling XtGetValues () for the
resource, although the routine accesses the value through the widget instance
structures rather than through XtGetValues ().

See Also
XmTextSetSource (1), XmText (2).

Motif Functions and Macros

Motif Reference Manual 463

Name
XmTextGetString, XmTextFieldGetString – get the text string.

Synopsis

#include <Xm/Text.h>

char * XmTextGetString (Widget widget)

#include <Xm/TextF.h>

char * XmTextFieldGetString (Widget widget)

Inputs
widget Specifies the Text or TextField widget.

Returns
A string containing the value of the Text or TextField widget.

Description
XmTextGetString () and XmTextFieldGetString () return a pointer to a
character string containing the value of the specified widget. XmTextGet-
String () works when widget is a Text widget or a TextField widget, while
XmTextFieldGetString () only works for a TextField widget. For each
routine, if the string has a length of 0 (zero), the returned value is the empty
string. Storage for the returned string is allocated by the routine and should be
freed by calling XtFree (). Management of the allocated memory is the respon-
sibility of the application.

Usage
XmTextGetString () and XmTextFieldGetString () are convenience
routines that return the value of the XmNvalue resource for a Text or TextField
widget. Calling one of the routines is equivalent to calling XtGetValues () for
the resource, although the routines access the value through the widget instance
structures rather than through XtGetValues ().

In Motif 1.2, the Text and TextField widgets support wide-character strings. The
resource XmNvalueWcs can be used to set the value of a Text or TextField
widget to a wide-character string. Even if you set the XmNvalueWcs resource,
you can still use XmTextGetString () or XmTextFieldGetString () to
retrieve the value of the widget, since the value is stored internally as a multi-byte
string.

Motif Functions and Macros

Motif Reference Manual 464

Example
The following routine shows the use of XmTextGetString () to retrieve the
text from one Text widget and use the text to search for the string in another Text
widget:

Widget text_w, search_w;

void search_text (void)
{

char *search_pat;
XmTextPosition pos, search_pos;
Boolean found = False;

if (!(search_pat = XmTextGetString (search_w)) || !*search_pat) {
XtFree (search_pat);
return;

}

/* find next occurrence from current position -- wrap if necessary */
pos = XmTextGetCursorPosition (text_w);
found = XmTextFindString (text_w, pos, search_pat,
XmTEXT_FORWARD, &search_pos);

if (!found)
found = XmTextFindString (text_w, 0, search_pat,
XmTEXT_FORWARD, &search_pos);

if (found)
XmTextSetInsertionPosition (text_w, search_pos);
XtFree (search_pat);

}

See Also
XmTextGetStringWcs (1), XmTextGetSubstring (1),
XmTextGetSubstringWcs (1), XmTextSetString (1),
XmTextSetStringWcs (1), XmText (2), XmTextField (2).

Motif Functions and Macros

Motif Reference Manual 465

Name
XmTextGetStringWcs, XmTextFieldGetStringWcs – get the wide-character text
string.

Synopsis

#include <Xm/Text.h>

wchar_t * XmTextGetStringWcs (Widget widget)

#include <Xm/TextF.h>

wchar_t * XmTextFieldGetStringWcs (Widget widget)

Inputs
widget Specifies the Text or TextField widget.

Returns
A wide-character string containing the value of the Text or TextField widget.

Availability
Motif 1.2 and later.

Description
XmTextGetStringWcs () and XmTextFieldGetStringWcs () return a
pointer to a wide-character string containing the value of the specified widget.
XmTextGetStringWcs () works when widget is a Text widget or a TextField
widget, while XmTextFieldGetStringWcs () only works for a TextField
widget. For each routine, if the string has a length of 0 (zero), the returned value
is the empty string. Storage for the returned wide-character string is allocated by
the routine and should be freed by calling XtFree (). Management of the allo-
cated memory is the responsibility of the application.

Usage
XmTextGetStringWcs () and XmTextFieldGetStringWcs () are con-
venience routines that return the value of the XmNvalueWcs resource for a Text
or TextField widget. Calling one of the routines is equivalent to calling XtGet-
Values () for the resource, although the routines access the value through the
widget instance structures rather than through XtGetValues ().

In Motif 1.2, the Text and TextField widgets support wide-character strings. The
resource XmNvalueWcs can be used to set the value of a Text or TextField
widget to a wide-character string. Even if you use the XmNvalue resource to set
the value of a widget, you can still use XmTextGetStringWcs () or XmText-
FieldGetStringWcs () to retrieve the value of the widget, since the value can
be converted to a wide-character string.

Motif Functions and Macros

Motif Reference Manual 466

See Also
XmTextGetString (1), XmTextGetSubstring (1),
XmTextGetSubstringWcs (1), XmTextSetString (1),
XmTextSetStringWcs (1), XmText (2), XmTextField (2).

Motif Functions and Macros

Motif Reference Manual 467

Name
XmTextGetSubstring, XmTextFieldGetSubstring – get a copy of part of the text
string.

Synopsis

#include <Xm/Text.h>

int XmTextGetSubstring (Widget widget,
XmTextPosition start,
int num_chars,
int buffer_size,
char *buffer)

#include <Xm/TextF.h>

int XmTextFieldGetSubstring (Widget widget,
XmTextPosition start,
int num_chars,
int buffer_size,
char *buffer)

Inputs
widget Specifies the Text or TextField widget.
start Specifies the starting character position from which data is copied.
num_chars Specifies the number of characters that are copied.
buffer_size Specifies the size of buffer.
buffer Specifies the character buffer where the copy is stored.

Returns
XmCOPY_SUCCEEDED on success, XmCOPY_TRUNCATED if fewer than
num_chars are copied, or XmCOPY_FAILED on failure.

Availability
Motif 1.2 and later.

Description
XmTextGetSubstring () and XmTextFieldGetSubstring () get a copy
of part of the internal text buffer for the specified widget. XmTextGetSub-

string ()1 works when widget is a Text widget or a TextField widget, while

XmTextFieldGetSubstring ()2 only works for a TextField widget. The
routines copy num_chars characters starting at start position, which specifies the

1.Erroneously given as XmTextGetString() in 1st and 2nd editions.

2.Erroneously given as XmTextFieldGetString() in 1st and 2nd editions.

Motif Functions and Macros

Motif Reference Manual 468

position as the number of characters from the beginning of the text, where the
first character position is 0 (zero). The characters are copied into the provided
buffer and are NULL-terminated.

XmTextGetSubstring () and XmTextFieldGetSubstring () return
XmCOPY_SUCCEEDED on success. If the specified num_chars does not fit in
the provided buffer, the routines return XmCOPY_TRUNCATED. In this case,
buffer contains as many characters as would fit plus a NULL terminator. If either
of the routines fails to make the copy, it returns XmCOPY_FAILED and the con-
tents of buffer are undefined.

Usage
XmTextGetSubstring () and XmTextFieldGetSubstring () provide a
convenient way to retrieve a portion of the text string in a Text or TextField
widget. The routines return the specified part of the XmNvalue resource for the
widget.

In Motif 1.2, the Text and TextField widgets support wide-character strings. The
resource XmNvalueWcs can be used to set the value of a Text or TextField
widget to a wide-character string. Even if you set the XmNvalueWcs resource,
you can still use XmTextGetSubstring () or XmTextFieldGetSub-
string () to retrieve part of the value of the widget, since the value is stored
internally as a multi-byte string.

The necessary buffer_size for XmTextGetSubstring () and XmText-
FieldGetSubstring () depends on the maximum number of bytes per char-
acter for the current locale. This information is stored in MB_CUR_MAX, a
macro defined in <stdlib.h>. The buffer needs to be large enough to store the sub-
string and a NULL terminator. You can use the following equation to calculate
the necessary buffer_size:

buffer_size = (num_chars * MB_CUR_MAX) + 1

See Also
XmTextGetString (1), XmTextGetStringWcs (1),
XmTextGetSubstringWcs (1), XmTextSetString (1),
XmTextSetStringWcs (1), XmText (2), XmTextField (2).

Motif Functions and Macros

Motif Reference Manual 469

Name
XmTextGetSubstringWcs, XmTextFieldGetSubstringWcs – get a copy of part of
the wide-character text string.

Synopsis

#include <Xm/Text.h>

int XmTextGetSubstringWcs (Widget widget,
XmTextPosition start,
int num_chars,
int buffer_size,
wchar_t *buffer)

#include <Xm/TextF.h>

int XmTextFieldGetSubstringWcs (Widget widget,
XmTextPosition start,
int num_chars,
int buffer_size,
wchar_t *buffer)

Inputs
widget Specifies the Text or TextField widget.
start Specifies the starting character position from which data is copied.
num_chars Specifies the number of wide-characters that are copied.
buffer_size Specifies the size of buffer.
buffer Specifies the wide-character buffer where the copy is stored.

Returns
XmCOPY_SUCCEEDED on success, XmCOPY_TRUNCATED if fewer than
num_chars are copied, or XmCOPY_FAILED on failure.

Availability
Motif 1.2 and later.

Description
XmTextGetSubstringWcs () and XmTextFieldGetSubstringWcs ()
get a copy of part of the internal wide-character text buffer for the specified
widget. XmTextGetSubstringWcs () works when widget is a Text widget or
a TextField widget, while XmTextFieldGetSubstringWcs () only works
for a TextField widget. The routines copy num_chars wide-characters starting at
start position, which specifies the position as the number of characters from the
beginning of the text, where the first character position is 0 (zero). The wide-
characters are copied into the provided buffer and are NULL-terminated.

Motif Functions and Macros

Motif Reference Manual 470

XmTextGetSubstringWcs () and XmTextFieldGetSubstringWcs ()
return XmCOPY_SUCCEEDED on success. If the specified num_chars does not
fit in the provided buffer, the routines return XmCOPY_TRUNCATED. In this
case, buffer contains as many wide-characters as would fit plus a NULL termina-
tor. If either of the routines fails to make the copy, it returns XmCOPY_FAILED
and the contents of buffer are undefined.

Usage
XmTextGetSubstringWcs () and XmTextFieldGetSubstringWcs ()
provide a convenient way to retrieve a portion of the wide-character text string in
a Text or TextField widget. The routines return the specified part of the XmNval-
ueWcs resource for the widget.

In Motif 1.2, the Text and TextField widgets support wide-character strings. The
resource XmNvalueWcs can be used to set the value of a Text or TextField
widget to a wide-character string. Even if you use the XmNvalue resource to set
the value of a widget, you can still use XmTextGetSubstringWcs() or XmText-
FieldGetSubstringWcs () to retrieve part of the value of the widget, since
the value can be converted to a wide-character string.

The necessary buffer_size for XmTextGetSubstringWcs () and XmText-
FieldGetSubstringWcs () is num_chars + 1.

See Also
XmTextGetString (1), XmTextGetStringWcs (1),
XmTextGetSubstring (1), XmTextSetString (1),
XmTextSetStringWcs (1), XmText (2), XmTextField (2).

Motif Functions and Macros

Motif Reference Manual 471

Name
XmTextGetTopCharacter – get the position of the first character of text that is
displayed.

Synopsis

#include <Xm/Text.h>

XmTextPosition XmTextGetTopCharacter (Widget widget)

Inputs
widget Specifies the Text widget.

Returns
The position of the first visible character.

Description
XmTextGetTopCharacter () returns the value of the XmNtopCharacter
resource for the specified Text widget. The returned value specifies the position
of the first visible character of text as the number of characters from the begin-
ning of the text, where the first character position in 0 (zero).

Usage
XmTextGetTopCharacter () is a convenience routine that returns the value
of the XmNtopCharacter resource for a Text widget. Calling the routines is
equivalent to calling XtGetValues () for the resource, although the routines
accesses the value through the widget instance structures rather than through
XtGetValues ().

See Also
XmTextGetCursorPosition (1),
XmTextGetInsertionPosition (1), XmTextGetLastPosition (1),
XmTextScroll (1), XmTextSetCursorPosition (1),
XmTextSetInsertionPosition (1), XmTextSetTopCharacter (1),
XmTextShowPosition (1), XmText (2).

Motif Functions and Macros

Motif Reference Manual 472

Name
XmTextInsert, XmTextFieldInsert – insert a string into the text string.

Synopsis

#include <Xm/Text.h>

void XmTextInsert (Widget widget, XmTextPosition position, char *value)

#include <Xm/TextF.h>

void XmTextFieldInsert (Widget widget, XmTextPosition position, char *string)

Inputs
widget Specifies the Text or TextField widget.
position Specifies the position at which the string is inserted.
string Specifies the string to be inserted.

Description
XmTextInsert () and XmTextFieldInsert () insert a text string in the
specified Text or TextField widget. XmTextInsert () works when widget is a
Text widget or a TextField widget, while XmTextFieldInsert () only works
for a TextField widget. The specified string is inserted at position, where charac-
ter positions are numbered sequentially, starting with 0 (zero) at the beginning of
the text. To insert a string after the nth character, use a position value of n.

XmTextInsert () and XmTextFieldInsert () also invoke the callback rou-
tines for the XmNvalueChangedCallback, the XmNmodifyVerifyCallback, and
the XmNmodifyVerifyCallbackWcs callbacks for the specified widget. If both
verification callbacks are present, the XmNmodifyVerifyCallback procedures are
invoked first and the results are passed to the XmNmodifyVerifyCallbackWcs
procedures.

Usage
XmTextInsert () and XmTextFieldInsert () provide a convenient means
of inserting text in a Text or TextField widget. The routines insert text by modify-
ing the value of the XmNvalue resource of the widget.

Example
The following routine shows the use of XmTextInsert () to insert a message
into a status Text widget:

Widget status;

void insert_text (char *message)
{

XmTextPosition curpos = XmTextGetInsertionPosition (status);

Motif Functions and Macros

Motif Reference Manual 473

XmTextInsert (status, curpos, message);

curpos = curpos + strlen (message);
XmTextShowPosition (status, curpos);
XmTextSetInsertionPosition (status, curpos);

}

See Also
XmTextInsertWcs (1), XmTextReplace (1), XmTextReplaceWcs (1),
XmText (2), XmTextField (2).

Motif Functions and Macros

Motif Reference Manual 474

Name
XmTextInsertWcs, XmTextFieldInsertWcs – insert a wide-character string into
the text string.

Synopsis

#include <Xm/Text.h>

void XmTextInsertWcs (Widget widget, XmTextPosition position, wchar_t

*wcstring)1

#include <Xm/TextF.h>

void XmTextFieldInsertWcs (Widget widget, XmTextPosition position, wchar_t
* wcstring)

Inputs
widget Specifies the Text or TextField widget.
position Specifies the position at which the string is inserted.
wcstring Specifies the wide-character string to be inserted.

Availability
Motif 1.2 and later.

Description
XmTextInsertWcs () and XmTextFieldInsertWcs () insert a wide-char-
acter text wcstring in the specified widget. XmTextInsertWcs () works when
widget is a Text widget or a TextField widget, while XmTextFieldInsert-

Wcs() only works for a TextField widget. The specified wcstring2 is inserted at
position, where character positions are numbered sequentially, starting with 0
(zero) at the beginning of the text. To insert a string after the nth character, use a
position value of n.

XmTextInsertWcs () and XmTextFieldInsertWcs () also invoke the call-
back routines for the XmNvalueChangedCallback, the XmNmodifyVerifyCall-
back, and the XmNmodifyVerifyCallbackWcs callbacks for the specified widget.
If both verification callbacks are present, the XmNmodifyVerifyCallback proce-
dures are invoked first and the results are passed to the XmNmodifyVerifyCall-
backWcs procedures.

1.Erroneously given as XmTextInsert() in 1st and 2nd editions.

2.Erroneously given as string in 1st and 2nd editions.

Motif Functions and Macros

Motif Reference Manual 475

Usage
In Motif 1.2, the Text and TextField widgets support wide-character strings.
XmTextInsertWcs () and XmTextFieldInsertWcs () provide a conven-
ient means of inserting a wide-character string in a Text or TextField widget. The
routines insert text by converting the wide-character string to a multi-byte string
and then modifying the value of the XmNvalue resource of the widget.

See Also
XmTextInsert (1), XmTextReplace (1), XmTextReplaceWcs (1),
XmText (2), XmTextField (2).

Motif Functions and Macros

Motif Reference Manual 476

Name
XmTextPaste, XmTextFieldPaste – insert the clipboard selection.

Synopsis

#include <Xm/Text.h>

Boolean XmTextPaste (Widget widget)

#include <Xm/TextF.h>

Boolean XmTextFieldPaste (Widget widget)

Inputs
widget Specifies the Text or TextField widget.

Returns
True on success or False otherwise.

Description
XmTextPaste () and XmTextFieldPaste () insert the clipboard selection at
the current position of the insertion cursor in the specified widget. XmText-
Paste () works when widget is a Text widget or a TextField widget, while
XmTextFieldPaste () only works for a TextField widget. If the insertion
cursor is within the current selection and the value of XmNpendingDelete is
True, the current selection is replaced by the clipboard selection. Both routines
return True if successful. If the widget is not editable or if the function cannot
obtain ownership of the clipboard selection, the routines return False.

In Motif 2.0 and later, XmTextPaste () interfaces with the Uniform Transfer
Model by indirectly invoking the XmNdestinationCallback procedures of the
widget.

XmTextPaste () and XmTextFieldPaste () also invoke the callback rou-
tines for the XmNvalueChangedCallback, the XmNmodifyVerifyCallback, and
the XmNmodifyVerifyCallbackWcs callbacks for the specified widget. If both
verification callbacks are present, the XmNmodifyVerifyCallback procedures are
invoked first and the results are passed to the XmNmodifyVerifyCallbackWcs
procedures.

Usage
XmTextPaste () and XmTextFieldPaste () get the current selection from
the clipboard and insert it at the location of the insertion cursor in the Text or
TextField widget.

Motif Functions and Macros

Motif Reference Manual 477

Example
The following callback routine for the items on an Edit menu (Cut, Copy, Link ,
Paste, PasteLink, and Clear) shows the use of XmTextPaste ():

Widget text_w, status;

void cut_paste (Widget widget, XtPointer client_data, XtPointer call_data)
{

int num = (int) client_data;
XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;
Boolean result = True;

switch (num) {
case 0: result = XmTextCut (text_w, cbs->event->xbutton.time);break;
case 1: result = XmTextCopy (text_w, cbs->event->xbutton.time);
break;
case 2: result = XmTextCopyLink (text_w, cbs->event->xbutton.time);
break;
case 3: result = XmTextPaste (text_w);break;
case 4: result = XmTextPasteLink (text_w);break;
case 5: XmTextClearSelection (text_w, cbs->event->xbutton.time);
break;

}

if (result == False)
XmTextSetString (status, "There is no selection.");

else
XmTextSetString (status, NULL);

}

See Also
XmTextCopy (1), XmTextCopyLink (1), XmTextCut (1),
XmTextPasteLink (1), XmText (2), XmTextField (2).

Motif Functions and Macros

Motif Reference Manual 478

Name
XmTextPasteLink, XmTextFieldPasteLink – insert the clipboard selection.

Synopsis

#include <Xm/Text.h>

Boolean XmTextPasteLink (Widget widget)

#include <Xm/TextF.h>

Boolean XmTextFieldPasteLink (Widget widget)

Inputs
widget Specifies the Text or TextField widget.

Returns
True on success or False otherwise.

Availability
Motif 2.0 and later.

Description
XmTextPasteLink () and XmTextFieldPasteLink () insert the clipboard
selection at the current position of the insertion cursor in the specified widget.
XmTextPasteLink () works when widget is a Text widget or a TextField
widget, while XmTextFieldPasteLink () only works for a TextField widget.
If the insertion cursor is within the current selection and the value of XmN-
pendingDelete is True, the current selection is replaced by the clipboard selec-
tion. Both routines return True if successful. If the widget is not editable or if the
function cannot obtain ownership of the clipboard selection, the routines return
False.

XmTextPasteLink () and XmTextFieldPasteLink () interface with the
Uniform Transfer Model by indirectly invoking the XmNdestinationCallback
procedures of the widget. The Text widget itself does not create links to the pri-
mary selection: destination callbacks provided by the programmer are responsi-
ble for performing any data transfer required.

XmTextPasteLink () and XmTextFieldPasteLink () also invoke the call-
back routines for the XmNvalueChangedCallback, the XmNmodifyVerifyCall-
back, and the XmNmodifyVerifyCallbackWcs callbacks for the specified widget.
If both verification callbacks are present, the XmNmodifyVerifyCallback proce-
dures are invoked first and the results are passed to the XmNmodifyVerifyCall-
backWcs procedures.

Motif Functions and Macros

Motif Reference Manual 479

Usage
XmTextPasteLink () and XmTextFieldPasteLink () get the current
selection from the clipboard and insert a link to it at the location of the insertion
cursor in the Text or TextField widget.

Example
The following callback routine for the items on an Edit menu (Cut, Copy, Link ,

Paste, PasteLink, and Clear) shows the use of XmTextPasteLink ()1:

Widget text_w, status;

void cut_paste (Widget widget, XtPointer client_data, XtPointer call_data)
{

int num = (int) client_data;
XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;
Boolean result = True;

switch (num) {
case 0: result = XmTextCut (text_w, cbs->event->xbutton.time);break;
case 1: result = XmTextCopy (text_w, cbs->event->xbutton.time);
break;
case 2: result = XmTextCopyLink (text_w, cbs->event->xbutton.time);
break;
case 3: result = XmTextPaste (text_w);break;
case 4: result = XmTextPasteLink (text_w);break;
case 5: XmTextClearSelection (text_w, cbs->event->xbutton.time);
break;

}

if (result == False)
XmTextSetString (status, "There is no selection.");

else
XmTextSetString (status, NULL);

}

See Also
XmTextCopy (1), XmTextCopyLink (1), XmTextCut (1),
XmTextPaste (1), XmText (2), XmTextField (2).

1.Erroneously given as XmTextPaste() in 1st and 2nd editions.

Motif Functions and Macros

Motif Reference Manual 480

Name
XmTextPosToXY, XmTextFieldPosToXY – get the x, y position of a character
position.

Synopsis

#include <Xm/Text.h>

Boolean XmTextPosToXY (Widget widget, XmTextPosition position, Position
*x, Position *y)

#include <Xm/TextF.h>

Boolean XmTextFieldPosToXY (Widget widget, XmTextPosition position, Posi-
tion *x, Position *y)

Inputs
widget Specifies the Text or TextField widget.
position Specifies the character position.

Outputs
x Returns the x-coordinate of the character position.
y Returns the y-coordinate of the character position.

Returns
True if the character position is displayed in the widget or False otherwise.

Description
XmTextPosToXY () and XmTextFieldPosToXY () return the x and y coordi-
nates of the character at the specified position within the specified widget.
XmTextPosToXY () works when widget is a Text widget or a TextField widget,
while XmTextFieldPosToXY () only works for a TextField widget. Charac-
ter positions are numbered sequentially, starting with 0 (zero) at the beginning of
the text. The returned coordinate values are specified relative to the upper-left
corner of widget. Both routines return True if the character at position is cur-
rently displayed in the widget. Otherwise, the routines return False and no values
are returned in the x and y arguments.

Usage
XmTextPosToXY () and XmTextFieldPosToXY () provide a way to deter-
mine the actual position of a character in a Text or TextField widget. This infor-
mation is useful if you need to perform additional event processing or draw
special graphics in the widget.

See Also
XmTextXYToPos (1), XmText (2), XmTextField (2).

Motif Functions and Macros

Motif Reference Manual 481

Name
XmTextRemove, XmTextFieldRemove – delete the primary selection.

Synopsis

#include <Xm/Text.h>

Boolean XmTextRemove (Widget widget)

#include <Xm/TextF.h>

Boolean XmTextFieldRemove (Widget widget)

Inputs
widget Specifies the Text or TextField widget.

Returns
True on success or False otherwise.

Description
XmTextRemove() and XmTextFieldRemove () delete the primary selected
text from the specified widget. XmTextRemove() works when widget is a Text
widget or a TextField widget, while XmTextFieldRemove () only works for a
TextField widget. Both routines return True if successful. If the widget is not
editable, if the primary selection is NULL, or if it is not owned by the specified
widget, the routines return False.

XmTextRemove() and XmTextFieldRemove () also invoke the callback rou-
tines for the XmNvalueChangedCallback, the XmNmodifyVerifyCallback, and
the XmNmodifyVerifyCallbackWcs callbacks for the specified widget. If both
verification callbacks are present, the XmNmodifyVerifyCallback procedures are
invoked first and the results are passed to the XmNmodifyVerifyCallbackWcs
procedures.

Usage
XmTextRemove() and XmTextFieldRemove () are like XmTextCut () and
XmTextFieldCut (), in that they remove selected text from a Text or TextField
widget. However, the routines do not copy the selected text to the clipboard
before removing it.

See Also
XmTextClearSelection (1), XmTextCut (1),
XmTextGetSelection (1), XmTextGetSelectionPosition (1),
XmTextGetSelectionWcs (1), XmTextSetSelection (1),
XmText (2), XmTextField (2).

Motif Functions and Macros

Motif Reference Manual 482

Name
XmTextReplace, XmTextFieldReplace – replace part of the text string.

Synopsis

#include <Xm/Text.h>

void XmTextReplace (Widget widget,
XmTextPosition from_pos,
XmTextPosition to_pos,
char *value)

#include <Xm/TextF.h>

void XmTextFieldReplace (Widget widget,
XmTextPosition from_pos,
XmTextPosition to_pos,
char *value)

Inputs
widget Specifies the Text or TextField widget.
from Specifies the starting position of the text that is to be replaced.
to Specifies the ending position of the text that is to be replaced.
value Specifies the replacement string.

Description
XmTextReplace () and XmTextFieldReplace () replace a portion of the
text string in the specified widget. XmTextReplace () works when widget is a
Text widget or a TextField widget, while XmTextFieldReplace () only
works for a TextField widget. The specified value replaces the text starting at
from_pos and continuing up to, but not including, to_pos, where character posi-
tions are numbered sequentially, starting with 0 (zero) at the beginning of the
text. To replace the characters after the nth character up to the mth character, use
a from_pos value of n and a to_pos value of m.

XmTextReplace () and XmTextFieldReplace () also invoke the callback
routines for the XmNvalueChangedCallback, the XmNmodifyVerifyCallback,
and the XmNmodifyVerifyCallbackWcs callbacks for the specified widget. If
both verification callbacks are present, the XmNmodifyVerifyCallback proce-
dures are invoked first and the results are passed to the XmNmodifyVerifyCall-
backWcs procedures.

Usage
XmTextReplace () and XmTextFieldReplace () provide a convenient
means of replacing text in a Text or TextField widget. The routines replace text
by modifying the value of the XmNvalue resource of the widget.

Motif Functions and Macros

Motif Reference Manual 483

Example
The following routine shows the use of XmTextReplace () to replace all of the
occurrences of a string in a Text widget. The search and replacement strings are
specified by the user in single-line Text widgets:

Widget text_w, search_w, replace_w;

void search_and_replace (void)
{

char *search_pat, *new_pat;
XmTextPosition curpos, searchpos;
int search_len, pattern_len;
Boolean found = False;

search_len = XmTextGetLastPosition (search_w);

if (!(search_pat = XmTextGetString (search_w)) || !*search_pat) {
XtFree (search_pat);
return;

}

pattern_len = XmTextGetLastPosition (replace_w);

if (!(new_pat = XmTextGetString (replace_w)) || !*new_pat) {
XtFree (search_pat);
XtFree (new_pat);
return;

}

curpos = 0;
found = XmTextFindString (text_w, curpos, search_pat,
XmTEXT_FORWARD, &searchpos);

while (found) {
XmTextReplace (text_w, searchpos, searchpos + search_len, new_pat);
curpos = searchpos + 1;
found = XmTextFindString (text_w, curpos, search_pat,
XmTEXT_FORWARD, &searchpos);

}

XtFree (search_pat);
XtFree (new_pat);

}

See Also
XmTextInsert (1), XmTextInsertWcs (1), XmTextReplaceWcs (1),
XmText (2), XmTextField (2).

Motif Functions and Macros

Motif Reference Manual 484

Name
XmTextReplaceWcs, XmTextFieldReplaceWcs – replace part of the wide-char-
acter text string.

Synopsis

#include <Xm/Text.h>

void XmTextReplaceWcs (Widget widget,
XmTextPosition from_pos,
XmTextPosition to_pos,
wchar_t *wcstring)

#include <Xm/TextF.h>

void XmTextFieldReplaceWcs (Widget widget,
XmTextPosition from_pos,
XmTextPosition to_pos,
wchar_t *wcstring)

Inputs
widget Specifies the Text or TextField widget.
from_pos Specifies the starting position of the text that is to be replaced.
to_pos Specifies the ending position of the text that is to be replaced.
wcstring Specifies the replacement wide-character string.

Availability
Motif 1.2 and later.

Description
XmTextReplaceWcs () and XmTextFieldReplaceWcs () replace a portion
of the text string in the specified widget with the specified wide-character string
wcstring. XmTextReplaceWcs () works when widget is a Text widget or a Tex-
tField widget, while XmTextFieldReplaceWcs () only works for a TextField
widget. The specified wcstring replaces the text starting at from_pos and continu-
ing up to, but not including, to_pos, where character positions are numbered
sequentially, starting with 0 (zero) at the beginning of the text. To replace the
characters after the nth character up to the mth character, use a from_pos value of
n and a to_pos value of m.

XmTextReplaceWcs () and XmTextFieldReplaceWcs () also invoke the
callback routines for the XmNvalueChangedCallback, the XmNmodifyVerify-
Callback, and the XmNmodifyVerifyCallbackWcs callbacks for the specified
widget. If both verification callbacks are present, the XmNmodifyVerifyCallback
procedures are invoked first and the results are passed to the XmNmodifyVerify-
CallbackWcs procedures.

Motif Functions and Macros

Motif Reference Manual 485

Usage
In Motif 1.2, the Text and TextField widgets support wide-character strings.
XmTextReplaceWcs () and XmTextFieldReplaceWcs () provide a con-
venient means of replacing a string in a Text or TextField widget with a wide-
character string. The routines convert the wide-character string to a multi-byte
string and then replace the text by modifying the value of the XmNvalue resource
of the widget.

See Also
XmTextInsert (1), XmTextInsertWcs (1), XmTextReplace (1),
XmText (2), XmTextField (2).

Motif Functions and Macros

Motif Reference Manual 486

Name
XmTextScroll – scroll the text.

Synopsis

#include <Xm/Text.h>

void XmTextScroll (Widget widget, int lines)

Inputs
widget Specifies the Text widget.
lines Specifies the number of lines.

Description
XmTextScroll () scrolls the text in the specified Text widget by the specified
number of lines. The text is scrolled upward if lines is positive and downward if
lines is negative. In the case of vertical text, a positive value scrolls the text for-
wards, and a negative value scrolls backwards.

Usage
XmTextScroll () provides a way to perform relative scrolling in a Text widget.
The Text widget does not have to be the child of a ScrolledWindow for the scroll-
ing to occur. The routine simply changes the currently viewable region of text.

See Also
XmTextGetCursorPosition (1),
XmTextGetInsertionPosition (1), XmTextGetLastPosition (1),
XmTextGetTopCharacter (1), XmTextSetCursorPosition (1),
XmTextSetInsertionPosition (1), XmTextSetTopCharacter (1),
XmText (2).

Motif Functions and Macros

Motif Reference Manual 487

Name
XmTextSetAddMode, XmTextFieldSetAddMode – set the add mode state.

Synopsis

#include <Xm/Text.h>

void XmTextSetAddMode (Widget widget, Boolean state)

#include <Xm/TextF.h>

void XmTextFieldSetAddMode (Widget widget, Boolean state)

Inputs
widget Specifies the Text or TextField widget.
state Specifies the state of add mode.

Description
XmTextSetAddMode () and XmTextFieldSetAddMode () set the state of
add mode for the specified widget. XmTextSetAddMode () works when widget
is a Text widget or a TextField widget, while XmTextFieldSetAddMode ()
only works for a TextField widget. If state is True add mode is turned on; if state
is False, add mode is turned off. When a Text or TextField widget is in add mode,
the user can move the insertion cursor without altering the primary selection.

Usage
XmTextSetAddMode () and XmTextFieldSetAddMode () provide a way to
change the state of add mode in a Text or TextField widget. The distinction
between normal mode and add mode is only important for making keyboard-
based selections. In normal mode, the location cursor and the selection move
together, while in add mode, the location cursor and the selection can be separate.

See Also
XmTextSetCursorPosition (1),
XmTextSetInsertionPosition (1), XmText (2), XmTextField (2).

Motif Functions and Macros

Motif Reference Manual 488

Name
XmTextSetCursorPosition, XmTextFieldSetCursorPosition – set the position of
the insertion cursor.

Synopsis

#include <Xm/Text.h>

void XmTextSetCursorPosition (Widget widget, XmTextPosition position)

#include <Xm/TextF.h>

void XmTextFieldSetCursorPosition (Widget widget, XmTextPosition position)

Inputs
widget Specifies the Text or TextField widget.
position Specifies the position of the insertion cursor.

Description
XmTextSetCursorPosition () and XmTextFieldSetCursorPosi-
tion () set the value of the XmNcursorPosition resource to position for the spec-
ified widget. XmTextSetCursorPosition () works when widget is a Text
widget or a TextField widget, while XmTextFieldSetCursorPosition ()
only works for a TextField widget. This resource specifies the location of the
insertion cursor as the number of characters from the beginning of the text, where
the first character position is 0 (zero).

XmTextSetCursorPosition () and XmTextFieldSetCursorPosi-
tion () also invoke the callback routines for the XmNmotionVerifyCallback for
the specified widget if the position of the insertion cursor changes.

Usage
XmTextSetCursorPosition () and XmTextFieldSetCursorPosi-
tion () are convenience routines that set the value of the XmNcursorPosition
resource for a Text or TextField widget. Calling one of the routines is equivalent
to calling XtSetValues () for the resource, although the routines access the
value through the widget instance structures rather than through XtSetVal-
ues ().

See Also
XmTextGetCursorPosition (1),
XmTextGetInsertionPosition (1),
XmTextSetInsertionPosition (1), XmTextShowPosition (1),
XmText (2), XmTextField (2).

Motif Functions and Macros

Motif Reference Manual 489

Name
XmTextSetEditable, XmTextFieldSetEditable – set the edit permission state.

Synopsis

#include <Xm/Text.h>

void XmTextSetEditable (Widget widget, Boolean editable)

#include <Xm/TextF.h>

void XmTextFieldSetEditable (Widget widget, Boolean editable)

Inputs
widget Specifies the Text or TextField widget.
editable Specifies whether or not the text can be edited.

Description
XmTextSetEditable () and XmTextFieldSetEditable () set the value
of the XmNeditable resource to editable for the specified widget. XmTextSe-
tEditable () works when widget is a Text widget or a TextField widget, while
XmTextFieldSetEditable () only works for a TextField widget.

Usage
By default, the XmNeditable resource is True, which means that a user can edit
the text string. Setting the resource to False makes a text area read-only.
XmTextSetEditable () and XmTextFieldSetEditable () are conven-
ience routines that set the value of the XmNeditable resource for a Text or Text-
Field widget. Calling one of the routines is equivalent to calling
XtSetValues () for the resource, although the routines access the value
through the widget instance structures rather than through XtSetValues ().

See Also
XmTextGetEditable (1), XmText (2), XmTextField (2).

Motif Functions and Macros

Motif Reference Manual 490

Name
XmTextSetHighlight, XmTextFieldSetHighlight – highlight text.

Synopsis

#include <Xm/Text.h>

void XmTextSetHighlight (Widget widget,
XmTextPosition left,
XmTextPosition right,
XmHighlightMode mode)

#include <Xm/TextF.h>

void XmTextFieldSetHighlight (Widget widget,
XmTextPosition left,
XmTextPosition right,
XmHighlightMode mode)

Inputs
widget Specifies the Text or TextField widget.
left Specifies the left boundary position of the text to be highlighted.
right Specifies the right boundary position of the text to be highlighted.
mode Specifies the highlighting mode. Pass one of the following values:

XmHIGHLIGHT_NORMAL, XmHIGHLIGHT_SELECTED,
or

XmHIGHLIGHT_SECONDARY_SELECTED1.

Description
XmTextSetHighlight () and XmTextFieldSetHighlight () highlight
text in the specified widget without selecting the text. XmTextSetHigh-
light () works when widget is a Text widget or a TextField widget, while
XmTextFieldSetHighlight () only works for a TextField widget. The left
and right arguments specify the boundary positions of the text that is to be high-
lighted. Each boundary value specifies the position as the number of characters
from the beginning of the text, where the first character position is 0 (zero). The
mode parameter indicates the type of highlighting that is done.
XmHIGHLIGHT_NORMAL removes any highlighting,
XmHIGHLIGHT_SELECTED uses reverse video highlighting, and
XmHIGHLIGHT_SECONDARY_SELECTED uses underline highlighting.

1.Motif 2.0 defines the additional value XmSEE_DETAIL for the enumerated type, but does not use it for the Text com-
ponents. The Compound String Text, CSText, supports the notion, but this widget is abortive, and has been removed
from the 2.1 distribution. XmSEE_DETAIL is therefore redundant.

Motif Functions and Macros

Motif Reference Manual 491

Usage
XmTextSetHighlight () and XmTextFieldSetHighlight () provide a
way to highlight text in a Text or TextField widget. These routines are useful if
you need to emphasize certain text in a widget. These routine only highlight text;
they do not select the specified text.

Example
The following routine shows the use of XmTextSetHighlight () to highlight
all of the occurrences of a string in a Text widget. The search string is specified
by the user in a single-line Text widget:

Widget text_w, search_w;

void search_text (void)
{

char *search_pat;
XmTextPosition curpos, searchpos;
int len;
Boolean found = False;

len = XmTextGetLastPosition (search_w);

if (!(search_pat = XmTextGetString (search_w)) || !*search_pat) {
XtFree (search_pat);
return;

}

curpos = 0;
found = XmTextFindString (text_w, curpos, search_pat,
XmTEXT_FORWARD, &searchpos);

while (found) {
XmTextSetHighlight (text_w, searchpos, searchpos + len,

XmHIGHLIGHT_SECONDARY_SELECTE
D);

curpos = searchpos + 1;
found = XmTextFindString (text_w, curpos, search_pat,
XmTEXT_FORWARD, &searchpos);

}
XtFree (search_pat);

}

See Also
XmTextSetSelection (1), XmText (2), XmTextField (2).

Motif Functions and Macros

Motif Reference Manual 492

Name
XmTextSetInsertionPosition, XmTextFieldSetInsertionPosition – set the position
of the insertion cursor.

Synopsis

#include <Xm/Text.h>

void XmTextSetInsertionPosition (Widget widget, XmTextPosition position)

#include <Xm/TextF.h>

void XmTextFieldSetInsertionPosition (Widget widget, XmTextPosition posi-
tion)

Inputs
widget Specifies the Text or TextField widget.
position Specifies the position of the insertion cursor.

Description
The functions, XmTextSetInsertionPosition() and XmTextFieldSe-
tInsertionPosition (), set the value of the XmNcursorPosition resource to
position for the specified widget. XmTextSetInsertionPosition ()
works when widget is a Text widget or a TextField widget, while XmText-
FieldSetInsertionPosition () only works for a TextField widget. This
resource specifies the location of the insertion cursor as the number of characters
from the beginning of the text, where the first character position is 0 (zero).

XmTextSetInsertionPosition () and XmTextFieldSetInser-
tionPosition () also invoke the callback routines for the XmNmotionVerify-
Callback for the specified widget if the position of the insertion cursor changes.

Usage
The functions, XmTextSetInsertionPosition () and XmTextField-
SetInsertionPosition (), are convenience routines that set the value of the
XmNcursorPosition resource for a Text or TextField widget. Calling one of the
routines is equivalent to calling XtSetValues () for the resource, although the
routines access the value through the widget instance structures rather than
through XtSetValues ().

Example
The following code shows the use of XmTextSetInsertionPosition () in
a routine that searches for a string in a Text widget and moves the insertion cursor
to the string if it is found:

Widget text_w, search_w;

Motif Functions and Macros

Motif Reference Manual 493

void search_text (void)
{

char *search_pat;
XmTextPosition pos, searchpos;
Boolean found = False;

if (!(search_pat = XmTextGetString (search_w)) || !*search_pat) {
XtFree (search_pat);
return;

}

pos = XmTextGetCursorPosition (text_w);
found = XmTextFindString (text_w, pos, search_pat,
XmTEXT_FORWARD, &searchpos);

if (!found) {
found = XmTextFindString (text_w, 0, search_pat,
XmTEXT_FORWARD, &searchpos);

}

if (found)
XmTextSetInsertionPosition (text_w, searchpos);

XtFree (search_pat);
}

See Also
XmTextGetCursorPosition (1),
XmTextGetInsertionPosition (1),
XmTextSetCursorPosition (1), XmTextShowPosition (1),
XmText (2), XmTextField (2).

Motif Functions and Macros

Motif Reference Manual 494

Name
XmTextSetMaxLength, XmTextFieldSetMaxLength – set the maximum possible
length of a text string.

Synopsis

#include <Xm/Text.h>

void XmTextSetMaxLength (Widget widget, int max_length)

#include <Xm/TextF.h>

void XmTextFieldSetMaxLength (Widget widget, int max_length)

Inputs
widget Specifies the Text or TextField widget.
max_length Specifies the maximum allowable length of the text string.

Description
XmTextSetMaxLength () and XmTextFieldSetMaxLength () set the
value of the XmNmaxLength resource to max_length for the specified widget.
XmTextSetMaxLength () works when widget is a Text widget or a TextField
widget, while XmTextFieldSetMaxLength () only works for a TextField
widget. This resource specifies the maximum allowable length of a text string
that a user can enter from the keyboard.

Usage
XmTextSetMaxLength () and XmTextFieldSetMaxLength () are con-
venience routines that set the XmNmaxLength resource for a Text or TextField
widget. Calling one of the routines is equivalent to calling XtSetValues () for
the resource, although the routines access the value through the widget instance
structures rather than through XtSetValues (). The resource limits the length
of a text string that a user may type, but it does not limit the length of strings
entered with the XmNvalue or XmNvalueWcs resources or the XmTextSet-
String (), XmTextFieldSetString (), XmTextSetStringWcs (), and
XmTextFieldSetStringWcs () routines.

See Also
XmTextGetMaxLength (1), XmText (2), XmTextField (2).

Motif Functions and Macros

Motif Reference Manual 495

Name
XmTextSetSelection, XmTextFieldSetSelection – set the value of the primary
selection.

Synopsis

#include <Xm/Text.h>

void XmTextSetSelection (Widget widget, XmTextPosition first, XmTextPosition
last, Time time)

#include <Xm/TextF.h>

void XmTextFieldSetSelection (Widget widget, XmTextPosition first, XmText-
Position last, Time time)

Inputs
widget Specifies the Text or TextField widget.
first Specifies the first character position to be selected.
last Specifies the last character position to be selected.
time Specifies the time of the event that caused the request.

Description
XmTextSetSelection () and XmTextFieldSetSelection () set the pri-
mary selection in the specified widget. XmTextSetSelection () works when
widget is a Text widget or a TextField widget, while XmTextFieldSetSe-
lection () only works for a TextField widget. The first and last arguments
specify the beginning and ending positions of the text that is to be selected. Each
of these values specifies the position as the number of characters from the begin-
ning of the text, where the first character position is 0 (zero). For each routine,
time specifies the server time of the event that caused the request to set the selec-
tion.

XmTextSetSelection () and XmTextFieldSetSelection () change the
insertion cursor for the widget to the last position of the selection. The routines
also invoke the callback routines for the XmNmotionVerifyCallback for the spec-
ified widget.

Usage
XmTextSetSelection () and XmTextFieldSetSelection () provide a
convenient way to set the current selection in a Text or TextField widget.

See Also
XmTextClearSelection (1), XmTextCopy (1), XmTextCut (1),
XmTextGetSelection (1), XmTextGetSelectionPosition (1),
XmTextGetSelectionWcs (1), XmTextRemove(1), XmText (2),
XmTextField (2).

Motif Functions and Macros

Motif Reference Manual 496

Name
XmTextSetSource – set the text source.

Synopsis

#include <Xm/Text.h>

void XmTextSetSource (Widget widget,
XmTextSource source,
XmTextPosition top_character,
XmTextPosition cursor_position)

Inputs
widget Specifies the Text widget.
source Specifies the text source.
top_character Specifies the character position to display at the top of the
widget.
cursor_position Specifies the position of the insertion cursor.

Description
XmTextSetSource () sets the source of the specified Text widget. The
top_character and cursor_position values specify positions as the number of
characters from the beginning of the text, where the first character position is 0
(zero). If source is NULL, the Text widget creates a default string source and dis-
plays a warning message.

Usage
Multiple text widgets can share the same text source, which means that editing in
one of the widgets is reflected in all of the others. XmTextGetSource ()
retrieves the source for a widget; this source can then be used to set the source of
another Text widget using XmTextSetSource (). XmTextSetSource () is a
convenience routine that sets the value of the XmNsource resource for the Text
widget. Calling the routine is equivalent to calling XtSetValues () for the
resource, although the routine accesses the value through the widget instance
structures rather than through XtSetValues ().

When a new text source is set, the old text source is destroyed unless another Text
widget is using the old source. If you want to replace a text source without
destroying it, create an unmanaged Text widget and set its source to the text
source you want to save.

See Also
XmTextGetSource (1), XmText (2).

Motif Functions and Macros

Motif Reference Manual 497

Name
XmTextSetString, XmTextFieldSetString – set the text string.

Synopsis

#include <Xm/Text.h>

void XmTextSetString (Widget widget, char *value)

#include <Xm/TextF.h>

void XmTextFieldSetString (Widget widget, char *value)

Inputs
widget Specifies the Text or TextField widget.
value Specifies the string value.

Description
XmTextSetString () and XmTextFieldSetString () set the current text
string in the specified widget to the specified value. XmTextSetString ()
works when widget is a Text widget or a TextField widget, while XmText-
FieldSetString () only works for a TextField widget. Both functions also
set the position of the insertion cursor to the beginning of the new text string.

XmTextSetString () and XmTextFieldSetString () invoke the callback
routines for the XmNvalueChangedCallback, the XmNmodifyVerifyCallback,
and the XmNmodifyVerifyCallbackWcs callbacks for the specified widget. If
both verification callbacks are present, the XmNmodifyVerifyCallback proce-
dures are invoked first and the results are passed to the XmNmodifyVerifyCall-
backWcs procedures. The routines also invoke the callback routines for the
XmNmotionVerifyCallback for the specified widget.

Usage
XmTextSetString () and XmTextFieldSetString () are convenience
routines that set the value of the XmNvalue resource for a Text or TextField
widget. Calling one of the routines is equivalent to calling XtSetValues () for
the resource, although the routines access the value through the widget instance
structures rather than through XtSetValues ().

Example
The following code shows the use of XmTextSetString () in a routine that
displays the contents of file in a Text widget. The filename is specified by the user
in a TextField widget:

Widget text_w, file_w;

void read_file (void)

Motif Functions and Macros

Motif Reference Manual 498

{
char *filename, *text;
struct stat statb;
int fd, len;

if (!(filename = XmTextFieldGetString (file_w)) || !*filename) {
XtFree (filename);
return;

}

if (!(fd = open (filename, O_RDONLY))) {
XtWarning ("internal error -- can’t open file");

}

if (fstat (fd, &statb) == -1 || !(text = XtMalloc ((len = statb.st_size) + 1))) {
XtWarning("internal error -- can’t show text");
(void) close (fd);

}

(void) read (fd, text, len);
text[len] = ‘\0’;
XmTextSetString (text_w, text);
XtFree (text);
XtFree (filename);
(void) close (fd);

}

See Also
XmTextGetString (1), XmTextGetStringWcs (1),
XmTextGetSubstring (1), XmTextGetSubstringWcs (1),
XmTextSetStringWcs (1), XmText (2), XmTextField (2).

Motif Functions and Macros

Motif Reference Manual 499

Name
XmTextSetStringWcs, XmTextFieldSetStringWcs – set the wide-character text
string.

Synopsis

#include <Xm/Text.h>

void XmTextSetStringWcs (Widget widget, wchar_t *wcstring)

#include <Xm/TextF.h>

void XmTextFieldSetStringWcs (Widget widget, wchar_t *wcstring)

Inputs
widget Specifies the Text or TextField widget.
wcstring Specifies the wide-character string value.

Availability
Motif 1.2 and later.

Description
XmTextSetStringWcs () and XmTextFieldSetStringWcs () set the
current wide-character text string in the specified widget to the specified

wcstring1. XmTextSetStringWcs () works when widget is a Text widget or a
TextField widget, while XmTextFieldSetStringWcs () only works for a
TextField widget. Both functions also set the position of the insertion cursor to
the beginning of the new text string.

XmTextSetStringWcs () and XmTextFieldSetStringWcs () invoke the
callback routines for the XmNvalueChangedCallback, the XmNmodifyVerify-
Callback, and the XmNmodifyVerifyCallbackWcs callbacks for the specified
widget. If both verification callbacks are present, the XmNmodifyVerifyCallback
procedures are invoked first and the results are passed to the XmNmodifyVerify-
CallbackWcs procedures. The routines also invoke the callback routines for the
XmNmotionVerifyCallback for the specified widget.

1.Erroneously given as string in 1st and 2nd editions.

Motif Functions and Macros

Motif Reference Manual 500

Usage
In Motif 1.2, the Text and TextField widgets support wide-character strings. The
resource XmNvalueWcs can be used to set the value of a Text or TextField
widget to a wide-character string. XmTextSetStringWcs () and XmText-
FieldSetStringWcs () are convenience routines that set the value of the
XmNvalueWcs resource for a Text or TextField widget. Calling one of the rou-
tines is equivalent to calling XtSetValues () for the resource, although the rou-
tines access the value through the widget instance structures rather than through
XtSetValues ().

See Also
XmTextGetString (1), XmTextGetStringWcs (1),
XmTextGetSubstring (1), XmTextGetSubstringWcs (1),
XmTextSetString (1), XmText (2), XmTextField (2).

Motif Functions and Macros

Motif Reference Manual 501

Name
XmTextSetTopCharacter – set the position of the first character of text that is dis-
played.

Synopsis

#include <Xm/Text.h>

void XmTextSetTopCharacter (Widget widget, XmTextPosition top_character)

Inputs
widget Specifies the Text widget.
top_character Specifies the position that is to be displayed at the top of the
widget.

Description
XmTextSetTopCharacter () sets the value of the XmNtopCharacter
resource to top_character for the specified Text widget. If the XmNeditMode
resource is set to XmMULTI_LINE_EDIT, the routine scrolls the text so that the
line containing the character position specified by top_character appears at the
top of the widget, but does not shift the text left or right. Otherwise, the character
position specified by top_character is displayed as the first visible character in
the widget. top_character specifies a character position as the number of charac-
ters from the beginning of the text, where the first character position in 0 (zero).

Usage
XmTextSetTopCharacter () is a convenience routine that sets the value of
the XmNtopCharacter resource for a Text widget. Calling the routines is equiva-
lent to calling XtSetValues () for the resource, although the routines accesses
the value through the widget instance structures rather than through XtSetVal-
ues ().

See Also
XmTextGetCursorPosition (1),
XmTextGetInsertionPosition (1), XmTextGetLastPosition (1),
XmTextGetTopCharacter (1), XmTextScroll (1),
XmTextSetCursorPosition (1),
XmTextSetInsertionPosition (1), XmTextShowPosition (1),
XmText (2).

Motif Functions and Macros

Motif Reference Manual 502

Name
XmTextShowPosition, XmTextFieldShowPosition – display the text at a speci-
fied position.

Synopsis

#include <Xm/Text.h>

void XmTextShowPosition (Widget widget, XmTextPosition position)

#include <Xm/TextF.h>

void XmTextFieldShowPosition (Widget widget, XmTextPosition position)

Inputs
widget Specifies the Text or TextField widget.
position Specifies the character position that is to be displayed.

Description
XmTextShowPosition () and XmTextFieldShowPosition () cause the
text character at position to be displayed in the specified widget. XmTextShow-
Position () works when widget is a Text widget or a TextField widget, while
XmTextFieldShowPosition () only works for a TextField widget. The
position argument specifies the position as the number of characters from the
beginning of the text, where the first character position in 0 (zero).

Usage
XmTextShowPosition () and XmTextFieldShowPosition () provide a
way to force a Text or TextField widget to display a certain portion of its text.
This routine is useful if you modify the value of widget and want the modifica-
tion to be immediately visible without the user having to scroll the text. If the
value of the XmNautoShowCursorPosition resource is True, you should set the
insertion cursor to position as well. You can set the insertion cursor by setting the

XmNcursorPosition1 resource or by using XmTextSetInsertionPosi-
tion () or XmTextFieldSetInsertionPosition ().

1.Erroneously given as XmcursorPosition in 1st and 2nd editions.

Motif Functions and Macros

Motif Reference Manual 503

Example
The following code shows the use of XmTextShowPosition () in a routine
that inserts a message into a status Text widget:

Widget status;

void insert_text (char *message)
{

XmTextPosition curpos = XmTextGetInsertionPosition (status);

XmTextInsert (status, curpos, message);
curpos = curpos + strlen (message);
XmTextShowPosition (status, curpos);
XmTextSetInsertionPosition (status, curpos);

}

See Also
XmTextGetCursorPosition (1),
XmTextGetInsertionPosition (1),
XmTextSetCursorPosition (1),
XmTextSetInsertionPosition (1), XmText (2), XmTextField (2).

Motif Functions and Macros

Motif Reference Manual 504

Name
XmTextXYToPos, XmTextFieldXYToPos – get the character position for an x, y
position.

Synopsis

#include <Xm/Text.h>

XmTextPosition XmTextXYToPos (Widget widget, Position x, Position y)

#include <Xm/TextF.h>

XmTextPosition XmTextFieldXYToPos (Widget widget, Position x, Position y)

Inputs
widget Specifies the Text or TextField widget.
x Specifies the x-coordinate relative to the upper-left corner of the
widget.
y Specifies the y-coordinate relative to the upper-left corner of the
widget.

Returns
The character position that is closest to the x, y position.

Description
XmTextXYToPos () and XmTextFieldXYToPos () return the position of the
character closest to the specified x and y coordinates within the specified widget.
XmTextXYToPos () works when widget is a Text widget or a TextField widget,
while XmTextFieldXYToPos () only works for a TextField widget. The x and
y coordinates are relative to the upper-left corner of the widget. Character posi-
tions are numbered sequentially, starting with 0 (zero) at the beginning of the
text.

Usage
XmTextXYToPos () and XmTextFieldXYToPos () provide a way to deter-
mine the character at a particular coordinate in a Text or TextField widget. This
information is useful if you need to perform additional event processing or draw
special graphics in the widget.

See Also
XmTextPosToXY (1), XmText (2), XmTextField (2).

Motif Functions and Macros

Motif Reference Manual 505

Name
XmToggleButtonGetState, XmToggleButtonGadgetGetState – get the state of a
ToggleButton.

Synopsis

#include <Xm/ToggleB.h>

Boolean XmToggleButtonGetState (Widget widget)

#include <Xm/ToggleBG.h>

Boolean XmToggleButtonGadgetGetState (Widget widget)

Inputs
widget Specifies the ToggleButton or ToggleButtonGadget.

Returns
The state of the button.

Description
XmToggleButtonGetState () and XmToggleButtonGadgetGet-
State () return the state of the specified widget. XmToggleButtonGet-
State () works when widget is a ToggleButton or a ToggleButtonGadget, while
XmToggleButtonGadgetGetState () only works for a ToggleButton-
Gadget. In Motif 1.2 and earlier, each of the routines returns True if the button is
selected or False if the button is unselected.

In Motif 2.0 and later, a Toggle can be in any of three states: XmSET, XmINDE-
TERMINATE, and XmUNSET, where XmUNSET is equivalent to False and
XmSET is equivalent to True. The third indeterminate state is enabled if the
Motif 2.x XmNtoggleMode resource of the widget is set to the value
XmTOGGLE_INDETERMINATE. If the toggle mode is
XmTOGGLE_BOOLEAN, the widget has only two dynamic states, which is
consistent with Motif 1.2 behavior.

Usage
XmToggleButtonGetState () and XmToggleButtonGadgetGet-
State () are convenience routines that return the value of the XmNset resource
for a ToggleButton or ToggleButtonGadget. Calling one of the routines is equiva-
lent to calling XtGetValues () for the resource, although the routines access
the value through the widget instance structures rather than through XtGetVal-
ues ().

Motif Functions and Macros

Motif Reference Manual 506

Because XmToggleButtonGetState () returns the toggle set element of its
widget instance structure directly, and because XmINDETERMINATE is neither
True nor False, programs relying on the strictly Boolean nature of XmToggle-
ButtonGetState () are at risk of error if the toggle is configured for three
states. Setting tri-state toggles using a convenience function should be performed
using XmToggleButtonSetValue ().

See Also
XmToggleButtonSetState (1), XmToggleButtonSetValue (1),
XmToggleButton (2), XmToggleButtonGadget (2).

Motif Functions and Macros

Motif Reference Manual 507

Name
XmToggleButtonSetState, XmToggleButtonGadgetSetState – set the state of a
ToggleButton.

Synopsis

#include <Xm/ToggleB.h>

void XmToggleButtonSetState (Widget widget, Boolean state, Boolean notify)

#include <Xm/ToggleBG.h>

void XmToggleButtonGadgetSetState (Widget widget, Boolean state, Boolean
notify)

Inputs
widget Specifies the ToggleButton or ToggleButtonGadget.
state Specifies the state of the button.
notify Specifies whether or not the XmNvalueChangedCallback is called.

Description
XmToggleButtonSetState () and XmToggleButtonGadgetSet-
State () set the state of the specified widget. XmToggleButtonSetState ()
works when widget is a ToggleButton or a ToggleButtonGadget, while XmTog-
gleButtonGadgetSetState () only works for a ToggleButtonGadget. In
Motif 1.2 and earlier, if state is True, the button is selected, and when state is
False, the button is deselected.

In Motif 2.0 and later, a Toggle can be in any of three states: XmSET, XmINDE-
TERMINATE, and XmUNSET, where XmUNSET is equivalent to False and
XmSET is equivalent to True. The third indeterminate state is enabled if the
Motif 2.x XmNtoggleMode resource of the widget is set to the value
XmTOGGLE_INDETERMINATE. If the toggle mode is
XmTOGGLE_BOOLEAN, the widget has only two dynamic states, which is
consistent with Motif 1.2 behavior.

If notify is True, the routines invoke the callbacks specified by the XmNval-
ueChangedCallback resource. If the specified widget is the child of a RowCol-
umn with XmNradioBehavior set to True, the currently selected child of the
RowColumn is deselected.

Motif Functions and Macros

Motif Reference Manual 508

Usage
XmToggleButtonSetState () and XmToggleButtonGadgetSet-
State () are convenience routines that set the value of the XmNset resource for a
ToggleButton or ToggleButtonGadget. Calling one of the routines is equivalent to
calling XtSetValues () for the resource, although the routines access the value
through the widget instance structures rather than through XtSetValues ().

In Motif 2.0 and later, passing the value XmINDETERMINATE is mapped to
XmSET. It is therefore not possible to set the XmINDETERMINATE state
using XmToggleButtonSetState(). To set a Toggle into an indeterminate state
through the convenience functions, call XmToggleButtonSetValue () or
XmToggleButtonGadgetSetValue ().

See Also
XmToggleButtonGetState (1), XmToggleButtonSetValue (1),
XmToggleButton (2), XmToggleButtonGadget (2).

Motif Functions and Macros

Motif Reference Manual 509

Name
XmToggleButtonSetValue, XmToggleButtonGadgetSetValue – set the value of a
ToggleButton.

Synopsis

#include <Xm/ToggleB.h>

Boolean XmToggleButtonSetValue (Widget widget, XmToggleButtonState state,
Boolean notify)

#include <Xm/ToggleBG.h>

Boolean XmToggleButtonGadgetSetValue (Widget widget,
XmToggleButtonState state,
Boolean notify)

Inputs
widget Specifies the ToggleButton or ToggleButtonGadget.
state Specifies the state of the button.
notify Specifies whether or not the XmNvalueChangedCallback is called.

Availability
Motif 2.0 and later.

Description
XmToggleButtonSetValue () and XmToggleButtonGadgetSet-
Value () are similar to XmToggleButtonSetState () and XmToggleBut-
tonGadgetSetState (), except that it is possible to set the ToggleButton into
an XmINDETERMINATE state, provided that the Toggle is in the correct mode.
If the widget has the XmNtoggleMode resource of
XmTOGGLE_INDETERMINATE, the routine sets the XmNset resource of the
widget to the required state, calls any XmNvalueChangedCallback procedures if
notify is True, and then returns True. Otherwise, the function returns False.

Usage
XmToggleButtonSetValue () and XmToggleButtonGadgetSet-
Value () are convenience routines that set the value of the XmNset resource for a
ToggleButton or ToggleButtonGadget which can display an indeterminate state.
Calling one of the routines is equivalent to calling XtSetValues () for the
resource, although the routines access the value through the widget instance
structures rather than through XtSetValues ().

Motif Functions and Macros

Motif Reference Manual 510

Structures
The XmToggleButtonState type has the following possible values:

XmSET XmUNSET XmINDETERMINATE

See Also
XmToggleButtonGetState (1), XmToggleButtonSetState (1),
XmToggleButton (2), XmToggleButtonGadget (2).

Motif Functions and Macros

Motif Reference Manual 511

Name
XmTrackingEvent – allow for modal selection of a component.

Synopsis

#include <Xm/Xm.h>

Widget XmTrackingEvent (Widget widget, Cursor cursor, Boolean confine_to,
XEvent *event_return)

Inputs
widget Specifies the widget in which the modal interaction occurs.
cursor Specifies the cursor that is to be used as the pointer.
confine_to Specifies whether or not the pointer is confined to widget.

Outputs
event_return Returns the ButtonRelease or KeyRelease event.

Returns
The widget or gadget that contains the pointer or NULL if no widget or gadget
contains the pointer.

Availability
Motif 1.2 and later.

Description
XmTrackingEvent () grabs the pointer and waits for the user to release BSe-
lect or press and release a key, discarding all of the intervening events. The rou-
tine returns the ID of the widget or gadget containing the pointer when BSelect or
the key is released and event_return contains the release event. If no widget or
gadget contains the pointer when the release occurs, the function returns NULL.
The modal interaction occurs within the specified widget, which is typically a
top-level shell. During the interaction, cursor is used as the pointer shape. If
confine_to is True, the pointer is confined to widget during the interaction; other-
wise the pointer is not confined.

Usage
XmTrackingEvent () provides a way to allow a user to select a component.
This modal interaction is meant to support a context-sensitive help system, where
the user clicks on a widget to obtain more information about it. XmTrackin-
gEvent () returns the selected widget, so that a help callback can be invoked to
provide the appropriate information.

Motif Functions and Macros

Motif Reference Manual 512

Example
The following code shows the use of XmTrackingEvent () in a routine that
initiates context-sensitive help:

Widget toplevel, help_button;
...
XtAddCallback (help_button, XmNactivateCallback, query_for_help, toplevel);
...
void query_for_help (Widget widget, XtPointer client_data, XtPointer call_data)
{

Cursor cursor;
Widget top, help_widget;
XmAnyCallbackStruct cb;
XtCallbackStatus hascb;
XEvent *event;

top = (Widget) client_data;
cursor = XCreateFontCursor (XtDisplay (top), XC_question_arrow);
help_widget = XmTrackingEvent (top, cursor, True, &event);

while (help_widget != NULL) {
hascb = XtHasCallbacks (help_widget, XmNhelpCallback);

if (hascb == XtCallbackHasSome) {
cb.reason = XmCR_HELP;
cb.event = event;
XtCallCallbacks (help_widget, XmNhelpCallback, (XtPointer)
&cb);
help_widget = NULL;

}
else

help_widget = XtParent (help_widget);
}

}

See Also
XmTrackingLocate (1).

Motif Functions and Macros

Motif Reference Manual 513

Name
XmTrackingLocate – allow for modal selection of a component.

Synopsis

Widget XmTrackingLocate (Widget widget, Cursor cursor, Boolean confine_to)

Inputs
widget Specifies the widget in which the modal interaction occurs.
cursor Specifies the cursor that is to be used as the pointer.
confine_to Specifies whether or not the pointer is confined to widget.

Returns
The widget or gadget that contains the pointer or NULL if no widget or gadget
contains the pointer.

Availability
In Motif 1.2, XmTrackingLocate () is obsolete. It has been superseded by
XmTrackingEvent ().

Description
XmTrackingLocate () grabs the pointer and waits for the user to release BSe-
lect or press and release a key, discarding all of the intervening events. The rou-
tine returns the ID of the widget or gadget containing the pointer when BSelect or
the key is released. If no widget or gadget contains the pointer when the release
occurs, the function returns NULL. The modal interaction occurs within the
specified widget, which is typically a top-level shell. During the interaction, cur-
sor is used as the pointer shape. If confine_to is True, the pointer is confined to
widget during the interaction; otherwise the pointer is not confined. XmTrack-
ingLocate () is retained for compatibility with Motif 1.1 and should not be
used in newer applications.

Usage
XmTrackingLocate () provides a way to allow a user to select a component.
This modal interaction is meant to support a context-sensitive help system, where
the user clicks on a widget to obtain more information about it. XmTrackin-
gLocate () returns the selected widget, so that a help callback can be invoked to
provide the appropriate information.

See Also
XmTrackingEvent (1).

Motif Functions and Macros

Motif Reference Manual 514

Name
XmTransfer – introduction to the uniform transfer model.

Synopsis

Public Header:
<Xm/Transfer.h>

Functions/Macros:
XmTransferDone (), XmTransferSendRequest (), XmTransferSet-
Parameters (),
XmTransferStartRequest (), XmTransferValue ().

Availability
Motif 2.0 and later.

Description
Motif widgets support several methods of data transfer. Data can be transferred
from a widget to the Primary or Secondary selection, the Clipboard, or, through
the drag and drop mechanisms, to another widget. Up until Motif 2.0, each of
these data transfer operations require a different treatment by the programmer. In
Motif 2.0 and later, the Uniform Transfer Model (UTM) makes it possible to per-
form data transfer using any of the transfer methods using a single programming
interface. UTM is designed to allow applications to use common code for all the
supported data transfer requirements, and is intentionally written to ease the way
in which new transfer targets can be written. Data transfer code written prior to
Motif 2.0 will continue to work in newer versions of the toolkit, although all the
widgets have been rewritten to internally use the UTM where appropriate.

The UTM is implemented through two new callback resources: XmNconvertCall-
back, and XmNdestinationCallback, which are available in the Primitive widget
class (and in any derived classes), as well as in the Container, Scale, and Drawin-
gArea widget classes. The programmer provides XmNconvertCallback and
XmNdestinationCallback procedures which communicate with one another in
order to negotiate the target format in which the data is required. In addition, the
programmer provides a transfer procedure which performs the insertion of data in
the right format into the destination widget.

An XmNconvertCallback procedure is associated with the source of the data. It is
responsible for converting the data, typically the selected items of the source
widget, into the format requested by the destination. It may also provide a list of
the supported transfer targets requested by a XmNdestinationCallback procedure.
The convert procedure transfers data to the destination widget by placing values
within the XmConvertCallbackStruct structure passed as a parameter to the call-
back.

Motif Functions and Macros

Motif Reference Manual 515

The XmNdestinationCallback procedure is responsible for negotiating the format
in which data is required at the destination widget. It may request the set of sup-
ported formats in which the source can export the data, although the simplest pro-
cedure requests data in a specific target format. In specifying the request to the
source of the data, the callback specifies a further transfer procedure which per-
forms the actual insertion of data at the destination. The destination callback
communicates with the source by issuing requests using the XmTransfer-
Value () routine. If the destination callback requests the full list of supported
source targets, the transfer procedure itself decides the best format for the desti-
nation, and internally issues a further XmTransferValue () call, requesting the
data in a specific target format. The programmer will have to provide the logic
which determines the best format within the transfer procedure.

Usage
It is not necessary for the programmer to provide XmNconvertCallback and
XmNdestinationCallback procedures for all the targets which Motif supports. As
part of the UTM, Motif widgets which support the XmNconvertCallback and
XmNdestinationCallback resources also have internal routines which enable
automatic data transfer of a set of built-in target types. The internal routines are
implemented using the XmQTtransfer trait, which has convertProc and destina-
tionProc methods. Where no XmNconvertCallback is supplied by the program-
mer, the convertProc is invoked to perform the data conversion. Similarly, in the
absence of a XmNdestinationCallback, UTM calls the destinationProc. A pro-
grammer only needs to implement XmNconvertCallback or XmNdestination-
Callback procedures where a new target type is being provided over and above
those handled by the widget class default procedures.

Structures
A pointer to the following structure is passed to callbacks on the XmNconvert-
Callback list:

typedef struct {
int reason; /* the reason that the callback is
invoked */
XEvent *event; /* points to event that triggered call-
back */
Atom selection; /* selection for which conversion is
requested */
Atom target; /* the conversion target */
XtPointer source_data; /* selection source information */
XtPointer location_data; /* information about the data to be
transferred */
int flags; /* input status of the conversion*/

Motif Functions and Macros

Motif Reference Manual 516

XtPointer parm; /* parameter data for the target*/
int parm_format; /* format of parameter data*/
unsigned long parm_length; /* number of elements in parameter
data */
Atom parm_type; /* the type of the parameter data*/
int status; /* output status of the conversion*/
XtPointer value; /* returned conversion data*/
Atom type; /* type of conversion data returned*/
int format; /* format of the conversion data*/
unsigned long length; /* number of elements in the conver-
sion data */

} XmConvertCallbackStruct;

selection represents the selection for which conversion is requested. CLIP-
BOARD, PRIMARY, SECONDARY, or _MOTIF_DROP are the possible values
(that is, one of the types of data transfer which the UTM rationalizes).

target represents the required format for the data to transfer, expressed as an
Atom.

source_data provides data related to the source of the selection. If selection is
_MOTIF_DROP, then source_data points to a DragContext object, otherwise it is
NULL.

location_data specifies where the data to be converted is to be found. If
location_data is NULL, conversion data is interpreted as the widget’s current
selection. Otherwise, the interpretation of location_data is widget class specific.

flags specifies the current status of the conversion. Possible values of the enumer-
ated type:

XmCONVERTING_NONE /* unused */
XmCONVERTING_PARTIAL /* some, but not all, of target data is
converted */
XmCONVERTING_SAME /* conversion target is source of the
transfer data */
XmCONVERTING_TRANSACT /* unused */

parm contains extra data associated with target. If target is the Atom represented
by _MOTIF_CLIPBOARD_TARGETS or
_MOTIF_DEFERRED_CLIPBOARD_TARGETS, then parm is one of
XmCOPY, XmMOVE, or XmLINK. parm is an array of data items, the number
of such items is specified by parm_length, and the type of each item by
parm_format.

Motif Functions and Macros

Motif Reference Manual 517

parm_format specifies whether the data within parm is represented by a list of
char, short, or long quantities. If parm_format is 0 (zero), parm is NULL. A
parm_format value of 8 indicates parm is logically a list of char, 16 represents a
list of short quantities, and 32 is for a list of long values. parm_format indicates
logical type, and not physical implementation: a parm_format of 32 indicates a
list of long quantities even if a particular machine has 64-bit longs.

parm_length specifies the number of data items at the parm address.

parm_type specifies the type of the parm data, expressed as an Atom. The default
is XA_INTEGER.

status specifies the status of the conversion. The initial (default) value is
XmCONVERT_DEFAULT, which, if unchanged by the callback, invokes any
conversion procedures associated with the widget class when the callback fin-
ishes. These are the convertProc methods of any XmQTtransfer trait which the
widget holds. Any converted data produced by a widget class routine overwrites
any data from the callback. If the callback sets status to
XmCONVERT_MERGE, widget class conversion procedures are invoked, merg-
ing any data so produced with conversion data from the callback. A returned sta-
tus of XmCONVERT_REFUSE indicates that the callback terminates the
conversion process without completion, and no widget class procedures are to be
invoked. XmCONVERT_DONE similarly results in no widget class procedure
invocation, except that the callback indicates that conversion has been success-
fully completed.

value is where the callback places the result of the conversion process. The
default is NULL. It is assumed that any value specified is dynamically allocated
by the programmer, although the programmer must not subsequently free the
value: this is performed by the UTM. It is the responsibility of the programmer to
ensure that the type, format, and length elements are appropriately set to match
any data placed in value.

type specifies the logical type of any data returned within value, expressed as an
Atom.

format specifies whether the data within value is represented by a list of char,
short, or long quantities. If format is 0 (zero), value is NULL. A format value of 8
indicates value is logically a list of char, 16 represents a list of short quantities,
and 32 is for a list of long values. format indicates logical type, and not physical
implementation: a format of 32 indicates a list of long values even if they are
actually 64 bits.

length specifies the number of data items at the value address.

Motif Functions and Macros

Motif Reference Manual 518

Callbacks on the XmNdestinationCallback list are passed a pointer to the follow-
ing structure:

typedef struct {
int reason; /* reason that the callback is invoked */
XEvent *event; /* points to event that triggered callback */
Atom selection; /* the requested selection type, as an Atom */
XtEnum operation; /* the type of transfer requested */
int flags; /* whether destination and source are the same
*/
XtPointer transfer_id; /* unique identifier for the request */
XtPointer destination_data; /* information about the destination */
XtPointer location_data; /* information about the data */
Time time; /* time when transfer operation started */

} XmDestinationCallbackStruct;

selection specifies, as an Atom, the type of selection for which data transfer is
required. CLIPBOARD, PRIMARY, SECONDARY, or _MOTIF_DROP are the
possible logical values.

operation indicates the type of data transfer operation requested. The possible
values are:

XmCOPY /* copy transfer */
XmMOVE /* move transfer */
XmLINK /* link transfer */
XmOTHER /* information contained within destination_data element */

If operation is XmOTHER, destination_data contains a pointer to an XmDrop-
ProcCallbackStruct, which contains an operation element. See XmDropSite for
more information concerning the XmDropProcCallbackStruct.

flags indicates whether the source of the transfer data is also the destination. Pos-
sible values are:

XmCONVERTING_NONE /* destination is not the source of the data */
XmCONVERTING_SAME /* destination is the source of the data */

transfer_id specifies a unique identifier for the current transfer request.

destination_data specifies information about the destination of the transfer oper-
ation. If the selection is _MOTIF_DROP, then the callback has been invoked by
an XmDropProc of the drop site, and destination_data contains a pointer to an
XmDropProcCallbackStruct. If the selection is SECONDARY, destination_data
is an Atom representing a target type into which the selection owner suggests the
transfer should be converted. Otherwise, destination_data is NULL.

Motif Functions and Macros

Motif Reference Manual 519

location_data determines where the data is to be transferred. The interpretation
varies between the widget classes. In the Container widget, the value of
location_data is a pointer to an XPoint structure, containing the x and y coordi-
nates of the transfer location. If location_data is NULL, data is to be transferred
to the current cursor location for the widget.

time is the server time when the transfer operation was initiated.

Transfer procedures are passed a pointer to the following structure: the interpre-
tation of the elements is the same as those in the callbacks described above.

typedef struct {
int reason; /* reason that the callback is invoked
*/
XEvent *event; /* points to event that triggered callback
*/
Atom selection; /* the requested selection type, as an Atom
*/
Atom target; /* the conversion target
*/
Atom type; /* type of conversion data returned
*/
XtPointer transfer_id; /* unique identifier for the request
*/
int flags; /* whether destination and source are same
*/
int remaining; /* number transfers remaining for transfer_id
*/
XtPointer value; /* returned conversion data
*/
unsigned long length; /* number of elements in conversion data
*/
int format; /* format of the conversion data
*/

} XmSelectionCallbackStruct;

Example

The following is a specimen XmNdestinationCallback which simply requests
from the source the list of export targets, and which specifies a transfer procedure
for handling the data import.

void destination_handler (Widget w, XtPointer client_data, XtPointer call_data)
{

Motif Functions and Macros

Motif Reference Manual 520

XmDestinationCallbackStruct *dptr = (XmDestinationCallbackStruct *)
call_data;
Atom TARGETS = XmInternAtom (XtDisplay (w), "TARGETS", False);

/* transfer procedure will issue a subsequent request */
/* for data in a specific target format. it receives */
/* the list of supported targets from the source. */
XmTransferValue (dptr->transfer_id, TARGETS, (XtCallbackProc)
transfer_procedure,

NULL, XtLastTimestampProcessed (XtDisplay (w))1);
}

The following specimen XmNconvertCallback procedure exports the selected
text within a Text widget: although the convertProc method associated with the
Text’s XmQTtransfer trait performs this task in a modified form, the code does
outline the basic structure required.

void convert_callback (Widget w, XtPointer client_data, XtPointer call_data)
{

XmConvertCallbackStruct *cptr = (XmConvertCallbackStruct *)
call_data;
Atom TARGETS, CB_TARGETS,
SELECTED_TEXT;
Atom targets[1];
Display *display = XtDisplay (w);

TARGETS = XmInternAtom (display, "TARGETS", False);
CB_TARGETS = XmInternAtom (display,
"_MOTIF_CLIPBOARD_TARGETS", False);
SELECTED_TEXT = XmInternAtom (display, "SELECTED_TEXT",
False);

/* if the destination has requested the list of supported targets */
/* this is returned in the callback data */
if ((cptr->target == TARGETS) || (cptr->target == CB_TARGETS)) {

targets[0] = SELECTED_TEXT;
cptr->type = XA_ATOM;
cptr->value = (XtPointer) targets;
cptr->length = 1;
cptr->format = 32;
/* merge the data with the list of targets supported by */
/* the convertProc method of the XmQTtransfer trait */

1.Erroneously given as XtLastTimestampProcessed() in 2nd edition.

Motif Functions and Macros

Motif Reference Manual 521

cptr->status = XmCONVERT_MERGE;
}
else {

if (cptr->target == SELECTED_TEXT) {
char *selection = XmTextGetSelection (w);
/* destination has requested the new target */
cptr->value = selection;
/* exported target is the requested target */
cptr->type = cptr->target;
cptr->format = 8;
cptr->length = (selection ? strlen (selection) : 0);
/* conversion complete */
cptr->status = XmCONVERT_DONE;

}
else {

/* target is one this procedure is not handling */
/* result is either XmCONVERT_MERGE or
XmCONVERT_DEFAULT */
/* depending on whether we throw away results from any */
/* other convert callback we have registered. */
/* the default is XmCONVERT_DEFAULT */

return XmCONVERT_MERGE;1

}
}

return XmCONVERT_MERGE;2

}

The following is a specimen transfer procedure, which is registered by a
XmNdestinationCallback using XmTransferValue():

void transfer_procedure (Widget w, XtPointer client_data, XtPointer call_data)
{

XmSelectionCallbackStruct *sptr = (XmSelectionCallbackStruct *)
call_data;
Atom TARGETS, CB_TARGETS,
SELECTED_TEXT;
Display *display = XtDisplay (w);

1.The 2nd edition gave XmCONVERT_DEFAULT as the return value here. Since certain focus operations built into
the toolkit use the Uniform Transfer Model as mechanism, you need to inherit these, so XmCONVERT_MERGE is
the better value. Apologies..

2.As above.

Motif Functions and Macros

Motif Reference Manual 522

Atom *targets, choice;
int i;

choice = (Atom) 0;
TARGETS = XmInternAtom (display, "TARGETS", False);
CB_TARGETS = XmInternAtom (display,
"_MOTIF_CLIPBOARD_TARGETS", False); SELECTED_TEXT =
XmInternAtom (display, "SELECTED_TEXT", False);

if (((sptr->target == TARGETS) || (sptr->target == CB_TARGETS)) &&
(sptr->type == XA_ATOM)) {
/* destination callback requested list of targets from the source */
/* the source convertCallback returns the list. We now choose... */
targets = (Atom *) sptr->value;

for (i = 0; i < sptr->length; i++) {
if (targets[i] == SELECTED_TEXT) {
/* the source exports selected text. lets pick this one... */
choice = targets[i];
}

}

/* There’s no selection we like... */
if (choice == (Atom) 0) {

XmTransferDone (sptr->transfer_id,
XmTRANSFER_DONE_FAIL);
return;

}

/* now go back to source and ask for the data in format of choice */
/* might as well use ourself again as transfer procedure... */
XmTransferValue (sptr->transfer_id, choice, /* Preferred
SELECTED_TEXT target */

transfer_procedure, NULL, XtLastTimestampProc-

essed (display)1);
}
else if (sptr->target == SELECTED_TEXT) {

/* insert the selected text at our own insertion point */
XmTextPosition pos = XmTextGetInsertionPosition (w);
XmTextInsert (w, pos, (char *) sptr->value);
/* all done */

1.Erroneously given as XtLastTimestampProcessed() in 2nd edition.

Motif Functions and Macros

Motif Reference Manual 523

XmTransferDone (sptr->transfer_id,
XmTRANSFER_DONE_SUCCEED);

}
}

See Also
XmTransferDone (1), XmTransferSendRequest (1),
XmTransferSetParameters (1), XmTransferStartRequest (1),
XmTransferValue (1), XmContainer (2), XmDrawingArea (2),
XmPrimitive (2), XmScale (2).

Motif Functions and Macros

Motif Reference Manual 524

Name
XmTransferDone – complete a data transfer operation.

Synopsis

#include <Xm/Transfer.h>

void XmTransferDone (XtPointer transfer_id, XmTransferStatus status)

Inputs
transfer_id Specifies a unique identifier for the transfer operation.
status Specifies the completion status of the transfer.

Availability
Motif 2.0 and later.

Description
Under the Uniform Transfer Model, XmTransferDone () completes a data
transfer operation. The procedure is called from destination callbacks or transfer
procedures in order to signal the end of data transfer back to the source of the
data.

transfer_id uniquely identifies a transfer operation, and the value is supplied
either from the transfer_id element of a XmDestinationCallbackStruct passed to
the destination callback, or from the transfer_id element of a XmSelectionCall-
backStruct passed to a transfer procedure. status is set to indicate the status of the
current transfer operation, which is notified back to the selection owner.

status is one of XmTRANSFER_DONE_FAIL,
XmTRANSFER_DONE_SUCCEED, XmTRANSFER_DONE_CONTINUE, or
XmTRANSFER_DONE_DEFAULT. The status
XmTRANSFER_DONE_DEFAULT ignores all remaining queued transfer oper-
ations which may have been initiated within the destination callbacks and
invokes the widget class default transfer procedures. That is, any unprocessed
multiple batched requests created between XmTransferStartRequest ()

and XmTransferSendRequest ()1 calls are skipped. If status is
XmTRANSFER_DONE_FAIL, the XmNtransferStatus of the current Drop-
Transfer object is set to XmTRANSFER_FAILURE.
XmTRANSFER_DONE_SUCCEED and XmTRANSFER_DONE_CONTINUE
are similar, except that with XmTRANSFER_DONE_CONTINUE the owner of
the selection is not notified if the target is _MOTIF_SNAPSHOT.

1.Erroneously given as XmTransferEndRequest() in 2nd edition.

Motif Functions and Macros

Motif Reference Manual 525

Usage
The Uniform Transfer Model (UTM) enhances the Motif 1.2 data transfer mech-
anisms by providing a standard interface through which Drag and Drop, Primary
and Secondary selection, and Clipboard data transfer is achieved both to and
from a widget. The implementation of the UTM is through XmNconvertCallback
and XmNdestinationCallback resource procedures. A convert callback is associ-
ated with the source of the data, and it is responsible for exporting data in the for-
mat required by the destination widget.

The destination callback is responsible for requesting data from the source in the
format which it requires, and it calls the function XmTransferValue () to do
this. The destination callback typically does not import the data directly, but
specifies a transfer procedure to perform the insertion of data at the destination
widget. The transfer procedure is specified by passing a routine as a parameter to
the XmTransferValue () call. When the transfer is finished, either because it
is completed or because it is aborted due to an error, the transfer procedure calls
XmTransferDone () to return the status to the source.

Structures
The XmTransferStatus type has the following possible values:

XmTRANSFER_DONE_CONTINUE
XmTRANSFER_DONE_DEFAULT
XmTRANSFER_DONE_FAIL
XmTRANSFER_DONE_SUCCEED

Example
The following specimen transfer procedure calls XmTransferDone () to indi-
cate the status of the data drop:

void transfer_procedure (Widget w, XtPointer client_data, XtPointer call_data)
{

XmSelectionCallbackStruct *sptr = (XmSelectionCallbackStruct *)
call_data;
Atom TARGETS, CB_TARGETS,
IMPORT_FORMAT;
Display *display = XtDisplay (w);
Atom *targets, choice;
int i;

TARGETS = XmInternAtom (display, "TARGETS", False);
CB_TARGETS = XmInternAtom (display,
"_MOTIF_CLIPBOARD_TARGETS", False);

Motif Functions and Macros

Motif Reference Manual 526

IMPORT_FORMAT = XmInternAtom (display, "IMPORT_FORMAT",
False);

if (((sptr->target == TARGETS) || (sptr->target == CB_TARGETS)) &&
(sptr->type == XA_ATOM)) {
/* destination callback requested list of targets from the source */
/* the source convertCallback returns the list. We now choose... */
targets = (Atom *) sptr->value;
choice = (Atom) 0;

for (i = 0; i < sptr->length; i++) {
if (targets[i] == IMPORT_FORMAT) {

/* the source exports our required target... */
choice = targets[i];

}
}

if (choice == (Atom) 0) {
/* source does not export what we require */
/* assume destinationProc in the XmQTtransferTrait */
/* does not either... */
XmTransferDone (sptr->transfer_id,
XmTRANSFER_DONE_FAIL);
return;

}

/* now go back to source and ask for the data in format of choice */
/* might as well use ourself again as transfer procedure... */
XmTransferValue (sptr->transfer_id, choice, /* IMPORT_FORMAT */

transfer_procedure, NULL, XtLastTimestampProc-

essed (display)1);
}
else if (sptr->target == IMPORT_FORMAT) {

/* perform whatever is required to import sptr->value */
...
/* all done */
XmTransferDone (sptr->transfer_id,
XmTRANSFER_DONE_SUCCEED);

}
else {

/* wrong export target */

1.Erroneously given as XtLastTimestampProcessed() in 2nd edition.

Motif Functions and Macros

Motif Reference Manual 527

XmTransferDone (sptr->transfer_id, XmTRANSFER_DONE_FAIL);
}

}

See Also
XmTransferSendRequest (1), XmTransferSetParameters (1),
XmTransferStartRequest (1), XmTransferValue (1),
XmTransfer (1), XmDropTransfer (1).

Motif Functions and Macros

Motif Reference Manual 528

Name
XmTransferSendRequest – send a multiple transfer request.

Synopsis

#include <Xm/Transfer.h>

void XmTransferSendRequest (XtPointer transfer_id, Time time)

Inputs
transfer_id Specifies a unique identifier for the transfer operation.
time Specifies the time of the transfer.

Availability
Motif 2.0 and later.

Description
In the Uniform Transfer Model, XmTransferSendRequest () marks the end
of a series of transfer requests started by XmTransferStartRequest ().
transfer_id uniquely identifies a transfer operation, and the value is supplied
from the transfer_id element of a XmDestinationCallbackStruct or XmSelection-
CallbackStruct passed to a destination callback or transfer procedure respec-
tively. time specifies the time of the XEvent which initiated the data transfer.
XtLastTimestampProcessed () is the simplest method of specifying the
time value.

Usage
The Uniform Transfer Model (UTM) enhances the Motif 1.2 data transfer mech-
anisms by providing a standard interface through which Drag and Drop, Primary
and Secondary selection, and Clipboard data transfer is achieved both to and
from a widget. The implementation of the UTM is through XmNconvertCallback
and XmNdestinationCallback resource procedures. The destination callback is
responsible for requesting data from the source in the format which it requires,
and it calls the function XmTransferValue () to do this. A set of data transfer
requests can be queued by wrapping the series of XmTransferValue () calls
within XmTransferStartRequest () and XmTransferSendRequest ()
calls.

See Also
XmTransferDone (1), XmTransferSetParameters (1),
XmTransferStartRequest (1), XmTransferValue (1),
XmTransfer (1).

Motif Functions and Macros

Motif Reference Manual 529

Name
XmTransferSetParameters – set parameters for next transfer

Synopsis

#include <Xm/Transfer.h>

void XmTransferSetParameters (XtPointer transfer_id,
XtPointer parm,
int parm_format,
unsigned long parm_length,
Atom parm_type)

Inputs
transfer_id Specifies a unique identifier for the transfer operation.
parm Specifies parameters to be passed to conversion routines.
parm_format Specifies the format of data in the parm argument.
parm_length Specifies the number of elements within the parm data.
parm_type Specifies the type of parm.

Availability
Motif 2.0 and later.

Description
In the Uniform Transfer Model, XmTransferSetParameters () defines
parameter data for a subsequent XmTransferValue () call. transfer_id
uniquely identifies a transfer operation, and the value is supplied from the
transfer_id element of a XmDestinationCallbackStruct or XmSelectionCallback-
Struct passed to a destination callback or transfer procedure respectively.

parm specifies parameter data to be passed to the conversion function, and the
XmNconvertCallback procedures, of the source widget which owns the selection.
parm_format specifies whether the data within parm consists of 8, 16, or 32 bit
quantities. parm_length specifies the number of elements, of size determined by
parm_format, which are at the address parm. parm_type specifies the logical type
of parm, and is application specific. Neither Motif, the X toolkit, nor the X
library interpret parm_type in any manner.

Motif Functions and Macros

Motif Reference Manual 530

Usage
The Uniform Transfer Model enhances the Motif 1.2 data transfer mechanisms
by providing a standard interface by which the source and destination of the data
transfer can communicate. The programmer provides XmNdestinationCallback
procedures which issue the request to transfer data from the source of the transfer
by calling XmTransferValue (). Any parameterized data for the XmTrans-
ferValue () procedure is established through a prior XmTransferSetPa-
rameters () call. XmTransferSetParameters () is a convenience function
which maps simply onto a X Toolkit Intrinsics XtSetSelectionParame-
ters () call.

See Also
XmTransferDone (1), XmTransferSendRequest (1),
XmTransferStartRequest (1), XmTransferValue (1),
XmTransfer (1).

Motif Functions and Macros

Motif Reference Manual 531

Name
XmTransferStartRequest – initiate a multiple data transfer request

Synopsis

#include <Xm/Transfer.h>

void XmTransferStartRequest (XtPointer transfer_id)

Inputs
transfer_id Specifies a unique identifier for the current data transfer operation.

Availability
Motif 2.0 and later.

Description
XmTransferStartRequest () initiates the start of a series of transfer
requests. transfer_id uniquely identifies a transfer operation, and the value is sup-
plied from the transfer_id element of a XmDestinationCallbackStruct or XmSe-
lectionCallbackStruct passed to a destination callback or transfer procedure
respectively.

Usage
In Motif 2.0 and later, the Uniform Transfer Model enhances the Motif 1.2 data
transfer mechanisms by providing a standard interface by which the source and
destination of the data transfer can communicate. A set of data transfer requests
can be queued by wrapping the series of requests within XmTransferStar-
tRequest () and XmTransferSendRequest () calls. The procedure
XmTransferValue () provides the data transfer requests in the queue.

See Also
XmTransferDone (1), XmTransferSendRequest (1),
XmTransferSetParameters (1), XmTransferValue (1),
XmTransfer (1).

Motif Functions and Macros

Motif Reference Manual 532

Name
XmTransferValue – transfer data to a destination

Synopsis

#include <Xm/Transfer.h>

void XmTransferValue (XtPointer transfer_id,
Atom target,
XtCallbackProc callback,
XtPointer client_data,
Time time)

Inputs
transfer_id Specifies a unique identifier for the current data transfer opera-
tion.
target Specifies the target to which the selection is to be converted.
callback Specifies a transfer procedure to be called when the selection has

been converted by the source.
client_data Specifies application data to be passed to callback.
time Specifies the time of the transfer.

Availability
Motif 2.0 and later.

Description
The Uniform Transfer Model (UTM) enhances the Motif 1.2 data transfer mech-
anisms by providing a standard interface through which Drag and Drop, Primary
and Secondary selection, and Clipboard data transfer is achieved both to and
from a widget. The implementation of the UTM is through XmNconvertCallback
and XmNdestinationCallback resource procedures. A convert callback is associ-
ated with the source of the data, and it is responsible for exporting data in the for-
mat required by the destination. The destination callback is responsible for
requesting data from the source in the format which it requires, and it calls the
function XmTransferValue () to do this. The destination callback itself does
not typically insert the transferred data into the destination widget: it specifies a
transfer procedure, which performs the import, as a parameter to the XmTrans-
ferValue () call.

XmTransferValue () arranges to transfer data from the source of transfer data
to the destination. transfer_id uniquely identifies a transfer operation, and the
value is supplied from the transfer_id element of a XmDestinationCallbackStruct
or XmSelectionCallbackStruct passed to a destination or transfer callback
respectively.

Motif Functions and Macros

Motif Reference Manual 533

target specifies the selection which is to be converted and transferred. If target is
_MOTIF_DROP, the function invokes XmDropTransferStart () with inter-
nal transfer procedures to perform the data transfer. Otherwise, the data is
extracted from the selection using XtGetSelectionValue ().

callback is a transfer procedure, which is an application procedure that is called
when the data is converted and available from the source. client_data is any data
which the programmer wants to be passed to the callback. The callback is
invoked with three parameters: the destination widget, the application
client_data, and a pointer to a XmSelectionCallbackStruct.

time specifies the time of the XEvent which initiated the data transfer. XtLast-
TimestampProcessed () is the simplest method of specifying the time value.

Usage
XmTransferValue () is called from destination callbacks or transfer proce-
dures to effect the actual transfer of data from the source, whether that be the
clipboard or a widget. The programmer-defined callback replaces the XmNtrans-
ferProc added to a DropTransfer object, which the Uniform Transfer Model inter-
nally encapsulates and hides.

See Also
XmTransferDone (1), XmTransferSendRequest (1),
XmTransferSetParameters (1), XmTransferStartRequest (1),
XmTransfer (1), XmDropTransfer (2).

Motif Functions and Macros

Motif Reference Manual 534

Name
XmTranslateKey – convert a keycode to a keysym using the default translator.

Synopsis

#include <Xm/Xm.h>

void XmTranslateKey (Display *display,
KeyCode keycode,
Modifiers modifiers,
Modifiers *modifiers_return,
KeySym *keysym_return)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
keycode Specifies the keycode that is translated.
modifiers Specifies the modifier keys that are applied to the keycode.

Outputs
modifiers_return Returns the modifiers used by the key translator to generate
the keysym.
keysym_return Returns the resulting keysym.

Availability
Motif 1.2 and later.

Description
XmTranslateKey () is the default XtKeyProc translation procedure used by
Motif applications. The routine takes a keycode and modifiers and returns the
corresponding osf keysym.

Usage
The Motif toolkit uses a mechanism called virtual bindings to map one set of
keysyms to another set. This mapping permits widgets and applications to use
one set of keysyms in translation tables; applications and users can then custom-
ize the keysyms used in the translations based on the particular keyboard that is
being used. Keysyms that can be used in this way are called osf keysyms. Motif
maintains a mapping between the osf keysyms and the actual keysyms that repre-
sent keys on a particular keyboard. See the introduction to Section 2, Motif and
Xt Widget and Classes, for more information about the mapping of osf keysyms
to actual keysyms.

Motif Functions and Macros

Motif Reference Manual 535

XmTranslateKey () is used by the X Toolkit during event processing to trans-
late the keycode of an event to the appropriate osf keysym if there is a mapping
for the keysym. The event is then dispatched to the appropriate action routine if
there is a translation for the osf keysym.

If you need to provide a new translator with expanded functionality, you can call
XmTranslateKey () to get the default translation. Use XtSetKeyTransla-
tor () to register a new key translator. To reinstall the default behavior, you can
call XtSetKeyTranslator () with XmTranslateKey () as the proc argu-
ment.

See Also
xmbind (4).

Motif Functions and Macros

Motif Reference Manual 536

Name
XmUninstallImage – remove an image from the image cache.

Synopsis

Boolean XmUninstallImage (XImage *image)

Inputs
image Specifies the image structure to be removed.

Returns
True on success or False if image is NULL or it cannot be found.

Description
XmUninstallImage () removes the specified image from the image cache.
The routine returns True if it is successful. It returns False if image is NULL or if
image is not found in the image cache.

Usage
XmUninstallImage () removes an image from the image cache. Once an
image is uninstalled, it cannot be referenced again and a new image can be
installed with the same name. If you have created any pixmaps that use the
image, they are not affected by the image being uninstalled, since they are based
on image data, not the image itself. After an image has been uninstalled, you can
safely free the image.

See Also
XmDestroyPixmap (1), XmGetPixmap (1), XmInstallImage (1).

Motif Functions and Macros

Motif Reference Manual 537

Name
XmUpdateDisplay – update the display.

Synopsis

void XmUpdateDisplay (Widget widget)

Inputs
widget Specifies any widget.

Description
XmUpdateDisplay () causes all pending exposure events to be processed
immediately, instead of having them remain in the queue until all of the callbacks
have been invoked.

Usage
XmUpdateDisplay () provides applications with a way to force an visual
update of the display. Because callbacks are invoked before normal exposure
processing occurs, when a menu or a dialog box is unposted, the display is not
updated until all of the callbacks have been called. This routine is useful when-
ever a time-consuming action might delay the redrawing of the windows on the
display.

See Also
XmDisplay (2).

Motif Functions and Macros

Motif Reference Manual 538

Name
XmVaCreateSimpleCheckBox – create a CheckBox compound object.

Synopsis

Widget XmVaCreateSimpleCheckBox (Widget parent,
String name,
XtCallbackProc callback,
...,
NULL)

Inputs
parent Specifies the widget ID of the parent of the new widget.
name Specifies the string name of the new widget for resource lookup.
callback Specifies the callback procedure that is called when the value of a
button changes.
..., NULL A NULL-terminated variable-length list of resource name/value
pairs.

Returns
The widget ID of the RowColumn widget.

Description
XmVaCreateSimpleCheckBox () is a RowColumn convenience routine that
creates a CheckBox with ToggleButtonGadgets as its children. This routine is
similar to XmCreateSimpleCheckBox (), but it uses a NULL-terminated var-
iable-length argument list in place of the arglist and argcount parameters. The
variable-length argument list specifies resource name/value pairs as well as the
children of the CheckBox. The callback argument specifies the callback routine
that is added to the XmNvalueChangedCallback of each ToggleButtonGadget
child of the CheckBox. When the callback is invoked, the button number of the
button whose value has changed is passed to the callback in the client_data
parameter.

The name of each ToggleButtonGadget child is button_n, where n is the number
of the button, ranging from 0 (zero) to 1 less than the number of buttons in the
CheckBox. The buttons are created and named in the order in which they are
specified in the variable-length argument list.

Usage
A variable-length argument list is composed of several groups of arguments.
Within each group, the first argument is a constant or a string that specifies which
arguments follow in the group. The first argument can be one of the following
values: XmVaCHECKBUTTON, a resource name, XtVaTypedList, or XtVaNest-
edList. The variable-length argument list must be NULL-terminated.

Motif Functions and Macros

Motif Reference Manual 539

If the first argument in a group is XmVaCHECKBUTTON, it is followed by four
arguments: label, mnemonic, accelerator, and accelerator text. This group speci-
fies a ToggleButtonGadget child of the CheckBox and its associated resources.
(As of Motif 1.2, all but the label argument are ignored.)

If the first argument in a group is a resource name string, it is followed by a
resource value of type XtArgVal. This group specifies a standard resource name/
value pair for the RowColumn widget. If the first argument in a group is XtVaTy-
pedArg, it is followed by four arguments: name, type, value, and size. This group
specifies a resource name and value using the standard XtVaTypedArg format. If
the first argument in a group is XtVaNestedList, it is followed by one argument of
type XtVarArgsList, which is returned by XtVaCreateArgsList ().

Example
You can use XmVaCreateSimpleCheckBox () as in the following example:

Widget toplevel, check_box;
XmString normal, bold, italic;

normal = XmStringCreateLocalized ("normal");
bold = XmStringCreateLocalized ("bold");
italic = XmStringCreateLocalized ("italic");
check_box = XmVaCreateSimpleCheckBox (toplevel, "check_box", toggled,

XmVaCHECKBUTTON, normal,
NULL, NULL, NULL,
XmVaCHECKBUTTON, bold,
NULL, NULL, NULL,
XmVaCHECKBUTTON, italic,
NULL, NULL, NULL,
NULL);

XmStringFree (normal);
XmStringFree (bold);
XmStringFree (italic);

See Also
XmCheckBox(2), XmRowColumn(2), XmToggleButtonGadget (2).

Motif Functions and Macros

Motif Reference Manual 540

Name
XmVaCreateSimpleMenuBar – create a MenuBar compound object.

Synopsis

Widget XmVaCreateSimpleMenuBar (Widget parent, char *name,..., NULL)

Inputs
parent Specifies the widget ID of the parent of the new widget.
name Specifies the string name of the new widget for resource lookup.
..., NULL A NULL-terminated variable-length list of resource name/value
pairs.

Returns
The widget ID of the RowColumn widget.

Description
XmVaCreateSimpleMenuBar () is a RowColumn convenience routine that
creates a MenuBar with CascadeButtonGadgets as its children. This routine is
similar to XmCreateSimpleMenuBar (), but it uses a NULL-terminated vari-
able-length argument list in place of the arglist and argcount parameters. The var-
iable-length argument list specifies resource name/value pairs as well as the
children of the MenuBar.

The name of each CascadeButtonGadget is button_n, where n is the number of
the button, ranging from 0 (zero) to 1 less than the number of buttons in the Men-
uBar. The buttons are created and named in the order in which they are specified
in the variable-length argument list.

Usage
A variable-length argument list is composed of several groups of arguments.
Within each group, the first argument is a constant or a string that specifies which
arguments follow in the group. The first argument can be one of the following
values: XmVaCASCADEBUTTON, a resource name, XtVaTypedList, or
XtVaNestedList. The variable-length argument list must be NULL-terminated.

If the first argument in a group is XmVaCASCADEBUTTON, it is followed by
two arguments: label and mnemonic. This group specifies a CascadeButton-
Gadget child of the MenuBar and its associated resources.

If the first argument in a group is a resource name string, it is followed by a
resource value of type XtArgVal. This group specifies a standard resource name/
value pair for the RowColumn widget. If the first argument in a group is XtVaTy-
pedArg, it is followed by four arguments: name, type, value, and size. This group
specifies a resource name and value using the standard XtVaTypedArg format. If

Motif Functions and Macros

Motif Reference Manual 541

the first argument in a group is XtVaNestedList, it is followed by one argument of
type XtVarArgsList, which is returned by XtVaCreateArgsList ().

Example
You can use XmVaCreateSimpleMenuBar () as in the following example:

Widget top, mainw, menubar, fmenu, emenu;
XmString file, edit, new, quit, cut, clear, copy, paste;

file = XmStringCreateLocalized ("File");
edit = XmStringCreateLocalized ("Edit");
menubar = XmVaCreateSimpleMenuBar (mainw, "menubar",

XmVaCASCADEBUTTON,
file,’F’,
XmVaCASCADEBUTTON,
edit,’E’,
NULL);

XmStringFree (file);
XmStringFree (edit);

new = XmStringCreateLocalized ("New");
quit = XmStringCreateLocalized ("Quit");
fmenu = XmVaCreateSimplePulldownMenu (menubar, "file_menu", 0, file_cb,

XmVaPUSHBUTTON,
new,’N’, NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON,
quit,’Q’, NULL, NULL,
NULL);

XmStringFree (new);
XmStringFree (quit);

cut = XmStringCreateLocalized ("Cut");
copy = XmStringCreateLocalized ("Copy");
clear = XmStringCreateLocalized ("Clear");
paste = XmStringCreateLocalized ("Paste");
emenu = XmVaCreateSimplePulldownMenu (menubar, "edit_menu", 0,
cut_paste,

XmVaPUSHBUTTON, cut,’C’,
NULL, NULL,
XmVaPUSHBUTTON,
copy,’o’, NULL, NULL,
XmVaPUSHBUTTON,
paste,’P’, NULL, NULL,

Motif Functions and Macros

Motif Reference Manual 542

XmVaSEPARATOR,
XmVaPUSHBUTTON,
clear,’l’, NULL, NULL,
NULL);

XmStringFree (cut);
XmStringFree (clear);
XmStringFree (copy);
XmStringFree (paste);

See Also
XmCascadeButtonGadget (2), XmMenuBar(2), XmRowColumn(2).

Motif Functions and Macros

Motif Reference Manual 543

Name
XmVaCreateSimpleOptionMenu – create an OptionMenu compound object.

Synopsis

Widget XmVaCreateSimpleOptionMenu (Widget parent,
String name,
XmString option_label,
KeySym

option_mnemonic,
int button_set,
XtCallbackProc callback,
...,
NULL)

Inputs
parent Specifies the widget ID of the parent of the new widget.
name Specifies the string name of the new widget for resource
lookup.
option_label Specifies the label used for the OptionMenu.
option_mnemonic Specifies the mnemonic character associated with the
OptionMenu.
button_set Specifies the initial setting of the OptionMenu.
callback Specifies the callback procedure that is called when a button
is activated.
..., NULL A NULL-terminated variable-length list of resource name/
value pairs.

Returns
The widget ID of the RowColumn widget.

Description
XmVaCreateSimpleOptionMenu () is a RowColumn convenience routine
that creates an OptionMenu along with its submenu of CascadeButtonGadget
and/or PushButtonGadget children. This routine is similar to XmCreateSim-
pleOptionMenu (), but it uses a NULL-terminated variable-length argument
list in place of the arglist and argcount parameters. The variable-length argument
list specifies resource name/value pairs as well as the children of the Option-
Menu.

The option_label, option_mnemonic, and button_set arguments are used to set
the XmNlabelString, XmNmnemonic, and XmNmenuHistory resources of the
RowColumn respectively. The button_set parameter specifies the nth button child
of the OptionMenu, where the first button is button 0 (zero); the XmNmenuHis-
tory resource is set to the actual widget. The callback argument specifies the call-

Motif Functions and Macros

Motif Reference Manual 544

back routine that is added to the XmNactivateCallback of each
CascadeButtonGadget and PushButtonGadget child in the submenu of the
OptionMenu. When the callback is invoked, the button number of the button
whose value has changed is passed to the callback in the client_data parameter.

The name of each button is button_n, where n is the number of the button, rang-
ing from 0 (zero) to 1 less than the number of buttons in the submenu. The name
of each separator is separator_n, where n is the number of the separator, ranging
from 0 (zero) to 1 less than the number of separators in the submenu. The buttons
are created and named in the order in which they are specified in the variable-
length argument list.

Usage
A variable-length argument list is composed of several groups of arguments.
Within each group, the first argument is a constant or a string that specifies which
arguments follow in the group. The first argument can be one of the following
values: XmVaPUSHBUTTON, XmVaCASCADEBUTTON, XmVaSEPARA-
TOR, XmVaDOUBLE_SEPARATOR, a resource name, XtVaTypedList, or
XtVaNestedList. The variable-length argument list must be NULL-terminated.

If the first argument in a group is XmVaPUSHBUTTON, it is followed by four
arguments: label, mnemonic, accelerator, and accelerator text. This group speci-
fies a PushButtonGadget in the pulldown submenu of the OptionMenu and its
associated resources. If the first argument in a group is XmVaCASCADEBUT-
TON, it is followed by two arguments: label and mnemonic. This group specifies
a CascadeButtonGadget in the pulldown submenu of the OptionMenu and its
associated resources. If the first argument in a group is XmVaSEPARATOR or
XmVaDOUBLE_SEPARATOR, it is not followed by any arguments. These
groups specify SeparatorGadgets in the pulldown submenu of the OptionMenu.

If the first argument in a group is a resource name string, it is followed by a
resource value of type XtArgVal. This group specifies a standard resource name/
value pair for the RowColumn widget. If the first argument in a group is XtVaTy-
pedArg, it is followed by four arguments: name, type, value, and size. This group
specifies a resource name and value using the standard XtVaTypedArg format. If
the first argument in a group is XtVaNestedList, it is followed by one argument of
type XtVarArgsList, which is returned by XtVaCreateArgsList ().

Example
You can use XmVaCreateSimpleOptionMenu () as in the following exam-
ple:

Widget rc, option_menu;
XmString draw_shape, line, square, circle;

Motif Functions and Macros

Motif Reference Manual 545

draw_shape = XmStringCreateLocalized ("Draw Mode:");
line = XmStringCreateLocalized ("Line");
square = XmStringCreateLocalized ("Square");
circle = XmStringCreateLocalized ("Circle");
option_menu = XmVaCreateSimpleOptionMenu (rc, "option_menu",
draw_shape, ’D’, 0, option_cb,

XmVaPUSHBUTTON, line,
’L’, NULL, NULL,
XmVaPUSHBUTTON, square,
’S’, NULL, NULL,
XmVaPUSHBUTTON, circle,
’C’, NULL, NULL,
NULL);

XmStringFree (line);
XmStringFree (square);
XmStringFree (circle);
XmStringFree (draw_shape);

See Also
XmOptionButtonGadget (1), XmOptionLabelGadget (1),
XmCascadeButtonGadget (2), XmLabelGadget (2),
XmOptionMenu (2), XmPushButtonGadget (2),
XmRowColumn(2), XmSeparatorGadget (2).

Motif Functions and Macros

Motif Reference Manual 546

Name
XmVaCreateSimplePopupMenu – create a PopupMenu compound object as the
child of a MenuShell.

Synopsis

Widget XmVaCreateSimplePopupMenu (Widget parent,
String name,
XtCallbackProc callback,
...,
NULL)

Inputs
parent Specifies the widget ID of the parent of the MenuShell.
name Specifies the string name of the new widget for resource lookup.
callback Specifies the callback procedure that is called when a button is

activated or its value changes.
...,NULL A NULL-terminated variable-length list of resource name/value

pairs.

Returns
The widget ID of the RowColumn widget.

Description
XmVaCreateSimplePopupMenu () is a RowColumn convenience routine
that creates a PopupMenu along with its button children. The routine creates the
PopupMenu as a child of a MenuShell. This routine is similar to XmCreateS-
implePopupMenu (), but it uses a NULL-terminated variable-length argument
list in place of the arglist and argcount parameters. The variable-length argument
list specifies resource name/value pairs as well as the children of the PopupMenu.
The callback argument specifies the callback routine that is added to the XmNac-
tivateCallback of each CascadeButtonGadget and PushButtonGadget child and
the XmNvalueChangedCallback of each ToggleButtonGadget child in the Pop-
upMenu. When the callback is invoked, the button number of the button whose
value has changed is passed to the callback in the client_data parameter.

The name of each button is button_n, where n is the number of the button, rang-
ing from 0 (zero) to 1 less than the number of buttons in the menu. The name of
each separator is separator_n, where n is the number of the separator, ranging
from 0 (zero) to 1 less than the number of separators in the menu. The name of
each title is label_n, where n is the number of the title, ranging from 0 (zero) to 1
less than the number of titles in the menu. The buttons are created and named in
the order in which they are specified in the variable-length argument list.

Motif Functions and Macros

Motif Reference Manual 547

Usage
A variable-length argument list is composed of several groups of arguments.
Within each group, the first argument is a constant or a string that specifies which
arguments follow in the group. The first argument can be one of the following
values: XmVaPUSHBUTTON, XmVaCASCADEBUTTON, XmVaRADI-
OBUTTON, XmVaCHECKBUTTON, XmVaTITLE, XmVaSEPARATOR,
XmVaDOUBLE_SEPARATOR, a resource name, XtVaTypedList, or XtVaNest-
edList. The variable-length argument list must be NULL-terminated.

If the first argument in a group is XmVaPUSHBUTTON, it is followed by four
arguments: label, mnemonic, accelerator, and accelerator text. This group speci-
fies a PushButtonGadget child of the PopupMenu and its associated resources. If
the first argument in a group is XmVaCASCADEBUTTON, it is followed by two
arguments: label and mnemonic. This group specifies a CascadeButtonGadget
child of the PopupMenu and its associated resources. If the first argument in a
group is XmVaRADIOBUTTON or XmVaCHECKBUTTON, it is followed by
four arguments: label, mnemonic, accelerator, and accelerator text. These groups
specify ToggleButtonGadget children of the PopupMenu and their associated
resources.

If the first argument is XmVaTITLE, it is followed by a title argument. This
group specifies a LabelGadget title in the PopupMenu and its associated
resource. If the first argument in a group is XmVaSEPARATOR or
XmVaDOUBLE_SEPARATOR, it is not followed by any arguments. These
groups specify SeparatorGadgets in the PopupMenu.

If the first argument in a group is a resource name string, it is followed by a
resource value of type XtArgVal. This group specifies a standard resource name/
value pair for the RowColumn widget. If the first argument in a group is XtVaTy-
pedArg, it is followed by four arguments: name, type, value, and size. This group
specifies a resource name and value using the standard XtVaTypedArg format. If
the first argument in a group is XtVaNestedList, it is followed by one argument of
type XtVarArgsList, which is returned by XtVaCreateArgsList ().

Example
You can use XmVaCreateSimplePopupMenu () as in the following example:

Widget drawing_a, popup_menu;
XmString line, square, circle, quit, quit_acc;

line = XmStringCreateLocalized ("Line");
square = XmStringCreateLocalized ("Square");
circle = XmStringCreateLocalized ("Circle");
quit = XmStringCreateLocalized ("Quit");

Motif Functions and Macros

Motif Reference Manual 548

quit_acc = XmStringCreateLocalized ("Ctrl-C");
popup_menu = XmVaCreateSimplePopupMenu (drawing_a, "popup", popup_cb,

XmVaPUSHBUTTON, line, NULL, NULL,
NULL,
XmVaPUSHBUTTON, square, NULL,
NULL, NULL,
XmVaPUSHBUTTON, circle, NULL,
NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, quit, NULL,
"Ctrl<Key>c", quit_acc,
NULL);

XmStringFree (line);
XmStringFree (square);
XmStringFree (circle);
XmStringFree (quit);
XmStringFree (quit_acc);

See Also
XmCascadeButtonGadget (2), XmLabelGadget (2), XmMenuShell (2),
XmPopupMenu(2), XmPushButtonGadget (2), XmRowColumn(2),
XmSeparatorGadget (2), XmToggleButtonGadget (2).

Motif Functions and Macros

Motif Reference Manual 549

Name
XmVaCreateSimplePulldownMenu – create a PulldownMenu compound object
as the child of a MenuShell.

Synopsis

Widget XmVaCreateSimplePulldownMenu (Widget parent,
String name,
int

post_from_button,
XtCallbackProc callback,
...,
NULL)

Inputs
parent Specifies the widget ID of the parent of the MenuShell.
name Specifies the string name of the new widget for resource

lookup.
post_from_button Specifies the CascadeButton or CascadeButtonGadget in

the parent widget to which the menu is attached.
callback Specifies the callback procedure that is called when a but-

ton is activated or its value changes.
..., NULL A NULL-terminated variable-length list of resource

name/value pairs.

Returns
The widget ID of the RowColumn widget.

Description
XmVaCreateSimplePulldownMenu () is a RowColumn convenience rou-
tine that creates a PulldownMenu along with its button children. The routine cre-
ates the PulldownMenu as a child of a MenuShell. This routine is similar to
XmCreateSimplePulldownMenu (), but it uses a NULL-terminated varia-
ble-length argument list in place of the arglist and argcount parameters. The vari-
able-length argument list specifies resource name/value pairs as well as the
children of the PulldownMenu.

The post_from_button parameter specifies the CascadeButton or CascadeButton-
Gadget to which the PulldownMenu is attached as a submenu. The argument
specifies the nth CascadeButton or CascadeButtonGadget, where the first button
is button 0 (zero). The callback argument specifies the callback routine that is
added to the XmNactivateCallback of each CascadeButtonGadget and PushBut-
tonGadget child and the XmNvalueChangedCallback of each ToggleButton-
Gadget child in the PulldownMenu. When the callback is invoked, the button

Motif Functions and Macros

Motif Reference Manual 550

number of the button whose value has changed is passed to the callback in the
client_data parameter.

The name of each button is button_n, where n is the number of the button, rang-
ing from 0 (zero) to 1 less than the number of buttons in the menu. The name of
each separator is separator_n, where n is the number of the separator, ranging
from 0 (zero) to 1 less than the number of separators in the menu. The name of
each title is label_n, where n is the number of the title, ranging from 0 (zero) to 1
less than the number of titles in the menu. The buttons are created and named in
the order in which they are specified in the variable-length argument list.

Usage
A variable-length argument list is composed of several groups of arguments.
Within each group, the first argument is a constant or a string that specifies which
arguments follow in the group. The first argument can be one of the following
values: XmVaPUSHBUTTON, XmVaCASCADEBUTTON, XmVaRADI-
OBUTTON, XmVaCHECKBUTTON, XmVaTITLE, XmVaSEPARATOR,
XmVaDOUBLE_SEPARATOR, a resource name, XtVaTypedList, or XtVaNest-
edList. The variable-length argument list must be NULL-terminated.

If the first argument in a group is XmVaPUSHBUTTON, it is followed by four
arguments: label, mnemonic, accelerator, and accelerator text. This group speci-
fies a PushButtonGadget child of the PulldownMenu and its associated resources.
If the first argument in a group is XmVaCASCADEBUTTON, it is followed by
two arguments: label and mnemonic. This group specifies a CascadeButton-
Gadget child of the PulldownMenu and its associated resources. If the first argu-
ment in a group is XmVaRADIOBUTTON or XmVaCHECKBUTTON, it is
followed by four arguments: label, mnemonic, accelerator, and accelerator text.
These groups specify ToggleButtonGadget children of the PulldownMenu and
their associated resources.

If the first argument is XmVaTITLE, it is followed by a title argument. This
group specifies a LabelGadget title in the PulldownMenu and its associated
resource. If the first argument in a group is XmVaSEPARATOR or
XmVaDOUBLE_SEPARATOR, it is not followed by any arguments. These
groups specify SeparatorGadgets in the PulldownMenu.

If the first argument in a group is a resource name string, it is followed by a
resource value of type XtArgVal. This group specifies a standard resource name/
value pair for the RowColumn widget. If the first argument in a group is XtVaTy-
pedArg, it is followed by four arguments: name, type, value, and size. This group
specifies a resource name and value using the standard XtVaTypedArg format. If
the first argument in a group is XtVaNestedList, it is followed by one argument of
type XtVarArgsList, which is returned by XtVaCreateArgsList ().

Motif Functions and Macros

Motif Reference Manual 551

Example
You can use XmVaCreateSimplePulldownMenu () as in the following
example:

Widget top, mainw, menubar, fmenu, emenu;
XmString file, edit, new, quit, cut, clear, copy, paste;

file = XmStringCreateLocalized ("File");
edit = XmStringCreateLocalized ("Edit");
menubar = XmVaCreateSimpleMenuBar (mainw, "menubar",

XmVaCASCADEBUTTON, file, ’F’,
XmVaCASCADEBUTTON, edit, ’E’,
NULL);

XmStringFree (file);
XmStringFree (edit);

new = XmStringCreateLocalized ("New");
quit = XmStringCreateLocalized ("Quit");
fmenu = XmVaCreateSimplePulldownMenu (menubar, "file_menu", 0, file_cb,

XmVaPUSHBUTTON, new,
’N’, NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, quit,
’Q’, NULL, NULL,
NULL);

XmStringFree (new);
XmStringFree (quit);

cut = XmStringCreateLocalized ("Cut");
copy = XmStringCreateLocalized ("Copy");
clear = XmStringCreateLocalized ("Clear");
paste = XmStringCreateLocalized ("Paste");
emenu = XmVaCreateSimplePulldownMenu (menubar, "edit_menu", 1,
cut_paste,

XmVaPUSHBUTTON, cut, ’C’,
NULL, NULL,
XmVaPUSHBUTTON, copy, ’o’,
NULL, NULL,
XmVaPUSHBUTTON, paste,
’P’, NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, clear, ’l’,
NULL, NULL,
NULL);

Motif Functions and Macros

Motif Reference Manual 552

XmStringFree (cut);
XmStringFree (clear);
XmStringFree (copy);
XmStringFree (paste);

See Also
XmCascadeButtonGadget (2), XmLabelGadget (2), XmMenuShell (2),
XmPulldownMenu (2), XmPushButtonGadget (2), XmRowColumn(2),
XmSeparatorGadget (2), XmToggleButtonGadget (2).

Motif Functions and Macros

Motif Reference Manual 553

Name
XmVaCreateSimpleRadioBox – create a RadioBox compound object.

Synopsis

Widget XmVaCreateSimpleRadioBox (Widget parent,
String name,
int button_set,
XtCallbackProc callback,
...,
NULL)

Inputs
parent Specifies the widget ID of the parent of the new widget.
name Specifies the string name of the new widget for resource
lookup.
button_set Specifies the initial setting of the RadioBox.
callback Specifies the callback procedure that is called when the value
of a button changes.
..., NULL A NULL-terminated variable-length list of resource name/
value pairs.

Returns
The widget ID of the RowColumn widget.

Description
XmVaCreateSimpleRadioBox () is a RowColumn convenience routine that
creates a RadioBox with ToggleButtonGadgets as its children. This routine is
similar to XmCreateSimpleRadioBox (), but it uses a NULL-terminated var-
iable-length argument list in place of the arglist and argcount parameters. The
variable-length argument list specifies resource name/value pairs as well as the
children of the CheckBox. The button_set argument is used to set the XmNmen-
uHistory resource of the RowColumn. The parameter specifies the nth button
child of the RadioBox, where the first button is button 0 (zero); the XmNmen-
uHistory resource is set to the actual widget. The callback argument specifies the
callback routine that is added to the XmNvalueChangedCallback of each Toggle-
ButtonGadget child of the RadioBox. When the callback is invoked, the button
number of the button whose value has changed is passed to the callback in the
client_data parameter.

The name of each ToggleButtonGadget child is button_n, where n is the number
of the button, ranging from 0 (zero) to 1 less than the number of buttons in the
RadioBox. The buttons are created and named in the order in which they are
specified in the variable-length argument list.

Motif Functions and Macros

Motif Reference Manual 554

Usage
A variable-length argument list is composed of several groups of arguments.
Within each group, the first argument is a constant or a string that specifies which
arguments follow in the group. The first argument can be one of the following
values: XmVaRADIOBUTTON, a resource name, XtVaTypedList, or XtVaNest-
edList. The variable-length argument list must be NULL-terminated.

If the first argument in a group is XmVaRADIOBUTTON, it is followed by four
arguments: label, mnemonic, accelerator, and accelerator text. This group speci-
fies a ToggleButtonGadget child of the RadioBox and its associated resources.
(As of Motif 1.2, all but the label argument are ignored.)

If the first argument in a group is a resource name string, it is followed by a
resource value of type XtArgVal. This group specifies a standard resource name/
value pair for the RowColumn widget. If the first argument in a group is XtVaTy-
pedArg, it is followed by four arguments: name, type, value, and size. This group
specifies a resource name and value using the standard XtVaTypedArg format. If
the first argument in a group is XtVaNestedList, it is followed by one argument of
type XtVarArgsList, which is returned by XtVaCreateArgsList ().

Example
You can use XmVaCreateSimpleRadioBox () as in the following example:

Widget toplevel, radio_box;
XmString one, two, three;

one = XmStringCreateLocalized ("WFNX");
two = XmStringCreateLocalized ("WMJX");
three = XmStringCreateLocalized ("WXKS");
radio_box = XmVaCreateSimpleRadioBox (toplevel, "radio_box", 0, toggled,

XmVaRADIOBUTTON, one, NULL,
NULL, NULL,
XmVaRADIOBUTTON, two, NULL,
NULL, NULL,
XmVaRADIOBUTTON, three,
NULL, NULL, NULL,
NULL);

XmStringFree (one);
XmStringFree (two);
XmStringFree (three);

See Also
XmRadioBox (2), XmRowColumn(2), XmToggleButtonGadget (2).

Motif Functions and Macros

Motif Reference Manual 555

Name
XmWidgetGetBaselines – get the positions of the baselines in a widget.

Synopsis

Boolean XmWidgetGetBaselines (Widget widget, Dimension **baselines, int
* line_count)

Inputs
widget Specifies the widget for which to get baseline values.

Outputs
baselines Returns an array containing the value of each baseline of text in the
widget.
line_count Returns the number of lines of text in the widget.

Returns
True if the widget contains at least one baseline or False otherwise.

Availability
Motif 1.2 and later.

Description
XmWidgetGetBaselines () returns an array that contains the baseline values
for the specified widget. For each line of text in the widget, the baseline value is
the vertical offset in pixels from the origin of the bounding box of the widget to
the text baseline. The routine returns the baseline values in baselines and the
number of lines of text in the widget in line_count. XmWidgetGetBase-
lines () returns True if the widget contains at least one line of text and therefore
has a baseline. If the widget does not contain any text, the routine returns False
and the values of baselines and line_count are undefined. The routine allocates
storage for the returned values. The application is responsible for freeing this
storage using XtFree ().

Usage
XmWidgetGetBaselines() provide information that is useful when you are laying
out an application and trying to align different components.

See Also
XmWidgetGetDisplayRect (1).

Motif Functions and Macros

Motif Reference Manual 556

Name
XmWidgetGetDisplayRect – get the display rectangle for a widget.

Synopsis

Boolean XmWidgetGetDisplayRect (Widget widget, XRectangle *displayrect)

Inputs
widget Specifies the widget for which to get the display rectangle.

Outputs
displayrect Returns an XRectangle that specifies the display rectangle of the
widget.

Returns
True if the widget has a display rectangle or False otherwise.

Availability
Motif 1.2 and later.

Description
XmWidgetGetDisplayRect () gets the display rectangle for the specified
widget. The routine returns the width, the height, and the x and y-coordinates of
the upper left corner of the display rectangle in the displayrect XRectangle. All
of the values are specified as pixels. The display rectangle for a widget is the
smallest rectangle that encloses the string or the pixmap in the widget. XmWidg-
etGetDisplayRect () returns True if the widget has a display rectangle; other
it returns False and the value of displayrect is undefined.

Usage
XmWidgetGetDisplayRect () provide information that is useful when you
are laying out an application and trying to align different components.

See Also
XmWidgetGetBaselines (1).

Motif Reference Manual 557

Section 2 - Motif and Xt Widget Classes

This page describes the format and contents of each reference page in Section 2,
which covers each of the Motif and Xt Intrinsics widget types.

Name
Widget – a brief description of the widget.

Synopsis

Public Headers:
The files to include when you use this widget.

Class Name:
The name of the widget class; used as the resource class for each instance of the
widget.

Class Hierarchy:
The superclasses of this widget, listed in superclass-to-subclass order. The arrow
symbol (→) indicates a subclass.

Class Pointer:
The global variable that points to the widget class structure. This is the value
used when creating a widget.

Instantiation:
C code that instantiates the widget, for widgets that can be instantiated. For the
widgets and gadgets in the Motif toolkit, we have shown how to instantiate the
widget using XtCreateWidget (). Each widget and gadget has a convenience
creation routine of the general form:

Widget XmCreate object (Widget parent
String name
ArgList arglist,
Cardinal argcount)

where object is the shorthand for the class.

Functions/Macros:
Functions and/or macros specific to this widget class.

Availability
This section describes the availability of the widget class across various versions
of Motif. The section is omitted if the widget class has always been present in the
toolkit.

Description
This section gives an overview of the widget class and the functionality it pro-
vides.

Introduction Motif and Xt Widget Classes

558 Motif Reference Manual

Traits
This section appears for any traits that are set by the widget class. The Trait
mechanisms are available in Motif 2.0 and later.

New Resources
This section presents a table of the resources that are newly defined by each
widget class (not inherited from a superclass). In addition to the resource’s name,
class, data type, and default value, a fifth column lists a code consisting of one or
more of the letters C, S, and G. This code indicates whether the resource can be
set when the widget is created (C), whether it can be set with XtSetValues() (S),
and whether it can be read with XtGetValues() (G). A brief description of
each new resource follows the table. For resources whose values are defined con-
stants, these constants are listed. Unless otherwise noted, they are defined in
<Xm/Xm.h> .

Other New Resources
If present, these sections describe resources associated with specific uses of the
widget; for example, RowColumn widget resources for use with simple creation
routines, or Text widget resources for use in text input.

Callback Resources
This section presents a table of the callback resources that are newly defined by
this class. The table lists the name of each resource along with its reason con-
stant.

Callback Structure
This section lists the structure(s) associated with the object’s callback functions.

New Constraint Resources
This section defines any constraint resources that are newly defined by each
widget class (not inherited from a superclass). In addition to the resource’s name,
class, data type, and default value, a fifth column lists a code consisting of one or
more of the letters C, S, and G. This code indicates whether the constraint
resource can be set when a child widget is created (C), whether it can be set with
XtSetValues() (S), and whether it can be read with XtGetValues() (G). A
brief description of each new constraint resource follows the table. For resources
whose values are defined constants, these constants are listed. Unless otherwise
noted, they are defined in <Xm/Xm.h> .

Procedures
This section lists any procedure or function prototypes associated with the
widget.

Motif and Xt Widget Classes Introduction

Motif Reference Manual 559

Default Resource Values
This section presents a table of the default resource values that are set when a
compound object is created.

Inherited Resources
This section presents an alphabetically arranged table of inherited resources,
along with the superclass that defines them.

Widget Hierarchy
This section presents the widget instance hierarchy that results from creating a
compound object.
The full widget hierarchy is shown in Figure 1.

Translations
This section presents the translations associated with each widget or gadget.
Because the button events and key events used in Motif do not necessarily corre-
spond to the events in the X Window System, the Motif toolkit has created a
mechanism called virtual bindings. Virtual bindings link the translations used in
Motif to their X event counterparts. The "Translations" sections list their events
in terms of these virtual bindings. In order to understand the syntax used in the
"Translations" sections of these reference pages, you must understand the corre-
spondence between virtual bindings and actual keysyms or buttons. The follow-
ing tables describe the virtual bindings of events.

Virtual Modifier Actual Modifier

MAlt <Mod1>

MCtrl <Ctrl>

MShift <Shift>

MLink <Ctrl><Shift>

MMove <Shift>

MCopy <Ctrl>

Virtual Button Actual Button Events

BCustom <Btn3>

BTransfer <Btn2>

BExtend <Shift><Btn1>

BMenu <Btn3>

BSelect <Btn1>

Introduction Motif and Xt Widget Classes

560 Motif Reference Manual

ApplicationShellMenuShell

WMShell

Manager

Primitive

OverrideShell

Object

RectObj

WindowObj

ArrowButtonGadgetCore

PanedWindow

Notebook

Frame

DrawingArea

Container

ComboBox

TextField

Text

ScrollBar

List

Label

SeparatorGadget

LabelGadget

IconGadget

Separator

ScrolledWindow

Scale

ArrowButton

SpinBox

BulletinBoard

RowColumn

CascadeButtonGadget

PushButtonGadget

ToggleButtonGadget

ToggleButton

PushButton

DrawnButton

CascadeButton

Gadget

Form

SelectionBox

MessageBox

Command

FileSelectionBox

Shell

Composite

Constraint

DialogShellVendorShell TransientShell

PrintShellTopLevelShell

GrabShell

MainWindow

SimpleSpinBox

Key

Motif

Xt Intrinsics

Figure 1: Class Hierarchy of the Motif widget set

SessionShell

Motif and Xt Widget Classes Introduction

Motif Reference Manual 561

BToggle <Ctrl><Btn1>

Virtual Key Actual Key Events

KActivate <Key>Return
<Ctrl><Key>Return
<Key>osfActivate

KAddMode <Key>osfAddMode

KBackSpace <Key>osfBackSpace

KBackTab <Shift><Key>Tab

KBeginData <Ctrl><Key>osfBeginLine

KBeginLine <Key>osfBeginLine

KCancel <Key>osfCancel

KClear <Key>osfClear

KCopy <Key>osfCopy
<Ctrl><Key>osfInsert

KCut <Key>osfCut
<Shift><Key>osfDelete

KDelete <Key>osfDelete

KDeselectAll <Ctrl><Key>backslash

KDown <Key>osfDown

KEndData <Ctrl><Key>osfEndLine

KEndLine <Key>osfEndLine

KEnter <Key>Return

KEscape <Key>Escape

KExtend <Ctrl><Shift><Key>space
<Shift><Key>osfSelect

KHelp[<Key>osfHelp

KInsert <Key>osfInsert

KLeft <Key>osfLeft

KMenu <Key>osfMenu

KMenuBar <Key>osfMenuBar

KNextField <Key>Tab
<Ctrl><Key>Tab

Virtual Button Actual Button Events

Introduction Motif and Xt Widget Classes

562 Motif Reference Manual

KNextMenu <Ctrl><Key>osfDown
<Ctrl><Key>osfRight

KPageDown <Key>osfPageDown

KPageLeft <Ctrl<Key>osfPageUp
<Key>osfPageUp

KPageRight <Ctrl><Key>osfPageDown

KPageUp <Key>osfPageUp

KPaste <Key>osfPaste
<Shift><Key>osfInsert

KPrevField <Shift><Key>Tab
<Ctrl><Key><Shift><Tab>

KPrevMenu <Ctrl><Key>osfUp
<Ctrl><Key>osfLeft

KPrimaryCopy <Ctrl><Key>osfPrimaryPaste
<Mod1><Key>osfCopy
<Mod1><Ctrl><Key>osfInsert

KPrimaryCut <Mod1><Key>osfPrimaryPaste
<Mod1><Key>osfCut
<Mod1><Shift><Key>osfDelete

KPrimaryPaste <Key>osfPrimaryPaste

KQuickCopy <Ctrl><Key>osfQuickPaste

KQuickCut <Mod1><Key>osfQuickPaste

KQuickExtend <Shift><Key>osfQuickPaste

KQuickPaste <key>osfQuickPaste

KReselect <Ctrl><Shift><Key>osfSelect

KRestore <Ctrl><Shift><Key>osfInsert

KRight <Key>osfRight

KSelect <Key>space
<Ctrl><Key>space
<Key>osfSelect

KSelectAll <Ctrl><Key>slash

KSpace <Key>space

KTab <Key>Tab

KUndo <Key>osfUndo
<Mod1><Key>osfBackSpace

Virtual Key Actual Key Events

Motif and Xt Widget Classes Introduction

Motif Reference Manual 563

Keysyms that begin with the letters osf are not defined by the X server. These
keysyms are generated at run time by a client, interpreted by XmTrans-
lateKey() , and used by the translation manager when the server sends an
actual key event. An application maintains a mapping between osf keysyms and
actual keysyms that is based on information that is retrieved at application star-
tup. This information comes from one of the following sources, listed in order of
precedence:

• The XmNdefaultVirtualBindings resource in a resource database. A
sample specification is shown below:

*defaultVirtualBindings:\
osfBackSpace: <Key>BackSpace \n\
osfInsert: <Key>InsertChar \n\
osfDelete: <Key>DeleteChar

• A property on the root window. mwm sets this property on startup. It can also be
set by the xmbind client in Motif 1.2 or later, or the prior startup of another Motif
application.

• A file named .motifbind, in the user’s home directory. In this file, the previous
specification would be typed as follows:

osfBackSpace: <Key>BackSpace
osfInsert: <Key>InsertChar
osfDelete: <Key>DeleteChar

• A vendor-specific set of bindings located using the file xmbind.alias. If this file
exists in the user’s home directory, it is searched for a pathname associated with
the vendor string or the vendor string and vendor release. If the search is unsuc-
cessful, Motif continues looking for xmbind.alias in the directory specified by
XMBINDDIR or in /usr/lib/Xm/bindings if the variable is not set. If this file
exists, it is searched for a pathname as before. If either search locates a pathname
and the file exists, the bindings in that file are used. An xmbind.alias file contains
lines of the following form:

"vendor_string[vendor_release]"bindings_file

• Via fixed fallback defaults. osf keysym strings have the fixed fallback default
bindings listed below:

osfActivate <unbound>

KUp <Key>osfUp

KAny <Key>

Virtual Key Actual Key Events

Introduction Motif and Xt Widget Classes

564 Motif Reference Manual

osfAddMode <Shift> F8
osfBackSpace Backspace
osfBeginLine Home
osfClear Clear
osfCopy <unbound>
osfCut <unbound>
osfDelete Delete
osfDown Down
osfEndLine End
osfCancel <Escape>
osfHelp F1
osfInsert Insert
osfLeft Left
osfMenu F4
osfMenuBar F10
osfPageDown Next
osfPageLeft <unbound>
osfPageRight <unbound>
osfPageUp Prior
osfPaste <unbound>
osfPrimaryPaste <unbound>
osfQuickPaste <unbound>
osfRight Right
osfSelect Select
osfUndo Undo
osfUp Up

Action Routines
This section describes the action routines that are listed in the "Translations" sec-
tion.

Behavior
This section describes the keyboard and mouse events that affect gadgets, which
do not have translations or actions.

Additional Behavior
This section describes any additional widget behavior that is not provided by
translations and actions.

See Also
This section refers you to related functions and widget classes. The numbers in
parentheses following each reference refer to the sections of this book in which
they are found.

Motif and Xt Widget Classes ApplicationShell

Motif Reference Manual 565

Name
ApplicationShell widget class – the main shell for an application.

Synopsis

Public Headers:
<Xm/Xm.h>
<X11/Shell.h>

Class Name:
ApplicationShell

Class Hierarchy:
Core → Composite → Shell → WMShell → VendorShell → TopLevelShell →
ApplicationShell

Class Pointer:
applicationShellWidgetClass

Instantiation:
widget = XtAppInitialize (...)
or
widget = XtAppCreateShell (app_name, app_class,

applicationShellWidget-
Class,...)

Functions/Macros:
XtAppCreateShell() , XtVaAppCreateShell() , XtIsApplica-
tionShell()

Availability
From X11R6, the ApplicationShell is considered deprecated: you should give
preference to the SessionShell widget class.

Description
An ApplicationShell is the normal top-level window for an application. It does
not have a parent and it is at the root of the widget tree. An application should
have only one ApplicationShell, unless the application is implemented as multi-
ple logical applications. Normally, an application will use TopLevelShell widgets
for other top-level windows.

An ApplicationShell is returned by the call to XtVaAppInitialize() . It can
also be created explicitly with a call to XtVaAppCreateShell() .

ApplicationShell Motif and Xt Widget Classes

566 Motif Reference Manual

New Resources
ApplicationShell defines the following resources:

XmNargc
Number of arguments in XmNargv.

XmNargv
List of command-line arguments used to start the application. This is the standard
C argv, passed in the call to XtAppInitialize() . It is used to set the
WM_COMMAND property for this window, which is the argument list required
by a session manager to restart the application if necessary. The resource value
can be changed at appropriate points if some specific internal state has been
reached from which the application can be directly restarted.

Inherited Resources
ApplicationShell inherits the following resources. The resources are listed alpha-
betically, along with the superclass that defines them. The default value of XmN-
borderWidth is reset to 0 by VendorShell.

Name Class Type Default Access

XmNargc XmCArgc int 0 CSG

XmNargv XmCArgv String * NULL CSG

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNmappedWhenManaged Core

XmNallowShellResize Shell XmNmaxAspectX WMShell

XmNancestorSensitive Core XmNmaxAspectY WMShell

XmNaudibleWarning VendorShell XmNmaxHeight WMShell

XmNbackground Core XmNmaxWIdth WMShell

XmNbackgroundPixmap Core XmNminAspectX WMShell

XmNbaseHeight WMShell XmNminAspectY WMShell

XmNbaseWidth WMShell XmNminHeight WMShell

XmNborderColor Core XmNminWidth WMShell

XmNborderPixmap Core XmNmwmDecorations VendorShell

XmNborderWidth Core XmNmwmFunctions VendorShell

XmNbuttonFontList VendorShell XmNmwmInputMode VendorShell

XmNbuttonRenderTable VendorShell XmNmwmMenu VendorShell

XmNchildren Composite XmNnumChildren Composite

XmNcolormap Core XmNoverrideRedirect Shell

Motif and Xt Widget Classes ApplicationShell

Motif Reference Manual 567

The VendorShell superclass installs a handler which intercepts the window man-
ager WM_DELETE_WINDOW message. The handler is inherited by sub-classes
of VendorShell, and has the behavior that if XmNdeleteResponse is XmDE-
STROY, and the widget is an instance of an ApplicationShell, then the applica-
tion context associated with the widget is destroyed, followed by a call to exit().

See Also
Composite (2), Core (2), SessionShell (2), Shell (2),
TopLevelShell (2), VendorShell (2), WMShell (2).

XmNcreatePopupChildProc Shell XmNpopdownCalback Shell

XmNdefaultFontList VendorShell XmNpopupCallback Shell

XmNdeleteResponse VendorShell XmNpreeditType VendorShell

XmNdepth Core XmNsaveUnder Shell

XmNdestroyCallback Core XmNscreen Core

XmNgeometry Shell XmNsensitive Core

XmNheight Core XmNshellUnitType VendorShell

XmNheightInc WMShell XmNtextFontList VendorShell

XmNiconic TopLevelShell XmNtextRenderTable VendorShell

XmNiconMask WMShell XmNtitle WMShell

XmNiconName TopLevelShell XmNtitleEncoding WMShell

XmNiconNameEncoding TopLevelShell XmNtransient WMShell

XmNiconPixmap WMShell XmNtranslations Core

XmNiconWindow WMShell XmNuseAsyncGeometry VendorShell

XmNinitialResourcesPersistent Core XmNunitType VendorShell

XmNinitialState WMShell XmNvisual Shell

XmNinput WMShell XmNwaitForWm WMShell

XmNinputMethod VendorShell XmNwidth Core

XmNinputPolicy VendorShell XmNwidthInc WMShell

XmNinsertPosition Composite XmNwindowGroup WMShell

XmNkeyboardFocusPolicy VendorShell XmNwinGravity WMShell

XmNlabelFontList VendorShell XmNwmTimeout WMShell

XmNlabelRenderTable VendorShell XmNx Core

XmNlayoutDirection VendorShell XmNy Core

Resource Inherited From Resource Inherited From

Composite Motif and Xt Widget Classes

568 Motif Reference Manual

Name
Composite widget class – the fundamental widget that can have children.

Synopsis

Public Headers:
<Xm/Xm.h>
<X11/Composite.h>

Class Name:
Composite

Class Hierarchy:
Core → Composite

Class Pointer:
compositeWidgetClass

Instantiation:
Composite is an Intrinsics meta-class and is not normally instantiated.

Functions/Macros:
XtIsComposite()

Description
Composite widgets contain other widgets. A Composite widget supports an arbi-
trary number of children, although derived classes may impose a limit for what-
ever reason. Composite handles the geometry management of its children. It also
manages the destruction of descendants when it is destroyed. Children of a Com-
posite widget are ordered, and Composite provides the means to sort or place the
list of children in some logical order.

New Resources
Composite defines the following resources:

XmNchildren
List of widget’s children.

XmNinsertPosition
Points to an XtOrderProc() function that is called to determine the position
at which each child is inserted into the XmNchildren array. Composite supplies a
default function that appends children in the order of creation.

Name Class Type Default Access

XmNchildren XmCReadOnly WidgetList NULL G

XmNinsertPosition XmCInsertPosition XtOrderProc NULL CSG

XmNnumChildren XmCReadOnly Cardinal 0 G

Motif and Xt Widget Classes Composite

Motif Reference Manual 569

XmNnumChildren
Length of the list in XmNchildren.

Procedures
XtOrderProc

An XtOrderProc is a pointer to a function, specified as follows:

typedef Cardinal (*XtOrderProc) (Widget);

An XtOrderProc function is called by the insert_child method of a Composite
or derived class, when a new child is created within the widget. The function has
a single parameter, which is the widget ID of the new child. The function returns
the number of children that go before the new child in the XmNchildren array.
Composite supplies a default function that simply appends new children in the
order of creation. Sub-classes may supply alternative default behavior. Program-
mers may supply their own XtOrderProc to sort children in some specified man-
ner.

Inherited Resources
Composite inherits the following resources. The resources are listed alphabeti-
cally, along with the superclass that defines them.

See Also
Core (2).

Name Inherited From Name Inherited From

XmNaccelerators Core XmNheight Core

XmNancestorSensitive Core XmNinitialResourcesPersistent Core

XmNbackground Core XmNmappedWhenManaged Core

XmNbackgroundPixmap Core XmNscreen Core

XmNborderColor Core XmNsensitive Core

XmNborderPixmap Core XmNtranslations Core

XmNborderWidth Core XmNwidth Core

XmNcolormap Core XmNx Core

XmNdepth Core XmNy Core

XmNdestroyCallback Core

Constraint Motif and Xt Widget Classes

570 Motif Reference Manual

Name
Constraint widget class – a widget that provides constraint resources for its chil-
dren.

Synopsis

Public Headers:
<Xm/Xm.h>
<X11/Constraint.h>

Class Name:
Constraint

Class Hierarchy:
Core → Composite → Constraint

Class Pointer:
constraintWidgetClass

Instantiation:
Constraint is an Intrinsics meta-class and is not normally instantiated.

Functions/Macros:
XtIsConstraint()

Description
Constraint widgets are so named because they may manage the geometry of their
children based on constraints associated with each child. These constraints can be
as simple as the maximum width and height the parent allows the child to occupy,
or as complicated as how other children change if a child is moved or resized.
Constraint widgets let a parent define resources that are supplied for their chil-
dren. For example, if a Constraint parent defines the maximum width and height
for its children, these resources are retrieved for each child as if they are
resources that are defined by the child widget itself.

New Resources
Constraint does not define any new resources.

Inherited Resources
Constraint inherits the following resources. The resources are listed alphabeti-
cally, along with the superclass that defines them.

Name Inherited From Name Inherited From

XmNaccelerators Core XmNheight Core

XmNancestorSensitive Core XmNinsertPosition Composite

XmNbackground Core XmNinitialResourcesPersistent Core

Motif and Xt Widget Classes Constraint

Motif Reference Manual 571

See Also
Composite (2), Core (2).

XmNbackgroundPixmap Core XmNmappedWhenManaged Core

XmNborderColor Core XmNnumChildren Composite

XmNborderPixmap Core XmNscreen Core

XmNborderWidth Core XmNsensitive Core

XmNchildren Composite XmNtranslations Core

XmNcolormap Core XmNwidth Core

XmNdepth Core XmNx Core

XmNdestroyCallback Core XmNy Core

Name Inherited From Name Inherited From

Core Motif and Xt Widget Classes

572 Motif Reference Manual

Name
Core widget class – the fundamental class for windowed widgets.

Synopsis

Public Header:
<Xm/Xm.h>
<X11/Core.h>

Class Name:
Core

Class Hierarchy:
Object → RectObj → unnamed → Core

Class Pointer:
widgetClass or coreWidgetClass

Instantiation:
Core is an Intrinsics meta-class and is not normally instantiated.

Functions/Macros:
XtIsWidget ()

Description
Core is the fundamental class for windowed widgets. All widgets with windows
are subclasses of Core. The Object and RectObj classes support gadgets (win-
dowless widgets). Core is sometimes instantiated for use as a basic drawing area.

New Resources
Core defines the following resources (some of which are actually defined by the
Object and RectObj classes)

Name Class Type Default Access

XmNaccelerators XmCAccelerators XtAccelerators dynamic CSG

XmNancestorSensitive XmCSensitive Boolean dynamic G

XmNbackground XmCBackground Pixel dynamic CSG

XmNbackgroundPixmap XmCPixmap Pixmap XmUNSPECIFIED_PIXMAP CSG

XmNborderColor XmCBorderColor Pixel XtDefaultForeground CSG

XmNborderPixmap XmCPixmap Pixmap XmUNSPECIFIED_PIXMAP CSG

XmNborderWidth XmCBorderWidth Dimension 1 CSG

XmNcolormap XmCColormap Colormap dynamic CSG

Motif and Xt Widget Classes Core

Motif Reference Manual 573

XmNaccelerators
A translation table bound with its actions for a widget. A destination widget can
be set up to use this accelerator table.

XmNancestorSensitive
Tells whether a widget’s immediate parent should receive input. Default value is
True if the widget is a top-level shell, copied from the XmNancestorSensitive
resource of its parent if the widget is a popup shell, or the bitwise AND of the
XmNsensitive and XmNancestorSensitive resources of the parent for other widg-
ets.

XmNbackground
Widget’s background color.

XmNbackgroundPixmap
Pixmap with which to tile the background, beginning at the upper-left corner.

XmNborderColor
Pixel value that defines the color of the border.

XmNborderPixmap
Pixmap with which to tile the border, beginning at the upper-left corner of the
border.

XmNborderWidth
Width (in pixels) of the window’s border.

XmNdepth XmCDepth int dynamic CSG

XmNdestroyCallback XmCCallback XtCallbackList NULL C

XmNheight XmCHeight Dimension dynamic CSG

XmNinitialResourcesPersistent XmCInitialResourcesPersistent Boolean True C

XmNmappedWhenManaged XmCMappedWhenManaged Boolean True CSG

XmNscreen XmCScreen Screen * dynamic CG

XmNsensitive XmCSensitive Boolean True CSG

XmNtranslations XmCTranslations XtTranslations dynamic CSG

XmNwidth XmCWidth Dimension dynamic CSG

XmNx XmCPosition Position 0 CSG

XmNy XmCPosition Position 0 CSG

Name Class Type Default Access

Core Motif and Xt Widget Classes

574 Motif Reference Manual

XmNcolormap
Colormap used in converting to pixel values. Previously created pixel values are
unaffected. The default value is the screen’s default colormap for top-level shells
or is copied from the parent for other widgets.

XmNdepth
Number of bits allowed for each pixel. The Xt Intrinsics set this resource when
the widget is created. As with the XmNcolormap resource, the default value
comes from the screen’s default or is copied from the parent.

XmNdestroyCallback
List of callbacks invoked when the widget is destroyed.

XmNheight
Window height (in pixels), excluding the border.

XmNinitialResourcesPersistent
Tells whether resources should be reference counted. If True (default), it is
assumed that the widget won’t be destroyed while the application is running, and
thus the widget’s resources are not reference counted. Set this resource to False if
your application might destroy the widget and will need to deallocate the
resources.

XmNmappedWhenManaged
If True (default), the widget becomes visible (is mapped) as soon as it is both
realized and managed. If False, the application performs the mapping and
unmapping of the widget. If changed to False after the widget is realized and
managed, the widget is unmapped.

XmNscreen
Screen location of the widget. The default value comes either from the screen’s
default or is copied from the parent.

XmNsensitive
Tells whether a widget is sensitive to input. The XtSetSensitive () routine
can be used to change a widget’s sensitivity and to guarantee that if a parent has
its XmNsensitive resource set to False, then its children will have their ances-
tor-sensitive flag set correctly.

XmNtranslations
Points to a translation table; must be compiled with XtParseTransla-
tionTable ().

XmNwidth
Window width (in pixels), excluding the border.

XmNx
The x-coordinate of the widget’s upper-left outer corner, relative to the upper-left
inner corner of its parent.

Motif and Xt Widget Classes Core

Motif Reference Manual 575

XmNy
The y-coordinate of the widget’s upper-left outer corner, relative to the upper-left
inner corner of its parent.

See Also
Object (2), RectObj (2).

Object Motif and Xt Widget Classes

576 Motif Reference Manual

Name
Object widget class – fundamental object class.

Synopsis

Public Headers:
<Xm/Xm.h>
<X11/Object.h>

Class Name:
Object

Class Hierarchy:
Object

Class Pointer:
objectClass

Instantiation:
Object is an Intrinsics meta-class and is not normally instantiated.

Functions/Macros:
XtIsObject ()

Description
Object is the root of the class hierarchy; it does not have a superclass. All widgets
and gadgets are subclasses of Object. Object encapsulates the mechanisms for
resource management and is never instantiated.

New Resources
Object defines the following resources:

XmNdestroyCallback
List of callbacks invoked when the Object is destroyed.

See Also
Core (2).

Name Class Type Default Access

XmNdestroyCallback XmCCallback XtCallbackList NULL C

Motif and Xt Widget Classes OverrideShell

Motif Reference Manual 577

Name
OverrideShell widget class – a popup shell that bypasses window management.

Synopsis

Public Header:
<X11/Shell.h>

Class Name:
OverrideShell

Class Hierarchy:
Core → Composite → Shell → OverrideShell

Class Pointer:
overrideShellWidgetClass

Instantiation:
widget = XtCreatePopupShell (name, overrideShellWidgetClass,...)

Functions/Macros:
XtIsOverrideShell ()

Description
OverrideShell is a direct subclass of Shell that performs no interaction with win-
dow managers. It is used for widgets, such as popup menus, that should bypass
the window manager.

New Resources
OverrideShell does not define any new resources.

Inherited Resources
OverrideShell inherits the following resources. The resources are listed alphabet-
ically, along with the superclass that defines them. OverrideShell sets the default
values of both XmNoverrideRedirect and XmNsaveUnder to True.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNinitialResourcesPersistent Core

XmNallowShellResize Shell XmNinsertPosition Composite

XmNancestorSensitive Core XmNmappedWhenManaged Core

XmNaudibleWarning VendorShell XmNnumChildren Composite

XmNbackground Core XmNoverrideRedirect Shell

XmNbackgroundPixmap Core XmNpopdownCalback Shell

XmNborderColor Core XmNpopupCallback Shell

XmNborderPixmap Core XmNsaveUnder Shell

XmNborderWidth Core XmNscreen Core

OverrideShell Motif and Xt Widget Classes

578 Motif Reference Manual

See Also
Composite (2), Core (2), Shell (2).

XmNchildren Composite XmNsensitive Core

XmNcolormap Core XmNtranslations Core

XmNcreatePopupChildProc Shell XmNvisual Shell

XmNdepth Core XmNwidth Core

XmNdestroyCallback Core XmNx Core

XmNgeometry Shell XmNy Core

XmNheight Core

Resource Inherited From Resource Inherited From

Motif and Xt Widget Classes RectObj

Motif Reference Manual 579

Name
RectObj widget class – fundamental object class with geometry.

Synopsis

Public Header:
<Xm/Xm.h>
<X11/RectObj.h>

Class Name:
RectObj

Class Hierarchy:
Object → RectObj

Class Pointer:
rectObjClass

Instantiation:
RectObj is an Intrinsics meta-class and is not normally instantiated.

Functions/Macros:
XtIsRectObj ()

Description
RectObj is a supporting superclass for widgets and gadgets, defined by the X
toolkit intrinsics. All of the Motif widgets are ultimately derived from RectObj. It
does not have a window, but it does have a height, width, and location, and it
encapsulates the mechanisms for geometry management.

New Resources
RectObj defines the following resources:

Name Class Type Default Access

XmNancestorSensitive XmCSensitive Boolean dynamic G

XmNborderWidth XmCBorderWidth Dimension 1 CSG

XmNheight XmCHeight Dimension dynamic CSG

XmNsensitive XmCSensitive Boolean True CSG

XmNwidth XmCWidth Dimension dynamic CSG

XmNx XmCPosition Position 0 CSG

XmNy XmCPosition Position 0 CSG

RectObj Motif and Xt Widget Classes

580 Motif Reference Manual

XmNancestorSensitive
Tells whether a gadget’s immediate parent should receive input. Default value is
the bitwise AND of the XmNsensitive and XmNancestorSensitive resources of
the parent.

XmNborderWidth
Width (in pixels) of the window’s border.

XmNheight
Window height (in pixels), excluding the border.

XmNsensitive
Tells whether a widget receives input (is sensitive). The XtSetSensitive() routine
can be used to change a widget’s sensitivity and to guarantee that if a parent has
its XmNsensitive resource set to False, then its children will have their ances-
tor-sensitive flag set correctly.

XmNwidth
Window width (in pixels), excluding the border.

XmNx
The x-coordinate of the widget’s upper-left outer corner, relative to the upper-left
inner corner of its parent.

XmNy
The y-coordinate of the widget’s upper-left outer corner (that is, outside of any
border or shadow rectangle), relative to its parents upper-left inner corner (inside
all border or shadow rectangles).

Inherited Resources
RectObj inherits the following resource:

See Also
Object (2).

Resource Inherited From

XmNdestroyCallback Core

Motif and Xt Widget Classes SessionShell

Motif Reference Manual 581

Name
SessionShell widget class – the main shell for an application.

Synopsis

Public Headers:
<Xm/Xm.h>
<X11/Shell.h>

Class Name:
SessionShell

Class Hierarchy:
Core → Composite → Shell → WMShell → VendorShell → TopLevelShell →
ApplicationShell → SessionShell

Class Pointer:
sessionShellWidgetClass

Instantiation:
widget = XtAppInitialize (...)
or
widget = XtAppCreateShell (app_name, app_class,

sessionShellWidget-
Class,...)

Functions/Macros:
XtAppCreateShell() , XtVaAppCreateShell() , XtIsSession-
Shell()

Availability
The Session shell is only available from X11R6.

Description
A SessionShell is the normal top-level window for an application. It does not
have a parent and it is at the root of the widget tree. An application should have
only one SessionShell, unless the application is implemented as multiple logical
applications. Normally, an application will use TopLevelShell widgets for other
top-level windows.

The SessionShell differs from the ApplicationShell in that it interfaces to the
X11R6 Session Management facilities, which enable applications to save or
restart themselves in a known state in response to commands from the desktop

A SessionShell is returned by the call to XtVaAppInitialize() . It can also
be created explicitly with a call to XtVaAppCreateShell() .

Interaction with the user during session management is implemented through a
token-passing mechanism. A Checkpoint token is passed between the Session

SessionShell Motif and Xt Widget Classes

582 Motif Reference Manual

Manager and the Session Shell callbacks; the application may interact with the
user directly (usually to ask the user if unsaved changes to the application should
be saved) only if the SessionShell of the application holds the token. The applica-
tion may only interact with the user after issuing a request to do so. Issuing a
request takes the form of registering a procedure on the XtNinteractCallback list.
If and when the Session Manager decides that it is time to allow user interaction,
the interact procedures are invoked, with the checkpoint token passed to the
application through call_data for the procedures so registered. After the interac-
tion with the user is complete, the application returns the checkpoint by calling
XtSessionReturnToken (). Unusually, callbacks on the XtNinteractCall-
back list are invoked one at a time; after the first procedure is called, it is removed
from the list.

New Resources
SessionShell defines the following resources:

XtNcancelCallback
List of callbacks to be invoked when the SessionShell receives a ShutdownCan-
celled message from the Session Manager.

Name Class Type Default Access

XtNcancelCallback XtCCallback XtCallbackList NULL C

XtNcloneCommand XtCCloneCommand String * dynamic CSG

XtNconnection XtCConnection SmcConn NULL CSG

XtNcurrentDirectory XtCCurrentDirectory String NULL CSG

XtNdieCallback XtCCallback XtCallbackList NULL C

XtNdiscardCommand XtCDiscardCommand String * NULL CSG

XtNenvironment XtCEnvironment String * NULL CSG

XtNerrorCallback XtCCallback XtCallbackList NULL C

XtNinteractCallback XtCCallback XtCallbackList NULL C

XtNjoinSession XtCJoinSession Boolean True CSG

XtNprogramPath XtCProgramPath String dynamic CSG

XtNresignCommand XtCResignCommand String * NULL CSG

XtNrestartCommand XtCRestartCommand String * dynamic CSG

XtNrestartStyle XtCRestartStyle unsigned char SmRestartIfRunning CSG

XtNsaveCallback XtCCallback XtCallbackList NULL C

XtNsaveCompleteCallback XtCCallback XtCallbackList NULL C

XtNsessionID XtCSessionID String NULL CSG

XtNshutdownCommand XtCShutdownCommand String * NULL CSG

Motif and Xt Widget Classes SessionShell

Motif Reference Manual 583

XtNcloneCommand
Specifies a command which the Session Manager uses to create a new instance of
the application. If the value is NULL, the Session Manager will use the value of
the XtNrestartCommand resource.

XtNconnection
Specifies the connection between the SessionShell and the Session Manager.
Normally the SessionShell instantiates this value when the shell is created,
although the programmer can specify a value if the application has already estab-
lished a private connection.

XtNcurrentDirectory
Specifies a location in the file system where the Session Manager should arrange
to restart the application when required to do so.

XtNdieCallback
List of callbacks invoked when the application receives a Die message from the
Session Manager. The application should take whatever steps are required to
cleanly terminate.

XtNdiscardCommand
Specifies a command which, if invoked, will cause the host to discard all infor-
mation pertaining to the current application state. If NULL, the Session Manager
assumes that the application state is fully recoverable from the XtNrestartCom-
mand specification.

XtNenvironment
Specifies the environment variables (and values) which the Session Manager
should set up prior to restarting the application. The resource is assumed to con-
sist of a list of “name=value” strings.

XtNerrorCallback
List of callbacks to be invoked if the connection between the Session Manager
and the SessionShell becomes irrevocably lost. The XtNconnection is reset to
NULL by the SessionShell in these circumstances.

XtNinteractCallback
List of callbacks invoked when a client wants to interact with the user before a
session shutdown. This callback list is implemented in a special manner: each
time the Session Manager is issued a request to interact with the user, the Session
Manager calls and then removes the top callback from the list. Furthermore, the
request to interact with the user during Session Management operations is per-
formed simply by registering a callback on this list. If there is more than one call-
back on the list, subsequent
callbacks below the top are not called until the application calls XtSession-
ReturnToken (), returning the checkpoint token to the Session Manager.

SessionShell Motif and Xt Widget Classes

584 Motif Reference Manual

XtNjoinSession
Specifies whether the SessionShell should automatically initialize a connection
to the Session Manager. Setting the resource True at any time will initialize the
connection; subsequently setting it False will resign from the session.

XtNprogramPath
The full path of the program which is running. If NULL, the session management
uses the first element of the XtNrestartCommand array as the program path.

XtNresignCommand
Specifies a command which logically undoes the client: saved state should be
removed.

XtNrestartCommand
Specifies a command which should cause an instance of the application to be
invoked, such that it restarts in its current state. If NULL, the XmNargv resource
is used as fallback.

XtNrestartStyle
Specifies a hint to the session manager, indicating how the application would like
to be restarted. Possible values are:

SmRestartIfRunning
SmRestartAnyway
SmRestartImmediately
SmRestartNever

SmRestartIfRunning is the default, and specifies that the client should restart if it
was running at the end of the current session.

SmRestartAnyway specifies that the client should be restarted even if it termi-
nated before the end of the current session.

SmRestartImmediately specifies that the client is meant to run continuously. If it
exits at any time, the session manager should restart it in the current session.

SmRestartNever specifies that the client should not be restarted under session
management control.

XtNsaveCallback
Specifies a list of callbacks to be invoked when the client receives a SaveYourself
message from the session manager. The procedures are responsible for saving the
application state.

XtNsaveCompleteCallback
Specifies a list of callbacks to be invoked when the session manager sends a
SaveComplete message to the client. Clients can continue their normal opera-
tions thereafter.

Motif and Xt Widget Classes SessionShell

Motif Reference Manual 585

XtNsessionID
This resource identifies the client to the session manager. This is either assigned
by the session manager when connection is established, or deduced from any
-xtsessionID command line argument to the application.

XtNshutdownCommand
Specifies a command which the session manager will invoke at shutdown; the
command should clean up after the client, but not remove any saved state.

Callback Structure
Callbacks on the XtNsaveCallback and XtNinteractCallback lists are each passed
the following structure as call_data when invoked:

typedef struct _XtCheckpointTokenRec {
int save_type;
int interact_style;
Boolean shutdown;
Boolean fast;
Boolean cancel_shutdown;
int phase;
int interact_dialog_type;
Boolean request_cancel;
Boolean request_next_phase;
Boolean save_success;
int type;
Widget widget;

} XtCheckpointTokenRec, *XtCheckpointToken;

The save_type element indicates the type of information which the application
should attempt to save. Possible values are: SmSaveLocal, SmSaveGlobal,
SmSaveBoth.

The interact_style element indicates the kind of user interaction which is cur-
rently permitted. Possible values are: SmInteractStyleNone, SmInteractStyleEr-
rors, SmInteractStyleAny.

The shutdown element indicates whether the save interaction is being performed
prior to a session shutdown.

If fast is True, the client should endeavour to save the minimum recovery state
possible.

If cancel_shutdown is True, the Session Manager has sent a ShutdownCancelled
message to the client.

SessionShell Motif and Xt Widget Classes

586 Motif Reference Manual

The phase element is for specialized manager clients use only (the window man-
ager), and indicates the state of the interaction between the Session Manager and
the client. The value will be either 1 or 2.

The remaining fields are where the client communicates back to the Session
Manager.

The interact_dialog_type element specifies the kind of interaction required by the
client. The initial value is SmDialogNormal, which is for a normal interactive
dialog. The value of SmDialogError requests an error dialog interaction.

The request_cancel element is only used by XtNinteractCallbacks, and is a hint
to the session manager that the client requests that the current shutdown opera-
tion should be cancelled.

The request_next_phase element is used by the specialized manager clients: the
default value is False, but can be set True by these clients.

The save_success element is where the client indicates to the Session Manager
the status of the application save-state operations. The value False indicates that
the client could not save its state successfully.

The type and widget fields are internal to the implementation, and are not to be
used by application programmers.

Inherited Resources
SessionShell inherits the following resources. The resources are listed alphabeti-
cally, along with the superclass that defines them. The default value of XmNbor-
derWidth is reset to 0 by VendorShell.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNlabelRenderTable VendorShell

XmNallowShellResize Shell XmNlayoutDirection VendorShell

XmNancestorSensitive Core XmNmappedWhenManaged Core

XmNargc ApplicationShell XmNmaxAspectX WMShell

XmNargv ApplicationShell XmNmaxAspectY WMShell

XmNaudibleWarning VendorShell XmNmaxHeight WMShell

XmNbackground Core XmNmaxWIdth WMShell

XmNbackgroundPixmap Core XmNminAspectX WMShell

XmNbaseHeight WMShell XmNminAspectY WMShell

XmNbaseWidth WMShell XmNminHeight WMShell

XmNborderColor Core XmNminWidth WMShell

XmNborderPixmap Core XmNmwmDecorations VendorShell

Motif and Xt Widget Classes SessionShell

Motif Reference Manual 587

The VendorShell superclass installs a handler which intercepts the window man-
ager WM_DELETE_WINDOW message. The handler is inherited by sub-classes
of VendorShell, and has the behavior that if XmNdeleteResponse is XmDE-
STROY, and the widget is an instance of an ApplicationShell, then the applica-
tion context associated with the widget is destroyed, followed by a call to exit().

XmNborderWidth Core XmNmwmFunctions VendorShell

XmNbuttonFontList VendorShell XmNmwmInputMode VendorShell

XmNbuttonRenderTable VendorShell XmNmwmMenu VendorShell

XmNchildren Composite XmNnumChildren Composite

XmNcolormap Core XmNoverrideRedirect Shell

XmNcreatePopupChildProc Shell XmNpopdownCalback Shell

XmNdefaultFontList VendorShell XmNpopupCallback Shell

XmNdeleteResponse VendorShell XmNpreeditType VendorShell

XmNdepth Core XmNsaveUnder Shell

XmNdestroyCallback Core XmNscreen Core

XmNgeometry Shell XmNsensitive Core

XmNheight Core XmNshellUnitType VendorShell

XmNheightInc WMShell XmNtextFontList VendorShell

XmNiconic TopLevelShell XmNtextRenderTable VendorShell

XmNiconMask WMShell XmNtitle WMShell

XmNiconName TopLevelShell XmNtitleEncoding WMShell

XmNiconNameEncoding TopLevelShell XmNtransient WMShell

XmNiconPixmap WMShell XmNtranslations Core

XmNiconWindow WMShell XmNvisual Shell

XmNinitialResourcesPersistent Core XmNwaitForWm WMShell

XmNinitialState WMShell XmNwidth Core

XmNinput WMShell XmNwidthInc WMShell

XmNinputMethod VendorShell XmNwindowGroup WMShell

XmNinputPolicy VendorShell XmNwinGravity WMShell

XmNinsertPosition Composite XmNwmTimeout WMShell

XmNkeyboardFocusPolicy VendorShell XmNx Core

XmNlabelFontList VendorShell XmNy Core

Resource Inherited From Resource Inherited From

SessionShell Motif and Xt Widget Classes

588 Motif Reference Manual

See Also
ApplicationShell(2), Composite (2), Core (2), Shell (2),
TopLevelShell (2), VendorShell (2), WMShell (2).

Motif and Xt Widget Classes Shell

Motif Reference Manual 589

Name
Shell widget class – fundamental widget class that controls interaction between
top-level windows and the window manager.

Synopsis

Public Header:
<Xm/Xm.h>
<X11/Shell.h>

Class Name:
Shell

Class Hierarchy:
Core → Composite → Shell

Class Pointer:
shellWidgetClass

Instantiation:
Shell is an Intrinsics meta-class and is not normally instantiated.

Functions/Macros:
XtIsShell ()

Description
Shell is a subclass of Composite that handles interaction between the window
manager and its single child.

New Resources
Shell defines the following resources:

XmNallowShellResize
If False (default), the Shell widget refuses geometry requests from its children
(by returning XtGeometryNo).

Name Class Type Default Access

XmNallowShellResize XmCAllowShellResize Boolean False CSG

XmNcreatePopupChildProc XmCCreatePopupChildProc XtCreatePopupChildProc NULL CSG

XmNgeometry XmCGeometry String NULL CSG

XmNoverrideRedirect XmCOverrideRedirect Boolean False CSG

XmNpopdownCallback XmCCallback XtCallbackList NULL C

XmNpopupCallback XmCCallback XtCallbackList NULL C

XmNsaveUnder XmCSaveUnder Boolean False CSG

XmNvisual XmCVisual Visual * CopyFromParent CSG

Shell Motif and Xt Widget Classes

590 Motif Reference Manual

XmNcreatePopupChildProc
A pointer to an XtCreatePopupChildProc procedure that creates a child
widget--but only when the shell is popped up, not when the application is started.
This is useful in menus, for example, since you don’t need to create the menu
until it is popped up. This procedure is called after any callbacks specified in the
XmNpopupCallback resource.

XmNgeometry
This resource specifies the values for the resources XmNx, XmNy, XmNwidth,
and
 XmNheight in situations where an unrealized widget has added or removed
some of its managed children.

XmNoverrideRedirect
If True, the widget is considered a temporary window that redirects the keyboard
focus away from the main application windows. Usually this resource shouldn’t
be changed.

XmNpopdownCallback
List of callbacks that are called when the widget is popped down using XtPop-
down().

XmNpopupCallback
List of callbacks that are called when the widget is popped up using XtPopup ().

XmNsaveUnder
If True, screen contents that are obscured by a widget are saved, thereby avoiding
the overhead of sending expose events after the widget is unmapped.

XmNvisual
The visual server resource that is used when creating the widget.

Procedures

XtCreatePopupChildProc
An XtCreatePopupChildProc is a pointer to a procedure, specified as follows:

typedef void (*XtCreatePopupChildProc) (Widget);

An XtCreatePopupChildProc procedure is called when a Shell or derived class is
popped up, typically through a call to XtPopup (). The function has a single
parameter, which is the widget ID of the shell.

Motif and Xt Widget Classes Shell

Motif Reference Manual 591

Inherited Resources
Shell inherits the following resources. The resources are listed alphabetically,
along with the superclass that defines them.

See Also
Composite (2), Core (2).

Name Inherited From Name Inherited From

XmNaccelerators Core XmNheight Core

XmNancestorSensitive Core XmNinsertPosition Composite

XmNbackground Core XmNinitialResourcesPersistent Core

XmNbackgroundPixmap Core XmNmappedWhenManaged Core

XmNborderColor Core XmNnumChildren Composite

XmNborderPixmap Core XmNscreen Core

XmNborderWidth Core XmNsensitive Core

XmNchildren Composite XmNtranslations Core

XmNcolormap Core XmNwidth Core

XmNdepth Core XmNx Core

XmNdestroyCallback Core XmNy Core

TopLevelShell Motif and Xt Widget Classes

592 Motif Reference Manual

Name
TopLevelShell widget class – additional top-level shells for an application.

Synopsis

Public Header:
<Xm/Xm.h>
<X11/Shell.h>

Class Name:
TopLevelShell

Class Hierarchy:
Core → Composite → Shell → WMShell → VendorShell → TopLevelShell

Class Pointer:
topLevelShellWidgetClass

Instantiation:
widget = XtCreatePopupShell (name, topLevelShellWidgetClass,...)

Functions/Macros:
XtIsTopLevelShell ()

Description
TopLevelShell is a subclass of VendorShell that is used for additional shells in
applications having more than one top-level window.

New Resources
TopLevelShell defines the following resources:

XmNiconic
If True, the widget is realized as an icon, otherwise as a normal window. XmNi-
conic overrides the value of the inherited XmNinitialState resource.

XmNiconName
The abbreviated name that labels an iconified application.

XmNiconNameEncoding
The property type for encoding the XmNiconName resource.

Name Class Type Default Access

XmNiconic XmCIconic Boolean False CSG

XmNiconName XmCIconName String NULL CSG

XmNiconNameEncoding XmCIconNameEncoding Atom dynamic CSG

Motif and Xt Widget Classes TopLevelShell

Motif Reference Manual 593

Inherited Resources
TopLevelShell inherits the following resources. The resources are listed alpha-
betically, along with the superclass that defines them. TopLevelShell resets
XmNinput to True.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNmaxAspectX WMShell

XmNallowShellResize Shell XmNmaxAspectY WMShell

XmNancestorSensitive Core XmNmaxHeight WMShell

XmNaudibleWarning VendorShell XmNmaxWIdth WMShell

XmNbackground Core XmNminAspectX WMShell

XmNbackgroundPixmap Core XmNminAspectY WMShell

XmNbaseHeight WMShell XmNminHeight WMShell

XmNbaseWidth WMShell XmNminWidth WMShell

XmNborderColor Core XmNmwmDecorations VendorShell

XmNborderPixmap Core XmNmwmFunctions VendorShell

XmNborderWidth Core XmNmwmInputMode VendorShell

XmNbuttonFontList VendorShell XmNmwmMenu VendorShell

XmNbuttonRenderTable VendorShell XmNnumChildren Composite

XmNchildren Composite XmNoverrideRedirect Shell

XmNcolormap Core XmNpopdownCalback Shell

XmNcreatePopupChildProc Shell XmNpopupCallback Shell

XmNdefaultFontList VendorShell XmNpreeditType VendorShell

XmNdeleteResponse VendorShell XmNsaveUnder Shell

XmNdepth Core XmNscreen Core

XmNdestroyCallback Core XmNsensitive Core

XmNgeometry Shell XmNshellUnitType VendorShell

XmNheight Core XmNtextFontList VendorShell

XmNheightInc WMShell XmNtextRenderTable VendorShell

XmNiconMask WMShell XmNtitle WMShell

XmNiconPixmap WMShell XmNtitleEncoding WMShell

XmNiconWindow WMShell XmNtransient WMShell

XmNinitialResourcesPersistent Core XmNtranslations Core

XmNinitialState WMShell XmNvisual Shell

XmNinput WMShell XmNwaitForWm WMShell

XmNinputMethod VendorShell XmNwidth Core

TopLevelShell Motif and Xt Widget Classes

594 Motif Reference Manual

See Also
Composite (2), Core (2). Shell (2), VendorShell (2), WMShell (2).

XmNinputPolicy VendorShell XmNwidthInc WMShell

XmNinsertPosition Composite XmNwindowGroup WMShell

XmNkeyboardFocusPolicy VendorShell XmNwinGravity WMShell

XmNlabelFontList VendorShell XmNwmTimeout WMShell

XmNlabelRenderTable VendorShell XmNx Core

XmNlayoutDirection VendorShell XmNy Core

XmNmappedWhenManaged Core

Resource Inherited From Resource Inherited From

Motif and Xt Widget Classes TransientShell

Motif Reference Manual 595

Name
TransientShell widget class – popup shell that interacts with the window man-
ager.

Synopsis

Public Header:
<Xm/Xm.h>
<X11/Shell.h>

Class Name:
TransientShell

Class Hierarchy:
Core → Composite → Shell → WMShell → VendorShell → TransientShell

Class Pointer:
transientShellWidgetClass

Instantiation:

Functions/Macros:
XtIsTransientShell ()

Description
TransientShell is a subclass of VendorShell that is used for popup shell widgets,
such as dialog boxes, that interact with the window manager. Most window man-
agers will not allow the user to iconify a TransientShell window on its own and
may iconify it automatically if the window that it is transient for is iconified.

New Resources
TransientShell defines the following resources:

XmNtransientFor
The widget from which the TransientShell will pop up. If the value of this
resource is NULL or identifies an unrealized widget, then TransientShell uses the
value of the WMShell resource XmNwindowGroup.

Name Class Type Default Access

XmNtransientFor XmCTransientFor Widget NULL CSG

TransientShell Motif and Xt Widget Classes

596 Motif Reference Manual

Inherited Resources
TransientShell inherits the following resources. The resources are listed alphabet-
ically, along with the superclass that defines them. TransientShell resets the
resources XmNinput, XmNtransient, and XmNsaveUnder to True.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNmaxAspectX WMShell

XmNallowShellResize Shell XmNmaxAspectY WMShell

XmNancestorSensitive Core XmNmaxHeight WMShell

XmNaudibleWarning VendorShell XmNmaxWIdth WMShell

XmNbackground Core XmNminAspectX WMShell

XmNbackgroundPixmap Core XmNminAspectY WMShell

XmNbaseHeight WMShell XmNminHeight WMShell

XmNbaseWidth WMShell XmNminWidth WMShell

XmNborderColor Core XmNmwmDecorations VendorShell

XmNborderPixmap Core XmNmwmFunctions VendorShell

XmNborderWidth Core XmNmwmInputMode VendorShell

XmNbuttonFontList VendorShell XmNmwmMenu VendorShell

XmNbuttonRenderTable VendorShell XmNnumChildren Composite

XmNchildren Composite XmNoverrideRedirect Shell

XmNcolormap Core XmNpopdownCalback Shell

XmNcreatePopupChildProc Shell XmNpopupCallback Shell

XmNdefaultFontList VendorShell XmNpreeditType VendorShell

XmNdeleteResponse VendorShell XmNsaveUnder Shell

XmNdepth Core XmNscreen Core

XmNdestroyCallback Core XmNsensitive Core

XmNgeometry Shell XmNshellUnitType VendorShell

XmNheight Core XmNtextFontList VendorShell

XmNheightInc WMShell XmNtextRenderTable VendorShell

XmNiconMask WMShell XmNtitle WMShell

XmNiconPixmap WMShell XmNtitleEncoding WMShell

XmNiconWindow WMShell XmNtransient WMShell

XmNinitialResourcesPersistent Core XmNtranslations Core

XmNinitialState WMShell XmNvisual Shell

XmNinput WMShell XmNwaitForWm WMShell

XmNinputMethod VendorShell XmNwidth Core

Motif and Xt Widget Classes TransientShell

Motif Reference Manual 597

See Also
Composite (2), Core (2), Shell (2), VendorShell (2), WMShell (2).

XmNinputPolicy VendorShell XmNwidthInc WMShell

XmNinsertPosition Composite XmNwindowGroup WMShell

XmNkeyboardFocusPolicy VendorShell XmNwinGravity WMShell

XmNlabelFontList VendorShell XmNwmTimeout WMShell

XmNlabelRenderTable VendorShell XmNx Core

XmNlayoutDirection VendorShell XmNy Core

XmNmappedWhenManaged Core

Resource Inherited From Resource Inherited From

VendorShell Motif and Xt Widget Classes

598 Motif Reference Manual

Name
VendorShell widget class – shell widget with Motif-specific hooks for window
manager interaction.

Synopsis

Public Header:
<Xm/VendorS.h>
<X11/Shell.h>

Class Name:
VendorShell

Class Hierarchy:
Core → Composite → Shell → WMShell → VendorShell

Class Pointer:
vendorShellWidgetClass

Instantiation:
VendorShell is a meta-class and is not normally instantiated.

Functions/Macros:
XmIsVendorShell ()

Description
VendorShell is a vendor-specific supporting superclass for all shell classes that
are visible to the window manager and that do not have override redirection. Ven-
dorShell defines resources that provide the Motif look-and-feel and manages the
specific communication needed by the Motif Window Manager (mwm).

Traits
VendorShell holds the XmQTspecifyRenderTable , XmQTspecifyLay-
outDirection , XmQTaccessColors and XmQTspecifyUnitType
traits, which are inherited by any derived classes, and uses the XmQTspeci-
fyRenderTable trait.

New Resources
VendorShell defines the following resources:

Name Class Type Default Access

XmNaudibleWarning XmCAudibleWarning unsigned char XmBELL CSG

XmNbuttonFontList XmCButtonFontList XmFontList dynamic CSG

XmNbuttonRenderTable XmCButtonRenderTable XmRenderTable dynamic CSG

XmNdefaultFontList XmCDefaultFontList XmFontList dynamic CG

XmNdeleteResponse XmCDeleteResponse unsigned char XmDESTROY CSG

XmNinputMethod XmCInputMethod String NULL CSG

Motif and Xt Widget Classes VendorShell

Motif Reference Manual 599

XmNaudibleWarning
Specifies whether an action performs an associated audible cue. Possible values:

XmBELL /* rings the bell */
XmNONE /* does nothing */

XmNbuttonFontList
Specifies the font list used for the button descendants of the VendorShell widget.
In Motif 2.0 and later, the XmFontList is considered obsolete, and is replaced by
the XmRenderTable. The XmNbuttonRenderTable resource is the preferred
method of specifying appearance.

XmNbuttonRenderTable
In Motif 2.0 and later, specifies the render table to be used by VendorShell’s but-
ton descendants. If initially NULL, the value is taken from any specified XmNde-
faultFontList value for backwards compatability. If this is also NULL, the nearest
ancestor which has the XmQTspecifyRenderTable trait is sought, taking the
XmBUTTON_RENDER_TABLE value from any widget so found.

XmNdefaultFontList
The default font list for the children of the VendorShell widget. The resource is
obsolete, replaced by the XmNbuttonFontList, XmNlabelFontList, and XmNtex-
tFontList resources, which are in their turn also obsolete.

XmNinputPolicy XmCInputPolicy XmInputPolicy XmPER_SHELL CSG

XmNkeyboardFocusPolicy XmCKeyboardFocusPolicy unsigned char XmEXPLICIT CSG

XmNlabelFontList XmCLabelFontList XmFontList dynamic CG

XmNlabelRenderTable XmCLabelRenderTable XmRenderTable dynamic CSG

XmNlayoutDirection XmCLayoutDirection XmDirection XmLEFT_TO_RIGHT CG

XmNmwmDecorations XmCMwMDecorations int -1 CSG

XmNmwmFunctions XmCMwMFunctions int -1 CSG

XmNmwmInputMode XmCMwMInputMode int -1 CSG

XmNmwmMenu XmCMwmMenu String NULL

XmNpreeditType XmCPreeditType String dynamic CSG

XmNshellUnitType XmCShellUnitType unsigned char XmPIXELS CSG

XmNtextFontList XmCTextFontList XmFontList dynamic CG

XmNtextRenderTable XmCTextRenderTable XmRenderTable dynamic CSG

XmNuseAsyncGeometry XmCUseAsyncGeometry Boolean False CSG

XmNunitType XmCUnitType unsigned char XmPIXELS CSG

Name Class Type Default Access

VendorShell Motif and Xt Widget Classes

600 Motif Reference Manual

XmNdeleteResponse
The action to perform when the shell receives a WM_DELETE_WINDOW mes-
sage. Possible values:

XmDESTROY /* destroy window */
XmUNMAP /* unmap window */
XmDO_NOTHING /* leave window as is */

XmNinputMethod
Specifies the string that sets the locale modifier for the input method.

XmNinputPolicy
In Motif 2.0 and later, specifies the policy to adopt when creating an Input Con-
text. Possible values:

XmPER_SHELL /* one input context per shell hierarchy */
XmPER_WIDGET /* one input context per widget */

XmNkeyboardFocusPolicy
The method of assigning keyboard focus. Possible values:

XmEXPLICIT /* click-to-type policy */
XmPOINTER /* pointer-driven policy */

XmNlabelFontList
Specifies the font list used for the label descendants of the VendorShell widget. In
Motif 2.0 and later, the XmFontList is considered obsolete, and is replaced by the
XmRenderTable. The XmNlabelRenderTable resource is the preferred method of
specifying appearance.

XmNlabelRenderTable
In Motif 2.0 and later, specifies the render table to be used by VendorShell’s label
descendants. If initially NULL, the value is taken from any specified XmNde-
faultFontList value for backwards compatability. If this is also NULL, the nearest
ancestor which has the XmQTspecifyRenderTable trait is sought, taking the
XmLABEL_RENDER_TABLE value from any widget so found.

XmNlayoutDirection
In Motif 2.0 and later, specifies the default direction in which visual components
are to be laid out. Descendants of VendorShell use this value in the absence of an
explicit layout direction further down the widget hierarchy. Possible values:

XmLEFT_TO_RIGHT
XmRIGHT_TO_LEFT
XmBOTTOM_TO_TOP
XmTOP_TO_BOTTOM
XmBOTTOM_TO_TOP_LEFT_TO_RIGHT
XmBOTTOM_TO_TOP_RIGHT_TO_LEFT

Motif and Xt Widget Classes VendorShell

Motif Reference Manual 601

XmTOP_TO_BOTTOM_LEFT_TO_RIGHT
XmTOP_TO_BOTTOM_RIGHT_TO_LEFT
XmLEFT_TO_RIGHT_BOTTOM_TO_TOP
XmRIGHT_TO_LEFT_BOTTOM_TO_TOP
XmLEFT_TO_RIGHT_TOP_TO_BOTTOM
XmRIGHT_TO_LEFT_TOP_TO_BOTTOM

XmNmwmDecorations
This resource corresponds to the values assigned by the decorations field of the
_MOTIF_WM_HINTS property. This resource determines which frame buttons
and handles to include with a window. The value for the resource is a bitwise
inclusive OR of one or more of the following, which are defined in <Xm/MwmU-
til.h> :

MWM_DECOR_ALL /* remove decorations from full set */
MWM_DECOR_BORDER /* window border */
MWM_DECOR_RESIZEH /* resize handles */
MWM_DECOR_TITLE /* title bar */
MWM_DECOR_MENU /* window’s menu button */
MWM_DECOR_MINIMIZE /* minimize button */
MWM_DECOR_MAXIMIZE /* maximize button */

XmNmwmFunctions
This resource corresponds to the values assigned by the functions field of the
_MOTIF_WM_HINTS property. This resource determines which functions to
include in the system menu. The value for the resource is a bitwise inclusive OR
of one or more of the following, which are defined in the header file
<Xm/MwmUtil.h>.

MWM_FUNC_ALL /* remove functions from full set */
MWM_FUNC_RESIZE /* f.resize */
MWM_FUNC_MOVE /* f.move */
MWM_FUNC_MINIMIZE /* f.minimize */
MWM_FUNC_MAXIMIZE /* f.maximize */
MWM_FUNC_CLOSE /* f.kill */

XmNmwmInputMode
This resource corresponds to the values assigned by the input_mode field of the
_MOTIF_WM_HINTS property. This resource determines the constraints on the
window’s keyboard focus. That is, it determines whether the application takes the
keyboard focus away from the primary window or not. The possible values are as
follows, defined in <Xm/MwmUtil.h>:

MWM_INPUT_MODELESS1

MWM_INPUT_PRIMARY_APPLICATION_MODAL

VendorShell Motif and Xt Widget Classes

602 Motif Reference Manual

MWM_INPUT_SYSTEM_MODAL
MWM_INPUT_FULL_APPLICATION_MODAL

If the value is MWM_INPUT_MODELESS, input can be directed to any win-
dow. If the value is MWM_INPUT_PRIMARY_APPLICATION_MODAL,
input can not be directed at an ancestor of the window. The value
MWM_INPUT_SYSTEM_MODAL indicates that input only goes to the current
window. MWM_INPUT_FULL_APPLICATION_MODAL specifies that input
may not be directed at any other window of the application.

XmNmwmMenu
The menu items to add at the bottom of the client’s window menu. The string has
this format:

label [mnemonic] [accelerator] mwm_f.function

XmNpreeditType
Specifies the input method style(s) that are available. The resource value is a
comma separated list of the following values:

OffTheSpot /* XIMPreeditArea */
Root /* XIMPreeditNothing */
None /* XIMPreeditNone */
OverTheSpot /* XIMPreeditPosition */
OnTheSpot /* XIMPreeditCallbacks */

XmNshellUnitType
The measurement units to use in resources that specify a size or position. In
Motif 2.0 and later, the resource is obsolete, being replaced by the XmNunitType
resource.

XmNtextFontList
Specifies the font list used for the text descendants of the VendorShell widget. In
Motif 2.0 and later, the XmFontList is considered obsolete, and is replaced by the
XmRenderTable. The XmNtextRenderTable resource is the preferred method of
specifying appearance.

XmNtextRenderTable
In Motif 2.0 and later, specifies the render table to be used by VendorShell’s text
and list descendants. If initially NULL, the value is taken from any specified
XmNdefaultFontList value for backwards compatability. If this is also NULL, the
nearest ancestor which has the XmQTspecifyRenderTable trait is sought, taking
the XmTEXT_RENDER_TABLE value from any widget so found.

1.Erroneously given as MWM_INPUT_MODELES in 2nd edition.

Motif and Xt Widget Classes VendorShell

Motif Reference Manual 603

XmNuseAsyncGeometry
If True, the geometry manager doesn’t wait to confirm a geometry request that
was sent to the window manager. The geometry manager performs this by setting
the WMShell resource XmNwaitForWm to False and by setting the WMShell
resource XmNwmTimeout to 0.

If XmNuseAsyncGeometry is False (default), the geometry manager uses syn-
chronous notification, and so it doesn’t change the resources XmNwaitForWm
and XmNwmTimeout.

XmNunitType
In Motif 2.0 and later, specifies the units in which size and position resources are
calculated. The resource replaces XmNshellUnitType, which is considered obso-
lete. The values XmFONT_UNITS and Xm100TH_FONT_UNITS have a hori-
zontal and vertical component, calculated from the values of the
XmNhorizontalFontUnit and XmNverticalFontUnit resources of the XmScreen
object. Possible values:

XmPIXELS /* pixels */
XmMILLIMETERS /* millimeters */
Xm100TH_MILLIMETERS /* 1/100 of a millimeter */
XmCENTIMETERS /* centimeters */
XmINCHES /* inches */
Xm1000TH_INCHES /* 1/1000 of an inch */
XmPOINTS /* point units (1/72 of an inch) */
Xm100TH_POINTS /* 1/100 of a point */
XmFONT_UNITS /* depends on XmScreen resources */
Xm100TH_FONT_UNITS /* 1/100 of the above */

Inherited Resources
VendorShell inherits the following resources. The resources are listed alphabeti-
cally, along with the superclass that defines them. VendorShell resets XmNbor-
derWidth from 1 to 0 and resets XmNinput to True.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNmaxAspectX WMShell

XmNallowShellResize Shell XmNmaxAspectY WMShell

XmNancestorSensitive Core XmNmaxHeight WMShell

XmNbackground Core XmNmaxWIdth WMShell

XmNbackgroundPixmap Core XmNminAspectX WMShell

XmNbaseHeight WMShell XmNminAspectY WMShell

XmNbaseWidth WMShell XmNminHeight WMShell

VendorShell Motif and Xt Widget Classes

604 Motif Reference Manual

See Also
Composite (2), Core (2), Shell (2), WMShell (2).

XmNborderColor Core XmNminWidth WMShell

XmNborderPixmap Core XmNnumChildren Composite

XmNborderWidth Core XmNoverrideRedirect Shell

XmNchildren Composite XmNpopdownCalback Shell

XmNcolormap Core XmNpopupCallback Shell

XmNcreatePopupChildProc Shell XmNsaveUnder Shell

XmNdepth Core XmNscreen Core

XmNdestroyCallback Core XmNsensitive Core

XmNgeometry Shell XmNtitle WMShell

XmNheight Core XmNtitleEncoding WMShell

XmNheightInc WMShell XmNtransient WMShell

XmNiconic TopLevelShell XmNtranslations Core

XmNiconMask WMShell XmNvisual Shell

XmNiconName TopLevelShell XmNwaitForWm WMShell

XmNiconNameEncoding TopLevelShell XmNwidth Core

XmNiconPixmap WMShell XmNwidthInc WMShell

XmNiconWindow WMShell XmNwindowGroup WMShell

XmNinitialResourcesPersistent Core XmNwinGravity WMShell

XmNinitialState WMShell XmNwmTimeout WMShell

XmNinput WMShell XmNx Core

XmNinsertPosition Composite XmNy Core

XmNmappedWhenManaged Core

Resource Inherited From Resource Inherited From

Motif and Xt Widget Classes WMShell

Motif Reference Manual 605

Name
WMShell widget class – fundamental shell widget that interacts with an
ICCCM-compliant window manager.

Synopsis

Public Header:
<Xm/Xm.h>
<X11/Shell.h>

Class Name:
WMShell

Class Hierarchy:
Core → Composite → Shell → WMShell

Class Pointer:
wmShellWidgetClass

Instantiation:
WMShell is an Intrinsics meta-class and is not normally instantiated.

Functions/Macros:
XtIsWMShell ()

Description
WMShell is a direct subclass of Shell that provides basic window manager inter-
action. WMShell is not directly instantiated; it encapsulates the application
resources that applications use to communicate with window managers.

New Resources
WMShell defines the following resources:

Name Class Type Default Access

XmNbaseHeight XmCBaseHeight int XtUnspecifiedShellInt CSG

XmNbaseWidth XmCBaseWidth int XtUnspecifiedShellInt CSG

XmNheightInc XmCHeightInc int XtUnspecifiedShellInt CSG

XmNiconMask XmCIconMask Pixmap NULL CSG

XmNiconPixmap XmCIconPixmap Pixmap NULL CSG

XmNiconWindow XmCIconWindow Window NULL CSG

XmNinitialState XmCInitialState int NormalState CSG

XmNiconX XmCIconY int -1 CSG

XmNiconY XmCIconY int -1 CSG

XmNinput XmCInput Boolean False CSG

XmNmaxAspectX XmCMaxAspectX int XtUnspecifiedShellInt CSG

WMShell Motif and Xt Widget Classes

606 Motif Reference Manual

XmNbaseHeight

XmNbaseWidth
The base dimensions from which the preferred height and width can be stepped
up or down (as specified by XmNheightInc or XmNwidthInc).

XmNheightInc
The amount by which to increment or decrement the window’s height when the
window manager chooses a preferred value. The base height is XmNbaseHeight,
and the height can decrement to the value of XmNminHeight or increment to the
value of XmN-maxHeight. See also XmNwidthInc.

XmNiconMask
A bitmap that the window manager can use in order to clip the application’s icon
into a non-rectangular shape.

XmNiconPixmap
The application’s icon.

XmNiconWindow
The ID of a window that serves as the application’s icon.

XmNiconX

XmNiconY
Window manager hints for the root window coordinates of the application’s icon.

XmNmaxAspectY XmCMaxAspectY int XtUnspecifiedShellInt CSG

XmNmaxHeight XmCMaxHeight int XtUnspecifiedShellInt CSG

XmNmaxWIdth XmCMaxWidth int XtUnspecifiedShellInt CSG

XmNminAspectX XmCMinAspectX int XtUnspecifiedShellInt CSG

XmNminAspectY XmCMinAspectY int XtUnspecifiedShellInt CSG

XmNminHeight XmCMinHeight int XtUnspecifiedShellInt CSG

XmNminWidth XmCMinWidth int XtUnspecifiedShellInt CSG

XmNtitle XmCTitle String dynamic CSG

XmNtitleEncoding XmCTitleEncoding Atom dynamic CSG

XmNtransient XmCTransient Boolean False CSG

XmNwaitForWm XmCWaitForWm Boolean True CSG

XmNwidthInc XmCWidthInc int XtUnspecifiedShellInt CSG

XmNwindowGroup XmCWindowGroup Window dynamic CSG

XmNwinGravity XmCWinGravity int dynamic CSG

XmNwmTimeout XmCWmTimeout int 5000 CSG

Name Class Type Default Access

Motif and Xt Widget Classes WMShell

Motif Reference Manual 607

XmNinitialState
The initial appearance of the widget instance. Possible values are defined in
<X11/Xutil.h>:

NormalState /* application starts as a window */
IconicState /* application starts as an icon */

XmNinput
A Boolean that, in conjunction with the WM_TAKE_FOCUS atom in the
WM_PROTOCOLS property, determines the application’s keyboard focus
model. The result is determined by the value of XmNinput and the existence of
the atom, as described below:

XmNmaxAspectX

XmNmaxAspectY
The numerator and denominator, respectively, of the maximum aspect ratio
requested for this widget.

XmNmaxHeight

XmNmaxWidth
The maximum dimensions for the widget’s preferred height or width.

XmNminAspectX

XmNminAspectY
The numerator and denominator, respectively, of the minimum aspect ratio
requested for this widget.

XmNminHeight

XmNminWidth
The minimum dimensions for the widget’s preferred height or width.

XmNtitle
The string that the window manager displays as the application’s name. By
default, the icon name is used, but if this isn’t specified, the name of the applica-
tion is used.

Value of XmNinput Resource WM_TAKE_FOCUS Atom Keyboard Focus Model

False Does not exist No input allowed

True Does not exist Passive

False Exists Globally active

True Exists Locally active

WMShell Motif and Xt Widget Classes

608 Motif Reference Manual

XmNtitleEncoding
The property type for encoding the XmNtitle resource.

XmNtransient
If True, this indicates a popup window or some other transient widget. This
resource is usually not changed.

XmNwaitForWm
If True (default), the X Toolkit waits for a response from the window manager
before acting as if no window manager exists. The waiting time is specified by
the XmNwmTimeout resource.

XmNwidthInc
The amount by which to increment or decrement the window’s width when the
window manager chooses a preferred value. The base width is XmNbaseWidth,
and the width can decrement to the value of XmNminWidth or increment to the
value of XmN-maxWidth. See also XmNheightInc.

XmNwindowGroup
The window associated with this widget instance. This window acts as the pri-
mary window of a group of windows that have similar behavior.

XmNwinGravity
The window gravity used in positioning the widget. Unless an initial value is
given, this resource will be set when the widget is realized. The default value is
NorthWestGravity (if the Shell resource XmNgeometry is NULL); otherwise,
XmNwinGravity assumes the value returned by the XmWMGeometry routine.

XmNwmTimeout
The number of milliseconds that the X Toolkit waits for a response from the win-
dow manager. This resource is meaningful when the XmNwaitForWm resource
is set to True.

Inherited Resources
WMShell inherits the following resources. The resources are listed alphabeti-
cally, along with the superclass that defines them.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNinitialResourcesPersistent Core

XmNallowShellResize Shell XmNinsertPosition Composite

XmNancestorSensitive Core XmNmappedWhenManaged Core

XmNbackground Core XmNnumChildren Composite

XmNbackgroundPixmap Core XmNoverrideRedirect Shell

XmNborderColor Core XmNpopdownCalback Shell

XmNborderPixmap Core XmNpopupCallback Shell

Motif and Xt Widget Classes WMShell

Motif Reference Manual 609

See Also
Composite (2), Core (2), Shell (2).

XmNborderWidth Core XmNsaveUnder Shell

XmNchildren Composite XmNscreen Core

XmNcolormap Core XmNsensitive Core

XmNcreatePopupChildProc Shell XmNtranslations Core

XmNdepth Core XmNvisual Shell

XmNdestroyCallback Core XmNwidth Core

XmNgeometry Shell XmNx Core

XmNheight Core XmNy Core

Resource Inherited From Resource Inherited From

XmArrowButton Motif and Xt Widget Classes

610 Motif Reference Manual

Name
XmArrowButton widget class – a directional arrow-shaped button widget.

Synopsis

Public Header:
<Xm/ArrowB.h>

Class Name:
XmArrowButton

Class Hierarchy:
Core → XmPrimitive → XmArrowButton

Class Pointer:
xmArrowButtonWidgetClass

Instantiation:
widget = XmCreateArrowButton (parent, name,...)
or
widget = XtCreateWidget (name, xmArrowButtonWidgetClass,...)

Functions/Macros:
XmCreateArrowButton (), XmIsArrowButton ()

Description
An ArrowButton is a directional arrow-shaped button that includes a shaded bor-
der. The shading changes to make the ArrowButton appear either pressed in
when selected or raised when unselected.

Traits
ArrowButton holds the XmQTactivatable trait, which is inherited by any derived
classes.

New Resources
ArrowButton defines the following resources:

XmNarrowDirection
Sets the arrow direction. Possible values:

XmARROW_UP XmARROW_LEFT
XmARROW_DOWN XmARROW_RIGHT

Name Class Type Default Access

XmNarrowDirection XmCArrowDirection unsigned char XmARROW_UP CSG

XmNdetailShadowThickness XmCShadowThickness Dimension dynamic CSG

XmNmultiClick XmCMultiClick unsigned char dynamic CSG

Motif and Xt Widget Classes XmArrowButton

Motif Reference Manual 611

XmNdetailShadowThickness
In Motif 2.0 and later, specifies the thickness of the shadow inside the triangle of
the ArrowButton. Values of 0 (zero), 1, and 2 are supported. In Motif 2.0, the
default is 2. In Motif 2.1 and later, the default depends upon the value of the
XmDisplay resource XmNenableThinThickness: if True, the default is 1, other-
wise 2.

XmNmultiClick
A flag that determines whether successive button clicks are processed or ignored.
Possible values:

XmMULTICLICK_DISCARD /* ignore successive button clicks; */
/* default value in a menu system */

XmMULTICLICK_KEEP /* count successive button clicks; */
/* default value when not in a menu */

Callback Resources
ArrowButton defines the following callback resources:

XmNactivateCallback
List of callbacks that are called when BSelect is pressed and released inside the
widget.

XmNarmCallback
List of callbacks that are called when BSelect is pressed while the pointer is
inside the widget.

XmNdisarmCallback
List of callbacks that are called when BSelect is released after it has been pressed
inside the widget.

Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /* the reason that the callback was called */
XEvent *event; /* event structure that triggered callback */
int click_count; /* number of clicks in multi-click sequence */

} XmArrowButtonCallbackStruct;

Callback Reason Constant

XmNactivateCallback XmCR_ACTIVATE

XmNarmCallback XmCR_ARM

XmNdisarmCallback XmCR_DISARM

XmArrowButton Motif and Xt Widget Classes

612 Motif Reference Manual

click_count is meaningful only for XmNactivateCallback. Furthermore, if the
XmN-multiClick resource is set to XmMULTICLICK_KEEP, then XmN-activate-
Callback is called for each click, and the value of click_count is the number of
clicks that have occurred in the last sequence of multiple clicks. If the XmNmul-
tiClick resource is set to XmMULTICLICK_DISCARD, then click_count always
has a value of 1.

Inherited Resources
ArrowButton inherits the following resources. The resources are listed alphabeti-
cally, along with the superclass that defines them. The default value of XmNbor-
derWidth is reset to 0 by Primitive.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNhighlightThickness XmPrimitive

XmNancestorSensitive Core XmNinitialResourcesPersistent Core

XmNbackground Core XmNlayoutDirection XmPrimitive

XmNbackgroundPixmap Core XmNmappedWhenManaged Core

XmNborderColor Core XmNnavigationType XmPrimitive

XmNborderPixmap Core XmNpopupHandlerCallback XmPrimitive

XmNborderWidth Core XmNscreen Core

XmNbottomShadowColor XmPrimitive XmNsensitive Core

XmNbottomShadowPixmap XmPrimitive XmNshadowThickness XmPrimitive

XmNcolormap Core XmNtopShadowColor XmPrimitive

XmNconvertCallback XmPrimitive XmNtopShadowPixmap XmPrimitive

XmNdepth Core XmNtranslations Core

XmNdestroyCallback Core XmNtraversalOn XmPrimitive

XmNforeground XmPrimitive XmNunitType XmPrimitive

XmNheight Core XmNuserData XmPrimitive

XmNhelpCallback XmPrimitive XmNwidth Core

XmNhighlightColor XmPrimitive XmNx Core

XmNhighlightOnEnter XmPrimitive XmNy Core

XmNhighlightPixmap XmPrimitive

Motif and Xt Widget Classes XmArrowButton

Motif Reference Manual 613

Translations
The translations of ArrowButton include those of Primitive:

Action Routines
ArrowButton defines the following action routines:

Activate()
Displays the ArrowButton as unselected, and invokes the list of
callbacks specified by XmNactivateCallback.

Arm()
Displays the ArrowButton as selected, and invokes the list of call-
backs specified by XmNarmCallback.

ArmAndActivate()
Displays the ArrowButton as selected, and invokes the list of call-
backs specified by XmNarmCallback. After doing this, the action
routine displays the ArrowButton as unselected, and invokes the list
of callbacks specified by XmNactivateCallback and XmNdisarm-
Callback.

ButtonTakeFocus()
In Motif 2.0 and later, moves the current keyboard focus to the
ArrowButton, without activating the widget.

Disarm()
Displays the ArrowButton as unselected, and invokes the list of
callbacks specified by XmNdisarmCallback.

Help()
Invokes the list of callbacks specified by XmNhelpCallback. If the
ArrowButton doesn’t have any help callbacks, the Help() routine
invokes those associated with the nearest ancestor that has them.

Event Action

BSelect Press Arm()

BSelect Click Activate()
Disarm()

BSelect Release Activate()
Disarm()

Bselect Press 2+ MultiArm()

BSelect Release 2+ MultiActivate()

KSelect ArmAndActivate()

MCtrl BSelect Press ButtonTakeFocus()

KHelp Help()

XmArrowButton Motif and Xt Widget Classes

614 Motif Reference Manual

MultiActivate()
Increments the click_count member of XmArrowButtonCallback-
Struct, displays the ArrowButton as unselected, and invokes the list
of callbacks specified by XmNactivateCallback and XmNdisarm-
Callback. This action routine takes effect only when the XmNmul-
tiClick resource is set to XmMULTICLICK_KEEP.

MultiArm()
Displays the ArrowButton as selected, and invokes the list of call-
backs specified by XmNarmCallback. This action routine takes
effect only when the XmNmultiClick resource is set to
XmMULTICLICK_KEEP.

Additional Behavior
ArrowButton has the following additional behavior:

<EnterWindow>
Displays the ArrowButton as selected if the pointer leaves and
re-enters the window while BSelect is pressed.

<LeaveWindow>
Displays the ArrowButton as unselected if the pointer leaves the
window while BSelect is pressed.

See Also
XmCreateObject (1), Core (2), XmPrimitive (2).

Motif and Xt Widget Classes XmArrowButtonGadget

Motif Reference Manual 615

Name
XmArrowButtonGadget widget class – a directional arrow-shaped button gadget.

Synopsis

Public Header:
<Xm/ArrowBG.h>

Class Name:
XmArrowButtonGadget

Class Hierarchy:
Object → RectObj → XmGadget → XmArrowButtonGadget

Class Pointer:
xmArrowButtonGadgetClass

Instantiation:
widget = XmCreateArrowButtonGadget (parent, name,...)
or
widget = XtCreateWidget (name, xmArrowButtonGadgetClass,...)

Functions/Macros:
XmCreateArrowButtonGadget (), XmIsArrowButtonGadget ()

Description
ArrowButtonGadget is the gadget variant of ArrowButton.

ArrowButtonGadget’s resources, callback resources, and callback structure are
the same as those of ArrowButton.

Traits
ArrowButtonGadget holds the XmQTactivatable, XmQTcareParentVisual, and
XmQTaccessColors traits, which are inherited by any derived classes.

Inherited Resources
ArrowButtonGadget inherits the following resources. The resources are listed
alphabetically, along with the superclass that defines them. The default value of
XmNborderWidth is reset to 0 by Gadget.

Resource Inherited From Resource Inherited From

XmNancestorSensitive RectObj XmNhighlightThickness XmGadget

XmNbackground XmGadget XmNlayoutDirection XmGadget

XmNbackgroundPixmap XmGadget XmNnavigationType XmGadget

XmNbottomShadowColor XmGadget XmNsensitive RectObj

XmNbottomShadowPixmap XmGadget XmNshadowThickness XmGadget

XmNborderWidth RectObj XmNtopShadowColor XmGadget

XmArrowButtonGadget Motif and Xt Widget Classes

616 Motif Reference Manual

Behavior
As a gadget subclass, ArrowButtonGadget has no translations associated with it.
However, ArrowButtonGadget behavior corresponds to the action routines of the
ArrowButton widget. See the ArrowButton action routines for more information.

ArrowButtonGadget has additional behavior associated with <Enter> and
<Leave>, which display the ArrowButtonGadget as selected if the pointer leaves
and re-enters the gadget while BSelect is pressed or as unselected if the pointer
leaves the gadget while BSelect is pressed.

See Also
XmCreateObject (1), Core (2), Object (2), RectObj (2),
XmArrowButton (2), XmGadget(2), XmPrimitive (2).

XmNdestroyCallback Object XmNtopShadowPixmap XmGadget

XmNforeground XmGadget XmNtraversalOn XmGadget

XmNheight RectObj XmNunitType XmGadget

XmNhelpCallback XmGadget XmNuserData XmGadget

XmNhighlightColor XmGadget XmNwidth RectObj

XmNhighlightOnEnter XmGadget XmNx RectObj

XmNhighlightPixmap XmGadget XmNy RectObj

Event Action

BSelect Press Arm()

BSelect Click Activate()
Disarm()

BSelect Release Activate()
Disarm()

Bselect Press 2+ MultiArm()

BSelect Release 2+ MultiActivate()

KSelect ArmAndActivate()

MCtrl BSelect Press ButtonTakeFocus()

KHelp Help()

Resource Inherited From Resource Inherited From

Motif and Xt Widget Classes XmBulletinBoard

Motif Reference Manual 617

Name
XmBulletinBoard widget class – a simple geometry-managing widget.

Synopsis

Public Header:
<Xm/BulletinB.h>

Class Name:
XmBulletinBoard

Class Hierarchy:
Core → Composite → Constraint → XmManager → XmBulletinBoard

Class Pointer:
xmBulletinBoardWidgetClass

Instantiation:
widget = XmCreateBulletinBoard (parent, name,...)
or
widget = XtCreateWidget (name, xmBulletinBoardWidgetClass,...)

Functions/Macros:
XmCreateBulletinBoard (), XmCreateBulletinBoardDialog ()

Description
BulletinBoard is a general-purpose manager that allows children to be placed at
arbitrary x, y positions. The simple geometry management of BulletinBoard can
be used to enforce margins and to prevent child widgets from overlapping. Bul-
letinBoard is the base widget for most dialog widgets and defines many resources
that have an effect only when it is an immediate child of a DialogShell.

Traits
BulletinBoard holds the XmQTspecifyRenderTable and XmQTdialogShellSavvy
traits, which are inherited by any derived classes, and uses the XmQTtakesDe-
fault and XmQTspecifyRenderTable traits.

New Resources
BulletinBoard defines the following resources:

Name Class Type Default Access

XmNallowOverlap XmCAllowOverlap Boolean True CSG

XmNautoUnmanage XmCAutoUnmanage Boolean True CSG

XmNbuttonFontList XmCButtonFontList XmFontList dynamic CSG

XmNbuttonRenderTable XmCButtonRenderTable XmRenderTable dynamic CSG

XmNcancelButton XmCWidget Widgeta NULL SG

XmBulletinBoard Motif and Xt Widget Classes

618 Motif Reference Manual

XmNallowOverlap
If True (default), child widgets are allowed to overlap.

XmNautoUnmanage
If True (default), the BulletinBoard is automatically unmanaged after a button is
activated unless the button is an Apply or Help button.

XmNbuttonFontList
Specifies the font list used for the button descendants of the BulletinBoard
widget. In Motif 2.0 and later, the XmFontList is considered obsolete, and is
replaced by the XmRenderTable. The XmNbuttonRenderTable resource is the
preferred method of specifying appearance.

XmNbuttonRenderTable
In Motif 2.0 and later, specifies the render table used for any button descendants
of the BulletinBoard widget. If NULL, this is inherited from the nearest ancestor
that has the XmQTspecifyRenderTable trait, using the
XmBUTTON_RENDER_TABLE value of any ancestor so found.
The button render table resource takes precedence over any specified XmNbut-
tonFontList.

XmNcancelButton
The widget ID of the Cancel button. The subclasses of BulletinBoard define a
Cancel button and set this resource.

XmNdefaultButton XmCWidget Widgetb NULL SG

XmNdefaultPosition XmCDefaultPosition unsigned char True CSG

XmNdialogStyle XmCDialogStyle unsigned char dynamic CSG

XmNdialogTitle XmCDialogTitle XmString NULL CSG

XmNlabelFontList XmCLabelFontList XmFontList dynamic CSG

XmNlabelRenderTable XmCLabelRenderTable XmRenderTable dynamic CSG

XmNmarginHeight XmCMarginHeight Dimension 10 CSG

XmNmarginWidth XmCMarginWidth Dimension 10 CSG

XmNnoResize XmCNoResize Boolean False CSG

XmNresizePolicy XmCResizePolicy unsigned char XmRESIZE_ANY CSG

XmNshadowType XmCShadowType unsigned char XmSHADOW_OUT CSG

XmNtextFontList XmCTextFontList XmFontList dynamic CSG

XmNtextRenderTable XmCTextRenderTable XmRenderTable dynamic CSG

XmNtextTranslations XmCTranslations XtTranslations NULL C

a.Erroneously given as Window in 2nd Edition.
b.Erroneously given as Window in 2nd Edition.

Name Class Type Default Access

Motif and Xt Widget Classes XmBulletinBoard

Motif Reference Manual 619

XmNdefaultButton
The widget ID of the default button. Some of the subclasses of BulletinBoard
define a default button and set this resource. To indicate that it is the default, this
button appears different from the others.

XmNdefaultPosition
If True (default) and if the BulletinBoard is the child of a DialogShell, then the
BulletinBoard is centered relative to the DialogShell’s parent.

XmNdialogStyle
The BulletinBoard’s dialog style, whose value can be set only if the Bullet-
inBoard is unmanaged. Possible values:

XmDIALOG_WORK_AREA /*default when parent is not a DialogShell */
XmDIALOG_MODELESS /*default when parent is a DialogShell */*
XmDIALOG_FULL_APPLICATION_MODAL
XmDIALOG_APPLICATION_MODAL
XmDIALOG_PRIMARY_APPLICATION_MODAL
XmDIALOG_SYSTEM_MODAL

The value XmDIALOG_APPLICATION_MODAL, although maintained for
backwards compatibility, is deprecated in Motif 1.2 and later. Use
XmDIALOG_PRIMARY_APPLICATION_MODAL instead.

XmNdialogTitle
The dialog title. Setting this resource also sets the resources XmNtitle and XmN--
titleEncoding in a parent that is a subclass of WMShell.

XmNlabelFontList
Specifies the font list used for the label descendants of the BulletinBoard widget.
In Motif 2.0 and later, the XmFontList is considered obsolete, and is replaced by
the XmRenderTable. The XmNlabelRenderTable resource is the preferred
method of specifying appearance.

XmNlabelRenderTable
In Motif 2.0 and later, specifies the render table used for any label descendants of
the BulletinBoard widget. If NULL, this is inherited from the nearest ancestor
that has the XmQTspecifyRenderTable trait, using the
XmLABEL_RENDER_TABLE value of any ancestor so found.

XmNmarginHeight
Minimum spacing between a BulletinBoard’s top or bottom edge and any child
widget.

XmNmarginWidth
Minimum spacing between a BulletinBoard’s right or left edge and any child
widget.

XmBulletinBoard Motif and Xt Widget Classes

620 Motif Reference Manual

XmNnoResize
If False (default), mwm includes resize controls in the window manager frame of
the BulletinBoard’s shell parent.

XmNresizePolicy
How BulletinBoard widgets are resized. Possible values:

XmRESIZE_NONE /* remain at fixed size */
XmRESIZE_GROW /* expand only */
XmRESIZE_ANY /* shrink or expand, as needed */

XmNshadowType
The style in which shadows are drawn. Possible values:

XmSHADOW_IN /* widget appears inset */
XmSHADOW_OUT /* widget appears outset */
XmSHADOW_ETCHED_IN /* double line; widget appears inset */
XmSHADOW_ETCHED_OUT /* double line; widget appears raised */

XmNtextFontList
Specifies the font list used for the text descendants of the BulletinBoard widget.
In Motif 2.0 and later, the XmFontList is considered obsolete, and is replaced by
the XmRenderTable. The XmNtextRenderTable resource is the preferred method
of specifying appearance.

XmNtextRenderTable
In Motif 2.0 and later, specifies the render table used for any text descendants of
the BulletinBoard widget. If NULL, this is inherited from the nearest ancestor
that has the XmQTspecifyRenderTable trait, using the
XmTEXT_RENDER_TABLE value of any ancestor so found.

XmNtextTranslations
For any Text widget (or its subclass) that is a child of a BulletinBoard, this
resource adds translations.

Callback Resources
BulletinBoard defines the following callback resources:

XmNfocusCallback
List of callbacks that are called when the widget or one of its descendants
receives the input focus.

Callback Reason Constant

XmNfocusCallback XmCR_FOCUS

XmNmapCallback XmCR_MAP

XmNunmapCallback XmCR_UNMAP

Motif and Xt Widget Classes XmBulletinBoard

Motif Reference Manual 621

XmNmapCallback
List of callbacks that are called when the widget is mapped, if it is a child of a
DialogShell.

XmNunmapCallback
List of callbacks that are called when the widget is unmapped, if it is a child of a
DialogShell.

Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /* the reason that the callback was called */
XEvent *event; /* points to event structure that triggered callback */

} XmAnyCallbackStruct;

Inherited Resources
BulletinBoard inherits the following resources. The resources are listed alphabet-
ically, along with the superclass that defines them. BulletinBoard sets the value of
XmNinitialFocus to the value of XmNdefaultButton. When it is a child of a Dia-
logShell, BulletinBoard resets the default XmNshadowThickness from 0 to 1.
The default value of XmNborderWidth is reset to 0 by Manager.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNinsertPosition Composite

XmNancestorSensitive Core XmNlayoutDirection XmManager

XmNbackground Core XmNmappedWhenManaged Core

XmNbackgroundPixmap Core XmNnavigationType XmManager

XmNborderColor Core XmNnumChildren Composite

XmNborderPixmap Core XmNpopupHandlerCallback XmManager

XmNborderWidth Core XmNscreen Core

XmNbottomShadowColor XmManager XmNsensitive Core

XmNbottomShadowPixmap XmManager XmNshadowThickness XmManager

XmNchildren Composite XmNstringDirection XmManager

XmNcolormap Core XmNtopShadowColor XmManager

XmNdepth Core XmNtopShadowPixmap XmManager

XmNdestroyCallback Core XmNtranslations Core

XmNforeground XmManager XmNtraversalOn XmManager

XmNheight Core XmNunitType XmManager

XmNhelpCallback XmManager XmNuserData XmManager

XmNhighlightColor XmManager XmNwidth Core

XmBulletinBoard Motif and Xt Widget Classes

622 Motif Reference Manual

Translations
The translations for BulletinBoard include those of XmManager.

Additional Behavior
BulletinBoard has the following additional behavior:

MAny KCancel
For a sensitive Cancel button, invokes the XmNactivateCallback
callbacks.

KActivate
For the button that has keyboard focus, invokes the XmNactivate-
Callback callbacks.

<FocusIn>
Invokes the XmNfocusCallback callbacks. The widget receives
focus either when the user traverses to it (XmNkeyboardFocusPol-
icy is XmEXPLICIT) or when the pointer enters the window
(XmNkeyboardFocusPolicy is XmPOINTER).

<Map>
Invokes the XmNmapCallback callbacks.

<Unmap>
Invokes the XmNunmapCallback callbacks.

See Also
XmCreateObject (1), Composite (2), Constraint (2), Core (2),
XmBulletinBoardDialog (2), XmDialogShell (2), XmManager(2).

XmNhighlightPixmap XmManager XmNx Core

XmNinitialFocus XmManager XmNy Core

XmNinitialResourcesPersistent Core

Resource Inherited From Resource Inherited From

Motif and Xt Widget Classes XmBulletinBoardDialog

Motif Reference Manual 623

Name
XmBulletinBoardDialog – an unmanaged BulletinBoard as a child of a Dia-
logShell.

Synopsis

Public Header:
<Xm/BulletinB.h>

Instantiation:
widget = XmCreateBulletinBoardDialog (...)

Functions/Macros:
XmCreateBulletinBoardDialog ()

Description
An XmBulletinBoardDialog is a compound object created by a call to XmCreate-
BulletinBoardDialog() that is useful for creating custom dialogs. A Bullet-
inBoardDialog consists of a DialogShell with an unmanaged BulletinBoard
widget as its child. The BulletinBoardDialog does not contain any labels, but-
tons, or other dialog components; these components are added by the application.

Default Resource Values
A BulletinBoardDialog sets the following default values for BulletinBoard
resources:

Widget Hierarchy
When a BulletinBoardDialog is created with a specified name, the DialogShell is
named name_popup and the BulletinBoard is called name.

See Also
XmCreateObject (1), XmBulletinBoard (2), XmDialogShell (2).

Name Default

XmNdialogStyle XmDIALOG_MODELESS

XmCascadeButton Motif and Xt Widget Classes

624 Motif Reference Manual

Name
XmCascadeButton widget class – a button widget that posts menus.

Synopsis

Public Header:
<Xm/CascadeB.h>

Class Name:
XmCascadeButton

Class Hierarchy:
Core → XmPrimitive → XmLabel → XmCascadeButton

Class Pointer:
xmCascadeButtonWidgetClass

Instantiation:
widget = XmCreateCascadeButton (parent, name,...)
or
widget = XtCreateWidget (name, xmCascadeButtonWidgetClass,...)

Functions/Macros:
XmCascadeButtonHighlight (), XmCreateCascadeButton (), XmIs-
CascadeButton ()

Description
CascadeButtons are used in menu systems to post menus. A CascadeButton
either links a menu bar to a menu pane or connects a menu pane to another menu
pane. The widget can have a menu attached to it as a submenu.

Traits
CascadeButton uses the XmQTmenuSystem and XmQTspecifyRenderTable
traits.

New Resources
CascadeButton defines the following resources:

XmNcascadePixmap
The pixmap within the CascadeButton that indicates a submenu. By default, this
pixmap is an arrow pointing toward the submenu to be popped up.

Name Class Type Default Access

XmNcascadePixmap XmCPixmap Pixmap dynamic CSG

XmNmappingDelay XmCMappingDelay int 180 CSG

XmNsubMenuId XmCMenuWidget Widget NULL CSG

Motif and Xt Widget Classes XmCascadeButton

Motif Reference Manual 625

XmNmappingDelay
The number of milliseconds it should take for the application to display a sub-
menu after its CascadeButton has been selected.

XmNsubMenuId
The widget ID of the pulldown menu pane associated with the CascadeButton.
The menu pane is displayed when the CascadeButton is selected. The pulldown
menu pane and the CascadeButton must have a common parent.

Callback Resources
CascadeButton defines the following callback resources:

XmNactivateCallback
List of callbacks that are called when BSelect is pressed and released while the
pointer is inside the widget and there is no submenu to post.

XmNcascadingCallback
List of callbacks that are called before the submenu associated with the Cascade-
Button is mapped.

Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /* the reason that the callback was called */
XEvent *event; /* event structure that triggered callback */

} XmAnyCallbackStruct;

Inherited Resources
CascadeButton inherits the following resources. The resources are listed alpha-
betically, along with the superclass that defines them. CascadeButton sets the
default values of XmNmarginBottom, XmNmarginRight, XmNmarginTop,
XmNmarginWidth, and XmN-traversalOn dynamically. In Motif 2.0 and earlier,
the default values of XmNhighlightThickness and XmNshadowThickness are
reset to 2. In Motif 2.1, the default values depend upon the XmDisplay XmNen-
ableThinThickness resource: if True the default is 1, otherwise 2. The default
value of XmNborderWidth is reset to 0 by Primitive.

Callback Reason Constant

XmNactivateCallback XmCR_ACTIVATE

XmNcascadingCallback XmCR_CASCADING

XmCascadeButton Motif and Xt Widget Classes

626 Motif Reference Manual

Resource Inherited From Resource Inherited From

XmNaccelerator XmLabel XmNlabelType XmLabel

XmNaccelerators Core XmNlayoutDirection XmPrimitive

XmNacceleratorText XmLabel XmNmappedWhenManaged Core

XmNalignment XmLabel XmNmarginBottom XmLabel

XmNancestorSensitive Core XmNmarginHeight XmLabel

XmNbackground Core XmNmarginLeft XmLabel

XmNbackgroundPixmap Core XmNmarginRight XmLabel

XmNborderColor Core XmNmarginTop XmLabel

XmNborderPixmap Core XmNmarginWidth XmLabel

XmNborderWidth Core XmNmnemonicCharSet XmLabel

XmNbottomShadowColor XmPrimitive XmNmnemonic XmLabel

XmNbottomShadowPixmap XmPrimitive XmNnavigationType XmPrimitive

XmNcolormap Core XmNpopupHandlerCallback XmPrimitive

XmNconvertCallback XmPrimitive XmNrecomputeSize XmLabel

XmNdepth Core XmNrenderTable XmLabel

XmNdestroyCallback Core XmNscreen Core

XmNfontList XmLabel XmNsensitive Core

XmNforeground XmPrimitive XmNshadowThickness XmPrimitive

XmNheight Core XmNstringDirection XmLabel

XmNhelpCallback XmPrimitive XmNtopShadowColor XmPrimitive

XmNhighlightColor XmPrimitive XmNtopShadowPixmap XmPrimitive

XmNhighlightOnEnter XmPrimitive XmNtranslations Core

XmNhighlightPixmap XmPrimitive XmNtraversalOn XmPrimitive

XmNhighlightThickness XmPrimitive XmNunitType XmPrimitive

XmNinitialResourcesPersistent Core XmNuserData XmPrimitive

XmNlabelInsensitivePixmap XmLabel XmNwidth Core

XmNlabelPixmap XmLabel XmNx Core

XmNlabelString XmLabel XmNy Core

Motif and Xt Widget Classes XmCascadeButton

Motif Reference Manual 627

Translations
The translations of CascadeButton include the menu traversal translations of
Label.

Action Routines
CascadeButton defines the following action routines:

CleanupMenuBar()
Unposts any menus and restores the keyboard focus to the group of
widgets (tab group) that had the focus before the CascadeButton
was armed.

DoSelect()
Posts the CascadeButton’s submenu and allows keyboard traversal.
If there is no submenu attached to the CascadeButton, this action
routine activates the CascadeButton and unposts all the menus in
the cascade.

Help()
Similar to CleanupMenuBar() in that the Help() routine unposts any
menus and restores keyboard focus. This routine also invokes the
list of callbacks specified by XmNhelpCallback. If the CascadeBut-
ton doesn’t have any help callbacks, the Help() routine invokes
those associated with the nearest ancestor that has them.

KeySelect()
Posts the CascadeButton’s submenu, provided that keyboard traver-
sal is allowed. If there is no submenu attached to the CascadeBut-
ton, this action routine activates the CascadeButton and unposts all
the menus in the cascade.

Event Action

BSelect Press MenuBarSelect() (in a menu bar)
StartDrag() (in a popup or pulldown menu)

BSelect Release DoSelect()

MCtrl BSelect Press MenuButtonTakeFocus()

MCtrl BSelect Release MenuButtonTakeFocusUp()

KActivate KeySelect()

KSelect KeySelect()

KHelp Help()

MAny KCancel CleanupMenuBar()

XmCascadeButton Motif and Xt Widget Classes

628 Motif Reference Manual

MenuBarSelect()
Unposts any previously posted menus, posts the submenu associ-
ated with the CascadeButton, and enables mouse traversal.

MenuButtonTakeFocus()
In Motif 2.0 and later, moves the current keyboard focus to the Cas-
cadeButton, without activating the widget.

StartDrag()
Posts the submenu associated with the CascadeButton and enables
mouse traversal.

Additional Behavior
CascadeButton has the following additional behavior:

<EnterWindow> Arms the CascadeButton and posts its submenu.
<LeaveWindow> Disarms the CascadeButton and unposts its submenu.

See Also
XmCascadeButtonHighlight (1), XmCreateObject (2), Core (2),
XmLabel (2), XmPrimitive (2), XmRowColumn(2).

Motif and Xt Widget Classes XmCascadeButtonGadget

Motif Reference Manual 629

Name
XmCascadeButtonGadget widget class – a button gadget that posts menus.

Synopsis

Public Header:
<Xm/CascadeBG.h>

Class Name:
XmCascadeButtonGadget

Class Hierarchy:
Object → RectObj → XmGadget → XmLabelGadget → XmCascadeButton-
Gadget

Class Pointer:
xmCascadeButtonGadgetClass

Instantiation:
widget = XmCreateCascadeButtonGadget (parent, name,...)
or

widget = XtCreateWidget (name, xmCascadeButtonGadgetClass,...)1

Functions/Macros:
XmCascadeButtonGadgetHighlight (), XmCreateCascadeButton-
Gadget (),
XmIsCascadeButtonGadget (), XmOptionButtonGadget ()

Description
CascadeButtonGadget is the gadget variant of CascadeButton.

CascadeButtonGadget’s new resources, callback resources, and callback struc-
ture are the same as those for CascadeButton.

Traits
CascadeButtonGadget uses the XmQTmenuSystem and XmQTspecifyRenderTa-
ble traits.

Inherited Resources
CascadeButtonGadget inherits the following resources. The resources are listed
alphabetically, along with the superclass that defines them. CascadeButton-
Gadget sets the default values of XmNmarginBottom, XmNmarginRight, XmN-
marginTop, and XmNmarginWidth dynamically. It also sets the default value of
XmNhighlightThickness to 0. The default value of XmNborderWidth is reset to 0
by Gadget.

1.Erroneously given as xmCascadeButtonWidgetClass in 2nd Edition.

XmCascadeButtonGadget Motif and Xt Widget Classes

630 Motif Reference Manual

Behavior
As a gadget subclass, CascadeButtonGadget has no translations associated with
it. However, CascadeButtonGadget behavior corresponds to the action routines of
the CascadeButton widget. See the CascadeButton action routines for more infor-
mation.

Resource Inherited From Resource Inherited From

XmNaccelerator XmLabelGadget XmNmarginBottom XmLabelGadget

XmNacceleratorText XmLabelGadget XmNmarginHeight XmLabelGadget

XmNalignment XmLabelGadget XmNmarginLeft XmLabelGadget

XmNancestorSensitive RectObj XmNmarginRight XmLabelGadget

XmNbackground XmGadget XmNmarginTop XmLabelGadget

XmNbackgroundPixmap XmGadget XmNmarginWidth XmLabelGadget

XmNbottomShadowColor XmGadget XmNmnemonic XmLabelGadget

XmNbottomShadowPixmap XmGadget XmNmnemonicCharSet XmLabelGadget

XmNborderWidth RectObj XmNnavigationType XmGadget

XmNdestroyCallback Object XmNrecomputeSize XmLabelGadget

XmNfontList XmLabelGadget XmNrenderTable XmLabelGadget

XmNforeground XmGadget XmNsensitive RectObj

XmNheight RectObj XmNshadowThickness XmGadget

XmNhelpCallback XmGadget XmNstringDirection XmLabelGadget

XmNhighlightColor XmGadget XmNtopShadowColor XmGadget

XmNhighlightOnEnter XmGadget XmNtopShadowPixmap XmGadget

XmNhighlightPixmap XmGadget XmNtraversalOn XmGadget

XmNhighlightThickness XmGadget XmNunitType XmGadget

XmNlabelInsensitivePixmap XmLabelGadget XmNuserData XmGadget

XmNlabelPixmap XmLabelGadget XmNwidth RectObj

XmNlabelType XmLabelGadget XmNx RectObj

XmNlayoutDirection XmGadget XmNy RectObj

Event Action

BSelect Press MenuBarSelect() (in a menu bar)
StartDrag() (in a popup or pulldown menu)

BSelect Release DoSelect()

MCtrl BSelect Press MenuButtonTakeFocus()

Motif and Xt Widget Classes XmCascadeButtonGadget

Motif Reference Manual 631

In a menu bar that is armed, CascadeButtonGadget has additional behavior asso-
ciated with <Enter>, which arms the CascadeButtonGadget and posts its sub-
menu, and with <Leave>, which disarms the CascadeButtonGadget and unposts
its submenu.

See Also
XmCascadeButtonHighlight (1), XmCreateObject (1),
XmOptionButtonGadget (1), Object (2), RectObj (2),
XmCascadeButton (2), XmGadget(2), XmLabelGadget (2),
XmRowColumn(2).

MCtrl BSelect Release MenuButtonTakeFocusUp()

KActivate KeySelect()

KSelect KeySelect()

KHelp Help()

MAny KCancel CleanupMenuBar()

Event Action

XmCheckBox Motif and Xt Widget Classes

632 Motif Reference Manual

Name
XmCheckBox – a RowColumn that contains ToggleButtons.

Synopsis

Public Header:
<Xm/RowColumn.h>

Class Name:
XmRowColumn

Class Hierarchy:
Core → Composite → Constraint → XmManager → XmRowColumn

Class Pointer:
xmRowColumnWidgetClass

Instantiation:
widget = XmCreateSimpleCheckBox (parent, name,...)

Functions/Macros:
XmCreateRowColumn (), XmCreateSimpleCheckBox (), XmIsRowCol-
umn(),
XmVaCreateSimpleCheckBox ()

Description
An XmCheckBox is an instance of a RowColumn widget that contains Toggle-
Button or ToggleButtonGadget children, any number of which may be selected at
a given time. A CheckBox is a RowColumn widget with its XmNrowColumn-
Type resource set to XmWORK_AREA and XmNradioAlwaysOne set to False.

A CheckBox can be created by making a RowColumn with these resource values.
When it is created in this way, a CheckBox does not automatically contain Tog-
gleButton children; they are added by the application.

A CheckBox can also be created by a call to XmCreateSimpleCheckBox() or
XmVaCreateSimpleCheckBox(). These routines automatically create the Check-
Box with ToggleButtonGadgets as children. The routines use the RowColumn
resources associated with the creation of simple menus. For a CheckBox, the
only type allowed in the XmNbuttonType resource is XmCHECKBUTTON. The
name of each ToggleButtonGadget is button_n, where n is the number of the but-
ton, ranging from 0 to 1 less than the number of buttons in the CheckBox.

Motif and Xt Widget Classes XmCheckBox

Motif Reference Manual 633

Default Resource Values
A CheckBox sets the following default values for its resources:

See Also
XmCreateObject (2), XmVaCreateSimpleCheckBox (2),
XmRowColumn(2), XmToggleButton (2), XmToggleButtonGadget (2).

Name Default

XmNnavigationType XmTAB_GROUP

XmNradioBehavior False

XmNrowColumnType XmWORK_AREA

XmNtraversalOn True

XmComboBox Motif and Xt Widget Classes

634 Motif Reference Manual

Name
XmComboBox widget class – a composite widget which combines a text widget
with a list of choices.

Synopsis

Public Header:
<Xm/ComboBox.h>

Class Name:
XmComboBox

Class Hierarchy:
Core → Composite → Constraint → XmManager → XmComboBox

Class Pointer:
xmComboBoxWidgetClass

Instantiation:
widget = XmCreateComboBox (parent, name,...)
or
widget = XmCreateDropDownComboBox (parent, name,...)
or
widget = XmCreateDropDownList (parent, name,...)
or
widget = XtCreateWidget (name, xmComboBoxWidgetClass,...)

Functions/Macros:
XmComboBoxAddItem(), XmComboBoxDeletePos (), XmComboBoxSe-
lectItem (),
XmComboBoxSetItem (), XmComboBoxUpdate(), XmCreateCom-
boBox (),
XmCreateDropDownComboBox (), XmCreateDropDownList (), XmIs-
ComboBox()

Availability
Motif 2.0 and later.

Description
ComboBox is a composite widget that combines both text entry and scrolled list
selection. The ComboBox can be configured in various ways, depending on
whether the text field is to be editable, and whether the scrolled list is to be per-
manently visible. The text field contains the currently selected item; an item
selected from the list is automatically placed into the text field. Whether entering
data into the text field, or selecting from the list, the user can select only one item
at any given time. Data typed directly into the text field does not, however, auto-
matically select any matching item in the list.

Motif and Xt Widget Classes XmComboBox

Motif Reference Manual 635

By default, both the text field and the list are fully visible, and the list is placed
underneath the text widget. The user can either enter characters directly into the
text field, or select an item from the list. Alternatively, the ComboBox widget can
be configured such that the list is hidden until required. In this case, the Com-
boBox widget draws an arrow button adjacent to the text field. Clicking on the
arrow displays the hidden list underneath the text field. Selecting an item from
the displayed popup list automatically pops down the list.

The XmNcomboBoxType resource configures the type of the ComboBox. You
may specify one of the following types: combo box (XmCOMBO_BOX),
drop-down combo box (XmDROP_DOWN_COMBO_BOX), or drop-down list
(XmDROP_DOWN_LIST). The combo box type has a permanently visible list,
and the text field is editable. A drop-down combo box has an editable text field,
the list is hidden, and the arrow button is drawn. A drop-down list is identical to a
drop-down combo box except that the text field is not editable: the user must
select from the list to change the selection.

If the ComboBox widget has a non-editable text field, any characters typed do
not appear directly in the text field. Instead, any characters entered may be com-
pared against items in the list, depending on the value of the XmNmatchBehavior
resource. When enabled, and the list has the input focus, characters typed are
compared against the first character of each item in the list. If a match is found,
the matched list item is automatically selected. Subsequently typing the same
character progresses cyclically through the list to find any further matching item.

The position of the drawn arrow button relative to the text field depends upon the
XmNlayoutDirection resource of the Shell ancestor of the ComboBox widget. If
XmNlayoutDirection is XmLEFT_TO_RIGHT, the arrow button is drawn to the
right of the text field. Otherwise, a value XmRIGHT_TO_LEFT draws the arrow
button to the left.

Traits
ComboBox uses the XmQTaccessTextual and XmQTspecifyRenderTable traits.

New Resources
ComboBox defines the following resources:

Name Class Type Default Access

XmNarrowSize XmCArrowSize Dimension dynamic CSG

XmNarrowSpacing XmCArrowSpacing Dimension dynamic CSG

XmNcolumns XmCColumns short dynamic CSG

XmNcomboBoxType XmCComboBoxType unsigned char XmCOMBO_BOX CG

XmNfontList XmCFontList XmFontList NULL CSG

XmComboBox Motif and Xt Widget Classes

636 Motif Reference Manual

XmNarrowSize
The size of the drawn arrow button used to display the hidden list. The default
size depends upon the size of the text field, and the size of the ComboBox
widget. Attempting to change the arrow size may result in a geometry request to
the parent of the ComboBox widget. If this request is refused, the arrow size is
set to the maximum size that fits into the space allowed by the parent of the Com-
boBox widget.

XmNarrowSpacing
The horizontal spacing, in pixels, between the drawn arrow button and the text
field. The default value is calculated from the value of the XmNmarginWidth
resource.

XmNcolumns
Specifies the number of columns in the text field. The default value is that of
XmTextField.

XmNcomboBoxType
Specifies the type of the ComboBox. Possible values:

XmCOMBO_BOX /* visible list; editable text field */
XmDROP_DOWN_COMBO_BOX /* hidden list; editable text field */
XmDROP_DOWN_LIST /* hidden list; non-editable text field */

XmNfontList
The font list used for the items in the list and text field. In Motif 2.0 and later, the
XmFontList is obsolete as a data type, and the resource is maintained for back-
wards compatibility through an implementation as an XmRenderTable. The

XmNhighlightThickness XmCHighlightThickness Dimension dynamic CSG

XmNitemCount XmCItemCount int dynamic CSG

XmNitems XmCItems XmStringTable dynamic CSG

XmNlist XmCList Widget dynamic G

XmNmarginHeight XmCMarginHeight Dimension 2 CSG

XmNmarginWidth XmCMarginWidth Dimension 2 CSG

XmNmatchBehavior XmCMatchBehavior unsigned char dynamic CSG

XmNpositionMode XmCPositionMode XtEnum XmZERO_BASED CG

XmNrenderTable XmCRenderTable XmRenderTable dynamic CSG

XmNselectedItem XmCSelectedItem XmString NULL CSG

XmNselectedPosition XmCSelectedPosition int 0 CSG

XmNtextField XmCTextField Widget dynamic G

XmNvisibleItemCount XmCVisibleItemCount int 10 CSG

Name Class Type Default Access

Motif and Xt Widget Classes XmComboBox

Motif Reference Manual 637

XmNrenderTable resource is the preferred method of specifying appearance. If
both a render table and font list are specified, the render table takes precedence.
The default font list is taken from the default render table.

XmNhighlightThickness
The thickness of the highlighting rectangle. In Motif 2.0, the default is 2. In
Motif 2.1 and later, the default depends upon the value of the XmDisplay
resource XmNenableThinThickness: if True, the default is 1, otherwise 2.

XmNitemCount
The total number of items. If unspecified, the value is taken from the internal list.
The ComboBox widget updates this resource every time a list item is added or
removed through the ComboBox convenience functions.

XmNitems
A pointer to an array of compound strings, representing the items to display in
the list. A call to XtGetValues() returns the actual list items, not a copy. Applica-
tions should not directly free any items fetched in this manner. If the resource is
unspecified, the value is taken from the internal list. The ComboBox widget
updates this resource every time a list item is added or removed through the
ComboBox convenience functions.

XmNlist
The list widget created by the ComboBox. Applications may not change the
value of this resource, but may fetch the value to perform required operations on
the internal list.

XmNmarginHeight
The minimum spacing between the ComboBox top or bottom edge and the child
list and text field widgets.

XmNmarginWidth
The minimum spacing between the ComboBox left or right edge and the child
list and text field widgets.

XmNmatchBehavior
Determines whether matching behavior is enabled, where characters typed are
compared against items in the list. Possible values:

XmNONE /* No match behavior */
XmQUICK_NAVIGATE /* Match behavior enabled */

The value XmQUICK_NAVIGATE may only be specified if the XmNcom-
boBoxType resource has value XmDROP_DOWN_LIST.
XmQUICK_NAVIGATE is the default when XmNcomboBoxType is
XmDROP_DOWN_LIST. Otherwise, XmNONE is the default.

XmComboBox Motif and Xt Widget Classes

638 Motif Reference Manual

XmNpositionMode
Specifies the way in which the position of the selected item is reported in call-
backs, and controls the initial index value of the XmNselectedPosition resource.
Possible values:

XmZERO_BASED /* first item in list is position zero */
XmONE_BASED /* first item in list is position one */

A value of XmZERO_BASED configures callback data on the XmNselection-
Callback list such that the item_position element of the XmComboBoxCallback-
Struct is indexed from zero: selecting the first list item has item_position set to
zero, selecting the second item has item_position as one, and so forth. Similarly,
fetching the XmNselectedPosition resource when the first item in the list is
selected will return the value zero.

A value of XmONE_BASED sets the item_position element such that selecting
the first item in the list is reported at position one, the second item is reported at
position two, and so on. By analogy, fetching the XmNselectedPosition resource
when the first item in the list is selected will return the value one.

In all cases, changes to the text field are reported with item_position set to zero.

A XmNpositionMode of XmONE_BASED therefore makes it easier to distin-
guish between text field and list selection, since item_position set to zero is not
ambiguous.

The ComboBox convenience functions for adding, deleting, or selecting items in
the list are unaffected by the value of this resource: these functions always
assume that the first item is at position one.

This resource is provided for CDE compatibility. In particular, setting the value
to XmZERO_BASED makes the ComboBox selection behavior consistent with
that of the DtComboBox widget.

XmNrenderTable
Specifies the render table for the ComboBox, and is used in both the text field and
list children. If NULL, this is inherited from the nearest ancestor that has the
XmQTspecifyRenderTable trait. The BulletinBoard, VendorShell, and MenuSh-
ell widgets and derived classes set this trait.
The render table resource takes precedence over any specified XmNfontList.

XmNselectedItem
A compound string representing the currently selected item contained within the
ComboBox text field.

Motif and Xt Widget Classes XmComboBox

Motif Reference Manual 639

XmNselectedPosition
Identifies the index of the XmNselectedItem in the list. The interpretation of the
index depends upon the value of the XmNpositionMode resource. If XmNposi-
tionMode is XmZERO_BASED, a XmNselectedPosition value of 0 (zero) indi-
cates that the first list item is selected, a value of 1 indicates the second item is
selected, and so forth. If XmNpositionMode is XmONE_BASED, the value 1
indicates that the first list item is selected, the value 2 indicates the second list
item, and so on, with value 0 (zero) indicating that no list item is selected.

XmNtextField
The text field widget created by the ComboBox. Applications may not change the
value of this resource, but may fetch the value to perform required operations on
the internal text field.

XmNvisibleItemCount
The number of items to display in the work area of the list. If specified, this
resource overrides the XmNvisibleItemCount resource of the internal list widget.
The resource may affect the height of the list widget, and hence the ComboBox
itself, depending upon whether the list is permanently visible. If the XmNvisi-
bleItemCount value is less than the number of items in the list, the list is automat-
ically configured with a vertical ScrollBar.

Callback Resources
ComboBox defines the following callback resources:

XmNselectionCallback
List of callbacks that are called when a selection occurs in the ComboBox
widget.

Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /* the reason that the callback was called */
XEvent *event; /* points to event structure that triggered callback */
XmString item_or_text; /* the selected item */
int item_position; /* the index of the item in the list */

} XmComboBoxCallbackStruct;

Callback Reason Constant

XmNselectionCallback XmCR_SELECT

XmComboBox Motif and Xt Widget Classes

640 Motif Reference Manual

The item_or_text element is a compound string representing the ComboBox
selected item. It points to allocated memory that is reclaimed after the callbacks
on the XmNselectionCallback list have returned. If the item is to be cached, the
application should copy the item using XmStringCopy().

The item_position element specifies the index of the selected item within the
XmNitems array of the list. The interpretation of the value will depend upon the
XmNpositionMode resource of the ComboBox widget. With XmNpositionMode
set to XmONE_BASED, an item_position of 1 refers to the first item in the list,
and an item_position of zero indicates that the selected item has been entered
directly into the text field (no list selection). With a XmNpositionMode of
XmZERO_BASED, an item_position of zero could either mean that the first item
in the list is selected, or that the selection is from direct text entry, and an
item_position of 1 refers to the second list item.

Default Resource Values
A ComboBox sets the following default values for the scrolled list resources:

If the ComboBox is a drop down list, XmNcursorPositionVisible and XmNedita-
ble are set to False, and the XmNshadowThickness is set to zero. Otherwise,
XmNcursorPositionVisible and XmNeditable are set True, and XmNeditMode is
set to XmSINGLE_LINE_EDIT.

Inherited Resources
ComboBox inherits the resources shown below. The resources are listed alpha-
betically, along with the superclass that defines them. ComboBox sets the default
values of XmNmarginWidth, and XmNmarginHeight to 2, and XmNnavigation-
Type to XmSTICKY_TAB_GROUP. The default value of XmNborderWidth is
reset to 0 (zero) by Manager. The default values for XmNhighlightThickness and
XmNshadowThickness depend upon the XmDisplay XmNenableThinThickness
resource: if True, the default is 1, otherwise 2.

Name Default

XmNborderWidth 0

XmNhighlightThickness dynamic

XmNlistSizePolicy XmVARIABLE

XmNnavigationType XmNONE

XmNrenderTable dynamic

XmNselectionPolicy XmBROWSE_SELECT

XmNspacing 0

XmNtraversalOn dynamic

XmNvisualPolicy XmVARIABLE

Motif and Xt Widget Classes XmComboBox

Motif Reference Manual 641

Widget Hierarchy
The ComboBox creates the text field with the name Text, and the scrolled list is
named List. If the ComboBox is of a drop down type, an XmGrabShell named
GrabShell is created as parent to the scrolled list.

Translations
The translations for ComboBox include those of XmManager.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNinsertPosition Composite

XmNancestorSensitive Core XmNlayoutDirection XmManager

XmNbackground Core XmNmappedWhenManaged Core

XmNbackgroundPixmap Core XmNnavigationType XmManager

XmNborderColor Core XmNnumChildren Composite

XmNborderPixmap Core XmNpopupHandlerCallback XmManager

XmNborderWidth Core XmNscreen Core

XmNbottomShadowColor XmManager XmNsensitive Core

XmNbottomShadowPixmap XmManager XmNshadowThickness XmManager

XmNchildren Composite XmNstringDirection XmManager

XmNcolormap Core XmNtopShadowColor XmManager

XmNdepth Core XmNtopShadowPixmap XmManager

XmNdestroyCallback Core XmNtranslations Core

XmNforeground XmManager XmNtraversalOn XmManager

XmNheight Core XmNunitType XmManager

XmNhelpCallback XmManager XmNuserData XmManager

XmNhighlightColor XmManager XmNwidth Core

XmNhighlightPixmap XmManager XmNx Core

XmNinitialFocus XmManager XmNy Core

XmNinitialResourcesPersistent Core

Event Action

BSelect Press CBArmAndDropDownList()

BSelect Release CBDisarm()

XmComboBox Motif and Xt Widget Classes

642 Motif Reference Manual

ComboBox places the following translations upon the list:

ComboBox places the following translations upon the text field:

Action Routines
ComboBox defines the following action routines:

CBArmAndDropDownList()
If the mouse is over the drawn arrow button, draws the arrow button
as though selected, and posts the drop-down list.

CBDisarm()
Draws the arrow button in unselected state.

CBDropDownList()
Posts the drop-down list

CBFocusIn()
Draws focus highlighting around the ComboBox widget.

CBFocusOut()
Erases focus highlighting around the ComboBox widget. If the text
field has changed, invokes the list of callbacks specified by XmNse-
lectionCallback.

CBCancel()
Pops down the drop-down list, and draws the arrow button in unse-
lected state.

CBActivate()
Fetches the value from the text field. If the XmNcomboBoxType is
XmCOMBO_BOX, invokes the list of callbacks specified by XmN-
defaultActionCallback for the internal list, passing the text field

Event Action

KDown CBDropDownList()

KUp CBDropDownList()

KCancel CBCancel()

KActivate CBActivate()

MShift KBeginData CBListAction(ListBeginData)

MShift KEndData CBListAction(ListEndData)

KPageUp CBListAction(ListPrevPage)

KPageDown CBListAction(ListNextPage)

Event Action

<FocusOut> CBTextFocusOut()

Motif and Xt Widget Classes XmComboBox

Motif Reference Manual 643

value as the selected item within the callback data. Regardless of
XmNcomboBoxType, if the value matches an item within the list,
the list item is selected, otherwise all list items are deselected.
Lastly, the list of callbacks specified by XmNselectionCallback is
invoked.

CBListAction(type)
A generic action to perform operations on the internal list. The
action type may be one of Up, Down, ListPrevPage, ListNextPage,
ListBeginData, or ListEndData. The types Up and Down simply
select the relevant item in the list in the required direction relative to
the currently selected item. The remaining types directly invoke the
ListPrevPage, ListNextPage, ListBeginData, or ListEndData
actions of the list. The types Up and Down differ from the corre-
sponding List actions in that the ComboBox actions will wrap
around the items in the internal list.

CBTextFocusOut()
Turns off text field cursor blinking.

See Also
XmComboBoxAddItem(1), XmComboBoxDeletePos (1),
XmComboBoxSelectItem (1), XmComboBoxSetItem (1),
XmComboBoxUpdate(1), XmCreateObject (1), Composite (2),
Constraint (2), Core (2), XmManager(2).

XmCommand Motif and Xt Widget Classes

644 Motif Reference Manual

Name
XmCommand widget class – a composite widget for command entry.

Synopsis

Public Header:
<Xm/Command.h>

Class Name:
XmCommand

Class Hierarchy:
Core → Composite → Constraint → XmManager → XmBulletinBoard →
XmSelectionBox → XmCommand

Class Pointer:
xmCommandWidgetClass

Instantiation:
widget = XmCreateCommand (parent, name,...)
or
widget = XtCreateWidget (name, xmCommandWidgetClass,...)

Functions/Macros:
XmCommandAppendValue(), XmCommandError(), XmCommandGetCh-
ild (),
XmCommandSetValue(), XmCreateCommand(), XmIsCommand()

Description
Command is a composite widget that handles command entry by providing a
prompt, a command input field, and a history list region. Many of the Command
widget’s new resources are in fact renamed resources from SelectionBox.

New Resources
Command defines the following resources:

Name Class Type Default Access

XmNcommand XmCTextString XmString NULL CSG

XmNhistoryItems XmCItems XmStringTable NULL CSG

XmNhistoryItemCount XmCItemCount int 0 CSG

XmNhistoryMaxItems XmCMaxItems int 100 CSG

XmNhistoryVisibleItemCount XmCVisibleItemCount int dynamic CSG

XmNpromptString XmCPromptString XmString dynamic CSG

Motif and Xt Widget Classes XmCommand

Motif Reference Manual 645

XmNcommand
The text currently displayed on the command line. Synonymous with the XmN-
textString resource in SelectionBox. XmNcommand can be changed using the
routines XmCommandSetValue() and XmCommandAppendValue().

XmNhistoryItems
The items in the history list. Synonymous with the XmNlistItems resource in
SelectionBox. A call to XtGetValues () returns the actual list items (not a
copy), so don’t have your application free these items.

XmNhistoryItemCount
The number of strings in XmNhistoryItems. Synonymous with the XmNlist-
ItemCount resource in SelectionBox.

XmNhistoryMaxItems
The history list’s maximum number of items. When this number is reached, the
first history item is removed before the new command is added to the list.

XmNhistoryVisibleItemCount
The number of history list commands that will display at one time. Synonymous
with the XmNvisibleItemCount resource in SelectionBox.

XmNpromptString
The command-line prompt. Synonymous with the XmNselectionLabelString
resource in SelectionBox.

Callback Resources
Command defines the following callback resources:

XmNcommandChangedCallback
List of callbacks that are called when the value of the command changes.

XmNcommandEnteredCallback
List of callbacks that are called when a command is entered in the widget.

Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /* the reason that the callback was called */
XEvent *event; /* points to event structure that triggered callback */
XmString value; /* the string contained in the command area */
int length; /* the size of this string */

} XmCommandCallbackStruct;

Callback Reason Constant

XmNcommandEnteredCallback XmCR_COMMAND_ENTERED

XmNcommandChangedCallback XmCR_COMMAND_CHANGED

XmCommand Motif and Xt Widget Classes

646 Motif Reference Manual

Inherited Resources
Command inherits the resources shown below. The resources are listed alphabet-
ically, along with the superclass that defines them. Command sets the default val-
ues of XmNautoUnmanage and XmNdefaultPosition to False, XmNdialogType
to XmDIALOG_COMMAND, and XmNlistLabelString to NULL. In versions of
Motif prior to 2.1.10, XmNresizePolicy is reset to XmRESIZE_NONE.

In Motif 2.1.10 and later, it is reset to XmRESIZE_ANY: this undocumented
change is a bug which persists in Motif 2.1.20. The default value of XmNborder-
Width is reset to 0 by Manager. BulletinBoard sets the value of XmNinitialFocus
to XmNdefaultButton and resets the default XmNshadowThickness from 0 to 1 if
the Command widget is a child of a DialogShell.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNlistItemCount XmSelectionBox

XmNallowOverlap XmBulletinBoard XmNlistItems XmSelectionBox

XmNancestorSensitive Core XmNlistLabelString XmSelectionBox

XmNapplyCallback XmSelectionBox XmNlistVisibleItemCount XmSelectionBox

XmNapplyLabelString XmSelectionBox XmNmapCallback XmBulletinBoard

XmNautoUnmanage XmBulletinBoard XmNmappedWhenManaged Core

XmNbackground Core XmNmarginHeight XmBulletinBoard

XmNbackgroundPixmap Core XmNmarginWidth XmBulletinBoard

XmNborderColor Core XmNminimizeButtons XmSelectionBox

XmNborderPixmap Core XmNmustMatch XmSelectionBox

XmNborderWidth Core XmNnavigationType XmManager

XmNbottomShadowColor XmManager XmNnoMatchCallback XmSelectionBox

XmNbottomShadowPixmap XmManager XmNnoResize XmBulletinBoard

XmNbuttonFontList XmBulletinBoard XmNnumChildren Composite

XmNbuttonRenderTable XmBulletinBoard XmNokCallback XmSelectionBox

XmNcancelButton XmBulletinBoard XmNokLabelString XmSelectionBox

XmNcancelCallback XmSelectionBox XmNpopupHandlerCallback XmManager

XmNcancelLabelString XmSelectionBox XmNresizePolicy XmBulletinBoard

XmNchildren Composite XmNscreen Core

XmNchildPlacement XmSelectionBox XmNselectionLabelString XmSelectionBox

XmNcolormap Core XmNsensitive Core

XmNdefaultButton XmBulletinBoard XmNshadowThickness XmManager

XmNdefaultPosition XmBulletinBoard XmNshadowType XmBulletinBoard

XmNdepth Core XmNstringDirection XmManager

Motif and Xt Widget Classes XmCommand

Motif Reference Manual 647

Translations
The translations for Command are inherited from XmSelectionBox.

Action Routines
Command defines the following action routines:

SelectionBoxUpOrDown(flag)
Selects a command from the history list, replaces the current com-
mand-line text with this list item, and invokes the callbacks speci-
fied by XmNcommandChangedCallback. The value of flag
determines which history list command is selected. With a flag
value of 0, 1, 2, or 3, this action routine selects the list’s previous,
next, first, or last item, respectively.

Additional Behavior
Command has the following additional behavior:

MAny KCancel
The event is passed to the parent if it is a manager widget.

XmNdestroyCallback Core XmNtextAccelerators XmSelectionBox

XmNdialogStyle XmBulletinBoard XmNtextColumns XmSelectionBox

XmNdialogTitle XmBulletinBoard XmNtextFontList XmBulletinBoard

XmNdialogType XmSelectionBox XmNtextRenderTable XmBulletinBoard

XmNfocusCallback XmBulletinBoard XmNtextString XmSelectionBox

XmNforeground XmManager XmNtextTranslations XmBulletinBoard

XmNheight Core XmNtopShadowColor XmManager

XmNhelpCallback XmManager XmNtopShadowPixmap XmManager

XmNhelpLabelString XmSelectionBox XmNtranslations Core

XmNhighlightColor XmManager XmNtraversalOn XmManager

XmNhighlightPixmap XmManager XmNunitType XmManager

XmNinitialFocus XmManager XmNunmapCallback XmBulletinBoard

XmNinitialResourcesPersistent Core XmNuserData XmManager

XmNinsertPosition Composite XmNwidth Core

XmNlabelFontList XmBulletinBoard XmNx Core

XmNlabelRenderTable XmBulletinBoard XmNy Core

XmNlayoutDirection XmManager

Resource Inherited From Resource Inherited From

XmCommand Motif and Xt Widget Classes

648 Motif Reference Manual

KActivate
In the Text widget, invokes the XmNactivateCallback callbacks,
appends the text to the history list, and invokes the XmNcom-
mandEnteredCallback callbacks.

<Key>
In the Text widget, any keystroke that changes text invokes the
XmNcommandChangedCallback callbacks.

KActivate or <DoubleClick>
In the List widget, invokes the XmNdefaultActionCallback call-
backs, appends the selected item to the history list, and invokes the
XmNcommandEnteredCallback callbacks.

<FocusIn>
Invokes the XmNfocusCallback callbacks.

<MapWindow>
If the widget is a child of a DialogShell, invokes the XmNmapCall-
back callbacks when the widget is mapped.

<UnmapWindow>
If the widget is a child of a DialogShell, invokes the XmNunmap-
Callback callbacks when the widget is unmapped.

See Also
XmCommandAppendValue(1), XmCommandError(1),
XmCommandGetChild (1), XmCommandSetValue(1),
XmCreateObject (1), Composite (2), Constraint (2), Core (2),
XmBulletinBoard (2), XmManager(2), XmSelectionBox (2).

Motif and Xt Widget Classes XmContainer

Motif Reference Manual 649

Name
XmContainer widget class – a widget which controls the layout and selection of a
set of items

Synopsis

Public Header:
<Xm/Container.h>

Class Name:
XmContainer

Class Hierarchy:
Core → Composite → Constraint → XmManager → XmContainer

Class Pointer:
xmContainerWidgetClass

Instantiation:
widget = XmCreateContainer (parent, name,...)
or
widget = XtCreateWidget (name, xmContainerWidgetClass,...)

Functions/Macros:
XmContainerCopy (), XmContainerCopyLink (), XmContainerCut (),
XmContainerGetItemChild (), XmContainerPaste (), XmContain-
erPasteLink (), XmContainerRelayout (), XmContainerReorder (),
XmCreateContainer ()

Availability
Motif 2.0 and later.

Description
A Container is a constraint widget which controls the layout and selection of con-
tainer items. Container is intended to provide an object-oriented view of the
world: an application object can be represented in the Container as a container
item. The user can subsequently manipulate the item by moving, copying, select-
ing, or deleting it, or perform drag and drop operations between applications
using the item. New items can be dropped into the Container. At each stage, call-
backs indicate to the application the operation performed upon each item, and
hence the requested operation upon the object which it represents. The Container
recognises as a container item any child widget which holds the XmQTcontainer-
Item trait. The IconGadget is the only standard Motif widget to hold this trait.

The Container provides three styles in which items can be displayed, specified
through the XmNlayoutType resource. The resource can have the values
XmOUTLINE, XmDETAIL, or XmSPATIAL.

XmContainer Motif and Xt Widget Classes

650 Motif Reference Manual

The XmOUTLINE layout style provides a tree view onto the items, and is appro-
priate when application objects exist in a parent/child relationship to each other.
The logical relationship between items is specified by setting the XmNentryPar-
ent constraint resource of an item to point to the logical parent. The order of
items within the tree depends upon the XmNpositionIndex constraint value for
each item. The Container draws connecting lines between items to indicate the
relationships. The Container creates additional PushButtonGadgets which are
used for folding and unfolding portions of the tree.

The XmDETAIL layout style gives a tabular format, where each row of the table
represents an object, each cell within the row possibly representing a property of
the object. The data attached to an object and displayed in the row is specified
through the XmNdetail resources of the associated container item. Column head-
ings can be specified through the XmNdetailColumnHeading resources of the
Container.

The XmSPATIAL layout style provides generic layout, where the exact position-
ing of items is controlled through further resources. This can take the form of a
grid layout, where items can span single or multiple cells of the grid, or a free
format where items can be positioned at absolute x, y coordinates of the Con-
tainer. At the simplest, the grid layout can be used to construct a general purpose
icon box. The resources XmNspatialStyle, XmNspatialIncludeModel, and
XmNspatialSnapModel control the positioning of items.

The Container controls the way in which items are selected, and provides selec-
tion notification. The widget supports single, browse, multiple, and extended
selection. Selection of items within the Container can be performed by including
them within a rubberband rectangle called a Marquee, which the user specifies
using the mouse. Alternatively, selection can be performed by simply swiping the
mouse over an item. The style of selection is specified through the XmNselec-
tionTechnique resource.

The user can only move container items if the XmNlayoutType is XmSPATIAL.

Traits
Container holds the XmQTtransfer, XmQTtraversalControl, and XmQTcontainer
traits, and uses the XmQTscrollFrame, XmQTcontainerItem, XmQTnavigator,
XmQTspecifyRenderTable, and XmQTpointIn traits.

Motif and Xt Widget Classes XmContainer

Motif Reference Manual 651

New Resources
Container defines the following resources:

Name Class Type Default Access

XmNautomaticSelection XmCAutomaticSelection unsigned char XmAUTO_SELECT CSG

XmNcollapsedStatePixmap XmCCollapsedStatePixmap Pixmap dynamic CSG

XmNdetailColumnHeading XmCDetailColumnHeading XmStringTable NULL CSG

XmNdetailColumnHeadingCount XmCDetailColumnHeadingCount Cardinal 0 CSG

XmNdetailOrder XmCDetailOrder Cardinal * NULL CSG

XmNdetailOrderCount XmCDetailOrderCount Cardinal 0 CSG

XmNdetailTabList XmCDetailTabList XmTabList NULL CSG

XmNentryViewType XmCEntryViewType unsigned char XmANY_ICON CSG

XmNexpandedStatePixmap XmCExpandedStatePixmap Pixmap dynamic CSG

XmNfontList XmCFontList XmFontList dynamic CSG

XmNlargeCellHeight XmCCellHeight Dimension 0 CSG

XmNlargeCellWidth XmCCellWidth Dimension 0 CSG

XmNlayoutType XmCLayoutType unsigned char XmSPATIAL CSG

XmNmarginHeight XmCMarginHeight Dimension 0 CSG

XmNmarginWidth XmCMarginWidth Dimension 0 CSG

XmNoutlineButtonPolicy XmCOutlineButtonPolicy unsigned char XmOUTLINE_BUTTON_PRESENT CSG

XmNoutlineColumnWidth XmCOutlineColumnWidth Dimension 0 CSG

XmNoutlineIndentation XmCOutlineIndentation Dimension 40 CSG

XmNoutlineLineStyle XmCOutlineLineStyle unsigned char XmSINGLE CSG

XmNprimaryOwnership XmCPrimaryOwnership unsigned char XmOWN_POSSIBLE_MULTIPLE CSG

XmNrenderTable XmCRenderTable XmRenderTable dynamic CSG

XmNselectColor XmCSelectColor Pixel XmREVERSED_GROUND_COLORS CSG

XmNselectedObjectCount XmCSelectedObjectCount int 0 SG

XmNselectedObjects XmCSelectedObjects WidgetList NULL SG

XmNselectionPolicy XmCSelectionPolicy unsigned char XmEXTENDED_SELECT CSG

XmNselectionTechnique XmCSelectionTechnique unsigned char XmTOUCH_OVER CSG

XmNsmallCellHeight XmCCellHeight Dimension 0 CSG

XmNsmallCellWidth XmCCellWidth Dimension 0 CSG

XmNspatialIncludeModel XmCSpatialIncludeModel unsigned char XmAPPEND CSG

XmNspatialResizeModel XmCSpatialResizeModel unsigned char XmGROW_MINOR CSG

XmNspatialSnapModel XmCSpatialSnapModel unsigned char XmNONE CSG

XmNspatialStyle XmCSpatialStyle unsigned char XmGRID CSG

XmContainer Motif and Xt Widget Classes

652 Motif Reference Manual

XmNautomaticSelection
Specifies whether selection callbacks are invoked immediately and each time that
an item is selected, or whether callbacks are invoked when the user has com-
pleted the selection action. Possible values:

XmAUTO_SELECT /* callbacks called immediately on selection */
XmNO_AUTO_SELECT /* callbacks delayed until user action completed
*/

XmNcollapsedStatePixmap
Specifies the pixmap to display on the PushButtonGadget to indicate that logical
child items are folded (hidden) within an XmOUTLINE layout. The resource has
no effect unless resource XmNoutlineButtonPolicy is
XmOUTLINE_BUTTON_PRESENT. Otherwise, if the resource is unspecified,
a default pixmap with an upwards pointing arrow is displayed.

XmNdetailColumnHeading
Specifies an XmString array to use as column headings in an XmDETAIL layout.
No column headings are displayed if the value is NULL.

XmNdetailColumnHeadingCount
Specifies the length of the array associated with the XmNdetailColumnHeading
resource.

XmNdetailOrder
Specifies an array of Cardinal values that represents which column, and in which
order, the detail data associated with container items is to be displayed. The
resource has no effect unless XmNlayoutType is XmDETAIL. If NULL, the
XmNdetailOrderCount resource is used to determine the column detail data asso-
ciated with each item.

XmNdetailOrderCount
Specifies the length of the array associated with the XmNdetailOrder resource. If
XmNdetailOrder is NULL, and XmNdetailOrderCount is not zero, each con-
tainer item displays any detail information in order starting from column 1, up to
the value of XmNdetailOrderCount. Otherwise, with a value of zero, a default
algorithm inspects the XmQTcontainerItem trait of each item to determine the
columnar data.

XmNdetailTabList
Specifies an XmTabList which indicates the start of each column in an XmDE-
TAIL layout. If NULL, the Container calculates a default XmTabList.

XmNentryViewType
Specifies the view type for all Container children. If the value is XmANY_ICON,
then the XmQTcontainerItem trait of each child specifies the individual view
type. Possible values:

Motif and Xt Widget Classes XmContainer

Motif Reference Manual 653

XmANY_ICON /* children use their own view type */
XmLARGE_ICON /* all children forced to XmLARGE_ICON */
XmSMALL_ICON /* all children forced to XmSMALL_ICON */

XmNexpandedStatePixmap
Specifies the pixmap to display on the PushButtonGadget to indicate that logical
child items are unfolded (displayed). The resource has no effect unless XmNout-
lineButtonPolicy is XmOUTLINE_BUTTON_PRESENT. Otherwise, if the
resource is unspecified, a default pixmap with a downwards pointing arrow is dis-
played.

XmNfontList
The XmFontList is considered obsolete in Motif 2.0 and later, and has been sub-
sumed into the XmRenderTable. Any specified XmNrenderTable resource takes
precedence.

XmNlargeCellHeight
Specifies the height of a cell when the Container is using a grid layout. The
resource is not used when XmNentryViewType is XmSMALL_ICON.

XmNlargeCellWidth
Specifies the width of a cell when the Container is using a grid layout. The
resource is not used when XmNentryViewType is XmSMALL_ICON.

XmNlayoutType
Specifies the way in which the Container lays out children. Possible values:

XmOUTLINE /* items are displayed in a tree arrangement */
XmSPATIAL /* items displayed according to XmNspatialStyle resource */
XmDETAIL /* items displayed in tabular row/column format */

XmNmarginHeight
Specifies the spacing at the top and bottom of the Container widget.

XmNmarginWidth
Specifies the spacing at the left and right of the Container widget.

XmNoutlineButtonPolicy
Specifies whether a PushButtonGadget, used for folding/unfolding items, is dis-
played with each container item that has logical children, specified by the
XmNentryParent resource. The resource has no effect if XmNspatialStyle is not
XmOUTLINE. Possible values:

XmOUTLINE_BUTTON_ABSENT /* display fold/unfold buttons */
XmOUTLINE_BUTTON_PRESENT /* no PushButtonGadget buttons */

XmNoutlineColumnWidth
Specifies the width of the first column within an XmDETAIL layout, and the pre-
ferred width of the Container within an XmOUTLINE layout. If zero, the Con-
tainer will deduce a default value based upon the width of the widest item pixmap
and the XmNoutlineIndentation resource.

XmContainer Motif and Xt Widget Classes

654 Motif Reference Manual

XmNoutlineIndentation
Specifies an indentation for container items. The resource has no effect when

XmNlayoutType1 is XmSPATIAL.

XmNoutlineLineStyle
Specifies whether to draw connecting lines between container items in an
XmOUTLINE or XmDETAIL layout. Possible values:

XmNO_LINE /* no line is drawn between items */
XmSINGLE /* a line one pixel wide connects items
*/

XmNprimaryOwnership
Specifies whether the Container takes possession of the primary selection when
the user makes a selection from the items within the widget. Possible values:

XmOWN_NEVER /* never own the primary selection
*/
XmOWN_ALWAYS /* always own the primary selection
*/
XmOWN_MULTIPLE /* own if more than one item is selected
*/
XmOWN_POSSIBLE_MULTIPLE /* own if multiple selection possible
*/

XmNrenderTable
Specifies the render table that is used for all children of the Container. If NULL,
the nearest ancestor holding the XmQTspecifyRenderTable trait is searched,
using the XmLABEL_FONTLIST value.

XmNselectColor
Specifies a color which container item children can use to indicate selected state.
In addition to allocated Pixel values, the constant
XmDEFAULT_SELECT_COLOR specifies a color between the XmNback-
ground and XmNbottomShadowColor, XmHIGHLIGHT_COLOR makes the
select color the same as the XmNhighlightColor value, and
XmREVERSED_GROUND_COLORS makes the XmNselectColor the same as
the XmNforeground, using the XmNbackground color to render any text.

XmNselectedObjectCount
Specifies the number of widgets in the array of selected container items, repre-
sented by the XmNselectedObjects resource.

1.Erroneously listed as XmNlayoutStyle in 2nd Edition.

Motif and Xt Widget Classes XmContainer

Motif Reference Manual 655

XmNselectedObjects
Specifies an array of widgets representing the set of container items currently
selected.

XmNselectionPolicy
Specifies the way in which container items can be selected. Possible values:

XmSINGLE_SELECT /* only one selected item permitted
*/
XmBROWSE_SELECT /* as above, except items are selected by
dragging */
XmMULTIPLE_SELECT /* items in contiguous range are selecta-
ble */
XmEXTENDED_SELECT /* items in discontinuous range are selecta-
ble */

XmNselectionTechnique
Specifies the way in which items are selected. Possible values:

XmMARQUEE /* items must be wholly enclosed
within Marquee */ XmMARQUEE_EXTEND_START/* includes item
containing Marquee start coordinate */ XmMARQUEE_EXTEND_BOTH/*
includes items containing Marquee start/end coordinates */ XmTOUCH_ONLY/*
select items between start and end location */
XmTOUCH_OVER /* select only items the mouse passes
through */

XmNsmallCellHeight
Specifies the height of a cell when the Container spatial style is XmGRID, and
the XmNentryViewType resource is XmSMALL_ICON.

XmNsmallCellWidth
Specifies the width of a cell when the Container spatial style is XmGRID, and the
XmNentryViewType resource is XmSMALL_ICON.

XmNspatialIncludeModel
Specifies the layout of an item within a grid XmSPATIAL layout type, when the
item is managed. Possible values:

XmAPPEND /* place after the last occupied cell */
/* according to XmNlayoutDirection */

XmCLOSEST /* place in the free cell */
/* nearest the x, y coordinates of the item */

XmFIRST_FIT /* place the item in the first free cell */
/* according to XmNlayoutDirection */

XmContainer Motif and Xt Widget Classes

656 Motif Reference Manual

XmNspatialResizeModel
Specifies how the Container will attempt to resize itself when there is insufficient
space to contain a new item. The resource only has effect within a grid XmSPA-
TIAL layout type. The definition of XmGROW_MAJOR and
XmGROW_MINOR depend upon the value of the XmNlayoutDirection
resource. The major dimension is width when the XmNlayoutDirection is hori-
zontally oriented, and height when the direction is vertically oriented. Similarly,
the minor dimension is height when the XmNlayoutDirection is horizontally ori-
ented, and width when the direction is vertically oriented. Possible values:

XmGROW_BALANCED /* request both width and height from parent */
XmGROW_MAJOR /* request growth in the major dimension */
XmGROW_MINOR /* request growth in the minor dimension */

XmNspatialSnapModel
Specifies how the Container will position an item within a cell, when the XmN-
layoutType is XmSPATIAL. A value of XmSNAP_TO_GRID positions the item
at the upper left or upper right of the cell, depending upon the value of XmNlay-
outDirection. A value of XmNONE positions the item depending upon the value
of XmNx, XmNy: if these fall outside the cell, then layout is performed accord-
ing to the XmSNAP_TO_GRID method. A value of XmCENTER centers the
item.

XmNspatialStyle
Specifies the layout of container items, when the XmNlayoutType is XmSPA-
TIAL. Possible values:

XmCELLS /* grid layout of same-sized cells. an item can occupy many cells
*/
XmGRID /* grid layout of same-sized cells. an item can occupy one cell
*/
XmNONE /* lay out according to XmNx, XmNy resources */

New Constraint Resources
Container defines the following constraint resources for its children:

Name Class Type Default Access

XmNentryParent XmCEntryParent Widget NULL CSG

XmNoutlineState XmCOutlineState unsigned char XmCOLLAPSED CSG

XmNpositionIndex XmCPositionIndex int XmLAST_POSITION CSG

Motif and Xt Widget Classes XmContainer

Motif Reference Manual 657

XmNentryParent
Specifies a logical parent for the item. The root of a hierarchy has the value
NULL. Used when the XmNlayoutType is XmOUTLINE or XmDETAIL.

XmNoutlineState
Specifies whether to display logical child items when the XmNlayoutType is
XmOUTLINE or XmDETAIL. Possible values:

XmCOLLAPSED /* does not display child items */
XmEXPANDED /* displays child items */

XmNpositionIndex
Specifies the order of the item within the Container, when XmNlayoutType is
XmOUTLINE or XmDETAIL. Items are firstly ordered by XmNentryParent, and
by XmNpositionIndex within those items sharing the same XmNentryParent. If
unspecified, the highest such index for all other items sharing the same logical
parent is calculated, and then incremented. If no other item shares the same logi-
cal parent, the default is zero.

Callback Resources
Container defines the following callback resources:

XmNconvertCallback
List of callbacks called when a request is made to convert a selection.

XmNdefaultActionCallback
List of callbacks called when an item is double-clicked, or KActivate is pressed.

XmNdestinationCallback
List of callbacks called when the Container is the destination of a transfer.

XmNoutlineChangedCallback
List of callbacks called when a change is made to the XmNoutlineState value of
an item.

XmNselectionCallback
List of callbacks called when an item is selected.

Callback Reason Constant

XmNconvertCallback XmCR_OK

XmNdefaultActionCallback XmCR_DEFAULT_ACTION

XmNdestinationCallback XmCR_OK

XmNoutlineChangedCallback XmCR_COLLAPSED
XmCR_EXPANDED

XmNselectionCallback XmCR_SINGLE_SELECT
XmCR_BROWSE_SELECT
XmCR_MULTIPLE_SELECT
XmCR_EXTENDED_SELECT

XmContainer Motif and Xt Widget Classes

658 Motif Reference Manual

Callback Structure
Each callback on the XmNoutlineChangedCallback list is passed the following
structure:

typedef struct
int reason; /* the reason that the callback was called */
XEvent *event; /* points to event that triggered callback */
Widget item; /* container item associated with event */
unsigned char new_outline_state; /* the requested state */

} XmContainerOutlineCallbackStruct;

new_outline_state specifies an XmNoutlineState for item. The value may be
changed within the callback to force a particular state.

Each callback on the XmNselectionCallback and XmNdefaultActionCallback list
is passed the following structure:

typedef struct {
int reason; /* the reason that the callback was called */
XEvent *event; /* points to event that triggered callback */
WidgetList selected_items; /* the list of selected items */
int selected_item_count; /* the number of selected items */
unsigned char auto_selection_type; /* type of selection event */

} XmContainerSelectCallbackStruct;

selected_items is the array of container items selected by the event. The number
of such items is specified by selected_item_count. auto_selection_type indicates
the type of automatic selection event. If XmNautomaticSelection is False,
auto_selection_type has the value XmAUTO_UNSET. Otherwise, the range of
possible values is given by:

XmAUTO_BEGIN /* event is the beginning of automatic selection */
XmAUTO_CANCEL /* current selection is cancelled */
XmAUTO_CHANGE /* current selection differs from initial selection */
XmAUTO_MOTION /* current selection is caused by button drag */
XmAUTO_NO_CHANGE /* current selection same as the initial selection */

Convert callbacks are fully described within the sections covering the Uniform
Transfer Model. See XmTransfer(1) for more details. For quick reference, a
pointer to the following structure is passed to callbacks on the XmNconvertCall-
back list:

typedef struct {
int reason; /* reason that the callback is invoked */
XEvent *event; /* points to event that triggered callback */
Atom selection; /* requested conversion selection */

Motif and Xt Widget Classes XmContainer

Motif Reference Manual 659

Atom target; /* the conversion target */
XtPointer source_data; /* selection source information */
XtPointer location_data; /* information on data to be transferred */
int flags; /* input status of the conversion */
XtPointer parm; /* parameter data for the target *
int parm_format; /* format of parameter data */
unsigned long parm_length; /* the number of elements */

/* in parameter data */
Atom parm_type; /* the type of the parameter data */
int status; /* output status of the conversion */
XtPointer value; /* returned conversion data */
Atom type; /* type of conversion data returned */
int format; /* format of the conversion data */
unsigned long length; /* number of elements in conversion data */

} XmConvertCallbackStruct;

Destination callbacks are fully described within the sections covering the Uni-
form Transfer Model. For quick reference, a pointer to the following structure is
passed to callbacks on the XmNdestinationCallback list:

typedef struct {
int reason; /* reason that the callback is invoked */
XEvent *event; /* points to event that triggered callback */
Atom selection; /* requested selection type, as an Atom */
XtEnum operation; /* the type of transfer requested */
int flags; /* whether destination and source are same */
XtPointer transfer_id; /* unique identifier for the request */
XtPointer destination_data; /* information about the destination */
XtPointer location_data; /* information about the data */
Time time; /* time when transfer operation started */

} XmDestinationCallbackStruct;

Inherited Resources
Container inherits the resources shown below. The resources are listed alphabeti-
cally, along with the superclass that defines them.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNinsertPosition Composite

XmNancestorSensitive Core XmNlayoutDirection XmManager

XmNbackground Core XmNmappedWhenManaged Core

XmNbackgroundPixmap Core XmNnavigationType XmManager

XmNborderColor Core XmNnumChildren Composite

XmContainer Motif and Xt Widget Classes

660 Motif Reference Manual

Widget Hierarchy
The PushButtonGadget children created by an outline style Container are all
named OutlineButton.

Translations
The translations for Container include those of XmManager.

XmNborderPixmap Core XmNpopupHandlerCallback XmManager

XmNborderWidth Core XmNscreen Core

XmNbottomShadowColor XmManager XmNsensitive Core

XmNbottomShadowPixmap XmManager XmNshadowThickness XmManager

XmNchildren Composite XmNstringDirection XmManager

XmNcolormap Core XmNtopShadowColor XmManager

XmNdepth Core XmNtopShadowPixmap XmManager

XmNdestroyCallback Core XmNtranslations Core

XmNforeground XmManager XmNtraversalOn XmManager

XmNheight Core XmNunitType XmManager

XmNhelpCallback XmManager XmNuserData XmManager

XmNhighlightColor XmManager XmNwidth Core

XmNhighlightPixmap XmManager XmNx Core

XmNinitialFocus XmManager XmNy Core

XmNinitialResourcesPersistent Core

Event Action

BSelect Press ContainerHandleBtn1Down(ContainerBeginSelect, Copy)

BToggle Press ContainerHandleBtn1Down(ContainerBeginToggle, Copy)

MLink BSelect Press ContainerHandleBtn1Down(ContainerNoop, Link)

BExtend Press ContainerHandleBtn1Down(ContainerBeginExtend Move)

BExtend Motion ContainerHandleBtn1Motion(ContainerButtonMotion)

BSelect Release ContainerHandleBtn1Up(ContainerEndSelect)

BToggle Release ContainerHandleBtn1Up(ContainerEndToggle)

BExtend Release ContainerHandleBtn1Up(ContainerEndExtend)

BTransfer Press ContainerHandleBtn2Down(ContainerStartTransfer, Copy)

MLink BTransfer Press ContainerHandleBtn2Down(ContainerStartTransfer, Link)

MMove BTransfer Press ContainerHandleBtn2Down(ContainerStartTransfer, Move)

BTransfer Motion ContainerHandleBtn2Motion(ContainerButtonMotion)

Resource Inherited From Resource Inherited From

Motif and Xt Widget Classes XmContainer

Motif Reference Manual 661

Action Routines
Container defines the following action routines:

ContainerActivate()
Calls the procedures associated with the XmNdefaultActionCall-
back resource.

BTransfer Release ContainerHandleBtn2Up(ContainerEndTransfer)

MShift KPrimaryCopy ContainerPrimaryLink()

KPrimaryCopy ContainerPrimaryCopy()

KPrimaryCut ContainerPrimaryMove()

KCancel ContainerCancel()

KExtend ContainerExtend()

KSelect ContainerSelect()

KSelectAll ContainerSelectAll

KDeselectAll ContainerDeselectAll()

KAddMode ContainerToggleMode()

KActivate ContainerActivate()

MShift KBeginData ContainerExtendCursor(First)

MShift KEndData ContainerExtendCursor(Last)

KBeginData ContainerMoveCursor(First)

KEndData ContainerMoveCursor(Last)

MCtrl KLeft ContainerExpandOrCollapse(Left)

MCtrl KRight ContainerExpandOrCollapse(Right)

MShift KUp ContainerExtendCursor(Up)

MShift KDown ContainerExtendCursor(Down)

MShift KLeft ContainerExtendCursor(Left)

MShift KRight ContainerExtendCursor(Right)

KUp ContainerMoveCursor(Up)

KDown ContainerMoveCursor(Down)

KLeft ContainerMoveCursor(Left)

KRight ContainerMoveCursor(Right)

Event Action

XmContainer Motif and Xt Widget Classes

662 Motif Reference Manual

ContainerBeginExtend()
The action has no effect if the XmNlayoutType is XmSPATIAL, or
if the XmNselectionPolicy is either XmSINGLE_SELECT or
XmBROWSE_SELECT.

Otherwise, the location cursor is set to the object under the pointer,
and if no object is there, or if there is no anchor, the action returns.
Any items between the anchor and the location cursor are selected.
Finally, if automatic selection is enabled, the list of callbacks speci-
fied by the XmNselectionCallback resource is invoked.

ContainerBeginSelect()
Single selection: if the object under the pointer is the anchor item,
the selected state of the object is reversed. Otherwise, all items are
deselected, the object at the pointer is made the anchor item, and
the location cursor is set to it.

Browse selection: if the object under the pointer is not the anchor
item, all items are deselected, the object is made the anchor item
and selected, and the location cursor is set to it. If automatic selec-
tion is enabled, the list of callbacks specified by the XmNselection-
Callback resource is invoked.

Multiple selection: sets the anchor item to the object under the
pointer, and sets the location cursor to it. The selected state of the
item is reversed. If the selection technique is XmTOUCH_OVER,
and the anchor item is NULL, the Marquee start point is initialized.
If automatic selection is enabled, the list of callbacks specified by
the XmNselectionCallback resource is invoked.

Extended selection: as for multiple selection, except initially all
items are deselected.

ContainerBeginToggle()
The action has no effect if the XmNlayoutType is XmSPATIAL, or
if the XmNselectionPolicy is either XmSINGLE_SELECT or
XmBROWSE_SELECT.

Multiple or Extended selection: the anchor item is set to the object
under the pointer, and the location cursor is set to it. The selected
state of the item is reversed. If automatic selection is enabled, the
list of callbacks specified by the XmNselectionCallback resource is
invoked. Lastly, if XmNselectionTechnique is
XmMARQUEE_EXTEND_START or
XmMARQUEE_EXTEND_BOTH, the Marquee rectangle is
drawn around the item.

Motif and Xt Widget Classes XmContainer

Motif Reference Manual 663

ContainerButtonMotion()
The action has no effect if XmNselectionPolicy is
XmSINGLE_SELECT.

Browse selection: if the action follows ContainerBeginExtend() or
ContainerBeginToggle() action, or if the pointer is over the current
anchor item, the routine simply returns. Otherwise, the selected
state of the anchor item is reversed, the selected state of any item
under the pointer is also reversed, and the anchor item is reset to
point to it.

Multiple and extended selection: if a previous action has initiated
the Marquee, the rectangle is redrawn around the start point and the
current pointer location. The selected state of all items within the
Marquee are set to that of the anchor item. For non-Marquee selec-
tion, in a spatial layout the selected state of the item under the
pointer is reversed, and the anchor item is reset to it. In a non-spa-
tial layout, the selected state of all items between the anchor item
and the item under the pointer are set to match the selected state of
the anchor item.

In all cases, if automatic selection is enabled, the list of callbacks
specified by the XmNselectionCallback resource is invoked.

ContainerCancel()
The selected state of all items reverts to the pre-selection state. If
automatic selection is enabled, the list of callbacks specified by the
XmNselectionCallback resource is invoked.

ContainerDeselectAll()
All items are deselected, and the callbacks on the XmNselection-
Callback list are invoked.

ContainerEndExtend()
The action has no effect if XmNlayoutType is XmSPATIAL.

Multiple or Extended selection: the callbacks specified by XmNse-
lectionCallback are invoked.

ContainerEndSelect()
Single selection: simply invokes the callbacks specified by the
XmNselectionCallback resource.

Browse selection: if the pointer is not over the current anchor item,
the selected state of the current anchor, and the selected state of any
item under the pointer are reversed. Callbacks specified by XmNse-
lectionCallback are invoked.

XmContainer Motif and Xt Widget Classes

664 Motif Reference Manual

Multiple and extended selection: similar to the ContainerButtonMo-
tion() action, except that the auto_selection_type element within
XmNselectionCallback procedures is XmAUTO_CHANGE or
XmAUTO_NO_CHANGE rather than XmAUTO_MOTION.

ContainerEndToggle()
The action has no effect if XmNselectionPolicy is
XmSINGLE_SELECT or XmBROWSE_SELECT.

Multiple or extended selection: the procedure directly invokes the
ContainerEndSelect() action.

ContainerEndTransfer()
If the current transfer operation is XmLINK, the ContainerPrima-
ryLink() action is called. If the transfer operation is XmMOVE, the
procedure invokes ContainerPrimaryMove(). If the operation is
XmCOPY, the ContainerPrimaryCopy() action is called.

ContainerExpandOrCollapse(type)
The action has no effect if layout type is XmSPATIAL().

Otherwise, the outline state of the container item which has the
focus is changed. Possible values for type:

Collapse/* outline state set to XmCOLLAPSED */
Expand/* outline state set to XmEXPANDED */
Left/* depends upon layout direction */
Right/* depends upon layout direction */

If XmNlayoutDirection is XmLEFT_TO_RIGHT, Left is inter-
preted as XmCOLLAPSED, and Right as XmEXPANDED. This is
reversed if the layout direction is XmRIGHT_TO_LEFT.

ContainerExtend()
The action has no effect if layout type is XmSPATIAL(), or if
XmNselectionPolicy is XmSINGLE_SELECT or
XmBROWSE_SELECT.

Multiple selection: the selected state of all items between the
anchor item and the location cursor is set to that of the anchor item.
The callbacks specified by XmNselectionCallback are invoked.

Extended selection: in Normal mode, all items are deselected, then
any items between the anchor item and the location cursor are
selected. In Add mode, the selected state of all items between the
anchor item and the location cursor is set to that of the anchor item.
The callbacks specified by XmNselectionCallback are invoked.

Motif and Xt Widget Classes XmContainer

Motif Reference Manual 665

ContainerExtendCursor(type)
The action has no effect if layout type is XmSPATIAL(), or if
XmNselectionPolicy is XmSINGLE_SELECT or
XmBROWSE_SELECT.

The location cursor is moved. If type is Left, Right, Up, Down,
First, or Last, the cursor is moved one item in the specified direc-
tion if possible (or to the first/last item).
Thereafter, the ContainerExtend() procedure is directly invoked.

ContainerHandleBtn1Down(string)
The XmDisplay resource XmNenableBtn1Transfer configures the
integration of selection and transfer operations on Button 1.

If XmNenableBtn1Transfer is not XmOFF, and the pointer is over
an unselected item, the actions ContainerBeginSelect() and Contai-
nerEndSelect() are invoked in order to select the item. If thereafter
there is no selected item, the Marquee start point is initialized, oth-
erwise the action becomes a data transfer operation, and the Con-
tainerStartTransfer() action is invoked.

If XmNenableBtn1Transfer is XmOFF, and if no data transfer has
been initialized, the action specified by string is invoked to initiate
selection. Possible values for string:

ContainerBeginSelect,Copy
ContainerBeginToggle,Copy
ContainerNoop,Link
ContainerBeginExtend,Move

ContainerHandleBtn1Motion(string)
If the XmDisplay XmNenableBtn1Transfer resource is not
XmOFF, and a selection is in progress, a drag action is initiated.
Otherwise, the action as specified by string is invoked, typically
ContainerButtonMotion.

ContainerHandleBtn1Up(string)
If a Button1 transfer is in progress, the transfer is cancelled. Other-
wise, the action as specified by string is invoked. Possible values for
string:

ContainerEndSelect
ContainerEndToggle
ContainerEndExtend

XmContainer Motif and Xt Widget Classes

666 Motif Reference Manual

ContainerHandleBtn2Down(string)
If the XmDisplay XmNenableBtn1Transfer resource is
XmBUTTON2_ADJUST, the action ContainerBeginExtend is
directly invoked. Otherwise, the action as specified by string is
invoked. Possible values for string:

ContainerStartTransfer, Copy
ContainerStartTransfer, Link
ContainerStartTransfer, Move

ContainerHandleBtn2Motion(string)
If the XmDisplay XmNenableBtn1Transfer resource is not
XmBUTTON2_ADJUST, and a selection is in progress, a drag
action is initiated. Otherwise, the action as specified by string is
invoked, typically ContainerButtonMotion.

ContainerHandleBtn2Up(string)
If the XmDisplay XmNenableBtn1Transfer resource is
XmBUTTON2_ADJUST, the action directly invokes the Contain-
erEndExtend() action. Otherwise, the action as specified by string is
invoked, typically ContainerEndTransfer.

ContainerMoveCursor(string)
Moves the location cursor to the container item in a given direction,
if possible. Valid values of type: Up, Down, Left, Right, First, Last.

If the number of selected items is greater than 1, all items are dese-
lected. The item at the location cursor is selected, and callbacks
associated with the XmNselectionCallback resource are invoked.

ContainerPrimaryCopy()
Requests a primary selection copy to the Container. Any XmNdes-
tinationCallback procedures are invoked. By default, the Container
performs no data transfer: the programmer must provide a callback
for the task.

ContainerPrimaryLink()
Requests a primary selection link to the Container. Any XmNdesti-
nationCallback procedures are invoked. By default, the Container
performs no data transfer: the programmer must provide a callback
for the task.

ContainerPrimaryMove()
Requests a primary selection copy to the Container. Any XmNdes-
tinationCallback procedures are invoked. By default, the Container
performs no data transfer: the programmer must provide a callback

Motif and Xt Widget Classes XmContainer

Motif Reference Manual 667

for the task. Subsequently, the selection owner’s XmNconvertCall-
back procedures are notified for the primary selection, with the tar-
get DELETE.

ContainerSelect()
Single or browse selection: deselects any selected item, and selects
the item at the location cursor.

Multiple selection: reverses the selected state of the item at the loca-
tion cursor, and makes this the anchor for any further operations.

Extended selection: in Normal mode, deselects all items, and
selects the item at the location cursor. In Add mode, reverses the
selected state of the item, which becomes the anchor for further
operations.

In each case, callbacks associated with the XmNselectionCallback
resource are invoked.

ContainerSelectAll()
Single or browse selection: deselects any selected item, and selects
the item at the location cursor.

Multiple or extended selection: selects all container items.

In all cases, callbacks associated with the XmNselectionCallback
resource are invoked.

ContainerStartTransfer(type)
The action saves the value of the parameter type for reference by
later transfer operations. In XmSPATIAL layout, a DragContext is
created, and a transfer operation is initiated. By default, unless
overridden by a customized XmNconvertCallback procedure, if the
drop occurs within the Container, then any dragged unselected item
is moved to the pointer location, or if the item is selected, then all
selected items are relocated to the pointer. Possible values for type
are: Copy, Link, Move.

ContainerToggleMode()
Extended selection: toggles between Normal and Add mode.

Additional Behavior
Container has the following additional behavior:

<Double Click>
Calls the XmNdefaultActionCallback callbacks.

XmContainer Motif and Xt Widget Classes

668 Motif Reference Manual

<FocusIn>
If the keyboard focus policy is explicit, sets the focus and draws the
location cursor.

<FocusOut>
If the keyboard focus policy is explicit, removes the focus and
erases the location cursor.

See Also
XmContainerCopy (1), XmContainerCopyLink (1),
XmContainerCut (1), XmContainerGetItemChildren (1),
XmContainerPaste (1), XmContainerPasteLink (1),
XmContainerRelayout (1), XmContainerReorder (1),
XmCreateObject (1), XmTransfer (1), Composite (2), Constraint (2),
Core (2), XmIconGadget (2), XmManager(2).

Motif and Xt Widget Classes XmDialogShell

Motif Reference Manual 669

Name
XmDialogShell widget class – the Shell parent for dialog boxes.

Synopsis

Public Header:
<Xm/DialogS.h>

Class Name:
XmDialogShell

Class Hierarchy:
Core → Composite → Shell → WMShell → VendorShell → TransientShell →
XmDialogShell

Class Pointer:
xmDialogShellWidgetClass

Instantiation:
widget = XmCreateDialogShell (parent, name,...)
or
widget = XtCreateWidget (name, xmDialogShellWidgetClass,...)

Functions/Macros:
XmCreateDialogShell (), XmIsDialogShell ()

Description
DialogShell is the parent for dialog boxes. A DialogShell cannot be iconified sep-
arately, but only when the main application shell is iconified. The child of a Dia-
logShell is typically a subclass of BulletinBoard and much of the functionality of
DialogShell is based on this assumption.

Traits
DialogShell uses the XmQTdialogShellSavvy trait.

New Resources
DialogShell does not define any new resources.

Inherited Resources
DialogShell inherits the following resources. The resources are listed alphabeti-
cally, along with the superclass that defines them. DialogShell sets the default
values of XmNdeleteResponse to XmUNMAP and XmNinput and XmNtransient
to True. The default value of XmNborderWidth is reset to 0 by VendorShell.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNmaxAspectX WMShell

XmNallowShellResize Shell XmNmaxAspectY WMShell

XmDialogShell Motif and Xt Widget Classes

670 Motif Reference Manual

XmNancestorSensitive Core XmNmaxHeight WMShell

XmNaudibleWarning VendorShell XmNmaxWIdth WMShell

XmNbackground Core XmNminAspectX WMShell

XmNbackgroundPixmap Core XmNminAspectY WMShell

XmNbaseHeight WMShell XmNminHeight WMShell

XmNbaseWidth WMShell XmNminWidth WMShell

XmNborderColor Core XmNmwmDecorations VendorShell

XmNborderPixmap Core XmNmwmFunctions VendorShell

XmNborderWidth Core XmNmwmInputMode VendorShell

XmNbuttonFontList VendorShell XmNmwmMenu VendorShell

XmNbuttonRenderTable VendorShell XmNnumChildren Composite

XmNchildren Composite XmNoverrideRedirect Shell

XmNcolormap Core XmNpopdownCalback Shell

XmNcreatePopupChildProc Shell XmNpopupCallback Shell

XmNdefaultFontList VendorShell XmNpreeditType VendorShell

XmNdeleteResponse VendorShell XmNsaveUnder Shell

XmNdepth Core XmNscreen Core

XmNdestroyCallback Core XmNsensitive Core

XmNgeometry Shell XmNshellUnitType VendorShell

XmNheight Core XmNtextFontList VendorShell

XmNheightInc WMShell XmNtextRenderTable VendorShell

XmNiconMask WMShell XmNtitle WMShell

XmNiconPixmap WMShell XmNtitleEncoding WMShell

XmNiconWindow WMShell XmNtransient WMShell

XmNinitialResourcesPersistent Core XmNtransientFor TransientShell

XmNinitialState WMShell XmNtranslations Core

XmNinput WMShell XmNvisual Shell

XmNinputMethod VendorShell XmNwaitForWm WMShell

XmNinputPolicy VendorShell XmNwidth Core

XmNinsertPosition Composite XmNwidthInc WMShell

XmNkeyboardFocusPolicy VendorShell XmNwindowGroup WMShell

XmNlabelFontList VendorShell XmNwinGravity WMShell

XmNlabelRenderTable VendorShell XmNwmTimeout WMShell

XmNlayoutDirection VendorShell XmNx Core

XmNmappedWhenManaged Core XmNy Core

Resource Inherited From Resource Inherited From

Motif and Xt Widget Classes XmDialogShell

Motif Reference Manual 671

See Also
XmCreateObject (1), Composite (2), Core (2), Shell (2),
TransientShell (2), VendorShell (2), WMShell (2),
XmBulletinBoardDialog (2), XmErrorDialog (2),
XmFileSelectionDialog (2), XmFormDialog (2),
XmInformationDialog (2), XmMessageDialog (2),
XmPromptDialog (2), XmQuestionDialog (2),
XmSelectionDialog (2), XmTemplateDialog (2),
XmWarningDialog (2), XmWorkingDialog (2).

XmDisplay Motif and Xt Widget Classes

672 Motif Reference Manual

Name
XmDisplay widget class – an object to store display-specific information.

Synopsis

Public Header:
<Xm/Display.h>

Class Name:
XmDisplay

Class Hierarchy:
Core → Composite → Shell → WMShell → VendorShell → TopLevelShell →
ApplicationShell → XmDisplay

Class Pointer:
xmDisplayClass

Instantiation:
widget = XtAppInitialize (...)

Functions/Macros:
XmGetXmDisplay (), XmIsDisplay ()

Availability
Motif 1.2 and later.

Description
The Display object stores display-specific information for use by the toolkit. An
application has a Display object for each display it accesses. When an application
creates its first shell on a display, typically by calling XtAppInitialize () or
XtAppCreateShell (), a Display object is created automatically. There is no
way to create a Display independently. The function XmGetXmDisplay () can
be used to get the widget ID of the Display object.

The XmNdragInitiatorProtocolStyle and XmNdragReceiverProtocolStyle
resources specify the drag protocol for an application that performs drag and
drop operations. The two protocol styles are Dynamic and Preregister. Under the
dynamic protocol, the initiator and receiver pass messages back and forth to han-
dle drag and drop visuals. Under the Preregister protocol, the initiator handles
drag and drop visuals by reading information that is preregistered and stored in
properties. The actual protocol that is used by a specific initiator and receiver is
based on the requested protocol styles of the receiver and initiator:

Motif and Xt Widget Classes XmDisplay

Motif Reference Manual 673

New Resources
Display defines the following resources:

XmNdefaultButtonEmphasis
In Motif 2.0 and later, specifies the manner in which button widgets and gadgets
which have the XmNshowAsDefault resource set are displayed. A button which
is the default has a double border. If XmNdefaultButtonEmphasis is
XmINTERNAL_HIGHLIGHT, the location cursor is drawn between the double
border. Otherwise, with a value of XmEXTERNAL_HIGHLIGHT, the location

Drag Initiator Drag Receiver Protocol Style

Protocol Style Preregister Prefer Preregister Prefer Dynamic Dynamic

Preregister PREREGISTER PREREGISTER PREREGISTER DROP_ONLY

Prefer Preregister PREREGISTER PREREGISTER PREREGISTER DYNAMIC

Prefer Receiver PREREGISTER PREREGISTER DYNAMIC DYNAMIC

Prefer Dynamic PREREGISTER DYNAMIC DYNAMIC DYNAMIC

Dynamic DROP_ONLY DYNAMIC DYNAMIC DYNAMIC

Name Class Type Default Access

XmNdefaultButtonEmphasis XmCDefaultButtonEmphasis XtEnum XmEXTERNAL_HIGHLIGHT SG

XmNdefaultVirtualBindings XmCDefaultVirtualBindings String dynamic SG

XmNdragInitiatorProtocolStyle XmCDragInitiatorProtocolStyle unsigned char XmDRAG_PREFER_RECEIVER SG

XmNdragReceiverProtocolStyle XmCDragReceiverProtocolStyle unsigned char XmDRAG_PREFER_PREREGISTER SG

XmNenableBtn1Transfer XmCEnableBtn1Transfer XtEnum XmOFF CG

XmNenableButtonTab XmCEnableButtonTab Boolean False CG

XmNenableDragIcon XmCEnableDragIcon Boolean False CG

XmNenableEtchedInMenu XmCEnableEtchedinMenu Boolean False CG

XmNenableMultiKeyBindings XmCEnableMultiKeyBindings Boolean False CG

XmNenableThinThickness XmCEnableThinThickness Boolean False CG

XmNenableToggleColor XmCEnableToggleColor Boolean False CG

XmNenableToggleVisual XmCEnableToggleVisual Boolean False CG

XmNenableUnselectableDrag XmCEnableUnselectableDrag Boolean True CG

XmNenableWarp XmCEnableWarp XtEnum True CG

XmNmotifVersion XmCMotifVersion int XmVersion CSG

XmNuserData XmCUserData XtPointer NULL CSG

XmDisplay Motif and Xt Widget Classes

674 Motif Reference Manual

cursor is drawn outside of the double border. An internal indication uses less
space for the button.

XmNdefaultVirtualBindings
In Motif 2.0 and later, specifies the default virtual bindings for the display.

XmNdragInitiatorProtocolStyle
The client’s drag and drop protocol requirements or preference when it is the ini-
tiator of a drag and drop operation. Possible values:

XmDRAG_PREREGISTER /* can only use the preregister protocol*/
XmDRAG_DYNAMIC /* can only use the dynamic protocol */
XmDRAG_NONE /* drag and drop is disabled */
XmDRAG_DROP_ONLY /* only supports dragging */
XmDRAG_PREFER_DYNAMIC /* supports both but prefers dynamic */
XmDRAG_PREFER_PREREGISTER

/* supports both but prefers preregister */
XmDRAG_PREFER_RECEIVER /* supports both; prefers receiver’s */

/* protocol */

XmNdragReceiverProtocolStyle
The client’s drag and drop protocol requirements or preference when it is the
receiver. Possible values:

XmDRAG_PREREGISTER /* can only use the preregister protocol */
XmDRAG_DYNAMIC /* can only use the dynamic protocol */
XmDRAG_NONE /* drag and drop is disabled */
XmDRAG_DROP_ONLY /* only supports dropping */
XmDRAG_PREFER_DYNAMIC /* supports both but prefers dynamic */
XmDRAG_PREFER_PREREGISTER

 /* supports both but prefers preregister*/

XmNenableBtn1Transfer
In Motif 2.0 and later, configures selection and transfer actions for Button1. The
Container, Text, TextField, and List actions are affected by this resource. Possible
values:

XmOFF /* selection and transfer disabled for button 1 */
XmBUTTON2_TRANSFER /* selection on button 1, transfer on button 2 */
XmBUTTON2_ADJUST /* selection on button 1, adjust on button 2 */

XmNenableButtonTab
In Motif 2.0 and later, configures the action of the Tab key with respect to key-
board navigation. If True, KNextField and KPrevField will behave like an Arrow
key, moving the focus between widgets within a Tab Group, until the boundary of
a Tab group is reached, at which point a subsequent navigation will move the
focus into the next or previous Tab group. If False, KNextField and KPrevField
move the focus to the next or previous tab group respectively.

Motif and Xt Widget Classes XmDisplay

Motif Reference Manual 675

XmNenableDragIcon
In Motif 2.0 and later, a set of alternative icons representing the drag and drop
default cursors is available. A value of True specifies that the newer icons are the
default.

XmNenableEtchedInMenu
In Motif 2.0 and later, specifies the way in which buttons within menus are shad-
owed when the widget is activated. The value False results in an etched out
appearance, True gives an etched in shadowing, which is consistent with the
appearance of activated buttons outside of a menu system. The resource affects
PushButton, ToggleButton, CascadeButton widgets and gadget counterparts.

XmNenableMultiKeyBindings
In Motif 2.1, merges an additional set of translations into the resource database
which are compatible with CDE cancel translations.

XmNenableThinThickness
Introduced in Motif 1.2.5 to provide CDE style shadowing and highlighting, used
originally only by the ScrollBar. In Motif 2.1, the number of widgets sensitive to
the resource is considerably expanded. If True, the default shadow thickness is 1,
otherwise the default is 2.

XmNenableToggleColor
In Motif 2.0 and later, specifies how the default value of a toggle’s XmNselect-
Color is determined. True means that the default is taken from the XmNhigh-
lightColor value, False uses the XmNbackground. XmNenableToggleColor is
ignored if an explicit XmNselectColor is supplied to the toggle widget or gadget.
The resource only takes effect if the indicator type of the toggle is
XmONE_OF_MANY or XmONE_OF_MANY_ROUND.

XmNenableToggleVisual
In Motif 2.0 and later, controls the default appearance of toggles. If False, a tog-
gle with the indicator type of XmONE_OF_MANY is drawn as a diamond, and a
toggle with indicator type XmN_OF_MANY is drawn square. If True, a toggle
within a radio box has the default indicator type XmONE_OF_MANY_ROUND,
which is rendered as a circle. A toggle outside of a radio box has the default indi-
cator type XmN_OF_MANY, which is rendered square, and a check mark is dis-
played when XmNindicatorOn is True.

XmNenableUnselectableDrag
In Motif 2.0 and later, specifies whether it is possible to initiate a drag operation
from Label, LabelGadget, or Scale widgets. The value True enables drag opera-
tions from the widgets.

XmDisplay Motif and Xt Widget Classes

676 Motif Reference Manual

XmNenableWarp
In Motif 2.0 and later, specifies if the application is permitted to warp the pointer
away from the user. The value True enables warping.

XmNmotifVersion
In Motif 2.0 and later, specifies the current version of Motif.

XmNuserData
In Motif 2.0 and later, specifies a pointer to data that the application can attach to
the XmDisplay object. The resource is unused internally.

Callback Resources
In Motif 2.0 and later, Display defines the following callback resources:

XmNdragStartCallback
List of callbacks that are called when the procedure XmDragStart () is
invoked.

XmNnoFontCallback
List of callbacks that are called when an XmRendition object fails in an attempt
to load a font. This may happen if the object is created with an XmNloadModel
of XmLOAD_IMMEDIATE, and the font cannot be loaded there and then, or if
the XmNloadModel is XmLOAD_DEFERRED and a later attempt is made to
render a compound string using an unloadable font. A callback can be supplied to
rectify the situation: it can find or specify an alternative font, and invoke the func-
tion XmRenditionUpdate () upon the rendition object.

XmNnoRenditionCallback
List of callbacks that are called when an attempt is made to render using a rendi-
tion tag which does not match any entry within a given render table. A callback
can be supplied to rectify the problem: it can create a new rendition with the
problematic tag, and augment the render table.

Callback Structure
Each XmNnoFontCallback or XmNnoRenditionCallback procedure is passed the
following structure:

typedef struct {
int reason; /* the reason that the callback was called */
XEvent *event; /* points to event that triggered callback */
XmRendition rendition; /* the rendition with a missing font */

Callback Reason Constant

XmNdragStartCallback XmCR_DRAG_START

XmNnoFontCallback XmCR_NO_FONT

XmNnoRenditionCallback XmCR_NO_RENDITION

Motif and Xt Widget Classes XmDisplay

Motif Reference Manual 677

char *font_name; /* the font which is not loadable */
XmRenderTable render_table; /* the render table with a missing rendition */
XmString tag; /* the tag of the missing rendition */

} XmDisplayCallbackStruct;

The render_table and tag elements are only applicable to callbacks on the XmN-
noRenditionCallback list. rendition and font_name are valid only for XmNno-
FontCallback callbacks.

In addition, an XmNdragStartCallback procedure is passed the following struc-
ture:

typedef struct {
int reason; /* the reason that the callback was called */
XEvent *event; /* points to event structure that triggered callback */
Widget widget; /* the ID of the widget where the drag initiated */
Boolean doit; /* do the action (True) or undo it (False) */

} XmDragStartCallbackStruct;

Inherited Resources
None of the resources inherited by Display can be set by the programmer or user.

See Also
XmGetXmDisplay (1), ApplicationShell (2), Composite (2), Core (2),
Shell (2), TopLevelShell (2), VendorShell (2), WMShell (2),
XmScreen (2).

XmDragContext Motif and Xt Widget Classes

678 Motif Reference Manual

Name
XmDragContext widget class – an object used to store information about a drag
transaction.

Synopsis

Public Header:
<Xm/DragDrop.h>

Class Name:
XmDragContext

Class Pointer:
xmDragContextClass

Class Hierarchy:
Core → DragContext

Instantiation:
widget = XmDragStart (...)

Functions/Macros:
XmDragCancel (), XmDragStart ()

Availability
Motif 1.2 and later.

Description
The DragContext object stores information that the toolkit needs to process a
drag transaction. An application does not explicitly create a DragContext widget,
but instead initiates a drag and drop operation by calling XmDragStart (),
which initializes and returns a DragContext widget. The DragContext stores
information about the types of data and operations of the drag source, the drag
icons that are used during the drag, and the callbacks that are called during differ-
ent parts of the drag. These characteristics can be specified as resources when the
DragContext is created using XmDragStart ().

Each drag operation has a unique DragContext that is freed by the toolkit when
the operation is complete. The initiating and receiving clients in a drag and drop
operation both use the DragContext to keep track of the state of the operation.
The drag-over visual effects that are used during a drag operation depend on the
drag protocol that is being used. Under the preregister protocol, either a cursor or
a pixmap can be used, since the server is grabbed. Under the dynamic protocol,
the X cursor is used.

Motif and Xt Widget Classes XmDragContext

Motif Reference Manual 679

New Resources
DragContext defines the following resources:

XmNblendModel
The combination of DragIcons that are blended to produce a drag-over visual.
Possible values:

XmBLEND_ALL /* source, state, and operation */
XmBLEND_STATE_SOURCE /* source and state */
XmBLEND_JUST_SOURCE /* source only */
XmBLEND_NONE /* no drag-over visual */

XmNclientData
The client data that is passed to the XmNconvertProc.

XmNconvertProc
A procedure of type XtConvertSelectionIncrProc that converts the data to the for-
mat(s) specified by the receiving client. The widget argument passed to this pro-
cedure is the DragContext widget and the selection atom is _MOTIF_DROP. If
XmNincremental is False, the conversion procedure should process the conver-
sion atomically and ignore the max_length, client_data, and request_-id argu-

Name Class Type Default Access

XmNblendModel XmCBlendModel unsigned char XmBLEND_ALL CG

XmNclientData XmCClientData XtPointer NULL CSG

XmNconvertProc XmCConvertProc XtConvertSelectionIncrProc NULL CSG

XmNcursorBackground XmCCursorBackground Pixel dynamic CSG

XmNcursorForeground XmCCursorForeground Pixel dynamic CSG

XmNdragOperations XmCDragOperations unsigned char XmDROP_COPY |
 XmDROP_MOVE

C

XmNexportTargets XmCExportTargets Atom * NULL CSG

XmNincremental XmCIncremental Boolean False CSG

XmNinvalidCursorForeground XmCCursorForeground Pixel dynamic CSG

XmNnoneCursorForeground XmCCursorForeground Pixel dynamic CSG

XmNnumExportTargets XmCNumExportTargets Cardinal 0 CSG

XmNoperationCursorIcon XmCOperationCursorIcon Widget dynamic CSG

XmNsourceCursorIcon XmCSourceCursorIcon Widget dynamic CSG

XmNsourcePixmapIcon XmCSourcePixmapIcon Widget dynamic CSG

XmNstateCursorIcon XmCStateCursorIcon Pixel dynamic CSG

XmNvalidCursorForeground XmCCursorForeground Pixel dynamic CSG

XmDragContext Motif and Xt Widget Classes

680 Motif Reference Manual

ments. Allocate any data returned by XmNconvertProc using XtMalloc () and it
will be freed automatically by the toolkit after the transfer.

XmNcursorBackground
The background color of the cursor.

XmNcursorForeground
The foreground color of the cursor when the state icon is not blended. The default
value is the foreground color of the widget passed to XmDragStart().

XmNdragOperations
The valid operations for the drag. The value is a bit mask that is formed by com-
bining one or more of these possible values:

XmDROP_COPY /* copy operations are valid */
XmDROP_LINK /* link operations are valid */
XmDROP_MOVE /* move operations are valid */
XmDROP_NOOP /* no operations are valid */

For Text and TextField widgets, the default value is XmDROP_COPY |
XmDROP_MOVE. For List widgets and Label and subclasses, the default is
XmDROP_COPY.

XmNexportTargets
The list of target atoms that the source data can be converted to.

XmNincremental
If True, the initiator uses the Xt incremental selection transfer mechanism. If
False (default), the initiator uses atomic transfer.

XmNinvalidCursorForeground
The foreground color of the cursor when the state is invalid. The default value is
the value of the XmNcursorForeground resource.

XmNnoneCursorForeground
The foreground color of the cursor when the state is none. The default value is
the value of the XmNcursorForeground resource.

XmNnumExportTargets
The number of atoms in the XmNexportTargets list.

XmNoperationCursorIcon
The drag icon used to show the type of drag operation being performed. If the
value is NULL, the default Screen icons are used.

XmNsourceCursorIcon
The drag icon used to represent the source data under the dynamic protocol. If the
value is NULL, the default Screen icon is used.

Motif and Xt Widget Classes XmDragContext

Motif Reference Manual 681

XmNsourcePixmapIcon
The drag icon used to represent the source data under the preregister protocol. If
the value is NULL, XmNsourceCursorIcon is used.

XmNstateCursorIcon
The drag icon used to show the state of a drop site. If the value is NULL, the
default Screen icons are used.

XmNvalidCursorForeground
The foreground color of the cursor when the state is valid. The default value is
the value of the XmNcursorForeground resource.

Callback Resources
DragContext defines the following callback resources:

XmNdragDropFinishCallback
List of callbacks that are called when the entire transaction is finished.

XmNdragMotionCallback
List of callbacks that are called when the pointer moves during a drag.

XmNdropFinishCallback
List of callbacks that are called when the drop is finished.

XmNdropSiteEnterCallback
List of callbacks that are called when the pointer enters a drop site.

XmNdropSiteLeaveCallback
List of callbacks that are called when the pointer leaves a drop site.

XmNdropStartCallback
List of callbacks that are called when a drop is started.

XmNoperationChangedCallback
List of callbacks that are called when the user changes the operation during a
drag.

Callback Reason Constant

XmNdragDropFinishCallback XmCR_DRAG_DROP_FINISH

XmNdragMotionCallback XmCR_DRAG_MOTION

XmNdropFinishCallback XmCR_DROP_FINISH

XmNdropSiteEnterCallback XmCR_DROP_SITE_ENTER

XmNdropSiteLeaveCallback XmCR_DROP_SITE_LEAVE

XmNdropStartCallback XmCR_DROP_START

XmNoperationChangedCallback XmCR_OPERATION_CHANGED

XmNtopLevelEnterCallback XmCR_TOP_LEVEL_ENTER

XmNtopLevelLeaveCallback XmCR_TOP_LEVEL_LEAVE

XmDragContext Motif and Xt Widget Classes

682 Motif Reference Manual

XmNtopLevelEnterCallback
List of callbacks that are called when the pointer enters a top-level window or
root window.

XmNtopLevelLeaveCallback
List of callbacks that are called when the pointer leaves a top-level window or the
root window.

Callback Structure
The XmNdragDropFinishCallback is passed the following structure:

typedef struct {
int reason; /* the reason the callback was called */
XEvent *event; /* event structure that triggered callback */
Time timeStamp; /* time at which operation completed */

} XmDragDropFinishCallbackStruct, *XmDragDropFinishCallback;

The XmNdragMotionCallback is passed the following structure:

typedef struct {
int reason; /* reason the callback was called */
XEvent *event; /* event that triggered callback */
Time timeStamp; /* timestamp of logical event */
unsigned char operation; /* current operation */
unsigned char operations; /* supported operations */
unsigned char dropSiteStatus; /* valid, invalid, or none */
Position x; /* x-coordinate of pointer */
Position y; /* y-coordinate of pointer */

} XmDragMotionCallbackStruct, *XmDragMotionCallback;

The XmNdropFinishCallback is passed the following structure:

typedef struct {
int reason; /* reason the callback was called */
XEvent *event; /* event that triggered callback */
Time timeStamp; /* time at which drop completed */
unsigned char operation; /* current operation */
unsigned char operations; /* supported operations */
unsigned char dropSiteStatus; /* valid, invalid, or none */
unsigned char dropAction; /* drop, cancel, help, or interrupt */
unsigned char completionStatus; /* success or failure */

} XmDropFinishCallbackStruct, *XmDropFinishCallback;

Motif and Xt Widget Classes XmDragContext

Motif Reference Manual 683

The XmNdropSiteEnterCallback is passed the following structure:

typedef struct {
int reason; /* reason the callback was called */
XEvent *event; /* event that triggered callback */
Time timeStamp; /* time of crossing event */
unsigned char operation; /* current operation */
unsigned char operations; /* supported operations */
unsigned char dropSiteStatus; /* valid, invalid, or none */
Position x; /* x-coordinate of pointer */
Position y; /* y-coordinate of pointer */

} XmDropSiteEnterCallbackStruct, *XmDropSiteEnterCallback;

The XmNdropSiteLeaveCallback is passed the following structure:

typedef struct {
int reason; /* reason the callback was called */
XEvent *event; /* event that triggered callback */
Time timeStamp; /* time of crossing event */

} XmDropSiteLeaveCallbackStruct, *XmDropSiteLeaveCallback;

The XmNdropStartCallback is passed the following structure:

typedef struct {
int reason; /* reason the callback was called */
XEvent *event; /* event that triggered callback */
Time timeStamp; /* time at which drag completed */
unsigned char operation; /* current operation */
unsigned char operations; /* supported operations */
unsigned char dropSiteStatus; /* valid, invalid, or none */
unsigned char dropAction; /* drop, cancel, help, or interrupt */
Position x; /* x-coordinate of pointer */
Position y; /* y-coordinate of pointer */

} XmDropStartCallbackStruct, *XmDropStartCallback;

The XmNoperationChangedCallback is passed the following structure:

typedef struct {
int reason; /* reason the callback was called */
XEvent *event; /* event that triggered callback */
Time timeStamp; /* timestamp of logical event */
unsigned char operation; /* current operation */
unsigned char operations; /* supported operations */
unsigned char dropSiteStatus; /* valid, invalid, or none */

} XmOperationChangedCallbackStruct, *XmOperationChangedCallback;

XmDragContext Motif and Xt Widget Classes

684 Motif Reference Manual

The XmNtopLevelEnterCallback is passed the following structure:

typedef struct {
int reason; /* reason callback was called */
XEvent *event; /* event that triggered callback */
Time timestamp; /* timestamp of logical event */
Screen screen; /* screen of top-level window */
Window window; /* window being entered */
Position x; /* x-coordinate of pointer */
Position y; /* y-coordinate of pointer */
unsigned char dragProtocolStyle; /* drag protocol of initiator */

} XmTopLevelEnterCallbackStruct, *XmTopLevelEnterCallback;

The XmNtopLevelLeaveCallback is passed the following structure:

typedef struct {
int reason; /* reason the callback was called */
XEvent *event; /* event that triggered callback */
Time timestamp; /* timestamp of logical event */
Screen screen; /* screen of top-level window */
Window window; /* window being left */

} XmTopLevelLeaveCallbackStruct, *XmTopLevelLeaveCallback;

The operations field in these structures specifies the set of operations supported
for the data being dragged. The toolkit initializes the value based on the opera-
tions field of the XmDragProcCallbackStruct, the XmNdropSiteOperations
resource of the DropSite, the XmNdragOperations resource of the DragContext
and the operation selected by the user. The operation field in these structures
specifies the current operation. The toolkit initializes the value based on the value
of the operation field of the XmDragProcCallbackStruct, operations, and the
XmNdropSiteOperations resource of the Drop Site.

The dropSiteStatus field in these structures specifies whether or not the drop site
is valid. The toolkit initializes the value based on the XmNimportTargets
resource of the DropSite and the XmNexportTargets resource of the DragContext
and the location of the pointer. The possible values are
XmDROP_SITE_VALID, XmDROP_SITE_INVALID, and
XmNO_DROP_SITE.

Motif and Xt Widget Classes XmDragContext

Motif Reference Manual 685

The dropAction field in these structures specifies the action associated with the
drop. The possible values are XmDROP, XmDROP_CANCEL,

XmDROP_INTERRUPT, and XmDROP_HELP1. XmDROP_INTERRUPT is
unsupported and is interpreted as XmDROP_CANCEL.

The completionStatus field in the XmDropFinishCallbackStruct specifies the sta-
tus of the drop transaction, which determines the drop visual effect. The value of
this field can be changed by the XmNdropFinishCallbackStruct. The possible

values are XmDROP_SUCCESS2 and XmDROP_FAILURE3.

Inherited Resources
DragContext inherits the following resources. The resources are listed alphabeti-
cally, along with the superclass that defines them. DragContext sets the default
value of XmNborderWidth to 0.

1.Erroneously given as DROP_HELP in 1st and 2nd edition.

2.Erroneously given as XmSUCCESS in 1st and 2nd edition.

3.Erroneously given as XmFAILURE in 1st and 2nd edition.

Name Inherited From Name Inherited From

XmNaccelerators Core XmNheight Core

XmNancestorSensitive Core XmNinitialResourcesPersistent Core

XmNbackground Core XmNmappedWhenManaged Core

XmNbackgroundPixmap Core XmNscreen Core

XmNborderColor Core XmNsensitive Core

XmNborderPixmap Core XmNtranslations Core

XmNborderWidth Core XmNwidth Core

XmNcolormap Core XmNx Core

XmNdepth Core XmNy Core

XmNdestroyCallback Core

XmDragContext Motif and Xt Widget Classes

686 Motif Reference Manual

Translations

Action Routines
DragContext defines the following action routines:

CancelDrag()
Cancels the drag operation and frees the associated DragContext.

DragMotion()
Drags the selected data as the pointer is moved.

FinishDrag()
Completes the drag operation and initiates the drop operation.

HelpDrag()
Starts a conditional drop that allows the receiving client to provide
help information to the user. The user can cancel or continue the
drop operation in response to this information.

See Also
XmDragCancel (1), XmDragStart (1), XmGetDragContext (1), Core (2),
XmDisplay (2), XmDragIcon (2), XmDropSite (2), XmDropTransfer (2),
XmScreen (2).

Event Action

BDrag Motion DragMotion()

BDrag Release FinishDrag()

KCancel CancelDrag()

KHelp HelpDrag()

Motif and Xt Widget Classes XmDragIcon

Motif Reference Manual 687

Name
XmDragIcon widget class – an object used to represent the data in a drag and
drop operation.

Synopsis

Public Header:
<Xm/DragDrop.h>

Class Name:
XmDragIcon

Class Pointer:
xmDragIconObjectClass

Class Hierarchy:
Object → DragIcon

Instantiation:
widget = XmCreateDragIcon (...)

Functions/Macros:
XmCreateDragIcon (), XmIsDragIconObjectClass ()

Availability
Motif 1.2 and later.

Description
A DragIcon is an object that represents the source data in a drag and drop trans-
action. During a drag operation, the cursor changes into a visual that is created by
combining the various DragIcons specified in the DragContext associated with
the operation. A DragIcon is created using the XmCreateDragIcon () function
or from entries in the resource database.

A drag-over visual can have both a static and a dynamic part. The static part of
the visual is the DragIcon that represents the source data. The dynamic parts can
be DragIcons that change to indicate the type of operation that is being per-
formed and whether the pointer is over a valid or an invalid drop site. The XmN-
blendModel resource of the DragContext for a drag and drop operation specifies
which icons are blended to produce the drag-over visual. DragIcon resources
specify the relative positions of the operation and state icons if they are used.
When a DragIcon is not specified, the default DragIcons from the appropriate
Screen object are used.

XmDragIcon Motif and Xt Widget Classes

688 Motif Reference Manual

New Resources
DragIcon defines the following resources:

XmNattachment
The relative location on the source icon where the state or operation icon is
attached. Possible values:

XmATTACH_NORTH_WEST XmATTACH_NORTH
XmATTACH_NORTH_EAST XmATTACH_EAST
XmATTACH_SOUTH_EAST XmATTACH_SOUTH
XmATTACH_SOUTH_WEST XmATTACH_WEST
XmATTACH_CENTER XmATTACH_HOT

XmNdepth
The depth of the pixmap.

XmNheight
The height of the pixmap.

XmNhotX
The x-coordinate of the hotspot of the cursor.

XmNhotY
The y-coordinate of the hotspot of the cursor.

XmNmask
The mask for the DragIcon pixmap.

XmNoffsetX
The horizontal offset in pixels of the origin of the state or operation icon relative
to the attachment point on the source icon.

Name Class Type Default Access

XmNattachment XmCAttachment unsigned char XmATTACH_NORTH_WEST CSG

XmNdepth XmCDepth int 1 CSG

XmNheight XmCHeight Dimension 0 CSG

XmNhotX XmCHot Position 0 CSG

XmNhotY XmCHot Position 0 CSG

XmNmask XmCPixmap Pixmap XmUNSPECIFIED_PIXMAP CSG

XmNoffsetX XmCOffset Position 0 CSG

XmNoffsetY XmCOffset Position 0 CSG

XmNpixmap XmCPixmap Pixmap XmUNSPECIFIED_PIXMAP CSG

XmNwidth XmCWidth Dimension 0 CSG

Motif and Xt Widget Classes XmDragIcon

Motif Reference Manual 689

XmNoffsetY
The vertical offset in pixels of the origin of the state or operation icon relative to
the attachment point on the source icon.

XmNpixmap
The pixmap for the DragIcon.

XmNwidth
The width of the pixmap.

Inherited Resources
DragIcon inherits the following resource:

See Also
XmCreateObject (1), Object (2), XmDisplay (2), XmDragContext (2),
XmDropSite (2), XmDropTransfer (2), XmScreen (2).

Resource Inherited From

XmNdestroyCallback Object

XmDrawingArea Motif and Xt Widget Classes

690 Motif Reference Manual

Name
XmDrawingArea widget class – a simple manager widget for interactive draw-
ing.

Synopsis

Public Header:
<Xm/DrawingA.h>

Class Name:
XmDrawingArea

Class Hierarchy:
Core → Composite → Constraint → XmManager → XmDrawingArea

Class Pointer:
xmDrawingAreaWidgetClass

Instantiation:
widget = XmCreateDrawingArea (parent, name,...)
or
widget = XtCreateWidget (name, xmDrawingAreaWidgetClass,...)

Functions/Macros:
XmCreateDrawingArea (), XmIsDrawingArea ()

Description
DrawingArea provides a blank canvas for interactive drawing. The widget does
not do any drawing of its own. Since DrawingArea is a subclass of Manager, it
can provide simple geometry management of multiple widget or gadget children.
The widget does not define any behavior except for invoking callbacks that notify
an application when it receives input events, exposure events, and resize events.

New Resources
DrawingArea defines the following resources:

XmNmarginHeight
The spacing between a DrawingArea’s top or bottom edge and any child widget.

XmNmarginWidth
The spacing between a DrawingArea’s right or left edge and any child widget.

Name Class Type Default Access

XmNmarginHeight XmCMarginHeight Dimension 10 CSG

XmNmarginWidth XmCMarginWidth Dimension 10 CSG

XmNresizePolicy XmCResizePolicy unsigned char XmRESIZE_ANY CSG

Motif and Xt Widget Classes XmDrawingArea

Motif Reference Manual 691

XmNresizePolicy
How DrawingArea widgets are resized. Possible values:

XmRESIZE_NONE /* remain at fixed size */
XmRESIZE_GROW /* expand only */
XmRESIZE_ANY /* shrink or expand, as needed */

Callback Resources
DrawingArea defines the following callback resources:

XmNconvertCallback
In Motif 2.0 and later, specifies the list of callbacks called when a request is made
to convert a selection.

XmNdestinationCallback
In Motif 2.0 and later, specifies the list of callbacks called when the DrawingArea
is the destination of a data transfer.

XmNexposeCallback
List of callbacks that are called when the DrawingArea receives an exposure
event.

XmNinputCallback
List of callbacks that are called when the DrawingArea receives a keyboard or
mouse event.

XmNresizeCallback
List of callbacks that are called when the DrawingArea receives a resize event.

Callback Structure
Each expose, resize, and input callback function is passed the following struc-
ture:

typedef struct {
int reason; /* the reason that the callback was called */
XEvent *event; /* event structure that triggered callback; */

/* for XmNresizeCallback, this is NULL */
Window window; /* the widget’s window */

} XmDrawingAreaCallbackStruct;

Callback Reason Constant

XmNconvertCallback XmCR_OK

XmNdestinationCallback XmCR_OK

XmNexposeCallback XmCR_EXPOSE

XmNinputCallback XmCR_INPUT

XmNresizeCallback XmCR_RESIZE

XmDrawingArea Motif and Xt Widget Classes

692 Motif Reference Manual

Convert callbacks are fully described within the sections covering the Uniform
Transfer Model. See XmTransfer (1) for more details. For quick reference, a
pointer to the following structure is passed to callbacks on the XmNconvertCall-
back list:

typedef struct {
int reason; /* reason that the callback is invoked */
XEvent *event; /* points to event that triggered callback */
Atom selection; /* requested conversion selection */
Atom target; /* the conversion target */
XtPointer source_data; /* selection source information */
XtPointer location_data; /* information about data to be transferred*/
int flags; /* input status of the conversion */
XtPointer parm; /* parameter data for the target */
int parm_format; /* format of parameter data */
unsigned long parm_length; /* number of elements in */

/* parameter data */
Atom parm_type; /* the type of the parameter data */
int status; /* output status of the conversion */
XtPointer value; /* returned conversion data */
Atom type; /* type of conversion data returned */
int format; /* format of the conversion data */
unsigned long length; /* number of elements in conversion data */

} XmConvertCallbackStruct;

Destination callbacks are fully described within the sections covering the Uni-
form Transfer Model. See XmTransfer (1) for more details. For quick refer-
ence, a pointer to the following structure is passed to callbacks on the
XmNdestinationCallback list:

typedef struct {
int reason; /* reason that the callback is invoked */
XEvent *event; /* points to event that triggered callback */
Atom selection; /* the requested selection type, as an Atom */
XtEnum operation; /* the type of transfer requested */
int flags; /* whether destination and source are same */
XtPointer transfer_id; /* unique identifier for the request */
XtPointer destination_data; /* information about the destination */
XtPointer location_data; /* information about the data */
Time time; /* the time when transfer operation started */

} XmDestinationCallbackStruct;

Motif and Xt Widget Classes XmDrawingArea

Motif Reference Manual 693

Inherited Resources
DrawingArea inherits the following resources. The resources are listed alphabeti-
cally, along with the superclass that defines them. The default value of XmNbor-
derWidth is reset to 0 by Manager.

Translations
The translations for DrawingArea include those of Manager. All of the events in
the inherited translations except <BtnMotion>, <EnterWindow>, <LeaveWin-
dow>, <FocusIn>, and <FocusOut> call the DrawingAreaInput() action before
calling the Manager actions.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNinsertPosition Composite

XmNancestorSensitive Core XmNlayoutDirection XmManager

XmNbackground Core XmNmappedWhenManaged Core

XmNbackgroundPixmap Core XmNnavigationType XmManager

XmNborderColor Core XmNnumChildren Composite

XmNborderPixmap Core XmNpopupHandlerCallback XmManager

XmNborderWidth Core XmNscreen Core

XmNbottomShadowColor XmManager XmNsensitive Core

XmNbottomShadowPixmap XmManager XmNshadowThickness XmManager

XmNchildren Composite XmNstringDirection XmManager

XmNcolormap Core XmNtopShadowColor XmManager

XmNdepth Core XmNtopShadowPixmap XmManager

XmNdestroyCallback Core XmNtranslations Core

XmNforeground XmManager XmNtraversalOn XmManager

XmNheight Core XmNunitType XmManager

XmNhelpCallback XmManager XmNuserData XmManager

XmNhighlightColor XmManager XmNwidth Core

XmNhighlightPixmap XmManager XmNx Core

XmNinitialFocus XmManager XmNy Core

XmNinitialResourcesPersistent Core

XmDrawingArea Motif and Xt Widget Classes

694 Motif Reference Manual

DrawingArea has the following additional translations:

Action Routines
DrawingArea defines the following action routines:

DrawingAreaInput()
When a widget child of a DrawingArea receives a keyboard or
mouse event, this action routine invokes the list of callbacks speci-
fied by XmNinputCallback.

ManagerGadgetKeyInput()
When a gadget child of a DrawingArea receives a keyboard or
mouse event, this action routine processes the event.

Additional Behavior
DrawingArea has the following additional behavior:

<Expose>
Invokes the XmNexposeCallback callbacks.

<WidgetResize>
Invokes the XmNresizeCallback callbacks.

See Also
XmCreateObject (1), XmTransfer (1), Composite (2), Constraint (2),
Core (2), XmManager(2).

Event Action

MAny Bany Press DrawingAreaInput()

MAny Bany Release DrawingAreaInput()

Many KAny Press DrawingAreaInput()
ManagerGadgetKeyInput()

MAny KAny Release DrawingAreaInput()

Motif and Xt Widget Classes XmDrawnButton

Motif Reference Manual 695

Name
XmDrawnButton widget class – a button widget that provides a graphics area.

Synopsis

Public Header:
<Xm/DrawnB.h>

Class Name:
XmDrawnButton

Class Hierarchy:
XmPrimitive → XmLabel → XmDrawnButton

Class Pointer:
xmDrawnButtonWidgetClass

Instantiation:
widget = XmCreateDrawnButton (parent, name,...)
or
widget = XtCreateWidget (name, xmDrawnButtonWidgetClass,...)

Functions/Macros:
XmCreateDrawnButton (), XmIsDrawnButton ()

Description
DrawnButton is an empty widget window, surrounded by a shaded border. The
widget provides a graphics area that can act like a PushButton. The graphics can
be dynamically updated by the application.

Traits
DrawnButton holds the XmQTactivatable trait, which is inherited by any derived
classes, and uses the XmQTmenuSystem and XmQTspecifyRenderTable traits.

New Resources
DrawnButton defines the following resources:

XmNmultiClick
A flag that determines whether successive button clicks are processed or ignored.
Possible values:

XmMULTICLICK_DISCARD /* ignore successive button clicks; */
/* default value in a menu system */

Name Class Type Default Access

XmNmultiClick XmCMultiClick unsigned char dynamic CSG

XmNpushButtonEnabled XmCPushButtonEnabled Boolean False CSG

XmNshadowType XmCShadowType unsigned char XmSHADOW_ETCHED_IN CSG

XmDrawnButton Motif and Xt Widget Classes

696 Motif Reference Manual

XmMULTICLICK_KEEP /* count successive button clicks; */
/* default value when not in a menu */

XmNpushButtonEnabled
If False (default), the shadow drawing doesn’t appear three dimensional; if True,
the shading provides a pushed in or raised appearance as for the PushButton
widget.

XmNshadowType
The style in which shadows are drawn. Possible values:

XmSHADOW_IN /* widget appears inset */
XmSHADOW_OUT /* widget appears outset */
XmSHADOW_ETCHED_IN /* double line; widget appears inset */
XmSHADOW_ETCHED_OUT /* double line; widget appears raised */

Callback Resources
DrawnButton defines the following callback resources:

XmNactivateCallback
List of callbacks that are called when BSelect is pressed and released inside of
the widget.

XmNarmCallback
List of callbacks that are called when BSelect is pressed while the pointer is
inside the widget.

XmNdisarmCallback
List of callbacks that are called when BSelect is released after it has been pressed
inside of the widget.

XmNexposeCallback
List of callbacks that are called when the widget receives an exposure event.

XmNresizeCallback
List of callbacks that are called when the widget receives a resize event.

Callback Reason Constant

XmNactivateCallback XmCR_ACTIVATE

XmNarmCallback XmCR_ARM

XmNdisarmCallback XmCR_DISARM

XmNexposeCallback XmCR_EXPOSE

XmNresizeCallback XmCR_RESIZE

Motif and Xt Widget Classes XmDrawnButton

Motif Reference Manual 697

Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /* the reason that the callback was called */
XEvent *event; /* event structure that triggered callback */
Window window; /* ID of window in which the event occurred */
int click_count; /* number of multi-clicks */

} XmDrawnButtonCallbackStruct;

event is NULL for XmNresizeCallback and is sometimes NULL for XmNacti-
vateCallback.

click_count is meaningful only for XmNactivateCallback. Furthermore, if the
XmNmultiClick resource has the value XmMULTICLICK_KEEP, then XmNac-
tivateCallback is called for each click, and the value of click_count is the number
of clicks that have occurred in the last sequence of multiple clicks. If the XmN-
multiClick resource is set to XmMULTICLICK_DISCARD, then click_count
always has a value of 1.

Inherited Resources
DrawnButton inherits the following resources. The resources are listed alphabeti-
cally, along with the superclass that defines them. DrawnButton sets default value

of XmNlabelString to XmUNSPECIFIED1. The default value of XmNborder-
Width is reset to 0 by Primitive. In Motif 2.0 and earlier, the default value of
XmNhighlightThickness and XmNshadowThickness are reset to 2. In Motif 2.1
and later, the default values depend upon the XmDisplay XmNenableThinThick-
ness resource: if True, the default is 1, otherwise 2.

1.Given as “” in 1st and 2nd editions. This is imprecise. The XmLabel superclass treats XmUNSPECIFIED as a special
value, which maps to an empty XmString.

Resource Inherited From Resource Inherited From

XmNaccelerator XmLabel XmNlabelType XmLabel

XmNaccelerators Core XmNlayoutDirection XmPrimitive

XmNacceleratorText XmLabel XmNmappedWhenManaged Core

XmNalignment XmLabel XmNmarginBottom XmLabel

XmNancestorSensitive Core XmNmarginHeight XmLabel

XmNbackground Core XmNmarginLeft XmLabel

XmNbackgroundPixmap Core XmNmarginRight XmLabel

XmNborderColor Core XmNmarginTop XmLabel

XmDrawnButton Motif and Xt Widget Classes

698 Motif Reference Manual

Translations

XmNborderPixmap Core XmNmarginWidth XmLabel

XmNborderWidth Core XmNmnemonicCharSet XmLabel

XmNbottomShadowColor XmPrimitive XmNmnemonic XmLabel

XmNbottomShadowPixmap XmPrimitive XmNnavigationType XmPrimitive

XmNcolormap Core XmNpopupHandlerCallback XmPrimitive

XmNconvertCallback XmPrimitive XmNrecomputeSize XmLabel

XmNdepth Core XmNrenderTable XmLabel

XmNdestroyCallback Core XmNscreen Core

XmNfontList XmLabel XmNsensitive Core

XmNforeground XmPrimitive XmNshadowThickness XmPrimitive

XmNheight Core XmNstringDirection XmLabel

XmNhelpCallback XmPrimitive XmNtopShadowColor XmPrimitive

XmNhighlightColor XmPrimitive XmNtopShadowPixmap XmPrimitive

XmNhighlightOnEnter XmPrimitive XmNtranslations Core

XmNhighlightPixmap XmPrimitive XmNtraversalOn XmPrimitive

XmNhighlightThickness XmPrimitive XmNunitType XmPrimitive

XmNinitialResourcesPersistent Core XmNuserData XmPrimitive

XmNlabelInsensitivePixmap XmLabel XmNwidth Core

XmNlabelPixmap XmLabel XmNx Core

XmNlabelString XmLabel XmNy Core

Event Action

BSelect Press Arm()

MCtrl BSelect Press ButtonTakeFocus()

BSelect Click Activate()
Disarm()

BSelect Release Activate()
Disarm()

BSelect Press 2+ MultiArm()

BSelect Release 2+ MultiActivate()

KSelect ArmAndActivate()

KHelp Help()

Resource Inherited From Resource Inherited From

Motif and Xt Widget Classes XmDrawnButton

Motif Reference Manual 699

Action Routines
DrawnButton defines the following action routines:

Activate()
Displays the DrawnButton as unselected if XmNpushButtonEna-
bled is True or displays the shadow according to XmNshadowType.
Invokes the list of callbacks specified by XmNactivateCallback.

Arm()
Displays the DrawnButton as selected if XmNpushButtonEnabled
is True or displays the shadow according to XmNshadowType.
Invokes the list of callbacks specified by XmNarmCallback.

ArmAndActivate()
Displays the DrawnButton as selected if XmNpushButtonEnabled
is True or displays the shadow according to XmNshadowType.
Invokes the list of callbacks specified by XmNarmCallback. After
doing this, the action routine displays the DrawnButton as unse-
lected if XmNpushButtonEnabled is True or displays the shadow
according to XmNshadowType and invokes the list of callbacks
specified by XmNactivateCallback and XmNdisarmCallback.

ButtonTakeFocus()
In Motif 2.0 and later, moves the current keyboard focus to the
DrawnButton, without activating the widget.

Disarm()
Displays the DrawnButton as unselected and invokes the list of call-
backs specified by XmNdisarmCallback.

Help()
Invokes the list of callbacks specified by XmNhelpCallback. If the
DrawnButton doesn’t have any help callbacks, the Help() routine
invokes those associated with the nearest ancestor that has them.

MultiActivate()
Increments the click_count member of XmDrawnButtonCallback-
Struct, displays the DrawnButton as unselected if XmNpushButto-
nEnabled is True or displays the shadow according to
XmNshadowType, and invokes the list of callbacks specified by
XmNactivateCallback and XmNdisarmCallback. This action rou-
tine takes effect only when the XmNmultiClick resource is set to
XmMULTICLICK_KEEP.

MultiArm()
Displays the DrawnButton as selected if XmNpushButtonEnabled
is True or displays the shadow according to XmNshadowType, and
invokes the list of callbacks specified by XmNarmCallback. This
action routine takes effect only when the XmNmultiClick resource
is set to XmMULTICLICK_KEEP.

XmDrawnButton Motif and Xt Widget Classes

700 Motif Reference Manual

Additional Behavior
DrawnButton has the following additional behavior:

<EnterWindow>
Displays the DrawnButton as selected if XmNpushButtonEnabled
is True and the pointer leaves and re-enters the window while BSe-
lect is pressed.

<LeaveWindow>
Displays the DrawnButton as unselected if XmNpushButtonEna-
bled is True and the pointer leaves the window while BSelect is
pressed.

See Also
XmCreateObject (1), Core (2), XmLabel (2), XmPrimitive (2),
XmPushButton (2).

Motif and Xt Widget Classes XmDropSite

Motif Reference Manual 701

Name
XmDropSite registry – an object that defines the characteristics of a drop site.

Synopsis

Public Header:
<Xm/DragDrop.h>

Class Hierarchy:
DropSite does not inherit from any widget class.

Instantiation:
XmDropSiteRegister (...)

Functions/Macros:
XmDropSiteConfigureStackingOrder (), XmDropSiteEndUp-
date (),
XmDropSiteQueryStackingOrder (), XmDropSiteRegister (),
XmDropSiteRetrieve (), XmDropSiteStartUpdate (),
XmDropSiteUpdate (), XmDropSiteUnregister ()

Availability
Motif 1.2 and later.

Description
An XmDropSite is an object that stores data about a drop site for drag and drop
operations. A DropSite is associated with a particular widget or gadget in an
application. An application registers a widget or gadget as a DropSite using
XmDropSiteRegister (). The DropSite stores information about the shape of
the drop site, the animation effects used when the pointer enters the drop site, the
types of data supported by the drop site, and the callback that is activated when a
drop occurs. These characteristics can be specified as resources when the Drop-
Site is created.

The functions XmDropSiteUpdate () and XmDropSiteRetrieve () set and
get the drop site resources for a widget that is registered as a DropSite. Use these
routines instead of XtSetValues () and XtGetValues ().

New Resources
DropSite defines the following resources:

Name Class Type Default Access

XmNanimationMask XmCAnimationMask Pixmap XmUNSPECIFIED_PIXMAP CSG

XmNanimationPixmap XmCAnimationPixmap Pixmap XmUNSPECIFIED_PIXMAP CSG

XmNanimationPixmapDepth XmCAnimationPixmapDepth int 0 CSG

XmNanimationStyle XmCAnimationStyle unsigned char XmDRAG_UNDER_HIGHLIGHT CSG

XmDropSite Motif and Xt Widget Classes

702 Motif Reference Manual

XmNanimationMask
The mask for the XmNanimationPixmap when the animation style is
XmDRAG_UNDER_PIXMAP.

XmNanimationPixmap
The pixmap used for drag-under animation when the animation style is
XmDRAG_UNDER_PIXMAP.

XmNanimationPixmapDepth
The depth of the pixmap specified by XmNanimationPixmap.

XmNanimationStyle
The style of drag-under animation used when the pointer enters a valid drop site
during a drag operation. Possible values:

XmDRAG_UNDER_HIGHLIGHT /* drop site highlighted */

XmDRAG_UNDER_SHADOW_OUT /* drop site shown with outset shadow */

XmDRAG_UNDER_SHADOW_IN /* drop site shown with inset shadow */

XmDRAG_UNDER_PIXMAP /* drop site displays pixmap */

XmDRAG_UNDER_NONE /* no animation effects unless in XmNdragProc */

XmNdropRectangles
A list of rectangles that specify the shape of the drop site. When the value is
NULL, the drop site is the entire widget.

XmNdropSiteActivity
Specifies the state of the drop site. Possible values:

XmDROP_SITE_ACTIVE /* participates in drop operations */
XmDROP_SITE_INACTIVE /* does not participate in drop operations */

XmNdropSiteOperations
The valid operations for a drop site. The value is a bit mask that is formed by
combining one or more of these possible values:

XmNdropRectangles XmCDropRectangles XRectangle * dynamic CSG

XmNdropSiteActivity XmCDropSiteActivity unsigned char XmDROP_SITE_ACTIVE CSG

XmNdropSiteOperations XmCDropSiteOperations unsigned char XmDROP_MOVE |
XmDROP_COPY

CSG

XmNdropSiteType XmCDropSiteType unsigned char XmDROP_SITE_SIMPLE CG

XmNimportTargets XmCImportTargets Atom * NULL CSG

XmNnumDropRectangles XmCNumDropRectangles Cardinal 1 CSG

XmNnumImportTargets XmCNumImportTargets Cardinal 0 CSG

Name Class Type Default Access

Motif and Xt Widget Classes XmDropSite

Motif Reference Manual 703

XmDROP_COPY /* copy operations are valid */
XmDROP_LINK /* link operations are valid */
XmDROP_MOVE /* move operations are valid */
XmDROP_NOOP /* no operations are valid */

XmNdropSiteType
The type of the drop site. Possible values:

XmDROP_SITE_SIMPLE /* no children are registered as drop sites */
XmDROP_SITE_COMPOSITE /* has children registered as drop sites */

XmNimportTargets
The list of target atoms that the drop site accepts.

XmNnumDropRectangles
The number of rectangles in the XmNdropRectangles list.

XmNnumImportTargets
The number of atoms in the XmNimportTargets list.

Callback Resources
DropSite defines the following callback resources:

XmNdragProc
The procedure that is called when the drop site receives a crossing, motion, or
operation changed message under the dynamic protocol. The reason passed to the
procedure depends on the type of message that is received.

XmNdropProc
The procedure that is called when a drop operation occurs on the drop site.

Callback Structure
The XmNdragProc is passed the following structure:

typedef struct {
int reason; /* reason the callback was called */
XEvent *event; /* event that triggered callback */
Time timeStamp; /* timestamp of logical event */
Widget dragContext; /* DragContext associated with operation */
Position x; /* x-coordinate of pointer */
Position y; /* y-coordinate of pointer */

Callback Reason Constant

XmNdragProc XmCR_DROP_SITE_ENTER_MESSAGE
XmCR_DROP_SITE_LEAVE_MESSAGE
XmCR_DROP_SITE_MOTION_MESSAGE
XmCR_OPERATION_CHANGED_MESSAGE

XmNdropProc XmCR_DROP_MESSAGE

XmDropSite Motif and Xt Widget Classes

704 Motif Reference Manual

unsigned char dropSiteStatus; /* valid or invalid */
unsigned char operation; /* current operation */
unsigned char operations; /* supported operations */
Boolean animate; /* toolkit or receiver does animation */

} XmDragProcCallbackStruct, *XmDragProcCallback;

The XmNdragProc can change the value of the dropSiteStatus, operation, and
operations fields in this structure. When the drag procedure completes, the
toolkit uses the resulting values to initialize the corresponding fields in the call-
back structure passed to the initiating client’s callbacks.

The XmNdropProc is passed the following structure:

typedef struct {
int reason; /* reason the callback was called */
XEvent *event; /* event that triggered callback */
Time timeStamp; /* timestamp of logical event */
Widget dragContext; /* DragContext associated with operation */
Position x; /* x-coordinate of pointer */
Position y; /* y-coordinate of pointer */
unsigned char dropSiteStatus; /* valid or invalid */
unsigned char operation; /* current operation */
unsigned char operations; /* supported operations */
unsigned char dropAction; /* drop or help */

} XmDropProcCallbackStruct, *XmDropProcCallback;

The XmNdropProc can change the value of the dropSiteStatus, operation, opera-
tions, and dropAction fields in this structure. When the drop procedure com-
pletes, the toolkit uses the resulting values to initialize the corresponding fields in
the XmDropProcCallbackStruct callback structure passed to the initiating client’s
drop start callbacks.

The dropSiteStatus field in these structures specifies whether or not the drop site
is valid. The toolkit initializes the value based on the XmNimportTargets
resource of the DropSite and the XmNexportTargets resource of the DragCon-
text. The possible values are XmDROP_SITE_VALID and
XmDROP_SITE_INVALID.

The operations field in these structure specifies the set of operations supported
for the data being dragged. The toolkit initializes the value based on the XmN-
dragOperations resource of the DragContext and the operation selected by the
user. The operation field in these structures specifies the current operation. The
toolkit initializes the value based on the value of operations and the XmNdrop-
SiteOperations resource.

Motif and Xt Widget Classes XmDropSite

Motif Reference Manual 705

The animate field in the XmDragProcCallbackStruct specifies whether the toolkit
or the receiving client handles the drag-under effects for the drop site. If the value
is True, the toolkit handles the effects based on the XmNanimationStyle
resource. Otherwise the receiver is responsible for providing drag-under effects.

The dropAction field in the XmDropProcCallbackStruct specifies the action
associated with the drop, which is either a normal drop or a help action. The pos-
sible values are XmDROP and XmDROP_HELP.

See Also
XmDropSiteConfigureStackingOrder (1),
XmDropSiteEndUpdate (1), XmDropSiteQueryStackingOrder (1),
XmDropSiteRegister (1), XmDropSiteRetrieve (1),
XmDropSiteStartUpdate (1), XmDropSiteUnregister (1),
XmDropSiteUpdate (1), XmDisplay (1), XmDragContext (1),
XmDragIcon (2), XmDropTransfer (2), XmScreen (2).

XmDropTransfer Motif and Xt Widget Classes

706 Motif Reference Manual

Name
XmDropTransfer widget class – an object used to store information about a drop
transaction.

Synopsis

Public Header:
<Xm/DragDrop.h>

Class Name:
XmDropTransfer

Class Pointer:
xmDropTransferObjectClass

Class Hierarchy:
Object → DropTransfer

Instantiation:
widget = XmDropTransferStart (...)

Functions/Macros:
XmDropTransferAdd (), XmDropTransferStart ()

Availability
Motif 1.2 and later.

Description
The XmDropTransfer object stores information that the toolkit needs to process a
drop transaction. An application does not explicitly create a DropTransfer
widget, but instead initiates a data transfer by calling XmDropTransfer-
Start (), which initializes and returns a DropTransfer widget. If XmDrop-
TransferStart () is called within an XmNdropProc, the data transfer starts
after the callback returns. If no data needs to be transferred or the drop transac-
tion is a failure, an application still needs to call XmDropTransferStart ()
with a failure status, so that the toolkit can complete the drag and drop operation.

The XmNtransferProc resource specifies a procedure of type XtSelectionCall-
backProc that handles transferring the requested selection data. This procedure
performs in conjunction with the underlying Xt selection mechanisms and is
called for each type of data being transferred. Target types can be added after a
transfer has started by calling the XmDropTransferAdd ().

Motif and Xt Widget Classes XmDropTransfer

Motif Reference Manual 707

New Resources
DropTransfer defines the following resources:

XmNdropTransfers
Pointer to an array of XmDropTransferEntryRec structures, which specifies the
requested target data types for the source data. A XmDropTransferEntryRec is
defined as follows:

typedef struct {
XtPointer client_data; /* any additional information necessary */
Atom target; /* the selection target type */

} XmDropTransferEntryRec, *XmDropTransferEntry;

The drop transfer is done when all of the entries have been processed.

XmNincremental
If True, the receiver uses the Xt incremental selection transfer mechanism. If
False (default), the receiver uses atomic transfer.

XmNnumDropTransfers
The number of entries in XmNdropTransfers. The transfer is complete if the
value is set to 0 at any time.

XmNtransferProc
A procedure of type XtSelectionCallbackProc that provides the requested selec-
tion values. The widget argument passed to this procedure is the DropTransfer
widget and the selection atom is _MOTIF_DROP.

XmNtransferStatus
The current status of the drop transfer. The receiving client updates this value
when the transfer ends and the value is communicated to the initiator. Possible
values:

XmTRANSFER_SUCCESS XmTRANSFER_FAILURE

Name Class Type Default Access

XmNdropTransfers XmCDropTransfers XmDropTransferEntryRec * NULL CG

XmNincremental XmCIncremental Boolean False CSG

XmNnumDropTransfers XmCNumDropTransfers Cardinal 0 CSG

XmNtransferProc XmCTransferProc XtSelectionCallbackProc NULL CSG

XmNtransferStatus XmCTransferStatus unsigned char XmTRANSFER_SUCCESS CSG

XmDropTransfer Motif and Xt Widget Classes

708 Motif Reference Manual

Inherited Resources
DropTransfer inherits the following resource:

See Also
XmDropTransferAdd (1), XmDropTransferStart (1),
XmTargetsAreCompatible (1), Object (2), XmDisplay (2),
XmDragContext (2), XmDragIcon (2), XmDropTransfer (2),
XmScreen (2).

Resource Inherited From

XmNdestroyCallback Object

Motif and Xt Widget Classes XmErrorDialog

Motif Reference Manual 709

Name
XmErrorDialog – an unmanaged MessageBox as a child of a DialogShell.

Synopsis

Public Header:
<Xm/MessageB.h>

Instantiation:
widget = XmCreateErrorDialog (...)

Functions/Macros:
XmCreateErrorDialog (), XmMessageBoxGetChild ()

Description
An XmErrorDialog is a compound object created by a call to XmCreateErrorDi-
alog() that an application can use to inform the user about any type of error. An
ErrorDialog consists of a DialogShell with an unmanaged MessageBox widget as
its child. The MessageBox resource XmNdialogType is set to
XmDIALOG_ERROR. An ErrorDialog includes four components: a symbol, a
message, three buttons, and a separator between the message and the buttons. By
default, the symbol is an octagon with a diagonal slash. In Motif 1.2, the default
button labels can be localized. In the C locale, and in Motif 1.1, the PushButtons
are labelled OK , Cancel, and Help by default.

Default Resource Values
An ErrorDialog sets the following default values for MessageBox resources:

Widget Hierarchy
When an ErrorDialog is created with a specified name, the DialogShell is named
name_popup and the MessageBox is called name.

See Also
XmCreateObject (1), XmMessageBoxGetChild (1),
XmDialogShell (2), XmMessageBox(2).

Name Default

XmNdialogType XmDIALOG_ERROR

XmNsymbolPixmap xm_error

XmFileSelectionBox Motif and Xt Widget Classes

710 Motif Reference Manual

Name
XmFileSelectionBox widget class – a widget for selecting files.

Synopsis

Public Header:
<Xm/FileSB.h>

Class Name:
XmFileSelectionBox

Class Hierarchy:
Core → Composite → Constraint → XmManager → XmBulletinBoard →
XmSelectionBox → XmFileSelectionBox

Class Pointer:
xmFileSelectionBoxWidgetClass

Instantiation:
widget = XmCreateFileSelectionBox (parent, name,...)
or
widget = XtCreateWidget (name, xmFileSelectionBoxWidgetClass,...)

Functions/Macros:
XmCreateFileSelectionBox (), XmCreateFileSelectionDialog (),
XmFileSelectionBoxGetChild (), XmFileSelectionDoSearch (),
XmIsFileSelectionBox ()

Description
FileSelectionBox is a composite widget that is used to traverse a directory hierar-
chy and select files. FileSelectionBox provides a directory mask input field, a
scrollable list of subdirectories, a scrollable list of filenames, a filename input
field, and a group of four PushButtons. The names for the filter text, directory list,
and directory list label are Text, DirList, and Dir respectively. The other compo-
nents have the same names as the components in a SelectionBox.

In Motif 1.2, the button labels can be localized. In the C locale, and in Motif 1.1,
the PushButtons are labelled OK , Filter , Cancel, and Help by default.

You can customize a FileSelectionBox by removing existing children or adding
new children. Use XmFileSelectionBoxGetChild () to retrieve the widget
ID of an existing child and then unmanage the child. With Motif 1.2, multiple
widgets can be added as children of a FileSelectionBox. Additional children are
added in the same way as for a SelectionBox. In Motif 1.1, only a single widget
can be added as a child of a FileSelectionBox. This child is placed below the
filename input field and acts as a work area.

Motif and Xt Widget Classes XmFileSelectionBox

Motif Reference Manual 711

In Motif 2.0 and later, the search pattern and base directory can be displayed in
two separate text fields, depending on the value of the XmNpathMode resource.
If the value is XmPATH_MODE_FULL, the behavior is consistent with that of
Motif 1.2, and the filter text field (Text) contains the XmNdirMask resource. If
the value is XmPATH_MODE_RELATIVE, the XmNdirectory resource is dis-
played in an additional text field which has the name DirText , with an accompa-
nying label named DirL , and the filter text field Text contains the XmNpattern
resource.

In some variants of CDE Motif, the directory pattern field may be replaced with
an XmComboBox, providing a validset of directory locations. If the resource
XmNenableFdbPickList is true, the FileSelectionBox creates an XmComboBox

called DirComboBox in place of the DirText field.1

Traits
FileSelectionBox uses the XmQTactivatable trait.

New Resources
FileSelectionBox defines the following resources:

1.XmNenableFdbPickList is implemented on Solaris 2.7 and above.

Name Class Type Default Access

XmNdirectory XmCDirectory XmString dynamic CSG

XmNdirectoryValid XmCDirectoryValid Boolean dynamic SG

XmNdirListItems XmCDirListItems XmStringTable dynamic SG

XmNdirListItemCount XmCDirListItemCount int dynamic SG

XmNdirListLabelString XmCDirListLabelString XmString dynamic CSG

XmNdirMask XmCDirMask XmString dynamic CSG

XmNdirSearchProc XmCDirSearchProc XmSearchProc default procedure CSG

XmNdirSpec XmCDirSpec XmString dynamic CSG

XmNdirTextLabelString XmCDirTextLabelString XmString NULL CSG

XmNfileFilterStyle XmCFileFilterStyle XtEnum XmFILTER_NONE SG

XmNfileListItems XmCItems XmStringTable dynamic SG

XmNfileListItemCount XmCItemCount int dynamic SG

XmNfileListLabelString XmCFileListLabelString XmString dynamic SG

XmNfileSearchProc XmCFileSearchProc XmSearchProc default procedure CSG

XmNfileTypeMask XmCFileTypeMask unsigned char XmFILE_REGULAR CSG

XmNfilterLabelString XmCFilterLabelString XmString dynamic CSG

XmFileSelectionBox Motif and Xt Widget Classes

712 Motif Reference Manual

XmNdirectory
The base directory that, in combination with XmNpattern, forms the directory
mask (the XmNdirMask resource). The directory mask determines which files
and directories to display.

XmNdirectoryValid
A resource that can be set only by the directory search procedure (as specified by
the XmNdirSearchProc resource). If the directory search procedure is unable to
search the directory that was passed to it, then it will set XmNdirectoryValid to
False, and as a result, the file search procedure won’t be called.

XmNdirListItems
The items in the directory list. This resource is set only by the directory search
procedure. A call to XtGetValues() returns the actual list items (not a copy), so
don’t have your application free these items.

XmNdirListItemCount
The number of items in XmNdirListItems. This resource is set only by the direc-
tory search procedure.

XmNdirListLabelString
The string that labels the directory list. In Motif 1.2, the default value is
locale-dependent. In the C locale, and in Motif 1.1, the default value is "Directo-
ries".

XmNdirMask
The directory mask that determines which files and directories to display. This
value combines the values of the resources XmNdirectory and XmNpattern.

XmNdirSearchProc
The procedure that performs directory searches. For most applications, the
default procedure works just fine. The call to this procedure contains two argu-
ments: the widget ID of the FileSelectionBox and a pointer to an XmFileSelec-
tionBoxCallbackStruct.

XmNlistUpdated XmCListUpdated Boolean dynamic SG

XmNnoMatchString XmCNoMatchString XmString XmUNSPECIFIEDa CSG

XmNpathMode XmCPathMode XtEnum XmPATH_MODE_FULL CSG

XmNpattern XmCPattern XmString dynamic CSG

XmNqualifySearchDataProc XmCQualifySearchDataProc XmQualifyProc default procedure CSG

a.Strictly speaking, more correct than the " [] " given in the 1st and 2nd editions. If the value is XmUN-
SPECIFIED, it defaults to this expression.

Name Class Type Default Access

Motif and Xt Widget Classes XmFileSelectionBox

Motif Reference Manual 713

XmNdirSpec
The complete specification of the file path. Synonymous with the XmNtextString
resource in SelectionBox. It is the initial directory and file search that determines
the default value for this resource.

XmNdirTextLabelString
In Motif 2.0 and later, specifies the label for the directory text field when the
XmNpathMode resource is XmPATH_MODE_RELATIVE. The value is other-
wise ignored.

XmNfileFilterStyle
In Motif 2.0 and later, controls the behaviour of the default file and directory
search procedures in the way in which hidden files are displayed. If enabled, any
file or directory beginning with ’.’ is filtered out. The exception to the rule is “..’
which is not filtered out in the directory search procedure. Possible values:

XmFILTER_NONE /* do not filter out any files or directories */
XmFILTER_HIDDEN_FILES /* filter out file beginning with ’.’ */

XmNfileListItems
The items in the file list. Synonymous with the XmNlistItems resource in Selec-
tionBox. This resource is set only by the file search procedure. A call to XtGet-
Values () returns the actual list items (not a copy), so don’t have your
application free these items.

XmNfileListItemCount
The number of items in XmNfileListItems. Synonymous with the XmNlistItem-
Count resource in SelectionBox. This resource is set only by the file search pro-
cedure.

XmNfileListLabelString
The string that labels the file list. Synonymous with the XmNlistLabelString
resource in SelectionBox. In Motif 1.2, the default value is locale-dependent. In
the C locale, and in Motif 1.1, the default value is "Files".

XmNfileSearchProc
The procedure that performs file searches. For most applications, the default pro-
cedure works just fine. The call to this procedure contains two arguments: the
widget ID of the FileSelectionBox and a pointer to an XmFileSelectionBoxCall-
backStruct.

XmNfileTypeMask
Determines whether the file list will display only regular files, only directories, or
any type of file. Possible values are XmFILE_DIRECTORY,
XmFILE_REGULAR, and XmFILE_ANY_TYPE.

XmFileSelectionBox Motif and Xt Widget Classes

714 Motif Reference Manual

XmNfilterLabelString
The string that labels the field in which the directory mask is typed in by the user.
In Motif 1.2, the default value is locale-dependent. In the C locale, and in Motif
1.1, the default value is "Filter".

XmNlistUpdated
A resource that can be set only by the directory search procedure or by the file
search procedure. This resource is set to True if the directory or file list was
updated by a search procedure.

XmNnoMatchString
A string that displays in the file list when there are no filenames to display.

XmNpathMode
In Motif 2.0 and later, specifies the way in which the filter string is presented in
the file selection box. The layout can either contain a single text field for the fil-
ter, as specified by the XmNdirMask resource, or two separate text fields contain-
ing the XmNpattern and XmNdirectory resources. Possible values:

XmPATH_MODE_FULL /* single text field for XmNdirMask */
XmPATH_MODE_RELATIVE /* 2 text fields for XmNpattern/XmNdirectory */

When XmNpathMode is XmPATH_MODE_RELATIVE, the text field associated
with the XmNpattern resource is labelled using the value of the XmNfilterLabel-
String resource, and the text field associated with the XmNdirectory resource is
labelled from the XmNdirTextLabelString value.

XmNpattern
The file search pattern that, in combination with XmNdirectory, forms the direc-
tory mask (the XmNdirMask resource). The directory mask determines which
files and directories to display. If the XmNpattern resource defaults to NULL or
is empty, a pattern for matching all files will be used.

XmNqualifySearchDataProc
The procedure that generates a valid directory mask, base directory, and search
pattern to be used by XmNdirSearchProc and XmNfileSearchProc (the search
procedures for directories and files). For most applications, the default procedure
works just fine. The call to this procedure contains three arguments: the widget
ID of the FileSelectionBox, a pointer to an XmFileSelectionBoxCallbackStruct
containing the input data, and a pointer to an XmFileSelectionBoxCallbackStruct
that will contain the output data.

Motif and Xt Widget Classes XmFileSelectionBox

Motif Reference Manual 715

Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /* reason that the callback was called */
XEvent *event; /* event that triggered callback */
XmString value; /* current value of XmNdirSpec resource */
int length; /* number of bytes in value member */
XmString mask; /* current value of XmNdirMask resource */
int mask_length; /* number of bytes in mask member */
XmString dir; /* current base directory */
int dir_length; /* number of bytes in dir member */
XmString pattern; /* current search pattern */
int pattern_length; /* number of bytes in pattern member */

} XmFileSelectionBoxCallbackStruct;

Inherited Resources
FileSelectionBox inherits the following resources. The resources are listed alpha-
betically, along with the superclass that defines them. FileSelectionBox sets the
default values of XmNautoUnmanage to False and XmNdialogType to
XmDIALOG_FILE_SELECTION. It also sets the default values of XmNlist-
Items and XmNlistItemCount dynamically. The default value of XmNborder-
Width is reset to 0 by Manager. BulletinBoard sets the value of XmNinitialFocus
to XmNdefaultButton and resets the default XmNshadowThickness from 0 to 1 if
the FileSelectionBox is a child of a DialogShell.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNlistItemCount XmSelectionBox

XmNallowOverlap XmBulletinBoard XmNlistItems XmSelectionBox

XmNancestorSensitive Core XmNlistLabelString XmSelectionBox

XmNapplyCallback XmSelectionBox XmNlistVisibleItemCount XmSelectionBox

XmNapplyLabelString XmSelectionBox XmNmapCallback XmBulletinBoard

XmNautoUnmanage XmBulletinBoard XmNmappedWhenManaged Core

XmNbackground Core XmNmarginHeight XmBulletinBoard

XmNbackgroundPixmap Core XmNmarginWidth XmBulletinBoard

XmNborderColor Core XmNminimizeButtons XmSelectionBox

XmNborderPixmap Core XmNmustMatch XmSelectionBox

XmNborderWidth Core XmNnavigationType XmManager

XmNbottomShadowColor XmManager XmNnoMatchCallback XmSelectionBox

XmNbottomShadowPixmap XmManager XmNnoResize XmBulletinBoard

XmFileSelectionBox Motif and Xt Widget Classes

716 Motif Reference Manual

Translations
The translations for FileSelectionBox are inherited from SelectionBox.

XmNbuttonFontList XmBulletinBoard XmNnumChildren Composite

XmNbuttonRenderTable XmBulletinBoard XmNokCallback XmSelectionBox

XmNcancelButton XmBulletinBoard XmNokLabelString XmSelectionBox

XmNcancelCallback XmSelectionBox XmNpopupHandlerCallback XmManager

XmNcancelLabelString XmSelectionBox XmNresizePolicy XmBulletinBoard

XmNchildren Composite XmNscreen Core

XmNchildPlacement XmSelectionBox XmNselectionLabelString XmSelectionBox

XmNcolormap Core XmNsensitive Core

XmNdefaultButton XmBulletinBoard XmNshadowThickness XmManager

XmNdefaultPosition XmBulletinBoard XmNshadowType XmBulletinBoard

XmNdepth Core XmNstringDirection XmManager

XmNdestroyCallback Core XmNtextAccelerators XmSelectionBox

XmNdialogStyle XmBulletinBoard XmNtextColumns XmSelectionBox

XmNdialogTitle XmBulletinBoard XmNtextFontList XmBulletinBoard

XmNdialogType XmSelectionBox XmNtextRenderTable XmBulletinBoard

XmNfocusCallback XmBulletinBoard XmNtextString XmSelectionBox

XmNforeground XmManager XmNtextTranslations XmBulletinBoard

XmNheight Core XmNtopShadowColor XmManager

XmNhelpCallback XmManager XmNtopShadowPixmap XmManager

XmNhelpLabelString XmSelectionBox XmNtranslations Core

XmNhighlightColor XmManager XmNtraversalOn XmManager

XmNhighlightPixmap XmManager XmNunitType XmManager

XmNinitialFocus XmManager XmNunmapCallback XmBulletinBoard

XmNinitialResourcesPersistent Core XmNuserData XmManager

XmNinsertPosition Composite XmNwidth Core

XmNlabelFontList XmBulletinBoard XmNx Core

XmNlabelRenderTable XmBulletinBoard XmNy Core

XmNlayoutDirection XmManager

Resource Inherited From Resource Inherited From

Motif and Xt Widget Classes XmFileSelectionBox

Motif Reference Manual 717

Action Routines
FileSelectionBox defines the following action routines:

SelectionBoxUpOrDown(flag)
Replaces the selection text or the filter text, depending on which
one has the keyboard focus. That is, this action replaces either: the
text string in the selection area with an item from the file list, or the
text string in the directory mask (filter) area with an item from the
directory list.
The value of flag determines which file list item or which directory
list item is selected as the replacement string. A flag value of 0, 1, 2,
or 3 selects the previous, next, first, or last item, respectively, of the
appropriate list.

SelectionBoxRestore()
Replaces the selection text or the filter text, depending on which
one has the keyboard focus. That is, this action replaces either: the
text string in the selection area with the currently selected item in
the file list (clearing the selection area if no list item is selected), or
the text string in the filter area with a new directory mask (which is
formed by combining the values of the XmNdirectory and XmN--
pattern resources).

Additional Behavior
FileSelectionBox has the following additional behavior:

MAny KCancel
If the Cancel button is sensitive, invokes its XmNactivateCallback
callbacks. If there is no Cancel button, the event is passed to the
parent if it is a manager.

KActivate
In the filename text input area, first invokes the XmNactivateCall-
back callbacks for the text and then invokes either the XmNno-
MatchCallback or the XmNokCallback callbacks based on the
value of XmNmustMatch.

In the directory mask text input area, first invokes the XmNactivate-
Callback callbacks for the text and then starts a directory and file
search and invokes the XmNapplyCallback callbacks.

In the directory list, invokes the XmNdefaultActionCallback call-
back, begins a directory and file search, and invokes the XmNap-
plyCallback callbacks.

XmFileSelectionBox Motif and Xt Widget Classes

718 Motif Reference Manual

In the file list, invokes XmNdefaultActionCallback and XmNok-
Callback callbacks.

When neither of these areas nor any button has the keyboard focus,
it invokes the callbacks in either XmNnoMatchCallback or
XmNokCallback depending on the value of XmNmustMatch and
whether or not the selection text matches a file in the file list.

<DoubleClick>
In the directory or file list, has the same behavior as KActivate.

<Single Select> or <Browse Select>
In the directory list, composes a directory mask using the selected
directory item and the current pattern. In the file list, uses the
selected file item to replace the selection text.

BTransfer
In Motif 1.2, in the file or directory list, starts a drag and drop oper-
ation using the selected items in the list. If BTransfer is pressed
over an unselected item, only that item is used in the drag and drop
operation.

<Apply Button Activated>
Starts a directory and file search and invokes the XmNapplyCall-
back callbacks.

<Ok Button Activated>
Invokes either the XmNnoMatchCallback or XmNokCallback call-
backs based on the value of XmNmustMatch and whether or not the
selection text matches a file in the file list.

<Cancel Button Activated>
Invokes the XmNcancelCallback callbacks.

<Help Button Activated>
Invokes the XmNhelpCallback callbacks.

See Also
XmCreateObject (1), XmFileSelectionBoxGetChild (1),
XmFileSelectionDoSearch (1), Composite (2), Constraint (2),
Core (2), XmBulletinBoard (2), XmFileSelectionDialog (2),
XmManager(2), XmSelectionBox (2).

Motif and Xt Widget Classes XmFileSelectionDialog

Motif Reference Manual 719

Name
XmFileSelectionDialog – an unmanaged FileSelectionBox as a child of a Dialog
Shell.

Synopsis

Public Header:
<Xm/FileSB.h>

Instantiation:
widget = XmCreateFileSelectionDialog(...)

Functions/Macros:
XmCreateFileSelectionBox (), XmFileSelectionBoxGetChild (),
XmCreateFileSelectionDialog (), XmFileSelectionDoSearch (),
XmIsFileSelectionBox ()

Description
An XmFileSelectionDialog is a compound object created by a call to XmCreate-
FileSelectionDialog() that an application can use to allow a user to select a file
from a dialog box. A FileSelectionDialog consists of a DialogShell with an
unmanaged FileSelectionBox widget as its child. The SelectionBox resource
XmNdialogType is set to XmDIALOG_FILE_SELECTION.

A FileSelectionDialog provides a directory mask input field, a scrollable list of
subdirectories, a scrollable list of filenames, a filename input field, and a group of
four PushButtons. In Motif 1.2, the button labels can be localized. In the C
locale, and in Motif 1.1, the PushButtons are labelled OK , Filter , Cancel, and
Help by default.

Default Resource Values
A FileSelectionDialog sets the following default values for its resources:

Widget Hierarchy
When a FileSelectionDialog is created with a specified name, the DialogShell is
named name_popup and the FileSelectionBox is called name.

See Also
XmCreateObject (1), XmFileSelectionBoxGetChild (1),
XmFileSelectionDoSearch (1), XmFileSelectionBox (2),
XmDialogShell (2).

Name Default

XmNdialogType XmDIALOG_FILE_SELECTION

XmForm Motif and Xt Widget Classes

720 Motif Reference Manual

Name
XmForm widget class – a container widget that constrains its children.

Synopsis

Public Header:
<Xm/Form.h>

Class Name:
XmForm

Class Hierarchy:
Core → Composite → Constraint → XmManager → XmBulletinBoard →
XmForm

Class Pointer:
xmFormWidgetClass

Instantiation:
widget = XmCreateForm (parent, name,...)
or
widget = XtCreateWidget (name, xmFormWidgetClass,...)

Functions/Macros:
XmCreateForm (), XmCreateFormDialog (), XmIsForm ()

Description
Form is a container widget that constrains its children so as to define their layout
when the Form is resized. Constraints on the children of a Form specify the
attachments for each of the four sides of a child. Children may be attached to
each other, to edges of the Form, or to relative positions within the Form.

New Resources
Form defines the following resources:

XmNfractionBase
The denominator part of the fraction that describes a child’s relative position
within a Form. The numerator of this fraction is one of the four positional con-
straint resources: XmNbottomPosition, XmNleftPosition, XmNrightPosition, or
XmNtopPosition. For example, suppose you use the default XmNfractionBase of
100. Then, if you specify XmNtopPosition as 30, the top of the child will remain

Name Class Type Default Access

XmNfractionBase XmCMaxValue int 100 CSG

XmNhorizontalSpacing XmCSpacing Dimension 0 CSG

XmNrubberPositioning XmCRubberPositioning Boolean False CSG

XmNverticalSpacing XmCSpacing Dimension 0 CSG

Motif and Xt Widget Classes XmForm

Motif Reference Manual 721

invariably attached to a location that is 30/100 (or 30 percent) from the top of the
Form. (In other words, resizing the Form’s height might change the absolute
position of the child’s top, but not its position relative to the top of the Form.)
Similarly, a value of 50 for XmNleftPosition ensures that the left side of the child
is attached 50/100 from the left of the Form (or in this case, halfway between the
left and right side). Note that these fractions are implemented only when the
child’s corresponding attachment constraint is set to XmATTACH_POSITION.
(The attachment constraints are XmNbottomAttachment, XmNleftAttachment,
XmNrightAttachment, and XmNtopAttachment.)

XmNhorizontalSpacing
The offset for right and left attachments.

XmNrubberPositioning
Defines the default behavior of a child’s top and left side, in the absence of other
settings. If this resource is False (default), the child’s top and left sides are posi-
tioned using absolute values. If True, the child’s top and left sides are positioned
relative to the size of the Form.

XmNverticalSpacing
The offset for top and bottom attachments.

New Constraint Resources
Form defines the following constraint resources for its children:

Name Class Type Default Access

XmNbottomAttachment XmCAttachment unsigned char XmATTACH_NONE CSG

XmNbottomOffset XmCOffset int 0 CSG

XmNbottomPosition XmCAttachment int 0 CSG

XmNbottomWidget XmCWidget Widget NULL CSG

XmNleftAttachment XmCAttachment unsigned char XmATTACH_NONE CSG

XmNleftOffset XmCOffset int 0 CSG

XmNleftPosition XmCAttachment int 0 CSG

XmNleftWidget XmCWidget Widget NULL CSG

XmNresizable XmCBoolean Boolean True CSG

XmNrightAttachment XmCAttachment unsigned char XmATTACH_NONE CSG

XmNrightOffset XmCOffset int 0 CSG

XmNrightPosition XmCAttachment int 0 CSG

XmNrightWidget XmCWidget Widget NULL CSG

XmNtopAttachment XmCAttachment unsigned char XmATTACH_NONE CSG

XmNtopOffset XmCOffset int 0 CSG

XmForm Motif and Xt Widget Classes

722 Motif Reference Manual

XmNbottomAttachment
The method of attachment for the child’s bottom side. Each of the four attach-
ment resources (XmNtopAttachment, XmNbottomAttachment, XmNleftAttach-
ment, and XmNrightAttachment) has the following possible values. The
comments below refer to a corresponding edge (top, bottom, left, or right) of the
child widget within the Form.

XmATTACH_NONE /* remains unattached */
XmATTACH_FORM /* attached to same edge of Form */
XmATTACH_OPPOSITE_FORM /* attached to other edge of Form */
XmATTACH_WIDGET /* abuts an adjacent widget */
XmATTACH_OPPOSITE_WIDGET /* attached to other edge of adjacent */

/* widget */
XmATTACH_POSITION /* relative to a dimension of Form */
XmATTACH_SELF /* relative to its current position and*/

/* to Form */

XmNbottomOffset
The distance between the child’s bottom side and the object it’s attached to. Off-
sets are absolute. Offsets are of type int and may not be resolution-independent.

XmNbottomPosition
Used in conjunction with XmNfractionBase to calculate the position of the bot-
tom of a child, relative to the bottom of the Form. This resource has no effect
unless the child’s XmNbottomAttachment resource is set to
XmATTACH_POSITION. (See XmNfractionBase for details.)

XmNbottomWidget
The name of the widget or gadget that serves as the attachment point for the bot-
tom of the child. To use this resource, set the XmNbottomAttachment resource to
either XmATTACH_WIDGET or XmATTACH_OPPOSITE_WIDGET.

XmNleftAttachment
The method of attachment for the child’s left side.

XmNleftOffset
The distance between the child’s left side and the object it’s attached to. Offsets
are absolute. Offsets are of type int and may not be resolution-independent.

XmNtopPosition XmCAttachment int 0 CSG

XmNtopWidget XmCWidget Widget NULL CSG

Name Class Type Default Access

Motif and Xt Widget Classes XmForm

Motif Reference Manual 723

XmNleftPosition
Used in conjunction with XmNfractionBase to calculate the position of the left
side of a child, relative to the left side of the Form. This resource has no effect
unless the child’s XmNleftAttachment resource is set to
XmATTACH_POSITION. (See XmNfractionBase for details.)

XmNleftWidget
The name of the widget or gadget that serves as the attachment point for the left
side of the child. To use this resource, set the XmNleftAttachment resource to
either XmATTACH_WIDGET or XmATTACH_OPPOSITE_WIDGET.

XmNresizable
If True (default), a child’s resize request is accepted by the Form, provided that
the child isn’t constrained by its attachments. That is, if both the left and right
sides of a child are attached, or if both the top and bottom are attached, the resize
request fails, whereas if the child has only one horizontal or one vertical attach-
ment, the resize request is granted. If this resource is False, the child is never
resized.

XmNrightAttachment
The method of attachment for the child’s right side.

XmNrightOffset
The distance between the child’s right side and the object it’s attached to. Offsets
are absolute. Offsets are of type int and may not be resolution-independent.

XmNrightPosition
Used in conjunction with XmNfractionBase to calculate the position of the right
side of a child, relative to the right side of the Form. This resource has no effect
unless the child’s XmNrightAttachment resource is set to
XmATTACH_POSITION. (See XmNfractionBase for details.)

XmNrightWidget
The name of the widget or gadget that serves as the attachment point for the right
side of the child. To use this resource, set the XmNrightAttachment resource to
either XmATTACH_WIDGET or XmATTACH_OPPOSITE_WIDGET.

XmNtopAttachment
The method of attachment for the child’s top side.

XmNtopOffset
The distance between the child’s top side and the object it’s attached to. Offsets
are absolute. Offsets are of type int and may not be resolution-independent.

XmNtopPosition
Used in conjunction with XmNfractionBase to calculate the position of the top of
a child, relative to the top of the Form. This resource has no effect unless the
child’s XmNtopAttachment resource is set to XmATTACH_POSITION. (See
XmN-fraction-Base for details.)

XmForm Motif and Xt Widget Classes

724 Motif Reference Manual

XmNtopWidget
The name of the widget or gadget that serves as the attachment point for the top
of the child. To use this resource, set the XmNtopAttachment resource to either
XmATTACH_WIDGET or XmATTACH_OPPOSITE_WIDGET.

Inherited Resources
Form inherits the following resources. The resources are listed alphabetically,
along with the superclass that defines them. Form sets the default values of XmN-
marginWidth and XmN-margin-Height to 0. The default value of XmNborder-
Width is reset to 0 by Manager. BulletinBoard sets the value of XmNinitialFocus
to XmNdefaultButton and resets the default XmNshadowThickness from 0 to 1 if
the Form widget is a child of DialogShell.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNlabelFontList XmBulletinBoard

XmNallowOverlap XmBulletinBoard XmNlabelRenderTable XmBulletinBoard

XmNancestorSensitive Core XmNlayoutDirection XmManager

XmNautoUnmanage XmBulletinBoard XmNmapCallback XmBulletinBoard

XmNbackground Core XmNmappedWhenManaged Core

XmNbackgroundPixmap Core XmNmarginHeight XmBulletinBoard

XmNborderColor Core XmNmarginWidth XmBulletinBoard

XmNborderPixmap Core XmNnavigationType XmManager

XmNborderWidth Core XmNnoResize XmBulletinBoard

XmNbottomShadowColor XmManager XmNnumChildren Composite

XmNbottomShadowPixmap XmManager XmNpopupHandlerCallback XmManager

XmNbuttonFontList XmBulletinBoard XmNresizePolicy XmBulletinBoard

XmNbuttonRenderTable XmBulletinBoard XmNscreen Core

XmNcancelButton XmBulletinBoard XmNsensitive Core

XmNchildren Composite XmNshadowThickness XmManager

XmNcolormap Core XmNshadowType XmBulletinBoard

XmNdefaultButton XmBulletinBoard XmNstringDirection XmManager

XmNdefaultPosition XmBulletinBoard XmNtextFontList XmBulletinBoard

XmNdepth Core XmNtextRenderTable XmBulletinBoard

XmNdestroyCallback Core XmNtextTranslations XmBulletinBoard

XmNdialogStyle XmBulletinBoard XmNtopShadowColor XmManager

XmNdialogTitle XmBulletinBoard XmNtopShadowPixmap XmManager

XmNfocusCallback XmBulletinBoard XmNtranslations Core

XmNforeground XmManager XmNtraversalOn XmManager

Motif and Xt Widget Classes XmForm

Motif Reference Manual 725

Translations
The translations for Form are inherited from XmBulletinBoard.

See Also
XmCreateObject (1), Composite (2), Constraint (2), Core (2),
XmBulletinBoard (2), XmFormDialog (2), XmManager(2).

XmNheight Core XmNunitType XmManager

XmNhelpCallback XmManager XmNunmapCallback XmBulletinBoard

XmNhighlightColor XmManager XmNuserData XmManager

XmNhighlightPixmap XmManager XmNwidth Core

XmNinitialFocus XmManager XmNx Core

XmNinitialResourcesPersistent Core XmNy Core

XmNinsertPosition Composite

Resource Inherited From Resource Inherited From

XmFormDialog Motif and Xt Widget Classes

726 Motif Reference Manual

Name
XmFormDialog – an unmanaged Form as a child of a DialogShell.

Synopsis

Public Header:
<Xm/Form.h>

Instantiation:
widget = XmCreateFormDialog(...)

Functions/Macros:
XmCreateFormDialog ()

Description
An XmFormDialog is a compound object created by a call to XmCreateForm-
Dialog () that is useful for creating custom dialogs. A FormDialog consists of a
DialogShell with an unmanaged Form widget as its child. The FormDialog does
not contain any labels, buttons, or other dialog components; these components
are added by the application.

Widget Hierarchy
When a FormDialog is created with a specified name, the DialogShell is named
name_popup and the Form is called name.

See Also
XmCreateObject (1), XmDialogShell (2), XmForm(2).

Motif and Xt Widget Classes XmFrame

Motif Reference Manual 727

Name
XmFrame widget class – a manager widget that places a border around a single
child.

Synopsis

Public Header:
<Xm/Frame.h>

Class Name:
XmFrame

Class Hierarchy:
Core → Composite → Constraint → XmManager → XmFrame

Class Pointer:
xmFrameWidgetClass

Instantiation:
widget = XmCreateFrame (parent, name,...)
or
widget = XtCreateWidget (name, xmFrameWidgetClass,...)

Functions/Macros:
XmCreateFrame (), XmIsFrame ()

Description
Frame is a simple subclass of Manager that places a three-dimensional border
around a single child. Frame is used to provide the typical Motif-style appearance
for widget classes that do not have a visible frame, such as RowColumn.

As of Motif 1.2, a Frame can have two children: a work area child and a title
child. The widget uses constraint resources to indicate the type of each child and
to specify the alignment of the title child.

New Resources
Frame defines the following resources:

XmNmarginHeight
The spacing between the top or bottom of a Frame widget’s child and the shadow
of the Frame widget.

Name Class Type Default Access

XmNmarginHeight XmCMarginHeight Dimension 0 CSG

XmNmarginWidth XmCMarginWidth Dimension CSG

XmNshadowType XmCShadowType unsigned char dynamic CSG

XmFrame Motif and Xt Widget Classes

728 Motif Reference Manual

XmNmarginWidth
The spacing between the right or left side of a Frame widget’s child and the
shadow of the Frame widget.

XmNshadowType
The style in which Frame widgets are drawn. Possible values:

XmSHADOW_IN /* widget appears inset */
XmSHADOW_OUT /* widget appears outset */
XmSHADOW_ETCHED_IN /* double line; widget appears inset */
XmSHADOW_ETCHED_OUT /* double line; widget appears raised */

New Constraint Resources
As of Motif 1.2, Frame defines the following constraint resources for its children:

XmNchildType
The type of the child. Frame supports one title and one work area child. Possible
values:

XmFRAME_TITLE_CHILD /* child is the title */
XmFRAME_WORKAREA_CHILD /* child is the work area */
XmFRAME_GENERIC_CHILD /* child is ignored */

From Motif 2.0 and later, the XmNchildType resource is deprecated, and the
XmNframeChildType resource is the preferred method.

XmNchildHorizontalAlignment
The alignment (left to right) for a Frame’s title. Possible values are:

XmALIGNMENT_BEGINNING
XmALIGNMENT_CENTER
XmALIGNMENT_END

XmNchildHorizontalSpacing
The minimum distance between the title text and the Frame shadow. The title is
clipped to maintain this distance. The value of XmNmarginWidth is used as the
default value.

Name Class Type Default Access

XmNchildType XmCChildType unsigned char XmFRAME_WORKAREA_CHILD CSG

XmNchildHorizontalAlignment XmCChildHorizontalAlignment unsigned char XmALIGNMENT_BEGINNING CSG

XmNchildHorizontalSpacing XmCChildHorizontalSpacing Dimension dynamic CSG

XmNchildVerticalAlignment XmCChildVerticalAlignment unsigned char XmALIGNMENT_CENTER CSG

XmNframeChildType XmCFrameChildType unsigned char XmFRAME_WORKAREA_CHILD CSG

Motif and Xt Widget Classes XmFrame

Motif Reference Manual 729

XmNchildVerticalAlignment
The alignment of the Frame’s title relative to the top shadow of the Frame. Possi-
ble values:

XmALIGNMENT_BASELINE_BOTTOM
XmALIGNMENT_BASELINE_TOP
XmALIGNMENT_WIDGET_TOP
XmALIGNMENT_CENTER
XmALIGNMENT_WIDGET_BOTTOM

XmNframeChildType
Introduced in Motif 2.0 as part of a rationalization in the naming of constraint
resources. The behavior of the XmNframeChildType resource is identical in all
respects to the XmNchildType resource, which is now deprecated.

Inherited Resources
Frame inherits the following resources. The resources are listed alphabetically,
along with the superclass that defines them. Frame sets the default value of
XmNshadowThickness to 1 if the Frame is a child of a Shell and 2 otherwise.
The default value of XmNborderWidth is reset to 0 by Manager.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNinsertPosition Composite

XmNancestorSensitive Core XmNlayoutDirection XmManager

XmNbackground Core XmNmappedWhenManaged Core

XmNbackgroundPixmap Core XmNnavigationType XmManager

XmNborderColor Core XmNnumChildren Composite

XmNborderPixmap Core XmNpopupHandlerCallback XmManager

XmNborderWidth Core XmNscreen Core

XmNbottomShadowColor XmManager XmNsensitive Core

XmNbottomShadowPixmap XmManager XmNshadowThickness XmManager

XmNchildren Composite XmNstringDirection XmManager

XmNcolormap Core XmNtopShadowColor XmManager

XmNdepth Core XmNtopShadowPixmap XmManager

XmNdestroyCallback Core XmNtranslations Core

XmNforeground XmManager XmNtraversalOn XmManager

XmNheight Core XmNunitType XmManager

XmNhelpCallback XmManager XmNuserData XmManager

XmNhighlightColor XmManager XmNwidth Core

XmNhighlightPixmap XmManager XmNx Core

XmFrame Motif and Xt Widget Classes

730 Motif Reference Manual

Translations
The translations for Frame are inherited from XmManager.

See Also
XmCreateObject (1), Composite (2), Constraint (2), Core (2),
XmManager(2).

XmNinitialFocus XmManager XmNy Core

XmNinitialResourcesPersistent Core

Resource Inherited From Resource Inherited From

Motif and Xt Widget Classes XmGadget

Motif Reference Manual 731

Name
XmGadget widget class – the fundamental class for windowless widgets.

Synopsis

Public Header:
<Xm/Xm.h>

Class Name:
XmGadget

Class Hierarchy:
Object → RectObj → XmGadget

Class Pointer:
xmGadgetClass

Instantiation:
Gadget is a meta-class and is not normally instantiated.

Functions/Macros:
XmIsGadget ()

Description
Gadget is a supporting superclass for other gadget classes. Gadget takes care of
drawing and highlighting border shadows as well as managing traversal.

In versions of Motif prior to 2.0, a gadget is drawn using pixmap and color
resources taken from the Manager parent. Changing such a resource in a Man-
ager (for example, XmNforeground) also affects all gadget children. Gadgets
sharing the same parent therefore also share the same general appearance.

In Motif 2.0 and later, the Gadget class supports independent appearance
resources. For example, Gadgets sharing the same parent can have different
XmNforeground values. Where a particular appearance resource is unspecified
for a Gadget, the default value is taken from the Manager parent.

Traits
Gadget holds the XmQTspecifyLayoutDirection, XmQTaccessColors, and
XmQTspecifyUnitType traits, which are inherited by any derived classes, and
uses the XmQTspecifyUnhighlight trait.

XmGadget Motif and Xt Widget Classes

732 Motif Reference Manual

New Resources
Gadget defines the following resources:

XmNbackground
In Motif 2.0 and later, specifies the background color for the Gadget.

XmNbackgroundPixmap
In Motif 2.0 and later, specifies the background pixmap for tiling the Gadget. The
default is XmUNSPECIFIED_PIXMAP.

XmNbottomShadowColor
Specifies the color used in drawing the border shadow’s bottom and right sides.

XmNbottomShadowPixmap
In Motif 2.0 and later, specifies the pixmap for drawing the bottom and right
sides of the Gadget border shadow.

Name Class Type Default Access

XmNbackground XmCBackground Pixel dynamic CSG

XmNbackgroundPixmap XmCPixmap Pixmap XmUNSPECIFIED_PIXMAP CSG

XmNbottomShadowColor XmCBottomShadowColor Pixel dynamic CSG

XmNbottomShadowPixmap XmCBottomShadowPixmap Pixmap dynamic CSG

XmNforeground XmCForeground Pixel dynamic CSG

XmNhighlightColor XmCHighlightColor Pixel dynamic CSG

XmNhighlightOnEnter XmCHighlightOnEnter Boolean False CSG

XmNhighlightPixmap XmCHighlightPixmap Pixmap dynamic CSG

XmNhighlightThickness XmCHighlightThickness Dimension dynamic CSG

XmNlayoutDirection XmCLayoutDirection unsigned char dynamic CG

XmNnavigationType XmCNavigationType unsigned char XmNONE CSG

XmNshadowThickness XmNShadowThickness Dimension dynamic CSG

XmNtopShadowColor XmCTopShadowColor Pixel dynamic CSG

XmNtopShadowPixmap XmCTopShadowPixmap Pixmap dynamic CSG

XmNtraversalOn XmCTraversalOn Boolean True CSG

XmNunitType XmCUnitType unsigned char dynamic CSG

XmNuserData XmCUserData XtPointer NULL CSG

Motif and Xt Widget Classes XmGadget

Motif Reference Manual 733

XmNforeground
In Motif 2.0 and later, specifies the foreground color for the Gadget.

XmNhighlightColor
Specifies the color used in drawing the highlighting rectangle.

XmNhighlightOnEnter
Determines whether to draw a gadget’s highlighting rectangle whenever the cur-
sor moves into the gadget. This resource applies only when the shell has a focus
policy of XmPOINTER. If the XmNhighlightOnEnter resource is True, high-
lighting is drawn; if False (default), highlighting is not drawn.

XmNhighlightPixmap
In Motif 2.0 and later, specifies the pixmap used for drawing the highlighting rec-
tangle.

XmNhighlightThickness
The thickness of the highlighting rectangle. In Motif 2.0 and earlier, the default is
2. In Motif 2.1 and later, the default depends upon the XmDisplay XmNenab-
leThinThickness resource: if True, the default is 1, otherwise 2.

XmNlayoutDirection
In Motif 2.0 and later, specifies the direction in which components (for example,
strings) of the Gadget are laid out. If unspecified, the value is inherited from the
Manager parent, or from the nearest ancestor which has the XmQTspecifyLay-
outDirection trait. Possible values:

XmLEFT_TO_RIGHT XmRIGHT_TO_LEFT

XmNnavigationType
Determines the way in which gadgets are to be traversed during keyboard naviga-
tion. Possible values:

XmNONE /* exclude from keyboard navigation */
/* (default for non-shell parent) */

XmTAB_GROUP /* include in keyboard navigation */
/* (default when parent is a shell) */

XmSTICKY_TAB_GROUP /* include in keyboard navigation, even if */
/* XmAddTabGroup() was called */

XmEXCLUSIVE_TAB_GROUP /* application defines order of navigation */

XmNshadowThickness
The thickness of the shadow border. In Motif 2.0 and earlier, the default is 2. In
Motif 2.1 and later, the default depends upon the XmDisplay XmNenableThin-
Thickness resource: if True, the default is 1, otherwise 2.

XmNtopShadowColor
Specifies the color used in drawing the border shadow’s top and left sides.

XmGadget Motif and Xt Widget Classes

734 Motif Reference Manual

XmNtopShadowPixmap
In Motif 2.0 and later, specifies the pixmap used in drawing the border shadow’s
top and left sides.

XmNtraversalOn
If True (default), traversal of this gadget is made possible.

XmNunitType
The measurement units to use in resources that specify a size or position--for
example, any resources of data type Dimension (whose names generally include
one of the words "Margin" or "Thickness"). For a gadget whose parent is a
XmManager subclass, the default value is copied from this parent (provided the
value hasn’t been explicitly set by the application); otherwise, the default is
XmPIXELS. Possible values:

XmPIXELS Xm100TH_POINTS
Xm100TH_MILLIMETERS Xm100TH_FONT_UNITS
Xm1000TH_INCHES
XmINCHES (2.0)
XmPOINTS (2.0)
XmFONT_UNITS (2.0)

XmNuserData
A pointer to data that the application can attach to the gadget. This resource is
unused internally.

Callback Resources
Gadget defines the following callback resources:

XmNhelpCallback
List of callbacks that are called when help is requested.

Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /* the reason that the callback was called */
XEvent *event; /* event structure that triggered callback */

} XmAnyCallbackStruct;

Callback Reason Constant

XmNhelpCallback XmCR_HELP

Motif and Xt Widget Classes XmGadget

Motif Reference Manual 735

Inherited Resources
Gadget inherits the following resources. The resources are listed alphabetically,
along with the superclass that defines them. Gadget resets the default value of
XmNborderWidth from 1 to 0.

Behavior
Since Gadgets cannot have translations associated with them, a Gadget’s behav-
ior is controlled by the XmManager widget that contains the Gadget. If a Gadget
has the keyboard focus, the XmManager handles passing events to the Gadget.

See Also
Object (2), RectObj (2), XmManager(2), XmScreen (2).

Name Inherited From

XmNancestorSensitive RectObj

XmNborderWidth RectObj

XmNdestroyCallback Object

XmNheight RectObj

XmNsensitive RectObj

XmNwidth RectObj

XmNx RectObj

XmNy RectObj

XmGrabShell Motif and Xt Widget Classes

736 Motif Reference Manual

Name
XmGrabShell widget class – a popup shell that grabs the keyboard and pointer
when mapped

Synopsis

Public Header:
<Xm/GrabShell.h>

Class Name:
XmGrabShell

Class Hierarchy:
Core → Composite → Shell → WMShell → VendorShell → XmGrabShell

Class Pointer:
xmGrabShellWidgetClass

Instantiation:
widget = XmCreateGrabShell (parent, name,...)
or

widget = XtCreatePopupShell 1 (name, xmGrabShellWidgetClass,...)
Functions/Macros:

XmCreateGrabShell (), XmIsGrabShell ()

Availability
Motif 2.0 and later.

Description
GrabShell is a shell widget which grabs the pointer and keyboard when it is
mapped. The purpose of this is to provide a popup which immediately directs
focus to its child. The ComboBox widget utilizes this feature in implementing its
popup List.

Although GrabShell is an internal widget used by the ComboBox, it has a public
interface, and is therefore available for use.

New Resources
GrabShell defines the following resources:

1.More precise than XtCreateWidget as given in 2nd edition.

Name Class Type Default Access

XmNbottomShadowColor XmCBottomShadowColor Pixel dynamic CSG

XmNbottomShadowPixmap XmCBottomShadowPixmap Pixmap XmUNSPECIFIED_PIXMAP CSG

Motif and Xt Widget Classes XmGrabShell

Motif Reference Manual 737

XmNbottomShadowColor
The color used in drawing the border shadow’s bottom and right sides, but only if
XmNbottomShadowPixmap is NULL.

XmNbottomShadowPixmap
The pixmap used in drawing the border shadow’s bottom and right sides.

XmNgrabStyle

Controls the further processing of pointer events once the grab has been initiated.
Possible values:

GrabModeSync GrabModeAsync

Refer to Xlib documentation on XGrabKeyboard () and XGrabPointer ()
for more information.

XmNownerEvents
Specifies whether pointer or keyboard events are reported normally within the
application, or only to the GrabShell window. Refer to Xlib documentation on
XGrabKeyboard () and XGrabPointer () for more information.

XmNshadowThickness
The thickness of the shadow border.

XmNtopShadowColor
The color used in drawing the border shadow’s top and left sides, but only if
XmNtopShadowPixmap is NULL.

XmNtopShadowPixmap
The pixmap used in drawing the border shadow’s top and left sides.

Inherited Resources
GrabShell inherits the resources shown below. The resources are listed alphabeti-
cally, along with the superclass that defines them. GrabShell resets XmNallow-
ShellResize to True, XmNoverrideRedirect to True, XmNtransient to True,
XmNwaitForWm to False, and XmNsaveUnder to False.

XmNgrabStyle XmCGrabStyle int GrabModeAsync CSG

XmNownerEvents XmCOwnerEvents Boolean False CSG

XmNshadowThickness XmCShadowThickness Dimension 2 CSG

XmNtopShadowColor XmCTopShadowColor Pixel dynamic CSG

XmNtopShadowPixmap XmCTopShadowPixmap Pixmap dynamic CSG

Name Class Type Default Access

XmGrabShell Motif and Xt Widget Classes

738 Motif Reference Manual

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNmaxAspectX WMShell

XmNallowShellResize Shell XmNmaxAspectY WMShell

XmNancestorSensitive Core XmNmaxHeight WMShell

XmNaudibleWarning VendorShell XmNmaxWIdth WMShell

XmNbackground Core XmNminAspectX WMShell

XmNbackgroundPixmap Core XmNminAspectY WMShell

XmNbaseHeight WMShell XmNminHeight WMShell

XmNbaseWidth WMShell XmNminWidth WMShell

XmNborderColor Core XmNmwmDecorations VendorShell

XmNborderPixmap Core XmNmwmFunctions VendorShell

XmNborderWidth Core XmNmwmInputMode VendorShell

XmNbuttonFontList VendorShell XmNmwmMenu VendorShell

XmNbuttonRenderTable VendorShell XmNnumChildren Composite

XmNchildren Composite XmNoverrideRedirect Shell

XmNcolormap Core XmNpopdownCalback Shell

XmNcreatePopupChildProc Shell XmNpopupCallback Shell

XmNdefaultFontList VendorShell XmNpreeditType VendorShell

XmNdeleteResponse VendorShell XmNsaveUnder Shell

XmNdepth Core XmNscreen Core

XmNdestroyCallback Core XmNsensitive Core

XmNgeometry Shell XmNshellUnitType VendorShell

XmNheight Core XmNtextFontList VendorShell

XmNheightInc WMShell XmNtextRenderTable VendorShell

XmNiconMask WMShell XmNtitle WMShell

XmNiconPixmap WMShell XmNtitleEncoding WMShell

XmNiconWindow WMShell XmNtransient WMShell

XmNinitialResourcesPersistent Core XmNtranslations Core

XmNinitialState WMShell XmNvisual Shell

XmNinput WMShell XmNwaitForWm WMShell

XmNinputMethod VendorShell XmNwidth Core

XmNinputPolicy VendorShell XmNwidthInc WMShell

XmNinsertPosition Composite XmNwindowGroup WMShell

XmNkeyboardFocusPolicy VendorShell XmNwinGravity WMShell

Motif and Xt Widget Classes XmGrabShell

Motif Reference Manual 739

Translations
The translations for GrabShell include those of WMShell.

Action Routines
GrabShell defines the following action routines:

GrabShellBtnDown()
If the event occurs outside the coordinates of the GrabShell, the
widget is popped up, otherwise the event is ignored.

GrabShellBtnUp()
If the event occurs within the time specified by the multi-click inter-
val of the display, the action ignores the event. Otherwise, the Grab-
Shell is popped down.

GrabShellPopdown()
Grabs placed upon the pointer and keyboard are released, the Grab-
Shell is unmapped, and the focus is reverted to the previous owner.

See Also
XmCreateObject (1), Composite (2), Core (2), Shell (2),
VendorShell (2), WMShell (2)

XmNlabelFontList VendorShell XmNwmTimeout WMShell

XmNlabelRenderTable VendorShell XmNx Core

XmNlayoutDirection VendorShell XmNy Core

XmNmappedWhenManaged Core

Event Action

BSelect Press GrabShellBtnDown()

BSelect Release GrabShellBtnUp()

Resource Inherited From Resource Inherited From

XmIconGadget Motif and Xt Widget Classes

740 Motif Reference Manual

Name
XmIconGadget widget class – a gadget for displaying both text and a pixmap

Synopsis

Public Header:
<Xm/IconG.h>

Class Name:
XmIconGadget

Class Hierarchy:
Object → RectObj → XmGadget → XmIconGadget

Class Pointer:
xmIconGadgetClass

Instantiation:
widget = XmCreateIconGadget (parent, name,...)
or
widget = XtCreateWidget (name, xmIconGadgetClass,...)

Functions/Macros:
XmCreateIconGadget(), XmIsIconGadget ()

Availability
Motif 2.0 and later.

Description
IconGadget is a gadget which can display both textual and pixmap information
simultaneously. The textual data can be either centered below the pixmap, or
placed to the side, depending upon the value of the XmNviewType resource. The
value XmLARGE_ICON centers below, and XmSMALL_ICON horizontally
aligns, the pixmap and textual information.

IconGadget is intended for use with the Container, which lays out IconGadget
children in various styles, in order to represent application objects of some kind.
In addition to the textual labelling, an IconGadget can be associated with an array
of detail information, which presumably represents attributes of the application
object, and which the Container parent can lay out relative to the IconGadget.

By default, the IconGadget will use its widget name for the XmNlabelString
resource. To display only an image, specify the appropriate pixmap resource, and
set the XmNlabelString resource to XmUNSPECIFIED. Alternatively, apply an
XmNlabelString resource which specifies a compound string with no text compo-
nent.

Motif and Xt Widget Classes XmIconGadget

Motif Reference Manual 741

Traits
IconGadget holds the XmQTcontainerItem, XmQTcareParentVisual, XmQT-
pointIn, and XmQTaccessColors traits, and uses the XmQTcontainer and XmQT-
specifyRenderTable traits. The XmQTpointIn trait is undocumented.

New Resources
IconGadget defines the following resources:

XmNalignment
In Motif 2.1, specifies the horizontal alignment of the textual and pixmap data.
Possible values:

XmALIGNMENT_BEGINNING
XmALIGNMENT_CENTER
XmALIGNMENT_END

Name Class Type Default Access

XmNalignment XmCAlignment unsigned char XmALIGNMENT_CENTER CSG

XmNdetail XmCDetail XmStringTable NULL CSG

XmNdetailCount XmCDetailCount Cardinal 0 CSG

XmNfontList XmCFontList XmFontList NULL CSG

XmNlabelString XmCLabelString XmString dynamic CSG

XmNlargeIconMask XmCIconMask Pixmap XmUNSPECIFIED_PIXMAP CSG

XmNlargeIconPixmap XmCIconPixmap Pixmap XmUNSPECIFIED_PIXMAP CSG

XmNmarginHeight XmCMarginHeight Dimension 2 CSG

XmNmarginWidth XmCMarginWidth Dimension 2 CSG

XmNrenderTable XmCRenderTable XmRenderTable dynamic CSG

XmNsmallIconMask XmCIconMask Pixmap XmUNSPECIFIED_PIXMAP CSG

XmNsmallIconPixmap XmCIconPixmap Pixmap XmUNSPECIFIED_PIXMAP CSG

XmNspacing XmCSpacing Dimension 4 CSG

XmNviewType XmCViewType unsigned char XmLARGE_ICON CSG

XmNvisualEmphasis XmCVisualEmphasis unsigned char XmNOT_SELECTED CSG

XmIconGadget Motif and Xt Widget Classes

742 Motif Reference Manual

XmNdetail
Specifies an array of compound strings, representing the detail information asso-
ciated with the IconGadget.

XmNdetailCount
Specifies the number of compound strings in XmNdetail.

XmNfontList
Specifies the font list associated with the IconGadget. In Motif 2.0 and later, the
XmFontList is an obsolete data type, and has been replaced by the XmRenderTa-
ble. The resource is maintained for backwards compatibility but implemented as
a render table. Any specified XmNrenderTable resource takes priority.

XmNlabelString
The compound string representing the textual data for labelling the IconGadget.
If unspecified, the value is constructed out of the name of the gadget.

XmNlargeIconMask
Specifies the icon mask used when XmNviewType is XmLARGE_ICON. This
resource must be a bitmap (a pixmap of depth 1).

XmNlargeIconPixmap
Specifies the pixmap used when XmNviewType is XmLARGE_ICON.

XmNmarginHeight
In Motif 2.1, specifies the vertical distance in pixels between the highlight rectan-
gle and the IconGadget contents.

XmNmarginWidth
In Motif 2.1, specifies the horizontal distance in pixels between the highlight rec-
tangle and the IconGadget contents.

XmNrenderTable
Specifies the XmRenderTable used for displaying textual data associated with the
IconGadget. If unspecified, the value is taken from the nearest ancestor which
holds the XmQTspecifyRenderTable trait, using the
XmLABEL_RENDER_TABLE value of any ancestor so found.

XmNsmallIconMask
Specifies the icon mask used when XmNviewType is XmSMALL_ICON. This
resource must be a bitmap (a pixmap of depth 1).

XmNsmallIconPixmap
Specifies the pixmap used when XmNviewType is XmSMALL_ICON.

XmNspacing
In Motif 2.1, specifies the distance in pixels between the textual and pixmap com-
ponents of the IconGadget.

Motif and Xt Widget Classes XmIconGadget

Motif Reference Manual 743

XmNviewType
Specifies the IconGadget layout style. If the parent of the IconGadget is a Con-
tainer, the view type is overridden by the value of the XmNentryViewType
resource of the parent if the value is not XmANY_ICON. If XmNviewType is
XmLARGE_ICON, the pixmap specified by XmNlargeIconPixmap is displayed
above the textual label, with the text centered upon the pixmap. If XmNviewType
is XmSMALL_ICON, the label is displayed either to the left or the right of the
pixmap, depending upon the XmNlayoutDirection resource.

XmNvisualEmphasis
Specifies whether the IconGadget is displayed in normal or selected state.

If the value is XmSELECTED, the gadget is rendered using the XmNselectColor
resource of the Container parent. XmNOT_SELECTED displays in normal state.

Inherited Resources
IconGadget inherits the following resources. The resources are listed alphabeti-
cally, along with the superclass that defines them.

See Also
XtCreateObject(1), Object (2), RectObj (2), XmGadget(2).

Resource Inherited From Resource Inherited From

XmNancestorSensitive RectObj XmNhighlightThickness XmGadget

XmNbackground XmGadget XmNlayoutDirection XmGadget

XmNbackgroundPixmap XmGadget XmNnavigationType XmGadget

XmNbottomShadowColor XmGadget XmNsensitive RectObj

XmNbottomShadowPixmap XmGadget XmNshadowThickness XmGadget

XmNborderWidth RectObj XmNtopShadowColor XmGadget

XmNdestroyCallback Object XmNtopShadowPixmap XmGadget

XmNforeground XmGadget XmNtraversalOn XmGadget

XmNheight RectObj XmNunitType XmGadget

XmNhelpCallback XmGadget XmNuserData XmGadget

XmNhighlightColor XmGadget XmNwidth RectObj

XmNhighlightOnEnter XmGadget XmNx RectObj

XmNhighlightPixmap XmGadget XmNy RectObj

XmInformationDialog Motif and Xt Widget Classes

744 Motif Reference Manual

Name
XmInformationDialog – an unmanaged MessageBox as a child of a DialogShell.

Synopsis

Public Header:
<Xm/MessageB.h>

Instantiation:
widget = XmCreateInformationDialog (...)

Functions/Macros:
XmCreateInformationDialog (), XmMessageBoxGetChild ()

Description
An XmInformationDialog is a compound object created by a call to XmCreateIn-
formationDialog() that an application can use to provide the user with informa-
tion. An InformationDialog consists of a DialogShell with an unmanaged
MessageBox widget as its child. The MessageBox resource XmNdialogType is
set to XmDIALOG_INFORMATION. An InformationDialog includes four
components: a symbol, a message, three buttons, and a separator between the
message and the buttons. By default, the symbol is a lowercase i. In Motif 1.2, the
default button labels can be localized. In the C locale, and in Motif 1.1, the Push-
Buttons are labelled OK , Cancel, and Help by default.

Default Resource Values
An InformationDialog sets the following default values for MessageBox
resources:

Widget Hierarchy
When an InformationDialog is created with a specified name, the DialogShell is
named name_popup and the MessageBox is called name.

See Also
XmCreateObject (1), XmMessageBoxGetChild (1),
XmDialogShell (2), XmMessageBox(2).

Name Default

XmNdialogType XmDIALOG_INFORMATION

XmNsymbolPixmap xm_informationa

a.Erroneously given as Xm_information in 2nd edition.

Motif and Xt Widget Classes XmLabel

Motif Reference Manual 745

Name
XmLabel widget class – a simple widget that displays a non-editable label.

Synopsis

Public Header:
<Xm/Label.h>

Class Name:
XmLabel

Class Hierarchy:
Core → XmPrimitive → XmLabel

Class Pointer:
xmLabelWidgetClass

Instantiation:
widget = XmCreateLabel (parent, name,...)
or
widget = XtCreateWidget (name, xmLabelWidgetClass,...)

Functions/Macros:
XmCreateLabel (), XmIsLabel ()

Description
Label provides a text string or a pixmap for labelling other widgets in an applica-
tion. Label is also a superclass for the various button widgets. Label does not
accept any button or key events, but it does receive enter and leave events.

Traits
Label holds the XmQTmenuSavvy, XmQTtransfer, and XmQTaccessTextual
traits, which are inherited by any derived classes, and uses the XmQTmenuSys-
tem and XmQTspecifyRenderTable traits.

New Resources
Label defines the following resources, where the access for every resource is
CSG:

Name Class Type Default Access

XmNaccelerator XmCAccelerator String NULL CSG

XmNacceleratorText XmCAcceleratorText XmString NULL CSG

XmNalignment XmCAlignment unsigned char dynamic CSG

XmNfontList XmCFontList XmFontList dynamic CSG

XmNlabelInsensitivePixmap XmCLabelInsensitivePixmap Pixmap XmUNSPECIFIED_PIXMAP CSG

XmNlabelPixmap XmCLabelPixmap Pixmap XmUNSPECIFIED_PIXMAP CSG

XmLabel Motif and Xt Widget Classes

746 Motif Reference Manual

XmNaccelerator
A string that describes a button widget’s accelerator (the modifiers and key to use
as a shortcut in selecting the button). The string’s format is like that of a transla-
tion but allows only a single key press event to be specified.

XmNacceleratorText
The text that is displayed for an accelerator.

XmNalignment
The alignment (left to right) for a label’s text or pixmap. Possible values are
XmALIGNMENT_BEGINNING, XmALIGNMENT_CENTER, and
XmALIGNMENT_END. In Motif 2.0 and later, the interpretation of alignment
depends upon the value of any inherited XmNlayoutDirection resource.

XmNfontList
The font list used for the widget’s text. From Motif 2.0 and later, the XmfontList
is an obsolete data type, and the Rendition Table is the preferred method of set-
ting appearance. Although maintained for backwards compatibility, the resource
is implemented through a render table. Any XmNrenderTable resource takes
precedence.

XmNlabelInsensitivePixmap
The pixmap label for an insensitive button (when XmNlabelType is XmPIX-
MAP).

XmNlabelPixmap
The pixmap used when XmNlabelType is XmPIXMAP.

XmNlabelString XmCLabelString XmString dynamic CSG

XmNlabelType XmCLabelType unsigned char XmSTRING CSG

XmNmarginBottom XmCMarginBottom Dimension 0 CSG

XmNmarginHeight XmCMarginHeight Dimension 2 CSG

XmNmarginLeft XmCMarginLeft Dimension 0 CSG

XmNmarginRight XmCMarginRight Dimension 0 CSG

XmNmarginTop XmCMarginTop Dimension 0 CSG

XmNmarginWidth XmCMarginWidth Dimension 2 CSG

XmNmnemonic XmCMnemonic KeySym NULL CSG

XmNmnemonicCharSet XmCMnemonicCharSet String XmFONTLIST_DEFAULT_TAG CSG

XmNrecomputeSize XmCRecomputeSize Boolean True CSG

XmNrenderTable XmCRenderTable XmRenderTable dynamic CSG

XmNstringDirection XmCStringDirection XmStringDirection dynamic CSG

Name Class Type Default Access

Motif and Xt Widget Classes XmLabel

Motif Reference Manual 747

XmNlabelString
The compound string used when XmNlabelType is XmSTRING. If this resource
is NULL, the application uses the widget’s name (converted to compound string
format).

XmNlabelType
The type of label (either string or pixmap). Possible values:

XmPIXMAP /* use XmNlabelPixmap or XmNlabelInsensitivePixmap */
XmSTRING /* use XmNlabelString */

XmNmarginTop, XmNmarginBottom,

XmNmarginLeft, XmNmarginRight
The amount of space between one side of the label text and the nearest margin.

XmNmarginHeight, XmNmarginWidth
The spacing between one side of the label and the nearest edge of a shadow.

XmNmnemonic
A keysym that gives the user another way to select a button. In the label string,
the first character matching this keysym will be underlined.

XmNmnemonicCharSet
The character set for the label’s mnemonic.

XmNrecomputeSize
If True (default), the Label widget changes its size so that the string or pixmap
fits exactly.

XmNrenderTable
In Motif 2.0 and later, specifies the render table for the Label. If NULL, this is
inherited from the nearest ancestor that has the XmQTspecifyRenderTable trait,
taking the XmLABEL_RENDER_TABLE value from the ancestor. The Bullet-
inBoard, VendorShell, and MenuShell widgets and derived classes set this trait.

XmNstringDirection
In Motif 2.0 and later, XmNstringDirection is superseded by the inherited XmN-
layoutDirection resource. The direction in which to draw the string. Possible val-
ues are:

XmSTRING_DIRECTION_L_TO_R
XmSTRING_DIRECTION_R_TO_L
XmDEFAULT_DIRECTION

Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /* set to XmCR_HELP */
XEvent *event; /* points to event that triggered callback */

} XmAnyCallbackStruct;

XmLabel Motif and Xt Widget Classes

748 Motif Reference Manual

Inherited Resources
Label inherits the following resources. The resources are listed alphabetically,
along with the superclass that defines them. Label sets the default values of
XmNhighlightThickness and XmNshadowThickness to 0 and XmNtraversalOn
to False. The default value of XmNborderWidth is reset to 0 by Primitive.

Translations

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNhighlightThickness XmPrimitive

XmNancestorSensitive Core XmNinitialResourcesPersistent Core

XmNbackground Core XmNlayoutDirection XmPrimitive

XmNbackgroundPixmap Core XmNmappedWhenManaged Core

XmNborderColor Core XmNnavigationType XmPrimitive

XmNborderPixmap Core XmNpopupHandlerCallback XmPrimitive

XmNborderWidth Core XmNscreen Core

XmNbottomShadowColor XmPrimitive XmNsensitive Core

XmNbottomShadowPixmap XmPrimitive XmNshadowThickness XmPrimitive

XmNcolormap Core XmNtopShadowColor XmPrimitive

XmNconvertCallback XmPrimitive XmNtopShadowPixmap XmPrimitive

XmNdepth Core XmNtranslations Core

XmNdestroyCallback Core XmNtraversalOn XmPrimitive

XmNforeground XmPrimitive XmNunitType XmPrimitive

XmNheight Core XmNuserData XmPrimitive

XmNhelpCallback XmPrimitive XmNwidth Core

XmNhighlightColor XmPrimitive XmNx Core

XmNhighlightOnEnter XmPrimitive XmNy Core

XmNhighlightPixmap XmPrimitive

Event Action

BTransfer Press ProcessDrag()

KHelp Help()

Motif and Xt Widget Classes XmLabel

Motif Reference Manual 749

For subclasses of Label:

Action Routines
Label defines the following action routines:

Help()
Unposts menus, restores keyboard focus, and invokes the callbacks
from XmNhelpCallback, if there are any.

MenuEscape()
Unposts the menu, disarms the associated CascadeButton, and
restores keyboard focus.

MenuTraverseDown()
In a MenuBar, if the current menu item has a submenu, posts the
submenu, disarms the current menu item, and arms the first item in
the submenu. In a menu pane, disarms the current menu item and
arms the item below it, wrapping around to the top if necessary.

MenuTraverseLeft()
In a MenuBar, disarms the current menu item and arms the next
item to the left, wrapping if necessary. In a menu pane, disarms the
current item and arms the item to the left if there is such an item.
Otherwise, unposts the current submenu and, if that submenu is
attached to a MenuBar item, traverses to the MenuBar item to the
left (wrapping if necessary), posts the submenu, and arms the first
item in the submenu. In a PopupMenu or a torn-off menu pane,
traverses to the menu item to the left, wrapping to the right if neces-
sary.

MenuTraverseRight()
In a MenuBar, disarms the current menu item and arms the next
item to the right, wrapping if necessary. In a menu pane, if the cur-
rent item is a CascadeButton, posts the associated submenu. Other-
wise, disarms the current item and arms the item to the right if there
is such an item or unposts all submenus, traverses to the MenuBar

Event Action

KLeft MenuTraverseLeft()

KRight MenuTraverseRight()

KUp MenuTraverseUp()

KDown MenuTraverseDown()

MAny KCancel MenuEscape()

XmLabel Motif and Xt Widget Classes

750 Motif Reference Manual

item to the right (wrapping if necessary), posts the submenu, and
arms the first item in the submenu. In a PopupMenu or a torn-off
menu pane, traverses to the menu item to the right, wrapping to the
left if necessary.

MenuTraverseUp()
In a menu pane, disarms the current menu item and arms the item
above it, wrapping around to the bottom if necessary.

ProcessDrag()
In Motif 1.2, initiates a drag and drop operation using the contents
of the Label. In Motif 2.0 and later, this indirectly invokes any pro-
cedures specified by the inherited XmNconvertCallback resource.

See Also
XmCreateObject (1), Core (2), XmPrimitive (2).

Motif and Xt Widget Classes XmLabelGadget

Motif Reference Manual 751

Name
XmLabelGadget widget class – a simple gadget that displays a non-editable
label.

Synopsis

Public Header:
<Xm/LabelG.h>

Class Name:
XmLabelGadget

Class Hierarchy:
Object → RectObj → XmGadget → XmLabelGadget

Class Pointer:
xmLabelGadgetClass

Instantiation:
widget = XmCreateLabelGadget (parent, name,...)
or
widget = XtCreateWidget (name, xmLabelGadgetClass,...)

Functions/Macros:
XmCreateLabelGadget (), XmOptionLabelGadget (), XmIsLabel-
Gadget ()

Description
LabelGadget is the gadget variant of Label.

In Motif 2.0, the LabelGadget cached resource set is expanded to include XmN-
foreground, XmNbackground, XmNtopShadowColor, XmNtopShadowPixmap,
XmNbottomShadowColor, XmNbottomShadowPixmap, XmNhighlightColor
and XmNhighlightPixmap resources. LabelGadgets sharing the same Manager
parent can therefore have independent appearance.

Traits
LabelGadget holds the XmQTmenuSavvy, XmQTtransfer, XmQTaccessTextual,
XmQTcareParentVisual, and XmQTaccessColors traits, which are inherited by
any derived classes, and uses the traits XmQTmenuSystem and XmQTspeci-
fyRenderTable.

New Resources
LabelGadget’s new resources, callback resources, and callback structure are the
same as those for Label.

XmLabelGadget Motif and Xt Widget Classes

752 Motif Reference Manual

Inherited Resources
LabelGadget inherits the following resources. The resources are listed alphabeti-
cally, along with the superclass that defines them. LabelGadget sets the default
values of XmNhighlightThickness and XmNshadowThickness to 0 (zero) and
XmNtraversalOn to False. The default value of XmNborderWidth is reset to 0 by
Gadget.

Behavior
As a Gadget subclass, LabelGadget has no translations associated with it. How-
ever, LabelGadget behavior corresponds to the action routines of the Label
widget. See the Label action routines for more information.

For subclasses of LabelGadget:

Resource Inherited From Resource Inherited From

XmNancestorSensitive RectObj XmNhighlightThickness XmGadget

XmNbackground XmGadget XmNlayoutDirection XmGadget

XmNbackgroundPixmap XmGadget XmNnavigationType XmGadget

XmNbottomShadowColor XmGadget XmNsensitive RectObj

XmNbottomShadowPixmap XmGadget XmNshadowThickness XmGadget

XmNborderWidth RectObj XmNtopShadowColor XmGadget

XmNdestroyCallback Object XmNtopShadowPixmap XmGadget

XmNforeground XmGadget XmNtraversalOn XmGadget

XmNheight RectObj XmNunitType XmGadget

XmNhelpCallback XmGadget XmNuserData XmGadget

XmNhighlightColor XmGadget XmNwidth RectObj

XmNhighlightOnEnter XmGadget XmNx RectObj

XmNhighlightPixmap XmGadget XmNy RectObj

Behavior Equivalent Label Action

BTransfer Press ProcessDrag()

KHelp Help()

Behavior Equivalent Label Action

KLeft MenuTraverseLeft()

KRight MenuTraverseRight()

KUp MenuTraverseUp()

Motif and Xt Widget Classes XmLabelGadget

Motif Reference Manual 753

See Also
XmCreateObject (1), XmOptionLabelGadget (1), Object (2),
RectObj (2), XmGadget(2), XmLabel (2).

KDown MenuTraverseDown()

MAny KCancel MenuEscape()

Behavior Equivalent Label Action

XmList Motif and Xt Widget Classes

754 Motif Reference Manual

Name
XmList widget class – a widget that allows a user to select from a list of choices.

Synopsis

Public Header:
<Xm/List.h>

Class Name:
XmList

Class Hierarchy:
Core → XmPrimitive → XmList

Class Pointer:
xmListWidgetClass

Instantiation:
widget = XmCreateList (parent, name,...)
or
widget = XtCreateWidget (name, xmListWidgetClass,...)

Functions/Macros:
XmCreateList (), XmCreateScrolledList (), XmList ... routines,
XmIsList ()

Description
List provides a list of choices from which a user can select one or more items,
based on the selection policy. List supports four selection policies: single select,
browse select, multiple select, and extended select.

In single select mode, only one item can be selected at a time; a button press on
an item selects it and deselects the previously selected item. In browse select
mode, only one item can be selected at a time; a button press works as in single
select mode and, additionally, a button drag moves the selection with the pointer.
In multiple select mode, any number of items can be selected at a time; a button
press toggles the selection state of an item and does not change the selection state
of any other items. In extended select mode, any number of items can be selected
at a time; discontinuous ranges of items can be selected by combining button
presses and button drags.

Selections can be made by using either the pointer or the keyboard. Keyboard
selection has two modes: normal mode and add mode. In normal mode, keyboard
navigation operations affect the selection; the item with the keyboard focus is
always selected. In add mode, keyboard navigation operations are distinct from
selection operations; the item with the keyboard focus can be disjoint from the
selection. Browse select operates in normal mode; single select and multiple
select operate in add mode; extended select can be made to operate in either

Motif and Xt Widget Classes XmList

Motif Reference Manual 755

mode. Normal mode uses a solid location cursor while add mode uses a dashed
location cursor.

In Motif 1.2 and later, List is a supported drag source for drag and drop opera-
tions. BTransfer Press starts a drag and drop operation using the selected items in
the List. If BTransfer is pressed over an unselected item, that item is dragged
instead of the selected items.

Traits
List holds the XmQTtransfer trait, which is inherited by any derived classes, and
uses the XmQTnavigator, XmQTscrollFrame and XmQTspecifyRenderTable
traits.

New Resources
List defines the following resources:

Name Class Type Default Access

XmNautomaticSelection XmCAutomaticSelection XtEnum XmNO_AUTO_SELECT CSG

XmNdoubleClickInterval XmCDoubleClickInterval int dynamic CSG

XmNfontList XmCFontList XmFontList dynamic CSG

XmNhorizontalScrollBar XmCHorizontalScrollBar Widget NULL G

XmNitemCount XmCItemCount int 0 CSG

XmNitems XmCItems XmStringTable NULL CSG

XmNlistMarginHeight XmCListMarginHeight Dimension 0 CSG

XmNlistMarginWidth XmCListMarginWidth Dimension 0 CSG

XmNlistSizePolicy XmCListSizePolicy unsigned char XmVARIABLE CSG

XmNlistSpacing XmCListSpacing Dimension 0 CSG

XmNmatchBehavior XmCMatchBehavior unsigned char XmQUICK_NAVIGATE CSG

XmNprimaryOwnership XmCPrimaryOwnership unsigned char XmOWN_NEVER CSG

XmNrenderTable XmCRenderTable XmRenderTable dynamic CSG

XmNscrollBarDisplayPolicy XmCScrollBarDisplayPolicy unsigned char XmAS_NEEDED CSG

XmNselectColor XmCSelectColor Pixel dynamic CSG

XmNselectedItemCount XmCSelectedItemCount int 0 CSG

XmNselectedItems XmCSelectedItems XmStringTable NULL CSG

XmNselectedPositionCount XmCSelectedPositionCount int 0 CSG

XmNselectedPositions XmCSelectedPositions int * NULL CSG

XmNselectionMode XmCSelectionMode unsigned char XmNORMAL_MODE CSG

XmNselectionPolicy XmCSelectionPolicy unsigned char XmBROWSE_SELECT CSG

XmNstringDirection XmCStringDirection XmStringDirection dynamic CSG

XmList Motif and Xt Widget Classes

756 Motif Reference Manual

XmNautomaticSelection
If True (and the widget’s XmNselectionPolicy is either XmBROWSE_SELECT
or XmEXTENDED_SELECT), then this resource calls XmNsingleSelection-
Callback whenever the user moves into a new item.

If False, then the user must release the mouse button before any selection call-
backs are called.

From Motif 2.0, the resource has changed type from a Boolean to an enumera-
tion. Possible values of the enumerated type:

XmAUTO_SELECT /* enables automatic selection */
XmNO_AUTO_SELECT /* disables automatic selection */

XmNdoubleClickInterval
The time span (in milliseconds) within which two button clicks must occur to be
considered a double click rather than two single clicks. By default, this value is
the multiclick time of the display.

XmNfontList
The font list used for the widget’s items. From Motif 2.0 and later, the
XmfontList is considered obsolete, and the Rendition Table is the preferred
method of setting appearance. Any XmNrenderTable value will take precedence.

XmNhorizontalScrollBar
When the List is part of a ScrolledList, specifies the widget ID of the ScrollBar
created by the List to perform horizontal scrolling.

XmNitemCount
The total number of items. The widget updates this resource every time a list item
is added or removed.

XmNitems
A pointer to an array of compound strings. The compound strings are the list
items to display. A call to XtGetValues() returns the actual list items (not a copy),
so don’t have your application free these items.

XmNlistMarginHeight

XmNlistMarginWidth
The height or width of the margin between the border of the List and the items in
the list.

XmNtopItemPosition XmCTopItemPosition int 1 CSG

XmNverticalScrollBar XmCVerticalScrollBar Widget NULL G

XmNvisibleItemCount XmCVisibleItemCount int dynamic CSG

Name Class Type Default Access

Motif and Xt Widget Classes XmList

Motif Reference Manual 757

XmNlistSizePolicy
The method for resizing the widget when a list item exceeds the width of the
work area. This resizing policy must be set at creation time. Possible values:

XmVARIABLE /* grow to fit; don’t add ScrollBar */
XmCONSTANT /* don’t grow to fit; add ScrollBar */
XmRESIZE_IF_POSSIBLE /* grow or shrink; add ScrollBar if too large */

XmNlistSpacing
The spacing between items.

XmNmatchBehavior
In Motif 2.0 and later, specifies whether the widget navigates to items within the
List by matching keyboard input against the first character of each item. If the
value is XmNONE, no matching is performed. If the value is
XmQUICK_NAVIGATE, any characters typed when the List has the focus are
compared against the first character of each item. If a match is found, the
matched list item is automatically made the current item. Subsequently typing the
same character progresses cyclically through the list to find any further matching
item.

XmNprimaryOwnership
Specifies how the list interacts with the primary selection when a user selects an
item from the list. Possible values:

XmOWN_NEVER /* never take ownership of the primary selection */
XmOWN_ALWAYS /* always take ownership of the selection */
XmOWN_MULTIPLE /* take ownership if more than one item selected */
XmOWN_POSSIBLE_MULTIPLE /* take ownership if selection policy */

/* is multiple or extended */

XmNrenderTable
In Motif 2.0 and later, specifies the render table for the list. If unspecified, the
value of the resource is inherited from the nearest ancestor which holds the
XmQTspecifyRenderTable trait, using the XmTEXT_RENDER_TABLE value
of the ancestor so found. This resource, together with the XmNvisibleItem-
Count resource, is used to calculate the List widget’s height.

XmNscrollBarDisplayPolicy
Determines when to display vertical scrollbars in a ScrolledList widget. Possible
values:

XmSTATIC /* vertical ScrollBar always displays */
XmAS_NEEDED /* add ScrollBar when list is too large */

XmList Motif and Xt Widget Classes

758 Motif Reference Manual

XmNselectColor
In Motif 2.0 and later, specifies the color used to draw the background of selected
items. In addition to allocated Pixel values, the constant
XmDEFAULT_SELECT_COLOR specifies a color between the XmNback-
ground and XmNbottomShadowColor, XmHIGHLIGHT_COLOR makes the
select color the same as the XmNhighlightColor value, and
XmREVERSED_GROUND_COLORS makes the XmNselectColor the same as
the XmNforeground, using the XmNbackground color to render any text.

XmNselectedItemCount
The number of items in the list of selected items.

XmNselectedItems
A pointer to an array of compound strings. The compound strings represent the
currently selected list items. A call to XtGetValues () returns the actual list
items (not a copy), so don’t have your application free these items.

XmNselectedPositionCount
In Motif 2.0 and later, specifies the number of positions in the list of selected
positions.

XmNselectedPositions
In Motif 2.0 and later, specifies a pointer to an array of integers, representing the
currently selected list positions. A call to XtGetValues () returns the actual list
position array, so don’t free the array in application code. Compare with
XmListGetSelectedPos () which returns a copy of the selected position
array which should be freed after use.

XmNselectionMode
In Motif 2.0 and later, specifies the effect which keyboard navigation has upon
selection. If the value is XmNORMAL_MODE, navigation operations can select
the item under the location cursor, deselecting any other items. In
XmADD_MODE, navigation operations have no effect on selection. For
XmNORMAL_MODE, the selection policy must be browse or extended selec-
tion, and for XmADD_MODE, the policy must not be browse.

XmNselectionPolicy
Determines the effect of a selection action. Possible values:

XmSINGLE_SELECT
XmBROWSE_SELECT
XmMULTIPLE_SELECT
XmEXTENDED_SELECT

Motif and Xt Widget Classes XmList

Motif Reference Manual 759

XmNstringDirection
The direction in which to draw the string. Possible values are:

XmSTRING_DIRECTION_L_TO_R
XmSTRING_DIRECTION_R_TO_L
XmDEFAULT_DIRECTION

In Motif 2.0 and later, the XmNstringDirection resource is obsolete, being sub-
sumed into the XmNlayoutDirection resource. If the XmNlayoutDirection is
NULL, and the XmNstringDirection is XmDEFAULT_DIRECTION, the value
will be taken from the nearest ancestor which holds the XmQTspecifyLayoutDi-
rection trait. Manager, MenuShell, and VendorShell support this trait.

XmNtopItemPosition
The position of the first item that will be visible in the list. Calling the XmList-
SetPos () routine is the same as setting this resource. In both cases, the first
position is specified as 1 and the last position is specified as 0.

XmNverticalScrollBar
When the List is part of a ScrolledList, specifies the widget ID of the ScrollBar
created by the List to perform vertical scrolling.

XmNvisibleItemCount
The number of items to display in the work area of the list. This value affects the
widget’s height. In Motif 1.2 and later, the default value of this resource is
dynamic and based on the height of the List, while in Motif 1.1, the default value
is 1.

Callback Resources
List defines the following callback resources:

XmNbrowseSelectionCallback
List of callbacks that are called when a list item is selected using the browse
selection policy.

Callback Reason Constant

XmNbrowseSelectionCallback XmCR_BROWSE_SELECT

XmNdefaultActionCallback XmCR_DEFAULT_ACTION

XmNdestinationCallback XmCR_OK

XmNextendedSelectionCallback XmCR_EXTENDED_SELECT

XmNmultipleSelectionCallback XmCR_MULTIPLE_SELECT

XmNsingleSelectionCallback XmCR_SINGLE_SELECT

XmList Motif and Xt Widget Classes

760 Motif Reference Manual

XmNdefaultActionCallback
List of callbacks that are called when a list item is double clicked or KActivate is
pressed.

XmNdestinationCallback
List of callbacks that are called when the List is the destination of a transfer oper-
ation.

XmNextendedSelectionCallback
List of callbacks that are called when list items are selected using the extended
selection policy.

XmNmultipleSelectionCallback
List of callbacks that are called when a list item is selected using the multiple
selection policy.

XmNsingleSelectionCallback
List of callbacks that are called when a list item is selected using the single selec-
tion policy.

Callback Structure
Each selection callback function is passed the structure below; however, some
structure members might be unused because they aren’t meaningful for particular
callback reasons.

typedef struct {
int reason; /* reason that callback was called */
XEvent *event; /* event that triggered callback */
XmString item; /* item most recently selected at */

/* the time event occurred */
int item_length; /* number of bytes in item member */
int item_position; /* item’s position in XmNitems array */
XmString *selected_items; /* list of items selected at time */

/* event occurred */
int selected_item_count; /* number of items in selected_items */
int *selected_item_positions; /* array of integers that mark */

/* selected items */
char selection_type; /* type of the most recent selection */
char auto_selection_type; /* the type of automatic selection */

} XmListCallbackStruct;

The structure members event, item, item_length, and item_position are valid for
any value of reason.

The structure members selected_items, selected_item_count, and
selected_item_positions are valid when the reason field has a value of
XmCR_MULTIPLE_SELECT or XmCR_EXTENDED_SELECT.

Motif and Xt Widget Classes XmList

Motif Reference Manual 761

The structure member selection_type is valid only when the reason field is
XmCR_EXTENDED_SELECT.

The structure member auto_selection_type is valid only when the resource
XmNautomaticSelection is XmAUTO_SELECT, and has the value
XmAUTO_UNSET otherwise.

For the strings pointed to by item and selected_items, as well as for the integers
pointed to by selected_item_positions, storage is overwritten each time the call-
back is invoked. Applications that need to save this data should make their own
copies of it.

selected_item_positions is an integer array. The elements of the array indicate the
positions of each selected item within the List widget’s XmNitems array.

selection_type specifies what kind of extended selection was most recently made.
One of three values is possible:

XmINITIAL /* selection was the initial selection */
XmMODIFICATION /* selection changed an existing selection */
XmADDITION /* selection added non-adjacent items to */

/* existing selection */

auto_selection_type specifies at what point within the selection the user is. Possi-
ble values:

XmAUTO_UNSET
XmAUTO_BEGIN
XmAUTO_MOTION
XmAUTO_CANCEL
XmAUTO_NO_CHANGE
XmAUTO_CHANGE

Destination callbacks are fully described within the sections covering the Uni-
form Transfer Model. See XmTransfer (s1) for more details. For quick refer-
ence, a pointer to the following structure is passed to callbacks on the
XmNdestinationCallback list:

typedef struct {
int reason; /* reason that the callback is invoked */
XEvent *event; /* event that triggered callback */
Atom selection; /* requested selection type, as an Atom */
XtEnum operation; /* type of transfer requested */
int flags; /* whether destination and source are same */

XmList Motif and Xt Widget Classes

762 Motif Reference Manual

XtPointer transfer_id; /* unique identifier for the request */
XtPointer destination_data; /* information about the destination */
XtPointer location_data; /* information about the data */
Time time; /* time when transfer operation started */

} XmDestinationCallbackStruct;

Inherited Resources
List inherits the following resources. The resources are listed alphabetically,
along with the superclass that defines them. List sets the default value of XmN-
navigationType to XmTAB_GROUP, and sets the default value of XmNlayoutDi-
rection. XmDEFAULT_DIRECTION. The default value of XmNborderWidth is
reset to 0 by Primitive.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNhighlightThickness XmPrimitive

XmNancestorSensitive Core XmNinitialResourcesPersistent Core

XmNbackground Core XmNlayoutDirection XmPrimitive

XmNbackgroundPixmap Core XmNmappedWhenManaged Core

XmNborderColor Core XmNnavigationType XmPrimitive

XmNborderPixmap Core XmNpopupHandlerCallback XmPrimitive

XmNborderWidth Core XmNscreen Core

XmNbottomShadowColor XmPrimitive XmNsensitive Core

XmNbottomShadowPixmap XmPrimitive XmNshadowThickness XmPrimitive

XmNcolormap Core XmNtopShadowColor XmPrimitive

XmNconvertCallback XmPrimitive XmNtopShadowPixmap XmPrimitive

XmNdepth Core XmNtranslations Core

XmNdestroyCallback Core XmNtraversalOn XmPrimitive

XmNforeground XmPrimitive XmNunitType XmPrimitive

XmNheight Core XmNuserData XmPrimitive

XmNhelpCallback XmPrimitive XmNwidth Core

XmNhighlightColor XmPrimitive XmNx Core

XmNhighlightOnEnter XmPrimitive XmNy Core

XmNhighlightPixmap XmPrimitive

Motif and Xt Widget Classes XmList

Motif Reference Manual 763

Translations

In addition, the translations of List are modified when the
XmNenableBtn1Transfer() resource of the XmDisplay object is not XmOFF. The
following translations apply under these circumstances:

Event Action Event Action

BSelect Press ListBeginSelect() KPageRight ListRightPage()

BSelect Motion ListButtonMotion() KAny ListQuickNavigate()

BSelect Release ListEndSelect() KBeginLine ListBeginLine()

BExtend Press ListBeginExtend() KEndLine ListEndLine()

BExtend Motion ListButtonMotion() KBeginData ListBeginData()

BExtend Release ListEndExtend() MShift KBeginData ListBeginDataExtend()

BToggle Press ListBeginToggle() KEndData ListEndData()

BToggleMotion ListButtonMotion() MShift KEndData ListEndDataExtend()

BToggle Release ListEndToggle() KAddMode ListAddMode()

BTransfer Press ListProcessDrag() KActivate ListKbdActivate()

KUp ListPrevItem() KCopy Press ListCopyToClipboard()

MShift KUp ListExtendPrevItem() KSelectPress ListKbdBeginSelect()

KDown ListNextItem() KSelect Release ListKbdEndSelect()

MShift KDown ListExtendNextItem() KExtend Press ListKbdBeginExtend()

KLeft ListLeftChar() KExtend Release ListKbdEndExtend()

MCtrl KLeft ListLeftPage() Many KCancel ListKbdCancel()

KRight ListRightChar KSelectAll ListKbdSelectAll()

MCtrl KRight ListRightPage() KDeselectAll ListKbdDeSelectAll()

KPageUp ListPrevPage KHelp PrimitiveHelp()

KPageDown ListNextPage() KNextField PrimitiveNextTabGroup()

KPageLeft ListLeftPage() KPrevField PrimitivePrevTabGroup()

Event Action

BSelect Press ListProcessBtn1(ListBeginSelect)

BSelect Motion ListProcessBtn1(ListButtonMotion)

BSelect Release ListProcessBtn1(ListEndSelect)

XmList Motif and Xt Widget Classes

764 Motif Reference Manual

Action Routines
List defines the action routines below. The current selection always appears with
its foreground and background colors reversed. Note that many List actions have
different effects depending on the selection policy and also that some actions
apply only for a particular selection policy.

ListAddMode()
Turns add mode on or off.

ListBeginData()
Moves the cursor to the first list item. If keyboard selection is in
normal mode, this action also selects the first item after deselecting
any earlier selection and invokes the callbacks specified either by
XmNbrowseSelectionCallback or by XmNextendedSelectionCall-
back (as dictated by the selection policy).

ListBeginDataExtend()
Multiple selection: moves the cursor to the first list item.

Extended selection: moves the cursor to the first list item, cancels
any current extended selection, selects (or deselects) all items from
the first item to the current anchor, and invokes the callbacks speci-
fied by XmNextendedSelectionCallback.

ListBeginExtend()
Extended selection: cancels any current extended selection, selects
(or deselects) all items from the pointer location to the current
anchor, and invokes the callbacks specified by XmNextendedSelec-
tionCallback (if the XmNautomaticSelection resource is True).

ListBeginLine()
Scrolls the List’s viewing area horizontally to its beginning.

BExtend Press ListProcessBtn1(ListBeginExtend)

BExtend Release ListProcessBtn1(ListEndExtend)

BToggle Press ListProcessBtn1(ListBeginToggle)

BToggle Release ListProcessBtn1(ListEndToggle)

BTransfer Press ListProcessBtn2(ListBeginExtend)

BTransfer Motion ListProcessBtn2(ListButtonMotion)

BTransfer Release ListProcessBtn2(ListEndExtend)

Event Action

Motif and Xt Widget Classes XmList

Motif Reference Manual 765

ListBeginSelect()
Single selection: selects or deselects the item under the pointer after
deselecting any previous selection.

Browse selection: selects the item under the pointer after deselect-
ing any previous selection and invokes the callbacks specified by
XmNbrowseSelectionCallback if the XmNautomaticSelection
resource is True.

Multiple selection: selects or deselects the item under the pointer,
leaving previous selections unaffected.

Extended selection: selects the item under the pointer after deselect-
ing any previous selection, marks this item as the current anchor,
and invokes the callbacks specified by XmNextendedSelectionCall-
back if the XmNautomaticSelection resource is True.

ListBeginToggle()
Extended selection: keeps the current selection but shifts the anchor
to the item under the pointer. This item’s selection state is toggled,
and if XmNautomaticSelection is True, the extended selection call-
backs are invoked.

ListButtonMotion()
Browse selection: selects the item under the pointer after deselect-
ing any previous selection and invokes the browse selection call-
backs if XmNautomaticSelection is True and the pointer moved
over a new item.

Extended selection: cancels any current extended selection, selects
(or deselects) all items from the pointer location to the current
anchor, and invokes the extended selection callbacks if XmNauto-
maticSelection is True and the pointer moved over a new item.

In addition, when the pointer moves outside a ScrolledList widget,
the list scrolls in sync with the pointer motion.

ListCopyToClipboard()
In Motif 1.2 and later, this action copies the selected list items to the
clipboard. The items are copied as a single compound string, with a
new line between each item.

XmList Motif and Xt Widget Classes

766 Motif Reference Manual

ListEndData()
Moves the cursor to the last list item. If keyboard selection is in
normal mode, this action also selects the last item after deselecting
any earlier selection and invokes the appropriate callbacks (browse
selection or extended selection).

ListEndDataExtend()
Multiple selection: moves the cursor to the last list item.

Extended selection: moves the cursor to the last list item, cancels
any current extended selection, selects (or deselects) all items from
the last item to the current anchor, and invokes the extended selec-
tion callbacks.

ListEndExtend()
Extended selection: moves the cursor to the last item whose selec-
tion state was switched, and invokes the extended selection call-
backs if XmNautomaticSelection is False.

ListEndLine()
Scrolls the List’s viewing area horizontally to its beginning.

ListEndSelect()
Single selection or multiple selection: moves the cursor to the last
item whose selection state was switched, and invokes the appropri-
ate selection callbacks.

Browse selection or extended selection: same as above, except that
the appropriate callbacks are called only if XmNautomaticSelection
is False.

ListEndToggle()
Extended selection: moves the cursor to the last item whose selec-
tion state was switched, and invokes the extended selection call-
backs if XmNautomaticSelection is False.

ListExtendNextItem()
ListExtendPrevItem()

Extended selection: adds the next/previous item to an extended
selection and invokes the extended selection callbacks.

ListKbdActivate()
Invokes the default action callbacks.

Motif and Xt Widget Classes XmList

Motif Reference Manual 767

ListKbdBeginExtend()
This action is the keyboard’s complement to the mouse-activated
ListBeginExtend() action.

Extended selection: cancels any current extended selection and
selects (or deselects) all items from the cursor to the current anchor.

ListKbdBeginSelect()
This action is the keyboard’s complement to the mouse-activated
ListBeginSelect() action.

Single selection: selects or deselects the item at the cursor after
deselecting any previous selection.

Browse selection: selects the item at the cursor after deselecting any
previous selection and invokes the browse selection callbacks if
XmNautomaticSelection is True.

Multiple selection: selects or deselects the item at the cursor, leav-
ing previous selections unaffected.

Extended selection: shifts the anchor to the item at the cursor. In
normal mode, this item is selected after any previous selection is
deselected; in add mode, this item’s state is toggled, and the current
selection remains unaffected. This action calls the extended selec-
tion callbacks if XmNautomaticSelection is True.

ListKbdCancel()
Extended selection: cancels an extended selection and restores the
items to their previous selection state.

ListKbdDeSelectAll()
Deselects all list items and calls the appropriate selection callbacks.
This action applies to all selection modes except browse selection
because this mode requires one item to remain selected at all times.
In extended selection with keyboard Normal Mode and an XmN-
keyboardFocusPolicy of XmEXPLICIT, the item at the cursor
remains selected after this action is applied.

ListKbdEndExtend()
Extended selection: calls the extended selection callbacks if
XmNautomaticSelection is False.

ListKbdEndSelect()
Single selection or multiple selection: calls the appropriate selec-
tion callbacks. If XmNautomaticSelection is False, this action
applies under any of the four selection policies.

XmList Motif and Xt Widget Classes

768 Motif Reference Manual

ListKbdSelectAll()
Single selection or browse selection: selects the item at the cursor
and calls the appropriate selection callbacks.

Multiple selection or extended selection: selects all list items and
calls the appropriate selection callbacks.

ListLeftChar()
ListLeftPage()

Scrolls the list either one character or one page to the left.

ListNextItem()
Moves the cursor to the next list item and has the following addi-
tional operations:

Browse selection: selects this item, deselects any previously
selected item(s), and calls the browse selection callbacks.

Extended selection: in normal mode, selects this item and moves
the anchor there, deselects any previously selected item(s), and
calls the extended selection callbacks. In add mode, neither the
selection nor the anchor is affected.

ListNextPage()
Moves the cursor by scrolling the list to the list item at the top of
the next page and has the same additional operations as ListNex-
tItem().

ListPrevItem()
Same as ListNextItem(), going back one item instead.

ListPrevPage() Same as ListNextPage(), going back one page instead.

ListProcessDrag()
In Motif 1.2 and later, this action initiates a drag and drop operation
using the selected items, where each item is separated by a newline.
If BTransfer is pressed over an unselected item, only that item is
used in the drag and drop operation.

ListProcessBtn1(string)
In Motif 2.0 and later, the XmDisplay resource
XmNenableBtn1Transfer configures the integration of selection
and transfer operations on Button 1.

If XmNenableBtn1Transfer is XmOFF, if no data transfer has been
initialised, the action specified by string is invoked to initiate selec-
tion. Possible values for string are:

Motif and Xt Widget Classes XmList

Motif Reference Manual 769

ListBeginExtend
ListEndExtend
ListButtonMotion
ListBeginSelect
ListEndSelect
ListBeginToggle
ListEndToggle

ListProcessBtn2(string)
In Motif 2.0 and later, if the XmDisplay resource
XmNenableBtn1Transfer has the value
XmBUTTON2_TRANSFER, the actions for extending List selec-
tion are bound to Button 2, and data transfer is initiated. If the
resource has the value XmBUTTON2_ADJUST, the action speci-
fied by string is invoked to extend selection. Possible values for
string are:

ListBeginExtend
ListEndExtend
ListButtonMotion

ListQuickNavigate()
In Motif 2.0 and later, navigates to an item if XmNmatchBehavior
is XmQUICK_NAVIGATE.

ListRightChar()
ListRightPage() Scrolls the list either one character or one page to the right.

ListScrollCursorVertically()
Makes the item with the keyboard focus visible.

PrimitiveHelp()
Calls the help callbacks for this widget.

PrimitiveNextTabGroup()
PrimitivePrevTabGroup()

Moves the keyboard focus to the beginning of the next or previous
tab group, wrapping around if necessary.

XmList Motif and Xt Widget Classes

770 Motif Reference Manual

Additional Behavior
List has the following additional behavior:

<Double Click>
Calls the XmNdefaultActionCallback callbacks.

<FocusIn>
If the keyboard focus policy is explicit, sets the focus and draws the
location cursor.

<FocusOut>
If the keyboard focus policy is explicit, removes the focus and
erases the location cursor.

See Also
XmCreateObject (s1), XmListAddItem (s1),
XmListAddItemUnselected (s1), XmListDeleteAllItems (s1),
XmListDeleteItem (s1), XmListDeleteItemsPos (s1),
XmListDeletePos (s1), XmListDeletePositions (s1),
XmListDeselectAllItems (s1), XmListDeselectItem (s1),
XmListDeselectPos (s1), XmListGetKbdItemPos (s1),
XmListGetMatchPos (s1), XmListGetSelectedPos (s1),
XmListItemExists (s1), XmListItemPos (s1),
XmListPosSelected (s1), XmListPosToBounds (s1),
XmListReplaceItems (s1), XmListReplaceItemsPos (s1),
XmListReplaceItemsPosUnselected (s1),
XmListReplaceItemsUnselected (s1),
XmListReplacePositions (1), XmListSelectItem (1),
XmListSelectPos (1), XmListSetAddMode (1),
XmListSetBottomItem (1), XmListSetBottomPos (1),
XmListSetHorizPos (1), XmListSetItem (1),
XmListSetKbdItemPos (1), XmListSetPos (1),
XmListUpdateSelectedList (1), XmListYToPos (1), Core (2),
XmDisplay (2). XmPrimitive (2), XmTransfer (1).

Motif and Xt Widget Classes XmMainWindow

Motif Reference Manual 771

Name
XmMainWindow widget class – the standard layout widget for an application’s
primary window.

Synopsis

Public Header:
<Xm/MainW.h>

Class Name:
XmMainWindow

Class Hierarchy:
Core → Composite → Constraint → XmManager → XmScrolledWindow →
XmMainWindow

Class Pointer:
xmMainWindowWidgetClass

Instantiation:
widget = XmCreateMainWindow (parent, name,...)
or
widget = XtCreateWidget (name, xmMainWindowWidgetClass,...)

Functions/Macros:
XmCreateMainWindow (), XmMainWindowSep1(),
XmMainWindowSep2(), XmMainWindowSep3(), XmMainWindowSetAr-
eas (), XmIsMainWindow ()

Description
MainWindow provides the standard appearance for the primary window of an
application. MainWindow supports five standard areas: a MenuBar, a command
window, a work region, a message window, and two ScrollBars (one horizontal
and one vertical). An application can use as many or as few of these areas as nec-
essary; they are all optional. A MainWindow can also display three Separator
widgets for dividing one area from another.

Each of the MainWindow regions is associated with a MainWindow resource;
XmMainWindowSetAreas () sets the associated resources. If an application
does not call XmMainWindowSetAreas (), the widget may still set some of the
standard regions. When a MenuBar child is added to a MainWindow, if XmN-
menuBar has not been set, it is set to the MenuBar child. When a Command child
is added to a MainWindow, if XmNcommand has not been set, it is set to the
Command child. If ScrollBars are added as children, the XmNhorizontalScroll-
Bar and XmNverticalScrollBar resources may be set if they have not already
been specified. Any child that is not one of these types is used for the XmNwork-
Window. If you want to be certain about which widgets are used for the different
regions, it is wise to call XmMainWindowSetAreas () explicitly.

XmMainWindow Motif and Xt Widget Classes

772 Motif Reference Manual

Traits
MainWindow uses the XmQTmenuSystem trait.

New Resources
MainWindow defines the following resources:

XmNcommandWindow
The widget ID of the command window child.

XmNcommandWindowLocation
One of two positions for the command window. Possible values:

XmCOMMAND_ABOVE_WORKSPACE /* default; appears below menu bar */
XmCOMMAND_BELOW_WORKSPACE /* appears between work and */

 /* message windows */

XmNmainWindowMarginHeight
The margin on the top and bottom of the MainWindow widget. This resource
overrides the corresponding margin resource in the ScrolledWindow widget.

XmNmainWindowMarginWidth
The margin on the right and left of the MainWindow widget. This resource over-
rides the corresponding margin resource in the ScrolledWindow widget.

XmNmenuBar
The widget ID of the menu bar child.

XmNmessageWindow
The widget ID of the message window child.

XmNshowSeparator
If True, separators are displayed between components of the MainWindow
widget. If False (default), separators are not displayed.

Name Class Type Default Access

XmNcommandWindow XmCCommandWindow Widget NULL CSG

XmNcommandWindowLocation XmCCommandWindowLocation unsigned char XmCOMMAND_ABOVE_WORKSPACE CG

XmNmainWindowMarginHeight XmCMainWindowMarginHeight Dimension 0 CSG

XmNmainWindowMarginWidth XmCMainWindowMarginWidth Dimension 0 CSG

XmNmenuBar XmCMenuBar Widget NULL CSG

XmNmessageWindow XmCMessageWindow Widget NULL CSG

XmNshowSeparator XmCShowSeparator Boolean False CSG

Motif and Xt Widget Classes XmMainWindow

Motif Reference Manual 773

Inherited Resources
MainWindow inherits the following resources. The resources are listed alphabet-
ically, along with the superclass that defines them. The default value of XmNbor-
derWidth is reset to 0 by XmManager.

Translations
The translations for MainWindow are inherited from ScrolledWindow.

See Also
XmCreateObject(1), XmMainWindowSep(1), XmMainWindowSetAreas(1),
Composite(2), Constraint(2), Core(2), XmManager(2), XmScrolledWindow(2).

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNnavigationType XmManager

XmNancestorSensitive Core XmNnumChildren Composite

XmNautoDragModel XmScrolledWindow XmNpopupHandlerCallback XmManager

XmNbackground Core XmNscreen Core

XmNbackgroundPixmap Core XmNscrollBarDisplayPolicy XmScrolledWindow

XmNborderColor Core XmNscrollBarPlacement XmScrolledWindow

XmNborderPixmap Core XmNscrolledWindowMarginHeight XmScrolledWindow

XmNborderWidth Core XmNscrolledWindowMarginWidth XmScrolledWindow

XmNbottomShadowColor XmManager XmNscrollingPolicy XmScrolledWindow

XmNbottomShadowPixmap XmManager XmNsensitive Core

XmNchildren Composite XmNshadowThickness XmManager

XmNclipWindow XmScrolledWindow XmNspacing XmScrolledWindow

XmNcolormap Core XmNstringDirection XmManager

XmNdepth Core XmNtopShadowColor XmManager

XmNdestroyCallback Core XmNtopShadowPixmap XmManager

XmNforeground XmManager XmNtranslations Core

XmNheight Core XmNtraversalOn XmManager

XmNhelpCallback XmManager XmNtraverseObscuredCallback XmScrolledWindow

XmNhighlightColor XmManager XmNunitType XmManager

XmNhighlightPixmap XmManager XmNuserData XmManager

XmNhorizontalScrollBar XmScrolledWindow XmNverticalScrollBar XmScrolledWindow

XmNinitialFocus XmManager XmNvisualPolicy XmScrolledWindow

XmNinitialResourcesPersistent Core XmNwidth Core

XmNinsertPosition Composite XmNworkWindow XmScrolledWindow

XmNlayoutDirection XmManager XmNx Core

XmNmappedWhenManaged Core XmNy Core

XmManager Motif and Xt Widget Classes

774 Motif Reference Manual

Name
XmManager widget class – the fundamental class for Motif widgets that manage
children.

Synopsis

Public Header:
<Xm/Xm.h>

Class Name:
XmManager

Class Hierarchy:
Core → Composite → Constraint → XmManager

Class Pointer:
xmManagerWidgetClass

Instantiation:
Manager is a meta-class and is not normally instantiated.

Functions/Macros:
XmIsManager ()

Description
Manager is a superclass for Motif widget classes that contain children. Manager
supports geometry management by providing resources for visual shadows and
highlights and for keyboard traversal mechanisms.

The default values of the color resources for the foreground, background, top and
bottom shadows, and highlighting are set dynamically. If no colors are specified,
they are generated automatically. On a monochrome system, black and white
colors are selected. On a color system, four colors are selected that provide the
appropriate shading for the 3-D visuals. When the background color is specified,
the shadow colors are selected to provide the appropriate 3-D appearance and
foreground and highlight colors are selected to provide the necessary contrast.
The colors are generated when the widget is created; using XtSetValues () to
change the background does not change the other colors. With Motif 1.2, use
XmChangeColor () to change the associated colors when the background color
is changed.

In Motif 2.0 and later, the way in which popup menus are posted for particular
widgets is rationalized by including within Manager and Primitive popup handler
callback resources. When a popup menu is created, an event handler may be
automatically installed upon the parent Manager to catch posting events. Once in
receipt of the posting event, the Manager’s XmNpopupHandlerCallback list is
invoked in order to determine which of the various popup menus available is cur-

Motif and Xt Widget Classes XmManager

Motif Reference Manual 775

rently required. Whether the handlers are automatically installed depends upon
the value of the XmNpopupEnabled resource of the menus concerned.

Traits
Manager holds the XmNspecifyLayoutDirection, XmNspecifyUnitType, and
XmNaccessColors traits, which are inherited by any derived classes.

New Resources
Manager defines the following resources:

XmNbottomShadowColor
The color used in drawing the border shadow’s bottom and right sides, but only if
XmNbottomShadowPixmap is NULL.

XmNbottomShadowPixmap
The pixmap used in drawing the border shadow’s bottom and right sides.

XmNforeground
The foreground color used by Manager widgets.

XmNhighlightColor
The color used in drawing the highlighting rectangle, but only if XmNhighlight-
Pixmap is XmUNSPECIFIED_PIXMAP.

Name Class Type Default Access

XmNbottomShadowColor XmCBottomShadowColor Pixel dynamic CSG

XmNbottomShadowPixmap XmCBottomShadowPixmap Pixmap XmUNSPECIFIED_PIXMAP CSG

XmNforeground XmCForeground Pixel dynamic CSG

XmNhighlightColor XmCHighlightColor Pixel dynamic CSG

XmNhighlightPixmap XmCHighlightPixmap Pixmap dynamic CSG

XmNinitialFocus XmCInitialFocus Widget NULL CSG

XmNlayoutDirection XmCLayoutDirection XmDirection dynamic CGa

a.Erroneously given as CSG in 2nd edition.

XmNnavigationType XmCNavigationType XmNavigationType XmTAB_GROUP CSG

XmNshadowThickness XmCShadowThickness Dimension 0 CSG

XmNstringDirection XmCStringDirection XmStringDirection dynamic CG

XmNtopShadowColor XmCTopShadowColor Pixel dynamic CSG

XmNtopShadowPixmap XmCTopShadowPixmap Pixmap dynamic CSG

XmNtraversalOn XmCTraversalOn Boolean True CSG

XmNunitType XmCUnitType unsigned char dynamic CSG

XmNuserData XmCUserData XtPointer NULL CSG

XmManager Motif and Xt Widget Classes

776 Motif Reference Manual

XmNhighlightPixmap
The pixmap used in drawing the highlighting rectangle.

XmNinitialFocus
In Motif 1.2, the widget ID of the widget that receives the keyboard focus when
the manager is a child of a shell and the shell receives the keyboard focus for the
first time.

XmNlayoutDirection
In Motif 2.0 and later, specifies the direction in which components of the Man-
ager are laid out. If unspecified, the value is inherited from the nearest ancestor
holding the XmQTspecifyLayoutDirection trait. Manager, MenuShell, and Ven-
dorShell hold this trait. Possible values:

XmLEFT_TO_RIGHT XmRIGHT_TO_LEFT
XmBOTTOM_TO_TOP XmTOP_TO_BOTTOM
XmBOTTOM_TO_TOP_LEFT_TO_RIGHT
XmBOTTOM_TO_TOP_RIGHT_TO_LEFT
XmTOP_TO_BOTTOM_LEFT_TO_RIGHT
XmTOP_TO_BOTTOM_RIGHT_TO_LEFT
XmLEFT_TO_RIGHT_BOTTOM_TO_TOP
XmRIGHT_TO_LEFT_BOTTOM_TO_TOP
XmLEFT_TO_RIGHT_TOP_TO_BOTTOM
XmRIGHT_TO_LEFT_TOP_TO_BOTTOM

XmNnavigationType
Determines the way in which a Manager widget is traversed during keyboard
navigation. Possible values:

XmNONE /* exclude from keyboard navigation */
XmTAB_GROUP /* include in keyboard navigation */
XmSTICKY_TAB_GROUP /* include in keyboard navigation, */

/* even if XmAddTabGroup() was called */
XmEXCLUSIVE_TAB_GROUP /* application defines order of navigation */

XmNshadowThickness
The thickness of the shadow border. This resource is dynamically set to 1 in a
top-level window and 0 otherwise.

XmNstringDirection
The direction in which to draw the string. Possible values are:

XmSTRING_DIRECTION_L_TO_R
XmSTRING_DIRECTION_R_TO_L
XmSTRING_DIRECTION_DEFAULT

In Motif 2.0 and later, the XmNstringDirection resource is obsolete, and is sub-
sumed into the XmNlayoutDirection resource. If the XmNlayoutDirection is

Motif and Xt Widget Classes XmManager

Motif Reference Manual 777

NULL, and the XmNstringDirection is XmSTRING_DIRECTION_DEFAULT,
the value will be taken from the nearest ancestor which holds the XmQTspecify-
LayoutDirection trait. Manager itself, MenuShell, and VendorShell hold this
trait.

XmNtopShadowColor
The color used in drawing the border shadow’s top and left sides. (Used only if
XmNtopShadowPixmap is NULL.)

XmNtopShadowPixmap
The pixmap used in drawing the border shadow’s top and left sides.

XmNtraversalOn
If True (default), traversal of this widget is made possible.

XmNunitType
The measurement units to use in resources that specify a size or position--for
example, any resources of type Dimension (whose names generally include one
of the words "Margin", "Height", "Width", "Thickness", or "Spacing"), as well as
the offset resources defined by Form. For a widget whose parent is a manager, the
default value is copied from this parent (provided the value hasn’t been explicitly
set by the application); otherwise, the default is XmPIXELS. Possible values:

XmPIXELS
Xm100TH_POINTS
Xm100TH_MILLIMETERS
Xm100TH_FONT_UNITS
Xm1000TH_INCHES
XmINCHES (2.0)
XmPOINTS (2.0)
XmFONT_UNITS (2.0)

XmNuserData
A pointer to data that the application can attach to the widget. This resource is
unused internally.

XmManager Motif and Xt Widget Classes

778 Motif Reference Manual

Callback Resources
Manager defines the following callback resources:

XmNhelpCallback
List of callbacks that are called when help is requested.

XmNpopupHandlerCallback
In Motif 2.0 and later, the list of callbacks invoked in order to determine which
popup menu to display.

Callback Structure
With the exception of a popup handler callback, each callback function is passed
the following structure:

typedef struct {
int reason; /* set to XmCR_HELP */
XEvent *event; /* event structure that triggered callback */

} XmAnyCallbackStruct;

A popup handler callback is passed a pointer to the following structure:

typedef struct {
int reason; /* the reason the callback is invoked */
XEvent *event; /* event structure that triggered callback */
Widget menuToPost; /* the menu to post */
Boolean postIt; /* whether to continue posting */
Widget target; /* the manager descendant issuing request */

} XmPopupHandlerCallbackStruct;

reason is either XmCR_POST1 or XmCR_REPOST2. XmCR_POST is the
normal menu post request. XmCR_REPOST is called when the menu is
unposted because of event replay.

menuToPost is the suggested menu to be posted. Alter the element if a differ-
ent menu is required.

Callback Reason Constant

XmNhelpCallback XmCR_HELP

XmNpopupHandlerCallback XmCR_POST
XmCR_REPOST

1.Erroneously given as XmPOST in 2nd edition.

2.Erroneously given as XmREPOST in 2nd edition.

Motif and Xt Widget Classes XmManager

Motif Reference Manual 779

postIt is a flag indicating whether the posting operation is to continue once
the callback has finished. The default value is True if reason is XmPOST,
otherwise False.

target is the widget or gadget which the Manager believes best describes the
source of the posting event. The algorithm performs a recursive descent,
matching the received event against the location of managed children.

Inherited Resources
Manager inherits the following resources. The resources are listed alphabetically,
along with the superclass that defines them. Manager resets the default value of
XmNborderWidth from 1 to 0.

Translations
For Manager widgets that have gadget children:

Name Inherited From Name Inherited From

XmNaccelerators Core XmNheight Core

XmNancestorSensitive Core XmNinsertPosition Composite

XmNbackground Core XmNinitialResourcesPersistent Core

XmNbackgroundPixmap Core XmNmappedWhenManaged Core

XmNborderColor Core XmNnumChildren Composite

XmNborderPixmap Core XmNscreen Core

XmNborderWidth Core XmNsensitive Core

XmNchildren Composite XmNtranslations Core

XmNcolormap Core XmNwidth Core

XmNdepth Core XmNx Core

XmNdestroyCallback Core XmNy Core

Event Action

BAny Motion ManagerGadgetButtonMotion()

BSelect Press ManagerGadgetArm()

BSelect Click ManagerGadgetActivate()

BSelect Release ManagerGadgetActivate()

BSelect Press 2+ ManagerGadgetMultiArm()

XmManager Motif and Xt Widget Classes

780 Motif Reference Manual

Action Routines
The action routines for a Manager widget affect the gadget child that has the key-
board focus. The descriptions below refer to the gadget that has the focus.

ManagerGadgetActivate()
Activates the gadget.

ManagerGadgetArm()
Arms the gadget.

ManagerGadgetButtonMotion()
Triggers the mouse motion event that the gadget received.

ManagerGadgetDrag()
In Motif 1.2, initiates a drag and drop operation using the contents
of a gadget’s label.

ManagerGadgetHelp()
Invokes the list of callbacks specified by the gadget’s XmNhelp-
Callback resource. If the gadget doesn’t have any help callbacks,
the ManagerGadgetHelp() routine invokes those associated with the
nearest ancestor that has them.

ManagerGadgetKeyInput()
Triggers the keyboard event that the gadget received.

BSelect Release 2+ ManagerGadgetMultiActivate

BTransfer Press ManagerGadgetDrag()

KActivate ManagerParentActivate() (1.2)

KCancel ManagerParentCancel()

KPrevField ManagerGadgetPrevTabGroup()

KNextField ManagerGadgetNextTabGroup()

KUp ManagerGadgetTraverseUp()

KDown ManagerGadgetTraverseDown()

KLeft ManagerGadgetTraverseLeft()

KRight ManagerGadgetTraverseRight()

KSelect ManagerGadgetSelect()

KBeginLine ManagerGadgetTraverseHome()

KHelp ManagerGadgetHelp(),
ManagerGadgetSelect() (1.2)

KAny ManagerGadgetKeyInput()

Event Action

Motif and Xt Widget Classes XmManager

Motif Reference Manual 781

ManagerGadgetMultiActivate()
Processes a multiple click of the mouse.

ManagerGadgetMultiArm()
Processes a multiple press of the mouse button.

ManagerGadgetNextTabGroup()
ManagerGadgetPrevTabGroup()

Traverses to the beginning of the next/previous tab group, wrapping
if necessary.

ManagerGadgetSelect()
Arms and activates the gadget.

ManagerGadgetTraverseDown()
ManagerGadgetTraverseUp()

Within the same tab group, descends/ascends to the item
below/above the gadget, wrapping if necessary.

ManagerGadgetTraverseHome()
Changes the focus to the first item in the tab group.

ManagerGadgetTraverseLeft()
ManagerGadgetTraverseRight()

Within the same tab group, traverses to the item on the left/right of
the gadget, wrapping if necessary.

ManagerGadgetTraverseNext()
ManagerGadgetTraversePrev()

Within the same tab group, traverses to the next/previous item,
wrapping if necessary.

ManagerParentActivate()
In Motif 1.2, passes the KActivate event to the parent if it is a man-
ager.

ManagerParentCancel()
In Motif 1.2, passes the KCancel event to the parent if it is a man-
ager.

XmManager Motif and Xt Widget Classes

782 Motif Reference Manual

Additional Behavior
Manager has the following additional behavior:

<FocusIn>
If the event occurs in a gadget, highlights the gadget and gives it the
focus under the explicit keyboard focus policy.

<FocusOut>
If the event occurs in a gadget, unhighlights the gadget and removes
the focus under the explicit keyboard focus policy.

See Also
Composite (2), Constraint (2), Core(2), XmGadget(2).

Motif and Xt Widget Classes XmMenuBar

Motif Reference Manual 783

Name
XmMenuBar – a type of RowColumn widget used as a menu bar.

Synopsis

Public Header:
<Xm/RowColumn.h>

Class Name:
XmRowColumn

Class Hierarchy:
Core → Composite → Constraint → XmManager → XmRowColumn

Class Pointer:
xmRowColumnWidgetClass

Instantiation:
widget = XmCreateMenuBar (parent, name,...)

Functions/Macros:
XmCreateMenuBar (), XmCreateSimpleMenuBar (), XmVaCreateSim-
pleMenuBar (), XmIsRowColumn()

Description
An XmMenuBar is an instance of a RowColumn widget that is normally used for
constructing a pulldown menu system. An application typically places a Menu-
Bar across the top of the main application window. CascadeButtons are added to
the MenuBar and pulldown menus are associated with each of the CascadeBut-
tons.

MenuBar is a RowColumn widget whose XmNrowColumnType resource is set to
XmMENU_BAR. The XmNentryClass resource is set to xmCascadeButton-
WidgetClass and XmNisHomogeneous is set to True, so that only CascadeBut-
tons can be added to the widget. The XmNmenuAccelerator resource is set to
KMenuBar and XmNmenuPost is set to BSelect Press. The XmNmenuHelp-
Widget resource can be set to specify the CascadeButton for the Help menu. The
XmNorientation resource is set to XmHORIZONTAL.

A MenuBar can be created using XmCreateMenuBar (). In this case, the Men-
uBar does not automatically contain any CascadeButtons; they are added by the
application.

XmMenuBar Motif and Xt Widget Classes

784 Motif Reference Manual

A MenuBar can also be created by XmCreateSimpleMenuBar (), which auto-
matically creates the MenuBar with the specified CascadeButtonGadgets as chil-
dren. This routine uses the RowColumn resources associated with the creation of
simple menus. For a MenuBar, the only type allowed in the XmNbuttonType
resource is XmCASCADEBUTTON. The name of each CascadeButtonGadget is
button_n, where n is the number of the button, ranging from 0 to 1 less than the
number of buttons in the MenuBar.

Default Resource Values
A MenuBar sets the following default values for RowColumn resources:

See Also
XmCreateObject (1), XmVaCreateSimpleMenuBar (1),
XmCascadeButton (2), XmRowColumn(2).

Name Default

XmNentryClass xmCascadeButtonWidgetClass

XmNisHomogenous True

XmNmenuAccelerator KMenuBar

XmNmenuPost BSelect Press

XmNorientation XmHORIZONTAL

XmNrowColumnType XmMENU_BAR

Motif and Xt Widget Classes XmMenuShell

Motif Reference Manual 785

Name
XmMenuShell widget class – a shell widget meant to contain popup and pull-
down menu panes.

Synopsis

Public Header:
<Xm/MenuShell.h>

Class Name:
XmMenuShell

Class Hierarchy:
Core → Composite → Shell → OverrideShell → XmMenuShell

Class Pointer:
xmMenuShellWidgetClass

Instantiation:
widget = XmCreateMenuShell (parent, name,...)
or
widget = XtCreateWidget (name, xmMenuShellWidgetClass,...)

Functions/Macros:
XmCreateMenuShell (), XmCreatePopupMenu (), XmCreatePull-
downMenu(),
XmIsMenuShell ()

Description
MenuShell is a subclass of OverrideShell that is meant to contain only popup or
pulldown menu panes. Most application writers do not need to create MenuShell
widgets explicitly because they are created automatically by the convenience rou-
tines XmCreatePopupMenu() and XmCreatePulldownMenu().

If you do not use the convenience functions and create your own MenuShell
widgets, the type of menu system being built determines the parent to specify for
the MenuShell. For a top-level popup menu, specify the widget from which it
will pop up. For a pulldown menu pane from the menu bar, specify the menu bar.
For a pulldown menu pane from another pulldown menu or a popup menu, spec-
ify the menu pane from which it is pulled down. For pulldown menu in an option
menu, specify the option menu’s parent.

Traits
MenuShell holds the XmQTspecifyLayoutDirection and XmQTspecifyRenderT-
able traits, which are inherited by any derived classes, and uses the XmQTmen-
uSystem and XmQTspecifyRenderTable traits.

XmMenuShell Motif and Xt Widget Classes

786 Motif Reference Manual

New Resources
MenuShell defines the following resource:

XmNbuttonFontList
The font list used for the button children of the MenuShell widget. In Motif 2.0
and later, the XmfontList is considered obsolete, and the Rendition Table is the
preferred method of setting appearance. Any XmNbuttonRenderTable value will
take precedence.

XmNbuttonRenderTable
Specifies the render table used for button children of the MenuShell widget. If the
value is NULL, this will be inherited from the nearest ancestor with the XmQT-
specifyRenderTable trait, taking the XmBUTTON_RENDER_TABLE value
from the ancestor so found. The BulletinBoard, VendorShell, and MenuShell
widgets and derived classes set this trait.

XmNdefaultFontList
The default font list for the children of the MenuShell widget. This resource is
obsolete in Motif 1.2.

XmNlabelFontList
The font list used for the label children of the MenuShell widget. In Motif 2.0
and later, the XmFontList is considered obsolete, and the Rendition Table is the
preferred method of setting appearance. Any XmNlabelRenderTable value will
take precedence.

XmNlabelRenderTable
Specifies the render table used for label children of the MenuShell widget. If the
value is NULL, this will be inherited from the nearest ancestor with the XmQT-
specifyRenderTable trait, taking the XmLABEL_RENDER_TABLE value from
the ancestor so found. The BulletinBoard, VendorShell, and MenuShell widgets
and derived classes set this trait.

Name Class Type Default Access

XmNbuttonFontList XmCButtonFontList XmFontList dynamic CSG

XmNbuttonRenderTable XmCButtonRenderTable XmRenderTable dynamic CSG

XmNdefaultFontList XmCDefaultFontList XmFontList dynamic CG

XmNlabelFontList XmCLabelFontList XmFontList dynamic CSG

XmNlabelRenderTable XmCLabelRenderTable XmRenderTable dynamic CSG

XmNlayoutDirection XmCLayoutDirection XmDirection dynamic CGa

a.Erroneously given as CSG in 2nd edition.

Motif and Xt Widget Classes XmMenuShell

Motif Reference Manual 787

XmNlayoutDirection
In Motif 2.0 and later, specifies the default direction in which descendants of the
MenuShell are laid out.

XmLEFT_TO_RIGHT
XmRIGHT_TO_LEFT
XmBOTTOM_TO_TOP
XmTOP_TO_BOTTOM
XmBOTTOM_TO_TOP_LEFT_TO_RIGHT
XmBOTTOM_TO_TOP_RIGHT_TO_LEFT
XmTOP_TO_BOTTOM_LEFT_TO_RIGHT
XmTOP_TO_BOTTOM_RIGHT_TO_LEFT
XmLEFT_TO_RIGHT_BOTTOM_TO_TOP
XmRIGHT_TO_LEFT_BOTTOM_TO_TOP
XmLEFT_TO_RIGHT_TOP_TO_BOTTOM
XmRIGHT_TO_LEFT_TOP_TO_BOTTOM

Inherited Resources
MenuShell inherits the following resources. The resources are listed alphabeti-
cally, along with the superclass that defines them. MenuShell sets the default
value of XmNallowShellResize to True and XmNborderWidth to 0. The default
values of XmNoverrideRedirect and XmNsaveUnder are set to True by Over-
rideShell.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNinitialResourcesPersistent Core

XmNallowShellResize Shell XmNinsertPosition Composite

XmNancestorSensitive Core XmNmappedWhenManaged Core

XmNbackground Core XmNnumChildren Composite

XmNbackgroundPixmap Core XmNoverrideRedirect Shell

XmNborderColor Core XmNpopdownCalback Shell

XmNborderPixmap Core XmNpopupCallback Shell

XmNborderWidth Core XmNsaveUnder Shell

XmNchildren Composite XmNscreen Core

XmNcolormap Core XmNsensitive Core

XmNcreatePopupChildProc Shell XmNtranslations Core

XmNdepth Core XmNvisual Shell

XmNdestroyCallback Core XmNwidth Core

XmNgeometry Shell XmNx Core

XmNheight Core XmNy Core

XmMenuShell Motif and Xt Widget Classes

788 Motif Reference Manual

Translations

Action Routines
MenuShell defines the following action routines:

ClearTraversal()
Shuts off keyboard traversal within this menu, turns on mouse
traversal, and unposts any submenus that this menu posted.

MenuShellPopdownDone()
Unposts the menu tree and restores the previous focus.

MenuShellPopdownOne()
Like MenuShellPopdownDone() except that it unposts only one
level of the menu tree. In a top-level pulldown menu pane attached
to a menu bar, this action routine disarms the cascade button and the
menu bar.

See Also
XmCreateObject (1), Composite (2), Core (2), OverrideShell (2),
Shell (2), XmRowColumn(2).

Event Action

BSelect Press ClearTraversal()

BSelect Release MenuShellPopdownDone()

Motif and Xt Widget Classes XmMessageBox

Motif Reference Manual 789

Name
XmMessageBox widget class – a composite widget used for creating message
dialogs.

Synopsis

Public Header:
<Xm/MessageB.h>

Class Name:
XmMessageBox

Class Hierarchy:
Core → Composite → Constraint → XmManager → XmBulletinBoard →
XmMessageBox

Class Pointer:
xmMessageBoxWidgetClass

Instantiation:
widget = XmCreateMessageBox (parent, name,...)
or
widget = XtCreateWidget (name, xmMessageBoxWidgetClass,...)

Functions/Macros:
XmCreateErrorDialog (), XmCreateInformationDialog (), XmCre-
ateMessageBox (),
XmCreateMessageDialog (), XmCreateQuestionDialog (),
XmCreateTemplateDialog (), XmCreateWarningDialog (),
XmCreateWorkingDialog (), XmIsMessageBox (), XmMessage-
BoxGetChild ()

Description
MessageBox is composite widget that is used for creating simple message dialog
boxes, which normally present transient messages. A MessageBox usually con-
tains a message symbol, a message, three PushButtons, and a separator between
the message and the buttons. The names of the symbol and the separator gadgets
are Symbol and Separator. In Motif 1.2, the default symbols and button labels can
be localized. The XmNdialogType resource controls the type of message symbol
that is displayed. In the C locale, and in Motif 1.1, the PushButtons are labelled
OK , Cancel, and Help by default.

You can customize a MessageBox by removing existing children or adding new
children. Use XmMessageBoxGetChild () to retrieve the widget ID of an

existing child and then unmanage the child1. With Motif 1.2, multiple widgets
can be added as children of a MessageBox. If a menu bar is added, it is placed at
the top of the window. Any buttons are placed after the OK button. Any addi-

XmMessageBox Motif and Xt Widget Classes

790 Motif Reference Manual

tional children are placed below the message. In Motif 1.1, only a single widget
can be added as a child of a MessageBox. This child is placed below the message
and acts as a work area.

In Motif 1.2 and later, a XmNdialogType of XmDIALOG_TEMPLATE create a
TemplateDialog which contains nothing but a separator by default. Specifying
callback, label string, or pixmap symbol resources causes the appropriate chil-
dren of the MessageBox to be created.

Traits
MessageBox uses the XmQTactivatable trait.

New Resources
MessageBox defines the following resources:

XmNcancelLabelString
The string that labels the Cancel button. In Motif 1.2, the default value is
locale-dependent. In the C locale, and in Motif 1.1, the default value is "Cancel".

XmNdefaultButtonType
Specifies which PushButton provides the default action. Possible values:

XmDIALOG_CANCEL_BUTTON
XmDIALOG_OK_BUTTON
XmDIALOG_HELP_BUTTON

1. From Motif 2.0 onwards, use XtNameToWidget (): the various toolkit GetChild() routines are considered dep-
recated.

Name Class Type Default Access

XmNcancelLabelString XmCCancelLabelString XmString dynamic CSG

XmNdefaultButtonType XmCDefaultButtonType unsigned char XmDIALOG_OK_BUTTON CSG

XmNdialogType XmCDialogType unsigned char XmDIALOG_MESSAGE CSG

XmNhelpLabelString XmCHelpLabelString XmString dynamic CSG

XmNmessageAlignment XmCAlignment unsigned char XmALIGNMENT_BEGINNING CSG

XmNmessageString XmCMessageString XmString ““a

a.Strictly speaking, NULL, which is internally mapped through the empty string.

CSG

XmNminimizeButtons XmCMinimizeButtons Boolean False CSG

XmNokLabelString XmCOkLabelString XmString dynamic CSG

XmNsymbolPixmap XmCPixmap Pixmap dynamic CSG

Motif and Xt Widget Classes XmMessageBox

Motif Reference Manual 791

XmNdialogType
The type of MessageBox dialog, which also indicates the message symbol that
displays by default. Possible values:

XmDIALOG_ERROR XmDIALOG_TEMPLATE (1.2)
XmDIALOG_INFORMATION XmDIALOG_WARNING
XmDIALOG_MESSAGE XmDIALOG_WORKING
XmDIALOG_QUESTION

XmNhelpLabelString
The string that labels the Help button. In Motif 1.2, the default value is
locale-dependent. In the C locale, and in Motif 1.1, the default value is "Help".

XmNmessageAlignment
The type of alignment for the message label. Possible values:

XmALIGNMENT_BEGINNING
XmALIGNMENT_CENTER
XmALIGNMENT_END

XmNmessageString
The string to use as the message label.

XmNminimizeButtons
If False (default), all buttons are standardized to be as wide as the widest button
and as high as the highest button. If True, buttons will keep their preferred size.

XmNokLabelString
The string that labels the OK button. In Motif 1.2, the default value is
locale-dependent. In the C locale, and in Motif 1.1, the default value is "OK".

XmNsymbolPixmap
The pixmap label to use as the message symbol.

Callback Resources
MessageBox defines the following callback resources:

XmNcancelCallback
List of callbacks that are called when the user selects the Cancel button.

XmNokCallback
List of callbacks that are called when the user selects the OK button.

Callback Reason Constant

XmNcancelCallback XmCR_CANCEL

XmNokCallback XmCR_OK

XmMessageBox Motif and Xt Widget Classes

792 Motif Reference Manual

Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /* the reason that the callback was called */
XEvent *event; /* event structure that triggered callback */

} XmAnyCallbackStruct;

Inherited Resources
MessageBox inherits the following resources. The resources are listed alphabeti-
cally, along with the superclass that defines them. The default value of XmNbor-
derWidth is reset to 0 by XmManager. BulletinBoard sets the value of
XmNinitialFocus to XmNdefaultButton and resets the default XmNshad-
owThickness from 0 to 1 if the MessageBox is a child of a DialogShell.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNlabelFontList XmBulletinBoard

XmNallowOverlap XmBulletinBoard XmNlabelRenderTable XmBulletinBoard

XmNancestorSensitive Core XmNlayoutDirection XmManager

XmNautoUnmanage XmBulletinBoard XmNmapCallback XmBulletinBoard

XmNbackground Core XmNmappedWhenManaged Core

XmNbackgroundPixmap Core XmNmarginHeight XmBulletinBoard

XmNborderColor Core XmNmarginWidth XmBulletinBoard

XmNborderPixmap Core XmNnavigationType XmManager

XmNborderWidth Core XmNnoResize XmBulletinBoard

XmNbottomShadowColor XmManager XmNnumChildren Composite

XmNbottomShadowPixmap XmManager XmNpopupHandlerCallback XmManager

XmNbuttonFontList XmBulletinBoard XmNresizePolicy XmBulletinBoard

XmNbuttonRenderTable XmBulletinBoard XmNscreen Core

XmNcancelButton XmBulletinBoard XmNsensitive Core

XmNchildren Composite XmNshadowThickness XmManager

XmNcolormap Core XmNshadowType XmBulletinBoard

XmNdefaultButton XmBulletinBoard XmNstringDirection XmManager

XmNdefaultPosition XmBulletinBoard XmNtextFontList XmBulletinBoard

XmNdepth Core XmNtextRenderTable XmBulletinBoard

XmNdestroyCallback Core XmNtextTranslations XmBulletinBoard

XmNdialogStyle XmBulletinBoard XmNtopShadowColor XmManager

XmNdialogTitle XmBulletinBoard XmNtopShadowPixmap XmManager

Motif and Xt Widget Classes XmMessageBox

Motif Reference Manual 793

Translations
The translations for MessageBox include those from XmManager.

Additional Behavior
MessageBox has the following additional behavior:

MAny KCancel
For a sensitive Cancel button, invokes the callbacks in XmNacti-
vateCallback.

KActivate
For the button that has keyboard focus, or the default button,
invokes the callbacks in XmNactivateCallback.

<OK Button Activated>
Invokes the callbacks for XmNokCallback.

<Cancel Button Activated>
Invokes the callbacks for XmNcancelCallback.

<Help Button Activated>
Invokes the callbacks for XmNhelpCallback.

<FocusIn>
Invokes the callbacks for XmNfocusCallback.

<Map>
Invokes the callbacks for XmNmapCallback if the parent is a Dia-
logShell.

<Unmap>
Invokes the callbacks for XmNunmapCallback if the parent is a
DialogShell.

XmNfocusCallback XmBulletinBoard XmNtranslations Core

XmNforeground XmManager XmNtraversalOn XmManager

XmNheight Core XmNunitType XmManager

XmNhelpCallback XmManager XmNunmapCallback XmBulletinBoard

XmNhighlightColor XmManager XmNuserData XmManager

XmNhighlightPixmap XmManager XmNwidth Core

XmNinitialFocus XmManager XmNx Core

XmNinitialResourcesPersistent Core XmNy Core

XmNinsertPosition Composite

Resource Inherited From Resource Inherited From

XmMessageBox Motif and Xt Widget Classes

794 Motif Reference Manual

See Also
XmCreateObject (1), XmMessageBoxGetChild (1), Composite (2),
Constraint (2), Core (2), XmBulletinBoard (2), XmErrorDialog (2),
XmInformationDialog (2), XmManager(2), XmQuestionDialog (2),
XmTemplateDialog (2), XmWarningDialog (2), XmWorkingDialog (2).

Motif and Xt Widget Classes XmMessageDialog

Motif Reference Manual 795

Name
XmMessageDialog – an unmanaged MessageBox as a child of DialogShell.

Synopsis

Public Header:
<Xm/MessageB.h>

Instantiation:
widget = XmCreateMessageDialog (parent, name,...)

Functions/Macros:
XmCreateMessageDialog (), XmMessageBoxGetChild ()

Description
An XmMessageDialog is a compound object created by a call to XmCreate-
MessageDialog () that an application can use to present a message to the user.
A MessageDialog consists of a DialogShell with an unmanaged MessageBox
widget as its child. The MessageBox resource XmNdialogType is set to
XmDIALOG_MESSAGE. A MessageDialog includes four components: a sym-
bol, a message, three buttons, and a separator between the message and the but-
tons. By default, there is no symbol. In Motif 1.2, the default button labels can be
localized. In the C locale, and in Motif 1.1, the PushButtons are labelled OK ,
Cancel, and Help by default.

Default Resource Values
A MessageDialog sets the following default values for MessageBox resources:

Widget Hierarchy
When a MessageDialog is created with a specified name, the DialogShell is
named name_popup and the MessageBox is called name.

See Also
XmCreateObject (1), XmMessageBoxGetChild (1),
XmDialogShell (2), XmMessageBox(2).

Name Default

XmNdialogType XmDIALOG_MESSAGE

XmNotebook Motif and Xt Widget Classes

796 Motif Reference Manual

Name
XmNotebook widget class – a constraint widget which lays out its children like
pages in a book

Synopsis

Public Header:
<Xm/Notebook.h>

Class Name:
XmNotebook

Class Hierarchy:
Core → Composite → Constraint → XmManager → XmNotebook

Class Pointer:
xmNotebookWidgetClass

Instantiation:
widget = XmCreateNotebook (parent, name,...)
or
widget = XtCreateWidget (name, xmNotebookWidgetClass,...)

Functions/Macros:
XmNotebookGetPageInfo (), XmCreateNotebook (), XmIsNotebook ()

Availability
Motif 2.0 and later.

Description
Notebook is a constraint widget that organises its children into logical pages. It
lays itself out so that the stack of logical pages look like the pages of an open
notebook. The Notebook has visuals to simulate book binding and overlapping
(back) page edges. Only one page is visible at any time.

The Notebook can be divided in sections and sub-sections by creating tabs which
are displayed along the edge of the Notebook pages. A major tab divides the
Notebook into sections, within each section there may be further minor tabs. A
tab is associated with a page, so that activating a tab causes the relevant page to
be displayed within the Notebook. The Notebook automatically creates a tab
scroller, consisting of a set of four ArrowButtonGadgets. These are used for mov-
ing backwards and forwards between the major and minor tabs, when it is not
possible to display all the tabs.

A status area can be associated with a page, and this is used for providing addi-
tional information, typically the page number.

Motif and Xt Widget Classes XmNotebook

Motif Reference Manual 797

In addition to associating tabs with pages, a page scroller can also be created for
moving between pages of the Notebook. This can be any preferred method of
navigating between the pages. If, however, there is no page scroller associated
with the Notebook when it is realized, the Notebook creates a default page
scroller, consisting of a SpinBox. The Notebook only requires one page scroller.

A fully programmed Notebook therefore consists of pages, tabs, status areas, a
page scroller, and a tab scroller. The programmer does not create the tab scroller,
and only optionally provides an alternative page scroller. Tabs and status areas
are also optional.

An application adds a page to the Notebook by creating a child with the con-
straint resource XmNnotebookChildType set to XmPAGE. Any widget derived
from RectObj may form a page of the Notebook. The default behavior is that if
XmNnotebookChildType is unspecified (XmNONE), the child forms a page,
with the following exceptions: a child with the XmQTactivatable trait (Arrow-
Button, DrawnButton, PushButton, and derived classes) is set up as a tab; a child
with the XmQTaccessTextual trait (Label, Text, TextField, and derived classes)
becomes a status area; a child with the XmQTnavigator trait (ScrollBar, Spin-
Box, and derivatives) is made into a page scroller.

Pages are ordered by setting the constraint resource XmNpageNumber appropri-
ately for each child of type XmPAGE. A tab is attached to a page by adding an
appropriate widget to the Notebook with XmNnotebookChildType set to either
XmMAJOR_TAB or XmMINOR_TAB, and with the XmNpageNumber con-
straint resource set to that of the relevant page. Similarly, a status area can be
attached to a page by adding the child with XmNnotebookChildType set to
XmSTATUS_AREA, and again appropriately setting XmNpageNumber to the
relevant page.

The resources XmNcurrentPageNumber, XmNfirstPageNumber, and XmNlast-
PageNumber control the range of pages which may be displayed. If a child has a
XmNpageNumber constraint value which falls outside of the bounds set by
XmNfirstPageNumber and XmNlastPageNumber, either the bounds must be
altered to encompass the page constraint, or the page number itself must be
altered, before the Notebook will display the child. The XmNlastPageNumber
resource is dynamically maintained as the highest XmNpageNumber supplied,
unless the application itself changes the value of XmNlastPageNumber. Once set
by the application, the XmNlastPageNumber resource is no longer maintained by
the Notebook, even if higher XmNpageNumber values are set.

XmNotebook Motif and Xt Widget Classes

798 Motif Reference Manual

When a child page is managed and no XmNpageNumber has been explicitly
assigned, the Notebook automatically assigns a number. The assigned number is
the smallest unused number which is not less than either the XmNfirstPageNum-
ber or the previous automatically allocated number. This may exceed XmNlast-
PageNumber. If XmNfirstPageNumber exceeds XmNlastPageNumber, the
behavior of the Notebook is undefined. The default value of the constraint XmN-
pageNumber is XmUNSPECIFIED_PAGE_NUMBER, which causes the Note-
book to automatically assign a number.

Pages may be assigned duplicate XmNpageNumber values, in which case the
Notebook displays the child which is most recently managed. There may be gaps
in the assigned page numbering scheme, in which case the Notebook displays a
blank background, unless the application dynamically provides feedback into the
background whilst processing a XmNpageChangedCallback. It is possible to cre-
ate a tab for an empty slot by assigning an XmNpageNumber constraint to a tab
child, for which there is no corresponding XmPAGE child.

The ConstraintSetValues method of the Notebook sorts children into ascending
logical page number order. Logical page numbers may be assigned in any order,
provided that the programmer does not rely anywhere upon the particular order in
which children are added.

Traits
Notebook holds the XmQTscrollFrame, XmQTtraversalControl, and XmQT-
specifyUnhighlight traits, which are inherited by any derived classes, and uses
the XmQTscrollFrame, XmQTactivatable, XmQTnavigator, XmQTjoinSide, and
XmQTaccessTextual traits.

New Resources
Notebook defines the following resources:

Name Class Type Default Access

XmNbackPageBackground XmCBackPageBackground Pixel dynamic CSG

XmNbackPageForeground XmCBackPageForeground Pixel dynamic CSG

XmNbackPageNumber XmCBackPageNumber Cardinal 2 CSG

XmNbackPagePlacement XmCBackPagePlacement unsigned char XmBOTTOM_RIGHT CSG

XmNbackPageSize XmCBackPageSize Dimension 8 CSG

XmNbindingPixmap XmCBindingPixmap Pixmap XmUNSPECIFIED_PIXMAP CSG

XmNbindingType XmCBindingType unsigned char XmSPIRAL CSG

XmNbindingWidth XmCBindingWidth Dimension 25 CSG

XmNcurrentPageNumber XmCCurrentPageNumber int XmUNSPECIFIED_PAGE_NUMBER CSG

Motif and Xt Widget Classes XmNotebook

Motif Reference Manual 799

XmNbackPageBackground
Specifies the background color for drawing the back (overlapped) pages.

XmNbackPageForeground
Specifies the foreground color for drawing the back (overlapped) pages.

XmNbackPageNumber
Specifies the number of lines to draw to represent the back (overlapped) pages.
The minimum value is 1, the maximum is half the XmNbackPageSize value.

XmNbackPagePlacement
Specifies where to draw the back (overlapped) pages. The default depends upon
the XmNlayoutDirection of the Notebook parent widget, and the Notebook
XmNorientation. Possible values:

XmBOTTOM_RIGHT /* lines drawn to bottom and right */
XmBOTTOM_LEFT /* lines drawn to bottom and left */
XmTOP_RIGHT /* lines drawn to top and right */
XmTOP_LEFT /* lines drawn to top and left */

XmNbackPageSize
Specifies the thickness, in pixels, of the back page rendering.

XmNbindingPixmap
Specifies the pixmap for drawing the binding. The value is only used if the XmN-
bindingType is XmPIXMAP or XmPIXMAP_OVERLAP_ONLY.

XmNbindingType
Specifies the type of binding. Possible values:

XmNONE XmSOLID
XmSPIRAL XmPIXMAP
XmPIXMAP_OVERLAP_ONLY

A value of XmNONE displays no binding.

XmNfirstPageNumber XmCFirstPageNumber int 1 CSG

XmNframeBackground XmCFrameBackground Pixel dynamic CSG

XmNframeShadowThickness XmCShadowThickness Dimension dynamic CSG

XmNinnerMarginHeight XmCInnerMarginHeight Dimension 0 CSG

XmNinnerMarginWidth XmCInnerMarginWidth Dimension 0 CSG

XmNlastPageNumber XmCLastPageNumber int XmUNSPECIFIED_PAGE_NUMBER CSG

XmNmajorTabSpacing XmCMajorTabSpacing Dimension 3 CSG

XmNminorTabSpacing XmCMinorTabSpacing Dimension 3 CSG

XmNorientation XmCOrientation unsigned char XmHORIZONTAL CSG

Name Class Type Default Access

XmNotebook Motif and Xt Widget Classes

800 Motif Reference Manual

The value XmSOLID draws a solid binding using the foreground color of the
widget. The binding is contained within the area of a frame containing the pages
of the Notebook, and curtailed by the value of XmNbindingWidth.

The value XmSPIRAL draws a spiral binding using the foreground color of the
widget. The binding is contained within the area of a frame containing the pages
of the Notebook, and curtailed by the value of XmNbindingWidth, and by an area
outside the frame of the pages also bounded by the value of XmNbindingWidth.

The value XmPIXMAP draws a binding using the value of XmNbindingPixmap
as a tile or stipple, depending upon the depth of the supplied pixmap. A pixmap
of depth 1 is used as a stipple, and tiled otherwise. The foreground color of the
Notebook is used when stippling. The size of the binding drawn is the larger of
XmNbindingWidth and the width of the pixmap.

The value XmPIXMAP_OVERLAP_ONLY is similar to XmPIXMAP, except
that the size of the binding is bounded only by the value of XmNbindingWidth,
and not the width of the pixmap.

XmNbindingWidth
Specifies the width, in pixels, of the Notebook binding area.

XmNcurrentPageNumber
Specifies the page number of the currently visible page. Initially set to the value
of XmNfirstPageNumber, the XmNcurrentPageNumber is constrained to be not
be less than the XmNfirstPageNumber and not to exceed the XmNlastPageNum-
ber.

XmNfirstPageNumber
Specifies the page number of the first logical page that may be displayed in the
Notebook. Any child with an XmNpageNumber less than this value cannot be
displayed until such time as either the XmNfirstPageNumber, or the XmNpage-
Number of the given child itself, is suitably altered.

XmNframeBackground
Specifies the background color for the Notebook frame.

XmNframeShadowThickness
Specifies the shadow thickness around the Notebook frame. In Motif 2.0 the
default is 2. In Motif 2.1 and later, the default depends upon the XmDisplay
XmNenableThinThickness resource: if True, the default is 1, otherwise 2.

XmNinnerMarginHeight
Specifies the margin on the top and bottom sides of page, status area, and page
scroller children.

XmNinnerMarginWidth
Specifies the margin on the left and right sides of page, status area, and page
scroller children.

Motif and Xt Widget Classes XmNotebook

Motif Reference Manual 801

XmNlastPageNumber
Specifies the page number of the last logical page that may be displayed in the
Notebook. Any child with an XmNpageNumber in excess of this value may not
be displayed until such time as either the XmNlastPageNumber, or the XmNpa-
geNumber of the given child itself, is suitably altered. The XmNlastPageNumber
is automatically set by the Notebook as pages are added, unless the programmer
directly changes the value: once modified, the Notebook no longer maintains the
last page reference, and the programmer must continue to set the value as
required.

XmNmajorTabSpacing
Specifies the spacing between major tabs. If XmNframeShadowThickness
exceeds the value of the spacing, then the shadow thickness is used.

XmNminorTabSpacing
Specifies the spacing between minor tabs. If XmNframeShadowThickness
exceeds the value of the spacing, then the shadow thickness is used.

XmNorientation
Specifies the orientation of the Notebook. Possible values:

XmHORIZONTAL /* binding on left or right side */
XmVERTICAL /* binding on top or bottom side */

New Constraint Resources
Notebook defines the following constraint resources for its children:

XmNnotebookChildType
Specifies the child type of the Notebook. Possible values:

XmPAGE /* the child is a page */
XmMAJOR_TAB /* the child is a major tab */
XmMINOR_TAB /* the child is a minor page */
XmSTATUS_AREA /* the child is a status area */
XmPAGE_SCROLLER /* the child is a page scroller */

Name Class Type Default Access

XmNnotebookChildType XmCNotebookChildType unsigned char XmNONE CGa

a.Erroneously listed as CSG in 2nd edition.

XmNpageNumber XmCPageNumber int XmUNSPECIFIED_PAGE_NUMBER CSG

XmNresizable XmCResizable Boolean True CSG

XmNotebook Motif and Xt Widget Classes

802 Motif Reference Manual

XmNpageNumber
Specifies a logical page number associated with a child of the Notebook. If
unspecified, the Notebook assigns the next unallocated number when the child is
managed. The assigned number is calculated to be not less than the Notebook
XmNfirstPageNumber.

XmNresizable
Specifies whether any child resize request is processed by the Notebook.

Callback Resources
Notebook defines the following callback resources:

XmNpageChangedCallback
List of callbacks called when the current logical page number is initialized or
changed.

Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /* the reason that the callback was called */
XEvent *event; /* points to event structure */

/* that triggered callback */
int page_number; /* current page number */
Widget page_widget; /* widget associated with current page number */
int prev_page_number; /* previous current logical page number */
Widget prev_page_widget; /* widget associated with previous */

/* current logical page number */
} XmNotebookCallbackStruct;

The structure members page_number, page_widget, prev_page_number,
prev_page_widget are valid for any value of reason.

reason specifies the cause of callback invocation. At Notebook initialization, the
page changed callback list is called in order to set up the first current page, and
the reason structure member in this instance will have the value XmCR_NONE.

Callback Reason Constant

XmNpageChangedCallback XmCR_NONE
XmCR_PAGE_SCROLLER_INCREMENT
XmCR_PAGE_SCROLLER_DECREMENT
XmCR_MAJOR_TAB
XmCR_MINOR_TAB

Motif and Xt Widget Classes XmNotebook

Motif Reference Manual 803

Thereafter, if a tab child is activated, the reason member has the value
XmCR_MAJOR_TAB or XmCR_MINOR_TAB, depending upon the XmNnote-
bookChildType resource of the selected tab. If the page scroller is activated, the
reason field is either XmCR_PAGE_SCROLLER_INCREMENT or
XmCR_PAGE_SCROLLER_DECREMENT, depending upon the scroller action.
The reason member is also XmCR_NONE if the XmNcurrentPageNumber
resource is changed through XtSetValues ().

page_number specifies the new logical page number.

page_widget specifies the widget which has the new logical page number. This is
NULL if no page widget with an XmNpageNumber value equal to page_number
is found.

prev_page_number specifies the current logical page number. At Notebook ini-
tialization, the value is XmUNSPECIFIED_PAGE_NUMBER.

prev_page_widget specifies the currently displayed page child of the Notebook.
This is NULL at Notebook initialization, and where there is no page widget with
an XmNpageNumber value equal to prev_page_number.

XmNotebook Motif and Xt Widget Classes

804 Motif Reference Manual

Inherited Resources
Notebook inherits the resources shown below. The resources are listed alphabeti-
cally, along with the superclass that defines them.

Translations
The translations for Notebook include those of XmManager. In addition, Note-
book places the following accelerators upon Tab children:

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNinsertPosition Composite

XmNancestorSensitive Core XmNlayoutDirection XmManager

XmNbackground Core XmNmappedWhenManaged Core

XmNbackgroundPixmap Core XmNnavigationType XmManager

XmNborderColor Core XmNnumChildren Composite

XmNborderPixmap Core XmNpopupHandlerCallback XmManager

XmNborderWidth Core XmNscreen Core

XmNbottomShadowColor XmManager XmNsensitive Core

XmNbottomShadowPixmap XmManager XmNshadowThickness XmManager

XmNchildren Composite XmNstringDirection XmManager

XmNcolormap Core XmNtopShadowColor XmManager

XmNdepth Core XmNtopShadowPixmap XmManager

XmNdestroyCallback Core XmNtranslations Core

XmNforeground XmManager XmNtraversalOn XmManager

XmNheight Core XmNunitType XmManager

XmNhelpCallback XmManager XmNuserData XmManager

XmNhighlightColor XmManager XmNwidth Core

XmNhighlightPixmap XmManager XmNx Core

XmNinitialFocus XmManager XmNy Core

XmNinitialResourcesPersistent Core

Event Action

KBeginLine TraverseTab(Home)

KEndLine TraverseTab(End)

KLeft TraverseTab(Previous)

KRight TraverseTab(Next)

KUp TraverseTab(Previous)

KDown TraverseTab(Next)

Motif and Xt Widget Classes XmNotebook

Motif Reference Manual 805

Action Routines
Notebook defines the following action routines:

TraverseTab(type)
A generic action to move the focus between major and minor tabs
in the Notebook. The action type may be one of Home, End, Previ-
ous, or Next.

See Also
XmNotebookGetPageInfo (1), XmCreateObject (1),
Composite (2), Constraint (2), Core (2), RectObj (2), XmManager(2).

Name
XmOptionMenu – a type of RowColumn widget used as an option menu.

Synopsis

Public Header:
<Xm/RowColumn.h>

Class Name:
XmRowColumn

Class Hierarchy:
Core → Composite → Constraint → XmManager → XmRowColumn

Class Pointer:
xmRowColumnWidgetClass

Instantiation:
widget = XmCreateOptionMenu (parent, name,...)

Functions/Macros:
XmCreateOptionMenu (), XmCreateSimpleOptionMenu (),
XmVaCreateSimpleOptionMenu (), XmIsRowColumn(), XmOption-
ButtonGadget (),
XmOptionLabelGadget ()

Description
An OptionMenu is an instance of a RowColumn widget that is used as a menu
that allows a user to select one of several choices. An OptionMenu consists of a
label, a selection area, and pulldown menu pane. When you create an Option-
Menu, you must supply the pulldown menu pane via the XmNsubMenuId
resource. The menu pane must already exist and it must be a child of the Option-
Menu’s parent. The label (a LabelGadget) and the selection area (a CascadeBut-
tonGadget) are created by the OptionMenu. You can specify the label string with
the XmNlabelString resource.

XmNotebook Motif and Xt Widget Classes

806 Motif Reference Manual

OptionMenu is a RowColumn widget whose XmNrowColumnType resource is
set to XmMENU_OPTION. The XmNorientation resource defaults to XmHORI-
ZONTAL, which means that the label is displayed to the left of the selection area.
If the resource is set to XmVERTICAL, the label is placed above the selection
area. The selection area posts the menu pane, as well as displays the label of the
current selection. The XmNmenuPost resource is set to BSelect Press. The XmN-
menuHistory resource can be used to specify which item in the pulldown menu is
the current choice. The XmNmnemonic and XmNmnemonicCharSet resources
can be set to specify a mnemonic for the OptionMenu.

An OptionMenu can be created using XmCreateOptionMenu (). In this case,
the OptionMenu does not automatically create its submenu; it must be added by
the application.

An OptionMenu can also be created by XmCreateSimpleOptionMenu(), which
automatically creates the OptionMenu and its submenu with the specified chil-
dren. This routine uses the RowColumn resources associated with the creation of
simple menus. For an OptionMenu, the only types allowed in the XmNbutton-
Type resource are XmCASCADEBUTTON, XmPUSHBUTTON, XmSEPARA-
TOR, and XmDOUBLE_SEPARATOR. The name of each button is button_n,
where n is the number of the button, ranging from 0 to 1 less than the number of
buttons in the submenu. The name of each separator is separator_n, where n is
the number of the separator, ranging from 0 to 1 less than the number of separa-
tors in the submenu.

Default Resource Values
An OptionMenu sets the following default values for RowColumn resources:

Widget Hierarchy
When an OptionMenu is created, the LabelGadget is named OptionLabel and the
CascadeButtonGadget is named OptionButton.

See Also
XmCreateObject (1), XmOptionButtonGadget (1),
XmOptionLabelGadget (1), XmVaCreateSimpleOptionMenu (1),
XmCascadeButtonGadget (2), XmLabelGadget (2), XmRowColumn(2).

Name Default

XmNmenuPost BSelect Press

XmNorientation XmHORIZONTAL

XmNrowColumnType XmMENU_OPTION

Motif and Xt Widget Classes XmOptionMenu

Motif Reference Manual 807

Name
XmOptionMenu – a type of RowColumn widget used as an option menu.

Synopsis

Public Header:
<Xm/RowColumn.h>

Class Name:
XmRowColumn

Class Hierarchy:
Core → Composite → Constraint → XmManager → XmRowColumn

Class Pointer:
xmRowColumnWidgetClass

Instantiation:
widget = XmCreateOptionMenu (parent, name,...)

Functions/Macros:
XmCreateOptionMenu (), XmCreateSimpleOptionMenu (),
XmVaCreateSimpleOptionMenu (), XmIsRowColumn(), XmOption-
ButtonGadget (),
XmOptionLabelGadget ()

Description
An XmOptionMenu is an instance of a RowColumn widget that is used as a
menu that allows a user to select one of several choices. An OptionMenu consists
of a label, a selection area, and pulldown menu pane. When you create an
OptionMenu, you must supply the pulldown menu pane via the XmNsubMenuId
resource. The menu pane must already exist and it must be a child of the Option-
Menu’s parent. The label (a LabelGadget) and the selection area (a CascadeBut-
tonGadget) are created by the OptionMenu. You can specify the label string with
the XmNlabelString resource.

OptionMenu is a RowColumn widget whose XmNrowColumnType resource is
set to XmMENU_OPTION. The XmNorientation resource defaults to XmHORI-
ZONTAL, which means that the label is displayed to the left of the selection area.
If the resource is set to XmVERTICAL, the label is placed above the selection
area. The selection area posts the menu pane, as well as displays the label of the
current selection. The XmNmenuPost resource is set to BSelect Press. The XmN-
menuHistory resource can be used to specify which item in the pulldown menu is
the current choice. The XmNmnemonic and XmNmnemonicCharSet resources
can be set to specify a mnemonic for the OptionMenu.

XmOptionMenu Motif and Xt Widget Classes

808 Motif Reference Manual

An OptionMenu can be created using XmCreateOptionMenu (). In this case,
the OptionMenu does not automatically create its submenu; it must be added by
the application.

An OptionMenu can also be created by XmCreateSimpleOptionMenu(), which
automatically creates the OptionMenu and its submenu with the specified chil-
dren. This routine uses the RowColumn resources associated with the creation of
simple menus. For an OptionMenu, the only types allowed in the XmNbutton-
Type resource are XmCASCADEBUTTON, XmPUSHBUTTON, XmSEPARA-
TOR, and XmDOUBLE_SEPARATOR. The name of each button is button_n,
where n is the number of the button, ranging from 0 to 1 less than the number of
buttons in the submenu. The name of each separator is separator_n, where n is
the number of the separator, ranging from 0 to 1 less than the number of separa-
tors in the submenu.

Default Resource Values
An OptionMenu sets the following default values for RowColumn resources:

Widget Hierarchy
When an OptionMenu is created, the LabelGadget is named OptionLabel and the
CascadeButtonGadget is named OptionButton.

See Also
XmCreateObject (1), XmOptionButtonGadget (1),
XmOptionLabelGadget (1), XmVaCreateSimpleOptionMenu (1),
XmCascadeButtonGadget (2), XmLabelGadget (2), XmRowColumn(2).

Name Default

XmNmenuPost BSelect Press

XmNorientation XmHORIZONTAL

XmNrowColumnType XmMENU_OPTION

Motif and Xt Widget Classes XmPanedWindow

Motif Reference Manual 809

Name
XmPanedWindow widget class – a constraint widget that tiles its children.

Synopsis

Public Header:
<Xm/PanedW.h>

Class Name:
XmPanedWindow

Class Hierarchy:
Core → Composite → Constraint → XmManager → XmPanedWindow

Class Pointer:
xmPanedWindowWidgetClass

Instantiation:
widget = XmCreatePanedWindow (parent, name,...)
or
widget = XtCreateWidget (name, xmPanedWindowWidgetClass,...)

Functions/Macros:
XmCreatePanedWindow (), XmIsPanedWindow ()

Description
PanedWindow is a constraint widget that tiles its children. In Motif 1.1, the chil-
dren are laid out vertically from top to bottom, in the order that they are added to
the PanedWindow. In Motif 1.2, the position of each child is controlled by the
XmNpositionIndex resource. A PanedWindow is as wide as its widest child and
all children are made that width. Users can adjust the height of a pane using a
sash that appears below the corresponding pane.

In Motif 2.0 and later, the PanedWindow may be oriented either vertically or hor-
izontally. When the XmNorientation resource is set to XmHORIZONTAL, the
PanedWindow is as tall as its tallest child, and all children are made that height.
The sash in this orientation is used to control the width of the pane.

New Resources
PanedWindow defines the following resources:

Name Class Type Default Access

XmNmarginHeight XmCMarginHeight Dimension 3 CSG

XmNmarginWidth XmCMarginWidth Dimension 3 CSG

XmNorientation XmCOrientation unsigned char XmVERTICAL CSG

XmNrefigureMode XmCBoolean Boolean True CSG

XmNsashHeight XmCSashHeight Dimension 10 CSG

XmPanedWindow Motif and Xt Widget Classes

810 Motif Reference Manual

XmNmarginHeight
The spacing between a PanedWindow widget’s top or bottom edge and any child
widget.

XmNmarginWidth
The spacing between a PanedWindow widget’s right or left edge and any child
widget.

XmNorientation
In Motif 2.0 and later, the orientation of the PanedWindow. Possible values:

XmHORIZONTAL
XmVERTICAL

XmNrefigureMode
If True (default), children are reset to their appropriate positions following a
change in the PanedWindow widget.

XmNsashHeight

XmNsashWidth
The height and width of the sash.

XmNsashIndent
If the PanedWindow orientation is XmVERTICAL, the resource specifies the
horizontal position of the sash along each pane. Positive values specify the indent
from the left edge; negative values, from the right edge (assuming the default val-
ues of XmNstringDirection and XmNlayoutDirection). Similarly, in an XmHOR-
IZONTAL PanedWindow, it specifies the vertical position of the sash, positive
values being calculated from the top edge, negative values from the bottom. If the
value is too large, the sash is placed flush with the edge of the PanedWindow.

XmNsashShadowThickness
The thickness of shadows drawn on each sash. In Motif 2.0 and earlier, the
default is 2. In Motif 2.1 and later, the default depends upon the XmDisplay
XmNenableThinThickness resource: if True, the default is 1, otherwise 2.

XmNseparatorOn
If True, the widget places a Separator or SeparatorGadget between each pane.

XmNspacing
The distance between each child pane.

XmNsashIndent XmCSashIndent Position -10 CSG

XmNsashShadowThickness XmCShadowThickness Dimension dynamic CSG

XmNsashWidth XmCSashWidth Dimension 10 CSG

XmNseparatorOn XmCSeparatorOn Boolean True CSG

XmNspacing XmCSpacing Dimension 8 CSG

Name Class Type Default Access

Motif and Xt Widget Classes XmPanedWindow

Motif Reference Manual 811

New Constraint Resources
PanedWindow defines the following constraint resources for its children:

XmNallowResize
If False (default), the PanedWindow widget always refuses resize requests from
its children. If True, the PanedWindow widget tries to grant requests to change a
child’s height.

XmNpaneMaximum

XmNpaneMinimum
The values of a pane’s maximum and minimum dimensions for resizing. You can
prevent a sash from being drawn by setting these values to be equal.

XmNpositionIndex
In Motif 1.2, the position of the widget in the PanedWindow’s list of children, not
including sashes. A value of 0 indicates the beginning of the list, while
XmLAST_POSITION places the child at the end of the list.

XmNskipAdjust
If False (default), the PanedWindow widget automatically resizes this pane child.
If True, resizing is not automatic, and the PanedWindow may choose to skip the
adjustment of this pane.

Name Class Type Default Access

XmNallowResize XmCBoolean Boolean False CSG

XmNpaneMaximum XmCPaneMaximum Dimension 1000 CSG

XmNpaneMinimum XmCPaneMinimum Dimension 1 CSG

XmNpositionIndex XmCPositionIndex short XmLAST_POSITION CSG

XmNskipAdjust XmCBoolean Boolean False CSG

XmPanedWindow Motif and Xt Widget Classes

812 Motif Reference Manual

Inherited Resources
PanedWindow inherits the following resources. The resources are listed alphabet-
ically, along with the superclass that defines them. PanedWindow sets the default
value of XmNshadowThickness to 2. The default value of XmNborderWidth is
reset to 0 by Manager.

Widget Hierarchy
The sash children of a PanedWindow are created using a private widget class
called XmSash, derived from XmPrimitive. Each instance of a sash has the name
Sash. The appearance of the sash can be configured using these names in external
resource files.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNinsertPosition Composite

XmNancestorSensitive Core XmNlayoutDirection XmManager

XmNbackground Core XmNmappedWhenManaged Core

XmNbackgroundPixmap Core XmNnavigationType XmManager

XmNborderColor Core XmNnumChildren Composite

XmNborderPixmap Core XmNpopupHandlerCallback XmManager

XmNborderWidth Core XmNscreen Core

XmNbottomShadowColor XmManager XmNsensitive Core

XmNbottomShadowPixmap XmManager XmNshadowThickness XmManager

XmNchildren Composite XmNstringDirection XmManager

XmNcolormap Core XmNtopShadowColor XmManager

XmNdepth Core XmNtopShadowPixmap XmManager

XmNdestroyCallback Core XmNtranslations Core

XmNforeground XmManager XmNtraversalOn XmManager

XmNheight Core XmNunitType XmManager

XmNhelpCallback XmManager XmNuserData XmManager

XmNhighlightColor XmManager XmNwidth Core

XmNhighlightPixmap XmManager XmNx Core

XmNinitialFocus XmManager XmNy Core

XmNinitialResourcesPersistent Core

Motif and Xt Widget Classes XmPanedWindow

Motif Reference Manual 813

Translations
The translations for PanedWindow are inherited from Manager. Additional trans-
lations are defined for sashes within a PanedWindow widget:

Action Routines
PanedWindow defines the following action routines:

Help()
Invokes the list of callbacks specified by XmNhelpCallback. If the
PanedWindow doesn’t have any help callbacks, the Help() routine
invokes those associated with the nearest ancestor that has them.

NextTabGroup()
Traverses to the next tab group. Normally a tab group consists of a
pane and its sash.

PrevTabGroup()
Traverses to the previous tab group. Normally a tab group consists
of a pane and its sash.

Event Action

BSelect Press SashAction(Start)

BSelect Motion SashAction(Move)

BSelect Release SashAction(Commit)

BTransfer Press SashAction(Start)

BTransfer Motion SashAction(Move)

BTransfer Release SashAction(Commit)

KHelp Help()

KUp SashAction(Key,DefaultIncr,Up)

MCtrl KUp SashAction(Key,LargeIncr,Up)

KDown SashAction(Key,DefaultIncr,Down)

MCtrl KDown SashAction(Key,LargeIncr,Down)

KLeft SashAction(Key,DefaultIncr,Left)

MCtrl KLeft SashAction(Key,LargeIncr,Left)

KRight SashAction(Key,DefaultIncr,Right)

MCtrl KRight SashAction(Key,LargeIncr,Right)

KNextField NextTabGroup()

KPrevField PrevTabGroup()

XmPanedWindow Motif and Xt Widget Classes

814 Motif Reference Manual

SashAction(action)
Controls the interactive placement of the sash using the mouse.
action can have one of three values:

StartBegins the placement operation.
MoveCauses the sash to move as the mouse moves.
CommitEnds the placement operation.

SashAction(Key,increment,direction)
Controls the placement of the sash when it is moved using the key-
board. increment is either DefaultIncr, which moves the sash’s
position by one line or LargeIncr, which moves the sash’s position
by one viewing region. direction is either Up, Down, Left, or Right.

Additional Behavior
PanedWindow has the following additional behavior:

<FocusIn>
Highlights the sash and gives it keyboard focus.

<FocusOut>
Unhighlights the sash and removes its keyboard focus.

See Also
XmCreateObject (1), Composite (2), Constraint (2), Core (2),
XmManager(2).

Motif and Xt Widget Classes XmParseMapping

Motif Reference Manual 815

Name
XmParseMapping data type – an opaque type representing an entry in a parse
table

Synopsis

Public Header:
<Xm/Xm.h>

Functions/Macros:
XmParseMappingCreate (), XmParseMappingFree (), XmParseMap-
pingGetValues (),
XmParseMappingSetValues (),

Availability
Motif 2.0 and later.

Description
XmParseMapping is an opaque data type representing an entry in a parse table,
which is used for table-driven parsing of strings and compound strings.

A parse mapping consists of a match pattern, and either a substitution pattern or
parse procedure, which can be used by string manipulation functions in order to
compare against and subsequently transform text.

An XmParseTable is simply an array of parse mappings. XmParseMap-
pingCreate () creates a parse mapping, for subsequent use in a parse table,
using a resource style parameter list. The parse table can be passed to
XmStringParseText (), for example, in order to filter or modify an input
string. In the parse process, a pointer is initialized to the head of some input text.
The parse table is inspected from top to bottom, comparing the match pattern of
each parse mapping entry with the value at the input pointer. Where a corre-
spondence is found, the parse mapping is used to supply transformed output at
that point in the parsing process. The input pointer is subsequently advanced, and
the process is reiterated.

The implementation of XmParseMapping is that of a pseudo widget: although
not a real widget, the object has resources and a resource style interface for set-
ting and fetching values of the mapping, principally the match pattern, substitu-
tion pattern, and parse procedure. Resources of the object are set and fetches
through the procedures XmParseMappingGetValues () and XmParseMap-
pingSetValues () respectively.

XmParseMapping Motif and Xt Widget Classes

816 Motif Reference Manual

New Resources
ParseMapping defines the following resources:

XmNclientData
Specifies application data passed to the parse procedure associated with the
XmNinvokeParseProc resource.

XmNincludeStatus
Specifies the way in which the result of the mapping is constructed. Possible val-
ues:

XmINSERT /* concatenate XmNsubstitute value to output */
/* parsing is continued */

XmINVOKE /* result determined by XmNinvokeParseProc */
XmTERMINATE /* concatenate XmNsubstitute value to output */

/* parsing is terminated */

XmNinvokeParseProc
Specifies a procedure for determining the result of the mapping. The procedure is
only used if XmNincludeStatus is XmINVOKE. An XmParseProc routine places
the result of the mapping into the address specified by its str_include parameter,
and returns either XmINSERT or XmTERMINATE, depending upon whether
parsing is to continue. A full description of the format of an XmParseProc is
given below.

XmNpattern
Specifies a pattern to be matched against the input being parsed. The pattern is a
maximum of one character.

Name Type Default Access

XmNclientData XtPointer NULL CSG

XmNincludeStatus XmIncludeStatus XmINSERTa

a.Erroneously given as XmInsert in 2nd edition.

CSG

XmNinvokeParseProc XmParseProc NULL CSG

XmNpattern XtPointer NULL CSG

XmNpatternType XmTextType XmCHARSET_TEXT CSG

XmNsubstitute XmString NULL CSG

Motif and Xt Widget Classes XmParseMapping

Motif Reference Manual 817

XmNpatternType
The type of the value specified as value for the resource XmNpattern. Possible
values:

XmMULTIBYTE_TEXT
XmWIDECHAR_TEXT
XmCHARSET_TEXT

XmNsubstitute
Specifies a compound string to be added to the result of the parse process.

Procedures
The XmParseProc has the following format:

typedef XmIncludeStatus (*XmParseProc) (XtPointer *,
XtPointer,
XmTextType,
XmStringTag,
XmParseMapping,
int,
XmString *,
XtPointer)

XtPointer *in_out; /* text being parsed */
XtPointer text_end; /* pointer to end of the text */
XmTextType type; /* type of text */
XmStringTag locale_tag; /* type to be used for the result */
XmParseMapping entry; /* parse mapping triggering callback */
int pattern_length; /* number of bytes in input text */
XmString *str_include; /* returned result of the parse */
XtPointer call_data; /* application data */

in_out initially points to the current location within the text being parsed. The
pointer can be changed in order to reset the location from which to continue pars-
ing after the callback finishes.

text_end points to the end of the in_out string. A parse procedure can set the
value of the element to indicate where the parse is to continue from after the map-
ping has been applied to the input.

type is the type of the text in_out, and the type of the locale_tag to be used in cre-
ating the return compound string. type is one of XmCHARSET_TEXT,
XmMULTIBYTE_TEXT, or XmWIDECHAR_TEXT.

XmParseMapping Motif and Xt Widget Classes

818 Motif Reference Manual

locale_tag specifies the tag to be used in creating the result. If NULL, the tag cre-
ated depends upon the value of type. If type is XmCHARSET_TEXT, a charset
string tag is created from the value XmSTRING_DEFAULT_CHARSET. Other-
wise, a locale string tag is created from the value
_MOTIF_DEFAULT_LOCALE.

entry points to the XmParseMapping object which triggered the callback.

pattern_length is the number of bytes in the input text remaining at the address
specified by in_out.

str_include is an address where the parse procedure supplies a compound string
which is to be inserted into the result of the parse process.

call_data is a pointer to application data passed through by the string parsing
functions which invoke the callback.

See Also
XmParseMappingCreate (1), XmParseMappingFree (1),
XmParseMappingGetValues (1), XmParseMappingSetValues (1),
XmParseTableFree (1), XmStringParseText (1),
XmStringUnparse (1).

Motif and Xt Widget Classes XmPopupMenu

Motif Reference Manual 819

Name
XmPopupMenu – a type of RowColumn widget used as a popup menu pane.

Synopsis

Public Header:
<Xm/RowColumn.h>

Instantiation:
widget = XmCreatePopupMenu (parent, name,...)

Functions/Macros:
XmCreatePopupMenu (), XmCreateSimplePopupMenu (),
XmMenuPosition (), XmVaCreateSimplePopupMenu ()

Description
An XmPopupMenu is the first menu pane in a popup menu system. All other
menu panes in the menu system are pulldown panes. A PopupMenu can contain
Labels, Separators, PushButtons, ToggleButtons, CascadeButtons, or the corre-
sponding Gadget equivalents.

A PopupMenu is a RowColumn widget whose XmNrowColumnType resource is
set to XmMENU_POPUP. The XmNmenuAccelerator resource is set to KMenu
and XmNmenuPost is set to BMenu Press. The XmNpopupEnabled resource
controls whether or not keyboard accelerators and mnemonics are enabled for a
PopupMenu. A PopupMenu needs to be the child of a MenuShell widget to func-
tion properly. Use XmMenuPosition () to place a PopupMenu.

A PopupMenu can be created using XmCreatePopupMenu (). In this case, the
PopupMenu does not automatically contain any components; they are added by
the application. The PopupMenu created by this routine is a compound object
consisting of a MenuShell widget and a RowColumn child.

A PopupMenu can also be created by XmCreateSimplePopupMenu (),
which automatically creates the PopupMenu with the specified children and
makes it the child of a MenuShell. This routine uses the RowColumn resources
associated with the creation of simple menus. For a PopupMenu, any type is
allowed in the XmNbuttonType resource. The name of each button is button_n,
where n is the number of the button, ranging from 0 to 1 less than the number of
buttons in the menu. The name of each separator is separator_n, where n is the
number of the separator, ranging from 0 to 1 less than the number of separators in
the menu. The name of each title is label_n, where n is the number of the title,
ranging from 0 to 1 less than the number of titles in the menu.

XmPopupMenu Motif and Xt Widget Classes

820 Motif Reference Manual

In Motif 2.0 and later, the support for automatic popup menus is extended. The
Manager and Primitive classes contain XmNpopupHandlerCallback resources,
and the RowColumn installs event handlers which simplifies the posting and
choice of a popup menu to display. These are installed if the XmNpopupEnabled
resource is set to XmPOPUP_AUTOMATIC or
XmPOPUP_AUTOMATIC_RECURSIVE.

Default Resource Values
A PopupMenu sets the following default values for RowColumn resources:

Widget Hierarchy
When a PopupMenu is created with a specified name, the MenuShell is named
popup_name and the RowColumn is called name.

See Also
XmCreateObject (1), XmMenuPosition (1),
XmVaCreateSimplePopupMenu (1), XmMenuShell (2),
XmRowColumn(2).

Name Default

XmNmenuAccelerator KMenu

XmNmenuPost BMenu Press

XmNpopupEnabled XmPOPUP_KEYBOARD

XmNrowColumnType XmMENU_POPUP

Motif and Xt Widget Classes XmPrintShell

Motif Reference Manual 821

Name
XmPrintShell widget class – a Shell interfacing onto the Xp printing facilities

Synopsis

Public Headers:
<Xm/Print.h>

Class Name:
XmPrintShell

Class Hierarchy:
Core → Composite → Shell → WMShell → VendorShell → TopLevelShell →
ApplicationShell → XmPrintShell

Class Pointer:
xmPrintShellWidgetClass

Instantiation:
widget = XmPrintSetup (...)
or
widget = XtCreatePopupShell (name, xmPrintShellWidgetClass,...)

Functions/Macros:
XmPrintSetup (), XmPrintToFile (), XmPrintPopupPDM (),
XmRedisplayWidget (), XmIsPrintShell ()

Availability
Motif 2.1 and later.

Description
PrintShell is a Shell widget which interfaces to the X11R6 X Print (Xp) exten-
sions in order to print out a widget hierarchy. The X Printing Architecture reuses
the code which renders the contents and visuals of a widget on the video screen
in order to print the widget hierarchy. The technique involves creating instances
of requisite widgets within the X Print Server by adding the hierarchy below a
PrintShell, and configuring the widgets with suitable resources: the expose meth-
ods of the widgets perform the printing. The PrintShell itself is created through
XmPrintSetup (), which returns an XmPrintShell widget after establishing a
connection to an X Print Server. The PrintShell provides resources for configur-
ing an XPrint connection and for specifying printer attributes. In addition, call-
back resources are available for handling any pagination. If no XPrint
connection can be established, PrintShell behaves like an ApplicationShell, from
which it is derived.

The Print model allows for either synchronous or asynchronous printing. XmRe-
displayWidget () provides synchronous printing by forcing a widget to print
itself directly. Asynchronous printing is performed through widget exposure as

XmPrintShell Motif and Xt Widget Classes

822 Motif Reference Manual

a result of events generated by the X Print Server and dispatched to the Print-
Shell: the programmer calls XpStartJob () to initialize the printing process;
XmNstartJobCallback, XmNpageSetupCallback, and XmNendJobCallback
resources of the PrintShell specify callbacks to provide asynchronous notification
at critical points in the printing task.

Whether printing synchronously or asynchronously, an application creates a
widget hierarchy on the PrintShell suitable for the required output. What is meant
by suitable in this context is application and widget specific: typically, a Text
widget is created under the PrintShell, and resources are set to contain the data to
print. It may be appropriate to turn off highlighting or blinking cursors in the
Text, or to set the background white. This depends upon whether the intention is
to print out just the content of the widget, or whether the programmer intends a
screen shot which involves the widget visuals.

As a related topic, the procedure XmPrintSetupPDM () requests that a print
dialog manager (PDM) is started. The status of the connection to the PDM is
monitored by specifying a procedure for the XmNpdmNotificationCallback
resource of the PrintShell. Lastly, an additional printing interface is available
through the function XmPrintToFile (), which fetches the data on the Print
Server, and sends this to a file.

New Resources
PrintShell defines the following resources:

XmNdefaultPixmapResolution
Indicates the resolution in dots per inch used for scaling image files read by
descendants of the widget. In general, the resource is not used when reading tile
pixmaps (XmNbackgroundPixmap, (XmNbottomShadowPixmap, or similar).

XmNmaxX

XmNmaxY

XmNminX

XmNminY

Name Class Type Default Access

XmNdefaultPixmapResolution XmCDefaultPixmapResolution unsigned short 100 CSG

XmNmaxX XmCMaxX Dimension dynamic G

XmNmaxY XmCMaxY Dimension dynamic G

XmNminX XmCMinX Dimension dynamic G

XmNminY XmCMinY Dimension dynamic G

Motif and Xt Widget Classes XmPrintShell

Motif Reference Manual 823

Specifies the image area of the page in the current print context. The PrintShell
maintains the values to reflect change in resolution or other attributes.

Callback Resources
PrintShell defines the following callback resources:

XmNendJobCallback
Specifies the list of callbacks called to control the end of rendering.

XmNpageSetupCallback
Specifies the list of callbacks called to control page layout.

XmNpdmNotificationCallback
Specifies the list of callbacks called in notification of the Print Dialog Manager
(PDM) status.

XmNstartJobCallback
Specifies the list of callbacks called to control the start of rendering.

Callback Structure
Each callback is passed a pointer to the following structure:

typedef struct {
int reason; /* reason that the callback is invoked */
XEvent *event; /* event structure that triggered callback */
XPContext context; /* X Print Context */
Boolean last_page; /* whether this is the last page */
XtPointer detail; /* PDM selection */

} XmPrintShellCallbackStruct;

reason specifies the cause of the callback invocation. The value is
XmCR_START_JOB for any callback on the XmNstartJobCallback list,
XmCR_END_JOB for XmNendJobCallback procedures, and
XmCR_PAGE_SETUP for XmNpageSetupCallback routines. When a XmNpd-

Callback Reason Constant

XmNendJobCallback XmCR_END_JOB

XmNpageSetupCallback XmCR_PAGE_SETUP

XmNpdmNotificationCallback XmCR_PDM_NONE
XmCR_PDM_UP
XmCR_PDM_START_ERROR
XmCR_PDM_START_VXAUTH
XmCR_PDM_START_PXAUTH
XmCR_PDM_OK
XmCR_PDM_CANCEL
XmCR_PDM_EXIT_ERROR

XmNstartJobCallback XmCR_START_JOB

XmPrintShell Motif and Xt Widget Classes

824 Motif Reference Manual

mNotificationCallback procedure is invoked, reason indicates the status of the
PDM connection. Possible values:

XmCR_PDM_CANCEL /* PDM exited with CANCEL status */
XmCR_PDM_EXIT_ERROR /* PDM exited with ERROR status */
XmCR_PDM_NONE /* No PDM available on the display */
XmCR_PDM_OK /* PDM exited with OK status */
XmCR_PDM_START_ERROR /* PDM cannot start */
XmCR_PDM_START_VXAUTH /* PDM cannot connect to video display */
XmCR_PDM_START_PXAUTH /* PDM cannot connect to print display */
XmCR_PDM_UP /* PDM is running */

context is an opaque handle representing the connection to the Print Server.

last_page is only of relevance within an XmNpageSetupCallback procedure, and
it is a flag whereby the application indicates that this is the last page of the print-
ing task. The value is initially set to False by the toolkit, and the application call-
back should set the value True as required. Thereafter, the
XmNpageSetupCallback procedures are invoked once more with the value ini-
tially True, by way of return notification, and subsequently the XmNendJobCall-
back procedures are called.

detail is only used by XmNpdmNotificationCallback procedures, and it contains
an Atom representing the selection used in connecting to the PDM. The reason

element is XmCR_PDM_NONE1 when detail is set.

Inherited Resources
PrintShell inherits the following resources. The resources are listed alphabeti-
cally, along with the superclass that defines them. The default value of XmNbor-
derWidth is reset to 0 by VendorShell.

1.Erroneously given as XmPDM_NONE in 2nd edition.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNlayoutDirection VendorShell

XmNallowShellResize Shell XmNmappedWhenManaged Core

XmNancestorSensitive Core XmNmaxAspectX WMShell

XmNargc ApplicationShell XmNmaxAspectY WMShell

XmNargv ApplicationShell XmNmaxHeight WMShell

XmNaudibleWarning VendorShell XmNmaxWIdth WMShell

XmNbackground Core XmNminAspectX WMShell

XmNbackgroundPixmap Core XmNminAspectY WMShell

Motif and Xt Widget Classes XmPrintShell

Motif Reference Manual 825

XmNbaseHeight WMShell XmNminHeight WMShell

XmNbaseWidth WMShell XmNminWidth WMShell

XmNborderColor Core XmNmwmDecorations VendorShell

XmNborderPixmap Core XmNmwmFunctions VendorShell

XmNborderWidth Core XmNmwmInputMode VendorShell

XmNbuttonFontList VendorShell XmNmwmMenu VendorShell

XmNbuttonRenderTable VendorShell XmNnumChildren Composite

XmNchildren Composite XmNoverrideRedirect Shell

XmNcolormap Core XmNpopdownCalback Shell

XmNcreatePopupChildProc Shell XmNpopupCallback Shell

XmNdefaultFontList VendorShell XmNpreeditType VendorShell

XmNdeleteResponse VendorShell XmNsaveUnder Shell

XmNdepth Core XmNscreen Core

XmNdestroyCallback Core XmNsensitive Core

XmNgeometry Shell XmNshellUnitType VendorShell

XmNheight Core XmNtextFontList VendorShell

XmNheightInc WMShell XmNtextRenderTable VendorShell

XmNiconic TopLevelShell XmNtitle WMShell

XmNiconMask WMShell XmNtitleEncoding WMShell

XmNiconName TopLevelShell XmNtransient WMShell

XmNiconNameEncoding TopLevelShell XmNtranslations Core

XmNiconPixmap WMShell XmNuseAsyncGeometry VendorShell

XmNiconWindow WMShell XmNunitType VendorShell

XmNinitialResourcesPersistent Core XmNvisual Shell

XmNinitialState WMShell XmNwaitForWm WMShell

XmNinput WMShell XmNwidth Core

XmNinputMethod VendorShell XmNwidthInc WMShell

XmNinputPolicy VendorShell XmNwindowGroup WMShell

XmNinsertPosition Composite XmNwinGravity WMShell

XmNkeyboardFocusPolicy VendorShell XmNwmTimeout WMShell

XmNlabelFontList VendorShell XmNx Core

XmNlabelRenderTable VendorShell XmNy Core

Resource Inherited From Resource Inherited From

XmPrintShell Motif and Xt Widget Classes

826 Motif Reference Manual

See Also
XmGetScaledPixmap (1), XmPrintPopupPDM (1), XmPrintToFile (1),
XmPrintSetup (1), XmRedisplayWidget (1), ApplicationShell (2),
Composite (2), Core (2), Shell (2), TopLevelShell (2),
VendorShell (2), WMShell (2).

Motif and Xt Widget Classes XmPromptDialog

Motif Reference Manual 827

Name
XmPromptDialog – an unmanaged SelectionBox as a child of a Dialog Shell.

Synopsis

Public Header:
<Xm/SelectioB.h>

Instantiation:
widget = XmCreatePromptDialog(...)

Functions/Macros:
XmCreatePromptDialog (), XmSelectionBoxGetChild (), XmIsSe-
lectionBox ()

Description
An XmPromptDialog is a compound object created by a call to XmCreatePromp-
tDialog() that an application can use to prompt the user for textual input. A
PromptDialog consists of a DialogShell with an unmanaged SelectionBox widget
as its child. The SelectionBox resource XmNdialogType is set to
XmDIALOG_PROMPT.

A PromptDialog contains a message, a region for text input, and three managed
buttons. A fourth button is created but not managed; you can manage it explicitly
if necessary. In Motif 1.2 and later, the default button labels can be localized. In
the C locale, and in Motif 1.1, the PushButtons are labelled OK , Apply, Cancel,
and Help by default. The Apply button is the unmanaged button.

Default Resource Values
A PromptDialog sets the following default values for SelectionBox resources:

Widget Hierarchy
When a PromptDialog is created with a specified name, the DialogShell is named
name_popup and the SelectionBox is called name.

See Also
XmCreateObject (1), XmSelectionBoxGetChild (1),
XmDialogShell (2), XmSelectionBox (2).

Name Default

XmNdialogType XmDIALOG_PROMPT

XmNlistLabelString NULL

XmNlistVisibleItemCount 0

XmPulldownMenu Motif and Xt Widget Classes

828 Motif Reference Manual

Name
XmPulldownMenu – a type of RowColumn used as a pulldown menu pane.

Synopsis

Public Header:
<Xm/RowColumn.h>

Instantiation:
widget = XmCreatePulldownMenu (parent, name,...)

Functions/Macros:
XmCreatePulldownMenu (), XmCreateSimplePulldownMenu (),
XmVaCreateSimplePulldownMenu ()

Description
An XmPulldownMenu is a menu pane for all types of pulldown menu systems,
including menus off of a menu bar, cascading submenus, and the menu associ-
ated with an option menu. A PulldownMenu is associated with a CascadeButton.
A PulldownMenu can contain Separators, PushButtons, ToggleButtons, and Cas-
cadeButtons.

A PulldownMenu is a RowColumn widget whose XmNrowColumnType
resource is set to XmMENU_PULLDOWN. A PulldownMenu needs to be the
child of a MenuShell widget to function properly.

A PulldownMenu can be created using XmCreatePulldownMenu (). In this
case, the PulldownMenu does not automatically contain any components; they
are added by the application. The PulldownMenu created by this routine is a
compound object consisting of a MenuShell widget and a RowColumn child.

A PulldownMenu can also be created by XmCreateSimplePulldown-
Menu(), which automatically creates the PulldownMenu with the specified chil-
dren and makes it the child of a MenuShell. This routine uses the RowColumn
resources associated with the creation of simple menus. For a PulldownMenu,
any type is allowed in the XmNbuttonType resource. The name of each button is
button_n, where n is the number of the button, ranging from 0 to 1 less than the
number of buttons in the menu. The name of each separator is separator_n, where
n is the number of the separator, ranging from 0 to 1 less than the number of sep-
arators in the menu. The name of each title is label_n, where n is the number of
the title, ranging from 0 to 1 less than the number of titles in the menu.

Motif and Xt Widget Classes XmPulldownMenu

Motif Reference Manual 829

Default Resource Values
A PulldownMenu sets the following default values for RowColumn resources:

Widget Hierarchy
When a PulldownMenu is created with a specified name, the MenuShell is named
popup_name and the RowColumn is called name.

See Also
XmCreateObject (1), XmVaCreateSimplePulldownMenu (1),
XmCascadeButton (2), XmMenuShell (2), XmRowColumn(2).

Name Default

XmNrowColumnType XmMENU_PULLDOWNa

a.Erroneously given as XmMENU_POPUP in 2nd edition.

XmPushButton Motif and Xt Widget Classes

830 Motif Reference Manual

Name
XmPushButton widget class – a widget that starts an operation when it is pressed.

Synopsis

Public Header:
<Xm/PushB.h>

Class Name:
XmPushButton

Class Hierarchy:
Core → XmPrimitive → XmLabel → XmPushButton

Class Pointer:
xmPushButtonWidgetClass

Instantiation:
widget = XmCreatePushButton (parent, name,...)
or
widget = XtCreateWidget (name, xmPushButtonWidgetClass,...)

Functions/Macros:
XmCreatePushButton (), XmIsPushButton ()

Description
A PushButton is a widget which, when pressed by the user, issues a logical event
to the application. A PushButton displays a text or pixmap label. It invokes an
application callback when it is clicked on with the mouse. The shading of the
PushButton changes to make it appear either pressed in when selected or raised
when unselected.

Traits
PushButton holds the XmQTactivatable, XmQTtakesDefault, XmQT-
careParentVisual and XmQTmenuSavvy traits, which are inherited by any
derived classes, and uses the XmQTmenuSystem and XmQTspecifyRenderTable
traits.

New Resources
PushButton defines the following resources:

Name Class Type Default Access

XmNarmColor XmCArmColor Pixel dynamic CSG

XmNarmPixmap XmCArmPixmap Pixmap XmUNSPECIFIED_PIXMAP CSG

XmNdefaultButtonShadowThickness XmCDefaultButtonShadowThickness Dimension dynamic CSG

XmNfillOnArm XmCFillOnArm Boolean True CSG

XmNmultiClick XmCMultiClick unsigned char dynamic CSG

XmNshowAsDefault XmCShowAsDefault Dimension 0 CSG

Motif and Xt Widget Classes XmPushButton

Motif Reference Manual 831

XmNarmColor
The color with which the armed button is filled. For a color display, the default
color is a shade between the bottom shadow color and the background color. For
a monochrome display, the default is the foreground color, and label text is
switched to the background color. This resource is in effect only when XmNfil-
lOnArm is set to True.

XmNarmPixmap
The pixmap that identifies the button when it is armed (and when its XmNlabel-
Type is XmPIXMAP). For a PushButton in a menu, this resource is disabled.

XmNdefaultButtonShadowThickness
The width of the shadow used to indicate a default PushButton.

XmNfillOnArm
If True (default), the PushButton widget fills the button (when armed) with the
color specified by XmNarmColor. If False, the PushButton widget only switches
the top and bottom shadow colors. For a PushButton in a menu, this resource is
disabled (and assumed to be False).

XmNmultiClick
A flag that determines whether successive button clicks are processed or ignored.
Possible values:

XmMULTICLICK_DISCARD /* ignore successive button clicks; */
/* default value in a menu system */

XmMULTICLICK_KEEP /* count successive button clicks; */
/* default value when not in a menu */

XmNshowAsDefault
Indicates the default PushButton by displaying a shadow. (In a menu, this
resource is disabled.) This resource works in different ways:

If the width of the shadow is already specified through the resource XmNdefault-
ButtonShadowThickness, then XmNshowAsDefault behaves like a Boolean: that
is, with a value of 0, no shadow is displayed; with a value greater than 0, a
shadow is displayed.

If the width of the shadow has not been specified through the resource XmNde-
faultButtonShadowThickness (i.e., it has a value of 0), then XmNshowAsDefault
performs double duty: that is, a value greater than 0 says to highlight the Push-
Button as the default button and to use this value as the thickness of the shadow.

XmPushButton Motif and Xt Widget Classes

832 Motif Reference Manual

Callback Resources
PushButton defines the following callback resources:

XmNactivateCallback
List of callbacks that are called when BSelect is pressed and released inside the
widget.

XmNarmCallback
List of callbacks that are called when BSelect is pressed while the pointer is
inside the widget.

XmNdisarmCallback
List of callbacks that are called when BSelect is released after it has been pressed
inside the widget.

Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /* the reason that the callback was called */
XEvent *event; /* event structure that triggered callback */
int click_count; /* number of multi-clicks */

} XmPushButtonCallbackStruct;

click_count is meaningful only for XmNactivateCallback. Furthermore, if the
XmN-multiClick resource is set to XmMULTICLICK_KEEP, then XmN-activate--
Callback is called for each click, and the value of click_count is the number of
clicks that have occurred in the last sequence of multiple clicks. If the XmNmul-
tiClick resource is set to XmMULTICLICK_DISCARD, then click_count always
has a value of 1.

Inherited Resources
PushButton inherits the following resources. The resources are listed alphabeti-
cally, along with the superclass that defines them. PushButton sets the default
values of XmNmarginBottom, XmNmarginLeft, XmNmarginRight, and XmN-
marginTop dynamically based on the value of XmNshowAsDefault. If XmNarm-
Pixmap is specified but XmNlabelPixmap is not, the default value of
XmNlabelPixmap is set to the value of XmNarmPixmap. The default value of
XmNborderWidth is reset to 0 by Primitive. In Motif 2.0 and earlier, the default

Callback Reason Constant

XmNactivateCallback XmCR_ACTIVATE

XmNarmCallback XmCR_ARM

XmNdisarmCallback XmCR_DISARM

Motif and Xt Widget Classes XmPushButton

Motif Reference Manual 833

values of XmNhighlightThickness and XmNshadowThickness are reset to 2. In
Motif 2.1, the default values depend upon the XmDisplay XmNenableThin-
Thickness resource: if True the default is 1, otherwise 2.

Resource Inherited From Resource Inherited From

XmNaccelerator XmLabel XmNlabelType XmLabel

XmNaccelerators Core XmNlayoutDirection XmPrimitive

XmNacceleratorText XmLabel XmNmappedWhenManaged Core

XmNalignment XmLabel XmNmarginBottom XmLabel

XmNancestorSensitive Core XmNmarginHeight XmLabel

XmNbackground Core XmNmarginLeft XmLabel

XmNbackgroundPixmap Core XmNmarginRight XmLabel

XmNborderColor Core XmNmarginTop XmLabel

XmNborderPixmap Core XmNmarginWidth XmLabel

XmNborderWidth Core XmNmnemonicCharSet XmLabel

XmNbottomShadowColor XmPrimitive XmNmnemonic XmLabel

XmNbottomShadowPixmap XmPrimitive XmNnavigationType XmPrimitive

XmNcolormap Core XmNpopupHandlerCallback XmPrimitive

XmNconvertCallback XmPrimitive XmNrecomputeSize XmLabel

XmNdepth Core XmNrenderTable XmLabel

XmNdestroyCallback Core XmNscreen Core

XmNfontList XmLabel XmNsensitive Core

XmNforeground XmPrimitive XmNshadowThickness XmPrimitive

XmNheight Core XmNstringDirection XmLabel

XmNhelpCallback XmPrimitive XmNtopShadowColor XmPrimitive

XmNhighlightColor XmPrimitive XmNtopShadowPixmap XmPrimitive

XmNhighlightOnEnter XmPrimitive XmNtranslations Core

XmNhighlightPixmap XmPrimitive XmNtraversalOn XmPrimitive

XmNhighlightThickness XmPrimitive XmNunitType XmPrimitive

XmNinitialResourcesPersistent Core XmNuserData XmPrimitive

XmNlabelInsensitivePixmap XmLabel XmNwidth Core

XmNlabelPixmap XmLabel XmNx Core

XmNlabelString XmLabel XmNy Core

XmPushButton Motif and Xt Widget Classes

834 Motif Reference Manual

Translations
For PushButtons outside a Menu System:

For PushButtons in a Menu System:

Action Routines
PushButton defines the following action routines:

Activate()
Displays the PushButton as unarmed, and invokes the list of call-
backs specified by XmNactivateCallback. The button’s appearance
may depend on the values of the resources XmNfillOnArm and
XmNlabelPixmap.

Event Action

MCtrl BSelect Press ButtonTakeFocus()

BSelect Press Arm()

BSelect Click Activate()
Disarm()

BSelect Release Activate()
Disarm()

BSelect Press 2+ MultiArm()

BSelect Release 2+ MultiActivate()
Disarm()

BTransfer Press ProcessDrag()

KSelect ArmAndActivate()

KHelp Help()

Event Action

MCtrl BSelect Press MenuButtonTakeFocus()

BSelect Press BtnDown()

BMenu Press BtnDown()

BMenu Release BtnUp()

KActivate ArmAndActivate()

KSelect ArmAndActivate()

MAny KCancel MenuShellPopdownOne() (1.2)

MAny KCancel MenuEscape (2.0)

Motif and Xt Widget Classes XmPushButton

Motif Reference Manual 835

Arm()
Displays the PushButton as armed, and invokes the list of callbacks
specified by XmNarmCallback. The button’s appearance may
depend on the values of the resources XmNarmColor and
XmNarmPixmap.

ArmAndActivate()
When the PushButton is in a menu, this action unposts the menu
hierarchy and invokes the callbacks specified by the resources
XmNarmCallback, XmNactivateCallback, and finally, XmNdis-
armCallback.

When the PushButton is not in a menu, this action displays the
PushButton as armed (as determined by the values of the resources
XmNarmColor and XmNarmPixmap) and (assuming the button is
not yet armed) invokes the list of callbacks specified by XmNarm-
Callback. After this occurs, the action displays the PushButton as
unarmed and invokes the callbacks specified in XmNactivateCall-
back and XmNdisarmCallback.

BtnDown()
Unposts any menus that were posted by the parent menu of the
PushButton, changes from keyboard traversal to mouse traversal,
displays the PushButton as armed, and (assuming the button is not
yet armed) invokes the callbacks specified by XmNarmCallback.

BtnUp()
Unposts the menu hierarchy, activates the PushButton, and invokes
first the callbacks specified by XmNactivateCallback and then those
specified by XmNdisarmCallback.

ButtonTakeFocus()
In Motif 2.0 and later, moves the current keyboard focus to the
PushButton, without activating the widget.

Disarm()
Invokes the callbacks specified by XmNdisarmCallback.

Help()
Unposts the menu hierarchy, restores the previous keyboard focus,
and invokes the callbacks specified by the XmNhelpCallback
resource.

MenuButtonTakeFocus()
In Motif 2.0 and later, moves the current keyboard focus to the
PushButton, without activating the widget.

XmPushButton Motif and Xt Widget Classes

836 Motif Reference Manual

MenuShellPopdownOne()
In Motif 1.2 and earlier, unposts the current menu and (unless the
menu is a pulldown submenu) restores keyboard focus to the tab
group or widget that previously had it. In a top-level pulldown
menu pane attached to a menu bar, this action routine also disarms
the cascade button and the menu bar.

MenuEscape()
In Motif 2.0 and later, invokes the popdownOne method of the
MenuShell class, which unposts the current menu, restores key-
board focus, and ungrabs the pointer where necessary. Any contain-
ing menu row column is disarmed.

MultiActivate()
Increments the click_count member of the XmPushButtonCall-
backStruct, displays the PushButton as unarmed (as determined by
the resources XmNfillOnArm and XmNlabelPixmap), and invokes
first the callbacks specified by XmNactivateCallback and then those
specified by XmNdisarmCallback. This action routine takes effect
only when the XmNmultiClick resource is set to
XmMULTICLICK_KEEP.

MultiArm()
Displays the PushButton as armed (as determined by the resources
XmNarmColor and XmNarmPixmap) and invokes the list of call-
backs specified by XmNarmCallback. This action routine takes
effect only when the XmNmultiClick resource is set to
XmMULTICLICK_KEEP.

ProcessDrag()
In Motif 1.2 and later, initiates a drag and drop operation using the
label of the PushButton.

Additional Behavior
PushButton has the following additional behavior:

<EnterWindow>
Displays the PushButton as armed.

<LeaveWindow>
Displays the PushButton as unarmed.

See Also
XmCreateObject (1), Core (2), XmLabel (2), XmPrimitive (2).

Motif and Xt Widget Classes XmPushButtonGadget

Motif Reference Manual 837

Name
XmPushButtonGadget widget class – a gadget that starts an operation when it is
pressed.

Synopsis

Public Header:
<Xm/PushBG.h>

Class Name:
XmPushButtonGadget

Class Hierarchy:
Object → RectObj → XmGadget → XmLabelGadget → XmPushButtonGadget

Class Pointer:
xmPushButtonGadgetClass

Instantiation:
widget = XmCreatePushButtonGadget (parent, name,...)
or
widget = XtCreateWidget (name, xmPushButtonGadgetClass,...)

Functions/Macros:
XmCreatePushButtonGadget (), XmIsPushButtonGadget ()

Description
PushButtonGadget is the gadget variant of PushButton.

PushButtonGadget’s new resources, callback resources, and callback structure
are the same as those for PushButton.

Traits
PushButtonGadget holds the XmQTactivatable, XmQTmenuSavvy, and XmQT-
takesDefault traits, which are inherited by any derived classes, and uses the
XmQTmenuSystem and XmQTspecifyRenderTable traits.

XmPushButtonGadget Motif and Xt Widget Classes

838 Motif Reference Manual

Inherited Resources
PushButtonGadget inherits the following resources. The resources are listed
alphabetically, along with the superclass that defines them. PushButtonGadget
sets the default values of XmNmarginBottom, XmNmarginLeft, XmNmargin-
Right, and XmNmarginTop dynamically based on the value of XmNshowAsDe-
fault. If XmNarmPixmap is specified but XmNlabelPixmap is not, the default
value of XmNlabelPixmap is set to the value of XmNarmPixmap. The default
value of XmNborderWidth is reset to 0 by Gadget.

Resource Inherited From Resource Inherited From

XmNancestorSensitive RectObj XmNhighlightThickness XmGadget

XmNbackground XmGadget XmNlayoutDirection XmGadget

XmNbackgroundPixmap XmGadget XmNnavigationType XmGadget

XmNbottomShadowColor XmGadget XmNsensitive RectObj

XmNbottomShadowPixmap XmGadget XmNshadowThickness XmGadget

XmNborderWidth RectObj XmNtopShadowColor XmGadget

XmNdestroyCallback Object XmNtopShadowPixmap XmGadget

XmNforeground XmGadget XmNtraversalOn XmGadget

XmNheight RectObj XmNunitType XmGadget

XmNhelpCallback XmGadget XmNuserData XmGadget

XmNhighlightColor XmGadget XmNwidth RectObj

XmNhighlightOnEnter XmGadget XmNx RectObj

XmNhighlightPixmap XmGadget XmNy RectObj

Motif and Xt Widget Classes XmPushButtonGadget

Motif Reference Manual 839

Behavior
As a gadget subclass, PushButtonGadget has no translations associated with it.
However, PushButtonGadget behavior corresponds to the action routines of the
PushButton widget. See the PushButton action routines for more information.

For PushButtonGadgets outside of a menu system, the following translations are
defined:

For PushButtonGadgets inside a menu system:

PushButtonGadget has additional behavior associated with <Enter> and
<Leave>, which draw the shadow in the armed or unarmed state, respectively.

See Also
XmCreateObject (1), Object (2), RectObj (2), XmGadget(2),
XmLabelGadget (2), XmPushButton (2).

Event Action

MCtrl BSelect Press ButtonTakeFocus()

BSelect Press Arm()

BSelect Click Activate()
Disarm()

BSelect Release Activate()
Disarm()

BSelect Press 2+ MultiArm()

BSelect Release 2+ MultiActivate()
Disarm()

BTransfer Press ProcessDrag()

KSelect ArmAndActivate()

KHelp Help()

Event Action

MCtrl BSelect Press MenuButtonTakeFocus()

BSelect Press BtnDown()

BMenu Press BtnDown()

BMenu Release BtnUp()

KActivate ArmAndActivate()

KSelect ArmAndActivate()

MAny KCancel MenuShellPopdownOne() (1.2)

MAny KCancel MenuEscape (2.0)

XmQuestionDialog Motif and Xt Widget Classes

840 Motif Reference Manual

Name
XmQuestionDialog – an unmanaged MessageBox as a child of a DialogShell.

Synopsis

Public Header:
<Xm/MessageB.h>

Instantiation:
widget = XmCreateQuestionDialog (parent, name,...)

Functions/Macros:
XmCreateQuestionDialog (), XmMessageBoxGetChild ()

Description
An XmQuestionDialog is a compound object created by a call to XmCreate-
QuestionDialog () that an application can use to ask the user a question. A
QuestionDialog consists of a DialogShell with a MessageBox widget as its child.
The MessageBox resource XmNdialogType is set to XmDIALOG_QUESTION.

A QuestionDialog includes four components: a symbol, a message, three buttons,
and a separator between the message and the buttons. By default, the symbol is a
question mark. In Motif 1.2, the default button labels can be localized. In the C
locale, and in Motif 1.1, the PushButtons are labelled OK , Cancel, and Help by
default.

Default Resource Values
A QuestionDialog sets the following default values for MessageBox resources:

Widget Hierarchy
When a QuestionDialog is created with a specified name, the DialogShell is
named name_popup and the MessageBox is called name.

See Also
XmCreateObject (1), XmMessageBoxGetChild (1),
XmDialogShell (2), XmMessageBox(2).

Name Default

XmNdialogType XmDIALOG_QUESTION

XmNsymbolPixmap xm_question

Motif and Xt Widget Classes XmRadioBox

Motif Reference Manual 841

Name
XmRadioBox – a RowColumn that contains ToggleButtons.

Synopsis

Public Header:
<Xm/RowColumn.h>

Class Name:
XmRowColumn

Class Hierarchy:
Core → Composite → Constraint → XmManager → XmRowColumn

Class Pointer:
xmRowColumnWidgetClass

Instantiation:
widget = XmCreateRadioBox (parent, name,...)

Functions/Macros:
XmCreateRadioBox (), XmCreateSimpleRadioBox (),
XmVaCreateSimpleRadioBox (), XmIsRowColumn()

Description
An XmRadioBox is an instance of a RowColumn widget that contains Toggle-
ButtonGadgets, only one of which can be selected at a given time. When a Radi-
oBox is created with XmCreateRadioBox (): it does not automatically
contain ToggleButtonGadget children; they are added by the application devel-
oper. A RadioBox can also be created by a call to
XmCreateSimpleRadioBox (), which automatically creates the specified
ToggleButtonGadget widgets as children.

A RadioBox is a RowColumn widget with its XmNrowColumnType resource set
to XmWORK_AREA, XmNpacking set to XmPACK_COLUMN, and XmNradi-
oAlwaysOne set to True, which means that one button is always selected. The
XmNradioBehavior resource is set to True. The XmNmenuHistory resource indi-
cates the last ToggleButtonGadget that was selected. The XmNisHomogenous
resource is set to True and XmNentryClass is set to ToggleButtonGadget, to
ensure that only ToggleButtonGadgets are added as children. RadioBox sets
XmNvisibleWhenOff to True and XmNindicatorType to XmONE_OF_MANY
for all of its ToggleButtonGadget children.

A RadioBox can be created by making a RowColumn with these resource values.
When it is created in this way, a RadioBox does not automatically contain Tog-
gleButtonGadget children; they are added by the application.

XmRadioBox Motif and Xt Widget Classes

842 Motif Reference Manual

A RadioBox can also be created by a call to XmCreateSimpleRadioBox() or
XmVaCreateSimpleRadioBox(). These routines automatically create the Radi-
oBox with ToggleButtonGadgets as children. The routines use the RowColumn
resources associated with the creation of simple menus. For a RadioBox, the only
type allowed in the XmNbuttonType resource is XmRADIOBUTTON. The name
of each ToggleButtonGadget is button_n, where n is the number of the button,
ranging from 0 to 1 less than the number of buttons in the RadioBox.

Default Resource Values
A RadioBox sets the following default values for its resources:

See Also
XmCreateObject (1), XmVaCreateSimpleRadioBox (1),
XmRowColumn(2), XmToggleButtonGadget (2).

Name Default

XmNentryClass xmToggleButtonGadgetClassa

a.Erroneously given as xmToggleButtonWidgetClass in 1st
and 2nd editions

XmNisHomogenous True

XmNnavigationType XmTAB_GROUP

XmNradioAlwaysOne True

XmNradioBehavior True

XmNrowColumnType XmWORK_AREA

XmNtraversalOn True

Motif and Xt Widget Classes XmRendition

Motif Reference Manual 843

Name
XmRendition data type – an opaque type representing an entry in a render table

Synopsis

Public Header:
<Xm/Xm.h>

Instantiation:
rendition = XmRenditionCreate (....)

Functions/Macros:
XmRenditionCreate (), XmRenditionFree (), XmRenditionRe-
trieve (),
XmRenditionUpdate ().

Availability
Motif 2.0 and later.

Description
XmRendition is an opaque data type used for rendering XmStrings.

A rendition consists of two parts: an XmStringTag, which is matched against tag
elements within a compound string to be rendered, and rendering data such as
color, font, line style.

The implementation of XmRendition is through a pseudo widget: although not a
true widget, the object has resources and a resource style interface for setting and
fetching values of the rendition. The object is created by XmRenditionCre-
ate (), resources are fetched using XmRenditionRetrieve (), and set
through XmRenditionUpdate (), and finally deallocated by XmRendition-
Free (). Typically, a rendition forms an entry within a render table, and a rendi-
tion is merged into an existing render table, or used as the basis for a new table,
through the function XmRenderTableAddRenditions (). Compound
strings are rendered by successively matching tags within the compound string
with tags associated with entries in a render table. Where there is an equivalence,
that rendition is used to display the corresponding component of the compound
string.

Resources within a rendition may have the value XmAS_IS, either explicitly
assigned or as an implicit default. Where the value is XmAS_IS, the value is
taken from the previous rendition used to render the compound string. If the pre-
vious rendition also has the value XmAS_IS, then the rendition before the previ-
ous one is inspected, and so on. A default value is provided if no previous
renditions supply a resource value.

XmRendition Motif and Xt Widget Classes

844 Motif Reference Manual

Renditions, and the render tables to which they belong, are sharply across widg-
ets, and are reference counted. In the general case, widgets inherit a render table
from the nearest ancestor which holds the XmQTspecifyRenderTable trait if their
own render table is unspecified. It is important to deallocate a rendition through
XmRenditionFree (), rather than directly invoking XtFree (), in order to
maintain the reference count.

New Resources
XmRendition defines the following resources:

XmNfont
Specifies the font for the rendition. If specified, XmNloadModel is forced to
XmLOAD_IMMEDIATE. Otherwise, the rendition automatically sets the value
of the resource when the font associated with XmNfontName is loaded, either
because the rendition is used to render a compound string, or as a side effect of a
XmRenditionUpdate() call.

XmNfontName
Specifies either the name of a font, or a comma-separated list of font names (a
font set). Each name is assumed to be in standard X Logical Font Description
(XLFD) format. If both XmNfontName and XmNfont are specified for a rendi-
tion, the XmNfont resource takes precedence.

XmNfontType
Specifies whether the font associated with the rendition is a font or a fontset.
Possible values:

XmFONT_IS_FONT XmFONT_IS_FONTSET

Name Class Type Default Access

XmNfont XmCFont XtPointer XmAS_IS CSG

XmNfontName XmCFontName String XmAS_IS CSG

XmNfontType XmCFontType XmFontType XmAS_IS CSG

XmNloadModel XmCLoadModel unsigned char XmAS_IS CSG

XmNrenditionBackground XmCRenditionBackground Pixel XmUNSPECIFIED_PIXEL CSG

XmNrenditionForeground XmCRenditionForeground Pixel XmUNSPECIFIED_PIXEL CSG

XmNstrikethruType XmCStrikethruType unsigned char XmAS_IS CSG

XmNtabList XmCTabList XmTabList XmAS_IS CSG

XmNtag XmCTag XmStringTag ““ C

XmNunderlineType XmCUnderlineType unsigned char XmAS_IS CSG

Motif and Xt Widget Classes XmRendition

Motif Reference Manual 845

XmNloadModel
Specifies whether the font or fontset indicated by the XmNfontName resource is
loaded when the rendition is created, or when first required. Possible values:

XmLOAD_IMMEDIATE /* load on rendition create */
XmLOAD_DEFERRED /* load when font is required */

XmNrenditionBackground
Specifies the background color for the rendition.

XmNrenditionForeground
Specifies the foreground color for the rendition.

XmNstrikethruType
Specifies a line type for striking through a text segment. Possible values:

XmDOUBLE_DASHED_LINE XmDOUBLE_LINE
XmSINGLE_DASHED_LINE XmSINGLE_LINE
XmNO_LINE

XmNtabList
Specifies the tab list which specifies how compound strings containing tab com-
ponents are laid out in columns.

XmNtag
Specifies a tag which is used in matching against XmStringTag components
within compound strings, or in matching against other renditions. The value is
taken from the tag parameter of the XmRenditionCreate() procedure which cre-
ates the rendition object. The value NULL is not valid, although the empty string
"" is.

XmNunderlineType
Specifies a line type for underlining a text segment. Possible values:

XmDOUBLE_DASHED_LINE XmDOUBLE_LINE
XmNO_LINE XmSINGLE_DASHED_LINE
XmSINGLE_LINE

See Also
XmRenditionCreate (1), XmRenditionFree (1),
XmRenditionRetrieve (1), XmRenditionUpdate (1),
XmRenderTableAddRenditions (1), XmRenderTableCopy (1),
XmRenderTableFree (1), XmRenderTableGetRendition (1),
XmRenderTableGetRenditions (1), XmRenderTableGetTags (1),
XmRenderTableRemoveRenditions (1).

XmRowColumn Motif and Xt Widget Classes

846 Motif Reference Manual

Name
XmRowColumn widget class – a manager widget that arranges its children in
rows and columns.

Synopsis

Public Header:
<Xm/RowColumn.h>

Class Name:
XmRowColumn

Class Hierarchy:
Core → Composite → Constraint → XmManager → XmRowColumn

Class Pointer:
xmRowColumnWidgetClass

Instantiation:
widget = XmCreateRowColumn (parent, name,...)
or
widget = XtCreateWidget (name, xmRowColumnWidgetClass,...)

Functions/Macros:
XmCreateMenuBar (), XmCreateOptionMenu (), XmCreatePopup-
Menu(),
XmCreatePulldownMenu (), XmCreateRadioBox (), XmCreateRow-
Column (),
XmCreateSimpleCheckBox (), XmCreateSimpleMenuBar (),
XmCreateSimpleOptionMenu (), XmCreateSimplePopupMenu (),
XmCreateSimplePulldownMenu (), XmCreateSimpleRadioBox (),
XmCreateWorkArea (), XmIsRowColumn(), XmVaCreateSimpleCh-
eckBox (),
XmVaCreateSimpleMenuBar (), XmVaCreateSimpleOptionMenu (),
XmVaCreateSimplePopupMenu (), XmVaCreateSimplePulldown-
Menu(),
XmVaCreateSimpleRadioBox ()

Description
RowColumn provides an area in which children belonging to any widget type are
displayed in rows and columns. RowColumn is a general-purpose manager
widget class that can be configured into many layouts, such as a MenuBar, Pop-
upMenu, PulldownMenu, OptionMenu, CheckBox, or RadioBox. Many of Row-
Column’s resources pertain only to a specific layout type.

In Motif 1.2 and later, a RowColumn that is configured as a PopupMenu or a
PulldownMenu supports tear off menus. When a menu is torn off, it remains on
the screen after a selection is made so that additional selections can be made. A

Motif and Xt Widget Classes XmRowColumn

Motif Reference Manual 847

menu pane that can be torn off contains a tear-off button at the top of the menu. A
tear-off button is a button that has a Separator-like appearance. The name of a
tear-off button in a menu pane is TearOffControl. An application can set the fol-
lowing resources for a tear-off button: XmNbackground, XmNbackgroundPix-
map, XmNbottomShadowColor, XmNforeground, XmNheight, XmNmargin,
XmNseparatorType, XmNshadowThickness, and XmNtopShadowColor.

In Motif 2.0 and later, the mechanisms whereby pulldown menus are selected and
posted have been rationalized. The Manager and Primitive classes support XmN-
popupHandlerCallback resources which can be used to choose a popup menu to
display in a given context. In addition, the RowColumn provides automatic post-
ing of popups through extensions to the XmNpopupEnabled resource.

Traits
RowColumn holds the XmQTmenuSystem trait, which is inherited by any
derived class, and uses the XmQTmenuSystem and XmQTmenuSavvy traits.

New Resources

RowColumn defines the following resources:

Name Class Type Default Access

XmNadjustLast XmCAdjustLast Boolean True CSG

XmNadjustMargin XmCAdjustMargin Boolean True CSG

XmNentryAlignment XmCAlignment unsigned char XmALIGNMENT_BEGINNING CSG

XmNentryBorder XmCEntryBorder Dimension 0 CSG

XmNentryClass XmCEntryClass WidgetClass dynamic CSG

XmNentryVerticalAlignment XmCVerticalAlignment unsigned char XmALIGNMENT_CENTER CSG

XmNisAligned XmCIsAligned Boolean True CSG

XmNisHomogeneous XmCIsHomogenous Boolean dynamic CSG

XmNlabelString XmCXmString XmString NULL C

XmNmarginHeight XmCMarginHeight Dimension dynamic CSG

XmNmarginWidth XmCMarginWidth Dimension dynamic CSG

XmNmenuAccelerator XmCAccelerators String dynamic CSG

XmNmenuHelpWidget XmCMenuWidget Widget NULL CSG

XmNmenuHistory XmCMenuWidget Widget NULL CSG

XmNmenuPost XmCMenuPost String NULL CSG

XmNmnemonic XmCMnemonic KeySym NULL CSG

XmNmnemonicCharSet XmCMnemonicCharSet String XmFONTLIST_DEFAULT_TAG CSG

XmNnumColumns XmCNumColumns short 1 CSG

XmRowColumn Motif and Xt Widget Classes

848 Motif Reference Manual

XmNadjustLast
If True (default), the last row (or column) in the RowColumn widget is expanded
so as to be flush with the edge.

XmNadjustMargin
If True (default), text in each row (or column) will align with other text in its row
(or column). This is done by forcing the margin resources (defined by the Label
widget) to have the same value. For example, in a horizontally-oriented RowCol-
umn widget, all items will have the same value for XmNmarginTop and XmN-
marginBottom; in a vertically-oriented RowColumn widget, all items will have
the same value for XmNmarginLeft and XmNmarginRight.

XmNentryAlignment
When XmNisAligned is True, this resource tells RowColumn children how to
align. The children must be subclasses of XmLabel or XmLabelGadget. If XmN-
rowColumnType is XmMENU_OPTION, the resource is forced to
XmALIGNMENT_CENTER and cannot be changed. Possible values:

XmALIGNMENT_BEGINNING
XmALIGNMENT_CENTER
XmALIGNMENT_END

XmNentryBorder
The border width of a RowColumn widget’s children.

XmNorientation XmCOrientation unsigned char dynamic CSG

XmNpacking XmCPacking unsigned char dynamic CSG

XmNpopupEnabled XmCPopupEnabled XtEnum XmPOPUP_KEYBOARD CSG

XmNradioAlwaysOne XmCRadioAlwaysOne Boolean True CSG

XmNradioBehavior XmCRadioBehavior Boolean False CSG

XmNresizeHeight XmCResizeHeight Boolean True CSG

XmNresizeWidth XmCResizeWidth Boolean True CSG

XmNrowColumnType XmCRowColumnType unsigned char XmWORK_AREA CG

XmNspacing XmCSpacing Dimension dynamic CSG

XmNsubMenuId XmCMenuWidget Widget NULL CSG

XmNtearOffModel XmCTearOffModel unsigned char XmTEAR_OFF_DISABLED CSG

XmNtearOffTitle XmCTearOffTitle XmString NULL CSG

XmNwhichButton XmCWhichButton unsigned int dynamic CSG

Name Class Type Default Access

Motif and Xt Widget Classes XmRowColumn

Motif Reference Manual 849

XmNentryClass
The widget (or gadget) class to which children must belong when being added to
a RowColumn widget. This resource is used only when the XmNisHomogeneous
resource is set to True. XmNentryClass ensures that a MenuBar will have only
cascade button children and that a RadioBox will have only toggle button chil-
dren (or gadget variants of each class). XmNentryClass can have one of two
default values. For a MenuBar, the default value is xmCascadeButtonWidget-
Class. For a RadioBox, the default value is xmToggleButtonGadgetClass. Possi-
ble values:

xmToggleButtonGadgetClass /* XmWORK_AREA with */
/* XmNradioBehavior True */

xmCascadeButtonWidgetClass /* XmMENU_BAR */

XmNentryVerticalAlignment
In Motif 1.2 and later, specifies how children that are subclasses of Label, Text,
and TextField are aligned vertically. The resource has no effect if XmNorienta-
tion is XmVERTICAL or XmNpacking is XmPACK_TIGHT. Possible values:

XmALIGNMENT_BASELINE_BOTTOM
XmALIGNMENT_BASELINE_TOP
XmALIGNMENT_CONTENTS_BOTTOM
XmALIGNMENT_CENTER
XmALIGNMENT_CONTENTS_TOP

XmNisAligned
If True, enable the alignment specified in the XmNentryAlignment resource.
Alignment is ignored in a label whose parent is a popup or pulldown MenuPane
(for example, in an OptionMenu).

XmNisHomogeneous
If True, enforce the condition that all RowColumn children belong to the same
class (the class specified by the XmNentryClass resource). When creating a Radi-
oBox or a MenuBar, the default value of this resource is True; otherwise, it’s
False.

XmNlabelString
A label used only in option menus. A text string displays next to the selection
area. By default, there is no label.

XmNmarginHeight

XmNmarginWidth
The spacing between an edge of the RowColumn widget and its nearest child. In
popup and pulldown menus, the default is 0; in other types of RowColumn widg-
ets, the default is 3 pixels.

Motif and Xt Widget Classes

Motif Reference Manual 850

XmNmenuAccelerator
A pointer to a string that specifies an accelerator (keyboard shortcut) for use only
in RowColumn widgets of type XmMENU_POPUP or XmMENU_BAR. In a
popup menu, typing the accelerator posts the menu; in a menu bar, typing the
accelerator highlights the first item and enables traversal in the menu bar. The
string’s format is like that of a translation but allows only a single key press event
to be specified. The default value of this resource is KMenu (for popup menus)
and KMenuBar (for menu bars).

XmNmenuHelpWidget
The widget ID of the CascadeButton widget that serves as the Help button. This
resource is meaningful only in RowColumn widgets of type XmMENU_BAR.

XmNmenuHistory
The widget ID of the most recently activated menu entry. Since the most recently
activated menu entry is also the choice that displays in an OptionMenu, this
resource is useful for indicating the current selection in a RowColumn widget of
type XmMENU_OPTION. In a RowColumn widget whose XmNradioBehavior
resource is set to True, the XmNmenuHistory resource indicates the last toggle
button to change from unselected to selected.

XmNmenuPost
The string that describes the event for posting a menu. The value specifies an X
event using translation table syntax. The default value depends on the type of
RowColumn widget: for XmMENU_POPUP, the default is <Btn3Down>; for
XmMENU_OPTION, XmMENU_BAR, and XmWORK_AREA, the default is
<Btn1Down>; for XmMENU_PULLDOWN, this resource isn’t meaningful.

XmNmnemonic
The keysym of the key to press (in combination with the MAlt modifier) in order
to post the pulldown menu associated with an option menu. This resource is
meaningful only in option menus. In the label string, the first character matching
this keysym will be underlined.

XmNmnemonicCharSet
The character set for the option menu’s mnemonic. The default value depends on
the current language environment.

XmNnumColumns
The number of columns (in a vertically-oriented RowColumn widget) or the
number of rows (in a horizontally-oriented RowColumn widget). This resource is
meaningful only when the XmNpacking resource is set to XmPACK_COLUMN.

Motif and Xt Widget Classes

Motif Reference Manual 851

XmNorientation
The direction for laying out the rows and columns of children of a RowColumn
widget. For all RowColumn widgets except a MenuBar, the default value is
XmVERTICAL. Possible values:

XmVERTICAL /* top-to-bottom creation */
XmHORIZONTAL /* left-to-right creation */

XmNpacking
The method of spacing the items placed within a RowColumn widget. The
default value is XmPACK_COLUMN for a RadioBox, and XmPACK_TIGHT
for other types of RowColumn widget. Possible values:

XmPACK_TIGHT /* give each box minimum sizing */
XmPACK_COLUMN /* pad boxes to align if needed */
XmPACK_NONE /* widget accommodates placement */

XmNpopupEnabled
If True (default), keyboard shortcuts are in effect for popup menus. Set this
resource to False if you want to disable accelerators and mnemonics in popup
menus.

In Motif 2.0 and later, the resource changes type from Boolean to XtEnum in
order to support the range of values required for the enhanced automatic popup
mechanisms. The value XmPOPUP_DISABLED is equivalent to the behaviour
described above for False, and XmPOPUP_KEYBOARD is equivalent to True.
In addition, XmPOPUP_AUTOMATIC adds event handlers for automatic menu
popup, and enables the keyboard for the menu.
XmPOPUP_AUTOMATIC_RECURSIVE is similar, except that the search for a
popup menu in a given context is not restricted to immediate children, and the
most specific popup to display may be found in the parent of a target widget.

The new enumeration erroneously has the generic representation type XmREnum
rather than a putative XmRPopupEnabled, and an enumeration for the values has
not been installed within the standard representation types. Hence as of Motif
2.0, the type cannot be properly specified in a resource file. The problem persists
in Motif 2.1.30.

Only True (XmPOPUP_KEYBOARD) and False (XmPOPUP_DISABLED)
work in the resource file.

Motif and Xt Widget Classes

Motif Reference Manual 852

XmNradioAlwaysOne
This resource is effective only when the XmNradioBehavior resource is True.
XmNradioAlwaysOne, when set to True (default), ensures that one of the toggle
buttons is always selected. Once this button is selected, clicking on it will not
deselect it; it can be deselected only by selecting another toggle button. If XmN-
radioAlwaysOne is False, a selected toggle button can be deselected by clicking
on it or by selecting another button.

XmNradioBehavior
If True, the RowColumn widget acts like a RadioBox by setting two of the
resources for its toggle button children. Namely, the XmNindicatorType resource
defaults to XmONE_OF_MANY, and the XmNvisibleWhenOff resource defaults
to True. The default value of the XmNradioBehavior resource is False, unless the
RowColumn widget was created with the XmCreateRadioBox () routine.

XmNresizeHeight

XmNresizeWidth
If True (default), the widget requests a new height or width when necessary. If
False, no resize requests are made.

XmNrowColumnType
The type of RowColumn widget to create. You can’t change this resource after
it’s set. Convenience routines create a RowColumn widget of the appropriate
type. Possible values:

XmWORK_AREA XmMENU_PULLDOWN
XmMENU_BAR XmMENU_OPTION
XmMENU_POPUP

XmNspacing
The horizontal and vertical spacing between children in the RowColumn widget.
For RowColumn widgets of type XmOPTION_MENU or XmWORK_AREA,
the default value is 3 pixels; for other RowColumn types, the default is 0.

XmNsubMenuId
The widget ID for the pulldown menu pane to be associated with an Option-
Menu. This resource is meaningful only in RowColumn widgets of type
XmMENU_OPTION.

XmNtearOffModel
In Motif 1.2 and later, specifies whether tear-off behavior is enabled for a Row-
Column with XmN-row-ColumnType set to XmMENU_PULLDOWN or
XmMENU_POPUP. In Motif 1.2, this resource cannot be set from a resource file
unless a converter is installed by calling the function XmRepTypeInstall-
TearOffModelConverter (). Possible values:

XmTEAR_OFF_DISABLED XmTEAR_OFF_ENABLED

Motif and Xt Widget Classes

Motif Reference Manual 853

In Motif 2.0 and later, the converter is automatically installed, and XmRepTy-
peInstallTearOffModelConverter () is obsolete.

XmNtearOffTitle
In Motif 2.0 and later, specifies the title of the TearOff shell.

XmNwhichButton
This resource has been superseded by the XmNmenuPost resource but is retained
for compatibility with older releases of Motif.

New Constraint Resources
RowColumn defines the following constraint resources for its children:

XmNpositionIndex
In Motif 1.2 and later, specifies the position of the widget in the RowColumn’s
list of children. A value of 0 indicates the beginning of the list, while
XmLAST_POSITION places the child at the end of the list.

Simple Menu Creation Resources
The following resources are used with the simple menu creation routines. All
resources have access C (create-only):

Name Class Type Default Access

XmNpositionIndex XmCPositionIndex short XmLAST_POSITION CSG

Name Class Type Default

XmNbuttonAccelerators XmCButtonAccelerators StringTable NULL

XmNbuttonAcceleratorText XmCButtonAcceleratorText XmStringTable NULL

XmNbuttonCount XmCButtonCount int 0

XmNbuttonMnemonicCharSets XmCButtonMnemonicCharSets XmStringCharSetTable NULL

XmNbuttonMnemonics XmCButtonMnemonics XmKeySymTable NULL

XmNbuttons XmCButtons XmStringTable NULL

XmNbuttonSet XmCButtonSet int 1

XmNbuttonType XmCButtonType XmButtonTypeTable NULL

XmNoptionLabel XmCOptionLabel XmString NULL

XmNoptionMnemonic XmCOptionMnemonic KeySym NULL

XmNpostFromButton XmCPostFromButton int -1

XmNsimpleCallback XmCCallback XtCallbackProc NULL

Motif and Xt Widget Classes

Motif Reference Manual 854

XmNbuttonAccelerators
A list of accelerators, containing one item for each created title, separator, and
button.

XmNbuttonAcceleratorText
A list of compound strings that represent the accelerators for the created buttons.
The list contains one item for each created title, separator, and button.

XmNbuttonCount
The number of titles, separators, and menu buttons to create.

XmNbuttonMnemonicCharSets
A list of character sets to use for displaying button mnemonics. The list contains
an item for each created title, separator, and button.

XmNbuttonMnemonics
A list of mnemonics associated with the buttons created. The list contains one
item for each created title, separator, and button.

XmNbuttons
A list of compound strings that will serve as labels for the created buttons. The
list contains one item for each created title, separator, and button.

XmNbuttonSet
The numeric position of the button to be initially set within a RadioBox or within
an OptionMenu’s pulldown submenu. The first button is specified as 0.

XmNbuttonType
A list of button types for the created buttons. The list contains one item for each
created title, separator, and button. If this resource is not set, the buttons created
will be CascadeButtonGadgets in a MenuBar and PushButtonGadgets in other
types of RowColumn widget. The XmNbuttonType resource is an enumerated
type whose possible values are:

XmPUSHBUTTON XmCASCADEBUTTON
XmDOUBLE_SEPARATOR XmCHECKBUTTON
XmRADIOBUTTON XmSEPARATOR
XmTITLE

XmNoptionLabel
A compound string with which to label the left side of an option menu.

XmNoptionMnemonic
The keysym of the key to press (in combination with the MAlt modifier) in order
to post the pulldown menu associated with an option menu.

XmNpostFromButton
The numeric position of the cascade button (in the parent) from which the pull-
down submenu is attached and subsequently posted. The first button is specified
as 0.

Motif and Xt Widget Classes

Motif Reference Manual 855

XmNsimpleCallback
List of callbacks that are called when a button is pressed or when its value
changes. For PushButtons and CascadeButtons, the callbacks are added to the
XmNactivateCallback and for ToggleButtons they are added to the XmNval-
ueChangedCallback.

Callback Resources
RowColumn defines the following callback resources:

XmNentryCallback
List of callbacks that are called when any button is pressed or when its value
changes. When this resource is specified, the XmNactivateCallback and XmN-
valueChangedCallback callbacks for all PushButtons, ToggleButtons, DrawnBut-
tons, and CascadeButtons are disabled and instead call this callback. This
resource must be specified when the RowColumn is created.

XmNmapCallback
List of callbacks that are called when the window associated with a RowColumn
is going to be mapped.

XmNtearOffMenuActivateCallback
List of callbacks that are called when a tear-off menu pane is going to be torn off.

XmNtearOffMenuDeactivateCallback
List of callbacks that are called when a torn-off menu pane is going to be deacti-
vated.

XmNunmapCallback
List of callbacks that are called when the window associated with a RowColumn
is going to be unmapped.

Callback Reason Constant

XmNentryCallback XmCR_ACTIVATE

XmNmapCallback XmCR_MAP

XmNtearOffMenuActivateCallback XmCR_TEAR_OFF_ACTIVATE

XmNtearOffMenuDeactivateCallback XmCR_TEAR_OFF_DEACTIVATE

XmNunmapCallback XmCR_UNMAP

Motif and Xt Widget Classes

Motif Reference Manual 856

Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /* the reason that the callback was called */
XEvent *event; /* event structure that triggered callback */
Widget widget; /* ID of activated RowColumn item */
char *data; /* value of application’s client data */
char *callbackstruct; /* created when item is activated */

} XmRowColumnCallbackStruct;

The structure members widget, data, and callbackstruct are meaningful only
when the callback reason is XmCR_ACTIVATE; otherwise, these structure
members are set to NULL.

callbackstruct points to a structure that is created by the activation callback of the
RowColumn item.

Inherited Resources
RowColumn inherits the following resources. The resources are listed alphabeti-
cally, along with the superclass that defines them. In Motif 2.0 and earlier, Row-
Column sets the default value of XmNshadowThickness to 2 if
XmN-rowColumnType is XmMENU_BAR, XmMENU_POPUP, or
XmMENU_PULLDOWN; the resource is undefined when XmNrowColumn-
Type is XmMENU_OPTION or XmWORK_AREA. In Motif 2.1 and later, the
default value depends upon the XmDisplay XmNenableThinThickness resource:
if True the default is 1, otherwise 2. The default value of XmNnavigationType is
set to XmTAB_GROUP for a work area and XmNONE for an option menu; the
resource is undefined for the other row column types. The default value of XmN-
traversalOn is set to True for a work area or an option menu; the resource is unde-
fined for the other row column types. The default value of XmNborderWidth is
reset to 0 by XmManager.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNinsertPosition Composite

XmNancestorSensitive Core XmNlayoutDirection XmManager

XmNbackground Core XmNmappedWhenManaged Core

XmNbackgroundPixmap Core XmNnavigationType XmManager

XmNborderColor Core XmNnumChildren Composite

XmNborderPixmap Core XmNpopupHandlerCallback XmManager

XmNborderWidth Core XmNscreen Core

XmNbottomShadowColor XmManager XmNsensitive Core

Motif and Xt Widget Classes

Motif Reference Manual 857

Translations
The value of the XmN-rowColumnType resource determines the available transla-
tions. When XmNrowColumnType is XmWORK_AREA, RowColumn’s trans-
lations are inherited from XmManager. When XmNrowColumnType is
XmMENU_OPTION, RowColumn’s translations are the traversal, KActivate,
and KCancel translations inherited from XmManager, as well as the following:

When XmNrowColumnType is XmMENU_BAR, XmMENU_PULLDOWN, or
XmMENU_POPUP, RowColumn has the following translations (in PopupMenu
systems, BMenu performs the BSelect actions as well):

XmNbottomShadowPixmap XmManager XmNshadowThickness XmManager

XmNchildren Composite XmNstringDirection XmManager

XmNcolormap Core XmNtopShadowColor XmManager

XmNdepth Core XmNtopShadowPixmap XmManager

XmNdestroyCallback Core XmNtranslations Core

XmNforeground XmManager XmNtraversalOn XmManager

XmNheight Core XmNunitType XmManager

XmNhelpCallback XmManager XmNuserData XmManager

XmNhighlightColor XmManager XmNwidth Core

XmNhighlightPixmap XmManager XmNx Core

XmNinitialFocus XmManager XmNy Core

XmNinitialResourcesPersistent Core

Event Action

BSelect Press MenuBtnDown()

BSelect Release MenuBtnUp()

KSelect ManagerGadgetSelect()

KHelp Help()

Event Action

BSelect Press MenuBtnDown()

BSelect Release MenuBtnUp()

KActivate ManagerGadgetSelect()

KSelect ManagerGadgetSelect()

Many KCancel MenuGadgetEscape()

Resource Inherited From Resource Inherited From

Motif and Xt Widget Classes

Motif Reference Manual 858

Action Routines
RowColumn defines the following action routines:

Help()
Invokes any callbacks specified by the XmNhelpCallback resource.

ManagerGadgetSelect()
Arms and activates the gadget child (in a menu) that has focus. For
a CascadeButtonGadget, its submenu is posted; for other gadget
children, the menu hierarchy is unposted.

MenuBtnDown()
In a gadget child (in a menu), unposts any menus that were posted
by the gadget’s parent menu, turns mouse traversal on, and arms the
gadget. If the child is a CascadeButtonGadget, its submenu is
posted.

MenuBtnUp()
In a gadget child (in a menu), unposts the menu hierarchy and acti-
vates the gadget. If the child is a CascadeButtonGadget, this action
posts the submenu and turns on keyboard traversal in the submenu.

MenuGadgetEscape()
Unposts the current menu and (unless the menu is a pulldown sub-
menu) restores keyboard focus to the tab group or widget that previ-
ously had it (assuming an explicit focus policy). In a top-level
pulldown menu pane attached to a menu bar, this action routine also
disarms the cascade button and the menu bar.

MenuGadgetTraverseDown()
When the current menu item has a submenu and is in a MenuBar,
disarms the current menu item, posts the submenu, and arms the
first item in it. When the current menu item is in a menu pane, dis-
arms the current menu item and arms the item below it, wrapping
around to the top if necessary.

KHelp Help()

KLeft MenuGadgetTraverseLeft()

KRight MenuGadgetTraverseRight()

KUp MenuGadgetTraverseUp()

KDown MenuGadgetTraverseDown()

Event Action

Motif and Xt Widget Classes

Motif Reference Manual 859

MenuGadgetTraverseLeft()
If the current menu item is in a MenuBar, disarms the current item
and arms the MenuBar item to the left, wrapping around to the right
if necessary. When the current item is in a menu pane, if the item is
not at the left edge of the pane, disarms the current menu item and
arms the item to its left. If the item is at the left edge of a submenu
attached to the MenuBar, unposts the submenu, traverses to the
MenuBar item to the left, and posts its submenu, wrapping if neces-
sary.

MenuGadgetTraverseRight()
If the current menu item is in a MenuBar, disarms the current item
and arms the MenuBar item to the right, wrapping around to the left
if necessary. When the current item is in a menu pane, if the item is
a CascadeButton, posts the associated submenu. If the current item
is not at the right edge of the pane, disarms the current item and
arms the item to the right, wrapping if necessary. Otherwise,
unposts all submenus, traverses to the MenuBar item to the right,
and posts its submenu, wrapping if necessary.

MenuGadgetTraverseUp()
Disarms the current menu item and arms the item above it, wrap-
ping around to the bottom if necessary.

Additional Behavior
RowColumn has additional menu behavior:

KMenuBar
In a menu bar or in any menu pane cascaded from it, unposts the
menu tree and (under an explicit focus policy) returns keyboard
focus to the tab group that had it before entering the menu tree. In
other non-popup menu panes, turns on keyboard traversal and sets
the focus to the first menu bar item.

KMenu
Pops up the menu associated with the component with the keyboard
focus and turns on keyboard traversal. In a popup menu system,
unposts the menu tree and (under an explicit focus policy) returns
keyboard focus to the tab group that had it before entering the menu
tree.

Motif and Xt Widget Classes

Motif Reference Manual 860

See Also
XmCreateObject (1), XmGetMenuCursor (1),
XmGetPostedFromWidget (1), XmGetTearOffControl (1),
XmMenuPosition (1), XmOptionButtonGadget (1),
XmOptionLabelGadget (1),
XmRepTypeInstallTearOffModelConverter (1),
XmSetMenuCursor (1), XmVaCreateSimpleCheckBox (1),
XmVaCreateSimpleMenuBar (1),
XmVaCreateSimpleOptionMenu (1),
XmVaCreateSimplePopupMenu (1),
XmVaCreateSimplePulldownMenu (1),
XmVaCreateSimpleRadioBox (1), Composite (2), Constraint (2),
Core (2), XmCascadeButton (2), XmCheckBox(2), XmManager(2),
XmMenuBar(2), XmOptionMenu (2), XmPopupMenu(2),
XmPulldownMenu (2), XmRadioBox (2).

Motif and Xt Widget Classes

Motif Reference Manual 861

Name
XmScale widget class – a manager widget that allows selection from a range of
values.

Synopsis

Public Header:
<Xm/Scale.h>

Class Name:
XmScale

Class Hierarchy:
Core → Composite → Constraint → XmManager → XmScale

Class Pointer:
xmScaleWidgetClass

Instantiation:
widget = XmCreateScale (parent, name,...)
or
widget = XtCreateWidget (name, xmScaleWidgetClass,...)

Functions/Macros:
XmCreateScale (), XmIsScale (), XmScaleGetValue (), XmScaleSet-
Value (),
XmScaleSetTicks ()

Description
A Scale displays a value from a range of values and allows a user to adjust the
value. A Scale consists of a narrow, rectangular trough that contains a slider. The
slider’s position marks the current value within the range of values. Scale is a
manager widget that orients its children along its axis. These children, typically
labels, can be used as tick marks.

If the Scale is an input-output type, a user can change the value by moving the
slider. An output-only Scale displays a value but does not allow the user to mod-
ify it. In Motif 2.0 and later, the XmNeditable resource controls the input-output
type of the Scale; in Motif 1.2 and earlier, the programmer calls XtSetSensitive()
or changes the inherited XmNsensitive resource to set the editable state.

In Motif 2.0 and later, the Scale supports tick marks directly through the
XmScaleSetTicks() routine.

Traits
Scale holds the XmQTtransfer trait, which is inherited by any derived classes,
and uses the XmQTspecifyRenderTable trait.

Motif and Xt Widget Classes

Motif Reference Manual 862

New Resources
Scale defines the following resources:

XmNdecimalPoints
A positive integer that determines how the slider’s value will be displayed. The
decimal point in the slider’s value gets shifted to the right, and this resource spec-
ifies the number of decimal places to shift. For example, if the slider’s value is

5678, then setting the XmNdecimalPoints1 resource to 2 causes the widget to dis-
play the value as 56.78.

Name Class Type Default Access

XmNdecimalPoints XmCDecimalPoints short 0 CSG

XmNeditable XmCEditable Boolean dynamic CSG

XmNfontList XmCFontList XmFontList dynamic CSG

XmNhighlightOnEnter XmCHighlightOnEnter Boolean False CSG

XmNhighlightThickness XmCHighlightThickness Dimension dynamic CSG

XmNmaximum XmCMaximum int 100 CSG

XmNminimum XmCMinimum int 0 CSG

XmNorientation XmCOrientation unsigned char XmVERTICAL CSG

XmNprocessingDirection XmCProcessingDirection unsigned char dynamic CSG

XmNrenderTable XmCRenderTable XmRenderTable dynamic CSG

XmNscaleHeight XmCScaleHeight Dimension 0 CSG

XmNscaleMultiple XmCScaleMultiple int dynamic CSG

XmNscaleWidth XmCScaleWidth Dimension 0 CSG

XmNshowArrows XmCShowArrows XtEnum XmNONE CSG

XmNshowValue XmCShowValue XtEnum XmNONE CSG

XmNsliderMark XmCSliderMark XtEnum dynamic CSG

XmNsliderSize XmCSliderSize int dynamic CSG

XmNsliderVisual XmCSliderVisual XtEnum dynamic CSG

XmNslidingMode XmCSlidingMode XtEnum XmSLIDER CSG

XmNtitleString XmCTitleString XmString NULL CSG

XmNvalue XmCValue int dynamic CSG

1.Erroneously given as XmdecimalPoints in 1st and 2nd editions.

Motif and Xt Widget Classes

Motif Reference Manual 863

XmNeditable
In Motif 2.0 and later, specifies whether the Scale responds to user input. The
default depends upon the value of the XmNslidingMode resource. If the value is
XmSLIDER, the default is True, and for the value XmTHERMOMETER the
default is False.

XmNfontList
The font list used by the widget for the title. In Motif 2.0 and later, the
XmFontList is obsolete, and is replaced by the XmRenderTable. Maintained for
backwards compatibility, any specified render table takes precedence over the
font list.

XmNhighlightOnEnter
Determines whether to draw the widget’s highlighting rectangle whenever the
cursor moves into the widget. This resource applies only when the shell has a
focus policy of XmPOINTER. If the XmNhighlightOnEnter resource is True,
highlighting is drawn; if False (default), highlighting is not drawn.

XmNhighlightThickness
The thickness of the highlighting rectangle. In Motif 2.0 and earlier, the default is
2. In Motif 2.1 and later, the default depends upon the XmDisplay XmNenab-
leThinThickness resource: if True, the default is 1, otherwise 2.

XmNmaximum

XmNminimum
The maximum/minimum value of the slider.

XmNorientation
The direction in which the scale is displayed. Possible values:

XmVERTICAL /* top-to-bottom creation */
XmHORIZONTAL /* left-to-right creation */

XmNprocessingDirection
Determines the position at which to display the slider’s maximum and minimum
values, with respect to the slider. Possible values:

XmMAX_ON_TOP /* scale increases toward top */
XmMAX_ON_BOTTOM /* scale increases toward bottom */
XmMAX_ON_LEFT /* scale increases toward left */
XmMAX_ON_RIGHT /* scale increases toward right */

For vertically-oriented Scale widgets, the default value is XmMAX_ON_TOP.
For horizontally-oriented Scale widgets, the default value is usually
XmMAX_ON_RIGHT (depending on the value of the XmNstringDirection
resource).

Motif and Xt Widget Classes

Motif Reference Manual 864

In Motif 2.0 and later, the XmNstringDirection resource is obsolete, and the
default depends upon the XmNlayoutDirection value.

XmNrenderTable
In Motif 2.0 and later, specifies the XmRenderTable to use for both the title text
string and the label displaying the current Scale value. If NULL, the value is
found from the nearest ancestor holding the XmQTspecifyRenderTable trait,
using the XmLABEL_RENDER_TABLE value of the ancestor.

XmNscaleHeight

XmNscaleWidth
The height or width of the slider area.

XmNscaleMultiple
The distance to move the slider when the user moves it by a multiple increment.
The default value is calculated as (XmNmaximum – XmNminimum) / 10.

XmNshowArrows
In Motif 2.0 and later, specifies whether and how arrows are displayed on each
end of the Scale. Possible values:

XmEACH_SIDE /* arrow at both ends */
XmMAX_SIDE /* arrows at maximum end */
XmMIN_SIDE /* arrows at minimum end */
XmNONE /* arrows at neither end */

XmNshowValue
In Motif 1.2 and earlier, a Boolean value which specifies whether the current
scale value is displayed on an adjacent label. If True, the Scale displays the value
beside the slider. If False, the value label isn’t displayed. In Motif 2.0 and later,
the type of the resource changes to an enumeration. XmNONE is equivalent to
False, and does not display a value. XmNEAR_BORDER places the value adja-
cent to the border of the Scale, and XmNEAR_SLIDER places the value at the
slider.

XmNsliderMark
In Motif 2.0 and later, specifies the appearance of the slider. The default depends
upon the value of the XmNslidingMode resource. If the sliding mode is
XmSLIDER, the default is XmETCHED_LINE. With a mode of XmTHER-
MOMETER, the default is XmNONE if the scale is editable, otherwise
XmROUND_MARK. Possible values:

XmETCHED_LINE /* drawn as an etched line */
XmNONE /* drawn as a foreground rectangle */
XmROUND_MARK /* drawn as a shadowed circle */
XmTHUMB_MARK /* three etched lines in foregrounded rectangle */

Motif and Xt Widget Classes

Motif Reference Manual 865

XmNsliderSize
In Motif 2.0 and later, an undocumented resource which represents the size of the
slider in pixels.

XmNsliderVisual
In Motif 2.0 and later, specifies the color of the slider visual. The default is
XmTROUGH_COLOR when the sliding model is XmTHERMOMETER, other-
wise XmSHADOWED_BACKGROUND. Possible values:

XmBACKGROUND_COLOR /* visual in background color */
XmFOREGROUND_COLOR /* visual in foreground color */
XmSHADOWED_BACKGROUND /* visual in background, with shadow */
XmTROUGH_COLOR /* visual in trough color */

XmNslidingMode
In Motif 2.0 and later, specifies the way in which the slider moves. Possible val-
ues:

XmSLIDER /* slider moves freely between each end */
XmTHERMOMETER /* slider anchored to one end */

XmNtitleString
The text string that appears as the title in the Scale widget.

XmNvalue
The current position of the slider along the scale. This resource must have a value
between the values of XmNminimum and XmNmaximum.

Callback Resources
Scale defines the following callback resources:

XmNconvertCallback
In Motif 2.0 and later, specifies a list of callbacks called when the slider is
requested to convert a selection as part of a data transfer operation.

XmNdragCallback
List of callbacks that are called when the slider is being dragged.

XmNvalueChangedCallback
List of callbacks that are called when the position of the slider has changed.

Callback Reason Constant

XmNconvertCallback XmCR_OK

XmNdragCallback XmCR_DRAG

XmNvalueChangedCallback XmCR_VALUE_CHANGED

Motif and Xt Widget Classes

Motif Reference Manual 866

Callback Structure
Convert callbacks are fully described within the sections covering the Uniform
Transfer Model. See XmTransfer (1) for more details. For quick reference, a
pointer to the following structure is passed to callbacks on the XmNconvertCall-
back list:

typedef struct {
int reason; /* the reason that the callback is invoked */
XEvent *event; /* points to event that triggered callback */
Atom selection; /* selection for which conversion is requested */
Atom target; /* the conversion target */
XtPointer source_data; /* selection source information */
XtPointer location_data; /* information about data to be transferred */
int flags; /* input status of the conversion */
XtPointer parm; /* parameter data for the target */
int parm_format; /* format of parameter data */
unsigned long parm_length; /* number of elements in parameter data */
Atom parm_type; /* the type of the parameter data */
int status; /* output status of the conversion */
XtPointer value; /* returned conversion data */
Atom type; /* type of conversion data returned */
int format; /* format of the conversion data */
unsigned long length; /* number of elements in the conversion data */
} XmConvertCallbackStruct;

Each drag and value changed callback function is passed the following structure:

typedef struct {
int reason; /* the reason that the callback was called */
XEvent *event; /* event structure that triggered callback */
int value; /* new value of the slider */

} XmScaleCallbackStruct;

Motif and Xt Widget Classes

Motif Reference Manual 867

Inherited Resources
Scale inherits the following resources. The resources are listed alphabetically,
along with the superclass that defines them. In Motif 2.0 and earlier, the default
value of XmNshadowThickness is reset to 2. In Motif 2.1, the default value
depends upon the XmDisplay XmNenableThinThickness resource: if True the
default is 1, otherwise 2. The default value of XmNborderWidth is reset to 0 by
XmManager.

Translations
Scale does not define any new translations.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNinsertPosition Composite

XmNancestorSensitive Core XmNlayoutDirection XmManager

XmNbackground Core XmNmappedWhenManaged Core

XmNbackgroundPixmap Core XmNnavigationType XmManager

XmNborderColor Core XmNnumChildren Composite

XmNborderPixmap Core XmNpopupHandlerCallback XmManager

XmNborderWidth Core XmNscreen Core

XmNbottomShadowColor XmManager XmNsensitive Core

XmNbottomShadowPixmap XmManager XmNshadowThickness XmManager

XmNchildren Composite XmNstringDirection XmManager

XmNcolormap Core XmNtopShadowColor XmManager

XmNdepth Core XmNtopShadowPixmap XmManager

XmNdestroyCallback Core XmNtranslations Core

XmNforeground XmManager XmNtraversalOn XmManager

XmNheight Core XmNunitType XmManager

XmNhelpCallback XmManager XmNuserData XmManager

XmNhighlightColor XmManager XmNwidth Core

XmNhighlightPixmap XmManager XmNx Core

XmNinitialFocus XmManager XmNy Core

XmNinitialResourcesPersistent Core

Motif and Xt Widget Classes

Motif Reference Manual 868

Behavior
Scale has the following behavior:

BSelect Press or BTransfer Press
In the trough between the slider and an end of the Scale, moves the
slider by one multiple increment in the direction of the end of the
Scale. Calls the XmNvalueChangedCallback callbacks. Whether
the value of the Scale is incremented or decremented depends on
the value of XmNprocessingDirection. In the slider, starts interac-
tive dragging of the slider.

BSelect Motion or BTransfer Motion
If the button press occurred within the slider, the slider tracks the
pointer and calls the XmNdragCallback callbacks.

BSelect Release or BTransfer Release
If the button press occurs within the slider and the position of the
slider has changed, the XmNvalueChangedCallback callbacks are
invoked.

MCtrl BSelect Press
In the trough between the slider and an end of the Scale, moves the
slider to that end of the Scale and calls the XmNvalueChangedCall-
back callbacks. Whether the value of the Scale is incremented or
decremented depends on the value of the XmNprocessingDirection
resource.

KUp
KDown

In a vertical Scale, moves the slider up or down one increment and
calls the XmN-value-Changed-Callback callbacks. Whether the
value of the Scale is incremented or decremented depends on the
value of the XmN-processing-Direction resource.

KLeft
KRight

In a horizontal Scale, moves the slider left or right one increment
and calls the XmNvalue-Changed-Callback callbacks. Whether the
value of the Scale is incremented or decremented depends on the
value of the XmN-processing-Direction resource.

MCtrl KUp or KPageUp
MCtrl KDown or KPageDown

In a vertical Scale, moves the slider up or down one multiple incre-
ment and calls the XmNvalueChangedCallback callbacks.

Motif and Xt Widget Classes

Motif Reference Manual 869

Whether the value of the Scale is incremented or decremented
depends on the value of the XmNprocessingDirection resource.

MCtrl KLeft or KPageLeft
MCtrl KRight or KPageRight

In a horizontal Scale, moves the slider left or right one multiple
increment and calls the XmNvalueChangedCallback callbacks.
Whether the value of the Scale is incremented or decremented
depends on the value of the XmNprocessingDirection resource.

KBeginLine or KBeginData
Moves the slider to the Scale’s minimum value and calls the XmN-
valueChangedCallback callbacks.

KEndLine or KEndData
Moves the slider to the Scale’s maximum value and calls the XmN-
valueChangedCallback callbacks.

KNextField
KPrevField

Moves the keyboard focus to the first item in the next or previous
tab group, wrapping if necessary.

KHelp
Invokes the list of callbacks specified by XmNhelpCallback. If the
Scale does not have any help callbacks, invokes those associated
with the nearest ancestor that has them.

See Also
XmCreateObject (1), XmScaleGetValue (1), XmScaleSetValue (1),
XmScaleSetTicks (1), XmTransfer (1), Composite (2),
Constraint (2), Core (2), XmManager(2).

Motif and Xt Widget Classes

Motif Reference Manual 870

Name
XmScreen widget class – an object used to store screen-specific information.

Synopsis

Public Header:
<Xm/Screen.h>

Class Name:
XmScreen

Class Pointer:
xmScreenClass

Class Hierarchy:
Core → XmScreen

Instantiation:
widget = XtAppInitialize (...)

Functions/Macros:
XmGetXmScreen(), XmIsScreen ()

Availability
Motif 1.2 and later.

Description
The Screen object stores screen-specific information for use by the toolkit. An
application has a Screen object for each screen that it accesses. When an applica-
tion creates its first shell on a screen, typically by calling XtAppInitialize ()
or XtAppCreateShell (), a Screen object is created automatically. There is no
way to create a Screen independently. The function XmGetXmScreen() can be
used to get the widget ID of the Screen object.

New Resources
Screen defines the following resources:

Name Class Type Default Access

XmNbitmapConversionModel XmCBitmapConversionModel XtEnum XmMATCH_DEPTH CSG

XmNcolorAllocationProc XmCColorAllocationProc XmAllocColorProc NULL CSG

XmNcolorCalculationProc XmCColorCalculationProc XmScreenColorProc NULL CSG

XmNdarkThreshold XmCDarkThreshold int dynamic C

XmNdefaultCopyCursorIcon XmCDefaultCopyCursorIcon Widget NULL CSG

XmNdefaultInvalidCursorIcon XmCDefaultInvalidCursorIcon Widget NULL CSG

XmNdefaultLinkCursorIcon XmCDefaultLinkCursorIcon Widget NULL CSG

XmNdefaultMoveCursorIcon XmCDefaultMoveCursorIcon Widget NULL CSG

Motif and Xt Widget Classes

Motif Reference Manual 871

XmNbitmapConversionModel
In Motif 2.0 and later, specifies the way in which Xpm and Xbm files are con-
verted to a pixmap. If the value is XmMATCH_DEPTH, the pixmap has the same
depth as the widget to which it is associated. If the value is
XmMATCH_DYNAMIC, Xbm files are converted to a pixmap of depth 1.

XmNcolorAllocationProc
In Motif 2.0 and later, specifies an XmAllocColorProc procedure used for allo-
cating color on the particular screen associated with the XmScreen object. If this
is NULL, the default procedure XAllocColor() is used.

XmNcolorCalculationProc
In Motif 2.0 and later, specifies an XmScreenColorProc procedure for calculating
the default foreground, background, top shadow, bottom shadow, select colors on
the particular screen associated with the XmScreen object. If this is NULL, color
is calculated using a default screen-independent procedure. The default proce-
dure can be changed by XmSetColorCalculation ().

XmNdarkThreshold
The level of perceived brightness (between 0 and 100) that is treated as a "dark"
background color when computing default shadow and select colors.

XmNdefaultCopyCursorIcon
The DragIcon used during a copy operation. When the value is NULL, a default
system icon is used.

XmNdefaultNoneCursorIcon XmCDefaultNoneCursorIcon Widget NULL CSG

XmNdefaultSourceCursorIcon XmCDefaultSourceCursorIcon Widget NULL CSG

XmNdefaultValidCursorIcon XmCDefaultValidCursorIcon Widget NULL CSG

XmNfont XmCFont XFontStruct * NULL CSG

XmNforegroundThreshold XmCForegroundThreshold int dynamic C

XmNhorizontalFontUnit XmCHorizontalFontUnit int dynamic CSG

XmNinsensitiveStippleBitmap XmCInsensitiveStippleBitmap Pixmap 50_foreground C

XmNlightThreshold XmCLightThreshold int dynamic C

XmNmenuCursor XmCCursor Cursora arrow C

XmNmoveOpaque XmCMoveOpaque Boolean False CSG

XmNunpostBehavior XmCUnpostBehavior unsigned char XmUNPOST_AND_REPLAY CSG

XmNuseColorObject XmCUseColorObject Boolean False C

XmNuserData XmCUserData XtPointer NULL CSG

XmNverticalFontUnit XmCVerticalFontUnit int dynamic CSG

a.Erroneously given as String in 1st and 2nd editions. The default is the arrow Cursor (XC_arrow).

Name Class Type Default Access

Motif and Xt Widget Classes

Motif Reference Manual 872

XmNdefaultInvalidCursorIcon
The DragIcon used when the pointer is over an invalid drop site. When the value
is NULL, a default system icon is used.

XmNdefaultLinkCursorIcon
The DragIcon used during a link operation. When the value is NULL, a default
system icon is used.

XmNdefaultMoveCursorIcon
The DragIcon used during a move operation. When the value is NULL, a default
system icon is used.

XmNdefaultNoneCursorIcon
The DragIcon used when the pointer is not over a drop site. When the value is
NULL, a default system icon is used.

XmNdefaultSourceCursorIcon
The bitmap used as a cursor when an XmNsourceCursorIcon is not provided by
the DragContext. When the value is NULL, a default system icon is used.

XmNdefaultValidCursorIcon
The DragIcon used when the pointer is over a valid drop site. When the value is
NULL, a default system icon is used.

XmNfont
The font used in computing values for XmNhorizontalFontUnit and XmN-verti-
calFontUnit.

XmNforegroundThreshold
The level of perceived brightness (between 0 and 100) that distinguishes between
a "dark" and "light" background when computing the default foreground and
highlight colors.

XmNhorizontalFontUnit
The horizontal component of the font units that are used to convert geometry val-
ues when XmNshellUnitType or XmNunitType is set to
Xm100TH_FONT_UNITS. If a value is not specified, the default is computed
from the XmNfont resource.

XmNinsensitiveStippleBitmap
In Motif 2.0 and later, specifies a default stipple for drawing widgets in insensi-
tive state. Mostly used within the graphics contexts of Gadgets.

XmNlightThreshold
The level of perceived brightness (between 0 and 100) that is treated as a "light"
background color when computing default shadow and select colors.

XmNmenuCursor
The cursor that is used when the application posts a menu. Possible values
include all of the cursors in the X cursor font.

Motif and Xt Widget Classes

Motif Reference Manual 873

XmNmoveOpaque
If False (default), an operation that moves a window displays an outline of the
window during the operation. If True, a move operation displays a representa-
tion of the window.

XmNunpostBehavior
The behavior of a posted menu when the pointer button is pressed outside of the
menu. Possible values:

XmUNPOST_AND_REPLAY /* unposts the menu hierarchy and
replays event */
XmUNPOST /* unposts the menu hierar-
chy */

XmNuseColorObject
In Motif 2.0 and later, specifies whether colors are shareable between widgets,
and whether an alteration to a color dynamically changes all widgets which refer-
ence the color.

XmNuserData
In Motif 2.0 and later, specifies a pointer to data that the application can attach to
the structure representing the screen. The resource is unused internally.

XmNverticalFontUnit
The vertical component of the font units that are used to convert geometry values
when XmNshellUnitType or XmNunitType is set to Xm100TH_FONT_UNITS

or XmFONT_UNITS1. If a value is not specified, the default is computed from
the XmNfont resource.

Procedures
The XmScreenColorProc has the following syntax:

typedef void (*XmScreenColorProc) (Screen *, XColor *, XColor *, XColor *,
XColor *, XColor *)

Screen *screen; /* the screen */
XColor *bg_color; /* specifies the background color */
XColor *fg_color; /* returns the foreground color */
XColor *sel_color; /* returns the select color */
XColor *ts_color; /* returns the top shadow color */
XColor *bs_color; /* returns the bottom shadow color */

An XmScreenColorProc takes six arguments. The first argument is a pointer to
the screen. The second argument, bg_color, is a pointer to an XColor structure
that specifies the background color. The red, green, blue, and pixel fields in the

1.Erroneously given as Xm_FONT_UNITS in 2nd edition.

Motif and Xt Widget Classes

Motif Reference Manual 874

structure contain valid values. The rest of the arguments are pointers to XColor
structures for the colors that are to be calculated. The procedure fills in the red,
green, and blue fields in these structures.

The XmAllocColorProc has the following syntax:

typedef void (*XmAllocColorProc) (Display *, Colormap, XColor *)

Display *display; /* connection to X server */
Colormap colormap; /* a colormap in which to allocate color */
XColor *bs_color; /* specifies and returns allocated color */

An XmAllocColorProc takes three arguments. The first argument is a pointer to
the Display connection. The second argument is the Colormap where the color is
to be allocated. The third argument is a pointer to an XColor structure for the
color that is to be allocated. The programmer fills in the red, green, and blue
fields in the structure to the required values, and the procedure returns the actu-
ally allocated values into the same fields.

Inherited Resources
None of the resources inherited by Screen are applicable.

See Also
XmGetXmScreen(1), XmSetColorCalculation (1), Core (2),
XmDisplay (2).

Motif and Xt Widget Classes

Motif Reference Manual 875

Name
XmScrollBar widget class – a widget to control the scrolling of the viewing area
in another widget.

Synopsis

Public Header:
<Xm/ScrollBar.h>

Class Name:
XmScrollBar

Class Hierarchy:
Core → XmPrimitive → XmScrollBar

Class Pointer:
xmScrollBarWidgetClass

Instantiation:
widget = XmCreateScrollBar (parent, name,...)
or
widget = XtCreateWidget (name, xmScrollBarWidgetClass,...)

Functions/Macros:
XmCreateScrollBar (), XmIsScrollBar (), XmScrollBarGetVal-
ues (),
XmScrollBarSetValues ()

Description
A ScrollBar allows users to reposition data that is too large to fit in the viewing
window. Although a ScrollBar can be used as a standalone widget, it is normally
used in a ScrolledWindow. A ScrollBar consists of a rectangular strip, called the
scroll region or trough, and two arrows placed on either end of the scroll region.
Within the scroll region is a smaller, movable rectangle called the slider. To scroll
the data, users can click on one of the arrows, click in the scroll region, or drag
the slider. The application typically sets the XmNsliderSize resource such that
the size of the slider relative to the size of the scroll region corresponds to the
percentage of total data that is currently displayed.

Traits
ScrollBar holds the XmQTnavigator trait, which is inherited by any derived
classes.

Motif and Xt Widget Classes

Motif Reference Manual 876

New Resources
ScrollBar defines the following resources:

XmNeditable
In Motif 2.0 and later, specifies whether the ScrollBar responds to user input. The
default depends upon the value of the XmNslidingMode resource. If the value is
XmSLIDER, the default is True, and for the value XmTHERMOMETER the
default is False.

XmNincrement
The amount the value changes due to the user’s moving the slider one increment.

XmNinitialDelay
The number of milliseconds a button must remain pressed before triggering con-
tinuous slider movement.

XmNmaximum

XmNminimum
The maximum/minimum value of the slider.

Name Class Type Default Access

XmNeditable XmCEditable Boolean dynamic CSG

XmNincrement XmCIncrement int 1 CSG

XmNinitialDelay XmCInitialDelay int 250 CSG

XmNmaximum XmCMaximum int dynamic CSG

XmNminimum XmCMinimum int 0 CSG

XmNorientation XmCOrientation unsigned char XmVERTICAL CSG

XmNpageIncrement XmCPageIncrement int 10 C

XmNprocessingDirection XmCProcessingDirection unsigned char dynamic CSG

XmNrepeatDelay XmCRepeatDelay int 50 CSG

XmNshowArrows XmCShowArrows XtEnum XmEACH_SIDE CSG

XmNsliderMark XmCSliderMark XtEnum dynamic CSG

XmNsliderSize XmCSliderSize int dynamic CSG

XmNsliderVisual XmCSliderVisual XtEnum dynamica

a.Erroneously given as XmSHADOWED_BACKGROUND in 2nd edition.

CSG

XmNslidingMode XmCSlidingMode XtEnum XmSLIDER CSG

XmNsnapBackMultiple XmCSnapBackMultiple unsigned short 65535 CSG

XmNtroughColor XmCTroughColor Pixel dynamic CSG

XmNvalue XmCValue int dynamic CSG

Motif and Xt Widget Classes

Motif Reference Manual 877

XmNorientation
The direction in which the scale is displayed. Possible values:

XmVERTICAL /* top-to-bottom creation */
XmHORIZONTAL /* left-to-right creation */

XmNpageIncrement
The amount the value changes due to the user’s moving the slider one page incre-
ment.

XmNprocessingDirection
Determines the position at which to display the slider’s maximum and minimum
values, with respect to the slider. Possible values:

XmMAX_ON_TOP /* scale increases toward top */
XmMAX_ON_BOTTOM /* scale increases toward bottom */
XmMAX_ON_LEFT /* scale increases toward left */
XmMAX_ON_RIGHT /* scale increases toward right */

For vertically oriented ScrollBar widgets, the default value is
XmMAX_ON_TOP. For horizontally oriented ScrollBar widgets, the default
value is usually XmMAX_ON_RIGHT (depending on the value of the XmN-
stringDirection resource).

XmNrepeatDelay
The number of milliseconds a button must remain pressed before continuing fur-
ther slider motions, once the XmNinitialDelay time has been triggered.

XmNshowArrows
In Motif 1.2 and earlier, a Boolean value which indicates whether arrows are dis-
played. If True, arrows are displayed; if False, they are not.

In Motif 2.0 and later, the resource is represented by an enumerated type: if
XmEACH_SIDE, arrows are displayed at each end of the ScrollBar,

XmMAX_SIDE displays both1 arrows at the end where the maximum value is

displayed, XmMIN_SIDE displays both2 arrows at the minimum value end, and
XmNONE does not display any arrows.

XmNsliderMark
In Motif 2.0 and later, specifies the appearance of the slider. The default depends
upon the value of the XmNslidingMode resource. If the sliding mode is
XmSLIDER, the default is XmETCHED_LINE. With a mode of XmTHER-
MOMETER, the default is XmNONE if the scale is editable, otherwise
XmROUND_MARK. Possible values:

1.Erroneously given as one arrow in 2nd edition.

2.Erroneously given as one arrow in 2nd edition

Motif and Xt Widget Classes

Motif Reference Manual 878

XmETCHED_LINE /* drawn as an etched line */
XmNONE /* drawn as a foreground rectangle */
XmROUND_MARK /* drawn as a shadowed circle */
XmTHUMB_MARK /* three etched lines in foregrounded rectangle */

XmNsliderSize
The slider’s length. The length ranges from 1 to the value of XmNmaximum –
 XmNminimum. By default, the value is computed to be:

(XmNmaximum – XmNminimum) / 10.

XmNsliderVisual
In Motif 2.0 and later, specifies the color of the slider visual. The default is
XmTROUGH_COLOR when the sliding model is XmTHERMOMETER, other-
wise XmSHADOWED_BACKGROUND. Possible values:

XmBACKGROUND_COLOR /* visual in background color */
XmFOREGROUND_COLOR /* visual in foreground color */
XmSHADOWED_BACKGROUND /* visual in background, with shadow */
XmTROUGH_COLOR /* visual in trough color */

XmNslidingMode
In Motif 2.0 and later, specifies the way in which the slider moves. Possible val-
ues:

XmSLIDER /* slider moves freely between each end */
XmTHERMOMETER /* slider anchored to one end */

XmNsnapBackMultiple
In Motif 2.0 and later, specifies a distance, which if exceeded, causes the Scroll-
Bar to snap back to its original settings. The resource comes into effect when the
user drags the mouse outside the bounds of the ScrollBar. The resource is meas-
ured in terms of multiples of the ScrollBar width. For example, the value 0 (zero)
causes the slider to snap back as soon as the pointer moves outside the ScrollBar,
the value 1 snaps back at one ScrollBar width, etc. The default is very large, in
order to disable snap back even if the size of the screen is abnormal.

XmNtroughColor
The color of the slider’s trough.

XmNvalue
The slider’s position. The position ranges from the value of XmNminimum to the
value of (XmNmaximum – XmNsliderSize).

Motif and Xt Widget Classes

Motif Reference Manual 879

Callback Resources
ScrollBar defines the following callback resources:

XmNdecrementCallback
List of callbacks that are called when the value of the ScrollBar decreases by one
increment.

XmNdragCallback
List of callbacks that are called for each change in position when the slider is
being dragged.

XmNincrementCallback
List of callbacks that are called when the value of the ScrollBar increases by one
increment.

XmNpageDecrementCallback
List of callbacks that are called when the value of the ScrollBar decreases by one
page increment.

XmNpageIncrementCallback
List of callbacks that are called when the value of the ScrollBar increases by one
page increment.

XmNtoBottomCallback
List of callbacks that are called when the slider is moved to the maximum value
of the ScrollBar.

XmNtoTopCallback
List of callbacks that are called when the slider is moved to the minimum value
of the ScrollBar.

XmNvalueChangedCallback
List of callbacks that are called at the end of a slider drag operation. These call-
backs are also called in place of each of the other ScrollBar callbacks that reports
a value change when the callback resource is NULL.

Callback Reason Constant

XmNdecrementCallback XmCR_DECREMENT

XmNdragCallback XmCR_DRAG

XmNincrementCallback XmCR_INCREMENT

XmNpageDecrementCallback XmCR_PAGE_DECREMENT

XmNpageIncrementCallback XmCR_PAGE_INCREMENT

XmNtoBottomCallback XmCR_TO_BOTTOM

XmNtoTopCallback XmCR_TO_TOP

XmNvalueChangedCallback XmCR_VALUE_CHANGED

Motif and Xt Widget Classes

Motif Reference Manual 880

Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /* the reason that the callback was called */
XEvent *event; /* event structure that triggered callback */
int value; /* value of the slider’s new location */
int pixel; /* coordinate where selection occurred */

} XmScrollBarCallbackStruct;

pixel is meaningful only when the callback reason is XmCR_TO_TOP or
XmCR_TO_BOTTOM. The pixel member specifies the location at which the
mouse button selection occurred, giving the x-coordinate in the case of a horizon-
tal ScrollBar and the y-coordinate in the case of a vertical ScrollBar.

Inherited Resources
ScrollBar inherits the following resources. The resources are listed alphabeti-
cally, along with the superclass that defines them. XmNnavigationType to
XmSTICKY_TAB_GROUP, and XmN-traversalOn to False. The default value of
XmNborderWidth is reset to 0 by Manager.

In versions of Motif prior to 2.0, the default value of XmNhighlightThickness is
reset to zero by the ScrollBar. In Motif 2.0, the default is reset to 2 if the Scroll-
Bar’s parent is a ScrolledWindow, zero otherwise. In Motif 2.1, if the XmNenab-
leThinThickness resource of XmDisplay is True, the default is 1 if the
ScrollBar’s parent is a ScrolledWindow, zero otherwise.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNhighlightThickness XmPrimitive

XmNancestorSensitive Core XmNinitialResourcesPersistent Core

XmNbackground Core XmNlayoutDirection XmPrimitive

XmNbackgroundPixmap Core XmNmappedWhenManaged Core

XmNborderColor Core XmNnavigationType XmPrimitive

XmNborderPixmap Core XmNpopupHandlerCallback XmPrimitive

XmNborderWidth Core XmNscreen Core

XmNbottomShadowColor XmPrimitive XmNsensitive Core

XmNbottomShadowPixmap XmPrimitive XmNshadowThickness XmPrimitive

XmNcolormap Core XmNtopShadowColor XmPrimitive

XmNconvertCallback XmPrimitive XmNtopShadowPixmap XmPrimitive

XmNdepth Core XmNtranslations Core

XmNdestroyCallback Core XmNtraversalOn XmPrimitive

Motif and Xt Widget Classes

Motif Reference Manual 881

Translations
The translations for ScrollBar include those from Primitive, plus the following:

XmNforeground XmPrimitive XmNunitType XmPrimitive

XmNheight Core XmNuserData XmPrimitive

XmNhelpCallback XmPrimitive XmNwidth Core

XmNhighlightColor XmPrimitive XmNx Core

XmNhighlightOnEnter XmPrimitive XmNy Core

XmNhighlightPixmap XmPrimitive

Event Action

BSelect Press Select()

BSelect Release Release()

BSelect Press Moved Moved()

BTransfer Press Select()

BTransfer Release Release()

BTransfer Press Moved Moved()

MCtrl BSelect Press TopOrBottom()

MCtrl BSelect Release Release()

KUp IncrementUpOrLeft(0)

MCtrl KUp PageUpOrLeft(0)

KDown IncrementDownOrRight(0)

MCtrl KDown PageDownOrRight(0)

KLeft IncrementUpOrLeft(1)

MCtrl KLeft PageUpOrLeft(1)

KRight IncrementDownOrRight(1)

MCtrl KRight PageDownOrRight(1)

KPageUp PageUpOrLeft(0)

KPageDown PageDownOrRight(0)

KPageLeft PageUpOrLeft(1)

KPageRight PageDownOrRight(1)

KBeingLine TopOrBottom()

KEndLine TopOrBottom()

KBeginData TopOrBottom()

KEndData TopOrBottom()

Resource Inherited From Resource Inherited From

Motif and Xt Widget Classes

Motif Reference Manual 882

Action Routines
ScrollBar defines the following action routines:

CancelDrag()
In Motif 1.2 and later, cancels the scrolling operation and returns
the slider to its previous location if the event happened during a
drag. Otherwise, passes the event to the parent if it is a manager.

IncrementDownOrRight(flag):
Moves the slider by one increment--downward if flag is 0; to the
right if flag is 1. Depending on the value of the XmNprocessingDi-
rection resource, the slider’s movement invokes the list of callbacks
specified by either the XmNincrementCallback or the XmNdecre-
mentCallback resource (or XmNvalueChangedCallback if the
appropriate callback resource is NULL).

IncrementUpOrLeft(flag):
Same as IncrementDownOrRight except that the slider moves
upward if flag is 0 and to the left if flag is 1.

Moved()
This action applies when the mouse button is pressed in the slider.
When this is done, moving the pointer moves the slider along with
it and also invokes the callbacks specified by XmNdragCallback.

PageDownOrRight(flag):
Moves the slider by one page increment--downward if flag is 0; to
the right if flag is 1. Depending on the value of the XmNprocessing-
Direction resource, the slider’s movement invokes the callbacks
listed in either XmNpageIncrementCallback or XmNpageDecre-
mentCallback (or XmNvalueChangedCallback if the appropriate
callback resource is NULL).

PageUpOrLeft(flag):
Same as IncrementDownOrRight except that the slider moves
upward if flag is 0 and to the left if flag is 1.

KNextField PrimitiveNextTabGroup()

KPrevField PrimitivePrevTabGroup()

KActivate PrimitiveParentActivate()

KCancel CancelDrag()

KHelp PrimitiveHelp()

Event Action

Motif and Xt Widget Classes

Motif Reference Manual 883

PrimitiveHelp()
Invokes the list of callbacks specified by XmNhelpCallback. If the
ScrollBar doesn’t have any help callbacks, the Help() routine
invokes those associated with the nearest ancestor that has them.

PrimitiveNextTabGroup()
PrimitivePrevTabGroup()

Traverses to the first item in the next/previous tab group, wrapping
if necessary.

PrimitiveParentActivate()
In Motif 1.2 and later, passes the event to the parent if it is a man-
ager.

Release()
If the Moved() action changes the slider’s position, then the
Release() action invokes the callbacks specified by XmNval-
ueChangedCallback.

Select()
The results of this action depend on the location in which its
applied: Within an arrow, this action is the same as Increment-
DownOrRight() or IncrementUpOrLeft()--incrementing or decre-
menting according to the value of the XmN-processingDirection
resource, and invoking the appropriate increment or decrement call-
back. Within the scrolling area that lies between an arrow and the
slider, this action works like the page increment action rou-
tines--moving by one page increment according to the value of the
XmNprocessingDirection resource, and invoking the appropriate
page increment or page decrement callback. Within either of these
locations, keeping the button pressed repeats the incremental move-
ment of the slider. This behavior is triggered when the duration of
the button press exceeds the value of the XmNinitialDelay
resource; the slider movement then repeats with a time interval
specified by the XmNrepeatDelay resource. Within the slider, this
action begins slider dragging, which is subsequently affected by the
actions Moved() and Release().

Motif and Xt Widget Classes

Motif Reference Manual 884

TopOrBottom()
Moves the slider to its minimum value and invokes the callbacks
specified by XmNtoTopCallback, or moves the slider to its maxi-
mum value and invokes the callbacks specified by XmNtoBottom-
Callback. The direction of the slider’s movement depends on the
value of the XmNprocessingDirection resource. This action can be
applied using either keyboard or mouse events.

See Also
XmCreateObject (1), XmScrollBarGetValues (1), Core (2),
XmPrimitive (2).

Motif and Xt Widget Classes

Motif Reference Manual 885

Name
XmScrolledList – a List as a child of a ScrolledWindow.

Synopsis

Public Header:
<Xm/List.h>

Instantiation:
widget = XmCreateScrolledList (parent, name,...)

Functions/Macros:
XmCreateScrolledList (), XmCreateScrolledWindow ()

Description
An XmScrolledList is a compound object created by a call to XmCreateScroll-
edList() that provides scroll bars for a list that is not visible all at once. A Scroll-
edList consists of a ScrolledWindow widget with a List widget as its child.

A ScrolledList automatically creates the necessary scroll bars. The ScrolledWin-
dow resource XmNscrollingPolicy is set to XmAPPLICATION_DEFINED and
XmNvisualPolicy is set to XmVARIABLE. The ScrolledWindow resource XmN-
scrollBarDisplayPolicy is set to XmSTATIC, but no initial value is set for the List
XmNscrollBarDisplayPolicy resource.

Default Resource Values
A ScrolledList sets the following default values for ScrolledWindow resources:

Widget Hierarchy
When a ScrolledList is created with a specified name, the ScrolledWindow is
named nameSW and the List is called name. The horizontal and vertical scroll
bars are named HorScrollBar and VertScrollBar, respectively.

See Also
XmCreateObject (1), XmList (2), XmScrolledWindow (2).

Name Default

XmNscrollBarDisplayPolicy XmSTATIC

XmNscrollingPolicy XmAPPLICATION_DEFINED

XmNvisualPolicy XmVARIABLE

Motif and Xt Widget Classes

Motif Reference Manual 886

Name
XmScrolledText – a Text widget as a child of a ScrolledWindow.

Synopsis

Public Header:
<Xm/Text.h>

Instantiation:
widget = XmCreateScrolledText (parent, name,...)

Functions/Macros:
XmCreateScrolledText (), XmCreateScrolledWindow ()

Description
An XmScrolledText is a compound object created by a call to XmCreate-
ScrolledText() that provides scroll bars for text that is not visible all at once. A
ScrolledText object consists of a ScrolledWindow widget with a multi-line Text
widget as its child.

ScrolledText automatically creates the necessary scroll bars. The ScrolledWin-
dow resource XmNscrollingPolicy is set to XmAPPLICATION_DEFINED,
XmNvisualPolicy is set to XmVARIABLE and XmNscrollBarDisplayPolicy is
set to XmSTATIC.

Default Resource Values
ScrolledText sets the following default values for ScrolledWindow resources:

Widget Hierarchy
When a ScrolledText object is created with a specified name, the ScrolledWin-
dow is named nameSW and the Text widget is called name. The horizontal and
vertical scroll bars are named HorScrollBar and VertScrollBar respectively.

See Also
XmCreateObject (1), XmScrolledWindow (2), XmText (2).

Name Default

XmNscrollBarDisplayPolicy XmSTATIC

XmNscrollingPolicy XmAPPLICATION_DEFINED

XmNvisualPolicy XmVARIABLE

Motif and Xt Widget Classes

Motif Reference Manual 887

Name
XmScrolledWindow widget class – a manager widget that provides scroll bars
for the data display.

Synopsis

Public Header:
<Xm/ScrolledW.h>

Class Name:
XmScrolledWindow

Class Hierarchy:
Core → Composite → Constraint → XmManager → XmScrolledWindow

Class Pointer:
xmScrolledWindowWidgetClass

Instantiation:
widget = XmCreateScrolledWindow (parent, name,...)
or
widget = XtCreateWidget (name, xmScrolledWindowWidgetClass,...)

Functions/Macros:
XmCreateScrolledList (), XmCreateScrolledText (), XmCreate-
ScrolledWindow (),
XmIsScrolledWindow (), XmScrollVisible (), XmScrolledWin-
dowSetAreas ()

Description
ScrolledWindow provides a scrollable view of data that may not be visible all at
once. ScrollBars allow a user to scroll the visible part of the window through the
larger display. A ScrolledWindow widget can be created so that it scrolls auto-
matically without application intervention or so that an application provides sup-
port for all scrolling operations. When scrolling is handled automatically,
ScrolledWindow creates the scroll bars, which are named HorScrollBar and Vert-
ScrollBar.

Each of the ScrolledWindow regions is associated with a ScrolledWindow
resource; XmScrolledWindowSetAreas () sets the associated resources. If
an application does not call XmScrolledWindowSetAreas (), the widget
may still set some of the standard regions. If ScrollBars are added as children,
the XmNhorizontalScrollBar and XmNverticalScrollBar resources may be set if
they have not already been specified. Any child that is not a ScrollBar is used for
the XmNworkWindow. If you want to be certain about which widgets are used
for the different regions, it is wise to call XmScrolledWindowSetAreas ()
explicitly.

Motif and Xt Widget Classes

Motif Reference Manual 888

Traits
ScrolledWindow holds the XmQTscrollFrame trait, which is inherited by any
derived classes, and uses the XmQTnavigator trait.

New Resources
ScrolledWindow defines the following resources:

XmNautoDragModel
In Motif 2.0 and later, specified whether automatic drag is enabled. Possible val-
ues:

XmAUTO_DRAG_ENABLED XmAUTO_DRAG_DISABLED

XmNclipWindow
The widget ID of the clipping area. The clipping window exists only when the
XmNvisualPolicy resource is set to XmCONSTANT. The XmNclipWindow
resource cannot be set to a new value.

XmNhorizontalScrollBar
The widget ID of the horizontal ScrollBar.

XmNscrollBarDisplayPolicy
Controls the placement of ScrollBars, depending on the value of the XmNscroll-
ingPolicy resource. Possible values:

XmSTATIC /* vertical ScrollBar always displays */
XmAS_NEEDED /* add ScrollBar when view is clipped */

Name Class Type Default Access

XmNautoDragModel XmCAutoDragModel XtEnum XmAUTO_DRAG_ENABLED G

XmNclipWindow XmCClipWindow Widget dynamic G

XmNhorizontalScrollBar XmCHorizontalScrollBar Widget dynamic CSG

XmNscrollBarDisplayPolicy XmCScrollBarDisplayPolicy unsigned char dynamic CSG

XmNscrollBarPlacement XmCScrollBarPlacement unsigned char XmBOTTOM_RIGHT CSG

XmNscrolledWindowMarginHeight XmCScrolledWindowMarginHeight Dimension 0 CSG

XmNscrolledWindowMarginWidth XmCScrolledWindowMarginWidth Dimension 0 CSG

XmNscrollingPolicy XmCScrollingPolicy unsigned char XmAPPLICATION_DEFINED CG

XmNspacing XmCSpacing Dimension 4 CSG

XmNverticalScrollBar XmCVerticalScrollBar Widget dynamic CSG

XmNvisualPolicy XmCVisualPolicy unsigned char dynamic C

XmNworkWindow XmCWorkWindow Widget NULL CSG

Motif and Xt Widget Classes

Motif Reference Manual 889

If XmNscrollingPolicy is set to XmAUTOMATIC, then XmNscrollBarDisplay-
Policy defaults to a value of XmAS_NEEDED, and ScrollBars are displayed only
when the workspace cannot fit within the clip area. If XmNscrollingPolicy is set
to XmAPPLICATION_DEFINED, then XmNscrollBarDisplayPolicy defaults to
(and must remain with) a value of XmSTATIC. This means that ScrollBars will
always be displayed.

XmNscrollBarPlacement
The positions of the ScrollBars relative to the work window. The default value of
this resource depends on the value of the XmNstringDirection resource. Possible
values:

XmTOP_LEFT /* vertical ScrollBar on left; horizontal on top */
XmBOTTOM_LEFT /* vertical ScrollBar on left; horizontal on bottom */
XmTOP_RIGHT /* vertical ScrollBar on right; horizontal on top */
XmBOTTOM_RIGHT /* vertical ScrollBar on right; horizontal on bottom */

XmNscrolledWindowMarginHeight
The spacing at the top and bottom of the ScrolledWindow.

XmNscrolledWindowMarginWidth
The spacing at the right and left sides of the ScrolledWindow.

XmNscrollingPolicy
Determines how automatic scrolling occurs. Possible values:

XmAUTOMATIC /* ScrolledWindow handles scrolling */
XmAPPLICATION_DEFINED /* application handles scrolling */

XmNspacing
The distance between each ScrollBar and the work window.

XmNverticalScrollBar
The widget ID of the vertical ScrollBar.

XmNvisualPolicy
The visual layout policy of the ScrolledWindow. In Motif 2.0 and later, the
resource is obsolete, and the internal widget initialization functions ensure that
the policy is consistent. Possible values:

XmCONSTANT /* viewing area is clipped if needed; */
/* default when XmNscrollingPolicy is XmAUTOMATIC */

XmVARIABLE /* layout grows or shrinks; default otherwise */

XmNworkWindow
The widget ID of the viewing area.

Motif and Xt Widget Classes

Motif Reference Manual 890

Callback Resources
ScrolledWindow defines the following callback resources:

XmNtraverseObscuredCallback
List of callbacks that are called when the keyboard focus is moved to a widget or
gadget that is obscured from view.

Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /* reason that callback was called */
XEvent *event; /* event that triggered callback */
Widget traversal_destination; /* widget or gadget to traverse to */
XmTraversalDirection direction; /* direction of traversal */

} XmTraverseObscuredCallbackStruct;

New Constraint Resources
In Motif 2.0 and later, ScrolledWindow defines the following constraint resources
for its children:

XmNscrolledWindowChildType
Specifies the logical type of child of the ScrolledWindow. Possible values:

XmHOR_SCROLLBAR /* horizontal ScrollBar */
XmVERT_SCROLLBAR /* vertical ScrollBar */
XmSCROLL_HOR /* horizontal ScrollBar - horizontal scrolling only */
XmSCROLL_VERT /* vertical ScrollBar - vertical scrolling only */
XmWORK_AREA /* work area child */
XmCLIP_WINDOW /* XmClipWindow */
XmNO_SCROLL /* no child scrolling */

The values XmSCROLL_HOR, XmSCROLL_VERT, and XmNO_SCROLL are
only valid if the scrolling policy is XmAUTOMATIC.

Callback Reason Constant

XmNtraverseObscuredCallback XmCR_OBSCURED_TRAVERSAL

Name Class Type Default Access

XmNscrolledWindowChildType XmCScrolledWindowChildType unsigned char dynamic CG

Motif and Xt Widget Classes

Motif Reference Manual 891

Inherited Resources
ScrolledWindow inherits the following resources. The resources are listed alpha-
betically, along with the superclass that defines them. ScrolledWindow sets the
default value of XmNshadowThickness dynamically. The default value of XmN-
borderWidth is reset to 0 by XmManager.

Widget Hierarchy
When the ScrolledWindow has an XmNvisualPolicy of XmCONSTANT (the
XmNscrollingPolicy is XmAUTOMATIC) the ScrolledWindow creates an addi-
tional clip widget which is used as the parent of any added work window: the
additional widget acts as the logical viewport, and the XmNclipWindow resource
is set to the ID of this.

Before Motif 2.0, the clip widget has the name ScrolledWindowClipWindow. In
Motif 2.0 and later, the name is changed to ClipWindow: any resources, and
XtNameToWidget() or similar code which relies upon the name should be
changed accordingly.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNinsertPosition Composite

XmNancestorSensitive Core XmNlayoutDirection XmManager

XmNbackground Core XmNmappedWhenManaged Core

XmNbackgroundPixmap Core XmNnavigationType XmManager

XmNborderColor Core XmNnumChildren Composite

XmNborderPixmap Core XmNpopupHandlerCallback XmManager

XmNborderWidth Core XmNscreen Core

XmNbottomShadowColor XmManager XmNsensitive Core

XmNbottomShadowPixmap XmManager XmNshadowThickness XmManager

XmNchildren Composite XmNstringDirection XmManager

XmNcolormap Core XmNtopShadowColor XmManager

XmNdepth Core XmNtopShadowPixmap XmManager

XmNdestroyCallback Core XmNtranslations Core

XmNforeground XmManager XmNtraversalOn XmManager

XmNheight Core XmNunitType XmManager

XmNhelpCallback XmManager XmNuserData XmManager

XmNhighlightColor XmManager XmNwidth Core

XmNhighlightPixmap XmManager XmNx Core

XmNinitialFocus XmManager XmNy Core

XmNinitialResourcesPersistent Core

Motif and Xt Widget Classes

Motif Reference Manual 892

Translations
The translations for ScrolledWindow include those from Manager.

Additional Behavior
ScrolledWindow has the following additional behavior when the XmNscrolling-
Policy resource is XmAUTOMATIC:

See Also
XmCreateObject (1), XmScrollVisible (1),
XmScrolledWindowSetAreas (1), Composite (2), Constraint (2),
Core (2), XmManager(2), XmScrollBar (2), XmScrolledList (2),
XmScrolledText (2).

Motif and Xt Widget Classes

Motif Reference Manual 893

Name
XmSelectionBox widget class – a widget for selecting one of a list of alterna-
tives.

Synopsis

Public Header:
<Xm/SelectioB.h>

Class Name:
XmSelectionBox

Class Hierarchy:
Core → Composite → Constraint → XmManager → XmBulletinBoard →
XmSelectionBox

Class Pointer:
xmSelectionBoxWidgetClass1

Instantiation:
widget = XmCreateSelectionBox (parent, name,...)
or
widget = XtCreateWidget (name, XmSelectionBoxWidgetClass,...)

Functions/Macros:
XmCreateSelectionBox (), XmCreateSelectionDialog (), XmCre-
atePromptDialog (),
XmIsSelectionBox (), XmSelectionBoxGetChild ()

Description
SelectionBox is a composite widget that displays a scrollable list of alternatives
from which the user can choose items. A SelectionBox contains a text field in
which the user can enter a selection, the scrollable list of selections, labels for the
text field and the scrollable list, a separator, and a group of three or four buttons.
The names of these components in the SelectionBox are Items, ItemsList, Selec-
tion, Text, and Separator, respectively.

In Motif 1.2 and later, the default button labels can be localized. In the C locale,
and in Motif 1.1, the PushButtons are labelled OK , Apply, Cancel, and Help by
default. The Apply button is created but not always managed. If the parent of the
SelectionBox is a DialogShell the button is managed, otherwise it is not.

You can customize a SelectionBox by removing existing children or adding new
children. Use XmSelectionBoxGetChild () to retrieve the widget ID of an
existing child and then unmanage the child. With Motif 1.2 and later, multiple
widgets can be added as children of a SelectionBox. The first child is considered

1.Erroneously given as XmSelectionBoxWidgetClass in 1st and 2nd editions.

Motif and Xt Widget Classes

Motif Reference Manual 894

a work area and is placed based on the value of the XmNchildPlacement
resource. If a menu bar is added, it is placed at the top of the window. Any but-
tons are placed after the OK button. Any additional children are placed below the
message. In Motif 1.1, only a single widget can be added as a child of a Selec-
tionBox. This child is placed below the selection text and acts as a work area.

Traits
SelectionBox uses the XmQTactivatable and XmQTaccessTextual traits.

New Resources
SelectionBox defines the following resources:

XmNapplyLabelString
The string that labels the Apply button. In Motif 1.2 and later, the default value is
locale-dependent. In the C locale, and in Motif 1.1, the default value is "Apply".

XmNcancelLabelString
The string that labels the Cancel button. In Motif 1.2 and later, the default value
is locale-dependent. In the C locale, and in Motif 1.1, the default value is "Can-
cel".

Name Class Type Default Access

XmNapplyLabelString XmCApplyLabelString XmString dynamic CSG

XmNcancelLabelString XmCCancelLabelString XmString dynamic CSG

XmNchildPlacement XmCChildPlacement unsigned char XmPLACE_ABOVE_SELECTION CSG

XmNdialogType XmCDialogType unsigned char dynamic CG

XmNhelpLabelString XmCHelpLabelString XmString dynamic CSG

XmNlistItems XmCItems XmStringTable NULL CSG

XmNlistItemCount XmCItemCount int 0 CSG

XmNlistLabelString XmCListLabelString XmString dynamic CSG

XmNlistVisibleItemCount XmCListVisibleItemCount int dynamic CSG

XmNminimizeButtons XmCMinimizeButtons Boolean False CSG

XmNmustMatch XmCMustMatch Boolean False CSG

XmNokLabelString XmCOkLabelString XmString dynamic CSG

XmNselectionLabelString XmCSelectionLabelString XmString dynamic C

XmNtextAccelerators XmCTextAccelerators XtAccelerators default CSG

XmNtextColumns XmCColumns short dynamic CSG

XmNtextString XmCTextString XmString dynamic CSG

Motif and Xt Widget Classes

Motif Reference Manual 895

XmNchildPlacement
In Motif 1.2 and later, determines the placement of the work area child. Possible
values:

XmPLACE_ABOVE_SELECTION /* above the text area */
XmPLACE_BELOW_SELECTION /* below the text area */
XmPLACE_TOP /* above the list area */

XmNdialogType
Determines which children of the SelectionBox widget will be initially created
and managed. Possible values:

XmDIALOG_WORK_AREA /* default, when parent isn’t a DialogShell */
XmDIALOG_PROMPT /* all children except list and label */
XmDIALOG_SELECTION /* default, when parent is a DialogShell */
XmDIALOG_COMMAND /* only list, selection label and text field */
XmDIALOG_FILE_SELECTION /* all standard children */

Note that in Release 1.1, Command and FileSelectionBox are separate widget
classes, and they can no longer be created by setting XmNdialogType.

XmNhelpLabelString
The string that labels the Help button. In Motif 1.2 and later, the default value is
locale-dependent. In the C locale, and in Motif 1.1, the default value is "Help".

XmNlistItems
The items in the SelectionBox list. A call to XtGetValues() returns the actual list
items (not a copy), so don’t have your application free these items.

XmNlistItemCount
The number of items in the SelectionBox list.

XmNlistLabelString
The string that labels the SelectionBox list. The default string is NULL when the
XmN-dialogType resource is set to XmDIALOG_PROMPT; otherwise, in Motif
1.2 and later, the default value is locale-dependent. In the C locale, and in Motif
1.1, the default value is "Items".

XmNlistVisibleItemCount
The number of items that appear in the SelectionBox list. The default value
depends on the height of the list. This resource has a value of 0 when the
 XmNdialogType resource is set to XmDIALOG_PROMPT, and otherwise has a
default of 8.

XmNminimizeButtons
If False (default), all buttons are standardized to be as wide as the widest button
and as high as the highest button. If True, buttons will keep their preferred size.

Motif and Xt Widget Classes

Motif Reference Manual 896

XmNmustMatch
If True, the selection that a user types in the text edit field must match an existing
entry in the SelectionBox list. If False (default), the typed selection doesn’t need
to match a list entry. (When the user activates the Ok button, the widget calls one
of two lists of callbacks: if this resource is True but the selections don’t match,
then the SelectionBox widget calls the callbacks specified by the XmNnoMatch-
Callback resource; if this resource is False or if the selections do match, then the
widget calls the callbacks specified by the XmNokCallback resource.)

XmNokLabelString
The string that labels the Ok button. In Motif 1.2 and later, the default value is
locale-dependent. In the C locale, and in Motif 1.1, the default value is "OK".

XmNselectionLabelString
The string that labels the text edit field. In Motif 1.2 and later, the default value is
locale-dependent. In the C locale, and in Motif 1.1, the default value is "Selec-
tion".

XmNtextAccelerators
The translations to add to the SelectionBox’s Text widget child. The default bind-
ings allow the up and down keys to be used in selecting list items. This resource
is meaningful only when the SelectionBox widget is using the default values in
the XmN-accelerators resource.

XmNtextColumns
The number of columns in the Text widget.

XmNtextString
The text string that appears in the text edit selection field.

Callback Resources
SelectionBox defines the following callback resources:

XmNapplyCallback
List of callbacks that are called when the Apply button is activated.

XmNcancelCallback
List of callbacks that are called when the Cancel button is activated.

Callback Reason Constant

XmNapplyCallback XmCR_APPLY

XmNcancelCallback XmCR_CANCEL

XmNnoMatchCallback XmCR_NO_MATCH

XmNokCallback XmCR_OK

Motif and Xt Widget Classes

Motif Reference Manual 897

XmNnoMatchCallback
List of callbacks that are called when the user types a selection in the text area
that does not match an item in the list.

XmNokCallback
List of callbacks that are called when the OK button is activated. If XmNmust-
Match is True and the selection text does not match an item in the list, the XmN-
noMatchCallback callbacks are called instead.

Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /* the reason that the callback was called */
XEvent *event; /* event structure that triggered callback */
XmString value; /* selection string that was either chosen */

/* from the SelectionBox list or typed in */
int length; /* number of bytes of value */

} XmSelectionBoxCallbackStruct;

Inherited Resources
SelectionBox inherits the following resources. The resources are listed alphabeti-
cally, along with the superclass that defines them. The default value of XmNbor-
derWidth is reset to 0 by XmManager. BulletinBoard sets the values of
XmNinitialFocus to the text entry area, XmN-defaultButton to the Cancel button,
and resets the default XmNshadowThickness from 0 to 1 if the SelectionBox is a
child of a DialogShell.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNlabelFontList XmBulletinBoard

XmNallowOverlap XmBulletinBoard XmNlabelRenderTable XmBulletinBoard

XmNancestorSensitive Core XmNlayoutDirection XmManager

XmNautoUnmanage XmBulletinBoard XmNmapCallback XmBulletinBoard

XmNbackground Core XmNmappedWhenManaged Core

XmNbackgroundPixmap Core XmNmarginHeight XmBulletinBoard

XmNborderColor Core XmNmarginWidth XmBulletinBoard

XmNborderPixmap Core XmNnavigationType XmManager

XmNborderWidth Core XmNnoResize XmBulletinBoard

XmNbottomShadowColor XmManager XmNnumChildren Composite

XmNbottomShadowPixmap XmManager XmNpopupHandlerCallback XmManager

XmNbuttonFontList XmBulletinBoard XmNresizePolicy XmBulletinBoard

Motif and Xt Widget Classes

Motif Reference Manual 898

Translations
The translations for SelectionBox are inherited from BulletinBoard.

Action Routines
SelectionBox defines the following action routines:

SelectionBoxUpOrDown(flag):
This action applies when the location cursor is within the item list.
This action selects a list item from one of four possible positions
and uses this item to replace the selection text. A flag value of 0, 1,
2, or 3 selects the previous, next, first, or last item, respectively.
These four action routines are respectively bound to KUp, KDown,
KBeginData, and KEndData, which represent four of the default
accelerators in the XmNtextAccelerators resource.

SelectionBoxRestore()
Like SelectionBoxUpOrDown except that this action replaces the
selection text with the current list item. This action clears the selec-
tion text if no list item is currently selected. This action routine is
bound to KRestore, a default accelerator for XmNtextAccelerators.

XmNbuttonRenderTable XmBulletinBoard XmNscreen Core

XmNcancelButton XmBulletinBoard XmNsensitive Core

XmNchildren Composite XmNshadowThickness XmManager

XmNcolormap Core XmNshadowType XmBulletinBoard

XmNdefaultButton XmBulletinBoard XmNstringDirection XmManager

XmNdefaultPosition XmBulletinBoard XmNtextFontList XmBulletinBoard

XmNdepth Core XmNtextRenderTable XmBulletinBoard

XmNdestroyCallback Core XmNtextTranslations XmBulletinBoard

XmNdialogStyle XmBulletinBoard XmNtopShadowColor XmManager

XmNdialogTitle XmBulletinBoard XmNtopShadowPixmap XmManager

XmNfocusCallback XmBulletinBoard XmNtranslations Core

XmNforeground XmManager XmNtraversalOn XmManager

XmNheight Core XmNunitType XmManager

XmNhelpCallback XmManager XmNunmapCallback XmBulletinBoard

XmNhighlightColor XmManager XmNuserData XmManager

XmNhighlightPixmap XmManager XmNwidth Core

XmNinitialFocus XmManager XmNx Core

XmNinitialResourcesPersistent Core XmNy Core

XmNinsertPosition Composite

Resource Inherited From Resource Inherited From

Motif and Xt Widget Classes

Motif Reference Manual 899

Additional Behavior
SelectionBox has the following additional behavior:

MAny KCancel
For a sensitive Cancel button, invokes the XmNactivateCallback
callbacks.

KActivate
For the button that has keyboard focus (or else the default button),
invokes the callbacks in XmNactivateCallback. In a List or Text
widget, this event calls the associated List or Text action before the
associated SelectionBox action.

<Ok Button Activated>
Invokes the XmNokCallback callback or the XmNnoMatchCall-
back if XmN-mustMatch is True and the text does not match an item
in the list.

<Apply Button Activated>
Invokes the XmNapplyCallback callbacks.

<Cancel Button Activated>
Invokes the XmNcancelCallback callbacks.

<Help Button Activated>
Invokes the XmNhelpCallback callbacks.

<MapWindow>
Invokes the callbacks for XmNmapCallback if the parent is a Dia-
logShell.

<UnmapWindow>
Invokes the callbacks for XmNunmapCallback if the parent is a
DialogShell.

See Also
XmCreateObject (1), XmSelectionBoxGetChild (1),
Composite (2), Constraint (2), Core (2), XmBulletinBoard (2),
XmManager(2), XmPromptDialog (2), XmSelectionDialog (2).

Motif and Xt Widget Classes

Motif Reference Manual 900

Name
XmSelectionDialog – an unmanaged SelectionBox as a child of a Dialog Shell.

Synopsis

Public Header:
<Xm/SelectioB.h>

Instantiation:
widget = XmCreateSelectionDialog (parent, name,...)

Functions/Macros:
XmCreateSelectionBox (), XmCreateSelectionDialog (),
XmSelectionBoxGetChild ()

Description
An XmSelectionDialog is a compound object created by a call to XmCreateSe-
lectionDialog() that an application can use to allow a user to make a selection
from a dialog box. A SelectionDialog consists of a DialogShell with an unman-
aged SelectionBox widget as its child. The SelectionBox resource XmNdialog-
Type is set to XmDIALOG_SELECTION.

A SelectionDialog displays a scrollable list of alternatives from which the user
can choose items. A SelectionDialog also contains a text field in which the user
can edit a selection, labels for the text field and for the scrollable list, and four
buttons. In Motif 1.2 and later, the default button labels can be localized. In the C
locale, and in Motif 1.1, the PushButtons are labelled OK , Apply, Cancel, and
Help by default.

Default Resource Values
A SelectionDialog sets the following default values for SelectionBox resources:

Widget Hierarchy
When a SelectionDialog is created with a specified name, the DialogShell is
named name_popup and the SelectionBox is called name.

See Also
XmCreateObject (1), XmSelectionBoxGetChild (1),
XmDialogShell (2), XmSelectionBox (2).

Name Default

XmNdialogType XmDIALOG_SELECTION

Motif and Xt Widget Classes

Motif Reference Manual 901

Name
XmSeparator widget class – a widget that draws a line to separate other widgets
visually.

Synopsis

Public Header:
<Xm/Separator.h>

Class Name:
XmSeparator

Class Hierarchy:
Core → XmPrimitive → XmSeparator

Class Pointer:
xmSeparatorWidgetClass

Instantiation:
widget = XmCreateSeparator (parent, name,...)
or
widget = XtCreateWidget (name, xmSeparatorWidgetClass,...)

Functions/Macros:
XmCreateSeparator (), XmIsSeparator ()

Description
A Separator is a widget that draws a horizontal or vertical line between compo-
nents in an application. Several line styles are available for the Separator. A
pixmap separator can also be made by specifying a pixmap for the Core resource
XmNbackgroundPixmap and then setting XmNseparatorType to XmNO_LINE.

Traits
Separator holds the XmQTmenuSavvy trait, which is inherited by any derived
classes.

Motif and Xt Widget Classes

Motif Reference Manual 902

New Resources
Separator defines the following resources:

XmNmargin
The spacing on either end of the Separator. This would be the left and right mar-
gins for a horizontally drawn Separator and the top and bottom margins for a ver-
tically drawn Separator.

XmNorientation
The direction in which to display the Separator. Possible values:

XmVERTICAL /* top-to-bottom creation */
XmHORIZONTAL /* left-to-right creation */

XmNseparatorType
The line style in which to draw the Separator. Possible values:

XmNO_LINE
XmSINGLE_DASHED_LINE
XmSHADOW_ETCHED_IN
XmSINGLE_LINE
XmDOUBLE_DASHED_LINE
XmSHADOW_ETCHED_OUT
XmDOUBLE_LINE

Name Class Type Default Access

XmNmargin XmCMargin Dimension 0 CSG

XmNorientation XmCOrientation unsigned char XmHORIZONTAL CSG

XmNseparatorType XmCSeparatorType unsigned char XmSHADOW_ETCHED_IN CSG

Motif and Xt Widget Classes

Motif Reference Manual 903

Inherited Resources
Separator inherits the following resources. The resources are listed alphabeti-
cally, along with the superclass that defines them. Separator sets the default val-
ues of XmNhighlightThickness to 0 XmNtraversalOn to False. The default value
of XmNborderWidth is reset to 0 by Primitive.

See Also
XmCreateObject (1), Core (2), XmPrimitive (2).

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNhighlightThickness XmPrimitive

XmNancestorSensitive Core XmNinitialResourcesPersistent Core

XmNbackground Core XmNlayoutDirection XmPrimitive

XmNbackgroundPixmap Core XmNmappedWhenManaged Core

XmNborderColor Core XmNnavigationType XmPrimitive

XmNborderPixmap Core XmNpopupHandlerCallback XmPrimitive

XmNborderWidth Core XmNscreen Core

XmNbottomShadowColor XmPrimitive XmNsensitive Core

XmNbottomShadowPixmap XmPrimitive XmNshadowThickness XmPrimitive

XmNcolormap Core XmNtopShadowColor XmPrimitive

XmNconvertCallback XmPrimitive XmNtopShadowPixmap XmPrimitive

XmNdepth Core XmNtranslations Core

XmNdestroyCallback Core XmNtraversalOn XmPrimitive

XmNforeground XmPrimitive XmNunitType XmPrimitive

XmNheight Core XmNuserData XmPrimitive

XmNhelpCallback XmPrimitive XmNwidth Core

XmNhighlightColor XmPrimitive XmNx Core

XmNhighlightOnEnter XmPrimitive XmNy Core

XmNhighlightPixmap XmPrimitive

Motif and Xt Widget Classes

Motif Reference Manual 904

Name
XmSeparatorGadget widget class – a gadget that draws a line to separate other
widgets visually.

Synopsis

Public Header:
<Xm/SeparatoG.h>

Class Name:
XmSeparatorGadget

Class Hierarchy:
Object → RectObj → XmGadget → XmSeparatorGadget

Class Pointer:
xmSeparatorGadgetClass

Instantiation:
widget = XmCreateSeparatorGadget (parent, name,...)
or
widget = XtCreateWidget (name, xmSeparatorGadgetClass,...)

Functions/Macros:
XmCreateSeparatorGadget (), XmIsSeparatorGadget ()

Description
SeparatorGadget is the gadget variant of Separator. SeparatorGadget’s new
resources are the same as those for Separator.

Traits
SeparatorGadget holds the XmQTcareParentVisual, XmQTaccessColors, and
XmQTmenuSavvy traits, which are inherited by any derived class.

Inherited Resources
SeparatorGadget inherits the following resources. The resources are listed alpha-
betically, along with the superclass that defines them. SeparatorGadget sets the
default values of XmNhighlightThickness to 0 and XmNtraversalOn to False.
The default value of XmNborderWidth is reset to 0 by Gadget.

Resource Inherited From Resource Inherited From

XmNancestorSensitive RectObj XmNhighlightThickness XmGadget

XmNbackground XmGadget XmNlayoutDirection XmGadget

XmNbackgroundPixmap XmGadget XmNnavigationType XmGadget

XmNbottomShadowColor XmGadget XmNsensitive RectObj

XmNbottomShadowPixmap XmGadget XmNshadowThickness XmGadget

XmNborderWidth RectObj XmNtopShadowColor XmGadget

Motif and Xt Widget Classes

Motif Reference Manual 905

See Also
XmCreateObject (1), Object (2), RectObj (2), XmGadget(2),
XmSeparator (2).

XmNdestroyCallback Object XmNtopShadowPixmap XmGadget

XmNforeground XmGadget XmNtraversalOn XmGadget

XmNheight RectObj XmNunitType XmGadget

XmNhelpCallback XmGadget XmNuserData XmGadget

XmNhighlightColor XmGadget XmNwidth RectObj

XmNhighlightOnEnter XmGadget XmNx RectObj

XmNhighlightPixmap XmGadget XmNy RectObj

Resource Inherited From Resource Inherited From

Motif and Xt Widget Classes

Motif Reference Manual 906

Name
XmSimpleSpinBox widget class – a widget for cycling through a set of choices

Synopsis

Public Header:
<Xm/SSpinB.h>

Class Name:
XmSimpleSpinBox

Class Hierarchy:
Core → Composite → Constraint → XmManager → XmSpinBox → XmSim-
pleSpinBox

Class Pointer:
xmSimpleSpinBoxWidgetClass

Instantiation:
widget = XmCreateSimpleSpinBox (parent, name,...)
or
widget = XtCreateWidget (name, xmSimpleSpinBoxWidgetClass,...)

Functions/Macros:
XmSimpleSpinBoxAddItem (), XmSimpleSpinBoxDeletePos (),
XmSimpleSpinBoxSetItem (), XmCreateSimpleSpinBox ()

Availability
Motif 2.1 and later.

Description
A subclass of SpinBox which allows the user to increment or decrement the value
in a TextField, or to cycle through a set of values. The TextField is created inter-
nally by the widget.

The SimpleSpinBox may not be subclassed.

New Resources
SimpleSpinBox defines the following resources:

Name Class Type Default Access

XmNarrowSensitivity XmCArrowSensitivity unsigned char XmARROWS_SENSITIVE CSG

XmNcolumns XmCColumns short 20 CSG

XmNdecimalPoints XmCDecimalPoints short 0 CSG

XmNeditable XmCEditable Boolean True CSG

XmNincrementValue XmCIncrementValue int 1 CSG

XmNmaximumValue XmCMaximumValue int 10 CSG

Motif and Xt Widget Classes

Motif Reference Manual 907

XmNarrowSensitivity
Specifies the sensitivity of the arrows within the SimpleSpinBox. Possible val-
ues:

XmARROWS_SENSITIVE /* both arrows sensitive */
XmARROWS_DECREMENT_SENSITIVE

/* increment arrowbutton insensitive */
XmARROWS_INCREMENT_SENSITIVE

/* decrement arrowbutton insensitive */
XmARROWS_INSENSITIVE /* both arrows insensitive */

XmNcolumns
Specifies the number of columns in the TextField.

XmNdecimalPoints
A positive integer that determines how the TextField’s value will be displayed.
The decimal point in the TextField’s value gets shifted to the right, and this
resource specifies the number of decimal places to shift. For example, if the Tex-

tField’s value is 5678, then setting the XmNdecimalPoints1 resource to 2 causes
the widget to display the value as 56.78. The resource has no effect if XmNspin-
BoxChildType is not XmNUMERIC.

XmNeditable
Specifies whether the TextField accepts user input.

XmNincrementValue
Specifies the amount to increment the XmNposition resource. The resource has
no effect if XmNspinBoxChildType is not XmNUMERIC.

XmNminimumValue XmCMinimumValue int 0 CSG

XmNnumValues XmCNumValues int 0 CSG

XmNposition XmCPosition int 0 CSG

XmNpositionType XmCPositionType unsigned char XmPOSITION_VALUE CG

XmNspinBoxChildType XmCSpinBoxChildType unsigned char XmString CSG

XmNtextField XmCTextField Widget dynamic G

XmNvalues XmCValues XmStringTable NULL CSG

XmNwrap XmCWrap Boolean True CSG

1.Erroneously given as XmdecimalPoints in 2nd edition.

Name Class Type Default Access

Motif and Xt Widget Classes

Motif Reference Manual 908

XmNmaximumValue
Specifies the largest value. The resource has no effect if XmNspinBoxChildType
is not XmNUMERIC.

XmNminimumValue
Specifies the smallest value. The resource has no effect if XmNspinBox-
ChildType is not XmNUMERIC.

XmNnumValues
Specifies the number of items in the list determined by the XmNvalues resource.
The resource has no effect if XmNspinBoxChildType is not XmSTRING.

XmNposition
Depends upon the value of the XmNpositionType and XmNspinBoxChildType
resources, and is used to calculate the current value of the SimpleSpinBox.

If XmNspinBoxChildType is XmSTRING, the position resource is used simply
as an index into the XmNvalues array.

If XmNspinBoxChildType is XmNUMERIC and XmNpositionType is
XmPOSITION_VALUE, the position resource is used directly for the actual
value to display. The position value is bounded by XmNminimumValue and
XmNmaximumValue. When XmNpositionType is XmPOSITION_INDEX, the
position is interpreted as an index into a set of values, bounded by the XmNmini-
mumValue and XmNmaximumValue resource. A number is in the set depending
upon the XmNincrementValue resource: position zero corresponds to the value
XmNminimumValue, position n is the value given by:

XmNminimumValue + (n * XmNincrementValue)

XmNpositionType
Specifies how the XmNposition resource is to be interpreted. Possible values:

XmPOSITION_INDEX /* position is an index into an array */
XmPOSITION_VALUE /* position is a direct value */

XmNspinBoxChildType
Specifies the type of data to be displayed. Possible values:

XmNUMERIC /* value is defined by maximum, minimum, */
/* increment resources */

XmSTRING /* value is defined by the values array */

XmNtextField
Specifies the text field created by the SimpleSpinBox to display the current value.

XmNvalues
Specifies the array of compound strings forming the validset of items for the Sim-
pleSpinBox. Only has effect if XmNspinBoxChildType is XmSTRING.

XmNwrap
Specifies whether the SpinBox wraps around the set of values.

Motif and Xt Widget Classes

Motif Reference Manual 909

Inherited Resources
SimpleSpinBox inherits the resources shown below. The resources are listed
alphabetically, along with the superclass that defines them. SimpleSpinBox resets
the default value of XmNshadowThickness to 1.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNinsertPosition Composite

XmNancestorSensitive Core XmNlayoutDirection XmManager

XmNarrowLayout XmSpinBox XmNmappedWhenManaged Core

XmNarrowOrientation XmSpinBox XmNmarginHeight XmSpinBox

XmNarrowSize XmSpinBox XmNmarginWidth XmSpinBox

XmNbackground Core XmNmodifyVerifyCallback XmSpinBox

XmNbackgroundPixmap Core XmNnavigationType XmManager

XmNborderColor Core XmNnumChildren Composite

XmNborderPixmap Core XmNpopupHandlerCallback XmManager

XmNborderWidth Core XmNrepeatDelat XmSpinBox

XmNbottomShadowColor XmManager XmNscreen Core

XmNbottomShadowPixmap XmManager XmNsensitive Core

XmNchildren Composite XmNshadowThickness XmManager

XmNcolormap Core XmNspacing XmSpinBox

XmNdefaultArrowSensitivity XmSpinBox XmNstringDirection XmManager

XmNdepth Core XmNtopShadowColor XmManager

XmNdestroyCallback Core XmNtopShadowPixmap XmManager

XmNdetailShadowThickness XmSpinBox XmNtranslations Core

XmNforeground XmManager XmNtraversalOn XmManager

XmNheight Core XmNunitType XmManager

XmNhelpCallback XmManager XmNuserData XmManager

XmNhighlightColor XmManager XmNvalueChangedCallback XmSpinBox

XmNhighlightPixmap XmManager XmNwidth Core

XmNinitialDelay XmSpinBox XmNx Core

XmNinitialFocus XmManager XmNy Core

XmNinitialResourcesPersistent Core

Motif and Xt Widget Classes

Motif Reference Manual 910

Widget Hierarchy
When a SimpleSpinBox is created with a specified name, the automatically cre-
ated TextField child is named name_TF.

Translations
The translations for SimpleSpinBox are those of SpinBox.

See Also
XmSimpleSpinBoxAddItem (1), XmSimpleSpinBoxDeletePos (1),
XmSimpleSpinBoxSetItem (1), XmCreateSimpleSpinBox (1),
Composite (2), Constraint (2), Core (2), XmManager(2),
XmSpinBox (2).

Motif and Xt Widget Classes

Motif Reference Manual 911

Name
XmSpinBox widget class – a composite widget which controls cycling through a
set of choices

Synopsis

Public Header:
<Xm/SpinB.h>

Class Name:
XmSpinBox

Class Hierarchy:
Core → Composite → Constraint → XmManager → XmSpinBox

Class Pointer:
xmSpinBoxWidgetClass

Instantiation:
widget = XmCreateSpinBox (parent, name,...)
or
widget = XtCreateWidget (name, xmSpinBoxWidgetClass,...)

Functions/Macros:
XmSpinBoxValidatePosition (), XmCreateSpinBox ()

Availability
Motif 2.0 and later.

Description
SpinBox is a manager which allows the user to cycle through sets of choices. At
the minimum, the widget contains a single Text or TextField, which is associated
with a group of values. A pair of ArrowButtons are provided which, when
pressed, insert the next or previous group item into the Text.

SpinBox can control multiple traversable children, each possessing their own set
of values. The ArrowButtons cycle the values of the child with the current focus.

The values associated with any textual child of the SpinBox are specified through
constraint resources. Logically, a textual child is considered to be either numeric
or string based, as specified by the XmNspinBoxChildType resource. If XmNU-
MERIC, a set of constraints control the current value, and place an upper and
lower bound upon the range through which the value may rotate. If XmSTRING,
an array of compound strings is specified for the child, and the ArrowButtons
cycle through the set of values by incrementing or decrementing an index into the
array.

Motif and Xt Widget Classes

Motif Reference Manual 912

The location of the ArrowButtons relative to the textual children is controlled
through the XmNarrowLayout resource, although this is affected by any specified
XmNlayoutDirection. The arrows automatically created by the SpinBox are
drawn, and not real widgets.

Traits
SpinBox holds the XmQTnavigator trait, which is inherited by any derived
classes, and uses the XmQTaccessTextual trait.

New Resources
SpinBox defines the following resources:

XmNarrowLayout
Specifies the location of the drawn arrows relative to the textual children. Possi-
ble values:

XmARROWS_BEGINNING /* both arrows placed vertically before text */
XmARROWS_END /* both arrows placed vertically after text */
XmARROWS_FLAT_BEGINNING /* both arrows placed horizontally before text*/
XmARROWS_FLAT_END /* both arrows placed horizontally after text */
XmARROWS_SPLIT /* one arrow placed at each end */

The interpretation of beginning and end depends upon the XmNlayoutDirection
resource inherited from XmManager. This also affects whether it is the increment
or decrement arrow which is to the left or right. If the layout direction is
XmLEFT_TO_RIGHT, the decrement arrow is to the left, and both
XmARROWS_BEGINNING and XmARROWS_FLAT_BEGINNING place
both arrows on the left of the Text. If the direction is XmRIGHT_TO_LEFT, it is
the increment arrow which is to the left, XmARROWS_END and
XmARROWS_FLAT_END which place both arrows on the left of the Text.

Name Class Type Default Access

XmNarrowLayout XmCArrowLayout unsigned char XmARROWS_END CSG

XmNarrowOrientation XmCArrowOrientation unsigned char XmARROWS_VERTICAL CSG

XmNarrowSize XmCArrowSize Dimension 16 CSG

XmNdefaultArrowSensitivity XmCDefaultArrowSensitivity unsigned char XmARROWS_SENSITIVE CSG

XmNdetailShadowThickness XmCDetailShadowThickness Dimension dynamic CSG

XmNinitialDelay XmCInitialDelay unsigned int 250 CSG

XmNmarginHeight XmCMarginHeight Dimension 2 CSG

XmNmarginWidth XmCMarginWidth Dimension 2 CSG

XmNrepeatDelat XmCRepeatDelay unsigned int 200 CSG

XmNspacing XmCSpacing Dimension 2 CSG

Motif and Xt Widget Classes

Motif Reference Manual 913

XmNarrowOrientation
In Motif 2.1, specifies whether arrows point vertically or horizontally. If the ori-
entation is XmARROWS_VERTICAL, the decrement arrow points downwards,
and the increment arrow points upwards. If orientation is
XmARROWS_HORIZONTAL, the decrement arrow points to the left, and the
increment arrow points to the right. This is reversed if the XmNlayoutDirection is
XmRIGHT_TO_LEFT.

Note that this is not the same as the XmNarrowLayout resource, which positions
the components of the SpinBox relative to each other, whereas XmNarrowOrien-
tation rotates an arrow within its given position.

XmNarrowSize
Specifies the width (and height) of the drawn arrows, measured in pixels.

XmNdefaultArrowSensitivity
Specifies the default sensitivity of the drawn arrows to user input. The resource is
overridden by the XmNarrowSensitivity constraint resource of the textual child
which has the focus. Possible values:

XmARROWS_DECREMENT_SENSITIVE

/* only the decrement arrow accepts input */
XmARROWS_INCREMENT_SENSITIVE

/* only the increment arrow accepts input */
XmARROWS_INSENSITIVE /* both arrows are insensitive */
XmARROWS_SENSITIVE /* both arrows are sensitive */

XmNdetailShadowThickness
Specifies the thickness of the shadow used for drawing the arrow shapes. Values
of 0, 1, or 2 are implemented. In Motif 2.0, the default value is 2. In Motif 2.1, the
default value depends upon the XmDisplay XmNenableThinThickness resource:
if True the default is 1, otherwise 2.

XmNinitialDelay
Specifies the time interval in milliseconds (after pressing the mouse) which is to
elapse before the SpinBox triggers automatic spinning. If the value is zero, the
value defaults to that specified by the XmNrepeatDelay resource.

XmNmarginWidth
Specifies the space between the left edge of the SpinBox and the leftmost child,
and the space between the right edge of the SpinBox and the rightmost child.

XmNmarginHeight
Specifies the space between the top edge of the SpinBox and the topmost child,
and the space between the bottom edge of the SpinBox and the bottom child.

Motif and Xt Widget Classes

Motif Reference Manual 914

XmNrepeatDelay
Specifies the time interval in milliseconds (when holding down the mouse) which
is to elapse before the SpinBox triggers automatic spinning: with the mouse held
down, the SpinBox repeatedly spins until such time as the mouse is released. If
the value is zero, automatic spinning is disabled.

XmNspacing
Specifies the horizontal and vertical spacing between items in the SpinBox.

New Constraint Resources
SpinBox defines the following constraint resources for its children:

XmNarrowSensitivity
Specifies the sensitivity of the arrowbuttons. Possible values:

XmARROWS_DEFAULT_SENSITIVITY
/* inherit XmNdefaultArrowSensitivity */

XmARROWS_DECREMENT_SENSITIVE
/* only decrement arrow accepts input */

XmARROWS_INCREMENT_SENSITIVE
/* only increment arrow accepts input */

XmARROWS_INSENSITIVE /* both arrows are insensitive */
XmARROWS_SENSITIVE /* both arrows are sensitive */

XmNdecimalPoints
Specifies the number of decimal places used when displaying numeric values.
The value is zero padded where necessary.

Name Class Type Default Access

XmNarrowSensitivity XmCArrowSensitivity unsigned char XmARROWS_DEFAULT_SENSITIVITY CSG

XmNdecimalPoints XmCDecimalPoints short 0 CSG

XmNincrementValue XmCIncrementValue int 1 CSG

XmNmaximumValue XmCMaximumValue int 10 CSG

XmNminimumValue XmCMinimumValue int 0 CSG

XmNnumValues XmCNumValues int 0 CSG

XmNposition XmCPosition int 0 CSG

XmNpositionType XmCPositionType unsigned char XmPOSITION_VALUE CSG

XmNspinBoxChildType XmCSpinBoxChildType unsigned char XmString CSG

XmNvalues XmCValues XmStringTable NULL CSG

XmNwrap XmCWrap Boolean True CSG

Motif and Xt Widget Classes

Motif Reference Manual 915

XmNincrementValue
Specifies the amount to increment or decrement the numeric value in the Spin-
Box text when the increment or decrement arrow is pressed. The resource is only
used when the SpinBox type is XmNUMERIC.

XmNmaximumValue
Specifies the greatest value allowed in an XmNUMERIC SpinBox.

XmNminimumValue
Specifies the smallest value allowed in an XmNUMERIC SpinBox.

XmNnumValues
Specifies the number of values in the XmNvalues array. The resource is only used
when the SpinBox type is XmSTRING.

XmNposition
The interpretation of this resource depends upon the value of the XmNposition-
Type and XmNspinBoxChildType resources.

When XmNpositionType is XmPOSITION_INDEX, the position is interpreted
as an index into an array of values. If XmNspinBoxChildType is XmSTRING,
these are defined by the XmNvalues resource. If the child type is XmNUMERIC,
then the array of values is a set of numbers bounded by the XmNminimumValue
and XmNmaximumValue resource. A number is in the set depending upon the
XmNincrementValue resource: position zero corresponds to the value XmNmini-
mumValue, position n is the value given by:

XmNminimumValue + (n * XmNincrementValue)

When the XmNpositionType is XmPOSITION_VALUE and the XmNspinBox-
ChildType is XmNUMERIC, the position is the actual value to display, and is
bounded by XmNminimumValue and XmNmaximumValue. If XmNspinBox-
ChildType is XmSTRING, position remains an index into the XmNvalues
resource array.

XmNpositionType
Specifies how the XmNposition resource is to be interpreted. Possible values:

XmPOSITION_INDEX /* position is an index into an array */
XmPOSITION_VALUE /* position is a direct value */

XmNspinBoxChildType
Specifies the type of data to be displayed. Possible values:

XmNUMERIC /* choices defined by maximum, */
/* minimum, increment values */

XmSTRING /* choices defined by the values array */

Motif and Xt Widget Classes

Motif Reference Manual 916

XmNvalues
Specifies the array of compound strings forming the set of items for the Sim-
pleSpinBox. The resource only has effect if XmNspinBoxChildType is
XmSTRING.

XmNwrap
Specifies whether the SpinBox wraps around the set of values. If the current posi-
tion is at the maximum value, the increment arrow is pressed, and XmNwrap is
True, the requested position becomes the minimum value. Similarly if the current
position is at the minimum, and the decrement arrow is pressed with wrap ena-
bled, the requested position is at the maximum. If wrap is False in the given cir-
cumstances, the bell is rung and the selection is unchanged.

Callback Resources
SpinBox defines the following callback resources:

XmNmodifyVerifyCallback
List of callbacks called before the SpinBox position is changed.

XmNvalueChangedCallback
List of callbacks called after the SpinBox position is changed.

Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /* the reason that the callback was called */
XEvent *event; /* points to event that triggered callback */
Widget widget; /* the textual child affected by callback */
Boolean doit; /* whether to perform the changes */
int position; /* specifies the index of the next value */
XmString value; /* specifies the next value */
Boolean crossed_boundary; /* whether the SpinBox has wrapped */

} XmSpinBoxCallbackStruct;

Callback Reason Constant

XmNmodifyVerifyCallback XmCR_SPIN_FIRST
XmCR_SPIN_LAST
XmCR_SPIN_NEXT
XmCR_SPIN_PRIOR

XmNvalueChangedCallback XmCR_OK
XmCR_SPIN_FIRST
XmCR_SPIN_LAST
XmCR_SPIN_NEXT
XmCR_SPIN_PRIOR

Motif and Xt Widget Classes

Motif Reference Manual 917

reason indicates why the callback is invoked. If reason is XmCR_SPIN_FIRST,
the SpinBox position is either XmNminimum, or the index of the first item in the
XmNvalues array, depending upon whether the SpinBox type is XmNUMERIC
or XmSTRING respectively. If reason is XmCR_SPIN_LAST, the position is
either XmNmaximum, or the index of the last item in the XmNvalues array. If
reason is XmCR_SPIN_NEXT, the increment arrow is armed. If reason is
XmCR_SPIN_PRIOR, the decrement arrow is armed. If reason is XmCR_OK,
an arrow is disarmed.

widget is the ID of the textual component affected by the callback. This is the text
which has the current focus.

doit is a flag indicating whether the action is to be performed. The default value is
True, although a programmer may set the value False for whatever reason to pre-
vent the item associated with position and value being displayed at the current
instant. doit is only relevant to XmNmodifyVerifyCallback callbacks.

position is equivalent to the XmNposition resource, and specifies the next posi-
tion to display. An XmNmodifyVerifyCallback procedure may alter the value in
order to force the SpinBox to display a particular item.

value specifies the new item to be displayed in widget. value is a temporary com-
pound string which is freed after callback procedures are finished. The program-
mer should copy value if this is required outside of the callback procedures.

crossed_boundary1 specifies whether the SpinBox has crossed the upper or lower
bound as specified by XmNminimum and XmNmaximum, or the first and last
compound string in the XmNvalues array.

Inherited Resources
SpinBox inherits the resources shown below. The resources are listed alphabeti-
cally, along with the superclass that defines them.

1.Erroneously given as crossing_boundary in 2nd edition.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNinsertPosition Composite

XmNancestorSensitive Core XmNlayoutDirection XmManager

XmNbackground Core XmNmappedWhenManaged Core

XmNbackgroundPixmap Core XmNnavigationType XmManager

XmNborderColor Core XmNnumChildren Composite

XmNborderPixmap Core XmNpopupHandlerCallback XmManager

XmNborderWidth Core XmNscreen Core

Motif and Xt Widget Classes

Motif Reference Manual 918

Translations
The translations for SpinBox include those of XmManager.

XmNbottomShadowColor XmManager XmNsensitive Core

XmNbottomShadowPixmap XmManager XmNshadowThickness XmManager

XmNchildren Composite XmNstringDirection XmManager

XmNcolormap Core XmNtopShadowColor XmManager

XmNdepth Core XmNtopShadowPixmap XmManager

XmNdestroyCallback Core XmNtranslations Core

XmNforeground XmManager XmNtraversalOn XmManager

XmNheight Core XmNunitType XmManager

XmNhelpCallback XmManager XmNuserData XmManager

XmNhighlightColor XmManager XmNwidth Core

XmNhighlightPixmap XmManager XmNx Core

XmNinitialFocus XmManager XmNy Core

XmNinitialResourcesPersistent Core

Event Action

BSelect Press SpinBArm()

BSelect Release SpinBDisarm()

<EnterWindow> SpinBEnter()

<LeaveWindow) SpinBLeave()

KUp SpinBPrior()

KDown SpinBNext()

KLeft SpinBLeft()

KRight SpinBRight()

KBeginData SpinBFirst()

KEndData SpinBLast()

Resource Inherited From Resource Inherited From

Motif and Xt Widget Classes

Motif Reference Manual 919

Action Routines
SpinBox defines the following action routines:

SpinBArm()
Draws the arrow shape under the pointer in armed form. If the
XmNinitialDelay resource is specified, a timer is initialized to the
value of the initial delay period. If the mouse is not released before
the timer expires, the SpinBox starts automatically selecting suc-
cessive items in the SpinBox.XmNmodifyVerifyCallback proce-
dures are called with the position element adjusted to the selected
value, depending upon the type of arrow, and subsequently XmN-
valueChangedCallback procedures are called if the doit element of
the XmSpinBoxCallbackStruct is still True after the modify verify
callbacks are finished. The position element of the structure is used
to determine the value which is inserted into the textual child of the
SpinBox which has the focus.

SpinBDisarm()
Draws the arrow shape in disarmed form. If any period specified by
the XmNrepeatDelay or XmNinitialDelay periods have not expired,
XmNmodifyVerifyCallback procedures are called with the position
element adjusted to the required value, and subsequently XmNval-
ueChangedCallback procedures are called if the doit element of the
XmSpinBoxCallbackStruct is still True. The item as reflected by
the final value of the position element of the structure is inserted
into the current traversable text.

SpinBPrior()
Draws the decrement arrow in armed form, and invokes any XmN-
modifyVerifyCallback procedures, with the position element of the
XmSpinBoxCallbackStruct suitably decremented, taking into
account possible wrapping. Thereafter, if the doit element is still
True, any XmNvalueChangedCallback procedures are invoked. The
item as reflected by the final value of the position element of the
structure is inserted into the current traversable text.

SpinBNext()
Draws the increment arrow in armed form, and invokes any XmN-
modifyVerifyCallback procedures, with the position element of the
XmSpinBoxCallbackStruct suitably incremented, taking into
account possible wrapping. Thereafter, if the doit element is still
True, any XmNvalueChangedCallback procedures are invoked. The
item as reflected by the final value of the position element of the
structure is inserted into the current traversable text.

Motif and Xt Widget Classes

Motif Reference Manual 920

SpinBLeft()
If the XmNlayoutDirection is XmLEFT_TO_RIGHT, invokes the
SpinBPrior() action, otherwise invokes SpinBNext().

SpinBRight()
If the XmNlayoutDirection is XmLEFT_TO_RIGHT, invokes the
SpinBNext() action, otherwise invokes SpinBPrior().

SpinBFirst()
XmNmodifyVerifyCallback procedures are invoked with the posi-
tion element of the XmSpinBoxCallbackStruct set to zero. Thereaf-
ter, if the doit element is still True, any
XmNvalueChangedCallback procedures are invoked. The item as
reflected by the final value of the position element of the structure is
inserted into the current traversable text.

SpinBLast()
XmNmodifyVerifyCallback procedures are invoked with the posi-
tion element of the XmSpinBoxCallbackStruct set to the last posi-
tion. Thereafter, if the doit element is still True, any
XmNvalueChangedCallback procedures are invoked. The item as
reflected by the final value of the position element of the structure is
inserted into the current traversable text.

SpinBEnter()
If the containing shell has a focus policy of XmPOINTER, draws
the highlight border around the child traversable text widget which
has the focus.

SpinBLeave()
If the containing shell has a focus policy of XmPOINTER, erases
the highlight border around the child traversable text widget which
has the focus.

See Also
XmSpinBoxValidatePosition (1), XmCreateObject (1),
Composite (2), Constraint (2), Core (2), XmManager(2).

Motif and Xt Widget Classes

Motif Reference Manual 921

Name
XmTemplateDialog – an unmanaged MessageBox as a child of DialogShell.

Synopsis

Public Header:
<Xm/MessageB.h>

Instantiation:
widget = XmCreateTemplateDialog (parent, name,...)

Functions/Macros:
XmCreateTemplateDialog (), XmMessageBoxGetChild ()

Description
An XmTemplateDialog is a compound object created by a call to XmCreate-
TemplateDialog () that an application can use to present a customized mes-
sage to the user. A TemplateDialog consists of a DialogShell with an unmanaged
MessageBox widget as its child. The MessageBox resource XmNdialogType is
set to XmDIALOG_TEMPLATE. By default, a TemplateDialog includes only a
separator. An application can create a customized dialog by adding children to
the TemplateDialog. To create the standard components associated with a Mes-
sageBox, an application needs only specify the label string and callback
resources for the desired buttons, and the TemplateDialog automatically creates
the relevant button. Setting either the XmNmessageString or XmNsymbolPix-
map resource creates a message or a symbol Label.

Default Resource Values
A TemplateDialog sets the following default values for MessageBox resources:

Widget Hierarchy
When a TemplateDialog is created with a specified name, the DialogShell is
named name_popup and the MessageBox is called name.

See Also
XmCreateObject (1), XmMessageBoxGetChild (1),
XmDialogShell (2), XmMessageBox(2).

Name Default

XmNdialogType XmDIALOG_TEMPLATE

Motif and Xt Widget Classes

Motif Reference Manual 922

Name
XmText widget class – text-editing widget.

Synopsis

Public Header:
<Xm/Text.h>

Class Name:
XmText

Class Hierarchy:
Core → XmPrimitive → XmText

Class Pointer:
xmTextWidgetClass

Instantiation:
widget = XmCreateText (parent, name,...)
or
widget = XtCreateWidget (name, xmTextWidgetClass,...)

Functions/Macros:
XmCreateScrolledText (), XmCreateText (), XmIsText (), XmText...
routines

Description
A Text widget provides a text editor that allows text to be inserted, modified,
deleted, and selected. Text provides both single-line and multi-line text editing
capabilities.

Traits
Text holds the XmQTaccessTextual and XmQTtransfer traits, which are inherited
in any derived classes, and uses the XmQTaccessTextual, XmQTspeci-
fyRenderTable, XmQTnavigator and XmQTscrollFrame traits.

New Resources
Text defines the following resources:

Name Class Type Default Access

XmNautoShowCursorPosition XmCAutoShowCursorPosition Boolean True CSG

XmNcursorPosition XmCCursorPosition XmTextPosition 0 CSG

XmNeditable XmCEditable Boolean True CSG

XmNeditMode XmCEditMode int see below CSG

XmNmarginHeight XmCMarginHeight Dimension 5 CSG

XmNmarginWidth XmCMarginWidth Dimension 5 CSG

Motif and Xt Widget Classes

Motif Reference Manual 923

XmNautoShowCursorPosition
If True (default), the visible portion of the Text widget will always contain the
insert cursor. The Text widget will scroll its contents, if necessary, to ensure that
the cursor remains visible.

XmNcursorPosition
The location at which to place the current insert cursor. Values for this resource
are relative to the beginning of the text; the first character position is defined as 0.

XmNeditable
If True (default), the user is allowed to edit the text string; if False, the user is not
allowed to do so.

XmNeditMode
Determines which group of keyboard bindings to use. Possible values:

XmMULTI_LINE_EDIT /* key bindings for multi-line edits */
XmSINGLE_LINE_EDIT /* key bindings for single line edits (default) */

XmNmarginHeight

XmNmarginWidth
The spacing between the edges of the widget and the text. (Top and bottom edges
for height; left and right for width.)

XmNmaxLength
The maximum length of the text string that a user can enter from the keyboard.
This resource does not affect strings that are entered via the XmNvalue resource
or the XmTextSetString () routine.

XmNsource
A source that the Text widget uses for displaying text, thereby allowing Text
widgets to share the same text source.

XmNtotalLines
In Motif 2.1, specifies the number of lines within the Text widget buffer. The
value takes into account word wrapping.

XmNmaxLength XmCMaxLength int largest integer CSG

XmNsource XmCSource XmTextSource default source CSG

XmNtotalLines XmCTotalLines int 1 CG

XmNtopCharacter XmNtopCharacter XmTextPosition 0 CSG

XmNvalue XmCValue String ““ CSG

XmNvalueWcs XmCValueWcs wchar_t (Wchar_t *) ““ CSG

XmNverifyBell XmCVerifyBell Boolean dynamic CSG

Name Class Type Default Access

Motif and Xt Widget Classes

Motif Reference Manual 924

XmNtopCharacter
The location of the text to display at the top of the window. Values for this
resource are relative to the beginning of the text, with the first character position
defined as 0.

XmNvalue
The string value to display in the Text widget, expressed as a char *. If XmN-
value and XmNvalueWcs are both defined, XmNvalueWcs takes precedence.
Use XtSetValues () to copy string values to the internal buffer and use
XtGetValues () to return the value of the internal buffer.

XmNvalueWcs
In Motif 1.2, the string value to display in the Text widget, expressed as a
wchar_t *. If XmNvalue and XmNvalueWcs are both defined, XmNvalueWcs
takes precedence. Use XtSetValues () to copy string values to the internal
buffer and use XtGetValues () to return the value of the internal buffer. This
resource cannot be set in a resource file.

XmNverifyBell
If True, a bell will sound when a verification produces no action. The default
value depends upon the XmNaudibleWarning resource of any VendorShell ances-
tor.

Text Input Resources

XmNpendingDelete
If True (default), the Text widget’s pending delete mode is on, meaning that
selected text will be deleted as soon as the next text insertion occurs.

XmNselectionArray
The array of possible actions caused by multiple mouse clicks. UIL does not
define these values for the Text widget. Possible values:

XmSELECT_POSITION /* single-click; reset position of insert cursor */
XmSELECT_WORD /* double-click; select a word */
XmSELECT_LINE /* triple-click; select a line */
XmSELECT_ALL /* quadruple-click; select all text */

XmNselectionArrayCount
The number of items in the array specified by XmNselectionArray.

Name Class Type Default Access

XmNpendingDelete XmCPendingDelete Boolean True CSG

XmNselectionArray XmCSelectionArray XtPointer default array CSG

XmNselectionArrayCount XmCSelectionArrayCount int 4 CSG

XmNselectThreshold XmCSelectThreshold int 5 CSG

Motif and Xt Widget Classes

Motif Reference Manual 925

XmNselectThreshold
The number of pixels the insertion cursor must be dragged during selection in
order to select the next character.

Text Output Resources

XmNblinkRate
The time in milliseconds that the cursor spends either being visible or invisible.
A value of 0 prevents the cursor from blinking.

XmNcolumns
The number of character spaces that should fit horizontally in the text window.
The XmNwidth resource determines the default value of XmNcolumns, but if no
width has been set, the default is 20. See also XmNrows.

XmNcursorPositionVisible
If True, the text cursor will be visible. In Motif 2.1, if the text widget has an
XmPrintShell as ancestor, the default is False. Otherwise the default is True.

XmNfontList
The font list used for the widget’s text. In Motif 2.0 and later, the XmFontList is
obsolete, and is subsumed into the XmRenderTable. If both a render table and
font list are specified, the render table takes precedence.

XmNrenderTable
In Motif 2.0 and later, specifies the render table for the Text. If unspecified, the
value of the resource is inherited from the nearest ancestor which holds the
XmQTspecifyRenderTable trait, using the XmTEXT_RENDER_TABLE value
of the ancestor so found.

XmNresizeHeight
If False (default), the Text widget will not expand vertically to fit all of the text
(in other words, the widget will need to have scrollbars so that the rest of the text

Name Class Type Default Access

XmNblinkRate XmCBlinkRate int 500 CSG

XmNcolumns XmCColumns short dynamic CSG

XmNcursorPositionVisible XmCCursorPositionVisible Boolean dynamic CSG

XmNfontList XmCFontList XmFontList dynamic CSG

XmNrenderTable XmCRenderTable XmRenderTable dynamic CSG

XmNresizeHeight XmCResizeHeight Boolean False CSG

XmNresizeWidth XmCResizeWidth Boolean False CSG

XmNrows XmCRows short dynamic CSG

XmNwordWrap XmCWordWrap Boolean False CSG

Motif and Xt Widget Classes

Motif Reference Manual 926

can be scrolled into view). If True, the Text widget always begins its display with
the text at the beginning of the source. This resource has no effect in a Scrolled-
Text widget whose XmNscrollVertical resource is set to True.

XmNresizeWidth
If False (default), the Text widget will not expand horizontally to fit its text. If
True, the widget tries to change its width. This resource has no effect when the
XmNwordWrap resource is set to True.

XmNrows
The number of character spaces that should fit vertically in the text window. The
XmNheight resource determines the default value of XmNrows, but if no height
has been set, the default is 1. This resource is meaningful only when XmNedit-
Mode is XmMULTI_LINE_EDIT. See also XmNcolumns.

XmNwordWrap
If False (default), does not break lines automatically between words (in which
case text can disappear beyond the window’s edge). If True, breaks lines at
spaces, tabs, or newlines. This resource is meaningful only when XmNeditMode
is XmMULTI_LINE_EDIT.

Scrolled Text Resources

XmNscrollHorizontal
If True, the Text widget adds a horizontal ScrollBar. The default is True; how-
ever, the value changes to False if the widget is in a ScrolledWindow whose
XmNscrollingPolicy resource is set to XmAUTOMATIC. This resource is mean-
ingful only when XmNeditMode is XmMULTI_LINE_EDIT.

XmNscrollLeftSide
If True, the vertical ScrollBar is placed to the left of the scrolled text window.
The default value depends on how the XmNstringDirection resource is set. This
resource is meaningful only when XmNeditMode is XmMULTI_LINE_EDIT
and when XmNscrollVertical is True.

XmNscrollTopSide
If True, the horizontal ScrollBar is placed above the scrolled text window, rather
than below by default.

Name Class Type Default Access

XmNscrollHorizontal XmCScroll Boolean True CG

XmNscrollLeftSide XmCScrollSide Boolean dynamic CG

XmNscrollTopSide XmCScrollSide Boolean False CG

XmNscrollVertical XmCScroll Boolean True CG

Motif and Xt Widget Classes

Motif Reference Manual 927

XmNscrollVertical
If True, the Text widget adds a vertical ScrollBar. The default is True; however,
the value changes to False if the widget is in a ScrolledWindow whose XmN-
scrollingPolicy resource is set to XmAUTOMATIC.

Callback Resources
Text defines the following callback resources:

XmNactivateCallback
List of callbacks that are called when the user causes the Text widget to be acti-
vated.

XmNdestinationCallback
List of callbacks that are called when the Text is the destination of a transfer
operation.

XmNfocusCallback
List of callbacks that are called when the Text widget receives the input focus.

XmNgainPrimaryCallback
List of callbacks that are called when the Text widget gains ownership of the pri-
mary selection.

XmNlosePrimaryCallback
List of callbacks that are called when the Text widget loses ownership of the pri-
mary selection.

XmNlosingFocusCallback
List of callbacks that are called when the Text widget loses the input focus.

XmNmodifyVerifyCallback
List of callbacks that are called before the value of the Text widget is changed. If
there are callbacks for both XmNmodifyVerifyCallback and XmNmodifyVerify-
CallbackWcs, the XmNmodifyVerifyCallback callbacks are called first.

Callback Reason Constant

XmNactivateCallback XmCR_ACTIVATE

XmNdestinationCallback XmCR_OK

XmNfocusCallback XmCR_FOCUS

XmNgainPrimaryCallback XmCR_GAIN_PRIMARY

XmNlosePrimaryCallback XmCR_LOSE_PRIMARY

XmNlosingFocusCallback XmCR_LOSING_FOCUS

XmNmodifyVerifyCallback XmCR_MODIFYING_TEXT_VALUE

XmNmodifyVerifyCallbackWcs XmCR_MODIFYING_TEXT_VALUE

XmNmotionVerifyCallback XmCR_MOVING_INSERT_CURSOR

XmNvalueChangedCallback XmCR_VALUE_CHANGED

Motif and Xt Widget Classes

Motif Reference Manual 928

XmNmodifyVerifyCallbackWcs
List of callbacks that are called before the value of the Text widget is changed. If
there are callbacks for both XmNmodifyVerifyCallback and XmNmodifyVerify-
CallbackWcs, the XmNmodifyVerifyCallback callbacks are called first.

XmNmotionVerifyCallback
List of callbacks that are called before the insertion cursor is moved in the Text
widget.

XmNvalueChangedCallback
List of callbacks that are called after the value of the Text widget is changed.

Callback Structure
Destination callbacks are fully described within the sections covering the Uni-
form Transfer Model. See XmTransfer (1) for more details. For quick refer-
ence, a pointer to the following structure is passed to callbacks on the
XmNdestinationCallback list:

typedef struct {
int reason; /* the reason that the callback is invoked */
XEvent *event; /* points to event that triggered callback */
Atom selection; /* the requested selection type, as an Atom */
XtEnum operation; /* the type of transfer requested */
int flags; /* whether destination and source are same */
XtPointer transfer_id; /* unique identifier for the request */
XtPointer destination_data; /* information about the destination */
XtPointer location_data; /* information about the data */
Time time; /* time when the transfer operation started */

} XmDestinationCallbackStruct;

With the exception of the above destination callback, each callback function is
passed the following structure:

typedef struct {
int reason; /* the reason that the callback was called */
XEvent *event; /* event structure that triggered callback */

} XmAnyCallbackStruct;

In addition, the callback resources XmNlosingFocusCallback, XmNmodifyVeri-
fyCallback, and XmNmotionVerifyCallback reference the following structure:

typedef struct {
int reason; /* the reason that the callback was called */
XEvent *event; /* points to event that triggered callback */
Boolean doit; /* do the action (True) or undo it (False) */
long currInsert; /* the insert cursor’s current position */

Motif and Xt Widget Classes

Motif Reference Manual 929

long newInsert; /* desired new position of insert cursor */
long startPos; /* start of text to change */
long endPos; /* end of text to change */
XmTextBlocktext; /* describes the text to insert */

} XmTextVerifyCallbackStruct, *XmTextVerifyPtr;

start_pos specifies the location at which to start modifying text. start_pos is
unused if the callback resource is XmNmotionVerifyCallback, and is the same as
the current_insert member if the callback resource is XmNlosingFocusCallback.

end_pos specifies the location at which to stop modifying text (however, if no
text was modified, end_pos has the same value as start_pos). end_pos is unused
if the callback resource is XmNmotionVerifyCallback, and is the same as the
current_insert member if the callback resource is XmNlosingFocusCallback.

text points to the structure below, which specifies information about the text to be
inserted.

typedef struct {
char *ptr; /* pointer to the text to insert */
int length; /* length of this text */
XmTextFormat format; /* text format (e.g., FMT8BIT, FMT16BIT) */

} XmTextBlockRec, *XmTextBlock;

The callback resource XmNmodifyVerifyCallbackWcs references the following
structure:

typedef struct {
int reason; /* the reason that the callback was called */
XEvent *event; /* structure that triggered callback */
Boolean doit; /* do the action (True) or undo it (False) */
long current_insert; /* the insert cursor’s current position */
long new_insert; /* desired new position of insert cursor */
long start_pos; /* start of text to change */
long end_pos; /* end of text to change */
XmTextBlockWcstext; /* describes the text to insert */

} XmTextVerifyCallbackStructWcs, *XmTextVerifyPtrWcs;

All of the fields in this structure are the same as the fields in the XmTextVerify-
CallbackStruct except text, which points to the structure below and specifies
information about the text to be inserted.

typedef struct {
wchar_t *wcsptr; /* pointer to the text to insert */
int length; /* length of this text */

} XmTextBlockRecWcs, *XmTextBlockWcs;

Motif and Xt Widget Classes

Motif Reference Manual 930

Inherited Resources
Text inherits the following resources. The resources are listed alphabetically,
along with the superclass that defines them. Text sets the default value of XmN-
navigationType to XmTAB_GROUP. The default value of XmNborderWidth is
reset to 0 by Primitive.

Translations
The translations for Text include those from Primitive, as well as the following.
(Note that some of the associated actions will be reversed for a language environ-
ment in which text is not read from left to right.)

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNhighlightThickness XmPrimitive

XmNancestorSensitive Core XmNinitialResourcesPersistent Core

XmNbackground Core XmNlayoutDirection XmPrimitive

XmNbackgroundPixmap Core XmNmappedWhenManaged Core

XmNborderColor Core XmNnavigationType XmPrimitive

XmNborderPixmap Core XmNpopupHandlerCallback XmPrimitive

XmNborderWidth Core XmNscreen Core

XmNbottomShadowColor XmPrimitive XmNsensitive Core

XmNbottomShadowPixmap XmPrimitive XmNshadowThickness XmPrimitive

XmNcolormap Core XmNtopShadowColor XmPrimitive

XmNconvertCallback XmPrimitive XmNtopShadowPixmap XmPrimitive

XmNdepth Core XmNtranslations Core

XmNdestroyCallback Core XmNtraversalOn XmPrimitive

XmNforeground XmPrimitive XmNunitType XmPrimitive

XmNheight Core XmNuserData XmPrimitive

XmNhelpCallback XmPrimitive XmNwidth Core

XmNhighlightColor XmPrimitive XmNx Core

XmNhighlightOnEnter XmPrimitive XmNy Core

XmNhighlightPixmap XmPrimitive

Event Action Event Action

BSelect Press grab-focus() MShift KPageDown next-page(extend)

BSelect Motion extend-adjust() KPageLeft page-left()

BSelect Release extend-end() KPageRight page-right()

BExtend Press extend-start() KBeginLine beginning-of-line()

Motif and Xt Widget Classes

Motif Reference Manual 931

BExtend Mition extend-adjust() MShift KBeginLine beginning-of-line(extend)a

BExtend Release extend-end() KEndLine end-of-line

BToggle Press move-destination() MShift KEndLine end-of-line(extend)

BTransfer Press process-bdrag() (1.2)
secondary-start (1.1)

KBeginData beginning-of-file()

BTransfer Motion secondary-adjust() MShift KBeginData beginning-of-file(extend)

BTransfer Release copy-to() KEndData end-of-file()

MCtl BTransfer Press process-bdrag() (1.2)
secondary-start (1.1)

MShift KEndData end-of-file(extend)

MCtrl BTransfer Motion secondary-adjust() KTab process-tab()

MCtrl BTransfer Release copy-to() KNextField next-tab-group()

MAlt BTransfer Press process-bdrag() (1.2)
secondary-start (1.1)

KPrevField prev-tab-group()

MAlt BTransfer Motion secondary-adjust() KEnter process-return()

MAlt BTransfer Release copy-to() KActivate activate()

MShift BTransfer Press process-bdrag() KDelete delete-next-character()

MShift BTransfer Motion secondary-adjust() KBackSpace delete-previous-character()

MShift BTransfer Release move-to() KAddMode toggle-add-mode()

MAlt MCtrl BTransfer Release copy-to() KSpace self-insert()

MAlt MShift BTransfer Release move-to() MShift KSpace insert

KUp process-up() KSelect set-anchor()

MShift KUp process-shift-up() KExtend key-select()

MCtrl KUp backward-paragraph() MAny KCancel process-cancel()

MShift MCtrl KUp backward-paragraph(extend) KClear clear-selection()

KDown process-down() KSelectAll select-all()

MShift KDown process-shift-down() KDeselectAll deselect-all()

MCtrl KDown forward-paragraph() KCut cut-clipboard()

MShift MCtrl KDown forward-paragraph(extend) KCopy copy-clipboard()

KLeft backward-character() KPaste paste-clipboard()

MShift KLeft key-select(left) KPrimaryCut cut-primary()

MCtrl KLeft backward-word() KPrimaryCopy copy-primary()

MShift MCtrl KLeft backward-word(extend) KPrimaryPaste copy-primary()

KRight forward-character() KQuickCut quick-cut-set() (1.1)

MShift KRight key-select(right) KQuickCopy quick-copy-set() (1.1)

MCtrl KRight forward-word() KQuickPaste quick-copy-set() (1.1)

Event Action Event Action

Motif and Xt Widget Classes

Motif Reference Manual 932

Action Routines
Text defines the action routines below. For actions that involve movement such as
next, previous, start, end, back, forward, etc., the actual cursor movement
depends on whether the layout direction is left-to-right or right-to-left. In addi-
tion, some actions accept an optional argument, extend. When applied with no
argument, these actions move the cursor; when applied with the extend argument,
these actions move the cursor but also extend the text selection. In all descrip-
tions, the term cursor refers to the insertion cursor.

activate()
Invokes the callbacks specified by XmNactivateCallback.

backward-character()
Moves the cursor back one character.

backward-paragraph(extend)
Moves the cursor back to the first non-blank character that follows a
blank line (or back to the start of the text if there is no previous
blank line). If the cursor is already located at a non-blank character
(i.e., if it’s already at the beginning of the paragraph), the cursor
moves to the start of the previous paragraph. (Multi-line edit mode
only.)

backward-word(extend)
Moves the cursor back to the first non-blank character that follows a
blank character (or back to the start of the line if there is no previ-
ous blank character). If the cursor is already located at a non-blank
character (i.e., if it’s already at the beginning of a word), the cursor
moves to the start of the previous word.

beep()
Makes the terminal beep.

beginning-of-file(extend)
Moves the cursor to the start of the text.

beginning-of-line(extend)
Moves the cursor to the start of the line.

MShift MCtrl KRight formward-word(extend) KQuickExtend do-quick-action() (1.1)

KPageUp previous-page() KHelp Help()

MShift KPageUp previous-page(extend) KAny self-insert()

KPageDown next-page()

a.Erroneously given as beginning-of-file(extend) in 1st and 2nd editions.

Event Action Event Action

Motif and Xt Widget Classes

Motif Reference Manual 933

clear-selection()
Replaces each character (except a newline) with a space, effectively
clearing the current selection.

copy-clipboard()
Copies the current text selection into the clipboard.

copy-primary()
Inserts a copy of the primary selection at the cursor location.

copy-to()
Inserts a copy of the secondary selection at the cursor location, or, if
there is no secondary selection, inserts a copy of the primary selec-
tion at the pointer location.

cut-clipboard()
Deletes the current selection and moves it to the clipboard.

cut-primary()
Deletes the primary selection and inserts it at the cursor.

delete-next-character()
delete-previous-character()

If the cursor is inside the selection and XmNpendingDelete is True,
deletes the selection. Otherwise, deletes the character follow-
ing/preceding the cursor.

delete-next-word()
delete-previous-word()

If the cursor is inside the selection and XmNpendingDelete is True,
deletes the selection. Otherwise, deletes from the character follow-
ing/preceding the cursor to the next/previous space, tab, or end of
line.

delete-selection()
Deletes the current selection.

delete-to-end-of-line()
Deletes forward from the character after the cursor up to and
including the end of the line.

delete-to-start-of-line()
Deletes back from the character before the cursor up to and includ-
ing the beginning of the line.

deselect-all()
Deselects the current selection.

Motif and Xt Widget Classes

Motif Reference Manual 934

do-quick-action(0
In Motif 1.1, Ends a secondary selection and does the action that
was started by either of the actions quick-copy-set or quick-cut-set.

end-of-file(extend)
Moves the cursor to the end of the text.

end-of-line(extend)
Moves the cursor to the end of the line.

extend-adjust()
Selects text that is between the anchor and the pointer location,
while deselecting text that is outside this area. As a result of this
action, when the pointer moves past lines of text, these lines are
selected and the current line is selected up to the position of the
pointer.

extend-end()
Moves the cursor to the pointer location and ends the selection per-
formed by extend-adjust.

extend-start()
Adjusts the anchor in preparation for selecting text via the
extend-adjust action.

forward-character()
Moves the cursor forward one character.

forward-paragraph(extend)
Moves the cursor forward to the first non-blank character that fol-
lows a blank line. If the cursor is already located at a non-blank
character (i.e., if it’s already at the beginning of the paragraph), the
cursor moves to the start of the next paragraph. (Multi-line edit
mode only.)

forward-word(extend)
Moves the cursor forward to the first blank character that follows a
non-blank character (or forward to the end of the line if there is no
blank character to move to). If the cursor is already located at a
blank character (i.e., if it’s already at the end of a word), the cursor
moves to the end of the next word.

Motif and Xt Widget Classes

Motif Reference Manual 935

grab-focus()
Processes multi-clicks as defined in the XmNselectionArray
resource. By default, one click resets the cursor to the pointer loca-
tion, two clicks select a word, three clicks select a line, and four
clicks select all of the text.

Help()
Invokes the list of callbacks specified by XmNhelpCallback. If the
Text widget doesn’t have any help callbacks, this action routine
invokes those associated with the nearest ancestor that has them.

insert-string(text)
Inserts text at the cursor, or replaces the current selection with text
(when XmNpendingDelete is True).

key-select(direction)
Extends the selection and moves the cursor one character to the
right (when direction is right), one character to the left (direction is
left). If no direction is specified, the selection is extended, although
the insertion cursor is not moved.

kill-next-character()
kill-next-word()
kill-previous-character()
kill-previous-word()

These four actions are similar to their delete action counterparts,
but the kill actions have the added feature of storing the deleted text
in the cut buffer.

kill-selection()
Deletes the current selection and stores this text in the cut buffer.

kill-to-end-of-line()
Deletes forward from the character after the cursor up to and
including the end of the line; stores this text in the cut buffer.

kill-to-start-of-line()
Deletes back from the character before the cursor up to and includ-
ing the beginning of the line; stores this text in the cut buffer.

move-destination()
Moves the cursor to the pointer location, leaving existing selections
unaffected.

Motif and Xt Widget Classes

Motif Reference Manual 936

move-to()
Deletes the secondary selection and inserts it at the cursor, or, if
there is no secondary selection, deletes the primary selection and
inserts it at the pointer location.

newline()
If the cursor is inside the selection and XmNpendingDelete is True,
deletes the selection and inserts a newline at the cursor. Otherwise,
only inserts a newline at the cursor.

newline-and-backup()
If the cursor is inside the selection and XmNpendingDelete is True,
deletes the selection, inserts a newline at the cursor and moves the
cursor to the end of the previous line. Otherwise, only inserts a
newline and then moves the cursor to the end of the previous line.

newline-and-indent()
If the cursor is inside the selection and XmNpendingDelete is True,
deletes the selection, inserts a newline at the cursor, and adds
blanks (as needed) so that the cursor aligns with the first non-blank
character in the previous line. Otherwise, only inserts a newline and
adds blanks (as needed) so that the cursor aligns with the first
non-blank character in the previous line.

next-line()
Places the cursor on the next line.

next-page(extend)
Moves the cursor one page forward.

next-tab-group()
Traverses to the next tab group.

page-left()
page-right()

Scrolls the visible area one page to the left or right.

paste-clipboard()
Pastes text from the clipboard to the position before the cursor.

prev-tab-group()
Traverses to the previous tab group.

previous-line()
Places the cursor on the previous line.

Motif and Xt Widget Classes

Motif Reference Manual 937

previous-page(extend)
Moves the cursor one page backward.

process-bdrag()
In Motif 1.2, copies the current selection to the insertion cursor if
text is selected, the location cursor is outside of the selection, and
no motion is detected. Performs a secondary selection and copies
the selection to the position where text was last edited if the cursor
is outside of the selection and motion is detected. Otherwise, initi-
ates a drag and drop operation using the current selection.

process-cancel()
Cancels the extend-adjust() or secondary-adjust() actions that are
currently being applied, restoring the selection to its previous state.

process-down()
process-up()

If XmNnavigationType is XmNONE, descends/ascends to the adja-
cent widget in the tab group (single-line edit mode only). Moves the
cursor one line down/up (multi-line edit mode only).

process-home() Moves the cursor to the start of the line. (Similar to begin-
ning-of-line.)
process-return() Invokes the XmNactivateCallback callbacks (in single-line edit-
ing) or inserts a newline (in multi-line editing).

process-shift-down()
process-shift-up()

Moves the cursor one line down or up (in multi-line editing only).

process-tab()
Traverses to the next tab group (in single-line editing) or inserts a
tab (in multi-line editing).

quick-copy-set()
In Motif 1.1, marks this text location as the start of the secondary
selection to use in quick copying.

quick-cut-set()
In Motif 1.1, marks this text location as the start of the secondary
selection to use in quick cutting.

redraw-display()
Redraws the text in the viewing window.

scroll-one-line-down()
scroll-one-line-up()

Scrolls the text region one line down or up.

Motif and Xt Widget Classes

Motif Reference Manual 938

secondary-adjust()
Extends the secondary selection to the location of the pointer.

secondary-notify()
Inserts a copy of the secondary selection at the destination cursor.

secondary-start()
In Motif 1.1, marks this text location as the start of a secondary
selection.

select-adjust()
Extends the selection via the multiple mouse clicks defined by the
XmNselectionArray resource.

select-all()
Selects all text.

select-end()
Ends the selection made using the select-adjust() action.

select-start()
Begins a text selection.

self-insert()
The basic method of inserting text. Typing at the keyboard inserts
new text and (if XmNpendingDelete is True) replaces selected text
that the cursor is in.

set-anchor()
Changes the anchor point used when making extended selections;
changes the destination cursor used for secondary selections.

set-insertion-point()
Sets the position of the cursor.

set-selection-hint()
Sets the selection’s text source and the selection’s location.

toggle-add-mode()
Turns Add Mode either on or off.

toggle-overstrike()
Changes the text insertion mode. When a character is typed into a
Text widget, by default it is inserted at the location of the insertion
cursor. In overstrike mode, an inserted character replaces the cur-
rent character that immediately follows the insertion cursor. When
the insertion cursor is at the end of a line in overstrike mode,
inserted characters are appended to the line.

Motif and Xt Widget Classes

Motif Reference Manual 939

traverse-home()
traverse-next()
traverse-prev()

Traverse within the tab group to the first widget, the next widget,
and the previous widget, respectively.

unkill()
Restores the most recently deleted text to the cursor’s location.

Additional Behavior
Text has the following additional behavior:

<FocusIn>
Draws a solid insertion cursor and makes it blink.

<FocusOut>
Draws a stippled I-beam insertion cursor, unless the widget is the
destination of a data transfer.

See Also
XmCreateObject(1), XmTextClearSelection(1),
XmTextCopy(1), XmTextCut(1),
XmTextDisableRedisplay(1), XmTextEnableRedisplay(1),
XmTextFindString(1), XmTextFindStringWcs(1),
XmTextGetBaseline(1), XmTextGetCursorPosition(1),
XmTextGetEditable(1), XmTextGetInsertionPosition(1),
XmTextGetLastPosition(1), XmTextGetMaxLength(1),
XmTextGetSelection(1), XmTextGetSelectionPosition(1),
XmTextGetSelectionWcs(1), XmTextGetSource(1),
XmTextGetString(1), XmTextGetStringWcs(1),
XmTextGetSubstring(1), XmTextGetSubstringWcs(1),
XmTextGetTopCharacter(1), XmTextInsert(1),
XmTextInsertWcs(1), XmTextPaste(1), XmTextPosToXY(1),
XmTextRemove(1), XmTextReplace(1),
XmTextReplaceWcs(1), XmTextScroll(1),
XmTextSetAddMode(1), XmTextSetCursorPosition(1),
XmTextSetEditable(1), XmTextSetHighlight(1),
XmTextSetInsertionPosition(1), XmTextSetMaxLength(1),
XmTextSetSelection(1), XmTextSetSource(1),
XmTextSetString(1), XmTextSetStringWcs(1),
XmTextSetTopCharacter(1), XmTextShowPosition(1),
XmTextXYToPos(1), XmTransfer(1), Core(2),
XmRendition(2), XmPrimitive(2), XmPrinShell(2),
XmTextField(2).

Motif and Xt Widget Classes

Motif Reference Manual 940

Name
XmTextField widget class – a single-line text-editing widget.

Synopsis

Public Header:
<Xm/TextF.h>

Class Name:
XmTextField

Class Hierarchy:
Core → XmPrimitive → XmTextField

Class Pointer:
xmTextFieldWidgetClass

Instantiation:
widget = XmCreateTextField (parent, name,...)
or
widget = XtCreateWidget (name, xmTextWidgetClass,...)

Functions/Macros:
XmCreateTextField (), XmIsTextField (), XmTextField... routines

Description
A TextField widget provides a single-line text editor that has a subset of the func-
tionality of the Text widget.

Traits
TextField holds the XmQTaccessTextual and XmQTtransfer traits, which are
inherited in any derived classes, and uses the XmQTaccessTextual and XmQT-
specifyRenderTable traits.

New Resources
TextField defines the following resources:

Name Class Type Default Access

XmNblinkRate XmCBlinkRate int 500 CSG

XmNcolumns XmCColumns short dynamic CSG

XmNcursorPosition XmCCursorPosition XmTextPosition 0 CSG

XmNcursorPositionVisible XmCCursorPositionVisible Boolean dynamic CSG

XmNeditable XmCEditable Boolean True CSG

XmNfontList XmCFontList XmFontList dynamic CSG

XmNmarginHeight XmCMarginHeight Dimension 5 CSG

XmNmarginWidth XmCMarginWidth Dimension 5 CSG

Motif and Xt Widget Classes

Motif Reference Manual 941

XmNblinkRate
The time in milliseconds that the cursor spends either being visible or invisible.
A value of 0 prevents the cursor from blinking.

XmNcolumns
The number of character spaces that should fit horizontally in the text window.
The XmNwidth resource determines the default value of XmNcolumns, but if no
width has been set, the default is 20.

XmNcursorPosition
The location at which to place the current insert cursor. Values for this resource
are relative to the beginning of the text, with the first character position defined as
0.

XmNcursorPositionVisible
If True, the text cursor will be visible. In Motif 2.1, if the text field has an
XmPrintShell as ancestor, the default is False. Otherwise the default is True.

XmNeditable
If True (default), the user is allowed to edit the text string; if False, the user is not
allowed to do so.

XmNfontList
The font list used for the widget’s text. In Motif 2.0 and later, the XmFontList is
obsolete, and is subsumed into the XmRenderTable. If both a render table and
font list are specified, the render table takes precedence.

XmNmarginHeight

XmNmarginWidth
The spacing between the edges of the widget and the text. (Top and bottom edges
for height; left and right for width.)

XmNmaxLength XmCMaxLength int largest integer CSG

XmNpendingDelete XmCPendingDelete Boolean True CSG

XmNrenderTable XmCRenderTable XmRenderTable dynamic CSG

XmNresizeWidth XmCResizeWidth Boolean False CSG

XmNselectionArray XmCSelectionArray XtPointer default array CSG

XmNselectionArrayCount XmCSelectionArrayCount int 3 CSG

XmNselectThreshold XmCSelectThreshold int 5 CSG

XmNvalue XmCValue String ““ CSG

XmNvalueWcs XmCValueWcs wchar_t (Wchar_t *) ““ CSG

XmNverifyBell XmCVerifyBell Boolean dynamic CSG

Name Class Type Default Access

Motif and Xt Widget Classes

Motif Reference Manual 942

XmNmaxLength
The maximum length of the text string that a user can enter from the keyboard.
This resource doesn’t affect strings that are entered via the XmNvalue resource or
the XmTextFieldSetString () routine.

XmNpendingDelete
If True (default), the TextField widget’s pending delete mode is on, meaning that
selected text will be deleted as soon as the next text insertion occurs.

XmNrenderTable
In Motif 2.0 and later, specifies the render table for the TextField. If unspecified,
the value of the resource is inherited from the nearest ancestor which holds the
XmQTspecifyRenderTable trait, using the XmTEXT_RENDER_TABLE value
of the ancestor so found.

XmNresizeWidth
If False (default), the TextField widget will not expand horizontally to fit its text.
If True, the widget tries to change its width.

XmNselectionArray
The array of possible actions caused by multiple mouse clicks. UIL does not
define these values for the Text widget. Possible values:

XmSELECT_POSITION /* single-click; reset position of insert cursor */
XmSELECT_WORD /* double-click; select a word */
XmSELECT_LINE /* triple-click; select a line */

XmNselectionArrayCount
The number of items in the array specified by XmNselectionArray.

XmNselectThreshold
The number of pixels the insertion cursor must be dragged during selection in
order to select the next character.

XmNvalue
The string value to display in the TextField widget, expressed as a char *. If
XmNvalue and XmNvalueWcs are both defined, XmNvalueWcs takes prece-
dence. Use XtSetValues() to copy string values to the internal buffer and use
XtGetValues() to return the value of the internal buffer.

XmNvalueWcs
In Motif 1.2 and later, the string value to display in the TextField widget,
expressed as a wchar_t *. If XmNvalue and XmNvalueWcs are both defined,
XmNvalueWcs takes precedence. Use XtSetValues() to copy string values to the
internal buffer and use XtGetValues() to return the value of the internal buffer.
This resource cannot be set in a resource file.

XmNverifyBell
If True, a bell will sound when a verification produces no action.

Motif and Xt Widget Classes

Motif Reference Manual 943

Callback Resources
TextField defines the same callback resources and references the same callback
structures as a single line Text widget.

Inherited Resources
TextField inherits the following resources. The resources are listed alphabeti-
cally, along with the superclass that defines them. TextField sets the default value
of XmNnavigationType to XmTAB_GROUP. The default value of XmNborder-
Width is reset to 0 by Primitive.

Translations
TextField has the same translation as a Text widget whose XmNeditMode
resource is set to XmSINGLE_LINE_EDIT.

Action Routines
TextField defines the same action routines as a Text widget whose XmNedit-
Mode resource is set to XmSINGLE_LINE_EDIT.

Resource Inherited From Resource Inherited From

XmNaccelerators Core XmNhighlightThickness XmPrimitive

XmNancestorSensitive Core XmNinitialResourcesPersistent Core

XmNbackground Core XmNlayoutDirection XmPrimitive

XmNbackgroundPixmap Core XmNmappedWhenManaged Core

XmNborderColor Core XmNnavigationType XmPrimitive

XmNborderPixmap Core XmNpopupHandlerCallback XmPrimitive

XmNborderWidth Core XmNscreen Core

XmNbottomShadowColor XmPrimitive XmNsensitive Core

XmNbottomShadowPixmap XmPrimitive XmNshadowThickness XmPrimitive

XmNcolormap Core XmNtopShadowColor XmPrimitive

XmNconvertCallback XmPrimitive XmNtopShadowPixmap XmPrimitive

XmNdepth Core XmNtranslations Core

XmNdestroyCallback Core XmNtraversalOn XmPrimitive

XmNforeground XmPrimitive XmNunitType XmPrimitive

XmNheight Core XmNuserData XmPrimitive

XmNhelpCallback XmPrimitive XmNwidth Core

XmNhighlightColor XmPrimitive XmNx Core

XmNhighlightOnEnter XmPrimitive XmNy Core

XmNhighlightPixmap XmPrimitive

Motif and Xt Widget Classes

Motif Reference Manual 944

See Also
XmCreate Object (1), XmTextClearSelection(1),
XmTextCopy(1), XmTextCut(1), XmTextGetBaseline(1),
XmTextGetCursorPosition(1), XmTextGetEditable(1),
XmTextGetInsertionPosition(1),
XmTextGetLastPosition(1), XmTextGetMaxLength(1),
XmTextGetSelection(1), XmTextGetSelectionPosition(1),
XmTextGetSelectionWcs(1), XmTextGetString(1),
XmTextGetStringWcs(1), XmTextGetSubstring(1),
XmTextGetSubstringWcs(1), XmTextInsert(1),
XmTextInsertWcs(1), XmTextPaste(1), XmTextPosToXY(1),
XmTextRemove(1), XmTextReplace(1),
XmTextReplaceWcs(1), XmTextScroll(1),
XmTextSetAddMode(1), XmTextSetCursorPosition(1),
XmTextSetEditable(1), XmTextSetHighlight(1),
XmTextSetInsertionPosition(1), XmTextSetMaxLength(1),
XmTextSetSelection(1), XmTextSetSource(1),
XmTextSetString(1), XmTextSetStringWcs(1),
XmTextSetTopCharacter(1), XmTextShowPosition(1),
XmTextXYToPos(1), Core(2), XmPrimitive(2),
XmPrintShell(2), XmRendition(2), XmText(2).

Motif and Xt Widget Classes

Motif Reference Manual 945

Name
XmToggleButton widget class – a button widget that maintains a Boolean state.

Synopsis

Public Header:
<Xm/ToggleB.h>

Class Name:
XmToggleButton

Class Hierarchy:
Core → XmPrimitive → XmLabel → XmToggleButton

Class Pointer:
xmToggleButtonWidgetClass

Instantiation:
widget = XmCreateToggleButton (parent, name,...)
or
widget = XtCreateWidget (name, xmToggleButtonWidgetClass,...)

Functions/Macros:
XmCreateToggleButton (), XmToggleButtonGetState (),
XmToggleButtonSetState (), XmToggleButtonSetValue (), XmIs-
ToggleButton ()

Description
A ToggleButton is a button that is either set or unset. ToggleButtons are typically
used in groups, called RadioBoxes and CheckBoxes, depending on the behavior
of the buttons. In a RadioBox, a ToggleButton displays one-of-many behavior,
which means that only one button in the group can be set at a time. When a but-
ton is selected, the previously selected button is unset. In a CheckBox, a Toggle-
Button displays n-of-many behavior, which means that any number of
ToggleButtons can be set at one time. ToggleButton uses an indicator to show its
state; the shape of the indicator specifies the type of behavior. A diamond-shaped
indicator is used for one-of-many ToggleButtons and a square-shaped indicator is
used for n-of-many ToggleButtons.

In Motif 2.0 and later, a ToggleButton can have three possible states: set, unset,
and indeterminate, depending upon the value of the XmNtoggleMode resource. If
the value is XmTOGGLE_BOOLEAN, the ToggleButton has the two states, set
and unset. If the value is XmTOGGLE_INDETERMINATE, the ToggleButton
has three states.

Traits
ToggleButton uses the XmQTmenuSystem and XmQTspecifyRenderTable traits.

Motif and Xt Widget Classes

Motif Reference Manual 946

New Resources
ToggleButton defines the following resources, all with CSG access:

XmNdetailShadowThickness
In Motif 2.0 and later, specifies the thickness of the shadow on the indicator. In
Motif 2.0 the default value is 2. In Motif 2.1 and later, the default value depends
upon the XmDisplay XmNenableThinThickness resource: if True the default is 1,
otherwise 2.

XmNfillOnSelect
If True, selection of this ToggleButton fills the indicator with the color given by
the XmNselectColor resource and switches the button’s top and bottom shadow
colors.

If the ToggleButton is unselected, the top and bottom shadow colors are
switched. In Motif 2.0 and later, the indicator is filled with the color given by the
XmNunselectColor resource.

If the ToggleButton is in the indeterminate state as specified by the XmNset
resource, the indicator is half filled with the XmNselectColor and half with the
XmNunselectColor values.

If fill on select is False, only the top and bottom shadow colors are switched.

Name Class Type Default

XmNdetailShadowThickness XmCDetailShadowThickness Dimension dynamic

XmNfillOnSelect XmCFillOnSelect Boolean dynamic

XmNindeterminate
InsensitivePixmap

XmCIndeterminate
InsensitivePixmap

Pixmap XmUNSPECIFIED_PIXMAP

XmNindeterminatePixmap XmCIndeterminatePixmap Pixmap XmUNSPECIFIED_PIXMAP

XmNindicatorOn XmCIndicatorOn unsigned char XmINDICATOR_FILL

XmNindicatorSize XmCIndicatorSize Dimension dynamic

XmNindicatorType XmCIndicatorType unsigned char dynamic

XmNselectColor XmCSelectColor Pixel dynamic

XmNselectInsensitivePixmap XmCSelectInsensitivePixmap Pixmap XmUNSPECIFIED_PIXMAP

XmNselectPixmap XmCSelectPixmap Pixmap XmUNSPECIFIED_PIXMAP

XmNset XmCSet unsigned char XmUNSET

XmNspacing XmCSpacing Dimension 4

XmNtoggleMode XmCToggleMode unsigned char XmTOGGLE_BOOLEAN

XmNunselectColor XmCUnselectColor Pixel dynamic

XmNvisibleWhenOff XmCVisibleWhenOff Boolean dynamic

Motif and Xt Widget Classes

Motif Reference Manual 947

When XmNindicatorOn is XmINDICATOR_NONE, XmNfillOnSelect is True,
and XmNset is XmSET, the background of the entire button is filled with the
XmNselectColor.

In Motif 1.2 and earlier, the default value is set to the value of XmNindicatorOn.
In Motif 2.0 and later, the default depends upon both XmNindicatorOn and
XmNindicatorType resources.

XmNindeterminateInsensitivePixmap
Specifies the pixmap to use if XmNset is XmINDETERMINATE and the Toggle
is insensitive. The resource has no effect if the inherited Label resource XmNlab-
elType is XmSTRING.

XmNindeterminatePixmap
Specifies the pixmap to use if XmNset is XmINDETERMINATE and the Toggle
is sensitive. The resource has no effect if the inherited Label resource XmNlabel-
Type is XmSTRING.

XmNindicatorOn
In Motif 1.2 and earlier, the resource is a Boolean value. If True (default), the
indicator is visible and its shadows are switched when the button is toggled. If
False, the indicator is invisible and no space is set aside for it; in addition, the
shadows surrounding the button are switched when it is toggled.
In Motif 2.0 and later, the resource is an enumerated type, and it specifies the
type of indicator required. Possible values:

XmINDICATOR_NONE /* no indicator */
XmINDICATOR_FILL /* check box or box */
XmINDICATOR_BOX /* shadowed box, in Motif 2.1 */
XmINDICATOR_CHECK /* checkmark */
XmINDICATOR_CHECK_BOX /* checkmark enclosed in a box */
XmINDICATOR_CROSS /* cross */
XmINDICATOR_CROSS_BOX /* cross enclosed in a box */

If the value of the XmDisplay object’s XmNenableToggleVisual resource is True,
XmINDICATOR_FILL is equivalent to XmINDICATOR_CHECK_BOX, other-
wise XmINDICATOR_BOX.

XmNindicatorSize
The size of the indicator. This value changes if the size of the button’s text string
or pixmap changes.

Motif and Xt Widget Classes

Motif Reference Manual 948

XmNindicatorType
Determines whether the indicator is drawn as a diamond (signifying a
one-of-many indicator) or as a square (signifying an n-of-many indicator). Possi-
ble values:

XmN_OF_MANY /* creates a square button */
XmONE_OF_MANY /* creates either round- or diamond-shaped button */
XmONE_OF_MANY_ROUND /* creates a round-shaped button (2.0) */
XmONE_OF_MANY_DIAMOND /* creates a diamond-shaped button (2.1) */

In Motif 2.0, the value XmONE_OF_MANY is diamond shaped. In Motif 2.1,
XmONE_OF_MANY produces either a diamond or a round shape, depending
upon the value of the XmDisplay XmNenableToggleVisual resource. If this is
True, the shape is round. The default value is XmONE_OF_MANY for a Toggle-
Button in a RadioBox widget, and XmN_OF_MANY otherwise. This resource
only sets the indicator; it is RowColumn’s XmNradioBehavior resource that actu-
ally enforces radioButton or checkButton behavior.

XmNselectColor
The color with which to fill the indicator when the button is selected. On a color
display, the default is a value between the background color and the bottom
shadow color; on a monochrome display, the default is the foreground color.

In Motif 2.0 and later, the following Pixel values are pre-defined for special
meaning:

XmDEFAULT_SELECT_COLOR /* a color between the background */
/* and bottom shadow */

XmREVERSED_GROUND_COLORS /* select is foreground, */
/* text drawn in background */

XmHIGHLIGHT_COLOR /* select color same as highlight color */

XmNselectInsensitivePixmap
The pixmap used for an insensitive ToggleButton when it’s selected. An unse-
lected, insensitive ToggleButton uses the pixmap specified by the Label resource
XmNlabelInsensitivePixmap. However, if this Label resource wasn’t specified, it
is set to the value of XmNselectInsensitivePixmap. This resource is meaningful
only when the Label resource XmNlabelType is set to XmPIXMAP.

XmNselectPixmap
The pixmap used for a (sensitive) ToggleButton when it’s selected. An unselected
ToggleButton uses the pixmap specified by the Label resource XmNlabelPixmap.
This resource is meaningful only when the Label resource XmNlabelType is set
to XmPIXMAP.

Motif and Xt Widget Classes

Motif Reference Manual 949

XmNset
The selection state of the button. In Motif 1.2 and earlier, a simple Boolean value.
In Motif 2.0 and later, a Toggle can be in three states: on, off, and indeterminate,
and this resource is changed to an enumerated type. Possible values:

XmUNSET
XmSET
XmINDETERMINATE

If XmNtoggleMode is XmTOGGLE_INDETERMINATE, the Toggle cycles
between XmSET, XmINDETERMINATE, XmUNSET, and then back to XmSET
when pressed. If toggle mode is XmTOGGLE_BOOLEAN, the widget simply
cycles between XmSET and XmUNSET.

Note that not all versions of Motif 2.1 allow the enumerated values to be speci-
fied in an external resource file. Version 2.1.30 sources have the problem fixed.

XmNspacing
The distance between the Toggle indicator and its label.

XmNtoggleMode
In Motif 2.0 and later, specifies whether the Toggle has two or three states. Possi-
ble values:

XmTOGGLE_BOOLEAN /* two states */
XmTOGGLE_INDETERMINATE /* three states */

XmNunselectColor
In Motif 2.0 and later, specifies a color for filling the indicator shape. The
resource behaves similarly to XmNselectColor, except that it is effective when
XmNset is XmUNSET.

XmNvisibleWhenOff
If True, the Toggle indicator remains visible when the button is unselected. This
is the default behavior in a RadioBox. The default is False in a menu.

Callback Resources
ToggleButton defines the following callback resources:

XmNarmCallback
List of callbacks that are called when BSelect is pressed while the pointer is
inside the widget.

Callback Reason Constant

XmNarmCallback XmCR_ARM

XmNdisarmCallback XmCR_DISARM

XmNvalueChangedCallback XmCR_ACTIVATE

Motif and Xt Widget Classes

Motif Reference Manual 950

XmNdisarmCallback
List of callbacks that are called when BSelect is released after it has been pressed
inside the widget.

XmNvalueChangedCallback
List of callbacks that are called when the value of the ToggleButton is changed.

Callback Structure
Each callback function is passed the following structure:

typedef struct {
int reason; /* the reason that the callback was called */
XEvent *event; /* points to event that triggered callback */
int set; /* the state of the button */

} XmToggleButtonCallbackStruct;

set indicates the state of the Toggle, and is one of XmSET, XmUNSET, or XmIN-
DETERMINATE.

Inherited Resources
ToggleButton inherits the following resources. The resources are listed alphabet-
ically, along with the superclass that defines them. ToggleButton sets the default
values of XmNmarginBottom, XmNmarginTop, XmNmarginWidth, and XmN-
shadowThickness dynamically. The default value of XmNborderWidth is reset
to 0 by Primitive. In Motif 2.0 and earlier, the default value of XmNhighlight-
Thickness is reset to 2. In Motif 2.1 and later, the default value depends upon the
XmDisplay XmNenableThinThickness resource: if True the default is 1, other-
wise 2.

Resource Inherited From Resource Inherited From

XmNaccelerator XmLabel XmNlabelType XmLabel

XmNaccelerators Core XmNlayoutDirection XmPrimitive

XmNacceleratorText XmLabel XmNmappedWhenManaged Core

XmNalignment XmLabel XmNmarginBottom XmLabel

XmNancestorSensitive Core XmNmarginHeight XmLabel

XmNbackground Core XmNmarginLeft XmLabel

XmNbackgroundPixmap Core XmNmarginRight XmLabel

XmNborderColor Core XmNmarginTop XmLabel

XmNborderPixmap Core XmNmarginWidth XmLabel

XmNborderWidth Core XmNmnemonicCharSet XmLabel

XmNbottomShadowColor XmPrimitive XmNmnemonic XmLabel

XmNbottomShadowPixmap XmPrimitive XmNnavigationType XmPrimitive

Motif and Xt Widget Classes

Motif Reference Manual 951

Translations
The translations for ToggleButton include those from Primitive. In addition, Tog-
gleButtons that are not in a menu system have the following translations:

For ToggleButtons that are in a menu system, translations include the menu
traversal translations inherited from the Label widget, as well as the following:

XmNcolormap Core XmNpopupHandlerCallback XmPrimitive

XmNconvertCallback XmPrimitive XmNrecomputeSize XmLabel

XmNdepth Core XmNrenderTable XmLabel

XmNdestroyCallback Core XmNscreen Core

XmNfontList XmLabel XmNsensitive Core

XmNforeground XmPrimitive XmNshadowThickness XmPrimitive

XmNheight Core XmNstringDirection XmLabel

XmNhelpCallback XmPrimitive XmNtopShadowColor XmPrimitive

XmNhighlightColor XmPrimitive XmNtopShadowPixmap XmPrimitive

XmNhighlightOnEnter XmPrimitive XmNtranslations Core

XmNhighlightPixmap XmPrimitive XmNtraversalOn XmPrimitive

XmNhighlightThickness XmPrimitive XmNunitType XmPrimitive

XmNinitialResourcesPersistent Core XmNuserData XmPrimitive

XmNlabelInsensitivePixmap XmLabel XmNwidth Core

XmNlabelPixmap XmLabel XmNx Core

XmNlabelString XmLabel XmNy Core

Event Action

BTransfer Press ProcessDrag()

BSelect Press Arm()

MCtrl BSelect Press ButtonTakeFocus()

BSelect Release Select()
Disarm()

KHelp Help()

KSelect ArmAndActivate()

Event Action

MCtrl BSelect Press MenuButtonTakeFocus()

BSelect Press BtnDown()

Resource Inherited From Resource Inherited From

Motif and Xt Widget Classes

Motif Reference Manual 952

Action Routines
ToggleButton defines the following action routines:

Arm()
Sets the button if it was previously unset, unsets the button if it was
previously set, and invokes the callbacks specified by XmNarm-
Callback. Setting the button means displaying it so that it appears
selected. The selected state can be shown by: Highlighting the indi-
cator so it appears pressed in. Filling in the indicator (using the
color given by XmNselectColor). Highlighting the button so it
appears pressed in. (This is done only if the indicator isn’t dis-
played). Drawing the button face using the pixmap given by
XmNselectPixmap.

The unselected state can be shown by: Highlighting the indicator so
it appears raised. Filling in the indicator with the background color.
Highlighting the button so it appears raised. (This is done only if
the indicator isn’t displayed). Drawing the button face using the
pixmap given by XmNlabelPixmap.

ArmAndActivate()
Sets the button if it was previously unset, unsets the button if it was
previously set, and invokes the callbacks specified by XmNarm-
Callback (if the button isn’t yet armed), XmNvalueChangedCall-
back, and XmNdisarmCallback. Inside a menu, this action unposts
the menu hierarchy. Outside a menu, this action displays the button
as selected or unselected, as described for Arm().

BtnDown()
Unposts any menus that were posted by the parent menu of the Tog-
gleButton, changes from keyboard traversal to mouse traversal,
draws a shadow to show the ToggleButton as armed, and (assuming
the button is not yet armed) invokes the callbacks specified by
XmNarmCallback.

BSelect Release BtnUp()

KHelp Help()

KActivate ArmAndActivate()

KSelect ArmAndActivate()

MAny KCancel MenuShellPopdownOne()

Event Action

Motif and Xt Widget Classes

Motif Reference Manual 953

BtnUp()
Unposts the menu hierarchy, changes the ToggleButton’s state, and
invokes first the callbacks specified by XmNvalueChangedCallback
and then those specified by XmNdisarmCallback.

ButtonTakeFocus()
In Motif 2.0 and later, moves the current keyboard focus to the Tog-
gleButton, without activating the widget.

Disarm()
Invokes the callbacks specified by XmNdisarmCallback.

Help()
Unposts the menu hierarchy, restores the previous keyboard focus,
and invokes the callbacks specified by the XmNhelpCallback
resource.

MenuButtonTakeFocus()
In Motif 2.0 and later, moves the current keyboard focus to the Tog-
gleButton, without activating the widget.

MenuShellPopdownOne()
Unposts the current menu and (unless the menu is a pulldown sub-
menu) restores keyboard focus to the tab group or widget that previ-
ously had it. In a top-level pulldown menu pane attached to a menu
bar, this action routine also disarms the cascade button and the
menu bar.

ProcessDrag()
In Motif 1.2, initiates a drag and drop operation using the label of
the ToggleButton.

Select()
Switches the state of the ToggleButton and invokes the callbacks
specified by the resource XmNvalueChangedCallback.

Additional Behavior
ToggleButton has the following additional behavior:

<EnterWindow>
Displays the ToggleButton as armed.

<LeaveWindow>
Displays the ToggleButton as unarmed.

Motif and Xt Widget Classes

Motif Reference Manual 954

See Also
XmCreateObject (1), XmToggleButtonGetState (1),
XmToggleButtonSetState (1), XmToggleButtonSetValue(1),
XmToggleButtonGetValue(1),Core (2), XmPrimitive (2),
XmLabel (2), XmCheckBox (2), XmRadioBox (2), XmRowColumn (2).

Motif and Xt Widget Classes

Motif Reference Manual 955

Name
XmToggleButtonGadget widget class – a button gadget that maintains a Boolean
state.

Synopsis

Public Header:
<Xm/ToggleBG.h>

Class Name:
XmToggleButtonGadget

Class Hierarchy:
Object → RectObj → XmGadget → XmLabelGadget → XmToggleButton-
Gadget

Class Pointer:
xmToggleButtonGadgetClass

Instantiation:
widget = XmCreateToggleButtonGadget (parent, name,...)
or
widget = XtCreateWidget (name, xmToggleButtonGadgetClass,...)

Functions/Macros:
XmCreateToggleButtonGadget (), XmToggleButtonGadgetGet-
State (),
XmToggleButtonGadgetSetState (), XmToggleButtonGadgetSet-
Value (),
XmIsToggleButtonGadget ()

Description
ToggleButtonGadget is the gadget variant of ToggleButton.

ToggleButtonGadget’s new resources, callback resources, and callback structure
are the same as those for ToggleButton.

Traits
ToggleButtonGadget holds the XmQTcareParentVisual trait, which is inherited
in any derived classes, and clones the XmQTmenuSavvy trait from the Label-
Gadget class. In addition, the widget uses the XmQTmenuSystem and XmQT-
specifyRenderTable traits.

Motif and Xt Widget Classes

Motif Reference Manual 956

Inherited Resources
ToggleButtonGadget inherits the following resources. The resources are listed
alphabetically, along with the superclass that defines them. ToggleButtonGadget

sets the default values of XmNmarginBottom1, XmNmarginTop, XmNmargin-
Width, and XmNshadowThickness dynamically. The default value of XmNbor-
derWidth is reset to 0 by Primitive.

Behavior
As a gadget subclass, ToggleButtonGadget has no translations associated with it.
However, ToggleButtonGadget behavior corresponds to the action routines of the
ToggleButton widget. See the ToggleButton action routines for more informa-
tion.

1.Erroneously given as XmNmarginBotton in 1st and 2nd editions.

Resource Inherited From Resource Inherited From

XmNancestorSensitive RectObj XmNhighlightThickness XmGadget

XmNbackground XmGadget XmNlayoutDirection XmGadget

XmNbackgroundPixmap XmGadget XmNnavigationType XmGadget

XmNbottomShadowColor XmGadget XmNsensitive RectObj

XmNbottomShadowPixmap XmGadget XmNshadowThickness XmGadget

XmNborderWidth RectObj XmNtopShadowColor XmGadget

XmNdestroyCallback Object XmNtopShadowPixmap XmGadget

XmNforeground XmGadget XmNtraversalOn XmGadget

XmNheight RectObj XmNunitType XmGadget

XmNhelpCallback XmGadget XmNuserData XmGadget

XmNhighlightColor XmGadget XmNwidth RectObj

XmNhighlightOnEnter XmGadget XmNx RectObj

XmNhighlightPixmap XmGadget XmNy RectObj

Event Action

BTransfer Press ProcessDrag()

BSelect Press Arm()
BtnDown() in a menu

BSelect Release Select(), Disarm()
BtnUp() in a menu

KActivate ArmAndActivate()

KSelect ArmAndActivate()

Motif and Xt Widget Classes

Motif Reference Manual 957

ToggleButtonGadget has additional behavior associated with <Enter> and
<Leave>, which draw the shadow in the armed or unarmed state, respectively.

See Also
XmCreateObject (1), XmToggleButtonGetState (1),
XmToggleButtonSetState (1), XmToggleButtonGadgetSetValue(1),
XmToggleButtonGadgetSetValue(1), Object (2), RectObj (2),
XmCheckBox (2), XmGadget (2), XmLabelGadget (2), XmRadioBox (2),
XmRowColumn (2), XmToggleButton (2).

KHelp Help()

MAny KCancel MenuShellPopdownOne()

MCtrl BSelect Press ButtonTakeFocus()
MenuButtonTakeFocus() in a menu

Event Action

Motif and Xt Widget Classes

Motif Reference Manual 958

Name
XmWarningDialog – an unmanaged MessageBox as a child of a DialogShell.

Synopsis

Public Header:
<Xm/MessageB.h>

Instantiation:
widget = XmCreateWarningDialog (parent, name,...)

Functions/Macros:
XmCreateWarningDialog (), XmMessageBoxGetChild ()

Description
An XmWarningDialog is a compound object created by a call to XmCreate-
WarningDialog () that an application can use to warn the user about a poten-
tially hazardous action. A WarningDialog consists of a DialogShell with an
unmanaged MessageBox widget as its child. The MessageBox resource XmNdi-
alogType is set to XmDIALOG_WARNING.

A WarningDialog includes four components: a symbol, a message, three buttons,
and a separator between the message and the buttons. By default, the symbol is
an exclamation point. In Motif 1.2, the default button labels can be localized. In
the C locale, and in Motif 1.1, the PushButtons are labelled OK , Cancel, and
Help by default.

Default Resource Values
A WarningDialog sets the following default values for MessageBox resources:

Widget Hierarchy
When a WarningDialog is created with a specified name, the DialogShell is
named name_popup and the MessageBox is called name.

See Also
XmCreateObject (1), XmMessageBoxGetChild (1),
XmDialogShell (2), XmMessageBox (2).

Name Default

XmNdialogType XmDIALOG_WARNING

XmNsymbolPixmap xm_warning

Motif and Xt Widget Classes

Motif Reference Manual 959

Name
XmWorkingDialog – an unmanaged MessageBox as a child of a DialogShell.

Synopsis

Public Header:
<Xm/MessageB.h>

Instantiation:
widget = XmCreateWorkingDialog (parent, name,...)

Functions/Macros:
XmCreateWorkingDialog (), XmMessageBoxGetChild ()

Description
An XmWorkingDialog is a compound object created by a call to XmCreate-
WorkingDialog () that an application can use to warn the user that the current
action is in progress, and likely to take some time. A WorkingDialog consists of a
DialogShell with an unmanaged MessageBox widget as its child. The Message-

Box resource XmNdialogType is set to XmDIALOG_WORKING.1

A WorkingDialog includes four components: a symbol, a message, three buttons,
and a separator between the message and the buttons. By default, the symbol is
an hourglass. In Motif 1.2, the default button labels can be localized. In the C
locale, and in Motif 1.1, the PushButtons are labelled OK , Cancel, and Help by
default.

Default Resource Values
A WorkingDialog sets the following default values for MessageBox resources:

Widget Hierarchy
When a WorkingDialog is created with a specified name, the DialogShell is
named name_popup and the MessageBox is called name.

See Also
XmCreateObject (1), XmMessageBoxGetChild (1),
XmDialogShell (2), XmMessageBox (2).

1.In the 1st and 2nd editions, this paragraph erroneously duplicated that of the XmWarningDialog description.

Name Default

XmNdialogType XmDIALOG_WORKING

XmNsymbolPixmap xm_working

Motif and Xt Widget Classes

Motif Reference Manual 960

Motif Reference Manual 961

Section 3 - Mrm Functions

This page describes the format and contents of each reference page in Section 3,
which covers the Motif Resource Manager (Mrm) functions.

Name
Function – a brief description of the function.

Synopsis

This section shows the signature of the function: the names and types of the argu-
ments, and the type of the return value. The header file <Mrm/MrmPublic.h>
declares all of the public Mrm functions.

Inputs
This subsection describes each of the function arguments that pass information to
the function.

Outputs
This subsection describes any of the function arguments that are used to return
information from the function. These arguments are always of some pointer type,
so you should use the C address-of operator (&) to pass the address of the varia-
ble in which the function will store the return value. The names of these argu-
ments are sometimes suffixed with _return to indicate that values are returned in
them. Some arguments both supply and return a value; they will be listed in this
section and in the "Inputs" section above. Finally, note that because the list of
function arguments is broken into "Input" and "Output" sections, they do not
always appear in the same order that they are passed to the function. See the
function signature for the actual calling order.

Returns
This subsection explains the return values of the function. Mrm functions typi-
cally return one of the following values: MrmSUCCESS,
MrmPARTIAL_SUCCESS, MrmBAD_HIERARCHY, MrmNOT_FOUND,
MrmWRONG_TYPE, MrmNOT_VALID, MrmDISPLAY_NOT_OPENED, or
MrmFAILURE. To be safe, you should check the return value against MrmSUC-
CESS or MrmPARTIAL_SUCCESS, and then check for specific errors on non-
success. When an error occurs, the functions call XtWarning () with a descrip-
tive error message.

Availability
This section appears for functions that were added in Motif 2.0 or later, and also
for functions that are now superseded by other, preferred, functions.

Introduction Mrm Functions

962 Motif Reference Manual

Description
This section explains what the function does and describes its arguments and
return value. If you’ve used the function before and are just looking for a
refresher, this section and the synopsis above should be all you need.

Usage
This section appears for most functions and provides less formal information
about the function: when and how you might want to use it, things to watch out
for, and related functions that you might want to consider.

Example
This section provides an example of the use of the function. It also shows the cor-
responding UIL code needed for the example.

Structures
This section shows the definition of any structures, enumerated types, typedefs,
or symbolic constants used by the function.

Procedures
This section shows the syntax of any prototype procedures used by the function.

See Also
This section refers you to related functions, UIL file format sections, and UIL
data types. The numbers in parentheses following each reference refer to the sec-
tions of this book in which they are found.

Mrm Functions MrmCloseHierarchy

Motif Reference Manual 963

Name
MrmCloseHierarchy – close an Mrm hierarchy.

Synopsis

#include <Mrm/MrmPublic.h>

Cardinal MrmCloseHierarchy (MrmHierarchy hierarchy)

Inputs
hierarchy Specifies an Mrm hierarchy obtained from a previous call to

MrmOpenHierarchy() or MrmOpenHierarchyPerDisplay().

Returns
MrmSUCCESS On success.
MrmBAD_HIERARCHY If hierarchy is NULL or does not point to a valid
Mrm hierarchy.
MrmFAILURE On failure.

Description
MrmCloseHierarchy () closes an Mrm hierarchy that has been previously
opened with a call to MrmOpenHierarchy () or MrmOpenHierarchyPer-
Display (). The UID files associated with the hierarchy are closed and the
memory used by the hierarchy is freed. However, as of Motif 1.2, the memory
used by Mrm to register any values or procedures with MrmRegisterNames-
InHierarchy () is not freed.

Usage
An application calls MrmCloseHierarchy () when it is done accessing an
Mrm hierarchy in order to free file descriptions and memory consumed by the
hierarchy. As of Motif 1.2, this function cannot fail; it always returns MrmSUC-
CESS or MrmBAD_HIERARCHY.

Example
The following code fragment illustrates the use of MrmCloseHierarchy ():

...
extern MrmHierarchy hierarchy; /* Previously opened Mrm hierarchy. */

if (MrmCloseHierarchy (hierarchy) != MrmSUCCESS)
error_handler();

hierarchy = NULL; /* Protect from future misuse. */
...

See Also
MrmOpenHierarchy (3), MrmOpenHierarchyPerDisplay (3).

MrmFetchBitmapLiteral Mrm Functions

964 Motif Reference Manual

Name
MrmFetchBitmapLiteral – retrieve an exported bitmap from an Mrm hierarchy.

Synopsis

#include <Mrm/MrmPublic.h>

Cardinal MrmFetchBitmapLiteral1 (MrmHierarchyhierarchy,
String name,
Screen *screen,
Display *display,
Pixmap *pixmap,
Dimension *width,
Dimension *height)

Inputs
hierarchy Specifies an Mrm hierarchy obtained from a previous call to

MrmOpenHierarchy() or MrmOpenHierarchyPerDisplay().
name Specifies the name of an icon to retrieve as a bitmap.
screen Specifies the screen of the display on which the pixmap is created.
display Specifies the display on which the pixmap is created.

Outputs
pixmap Returns the specified bitmap as a pixmap of depth 1 on the speci-

fied screen of the specified display.
width Returns the width of the pixmap.
height Returns the height of the pixmap.

Returns
MrmSUCCESS On success.
MrmBAD_HIERARCHY If hierarchy is NULL or does not point to a valid

Mrm hierarchy.
MrmNOT_FOUND If the icon is not found.
MrmWRONG_TYPE If the named value is not an icon.
MrmNOT_VALID If the icon uses a color table which contains

colors other than foreground- color and back-
ground- color.

MrmFAILURE On failure.

Availability
Motif 1.2 and later.

Description

1.Erroneously given as MrFetchBitmapLiteral in 1st edition.

Mrm Functions MrmFetchBitmapLiteral

Motif Reference Manual 965

MrmFetchBitmapLiteral () retrieves the named icon and converts it to a
pixmap of depth 1 on the specified screen of the specified display. The icon must
be defined as an exported value in a UIL source module. Foreground color pixels
in the icon are set to 1 in the pixmap and background color pixels in the icon are
set to 0 (zero) in the pixmap. The application is responsible for freeing the pix-
map using XFreePixmap ().

Usage
An icon retrieved with MrmFetchBitmapLiteral () can only use the special
colors foreground color and background color in its color table. If the color table
contains any other colors, MrmFetchBitmapLiteral () fails and returns
MrmNOT_VALID.

As of Motif 1.2, values of type xbitmapfile cannot be converted to a pixmap using
this function. xbitmapfile values can only be retrieved using MrmFetchIconL-
iteral ().

Example
The following UIL and C code fragments show the retrieval of a bitmap from an
Mrm hierarchy:

UIL:
...
! Declare a cursor icon using the default color table.
 value

resize_down : exported icon (’********’,
“ ** ’,
 ’ ** ’,
’** ** **’,
’ ****** ’,
’ ** ’);

...

C:
...
extern MrmHierarchy hierarchy; /* Previously opened hierarchy. */
extern Widget w; /* Previously created widget. */

Pixmap cursor_bits;
Dimension width, height;
Cardinal status;
static XColor white = { 0, ~0, ~0, ~0, DoRed | DoGreen | DoBlue };
static XColor black = { 0, 0, 0, 0, DoRed | DoGreen | DoBlue };

/* Get the icon as a pixmap of depth 1. */

MrmFetchBitmapLiteral Mrm Functions

966 Motif Reference Manual

status = MrmFetchBitmapLiteral (hierarchy, "resize_down", XtScreen
(w), XtDisplay (w), &cursor_bits,
&width, &height);

if (status != MrmSUCCESS)
error_handler();

else {
/* Create a cursor using the pixmap. */
cursor = XCreatePixmapCursor (XtDisplay (w), cursor_bits,

cursor_bits, &black, &white,
width/2, height-1);

/* Set the cursor in the widget. */
XDefineCursor (XtWindow (w), cursor);

}
...

See Also
MrmFetchIconLiteral (3), MrmFetchLiteral (3), value (5),
color_table (6), icon (6), xbitmapfile (6).

Mrm Functions MrmFetchColorLiteral

Motif Reference Manual 967

Name
MrmFetchColorLiteral – retrieve an exported color value from an Mrm hierarchy.

Synopsis

#include <Mrm/MrmPublic.h>

Cardinal MrmFetchColorLiteral (MrmHierarchy hierarchy,
String name,
Display *display,
Colormap colormap,
Pixel *pixel)

Inputs
hierarchy Specifies an Mrm hierarchy obtained from a previous call to

MrmOpenHierarchy() or MrmOpenHierarchyPerDisplay().
name Specifies the name of the color to retrieve.
display Specifies the display.
colormap Specifies the colormap in which the color is allocated.

Outputs
pixel Returns a pixel value for the named color.

Returns
MrmSUCCESS On success.
MrmBAD_HIERARCHY If hierarchy is NULL or does not point to a valid

Mrm hierarchy.
MrmNOT_FOUND If the specified color is not found or cannot be allo-

cated.
MrmWRONG_TYPE If the named value is not a color or rgb value.
MrmFAILURE On failure.

Description
MrmFetchColorLiteral () retrieves a named color value and attempts to
allocate a color cell containing it. The color must be defined as an exported value
in a UIL source module. The color cell is allocated with XAllocColor () if the
type of the value is rgb or with XAllocNamedColor if the type of the value is
color. The colormap argument is used as a parameter to these functions. If color-
map is NULL, Mrm uses the colormap returned by the DefaultColormap ()
macro.

Usage
If the color cannot be allocated because the specified colormap is full, Mrm-
FetchColorLiteral () fails and returns MrmNOT_FOUND, not MrmFAIL-
URE. The OSF documentation claims that when a color cannot be allocated,
black or white is substituted. This was not true of Motif 1.2 variants: this transla-

MrmFetchColorLiteral Mrm Functions

968 Motif Reference Manual

tion did not take place, and you had to handle the error yourself. In Motif 2.1,
however, MrmFetchColorLiteral() most certainly does substitute XBlackPix-
elOfScreen () if XAllocColor () fails; it does not use XWhitePixelOf-
Screen ().

Example
The following UIL and C code fragments show the retrieval of color values from
an Mrm hierarchy:

UIL:
...
value
foreground : exported rgb (255, 167, 0);
background : exported color (’mutant ninja turtle’);
...

C:
Widget toplevel; /* Previously created widget. */
MrmHierarchy hierarchy; /* Previously opened Mrm hierarchy. */
Pixel foreground, background;
Cardinal status;
...
status = MrmFetchColorLiteral (hierarchy, "foreground", XtDisplay
(toplevel),

NULL, &foreground);
if (status != MrmSUCCESS)

error_handler();
status = MrmFetchColorLiteral (hierarchy, "background", XtDisplay
(toplevel),

NULL, &background);
if (status != MrmSUCCESS)

error_handler();
...

See Also
MrmFetchBitmapLiteral (3), MrmFetchIconLiteral (3),
MrmFetchLiteral (3), value (5), color (6), color_table (6), rgb (6).

Mrm Functions MrmFetchIconLiteral

Motif Reference Manual 969

Name
MrmFetchIconLiteral – retrieve an exported icon from an Mrm hierarchy.

Synopsis

#include <Mrm/MrmPublic.h>

Cardinal MrmFetchIconLiteral (MrmHierarchy hierarchy,
String name,
Screen *screen,
Display *display,
Pixel foreground,
Pixel background,
Pixmap *pixmap)

Inputs
hierarchy Specifies an Mrm hierarchy obtained from a previous call to

MrmOpenHierarchy() or MrmOpenHierarchyPerDisplay().
name Specifies the name of an icon or xbitmapfile to retrieve.
screen Specifies the screen of the display on which the pixmap is cre-

ated.
display Specifies the display.
foreground Specifies the foreground color to use for the pixmap.
background Specifies the background color to use for the pixmap.

Outputs
pixmap Returns a pixmap created on the specified screen and display.

Returns
MrmSUCCESS On success.
MrmBAD_HIERARCHY If hierarchy is NULL or does not point to a valid

Mrm hierarchy.
MrmNOT_FOUND If the specified icon or xbitmapfile is not found or a

color in the icon’s color table cannot be allocated.
MrmWRONG_TYPE If the named value is not an icon or xbitmapfile

value.
MrmFAILURE On failure.

Description
MrmFetchIconLiteral () retrieves the named icon or xbitmapfile value and
attempts to convert it to a pixmap on the specified screen of the display. The icon
or xbitmap-file must be defined as an exported value in a UIL source module. The
foreground pixel argument is used as the color for foreground pixels in an icon
and pixels set to 1 in an xbitmapfile. The background pixel argument is used as
the color for background pixels in an icon and pixels set to 0 (zero) in an xbit-
mapfile. Additional colors used by an icon are allocated in the colormap returned

MrmFetchIconLiteral Mrm Functions

970 Motif Reference Manual

by the DefaultColormap () macro. The application is responsible for freeing
the pixmap using XFreePixmap ().

Usage
If a color cannot be allocated because the specified colormap is full, MrmFet-
chIconLiteral () fails and returns MrmNOT_FOUND, not MrmFAILURE.
The OSF documentation claims that when a color cannot be allocated, black or
while is substituted, but in Motif 1.2 this translation did not take place, so you
had to handle the error yourself. In Motif 2.1, XBlackPixelOfScreen () is
used as a substitute if XAllocColor () fails; it does not use a corresponding
XWhitePixelOfScreen ().

Example
The following UIL and C code fragments illustrate the retrieval of a pixmap from
an Mrm hierarchy:

UIL:
...
! Declare an icon using the default color table
value

box : exported icon (’****’,
’* *’,
’* *’,
’****’);

...

C:
extern MrmHierarchy hierarchy; /* Previously opened */

/* hierarchy. */
extern Widget drawing_area; /* Previously created */

/* widget. */
extern GC drawing_area_gc; /* Previously defined */

/* graphics context. */
Pixel foreground, background;
Pixmap box_pixmap;
unsigned int box_width, box_height;
unsigned int dont_care;
Cardinal status;

/* Get values to use for pixmap foreground and background. */
XtVaGetValues (drawing_area, XmNforeground, &foreground,

XmNbackground, &background,
NULL);

/* Create the pixmap from the box icon in the hierarchy. */

Mrm Functions MrmFetchIconLiteral

Motif Reference Manual 971

status = MrmFetchIconLiteral (hierarchy, "box", XtScreen
(drawing_area),

XtDisplay (drawing_area), fore-
ground, background, &box_pixmap);

if (status != MrmSUCCESS)
error_handler();

else {
/* Get the size of the pixmap. */
XGetGeometry (XtDisplay (drawing_area), box_pixmap, (Window
*) &dont_care,

(int *) &dont_care, (int *) &dont_care,
&box_width, &box_height, &dont_care,
&dont_care);

/* Draw the box in the drawing area. */
XCopyArea (XtDisplay (drawing_area), box_pixmap, XtWindow

(drawing_area), drawing_area_gc, 0, 0,
box_width, box_height, 10, 10);

/* Free the pixmap. */
XFreePixmap (box_pixmap);

}

See Also
MrmFetchBitmapLiteral (3), MrmFetchColorLiteral (3),
MrmFetchLiteral (3), value (5), color (6), color_table (6),
icon (6), rgb (6), xbitmapfile (6).

MrmFetchLiteral Mrm Functions

972 Motif Reference Manual

Name
MrmFetchLiteral – retrieve an exported value from an Mrm hierarchy.

Synopsis

#include <Mrm/MrmPublic.h>

Cardinal MrmFetchLiteral (MrmHierarchy hierarchy,
String name,
Display *display,
XtPointer *value,
MrmCode *type)

Inputs
hierarchy Specifies an Mrm hierarchy obtained from a previous call to

MrmOpenHierarchy() or MrmOpenHierarchyPerDisplay().
name Specifies the name of the value to retrieve.
display Specifies the display.

Outputs
value Returns a pointer to the value with the specified name.
type Returns the type of the value retrieved.

Returns
MrmSUCCESS On success.
MrmBAD_HIERARCHY If hierarchy is NULL or does not point to a valid

Mrm hierarchy.
MrmNOT_FOUND If the specified value is not found.
MrmWRONG_TYPE If the type of the value specified cannot be con-

verted by this procedure.

Description
MrmFetchLiteral () retrieves the named value and its type from the specified
Mrm hierarchy. The value must be defined as an exported value in a UIL source
module. The display argument is used to convert values of type font, fontset, and
font_table. On success, this routine returns a pointer to the named value and the
type of the value. The possible type values begin with MrmRtype and are defined
in the include file <Mrm/MrmPublic.h>. The application is responsible for free-
ing the returned value, except when it is a font or a fontset. font and fontset val-
ues are cached by Mrm and freed when the display is closed.

Usage
MrmFetchLiteral () cannot be used to retrieve values of certain types. You
should retrieve icon values with MrmFetchIconLiteral () or MrmFetch-
BitmapLiteral (), xbitmapfile values with MrmFetchIconLiteral(), and color
or rgb values with MrmFetchColorLiteral ().

Mrm Functions MrmFetchLiteral

Motif Reference Manual 973

The storage allocated by Mrm for a boolean value is sizeof(int) not
sizeof(Boolean). Because sizeof(Boolean) is less than sizeof(int) on many sys-
tems, applications should use an int pointer rather than a Boolean pointer as the
value argument when retrieving a boolean.

Example
The following UIL and C code fragments illustrate the use of MrmFetchLiteral()
to fetch various values from an Mrm hierarchy:

UIL:
...
value

int_val : 10;
string_val : ’okemo’;
...

C:
...
extern MrmHierarchy hierarchy; /* Previously opened hierarchy. */
extern Display *display; /* Previously opened display. */
int *int_ptr;
String string;
MrmCode type;
Cardinal status;

status = MrmFetchLiteral (hierarchy, "int_val", display, (XtPointer *)
&int_ptr, &type);

if (status != MrmSUCCESS || type != MrmRtypeInteger)
error_handler();

else
printf ("Fetched integer %d\n", *int_ptr);

status = MrmFetchLiteral (hierarchy, "string_val", display, (XtPointer1 *)
&string, &type);

if (status != MrmSUCCESS || type != MrmRtypeCString)
error_handler();

else
printf ("Fetched string ’%s’\n", string);

...

1.Erroneously given as XtPoitner in 1st edition.

MrmFetchLiteral Mrm Functions

974 Motif Reference Manual

See Also
MrmFetchBitmapLiteral (3), MrmFetchColorLiteral (3),
MrmFetchIconLiteral (3), MrmFetchSetValues (3), value (5),
asciz_string_table (6), boolean (6), class_rec_name (6),
color (6), compound_string (6), compound_string_table (6),
float (6), font (6), font_table (6), fontset (6), icon (6), integer (6),
integer_table (6), keysym (6), rgb (6), single_float (6), string (6),
translation_table (6), wide_character (6), widget (6),
xbitmapfile (6).

Mrm Functions MrmFetchSetValues

Motif Reference Manual 975

Name
MrmFetchSetValues – set widget resources to values retrieved from an Mrm hier-
archy.

Synopsis

#include <Mrm/MrmPublic.h>

Cardinal MrmFetchSetValues (MrmHierarchy hierarchy,
Widget widget,
ArgList arg_list,
Cardinal num_args)

Inputs
hierarchy Specifies an Mrm hierarchy obtained from a previous call to

MrmOpenHierarchy() or MrmOpenHierarchyPerDisplay().
widget Specifies the object whose resources are modified.
arg_list Specifies an array of name/UID-value pairs to be set.
num_args Specifies the number of elements in arg_list.

Returns
MrmSUCCESS On success.
MrmPARTIAL_SUCCESS On partial success.
MrmBAD_HIERARCHY If hierarchy is NULL or does not point to a valid
Mrm hierarchy.
MrmFAILURE On failure.

Description
MrmFetchSetValues () sets the resources for an widget to named values
obtained from the specified Mrm hierarchy. If a named value is not found or
cannot be converted, the resource corresponding to that value is not set. If all the
named values in arg_list are successfully retrieved, MrmFetchSetValues ()
returns MrmSUCCESS. If some values are successfully retrieved and others are
not, MrmPARTIAL_SUCCESS is returned. If no values are successfully
retrieved, MrmFAILURE is returned. When at least one value is successfully
retrieved, XtSetValues () is called to modify the resources of object.

Usage
MrmFetchSetValues () sets the resources named in the name member of each
item in arg_list to the value from the Mrm hierarchy named by the value member.
This use differs from XtSetValues (), in that value member contains the name
of a value to retrieve, not the value itself. Each named value must be defined as an
exported value in a UIL source module.

The conversion of certain types may require a display pointer, screen pointer,
background color, or foreground color. When these values are needed, Mrm

MrmFetchSetValues Mrm Functions

976 Motif Reference Manual

obtains them from widget. If foreground and background colors are needed for a
conversion and widget does not have a background or foreground resource, Mrm
uses black or white instead. If foreground and background colors are needed for a
conversion and the XmNbackground or XmNforeground resources are specified
in arg_list, they are used instead of the foreground and background of widget. As
a result, if both an icon and foreground and/or background values are specified in
the same argument list, the icon uses the colors specified in the list, rather than
the colors of the widget.

Example
The following UIL and C code fragments illustrate the use of MrmFetchSet-
Values () to fetch a resource value from an Mrm hierarchy:

UIL:
...
value
! English language version of the confirm quit message:
confirm_quit_msg : ’Do you really want to quit?’;
...

C:
extern MrmHierarchy hierarchy; /* Previously opened Mrm */

/* hierarchy. */
extern Widget yes_no_dialog; /* Previously created yes/no */

/* dialog. */

void DisplayConfirmQuit (void)
{

static Arg args[] = {
{ XmNmessageString, (XtArgVal) "confirm_quit_msg" }

};

/* Set the message string for confirm quit. */
MrmFetchSetValues (hierarchy, yes_no_dialog, args, XtNumber (args));
/* Make the dialog appear. */
XtManageChild (yes_no_dialog);

}

Structures
ArgList is defined as follows:

typedef struct {
String name;
XtArgVal value;

} Arg, *ArgList;

Mrm Functions MrmFetchSetValues

Motif Reference Manual 977

See Also
MrmFetchBitmapLiteral (3), MrmFetchColorLiteral (3),
MrmFetchIconLiteral (3), MrmFetchLiteral (3), value (5).

MrmFetchWidget Mrm Functions

978 Motif Reference Manual

Name
MrmFetchWidget – create the widget tree rooted at a named widget.

Synopsis

#include <Mrm/MrmPublic.h>

Cardinal MrmFetchWidget (MrmHierarchy hierarchy,
 String name,
Widget parent,
Widget *widget,
MrmType *class)

Inputs
hierarchy Specifies an Mrm hierarchy obtained from a previous call to

MrmOpenHierarchy() or MrmOpenHierarchyPerDisplay().
name Specifies the name of the root widget of the widget tree to create.
parent Specifies the parent of the root widget.

Outputs
widget Returns the widget ID of the root widget.
class Returns the UID class code for the widget class of the root widget.

Returns
MrmSUCCESS On success.
MrmBAD_HIERARCHY If hierarchy is NULL or does not point to a valid

 Mrm hierarchy.
MrmNOT_FOUND If the specified widget is not found.
MrmFAILURE On failure.

Description
MrmFetchWidget () creates the named widget and recursively creates all of its
children. Each child is managed by Mrm, unless declared unmanaged in the UIL
source module. The root widget should be defined as exported in a UIL source
module. Mrm supports the MrmNcreateCallback, which if defined, is called after
a widget is created. The prototype of an MrmNcreateCallback is the same as any
other Xt callback procedure. The call_data passed to the callback is an XmAny-
CallbackStruct.

Usage
Each successful call to MrmFetchWidget () results in the creation of a new
widget tree, even if name has been fetched previously. As a result, you can use a
widget tree definition from an Mrm hierarchy as a template for creating multiple
instances of the same widget tree. The widget at the root of the tree is not man-
aged by Mrm, so your application must manage this widget to make the tree visi-
ble.

Mrm Functions MrmFetchWidget

Motif Reference Manual 979

In Motif 1.2 and earlier, MrmFetchWidget () returns MrmSUCCESS if the
root widget is retrieved successfully, even if one or more of its children are not.
As of Motif 1.2.1, if MrmFetchWidget () cannot find a child widget, it returns
MrmNOT_FOUND and does not create any widgets.

As of Motif 1.2, the possible MrmType values returned in class are not defined in
any of the Mrm include files, although the OSF documentation claims that they
are defined in <Mrm/Mrm.h>. If you need to check the widget class of a widget
created with MrmFetchWidget (), use XtClass () or one of the XmIs*() mac-
ros.

Example
The following UIL and C code fragments illustrate the retrieval of a widget hier-
archy from an Mrm hierarchy:

UIL:
...
! Define a simple widget tree, with form at the root.
object label : XmLabel { };
object button : XmPushButton { };
object form : exported XmForm {

controls {
XmLabel label;
XmPushButton button;

};
};
...

C:
extern Widget toplevel; /* Previously defined widget. */
extern MrmHierarchy hierarchy; /* Previously opened hierarchy. */
Widget form;
MrmType class;
Cardinal status;

status = MrmFetchWidget (hierarchy, "form", toplevel, &form, &class);

if (status != MrmSUCCESS)
error_handler();

...

Structures
The MrmNcreateCallback function is passed an XmAnyCallbackStruct, which is
defined as follows:

MrmFetchWidget Mrm Functions

980 Motif Reference Manual

typedef struct {
int reason; /* MrmCR_CREATE */
XEvent *event; /* NULL */

} XmAnyCallbackStruct;

See Also
MrmFetchWidgetOverride (3), MrmOpenHierarchy (3),
MrmOpenHierarchyPerDisplay (3), object (5), widget (6).

Mrm Functions MrmFetchWidgetOverride

Motif Reference Manual 981

Name
MrmFetchWidgetOverride – create the widget tree rooted at a named widget and
override the resources set in the UID file.

Synopsis

#include <Mrm/MrmPublic.h>

Cardinal MrmFetchWidgetOverride (MrmHierarchy hierarchy,
String name,
Widget parent,
String override_name,
ArgList arg_list,
Cardinal num_args,
Widget *widget,
MrmType *class)

Inputs
hierarchy Specifies an Mrm hierarchy obtained from a previous call to

MrmOpenHierarchy() or MrmOpenHierarchyPerDisplay().
name Specifies the name of the root widget of the widget tree to create.
parent Specifies the parent of the root widget.
override_name Specifies the name to use when creating the root widget. If

NULL, name is used.
arg_list Specifies an array of resource/value pairs to set on the root

widget when it is created. If NULL, no resources are set.
num_args Specifies the number of elements in arg_list. Must be 0 (zero) if

arg_list is NULL.

Outputs
widget Returns the widget ID of the root widget.
class Returns the UID class code for the widget class of the root
widget.

Returns
MrmSUCCESS On success.
MrmBAD_HIERARCHY If hierarchy is NULL or does not point to a valid

 Mrm hierarchy.
MrmNOT_FOUND If the specified widget is not found.
MrmFAILURE On failure.

Description
MrmFetchWidgetOverride () creates the named widget and recursively cre-
ates all of its children. The root widget should be defined as exported in a UIL
source module. arg_list is used to specify additional resource/value pairs that
override those specified in the widget definition in a UIL source module. Each

MrmFetchWidgetOverride Mrm Functions

982 Motif Reference Manual

child is managed by Mrm unless declared unmanaged in the UIL source module.
Mrm supports the MrmNcreateCallback, which if defined, is called after a widget
is created. The prototype of an MrmNcreateCallback is the same as any other Xt
callback procedure. The call_data passed to the callback is an XmAnyCallback-
Struct.

Usage
MrmFetchWidgetOverride () allows an application to create a widget
defined in an Mrm hierarchy while specifying application-defined resource val-
ues that can supplement or override those specified in the UIL definition. The
function sets the resources of the root widget that are named in the name member
of each item in arg_list to value specified in the value member. The resource of
any children of the root widget are not affected.

Each successful call to MrmFetchWidgetOverride () results in the creation
of a new widget tree, even if name has been fetched previously. As a result, you
can use a widget tree definition from an Mrm hierarchy as a template for creating
multiple instances of the same widget tree. The widget at the root of the tree is
not managed by Mrm, so your application must manage this widget to make the
tree visible.

In Motif 1.2 and earlier, MrmFetchWidget () returns MrmSUCCESS if the
root widget is retrieved successfully, even if one or more of its children are not.
As of Motif 1.2.1, if MrmFetchWidget () cannot find a child widget, it returns
MrmNOT_FOUND and does not create any widgets.

As of Motif 1.2, the possible MrmType values returned in class are not defined in
any of the Mrm include files, although the OSF documentation claims that they
are defined in <Mrm/Mrm.h>. If you need to check the widget class of a widget
created with MrmFetchWidgetOverride (), use XtClass () or one of the
XmIs*() macros.

Example
The following UIL and C code fragments illustrate the retrieval of a widget hier-

archy from an Mrm hierarchy using MrmFetchWidgetOverride()1:

UIL:
...
object error_dialog: exported XmErrorDialog {

arguments {
XmNmessageString = "If you can read this, file a bug report.";
XmNdialogStyle =
XmDIALOG_FULL_APPLICATION_MODAL;

1.Erroneously given as MwmFetchWidgetOverride() in 1st edition.

Mrm Functions MrmFetchWidgetOverride

Motif Reference Manual 983

};
};
...

C:
extern Widget toplevel; /* Previously created widget. */
extern MrmHierarchy hierarchy; /* Previously opened hierarchy. */

void display_error (String message)
{

Arg arg_list[1];
XmString s;
Cardinal status;
Widget error_dialog;
MrmType class;

s = XmStringCreateLocalized (message);
XtSetArg (arg_list[0], XmNmessageString, s);
status = MrmFetchWidgetOverride (hierarchy, "error_dialog",

toplevel, "error_dialog",
arg_list, 1, &error_dialog,
&class);

XmStringFree (s);

if (status != MrmSUCCESS)
handle_error();

else
XtManageChild (error_dialog);

}

Structures
ArgList is defined as follows:

typedef struct {
String name;
XtArgVal value;

} Arg, *ArgList;

The MrmNcreateCallback function is passed an XmAnyCallbackStruct, which is
defined as follows:

typedef struct {
int reason; /* MrmCR_CREATE */
XEvent *event; /* NULL */

} XmAnyCallbackStruct;

MrmFetchWidgetOverride Mrm Functions

984 Motif Reference Manual

See Also
MrmFetchWidget (3), MrmOpenHierarchy (3),
MrmOpenHierarchyPerDisplay (3), object (5), widget (6).

Mrm Functions MrmInitialize

Motif Reference Manual 985

Name
MrmInitialize – prepare the Mrm library for use.

Synopsis

#include <Mrm/MrmPublic.h>

void MrmInitialize (void)

Description
MrmInitialize () initializes the Mrm library. As part of the initialization, all
Motif widget classes are registered in the Mrm widget class database with Mrm-
RegisterClass ().

Usage
Applications should call MrmInitialize () before the Xt Toolkit is initialized
and before calling any other Mrm functions. If the routine is not called before
MrmOpenHierarchyPerDisplay (), future calls to MrmFetchWidget ()
and MrmFetchWidgetOverride () will fail. Applications should only call
MrmInitialize () once.

Example
The following code fragment illustrates the use of MrmInitialize (): 1

...
Widget toplevel;
XtAppContext app_context;
MrmHierarchy hierarchy;
Cardinal status;

XtSetLanguageProc (NULL, (XtLanguageProc) NULL, NULL);

MrmInitialize();

toplevel = XtVaOpenApplication (&app_context, "App", NULL, 0, (Cardi-
nal *) &argc, &argv, NULL, session-
ShellWidgetClass, NULL);

...

See Also
MrmFetchWidget (3), MrmFetchWidgetOverride (3),
MrmOpenHierarchy (3), MrmOpenHierarchyPerDisplay (3),
MrmRegisterClass (3).

1.From X11R6, XtAppInitialize() is marked as obsolete. The SessionShell is only available from X11R6 onwards, and
it replaces the deprecated ApplicationShell widget class.

MrmOpenHierarchy Mrm Functions

986 Motif Reference Manual

Name
MrmOpenHierarchy – open an Mrm hierarchy.

Synopsis

#include <Mrm/MrmPublic.h>

Cardinal MrmOpenHierarchy (MrmCount num_files,
String file_name_list[],
MrmOsOpenParamPtr *os_params,
MrmHierarchy *hierarchy)

Inputs
num_files Specifies the number of files in file_name_list.
file_name_list Specifies an array of UID file names to associate with

 the hierarchy.
os_params Specifies operating system dependent settings.

Outputs
hierarchy Returns an open Mrm hierarchy consisting of the speci-
fied files.

Returns
MrmSUCCESS On success.
MrmNOT_FOUND If one or more files cannot be opened.
MrmNOT_VALID If the version of Mrm is older than the

 version of any UID file.
MrmDISPLAY_NOT_OPENED If a display pointer cannot be found.
MrmFAILURE On failure.

Availability
In Motif 1.2, MrmOpenHierarchy () is obsolete. It has been superseded by
MrmOpenHierarchyPerDisplay ().

Description
MrmOpenHierarchy () opens an Mrm hierarchy consisting of one or more
UID files. This routine is similar to MrmOpenHierarchyPerDisplay (),
except that it does not take a display parameter. MrmOpenHierarchy () is
retained for compatibility with Motif 1.1 and should not be used in newer appli-
cations.

Usage
MrmOpenHierarchy () relies on the Motif widget library to locate a display
pointer. To ensure that a display pointer can be found, an application must create
an ApplicationShell before calling MrmOpenHierarchy (). The display pointer
is used as a parameter to XtResolvePathname (), which locates the files in

Mrm Functions MrmOpenHierarchy

Motif Reference Manual 987

file_name_list. If an application creates multiple ApplicationShells on different
displays, the display pointer chosen by this routine is undefined.

See the MrmOpenHierarchyPerDisplay () manual page for a full explana-
tion of the process of opening an Mrm hierarchy, including the search path that is
used to find the UID files.

See Also
MrmCloseHierarchy (3), MrmOpenHierarchyPerDisplay (3).

MrmOpenHierarchyFromBuffer Mrm Functions

988 Motif Reference Manual

Name
MrmOpenHierarchyFromBuffer – open an Mrm hierarchy from a buffer

Synopsis

#include <Mrm/MrmPublic.h>

Cardinal MrmOpenHierarchyFromBuffer (unsigned char *buffer, MrmHierarchy
*hierarchy_id)

Inputs
buffer Specifies a stream of bytes representing a UID file contents.

Outputs
hierarchy_id Returns an open Mrm hierarchy.

Returns
MrmSUCCESS On Success.
MrmNOT_VALID If the version of Mrm is older than the data

contained within the buffer.
MrmDISPLAY_NOT_OPENED If a display pointer cannot be found.
MrmFAILURE On failure.

Availability
Motif 2.0 and later.

Description
MrmOpenHierarchyFromBuffer () opens an Mrm hierarchy using the
stream of data specified by buffer, which is presumably the contents of a previ-
ously opened UID file loaded into memory. It could, however, be dynamically
constructed.

Usage
MrmOpenHierarchyFromBuffer () relies on the Motif widget library to
locate a display pointer using internal default values. A pointer is only found if a
ApplicationShell has been created before calling MrmOpenHierarchyFrom-
Buffer ().

See Also
MrmOpenHierarchy (3), MrmOpenHierarchyPerDisplay (3),
MrmCloseHierarchy (3).

Mrm Functions MrmOpenHierarchyPerDisplay

Motif Reference Manual 989

Name
MrmOpenHierarchyPerDisplay – open an Mrm hierarchy.

Synopsis

#include <Mrm/MrmPublic.h>

Cardinal MrmOpenHierarchyPerDisplay (Display *display,
MrmCount num_files,
String file_name_list[],
MrmOsOpenParamPtr os_params_list[],
MrmHierarchy *hierarchy)

Inputs
display Specifies the display.
num_files Specifies the number of files in file_name_list.
file_name_list Specifies an array of file names to associate with the hierarchy.
os_params_list Specifies an array of operating system dependent settings.

Outputs
hierarchy Returns an open Mrm hierarchy consisting of the

 specified files.

Returns
MrmSUCCESS On success.
MrmNOT_FOUND If one or more files cannot be opened.
MrmNOT_VALID If the version of Mrm is older than version

 of the any UID file.
MrmDISPLAY_NOT_OPENED If a display pointer cannot be found.
MrmFAILURE On failure.

Availability
Motif 1.2 and later.

Description
MrmOpenHierarchyPerDisplay () opens an Mrm hierarchy consisting of
one or more UID files. An Mrm hierarchy must be opened before any values are
retrieved or widgets created with the MrmFetch*() routines. When an Mrm hier-
archy is successfully opened, each UID file specified in file_name_list is opened
and consumes a file descriptor. No files are opened if a value other than Mrm-
SUCCESS is returned. The UID files are subsequently closed when the hierarchy
is closed with MrmCloseHierarchy (). As of Motif 1.2, settings in the
os_params_list parameter are only useful to the UIL compiler. Application pro-
grams should always specify NULL for this argument.

Mrm Functions

Motif Reference Manual 990

Usage
The MrmFetch*() routines retrieve a named value or widget by searching the
UID files for a hierarchy in the order that they are specified in file_name_list. If a
named value or widget occurs in more than one of the UID files, the value is
retrieved from the file that occurs first in the array. Once an Mrm hierarchy has
been opened, the UID files associated with the hierarchy must not be modified or
deleted until the hierarchy is closed.

Files specified in file_name_list may be full or partial path names. When a file
name starts with a slash (/), it specifies a full path name and MrmOpenHierar-
chyPerDisplay () opens the file. Otherwise, the file name specifies a partial
path name which causes MrmOpenHierarchyPerDisplay () to look for the
file using a search path.

XtResolvePathname () is used to locate the file in the search path. The UID-
PATH environment variable specified the search path for UID files. Each direc-
tory in the search path can contain the substitution character %U; the partial path
name specified by file_name_list is substituted for %U. In addition, the path can
also use the substitution characters accepted by XtResolvePathname() . The
path is first searched with %S mapped to .uid. If the file is not found the path is
searched again with %S mapped to NULL.

If UIDPATH is not set, MrmOpenHierarchyPerDisplay () uses a default
search path. If the XAPPLRESDIR environment variable is set, the routine
searches the following path; the class name of the application is substituted for
%N, the language string of the display argument is substituted for %L, and the
language component of the language string is substituted for %l.

$XAPPLRESDIR/%L/uid/%N/%U%S
$XAPPLRESDIR/%l/uid/%N/%U%S
$XAPPLRESDIR/uid/%N/%U%S
$XAPPLRESDIR/%L/uid/%U%S
$XAPPLRESDIR/%l/uid/%U%S
$XAPPLRESDIR/uid/%U%S
$HOME/uid/%U%S
$HOME/1%U%S
/usr/lib/X11/%L/uid/%N/%U%S
/usr/lib/X11/%l/uid/%N/%U%S
/usr/lib/X11/uid/%N/%U%S
/usr/lib/X11/%L/uid/%U%S
/usr/lib/X11/%l/uid/%U%S
/usr/lib/X11/uid/%U%S
/usr/include/X11/uid/%U%S

Mrm Functions

Motif Reference Manual 991

If XAPPLRESDIR is not set, MrmOpenHierarchyPerDisplay () searches
the same path, except that XAPPLRESDIR is replaced by HOME. These paths
are vendor-dependent and a vendor may use different directories for /usr/lib/X11
and /usr/include/X11.

Example
The following code fragment illustrates the use of MrmOpenHierarchyPer-

Display ():1

...
MrmHierarchy hierarchy;
XtAppContext app_context;
Widget toplevel;
String uid_files[] = { "/usr/lib/app/app", "strings" };
Cardinal status;

XtSetLanguageProc (NULL, NULL, NULL);

MrmInitialize();
toplevel = XtVaOpenApplication (&app_context, "App", NULL, 0, &argc,
 argv, NULL, sessionShellWidgetClass, NULL);

status = MrmOpenHierarchyPerDisplay (XtDisplay (toplevel),
XtNumber (uid_files), uid_files,
NULL, &hierarchy);

if (status != MrmSUCCESS)
error_handler();

...

See Also
MrmCloseHierarchy (3), MrmFetchBitmapLiteral (3),
MrmFetchColorLiteral (3), MrmFetchIconLiteral (3),
MrmFetchLiteral (3), MrmFetchWidget (3),
MrmFetchWidgetOverride (3).

1.From X11R6, XtAppInitialize() is marked as obsolete. The SessionShell is only available from X11R6 onwards, and
it replaces the deprecated ApplicationShell widget class.

Mrm Functions

Motif Reference Manual 992

Name
MrmRegisterClass – register a widget creation function for a non-Motif widget.

Synopsis

#include <Mrm/MrmPublic.h>

Cardinal MrmRegisterClass (MrmType class_code,
String class_name,
String create_proc_name,
Widget (*create_proc) (Widget, char *,

ArgList, Cardinal),
WidgetClass widget_class)

Inputs
class_code This argument is obsolete and is ignored.
class_name This argument is obsolete and is ignored.
create_proc_name Specifies the case-sensitive name of the widget

 creation function.
create_proc Specifies a pointer to the widget creation procedure.
widget_class Specifies a pointer to the widget class record or NULL.

Returns
MrmSUCCESS On success.
MrmFAILURE On failure.

Description
MrmRegisterClass () supplies Mrm with information it needs to create a
user-defined widget, which is any widget that is not built into UIL and Mrm. A
user-defined widget cannot be created until its class is registered.

Usage
A user-defined widget is defined in a UIL source module by specifying the
create_proc_name in its declaration. create_proc_name must be all uppercase
characters when used in a UIL module compiled with case-insensitive names
because this setting causes the UIL compiler to store procedure name references
in all uppercase characters.

If MrmRegisterClass () is called with a class_name that has been registered
previously, the new create_proc and widget_class replace the previous val-
ues. There is no way to unregister a previously registered class. As of Motif 1.2, a
small amount of memory may be leaked when a class is registered multiple
times.

Mrm Functions

Motif Reference Manual 993

The widget_class argument allows Mrm to convert a class name specified in a
UIL class_rec_name literal into a widget class pointer. If NULL is specified, the
widget class pointer is not accessible with the class_rec_name type.

Example
The following UIL and C code fragments illustrate the creation of an instance of
the Athena panner widget from UIL. Like any other widget defined in a UIL
module, it is created with a call to MrmFetchWidget() or MrmFetchWidget-
Override ():

UIL:
...
procedure XawCreatePannerWidget;

object panner : user_defined procedure XawCreatePannerWidget { };
...

C:
 Widget XawCreatePannerWidget (Widget parent, String name, ArgList
 args, Cardinal num_args)
{

return XtCreateWidget (name, pannerWidgetClass, parent, args,
 num_args);

}
...
MrmRegisterClass (0, NULL,

"XawCreatePannerWidget",
XawCreatePannerWidget,
&pannerWidgetClass);

...

Procedures
The create_proc parameter has the following syntax:

Widget create_proc (Widget parent, String name, ArgList args,

 Cardinal num_args)

The procedure takes four arguments. The first, parent, is the parent of the widget
that is being created. name is the name of the widget. The last two arguments,
args and num_args, specify the initial resource settings for the widget. The pro-
cedure returns the widget ID of the newly created widget.

See Also
MrmInitialize (3), MrmFetchWidget (3),
MrmFetchWidgetOverride (3), object (5), class_rec_name (6).

Mrm Functions

Motif Reference Manual 994

Name
MrmRegisterNames – register application-defined values and procedures.

Synopsis

#include <Mrm/MrmPublic.h>

Cardinal MrmRegisterNames (MrmRegisterArgList name_list, MrmCount
count)

Inputs
name_list Specifies an array of name/value pairs to be registered
 with Mrm.
count Specifies the number of elements in name_list.

Returns
MrmSUCCESS On success.
MrmFAILURE On failure.

Description
MrmRegisterNames () registers an array of name/value pairs that are used as
identifiers and procedures in a UIL source module. Names registered with this
routine are accessible from any open Mrm hierarchy. By contrast, names regis-
tered with MrmRegisterNamesInHierarchy () are only accessible from
the hierarchy in which they are registered.

If MrmRegisterNames () is called with a name that has been registered previ-
ously, the old value associated with the name is replaced by the new value. There
is no way to unregister a previously registered name.

Usage
The MrmRegisterArg structure consists of a name and an associated value. The
case of name is significant. name must be in all uppercase characters if name is
used in a UIL module compiled with case-insensitive names, because this setting
causes the UIL compiler to store procedure and identifier name references in all
uppercase characters.

The name_list array can contain names that represent both callback procedures
and identifier values. A procedure value in name_list should be a pointer to a
function of type XtCallbackProc. An identifier value is any application-defined
value that is exactly sizeof (XtPointer). Mrm makes no distinction between pro-
cedures and identifiers, although an application may organize them in two sepa-
rate arrays for clarity. A distinction is made in a UIL source module, where any
name used must be declared as either a procedure or an identifier.

Procedures and identifiers must be registered with MrmRegisterNames () or
MrmRegisterNamesInHierarchy () before an application attempts to cre-

Mrm Functions

Motif Reference Manual 995

ate a widget that references them. Mrm converts a procedure or identifier refer-
ence to a value by first searching hierarchy-local names registered with
MrmRegisterNamesInHierarchy (). If the value is not found, the search
continues with global names registered with MrmRegisterNames ().

Example
The following UIL and C code fragments illustrate the use of MrmRegister-
Names():

UIL:
...
identifier user_id;
procedure activate();

object button : XmPushButton {
callbacks {

XmNactivateCallback = procedure activate;
};

};
...

C:
...
extern XtCallbackProc activate;
int user_id = getuid();
MrmRegisterArg names[2];

names[0].name = “activate”;
names[0].value = (XtPointer) activate;
names[1].name = “user_id”;
names[1].value = (XtPointer) user_id;

MrmRegisterNames (names, XtNumber (names));
...

Structures
MrmRegisterArgList is defined as follows:

typedef struct {
String name; /* case-sensitive name */
XtPointer value; /* procedure/value to associate with name */

} MrmRegisterArg, *MrmRegisterArglist;

See Also
MrmRegisterNamesInHierarchy (3), identifier (5), procedure (5).

Mrm Functions

Motif Reference Manual 996

Name
MrmRegisterNamesInHierarchy – register application-defined values and proce-
dures for use in a specific UIL hierarchy.

Synopsis

#include <Mrm/MrmPublic.h>

Cardinal MrmRegisterNamesInHierarchy (MrmHierarchy hierarchy,
MrmRegisterArgList name_list,
MrmCount count)

Inputs
hierarchy Specifies an Mrm hierarchy obtained from a previous call to

MrmOpenHierarchy() or MrmOpenHierarchyPerDisplay().
name_list Specifies an array of name/value pairs to be registered with

Mrm.
count Specifies the number elements in name_list.

Returns
MrmSUCCESS On success.
MrmFAILURE On failure.

Description
MrmRegisterNamesInHierarchy ()1 registers an array of name/value pairs
that are used as identifiers and procedures in a UIL source module. Names regis-
tered with this routine are accessible only within the specified hierarchy. By con-
trast, names registered with MrmRegisterNames () are accessible from any
open hierarchy.

If MrmRegisterNamesInHierarchy () is called with a name that has been
registered previously in the same hierarchy, the old value associated with the
name is replaced by the new value. There is no way to unregister a previously
registered name while the hierarchy is open. However, closing the hierarchy auto-
matically unregisters all names.

Usage
The MrmRegisterArg structure consists of a name and an associated value. The
case of name is significant. name must be in all uppercase characters if name is
used in a UIL module compiled with case-insensitive names, because this setting
causes the UIL compiler to store procedure and identifier name references in all
uppercase characters.

1.Erroneously given as MrmRegisterNames() in 1st edition.

Mrm Functions

Motif Reference Manual 997

The name_list array can contain names that represent both callback procedures
and identifier values. A procedure value in name_list should be a pointer to a
function of type XtCallbackProc. An identifier value is any application-defined
value that is exactly sizeof (XtPointer). Mrm makes no distinction between pro-
cedures and identifiers, although an application may orgranize them in two sepa-
rate arrays for clarity. A distinction is made in a UIL source module, where any
name used must be declared as either a procedure or an identifier.

Procedures and identifiers must be registered with MrmRegisterNames () or
MrmRegisterNamesInHierarchy () before an application attempts to cre-
ate a widget which references them. Mrm converts a procedure or identifier refer-
ence to a value by first searching hierarchy-local names registered with
MrmRegisterNamesInHierarchy (). If the value is not found, the search
continues with global names registered with MrmRegisterNames ().

Example
The following code fragment illustrates the use of MrmRegisterNamesInH-
ierarchy ():

/* Open a hierarchy and register it’s file name list. */

Cardinal register_and_open (Display display, MrmCount count, String *files)
{

Cardinal status;
int *count = (int *) malloc ((unsigned) sizeof (int));
MrmRegisterArg names[2];
if (count == NULL)

return (MrmFAILURE);

names[0].name = “file_list”;
names[0].value = (XtPointer) file_list;
names[1].name = “file_count”;
names[1].value = (XtPointer) file_count;

status = MrmOpenHierarchyPerDisplay (display, count, files, NULL,

 &hierarchy);

if (status != MrmSUCCESS)
return (status);

status = MrmRegisterNamesInHierarchy (*hierarchy, names, XtNumber
(names));

return (status);
}

Mrm Functions

Motif Reference Manual 998

Structures
MrmRegisterArgList is defined as follows:

typedef struct {
String name; /* case-sensitive name */
XtPointer value; /* procedure/value to associate with name */

} MrmRegisterArg, *MrmRegisterArglist;

See Also
MrmRegisterNames (3), identifier (5), procedure (5).

Motif Reference Manual 999

Section 4 - Mrm Clients

This page describes the format and contents of each reference page in Section 4,
which covers the Motif clients.

Name
Client – a brief description of the client.

Syntax
This section describes the command-line syntax for invoking the client. Anything
in bold should be typed exactly as shown. Items in italics are parameters that
should be replaced by actual values when you enter the command. Anything
enclosed in brackets is optional.

Availability
This section appears for functions that were added in Motif 2.0 or later.

Description
This section explains the operation of the client. In some cases, additional
descriptive sections appear later on in the reference page.

Options
This section lists available command-line options.

Environment
If present, this section lists shell environment variables used by the client. This
section does not list the DISPLAY and XENVIRONMENT variables, which are
used by all clients. These variables are used as follows:

DISPLAY
To get the default display name (specifically, the host, server/display, and
screen). The DISPLAY variable typically has the form:

hostname:server.screen

XENVIRONMENT
To get the name of a resource file containing host-specific resources. If this
variable is not set, the resource manager will look for a file called .Xdefaults-
hostname (where hostname is the name of a particular host) in the user’s
home directory.

Bugs
If present, this section lists any problems that could arise when using the client.

See Also
This section refers you to related clients, functions, or widget classes. The
numbers in parentheses following each reference refer to the sections of the book
in which they are found.

mwm Mrm Clients

1000 Motif Reference Manual

Name
mwm – the Motif Window Manager (mwm).

Syntax
mwm [options]

Description
The Motif Window Manager, mwm, provides all of the standard window manage-
ment functions. It allows you to move, resize, iconify/deiconify, maximize, and
close windows and icons, focus input to a window or icon, and refresh the dis-
play. mwm provides much of its functionality via a frame that (by default) is
placed around every window on the display. The mwm frame has the three-
dimensional appearance characteristic of the OSF/Motif graphical user interface.

The rest of this reference page describes how to customize mwm. It does not pro-
vide information on using mwm. For information on using the window manager,
see Volume 3, X Window System User’s Guide, Motif Edition.

Options
-display [host]:server[.screen]

Specifies the name of the display on which to run mwm. host is the
hostname of the physical display, server specifies the server
number, and screen specifies the screen number. Either or both of
the host and screen elements can be omitted. If host is omitted, the
local display is assumed. If screen is omitted, screen 0 is assumed
(and the period is unnecessary). The colon and (display) server are
necessary in all cases.

-multiscreen
Specifies that mwm should manage all screens on the display. The
default is to manage only screen 0. You can specify an alternate
screen by setting the DISPLAY environment variable or using the -
display option. You can also specify that mwm manage all screens
by assigning a value of True to the multiScreen resource variable.

-name app_name
Specifies the name under which resources for the window manager
should be found.

-screens screen_name[screen_name]...
Assigns resource names to the screens mwm is managing. (By
default, the screen number is used as the screen_name.) If mwm is
managing a single screen, only the first name in the list is used. If
mwm is managing multiple screens, the names are assigned to the
screens in order, starting with screen 0. If there are more screens

mwm Mrm Clients

1001 Motif Reference Manual

than names, resources for the remaining screens will be retrieved
using the first screen_name.

-xrm resourcestring
Specifies a resource name and value to override any defaults. This
option is very useful for setting resources that do not have explicit
command-line arguments.

Window Manager Components
The mwm window frame contains various components that perform different
functions. The title bar stretches across the top of the window and contains the
title area and the minimize, maximize, and window menu buttons. The title area
displays the window title and can be used to move the window. The minimize
button iconifies the window, while the maximize button enlarges the window to
fill the entire screen. The window menu button posts the Window Menu. The
resize border handles surround the window; they are used to resize the window in
a particular direction. A window can also have an optional matte decoration
between the client area and the window frame. The matte is not part of the win-
dow frame and it has no functionality. At times, mwm uses dialog boxes or feed-
back windows to communicate with the user.

An icon is a small graphic representation of a window. When a window is iconi-
fied using the minimize button, it is replaced on the screen by its icon. Iconifying
windows reduces clutter on the screen. mwm provides a separate window, call the
icon box, that can hold icons. Using the icon box keeps icons from cluttering the
screen.

By default, mwm uses an explicit keyboard selection policy, which means that
once a window has the keyboard focus, it keeps it until another window is explic-
itly given the focus. Windows can overlap, which means that they are arranged in
a global stacking order on the screen. A window that is higher in the stacking
order obscures windows below it in the stacking order if they overlap. Each
application has its own local stacking order; transient windows remain above
their parents by default in the local stacking order.

Customization
Like any X application, mwm uses resources to control its appearance and behav-
ior. The window manager builds its resource database just like any other X client.
Mwm is the resource class name for mwm. You can place mwm resources in your
regular resource file (.Xdefaults) in your home directory or you can create a file
called Mwm (also in your home directory) for mwm resources only. If you place
conflicting specifications in both files, the resources in.Xdefaults take prece-
dence.

mwm Mrm Clients

1002 Motif Reference Manual

The default operation of the mouse, the keyboard, and menus in mwm is control-
led by a system-wide resource description file, system.mwmrc. This file describes
the contents of the Window Menu and Root Menu, as well as the key and button
combinations that manage windows. To modify the behavior of mwm, you can
edit a copy of this file in your home directory. The version of the file in your
home directory should be called.mwmrc, unless you specify an alternate name
using the configFile resource.

An mwm resource description file is a standard text file. Items are separated by
blanks, tabs, and newlines. A line that begins with an exclamation mark (!) or a
number sign (#) is treated as a comment. If a line ends with a backslash (\), the
subsequent line is considered a continuation of that line.

Component Appearance Resources
mwm provides some resources that specify the appearance of particular window
manager components, such as the window frame, menus, and icons. Component
appearance resources can be specified for particular window manager compo-
nents or all components. To specify a resource for all components, use the fol-
lowing syntax:

Mwm* resource_name: resource_value

The window manager components have the following resource names associated
with them:

These resource names can be used to specify particular window manager compo-
nents in a resource specification. To specify a resource for a specific component,
use the following syntax:

Mwm*[component_name]* resource_name: resource_value

The title bar is a descendant of the client window frame, so you can use title to
specify the appearance of the title bar separately from the rest of the window
frame. You can also specify resources for individual menus by using menu, fol-
lowed by the name of the menu.

Component ResourceName

Menu menu

Icon icon

Client window frame client

Feedback/dialog box feedback

Title bar title

mwm Mrm Clients

1003 Motif Reference Manual

The following component appearance resources apply to all window manager
components. Unless a default value is specified, the default varies based on sys-
tem specifics such as the visual type of the screen:

background (class Background)
Specifies the background color.

backgroundPixmap (class BackgroundPixmap)
Specifies the background pixmap of the mwm decoration when the
window does not have the input focus.

bottomShadowColor (class Foreground)
Specifies the color to be used for the lower and right bevels of the
window manager decoration.

bottomShadowPixmap (class BottomShadowPixmap)
Specifies the pixmap to be used for the lower and right bevels of the
window manager decoration.

fontList (class FontList)
Specifies the font to be used in the window manager decoration.
The default is fixed.

foreground (class Foreground)
Specifies the foreground color.

saveUnder (class SaveUnder)
Specifies whether save unders are used for mwm components. The
default value is False, which means that save unders are not used on
any window manager frames.

topShadowColor (class Background)
Specifies the color to be used for the upper and left bevels of the
window manager decoration.

topShadowPixmap (class TopShadowPixmap)
Specifies the pixmap to be used for the upper and left bevels of the
window manager decoration.

The following component appearance resources apply to the window frame and
icons. Unless a default value is specified, the default varies based on system spe-
cifics such as the visual type of the screen:

activeBackground (class Background)
Specifies the background color of the mwm decoration when the
window has the input focus.

mwm Mrm Clients

1004 Motif Reference Manual

activeBackgroundPixmap (class ActiveBackgroundPixmap)
Specifies the background pixmap of the mwm decoration when the
window has the input focus.

activeBottomShadowColor (class Foreground)
Specifies the bottom shadow color of the mwm decoration when the
window has the input focus.

activeBottomShadowPixmap (class BottomShadowPixmap)
Specifies the bottom shadow pixmap of the mwm decoration when
the window has the input focus.

activeForeground (class Foreground)
Specifies the foreground color of the mwm decoration when the
window has the input focus.

activeTopShadowColor (class Background)
Specifies the top shadow color of the mwm decoration when the
window has the input focus.

activeTopShadowPixmap (class TopShadowPixmap)
Specifies the top shadow Pixmap of the mwm decoration when the
window has the input focus.

General Appearance and Behavior Resources
mwm also provides resources that control the appearance and behavior of the
window manager as a whole. These resources specify features such as the focus
policy, interactive window placement, and the icon box. To specify a general
appearance and behavior resource, use the following syntax:

Mwm* resource_name: resource_value

The following general appearance and behavior resources can be specified:

autoKeyFocus (class AutoKeyFocus)
If True (the default), when the focus window is withdrawn from
window management or is iconified, the focus bounces back to the
window that previously had the focus. This resource is available
only when keyboardFocusPolicy is explicit. If False, the input focus
is not set automatically. autoKeyFocus and startupKeyFocus should
both be True to work properly with tear-off menus.

autoRaiseDelay (class AutoRaiseDelay)
Specifies the amount of time (in milliseconds) that mwm will wait
before raising a window after it receives the input focus. The
default is 500. This resource is available only when focusAutoRaise
is True and the keyboardFocusPolicy is pointer.

mwm Mrm Clients

1005 Motif Reference Manual

bitmapDirectory (class BitmapDirectory)
Identifies the directory to be searched for bitmaps referenced by
mwm resources (if an absolute pathname to the bitmap file is not
given). The default is /usr/-include/-X11/-bitmaps, which is consid-
ered the standard location on many systems. Note, however, that the
location of the bitmap directory may vary in different environ-
ments. If a bitmap is not found in the specified directory, XBM-
LANGPATH is searched.

clientAutoPlace (class ClientAutoPlace)
Specifies the location of a window when the user has not specified a
location. If True (the default), windows are positioned with the
upper-left corners of the frames offset horizontally and vertically,
so that no two windows completely overlap. If False, the currently
configured position of the window is used. In either case, mwm
attempts to place the windows totally on screen.

colormapFocusPolicy (class ColormapFocusPolicy)
Specifies the colormap focus policy. Takes three possible values:
keyboard, pointer, and explicit. If keyboard (the default) is speci-
fied, the input focus window has the colormap focus. If explicit is
specified, a colormap selection action is done on a client window to
set the colormap focus to that window. If pointer is specified, the
client window containing the pointer has the colormap focus.

configFile (class ConfigFile)
Specifies the pathname for the mwm startup file. The default startup
file is.mwmrc.
mwm searches for the configuration file in the user’s home direc-
tory. If the configFile resource is not specified or the file does not
exist, mwm defaults to an implementation-specific standard direc-
tory (the default is /usr/lib/X11/system.mwmrc).

If the LANG environment variable is set, mwm looks for the config-
uration file in a $LANG subdirectory first. For example, if the
LANG environment variable is set to Fr (for French), mwm
searches for the configuration file in the directory $HOME/Fr
before it looks in $HOME. Similarly, if the configFile resource is
not specified or the file does not exist, mwm defaults to /usr/lib/X11/
$LANG/system.mwmrc before it reads /usr/lib/X11/system.mwmrc.

If the configFile pathname does not begin with ~/, mwm considers it
to be relative to the current working directory.

mwm Mrm Clients

1006 Motif Reference Manual

deiconifyKeyFocus (class DeiconifyKeyFocus)
If True (the default), a window receives the input focus when it is
normalized (deiconified). This resource applies only when the
keyboardFocusPolicy is explicit.

doubleClickTime (class DoubleClickTime)
Specifies the maximum time (in milliseconds) between the two
clicks of a double click. The default is the display’s multi-click
time.

enableWarp (class EnableWarp)
If True (the default), causes mwm to warp the pointer to the center
of the selected window during resize and move operations invoked
using keyboard accelerators. (The cursor symbol disappears from
its current location and reappears at the center of the window.) If
False, mwm leaves the pointer at its original place on the screen,
unless the user explicitly moves it.

enforceKeyFocus (class EnforceKeyFocus)
If True (the default), the input focus is always explicitly set to
selected windows even if there is an indication that they are "glo-
bally active" input windows. (An example of a globally active win-
dow is a scrollbar that can be operated without setting the focus to
that client.) If the resource explicitly set to globally active windows.

iconAutoPlace (class IconAutoPlace)
Specifies whether the window manager arranges icons in a particu-
lar area of the screen or places each icon where the window was
when it was iconified. If True (the default), icons are arranged in a
particular area of the screen, determined by the iconPlacement
resource. If False, an icon is placed at the location of the window
when it is iconified.

iconClick (class IconClick)
If True (the default), the Window Menu is displayed when the
pointer is clicked on an icon.

interactivePlacement (class InteractivePlacement)
If True, specifies that new windows are to be placed interactively on
the screen using the pointer. When a client is run, the pointer shape
changes to an upper-left corner cursor; move the pointer to the loca-
tion you want the window to appear and click the first button; the
window is displayed in the selected location. If False (the default),
windows are placed according to the initial window configuration
attributes.

mwm Mrm Clients

1007 Motif Reference Manual

keyboardFocusPolicy (class KeyboardFocusPolicy)
If explicit focus is specified (the default), placing the pointer on a
window (including the frame) or icon and pressing the first pointer
button focuses keyboard input on the client. If pointer is specified,
the keyboard input focus is directed to the client window on which
the pointer rests (the pointer can also rest on the frame).

lowerOnIconify (class LowerOnIconify)
If True (the default), a window’s icon is placed on the bottom of the
stack when the window is iconified. If False, the icon is placed in
the stacking order at the same place as its associated window.

moveThreshold (class MoveThreshold)
Controls the sensitivity of dragging operations, such as those used
to move windows and icons on the display. Takes a value of the
number of pixels that the pointing device is moved while a button is
held down before the move operation is initiated. The default is 4.
This resource helps prevent a window or icon from moving when
you click or double click and inadvertently jostle the pointer while
a button is down.

multiScreen (class MultiScreen)
If False (the default), mwm manages only a single screen. If True,
mwm manages all screens on the display.

passButtons (class PassButtons)
Specifies whether button press events are passed to clients after the
events are used to invoke a window manager function in the client
context. If False (the default), button presses are not passed to the
client. If True, button presses are passed to the client. The window
manager function is done in either case.

passSelectButton (class PassSelectButton)
Specifies whether select button press events are passed to clients
after the events are used to invoke a window manager function in
the client context. If True (the default), button presses are passed
to the client window. If False, button presses are not passed to the
client. The window manager function is done in either case.

positionIsFrame (class PositionIsFrame)
Specifies how mwm should interpret window position information
from the WM_NORMAL_HINTS property and from configuration
requests. If True (the default), the information is interpreted as the
position of the mwm client window frame. If False, it is interpreted
as being the position of the client area of the window.

mwm Mrm Clients

1008 Motif Reference Manual

positionOnScreen (class PositionOnScreen)
If True (the default), specifies that windows should initially be
placed (if possible) so that they are not clipped by the edge of the
screen. If a window is larger than the size of the screen, at least the
upper-left corner of the window is placed is on the screen. If False,
windows are placed in the requested position even if totally off the
screen.

quitTimeout (class QuitTimeout)
Specifies the amount of time (in milliseconds) that mwm will wait
for a client to update the WM_COMMAND property after mwm
has sent the WM_SAVE_-YOURSELF message. The default is
1000. (See the f.kill function for additional information.)

raiseKeyFocus (class RaiseKeyFocus)
If True, specifies that a window raised by means of the
f.normalize_-and_raise function also receives the input focus. This
function is available only when the keyboardFocusPolicy is
explicit. The default is False.

screens (class Screens)
Assigns resource names to the screens mwm is managing. If mwm is
managing a single screen, only the first name in the list is used. If
mwm is managing multiple screens, the names are assigned to the
screens in order, starting with screen 0.

showFeedback (class ShowFeedback)
Specifies whether mwm feedback windows and confirmation dialog
boxes are displayed. (Feedback windows are used to display: win-
dow coordinates during interactive placement and subsequent
moves; and dimensions during resize operations. A typical confir-
mation dialog is the window displayed to allow the user to allow or
cancel a window manager restart operation.)

showFeedback accepts a list of options, each of which corresponds
to the type of feedback given in a particular circumstance. Depend-
ing on the syntax in which the options are entered, you can either
enable or disable a feedback option (as explained later).

The possible feedback options are: all, which specifies that mwm
show all types of feedback (this is the default); behavior, which
specifies that feedback is displayed to confirm a behavior switch;
kill, which specifies that feedback is displayed on receipt of a KILL
signal; move, which specifies that a box containing the coordinates
of a window or icon is displayed during a move operation; place-

mwm Mrm Clients

1009 Motif Reference Manual

ment, which specifies that a box containing the position and size of
a window is displayed during initial (interactive) placement; quit,
which specifies that a dialog box is displayed so that the user can
confirm (or cancel) the procedure to quit mwm; resize, which speci-
fies that a box containing the window size is displayed during a
resize operation; restart, which displays a dialog box so that the
user can confirm (or cancel) an mwm restart procedure; the none
option specifies that no feedback is shown.

To limit feedback to particular cases, you can use one of two syn-
taxes: with the first syntax, you disable feedback in specified cases
(all other default feedback is still used); with the second syntax, you
enable feedback only in specified cases. You supply this resource
with a list of options to be enabled or disabled. If the first item is
preceded by a minus sign, feedback is disabled for all options in the
list. If the first item is preceded by a plus sign (or no sign is used),
feedback is enabled only for options in the list.

startupKeyFocus (class StartupKeyFocus)
If True (the default), the input focus is transferred to a window
when the window is mapped (i.e., initially managed by the window
manager). This function is available only when keyboardFocusPol-
icy is explicit. startupKeyFocus and autoKeyFocus should both be
True to work properly with tear-off menus.

wMenuButtonClick (class WMenuButtonClick)
If True (the default), a pointer button click on the window menu
button displays the Window Menu and leaves it displayed.

wMenuButtonClick2 (class WMenuButtonClick2)
If True, double clicking on the window menu button removes the
client window, which means that f.kill is invoked.

Screen-Specific Resources
Some mwm resources can be applied on a per-screen basis. To specify a screen-
specific resource, use the following syntax:

Mwm*screen_number*resource_name: resource_value

Screen-specific specifications take precedence over specifications for all screens.
Screen-specific resources can be specified for all screens using the following syn-
tax:

Mwm* resource_name: resource_value

mwm Mrm Clients

1010 Motif Reference Manual

buttonBindings (class ButtonBindings)
Identifies the set of button bindings to be used for window manage-
ment functions; must correspond to a set of button bindings speci-
fied in the mwm startup file. Button bindings specified in the startup
file are merged with built-in default bindings. The default is
DefaultButtonBindings.

cleanText (class CleanText)
Specifies whether text that appears in mwm title and feedback win-
dows is displayed over the existing background pattern. If True (the
default), text is drawn with a clear (no stipple) background. (Only
the stippling in the area immediately around the text is cleared.)
This enhances readability, especially on monochrome systems
where a backgroundPixmap is specified. If False, text is drawn on
top of the existing background.

fadeNormalIcon (class FadeNormalIcon)
If True, an icon is greyed out when it has been normalized. The
default is False.

feedbackGeometry (class FeedbackGeometry)
Specifies the position of the small, rectangular feedback box that
displays coordinate and size information during move and resize
operations. By default, the feedback window appears in the center
of the screen. This resource takes the argument:

[=]±xoffset±yoffset

With the exception of the optional leading equal sign, this string is
identical to the second portion of the standard geometry string.
Note that feedbackGeometry allows you to specify location only.
The size of the feedback window is not configurable using this
resource. Available as of mwm version 1.2 and later.

frameBorderWidth (class FrameBorderWidth)
Specifies the width in pixels of a window frame border, without
resize handles. (The border width includes the three-dimensional
shadows.) The default is determined according to screen specifics.

frameStyle
In Motif 2.0 and later, specifies the frame appearance of decoration
windows and borders: the value WmRECESSED makes the win-
dow appear recessed into the border, the value WmSLAB gives a
flat window and border.

mwm Mrm Clients

1011 Motif Reference Manual

iconBoxGeometry (class IconBoxGeometry)
Specifies the initial position and size of the icon box. Takes as its
argument the standard geometry string:

widthxheight±xoff±yoff

where width and height are measured in icons. The default geome-
try string is 6x1+0-0, which places an icon box six icons wide by
one icon high in the lower-left corner of the screen.

You can omit either the dimensions or the x and y offsets from the
geometry string and the defaults apply. If the offsets are not pro-
vided, the iconPlacement resource is used to determine the initial
placement.

The actual screen size of the icon box depends on the iconImage-
Maximum and iconDecoration resources, which specify icon size
and padding. The default value for size is (6 × icon_width + pad-
ding) wide by (1 × icon_height + padding) high.

iconBoxName (class IconBoxName)
Specifies the name under which icon box resources are to be found.
The default is iconbox.

iconBoxSBDisplayPolicy (class IconBoxSBDisplayPolicy)
Specifies what scrollbars are displayed in the icon box. The
resource has three possible values: all, vertical, and horizontal. If all
is specified (the default), both vertical and horizontal scrollbars are
displayed at all times. vertical specifies that a single vertical scroll-
bar is displayed and sets the orientation of the icon box to horizon-
tal, regardless of the iconBoxGeometry specification. horizontal
specifies that a single horizontal scrollbar is displayed in the icon
box and sets the orientation of the icon box to vertical, regardless of
the iconBoxGeometry specification.

iconBoxTitle (class IconBoxTitle)
Specifies the name to be used in the title area of the icon box. The
default is Icons.

iconDecoration (class IconDecoration)
Specifies how much icon decoration is used. The resource value
takes four possible values (multiple values can also be supplied):
label, which specifies that only the label is displayed; image, which
specifies that only the image is displayed; and activelabel, which
specifies that a label (not truncated to the width of the icon) is used
when the icon has the focus.

mwm Mrm Clients

1012 Motif Reference Manual

The default decoration for icons in an icon box is label image,
which specifies that both the label and image parts are displayed.
The default decoration for individual icons on the screen proper is
activelabel label image.

iconImageMaximum (class IconImageMaximum)
Specifies the maximum size of the icon image. Takes a value of
widthxheight (e.g., 80× 80). The maximum size supported is
128× 128. The default is 50× 50.

iconImageMinimum (class IconImageMinimum)
Specifies the minimum size of the icon image. Takes a value of
widthxheight (e.g., 36× 48). The minimum size supported is 16× 16
(which is also the default).

iconPlacement (class IconPlacement)
Specifies an icon placement scheme. Note that this resource is only
useful when useIconBox is False (the default). The iconPlacement
resource takes a value of the syntax:

primary_layout secondary_layout [tight]

There are four possible layout policies. top specifies that icons are
placed from the top of the screen to the bottom, bottom specifies a
bottom-to-top arrangement, left specifies that icons are placed from
the left to the right, and right specifies a right-to-left arrangement.
The optional argument tight specifies that there is no space between
icons.

The primary_layout specifies whether icons are placed in a row or a
column and the direction of placement. The secondary_layout spec-
ifies where to place new rows or columns. For example, a value of
top right specifies that icons should be placed from top to bottom on
the screen and that columns should be added from right to left on
the screen.

A horizontal (vertical) layout value should not be used for both the
primary_layout and the secondary_layout. For example, do not use
top for the primary_layout and bottom for the secondary_layout.

The default placement is left bottom (i.e., icons are placed left to
right on the screen, with the first row on the bottom of the screen,
and new rows are added from the bottom of the screen to the top of
the screen).

mwm Mrm Clients

1013 Motif Reference Manual

iconPlacementMargin (class IconPlacementMargin)
Sets the distance from the edge of the screen at which icons are
placed. The value should be greater than or equal to 0. A default
value is used if an invalid distance is specified. The default value is
equal to the space between icons as they are placed on the screen,
which is based on maximizing the number of icons in each row and
column.

keyBindings (class KeyBindings)
Identifies the set of key bindings to be used for window manage-
ment functions; must correspond to a set of key bindings specified
in the mwm startup file. Note that key bindings specified in the star-
tup file replace the built-in default bindings. The default is Default-
KeyBindings.

limitResize (class LimitResize)
If True (the default), the user is not allowed to resize a window to
greater than the maximum size.

maximumMaximumSize (class MaximumMaximumSize)
Specifies the maximum size of a client window (as set by the user
or client). Takes a value of widthxheight (e.g., 1024x1024) where
width and height are in pixels. The default is twice the screen width
and height.

moveOpaque (class MoveOpaque)
If False (the default), when you move a window or icon, its outline
is moved before it is redrawn in the new location. If True, the actual
(and thus, opaque) window or icon is moved. Available as of mwm
version 1.2 and later.

resizeBorderWidth (class ResizeBorderWidth)
Specifies the width in pixels of a window frame border, with resize
handles. (The border width includes the three-dimensional shad-
ows.) The default is determined according to screen specifics.

resizeCursors (class ResizeCursors)
If True (the default), the resize cursors are always displayed when
the pointer is in the window resize border.

transientDecoration (class TransientDecoration)
Specifies the amount of decoration mwm puts on transient windows.
The decoration specification is exactly the same as for the client-
Decoration (client-specific) resource. Transient windows are identi-
fied by the WM_TRANSIENT_FOR property, which is added by

mwm Mrm Clients

1014 Motif Reference Manual

the client to indicate a relatively temporary window. The default is
menu title, which specifies that transient windows have resize bor-
ders and a title bar with a window menu button. If the client appli-
cation also specifies which decorations the window manager should
provide, mwm uses only those features that both the client and the
transientDecoration resource specify.

transientFunctions (class TransientFunctions)
Specifies which window management functions are applicable (or
not applicable) to transient windows. The function specification is
exactly the same as for the clientFunctions (client-specific)
resource. The default is -minimize maximize. If the client applica-
tion also specifies which window management functions should be
applicable, mwm provides only those functions that both the client
and the transientFunctions resource specify.

useIconBox (class UseIconBox)
If True, icons are placed in an icon box. By default, the individual
icons are placed on the root window.

Client-Specific Resources
Some mwm resources can be set to apply to certain client applications or classes
of applications. To specify a client-specific resource, use the following syntax:

Mwm*client_name*resource_name: resource_value

Client-specific specifications take precedence over specifications for all clients.
Client- specific resources can be specified for all clients using the following syn-
tax:

Mwm* resource_name: resource_value

The class name defaults can be used to specify resources for clients that have an
unknown name and class.

The following client-specific resources can be specified:

clientDecoration (class ClientDecoration)
Specifies the amount of window frame decoration. The default
frame is composed of several component parts: the title bar, resize
handles, border, and the minimize, maximize, and window menu
buttons. You can limit the frame decoration for a client using the
clientDecoration resource.

clientDecoration accepts a list of options, each of which corre-
sponds to a part of the client frame. The options are: maximize,

mwm Mrm Clients

1015 Motif Reference Manual

minimize, menu, border, title, resize, all, which encompasses all
decorations previously listed, and none, which specifies that no dec-
orations are used.

Some decorations require the presence of others; if you specify
such a decoration, any decorations required with it are used auto-
matically. Specifically, if any of the command buttons are specified,
a title bar is also used; if resize handles or a title bar is specified, a
border is also used.

By default, a client window has all decoration. To specify only cer-
tain parts of the default frame, you can use one of two syntaxes:
with the first syntax, you disable certain frame features; with the
second syntax, you enable only certain features. You supply client-
Decoration with a list of options to be enabled or disabled. If the
first item is preceded by a minus sign, the features in the list are dis-
abled. If the first item is preceded by a plus sign (or no sign is used),
only those features listed are enabled.

clientFunctions (class ClientFunctions)
Specifies whether certain mwm functions can be invoked on a client
window. The only functions that can be controlled are those that are
executable using the pointer on the default window frame.
clientFunctions accepts a list of options, each of which corresponds
to an mwm function. The options are: resize, move, minimize, max-
imize, close, all, which encompasses all of the previously listed
functions, and none, which specifies that no default functions are
allowed.

By default, a client recognizes all functions. To limit the functions a
client recognizes, you can use one of two syntaxes: with the first
syntax, you disallow certain functions; with the second syntax, you
allow only certain functions. You supply clientFunctions with a list
of options (corresponding to functions) to be allowed or disallowed.
If the first item is preceded by a minus sign, the functions in the list
are disallowed. If the first option is preceded by a plus sign (or no
sign is used), only those functions listed are allowed.
A less than obvious repercussion of disallowing a particular func-
tion is that the client window frame is also altered to prevent your
invoking that function. For instance, if you disallow the f.resize
function for a client, the client’s frame does not include resize bor-
ders. In addition, the Size item on the Window Menu, which
invokes the f.resize function, no longer appears on the menu.

mwm Mrm Clients

1016 Motif Reference Manual

If the client application also specifies which window management
functions should be applicable, mwm provides only those functions
that both the client and the clientFunctions resource specify.

focusAutoRaise (class FocusAutoRaise)
If True, a window is raised when it receives the input focus. Other-
wise, directing focus to a window does not affect the stacking order.
The default depends on the value assigned to the keyboardFocus-
Policy resource. If the keyboardFocusPolicy is explicit, the default
for focusAutoRaise is True. If the keyboardFocusPolicy is pointer,
the default for focusAutoRaise is False.

iconImage (class IconImage)
Specifies the pathname of a bitmap file to be used as an icon image
for a client. The default is to display an icon image supplied by the
window manager. If the useClientIcon resource is set to True, an
icon image supplied by the client takes precedence over an icon
image supplied by the user.

iconImageBackground (class Background)
Specifies the background color of the icon image. The default is the
color specified by Mwm*background or Mwm*icon*background.

iconImageBottomShadowColor (class Foreground)
Specifies the bottom shadow color of the icon image. The default is
the color specified by Mwm*icon*bottomShadowColor.

iconImageBottomShadowPixmap (class BottomShadowPixmap)
Specifies the bottom shadow pixmap of the icon image. The default
is the pixmap specified by Mwm*icon*bottomShadowPixmap.

iconImageForeground (class Foreground)
Specifies the foreground color of the icon image. The default varies
based on the icon background.

iconImageTopShadowColor (class Background)
Specifies the top shadow color of the icon image. The default is the
color specified by Mwm*icon*topShadowColor.

iconImageTopShadowPixmap (class TopShadowPixmap)
Specifies the top shadow Pixmap of the icon image. The default is
the pixmap specified by Mwm*icon*topShadowPixmap.

mwm Mrm Clients

1017 Motif Reference Manual

matteBackground (class Background)
Specifies the background color of the matte. The default is the
color specified by Mwm*background or Mwm*client*background.
This resource is only relevant if matteWidth is positive.

matteBottomShadowColor (class Foreground)
Specifies the bottom shadow color of the matte. The default is the
color specified by Mwm*bottomShadowColor or Mwm*client*bot-
tomShadowColor. This resource is only relevant if matteWidth is
positive.

matteBottomShadowPixmap (class BottomShadowPixmap)
Specifies the bottom shadow pixmap of the matte. The default is the
pixmap specified by Mwm*bottomShadowPixmap or Mwm*cli-
ent*bottomShadowPixmap. This resource is only relevant if mat-
teWidth is positive.

matteForeground (class Foreground)
Specifies the foreground color of the matte. The default is the color
specified by Mwm*foreground or Mwm*client*foreground. This
resource is only relevant if matteWidth is positive.

matteTopShadowColor (class Background)
Specifies the top shadow color of the matte. The default is the color
specified by Mwm*topShadowColor or Mwm*client*topShadow-
Color. This resource is only relevant if matteWidth is positive.

matteTopShadowPixmap (class TopShadowPixmap)
Specifies the top shadow pixmap of the matte. The default is the
pixmap specified by Mwm*topShadowPixmap or Mwm*cli-
ent*topShadowPixmap. This resource is only relevant if mat-
teWidth is positive.

matteWidth (class MatteWidth)
Specifies the width of the matte. The default is 0, which means no
matte is used.

maximumClientSize (class MaximumClientSize)
Specifies how a window is to be maximized, either to a specific size
(widthxheight), or as much as possible in a certain direction (verti-
cal or horizontal). If the value is of the form widthxheight, the width
and height are interpreted in the units used by the client. For exam-
ple, xterm measures width and height in font characters and lines.

If maximumClientSize is not specified, and the
WM_NORMAL_HINTS property is set, the default is obtained

mwm Mrm Clients

1018 Motif Reference Manual

from it. If WM_NORMAL_HINTS is not set, the default is the size
(including borders) that fills the screen. mwm also uses maximum-
MaximumSize to constrain the value in this case.

useClientIcon (class UseClientIcon)
If True, an icon image supplied by the client takes precedence over
an icon image supplied by the user. The default is False.

usePPosition (class UsePPosition)
Specifies whether mwm uses initial coordinates supplied by the cli-
ent application. If True, mwm always uses the program specified
position. If False, mwm never uses the program specified position.
The default is nonzero, which means that mwm will use any pro-
gram specified position except 0,0. Available as of mwm version
1.2 and later.

windowMenu (class WindowMenu)
Specifies a name for the Window Menu (which must be defined in
the startup file). The default is DefaultWindowMenu.

Functions
mwm supports a number of functions that can be bound to different key and but-
ton combinations and assigned to menus in the mwm resource description file
(system.mwmrc or.mwmrc). Most window manager functions can be used in key
bindings, button bindings, and menus. The function descriptions below note any
exceptions to this policy. Most window manager functions can also be specified
for three contexts: root, window, and icon. The root context means that the func-
tion is applied to the root window, window means that the function is applied to
the selected client window, and icon means that the function is applied to the
selected icon. The function descriptions below note any functions that cannot be
used in all three contexts.

When a function is specified with the context icon | window and you invoke the
function from the icon box, the function applies to the icon box itself, rather than
to any of the icons it contains.

A function is treated as f.nop if it is not a valid function name, if it is specified
inappropriately, or if it is invoked in an invalid way.

mwm recognizes the following functions:

f.beep
Causes a beep from the keyboard.

mwm Mrm Clients

1019 Motif Reference Manual

f.circle_down [icon | window]
Causes the window or icon on the top of the stack to be lowered to
the bottom of the stack. If the icon argument is specified, the func-
tion applies only to icons. If the window argument is specified, the
function applies only to windows.

f.circle_up [icon | window]
Causes the window or icon on the bottom of the stack to be raised
to the top. If the icon argument is specified, the function applies
only to icons. If the window argument is specified, the function
applies only to windows.

f.exec[command]
![command]

Executes command using the shell specified by the MWMSHELL
environment variable. If MWMSHELL is not set, the command is
executed using the shell specified by the SHELL environment vari-
able; otherwise, the command is executed using /bin/sh.

f.focus_color
Sets the colormap focus to a client window. If this function is
invoked in the root context, the default colormap (specified by X for
the screen where mwm is running) is installed and there is no spe-
cific client window colormap focus. For the f.focus_color function
to work, the colormapFocusPolicy should be specified as explicit;
otherwise the function is treated as f.nop.

f.focus_key
Sets the input focus to a window or icon. For the f.focus_key func-
tion to work, the keyboardFocusPolicy should be specified as
explicit. If keyboardFocusPolicy is not explicit or if the function is
invoked in the root context, it is treated as f.nop.

f.kill
Terminates a client. It sends the WM_DELETE_WINDOW mes-
sage to the selected window if the client application has requested it
through the WM_PROTOCOLS property. The application is sup-
posed to respond to the message by removing the indicated win-
dow. If the WM_SAVE_YOURSELF protocol is set up and the
WM_DELETE_WINDOW protocol is not, the client is sent a mes-
sage that indicates that the client needs to prepare to be terminated.
If the client does not have the WM_DELETE_WINDOW or
WM_SAVE_YOURSELF protocol set, the f.kill function causes a
client’s X connection to be terminated.

mwm Mrm Clients

1020 Motif Reference Manual

f.lower [-client | within | freeFamily]
Without arguments, lowers a window or icon to the bottom of the
stack. By default, the context in which the function is invoked indi-
cates to the window or icon to lower. If an application window has
one or more transient windows (e.g., dialog boxes), the transient
windows are lowered with the parent (within the global stack) and
remain on top of it. If the -client argument is specified, the function
is invoked on the named client. client must be the instance or class
name of a program. The within argument is used to lower a tran-
sient window within the application’s local window hierarchy; all
transients remain above the parent window and that window
remains in the same position in the global window stack. In prac-
tice, this function is only useful when there are two or more tran-
sient windows and you want to shuffle them. The freeFamily
argument is used to lower a transient below its parent in the applica-
tion’s local window hierarchy. Again, the parent is not moved in the
global window stack. However, if you use this function on the par-
ent, the entire family stack is lowered within the global stack.

f.maximize
Causes a window to be redisplayed at its maximum size. This func-
tion cannot be invoked in the context root or on a window that is
already maximized.

f.menu menu_name
Associates a cascading menu with a menu item or associates a
menu with a button or key binding. The menu_name argument
specifies the menu.

f.minimize
Causes a window to be minimized (i.e., iconified). When no icon
box is being used, icons are placed on the bottom of the stack,
which is generally in the lower-left corner of the screen. If an icon
box is being used, icons are placed inside the box. This function
cannot be invoked in the context root or on an iconified window.

f.move
Allows you to move a window interactively, using the pointer.

f.next_cmap
Installs the next colormap in the list of colormaps for the window
with the colormap focus.

mwm Mrm Clients

1021 Motif Reference Manual

f.next_key [icon | window | transient]
Without any arguments, this function advances the input focus to
the next window or icon in the stack. You can specify icon or win-
dow to make the function apply only to icons or windows, respec-
tively. Generally, the focus is moved to windows that do not have an
associated secondary window that is application modal. If the
transient argument is specified, transient windows are also tra-
versed. Otherwise, if only window is specified, focus is moved to
the last window in a transient group to have the focus. For this func-
tion to work, keyboardFocusPolicy must be explicit; otherwise, the
function is treated as f.nop.

f.nop
Specifies no operation.

f.normalize
Causes a client window to be displayed at its normal size. This
function cannot be invoked in the context root or on a window that
is already at its normal size.

f.normalize_and_raise
Causes the client window to be displayed at its normal size and
raised to the top of the stack. This function cannot be invoked in the
context root or on a window that is already at its normal size.

f.pack_icons
Rearranges icons in an optimal fashion based on the layout policy
being used, either on the root window or in the icon box.

f.pass_keys
Toggles processing of key bindings for window manager functions.
When key binding processing is disabled, all keys are passed to the
window with the keyboard input focus and no window manager
functions are invoked. If the f.pass_keys function is set up to be
invoked with a key binding, the binding can be used to toggle key
binding processing.

f.post_wmenu
Displays the Window Menu. If a key is used to display the menu
and a window menu button is present, the upper-left corner of the
menu is placed at the lower-left corner of the command button. If
no window menu button is present, the menu is placed in the upper-
left corner of the window.

Mrm Clients

Motif Reference Manual 1022

f.prev_cmap
This function installs the previous colormap in the list of colormaps
for the window with the colormap focus.

f.prev_key [icon | window | transient]
Without any arguments, this function moves the input focus to the
previous window or icon in the stack. You can specify icon or win-
dow to make the function apply only to icons or windows, respec-
tively. Generally, the focus is moved to windows that do not have an
associated secondary window that is application modal. If the
transient argument is specified, transient windows are also tra-
versed. Otherwise, if only window is specified, focus is moved to
the last window in a transient group to have the focus. For this func-
tion to work, keyboardFocusPolicy must be explicit; otherwise, the
function is treated as f.nop.

f.quit_mwm
Stops the mwm window manager. Note that this function does not
stop the X server. This function cannot be invoked from a non-root
menu.

f.raise [-client | within | freeFamily]
Without arguments, raises a window or icon to the top of the stack.
By default, the context in which the function is invoked indicates
the window or icon to raise. If an application window has one or
more transient windows (e.g., dialog boxes), the transient windows
are raised with the parent (within the global stack) and remain on
top of it. If the -client argument is specified, the function is invoked
on the named client. client must be the instance or class name of a
program. The within argument is used to raise a transient window
within the application’s local window hierarchy; all transients
remain above the parent window and that window remains in the
same position in the global window stack. In practice, this function
is only useful when there are two or more transient windows and
you want to shuffle them.

The freeFamily argument raises a transient to the top of the applica-
tion’s local window hierarchy. The parent window is also raised to
the top of the global stack.

f.raise_lower [within | freeFamily]
Raises a primary application window to the top of the stack or low-
ers a window to the bottom of the stack, as appropriate to the con-
text. The within argument is intended to raise a transient window

Mrm Clients

Motif Reference Manual 1023

within the application’s local window hierarchy. All transients
remain above the parent window and the parent window should also
remain in the same position in the global window stack. If the tran-
sient is not obscured by another window in the local stack, the tran-
sient window is lowered within the family. The preceding
paragraph describes how within should work. However, we have
found that the parent window does not always remain in the same
position in the global window stack. The freeFamily argument
raises a transient to the top of the family stack and also raises the
parent window to the top of the global stack. If the transient is not
obscured by another window, this function lowers the transient to
the bottom of the family stack and lowers the family in the global
stack.

f.refresh
Redraws all windows.

f.refresh_win
Redraws a single window.

f.resize
Allows you to resize a window interactively, using the pointer.

f.restart
Restarts the mwm window manager. The function causes the current
mwm process to be stopped and a new mwm process to be started. It
cannot be invoked from a non-root menu.

f.restore
Causes the client window to be displayed at its previous size. If
invoked on an icon, f.restore causes the icon to be converted back to
a window at its previous size. Thus, if the window was maximized,
it is restored to this state. If the window was previously at its nor-
mal size, it is restored to this state. If invoked on a maximized win-
dow, the window is restored to its normal size. This function cannot
be invoked in the context root or on a window that is already at its
normal size.

f.restore_and_raise
Causes the client window to be displayed at its previous size and
raised to the top of the stack. This function cannot be invoked in the
context root or on a window that is already at its normal size.

Mrm Clients

Motif Reference Manual 1024

f.screen [next | prev | back | screen_number]
Causes the pointer to be warped to another screen, which is deter-
mined by one of four mutually exclusive parameters. The next argu-
ment means skip to the next managed screen, prev means skip back
to the previous managed screen, back means skip to the last screen
visited, and screen_number specifies a particular screen. Screens
are numbered beginning at 0.

f.send_msg message_number
Sends a message of the type _MOTIF_WM_MESSAGES to a cli-
ent; the message type is indicated by the message_number argu-
ment. The message is sent only if the client’s
_MOTIF_WM_MESSAGES property includes message_number. If
a menu item is set up to invoke f.send_msg and the
message_number is not included in the client’s
_MOTIF_WM_MESSAGES property, the menu item label is
greyed out, which indicates that it is not available for selection.

f.separator
Creates a divider line in a menu. Any associated label is ignored.

f.set_behavior
Restarts mwm, toggling between the default behavior for the partic-
ular system and the user’s custom environment. In any case, a dia-
log box asks the user to confirm or cancel the action. By default this
function is invoked using the following key sequence: Shift Ctrl
Meta !.

f.title
Specifies the title of a menu. The title string is separated from the
menu items by a double divider line.

Event Specification
In order to specify button bindings, key bindings, and menu accelerators, you
need to be able to specify events in the mwm resource description file. Use the
following syntax to specify button events for button bindings:

[modifier_key...]<button_event>

The acceptable values for modifier_key are: Ctrl, Shift, Alt, Meta, Lock, Mod1,
Mod2, Mod3, Mod4, and Mod5. mwm considers Alt and Meta to be equivalent.

Mrm Clients

Motif Reference Manual 1025

 The acceptable values for button_event are:

Btn1Down Btn2Down Btn3Down Btn4Down Btn5Down
Btn1Up Btn2Up Btn3Up Btn4Up Btn5Up
Btn1Click Btn2Click Btn3Click Btn4Click Btn5Click
Btn1Click2 Btn2Click2 Btn3Click2 Btn4Click2 Btn5Click2

Use the following syntax to specify key events for key bindings and menu accel-
erators:

[modifier_key...]<Key>key_name

Any X11 keysym name is an acceptable value for key_name.

Button Bindings
The buttonBindings resource specifies the name of a set of button bindings that
control mouse behavior in mwm. You can create your own set of button bindings
or use one of the sets defined in system.mwmrc: DefaultButtonBindings, Explicit-
ButtonBindings, or PointerButtonBindings. Use the following syntax to specify a
set of button bindings:

Buttons button_set_name
{

button context function
button context function
...
button context function

}

The context specifies where the pointer must be located for the button binding to
work. The context is also used for window manager functions that are context-
sensitive. The valid contexts for button bindings are root, window, icon, title,
border, frame, and app. The title context refers to the title area of the frame. bor-
der refers to the frame exclusive of the title bar. frame refers to the entire frame.
The app context refers to the application window proper. The window context
includes the application window and the frame. A context specification can
include multiple contexts; use a vertical bar (|) to separate multiple context val-
ues.

Key Bindings
The keyBindings resource specifies the name of a set of key bindings that control
keyboard behavior in mwm. You can create your own set of key bindings or use
the default key bindings, DefaultKeyBindings, defined in system.mwmrc. Use the
following syntax to specify a set of key bindings:

Mrm Clients

Motif Reference Manual 1026

Keys key_set_name
{

key context function
key context function
...
key context function

}

The context specifies where the keyboard focus must be for the key binding to
work. The context is also used for window manager functions that are context-
sensitive. The valid contexts for key bindings are root, window, icon, title, bor-
der, frame, and app. The title, border, frame, and app contexts are all equivalent
to window. A context specification can include multiple contexts; use a vertical
bar (|) to separate multiple context values.

Menus
The window manager functions f.post_wmenu and f.menu post menus. These
functions both take the name of a menu to post. You can create your own menus
or use the default menus defined in system.mwmrc: DefaultRootMenu and
DefaultWindowMenu. Use the following syntax to specify a menu:

Menu menu_name
{

label [mnemonic] [accelerator] function
label [mnemonic] [accelerator] function
...
label [mnemonic] [accelerator] function

}

Each line in a menu specification indicates the label for the menu item, optional
keyboard mnemonics and accelerators, and the window manager function that is
performed. label can be a string or a bitmap file. If the string contains multiple
words, it must be enclosed in quotation marks. A bitmap file specification is pre-
ceded by an at sign (@). A mnemonic is specified as _character. An accelerator
specification uses the key event specification syntax.

The context of a window manager function that is activated from a menu is based
on how the menu is posted. If it is posted from a button binding, the context of
the menu is the context of the button binding. If it is posted from a key binding,
the context of the menu is based on the location of the keyboard focus.

Mrm Clients

Motif Reference Manual 1027

Environment
mwm uses the following environment variables:

HOME
The user’s home directory.

LANG
The language to be used for the mwm message catalog and the mwm
startup file.

XBMLANGPATH
Used to search for bitmap files.

XFILESEARCHPATH
Used to determine the location of system-wide class resource files.
If the LANG variable is set, the $LANG subdirectory is also
searched.

XUSERFILESEARCHPATH, XAPPLRESDIR
Used to determine the location of user-specific class resource files.
If the LANG variable is set, the $LANG subdirectory is also
searched.

MWMSHELL, SHELL
MWMSHELL specifies the shell to use when executing a command
supplied as an argument to the f.exec function. If MWMSHELL is
not set, SHELL is used.

Files
/usr/lib/X11/$LANG/system.mwmrc
/usr/lib/X11/system.mwmrc
/usr/lib/X11/app-defaults/Mwm
$HOME/Mwm
$HOME/$LANG/.mwmrc
$HOME/.mwmrc
$HOME/.motifbind

See Also
XmIsMotifWMRunning (1), XmInstallImage (1), VendorShell (2),
xmbind (3)

Mrm Clients

Motif Reference Manual 1028

Name
uil – the User Interface Language (UIL) compiler.

Syntax
uil [options] file

Description
The uil command invokes the User Interface Language (UIL) compiler. If the file
does not contain any errors, the compiler generates a User Interface Description
(UID) file that contains a compiled form of the input file. UIL is a specification
language that can be used to describe the initial state of a user interface that uses
the OSF/Motif widget set, as well as other widgets. The user interface for an
application is created at run-time using the Motif Resource Manager (Mrm)
library; the interface is based on compiled interface descriptions stored in one or
more UID files.

Options
-Ipathname

Specifies a search path for include files. By default, the current
directory and /usr/include are searched. Path names may be relative
or absolute. The paths specified with this option are searched in
order after the current directory and before /usr/include.

-m
When specified with the -v option, the UIL compiler includes
machine code in the listing file. The machine code provides binary
and text descriptions of the data that is stored in the UID file. This
option is useful for determining exactly how the compiler interprets
a particular statement and how much storage is used for the varia-
bles, declarations, and assignments.

-o ofile
Specifies the name of the UID file to output. The default filename is
a.uid. The customary suffix for UID files is .uid.

-s
Specifies that the UIL compiler set the locale before compiling any
files. Setting the locale determines the behavior of locale-dependent
routines like character string operations. Although setting the locale
is an implementation-dependent operation, on ANSI-C-based sys-
tems, the locale is set with the call:

setlocale (LC_ALL, ””)

See the setlocale() man page on your system for more information.

Mrm Clients

Motif Reference Manual 1029

-v lfile
Directs the UIL compiler to produce a listing of the compilation.
The file indicates the name of the output file. If this option is not
specified, the compiler does not generate a listing. On UNIX sys-
tems, a filename of /dev/tty usually causes the listing to be output on
the terminal where uil was invoked.

-w
Directs the compiler to suppress warning and informational mes-
sages and to print only error messages. The default behavior is to
print error, warning and informational messages.

-wmd wfile
Specifies a compiled Widget Meta-Language (WML) description
file that is loaded in place of the default WML description. The
default WML description file contains a description of all of the
Motif widgets. This option is normally used to debug a WML
description file without rebuilding the UIL compiler.

Environment
The LANG environment variable affects the way that the UIL compiler parses
and generates compound strings, fonts, fontsets, and font tables (font lists). The
exact effect is described by the UIL reference pages for these types.

Example
% uil -o myfile.uid -v /dev/tty myfile.uil
% uil -I/project/include/uil -o mainui.uid mainui.uil

Bugs
If the LANG environment variable is set to an invalid value and the -s option is
specified, the UIL compiler crashes.

See Also
Uil (7).

Mrm Clients

Motif Reference Manual 1030

Name
xmbind – configure virtual key bindings.

Syntax
xmbind [options] [file]

Availability
Motif 1.2 and later.

Description
The xmbind command configures the virtual key bindings for Motif applications.
Since this action is performed by mwm on startup, xmbind is only needed when
mwm is not being used or when a user wants to change the bindings without
restarting mwm.

When a file is specified, its contents are used for the virtual bindings. Otherwise,
xmbind uses the .motifbind file in the user’s home directory. A sample specifica-
tion is shown below:

osfBackSpace: <Key>BackSpace
osfInsert: <Key>InsertChar
osfDelete: <Key>DeleteChar

If xmbind cannot find the .motifbind file, it loads the default virtual bindings for
the server. xmbind searches for a vendor-specific set of bindings located using
the file xmbind.alias. If this file exists in the user’s home directory, it is searched
for a pathname associated with the vendor string or the vendor string and vendor
release. If the search is unsuccessful, Motif continues looking for xmbind.alias in
the directory specified by XMBINDDIR or in /usr/lib/Xm/bindings if the variable
is not set. If this file exists, it is searched for a pathname as before. If either search
locates a pathname and the file exists, the bindings in that file are used. An
xmbind.alias file contains lines of the following form:

"vendor_string[vendor_release]"bindings_file

If xmbind still has not located any bindings, it loads fixed fallback default bind-
ings.

The Motif toolkit uses a mechanism called virtual bindings to map one set of
keysyms to another set. This mapping permits widgets and applications to use
one set of keysyms in translation tables; applications and users can then custom-
ize the keysyms used in the translations based on the particular keyboard that is
being used. Keysyms that can be used in this way are called osf keysyms. Motif
maintains a mapping between the osf keysyms and the actual keysyms that repre-
sent keys on a particular keyboard. See the Introduction to Section 2, Motif and
Xt Widget Classes, for more information about virtual bindings.

Mrm Clients

Motif Reference Manual 1031

Options
-display[host]:server[.screen]

Specifies the name of the display on which to run xmbind. host is
the hostname of the physical display, server specifies the server
number, and screen specifies the screen number. Either or both of
the host and screen elements can be omitted. If host is omitted, the
local display is assumed. If screen is omitted, screen 0 is assumed
(and the period is unnecessary). The colon and (display) server are
necessary in all cases.

Environment
The XMBINDDIR environment variable affects the way that xmbind searches for
vendor-specific default virtual bindings.

See Also
XmTranslateKey (1).

Mrm Clients

Motif Reference Manual 1032

Motif Reference Manual 1033

Section 5 - UIL File Format

This page describes the format and contents of each reference page in Section 5, which covers the UIL
file format.

Name
Section – a brief description of the file section.

Syntax
This section describes the syntax for the section of the UIL file. Anything in constant width type should
be typed exactly as shown. Items in italics are expressions that should be replaced by actual names and
values when you write a UIL file. Anything enclosed in brackets is optional. An ellipsis (...) means that
the previous expression can be repeated multiple times and a vertical bar (|) means to select one of a set
of choices.

Description
This section provides an overview of the particular section in the UIL module and it explains the syntax
that is expected for the section. A UIL source file, also known as a UIL module, describes the user inter-
face for an application. It consists of a module name, optional module settings, optional include direc-
tives, zero or more sections that describe all or part of a user interface, and an end module statement.
The module specifies the widgets used in the interface, as well as the resources and callbacks of these
widgets. UIL gives you the ability to use variables, procedures, lists, and objects to describe the inter-
face.

A major portion of a UIL module is the sections that describe the user interface. They are the value sec-
tion, for defining and declaring variables; the procedure section, for declaring callback routines; the
identifier section, for declaring values registered by the application at run-time; the list section, for
defining lists of procedures, resources, callbacks, and widgets; and the object section, for defining the
widgets, their resources, and the widget hier-archy.

In this section, we provide reference pages for each section of a UIL source file, as well as for the over-
all module structure and the include directive. Figure 5-1 shows an example of a UIL module that con-
tains all of these sections.

UIL Syntax
Symbols and identifiers in a UIL module must be separated by whitespace or punctuation characters in
order to be recognized by the UIL compiler. Like C, no other restrictions are placed on the formatting of
a UIL module, although the maximum line length accepted by the compiler is 132 characters.

Comments in UIL can take two different forms: single-line and multi-line. A single-line comment
begins with a exclamation point (!) and continues to the end of the line. A multi-line comment begins
with the characters /* and ends with the characters */. Since the UIL compiler suspends normal parsing
within comments, they cannot be nested.

Values, identifiers, procedures, lists, and objects are declared or defined with programmer-assigned
names. Names can be composed of upper and lowercase characters from A to Z, the digits from 0 to 9,
and the underscore (_) and dollar sign ($) characters. Names may be up to 31 characters in length; they
cannot begin with a digit. The names option, which is described on the module reference page, affects
the case sensitivity of names. The UIL compiler maintains a single name-space for all UIL keywords
and programmer-defined names. This means that the name of each value, identifier, procedure, list, and
object must be unique.

UIL Keywords
UIL keywords are categorized into reserved and unreserved keywords. Reserved keywords cannot be
redefined by the programmer, while unreserved keywords can be used as programmer-defined names. In
general, you should avoid redefining unreserved keywords because it can lead to confusion and pro-
gramming errors. UIL uses the following reserved and unreserved keywords:

Introduction UIL File Format

1034 Motif Reference Manual

identifier
style_widget_list;

module StyleMenu
character_set = iso_latin1
objects = { XmSeparator = gadget ; }

module header

include file ‘appdefs.uih’; include direction

value
tear_off_mode : XmTEAR_OFF_ENABLED;
a_normal : imported string;
a_bold : imported string;
a_italic : imported string;

value section

identifier section

procedure
reset_all (any);
register_widget (any);
bold_changed (any);
italic_changed (any);

procedure section

list
style_menu_entries {

XmPushButton normal;
XmSeparator { };
XmToggleButton bold;
XmToggleButton italic;

};
register : callbacks {

MrmNCreateCallback = procedure register_widget (style_widget_list);
};

list section

object style_menu : XmPulldownMenu {
arguments {
XmNtearOffModel = tear_off_mode;

};
controls style_menu_entries;
}

object section

object normal : XmPushButton {
arguments {
XmNlabelString = a_normal;
};
callbacks {
XmNactivateCallback = procedure reset_all (style_widget_list);
};
};
...

end module; end module statement

Figure 5-1: A Sample UIL source file

UIL File Format Introduction

Motif Reference Manual 1035

Usage
This section provides less formal information about the section: how you might want to use it in a UIL
module and things to watch out for.

Example
This section provides examples of the use of the section in a UIL module.

See Also
This section refers you to related functions, UIL file format sections, and UIL data types. The numbers
in parentheses following each reference refer to the sections of this book in which they are found.

Type Reserved Keywords

General module, end, widget, gadget

Section and list name arguments, callbacks, controls, identifier, include, list, object, pro-
cedure, procedures, value

Storage classes exported, private

Boolean constants on, off, true, false

Type Unreserved Keywords

Resource names XmNaccelerators, XmNactivateCallback, et al.

Character set names iso_latin1, iso_greek, et al.

Enumerated values XmATTACH_FORM, XmSHADOW_ETCHED_IN, et al.

Widget class names XmPushButton, XmSeparator, et al.

Option names and values background, case_insensitive, case_sensitive, file,
foreground, imported, managed, names, objects, right_to_left, un-
managed, user_defined

Type names any, argument, asciz_table, asciz_string_table, boolean,
character_set, color, color_table, compound_string,
compound_string_table, float, font, font_table, fontset, icon, inte-
ger, integer_table, keysym, reason, rgb, single_float, string,
string_table, translation_table, wide_character,
xbitmapfile

identifier UIL File Format

1036 Motif Reference Manual

Name
identifier – run-time variable declaration section.

Syntax
identifier identifier_name;
[...]

Description
The identifier section contains variable declarations that are registered at run-time by the application
with MrmRegisterNames () or MrmRegisterNamesInHierarchy (). The section begins with
the UIL keyword identifier, followed by a list of names separated by semicolons.

Usage
A value declared as an identifier can be assigned to a named variable in a value section, it can be passed
as the parameter to a callback procedure, or it can be assigned to a resource in the arguments section of
an object definition. An identifier value cannot be used in an expression or as part of a complex literal
type definition. An identifier value does not have any type associated with it, so it can be passed as a
parameter to any callback that can take an argument or it can be assigned to any resource, regardless of
the type of parameter or resource expected.

Example
...
identifier

display_name;
highlight_color;

value
alias : display_name;

procedure
highlight (color);

object label : XmLabel {
arguments {

XmNlabelString : display_name;
}
callbacks {

XmNfocusInCallback = procedure highlight (highlight_color);
};

}
...

See Also
MrmRegisterNames (3), MrmRegisterNamesInHierarchy (3), procedure (5), object (5).

UIL File Format include

Motif Reference Manual 1037

Name
include – include file directive.

Syntax
include file ’file_name’;

Description
The include directive tells the UIL compiler to suspend parsing of the current file and switch to the spec-
ified file. Parsing of the original file resumes after the end of the included file has been reached. Include
directives may be nested, which means that an included file can contain include directives.

If an include file is specified an absolute pathname, which means that it begins with a slash (/), the com-
piler looks for the file in that specific location. Otherwise, the compiler tries to locate the file by search-
ing in one or more directories. The directory that contains the UIL source file specified on the command
line is searched first. (This directory may or may not be the same as the directory the compiler was
invoked from.) If the file is not found there, the compiler searches any directories specified on the com-
mand line with the -I option in the order that they were specified. Next, the compiler searches the /usr/
include directory. Finally, if the specified file cannot be found, the compiler generates an error message
and exits.

When an include directive is encountered, the UIL compiler ends the current section. Therefore, an
include file must specifically use one of the section name keywords to begin a new section.

Usage
Include files are used to break up modules into more manageable pieces or to provide a common place
for definitions and declarations that are shared by several modules. Include files should not be used for
defining strings. Strings should be defined in a separate UIL module and loaded at run-time as part of an
Mrm hierarchy. The MrmOpenHierarchyPerDisplay () reference page explains how different
UID files can be loaded based on the LANG environment variable. String declarations, however, are
suitable for placement in an include file.

A UIL module can include a maximum of 99 files. This is not a nesting limit, but a limit on the total
number of files that can be included. Because the UIL compiler maintains an open file descriptor for
each included file, even after it has been included, the limit may be less than 99 due to operating-system
imposed limits. If the UIL compiler tries to include a file and the maximum number of open file descrip-
tors have been used, the compiler prints an error and exits. If this situation occurs, you should reduce the
number of files included or increase the maximum number of open file descriptors.

If the string containing the include filename is missing a closing quotation mark, or if extraneous char-
acters precede or follow the string, the UIL compiler may generate many strange errors.

Example
From callbacks.uih:

procedure
save();
save_as (string);
open (string);
select (integer_table);
quit();

From edit_window.uil:

module edit_window
! Include callback definitions
include file ’callbacks.uih’;
...
end module;

See Also
MrmOpenHierarchyPerDisplay (3), uil (4), module (5).

list UIL File Format

1038 Motif Reference Manual

Name
list - list definition section.

Syntax
list

list_name :
arguments {

argument_name = value_expression; | arguments arguments_list_name;
[...]

}; |
list_name :

callbacks {
reason_name = procedure procedure_name [([value_expression])]; |
reason_name = procedures {

procedure_name [([value_expression])];
[...]

}; |
reason_name = procedures procedure_list_name; | callbacks callbacks_list_name;
[...]

}; |
list_name :

controls {
[managed | unmanaged] object_class object_name; |
[managed | unmanaged] object_class [widget | gadget] { [attributes] }; |
[managed | unmanaged] user_defined procedure creation_procedure {[attributes] }; |
auto_created_object_name { [attributes] }; |
controls controls_list_name;
[...]

}; |
list_name :

procedures {
procedure_name [([value_expression])]; | procedures procedures_list_name;
[...]

};
[...]

Description
The list section is used to define lists of resources, callbacks, procedures, or controls that can be used
when setting attributes of a widget defined in an object section. Each list definition consists of a list
name followed by a colon, a list type, and a list of items of that type separated by semicolons. Each item
can be a single item (resource, callback, procedure, or widget) or a list of that type of item. When a list
contains another list, the result is the same as if the items in the included list were specified directly in
the including list. The storage class of lists is limited to private. Unlike variables and objects, lists can-
not be exported, imported, or retrieved by an application at run-time.

The type of a list determines the type and the format of the items it contains. UIL allows the following
types of lists: arguments, callbacks, controls, and procedures. The format of the items in arguments,
callbacks, and controls lists is the same as the format for the corresponding subsection in an object defi-
nition. The exact syntax is described in the object section reference page.

The procedures list type exists to allow the specification of a list of procedures for a single callback.
Each routine in a procedures list is invoked by the specified callback. A procedures list is specified by
the symbol procedures, followed by a list of procedures declared elsewhere in the module. An individ-
ual procedure is specified with the name of the procedure and an argument specification consistent with
the routine’s declaration. The order in which routines in a procedures list are invoked is not specified by

UIL File Format list

Motif Reference Manual 1039

the Xt Intrinsics. If you need to have several procedures called in a particular order, you should register
a single callback that calls the procedures in that order.

Like many values in UIL, a list can be specified directly in the arguments, callbacks, or controls subsec-
tion or as a callback procedures list. An inline list is specified by the type of the list, followed by a list of
items of that type.

Usage
A list can be used to group collections of resources, callbacks, and widget children that are common to
several object definitions. To specify more than one procedure for a single callback, you must use a list.
A simple style/behavior hierarchy can be specified by using nested list definitions, as the example below
illustrates. If a resource or callback setting occurs more than once in an arguments or callbacks list, the
last occurrence has precedence over earlier occurrences. This feature allows you to define a list that
includes settings from another list but overrides some of the settings. The UIL compiler issues an infor-
mational message about multiple occurrences, but the messages can be turned off by using the -w com-
piler option.

Example
...
! Declare procedures used below.
procedure

shift();
floor_it();
armed();
ready();

list
! Declare some lists to implement widget styles.
base_style : arguments {

! This list contains individual elements only.
XmNforeground = default_foreground;
XmNbackground = default_background;

};
button_style : arguments {

! Include another list in this list.
arguments base_style;
XmNfontList = font (’*helvetica-bold-r-normal-*-120-100-100*’);

};

! Declare a list of procedures to be set on an individual callback.
list

super_button_activate : procedures {
shift();
floor_it();

};
list

super_button_callbacks : callbacks {
XmNactivateCallback = procedures super_button_activate;
! Set the arm callback to an inline list of procedures.
XmNarmCallback = procedures {

armed();
ready();

};
};

object
super_button : XmPushButton {

list UIL File Format

1040 Motif Reference Manual

arguments {
! Use arguments in button_style list and add one of our own.
arguments button_style;
XmNarmColor = color (’yellow’);

};
callbacks super_button_callbacks;

};
...

See Also
object (5), procedure (5).

UIL File Format module

Motif Reference Manual 1041

Name
module – module structure.

Syntax
module module_name

[names = [case_insensitive | case_sensitive]]
[character_set = character_set]
[objects = { widget_name = gadget | widget; [...] }]
[[include_directive] | [value_section] | [procedure_section] |

[identifier_section] | [list_section] | [object_section]]
[...]
end module;

Description
A UIL module must begin with the keyword module, followed by the name of the module. You may
name a module anything you like, as long as it is a valid UIL identifier. The name of a module is defined
as a symbol in the compiler’s symbol table, and therefore may not be a UIL reserved keyword. In addi-
tion, the name of the module cannot be used as the name of an object, variable, identifier, widget, or pro-
cedure elsewhere in the module. Option settings for the module are specified following the module
statement. There are three different options that you can set: the case sensitivity of the module, the
default character set, and the default object variant.

The names option specifies the case sensitivity of keywords and symbols in the UIL module. The syntax
of this option is the keyword names, followed by either case_sensitive or case_insensitive. The default
is case_sensitive, which means that all keywords must be lowercase and the case of symbols is signifi-
cant. If case_insensitive is specified, keywords may be in upper, lower, or mixed case, and all program-
mer-defined values, procedures, identifiers, and objects are stored as uppercase in the UID file. For
example, the three symbols JellyBean, jellybean, and JELLYBEAN are considered different symbols
when names are case_sensitive, but are considered the same symbol when names are case_insensitive.
If this option is specified, it must be the first option after the module name and must be specified in low-
ercase only.

The character_set option specifies the character set used for compound_string, font, and fontset values
that are not defined with an explicit character set. The syntax of this option is the keyword
character_set, followed by the name of a built-in character set. (See the character_set reference page for
a list of the built-in character sets.) A user-defined character set cannot be used for this option. If this
option is not specified, the default character set is determined from the codeset portion of the LANG
environment variable if it is set, or XmFALLBACK_CHARSET otherwise. Setting this option overrides
the LANG environment variable and turns off localized string parsing specified by the -s compiler
option. When the character_set defaults to XmFALLBACK_CHARSET, the UIL compiler may use
ISO8859-1 as the character set, even if the value has been changed by the vendor. Therefore, you should
specify a character set explicitly instead of relying on the value of XmFALLBACK_CHARSET.

The objects option specifies whether the widget or gadget variant is used by default for CascadeButton,
Label, PushButton, Separator, and ToggleButton objects. The syntax of the option is the keyword
objects, followed by a list of object-specific settings. Like all lists in UIL, each setting is separated by a
semicolon and enclosed by curly braces. Each object setting is the name of one of the classes listed
above, followed by either widget or gadget. The default value for all of the classes is widget. You can
override these settings when you define a specific object by adding widget or gadget after the object
class name.

UIL also supports a version option setting, which consists of the string version, followed by a string rep-
resenting the version of the module. This option is obsolete in Motif 1.2 and is retained for backward
compatibility. You may encounter this setting in older UIL source files but you should not use it in new
ones. The version string is stored in the UID file, but is not used by Mrm and cannot be accessed by the

module UIL File Format

1042 Motif Reference Manual

application. To make a version identifier that is accessible by the application through Mrm, you can
store a version value in an exported UIL variable.

The bulk of a UIL module is the sections that describe the user interface, which occur after the module
name and optional module settings. Briefly, the sections are the value section, for defining and declaring
variables; the procedure section, for declaring callback routines; the identifier section, for declaring val-
ues registered by the application at run-time; the list section, for defining lists of procedures, resources,
callbacks, or widgets; and the object section, for defining the widgets and their resources, and the
widget hierarchy. Each section is described completely in a separate reference page.

Every UIL module must end with the end module statement, which is simply the string end module fol-
lowed by a semicolon (;). A final newline is required after the end module statement or the UIL com-
piler generates an error message stating that the line is too long.

Example
module print_panel

names = case_insensitive
character_set = iso_latin1
objects = { XmPushButton = gadget; }

! sections
...
end module;

See Also
identifier (5), include (5), list (5), object (5), procedure (5), value (5),
character_set (6), compound_string (6), font (6), fontset (6), font_table (6),
string (6).

UIL File Format object

Motif Reference Manual 1043

Name
object – widget declaration and definition section.

Syntax
object object_name : imported object_type; or

object object_name : [exported | private]
object_type [widget | gadget] |
user_defined procedure creation_procedure

{ [
arguments {

arguments argument_list_name; |
argument_name = value_expression;
[...]

}; |
callbacks {

callbacks callback_list_name; |
reason_name = procedure procedure_name [([value_expression])]; |
reason_name = procedures {

procedure_name [([value_expression])];
[...]

}; |
reason_name = procedures procedures_list_name;
[...]

}; |
controls {

controls controls_list_name; |
[managed | unmanaged] object_class object_name; |
[managed | unmanaged] object_class [widget | gadget] { [attributes] }; |
[managed | unmanaged] user_defined procedure creation_procedure { [attributes] }; |
auto_created_object_name { [attributes] };
[...]

};
[...]]

};

Description
The object section is used to declare or define the objects that compose the user interface of an applica-
tion. These objects can be either widgets or gadgets and are created at run-time with the routines Mrm-
FetchWidget () and MrmFetchWidgetOverride (). Both built-in Motif widgets and user-defined
widgets can be defined in an object section. In addition, in Motif 2.0 and later, the section is used to
define special pseudo-objects which represent the XmRendition, XmRenderTable, XmTab, and XmTab-
List resource types.

An object declaration informs the UIL compiler about an object that is defined in another UIL module.
A declaration consists of the object name followed by a colon, the keyword imported, and the type of
the imported widget.

An object definition consists of an object name followed by a colon, an optional storage class, a built-in
widget class name or used-defined creation procedure, and a list of attributes. An object’s attributes may
include resource settings, callbacks, and a list of the object’s children. The storage class may be either
private or exported. The default storage class is exported. Widgets defined as private are not prevented
from being retrieved directly with Mrm, but you can still declare widgets as private to indicate that they
should not be retrieved directly.

object UIL File Format

1044 Motif Reference Manual

When defining an instance of a built-in widget, the name of a Motif class (such as XmPushButton or
XmMessageDialog) follows the optional storage class. A class that has both widget and gadget variants
can be followed by widget or gadget to indicate which variant is used. The default variant is widget,
unless gadget is specified in the objects setting in the UIL module header. For gadget variants, the UIL
compiler also allows the name Gadget to be appended directly to the widget class name (as in XmPush-
ButtonGadget). This syntax is inconsistent, however, so you should avoid using it.

When defining an instance of a user-defined widget, the optional storage class is followed by the string
user_defined procedure and the name of a widget creation procedure. The procedure must be declared
in a procedure section elsewhere in the module. It must also be registered by the application at run-time
with MrmRegisterClass () before the widget is retrieved. The C prototype of a creation procedure is
described in the MrmRegisterClass () manual page in Section 3, Mrm Functions.

The remainder of an object definition consists of three optional subsections that define the widget’s
resources, callbacks, and children. The subsections are enclosed by curly braces, which must be present,
even when none of the subsections are specified. Each subsection consists of the name of the subsec-
tion followed by the name of a list defined in a list section or a list of items enclosed by curly braces.
The arguments subsection specifies resource settings, the callbacks subsection specifies callback proce-
dures, and the controls section specifies child widgets. In Motif 2.0 and later, the controls section also
specifies XmTab and XmRendition constituents of the XmTabList and XmRenderTable pseudo-objects.

Arguments
The arguments subsection, if present, specifies one or more resource settings and/or resource lists. A list
is specified with the symbol arguments, followed by the name of an arguments list defined elsewhere in
the module. Resource settings are of the form resourceName = value. The resource name may be built-
in or user-defined. (See the argument reference page in Section 6, UIL Data Types, for information
about creating user-defined resource names.) If the same resource is set more than once in a widget’s
arguments section, the last occurrence of the setting is used and the UIL compiler issues an informa-
tional message.

If the widget instance being defined is from a built-in Motif widget class, the predefined resources set in
the arguments section must be valid for the widget class, but any user-defined resource can be set. It can
be useful to set user-defined constraint resources on a built-in widget when it is the child of a user-
defined constraint widget. If the widget instance being defined is a user-defined widget, any predefined
or user-defined resources can be set in its arguments section. You should take care to set resources that
are valid for user-defined widgets, as the UIL compiler is unable to detect invalid resources.

The UIL compiler normally verifies that the type of a value matches the type of the resource to which it
is assigned. Type checking is not possible, however, when a value is assigned to a user-defined resource
of type any, or when a variable declared in an identifier section is assigned to a resource.

The type of a resource and the value assigned to it do not always have to be an exact match. The UIL
compiler automatically converts certain values to the appropriate type for a resource. If a type mismatch
occurs and a conversion cannot be performed, the compiler generates an error message and a UID file is
not generated. The table below summarizes the supported conversions:

Value Type Can be Assigned To

string compound_string

asciz_string_table compound_string_table

icon pixmap

xbitmapfile icon

rgb color

font font_list

UIL File Format object

Motif Reference Manual 1045

When a built-in array resource is specified in the arguments subsection, the UIL compiler automatically
sets the associated count resource. All but one of the built-in arrays with associated counts are
XmStringTable resources; they are listed in the compound_string_table reference page in Section 6,
UIL Data Types. The other resource is the Text and TextField resource XmNselectionArray and its asso-
ciated count resource, XmNselectionArrayCount.

Callbacks
The callbacks subsection, if present, specifies one or more callback settings and/or callback lists. A list
is specified with the symbol callbacks, followed by the name of a callback list defined elsewhere in the
module. A callback setting consists of the callback name, such as XmNactivateCallback, followed by an
equal sign (=) and either a single procedure name or the name of a list of procedures defined elsewhere
in the module. A single procedure is specified by the symbol procedure followed by its name, and an
argument specification consistent with the procedure’s declaration. A list is specified by the symbol pro-
cedures followed by the name of the list. If the same callback is set more than once in a widget’s call-
backs section, the last occurrence of the setting is used and the UIL compiler issues an informational
message.

A procedure used in the callbacks section must be declared in a procedure section elsewhere in the mod-
ule. It must also be registered by the application at run-time with MrmRegisterNames () or Mrm-
RegisterNamesInHierarchy () before any widgets that reference it are created.

If the widget instance being defined is from a built-in Motif widget class, the predefined callbacks set in
the callbacks section must be valid for the widget class, but any user-defined callbacks can be set. There
should not be any need to set a user-defined callback on a built-in widget, however. If the widget
instance being defined is a user-defined widget, any built-in or user-defined callbacks can be set in the
callbacks section.

In addition to the standard Motif callbacks, Mrm supports the MrmNcreateCallback, which is called by
Mrm when a widget is created. The prototype of an MrmNcreateCallback is the same as any other Xt
callback procedure. The call_data passed to the callback is an XmAnyCallbackStruct.

Controls
The controls subsection, if present, specifies a list of children. Each entry in the list may be a list of
children, an object defined elsewhere, an object defined inline, or an automatically-created child. A list
is specified with the symbol controls followed by the name of a controls lists defined elsewhere in the
module. Specify an object defined elsewhere using an optional initial state of managed or unmanaged,
followed by user_defined or a widget class and the name of the child widget. If the same child widget
occurs more than once in a widget’s controls section, an instance of the child is created for each occur-
rence.

An inline object definition is similar, but the name of the child widget is replaced by a set of widget
attributes. The name of the inline widget is automatically generated by the UIL compiler. Inline defini-
tions can be used to define widget instances that have few or no attributes and that do not need to be ref-
erenced by name. You may wish to avoid inline definitions, however, since the widget name is not well-
defined, which makes customization via X resources difficult. An automatically-created child is speci-
fied by the name of the child followed by an attributes list. Appendix D, Table of UIL Objects, lists the
automatically-created children of the built-in Motif widgets. The ability to specify attributes for auto-
matically-created children is only available in Motif 1.2 and later.

If the widget instance being defined is from a built-in Motif widget class, the children specified in the
controls section must be valid for the widget class, but any user-defined children can be specified. If the
widget instance being defined is a user-defined widget, any built-in or used-defined children can be
specified in the controls section. The UIL compiler verifies that the children specified in the controls
section are allowable children for the widget being defined. Appendix D, Table of UIL Objects, lists the
valid children for each built-in widget class. Any children are allowed for user-defined widgets. If an

fontset font_list

Value Type Can be Assigned To

object UIL File Format

1046 Motif Reference Manual

invalid child is specified in a widget’s controls section, the UIL compiler generates an error and no UID
file is produced.

From Motif 2.0 and later, the controls section can be used to specify constituent entries in an
XmRenderTable or XmTabList pseudo-object. For the XmRenderTable object, the controls section lists
a set of further objects of type XmRendition. For the XmTabList object, each listed control is an object
of type XmTab. The rendition and tab list objects are associated with one another by specifying an
XmTabList object as an XmNtabList value within the controls section of an XmRendition object. The
example given below clarifies the relationships.

Usage
A named widget can be specified as a value for a resource of type widget, such as the Form constraint
resource XmNleftWidget, or as the argument of a callback procedure declared with a parameter of type
any or widget. Prior to Motif 1.2.1, UIL does not allow the type widget to be used as an argument type
in a procedure declaration. You can specify type any to work around this problem. Older versions of
UIL may require the widget class name to precede a widget value that is assigned to a resource or used
as callback parameter. Since all versions of UIL accept this syntax, you can avoid potential difficulties
by always using it.

Mrm places some restrictions on the widgets that can be assigned to a resource or used as a callback
parameter. The widget must be a member of the same hierarchy as the widget definition in which it is
used. A widget hierarchy includes the widget named in the call to MrmFetchWidget () or Mrm-
FetchWidgetOverride () and the widgets created in the widget tree below it. If a named widget
does not exist when a reference to it is encountered, Mrm waits until all of the widgets in the hierarchy
have been created and tries to resolve the name again. If a widget reference still cannot be resolved,
Mrm does not set the specified resource or add the specified callback. As of Motif 1.2, Mrm does not
generate a warning message when this situation occurs.

The advantage of this functionality is that, unlike in C, you do not have to worry about the creation
order of a widget hierarchy when you are specifying a widget as a resource value or callback parameter.
UIL also makes the creation of OptionMenus and MenuBars easier by allowing you to specify a Pull-
downMenu as the child of an OptionMenu or CascadeButton. The XmNsubMenuId resource of the
object is automatically set to widget ID of the menu. When specified as the child of a CascadeButton,
the menu is created as a child of the MenuBar that contains the button. As a convenience, you can also
specify a PopupMenu as the child of any widget (but not gadget).

As of Motif 1.2, the UIL compiler does not support user-defined imported widgets. If you need to
import a user-defined widget, declare it with the type of a built-in widget that is a valid child for the con-
text where the imported widget is used.

Example
...

object romulus : XmPushButton gadget {
callbacks {

XmNactivateCallback = procedure create_Rome();
};

};

object remus : imported XmPushButton;

object mars : XmForm {
arguments {

XmNbackground = color (’orange’);
};
controls {

! Define a couple of children.
XmPushButton romulus;

UIL File Format object

Motif Reference Manual 1047

unmanaged XmPushButton remus;
! Define an inline separator.
XmSeparator { };

};
};

object thing : user_defined procedure create_thing {
...

};

object scale : XmScale {
controls {

! Set the labelString on the automatically created label.
Xm_Title {

arguments {
XmNlabelString = ’Temperature’;
XmNrenderTable = rtable_1;

};
};

};
};

! Motif 2.0 and later: pseudo-objects for rendition
! XmRenderTable objects contain rendition objects as controls
object rtable_1 : XmRenderTable {

controls {
XmRendition rendition_1;

};
};

! XmRendition objects contain XmTabList objects as controls
! Note that XmNtag is not a supported argument:
! the tag is implicitly the object name
object rendition_1 : XmRendition {

arguments {
XmNfontName = "fixed";
XmNunderlineType = XmDOUBLE_LINE;

};
controls {

XmTabList tablist_1;
};

};

! XmTabList objects contain XmTab objects as controls
object tablist_1 : XmTabList {

controls {
XmTab tab1;
XmTab tab2;

};
};

object tab1 : XmTab {
arguments {

XmNtabValue = 1.75;
XmNunitType = XmCENTIMETERS;
XmNoffsetModel = XmABSOLUTE;

};

object UIL File Format

1048 Motif Reference Manual

};

object tab2 : XmTab {
arguments {

XmNtabValue = 2.0;
XmNunitType = XmCENTIMETERS;
XmNoffsetModel = XmRELATIVE;

};
};
...

See Also
MrmFetchWidget (3), MrmFetchWidgetOverride (3), MrmRegisterNames (3),
MrmRegisterNamesInHierarchy (3), list (5), procedure (5), value (5), any (6),
argument (6), compound_string_table (6), reason (6), widget (6).

UIL File Format procedure

Motif Reference Manual 1049

Name
procedure – procedure declaration section.

Syntax
procedure procedure_name [([value_type])];
[...]

Description
The procedure section contains declarations of procedures that can be used as a callback for a widget or
as a user-defined widget creation function. Procedures can also be used in a procedure list; procedure
lists are used to associate more than one callback procedure with a specific callback. Procedure lists are
described on the list reference page.

The procedure section begins with the UIL keyword procedure, followed by list of procedure declara-
tions. Each declaration consists of the procedure name followed by optional parentheses enclosing an
optional parameter type. Valid type names are listed in the Introduction to *[cmtr06].

Usage
A procedure declaration can be used to specify whether a procedure expects a parameter, and if so, the
type of the parameter. The UIL compiler verifies that a procedure reference conforms to its declaration.
If a procedure name is not followed by parentheses, the compiler does not count parameters or perform
any type checking when the procedure is used. Zero arguments, or one argument of any type, can be
used in the reference.

If the procedure name is followed by an empty pair of parentheses, a reference to the procedure must
contain zero arguments. User-defined widget creation functions should be declared as taking no param-
eters, although the UIL compiler does not enforce this rule.

If the procedure name is followed by a parenthesized type name or widget class, a reference to the pro-
cedure must contain exactly one argument of the specified type or class. If the type any is specified, the
reference can contain an argument of any type. Prior to Motif 1.2.1, the UIL compiler generates an error
if a widget class name is specified as the type in a procedure declaration. If the parameter to a callback
procedure is an imported value or an identifier that cannot be resolved at run-time, a segmentation fault
may occur when the callback is called.

Because identifiers and procedures are registered in the same name space with MrmRegisterName() and
MrmRegisterNamesInHierarchy(), it is possible to declare a value as a procedure in the UIL source,
even though the entry that is registered may not be a procedure. An attempt to call a non-procedure
value usually causes an application to crash.

Example
...
procedure

exit();
print (string);
XawCreateForm();
popup (XmPopupMenu);

object form : user_defined procedure XawCreateForm { };

object quit : XmPushButton {
callbacks {

MrmNcreateCallback = procedure print (’Hello!’);
XmNactivateCallback = procedure exit();
XmNdestroyCallback = procedure print (’Goodbye!’);

};
};

procedure UIL File Format

1050 Motif Reference Manual

See Also
MrmFetchWidget (3), MrmFetchWidgetOverride (3), MrmRegisterNames (3),
MrmRegisterNamesInHierarchy (3), identifier (5), list (5), object (5).

UIL File Format value

Motif Reference Manual 1051

Name
value – variable definition and declaration section.

Syntax
value value_name : [exported | private] value_expression | imported value_type;
[...]

Description
The value section contains variable definitions and declarations. A variable is defined by assigning a
value to it. A variable declaration is used to inform the UIL compiler of the existence of a variable
defined in another module. The value assigned to a variable may be an arithmetic or string expression, a
literal value, or another variable or identifier.

A value can be declared with a storage class of private, exported, or imported. Values are private by
default. Private and exported values consist of a named variable and the value that is assigned to it. Pri-
vate values are only accessible within the module in which they are defined. An exported variable defi-
nition includes the symbol exported before the value assigned. Exported values are accessible in other
modules and from the application, in addition to the module in which they are defined.

You can access an exported value in another module by declaring it as an imported value in the module
where you want to access it. Imported value declarations consist of a named variable, the symbol
imported, and the type of the variable. If an imported value is exported from more than one module, the
value from the module that occurs first in the array passed to MrmOpenHierarchyPerDisplay () is
used.

Values of all types can be declared as private; values of most types can be declared as exported and
imported. The Introduction to Section 6, UIL Data Types, contains a table that summarizes the storage
classes that are allowed for each type.

Usage
Variables used in an expression can be forward referenced. However, the specification of some complex
literals cannot contain forward-referenced values. The UIL compiler indicates a value cannot be found
in these cases. Refer to the reference page for a type to see if its literal representation can contain for-
ward references.

Typically, the value of a variable used in an expression or in the specification of a complex literal must
be accessible in the module in which it is used. As a result, in most cases you cannot use an imported
variable in an expression or complex value specification. If an imported value is used in an invalid con-
text, the UIL compiler issues an error message.

Example
...
! See individual type reference pages for additional examples.
value

version : exported 1002;
Soothsayer : ’Beware the ides of March.’;
ides : 15;
background : imported color;
...

See Also
MrmFetchBitmapLiteral (3), MrmFetchColorLiteral (3), MrmFetchIconLiteral (3),
MrmFetchSetValues (3), argument (6), asciz_string_table (6), boolean (6), color (6),
color_table (6), compound_string (6), compound_string_table (6), float (6),
font (6), fontset (6), font_table (6), icon (6), integer (6), integer_table (6),
keysym (6), reason (6), rgb (6), single_float (6), string (6), translation_table (6),
wide_character (6), xbitmapfile (6).

value UIL File Format

1052 Motif Reference Manual

Motif Reference Manual 1053

Section 6 - UIL Data Types

This page describes the format and contents of each reference page in Section 6,
which covers each of the UIL data types.

Name
Type – a brief description of the data type.

Synopsis

Syntax:
The literal syntax for specifying a value of the data type. Anything in constant
width type should be typed exactly as shown. Items in italics are expressions that
should be replaced by actual values when you specify a value. Anything enclosed
in brackets is optional. An ellipsis (...) means that the previous expression can be
repeated multiple times and a vertical bar (|) means to select one of a set of
choices.

MrmType:
The Mrm value type that corresponds to the data type. These types are returned
by MrmFetchLiteral().

Availability
This section appears for data types that were added in Motif 2.0 or later.

Description
This section gives an overview of the data type. It explains the literal syntax that
is used to specify a value of the type in a UIL module.

The UIL compiler supports integer, float, single_float, boolean, string, and
compound_string expressions in most contexts where a value of one of the types
is expected. Expressions can include literal or named values, but any named val-
ues that are used must be declared private or exported because the result of an
expression cannot be computed if it contains an imported value.

The UIL compiler allows both string and arithmetic expressions. String expres-
sions contain NULL-terminated strings and compound strings, while arithmetic
expressions can contain integer, float, single_float, and boolean values.

A string expression, consists of two or more string or compound_string values
concatenated with the string concatenation operator (&). The string and
compound_string reference sections contains more details and examples of string
concatenation.

Introduction UIL Data Types

1054 Motif Reference Manual

An arithmetic expression consists of one or more boolean, integer, single_float,
or float values and one or more arithmetic operators. The following operations
can be used in arithmetic expressions:

When the UIL compiler evaluates an expression, higher precedence operations
are performed before those of lower precedence. Binary operations of equal prec-
edence are evaluated from left to right, while unary operations of equal prece-
dence are evaluated from right to left. You can change the default order of
evaluation by using parentheses to group subexpressions that should be evaluated
first. For example, in the expression 2+4*5, 4*5 is evaluated first, followed by
20+2. If the expression is written (2+4)*5, then 2+4 is evaluated first, followed
by 6*5.

The type of an expression is the type of its most complex operand. The UIL com-
piler converts the value of the less complex type in an operation to a value of the

Operator Type Operand Types Operation Precedence
~ unary boolean NOT 1 (highest)

integer One’s complement 1

- unary integer Negation 1

float Negation 1

+ unary integer None 1

float None 1

* binary integer Multiplication 2

float Multiplication 2

/ binary integer Division 2

float Division 2

+ binary integer Addition 3

float Addition 3

- binary integer Subtraction 3

float Subtraction 3

>> binary integer Shift right 4

<< binary integer Shift left 4

& binary boolean AND 5

integer Bitwise AND 5

| binary boolean OR 6

integer Bitwise OR 6

^ binary boolean XOR 6

integer Bitwise XOR 6 (lowest)

UIL Data Types Introduction

Motif Reference Manual 1055

most complex type. The order of complexity for operands in a string expression
is string followed by compound_-string. For operations in an arithmetic expres-
sion, the order is boolean, integer, single_float, and float.

For example, if a string expression contains only strings, the type of the concate-
nated expression is string, but if it contains both strings and compound strings, its
type is compound_-string. The result of concatenating two NULL-terminated
strings is a NULL-terminated string, unless the two strings have different charac-
ter sets or writing directions, in which case the result is a compound string. If an
arithmetic expression contains only integers, the type of an expression is integer,
but if it contains both integers and floats, its type is float.

The table below summarizes the valid uses of the types documented in this sec-
tion. For each type, the table indicates the supported storage classes. It also spec-
ifies whether or not values of the type can be specified literally and whether or
not the type can be used for a procedure parameter and as an argument type. The
final column lists the Motif Resource Manager (Mrm) routine that can be used to
fetch values of the type. If certain information is not relevant for a type, the table
entry indicates that it is not applicable (NA).

Type

Supported Storage Classes
Literal
Value

Reason/
Parameter

Fetch
FunctionPrivate Exported Imported

any NA NA NA No Yes NA

argument Yes No No Yes No NA

asciz_table Yes Yes Yes Yes Yes MrmFetchLiteral

boolean Yes Yes Yes Yes Yes MrmFetchLiteral

character_set NA NA NA Yes No NA

class_rec_name Yes Yes Yes Yes Yes MrmFetchLiteral

color Yes Yes Yes Yes Yes MrmFetchColorLiteral

color_table Yes No No Yes No NA

compound_string Yes Yes Yes Yes Yes MrmFetchLiteral

compound_string
_component

Yes Yes Yes Yes Yes MrmFetchLiteral

compound_string
_table

Yes Yes Yes Yes Yes MrmFetchLiteral

float Yes Yes Yes Yes Yes MrmFetchLiteral

font Yes Yes Yes Yes Yes MrmFetchLiteral

Introduction UIL Data Types

1056 Motif Reference Manual

The UIL compiler may not generate errors when some of the types are used
incorrectly. These cases are documented in the individual type reference pages.

As of Motif version 1.2, the UIL compiler does not support the assignment of a
character_set value to a named variable. A built-in or literal character set must be
specified in all contexts in which a character set is expected. In addition, prior to
Motif 1.2.1, UIL may generate an error if the type widget is used as an argument
or reason type. In this case, the type any can be used as a workaround.

Usage
This section provides less formal information about the data type: when and how
you might want to use it and things to watch out for.

Example
This section provides examples of the use of the type.

fontset Yes Yes Yes Yes Yes MrmFetchLiteral

font_table Yes Yes Yes Yes Yes MrmFetchLiteral

icon Yes Yes Yes Yes Yes MrmFetchIconLiteral,
MrmFetchBitmapLiteral

integer Yes Yes Yes Yes Yes MrmFetchLiteral

integer_table Yes Yes Yes Yes Yes MrmFetchLiteral

keysym Yes Yes Yes Yes Yes MrmFetchLiteral

pixmap No No Yes No Yes NA

reason Yes No No Yes No NA

rgb Yes Yes Yes Yes Yes MrmFetchColorLiteral

single_float Yes Yes Yes Yes Yes MrmFetchLiteral

string Yes Yes Yes Yes Yes MrmFetchLiteral

translation_table Yes Yes Yes Yes Yes MrmFetchLiteral

wide_character Yes Yes Yes Yes Yes MrmFetchLiteral

widget Yes Yes Yes Yes Yes MrmFetchWidget,
MrmFetchWidgetOverride

xbitmapfile Yes Yes Yes Yes Yes MrmFetchIconLiteral

Type

Supported Storage Classes
Literal
Value

Reason/
Parameter

Fetch
FunctionPrivate Exported Imported

UIL Data Types Introduction

Motif Reference Manual 1057

See Also
This section refers you to related functions, UIL file format sections, and UIL
data types. The numbers in parentheses following each reference refer to the
sections of this book in which they are found.

any UIL Data Types

1058 Motif Reference Manual

Name
any – type checking suppression type.

Synopsis

Syntax:
any

MrmType:
MrmRtypeAny

Description
The any type is used to suppress type checking for values passed to callback pro-
cedures or assigned to user-defined arguments. When a callback parameter or
user defined-argument type is specified as any, the UIL compiler allows a value
of any type to be used. Because the type any is only used to specify an expected
type in these two cases, it does not have a literal syntax and values of type any
cannot be defined or declared.

Usage
The any type specifier is used when values of more than one type can be passed
as a callback parameter or assigned to an argument. It can also be used when a
callback or argument expects a type that is not predefined by the UIL compiler.

Since no type checking is performed on callback parameters or arguments
declared as type any, it is possible to specify a value that is not expected by the
callback or widget. You should use caution when specifying the value for a call-
back or argument that uses the any type.

Example
...
! Define activate procedure that takes different arguments depending upon
! usage context. Context must be checked in C code before value is used.
procedure

activate (any);
! Define a resource that can be set to different types.
! Widget checks type field at run-time to determine value type.
value

XtNlabelValue : argument (’labelValue’, any);
XtNlabelType : argument (’labelType’, integer);

See Also
procedure (5), argument (6).

UIL Data Types argument

Motif Reference Manual 1059

Name
argument – user-defined resource type.

Synopsis

Syntax:
argument (string_expression [, argument_type])

MrmType:
none

Description
An argument value represents a user-defined resource. An argument is repre-
sented literally by the symbol argument, followed by a string expression that
evaluates to the name of the resource and an optional resource type. The name of
the resource is assigned to the name member of the ArgList structure passed to
XtSetValues (). The name is typically the name of a resource with the XmN
or XtN prefix removed. The type of the argument, if specified, is used by the UIL
compiler to perform type checking of assignments to the resource. If omitted, the
type defaults to any.

Usage
A user-defined resource can be used in the arguments section of a UIL module,
for both built-in Motif widgets and user-defined widgets. While user-defined
arguments are typically assigned to a named variable in the value section, they
can also be specified literally in the arguments section of an object definition. If
you are defining arguments for a widget or widget set that is not predefined, you
should define them as named variables in a separate UIL module that can be
included by any module that uses the widget(s).

Arguments must be private values; they cannot be imported or exported. The UIL
compiler allows imported and exported declarations, but it generates an error
when the user-defined argument is used. Since argument values cannot be
exported, they cannot be retrieved by an application.

The argument type can only be used to define non-callback resource types. The
reason type is used to specify user-defined callback resources.

Some versions of the UIL compiler may not allow the definition of arguments of
type widget. If you encounter this problem, use the type any as a workaround.
The compiler may allow the definition of arguments of type argument or reason.
If arguments with these types are used, the actual value set as the widget’s
resource is undefined.

argument UIL Data Types

1060 Motif Reference Manual

Example
From Xaw/Tree.uih:

! Resource and definitions for the Athena Tree widget.
value

XtNautoReconfigure : argument (’autoReconfigure’, boolean);
XtNgravity : argument (’gravity’, integer);
NorthGravity : 2;
WestGravity : 4;
EastGravity : 6;
SouthGravity : 8;
! Use any type because compiler may not allow widget:
XtNtreeParent : argument (’treeParent’, any);

...

From my_module.uil:

include file ’Xaw/Tree.uih’;
object parent : XmPushButton { }
object child : XmPushButton {

arguments {
XtNtreeParent = parent;

};
};

object tree : procedure user_defined XawCreateTreeWidget {
arguments {

XtNautoReconfigure = false;
XtNgravity = NorthGravity;

};
controls {

XmPushButton parent;
XmPushButton child;

};
};

See Also
MrmRegisterClass (3), include (5), object (5), reason (6).

UIL Data Types asciz_string_table

Motif Reference Manual 1061

Name
asciz_string_table – array of NULL-terminated strings.

Synopsis

Syntax:
asciz_table (string_expression [, ...]) or
asciz_string_table (string_expression [, ...])

MrmType:
MrmRtypeChar8Vector

Description
An asciz_string_table value represents an array of NULL-terminated strings. An
asciz_string_table is represented literally by the symbol asciz_table or
asciz_string_table, followed by a list of string expressions separated by commas.
String variables in this list can be forward referenced.

Usage
There are no built-in Motif resources of type asciz_string_table, so values of this
type are usually passed as callback parameters or retrieved with MrmFetchL-
iteral (). The type asciz_string_table can be used as the type of an imported
value, as a parameter type in a procedure declaration, or as the type in an argu-
ment literal. An asciz_string_table obtained by the application as a callback
parameter, a widget resource, or with MrmFetchLiteral () is NULL-termi-
nated.

Example
...
! Declare a procedure that expects an array of NULL-terminated strings.
procedure

set_names (asciz_table);

! Define a couple of asciz_tables
value

dwarfs : asciz_table (’Dopey’, ’Doc’, ’Sneezy’, ’Sleepy’, ’Happy’,
’Grumpy’, ’Bashful’);
numbers : asciz_string_table (one, two);
one : ’one’;
two : ’two’;
reindeer : imported asciz_string;

! Define some asciz_table resources.
value

XtNniceList : argument (’niceList’, asciz_table);

asciz_string_table UIL Data Types

1062 Motif Reference Manual

XtNnaughtyList : argument (’naughtyList’, asciz_table);

object doit : XmPushButton {
callbacks {

XmNactivateCallback = procedure set_names (dwarfs);
};

};
...

See Also
MrmFetchLiteral (3), procedure (5), argument (6),
compound_string (6), compound_string_table (6), string (6).

UIL Data Types boolean

Motif Reference Manual 1063

Name
boolean – true/false type.

Synopsis

Syntax:
true | on | false | off

MrmType:
MrmRtypeBoolean

Description
Values of type boolean may be either true (on) or false (off). A boolean value is
represented literally by true, false, on, or off. A boolean variable can be defined
in the value section by setting a named variable to one of these literal values or to
another boolean variable.

Usage
The type name boolean can be used as the type of an imported value, as a param-
eter type in a procedure declaration, or as the type in an argument literal.

A boolean value can be explicitly converted to an integer, float, or single_float
value by specifying the conversion type followed by the boolean value in paren-
theses. true and on convert to the value 1 or 1.0, while false and off convert to the
value 0 or 0.0.

The storage allocated by Mrm for a boolean value is sizeof(int) not
sizeof(Boolean). Because sizeof(Boolean) is less than sizeof(int) on many sys-
tems, you should use an int pointer rather than a Boolean pointer when retrieving
a boolean value with MrmFetchLiteral ().

Example
...
procedure

set_sleepy_state (boolean);

value
map_flag : true;
one : integer (true);
zero : integer (false);
debug : imported boolean;
XtNtimed : argument (’timed’, boolean);

object sleep : XmPushButton {
arguments {

XmNmapWhenManaged = map_flag;

boolean UIL Data Types

1064 Motif Reference Manual

XmNtraversalOn = off;
};
callbacks {

XmNactivateCallback = procedure set_sleepy_state (true);
};

};
...

See Also
MrmFetchLiteral (3), procedure (5), argument (6), float (6),
integer (6), single_float (6).

UIL Data Types character_set

Motif Reference Manual 1065

Name
character_set – character set type for use with strings and font lists.

Synopsis

Syntax:
character_set (string_expression

[, right_to_left = boolean_expression]
[, sixteen_bit = boolean_expression])

MrmType:
none

Description
The character_set type represents a user-defined character set that can be used
when defining strings, compound_strings, fonts, fontsets, and font_tables. A
character set specifies the encoding that is used for character values. A
character_set is represented literally by the symbol character_set, followed by a
string expression that names the character set and two optional properties.

If the right_to_left property of the character set for a string is set to true, the
string is parsed and stored from right to left and compound strings created from
the string have a direction component of XmSTRING_DIRECTION_R_TO_L.
The default value of this property is false. The direction component used by a
compound_string can be specified independently of the parsing direction using
the compound_string literal syntax.

If the sixteen_bit property of the character set for a string is set to true, the string
is interpreted as having double-byte characters. Strings with this property set to
true must contain an even number of bytes or the UIL compiler generates an
error.

Usage
A character_set value is used to specify the character set for string,
compound_string, font, fontset, and font_table values. The right_to_left and
sixteen_bit properties only apply to strings and compound strings and have no
effect on character sets specified for fonts and fontsets.

Unlike most of the UIL types, the character_set type cannot be assigned to a
named variable in a value section, or used as the type of an imported value, as a
parameter type in a procedure declaration, or as the type in an argument literal. A
character set value can only be specified with the character_set literal syntax.

If a font, fontset, or font_table that uses a user-defined character set is exported or
used as a resource value, the UIL compiler may exit with a severe internal error.
As a result, only the predefined character sets can be used with font, fontset, and

character_set UIL Data Types

1066 Motif Reference Manual

font_list values. You can work around this problem by specifying values of these
types in an X resource file.

The UIL compiler may allow the use of string variables and the string concatena-
tion operator (&) in a character_set name specification. Although no errors are
generated, a string using such a character set may be incorrectly converted to a
compound_string value. To avoid this problem, you should always specify a
quoted string as the name in a character_set literal.

UIL defines a number of built-in character sets that you can use to define string,
compound_string, font, fontset, and font_table values. The following table sum-
marizes the built-in character sets:

UIL Name Character Set Parse Direction Writing Direction 16 Bit

iso_latin1 ISO8859-1 L to R L to R No

iso_latin2 ISO8859-2 L to R L to R No

iso_latin3 ISO8859-3 L to R L to R No

iso_latin4 ISO8859-4 L to R L to R No

iso_latin5 ISO8859-5 L to R L to R No

iso_cyrillic ISO8859-5 L to R L to R No

iso_arabic ISO8859-6 L to R L to R No

iso_arabic_lr ISO8859-6 L to R R to L No

iso_greek ISO8859-7 L to R L to R No

iso_hebrew ISO8859-8 R to L R to L No

iso_hebrew_lr ISO8859-8 L to R R to L No

jis_katakana JISX0201.1976-0 L to R L to R No

gb_hanzi GB2313.1980-0 L to R L to R Yes

gb_hanzi_gr GB2313.1980-1 L to R L to R Yes

jis_kanji JISX0208.1983-0 L to R L to R Yes

jis_kanji_gr JISX0208.1983-1 L to R L to R Yes

ksc_hangul KSC5601.1987-0 L to R L to R Yes

ksc_hangul_gr KSC5601.1987-1 L to R L to R Yes

UIL Data Types character_set

Motif Reference Manual 1067

Example
...
value

! Define font with user-defined character set.
big: font (’*times-medium-r-normal-*-240-75-75-*’,
character_set = character_set (’body’));
! Declare some strings with user-defined character sets.
player : #character_set (big) "Mookie Wilson";
hello : exported #iso_hebrew "\355\345\354\371\";
...

See Also
compound_string (6), font (6), fontset (6), font_table (6),
string (6).

class_rec_name UIL Data Types

1068 Motif Reference Manual

Name
class_rec_name – widget class pointer type.

Synopsis

Syntax:
class_rec_name (string_expression)

MrmType:
MrmRtypeClassRecName

Description
The class_rec_name type represents a pointer to a widget class record. A
class_rec_name value is represented literally by the symbol class_rec_name, fol-
lowed by a string that specifies the class name. The string can either be the name
of a class from a widget’s class definition or the name of a widget creation func-
tion registered with MrmRegisterClass (). The string is converted to a widget
class pointer at run-time by Mrm when a class_rec_name value is referenced.
Mrm finds the widget class pointer corresponding to the name by searching the
list of widgets registered with MrmRegisterClass (). This list includes the
built-in Motif widgets and any user-defined widgets that have been registered.

Usage
The type class_rec_name can be used as the type of an imported value, as the
parameter type in a procedure declaration, or as the type in an argument literal.
None of the built-in Motif widgets have a class_rec_name resource, however. If a
class_rec_name value is specified as a resource value for a widget and the con-
version of the class name string to a widget class pointer fails at run-time (inside
a call to MrmFetchWidget (), MrmFetchWidgetOverride (), or Mrm-
FetchSetValues ()), Mrm does not set the resource. If MrmFetchLit-
eral () is used to retrieve the value and the conversion fails, MrmNOT_FOUND
is returned.

Example
...
value

pbclass : class_rec_name (’XmPushButton’);
...

See Also
MrmFetchSetValues (3), MrmFetchWidget (3),
MrmFetchWidgetOverride (3), MrmInitialize (3),
MrmRegisterClass (3), procedure (5), argument (6).

UIL Data Types color

Motif Reference Manual 1069

Name
color – color specified as color name.

Synopsis

Syntax:
color (string_expression [foreground | background])

MrmType:
MrmRtypeColor

Description
A color value represents a named color. A color is represented literally by the
symbol color, followed by a string expression that evaluates to the color name
and an optional foreground or background property to indicate how the color is
displayed on a monochrome screen. Mrm converts the color name to an X Color
at run-time with XAllocNamedColor () on a color display, or chooses black or
white on a monochrome display. The X server maintains a color name database
that is used to map color names to RGB values. The text version of this database
is typically in the file /usr/lib/x11/rgb.txt. See Volume One, Xlib Programming
Manual, and Volume Two, Xlib Reference Manual, for more information on color
allocation.

Usage
The color type can be used as the type of an imported value, as a parameter type
in a procedure declaration, or as the type in an argument literal. An rgb value can
also be specified in any context that a color value is valid. There are several
built-in Motif color resources, such as XmNforeground and XmNbackground.

The optional foreground and background properties can be used to specify the
mapping of colors on a monochrome display or when a color allocation fails
because the colormap is full. Mrm dynamically determines the appropriate fore-
ground or background color based on the context in which a color value is used.

When a color is used as a resource value for a widget (directly or indirectly in an
icon’s color_table), the background and foreground colors are obtained from the
widget. When a color is retrieved for the color_table of an icon retrieved with
MrmFetchIconLiteral (), the background and foreground colors are sup-
plied by the application as arguments to the function.

If the foreground or background property is not specified, Mrm uses the Color
returned by XAllocNamedColor () on a monochrome display. When an allo-
cation fails on a color display and neither property is specified, black is used. In
addition, black is always used when an allocation on a color display fails in

color UIL Data Types

1070 Motif Reference Manual

MrmFetchColorLiteral (); the procedure does not take fallback back-
ground and foreground colors arguments.

As of Motif version 1.2.1, the color substitutions described above do not take
place. When a color allocation fails for a color specified directly or indirectly as a
resource value, the resource is not set. If the allocation fails in a call to Mrm-
FetchColorLiteral () or MrmFetchIconLiteral (),
MrmNOT_FOUND is returned.

Example
...
value

background : color (’chocolate mint’, background);
foreground : color (’whipped cream’, foreground);

object label: XmLabel {
arguments {

XmNbackground = color (’red’);
};

};
...

See Also
MrmFetchColorLiteral (3), MrmFetchIconLiteral (3),
MrmFetchSetValues (3), MrmFetchWidget (3),
MrmFetchWidgetOverride (3), color_table (6), icon (6), rgb (6).

UIL Data Types color_table

Motif Reference Manual 1071

Name
color_table – character-to-color mapping type.

Synopsis

Syntax:
color_table (color_expression = ’character’ [, ...])

MrmType:
none

Description
A color_table value is used to define a mapping from color names or RGB values
to the single characters that are used to represent pixel values in icons. A
color_table is represented literally by the symbol color_table, followed by a list
of mappings. Each mapping associates a previously-defined color value with a
single character. A color value can be a variable or a literal of type color or rgb,
the global background color, or the symbol foreground color.

Usage
The sole purpose of a color_table is to define colors that can be used in an icon
definition. Because the color mappings are needed at compile-time to construct
an icon, a color_table value must be private. The UIL compiler may allow an
imported or exported color_table definition, but it generates an error when the
value is used. Unlike most other UIL types, a color_table cannot be used as a
parameter type in a procedure declaration or as the type in an argument literal.

The color values background color and foreground color can be used to map a
character to the background or foreground color. These colors are determined at
run-time by Mrm, based on the context in which an icon is used. When an icon is
a resource value for a widget, the foreground and background colors are obtained
from the widget. When an icon is retrieved by the application with MrmFetch-
IconLiteral (), the foreground and background colors are supplied by the
application as arguments to the function.

The colors in a color_table are allocated at run-time by Mrm when an icon that
uses the color table is retrieved as the value for a widget resource or retrieved by
the application with MrmFetchIconLiteral (). See the color reference page
for a description of how Mrm allocates colors and what happens when a color
allocation fails.

The UIL compiler may not perform type checking on the color values in a
color_table. If the compiler allows the use of a value that is not a color, it will
crash when the color_table is used.

color_table UIL Data Types

1072 Motif Reference Manual

Example
...
value

blue : color (’blue’);
yellow : rgb (65535,65535,0);
pallete : color_table (background color = ’ ’,

foreground color = ’*’,
color (’red’) = ’r’,
rgb (0,65535,0) = ’g’,
blue = ’b’,
yellow = ’y’);

plus : icon (color_table = pallete, ’brb’, ’rrr’, ’brb’);
...

See Also
MrmFetchIconLiteral (3), color (6), icon (6), rgb (6).

UIL Data Types compound_string

Motif Reference Manual 1073

Name
compound_string – Motif compound string type.

Synopsis

Syntax:
compound_string (string_expression

[, character_set = character_set]
[, right_to_left = boolean_expression]
[, separate = boolean_expression])

MrmType:
MrmRtypeCString

Description
A compound_string value represents a Motif XmString. An XmString is the data
type for a Motif compound string. The Motif toolkit uses compound strings,
rather than character strings, to represent most text values. A compound string is
composed of one or more segments, where each segment can contain a font list
element tag, a string direction, and a text component. The tag specifies the font,
and thus the character set, that is used to display the text component.

UIL-generated compound_strings can contain up to four components: a sin-
gle-byte, multi-byte, or wide-character string, a character set, a writing direction,
and a separator. Like NULL-terminated strings, compound_strings can be con-
catenated with the concatenation operator (&). A compound_string is represented
literally by the symbol compound_string, followed by a string expression and an
optional list of properties. The valid properties are character_set, right_to_left,
and separate. They may be specified in any order, but each may occur only once.

The character_set property is used to establish the character set of the
compound_string. It can be set to one of the UIL built-in character sets or to a
user-defined character set. If a character set is specified in the definition of the
string using the #character_set notation, it takes precedence over the
character_set property setting. If the character_set property is omitted, the
default character set of the module is used.

The right_to_left property is used to set the writing direction of the
compound_string. If the right_to_left property is omitted, the writing direction
defaults to that of the character set of the compound_string.

When the separate property is set to true, UIL adds a separator component to the
end of the compound_string. Separators usually appear as line breaks when a
compound string is displayed. If omitted, the separate property defaults to false.
Newline characters present in the string expression of a compound string literal
are not converted to separators.

compound_string UIL Data Types

1074 Motif Reference Manual

Usage
When a compound_string literal contains a string expression consisting of two or
more concatenated strings, they are combined into a single component if the
character set and writing direction of each is the same. If any of the character sets
differ, each string is placed in a separate string component with its own character
set and direction components. If the separate property is set to true, a separator
component is added to the end of the entire compound_string.

A compound_string with a character_set that differs from
XmFALLBACK_-CHARSET is only displayed correctly in a Motif widget if the
XmFontList of the widget includes an XFontStruct or an XFontSet entry for the
character_set.

The type compound_string can also be used as the type of an imported value, as a
parameter type in a procedure declaration, or as the type in an argument literal.

Example
...
procedure

set_label_string (compound_string);

value
ying : "Ying";
yang : #iso_latin1"Yang";
left : compound_string (ying, character_set=iso_latin1, separate=true);
right : compound_string (yang, right_to_left=true);
day : compound_string (’moon’ & ’ ’ & ’sun’);
other : imported compound_string;

lines : exported left & right;

object verse : XmLabel {
arguments {

XmNlabelString = lines;
};

};

value
XtNgraphicCaption : argument (’graphicCaption’, compound_string);

...

See Also
XmStringCreate (1), XmStringCreateLocalized (1),
character_set (6), compound_string_component (6),
compound_string_table (6), string (6).

UIL Data Types compound_string_component

Motif Reference Manual 1075

Name
compound_string_component – Motif compound string component type.

Synopsis

Syntax:
compound_string_component (component_type [, { string | enumval }])

MrmType:
MrmRtypeCString

Availability
Motif 2.0 and later.

Description
A compound_string_component value represents a compound string containing a
single component. It is the UIL equivalent of the Motif function XmString-
ComponentCreate (). The compound string so produced can be concatenated
with other segments to create more complex compound strings. As for the
compound_string data type, the symbol & is the concatenation operator.

The component_type parameter specifies the type of compound string segment to
be created. The value is one of the constants defined for the XmStringCompo-
nentType enumeration. Depending upon the type of the segment, a second quali-
fying parameter may be required: the valid component types, together with any
extra argument is as follows:

Where component_type is XmSTRING_COMPONENT_DIRECTION,
compound_string_component is equivalent to the Motif function XmString-
DirectionCreate (), and the XmStringDirection argument is as required for
that function: XmSTRING_DIRECTION_L_TO_R,
XmSTRING_DIRECTION_R_TO_L, or
XmSTRING_DIRECTION_DEFAULT.

Usage
The compound_string_component data type can be used in an analogous fashion
to the compound_string type. The differences lie in the degree of control in con-
structing the compound strings: tab, separator, and rendition components can be
created. The components XmSTRING_COMPONENT_RENDITION_BEGIN
and XmSTRING_COMPONENT_RENDITION_END take as argument a string
which is matched against a rendition tag within the current render table.

compound_string_component UIL Data Types

1076 Motif Reference Manual

Example
...
value

tab : compound_string_component
(XmSTRING_COMPONENT_TAB);

separator : compound_string_component
(XmSTRING_COMPONENT_SEPARATOR);

charset : compound_string_component
(XmSTRING_COMPONENT_CHARSET,
iso_latin1);

l_to_r_text : compound_string_component
(XmSTRING_COMPONENT_TEXT,
"left_to_right");

r_to_l_text : compound_string_component
(XmSTRING_COMPONENT_TEXT,
"tfel-ot-thgir");

r_to_l : compound_string_component
(XmSTRING_COMPONENT_DIRECTION,
XmSTRING_DIRECTION_R_TO_L);

l_to_r : compound_string_component
(XmSTRING_COMPONENT_DIRECTION,
XmSTRING_DIRECTION_L_TO_R);

cstring : r_to_l & charset & r_to_l_text & separator & l_to_r &
l_to_r_text;

object label: XmLabel {
arguments {

XmNlabelString = cstring;
}

};
...

See Also
XmStringComponentCreate (1), XmStringDirectionCreate (1),
compound_string (6), compound_string_table (6), string (6).

UIL Data Types compound_string_table

Motif Reference Manual 1077

Name
compound_string_table – array of compound strings.

Synopsis

Syntax:
compound_string_table (string_expression [, ...]) or
string_table (string_expression [, ...])

MrmType:
MrmRtypeCStringVector

Description
A compound_string_table value represents an array of Motif XmStrings. An
XmString is the data type for a Motif compound string. The Motif toolkit uses
compound strings, rather than character strings, to represent most text values. A
compound string is composed of one or more segments, where each segment can
contain a font list element tag, a string direction, and a text component. The tag
specifies the font, and thus the character set, that is used to display the text com-
ponent.

A compound_string_table is represented literally by the symbol
compound_string_table or string_table, followed by a list of string or
compound_string expressions. The UIL compiler automatically converts a string
expression to a compound_string.

Usage
A common use of compound_string_table values is to set resources of the type
XmStringTable in a UIL module or in the application with MrmFetchSetVal-
ues (). When a compound_string_table is assigned to a built-in XmStringTable
resource, UIL automatically sets the corresponding count resource. The table
below lists the XmStringTable resources and their related count resources.

Widget XmStringTable Resource Related Resource

XmList XmNitems XmNitemCount

XmList XmNselectedItems XmNselectedItemCount

XmSelectionBox XmNlistItems XmNlistItemCount

XmCommand XmNhistoryItems XmNhistoryItemCount

XmFileSelectionBox XmNdirListItems XmNdirListItemCount

XmFileSelectionBox XmNfileListItems XmNfileListItemCount

compound_string_table UIL Data Types

1078 Motif Reference Manual

The associated count is not automatically set for compound_string_tables that are
assigned using MrmFetchSetValues ().

The type compound_string_table can also be used as the type of an imported
value, as a parameter type in a procedure declaration, or as the type in an argu-
ment literal. A compound_string_table that is obtained by the application as a
callback parameter, a widget resource, or with MrmFetchLiteral () is
NULL-terminated.

If a compound_string_table contains a forward reference to a compound_string
value, all items in the list before that entry may be lost by the UIL compiler. To
avoid this problem, you should be sure to define all compound_strings used in a
compound_string_table before they are referenced.

Example
...
procedure

set_items (string_table);

value
fruit_list : string_table (’apple’, ’banana’, ’grape’);

object list : XmList {
arguments {

XmNitems = fruit_list;
};

};

value
XtNnameList : argument (’nameList’, compound_string_list);

...

See Also
character_set (6), compound_string (6),
compound_string_component (6), string (6).

UIL Data Types float

Motif Reference Manual 1079

Name
float – double-precision floating point type.

Synopsis

Syntax:
[+ | -]integer.integer [e [+ | -]integer]

MrmType:
MrmRtypeFloat

Description
A float value represents a negative or positive double-precision floating point
number. A float is represented literally by an optional sign, one or more consecu-
tive digits which must include a decimal point, and an optional exponent. The
UIL compiler uses atof () to convert literal float values to the architecture’s
internal representation.

A float can also be represented literally by the symbol float followed by a
boolean, integer, or single_float expression. The expression is converted to a float
and can be used in any context that a float value is valid. A float is formed from a
boolean by converting true and on to 1.0 and false and off to 0.0.

Usage
The allowable range of a float value is determined by the size of a C double on
the machine where the UIL module is compiled. Since a double on most architec-
tures is typically a minimum of four bytes, float values may safely range from
1.4013e-45 to 3.40282e+38 (positive or negative). Although many architectures
represent a double using eight bytes, you can ensure greater portability by keep-
ing float values within the four-byte range. The UIL compiler generates an error
if it encounters a float outside of the machine’s representable range.

The type float can be used as the type of an imported value, as a parameter type in
a procedure declaration, or as the type in an argument literal.

Example
...
! Declare some floating point values.
value

pi : 3.14159;
burn_rate : imported float;
one_point_oh : float (true);
ten_even : float (10);

float UIL Data Types

1080 Motif Reference Manual

! Declare a procedure which takes a float parameter.
procedure

set_temperature (float);

! Declare an argument of type float.
value

XtNorbitalVelocity : argument (’orbitalVelocity’, float);
...

See Also
boolean (6), integer (6), single_float (6).

UIL Data Types font

Motif Reference Manual 1081

Name
font – XFontStruct type.

Synopsis

Syntax:
font (string_expression [, character_set = character_set])

MrmType:
MrmRtypeFont

Description
A font value represents an XFontStruct, which is an Xlib structure that specifies
font metric information. A font is represented literally by the symbol font, fol-
lowed by a string expression that evaluates to the name of the font and an
optional character_set. All parts of the string expression that make up the font
name must be private to the UIL module. The character_set is associated with
the font if it appears in a font_table. If character_set is not specified, it is deter-
mined from the codeset portion of the LANG environment variable if it is set, or
XmFALLBACK_CHARSET otherwise.

The string expression that specifies the font name is an X Logical Font Descrip-
tion (XLFD) string. This string is stored in the UID file and used as a parameter
to XLoadQueryFont () at run-time to load the font. See Volume One, Xlib Pro-
gramming Manual, and Volume Two, Xlib Reference Manual, for more informa-
tion on fonts.

Usage
You can use a font value to specify a font or font_table resource. When a font is
assigned to a font_table resource, at run-time Mrm automatically creates an
XmFontList that contains only the specified font. A font value can also be used
as an element in font_table, although in this context it must be private to the UIL
module.

The font type can be used as the type of an imported value, as a parameter type in
a procedure declaration, or as the type in an argument literal.

In some versions of UIL, the default character_set is always ISO8859-1, instead
of being based on the LANG environment variable or
XmFALLBACK_CHARSET.

The UIL compiler may exit with a severe internal error if a user-defined
character_set is used in a font that is exported or specified as a resource value. If
this problem occurs in your version of UIL, only predefined character_set values
can be used in font, fontset, and font_table values. The workaround is to specify
these problematic values in an X resource file.

font UIL Data Types

1082 Motif Reference Manual

Example
...
procedure

change_font (font);

value
title_font : font (’-*-helvetica-bold-r-nor-
mal-*-160-100-100-*-iso8859-1’);
family : ’courier’;
style : ’medium’;;
body_font : font (’-*-’ & family &’-’& style & ’-r-nor-
mal-*-120-100-100*-iso8859-1’);
kanjiFont : font (’-*-JISX0208.1983-1’, character_set = jis_kanji);
default_font : imported font;

value
XtNheadlineFont : argument (’headlineFont’, font);

object label: XmLabel {
arguments {

XmNfontList = title_font;
};

};
...

See Also
character_set (6), fontset (6), font_table (6).

UIL Data Types font_table

Motif Reference Manual 1083

Name
font_table – Motif font list type.

Synopsis

Syntax:
font_table ([character_set =] font_expression [, ...])

MrmType:
MrmRtypeFontList

Description
A font_table value represents a Motif XmFontList. An XmFontList is a data
type that specifies the fonts that are in use. Each entry in a font list specifies a
font or a font set and an associated tag. When a Motif compound string
(XmString) is displayed, the font list tag for the string is used to match the string
with a font or a font set, so that the compound string is displayed appropriately.

In UIL, a font_table is represented literally by the symbol font_table, followed by
a list of one or more font or fontset values. The elements of a font_table must be
defined as private values. The character_set of an entry in the list can be overrid-
den by preceding it with a predefined or user-defined character_set and an equal
sign (=).

Usage
The font_table type can be used as the type of an imported value, as a parameter
type in a procedure declaration, or as the type in an argument literal. A font_table
is converted to an XmFontList at run-time by Mrm.

The UIL compiler may exit with a severe internal error if a user-defined
character_set is used in a font_table that is exported or specified as a resource
value. This situation can occur if character_set is specified directly or indirectly
in one of the entries. If this problem occurs in your version of UIL, only prede-
fined character_set values can be used in font, fontset, and font_table values. The
workaround is to specify these problematic values in an X resource file.

Example
...
procedure

switch_styles (font_table);

value
latin1 : font (’*-iso8859-1’, character_set = iso_latin1);
hebrew : font (’*-iso8859-8’, character_set = iso_hebrew);
list : font_table (latin1, hebrew);

font_table UIL Data Types

1084 Motif Reference Manual

value
XtNdefaultFonts : argument (’defaultFonts’, font_table);

object label: XmLabel {
arguments {

XmNfontList = list;
};

};
...

See Also
XmFontListAppendEntry (1), XmFontListEntryCreate (1),
XmFontListEntryLoad (1), character_set (6), font (6), fontset (6).

UIL Data Types fontset

Motif Reference Manual 1085

Name
fontset – XFontSet type.

Synopsis

Syntax:
fontset (string_expression [, ...] [, character_set = character_set])

MrmType:
MrmRtypeFontSet

Description
A fontset value represents an XFontSet, which is an Xlib structure that specifies
all of the fonts that are needed to display text in a particular locale. A fontset is
represented literally by the symbol fontset, followed by a list of string expres-
sions that evaluate to font names and an optional character_set. All parts of the
string expressions that make up the list of font names must be private to the UIL
module. The character_set is associated with the fontset if it appears in a
font_table. If character_set is not specified, it is determined from the codeset
portion of the LANG environment variable if it is set, or
XmFALLBACK_CHARSET otherwise.

The string expression that specifies the font name is a list or wildcarded set of X
Logical Font Description (XLFD) strings. This list is stored in the UID file and
used as a parameter to XCreateFontSet() at run-time to load the font set. See
Volume One, Xlib Programming Manual, and Volume Two, Xlib Reference Man-
ual, for more information on fonts.

Usage
You can use a fontset value to specify a fontset or font_table resource. When a
fontset is assigned to a font_table resource, at run-time Mrm automatically cre-
ates an XmFontList that contains only the specified fontset. A fontset value can
also be used as an element in font_table, although in this context it must be pri-
vate to the UIL module.

The fontset type can be used as the type of an imported value, as a parameter type
in a procedure declaration, or as the type in an argument literal.

In some versions of UIL, the default character set is always ISO8859-1, instead
of being based on the LANG environment variable or
XmFALLBACK_CHARSET.

The UIL compiler may exit with a severe internal error if a user-defined
character_set is used in a fontset that is exported or specified as a resource value.
If this problem occurs in your version of UIL, only predefined character_set val-
ues can be used in font, fontset, and font_table values. The workaround is to spec-
ify these problematic values in an X resource file.

fontset UIL Data Types

1086 Motif Reference Manual

Example
procedure

change_fontset (fontset);

value
japanese_font : fontset (’-misc-fixed-*-75-75-*’);
default_font : imported font;

value
XtNbodyFontSet : argument (’bodyFontSet’, fontset);

object label: XmLabel {
arguments {

XmNfontList = japanese_font;
};

};

See Also
character_set (6), font (6), font_table (6).

UIL Data Types icon

Motif Reference Manual 1087

Name
icon – multi-color rectangular pixmap type.

Synopsis

Syntax:
icon ([color_table = color_table_name ,] row [, ...])

MrmType:
MrmRtypeIconImage

Description
An icon value represents a multi-color rectangular pixmap, or array of pixel val-
ues. An icon is represented literally by the symbol icon, followed by an optional
color_table specification and a list of strings that represent the rows of pixel val-
ues in the icon.

If a color_table is specified, it must be a private value and cannot be forward ref-
erenced. If a color_table is not specified, the following default color_table is
used:

color_table (background_color = ’ ’, foreground color = ’*’)

Each row in the icon is a character expression that represents a row of pixel val-
ues. Each character in the row represents a single pixel. All of the rows in the
icon must be the same length and must contain only characters defined in the
color_table for the icon. The UIL compiler generates an error if these rules are
violated.

Usage
The type icon can be used as the type of an imported value, as a parameter type in
a procedure declaration, or as the type in an argument literal. An icon can be
retrieved by an application with MrmFetchIconLiteral () or MrmFetch-
BitmapLiteral ().

When an icon is specified as a resource value for a widget, the depth of the pix-
map created by Mrm at run-time is the same as the depth of the widget. When an
icon is retrieved with MrmFetchIconLiteral (), the depth of the resulting
pixmap is the value returned from the DefaultDepthOfScreen () macro.
When an icon is retrieved with MrmFetchBitmapLiteral (), the depth of the
resulting pixmap is always one. The color_table of an icon retrieved with this
function must only contain mappings for background color and foreground color
or the function fails and returns MrmNOT_FOUND.

The UIL compiler may not check the type of the value specified as the
color_table for an icon. If the compiler allows the specification of a value that is

icon UIL Data Types

1088 Motif Reference Manual

not a color_table, it generates an error message when the icon is referenced. If no
reference to the icon occurs in the module, the compiler exits with a severe inter-
nal error.

If the row values in an icon literal do not consist entirely of string literals, the UIL
compiler may generate an error message or crash with a segmentation violation.

If a named value is declared as an imported icon in one UIL module file, but
defined with a different type in another, an error is generated at run time when
Mrm attempts to retrieve the icon. If you attempt to define a named variable with
the value of an icon variable, the UIL compiler may generate a large number of
errors that are seemingly unrelated to the assignment.

Example
...
value

! Define an icon that uses default color table and can be retrieved
! as a resource or with any of the fetch procedures including
! MrmFetchBitmapLiteral():
checker : icon (’* *’, ’ * ’, ’* *’);
! Define an icon that uses a custom color table which contains named
! colors. This icon cannot be retrieved with MrmFetchBitmapLiteral().
red_blue : color_table (color(’red’) = ’r’, color(’blue’) = ’b’);
plus : icon (color_table = red_blue, ’brb’, ’rrr’, ’brb’);
! Declare an argument of type icon.
XtNwmIcon : argument (’wmIcon’, icon);

! Declare a procedure taking an icon parameter.
procedure

display_icon (icon);

! Use an icon for a resource value
object label: XmLabel {

arguments {
XmNlabelType = XmPIXMAP;
XmNlabelPixmap = plus;

};
};
...

See Also
MrmFetchBitmapLiteral (3), MrmFetchIconLiteral (3),
MrmFetchSetValues (3), MrmFetchWidget (3),
MrmFetchWidgetOverride (3), color_table (6), pixmap (6),
xbitmapfile (6).

UIL Data Types integer

Motif Reference Manual 1089

Name
integer – whole number type.

Synopsis

Syntax:
[+ | -]0-9[...]

MrmType:
MrmRtypeInteger

Description
An integer value represents a negative or positive whole number. An integer is
represented literally by an optional sign followed by one or more consecutive
digits.

An integer can also be represented literally by the symbol integer followed by a
float, single_float, or boolean expression. The expression is converted to an inte-
ger and can be used in any context that an integer value is valid. An integer is
formed from a float or single_float by truncating the fractional value. You can
add 0.5 to the float or single_float value if rounding is desired. If a float or
single_float larger (smaller) than MAXINT (-MAXINT) is converted to an inte-
ger, the resulting value is MAXINT (MININT). An integer is formed from a
boolean by converting true and on to 1 and false and off to 0.

Usage
The allowable range of an integer value is determined by the size of an integer on
the machine where the UIL module is compiled. Since an integer on most archi-
tectures is typically a minimum of four bytes, integer values may safely range
from -2147483647 (-MAXINT) to 2147483647 (MAXINT). You can ensure
greater portability by keeping integer values within the four-byte range. The UIL
compiler generates an error if it encounters an integer outside of the machine’s
representable range.

The type integer can be used as the type of an imported value, as a parameter type
in a procedure declaration, or as the type in an argument literal.

Widget resources of type Position (short) and Dimension (unsigned short) are
specified as integers in UIL. As a result, the UIL compiler does not generate an
error if an out-of-range value is assigned to such a resource. If the sizeof(short) is
smaller than sizeof(int), part of the out-of-range value is truncated, which pro-
duces an undefined result. The part truncated depends on the C compiler and
byte-ordering of the machine on which the UIL module is compiled. For maxi-
mum portability, Position values should be limited to the range -32768 to 32767
and Dimension values should be limited to the range 0 to 65536.

integer UIL Data Types

1090 Motif Reference Manual

The UIL compiler uses -MAXINT to MAXINT, not MININT to MAXINT, as the
allowable range for integers, which means that on an architecture with four-byte
integers, the minimum integer value allowed is -2147483647, not -2147483648.
The value MININT can be used, however, by converting a float smaller than
-MAXINT to an integer.

Example
...
! Declare a procedure taking an integer value.
procedure

set_speed (integer);

! Define some integer variables.
value

meaning_of_life: 41;
the_question : imported integer;
half_life : meaning_of_life / 2;
ten : integer (10.75);
round_factor : 0.5;
eleven : integer (10.75 + round_factor);
one : integer (true);
! Generate MININT value by converting large negative float:
minint : integer (-3.0e30);

! Define an argument of type integer.
value

XtNsize : argument (’size’, integer);

object pb : XmPushButton {
arguments {

XmNleftOffset = -3;
};

};
...

See Also
boolean (6), float (6), integer_table (6), single_float (6).

UIL Data Types integer_table

Motif Reference Manual 1091

Name
integer_table – array of integers.

Synopsis

Syntax:
integer_table (integer_expression [, ...])

MrmType:
MrmRtypeIntegerVector

Description
An integer_table1 value represents an array of integers. An integer_table is rep-
resented literally by the symbol integer_table, followed by a list of integer
expressions.

Usage
The type name integer_table can be used as the type of an imported value, as a
parameter type in a procedure declaration, or as the type in an argument literal. In
Motif 1.2, the XmNselectionArray resource of the XmText and XmTextField
widgets is the only built-in integer_table resource. When the resource is set, UIL
automatically sets the XmNselectionArrayCount resource to the number of ele-
ments in the array. In Motif 2.0 and later, the XmNselectedPositions resource of
the List, and the XmNdetailOrder resource of the Container are also built-in
integer_table types. The XmNselectedPositionCount and XmNdetailOrderCount
resources are automatically set by UIL respectively.

Unlike asciz_string_table and compound_string_table values, an integer_table is
not NULL-terminated. As a result, you must either use integer_table values of a
set length, include the length explicitly, or use a value to indicate the end of the
array. The application code that uses the values must use the same conventions as
the UIL module.

Example
...
value

! Define table with known number of elements (12).
days: integer_table (31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31);
! Define table with length as first element.
grades : integer_table (5, 95, 87, 100, 92, 82);
! Define table with last element of MININT.
end_of_table : integer (3.0e-30);
ages : integer_table (25, 29, 29, 30, 32, end_of_table);

1.Erroneously given as integer_type in 1st edition.

integer_table UIL Data Types

1092 Motif Reference Manual

! Declare a procedure taking an integer_table
procedure

compute_average (integer_table);

! Declare an argument taking an integer table
value

XtNdaysPerMonth : argument (’daysPerMonth’, integer_table);
...

See Also
integer (6).

UIL Data Types keysym

Motif Reference Manual 1093

Name
keysym – character type.

Synopsis

Syntax:
keysym (string_literal)

MrmType:
MrmRtypeKeysym

Description
A keysym value is used to represent a single character. A keysym is represented
literally by the symbol keysym, followed by a string value that contains exactly
one character. If the string is a variable, it can be forward referenced and must be
private to the UIL module.

Usage
A keysym value is typically used to specify a widget mnemonic resource, such as
XmNmnemonic. The keysym type can be used as the type of an imported value,
as a parameter type in a procedure declaration, or as the type in an argument lit-
eral.

When a keysym is retrieved by an application with MrmFetchLiteral (), the
value argument returned is the character value of the keysym, not a pointer to the
value like many other types.

The UIL compiler may not generate an error if the string expression in a keysym
literal is more than one character long, but an error will be generated by Mrm at
run-time. If an invalid keysym is specified as a resource value, the resource is not
set. If the application attempts to retrieve an invalid keysym with MrmFetchL-
iteral (), MrmNOT_FOUND is returned.

Example
...
procedure

set_keysym (keysym);

value
d_key : keysym (’d’);
XtNquitKey : argument (’quitKey’, keysym);

object the_button : XmPushButton
arguments {

XmNmnemonic = keysym (’b’);
};

keysym UIL Data Types

1094 Motif Reference Manual

};
...

See Also
MrmFetchLiteral (3).

UIL Data Types pixmap

Motif Reference Manual 1095

Name
pixmap – generic icon or xbitmapfile type.

Synopsis

Syntax:
No literal syntax.

MrmType:
MrmRtypeIconImage or MrmRtypeXBitmapFile

Description
A pixmap value can be either an icon or xbitmapfile. In either case, the type spec-
ifies an array of pixel values. A pixmap does not have its own literal representa-
tion; a pixmap value is specified with either the icon or xbitmapfile literal syntax.

Usage
The type pixmap can be used as the type of an imported value, as a parameter
type in a procedure declaration, or as the type in an argument literal. The purpose
of the pixmap type is to allow either an icon or an xbitmapfile value to be
imported, passed as a callback argument, or specified as a resource value.

Example
...
value

! Declare an imported pixmap that can be defined as an icon or xbitmapfile.
stop_pixmap : imported pixmap;
! Declare an argument to which an icon or xbitmapfile can be assigned.
XtNstipplePixmap : argument (’stipplePixmap’, pixmap);

! Declare a procedure to which an icon or xbitmapfile can be passed.
procedure

print_pixmap (pixmap);
...

See Also
icon (6), xbitmapfile (6).

UIL Data Types

Motif Reference Manual 1096

Name
reason – user-defined callback type.

Synopsis

Syntax:
reason (string_expression)

MrmType:
none

Description
A reason value represents a user-defined callback. A reason is represented liter-
ally by the symbol reason, followed by a string expression that evaluates to the
name of a callback. The name of the reason is assigned to the name member of
the ArgList structure passed to XtSetValues (). The name is typically the
name of a callback with the XmN or XtN prefix removed.

Usage
A user-defined callback can be used in the callbacks section of a UIL module for
both built-in Motif widgets and user-defined widgets. While user-defined call-
backs are typically assigned to a named variable in the value section, they can
also be specified literally in the arguments section of an object definition. If you
are defining arguments for a widget or widget set which is not predefined, you
should define them as named variables in a separate UIL module that can be
included by any module that uses the widget(s).

Reasons must be private values; they cannot be imported or exported. The UIL
compiler allows imported and exported declarations, but it generates an error
when the user-defined reason is used. Since reason values cannot be exported,
they cannot be retrieved by an application.

The reason type can only be used to define callback resource types. The argu-
ment type is used to specify other user-defined resources.

Example
From Xaw/Panner.uih:

! Resources and definitions for the Athena Panner widget.
...
! Callback definitions
value

XtNreportCallback = reason (’XtNreportCallback’);
...

UIL Data Types

Motif Reference Manual 1097

From my_module.uil:

include file ’Xaw/Panner.uih’;

procedure
panner_report();

object panner : user_defined procedure XawCreatePanner {
callbacks {

XtNreportCallback = procedure panner_report();
};

};
...

See Also
MrmRegisterClass (3), include (5), object (5), argument (6).

UIL Data Types

Motif Reference Manual 1098

Name
rgb – color specified with the values of red, green, and blue components.

Synopsis

Syntax:
rgb (red_integer, green_integer, blue_integer)

MrmType:
MrmRtypeColor

Description
The type rgb represents a color as a mixture of red, green, and blue values. An
rgb value is represented literally by the symbol rgb, followed by a list of three
integers that specify the red, green, and blue components of the color. The
amount of each color component can range from 0 (0 percent) to 65,535 (100
percent). Mrm allocates rgb values with XAllocColor (). See Volume 1, Xlib
Programming Manual, and Volume 2, Xlib Reference Manual, for more informa-
tion on color allocation.

Usage
An rgb value or literal can be used anywhere a color value is expected: as a call-
back argument, as a resource value, or in a color_table. Unlike color values, it is
not possible to specify a foreground or background fallback for rgb values. For
this reason, and to maximize the number of shareable color cells, you should use
named colors defined with the color type whenever possible.

If a color cannot be allocated, Mrm substitutes black, unless the color is specified
as the background color or foreground color in a color_table and the foreground
color or background color is already black. In this situation, white is substituted.

In Motif version 1.2.1, the color substitutions described above do not take place.
When a color allocation fails for an rgb value specified directly or indirectly (in
the color_table of an icon) the resource is not set. If the allocation fails in a call to
MrmFetchColorLiteral () or MrmFetchIconLiteral (),
MrmNOT_FOUND is returned. In Motif 2.1, XBlackPixelOfScreen () is
used where XAllocColor () fails.

Note that the values that specify that red, green, and blue components cannot be
integer expressions. The UIL compiler, however, does not generate an error if an
integer expression is encountered; it silently replaces the expression with the
value 0. In addition, the UIL compiler does not report an error if an integer speci-
fied for a color value is less than 0 or greater than 65,535. If any of the three com-
ponents is out-of-range, the three values stored in the UID file are undefined.

UIL Data Types

Motif Reference Manual 1099

Example
value

white : rgb (65535, 65535, 65535);
orange : exported rgb (65535, 32767, 0);
grape : imported rgb;
ctable : color_table (white = ’w, orange = ’o’, grape = ’g’);
....

object label : XmLabel {
arguments {

XmNforeground = rgb (0, 0, 32767);
XmNbackground = orange;

};
};

See Also
MrmFetchColorLiteral (3), MrmFetchIconLiteral (3),
MrmFetchSetValues (3), MrmFetchWidget (3),
MrmFetchWidgetOverride (3),
color (6), color_table (6), icon (6).

UIL Data Types

Motif Reference Manual 1100

Name
single_float – single-precision floating point type.

Synopsis

Syntax:
single_float (numeric_expression)

MrmType:
MrmRtypeSingleFloat

Description
A single_float value represents a negative or positive single-precision floating
point number. A single_float is represented literally by the symbol single_float,
followed by a boolean, float or integer expression. The expression is converted to
a single_float and can be used in any context in which a single_float value is
valid. A single_float is formed from a boolean by converting true and on to 1.0
and false and off to 0.0. If a float expression is greater than (less than) the largest
(smallest) representable float, the resulting single_float is +infinity (-infinity).

Usage
The type single_float can be used as the type of an imported value, as a parameter
type in a procedure declaration, or as the type in an argument literal. A
single_float value is used to save space, as the storage used by a single_float is
usually less than that used by a float.

The allowable range of a single_float value is determined by the size of a C float
on the machine where the UIL module is compiled. Since a float on most archi-
tectures is typically a minimum of four bytes, single_float values may safely
range from 1.4013e-45 to 3.40282e+38 (positive or negative). You can ensure
greater portability by keeping single_float values within the four-byte range.

Example
...
! Declare a procedure taking a single_float value.
procedure

sqrt (single_float);

value
avogadro : single_float (6.023e+23);
prime_rate : imported single_float;

! Define an argument of type single_float.
value

XtNarea : argument (’area’, single_float);
...

UIL Data Types

Motif Reference Manual 1101

See Also
boolean (6), float (6), integer (6).

UIL Data Types

Motif Reference Manual 1102

Name
string – NULL-terminated character string type.

Synopsis

Syntax:
[#character_set] "character_expression" or
’character_expression’

MrmType:
MrmRtypeChar8

Description
A string value represents a NULL-terminated single-byte, multi-byte, or
wide-character string. A string literal is represented by either a double or sin-
gle-quoted sequence of characters, that may be up to 2000 characters long.
Newer versions of UIL may allow even longer strings. The type of quotes used to
delimit a string literal determines how the string is parsed by the UIL compiler.

Both double and single-quoted strings can directly contain characters with deci-
mal values in the range 32 to 126 and 160 to 255. Characters with values outside
of the range can only be entered using the escape sequence \value\, where value
represents the character code desired. To allow the easy specification of com-
monly-used non-printing characters codes, UIL recognizes the following escape
sequences:

A double-quoted string consists of an optional character_set, followed by a
sequence of characters surrounded by a double quotes. Double-quoted strings
cannot span multiple lines, but may contain the \n escape sequence. If a

Character Meaning

\b Backspace

\f Formfeed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\\ Backslash

\’ Single quote

\” Double quote

UIL Data Types

Motif Reference Manual 1103

character_set is specified, it precedes the string and is indicated by a pound sign
(#). Either a built-in or user-defined character_set can be specified. If a
character_set is not specified, the default character set of the module is used. The
default character_set can be specified with the character_set option in the mod-
ule header of a UIL module. If this option is not set, the default is determined
from the codeset portion of the LANG environment variable if it is set, or
XmFALLBACK_CHARSET otherwise.

If the UIL compiler is invoked with the -s option, double-quoted strings are
parsed in the current locale. When UIL parses localized strings, escape sequences
may be interpreted literally. You can avoid unexpected results by restricting the
use of escape sequences to single quoted strings.

A single-quoted string consists of a sequence of characters surrounded by single
quotes. Unlike double-quoted strings, single-quoted strings can span multiple
lines by using a backslash (\) to indicate that the string is continued on the next
line. The newline character following the backslash is not included in the string.
The \n escape sequence should be used if an embedded newline is desired. The
character_set of a single-quoted string defaults to the codeset portion of the
LANG environment variable if it is set, or XmFALLBACK_CHARSET other-
wise.

The parsing direction of either string variant is determined by the character_set
of the string. A string that is parsed right-to-left is stored in the UID file in the
reverse order that it appeared in the UIL source module. The parsing direction
and character_set writing direction determine the order of individual characters
when a string is printed or displayed. The writing direction of a string is generally
the same as the parsing direction, unless explicitly overridden in a
compound_string literal. The order of the characters in escape sequences is
always the same, regardless of the parsing direction.

Usage
A single or double-quoted string value can be used anywhere a string or string
expression is expected. A string expression can be a single string value or two or
more string values concatenated with the string concatentation operator (&). A
string or string expression can also be used anywhere a compound_string is
expected, since the UIL compiler automatically converts the string to a com-
pound string, with the character set determined by the rules described above.
(When determining the character set, the UIL compiler may use ISO8859-1 as
the fallback character set, even if the value has been changed by the vendor.
Therefore, you should specify a character set explicitly instead of relying on
XmFALLBACK_CHARSET.)

UIL Data Types

Motif Reference Manual 1104

Any newline characters in a NULL-terminated string that is converted into a
compound_string are not converted into separator components to make a
multi-line compound string. If you need a multi-line compound string, it must
be specified as a concatenated set of values using the compound_string literal
syntax with the separate property set to true.

The type string can be used as the type of an imported value, as a parameter type
in a procedure declaration, or as the type in an argument literal. String values
used in string expressions or in compound_string literals must be private to the
module in which they are used.

Example
...
procedure

tie_knot (string);

value
display : imported string;
skit_name : ’Unfrozen Caveman Lawyer’;
hello : #iso_hebrew"\237\229\236\249\";
quote : exported ’Quoth the Raven, ‘Nevermore.\’\n’;
concat : ’The Cat’ & ’ in the Hat’;
multi : ’All that we see or seem\nIs but a dream within a dream.’;
! Define a resource of type string.
XtNfilename : argument (’filename’, string);

object play : XmPushButton {
arguments {

! String automatically converted to XmString
XmNlabelString = skit_name;

};
};
...

See Also
asciz_string_table (6), character_set (6), compound_string (6),
compound_string_table (6).

UIL Data Types

Motif Reference Manual 1105

Name
translation_table – Xt translation table type.

Synopsis

Syntax:
translation_table ([‘#override‘ | ’#augment’ | ’#replace’] string_expression [,
...])

MrmType:
MrmRtypeTransTable

Description
A translation_table value represents an X Toolkit translation table. A translation
table is a list of translations, where each translation maps an event or an event
sequence to an action name. In UIL, a translation_table is represented literally by
the symbol translation_table, followed by an optional directive and list of string
expressions that are interpreted as translations. If specified, the directive must be
one of #override, #augment, or #replace. The translations are specified as a list of
string expressions, one per translation. The individual translations are concate-
nated and separated with newline characters before they are stored in the UID
file.

Usage
The translation_table type can be used as the type of an imported value, as a
parameter type in a procedure declaration, or as the type in an argument literal.

The syntax of a translation_table is not verified by the UIL compiler. Instead,
Mrm converts a translation_table literal to an XtTranslations value with
XtParseTranslationTable () at run-time. Errors that occur when parsing
the translation_table are passed to XtWarning (). Because XtParseTrans-
lationTable () always returns a valid XtTranslations value, even when pars-
ing errors occur, the run-time conversion of a translation_table cannot fail. See
Volume 4, X Toolkit Intrinsics Programming Manual, and Volume 5, X Toolkit
Intrinsics Reference Manual, for more information about translation tables.

Example
...
procedure

set_translations (translation_table);
exit();

value
XtNquickKeys : argument (’translations’, translation_table);

UIL Data Types

Motif Reference Manual 1106

value
quit_tt : translation_table (’#override’, ’<Key>q: ArmAndActivate()’);
other_tt : imported translation_table;

object quit : XmPushButton {
arguments {

XmNtranslations = quit_tt;
};
callbacks {

XmNactivateCallback = procedure exit();
};

};
...

See Also
MrmFetchLiteral (3).

UIL Data Types

Motif Reference Manual 1107

Name
wide_character – wide-character string type.

Synopsis

Syntax:
wide_character (string_expression)

MrmType:
MrmRtypeWideCharacter

Description
A wide_character value represents a wide-character string. The corresponding C
type is wchar_t *. A wide_character literal is represented by the symbol
wide_character, followed by a string expression.

Usage
A wide_character literal is used to make the UIL compiler parse a regular char-
acter string as a wide-character string. A wide_character string is parsed with the
mbstowcs () function. The operation of this function depends on the setting of
the locale. See the uil reference page for more information regarding the locale
setting. The wide_character literal syntax may not work in early releases of
Motif 1.2. However, you can specify a wide-character string using the normal
UIL string syntax. The difference is that the UIL compiler does not verify that a
wide-character string specified in this way is properly formed.

The type wide_character can also be used as the type of an imported value, as a
parameter type in a procedure declaration, or as the type in an argument literal.

Example
...
procedure

print_wcs (wide_character);

value
wcs : wide_character (’\204\176\224\189\’);
name : imported wide_character;
XtNwideCharacterString : argument (’wideCharacterString’,
wide_character);

object text : XmText {
arguments {

XmNvalueWcs = wcs;
};

};
...

UIL Data Types

Motif Reference Manual 1108

See Also
uil (4), procedure (5), argument (6), string (6).

UIL Data Types

Motif Reference Manual 1109

Name
widget – widget type.

Synopsis

Syntax:
See the object section of the UIL file format reference page.

MrmType:
none

Description
Objects that are declared or defined in a UIL object section are of type widget.
Values of type widget are the only UIL values that are not declared or defined in a
value section. The literal representation of a widget is described in the object sec-
tion of the UIL file format reference page.

Usage

The type widget can be used as a parameter type in a procedure declaration or as
the type in an argument literal. When a widget is used as a callback parameter or
resource value in the declaration of another widget, it must be part of the same
hierarchy as that widget. A widget hierarchy is defined by the widget passed to
MrmFetchWidget () or MrmFetchWidgetOverride () and it includes all
of the descendants of that widget. If you need to specify a widget in a different
hierarchy as a callback parameter, you can use the string name of the widget
instead and convert it to a widget pointer in the callback with XtNameToW-
idget ().

Widgets can be forward referenced. If Mrm encounters a reference to a widget
that has not been created in the current hierarchy, it creates the remainder of the
hierarchy and makes another attempt to resolve the reference. If the reference
cannot be resolved at that point, Mrm does not add the callback or set the
resource for which the widget is specified. As of Motif 1.2, Mrm does not gener-
ate a warning when a widget reference cannot be resolved.

Prior to Motif 1.2.1, the UIL compiler generates an error when widget is used as
a procedure parameter or type in an argument literal. To work around this prob-
lem, you can use the type any.

Example
...
value

! Declare Athena tree widget constraint argument.
XtNtreeParent : argument (’treeParent’, widget);

UIL Data Types

Motif Reference Manual 1110

procedure
manage (widget);

object
button1 : XmPushButton {

callbacks {
XmNactivateCallback = manage (button3);

}
arguments {

XmNbottomAttachment = XmATTACH_FORM;
XmNbottomOffset = 40;
XmNrightAttachment = XmATTACH_WIDGET;
XmNrightWidget = button1;

};
};
button2 : XmPushButton { };
button3 : XmPushButton {

arguments {
XmNbottomAttachment = XmATTACH_FORM;

};
};
form : XmForm {

controls {
XmPushButton button1;
XmPushButton button2;
unmanaged XmPushButton button3;

};
};

...

See Also
MrmFetchWidget (3), MrmFetchWidgetOverride (3), object (5),
procedure (5), argument (6).

UIL Data Types

Motif Reference Manual 1111

Name
xbitmapfile – X bitmap file type.

Synopsis

Syntax:
xbitmapfile (string_expression)

MrmType:
MrmRtypeXBitmapFile

Description
An xbitmapfile value represents a file that contains a bitmap in the standard X bit-
map file format. An xbitmapfile literal is represented by the symbol xbitmapfile,
followed by a string expression that evaluates to the name of the file containing
the bitmap. The X bitmap is loaded at run-time by Mrm using XmGetPixmap-
ByDepth (). See Volume 1, Xlib Programming Manual, for more information
about the X bitmap file format.

Usage
The type xbitmapfile can be used as the type of an imported value, as a parameter
type in a procedure declaration, or as the type in an argument literal. An xbitmap-
file value can be retrieved by an application with MrmFetchIconLiteral ().
The MrmFetchBitmapLiteral () procedure cannot be used to retrieve values
of the xbitmapfile type.

When an xbitmapfile is specified as a resource value for a widget, the depth of the
pixmap created by Mrm at run-time is the same as the depth of the widget. When
an xbitmapfile is retrieved with MrmFetchIconLiteral (), the depth of the
resulting pixmap is the value returned from the DefaultDepthOfScreen ()
macro.

The UIL compiler stores the specified file name in the UID output file, not the X
bitmap to which the name refers. The compiler does not verify that the specified
file exists. If an xbitmapfile specified as a resource cannot be loaded, the
resource is not set. If MrmFetchIconLiteral fails to load an xbitmapfile,
MrmNOT_FOUND is returned.

Example
...
! Declare a bitmap of the most challenging ski slope in the Northeast.
value

goat: xbitmapfile (’goat.xbm’);

UIL Data Types

Motif Reference Manual 1112

object scary : XmLabel {
arguments {

XmNlabelType = XmPIXMAP;
XmNlabelPixmap = goat;

};
};
...

See Also
XmGetPixmapByDepth (2), MrmFetchBitmapLiteral (3),
MrmFetchIconLiteral (3), MrmFetchWidget (3),
MrmFetchWidgetOverride (3), icon (6), pixmap (6).

Motif Reference Manual 1113

Section 7 - UIL Functions

This page describes the format and contents of each reference page in Section 7,
which covers the User Interface Language (UIL) functions.

Name
Function – a brief description of the function.

Synopsis

This section shows the signature of the function: the names and types of the argu-
ments, and the type of the return value. The header file <uil/UilDef.h> declares
both of the public UIL functions.

Inputs
This subsection describes each of the function arguments that pass information to
the function.

Outputs
This subsection describes any of the function arguments that are used to return
information from the function. These arguments are always of some pointer type,
so you should use the C address-of operator (&) to pass the address of the varia-
ble in which the function will store the return value. The names of these argu-
ments are sometimes suffixed with _return to indicate that values are returned in
them. Some arguments both supply and return a value; they will be listed in this
section and in the "Inputs" section above. Finally, note that because the list of
function arguments is broken into "Input" and "Output" sections, they do not
always appear in the same order that they are passed to the function. See the
function signature for the actual calling order.

Returns
This subsection explains the return value of the function, if any.

Description
This section explains what the function does and describes its arguments and
return value. If you’ve used the function before and are just looking for a
refresher, this section and the synopsis above should be all you need.

Usage
This section appears for most functions and provides less formal information
about the function: when and how you might want to use it, things to watch out
for, and related functions that you might want to consider.

Example
This section provides an example of the use of the function.

UIL Functions

1114 Motif Reference Manual

Structures
This section shows the definition of any structures, enumerated types, typedefs,
or symbolic constants used by the function.

Procedures
This section shows the syntax of any prototype procedures used by the function.

See Also
This section refers you to related functions, clients, and UIL data types. The
numbers in parentheses following each reference refer to the sections of this book
in which they are found.

UIL Functions Uil

Motif Reference Manual 1115

Name
Uil – call the UIL compiler from an application.

Synopsis

#include <uil/UilDef.h>

Uil_status_type Uil (Uil_command_type *command_desc,
Uil_compile_desc_type *compile_desc,
Uil_continue_type (*message_cb)(),
char *message_data,
Uil_continue_type (*status_cb)(),
char *status_data)

Inputs
command_desc Specifies a structure containing the compilation options.
message_cb Specifies a callback function that is called when error, warning

and informational messages are generated by the compiler.
message_data Specifies data that is passed to the message_cb function.
status_cb Specifies a callback function that is called periodically during

the compilation to indicate progress.
status_data Specifies data that is passed to the status_cb function.

Outputs
compile_desc Returns a structure containing the results of the compilation.

Returns
Uil_k_success_status on success and if no problems are detected,
Uil_k_info_status on success and if informational messages are generated,
Uil_k_warning_status on success and if warning messages are generated,
Uil_k_error_status on failure and if error messages are generated, and
Uil_k_severe_status on failure and if the compilation stopped prematurely.

Description
Uil () invokes the UIL compiler from within an application. Options for the com-
piler, including the input, output and listing files, are provided in the
command_desc argument. The calling application can supply a message handling
function in message_cb that displays compiler messages in an application-
defined manner. The application can also supply a status-monitoring function in
status_cb. This function is called periodically by the compiler to report progress.
Upon completion, the Uil () function fills in the compile_desc structure with
information about the compilation and returns the status of the compilation.

Usage
An application that calls Uil () is responsible for allocating the command_desc
and compile_desc arguments. The application must initialize all members of the

Uil UIL Functions

1116 Motif Reference Manual

command_desc structure. Members of the compile_desc structure are set by the
compiler. If the parse_tree_flag in command_desc is set, the compiler returns a
pointer to the root of the parse tree in the parse_tree_root field of the
compile_desc. This parse table cannot be freed by the calling application.
Therefore, you should not set the parse_tree_flag unless you plan to use the parse
tree. To limit memory consumption, if you set the parse_tree_flag, invoke the
Uil () routine once and exit soon thereafter.

An application can specify a function for handling compiler generated messages
in the message_cb argument. You can specify NULL for this argument if you
want to use the default message handling routine. This routine prints all messages
to stderr. If you specify a function, the value of message_data is passed to each
invocation of the function.

An application can also specify a function for monitoring the status of the compi-
lation in the status_cb argument. You can specify NULL to indicate that no status
function should be called. If you specify a function, the value of status_data is
passed to each invocation of the function. In addition to monitoring progress, the
function can also be used to process X events in an X application.

The Uil () function installs signal handlers for SIGBUS, SIGSYS, and SIGFPE
with no regard for application installed handlers. These installed handlers remain
set after the function returns, so you may wish to change them.

Applications that call the Uil () function must be linked with the UIL library,
libUil.a , in addition to the Mrm, Motif, Xt, and X libraries.

Structures
The Uil_command_type is defined as follows:

typedef struct {
char *source_file; /* name of UIL source file */
char *resource_file; /* name of UID output file */
char *listing_file; /* name of listing file */
unsigned int include_dir_count; /* length of include_dir array */
char **include_dir; /* array of include file directories */
unsigned int listing_file_flag : 1; /* write listing file flag */
unsigned int resource_file_flag : 1; /* write UID file flag */
unsigned int machine_code_flag : 1; /* write machine code flag */
unsigned int report_info_msg_flag : 1; /* report informational mes-
sages */
unsigned int report_warn_msg_flag : 1; /* report warning messages */
unsigned int parse_tree_flag : 1; /* generate parse tree flag */
unsigned int issue_summary : 1; /* write diagnostic summary flag */
unsigned int status_update_delay; /* delay between status_cb calls */

UIL Functions Uil

Motif Reference Manual 1117

char *database; /* WML database filename */
unsigned int database_flag : 1; /* read WML database flag */
unsigned int use_setlocale_flag : 1; /* parse strings in locale flag */

} Uil_command_type;

Uil_command_type describes the compilation options for the Uil () routine.
source_file is the name of the UIL module to compile. resource_file is the name
of the UID file that is output if resource_file_flag is set. listing_file is the name of
the compilation listing file that is output if listing_file_flag is set. Setting
machine_code_flag causes the compiler to output a binary description of the UID
file when a listing is generated.

include_dir specifies an array of include_dir_count directory names that the
compiler searches for UIL include files. If set, report_info_msg_flag,
report_warn_msg_flag, and issue_summary cause the compiler to generate infor-
mational messages, warning messages, and a summary message, respectively.

If parse_tree_flag is set, it instructs the compiler to return a pointer to the parse
tree of the module in the compile_desc structure. status_update_delay specifies
how many status check points must be passed before the status_cb callback is
called. If the field is set to zero, the function is called at every check point.

use_setlocale_flag directs the UIL compiler to parse double-quoted strings in the
current locale. (See the UIL string type man page for more information.) data-
base specifies the name of a Widget Meta-Language (WML) description file that
the compiler loads if database_flag is set.

The Uil_compile_desc_type is defined as follows:

typedef struct _Uil_comp_desc {
unsigned int compiler_version; /* UIL compiler version */
unsigned int data_version; /* UIL structures version */
char *parse_tree_root; /* parse tree for module */
unsigned int message_count[]; /* status messages counts */

} Uil_compile_desc_type;

Uil_compile_desc_type describes the return data for the Uil () routine.
compiler_version specifies the version of the UIL compiler, while data_version
specifies the version of the structures used by the compiler. If parse_tree_flag is
set in the command_desc argument, parse_tree_root contains a pointer to a com-
piler-generated parse tree if the compilation succeeds. message_count is an array
of integers that contains the number of each type of compiler message generated
by the routine. Valid indices to the array are Uil_k_info_status,
Uil_k_warning_status, Uil_k_error_status, and Uil_k_severe_status.

Uil UIL Functions

1118 Motif Reference Manual

Procedures
A message_cb function has the following syntax:

Uil_continue_type *message_cb (char *message_data,
int message_number,
int severity,
char *message_string,
char *source_text,
char *column_string,
char *location_string,
int message_count[])

A message_cb function takes eight arguments. The first argument, message_data,
is the value of the message_data argument passed to the Uil () function.
message_number is the internal index of the message, which is used by the UIL
compiler. severity specifies the severity of the message, which is one of
Uil_k_info_status, Uil_k_warning_status, Uil_k_error_status, or
Uil_k_severe_status.

message_string is a string describing the problem. source_text is a copy of the
source line to which the message refers, with a tab character prepended. If the
source line is not available, source_text is the empty string. column_string is a
string that consists of a leading tab character followed by zero or more spaces and
an * (asterisk) in the same column as the problem in the source line. This string is
suitable for printing beneath message_string to indicate the location of the prob-
lem. If the column that contains the error or the source line is not available,
column_string is the empty string.

location_string describes the location where the problem occurred. The format of
this string is "\t\t line: %d file: %s" if both source and column number are availa-
ble, or if no column number is available. If the column number, but no source line
is available, the format is "\t\t line: %d position: %d file: %s". If the location is
unavailable, the value of location_string is the empty string. If an application
does not specify a message_cb routine, the compiler prints source_text,
column_string, message_string, and location_string in that order.

message_count is an array of integers that contains the number of each type of
compiler message generated by the routine so far. Valid indices to the array are
Uil_k_info_status, Uil_k_warning_status, Uil_k_error_status, and
Uil_k_severe_status.

A message_cb function should return Uil_k_continue if the compilation can con-
tinue or Uil_k_terminate if the compilation should be terminated.

UIL Functions Uil

Motif Reference Manual 1119

A status_cb function has the following format:

Uil_continue_type *status_cb (char *status_data,
int percent_complete,
int lines_processed,
char *current_file,
int message_count[])

A status_cb function takes five parameters. The first argument, status_data, is the
value of the status_data argument passed to the Uil () function.
percent_complete specifies an estimate of the percentage of the compilation that
has been completed. The value of this field falls within a fixed range of values for
each step of the compilation. The value ranges from 0 to 50 while source_file is
being parsed, from 60 to 80 while the resource_file is written, and from 80 to 100
while the listing_file is generated. Some versions of the UIL compiler may only
report percent-complete values on the boundaries of these ranges.
lines_processed indicates the number of lines that have been read from the input
file.

When the UIL compiler is invoked, it parses the source_file, writes the
resource_file, and then generates the listing_file, based on the settings of the
command_desc argument. The current_file field changes to reflect the file that the
compiler is accessing.

message_count is an array of integers that contains the number of each type of
compiler message generated by the routine so far. Valid indices to the array are
Uil_k_info_status, Uil_k_warning_status, Uil_k_error_status, and
Uil_k_severe_status.

A status_cb function should return Uil_k_continue if the compilation can con-
tinue or Uil_k_terminate if the compilation should be terminated.

The frequency with which the compiler calls the status_cb function at check
points is based on the value of status_update_delay field in command_desc. A
check point occurs every time a symbol is found during the parsing of
source_file, every time an element is written to the resource_file, and every time a
line is written to the listing_file.

Example
The following routines illustrate the use of the Uil () routine in a very basic way:

#include <uil/UilDef.h>
#include <stdio.h>

static char *last_current_file;
static char *status_string_list[Uil_k_max_status] = { NULL };

Uil UIL Functions

1120 Motif Reference Manual

Uil_continue_type message_cb (char *message_data,
int message_number,
int severity,
char *message_string,
char *line_text,
char *error_col_string,
char *line_and_file_string,
int *message_count)

{
if (*line_text != ’ ’)

puts (line_text);
if (*error_col_string != ’ ’)

puts (error_col_string);
if (*message_string != ’ ’)

printf ("%s: %s\n", status_string_list[severity], message_string);
if (*line_and_file_string != ’ ’)

puts (line_and_file_string);

return (Uil_k_continue);
}

Uil_continue_type status_cb (char *status_data,
int percent_complete,
int lines_processed,
char *current_file,
int *message_count)

{
if (last_current_file == NULL || strcmp (last_current_file, current_file) != 0)
{

fprintf (stderr, "Working on file %s...\n", current_file);
last_current_file = current_file;

}

return (Uil_k_continue);
}

Uil_compile_desc_type * compile (char *filename)
{

Uil_command_type command_desc;
static Uil_compile_desc_type compile_desc;
Uil_status_type status;

if (status_string_list[Uil_k_success_status] == NULL) {
status_string_list[Uil_k_success_status] = "Success";

UIL Functions Uil

Motif Reference Manual 1121

status_string_list[Uil_k_info_status] = "Informational";
status_string_list[Uil_k_warning_status] = "Warning";
status_string_list[Uil_k_error_status] = "Error";
status_string_list[Uil_k_severe_status] = "Severe Error";

}
command_desc.source_file = filename;
command_desc.resource_file = "a.uid";
command_desc.listing_file = "uil.lst";
command_desc.include_dir_count = 0;
command_desc.include_dir = NULL;
command_desc.listing_file_flag = TRUE;
command_desc.resource_file_flag = TRUE;
command_desc.machine_code_flag = FALSE;
command_desc.report_info_msg_flag = TRUE;
command_desc.report_warn_msg_flag = TRUE;
command_desc.parse_tree_flag = FALSE;
command_desc.issue_summary = TRUE;
command_desc.status_update_delay = 0;
command_desc.database = NULL;
command_desc.database_flag = FALSE;
command_desc.use_setlocale_flag = FALSE;

last_current_file = NULL;

status = Uil (&command_desc, &compile_desc, message_cb, NULL,
status_cb, NULL);

if (status == Uil_k_error_status || status == Uil_k_severe_status)
return (NULL);

return (&compile_desc);
}

int main (int argc, char **argv)
{

Uil_compile_desc_type *compile_desc;

if (argc != 2) {
printf ("usage: Uil filename\n");
exit (1);

}

compile_desc = compile (argv[1]);

if (compile_desc != NULL)
fprintf (stderr, "Compilation Successful.\n");

Uil UIL Functions

1122 Motif Reference Manual

else
fprintf (stderr, "Compilation Failed.\n");

}

See Also
uil (4), string (6), UilDumpSymbolTable (7).

UIL Functions UilDumpSymbolTable

Motif Reference Manual 1123

Name
UilDumpSymbolTable – produce a listing of a UIL symbol table.

Synopsis

#include <uil/UilDef.h>

void UilDumpSymbolTable (sym_entry_type *parse_tree_root)

Inputs
parse_tree_root Specifies a pointer to the root entry of a symbol table.

Description
UilDumpSymbolTable () prints a listing of the symbols parsed in a UIL mod-
ule to stdout. A parse tree is generated by a call to Uil (). If the parse_tree_flag
of the Uil_command_type structure passed to the routine is set and the compila-
tion is successful, the Uil () routine returns a pointer to the root of the parse tree
in the parse_tree_root member of the Uil_compile_desc_type structure. If the
compilation is unsuccessful, the parse_tree_root field is set to NULL.

Usage
UilDumpSymbolTable () generates a listing of the internal representation of
UIL structures and symbols, which is really only useful for people who are quite
familiar with the internals of the UIL compiler. The -m option of the uil com-
mand, or the machine_code_flag option of the Uil () routine, generates far more
useful information for most users of UIL.

Instead of calling UilDumpSymbolTable (), an application can examine the
parse tree directly. The structures used in the parse tree are defined in the file
<uil/UilSymDef.h> and definitions of constants used in the structures are in <uil/
UilDBDef.h>. Both of these files are included by <uil/UilDef.h>.

The parse table generated by the Uil () routine cannot be freed by the calling
application. Therefore, you should not set the parse_tree_flag unless you plan to
use the parse tree. To limit memory consumption, if you set the parse_tree_flag,
invoke the Uil () routine once and exit soon thereafter.

See Also
uil (4).
Uil (7).

UIL Functions

Motif Reference Manual 1124

Motif Reference Manual 1125

Appendix A - Function Summaries

This quick reference is intended to help you find and use the right function for a
particular task. It organises the Section 1 and Section 3 reference pages into two lists:

• List of functions and macros by groups.
• Alphabetical list of functions and macros

The first column indicates which section to find the routines in; the required Section is
given in brackets after the function name.

A.1 Group Listing with Brief Descriptions

Atoms
XmGetAtomName(1) Get the string representation of an Atom
XmInternAtom(1) Return an Atom for a given property

name string

CascadeButton
XmCascadeButtonGadgetHighlight(1) Set the highlight state of a CascadeBut-

tonGadget
XmCascadeButtonHighlight(1) Set the highlight state of a CascadeBut-

ton

Clipboard
XmClipboardBeginCopy(1) Set up storage for a clipboard copy oper-

ation
XmClipboardCancelCopy(1) Cancel a copy operation to the clipboard
XmClipboardCopy(1) Copy a data item to temporary storage

for later copying to the clipboard
XmClipboardCopyByName(1) Copy as data item passed by name
XmClipboardEndCopy(1) End a copy operation to the clipboard
XmClipboardEndRetrieve(1) End a copy operation from the clipboard
XmClipboardInquireCount(1) Get the number of data item formats

available on the clipboard
XmClipboardInquireFormat(1) Get the specified clipboard data format

name
XmClipboardInquireLength(1) Get the length of the data item on the

clipboard

Appendix A: Function Summaries

1126 Motif Reference Manual

XmClipboardInquirePendingItems(1) Get a list of pending data ID/private ID
pairs

XmClipboardLock(1) Lock the clipboard
XmClopboardRegisterFormat(1) Register a new format for clipboard data

items
XmClipboardRetrieve(1) Retrieve a data item from the clipboard
XmClipboardStartCopy(1) Set up storage for a clipboard copy oper-

ation
XmClipboardStartRetrieve(1) Start a clipboard retrieval operation
XmClipboardUndoCopy(1) Remove the last item copied to the clip-

board
XmClipboardUnlock(1) Unlock the clipboard
XmClipboardWithdrawFormat(1) Indicate that an application does not

want to supply a data item any longer

Colors
XmChangeColor(1) Update the colors of a widget
XmGetColorCalculation(1) Get the procedure that calculates default

widget colors
XmGetColors(1) Get the foreground, select, and shadow

colors for a widget
XmSetColorCalculation(1) Set the procedure that calculates default

widget colors

ComboBox
XmComboBoxAddItem(1) Add a compound string to the Com-

boBox List
XmComboBoxDeletePos(1) Delete an item at the specified position

from a ComboBox List
XmComboBoxSelectItem(1) Select an item from a ComboBox List
XmComboBoxSetItem(1) Select and make visible an item from a

ComboBox List
XmComboBoxUpdate(1) Update the ComboBox List after

changes to component widgets

Command
XmCommandAppendValue(1) Append a compound string to a Com-

mand widget
XmCommandError(1) Display an error message in a Command

widget

Appendix A: Function Summaries

Motif Reference Manual 1127

XmCommandGetChild(1) Get the specified child of a Command
widget

XmCommandSetValue(1) Replace the Command string

Compound Strings
XmCvtByteStreamToXmString() Convert a byte stream to a compound

string
XmCvtCTToXmString(1) Convert compound text to a compound

string
XmCvtTextPropertyToXmStringTable(1) Convert an XTextProperty to a

compound string table
XmCvtXmStringTableToTextProperty(1) Convert a compound string table to

an XTextProperty
XmCvtXmStringToByteStream(1) Convert a compound string to byte

stream format
XmCvtXmStringToCT(1) Convert a compound string to com-

pound text
XmMapSegmentEncoding(1) Get the compound text encoding format

for a font list element tag
XmRegisterSegmentEncoding(1) Register a compound text encoding for-

mat for a font list element tag
XmStringBaseline(1) Get the baseline spacing for a compound

string
XmStringByteCompare(1) Compare two compound strings byte-

by-byte
XmStringByteStreamLength(1) Calculate the length of a byte stream
XmStringCompare(1) Compare two compound strings
XmStringComponentCreate(1) Create a compound string component
XmStringConcat(1) Concatenate two compound strings
XmStringConcatAndFree(1) Create a new compound string formed

by concatenating two compound strings,
freeing the two strings afterwards

XmStringCopy(1) Copy a compound string
XmStringCreate(1) Create a compound string
XmStringCreateLocalized(1) Create a compound string in the current

locale
XmStringCreateLtoR(1) Create a compound string
XmStringCreateSimple(1) Create a compound string in the current

language environment
XmStringDirectionCreate(1) Create a compound string containing a

direction component

Appendix A: Function Summaries

1128 Motif Reference Manual

XmStringDirectionToDirection(1) Convert a string direction to a direction
XmStringDraw(1) Draw a compound string
XmStringDrawImage(1) Draw a compound string
XmStringDrawUnderline(1) Draw a compound string with an under-

lined sub-string
XmStringEmpty(1) Determine whether there are any text

components in a compound string
XmStringExtent(1) Get the smallest rectangle enclosing a

compound string
XmStringFree(1) Free the memory used by a compound

string
XmStringFreeContext(1) Free a compound string context
XmStringGenerate(1) Generate a compound string
XmStringGetLtoR(1) Get a text segment from a compound

string
XmStringGetNextComponent(1) Retrieves information about the next

compound string component
XmStringGetNextSegment(1) Retrieves information about the next

compound string component
XmStringGetNextTriple(1) Retrieve information about the next

compound string segment
XmStringHasSubstring(1) Determine whether a compound string

contains a sub-string
XmStringHeight(1) Get the line height of a compound string
XmStringInitContext(1) Create a compound string context
XmStringIsVoid(1) Determine whether there are valid seg-

ments in a compound string
XmStringLength(1) Get the length of a compound string
XmStringLineCount(1) Get the number of lines in a compound

string
XmStringNConcat(1) Concatenate a specified portion of a

compound string to another compound
string

XmStringNCopy(1) Copy a specified portion of a compound
string

XmStringParseText(1) Convert a string to a compound string
XmStringPeekNextComponent(1) Returns the type of the next compound

string component
XmStringPutRendition(1) Add rendition components to a com-

pound string
XmStringSegmentCreate(1) Create a compound string segment

Appendix A: Function Summaries

Motif Reference Manual 1129

XmStringSeparatorCreate(1) Create a compound string containing a
separator component

XmStringTableParseStringArray(1) Convert an array of strings into a com-
pound string table

XmStringTableProposeTabList(1) Create a Tab list for a compound string
XmStringTableToXmString(1) Convert a compound string table to a

compound string
XmStringTableUnparse(1) Convert a compound string table to a

string
XmStringToXmStringTable(1) Convert a compound string to a com-

pound string table
XmStringUnparse(1) Convert a compound string to a string
XmStringWidth(1) Return the width of a compound string

Container
XmContainerCopy(1) Copy the Container primary selection to

the clipboard
XmContainerCopyLink(1) Copy links to the Container primary

selection into the clipboard
XmContainerCut(1) Cuts the Container primary selection

onto the clipboard
XmContainerGetItemChild(1) Find the children of a Container item
XmContainerPaste(1) Pastes the clipboard selection into a

Container
XmContainerPasteLink(1) Copies links from the clipboard selec-

tion into a Container
XmContainerRelayout(1) Force relayout of a Container widget
XmContainerReorder(1) Reorder children of a Container

Cursors
XmGetMenuCursor(1) Get the current menu cursor
XmSetMenuCursor(1) Set the current menu cursor

Direction
XmDirectionMatch(1) Compare two directions
XmDirectionMatchPartial(1) Partially compare two directions
XmDirectionToStringDirection(1) Convert a direction to a string direction
XmStringDirectionToDirection(1) Convert a string direction to a direction

Appendix A: Function Summaries

1130 Motif Reference Manual

Display
XmGetXmDisplay(1) Get the XmDisplay object for the Dis-

play
XmUpdateDisplay(1) Update the display

Drag and Drop
XmDragCancel(1) Cancel a drag operation
XmDragStart(1) Start a drag operation
XmDropSiteConfigureStackingOrder(1)Change the stacking order of a drop site
XmDropSideEndUpdate(1) End an update of multiple drop site

operations
XmDropSiteQueryStackingOrder(1) Get the stacking order of a drop site
XmDropSiteRegister(1) Register a widget as a drop site
XmDropSiteRetrieve(1) Get the resource values of a drop site
XmDropSiteStartUpdate(1) Start an update of multiple drop site

operations
XmDropSiteUnregister(1) Remove a drop site
XmDropSiteUpdate(1) Change the resource values for a drop

site
XmDropTransferAdd(1) Add drop transfer entries to a drop oper-

ation
XmDropTransferStart(1) Start a drop operation
XmGetDragContext(1) Get information about a drag-and-drop

operation
XmTargetsAreCompatible(1) Determine whether or not the target

types of a drag source and a drop site
match

FileSelectionBox
XmFileSelectionBoxGetChild(1) Get a specified child of a FileSelection-

Box widget
XmFileSelectionDoSearch(1) Start a directory search

Font Lists
XmFontListAdd(1) Create a new font list
XmFontListAppendEntry(1) Append a font entry to a font list
XmFontListCopy(1) Copy a font list
XmFontListCreate(1) Create a new font list
XmFontListCreate_r(1) Create a new font list in a thread-safe

manner

Appendix A: Function Summaries

Motif Reference Manual 1131

XmFontListEntryCreate(1) Create a new font list entry
XmFontListEntryCreate_r(1) Create a new font list entry in a thread-

safe manner
XmFontListEntryFree(1) Free the memory used by a font list

entry
XmFontListEntryGetFont(1) Get the font information from a font list

entry
XmFontListEntryGetTag(1) Get the tag of a font list entry
XmFontListEntryLoad(1) Load a font or create a font set, and then

create a font list entry
XmFontListFree(1) Free the memory used by a font list
XmFontListFreeFontContext(1) Free a font context
XmFontListGetNextFont(1) Retrieve information about the next font

list element
XmFontListInitFontContext(1) Create a font context
XmFontListNextEntry(1) Retrieve the next font list entry in a font

list
XmFontListRemoveEntry(1) Remove a font list entry from a font list
XmSetFontUnit(1) Set the font unit values
XmSetFontUnits(1) Set the font unit values

Keyboard Handling
XmTranslateKey(1) Convert a KeyCode to a KeySym using

the default translator

Keyboard Traversal
XmAddTabGroup(1) Add a widget to a tab group list
XmGetDestination(1) Get the current destination widget
XmGetFocusWidget(1) Get the widget that has the keyboard

focus
XmGetTabGroup(1) Get the tab group for a widget
XmGetVisibility(1) Determine whether or not a widget is

visible
XmIsTraversable(1) Determine whether or not a widget can

receive the keyboard focus
XmProcessTraversal(1) Set the widget which has the keyboard

focus
XmRemoveTabGroup(1) Remove a widget from a tab group list

Appendix A: Function Summaries

1132 Motif Reference Manual

Input Methods
XmImCloseXIM(1) Close all input contexts associated with

the input method
XmImFreeXIC(1) Free an input context
XmImGetXIC(1) Create an input context for a widget
XmImGetXIM(1) Retrieve the input method for a widget
XmImMbLookupString(1) Retrieve a compound string from an

input method
XmImMbResetIC(1) Reset an input context
XmImRegister(1) Register an input context for a widget
XmImSetFocusValues(1) Set the values and focus for an input

context
XmImSetValues(1) Set the values for an input context
XmImSetXIC(1) Register a widget with an existing input

context
XmImUnregister(1) Unregister the input context for a widget
XmImUnsetFocus(1) Unset focus for an input context
XmImVaSetFocusValues(1) Set the values and focus for an input

context
XmImVaSetValues(1) Set the values for an input context

List
XmListAddItem(1) Add an item to a List
XmListAddItems(1) Add items to a List
XmListAddItemUnselected(1) Add an item to a List, without selecting

the item
XmListAddItemsUnselected(1) Add items to a List, without selecting

the items
XmListDeleteAllItems(1) Delete all of the items from a List
XmListDeleteItem(1) Delete an item from a List
XmListDeleteItems(1) Delete items from a List
XmListDeleteItemsPos(1) Delete items starting at a specified posi-

tion from a List
XmListDeletePos(1) Delete an item at a specified position

from a List
XmListDeletePositions(1) Delete items at specified positions from

a List
XmListDeselectAllItems(1) Deselect all items in a List
XmListDeselectPos(1) Deselect an item at a specified position

in a List

Appendix A: Function Summaries

Motif Reference Manual 1133

XmListGetKbdItemPos(1) Get the position of the item that has the
location cursor in a List

XmListGetMatchPos(1) Get all occurrences of an item in a List
XmListItemExists(1) Determine if a specified item is in a List
XmListItemPos(1) Determine the position of an item in a

List
XmListPosSelected(1) Check if the item at the specified posi-

tion in the List is selected
XmListPosToBounds(1) Return the bounding box of the item at

the specified position in a List
XmListReplaceItems(1) Replace specified items in a List
XmListReplaceItemsPos(1) Replace items at specified positions in a

List
XmListReplaceItemsPosUnselected(1) Replace items at specified positions in a

List, without selecting the replacement
items

XmListReplaceItemsUnselected(1) Replace items in the List, without
selecting the replacement items

XmListReplacePositions(1) Replace items at the specified positions
in a List

XmListSelectedPos(1) Get the positions of the selected items in
a List

XmListSelectItem(1) Select a specified item in a List
XmListSelectPos(1) Select the item at the specified position

in a List
XmListSetAddMode(1) Set add mode in a List
XmListSetBottomItem(1) Set the last visible item in a List
XmListSetBottomPos(1) Set the last visible position in a List
XmListSetHorizPos(1) Set the horizontal position of a List
XmListSetItem(1) Set the first visible item in a List
XmListSetKbdItemPos(1) Set the position of the location cursor in

a List
XmListSetPos(1) Set the first visible position in a List
XmListUpdateSelectedList(1) Update the set of selected items in a List
XmListYToPos(1) Get the position of the item at the speci-

fied y-coordinate in a List

MainWindow
XmMainWindowSep1(1) Get the widget ID of the first MainWin-

dow Separator

Appendix A: Function Summaries

1134 Motif Reference Manual

XmMainWindowSep2(1) Get the widget ID of the second Main-
Window Separator

XmMainWindowSep3(1) Get the widget ID of the third MainWin-
dow Separator

XmMainWindowSetAreas(1) Specify the children for a MainWindow

Menus
XmGetPostedFromWidget(1) Get the widget that posted a menu
XmGetTearOffControl(1) Get the tear-off control for a Menu
XmMenuPosition(1) Position a popup menu
XmOptionButtonGadget(1) Get the CascadeButtonGadget in an

OptionMenu
XmOptionLabelGadget(1) Get the LabelGadget in an OptionMenu
XmRemoveFromPostFromList(1) Make a menu inaccessible from a

widget

MessageBox
XmMessageBoxGetChild(1) Retrieve a specified child of a Message-

Box widget

Mrm Functions
MrmCloseHierarchy(3) Close an Mrm hierarchy
MrmFetchBitmapLiteral(3) Retrieve an exported bitmap from an

Mrm hierarchy
MrmFetchColorLiteral(3) Retrieve an exported color value from

an Mrm hierarchy
MrmFetchIconLiteral(3) Retrieve an exported icon from an Mrm

hierarchy
MrmFetchLiteral(3) Retrieve an exported value from an Mrm

hierarchy
MrmFetchSetValues(3) Set widget resources to values retrieved

from an Mrm hierarchy
MrmFetchWidget(3) Create the widget tree rooted at a named

widget
MrmFetchWidgetOverride(3) Create the widget tree rooted at a named

widget, and override the resources set in
the UID file

MrmInitialize(3) Prepare the Mrm library for use
MrmOpenHierarchy(3) Open an Mrm hierarchy
MrmOpenHierarchyFromBuffer(3) Open an Mrm hierarchy

Appendix A: Function Summaries

Motif Reference Manual 1135

MrmOpenHierarchyPerDisplay(3) Open an Mrm hierarchy
MrmRegisterClass(3) Register a widget creation routine for a

non-Motif component
MrmRegisterNames(3) Register application-defined values and

procedures
MrmRegisterNamesInHierarchy(3) Register application-defined values and

procedures for use in a specific UIL
hierarchy

Notebook
XmNotebookGetPageInfo(1) Return information about a Notebook

page

Parse Mapping
XmParseMappingCreate(1) Create a parse mapping
XmParseMappingFree(1) Free the memory used by a parse map-

ping
XmParseMappingGetValues(1) Fetch resources from a parse mapping

object
XmParseMappingSetValues(1) Set resources for a parse mapping object
XmParseTableFree(1) Free the memory used by a parse table

Pixmaps
XmDestroyPixmap(1) Remove a pixmap from the pixmap

cache
XmGetPixmap(1) Create and return a pixmap
XmGetPixmapByDepth(1) Create and return a pixmap of the speci-

fied depth
XmGetScaledPixmap(1) Create and return a scaled pixmap
XmInsiallImage(1) Install an image in the image cache
XmUninstallImage(1) Remove an image from the image cache

Print
XmPrintPopupPDM(1) Notify the Print Display Manager
XmPrintSetup(1) Create a PrintShell widget
XmPrintToFile(1) Save X print Server data to file
XmRedisplayWidget(1) Force widget exposure for printing

Appendix A: Function Summaries

1136 Motif Reference Manual

Protocols
XmActivateProtocol(1) Activate a protocol
XmActivateWMProtocol(1) Activate the XA_WM_PROTOCOLS

protocol
XmAddProtocolCallback(1) Add client callbacks to a protocol
XmAddProtocols(1) Add protocols to the protocol manager
XmAddWMProtocolCallback(1) Add client callbacks to an

XA_WM_PROTOCOLS protocol
XmAddWMProtocols(1) Add the XA_WM_PROTOCOLS proto-

col to the protocol manager
XmDeactivateProtocol(1) Deactivate a protocol
XmDeactivateWMProtocol(1) Deactivate the XA_WM_PROTOCOLS

protocol
XmRemoveProtocolCallback(1) Remove client callback from a protocol
XmRemoveProtocols(1) Remove protocols from the protocol

manager
XmRemoveWMProtocolCallback(1) Remove client callbacks from the

XA_WM_PROTOCOLS protocol
XmRemoveWMProtocols(1) Remove the XA_WM_PROTOCOLS

protocol from the protocol manager
XmSetProtocolHooks(1) Set prehooks and posthooks for a proto-

col
XmSetWMProtocolHooks(1) Set prehooks and posthooks for the

XA_WM_PROTOCOLS protocol

Render Tables and Renditions
XmRenderTableAddRenditions(1) Add renditions to a render table
XmRenderTableCopy(1) Copy a render table
XmRenderTableCvtFromProp(1) Convert from a string representation into

a render table
XmRenderTableCvtToProp(1) Convert a render table into a string rep-

resentation
XmRenderTableFree(1) Free the memory used by a render table
XmRenderTableGetRendition(1) Search a render table for a matching ren-

dition
XmRenderTableGetRenditions(1) Search a render table for a matching ren-

ditions
XmRenderTableGetTags(1) Fetch the list of rendition tags from a

render table
XmRenderTableRemoveRenditions(1) Copy a render table, excluding speci-

fied renditions

Appendix A: Function Summaries

Motif Reference Manual 1137

XmRenditionCreate(1) Create a rendition object
XmRenditionFree(1) Free the memory used by a rendition

object
XmRenditionRetrieve(1) Fetch rendition object resources
XmRenditionUpdate(1) Set rendition object resources

Resolution Independence
XmConvertUnits(1) Convert a value to a specified unit type

Resource Conversion
XmConvertStringToUnits(1) Convert a string to an integer, optionally

translating the units
XmCvtStringToUnitType(1) Convert a string to a unit-type value
XmRepTypeAddReverse(1) Install the reverse converter for a repre-

sentation type
XmRepTypeGetId(1) Get the ID number of a representation

type
XmRepTypeGetNameList(1) Get the list of value names for a repre-

sentation type
XmRepTypeGetRecord(1) Get the information about a representa-

tion type
XmRepTypeGetRegistered(1) Get the registered representation types
XmRepTypeInstallTearOffModelConverter(1)

Install the resource converter for
XmNtearOffModel

XmRepTypeRegister(1) Register a representation type resource
XmRepTypeValidValue(1) Determine the validity of a numerical

value for a representation type

Scale
XmScaleGetValue(1) Get the slider value for a Scale widget
XmScaleSetTicks(1) Set tick marks for a Scale widget
XmScaleSetValue(1) Set the slider value for a Scale widget

Screen
XmGetXmScreen(1) Get the XmScreen object for a screen

Appendix A: Function Summaries

1138 Motif Reference Manual

ScrollBar
XmScrollBarGetValues(1) Get information about the current state

of a ScrollBar
XmScrollBarSetValues(1) Set the current state of a ScrollBar

widget

ScrolledWindow
XmScrolledWindowSetAreas(1) Set the children for a ScrolledWindow
XmScrollVisible(1) Make an obscured child of a Scrolled-

Window visible

SelectionBox
XmSelectionBoxGetChild(1) Get the specified child of a Selection-

Box widget

SpinBox
XmSimpleSpinBoxAddItem(1) Add an item to a SimpleSpinBox
XmSimpleSpinBoxDeletePos(1) Delete an item at a specified position

from a SimpleSpinBox
XmSimpleSpinBoxSetItem(1) Set an item in a SimpleSpinBox
XmSpinBoxValidatePosition(1) Validate the current value of a SpinBox

Tab Lists
XmTabCreate(1) Create a tab (XmTab) object
XmTabFree(1) Free the memory used by an XmTab

object
XmTabGetValues(1) Fetch the value of an XmTab object

XmTabListCopy(1)1 Copy a tab list object
XmTabListFree(1) Free the memory used by a tab list
XmTabListGetTab(1) Retrieve a tab from a tab list
XmTabListInsertTabs(1) Insert tabs into a tab list
XmTabListRemoveTabs(1) Copy a tab list, excluding specified tabs
XmTabListReplacePositions(1) Copy a tab list, replacing tabs at speci-

fied positions
XmTabListTabCount(1) Count the number of tabs in a tab list
XmTabSetValue(1) Set the value of a tab object

1.Erroneously given as XmTabListTabCopy() in 2nd edition

Appendix A: Function Summaries

Motif Reference Manual 1139

Text
XmTextClearSelection(1) Clear the primary selection
XmTextCopy(1) Copy the primary selection to the clip-

board
XmTextCopyLink(1) Copy links from the primary selection to

the clipboard
XmTextCut(1) Copy the primary selection to the clip-

board, and remove the selected text
XmTextDisableRedisplay(1) Prevent visual update
XmTextEnableRedisplay(1) Allow visual update
XmTextFindString(1) Find the beginning position of a text

string
XmTextFindStringWcs(1) Find the beginning position of a wide-

character text string
XmTextGetBaseline(1) Get the position of the baseline
XmTextGetCenterline(1) Get the height of vertical text
XmTextGetCursorPosition(1) Get the position of the location cursor
XmTextGetEditable(1) Get the edit permission state
XmTextGetInsertionPosition(1) Get the position of the insertion cursor
XmTextGetLastPosition(1) Get the position of the last character
XmTextGetMaxLength(1) Get the maximum possible length of a

text string
XmTextGetSelection(1) Get the value of the primary selection
XmTextGetSelectionPosition(1) Get the position of the primary selection
XmTextGetSelectionWcs(1) Get the wide-character value of the pri-

mary selection
XmTextGetSource(1) Get the text source
XmTextGetString(1) Get the text string
XmTextGetStringWcs(1) Get the wide-character text string
XmTextGetSubstring(1) Get a copy of part of the text string
XmTextGetSubstringWcs(1) Get a copy of part of the wide-character

text string
XmTextGetTopCharacter(1) Get the position of the first visible char-

acter
XmTextInsert(1) Insert a string into the text string
XmTextInsertWcs(1) Insert a wide-character string into the

text string
XmTextPaste(1) Insert the clipboard selection
XmTextPasteLink(1) Insert links from the clipboard selection
XmTextPosToXY(1) Get the x, y coordinates of a character

position

Appendix A: Function Summaries

1140 Motif Reference Manual

XmTextRermove(1) Delete the primary selection
XmTextReplace(1) Replace part of the text string
XmTextReplaceWcs(1) Replace part of the wide-character text

string
XmTextScroll(1) Scroll the text
XmTextSetAddMode(1) Set the add mode state
XmTextSetCursorPosition(1) Set the position of the location cursor
XmTextSetEditable(1) Set the edit permission state
XmTextSetHighlight(1) Highlight part of the text string
XmTextSetInsertionPosition(1) Set the position of the insertion cursor
XmTextSetMaxLength(1) Set the maximum possible length of a

text string
XmTextSetSelection(1) Set the value of the primary selection
XmTextSetSource(1) Set the text source
XmTextSetString(1) Set the text string
XmTextSetStringWcs(1) Set the wide-character text string
XmTextSetTopCharacter(1) Set the position of the first visible char-

acter
XmTextShowPosition(1) Scroll the text so that a specified posi-

tion is visible
XmTextXYToPos(1) Get the character position for a given x,

y coordinate

TextField
XmTextFieldClearSelection(1) Clear the primary selection
XmTextFieldCopy(1) Copy the primary selection to the clip-

board
XmTextFieldCopyLink(1) Copy links from the primary selection to

the clipboard
XmTextFieldCut(1) Copy the primary selection to the clip-

board, and remove the selected text
XmTextFieldGetBaseline(1) Get the position of the baseline
XmTextFieldGetCursorPosition(1) Get the position of the location cursor
XmTextFieldGetEditable(1) Get the edit permission state
XmTextFieldGetInsertionPosition(1) Get the position of the insertion cursor
XmTextFieldGetLastPosition(1) Get the position of the last character
XmTextFieldGetMaxLength(1) Get the maximum possible length of a

text string
XmTextFieldGetSelection(1) Get the value of the primary selection
XmTextFieldGetSelectionPosition(1) Get the position of the primary selection

Appendix A: Function Summaries

Motif Reference Manual 1141

XmTextFieldGetSelectionWcs(1) Get the wide-character value of the pri-
mary selection

XmTextFieldGetString(1) Get the text string
XmTextFieldGetStringWcs(1) Get the wide-character text string
XmTextFieldGetSubstring(1) Get a copy of part of the text string
XmTextFieldGetSubstringWcs(1) Get a copy of part of the wide-character

text string
XmTextFieldGetTopCharacter(1) Get the position of the first visible char-

acter
XmTextFieldInsert(1) Insert a string into the text string
XmTextFieldInsertWcs(1) Insert a wide-character string into the

text string
XmTextFieldPaste(1) Insert the clipboard selection
XmTextFieldPasteLink(1) Insert links from the clipboard selection
XmTextFieldPosToXY(1) Get the x, y coordinates of a character

position
XmTextFieldRermove(1) Delete the primary selection
XmTextFieldReplace(1) Replace part of the text string
XmTextFieldReplaceWcs(1) Replace part of the wide-character text

string
XmTextFieldSetAddMode(1) Set the add mode state
XmTextFieldSetCursorPosition(1) Set the position of the location cursor
XmTextFieldSetEditable(1) Set the edit permission state
XmTextFieldSetHighlight(1) Highlight part of the text string
XmTextFieldSetInsertionPosition(1) Set the position of the insertion cursor
XmTextFieldSetMaxLength(1) Set the maximum possible length of a

text string
XmTextFieldSetSelection(1) Set the value of the primary selection
XmTextFieldSetSource(1) Set the text source
XmTextFieldSetString(1) Set the text string
XmTextFieldSetStringWcs(1) Set the wide-character text string
XmTextFieldShowPosition(1) Scroll the text so that a specified posi-

tion is visible
XmTextFieldXYToPos(1) Get the character position for a given x,

y coordinate

ToggleButton
XmToggleButtonGadgetGetState(1) Get the state of a ToggleButtonGadget
XmToggleButtonGadgetSetState(1) Set the state of a ToggleButtonGadget
XmToggleButtonGadgetSetValue(1) Set the value of a ToggleButtonGadget
XmToggleButtonGetState(1) Get the state of a ToggleButton

Appendix A: Function Summaries

1142 Motif Reference Manual

XmToggleButtonSetState(1) Set the state of a ToggleButton
XmToggleButtonSetValue(1) Set the value of a ToggleButton

Uniform Transfer Model
XmTransferDone(1) Complete a data transfer operation
XmTransferSendRequest(1) Send a multiple transfer request
XmTransferSetParameters(1) Set parameters for the next transfer

operation
XmTransferStartRequest(1) Initiate a multiple transfer batch opera-

tion
XmTransferValue(1) Transfer data to a destination

Widget Class
XmIsObject(1) Determine whether a widget is a sub-

class of a given class

Widget Creation
XmCreateObject(1) Create an instance of a particular widget

class or compound object
XmPrintSetup(1) Create a PrintShell widget
XmVaCreateSimpleCheckBox(1) Create a CheckBox compound object
XmVaCreateSimpleMenuBar(1) Create a MenuBar compound object
XmVaCreateSimpleOptionMenu(1) Create an OptionMenu compound

object
XmVaCreateSimplePopupMenu(1) Create a PopupMenu compound object

as the child of a MenuShell
XmVaCreateSimplePulldownMenu(1) Create a PulldownMenu compound

object as the child of a MenuShell
XmVaCreateSimpleRadioBox(1) Create a RadioBox compound object

Widget Internals
XmGetSecondaryResourceData(1) Retrieve secondary widget resource data
XmResolveAllPartOffset(1) Ensure upward-compatible widgets and

applications
XmResolvePartOffsets(1) Ensure upward-compatible widgets and

applications

Appendix A: Function Summaries

Motif Reference Manual 1143

Widget Layout
XmObjectAtPoint(1) Determine the child nearest to a point

coordinate
XmWidgetGetBaselines(1) Get the positions of the baselines in a

widget
XmWidgetGetDisplayRect(1) Get the display rectangle for a widget

Widget Selection
XmTrackingEvent(1) Allow for modal selection of a compo-

nent
XmTrackingLocate(1) Allow for modal selection of a compo-

nent

Window Manager
XmIsMotifWMRunning(1) Check whether the Motif Window Man-

ager (mwm) is running

A.2 Alphabetical Listing
MrmCloseHierarchy(3) Close an Mrm hierarchy
MrmFetchBitmapLiteral(3) Retrieve an exported bitmap from an

Mrm hierarchy
MrmFetchColorLiteral(3) Retrieve an exported color value from

an Mrm hierarchy
MrmFetchIconLiteral(3) Retrieve an exported icon from an Mrm

hierarchy
MrmFetchLiteral(3) Retrieve an exported value from an Mrm

hierarchy
MrmFetchSetValues(3) Set widget resources to values retrieved

from an Mrm hierarchy
MrmFetchWidget(3) Create the widget tree rooted at a named

widget
MrmFetchWidgetOverride(3) Create the widget tree rooted at a named

widget, and override the resources set in
the UID file

MrmInitialize(3) Prepare the Mrm library for use
MrmOpenHierarchy(3) Open an Mrm hierarchy
MrmOpenHierarchyFromBuffer(3) Open an Mrm hierarchy
MrmOpenHierarchyPerDisplay(3) Open an Mrm hierarchy

Appendix A: Function Summaries

1144 Motif Reference Manual

MrmRegisterClass(3) Register a widget creation routine for a
non-Motif component

MrmRegisterNames(3) Register application-defined values and
procedures

MrmRegisterNamesInHierarchy(3) Register application-defined values and
procedures for use in a specific UIL
hierarchy

XmActivateProtocol(1) Activate a protocol
XmActivateWMProtocol(1) Activate the XA_WM_PROTOCOLS

protocol
XmAddProtocolCallback(1) Add client callbacks to a protocol
XmAddProtocols(1) Add protocols to the protocol manager
XmAddTabGroup(1) Add a widget to a tab group list
XmAddWMProtocolCallback(1) Add client callbacks to an

XA_WM_PROTOCOLS protocol
XmAddWMProtocols(1) Add the XA_WM_PROTOCOLS proto-

col to the protocol manager
XmCascadeButtonGadgetHighlight(1) Set the highlight state of a CascadeBut-

tonGadget
XmCascadeButtonHighlight(1) Set the highlight state of a CascadeBut-

ton
XmChangeColor(1) Update the colors of a widget
XmClipboardBeginCopy(1) Set up storage for a clipboard copy oper-

ation
XmClipboardCancelCopy(1) Cancel a copy operation to the clipboard
XmClipboardCopy(1) Copy a data item to temporary storage

for later copying to the clipboard
XmClipboardCopyByName(1) Copy as data item passed by name
XmClipboardEndCopy(1) End a copy operation to the clipboard
XmClipboardEndRetrieve(1) End a copy operation from the clipboard
XmClipboardInquireCount(1) Get the number of data item formats

available on the clipboard
XmClipboardInquireFormat(1) Get the specified clipboard data format

name
XmClipboardInquireLength(1) Get the length of the data item on the

clipboard
XmClipboardInquirePendingItems(1) Get a list of pending data ID/private ID

pairs
XmClipboardLock(1) Lock the clipboard
XmClipboardRetrieve(1) Retrieve a data item from the clipboard
XmClipboardStartCopy(1) Set up storage for a clipboard copy oper-

ation

Appendix A: Function Summaries

Motif Reference Manual 1145

XmClipboardStartRetrieve(1) Start a clipboard retrieval operation
XmClipboardUndoCopy(1) Remove the last item copied to the clip-

board
XmClipboardUnlock(1) Unlock the clipboard
XmClipboardWithdrawFormat(1) Indicate that an application does not

want to supply a data item any longer
XmClopboardRegisterFormat(1) Register a new format for clipboard data

items
XmComboBoxAddItem(1) Add a compound string to the Com-

boBox List
XmComboBoxDeletePos(1) Delete an item at the specified position

from a ComboBox List
XmComboBoxSelectItem(1) Select an item from a ComboBox List
XmComboBoxSetItem(1) Select and make visible an item from a

ComboBox List
XmComboBoxUpdate(1) Update the ComboBox List after

changes to component widgets
XmCommandAppendValue(1) Append a compound string to a Com-

mand widget
XmCommandError(1) Display an error message in a Command

widget
XmCommandGetChild(1) Get the specified child of a Command

widget
XmCommandSetValue(1) Replace the Command string
XmContainerCopy(1) Copy the Container primary selection to

the clipboard
XmContainerCopyLink(1) Copy links to the Container primary

selection into the clipboard
XmContainerCut(1) Cuts the Container primary selection

onto the clipboard
XmContainerGetItemChild(1) Find the children of a Container item
XmContainerPaste(1) Pastes the clipboard selection into a

Container
XmContainerPasteLink(1) Copies links from the clipboard selec-

tion into a Container
XmContainerRelayout(1) Force relayout of a Container widget
XmContainerReorder(1) Reorder children of a Container
XmConvertStringToUnits(1) Convert a string to an integer, optionally

translating the units
XmConvertUnits(1) Convert a value to a specified unit type
XmCreateObject(1) Create an instance of a particular widget

class or compound object

Appendix A: Function Summaries

1146 Motif Reference Manual

XmCvtByteStreamToXmString() Convert a byte stream to a compound
string

XmCvtCTToXmString(1) Convert compound text to a compound
string

XmCvtStringToUnitType(1) Convert a string to a unit-type value
XmCvtTextPropertyToXmStringTable(1)Convert an XTextProperty to a com-

pound string table
XmCvtXmStringTableToTextProperty(1)Convert a compound string table to an

XTextProperty
XmCvtXmStringToByteStream(1) Convert a compound string to byte

stream format
XmCvtXmStringToCT(1) Convert a compound string to com-

pound text
XmDeactivateProtocol(1) Deactivate a protocol
XmDeactivateWMProtocol(1) Deactivate the XA_WM_PROTOCOLS

protocol
XmDestroyPixmap(1) Remove a pixmap from the pixmap

cache
XmDirectionMatch(1) Compare two directions
XmDirectionMatchPartial(1) Partially compare two directions
XmDirectionToStringDirection(1) Convert a direction to a string direction
XmDragCancel(1) Cancel a drag operation
XmDragStart(1) Start a drag operation
XmDropSideEndUpdate(1) End an update of multiple drop site

operations
XmDropSiteConfigureStackingOrder(1)Change the stacking order of a drop site
XmDropSiteQueryStackingOrder(1) Get the stacking order of a drop site
XmDropSiteRegister(1) Register a widget as a drop site
XmDropSiteRetrieve(1) Get the resource values of a drop site
XmDropSiteStartUpdate(1) Start an update of multiple drop site

operations
XmDropSiteUnregister(1) Remove a drop site
XmDropSiteUpdate(1) Change the resource values for a drop

site
XmDropTransferAdd(1) Add drop transfer entries to a drop oper-

ation
XmDropTransferStart(1) Start a drop operation
XmFileSelectionBoxGetChild(1) Get a specified child of a FileSelection-

Box widget
XmFileSelectionDoSearch(1) Start a directory search
XmFontListAdd(1) Create a new font list
XmFontListAppendEntry(1) Append a font entry to a font list

Appendix A: Function Summaries

Motif Reference Manual 1147

XmFontListCopy(1) Copy a font list
XmFontListCreate(1) Create a new font list
XmFontListCreate_r(1) Create a new font list in a thread-safe

manner
XmFontListEntryCreate(1) Create a new font list entry
XmFontListEntryCreate_r(1) Create a new font list entry in a thread-

safe manner
XmFontListEntryFree(1) Free the memory used by a font list

entry
XmFontListEntryGetFont(1) Get the font information from a font list

entry
XmFontListEntryGetTag(1) Get the tag of a font list entry
XmFontListEntryLoad(1) Load a font or create a font set, and then

create a font list entry
XmFontListFree(1) Free the memory used by a font list
XmFontListFreeFontContext(1) Free a font context
XmFontListGetNextFont(1) Retrieve information about the next font

list element
XmFontListInitFontContext(1) Create a font context
XmFontListNextEntry(1) Retrieve the next font list entry in a font

list
XmFontListRemoveEntry(1) Remove a font list entry from a font list
XmGetAtomName(1) Get the string representation of an Atom
XmGetColorCalculation(1) Get the procedure that calculates default

widget colors
XmGetColors(1) Get the foreground, select, and shadow

colors for a widget
XmGetDestination(1) Get the current destination widget
XmGetDragContext(1) Get information about a drag-and-drop

operation
XmGetFocusWidget(1) Get the widget that has the keyboard

focus
XmGetMenuCursor(1) Get the current menu cursor
XmGetPixmap(1) Create and return a pixmap
XmGetPixmapByDepth(1) Create and return a pixmap of the speci-

fied depth
XmGetPostedFromWidget(1) Get the widget that posted a menu
XmGetScaledPixmap(1) Create and return a scaled pixmap
XmGetSecondaryResourceData(1) Retrieve secondary widget resource data
XmGetTabGroup(1) Get the tab group for a widget
XmGetTearOffControl(1) Get the tear-off control for a Menu

Appendix A: Function Summaries

1148 Motif Reference Manual

XmGetVisibility(1) Determine whether or not a widget is
visible

XmGetXmDisplay(1) Get the XmDisplay object for the Dis-
play

XmGetXmScreen(1) Get the XmScreen object for a screen
XmImCloseXIM(1) Close all input contexts associated with

the input method
XmImFreeXIC(1) Free an input context
XmImGetXIC(1) Create an input context for a widget
XmImGetXIM(1) Retrieve the input method for a widget
XmImMbLookupString(1) Retrieve a compound string from an

input method
XmImMbResetIC(1) Reset an input context
XmImRegister(1) Register an input context for a widget
XmImSetFocusValues(1) Set the values and focus for an input

context
XmImSetValues(1) Set the values for an input context
XmImSetXIC(1) Register a widget with an existing input

context
XmImUnregister(1) Unregister the input context for a widget
XmImUnsetFocus(1) Unset focus for an input context
XmImVaSetFocusValues(1) Set the values and focus for an input

context
XmImVaSetValues(1) Set the values for an input context
XmInsiallImage(1) Install an image in the image cache
XmInternAtom(1) Return an Atom for a given property

name string
XmIsMotifWMRunning(1) Check whether the Motif Window Man-

ager (mwm) is run- ning
XmIsObject(1) Determine whether a widget is a sub-

class of a given class
XmIsTraversable(1) Determine whether or not a widget can

receive the keyboard focus
XmListAddItem(1) Add an item to a List
XmListAddItemUnselected(1) Add an item to a List, without selecting

the item
XmListAddItems(1) Add items to a List
XmListAddItemsUnselected(1) Add items to a List, without selecting

the items
XmListDeleteAllItems(1) Delete all of the items from a List
XmListDeleteItem(1) Delete an item from a List
XmListDeleteItems(1) Delete items from a List

Appendix A: Function Summaries

Motif Reference Manual 1149

XmListDeleteItemsPos(1) Delete items starting at a specified posi-
tion from a List

XmListDeletePos(1) Delete an item at a specified position
from a List

XmListDeletePositions(1) Delete items at specified positions from
a List

XmListDeselectAllItems(1) Deselect all items in a List
XmListDeselectPos(1) Deselect an item at a specified position

in a List
XmListGetKbdItemPos(1) Get the position of the item that has the

location cursor in a List
XmListGetMatchPos(1) Get all occurrences of an item in a List
XmListItemExists(1) Determine if a specified item is in a List
XmListItemPos(1) Determine the position of an item in a

List
XmListPosSelected(1) Check if the item at the specified posi-

tion in the List is selected
XmListPosToBounds(1) Return the bounding box of the item at

the specified position in a List
XmListReplaceItems(1) Replace specified items in a List
XmListReplaceItemsPos(1) Replace items at specified positions in a

List
XmListReplaceItemsPosUnselected(1) Replace items at specified positions in a

List, without selecting the replacement
items

XmListReplaceItemsUnselected(1) Replace items in the List, without
selecting the replacement items

XmListReplacePositions(1) Replace items at the specified positions
in a List

XmListSelectItem(1) Select a specified item in a List
XmListSelectPos(1) Select the item at the specified position

in a List
XmListSelectedPos(1) Get the positions of the selected items in

a List
XmListSetAddMode(1) Set add mode in a List
XmListSetBottomItem(1) Set the last visible item in a List
XmListSetBottomPos(1) Set the last visible position in a List
XmListSetHorizPos(1) Set the horizontal position of a List
XmListSetItem(1) Set the first visible item in a List
XmListSetKbdItemPos(1) Set the position of the location cursor in

a List
XmListSetPos(1) Set the first visible position in a List

Appendix A: Function Summaries

1150 Motif Reference Manual

XmListUpdateSelectedList(1) Update the set of selected items in a List
XmListYToPos(1) Get the position of the item at the speci-

fied y-coordinate in a List
XmMainWindowSep1(1) Get the widget ID of the first MainWin-

dow Separator
XmMainWindowSep2(1) Get the widget ID of the second Main-

Window Separator
XmMainWindowSep3(1) Get the widget ID of the third MainWin-

dow Separator
XmMainWindowSetAreas(1) Specify the children for a MainWindow
XmMapSegmentEncoding(1) Get the compound text encoding format

for a font list element tag
XmMenuPosition(1) Position a popup menu
XmMessageBoxGetChild(1) Retrieve a specified child of a Message-

Box widget
XmNotebookGetPageInfo(1) Return information about a Notebook

page
XmObjectAtPoint(1) Determine the child nearest to a point

coordinate
XmOptionButtonGadget(1) Get the CascadeButtonGadget in an

OptionMenu
XmOptionLabelGadget(1) Get the LabelGadget in an OptionMenu
XmParseMappingCreate(1) Create a parse mapping
XmParseMappingFree(1) Free the memory used by a parse map-

ping
XmParseMappingGetValues(1) Fetch resources from a parse mapping

object
XmParseMappingSetValues(1) Set resources for a parse mapping object
XmParseTableFree(1) Free the memory used by a parse table
XmPrintPopupPDM(1) Notify the Print Display Manager
XmPrintSetup(1) Create a PrintShell widget
XmPrintSetup(1) Create a PrintShell widget
XmPrintToFile(1) Save X print Server data to file
XmProcessTraversal(1) Set the widget which has the keyboard

focus
XmRedisplayWidget(1) Force widget exposure for printing
XmRegisterSegmentEncoding(1) Register a compound text encoding for-

mat for a font list element tag
XmRemoveFromPostFromList(1) Make a menu inaccessible from a

widget
XmRemoveProtocolCallback(1) Remove client callback from a protocol

Appendix A: Function Summaries

Motif Reference Manual 1151

XmRemoveProtocols(1) Remove protocols from the protocol
manager

XmRemoveTabGroup(1) Remove a widget from a tab group list
XmRemoveWMProtocolCallback(1) Remove client callbacks from the

XA_WM_PROTOCOLS protocol
XmRemoveWMProtocols(1) Remove the XA_WM_PROTOCOLS

protocol from the protocol manager
XmRenderTableAddRenditions(1) Add renditions to a render table
XmRenderTableCopy(1) Copy a render table
XmRenderTableCvtFromProp(1) Convert from a string representation into

a render table
XmRenderTableCvtToProp(1) Convert a render table into a string rep-

resentation
XmRenderTableFree(1) Free the memory used by a render table
XmRenderTableGetRendition(1) Search a render table for a matching ren-

dition
XmRenderTableGetRenditions(1) Search a render table for a matching ren-

ditions
XmRenderTableGetTags(1) Fetch the list of rendition tags from a

render table
XmRenderTableRemoveRenditions(1) Copy a render table, excluding specified

renditions
XmRenditionCreate(1) Create a rendition object
XmRenditionFree(1) Free the memory used by a rendition

object
XmRenditionRetrieve(1) Fetch rendition object resources
XmRenditionUpdate(1) Set rendition object resources
XmRepTypeAddReverse(1) Install the reverse converter for a repre-

sentation type
XmRepTypeGetId(1) Get the ID number of a representation

type
XmRepTypeGetNameList(1) Get the list of value names for a repre-

sentation type
XmRepTypeGetRecord(1) Get the information about a representa-

tion type
XmRepTypeGetRegistered(1) Get the registered representation types
XmRepTypeInstallTearOffModelConverter(1)

Install the resource converter for
XmNtearOffModel

XmRepTypeRegister(1) Register a representation type resource
XmRepTypeValidValue(1) Determine the validity of a numerical

value for a representation type

Appendix A: Function Summaries

1152 Motif Reference Manual

XmResolveAllPartOffset(1) Ensure upward-compatible widgets and
applications

XmResolvePartOffsets(1) Ensure upward-compatible widgets and
applications

XmScaleGetValue(1) Get the slider value for a Scale widget
XmScaleSetTicks(1) Set tick marks for a Scale widget
XmScaleSetValue(1) Set the slider value for a Scale widget
XmScrollBarGetValues(1) Get information about the current state

of a ScrollBar
XmScrollBarSetValues(1) Set the current state of a ScrollBar

widget
XmScrollVisible(1) Make an obscured child of a Scrolled-

Window visible
XmScrolledWindowSetAreas(1) Set the children for a ScrolledWindow
XmSelectionBoxGetChild(1) Get the specified child of a Selection-

Box widget
XmSetColorCalculation(1) Set the procedure that calculates default

widget colors
XmSetFontUnit(1) Set the font unit values
XmSetFontUnits(1) Set the font unit values
XmSetMenuCursor(1) Set the current menu cursor
XmSetProtocolHooks(1) Set prehooks and posthooks for a proto-

col
XmSetWMProtocolHooks(1) Set prehooks and posthooks for the

XA_WM_PROTOCOLS protocol
XmSimpleSpinBoxAddItem(1) Add an item to a SimpleSpinBox
XmSimpleSpinBoxDeletePos(1) Delete an item at a specified position

from a SimpleSpinBox
XmSimpleSpinBoxSetItem(1) Set an item in a SimpleSpinBox
XmSpinBoxValidatePosition(1) Validate the current value of a SpinBox
XmStringBaseline(1) Get the baseline spacing for a compound

string
XmStringByteCompare(1) Compare two compound strings byte-

by-byte
XmStringByteStreamLength(1) Calculate the length of a byte stream
XmStringCompare(1) Compare two compound strings
XmStringComponentCreate(1) Create a compound string component
XmStringConcat(1) Concatenate two compound strings
XmStringConcatAndFree(1) Create a new compound string formed

by concatenating two compound strings,
freeing the two strings afterwards

XmStringCopy(1) Copy a compound string

Appendix A: Function Summaries

Motif Reference Manual 1153

XmStringCreate(1) Create a compound string
XmStringCreateLocalized(1) Create a compound string in the current

locale
XmStringCreateLtoR(1) Create a compound string
XmStringCreateSimple(1) Create a compound string in the current

language environment
XmStringDirectionCreate(1) Create a compound string containing a

direction component
XmStringDirectionToDirection(1) Convert a string direction to a direction
XmStringDirectionToDirection(1) Convert a string direction to a direction
XmStringDraw(1) Draw a compound string
XmStringDrawImage(1) Draw a compound string
XmStringDrawUnderline(1) Draw a compound string with an under-

lined sub-string
XmStringEmpty(1) Determine whether there are any text

components in a compound string
XmStringExtent(1) Get the smallest rectangle enclosing a

compound string
XmStringFree(1) Free the memory used by a compound

string
XmStringFreeContext(1) Free a compound string context
XmStringGenerate(1) Generate a compound string
XmStringGetLtoR(1) Get a text segment from a compound

string
XmStringGetNextComponent(1) Retrieves information about the next

compound string component
XmStringGetNextSegment(1) Retrieves information about the next

compound string component
XmStringGetNextTriple(1) Retrieve information about the next

compound string segment
XmStringHasSubstring(1) Determine whether a compound string

contains a sub-string
XmStringHeight(1) Get the line height of a compound string
XmStringInitContext(1) Create a compound string context
XmStringIsVoid(1) Determine whether there are valid seg-

ments in a compound string
XmStringLength(1) Get the length of a compound string
XmStringLineCount(1) Get the number of lines in a compound

string
XmStringNConcat(1) Concatenate a specified portion of a

compound string to another compound
string

Appendix A: Function Summaries

1154 Motif Reference Manual

XmStringNCopy(1) Copy a specified portion of a compound
string

XmStringParseText(1) Convert a string to a compound string
XmStringPeekNextComponent(1) Returns the type of the next compound

string component
XmStringPutRendition(1) Add rendition components to a com-

pound string
XmStringSegmentCreate(1) Create a compound string segment
XmStringSeparatorCreate(1) Create a compound string containing a

separator component
XmStringTableParseStringArray(1) Convert an array of strings into a com-

pound string table
XmStringTableProposeTabList(1) Create a Tab list for a compound string
XmStringTableToXmString(1) Convert a compound string table to a

compound string
XmStringTableUnparse(1) Convert a compound string table to a

string
XmStringToXmStringTable(1) Convert a compound string to a com-

pound string table
XmStringUnparse(1) Convert a compound string to a string
XmStringWidth(1) Return the width of a compound string
XmTabCreate(1) Create a tab (XmTab) object
XmTabFree(1) Free the memory used by an XmTab

object
XmTabGetValues(1) Fetch the value of an XmTab object
XmTabListCopy(1) Copy a tab list object
XmTabListFree(1) Free the memory used by a tab list
XmTabListGetTab(1) Retrieve a tab from a tab list
XmTabListInsertTabs(1) Insert tabs into a tab list
XmTabListRemoveTabs(1) Copy a tab list, excluding specified tabs
XmTabListReplacePositions(1) Copy a tab list, replacing tabs at speci-

fied positions
XmTabListTabCount(1) Count the number of tabs in a tab list
XmTabSetValue(1) Set the value of a tab object
XmTargetsAreCompatible(1) Determine whether or not the target

types of a drag source and a drop site
match

XmTextClearSelection(1) Clear the primary selection
XmTextCopy(1) Copy the primary selection to the clip-

board
XmTextCopyLink(1) Copy links from the primary selection to

the clipboard

Appendix A: Function Summaries

Motif Reference Manual 1155

XmTextCut(1) Copy the primary selection to the clip-
board, and remove the selected text

XmTextDisableRedisplay(1) Prevent visual update
XmTextEnableRedisplay(1) Allow visual update
XmTextFieldClearSelection(1) Clear the primary selection
XmTextFieldCopy(1) Copy the primary selection to the clip-

board
XmTextFieldCopyLink(1) Copy links from the primary selection to

the clipboard
XmTextFieldCut(1) Copy the primary selection to the clip-

board, and remove the selected text
XmTextFieldGetBaseline(1) Get the position of the baseline
XmTextFieldGetCursorPosition(1) Get the position of the location cursor
XmTextFieldGetEditable(1) Get the edit permission state
XmTextFieldGetInsertionPosition(1) Get the position of the insertion cursor
XmTextFieldGetLastPosition(1) Get the position of the last character
XmTextFieldGetMaxLength(1) Get the maximum possible length of a

text string
XmTextFieldGetSelection(1) Get the value of the primary selection
XmTextFieldGetSelectionPosition(1) Get the position of the primary selection
XmTextFieldGetSelectionWcs(1) Get the wide-character value of the pri-

mary selection
XmTextFieldGetString(1) Get the text string
XmTextFieldGetStringWcs(1) Get the wide-character text string
XmTextFieldGetSubstring(1) Get a copy of part of the text string
XmTextFieldGetSubstringWcs(1) Get a copy of part of the wide-character

text string
XmTextFieldGetTopCharacter(1) Get the position of the first visible char-

acter
XmTextFieldInsert(1) Insert a string into the text string
XmTextFieldInsertWcs(1) Insert a wide-character string into the

text string
XmTextFieldPaste(1) Insert the clipboard selection
XmTextFieldPasteLink(1) Insert links from the clipboard selection
XmTextFieldPosToXY(1) Get the x, y coordinates of a character

position
XmTextFieldReplace(1) Replace part of the text string
XmTextFieldReplaceWcs(1) Replace part of the wide-character text

string
XmTextFieldRermove(1) Delete the primary selection
XmTextFieldSetAddMode(1) Set the add mode state
XmTextFieldSetCursorPosition(1) Set the position of the location cursor

Appendix A: Function Summaries

1156 Motif Reference Manual

XmTextFieldSetEditable(1) Set the edit permission state
XmTextFieldSetHighlight(1) Highlight part of the text string
XmTextFieldSetInsertionPosition(1) Set the position of the insertion cursor
XmTextFieldSetMaxLength(1) Set the maximum possible length of a

text string
XmTextFieldSetSelection(1) Set the value of the primary selection
XmTextFieldSetSource(1) Set the text source
XmTextFieldSetString(1) Set the text string
XmTextFieldSetStringWcs(1) Set the wide-character text string
XmTextFieldShowPosition(1) Scroll the text so that a specified posi-

tion is visible
XmTextFieldXYToPos(1) Get the character position for a given x,

y coordinate
XmTextFindString(1) Find the beginning position of a text

string
XmTextFindStringWcs(1) Find the beginning position of a wide-

character text string
XmTextGetBaseline(1) Get the position of the baseline
XmTextGetCenterline(1) Get the height of vertical text
XmTextGetCursorPosition(1) Get the position of the location cursor
XmTextGetEditable(1) Get the edit permission state
XmTextGetInsertionPosition(1) Get the position of the insertion cursor
XmTextGetLastPosition(1) Get the position of the last character
XmTextGetMaxLength(1) Get the maximum possible length of a

text string
XmTextGetSelection(1) Get the value of the primary selection
XmTextGetSelectionPosition(1) Get the position of the primary selection
XmTextGetSelectionWcs(1) Get the wide-character value of the pri-

mary selection
XmTextGetSource(1) Get the text source
XmTextGetString(1) Get the text string
XmTextGetStringWcs(1) Get the wide-character text string
XmTextGetSubstring(1) Get a copy of part of the text string
XmTextGetSubstringWcs(1) Get a copy of part of the wide-character

text string
XmTextGetTopCharacter(1) Get the position of the first visible char-

acter
XmTextInsert(1) Insert a string into the text string
XmTextInsertWcs(1) Insert a wide-character string into the

text string
XmTextPaste(1) Insert the clipboard selection
XmTextPasteLink(1) Insert links from the clipboard selection

Appendix A: Function Summaries

Motif Reference Manual 1157

XmTextPosToXY(1) Get the x, y coordinates of a character
position

XmTextReplace(1) Replace part of the text string
XmTextReplaceWcs(1) Replace part of the wide-character text

string
XmTextRermove(1) Delete the primary selection
XmTextScroll(1) Scroll the text
XmTextSetAddMode(1) Set the add mode state
XmTextSetCursorPosition(1) Set the position of the location cursor
XmTextSetEditable(1) Set the edit permission state
XmTextSetHighlight(1) Highlight part of the text string
XmTextSetInsertionPosition(1) Set the position of the insertion cursor
XmTextSetMaxLength(1) Set the maximum possible length of a

text string
XmTextSetSelection(1) Set the value of the primary selection
XmTextSetSource(1) Set the text source
XmTextSetString(1) Set the text string
XmTextSetStringWcs(1) Set the wide-character text string
XmTextSetTopCharacter(1) Set the position of the first visible char-

acter
XmTextShowPosition(1) Scroll the text so that a specified posi-

tion is visible
XmTextXYToPos(1) Get the character position for a given x,

y coordinate
XmToggleButtonGadgetGetState(1) Get the state of a ToggleButtonGadget
XmToggleButtonGadgetSetState(1) Set the state of a ToggleButtonGadget
XmToggleButtonGadgetSetValue(1) Set the value of a ToggleButtonGadget
XmToggleButtonGetState(1) Get the state of a ToggleButton
XmToggleButtonSetState(1) Set the state of a ToggleButton
XmToggleButtonSetValue(1) Set the value of a ToggleButton
XmTrackingEvent(1) Allow for modal selection of a compo-

nent
XmTrackingLocate(1) Allow for modal selection of a compo-

nent
XmTransferDone(1) Complete a data transfer operation
XmTransferSendRequest(1) Send a multiple transfer request
XmTransferSetParameters(1) Set parameters for the next transfer

operation
XmTransferStartRequest(1) Initiate a multiple transfer batch opera-

tion
XmTransferValue(1) Transfer data to a destination

Appendix A: Function Summaries

1158 Motif Reference Manual

XmTranslateKey(1) Convert a KeyCode to a KeySym using
the default translator

XmUninstallImage(1) Remove an image from the image cache
XmUpdateDisplay(1) Update the display
XmVaCreateSimpleCheckBox(1) Create a CheckBox compound object
XmVaCreateSimpleMenuBar(1) Create a MenuBar compound object
XmVaCreateSimpleOptionMenu(1) Create an OptionMenu compound

object
XmVaCreateSimplePopupMenu(1) Create a PopupMenu compound object

as the child of a MenuShell
XmVaCreateSimplePulldownMenu(1) Create a PulldownMenu compound

object as the child of a MenuShell
XmVaCreateSimpleRadioBox(1) Create a RadioBox compound object
XmWidgetGetBaselines(1) Get the positions of the baselines in a

widget
XmWidgetGetDisplayRect(1) Get the display rectangle for a widget

Motif Reference Manual 1159

Appendix B - Data Types

This appendix summarizes the data types used as arguments or return values in
Motif toolkit and Motif Resource Manager functions. Xt and Xlib data types used
by the routines are included. For each data type, the description states the header
file that defines the type. Data types (which include simple typedefs as well as
structures and enums) are listed alphabetically. Defined symbols (for example,
constants used to specify the value of a mask or a field in a structure) or other
data types used only to set structure members are listed with the data type in
which they are used.

ArgList
An ArgList is used for setting resources in calls to widget creation routines. It is
defined as follows in <X11/Intrinsic.h>:

typedef struct {
String name;
XtArgVal value;

} Arg, *ArgList;

The name field is typically a defined constant of the form XtNresourcename from
either <X11/Stringdefs.h> or a widget public header file. It identifies the name of
the argument to be set. The value field is an XtArgVal, a system-dependent type-
def chosen to be large enough to hold a pointer to a function. It is often not large
enough to hold a float or double.

Atom
To optimize communication with the server, a property is referenced by string
name only once, and subsequently by a unique integer ID called an Atom. Prede-
fined atoms are defined in <X11/Xatom.h> using defined symbols beginning with
XA_; other atoms can be obtained from the server by calling the Xlib function
XInternAtom (). The Motif toolkit supports an atom-caching mechanism with
XmInternAtom (). Atoms are used by the Motif protocol routines.

Boolean
A typedef from <X11/Intrinsic.h> used to indicate True (1) or False (0). Use
either the symbols TRUE or FALSE, defined in <X11/Intrinsic.h> or True or
False, defined in <X11/Xlib.h>.

Cardinal
A typedef from <X11/Intrinsic.h> used to specify any unsigned integer value.

Colormap
An XID (server resource ID) from <X11/X.h> that identifies a Colormap resource
maintained by the server. XmGetColors () and MrmFetchColorLiteral ()
use Colormap values.

Appendix B: Data Types

1160 Motif Reference Manual

Cursor
A typedef in <X11/X.h> for an XID (server resource ID) that identifies a cursor
resource maintained by the server. A Cursor is used to set the menu cursor in
Motif. XmTrackingEvent () and XmTrackingLocate () also have a Cursor
parameter.

Dimension
A typedef from <X11/Intrinsic.h> used to specify an unsigned short quantity,
typically used for window sizes.

Display
A structure defined in <X11/Xlib.h> that contains information about the display
the program is running on. Display structure fields should not be accessed
directly; Xlib provides a number of macros to return essential values. In Xt, a
pointer to the current Display is returned by a call to XtDisplay (). The Motif
clipboard routines and string drawing routines, among others, use Display param-
eters. This data type should not be confused with the XmDisplay widget in Motif
1.2 and later.

GC
A graphics context, which is defined in <X11/Xlib.h>. A GC is a pointer to a
structure that contains a copy of the settings in a server resource. The server
resource, in turn, contains information about how to interpret a graphics primi-
tive. A pointer to a structure of this type is returned by the Xlib call XCre-
ateGC () or the Xt call XtGetGC (). Motif string drawing routines use GC
parameters. The members of this structure should not be accessed directly.

KeyCode
A server-dependent code that describes a key that has been pressed. A KeyCode is
defined as an unsigned character in <X11/X.h>. XmTranslateKey () takes a
KeyCode argument.

KeySym
A portable representation of the symbol on the cap of a key. The Motif toolkit use
both virtual keysyms (osfkeysyms) and actual keysyms. The toolkit maps osfkey-
syms to actual keysyms. Individual KeySyms are symbols defined in <X11/key-
symdef.h>. The keycode-to-keysym lookup tables are maintained by the server,
and hence a KeySym is actually an XID. XmVaCreateSimpleOptionMenu ()
and XmTranslateKey () take KeySym arguments.

Modifiers
Any bitmask that describes modifier keys. The Modifiers type and its values are
defined as follows in <X11/Intrinsic.h> and <X11/X.h>:

typedef unsigned int Modifiers;

Appendix B: Data Types

Motif Reference Manual 1161

#define ShiftMask (1<<0)
#define LockMask (1<<1)
#define ControlMask (1<<2)
#define Mod1Mask (1<<3)
#define Mod2Mask (1<<4)
#define Mod3Mask (1<<5)
#define Mod4Mask (1<<6)
#define Mod5Mask (1<<7)

XmTranslateKey () takes an argument of type Modifiers.

MrmCode
Indicates the type of a value returned by MrmFetchLiteral (). Codes are pre-
fixed with MrmRtype and are defined in <Mrm/MrmPublic.h>.

MrmCount
A typedef in <Mrm/MrmPublic.h> for specifying a count of items.

MrmHierarchy
A pointer to an Mrm hierarchy opened with MrmOpenHierarchy () or MrmO-
penHierarchyPerDisplay (). The type is defined in <Mrm/MrmPublic.h>.
The functions associate one or more UID files with the hierarchy. An MrmHier-
archy is a required argument of most of the Mrm functions.

MrmOsOpenParamPtr
A structure of operating system-dependent settings used as an argument to
MrmOpenHierarchy () and MrmOpenHierarchyPerDisplay () and
defined in <Mrm/MrmPublic.h>. As of Motif 1.2, the settings are only useful to
the UIL compiler.

MrmRegisterArg
See MrmRegisterArgList.

MrmRegisterArgList
A type used for registering application-defined procedures and identifiers with
MrmRegisterNames () and MrmRegisterNamesInHierarchy (). It is
defined as follows in <Mrm/MrmPublic.h>:

typedef struct {
String name; /* case-sensitive name */
XtPointer value; /* value/procedure to associate with name */

} MrmRegisterArg, *MrmRegisterArglist;

MrmType
Indicates the class of a widget created with MrmFetchWidget () or Mrm-
FetchWidgetOverride (). As of Motif 1.2, the types are not defined in any
of the Mrm include files, although the OSF documentation states that they are
defined in <Mrm/Mrm.h>.

Appendix B: Data Types

1162 Motif Reference Manual

Pixel
An unsigned long integer (defined in <X11/Intrinsic.h>) that serves as a lookup
key to a Colormap. If the visual type is PseudoColor, it is implemented as an
index to a Colormap; for DirectColor, the RGB values are directly coded into the
Pixel value. The Motif pixmap and color routines, as well as some Mrm func-
tions, use Pixel values.

Pixmap
An XID (server resource ID) that represents a two-dimensional array of pixels,
used as an offscreen drawable. that is, a drawable with a specified width, height,
and depth (number of planes), but no screen coordinates. The Motif pixmap rou-
tines, as well as some Mrm functions, use Pixmap parameters.

Position
A typedef from <X11/Intrinsic.h> used to specify a short quantity used for x- and
y-coordinates. The Motif string drawing routines, among others, use Position val-
ues.

Screen
A structure that describes the characteristics of a screen (one or more of which
make up a display). A pointer to a list of these structures is a member of the Dis-
play structure. A pointer to a structure of this type is returned by XtScreen ()
and XGetWindowAttributes (). The Motif pixmap routines, among others,
as well as some of the Mrm functions, use Screen values. This data type should
not be confused with the Screen object in Motif 1.2.

Appendix B: Data Types

Motif Reference Manual 1163

typedef struct {
XExtData *ext_data; /* hook for extension to hang data */
struct _XDisplay *display; /* back pointer to display structure */
Window root; /* root window ID */
int width; /* width of screen */
int height; /* height of screen */
int mwidth; /* width in millimeters */
int mheight; /* height in millimeters */
int ndepths; /* number of depths possible */
Depth *depths; /* list of allowable depths on screen*/
int root_depth; /* bits per pixel */
Visual *root_visual; /* root visual */
GC default_gc; /* GC for the root visual */
Colormap cmap; /* default Colormap */
unsigned long white_pixel;
unsigned long black_pixel; /* white and black pixel values */
int max_maps; /* max Colormaps */
int min_maps; /* min Colormaps */
int backing_store; /* Never, WhenMapped, Always */
Bool save_unders;
long root_input_mask; /* initial root input mask */

} Screen;

String
A typedef for char *.

StringTable
A pointer to a list of Strings.

Time
A typedef for an unsigned long value (defined in <X11/X.h>) that contains a time
value in milliseconds. The constant CurrentTime is interpreted as the time in mil-
liseconds since the server was started. The Time data type is used in event struc-
tures and as an argument to some Motif clipboard, drag and drop, and text
selection routines.

Visual
A structure that defines a way of using color resources on a particular screen.

VoidProc
The prototype for the procedure that copies data passed by name to the clipboard.
XmClipboardBeginCopy () specifies a procedure of this type. It is defined as
follows in <Xm/CutPaste.h>:

typedef void (*VoidProc) (Widget widget, int *data_id, int *private_id,
int *reason)

Appendix B: Data Types

1164 Motif Reference Manual

VoidProc takes four arguments. The first argument, widget, is the widget passed
to the callback routine, which is the same widget as passed to XmClipboard-
BeginCopy (). The data_id argument is the ID of the data item that is returned
by XmClipboardCopy () and private_id is the private data passed to XmClip-
boardCopy(). The reason argument takes the value
XmCR_CLIPBOARD_DATA_REQUEST, which indicates that the data must be
copied to the clipboard, or XmCR_CLIPBOARD_DATA_DELETE, which indi-
cates that the client can delete the data from the clipboard. Although the last three
parameters are pointers to integers, the values are read-only and changing them
has no effect.

Widget
A structure returned by calls to create a widget, such as XtAppInitialize (),
XtCreateWidget (), and XtCreateManagedWidget (), as well as the
Motif widget creation routines. The members of this structure should not be
accessed directly from applications; they should regard it as an opaque pointer.
Type Widget is actually a pointer to a widget instance structure. Widget code
accesses instance variables from this structure.

WidgetClass
A pointer to the widget class structure, used to identify the widget class in vari-
ous routines that create widgets or that return information about widgets. Widget
class names have the form nameWidgetClass, with the exception of the widget-
precursor classes, Object and RectObj, which have the class pointers objectClass
and rectObjClass, respectively.

WidgetList
A pointer to a list of Widgets.

Window
A resource maintained by the server, and known on the client side only by an
integer ID. In Xt, a widget’s window can be returned by the XtWindow () macro.
Given the window, the corresponding widget can be returned by XtWindow-
ToWidget (). Conversely, given a widget, the window can be deduced through
XtWindowOfObject (). The Motif clipboard and string drawing routines use
Window values.

XEvent
A union of all thirty event structures. The first member is always the type, so it is
possible to branch on the type, and do event-specific processing in each branch.
Both XmDragStart () and XmTrackingEvent () take XEvent parameters.
An XButtonPressedEvent, which is one of the event structures in the union, is
used by XmMenuPosition ().

Appendix B: Data Types

Motif Reference Manual 1165

XFontSet
Specifies all of the fonts needed to display text in a particular locale. The Motif
font list entry routines can use XFontSet values.

XFontStruct
Specifies metric information (in pixels) for an entire font. This structure (defined
in <X11/Xlib.h>) is filled by means of the Xlib routines XLoadQueryFont ()
and XQueryFont (). XListFontsWithInfo () also fills it, but with metric
information for the entire font only, not for each character. Some of the Motif
font list routines use XFontStructs.

typedef struct {
XExtData *ext_data; /* hook for extension to hang data */
Font fid; /* font ID for this font */
unsigned direction; /* direction the font is painted */
unsigned min_char_or_byte2; /* first character */
unsigned max_char_or_byte2; /* last character */
unsigned min_byte1; /* first row that exists */
unsigned max_byte1; /* last row that exists */
Bool all_chars_exist; /* flag if all characters have */

/* nonzero size */
unsigned default_char; /* char to print for undefined character*/
int n_properties; /* how many properties there are */
XFontProp *properties; /* pointer to array of additional *\

/* properties */
XCharStruct min_bounds; /* minimum bounds over all */

/* existing char */
XCharStruct max_bounds; /* maximum bounds over all */

/* existing char */
XCharStruct *per_char; /* first_char to last_char information */
int ascent; /* logical extent of largest character */

/* above baseline */
int descent; /* logical descent of largest character */

/* below baseline */
} XFontStruct;

The direction member is specified by one of the following constants from <X11/
X.h>:

FontLeftToRight FontRightToLeft FontChange

Appendix B: Data Types

1166 Motif Reference Manual

XImage
Describes an area of the screen. This structure (defined in <X11/Xlib.h>) is used
by XmInstallImage () and XmUninstallImage ().

typedef struct _XImage {
int width, height; /* size of image in pixels */
int xoffset; /* number of pixels offset in X direction
*/
int format; /* XYBitmap, XYPixmap, ZPixmap*/
char *data; /* pointer to image data */
int byte_order; /* data byte order: LSBFirst, MSBFirst
*/
int bitmap_unit; /* quant. of scan line 8, 16, 32 */
int bitmap_bit_order; /* LSBFirst, MSBFirst */
int bitmap_pad; /* 8, 16, 32 */
int depth; /* depth of image */
int bytes_per_line; /* accelerator to next line */
int bits_per_pixel; /* bits per pixel (ZPixmap only) */
unsigned long red_mask; /* bits in z arrangement */
unsigned long green_mask;
unsigned long blue_mask;
char *obdata; /* hook for object routines to hang on
*/
struct funcs { /* image manipulation routines
*/

struct _XImage *(*create_image)(void);
int (*destroy_image)(struct XImage *);
unsigned long (*get_pixel)(struct XImage *, int, int);
int (*put_pixel)(struct XImage *, int, int, unsigned int,

unsigned int);
struct _XImage *(*sub_image)(struct XImage *, int, int, unsigned

int, unsigned int);
int (*add_pixel)(struct XImage *, long);

} f;
} XImage;

The format member is specified by one of the following constants defined in
<X11/X.h>:

XYBitmap /* depth 1, XYFormat */
XYPixmap /* pixmap viewed as stack of planes; depth == drawable depth
*/
ZPixmap /* pixels in scan-line order; depth == drawable depth */

Appendix B: Data Types

Motif Reference Manual 1167

byte_order and bitmap_bit_order are specified by either LSBFirst or MSBFirst,
which are defined in <X11/X.h>.

XRectangle
Specifies a rectangle. This structure (defined in <X11/Xlib.h>) is used by the
Motif string drawing routines and XmGetDisplayRect ().

typedef struct {
short x, y;
unsigned short width, height;

} XRectangle;

XmAllocColorProc
The prototype for the per-screen color allocation procedure which is specified
through the XmScreen resource XmNcolorAllocationProc. It is defined as fol-
lows in <Xm/Screen.h>:

typedef void (*XmAllocColorProc)(Display *display;

/* connection to the X server */
Colormap colormap;
/* Colormap in which to allocate color */
XColor *color)
/* color to allocate */

An XmAllocColorProc takes three arguments. The first display argument is the
connection to the X server. The second argument is the Colormap in which to
allocate the required color. The third color argument is where the required color
is specified and returned.

XmAnyCallbackStruct
The generic Motif callback structure. It is defined as follows in <Xm/Xm.h>:

typedef struct {
int reason; /* the reason that the callback was called */
XEvent *event; /* event structure that triggered callback */

} XmAnyCallbackStruct;

XmArrowButtonCallbackStruct
The callback structure passed to ArrowButton callback routines. It is defined as
follows in <Xm/Xm.h>:

typedef struct {
int reason; /* the reason that the callback was called */
XEvent *event; /* event structure that triggered callback */
int click_count; /* number of clicks in multi-click sequence */

} XmArrowButtonCallbackStruct;

Appendix B: Data Types

1168 Motif Reference Manual

XmButtonType
An enumerated type that specifies the type of button used in a simple menu crea-
tion routine. The valid values for the type are:

XmPUSHBUTTON XmTOGGLEBUTTON
XmRADIOBUTTON XmCHECKBUTTON
XmCASCADEBUTTON XmTITLE
XmSEPARATOR XmDOUBLE_SEPARATOR

XmButtonTypeTable
A pointer to a list of XmButtonType values.

XmClipboardPendingList
A structure used in calls to XmClipboardInquirePendingItems () to
specify a data_id/private_id pair. It is defined as follows in <Xm/CutPaste.h>:

typedef struct {
long DataId;
long PrivateId;

} XmClipboardPendingRec, *XmClipboardPendingList;

XmColorProc
The prototype for the color calculation procedure used by XmGetColorCal-
culation () and XmSetColorCalculation (). It is defined as follows in
<Xm/Xm.h>:

typedef void (*XmColorProc)(

XColor *bg_color, /* specifies the background color
*/

XColor *fg_color, /* returns the foreground color
*/

XColor *sel_color, /* returns the select color
*/

XColor *ts_color, /* returns the top shadow color
*/

XColor *bs_color) /* returns the bottom shadow color
*/

An XmColorProc takes five arguments. The first argument, bg_color, is a pointer
to an XColor structure that specifies the background color. The red, green, blue,
and pixel fields in the structure contain valid values. The rest of the arguments are
pointers to XColor structures for the colors that are to be calculated. The proce-
dure fills in the red, green, and blue fields in these structures.

Appendix B: Data Types

Motif Reference Manual 1169

XmComboBoxCallbackStruct
The callback structure passed to ComboBox callback routines. It is defined as
follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that the callback was called */
XEvent *event; /* event that triggered callback */
XmString item_or_text; /* the selected item */
int item_position; /* the index of the item in the list */

} XmComboBoxCallbackStruct;

XmCommandCallbackStruct
The callback structure passed to Command widget callback routines. It is defined
as follows in <Xm/Xm.h>:

typedef struct {
int reason; /* the reason that the callback was called */
XEvent *event; /* event structure that triggered callback */
XmString value; /* the string contained in the command area */
int length; /* the size of this string */

} XmCommandCallbackStruct;

XmContainerOutlineCallbackStruct
The callback structure passed to Container Outline callback routines. It is defined
as follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called */
XEvent *event; /* event that triggered callback */
Widget item; /* container item associated */

/* with event */
unsigned char new_outline_state; /* the requested state */

} XmContainerOutlineCallbackStruct;

Appendix B: Data Types

1170 Motif Reference Manual

XmContainerSelectCallbackStruct
The callback structure passed to Container Select callback routines. It is defined
as follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called */
XEvent *event; /* event that triggered callback */
WidgetList selected_items; /* the list of selected items */
int selected_item_count; /* the number of selected items */
unsigned char auto_selection_type; /* type of selection event */

} XmContainerSelectCallbackStruct;

XmConvertCallbackStruct
The callback structure passed to the XmNconvertCallback routines of widgets
when they are asked to convert a selection. It is defined as follows in <Xm/Trans-
fer.h>:

typedef struct {
int reason; /* reason that callback is invoked */
XEvent *event; /* event that triggered callback */
Atom selection; /* requested conversion selection */
Atom target; /* the conversion target */
XtPointer source_data; /* selection source information */
XtPointer location_data; /* information on data to be transferred */
int flags; /* input status of the conversion */
XtPointer parm; /* parameter data for the target */
int parm_format; /* format of parameter data */
unsigned long parm_length; /* number of elements in parameter data */
Atom parm_type; /* the type of the parameter data */
int status; /* output status of the conversion */
XtPointer value; /* returned conversion data */
Atom type; /* type of conversion data returned */
int format; /* format of the conversion data */
unsigned long length; /* number of elements in conversion data */

} XmConvertCallbackStruct;

Appendix B: Data Types

Motif Reference Manual 1171

XmCutPasteProc
The prototype for the procedure that copies data passed by name to the clipboard.
XmClipboardStartCopy () specifies a procedure of this type. It is defined as
follows in <Xm/CutPaste.h>:

typedef void (*XmCutPasteProc) (Widget widget, long *data_id, long
*private_id, int *reason)

An XmCutPasteProc takes four arguments. The first argument, widget, is the
widget passed to the callback routine, which is the same widget as passed to
XmClipboardBeginCopy (). The data_id argument is the ID of the data item
that is returned by XmClipboardCopy () and private_id is the private data
passed to XmClipboardCopy (). The reason argument takes the value
XmCR_CLIPBOARD_DATA_REQUEST, which indicates that the data must be
copied to the clipboard, or XmCR_CLIPBOARD_DATA_DELETE, which indi-
cates that the client can delete the data from the clipboard. Although the last three
parameters are pointers, the values are read-only and changing them has no
effect.

XmDestinationCallbackStruct
The callback structure passed to the XmNdestinationCallback routines of widg-
ets when they are the destination of a data transfer. It is defined as follows in
<Xm/Transfer.h>:

typedef struct {
int reason; /* reason that callback is invoked */
XEvent *event; /* event that triggered callback */
Atom selection; /* requested selection type, as an Atom */
XtEnum operation; /* the type of transfer requested */
int flags; /* whether destination and source are same*/
XtPointer transfer_id; /* unique identifier for the request */
XtPointer destination_data; /* information about the destination */
XtPointer location_data; /* information about the data */
Time time; /* time when transfer operation started */

} XmDestinationCallbackStruct;

Appendix B: Data Types

1172 Motif Reference Manual

XmDirection
An enumerated type that specifies a direction, used either in laying out compo-
nents of a widget, or in rendering compound strings. The valid values for the type
are:

XmRIGHT_TO_LEFT_TOP_TO_BOTTOM
XmLEFT_TO_RIGHT_TOP_TO_BOTTOM
XmRIGHT_TO_LEFT_BOTTOM_TO_TOP
XmLEFT_TO_RIGHT_BOTTOM_TO_TOP
XmRIGHT_TO_LEFT
XmLEFT_TO_RIGHT
XmTOP_TO_BOTTOM_RIGHT_TO_LEFT
XmBOTTOM_TO_TOP_RIGHT_TO_LEFT
XmTOP_TO_BOTTOM_LEFT_TO_RIGHT
XmBOTTOM_TO_TOP_LEFT_TO_RIGHT
XmTOP_TO_BOTTOM
XmBOTTOM_TO_TOP
XmDEFAULT_DIRECTION

XmDisplayCallbackStruct
The callback structure passed to Display XmNnoFontCallback and XmNnoRen-
ditionCallback callback routines. It is defined as follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that the callback was called
*/
XEvent *event; /* event that triggered callback */
XmRendition rendition; /* rendition with a missing font */
char *font_name; /* font which is not loadable */
XmRenderTable render_table; /* render table with missing rendition
*/
XmString tag; /* tag of the missing rendition */

} XmDisplayCallbackStruct;

XmDragDropFininshCallbackStruct
The callback structure passed to the XmNdragDropFinishCallback of a Drag-
Context object. It is defined as follows in <Xm/DragC.h>:

typedef struct {
int reason; /* the reason the callback was called */
XEvent *event; /* event that triggered callback */
Time timeStamp; /* time at which operation completed */

} XmDragDropFinishCallbackStruct, *XmDragDropFinishCallback;

Appendix B: Data Types

Motif Reference Manual 1173

XmDragMotionCallbackStruct
The callback structure passed to the XmNdragMotionCallback of a DragContext
object. It is defined as follows in <Xm/DragC.h>:

typedef struct {
int reason; /* reason the callback was called */
XEvent *event; /* event that triggered callback */
Time timeStamp; /* timestamp of logical event */
unsigned char operation; /* current operation */
unsigned char operations; /* supported operations */
unsigned char dropSiteStatus; /* valid, invalid, or none */
Position x; /* x-coordinate of pointer */
Position y; /* y-coordinate of pointer */

} XmDragMotionCallbackStruct, *XmDragMotionCallback;

XmDragProcCallbackStruct
The callback structure passed to the XmNdragProc of a drop site. It is defined as
follows in <Xm/DropSMgr.h>:

typedef struct {
int reason; /* reason the callback was called */
XEvent *event; /* event that triggered callback */
Time timeStamp; /* timestamp of logical event */
Widget dragContext; /* DragContext widget associated */

/* with operation */
Position x; /* x-coordinate of pointer */
Position y; /* y-coordinate of pointer */
unsigned char dropSiteStatus; /* valid or invalid */
unsigned char operation; /* current operation */
unsigned char operations; /* supported operations */
Boolean animate; /* toolkit or receiver does animation */

} XmDragProcCallbackStruct, *XmDragProcCallback;

XmDrawingAreaCallbackStruct
The callback structure passed to DrawingArea callback routines. It is defined as
follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that the callback was called */
XEvent *event; /* event that triggered callback; */

/* for XmNresizeCallback, this is NULL */
Window window; /* the widget’s window */

} XmDrawingAreaCallbackStruct;

Appendix B: Data Types

1174 Motif Reference Manual

XmDrawnButtonCallbackStruct
The callback structure passed to DrawnButton callback routines. It is defined as
follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that the callback was called */
XEvent *event; /* event that triggered callback */
Window window; /* ID of window in which event occurred */
int click_count; /* number of multi-clicks */

} XmDrawnButtonCallbackStruct;

XmDropFinishCallbackStruct
The callback structure passed to the XmNdropFinishCallback of a DragContext
object. It is defined as follows in <Xm/DragC.h>:

typedef struct {
int reason; /* reason the callback was called */
XEvent *event; /* event that triggered callback */
Time timeStamp; /* time at which drop completed */
unsigned char operation; /* current operation */
unsigned char operations; /* supported operations */
unsigned char dropSiteStatus; /* valid, invalid, or none */
unsigned char dropAction; /* drop, cancel, help, or interrupt */
unsigned char completionStatus; /* success or failure */

} XmDropFinishCallbackStruct, *XmDropFinishCallback;

XmDropProcCallbackStruct
The callback structure passed to the XmNdropProc of a drop site. It is defined as
follows in <Xm/DropSMgr.h>:

typedef struct {
int reason; /* reason callback was called */
XEvent *event; /* event that triggered callback */
Time timeStamp; /* timestamp of logical event */
Widget dragContext; /* DragContext widget associated */

/* with operation */
Position x; /* x-coordinate of pointer */
Position y; /* y-coordinate of pointer */
unsigned char dropSiteStatus; /* valid or invalid */
unsigned char operation; /* current operation */
unsigned char operations; /* supported operations */
unsigned char dropAction; /* drop or help */

} XmDropProcCallbackStruct, *XmDropProcCallback;

Appendix B: Data Types

Motif Reference Manual 1175

XmDropSiteEnterCallbackStruct
The callback structure passed to the XmNdropSiteEnterCallback of a DragCon-
text object. It is defined as follows in <Xm/DragC.h>:

typedef struct {
int reason; /* reason the callback was called */
XEvent *event; /* event that triggered callback */
Time timeStamp; /* time of crossing event */
unsigned char operation; /* current operation */
unsigned char operations; /* supported operations */
unsigned char dropSiteStatus; /* valid, invalid, or none */
Position x; /* x-coordinate of pointer */
Position y; /* y-coordinate of pointer */

} XmDropSiteEnterCallbackStruct, *XmDropSiteEnterCallback;

XmDropSiteLeaveCallbackStruct
The callback structure passed to the XmNdropSiteLeaveCallback of a DragCon-
text object. It is defined as follows in <Xm/DragC.h>:

typedef struct {
int reason; /* reason callback was called */
XEvent *event; /* event that triggered callback */
Time timeStamp; /* time of crossing event */

} XmDropSiteLeaveCallbackStruct, *XmDropSiteLeaveCallback;

XmDropStartCallbackStruct
The callback structure passed to the XmNdropStartCallback of a DragContext
object. It is defined as follows in <Xm/DragC.h>:

typedef struct {
int reason; /* reason callback was called */
XEvent *event; /* event that triggered callback */
Time timeStamp; /* time at which drag completed */
unsigned char operation; /* current operation */
unsigned char operations; /* supported operations */
unsigned char dropSiteStatus; /* valid, invalid, or none */
unsigned char dropAction; /* drop, cancel, help, or interrupt */
Position x; /* x-coordinate of pointer */
Position y; /* y-coordinate of pointer */
Window window; /* internal: not documented */
Atom icchandle; /* internal: not documented */

} XmDropStartCallbackStruct, *XmDropStartCallback;

Appendix B: Data Types

1176 Motif Reference Manual

XmDropTransferEntryRec
A structure that specifies the targets of a drop operation for a Drop Transfer
object. It is defined as follows in <Xm/DropTrans.h>:

typedef struct {
XtPointer client_data; /* data passed to the transfer proc */
Atom target; /* target format of the transfer */

} XmDropTransferEntryRec, *XmDropTransferEntry;

XmDropTransferEntry
See XmDropTransferEntryRec.

XmFileSelectionBoxCallbackStruct
The callback structure passed to FileSelectionBox callback routines. It is defined
as follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called */
XEvent *event; /* event that triggered callback */
XmString value; /* current value of XmNdirSpec resource */
int length; /* number of bytes in value member */
XmString mask; /* current value of XmNdirMask resource */
int mask_length; /* number of bytes in mask member */
XmString dir; /* current base directory */
int dir_length; /* number of bytes in dir member */
XmString pattern; /* current search pattern */
int pattern_length; /* number of bytes in pattern member */

} XmFileSelectionBoxCallbackStruct;

XmFontContext
A typedef for a font list context that lets an application access the font list entries
and font list tags in a font list. This data type is an opaque structure returned by a
call to XmFontListInitFontContext (), and is used in subsequent calls to
XmFontListGetNextEntry (), XmFontListGetNextFont () and
XmFontListFreeFontContext ().

XmFontList
A font list contains entries that describe the fonts that are in use. In Motif 1.1,
each entry associates a font and a character set. In Motif 1.2, each entry consists
of a XmFontListEntry and an associated tag, where the XmFontListEntry speci-
fies a font or a font set. XmFontList is an opaque data type used in calls to font
list routines and string manipulation routines. When a Motif compound string is
displayed, the font list tag is used to match the string with a font or font set, so
that the compound string is displayed appropriately. The font list tag
XmFONTLIST_DEFAULT_TAG causes compound strings to be displayed using
the font for the current locale.

Appendix B: Data Types

Motif Reference Manual 1177

To specify a font list in a resource file, use the following syntax:

resource_spec: font_entry [, font_entry] ...

The value specification consists of at least one font list entry, with multiple
entries separated by commas. Each font_entry specifies a font or a font set and
an optional font list entry tag. Use the following syntax to specify a single font:

font_name [= font_list_entry_tag]

To specify the optional tag for a single font, separate the font_name and the
font_list_entry_tag by an equal sign (=). Use the following syntax to specify a
font set:

font_name [; font_name] ... : [font_list_entry_tag]

Separate multiple font_names with semicolons and end the specification with a
colon, followed by the optional tag. A font_name is an X Logical Font Descrip-
tion (XLFD) string. If a font_list_entry_tag is not specified for an entry,
XmFONTLIST_DEFAULT_TAG is used.

In Motif 2.0 and later, the XmFontList is considered obsolete, and is replaced by
the XmRenderTable. The XmFontList type is maintained for backwards compat-
ibility, and is implemented through a render table.

XmFontListEntry
In Motif 1.2, a font list entry is an element of an XmFontList that specifies a font
or a font set. Each XmFontListEntry is associated with a font list entry tag.
XmFontListEntry is an opaque type.

In Motif 2.0 and later, the XmFontList and XmFontListEntry are considered
obsolete, and are replaced by the XmRenderTable and XmRendition object
respectively. The XmFontList and XmFontListEntry types are maintained for
backwards compatibility, and are implemented directly through the render table
and rendition object.

XmFontType
An enumerated type that specifies the type of entry in a XmFontListEntry. It is
defined as follows in <Xm/Xm.h>:

typedef enum {
XmFONT_IS_FONT, /* specifies a font */
XmFONT_IS_FONTSET /* specifies a font set */

} XmFontType;

Appendix B: Data Types

1178 Motif Reference Manual

XmHighlightMode
An enumerated type that defines the kind of text highlighting that results from
calls to XmTextSetHighlight () and XmTextFieldSetHighlight (). It
is defined as follows in <Xm/Xm.h>:

typedef enum {
XmHIGHLIGHT_NORMAL, /* no highlighting */
XmHIGHLIGHT_SELECTED, /* highlight in reverse video */
XmHIGHLIGHT_SECONDARY_SELECTED
 /* highlight by underlining */
XmSEE_DETAIL /* unused except by abortive */

/* Motif 2.0 CSText widget */
} XmHighlightMode;

XmICCEncodingStyle
An enumerated type which specifies the way in which compound string tables are
converted to and from a text property. It is defined as follows in <Xm/Xm.h>:

typedef enum {
XmSTYLE_STRING = XStringStyle,
XmSTYLE_COMPOUND_TEXT = XCompoundTextStyle,
XmSTYLE_TEXT = XTextStyle,
XmSTYLE_STANDARD_ICC_TEXT = XStdICCTextStyle,
XmSTYLE_LOCALE = 32,
XmSTYLE_COMPOUND_STRING

} XmICCEncodingStyle;

XmIncludeStatus
A typedef for unsigned char that is used to define the way in which compound
strings are parsed when a ParseMapping object is applied to an input stream. Var-
iables of this type can have the following values:

XmINSERT /* concatenate XmNsubstitute value to output */
/* parsing is continued */

XmINVOKE /* result determined by XmNinvokeParseProc */
XmTERMINATE /* concatenate XmNsubstitute value to output */

/* parsing is terminated */

XmKeySymTable
A pointer to a list of KeySyms.

Appendix B: Data Types

Motif Reference Manual 1179

XmListCallbackStruct
The callback structure passed to List widget callback routines. It is defined as fol-
lows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called */
XEvent *event; /* event that triggered callback */
XmString item; /* item most recently selected at */

/* the time event occurred */
int item_length; /* number of bytes in item member*/
int item_position; /* item position in XmNitems array*/
XmString *selected_items; /* list of items selected at the */

/* time event occurred */
int selected_item_count; /* number of items in */

/* selected_items */
int *selected_item_positions; /* array of integers marking */

/* selected items */
char selection_type; /* type of the most recent */

/* selection */
char auto_selection_type; /* 2.0 or later: automatic */

/* selection type */
} XmListCallbackStruct;

The structure members event, item, item_length, and item_position are valid for
any value of reason. The structure members selected_items, selected_item_count,
and selected_item_ positions are valid when the reason field has a value of
XmCR_MULTIPLE_SELECT or XmCR_EXTENDED_SELECT. The structure
member selection_type is valid only when the reason field is
XmCR_EXTENDED_SELECT.

For the strings pointed to by item and selected_items, as well as for the integers
pointed to by selected_item_positions, storage is overwritten each time the call-
back is invoked. Applications that need to save this data should make their own
copies of it.

selected_item_positions is an integer array. The elements of the array indicate the
positions of each selected item within the List widget’s XmNitems array.

selection_type specifies what kind of extended selection was most recently made.
One of three values is possible, defined in <Xm/List.h>:

XmINITIAL /* selection was the initial selection */
XmMODIFICATION /* selection changed an existing selection */
XmADDITION /* selection added non-adjacent items to an */

/* existing selection */

Appendix B: Data Types

1180 Motif Reference Manual

auto_selection_type specifies at what point within the selection the user is. Possi-
ble values, defined in <Xm/Xm.h>:

XmAUTO_UNSET XmAUTO_BEGIN
XmAUTO_MOTION XmAUTO_CANCEL
XmAUTO_NO_CHANGE XmAUTO_CHANGE

XmMergeMode
An enumerated type that specifies the way in which renditions are merged into a
render table. The valid values for the type are:

XmSKIP XmMERGE_REPLACE
XmMERGE_OLD XmMERGE_NEW
XmDUPLICATE

XmDUPLICATE is an internal value used in mapping XmFontList and
XmFontListEntry types to the render table types of Motif 2.0 and later.

XmNavigationType
An enumerated type that specifies the type of keyboard navigation associated
with a widget. The valid values for the type are:

XmNONE XmTAB_GROUP
XmSTICKY_TAB_GROUP XmEXCLUSIVE_TAB_GROUP

XmNotebookCallbackStruct
The callback structure passed to Notebook selection callback routines. It is
defined as follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called */
XEvent *event; /* points to event structure */

/* that triggered callback */
int page_number; /* current logical page number */
Widget page_widget; /* widget associated with */

/* current logical page number */
int prev_page_number; /* previous logical page number */
Widget prev_page_widget; /* widget associated with */

/* previous logical page number */
} XmNotebookCallbackStruct;

Appendix B: Data Types

Motif Reference Manual 1181

XmNotebookPageInfo
Specifies a structure passed to the function XmNotebookGetPageInfo () in
order to retrieve information about a Notebook page. It is defined as follows in
<Xm/Notebook.h>:

typedef struct {
int page_number; /* logical page number */
Widget page_widget; /* widget ID of a page child */
Widget status_area_widget; /* widget ID of a status area child */
Widget major_tab_widget; /* widget ID of a major tab child */
Widget minor_tab_widget; /* widget ID of a minor tab child */

} XmNotebookPageInfo;

XmOffset
A long integer that represents the units used in calculating the offsets into a
widget’s instance data. The type is used internally to Motif. See also XmOff-
setPtr.

XmOffsetModel
An enumerated type that specifies whether tabs are calculated at absolute offsets,
or relative to the previous tab. The valid values for the type are:

XmABSOLUTE XmRELATIVE

XmOffsetPtr
A pointer to an XmOffset value, which is returned by a calls to XmRe-
solveAllPartOffsets () and XmResolvePartOffsets ().

XmOperationChangedCallbackStruct
The callback structure passed to the XmNoperationChangedCallback of a Drag-
Context object. It is defined as follows in <Xm/DragC.h>:

typedef struct {
int reason; /* reason callback was called */
XEvent *event; /* event that triggered callback */
Time timeStamp; /* timestamp of logical event */
unsigned char operation; /* current operation */
unsigned char operations; /* supported operations */
unsigned char dropSiteStatus; /* valid, invalid, or none */

} XmOperationChangedCallbackStruct, *XmOperationChangedCallback;

XmParseMapping
A typedef for a parse mapping object that lets an application control the way in
which an input stream of bytes is converted into the components or segments
within a compound string. This data type is an opaque structure returned by a call
to XmParseMappingCreate (), and is placed into an XmParseTable and used
in subsequent calls to the string manipulation routines: XmStringParse-

Appendix B: Data Types

1182 Motif Reference Manual

Text (), XmStringTableParseStringArray (), and XmStringTable-
Unparse (), and XmStringUnparse ().

XmParseModel
An enumerated type which specifies how non-text components of a compound
string are unparsed. It is defined as follows in <Xm/Xm.h>:

typedef enum {
XmOUTPUT_ALL,
XmOUTPUT_BETWEEN,
XmOUTPUT_BEGINNING,
XmOUTPUT_END,
XmOUTPUT_BOTH

} XmParseModel;

This data type is used in calls to the following compound string routines:
XmStringTableUnparse (), and XmStringUnparse ().

XmParseProc
A procedure within an XmParseMapping object for controlling the way in which
an input stream is parsed into a compound string. It is defined as follows in <Xm/
Xm.h>:

typedef XmIncludeStatus (*XmParseProc) (XtPointer *in_out,
XtPointer text_end,
XmTextType type,
XmStringTag locale_tag,
XmParseMapping entry,
int pattern_length,
XmString *str_include,
XtPointer call_data);

XmParseTable
A typedef for an array of parse mapping objects, used for parsing an input stream
into a compound strings.

typedef XmParseMapping *XmParseTable;

XmPushButtonCallbackStruct
The callback structure passed to PushButton callback routines. It is defined as
follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called */
XEvent *event; /* event that triggered callback */
int click_count; /* number of multi-clicks */

} XmPushButtonCallbackStruct;

Appendix B: Data Types

Motif Reference Manual 1183

XmPopupHandlerCallbackStruct
The callback structure passed to Popup Handler callback routines. It is defined as
follows in <Xm/Xm.h>:

typedef struct {
int reason; /* the reason the callback is invoked */
XEvent *event; /* event that triggered callback */
Widget menuToPost; /* the menu to post */
Boolean postIt; /* whether to continue posting */
Widget target; /* manager descendant issuing request */

} XmPopupHandlerCallbackStruct;

XmPrintShellCallbackStruct
The callback structure passed to PrintShell callback routines. It is defined as fol-
lows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that the callback is invoked */
XEvent *event; /* event that triggered the callback */
XPContext context; /* X Print Context */
Boolean last_page; /* whether this is the last page */
XtPointer detail; /* PDM selection */

} XmPrintShellCallbackStruct;

XmQualifyProc
The prototype for the qualification procedure that produces a qualified directory
mask, base directory, and search pattern for the directory and file search proce-
dures in a FileSelectionBox. The XmNqualifySearchDataProc resource specifies
a procedure of this type, which is defined as follows in <Xm/FileSB.h>:

typedef void (*XmQualifyProc) (Widget widget, XtPointer input_data, XtPointer
output_data)

An XmQualifyProc takes three arguments. The first argument, widget, is the
FileSelectionBox widget. The input_data argument is a pointer to an XmFileSe-
lectionBoxCallbackStruct that contains input data to be qualified. The
output_data argument is a pointer to an XmFileSelectionBoxCallbackStruct that
is to be filled in by the qualification procedure.

XmRendition
An opaque data structure, implemented as a pseudo-widget, which encapsulates
the resources required to render a compound string. This data type is returned by
a call to XmRenditionCreate (), and is used in subsequent calls to the follow-
ing routines: XmRenderTableAddRenditions (), XmRenditionFree (),
XmRenditionRetrieve (), XmRenditionUpdate ().

Appendix B: Data Types

1184 Motif Reference Manual

XmRenderTable
An opaque data structure, representing a list of XmRendition objects, used to
render compound strings. Typically used as the XmNrenderTable resource of a
widget, the type us used in calls to the following routines: XmRenderTable-
Copy(), XmRenderTableFree (), XmRenderTableGetRendition (),
XmRenderTableGetRenditions (), XmRenderTableGetTags (),
XmRenderTableRemoveRenditions ().

XmRepTypeEntry
A pointer to a representation type entry structure which contains information
about the value names and values for an enumerated type. The Motif representa-
tion type manager routines use values of this type, which is defined as follows in
<Xm/RepType.h>:

typedef struct {
String rep_type_name; /* name of representation type */
String *value_names; /* array of value names */
unsigned char *values; /* array of numeric values */
unsigned char num_values; /* number of values */
Boolean reverse_installed; /* reverse converter installed flag */
XmRepTypeId rep_type_id; /* representation type ID */

} XmRepTypeEntryRec, *XmRepTypeEntry, XmRepTypeListRec,
*XmRepTypeList;

XmRepTypeId
An unsigned short that specifies the identification number of a representation
type registered with the representation type manager. The representation type
manager routines use values of this type.

XmRepTypeList
See XmRepTypeEntry.

XmRowColumnCallbackStruct
The callback structure passed to RowColumn callback routines. It is only used by
map and unmap callbacks, and is defined as follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called */
XEvent *event; /* event that triggered callback */
Widget widget; /* ID of activated RowColumn item */
char *data; /* value of application’s client data */
char *callbackstruct; /* created when item is activated */

} XmRowColumnCallbackStruct;

widget, data, and callbackstruct are set to NULL.

Appendix B: Data Types

Motif Reference Manual 1185

XmScaleCallbackStruct
The callback structure passed to Scale widget callback routines. It is defined as
follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called */
XEvent *event; /* event that triggered callback */
int value; /* new value of the slider */

} XmScaleCallbackStruct;

XmScreenColorProc
The prototype for the per-screen color calculation procedure which is specified
through the XmScreen resource XmNcolorCalculationProc. It is defined as fol-
lows in <Xm/Screen.h>:

typedef void (*XmScreenColorProc)(

Screen *screen, /* screen of top-level window */
XColor *bg_color, /* specifies the background color */
XColor *fg_color, /* returns the foreground color */
XColor *sel_color, /* returns the select color */
XColor *ts_color, /* returns the top shadow color */
XColor *bs_color) /* returns the bottom shadow color */

An XmScreenColorProc takes six arguments. The first argument is a pointer to a
screen object. The second argument, bg_color, is a pointer to an XColor structure
that specifies the background color. The red, green, blue, and pixel fields in the
structure contain valid values. The rest of the arguments are pointers to XColor
structures for the colors that are to be calculated. The procedure fills in the red,
green, and blue fields in these structures.

XmScrollBarCallbackStruct
The callback structure passed to ScrollBar callback routines. It is defined as fol-
lows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called */
XEvent *event; /* event that triggered callback */
int value; /* value of the slider’s new location */
int pixel; /* coordinate where selection occurred */

} XmScrollBarCallbackStruct;

Appendix B: Data Types

1186 Motif Reference Manual

XmSearchProc
The prototype for a search procedure that searches the directories or files in a
FileSelectionBox. The XmNdirSearchProc and XmNfileSearchProc resources
specify procedures of this type, which is defined as follows in <Xm/FileSB.h>:

typedef void (*XmSearchProc) (Widget widget, XtPointer search_data)

An XmSearchProc takes two arguments. The first argument, widget, is the
FileSelectionBox widget. The search_data argument is a pointer to an XmFileSe-
lectionBoxCallbackStruct that contains the information for performing a search.

XmSecondaryResourceData
A structure that specifies information about secondary resources associated with
a widget class. XmGetSecondaryResourceData () returns an array of these
values. The type is defined as follows in <Xm/Xm.h>:

typedef struct {
XmResourceBaseProc base_proc;
XtPointer client_data;
String name;
String res_class;
XtResourceList resources;
Cardinal num_resources;

} XmSecondaryResourceDataRec, *XmSecondaryResourceData;

XmSelectionBoxCallbackStruct
The callback structure passed to SelectionBox callback routines. It is defined as
follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called */
XEvent *event; /* event that triggered callback */
XmString value; /* selection string that was either chosen */

/* from the SelectionBox list or typed in */
int length; /* number of bytes of value */

} XmSelectionBoxCallbackStruct;

XmSelectionCallbackStruct
The callback structure passed to routines which are responsible for data transfer
from the primary selection. The function XmTransferValue () takes as its
third parameter a procedure which is responsible for inserting data into the desti-

Appendix B: Data Types

Motif Reference Manual 1187

nation. The procedure receives a pointer to an XmSelectionCallbackStruct as
callback data when invoked. It is defined as follows in <Xm/Transfer.h>:

typedef struct {
int reason; /* reason the callback was invoked */
XEvent *event; /* event which triggered callback */
Atom selection; /* selection that has been converted *
Atom target; /* target for which conversion requested */
Atom type; /* type of the selection value */
XtPointer transfer_id; /* unique identifier for transfer operation */
int flags; /* unused: pass constant */

/* XmSELECTION_DEFAULT */
int remaining; /* number of transfers remaining in */

/* operation */
XtPointer value; /* the data transferred in this request */
unsigned long length; /* the number of elements in the value */
int format; /* size of each element in the value */

} XmSelectionCallbackStruct;

XmSpinBoxCallbackStruct
The callback structure passed to SpinBox callback routines. It is defined as fol-
lows in <Xm/Xm.h>:

typedef struct {
int reason; /* the reason that the callback was called */
XEvent *event; /* points to event that triggered callback */
Widget widget; /* the textual child affected by callback */
Boolean doit; /* whether to perform the changes */
int position; /* specifies the index of the next value */
XmString value; /* specifies the next value */
Boolean crossed_boundary; /* whether the SpinBox has wrapped
*/

} XmSpinBoxCallbackStruct;

XmString
The data type for Motif compound strings. In Motif 1.2, a compound string is
composed of one or more segments, where each segment can contain a font list
element tag, a string direction, and a text component. The font list element tag
XmFONTLIST_DEFAULT_TAG specifies a text segment encoded in the current
locale. In Motif 1.1, compound strings use character set identifiers rather than
font list element tags. The character set identifier for a compound string can have
the value XmSTRING_DEFAULT_CHARSET, which takes the character set
from the current language environment, but this value may be removed from
future versions of Motif.

Appendix B: Data Types

1188 Motif Reference Manual

XmStringCharSet
A typedef for char * that is used to define the character set of a compound string
in Motif 1.1. Variables of this type can have the following values, among others:

XmSTRING_ISO8859_1
XmSTRING_OS_CHARSET
XmSTRING_DEFAULT_CHARSET

XmSTRING_DEFAULT_CHARSET specifies the character set from the current
language environment, but this value may be removed from future versions of
Motif.

XmStringCharSetTable
A pointer to a list of XmStringCharSets.

XmStringComponentType
An unsigned char value that specifies the type of component in a compound
string segment. Values of this type are returned by calls to XmStringGet-
NextComponent () and XmStringPeekNextComponent (). The valid val-
ues for the type are:

XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
/* font list element tag component */
/* obsolete in Motif 2.0 */

XmSTRING_COMPONENT_CHARSET
/* character set identifier component; */
/* obsolete in Motif 1.2 */

XmSTRING_COMPONENT_TEXT /* text component */
XmSTRING_COMPONENT_LOCALE_TEXT
 /* locale-encoded text component */
XmSTRING_COMPONENT_DIRECTION
 /* direction component */
XmSTRING_COMPONENT_SEPARATOR
 /* separator component */
XmSTRING_COMPONENT_END /* last component in string */
XmSTRING_COMPONENT_UNKNOWN
 /* unknown component */
XmSTRING_COMPONENT_LOCALE
 /* the locale specifier */
XmSTRING_COMPONENT_WIDECHAR_TEXT
 /* widechar text component */
XmSTRING_COMPONENT_LAYOUT_PUSH
 /* stacked layout direction */
XmSTRING_COMPONENT_LAYOUT_POP
 /* unstacked layout component */

Appendix B: Data Types

Motif Reference Manual 1189

XmSTRING_COMPONENT_RENDITION_BEGIN
 /* beginning of rendition */
XmSTRING_COMPONENT_RENDITION_END
 /* end of rendition */
XmSTRING_COMPONENT_TAG /* charset/font list tag component */
XmSTRING_COMPONENT_TAB /* tab component */

XmStringContext
A typedef for a string context that lets an application access the components or
segments within a compound string. This data type is an opaque structure
returned by a call to XmStringInitContext (), and is used in subsequent
calls to the four other string context routines: XmStringFreeContext (),
XmStringGetNextSegment (), XmStringGetNextComponent (), and
XmStringPeekNextComponent ().

XmStringDirection
An unsigned char used for determining the direction in which a compound string
is displayed. The type is used in calls to XmStringDirectionCreate () and
XmStringSegmentCreate (). The valid values for the type are:

XmSTRING_DIRECTION_L_TO_R
XmSTRING_DIRECTION_R_TO_L
XmSTRING_DIRECTION_DEFAULT

XmStringTable
An opaque typedef for XmString * that is used for arrays of compound strings.

XmStringTag
A typedef for char * that is used to specify the tag which identifies components or
segments within a compound string. This data type is used in calls to the follow-
ing compound string routines: XmRenderTableCopy (), XmRenderTa-
bleGetRendition (), XmRenderTableGetRenditions (),
XmRenderTableGetTags (), XmRenderTableRemoveRenditions (),
XmRenditionCreate (), XmRenditionRetrieve (), XmStringGener-
ate (), XmStringParseText (), XmStringPutRendition (),
XmStringTableParseStringArray (), XmStringTableUnparse (),
and XmStringUnparse ().

XmTab
Specifies a tab stop, which is used to lay out compound strings within a columns.
This data type is an opaque structure returned by a call to XmTabCreate (), and
is used in calls to the following tab routines: XmTabGetValues (), XmTab-
Free (), XmTabListInsertTabs ()

Appendix B: Data Types

1190 Motif Reference Manual

XmTabList
Specifies a list of tab stops, which are used to lay out compound strings within a
columns. This data type is an opaque structure returned by a call to XmTabLis-
tInsertTabs (), and is used in calls to the following tab routines: XmTab-
ListReplacePositions (), XmTabListRemoveTabs (),
XmTabListGetTab (), XmTabListTabCount (), XmTabListCopy (),
XmTabListFree (), and XmTabListInsertTabs ().

XmTextBlockRec
A structure that specifies information about a block of text in a Text or TextField
widget. The text field in an XmTextVerifyCallbackStruct points to a structure of
this type, which is defined as follows in <Xm/Xm.h>:

typedef struct {
char *ptr; /* pointer to the text to insert */
int length; /* length of this text */
XmTextFormat format; /* text format (e.g., FMT8BIT, FMT16BIT) */

} XmTextBlockRec, *XmTextBlock;

XmTextBlockRecWcs
A structure that specifies information about a block of text in wide-character for-
mat in a Text or TextField widget. The text field in an XmTextVerifyCallback-
StructWcs points to a structure of this type, which is defined as follows in <Xm/
Xm.h>:

typedef struct {
wchar_t *wcsptr; /* pointer to text to insert */
int length; /* length of this text */

} XmTextBlockRecWcs, *XmTextBlockWcs;

XmTextDirection
An enumerated type that specifies the search direction in calls to XmTextFind-
String () and XmTextFindStringWcs (). It is defined as follows in <Xm/
Xm.h>:

typedef enum {
XmTEXT_FORWARD, /* search forward */
XmTEXT_BACKWARD /* search backward */

} XmTextDirection;

XmTextPosition
A long integer, used by Text and TextField routines for determining the position
of a character inside the text string.

XmTextSource
A pointer to an opaque structure that specifies a text source. The type is used in
calls to XmTextGetSource () and XmTextSetSource ().

Appendix B: Data Types

Motif Reference Manual 1191

XmTextType
An enumerated type which specifies the type of data contained within an input
stream. It is defined as follows in <Xm/Xm.h>:

typedef enum {
XmCHARSET_TEXT,
XmMULTIBYTE_TEXT,
XmWIDECHAR_TEXT,
XmNO_TEXT

} XmTextType;

This data type is used in calls to the following compound string routines:
XmParseMappingGetValues (), XmParseMappingSetValues (),
XmStringGenerate (), XmStringParseText (), XmStringTa-
bleParseStringArray (), XmStringTableUnparse (), and XmStrin-
gUnparse ().

XmTextVerifyCallbackStruct
The callback structure passed to the XmNlosingFocusCallback, XmNmodifyVer-
ifyCallback, and XmNmotionVerifyCallback callback routines of Text and Text-
Field widgets. It is defined as follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called */
XEvent *event; /* event that triggered callback */
Boolean doit; /* do the action (True) or undo it (False) */
long currInsert; /* the insert cursor’s current position */
long newInsert; /* desired new position of insert cursor */
long startPos; /* start of text to change */
long endPos; /* end of text to change */
XmTextBlock text; /* describes the text to insert */

} XmTextVerifyCallbackStruct, *XmTextVerifyPtr;

start_pos specifies the location at which to start modifying text. start_pos is
unused if the callback resource is XmNmotionVerifyCallback, and is the same as
the current_insert member if the callback resource is XmNlosingFocusCallback.

end_pos specifies the location at which to stop modifying text (however, if no
text was modified, end_pos has the same value as start_pos). end_pos is unused if
the callback resource is XmNmotionVerifyCallback, and is the same as the
current_insert member if the callback resource is XmNlosingFocusCallback.

Appendix B: Data Types

1192 Motif Reference Manual

XmTextVerifyCallbackStructWcs
The callback structure passed to the XmNmodifyVerifyCallbackWcs of Text and
TextField widgets. It is defined as follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called */
XEvent *event; /* event that triggered callback */
Boolean doit; /* do the action (True) or undo it (False)*/
long currInsert; /* the insert cursor’s current position */
long newInsert; /* desired new position of insert cursor */
long startPos; /* start of text to change */
long endPos; /* end of text to change */
XmTextBlockWcs text; /* describes the text to insert */

} XmTextVerifyCallbackStructWcs, *XmTextVerifyPtrWcs;

All of the fields in this structure are the same as the fields in the XmTextVerify-
CallbackStruct except text, which points to a XmTextBlockRecWcs structure.

XmToggleButtonCallbackStruct
The callback structure passed to ToggleButton callback routines. It is defined as
follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called */
XEvent *event; /* event that triggered callback */
int set; /* selection state of the toggle */

} XmToggleButtonCallbackStruct;

XmToggleButtonState
An enumerated type that specifies the state of a ToggleButton. The valid values
for the type are:

XmUNSET XmSET XmINDETERMINATE

Appendix B: Data Types

Motif Reference Manual 1193

XmTopLevelEnterCallbackStruct
The callback structure passed to the XmNtopLevelEnterCallback of a DragCon-
text object. It is defined as follows in <Xm/DragC.h>:

typedef struct {
int reason; /* reason callback was called */
XEvent *event; /* event that triggered callback */
Time timestamp; /* timestamp of logical event */
Screen screen; /* screen of top-level window */
Window window; /* window being entered */
Position x; /* x-coordinate of pointer */
Position y; /* y-coordinate of pointer */
unsigned char dragProtocolStyle; /* drag protocol of initiator */
Atom iccHandle; /* internal: not documented */

} XmTopLevelEnterCallbackStruct, *XmTopLevelEnterCallback;

XmTopLevelLeaveCallbackStruct
The callback structure passed to the XmNtopLevelLeaveCallback of a DragCon-
text object. It is defined as follows in <Xm/DragC.h>:

typedef struct {
int reason; /* reason callback was called */
XEvent *event; /* event that triggered callback */
Time timestamp; /* timestamp of logical event */
Screen screen; /* screen of top-level window */
Window window; /* window being left */

} XmTopLevelLeaveCallbackStruct, *XmTopLevelLeaveCallback;

Appendix B: Data Types

1194 Motif Reference Manual

XmTransferStatus
An enumerated type that specifies the status of a data transfer operation. The
value is passed as a parameter to XmTransferDone () in order to terminate cur-
rent data transfer. The valid values for the type are:

XmTRANSFER_DONE_SUCCEED
 XmTRANSFER_DONE_CONTINUE
XmTRANSFER_DONE_FAIL
XmTRANSFER_DONE_DEFAULT

XmTraversalDirection
An enumerated type that specifies direction of traversal in a XmTraverseOb-
scuredCallbackStruct. It is defined as follows in <Xm/Xm.h>:

typedef enum {
XmTRAVERSE_CURRENT,
XmTRAVERSE_NEXT,
XmTRAVERSE_PREV,
XmTRAVERSE_HOME,
XmTRAVERSE_NEXT_TAB_GROUP,
XmTRAVERSE_PREV_TAB_GROUP,
XmTRAVERSE_UP,
XmTRAVERSE_DOWN,
XmTRAVERSE_LEFT,
XmTRAVERSE_RIGHT
XmTRAVERSE_GLOBALLY_FORWARD /* 2.0 */,
XmTRAVERSE_GLOBALLY_BACKWARD /* 2.0 */

} XmTraversalDirection;

XmTraverseObscureCallbackStruct
The callback structure passed to the XmNtraverseObscuredCallback of a
ScrolledWindow widget. It is defined as follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason the callback was called */
XEvent *event; /* event that triggered callback */
Widget traversal_destination;

 /* widget or gadget to traverse to */
XmTraversalDirection direction; /* direction of traversal */

} XmTraverseObscuredCallbackStruct;

Appendix B: Data Types

Motif Reference Manual 1195

XmVisibility
An enumerated type that specifies the visibility state of a widget. A value of type
XmVisibility is returned by XmGetVisibility (). It is defined as follows in
<Xm/Xm.h>:

typedef enum {
XmVISIBILITY_UNOBSCURED, /* completely visible */
XmVISIBILITY_PARTIALLY_OBSCURED, /* partially visible */
XmVISIBILITY_FULLY_OBSCURED /* not visible */

} XmVisibility;

XrmValue
A structure defined in <X11/Xresource.h>, used in XtConvert () and other
resource conversion routines:

typedef struct {
unsigned int size;
XPointer addr;

} XrmValue, *XrmValuePtr;

XrmValuePtr
See XrmValue.

XtAccelerators
A pointer to an opaque internal type, a compiled accelerator table. A pointer to an
XtAccelerators structure is returned by a call to XtParseAcceleratorTa-
ble (). Usually, the compiled accelerator table is produced automatically by
resource conversion of a string accelerator table stored in a resource file.

XtCallbackList
A structure defined as follows in <X11/Intrinsic.h>:

typedef struct _XtCallbackRec {
XtCallbackProc callback;
XtPointer closure;

} XtCallbackRec, *XtCallbackList;

Applications which use XtAddCallback () or XtRemoveCallback () do not
need to use the XtCallbackList type. It can, however, be used to set a callback
resource by passing the structure to XtCreateWidget () or XtSetValues ().
Any structure so defined should be declared static. In most documentation, the
closure member is referred to as client_data.

Appendix B: Data Types

1196 Motif Reference Manual

XtCallbackProc
The prototype for callback functions. It is defined as follows in <X11/Intrin-
sic.h>:

typedef void (*XtCallbackProc) (Widget widget, XtPointer client_data,
XtPointer call_data)

XtConvertSelectionIncrProc
The prototype for an incremental selection conversion procedure. The XmNcon-
vertProc for a DragContext object is of this type, which is defined as follows in
<X11/Intrinsic.h>:

typedef Boolean (*XtConvertSelectionIncrProc)(

Widget widget,
Atom *selection,
Atom *target,
Atom *type_return,
XtPointer *value_return,
unsigned long *length_return,
int *format_return,
unsigned long *max_length,
XtPointer client_data,
XtRequestId *request_id)

XtCreatePopupChildProc
The prototype for a procedure that pops up the child of a shell when the shell is
popped up. The XmNcreatePopupChildProc resource of Shell specifies a proce-
dure of this type, which is defined as follows in <X11/Intrinsic.h>:

typedef void (*XtCreatePopupChildProc) (Widget shell)

XtKeyProc
The prototype for a keycode-to-keysym translation procedure. XmTrans-
lateKey () is the default XtKeyProc for Motif applications. The prototype is
defined as follows in <X11/Intrinsic.h>:

typedef void (*XtKeyProc)(Display *display,
KeyCode keycode,
Modifiers modifiers,
Modifiers *modifiers_return,
KeySym *keysym_return)

Appendix B: Data Types

Motif Reference Manual 1197

XtOrderProc
The prototype for a procedure that allows composite widgets to order their chil-
dren. The XmNinsertPosition resource of Composite specifies a procedure of this
type, which is defined as follows in <X11/Composite.h>:

typedef Cardinal (*XtOrderProc) (Widget child)

XtPointer
A datum large enough to contain the largest of a char*, int*, function pointer,
structure pointer, or long value. A pointer to any type or function, or a long, may
be converted to an XtPointer and back again and the result will compare equally
to the original value. In ANSI-C environments, it is expected that XtPointer will
be defined as void *.

XtSelectionCallbackProc
The prototype for a selection callback procedure. The XmNtransferProc for a
DropTransfer object is of this type, and is defined as follows in <X11/Intrin-
sic.h>:

typedef void (*XtSelectionCallbackProc)(Widget widget,
XtPointer client_data,
Atom *selection,
Atom *type,
XtPointer value,
unsigned long *length,
int *format0

XtTranslations
A pointer to an opaque internal type, a compiled translation table. A pointer to an
XtTranslations structure is returned by a call to XtParseTranslationTa-
ble (). Usually, the compiled translation table is produced automatically by
resource conversion of a string translation table stored in a resource file.

Appendix B: Data Types

1198 Motif Reference Manual

Motif Reference Manual 1199

Appendix C - Table of Motif Resources

This appendix lists all of the resources for the widget classes provided by the Motif
toolkit and the X Toolkit Intrinsics. The table lists the appropriate data types for
specifying each resource with both Motif and UIL. For resources that cannot be
specified in UIL, the table entry indicates that the resource is not applicable (NA). The
table also specifies the widget classes that define each resource. If a widget class has a
corresponding gadget class, the table lists only the widget class as defining resources,
even though the resources pertain to both the widget and gadget classes. For more
information on each resource, see the appropriate reference pages in Section 2, Motif
and Xt Widget Classes.

Resource Name Motif Type UIL Type Defined in Class

XmNacceleratorText XmString compound_string XmLabel

XmNaccelerators XtAccelerators translation_table Core

XmNactivateCallback XtCallbackList procedure XmArrowButton
XmCascadeButton
XmDrawnButton
XmPushButton
XmText
XmTextField

XmNadjustLast Boolean boolean XmRowColumn

XmNadjustMargin Boolean boolean XmRowColumn

XmNalignment unsigned char integer XmIconGadget
XmLabel
XmTab

XmNallowOverlap Boolean boolean XmBulletinBoard

XmNallowResize Boolean boolean XmPanedWindow

XmNallowShellResize Boolean boolean Shell

XmNancestorSensitive Boolean boolean Core
XmRectObj

XmNanimationMask Pixmap NA XmDropSite

XmNanimationPixmap Pixmap NA XmDropSite

XmNanimationPixmapDepth int NA XmDropSite

XmNanimationStyle unsigned char NA XmDropSite

Appendix C: Table of Motif Resources

1200 Motif Reference Manual

XmNapplyCallback XtCallbackList procedure XmSelectionBox

XmNapplyLabelString XmString compound_string XmSelectionBox

XmNargc int NA ApplicationShell

XmNargv String * NA ApplicationShell

XmNarmCallback XtCallbackList procedure XmArrowButton
XmDrawnButton
XmPushButton
XmToggleButton

XmNarmColor Pixel color XmPushButton

XmNarmPixmap Pixmap pixmap XmPushButton

XmNarrowDirection unsigned char integer XmArrowButton

XmNarrowLayout unsigned char integer XmSpinBox

XmNarrowOrientation unsigned char integer XmSpinBox

XmNarrowSensitivity unsigned char integer XmSpinBox
XmSimpleSpinBox

XmNarrowSize int integer XmComboBox
XmSpinBox

XmNarrowSpacing int integer XmComboBox

XmNattachment unsigned char NA XmDragIcon

XmNaudibleWarning unsigned char integer VendorShell

XmNautoDragModel XtEnum integer XmScrolledWindow

XmNautoShowCursorPosition Boolean boolean XmText

XmNautoUnmanage Boolean boolean XmBulletinBoard

XmNautomaticSelection unsigned char integer XmContainer
XmList

XmNbackPageBackground Pixel color XmNotebook

XmNbackPageForeground Pixel color XmNotebook

XmNbackPageNumber int integer XmNotebook

XmNbackPagePlacement unsigned char integer XmNotebook

XmNbackPageSize Dimension integer XmNotebook

XmNbackground Pixel color Core XmGadget

Resource Name Motif Type UIL Type Defined in Class

Appendix C: Table of Motif Resources

Motif Reference Manual 1201

XmNbackgroundPixmap Pixmap pixmap Core
XmGadget

XmNbaseHeight int integer WMShell

XmNbaseWidth int integer WMShell

XmNbindingPixmap Pixmap pixmap XmNotebook

XmNbindingType unsigned char integer XmNotebook

XmNbindingWidth int integer XmNotebook

XmNbitmapConversionModel XtEnum NA XmScreen

XmNblendModel unsigned char NA XmDragContext

XmNblinkRate int integer XmText
XmTextField

XmNborderColor Pixel color Core

XmNborderPixmap Pixmap pixmap Core

XmNborderWidth Dimension integer Core
XmRectObj

XmNbottomAttachment unsigned char integer XmForm

XmNbottomOffset int integer XmForm

XmNbottomPosition int integer XmForm

XmNbottomShadowColor Pixel color XmGadget
XmManager
XmPrimitive

XmNbottomShadowPixmap Pixmap pixmap XmGadget
XmManager
XmPrimitive

XmNbottomWidget Widget widget_ref XmForm

XmNbrowseSelectionCallback XtCallbackList procedure XmList

XmNbuttonAcceleratorText XmStringTable NA XmRowColumn

XmNbuttonAccelerators StringTable NA XmRowColumn

XmNbuttonCount int NA XmRowColumn

XmNbuttonFontList XmFontList font_table VendorShell
XmBulletinBoard
XmMenuShell

Resource Name Motif Type UIL Type Defined in Class

Appendix C: Table of Motif Resources

1202 Motif Reference Manual

XmNbuttonRenderTable XmRenderTable widget_ref VendorShell
XmBulletinBoard
XmMenuShell

XmNbuttonMnemonicCharSets XmStringCharSetTable NA XmRowColumn

XmNbuttonMnemonics XmKeySymTable NA XmRowColumn

XmNbuttonSet int NA XmRowColumn

XmNbuttonType XmButtonTypeTable NA XmRowColumn

XmNbuttons XmStringTable NA XmRowColumn

XmNcancelButton Widget widget_ref XmBulletinBoard

XmNcancelCallback XtCallbackList procedure XmMessageBox
XmSelectionBox

XmNcancelLabelString XmString compound_string XmMessageBox
XmSelectionBox

XmNcascadePixmap Pixmap pixmap XmCascadeButton

XmNcascadingCallback XtCallbackList procedure XmCascadeButton

XmNchildHorizontalAlignment unsigned char integer XmFrame

XmNchildHorizontalSpacing Dimension integer XmFrame

XmNchildPlacement unsigned char integer XmSelectionBox

XmNchildType unsigned char integer XmFrame

XmNchildVerticalAlignment unsigned char integer XmFrame

XmNchildren WidgetList NA Composite

XmNclientData XtPointer NA XmDragContext

XmNclipWindow Widget widget_ref XmScrolledWindow

XmNcollapsedStatePixmap Pixmap pixmap XmContainer

XmNcolorAllocationProc XmAllocColorProc NA XmScreen

XmNcolorCalculationProc XmScreenColorProc NA XmScreen

XmNcolormap Colormap identifier Core

XmNcolumns short integer XmComboBox
XmSimpleSpinBox
XmText
XmTextField

Resource Name Motif Type UIL Type Defined in Class

Appendix C: Table of Motif Resources

Motif Reference Manual 1203

XmNcomboBoxType unsigned char integer XmComboBox

XmNcommand XmString compound_string XmCommand

XmNcommandChangedCallback XtCallbackList procedure XmCommand

XmNcommandEnteredCallback XtCallbackList procedure XmCommand

XmNcommandWindow Widget widget_ref XmMainWindow

XmNcommandWindowLocation unsigned char integer XmMainWindow

XmNconvertCallback XtCallbackList procedure XmContainer
XmDrawingArea
XmPrimitive
XmScale

XmNconvertProc XtConvertSelectionIncrProc NA XmDragContext

XmNcreatePopupChildProc XtCreatePopupChildProc any Shell

XmNcurrentPageNumber integer int XmNotebook

XmNcursorBackground Pixel NA XmDragContext

XmNcursorForeground Pixel NA XmDragContext

XmNcursorPosition XmTextPosition integer XmText
XmTextField

XmNcursorPositionVisible Boolean boolean XmText
XmTextField

XmNdarkThreshold int NA XmScreen

XmNdecimal String string XmTab

XmNdecimalPoints short integer XmScale
XmSimpleSpinBox
XmSpinBox

XmNdecrementCallback XtCallbackList procedure XmScrollBar

XmNdefaultActionCallback XtCallbackList procedure XmContainer
XmList

XmNdefaultArrowSensitivity unsigned char integer XmSpinBox

XmNdefaultButton Widget widget_ref XmBulletinBoard

XmNdefaultButtonEmphasis XtEnum NA XmDisplay

XmNdefaultButtonShadowThickness Dimension integer XmPushButton

Resource Name Motif Type UIL Type Defined in Class

Appendix C: Table of Motif Resources

1204 Motif Reference Manual

XmNdefaultButtonType unsigned char integer XmMessageBox

XmNdefaultCopyCursorIcon Widget NA XmScreen

XmNdefaultFontList XmFontList font_table VendorShell
XmMenuShell

XmNdefaultInvalidCursorIcon Widget NA XmScreen

XmNdefaultLinkCursorIcon Widget NA XmScreen

XmNdefaultMoveCursorIcon Widget NA XmScreen

XmNdefaultNoneCursorIcon Widget NA XmScreen

XmNdefaultPosition Boolean boolean XmBulletinBoard

XmNdefaultSourceCursorIcon Widget NA XmScreen

XmNdefaultValidCursorIcon Widget NA XmScreen

XmNdefaultVirtualBindings String NA XmDisplay

XmNdeleteResponse unsigned char integer VendorShell

XmNdepth int identifier Core
 XmDragIcon

XmNdestinationCallback XtCallbackList procedure XmContainer
XmDrawingArea
XmList
XmText
XmTextField

XmNdestroyCallback XtCallbackList procedure Core
XmObject

XmNdetail XmStringTable string_table XmIconGadget

XmNdetailColumnHeading XmStringTable string_table XmContainer

XmNdetailColumnHeadingCount Cardinal integer XmContainer

XmNdetailCount int integer XmIconGadget

XmNdetailOrder Cardinal * integer_table XmContainer

XmNdetailOrderCount Cardinal integer XmContainer

XmNdetailShadowThickness int integer XmArrowButton
XmSpinBox
XmToggleButton

XmNdetailTabList XmTabList widget_ref XmContainer

Resource Name Motif Type UIL Type Defined in Class

Appendix C: Table of Motif Resources

Motif Reference Manual 1205

XmNdialogStyle unsigned char integer XmBulletinBoard

XmNdialogTitle XmString compound_string XmBulletinBoard

XmNdialogType unsigned char integer XmMessageBox
XmSelectionBox

XmNdirListItemCount int integer XmFileSelectionBox

XmNdirListItems XmStringTable string_table XmFileSelectionBox

XmNdirListLabelString XmString compound_string XmFileSelectionBox

XmNdirMask XmString compound_string XmFileSelectionBox

XmNdirSearchProc XmSearchProc any XmFileSelectionBox

XmNdirSpec XmString compound_string XmFileSelectionBox

XmNdirTextLabelString XmString NA XmFileSelectionBox

XmNdirectory XmString compound_string XmFileSelectionBox

XmNdirectoryValid Boolean NA XmFileSelectionBox

XmNdisarmCallback XtCallbackList procedure XmArrowButton
XmDrawnButton
XmPushButton
XmToggleButton

XmNdoubleClickInterval int integer XmList

XmNdragCallback XtCallbackList procedure XmScale
 XmScrollBar

XmNdragDropFinishCallback XtCallbackList NA XmDragContext

XmNdragInitiatorProtocolStyle unsigned char NA XmDisplay

XmNdragMotionCallback XtCallbackList NA XmDragContext

XmNdragOperations unsigned char NA XmDragContext

XmNdragProc XtCallbackProc NA XmDropSite

XmNdragReceiverProtocolStyle unsigned char NA XmDisplay

XmNdragStartCallback XtCallbackList NA XmDisplay

XmNdropFinishCallback XtCallbackList NA XmDragContext

XmNdropProc XtCallbackProc NA XmDropSite

XmNdropRectangles XRectangle * NA XmDropSite

Resource Name Motif Type UIL Type Defined in Class

Appendix C: Table of Motif Resources

1206 Motif Reference Manual

XmNdropSiteActivity unsigned char NA XmDropSite

XmNdropSiteEnterCallback XtCallbackList NA XmDragContext

XmNdropSiteLeaveCallback XtCallbackList NA XmDragContext

XmNdropSiteOperations unsigned char NA XmDropSite

XmNdropSiteType unsigned char NA XmDropSite

XmNdropStartCallback XtCallbackList NA XmDragContext

XmNdropTransfers XmDropTransferEntryRec *} NA XmDropTransfer

XmNeditMode int integer XmText

XmNeditable Boolean boolean XmScale
XmScrollBar
XmSimpleSpinBox
XmSpinBox
XmText
XmTextField

XmNenableBtn1Transfer XtEnum NA XmDisplay

XmNenableButtonTab Boolean NA XmDisplay

XmNenableEtchedInMenu Boolean NA XmDisplay

XmNenableMultiKeyBindings Boolean NA XmDisplay

XmNenableThinThickness Boolean NA XmDisplay

XmNenableToggleColor Boolean NA XmDisplay

XmNenableToggleVisual Boolean NA XmDisplay

XmNenableUnselectableDrag Boolean NA XmDisplay

XmNenableWarp XtEnum NA XmDisplay

XmNentryAlignment unsigned char integer XmRowColumn

XmNentryBorder Dimension integer XmRowColumn

XmNentryCallback XtCallbackList procedure XmRowColumn

XmNentryClass WidgetClass class_rec_name XmRowColumn

XmNentryParent Widget widget_ref XmContainer

XmNentryVerticalAlignment unsigned char integer XmRowColumn

XmNentryViewType unsigned char integer XmContainer

Resource Name Motif Type UIL Type Defined in Class

Appendix C: Table of Motif Resources

Motif Reference Manual 1207

XmNexpandedStatePixmap Pixmap pixmap XmContainer

XmNexportTargets Atom * NA XmDragContext

XmNexposeCallback XtCallbackList procedure XmDrawingArea
XmDrawnButton

XmNextendedSelectionCallback XtCallbackList procedure XmList

XmNfileFilterStyle XtEnum NA XmFileSelectionBox

XmNfileListItemCount int integer XmFileSelectionBox

XmNfileListItems XmStringTable string_table XmFileSelectionBox

XmNfileListLabelString XmString compound_string XmFileSelectionBox

XmNfileSearchProc XmSearchProc any XmFileSelectionBox

XmNfileTypeMask unsigned char integer XmFileSelectionBox

XmNfillOnArm Boolean boolean XmPushButton

XmNfillOnSelect Boolean boolean XmToggleButton

XmNfilterLabelString XmString compound_string XmFileSelectionBox

XmNfirstPageNumber int integer XmNotebook

XmNfocusCallback XtCallbackList procedure XmBulletinBoard
XmText
XmTextField

XmNfont XFontStruct * NA XmScreen

XmNfont XFontStruct * font XmRendition

XmNfontList XmFontList font_table XmComboBox
XmContainer
XmIconGadget
XmLabel
XmList
XmScale
XmText
XmTextField

XmNfontName String string XmRendition

XmNfontType XmFontType integer XmRendition

XmNforeground Pixel color XmManager
XmPrimitive

XmNforegroundThreshold int NA XmScreen

Resource Name Motif Type UIL Type Defined in Class

Appendix C: Table of Motif Resources

1208 Motif Reference Manual

XmNfractionBase int integer XmForm

XmNframeBackground Pixel color XmNotebook

XmNframeChildType unsigned char integer XmFrame

XmNframeShadowThickness Dimension integer XmNotebook

XmNgainPrimaryCallback XtCallbackList procedure XmText
XmTextField

XmNgeometry String string Shell

XmNheight Dimension integer Core
XmDragIcon
XmRectObj

XmNheightInc int integer WMShell

XmNhelpCallback XtCallbackList procedure XmGadget
XmManager
XmPrimitive

XmNhelpLabelString XmString compound_string XmMessageBox
XmSelectionBox

XmNhighlightColor Pixel color XmGadget
XmManager
XmPrimitive

XmNhighlightOnEnter Boolean boolean XmGadget
XmPrimitive
XmScale

XmNhighlightPixmap Pixmap pixmap XmGadget
XmManager
XmPrimitive

XmNhighlightThickness Dimension integer XmComboBox
XmGadget
XmPrimitive
XmScale

XmNhistoryItemCount int integer XmCommand

XmNhistoryItems XmStringTable string_table XmCommand

XmNhistoryMaxItems int integer XmCommand

XmNhistoryVisibleItemCount int integer XmCommand

XmNhorizontalFontUnit int NA XmScreen

Resource Name Motif Type UIL Type Defined in Class

Appendix C: Table of Motif Resources

Motif Reference Manual 1209

XmNhorizontalScrollBar Widget widget_ref XmList
XmScrolledWindow

XmNhorizontalSpacing Dimension integer XmForm

XmNhotX Position NA XmDragIcon

XmNhotY Position NA XmDragIcon

XmNiconMask Pixmap pixmap WMShell

XmNiconName String NA TopLevelShell

XmNiconNameEncoding Atom NA TopLevelShell

XmNiconPixmap Pixmap pixmap WMShell

XmNiconWindow Window any WMShell

XmNiconX int integer WMShell

XmNiconY int integer WMShell

XmNiconic Boolean NA TopLevelShell

XmNimportTargets Atom * NA XmDropSite

XmNincrement int integer XmScrollBar

XmNincrementCallback XtCallbackList procedure XmScrollBar

XmNincrementValue int integer XmSimpleSpinBox
XmSpinBox

XmNincremental Boolean NA XmDragContext
XmDropTransfer

XmNindeterminateInsensitivePixmap Pixmap pixmap XmToggleButton

XmNindeterminatePixmap Pixmap pixmap XmToggleButton

XmNindicatorOn Boolean boolean XmToggleButton

XmNindicatorSize Dimension integer XmToggleButton

XmNindicatorType unsigned char integer XmToggleButton

XmNinitialDelay int integer XmScrollBar
XmSpinBox

XmNinitialFocus Widget widget_ref XmManager

XmNinitialResourcesPersistent Boolean boolean Core

XmNinitialState int integer WMShell

Resource Name Motif Type UIL Type Defined in Class

Appendix C: Table of Motif Resources

1210 Motif Reference Manual

XmNinnerMarginHeight Dimension integer XmNotebook

XmNinnerMarginWidth Dimension integer XmNotebook

XmNinput Boolean boolean WMShell

XmNinputCallback XtCallbackList procedure XmDrawingArea

XmNinputMethod String string VendorShell

XmNinputPolicy XmInputPolicy integer VendorShell

XmNinsensitiveStipplePixmap Pixmap NA XmScreen

XmNinsertPosition XtOrderProc identifier Composite

XmNinvalidCursorForeground Pixel NA XmDragContext

XmNisAligned Boolean boolean XmRowColumn

XmNisHomogeneous Boolean boolean XmRowColumn

XmNitemCount int integer XmComboBox
XmList

XmNitems XmStringTable string_table XmComboBox
XmList

XmNkeyboardFocusPolicy unsigned char integer VendorShell

XmNlabelFontList XmFontList font_table XmBulletinBoard
VendorShell
XmMenuShell

XmNlabelInsensitivePixmap Pixmap pixmap XmLabel

XmNlabelPixmap Pixmap pixmap XmLabel

XmNlabelRenderTable XmRenderTable widget_ref VendorShell
XmBulletinBoard
XmMenuShell

XmNlabelString XmString compound_string XmIconGadget
XmLabel
XmRowColumn

XmNlabelType unsigned char integer XmLabel

XmNlargeCellHeight Dimension integer XmContainer

XmNlargeCellWidth Dimension integer XmContainer

XmNlargeIconMask Pixmap pixmap XmIconGadget

Resource Name Motif Type UIL Type Defined in Class

Appendix C: Table of Motif Resources

Motif Reference Manual 1211

XmNlargeIconPixmap Pixmap pixmap XmIconGadget

XmNlargeIconX NA float XmContainer

XmNlargeIconY NA float XmContainer

XmNlargeIconY Pixmap pixmap XmIconGadget

XmNlastPageNumber int integer XmNotebook

XmNlayoutDirection XmDirection integer VendorShell
XmGadget
XmManager
XmMenuShell
XmPrimitive

XmNlayoutType unsigned char integer XmContainer

XmNleftAttachment unsigned char integer XmForm

XmNleftOffset int integer XmForm

XmNleftPosition int integer XmForm

XmNleftWidget Widget widget_ref XmForm

XmNlightThreshold int NA XmScreen

XmNlist Widget widget_ref XmComboBox

XmNlistItemCount int integer XmSelectionBox

XmNlistItems XmStringTable string_table XmSelectionBox

XmNlistLabelString XmString compound_string XmSelectionBox

XmNlistMarginHeight Dimension integer XmList

XmNlistMarginWidth Dimension integer XmList

XmNlistSizePolicy unsigned char integer XmList

XmNlistSpacing Dimension integer XmList

XmNlistUpdated Boolean boolean XmFileSelectionBox

XmNlistVisibleItemCount int integer XmSelectionBox

XmNloadModel unsigned char integer XmRendition

XmNlosePrimaryCallback XtCallbackList procedure XmText
XmTextField

XmNlosingFocusCallback XtCallbackList procedure XmText
XmTextField

Resource Name Motif Type UIL Type Defined in Class

Appendix C: Table of Motif Resources

1212 Motif Reference Manual

XmNmainWindowMarginHeight Dimension integer XmMainWindow

XmNmainWindowMarginWidth Dimension integer XmMainWindow

XmNmajorTabSpacing Dimension integer XmNotebook

XmNmapCallback XtCallbackList procedure XmBulletinBoard
XmRowColumn

XmNmappedWhenManaged Boolean boolean Core

XmNmappingDelay int integer XmCascadeButton

XmNmargin Dimension integer XmSeparator

XmNmarginBottom Dimension integer XmLabel

XmNmarginHeight Dimension integer XmBulletinBoard
XmComboBox
XmContainer
XmDrawingArea
XmFrame
XmIconGadget
XmLabel
XmPanedWindow
XmRowColumn
XmSpinBox
XmText
XmTextField

XmNmarginLeft Dimension integer XmLabel

XmNmarginRight Dimension integer XmLabel

XmNmarginTop Dimension integer XmLabel

XmNmarginWidth Dimension integer XmBulletinBoard
XmComboBox
XmContainer
XmDrawingArea
XmFrame
XmIconGadget
XmLabel
XmPanedWindow
XmRowColumn
XmSpinBox
XmText
XmTextField

XmNmask Pixmap NA XmDragIcon

Resource Name Motif Type UIL Type Defined in Class

Appendix C: Table of Motif Resources

Motif Reference Manual 1213

XmNmatchBehavior unsigned char integer XmComboBox
XmList

XmNmaxAspectX int integer WMShell

XmNmaxAspectY int integer WMShell

XmNmaxHeight int integer WMShell

XmNmaxLength int integer XmText
XmTextField

XmNmaxWidth int integer WMShell

XmNmaximum int integer XmScale
XmScrollBar

XmNmaximumValue int integer XmSimpleSpinBox
XmSpinBox

XmNmenuAccelerator String string XmRowColumn

XmNmenuBar Widget widget_ref XmMainWindow

XmNmenuCursor String NA XmScreen

XmNmenuHelpWidget Widget widget_ref XmRowColumn

XmNmenuHistory Widget widget_ref XmRowColumn

XmNmenuPost String string XmRowColumn

XmNmessageAlignment unsigned char integer XmMessageBox

XmNmessageString XmString compound_string XmMessageBox

XmNmessageWindow Widget widget_ref XmMainWindow

XmNminAspectX int integer WMShell

XmNminAspectY int integer WMShell

XmNminHeight int integer WMShell

XmNminWidth int integer WMShell

XmNminimizeButtons Boolean boolean XmMessageBox
XmSelectionBox

XmNminimum int integer XmScale
XmScrollBar

XmNminimumValue int integer XmSimpleSpinBox
XmSpinBox

Resource Name Motif Type UIL Type Defined in Class

Appendix C: Table of Motif Resources

1214 Motif Reference Manual

XmNminorTabSpacing Dimension integer XmNotebook

XmNmnemonic KeySym keysym XmLabel
XmRowColumn

XmNmnemonicCharSet String string XmLabel
XmRowColumn

XmNmodifyVerifyCallback XtCallbackList procedure XmText
XmTextField

XmNmodifyVerifyCallbackWcs XtCallbackList procedure XmText
XmTextField

XmNmotifVersion int NA XmDisplay

XmNmotionVerifyCallback XtCallbackList procedure XmText
XmTextField

XmNmoveOpaque Boolean NA XmScreen

XmNmultiClick unsigned char integer XmArrowButton
XmDrawnButton
XmPushButton

XmNmultipleSelectionCallback XtCallbackList procedure XmList

XmNmustMatch Boolean boolean XmSelectionBox

XmNmwmDecorations int integer VendorShell

XmNmwmFunctions int integer VendorShell

XmNmwmInputMode int integer VendorShell

XmNmwmMenu String string VendorShell

XmNnavigationType XmNavigationType integer XmGadget
XmManager
XmPrimitive

XmNnoFontCallback XtCallbackList NA XmDisplay

XmNnoMatchCallback XtCallbackList procedure XmSelectionBox

XmNnoMatchString XmString compound_string XmFileSelectionBox

XmNnoRenditionCallback XtCallbackList NA XmDisplay

XmNnoResize Boolean boolean XmBulletinBoard

XmNnoneCursorForeground Pixel NA XmDragContext

XmNnotebookChildType unsigned char integer XmNotebook

Resource Name Motif Type UIL Type Defined in Class

Appendix C: Table of Motif Resources

Motif Reference Manual 1215

XmNnumChildren Cardinal NA Composite

XmNnumColumns short integer XmRowColumn

XmNnumDropRectangles Cardinal NA XmDropSite

XmNnumDropTransfers Cardinal NA XmDropTransfer

XmNnumExportTargets Cardinal NA XmDragContext

XmNnumImportTargets Cardinal NA XmDropSite

XmNnumValues int integer XmSimpleSpinBox
XmSpinBox

XmNoffsetModel XmOffsetModel integer XmTab

XmNoffsetX Position NA XmDragIcon

XmNoffsetY Position NA XmDragIcon

XmNokCallback XtCallbackList procedure XmMessageBox
XmSelectionBox

XmNokLabelString XmString compound_string XmMessageBox
XmSelectionBox

XmNoperationChangedCallback XtCallbackList NA XmDragContext

XmNoperationCursorIcon Widget NA XmDragContext

XmNoptionLabel XmString NA XmRowColumn

XmNoptionMnemonic KeySym NA XmRowColumn

XmNorientation unsigned char integer XmNotebook
XmPanedWindow
XmRowColumn
XmScale
XmScrollBar
XmSeparator

XmNoutlineButtonPolicy unsigned char integer XmContainer

XmNoutlineChangedCallback XtCallbackList procedure XmContainer

XmNoutlineColumnWidth Dimension integer XmContainer

XmNoutlineIndentation Dimension integer XmContainer

XmNoutlineLineStyle unsigned char integer XmContainer

XmNoutlineState unsigned char integer XmContainer

Resource Name Motif Type UIL Type Defined in Class

Appendix C: Table of Motif Resources

1216 Motif Reference Manual

XmNoverrideRedirect Boolean boolean Shell

XmNpacking unsigned char integer XmRowColumn

XmNPageChangedCallback XtCallbackList procedure XmNotebook

XmNpageDecrementCallback XtCallbackList procedure XmScrollBar

XmNpageIncrement int integer XmScrollBar

XmNpageIncrementCallback XtCallbackList procedure XmScrollBar

XmNpageNumber int integer XmNotebook

XmNpaneMaximum Dimension integer XmPanedWindow

XmNpaneMinimum Dimension integer XmPanedWindow

XmNpathMode XtEnum NA XmFileSelectionBox

XmNpattern XmString compound_string XmFileSelectionBox

XmNpendingDelete Boolean boolean XmTextField

XmNpixmap Pixmap NA XmDragIcon

XmNpopdownCallback XtCallbackList procedure Shell

XmNpopupCallback XtCallbackList procedure Shell

XmNpopupEnabled Boolean boolean XmRowColumn

XmNpopupHandlerCallback XtCallbackList procedure XmManager
XmPrimitive

XmNposition int integer XmSimpleSpinBox
XmSpinBox

XmNpositionIndex short integer XmContainer
XmNotebook
XmPanedWindow
XmRowColumn

XmNpositionMode XtEnum integer XmComboBox

XmNpositionType unsigned char integer XmSimpleSpinBox
XmSpinBox

XmNpostFromButton int NA XmRowColumn

XmNpreeditType String string VendorShell

XmNprimaryOwnership unsigned char integer XmContainer
XmList

Resource Name Motif Type UIL Type Defined in Class

Appendix C: Table of Motif Resources

Motif Reference Manual 1217

XmNprocessingDirection unsigned char integer XmScale
XmScrollBar

XmNpromptString XmString compound_string XmCommand

XmNpushButtonEnabled Boolean boolean XmDrawnButton

XmNqualifySearchDataProc XmQualifyProc any XmFileSelectionBox

XmNradioAlwaysOne Boolean boolean XmRowColumn

XmNradioBehavior Boolean boolean XmRowColumn

XmNrecomputeSize Boolean boolean XmLabel

XmNrefigureMode Boolean boolean XmPanedWindow

XmNrenderTable XmRenderTable widget_ref XmComboBox
XmContainer
XmIconGadget
XmLabel
XmList
XmScale
XmText
XmTextField

XmNrenditionBackground Pixel color XmRendition

XmNrenditionForeground Pixel color XmRendition

XmNrepeatDelay int integer XmScrollBar
XmSpinBox

XmNresizable Boolean boolean XmForm
XmNotebook

XmNresizeCallback XtCallbackList procedure XmDrawingArea
 XmDrawnButton

XmNresizeHeight Boolean boolean XmRowColumn
XmText

XmNresizePolicy unsigned char integer XmBulletinBoard
XmDrawingArea

XmNresizeWidth Boolean boolean XmRowColumn
XmText
XmTextField

XmNrightAttachment unsigned char integer XmForm

XmNrightOffset int integer XmForm

Resource Name Motif Type UIL Type Defined in Class

Appendix C: Table of Motif Resources

1218 Motif Reference Manual

XmNrightPosition int integer XmForm

XmNrightWidget Widget widget_ref XmForm

XmNrowColumnType unsigned char integer XmRowColumn

XmNrows short integer XmText

XmNrubberPositioning Boolean boolean XmForm

XmNsashHeight Dimension integer XmPanedWindow

XmNsashIndent Position integer XmPanedWindow

XmNsashShadowThickness Dimension integer XmPanedWindow

XmNsashWidth Dimension integer XmPanedWindow

XmNsaveUnder Boolean boolean Shell

XmNscaleHeight Dimension integer XmScale

XmNscaleMultiple int integer XmScale

XmNscaleWidth Dimension integer XmScale

XmNscreen Screen * identifier Core

XmNscrollBarDisplayPolicy unsigned char integer XmList
XmScrolledWindow

XmNscrollBarPlacement unsigned char integer XmScrolledWindow

XmNscrollHorizontal Boolean boolean XmText

XmNscrollLeftSide Boolean boolean XmText

XmNscrollTopSide Boolean boolean XmText

XmNscrollVertical Boolean boolean XmText

XmNscrolledWindowChildType Widget widget_ref XmScrolledWindow

XmNscrolledWindowMarginHeight Dimension integer XmScrolledWindow

XmNscrolledWindowMarginWidth Dimension integer XmScrolledWindow

XmNscrollingPolicy unsigned char integer XmScrolledWindow

XmNselectColor Pixel color XmContainer
XmList
XmToggleButton

XmNselectInsensitivePixmap Pixmap pixmap XmToggleButton

Resource Name Motif Type UIL Type Defined in Class

Appendix C: Table of Motif Resources

Motif Reference Manual 1219

XmNselectPixmap Pixmap pixmap XmToggleButton

XmNselectThreshold int integer XmTextField

XmNselectedItem XmString compound_string XmComboBox

XmNselectedItemCount int integer XmList

XmNselectedItems XmStringTable string_table XmList

XmNselectedObjectCount int NA XmContainer

XmNselectedObjects WidgetList NA XmContainer

XmNselectedPosition int integer XmComboBox

XmNselectedPositionCount int integer XmList

XmNselectedPositions int * integer_table XmList

XmNselectionArray XtPointer any XmTextField

XmNselectionArrayCount int integer XmTextField

XmNselectionCallback XtCallbackList procedure XmComboBox
XmContainer

XmNselectionLabelString XmString compound_string XmSelectionBox

XmNselectionMode unsigned char integer XmList

XmNselectionPolicy unsigned char integer XmContainer
XmList

XmNselectionTechnique unsigned char integer XmContainer

XmNsensitive Boolean boolean Core
XmRectObj

XmNseparatorOn Boolean boolean XmPanedWindow

XmNseparatorType unsigned char integer XmSeparator

XmNset unsigned char integer XmToggleButton

XmNshadowThickness Dimension integer XmGadget
XmManager
XmPrimitive

XmNshadowType unsigned char integer XmBulletinBoard
XmDrawnButton
XmFrame

XmNshellUnitType unsigned char integer VendorShell

Resource Name Motif Type UIL Type Defined in Class

Appendix C: Table of Motif Resources

1220 Motif Reference Manual

XmNshowArrows Boolean boolean XmScale
XmScrollBar

XmNshowAsDefault Dimension integer XmPushButton

XmNshowSeparator Boolean boolean XmMainWindow

XmNshowValue Boolean boolean XmScale

XmNsimpleCallback XtCallbackProc procedure XmRowColumn

XmNsingleSelectionCallback XtCallbackList procedure XmList

XmNskipAdjust Boolean boolean XmPanedWindow

XmNsliderMark XtEnum integer XmScale
XmScrollBar

XmNsliderSize int integer XmScrollBar

XmNsliderVisual Visual * integer XmScale
XmScrollBar

XmNslidingMode XtEnum integer XmScale
XmScrollBar

XmNsmallCellHeight Dimension integer XmContainer

XmNsmallCellWidth Dimension integer XmContainer

XmNsmallIconMask Pixmap pixmap XmIconGadget

XmNsmallIconPixmap Pixmap pixmap XmIconGadget

XmNsmallIconX NA float XmContainer

XmNsmallIconY NA float XmContainer

XmNsnapBackMultiple unsigned short integer XmScrollBar

XmNsource XmTextSource any XmText

XmNsourceCursorIcon Widget NA XmDragContext

XmNsourcePixmapIcon Widget NA XmDragContext

XmNspacing Dimension integer XmIconGadget
XmPanedWindow
XmRowColumn
XmScrolledWindow
XmSpinBox
XmToggleButton

XmNspatialIncludeModel unsigned char integer XmContainer

Resource Name Motif Type UIL Type Defined in Class

Appendix C: Table of Motif Resources

Motif Reference Manual 1221

XmNspatialResizeModel unsigned char integer XmContainer

XmNspatialSnapModel unsigned char integer XmContainer

XmNspatialStyle unsigned char integer XmContainer

XmNspinBoxChildType unsigned char integer XmSimpleSpinBox
XmSpinBox

XmNstateCursorIcon Widget NA XmDragContext

XmNstrikethruType unsigned char integer XmRendition

XmNstringDirection XmStringDirection integer XmLabel
XmList
XmManager

XmNsubMenuId Widget widget_ref XmCascadeButton
XmRowColumn

XmNsymbolPixmap Pixmap pixmap XmMessageBox

XmNtabList XmTabList widget_ref XmRendition

XmNtabValue NA float XmTab

XmNtag XmStringTag string XmRendition

XmNtearOffMenuActivateCallback XtCallbackList procedure XmRowColumn

XmNtearOffMenuDeactivateCallback XtCallbackList procedure XmRowColumn

XmNtearOffModel unsigned char integer XmRowColumn

XmNtearOffTitle XmString compound_string XmRowColumn

XmNtextAccelerators XtAccelerators translation_table XmSelectionBox

XmNtextColumns short integer XmSelectionBox

XmNtextField Widget widget_ref XmComboBox
 XmSimpleSpinBox
XmSpinBox

XmNtextFontList XmFontList font_table VendorShell
XmBulletinBoard

XmNtextRenderTable XmRenderTable widget_ref VendorShell
XmBulletinBoard

XmNtextString XmString compound_string XmSelectionBox

XmNtextTranslations XtTranslations translation_table XmBulletinBoard

Resource Name Motif Type UIL Type Defined in Class

Appendix C: Table of Motif Resources

1222 Motif Reference Manual

XmNtitle String string WMShell

XmNtitleEncoding Atom any WMShell

XmNtitleString XmString compound_string XmScale

XmNtoBottomCallback XtCallbackList procedure XmScrollBar

XmNtoTopCallback XtCallbackList procedure XmScrollBar

XmNtoggleMode unsigned char integer XmToggleButton

XmNtopAttachment unsigned char integer XmForm

XmNtopCharacter XmTextPosition integer XmText

XmNtopItemPosition int integer XmList

XmNtopLevelEnterCallback XtCallbackList NA XmDragContext

XmNtopLevelLeaveCallback XtCallbackList NA XmDragContext

XmNtopOffset int integer XmForm

XmNtopPosition int integer XmForm

XmNtopShadowColor Pixel color XmGadget
XmManager
XmPrimitive

XmNtopShadowPixmap Pixmap pixmap XmGadget
XmManager
XmPrimitive

XmNtopWidget Widget widget_ref XmForm

XmNtransferProc XtSelectionCallbackProc NA XmDropTransfer

XmNtransferStatus unsigned char NA XmDropTransfer

XmNtransient Boolean boolean WMShell

XmNtransientFor Widget widget_ref TransientShell

XmNtranslations XtTranslations translation_table Core

XmNtraversalOn Boolean boolean XmGadget
XmManager
XmPrimitive

XmNtraverseObscuredCallback XtCallbackList procedure XmScrolledWindow

XmNtroughColor Pixel color XmScrollBar

XmNunderlineType unsigned char integer XmRendition

Resource Name Motif Type UIL Type Defined in Class

Appendix C: Table of Motif Resources

Motif Reference Manual 1223

XmNunitType unsigned char integer VendorShell
XmGadget
XmManager
XmPrimitive
XmTab

XmNunmapCallback XtCallbackList procedure XmBulletinBoard
XmRowColumn

XmNunpostBehavior unsigned char integer XmScreen

XmNunselectColor Pixel color XmToggleButton

XmNuseAsyncGeometry Boolean boolean VendorShell

XmNuseColorObject Boolean NA XmScreen

XmNuserData XtPointer any XmDisplay
XmGadget
XmManager
XmPrimitive
XmScreen

XmNvalidCursorForeground Pixel NA XmDragContext

XmNvalue String XmText
XmTextField

XmNvalue int string XmScale
XmScrollBar

XmNvalues XmStringTable string_table XmSimpleSpinBox
XmSpinBox

XmNvalueChangedCallback XtCallbackList procedure XmScale
XmScrollBar
XmText
XmTextField
XmToggleButton

XmNvalueWcs wchar_t * wide_character XmText
XmTextField

XmNverifyBell Boolean boolean XmText
XmTextField

XmNverticalFontUnit int NA XmScreen

XmNverticalScrollBar Widget widget_ref XmList
XmScrolledWindow

XmNverticalSpacing Dimension integer XmForm

Resource Name Motif Type UIL Type Defined in Class

Appendix C: Table of Motif Resources

1224 Motif Reference Manual

XmNviewType unsigned char integer XmIconGadget

XmNvisibleItemCount int integer XmComboBox
XmList

XmNvisibleWhenOff Boolean boolean XmToggleButton

XmNvisual Visual * any Shell

XmNvisualEmphasis unsigned char integer XmIconGadget

XmNvisualPolicy unsigned char integer XmScrolledWindow

XmNwaitForWm Boolean boolean WMShell

XmNwhichButton unsigned int integer XmRowColumn

XmNwidth Dimension integer Core
XmDragIcon
XmRectObj

XmNwidthInc int integer WMShell

XmNwinGravity int integer WMShell

XmNwindowGroup Window any WMShell

XmNwmTimeout int integer WMShell

XmNwordWrap Boolean boolean XmText

XmNworkWindow Widget widget_ref XmScrolledWindow

XmNwrap Boolean boolean XmSimpleSpinBox
XmSpinBox

XmNx Position integer Core
XmRectObj

XmNy Position integer Core
XmRectObj

Resource Name Motif Type UIL Type Defined in Class

Motif Reference Manual 1225

Appendix D Table of UIL Objects

This appendix lists all of the objects supported by the User Interface Language (UIL).
For each object, the table lists the corresponding widget or widgets in the Motif toolkit.
The resources and callbacks for each object are the same as the resources and callbacks
for the corresponding widget(s). UIL provides one additional callback,
MrmNcreateCallback, for each object. This callback is invoked when the object is
instantiated by the Motif Resource Manager (Mrm). The table also specifies the types
of objects that can be children of a particular object, as well as the names and classes of
any automatically-created children. For more information on each object, see the
appropriate reference pages in Section 2, Motif and Xt Widget Classes.

UIL Object
Corresponding
Motif Widget(s)

Allowable
Children

Automatically Created Children

Name Class

XmArrowButton XmArrowButton XmPopupMenu

XmArrowButton-
Gadget

XmArrowButton-
Gadget

none

XmBulletinBoard XmBulletinBoard all UIL objects

XmBulletinBoardDia-
log

XmDialogShell with
XmBulletinBoard
child

all UIL objects

XmCascadeButton XmCascadeButton XmPopupMenu
XmPulldownMenu

XmCascadeButton-
Gadget

XmCascadeButton-
Gadget

XmPulldownMenu

XmCheckBox XmRowColumn all UIL objects

XmComboBox XmComboBox none Xm_List
Xm_Text
Xm_TextField

Xm_List
Xm_Text
Xm_TextField

XmCommand XmCommand XmPopupMenu

XmContainer XmContainer all UIL objectsa

Appendix D: Table of UIL Objects

1226 Motif Reference Manual

XmDialogShell XmDialogShell XmBulletinBoard
XmCheckBox
XmComboBox
XmContainer
XmDrawingArea
XmFileSelection-
Box
XmForm
XmFrame
XmMessageBox
XmNotebook
XmPanedWindow
XmRadioBox
XmRenderTable
XmRowColumn
XmScale
XmScrolledWin-
dow
XmSelectionBox
XmSimpleSpinBox
XmSpinBox
XmWorkArea

XmDrawingArea XmDrawingArea all UIL objects

XmDrawnButton XmDrawnButton XmPopupMenu

XmErrorDialog XmDialogShell with
XmMessageBox
child

all UIL objects Xm_Symbol
Xm_Separator
Xm_Message
Xm_OK
Xm_Cancel
Xm_Help

XmLabel
XmSeparator
XmLabel
XmPushButton
XmPushButton
XmPushButton

XmFileSelectionBox XmFileSelection-
Box

all UIL objects Xm_Items
Xm_ItemsList
Xm_Separator
Xm_OK
Xm_Cancel
Xm_Help
Xm_FilterLabe
l
Xm_FilterText
Xm_DirList
Xm_Dir
Xm_Filter

XmLabel
XmScrolledList
XmSeparator
XmPushButton
XmPushButton
XmPushButton
XmLabel
XmText
XmScrolledList
XmLabel
XmPushButton

UIL Object
Corresponding
Motif Widget(s)

Allowable
Children

Automatically Created Children

Name Class

Appendix D: Table of UIL Objects

Motif Reference Manual 1227

XmFileSelectionDia-
log

XmDialogShell with
XmFileSelection-
Box child

all UIL objects Xm_Items
Xm_ItemsList
Xm_Separator
Xm_OK
Xm_Cancel
Xm_Help
Xm_FilterLabe
l
Xm_FilterText
Xm_DirList
Xm_Dir
Xm_Filter

XmLabel
XmScrolledList
XmSeparator
XmPushButton
XmPushButton
XmPushButton
XmLabel
XmText
XmScrolledList
XmLabel
XmPushButton

XmForm XmForm all UIL objects

XmFormDialog XmDialogShell with
XmForm child

all UIL objects

XmFrame XmFrame all UIL objects

XmIconGadget XmIconGadget XmRenderTable

XmInformationDialog XmDialogShell with
XmMessageBox
child

all UIL objects Xm_Symbol
Xm_Separator
Xm_Message
Xm_OK
Xm_Cancel
Xm_Help

XmLabel
XmSeparator
XmLabel
XmPushButton
XmPushButton
XmPushButton

XmLabel XmLabel XmPopupMenu
XmRenderTable

XmLabelGadget XmLabelGadget XmRenderTable

XmList XmList XmPopupMenu
XmRenderTable

XmMainWindow XmMainWindow all UIL objects Xm_Separator1
Xm_Separator2
Xm_Separator3

XmSeparator
XmSeparator
XmSeparator

UIL Object
Corresponding
Motif Widget(s)

Allowable
Children

Automatically Created Children

Name Class

Appendix D: Table of UIL Objects

1228 Motif Reference Manual

XmMenuBar XmRowColumn XmCascadeButton
XmCascadeButton-
Gadget
XmDrawnButton
XmLabel
XmLabelGadget
XmPopupMenu
XmPulldownMenu
XmPushButton
XmPushButton-
Gadget
XmSeparator
XmSeparatorGadg-
et
XmToggleButton
XmToggleButton-
Gadget
user_defined object

XmMenuShell XmMenuShell XmRenderTable
XmRowColumn

XmMessageBox XmMessageBox all UIL objects Xm_Symbol
Xm_Separator
Xm_Message
Xm_OK
Xm_Cancel
Xm_Help

XmLabel
XmSeparator
XmLabel
XmPushButton
XmPushButton
XmPushButton

XmMessageDialog XmDialogShell with
XmMessageBox
child

all UIL objects Xm_Symbol
Xm_Separator
Xm_Message
Xm_OK
Xm_Cancel
Xm_Help

XmLabel
XmSeparator
XmLabel
XmPushButton
XmPushButton
XmPushButton

XmNotebook XmNotebook all UIL objects b

XmOptionMenu XmRowColumn XmPulldownMenu Xm_OptionLab
el
Xm_OptionBut
ton

XmLabelGadget
XmCascadeButton-
Gadget

XmPanedWindow XmPanedWindow all UIL objects

UIL Object
Corresponding
Motif Widget(s)

Allowable
Children

Automatically Created Children

Name Class

Appendix D: Table of UIL Objects

Motif Reference Manual 1229

XmPopupMenu XmDialogShell with
XmRowColumn
child

XmCascadeButton
XmCascadeButton-
Gadget
XmDrawnButton
XmLabel
XmLabelGadget
XmPushButton
XmPushButton-
Gadget
XmSeparator
XmSeparatorGadg-
et
XmToggleButton
XmToggleButton-
Gadget
user_defined object

Xm_TearOffControl XmTearOffButton none

XmPromptDialog XmDialogShell with
XmSelectionBox
child

all UIL objects Xm_Items
Xm_ItemsList
Xm_Selection
Xm_Text
Xm_Separator
Xm_OK
Xm_Cancel
Xm_Help
Xm_Apply

XmLabel
XmScrolledList
XmLabel
XmText
XmSeparator
XmPushButton
XmPushButton
XmPushButton
XmPushButton

XmPulldownMenu XmDialogShell with
XmRowColumn
child

XmCascadeButton
XmCascadeButton-
Gadget
XmDrawnButton
XmLabel
XmLabelGadget
XmPushButton
XmPushButton-
Gadget
XmSeparator
XmSeparatorGadg-
et
XmToggleButton
XmToggleButton-
Gadget
user_defined object

Xm_TearOffCo
ntrol

XmTearOffButton

UIL Object
Corresponding
Motif Widget(s)

Allowable
Children

Automatically Created Children

Name Class

Appendix D: Table of UIL Objects

1230 Motif Reference Manual

XmPushButtonGadget XmPushButton-
Gadget

none

XmQuestionDialog XmDialogShell with
XmMessageBox
child

all UIL objects Xm_Symbol
Xm_Separator
Xm_Message
Xm_OK
Xm_Cancel
Xm_Help

XmLabel
XmSeparator
XmLabel
XmPushButton
XmPushButton
XmPushButton

XmRadioBox XmRowColumn all UIL objects

XmRenderTable (pseudo-object) XmRendition

XmRendition (pseudo-object) XmTabList

XmRowColumn XmRowColumn all UIL objects

XmScale XmScale all UIL objects Xm_Title XmLabel

XmScrollBar XmScrollBar XmPopupMenu

XmScrolledList XmScrolledWin-
dow with
XmList child

XmPopupMenu
XmRenderTable

Xm_VertScroll
Bar
Xm_HorScroll
Bar

XmScrollBar
XmScrollBar

XmScrolledText XmScrolledWin-
dow with
XmText child

XmPopupMenu
XmRenderTable

Xm_VertScroll
Bar
Xm_HorScroll
Bar

XmScrollBar
XmScrollBar

XmScrolledWindow XmScrolledWin-
dow

all UIL objects Xm_VertScroll
Bar
Xm_HorScroll
Bar

XmScrollBar
XmScrollBar

XmSelectionBox XmSelectionBox all UIL objects Xm_Items
Xm_ItemsList
Xm_Selection
Xm_Text
Xm_Separator
Xm_OK
Xm_Cancel
Xm_Help
Xm_Apply

XmLabel
XmScrolledList
XmLabel
XmText
XmSeparator
XmPushButton
XmPushButton
XmPushButton
XmPushButton

UIL Object
Corresponding
Motif Widget(s)

Allowable
Children

Automatically Created Children

Name Class

Appendix D: Table of UIL Objects

Motif Reference Manual 1231

XmSelectionDialog XmDialogShell with
XmSelectionBox
child

all UIL objects Xm_Items
Xm_ItemsList
Xm_Selection
Xm_Text
Xm_Separator
Xm_OK
Xm_Cancel
Xm_Help
Xm_Apply

XmLabel
XmScrolledList
XmLabel
XmText
XmSeparator
XmPushButton
XmPushButton
XmPushButton
XmPushButton

XmSeparator XmSeparator XmPopupMenu

XmSeparatorGadget XmSeparatorGadget none

XmSimpleSpinBox XmSimpleSpinBox XmTextField

XmSpinBox XmSpinBox all UIL objects

XmTearOffButton none XmPopupMenu

XmTemplateDialog XmDialogShell with
XmMessageBox
child

all UIL objects Xm_Symbol
Xm_Separator
Xm_Message
Xm_OK
Xm_Cancel
Xm_Help

XmLabel
XmSeparator
XmLabel
XmPushButton
XmPushButton
XmPushButton

XmTab (pseudo-object) none

XmTabList (pseudo-object) XmTab

XmText XmText XmPopupMenu
XmRenderTable

XmTextField XmTextField XmPopupMenu
XmRenderTable

XmToggleButton XmToggleButton XmPopupMenu

XmToggleButton-
Gadget

XmToggleButton-
Gadget

none

UIL Object
Corresponding
Motif Widget(s)

Allowable
Children

Automatically Created Children

Name Class

Appendix D: Table of UIL Objects

1232 Motif Reference Manual

XmWarningDialog XmDialogShell with
XmMessageBox
child

all UIL objects Xm_Symbol
Xm_Separator
Xm_Message
Xm_OK
Xm_Cancel
Xm_Help

XmLabel
XmSeparator
XmLabel
XmPushButton
XmPushButton
XmPushButton

XmWorkArea XmRowColumn all UIL objects

XmWorkingDialog XmDialogShell with
XmMessageBox
child

all UIL objects Xm_Symbol
Xm_Separator
Xm_Message
Xm_OK
Xm_Cancel
Xm_Help

XmLabel
XmSeparator
XmLabel
XmPushButton
XmPushButton
XmPushButton

a.Surely a mistake. The Container is designed for IconGadget children only.
b.No access to the abstract ArrowButton and SpinBox controls.

UIL Object
Corresponding
Motif Widget(s)

Allowable
Children

Automatically Created Children

Name Class

Motif Reference Manual 1233

Appendix E - New Features in Motif 2.0 and 2.1

This appendix provides a summary of the new features in Motif 2.1 and 2.0. It lists the
new toolkit functions and widget classes in Motif 2.1 and 2.0, as well as any new
resources added to existing widget classes. For more information on the functions and
widgets, see the appropriate reference pages in Section 1, Motif Functions and Macros,
and Section 2, Motif and Xt Widget Classes

The appendix also lists the new Motif Resource Manager (Mrm) functions and User
Interface Language (UIL) data types in Motif 2.1. For more information on these
functions and data types, see the reference pages in Section 3, Mrm Functions, and
Section 6, UIL Data Types.

E.1 New Toolkit Functions
XmComboBoxAddItem() Adds an item to a ComboBox.
XmComboBoxDeletePos() Deletes an item from a ComboBox.
XmComboBoxSelectItem() Selects an item in a ComboBox.
XmComboBoxSetItem() Selects and makes visible an item in a

ComboBox.
XmComboBoxUpdate() Update the state of a ComboBox.
XmContainerCopy() Copy selected Container items to the clipboard.
XmContainerCopyLink(Copy links to selected Container items to the

clipboard.
XmContainerCut() Cut selected Container items to the clipboard.
XmContainerGetItemChildren() Retrieve the logical children of a Container

item.
XmContainerPaste() Copy clipboard data into a Container.
XmContainerPasteLink() Copy links to clipboard data into a Container.
XmContainerRelayout() Force the relayout of Container items.
XmContainerReorder() Sort the items within a Container.
XmConvertStringToUnits() Convert a unit specification expressed as a

string to an integral value.
XmCvtByteStreamToXmString() Convert a byte stream representation to a

compound string.
XmCvtTextPropertyToXmStringTable() Convert a text property to a compound string

table.
XmCvtXmStringTableToTextProperty() Convert a compound string table to a text

property.
XmCvtXmStringToByteStream() Convert a compound string to a byte stream

representation.

Appendix E: New Features in Motif 2.0 and 2.1

1234 Motif Reference Manual

XmDirectionMatch() Compare two XmDirection quantities.
XmDirectionMatchPartial() Loosely compare two XmDirection quantities.
XmDirectionToStringDirection() Convert an XmDirection type to a

XmStringDirection type.
XmFontListCreate_r() Create an XmFontList in a thread-safe manner.
XmFontListEntryCreate_r() Create an XmFontListEntry in a thread-safe

manner.
XmGetScaledPixmap() Read a pixmap and scale it for printing.
XmImCloseXIM() Close all input contexts associated with an X

Input Method.
XmImFreeXIC() Unregister all widgets associated with an X

Input Context.
XmImGetXIC() Create an X Input Context for a widget.
XmImMbResetIC() Reset an Input Context.
XmImSetXIC() Register a widget with an existing X Input

Context.
XmNotebookGetPageInfo() Retrieve data about a Notebook page.
XmObjectAtPoint() Find the widget most closely associated with a

point.
XmParseMappingCreate() Create a parse mapping object.
XmParseMappingFree() Free a parse mapping object.
XmParseMappingGetValues() Retrieve the values of a parse mapping object.
XmParseMappingSetValues() Set the values of a parse mapping object.
XmParseTableFree() Free an array of parse mapping objects.
XmPrintPopupPDM() Issue a request to the Print Display Manager.
XmPrintSetup() Initialize a PrintShell and X Print connection.
XmPrintToFile() Print X Print Server data to file.
XmRedisplayWidget() Synchronously force a widget to expose itself.
XmRenderTableAddRenditions() Add rendition objects to a render table.
XmRenderTableCopy() Copy a render table.
XmRenderTableCvtFromProp() Convert a text property into a render table.
XmRenderTableCvtToProp() Convert a render table to a text property.
XmRenderTableFree() Free a render table.
XmRenderTableGetRendition() Find a rendition object in a render table.
XmRenderTableGetRenditions() Find a group of rendition objects in a render

table.
XmRenderTableGetTags() Retrieve all the rendition tags in a render table.
XmRenderTableRemoveRenditions() Remove renditions from a render table.
XmRenditionCreate() Create a rendition object.
XmRenditionFree() Free a rendition object.
XmRenditionRetrieve() Retrieve the values of a rendition object.
XmRenditionUpdate() Set the values of a rendition object.

Appendix E: New Features in Motif 2.0 and 2.1

Motif Reference Manual 1235

XmScaleSetTicks() Place tick marks along the edge of a Scale.
XmSimpleSpinBoxAddItem() Add an item to a SimpleSpinBox.
XmSimpleSpinBoxDeletePos() Delete an item from a SimpleSpinBox.
XmSimpleSpinBoxSetItem() Select an item in a SimpleSpinBox.
XmSpinBoxValidatePosition() Validate a position in a SpinBox.
XmStringByteStreamLength() Return the length of a byte stream

representation of a compound string.
XmStringComponentCreate() Create a component in a compound string.
XmStringConcatAndFree() Concatenate two compound strings, and free

the originals.
XmStringDirectionToDirection() Convert an XmStringDirection type into an

XmDirection type.
XmStringGenerate() Generate a new compound string using the

default parse table.
XmStringGetNextTriple() Retrieve the type, length, and value of the next

compound string component.
XmStringIsVoid() Check if a compound string is empty of

components.
XmStringParseText() Convert a string into a compound string using a

parse table.
XmStringPeekNextTriple() Look ahead at the type of the next compound

string component.
XmStringPutRendition() Add rendition components around a compound

string.
XmStringTableParseStringArray() Convert an array of strings into an array of

compound strings using a parse table.
XmStringTableProposeTablist() Calculate an XmTabList for a compound

string.
XmStringTableToXmString() Convert a compound string table into a

compound string.
XmStringTableUnparse() Convert an array of compound strings into an

array of strings using a parse table.
XmStringToXmStringTable() Convert a string into an array of compound

strings.
XmStringUnparse() Convert a compound string into a string using a

parse table.
XmTabCreate() Create a new XmTab object.
XmTabFree() Free an XmTab object.
XmTabGetValues() Retrieve the values of an XmTab object.
XmTabListCopy() Copy an array of XmTab objects.
XmTabListFree() Free an array of XmTab objects.
XmTabListGetTab() Find an XmTab object within an array.

Appendix E: New Features in Motif 2.0 and 2.1

1236 Motif Reference Manual

XmTabListInsertTabs() Add XmTab objects to an array of tabs.
XmTabListRemoveTabs() Remove XmTab objects from an array of tabs.
XmTabListReplacePositions() Replace XmTab objects within an array of tabs.
XmTabListTabCount() Return the number of XmTab objects in an array

of tabs.
XmTabSetValue() Set the value of an XmTab object.
XmTextCopyLink() Copy a link to the primary selection into the

clipboard.
XmTextGetCenterline() Return the centerline of a vertically oriented text

string.
XmTextPasteLink() Copy a link from the clipboard selection at the

insertion cursor.
XmToggleButtonSetValue() Set the value of a tri-state ToggleButton.
XmTransferDone() Signal the end of data transfer operations.
XmTransferSendRequest() Transmit a multiple data transfer request.
XmTransferSetParameters() Specify parameters for the next data transfer

request.
XmTransferStartRequest() Initiate a multiple data transfer request.
XmTransferValue() Issue a data transfer request.

E.2 Obsolete Toolkit Functions
XmFontListAppendEntry() Superseded by XmRenderTableAddRenditions().
XmFontListCopy() Superseded by XmRenderTableCopy().
XmFontListCreate() Superseded by XmRenditionCreate() and

XmRenderTableAddRenditions().
XmFontListEntryCreate() Superseded by XmRenditionCreate().
XmFontListEntryFree() Superseded by XmRenditionFree().
XmFontListEntryGetFont() Superseded by XmRenditionRetrieve().
XmFontListEntryGetTag() Superseded by XmRenditionRetrieve().
XmFontListEntryLoad() Superseded by setting the XmNloadModel of a

rendition object.
XmFontListFree() Superseded by XmRenderTableFree().
XmFontListGetNextFont() Superseded by XmRenditionRetrieve().
XmFontListNextEntry() Superseded by XmRenderTableGetRendition().
XmFontListRemoveEntry() Superseded by

XmRenderTableRemoveRenditions().
XmGetAtomName() Superseded by XGetAtomName().
XmInternAtom() Superseded by XInternAtom().
XmRepTypeInstallTearOffModelConverter() Internally installed.
XmMainWindowSep1() Superceded by XtNameToWidget().
XmMainWindowSep2() Superceded by XtNameToWidget().

Appendix E: New Features in Motif 2.0 and 2.1

Motif Reference Manual 1237

XmMainWindowSep3() Superceded by XtNameToWidget().
XmMainWindowSetAreas() Superseded by XtSetValues() of

XmNhorizontalScrollBar,XmNverticalS
crollBar, XmNworkWindow,
XmNmenuBar, and
XmNcommandWindow, resources.

XmScrolledWindowSetAreas() Superseded by XtSetValues() of
XmNhorizontalScrollBar,XmNverticalS
crollBar, and XmNworkWindow
resources.

XmStringCreateLtoR() Superceded by XmStringGenerate().
XmStringGetLtoR() Superceded by XmStringUnparse().
XmStringGetNextComponent() Superceded by XmStringGetNextTriple().
XmStringGetNextSegment() Superceded by XmStringGetNextTriple().
XmStringPeekNextComponent() Superceded by XmStringPeekNextTriple().
XmStringSegmentCreate() Superceded by XmStringComponentCreate()

and XmStringConcat().

E.3 New Widget Classes
XmComboBox A widget which combines text input with list

selection.
XmContainer A general purpose manager for providing grid,

tree, or free-format layout of
IconGadget children.

XmGrabShell A popup shell which grabs the keyboard and
pointer.

XmIconGadget A gadget which supports labelled pixmaps.
XmNotebook A layout widget which displays one child at a

time.
XmPrintShell An interface to the X11R6 Xp X Print utilities.
XmSimpleSpinBox A widget which cycles through a set of

choices.
XmSpinBox A widget which controls cycling through

possibly multiple sets of choices.

E.4 New Resources in Existing Widget Classes
VendorShell XmNbuttonRenderTable

XmNinputPolicy
XmNlabelRenderTable
XmNlayoutDirection
XmNtextRenderTable
XmNunitType

Appendix E: New Features in Motif 2.0 and 2.1

Motif Reference Manual 1238

XmArrowButton XmNdetailShadowThickness

XmBulletinBoard XmNbuttonRenderTable
XmNlabelRenderTable
XmNtextRenderTable

XmDrawingArea XmNconvertCallback
XmNdestinationCallback

XmDisplay XmNdefaultButtonEmphasis
XmNenableBtn1Transfer
XmNenableButtonTab
XmNenableDragIcon
XmNenableEtchedInMenu
XmNenableMultiKeyBindings
XmNenableThinThickness
XmNenableToggleColor
XmNenableToggleVisual
XmNenableUnselectableDrag
XmNenableWarp
XmNmotifVersion
XmNnoFontCallback
XmNnoRenditionCallback
XmNuserData

XmFileSelectionBox XmNdirTextLabelString
XmNfileFilterStyle
XmNpathMode

XmFrame XmNframeChildType

XmGadget XmNbackground
XmNbackgroundPixmap
XmNbottomShadowPixmap
XmNhighlightPixmap
XmNlayoutDirection
XmNtopShadowPixmap

XmLabel XmNrenderTable

Appendix E: New Features in Motif 2.0 and 2.1

Motif Reference Manual 1239

XmList XmNhorizontalScrollBar
XmNmatchBehavior
XmNprimaryOwnership
XmNrenderTable
XmNselectColor

XmNselectedPositionCount1

XmNselectedPositions2

XmNselectionMode
XmNverticalScrollBar
XmNdestinationCallback

XmManager XmNlayoutDirection
XmNpopupHandlerCallback

XmMenuShell XmNbuttonRenderTable
XmNlabelRenderTable
XmNlayoutDirection

XmPanedWindow XmNorientation
XmNlayoutDirection

XmPrimitive XmNlayoutDirection
XmNconvertCallback
XmNpopupHandlerCallback

XmRowColumn XmNtearOffTitle

XmScreen XmNbitmapConversionModel
XmNcolorAllocationProc
XmNcolorCalculationProc
XmNinsensitiveStipplePixmap
XmNuseColorObject

XmScrollBar XmNeditable
XmNsliderVisual
XmNslidingMode
XmNsnapbackMultiple

1.Erroneously given as XmNselectPositionCount in 2nd edition.

2.Erroneously given as XmNselectPositions in 2nd edition.

Appendix E: New Features in Motif 2.0 and 2.1

Motif Reference Manual 1240

XmScrolledWindow XmNautoDragModel
XmNscrolledWindowChildType

XmScale XmNeditable
XmNrenderTable
XmNshowArrows
XmNsliderMark
XmNsliderSize
XmNsliderVisual
XmNslidingMode
XmNconvertCallback

XmText XmNtotalLines
XmNdestinationCallback

XmTextField XmNdestinationCallback

XmToggleButton XmNdetailShadowThickness
XmNindeterminateInsensitivePixmap
XmNindeterminatePixmap
XmNtoggleMode
XmNunselectColor

Motif Reference Manual 1241

A
a button gadget that maintains a Boolean
state 955
a button gadget that posts menus 629
a button widget that maintains a Boolean
state 945
a button widget that posts menus 624
a button widget that provides a graphics
area 695
a composite widget for command entry 644
a composite widget used for creating mes-
sage dialogs 789
a composite widget which combines a text
widget with a list of choices 634
a composite widget which controls cycling
through a set of choices 911
a constraint widget that tiles its children
809
a constraint widget which lays out its chil-
dren like pages in a book 796
a container widget that constrains its chil-
dren 720
a directional arrow-shaped button gadget
615
a directional arrow-shaped button widget
610
a gadget for displaying both text and a pix-
map 740
a gadget that draws a line to separate other
widgets visually 904
a gadget that starts an operation when it is
pressed 837
a List as a child of a ScrolledWindow 885
a manager widget that allows selection
from a range of values 861
a manager widget that arranges its children
in rows and columns 846
a manager widget that places a border
around a single child 727
a manager widget that provides scroll bars

for the data display 887
a popup shell that bypasses window man-
agement 577
a popup shell that grabs the keyboard and
pointer when mapped 736
a RowColumn that contains ToggleButtons
632, 841
a Shell interfacing onto the Xp printing fa-
cilities 821
a shell widget meant to contain popup and
pulldown menu pane 785
a simple gadget that displays a non-edit-
able label 751
a simple geometry-managing widget 617
a simple manager widget for interactive
drawing 690
a simple widget that displays a non-edit-
able label 745
a single-line text-editing widget 940
a Text widget as a child of a ScrolledWin-
dow 886
a type of RowColumn used as a pulldown
menu pane 828
a type of RowColumn widget used as a
menu bar 783
a type of RowColumn widget used as a
popup menu pane 819
a type of RowColumn widget used as an
option menu 807
a widget for cycling through a set of choices
906
a widget for selecting files 710
a widget for selecting one of a list of alter-
natives 893
a widget that allows a user to select from a
list of choices 754
a widget that draws a line to separate other
widgets visually 901
a widget that provides constraint resources
for its children 570
a widget that starts an operation when it is

Index

Index

1242 Motif Reference Manual

pressed 830
a widget to control the scrolling of the view-
ing area in another widget 875
a widget which controls the layout and selec-
tion of a set of items 649
activate a protocol 3
add an item/items to a list 203, 204
add client callbacks to a protocol 5
add client callbacks to protocol 9
add drop transfer entries to drop operation
112
add item to SimpleSpinBox 339
add protocols to protocol manager 11
add rendition components to Compound
String 405
add renditions to a render table 286
add string to ComboBox 47
add widget to tab groups 7
additional top-level shells for an application
592
allow for modal selection of a component
511, 513
an object that defines the characteristics of a
drop site 701
an object to store display-specific information
672
an object used to represent the data in a drag
and drop operation 687
an object used to store information about a
drag transaction 678
an object used to store information about a
drop transaction 706
an object used to store screen-specific infor-
mation 870
an opaque type representing an entry in a
parse table 815
an opaque type representing an entry in a
render table 843
an unmanaged BulletinBoard as a child of a
DialogShell 623
an unmanaged FileSelectionBox as a child of
a Dialog Shell 719
an unmanaged Form as a child of a Dia-
logShell 726
an unmanaged MessageBox as a child of a Di-
alogShell 709, 744, 840, 958, 959

an unmanaged MessageBox as a child of Dia-
logShell 795, 921
an unmanaged SelectionBox as a child of a Di-
alog Shell 827, 900
any 1058
append font entry to font list 123
append string to Command 52
ApplicationShell 565
applicationShellWidgetClass 565
argument 1059
array of compound strings 1077
array of integers 1091
array of NULL-terminated strings 1061
ArrowButton 610
ArrowButtonGadget 615
asciz_string_table 1061
asciz_table 1061
Atom 1159
Atom, get string name 150
Atoms

return for property string 195

B
Boolean 1159
boolean 1063
bounding box of item in list 223
BulletinBoard 617
BulletinBoardDialog 623
byte stream

calculate length 347
byte stream, convert to string 78

C
calculate length of byte stream 347
call the UIL compiler from an application
1115
cancel a drag operation 96
cancel copy to clipboard 17
Cardinal 1159
CascadeButton 624
CascadeButton, set highlight state 13
CascadeButtonGadget 629

Motif Reference Manual 1243

Index

get from option menu 255
change resource values for drop site 111
character set type for use with strings and
font lists 1065
character type 1093
character_set 1065
character-to-color mapping type 1071
check that mwm is running 196
check widget can receive keyboard focus 202
child of Command, get 54
children for a MainWindow, specify 244
class_rec_name 1068
client callbacks, add to protocol 9
clipboard

cancel copy 17
copy Container selection 57
copy data passed by name 21
copy procedure 18
copy selection from text 442
cut Container selection 59
end copy 23, 25
get data format name 28
get data from 36
get length of data item 30
get list of pending items 32
get number of data formats available 27
lock 34
paste into Container 62
register new format 35
remove item 44
set up storage for 38
setting up for a copy 15
start retrieval 42
unlock 45
withdraw format 46

ClipboardBadFormat 35
ClipboardFail 23, 35, 45
ClipboardLocked 15, 17, 18, 21, 23, 27, 32,
34, 35, 36, 38, 42, 44, 46
ClipboardNoData 27, 36
ClipboardSuccess 15, 17, 18, 21, 23, 27, 32,
34, 35, 36, 38, 42, 44, 45, 46
ClipboardTruncate 36
close an Mrm hierarchy 963
close input method contexts 177
color 1069

color specified as color name 1069
color specified with the values of red, green,
and blue components 1098
color_table 1071
Colormap 1159
colors

get calculate procedure 151
set procedure for calculating default 332
update for widget 153

colors, updating for a widget 14
ComboBox 634

add compound string 47
delete item 48
select and show item 50
select item 49
update list 51

Command 644
append string 52
display error message 53
get child 54
replace string 56

compare two compound strings 346, 348
compare two directions 91
complete a data transfer operation 524
Composite 568
compositeWidgetClass 568
compound object, create 70
Compound String

add rendition components 405
check if void 392
compare 348
compare two 346
concatenate portion of one to another 396
concatenate two 351
contatenate and free 352
convert array of strings 408
convert from compound string table 412
convert from string 398
convert table to array of strings 414
convert to compound string table 416
convert to string 418
copy 354
copy a portion 397
create 355, 359
create a string context 390
create in current language environment

Index

1244 Motif Reference Manual

361
create segment 406
create tab list 410
create, containing separator 407
create, in current locale 357
create, with diretion 362
create, with single component 349
determine whether empty 370
draw 364
draw image 366
draw with underline 368
find substring 388
free memory 372
free string context 374
generate 376
get a text segment 378
get baseline spacing 345
get information about next component

380
get information about next segment 383
get length 393
get line height 389
get number of lines 394
get smallest rectangle for string 371
get triple information about next compo-

nent 385
get width of longest line 421
return type of next component 401

compound text encoding format for font list
element tag 247
compound_string 1073
compound_string_component 1075
compound_string_table 1077
CompoundString

return type of next component 403
concatenate portion of compound string to
another 396
concatenate two compound strings 351
concatenate two compound strings, and free
352
configure virtual key bindings 1030
Constraint 570
constraintWidgetClass 570
Container 649

copy links to selection 58
copy selection to clipboard 57

cut selection 59
force relayout 64
get children 60
paste 62
paste links 63
reorder children 65

convert a direction to a string direction 95
convert a keycode to a keysym using the de-
fault translator 534
convert an XmStringTable to an XTextProper-
ty 83
convert array of strings into compound string
table 408
convert byte stream to string 78
convert compound string into string 418
convert compound string table to array of
strings 414
convert compound string table to compound
string 412
convert compound string to compound string
table 416
convert render table into strings 291
convert string to byte stream 86
convert string to compound string 398
convert string to integer 66
convert string to text 87
convert string to unit-type value 80
convert strings into render table 290
convert text to string 79
convert value to specified unit type 68
convert XTextProperty to Compound String
Table 81
converts a string direction to a direction 363
copy

cancel 17
data passed by name 21
end operation 23, 25
incremental 21
setting up clipboard for 15
to clipboard 18

copy a compound string 354
copy a font list 125
copy a render table 289
copy a render table, excluding renditions 298
copy an XmTabList object 428
copy Container selection to clipboard 57

Motif Reference Manual 1245

Index

copy links Container selection 58
copy portion of a compound string 397
Core 572
coreWidgetClass 572
count tabs in list 435
create a CheckBox compound object 538
create a compound string 349, 355, 359
create a compound string, with direction 362
create a font context 144
create a font list 127
create a font list entry 130
create a font list in thread-safe manner 129
create a MenuBar compound object 540
create a new font list 121
create a parse mapping 257
create a pixmap 159
create a PopupMenu compound object as the
child of a MenuShell 546
create a Print Shell widget 269
create a PulldownMenu compound object as
the child of a MenuShell 549
create a RadioBox compound object 553
create a rendition object 299
create a tab stop 422
create an input method context for widget 179
create an OptionMenu compound object 543
create compound string in current language
environment 361
create compound string in current locale 357
create font list entry in thread-safe manner
133
create particular widget or object 70
create pixmap of specified depth 161
create scaled pixmap 164
create tab list for compound string table 410
create the widget tree rooted at a named wid-
get 978
create the widget tree rooted at a named wid-
get and override the resources set in the UID
file 981
Cursor 1160

set current menu cursor 336
cut Container selection 59

D
data format name, get from clipboard 28
deactivate a protocol 88
deactivate the XA_WM_PROTOCOLS proto-
col 89
delete a List item at specified position 210
delete all items from a list 207
delete an item/items from a list 208
delete item from ComboBox 48
delete items from position in list 209
delete List items at specified positions 211
delete SimpleSpinBox item at specified posi-
tion 341
delete the primary selection 481
deselect all items in a list 212
deselect item from list 213
deselect List item at specified position 214
determine if item is in list 219
dialog objects, create 73
DialogShell 669
Dimension 1160
direction, convert from string direction 363
direction, convert to string direction 95
directions, compare 91
directions, partially compare 93
Display 672, 1160
display

get Display object 173
display error message in Command 53
display the text at a specified position 502
double-precision floating point type 1079
drag and drop

determine target type compatibility 437
get information about 156

drag, cancel 96
drag, start 97
DragContext 678
DragIcon 687
draw a compound string 364
draw a compound string image 366
draw compound string with underline 368
DrawingArea 690
DrawnButton 695
drop

add transfer entries 112

Index

1246 Motif Reference Manual

start 114
drop site

change resource values 111
change stacking order 101
end update 102
get resource values 108
get stacking order 103
register 105
remove 110
start update 109
update 111

DropSite 701
DropTransfer 706

E
end copy operation 23, 25

F
fetch rendition 302
FileSelectionBox 710

get child 117
possible child values 119
start directory search 120

find child nearest to a point 254
find children of Container 60
finding position of items in a list 242
float 1079
font 1081
font_table 1083
FontList

append font entry 123
copy 125
create 127
create entry 130
create entry in thread-safe manner 133
create font context 144
create in thread-safe manner 129
create new 121
free font context 141
free memory 134
free memory used by list 140
get font information from entry 135

get next element information 142
get next entry 146
get tag of entry 137
load font for entry 138
remove entry 148

fonts
set font unit values 335
set unit values 334

fontset 1085
Form 720
Frame 727
free a font context 141
free a string context 374
free an input method context 178
free compound string memory 372
free font list entry 134
free memory used by font list 140
free memory used by parse mapping 260
free memory used by parse table 265
free render table memory 292
free rendition memory 301
free tab list memory 429
free XmTab memory 425
fundamental object class 576
fundamental object class with geometry 579
fundamental shell widget that interacts with
an ICCCM-compliant window manager 605
fundamental widget class that controls inter-
action between top-level windows and the
window manager 589

G
Gadget 731
GC 1160
generate a compound string 376
generic icon or xbitmapfile type 1095
get all occurrences of item in a list 216
get child of Command 54
get child of FileSelectionBox widget 117
get children of Container 60
get color calculate procedure 151
get composed string from an input method
182
get current destination widget 155

Motif Reference Manual 1247

Index

get current menu cursor 158
get data from clipboard 36
get Display object for a display 173
get font information from font list entry 135
get font list next element information 142
get information about drag and drop opera-
tion 156
get input method for a widget 181
get length of data item from clipboard 30
get next entry in font list 146
get position of List item with location cursor
215
get positions of selected List items 218
get resource values for drop site 108
get Screen object for a screen 174
get secondary widget resource data 166
get string representation of an Atom 150
get tab group for widget 169
get tag of font list entry 137
get tear-off control for menu 170
get the character position for an x, y position
504
get the display rectangle for a widget 556
get the positions of the baselines in a widget
555
get the state of a ToggleButton 505
get the x, y position of a character position 480
get visibility of widget 171
get widget that posted menu 163
get widget with keyboard focus 157
GrabModeAsync 737
GrabModeSync 737
GrabShell 736

H
highlight state of CascadeButton, setting 13
highlight text 490

I
icon 1087
IconGadget 740
ID number of a representation type 307

identifier 1036
images

install in cache 193
pre-installed, names and description 193

include 1037
include file directive 1037
incremental copying 21
initiate a multiple data transfer request 531
input methds

set values and focus 191
input method

get composed string 182
input Methods

register widget 185
input methods

close contexts 177
create context for widget 179
free context 178
get for widget 181
introduction 175
register widget with 188
reset context 184
set values 187, 192
set values and focus 186
unregister widget 189
unset focus for 190
XBufferOverflow 183
XLookupBoth 183
XLookupChars 183
XLookupKeysym 183
XLookupNone 183

insert tabs into a tab list 431
insert the clipboard selection 476, 478
install image in cache 193
integer 1089
integer_table 1091
introduction to the uniform transfer model
514
item is selected in list 222

K
keyboard focus

check widget can receive 202
set which widget 273

Index

1248 Motif Reference Manual

keyboard focus, get widget with 157
KeyCode 1160
KeySym 1160
keysym 1093

L
Label 745
LabelGadget 751

get from option menu 256
layout of Container 64
length of Compound String 393
List 754

add items 203, 204
check if item is selected 222
delete all items 207
delete an item/items 208
delete item at position 210
delete items at specified positions 211
delete items from specified position 209
deselect all items 212
deselect item 213
deselect item at specified position 214
determine if item is present 219
get all occurrences of item 216
get bounding box of item 223
get item position 220
get position of item at y-coordinate 242
get position of location cursor 215
get positions of selected items 218
how to check an item is visible 240
replace items 225, 226, 229
replace items at specified positions 230
replace specified items 227
select item 231
select item at specified position 232
set add mode 234
set first visible item 238, 240
set horizontal position 237
set last visible item 235
set last visible item, by position 236
set position of cursor 239
update list of selected items 241

list 1038
list definition section 1038

load font for font list entry 138
lock the clipboard 34

M
MainWindow 771

get widget ID of separator 243
specify children 244

Manager 774
Menu

get CascadeButtonGadget from option
menu 255

make inaccessible from widget 280
position a popup 248
set current cursor 336

menu
get tear-off control 170
get widget that posted 163

menu cursor, get current 158
menu objects, create 74
menu, make accessible from widget 8
MenuBar 783
MenuShell 785
MessageBox 789

get specified child 250
MessageDialog 795
Modifiers 1160
module 1041
module structure 1041
Motif compound string component type 1075
Motif compound string type 1073
Motif font list type 1083
Motif Window Manager, check whether run-
ning 196
MrmCloseHierarchy 963
MrmCode 1161
MrmCount 1161
MrmFetchBitmapLiteral 964, 965
MrmFetchColorLiteral 967
MrmFetchIconLiteral 969
MrmFetchLiteral 972
MrmFetchSetValues 975
MrmFetchWidget 978
MrmFetchWidgetOverride 981
MrmHierarchy 1161

Motif Reference Manual 1249

Index

MrmInitialize 985
MrmOpenHierarchy 986
MrmOpenHierarchyFromBuffer 988
MrmOpenHierarchyPerDisplay 989
MrmOsOpenParamPtr 1161
MrmRegisterArg 1161
MrmRegisterArgList 1161
MrmRegisterClass 992
MrmRegisterNames 994
MrmRegisterNamesInHierarchy 996
MrmType 1161
multi-color rectangular pixmap type 1087
mwm 1000

check whether running 196
MWM_DECOR_ALL 601
MWM_DECOR_BORDER 601
MWM_DECOR_MAXIMIZE 601
MWM_DECOR_MENU 601
MWM_DECOR_MINIMIZE 601
MWM_DECOR_RESIZEH 601
MWM_DECOR_TITLE 601
MWM_FUNC_ALL 601
MWM_FUNC_CLOSE 601
MWM_FUNC_MAXIMIZE 601
MWM_FUNC_MINIMIZE 601
MWM_FUNC_MOVE 601
MWM_FUNC_RESIZE 601
MWM_INPUT_FULL_APPLICATION_
MODAL 602
MWM_INPUT_MODELESS 601
MWM_INPUT_PRIMARY_APPLICATION_
MODAL 601
MWM_INPUT_SYSTEM_MODAL 602

N
Notebook 796

get information about a page 252
notify the Print Display Manager 267
NULL-terminated character string type 1102

O
Object 576

object 1043
objectClass 576
open an Mrm hierarchy 986, 989
open an Mrm hierarchy from a buffer 988
option menu

get CascadeButtonGadget 255
get LabelGadget 256

OptionMenu 805, 807
OverrideShell 577
overrideShellWidgetClass 577

P
PanedWindow 809
parse mapping

create 257
free memory 260
get resources 261
set resources 263

ParseMapping 815
partially compare two directions 93
paste into a Container 62
paste links into Container 63
Pixel 1162
Pixmap 1162
pixmap 1095

create scaled 164
create, of specified depth 161
get 159

pixmap, remove from cache 90
popup menu, how to position 248
popup shell that interacts with the window
manager 595
PopupMenu 819
Position 1162
position a popup menu 248
position of item in a list 220
pre-installed images 193
prepare the Mrm library for use 985
Print

create a Print Shell widget 269
force widget exposure 276
notify Print Display Manager 267
save data to file 271

PrintShell 821

Index

1250 Motif Reference Manual

procedure 1049
procedure declaration section 1049
procedure for calculating default colors 332
produce a listing of a UIL symbol table 1123
PromptDialog 827
protoclos

activate 3
protocols

add client callbacks to 5, 9
add to protocol manager 11
deactivate 88
deactivate XA_WM_PROTOCOLS 89
register 6
remove callback 281
remove callbacks 284
remove from protocol manager 282, 285
set prehooks and posthooks 337
set prehooks and posthooks for XA_

WM_PROTOCOLS 338
PulldownMenu 828
PushButton 830
PushButtonGadget 837

Q
QuestionDialog 840

R
RadioBox 841
reason 1096
RectObj 579
rectObjClass 579
register a drop site 105
register a representation type resource 314
register a widget creation function for a non-
Motif widget 992
register application-defined values and pro-
cedures 994
register application-defined values and pro-
cedures for use in a specific UIL hierarchy 996
register list of protocols 6
register new format for clipboard 35
register text encoding format for font list ele-

ment tag 279
register widget with an Input Manager 185
register widget with an input method context
188
relayout of Container 64
remove a drop site 110
remove an image from the image cache 536
remove callback from protocol 281
remove callbacks from protocol 284
remove entry from font list 148
remove item from clipboard 44
remove pixmap from cache 90
remove protocols from protocol manager
282, 285
remove tabs from list 432
remove widget from tab groups 283
render table

add renditions 286
convert from strings 290
convert to strings 291
copy 289
copy, excluding renditions 298
create rendition object 299
fetch rendition 302
free memory 292
free rendition memory 301
get a rendition 293
get rendition tags 296
search for renditions 294
set rendition object resources 304

rendition object resources, set 304
rendition tags from a render table 296
reorder children of Container 65
replace items at specified positions in list 230
replace part of the text string 482
replace part of the wide-character text string
484
replace specified items in a list 225, 226, 227,
229
replace string in Command 56
replace tabs in list 433
representation type

register resource 314
validity of numerical value 316

representation type, information about 309
representation types, get registered 311

Motif Reference Manual 1251

Index

reset an input method context 184
resource converter for the RowColumn
XmNtearOffModel, installing 313
retrieve an exported bitmap from an Mrm hi-
erarchy 964
retrieve an exported color value from an Mrm
hierarchy 967
retrieve an exported icon from an Mrm hier-
archy 969
retrieve an exported value from an Mrm hier-
archy 972
retrieve data from clipboard 36
return atom for property name string 195
reverse converter for a representation type
306
rgb 1098
RowColumn 846
run-time variable declaration section 1036

S
save X Print Server data to file 271
Scale 861

get slider value 319
set slider value 323
set tick marks 320

Screen 870, 1162
screen

get Screen object 174
scroll the text 486
ScrollBar 875

get current state 324
set current state 325

scrolled objects, create 75
ScrolledList 885
ScrolledText 886
ScrolledWindow 887

make child visible 329
specify children 327

search render table for a rendition 293
search render table for renditions 294
select and show item from ComboBox 50
select item at specified position in a list 232
select item from ComboBox 49
select item in a list 231

SelectionBox 893
get child 330

SelectionDialog 900
send a multiple transfer request 528
Separator 901
SeparatorGadget 904
SessionShell 581
sessionShellWidgetClass 581
set add mode in a list 234
set first visible item in a list 238, 240
set horizontal position of a list 237
set last visible item in a list 235
set last visible item in a list, by position 236
set parameters for next transfer 529
set position of cursor in a list 239
set SimpleSpinBox item 342
set the add mode state 487
set the edit permission state 489
set the maximum possible length of a text
string 494
set the position of the first character of text
that is displayed 501
set the position of the insertion cursor 488,
492
set the state of a ToggleButton 507
set the text source 496
set the text string 497
set the value of a ToggleButton 509
set the value of the primary selection 495
set the wide-character text string 499
set up storage for a copy 38
set value of Command 56
set value of tab stop 436
set values and focus for input method 191
set values and focus for input method context
186
set values for input method 192
set values for input method context 187
set widget resources to values retrieved from
an Mrm hierarchy 975
Shell 589
shell widget with Motif-specific hooks for
window manager interaction 598
shellWidgetClass 589
simple menu objects, create 74
SimpleSpinBox 906

Index

1252 Motif Reference Manual

add item 339
delete item at specified position 341
set item 342

single_float 1100
single-precision floating point type 1100
spacing for compound string 345
specified child of MessageBox widget 250
SpinBox 911

validate current value 343
stacking order of drop site 103
start a copy to clipboard 38
start a directory search 120
start a drag operation 97
start a drop operation 114
start an update of multiple drop sites 109
start clipboard retrieval 42
String 1163
string 1102

convert to compound string 398
string context, create 390
string direction, convert to direction 363
string, convert to byte stream 86
string, convert to integer 66
string, convert to text 87
string, convert to unit-type value 80
string_table 1077
StringTable 1163

T
Tab

create 422
free 425
get value 426

tab group, get for widget 169
tab groups

remove widget 283
tab groups, add widget to 7
tab stop, create 422
TabList

copy 428
count tabs 435
free 429
get a tab 430
insert tabs 431

remove tabs 432
replace tabs 433
set value of tab 436

TemplateDialog 921
Text 922

allow visual update 447
clear primary selection 438
copy primary selection 440
copy primary selection to clipboard 442
copy then remove selection 444
find beginning of string 448
find beginning of wide-character string

450
get edit permission state 455
get height 453
get maximum string length 458
get part of string 467
get part of wide-character string 469
get position of baseline 452
get position of insertion cursor 454, 456
get position of last character 457
get position of primary selection 460
get source 462
get string 463
get value of selection 459
get value of wide-character selection 461
get wide-character string 465
insert a wide-character string 474
insert another string 472
position of first character 471
prevent visual update 446

text, convert to string 79
text-editing widget 922
TextField 940
the fundamental class for Motif widgets that
manage children 774
the fundamental class for windowed widgets
572
the fundamental class for windowless wid-
gets 731
the fundamental widget that can have chil-
dren 568
the main shell for an application 565, 581
the Motif Window Manager 1000
the standard layout widget for an applica-
tion’s primary window 771

Motif Reference Manual 1253

Index

the uniform transfer model 514
the User Interface Language (UIL) compiler
1028
Time 1163
ToggleButton 945
ToggleButtonGadget 955
TopLevelShell 592
topLevelShellWidgetClass 592
transfer data to a destination 532
TransientShell 595
transientShellWidgetClass 595
translation_table 1105
true/false type 1063
type checking suppression type 1058

U
Uil 1115
uil 1028
UilDumpSymbolTable 1123
undo copy operation 44
unlock the clipboard 45
unregister input method context for widget
189
unset focus for input method context 190
update colors for widget 153
update ComboBox list 51
update list of selected items in a list 241
update srop site 111
update the display 537
user-defined callback type 1096
user-defined resource type 1059

V
value 1051
value names for a representation type 308
variable definition and declaration section.
1051
VendorShell 598
vendorShellWidgetClass 598
visibility of widget 171
Visual 1163
VoidProc 1163

W
WarningDialog 958
whole number type 1089
wide_character 1107
wide-character string type 1107
Widget 1164
widget 1109

check can receive keyboard focus 202
check the superclass or type 197
create input method context 179
ensure upward-compatibility 317
force exposure for printing 276
get current destination widget 155
get input method 181
get tab group 169
get the one that posted menu 163
get the one with keyboard focus 157
get visibility 171
make menu inaccessible 280
register with input method 185
remove from tab groups 283
set which has keyboard focus 273
unregister input method context 189
update colors 153

widget class pointer type 1068
widget declaration and definition section
1043
widget ID of MainWindow Separator 243
widget type 1109
widget, create 70
widget, update colors 14
WidgetClass 1164
widgetClass 572
WidgetList 1164
Window 1164
WM_COMMAND 566
WM_DELETE_WINDOW 567
WMShell 605
wmShellWidgetClass 605
WorkingDialog 959

X
X bitmap file type 1111
XA_WM_PROTOCOL 9

Index

1254 Motif Reference Manual

XA_WM_PROTOCOLS 4, 11, 284
xbitmapfile 1111
XBufferOverflow 183
XEvent 1164
XFontSet 1165
XFontSet type 1085
XFontStruct 1165
XFontStruct type 1081
XImage 1166
XLookupBoth 183
XLookupChars 183
XLookupKeysym 183
XLookupNone 183
Xm1000TH_INCHES 67, 68, 80, 603, 734,
777
Xm100TH_FONT_UNITS 67, 69, 80, 603,
734, 777
Xm100TH_MILLIMETERS 67, 68, 80, 603,
734, 777
Xm100TH_POINTS 67, 69, 80, 603, 734, 777
XmActivateProtocol 3
XmActivateWMProtocol 4
XmAddProtocolCallback 5
XmAddProtocols 6
XmAddTabGroup 7
XmAddToPostFromList 8
XmAddWMProtocolCallback 9
XmAddWMProtocols 11
XmALIGNMENT_BASELINE_BOTTOM
729, 849
XmALIGNMENT_BASELINE_TOP 729, 849
XmALIGNMENT_BEGINNING 728, 741,
746, 791, 848
XmALIGNMENT_CENTER 728, 729, 741,
746, 791, 848, 849
XmALIGNMENT_CONTENTS_BOTTOM
849
XmALIGNMENT_CONTENTS_TOP 849
XmALIGNMENT_END 728, 741, 746, 791,
848
XmALIGNMENT_WIDGET_BOTTOM 729
XmALIGNMENT_WIDGET_TOP 729
XmAllocColorProc 874, 1167
XmANY_ICON 653, 743
XmAnyCallbackStruct 621, 625, 734, 747,
778, 792, 928, 1167

XmAPPEND 655
XmAPPLICATION_DEFINED 889
XmARROW_DOWN 610
XmARROW_LEFT 610
XmARROW_RIGHT 610
XmARROW_UP 610
XmArrowButton 610
XmArrowButtonCallbackStruct 611, 1167
XmArrowButtonGadget 615
xmArrowButtonGadgetClass 615
xmArrowButtonWidgetClass 610
XmARROWS_BEGINNING 912
XmARROWS_DECREMENT_SENSITIVE
907, 913, 914
XmARROWS_DEFAULT_SENSITIVITY 914
XmARROWS_END 912
XmARROWS_FLAT_BEGINNING 912
XmARROWS_FLAT_END 912
XmARROWS_HORIZONTAL 913
XmARROWS_INCREMENT_SENSITIVE
907, 913, 914
XmARROWS_INSENSITIVE 907, 913, 914
XmARROWS_SENSITIVE 907, 913, 914
XmARROWS_SPLIT 912
XmARROWS_VERTICAL 913
XmAS_NEEDED 757, 888
XmATTACH_CENTER 688
XmATTACH_EAST 688
XmATTACH_FORM 722
XmATTACH_HOT 688
XmATTACH_NONE 722
XmATTACH_NORTH 688
XmATTACH_NORTH_EAST 688
XmATTACH_NORTH_WEST 688
XmATTACH_OPPOSITE_FORM 722
XmATTACH_OPPOSITE_WIDGET 722
XmATTACH_POSITION 722
XmATTACH_SELF 722
XmATTACH_SOUTH 688
XmATTACH_SOUTH_EAST 688
XmATTACH_SOUTH_WEST 688
XmATTACH_WEST 688
XmATTACH_WIDGET 722
XmAUTO_BEGIN 658
XmAUTO_CANCEL 658
XmAUTO_CHANGE 658

Motif Reference Manual 1255

Index

XmAUTO_DRAG_DISABLED 888
XmAUTO_DRAG_ENABLED 888
XmAUTO_MOTION 658
XmAUTO_NO_CHANGE 658
XmAUTO_SELECT 652, 756
XmAUTOMATIC 889
XmBACKGROUND_COLOR 865, 878
XmBELL 599
xmbind 1030
XmBLEND_ALL 679
XmBLEND_JUST_SOURCE 679
XmBLEND_NONE 679
XmBLEND_STATE_SOURCE 679
XmBOTTOM_LEFT 799, 889
XmBOTTOM_RIGHT 799, 889
XmBOTTOM_TO_TOP 94, 600, 776, 787
XmBOTTOM_TO_TOP_LEFT_TO_RIGHT
94, 600, 776, 787
XmBOTTOM_TO_TOP_RIGHT_TO_LEFT
94, 600, 776, 787
XmBROWSE_SELECT 655, 758
XmBulletinBoard 617
xmBulletinBoardWidgetClass 617
XmBulletonBoardDialog 623
XmBUTTON2_ADJUST 674
XmBUTTON2_TRANSFER 674
XmButtonType 1168
XmButtonTypeTable 1168
XmCASCADEBUTTON 854
XmCascadeButton 624
XmCascadeButtonGadget 629
xmCascadeButtonGadgetClass 629
XmCascadeButtonGadgetHighlight 13, 629
XmCascadeButtonHighlight 13, 624
xmCascadeButtonWidgetClass 624, 849
XmCELLS 656
XmCENTER 656
XmCENTIMETERS 67, 68, 603
XmChangeColor 14
XmCHARSET_TEXT 817
XmCheckBox 632
XmCHECKBUTTON 854
XmCLIP_WINDOW 890
XmClipboardBeginCopy 15
XmClipboardCancelCopy 17
XmClipboardCopy 18

XmClipboardCopyByName 21
XmClipboardEndCopy 23
XmClipboardEndRetrieve 25
XmClipboardInquireCount 27
XmClipboardInquireFormat 28
XmClipboardInquireLength 30
XmClipboardInquirePendingItems 32
XmClipboardLock 34
XmClipboardPendingList 1168
XmClipboardRegisterFormat 35
XmClipboardRetrieve 36
XmClipboardStartCopy 38
XmClipboardStartRetrieve 42
XmClipboardUndoCopy 44
XmClipboardUnlock 45
XmClipboardWithdrawFormat 46
XmCLOSEST 655
XmCOLLAPSED 657
XmColorProc 1168
XmCOMBO_BOX 635, 636
XmComboBox 634
XmComboBoxAddItem 47, 634
XmComboBoxCallbackStruct 639, 1169
XmComboBoxDeletePos 48, 634
XmComboBoxSelectItem 49, 634
XmComboBoxSetItem 50, 634
XmComboBoxUpdate 51, 634
xmComboBoxWidgetClass 634
XmCommand 644
XmCOMMAND_ABOVE_WORKSPACE 772
XmCOMMAND_BELOW_WORKSPACE
772
XmCommandAppendValue 52, 644
XmCommandCallbackStruct 645, 1169
XmCommandError 53, 644
XmCommandGetChild 54, 644
XmCommandSetValue 56, 644
xmCommandWidgetClass 644
XmCONSTANT 757, 889
XmContainer 649
XmContainerCopy 57, 649
XmContainerCopyLink 58, 649
XmContainerCut 59, 649
XmContainerGetItemChild 649
XmContainerGetItemChildren 60
XmContainerOutlineCallbackStruct 658,

Index

1256 Motif Reference Manual

1169
XmContainerPaste 62, 649
XmContainerPasteLink 63, 649
XmContainerRelayout 64, 649
XmContainerReorder 65, 649
XmContainerSelectCallbackStruct 658, 1170
xmContainerWidgetClass 649
XmConvertCallbackStruct 659, 692, 866,
1170
XmConvertStringToUnits 66
XmConvertUnits 68
XmCreateArrowButton 70, 610
XmCreateArrowButtonGadget 70, 615
XmCreateBulletinBoard 70, 617
XmCreateBulletinBoardDialog 73, 617, 623
XmCreateCascadeButton 70, 624
XmCreateCascadeButtonGadget 70, 629
XmCreateComboBox 70, 634
XmCreateCommand 70, 644
XmCreateCommandDialog 74
XmCreateContainer 70, 649
XmCreateDialogShell 70, 669
XmCreateDragIcon 71, 687
XmCreateDrawingArea 71, 690
XmCreateDrawnButton 71, 695
XmCreateDropDownComboBox 70, 634
XmCreateDropDownList 70, 634
XmCreateErrorDialog 73, 709, 789
XmCreateFileSelectionBox 71, 710, 719
XmCreateFileSelectionDialog 73, 710, 719
XmCreateForm 71, 720
XmCreateFormDialog 73, 720
XmCreateFrame 71, 727
XmCreateGrabShell 71, 736
XmCreateIconGadget 71, 740
XmCreateInformationDialog 74, 744, 789
XmCreateLabel 71, 745
XmCreateLabelGadget 71, 751
XmCreateList 71, 754
XmCreateMainWindow 71, 771
XmCreateMenuBar 74, 783, 846
XmCreateMenuShell 72, 785
XmCreateMessageBox 72, 789
XmCreateMessageDialog 74, 789, 795
XmCreateNotebook 72, 796
XmCreateOptionMenu 74, 805, 807, 846

XmCreatePanedWindow 72, 809
XmCreatePopupMenu 74, 785, 819, 846
XmCreatePromptDialog 74, 827, 893
XmCreatePulldownMenu 74, 785, 828, 846
XmCreatePushButton 72, 830
XmCreatePushButtonGadget 72, 837
XmCreateQuestionDialog 74, 789, 840
XmCreateRadioBox 72, 841, 846
XmCreateRowColumn 72, 632, 846
XmCreateScale 72, 861
XmCreateScrollBar 72, 875
XmCreateScrolledList 75, 754, 885, 887
XmCreateScrolledText 75, 886, 887, 922
XmCreateScrolledWindow 72, 885, 886, 887
XmCreateSelectionBox 72, 893, 900
XmCreateSelectionDialog 74, 893, 900
XmCreateSeparator 73, 901
XmCreateSeparatorGadget 73, 904
XmCreateSimpleCheckBox 74, 632, 846
XmCreateSimpleMenuBar 74, 783, 846
XmCreateSimpleOptionMenu 74, 805, 807,
846
XmCreateSimplePopupMenu 74, 819, 846
XmCreateSimplePulldownMenu 75, 828, 846
XmCreateSimpleRadioBox 75, 841, 846
XmCreateSimpleSpinBox 73, 906
XmCreateSpinBox 73, 911
XmCreateTemplateDialog 74, 789, 921
XmCreateText 73, 922
XmCreateTextField 73, 940
XmCreateToggleButton 73, 945
XmCreateToggleButtonGadget 73, 955
XmCreateWarningDialog 74, 789, 958
XmCreateWorkArea 72, 846
XmCreateWorkingDialog 74, 789, 959
XmCutPasteProc 1171
XmCvtByteStreamToXmString 78
XmCvtCTToXmString 79
XmCvtStringToUnitType 80
XmCvtTextPropertyToXmStringTable 81
XmCvtXmStringTableToTextProperty 83
XmCvtXmStringToByteStream 86
XmCvtXmStringToCT 87
XmDeactivateProtocol 88
XmDeactivateWMProtocol 89
XmDEFAULT_DIRECTION 747, 759

Motif Reference Manual 1257

Index

XmDEFAULT_SELECT_COLOR 654, 758,
948
XmDestinationCallbackStruct 659, 692, 762,
928, 1171
XmDESTROY 567, 600
XmDestroyPixmap 90
XmDETAIL 649, 653
XmDIALOG_APPLICATION_MODAL 619
XmDIALOG_CANCEL_BUTTON 790
XmDIALOG_COMMAND 895
XmDIALOG_COMMAND_TEXT 54
XmDIALOG_ERROR 791
XmDIALOG_FILE_SELECTION 895
XmDIALOG_FULL_APPLICATION_MOD-
AL 619
XmDIALOG_HELP_BUTTON 790
XmDIALOG_HISTORY_LIST 54
XmDIALOG_INFORMATION 744, 791
XmDIALOG_MESSAGE 791
XmDIALOG_MODELESS 619
XmDIALOG_OK_BUTTON 790
XmDIALOG_PRIMARY_APPLICATION_
MODAL 619
XmDIALOG_PROMPT 895
XmDIALOG_PROMPT_LABEL 54
XmDIALOG_QUESTION 791
XmDIALOG_SELECTION 895
XmDIALOG_SYSTEM_MODAL 619
XmDIALOG_TEMPLATE 791
XmDIALOG_WARNING 791
XmDIALOG_WORK_AREA 54, 619, 895
XmDIALOG_WORKING 791
xmDialogShellWidgetClass 669
XmDirection 1172
XmDirectionMatch 91
XmDirectionMatchPartial 93
XmDirectionToStringDirection 95
XmDisplay 672
XmDisplayCallbackStruct 677, 1172
xmDisplayClass 672
XmDO_NOTHING 600
XmDOUBLE_DASHED_LINE 845, 902
XmDOUBLE_LINE 845, 902
XmDOUBLE_SEPARATOR 854
XmDRAG_DROP_ONLY 674
XmDRAG_DYNAMIC 674

XmDRAG_NONE 674
XmDRAG_PREFER_DYNAMIC 674
XmDRAG_PREFER_PREREGISTER 674
XmDRAG_PREFER_RECEIVER 674
XmDRAG_PREREGISTER 674
XmDRAG_UNDER_HIGHLIGHT 702
XmDRAG_UNDER_NONE 702
XmDRAG_UNDER_PIXMAP 702
XmDRAG_UNDER_SHADOW_IN 702
XmDRAG_UNDER_SHADOW_OUT 702
XmDragCancel 96, 678
XmDragContext 678
xmDragContextClass 678
XmDragDropFininshCallbackStruct 1172
XmDragDropFinishCallback 682
XmDragDropFinishCallbackStruct 682
XmDragIcon 687
xmDragIconObjectClass 687
XmDragMotionCallback 682
XmDragMotionCallbackStruct 682, 1173
XmDragProcCallback 704
XmDragProcCallbackStruct 704, 1173
XmDragStart 97, 678
XmDragStartCallbackStruct 677
XmDrawingArea 690
XmDrawingAreaCallbackStruct 691, 1173
xmDrawingAreaWidgetClass 690
XmDrawnButton 695
XmDrawnButtonCallbackStruct 697, 1174
xmDrawnButtonWidgetClass 695
XmDROP_COPY 680, 703
XmDROP_DOWN_COMBO_BOX 635, 636
XmDROP_DOWN_LIST 635, 636
XmDROP_LINK 680, 703
XmDROP_MOVE 680, 703
XmDROP_NOOP 680, 703
XmDROP_SITE_ACTIVE 105, 702
XmDROP_SITE_COMPOSITE 106, 703
XmDROP_SITE_INACTIVE 702
XmDROP_SITE_INVALID 684
XmDROP_SITE_SIMPLE 703
XmDROP_SITE_VALID 684
XmDropFinishCallback 682
XmDropFinishCallbackStruct 682, 1174
XmDropProcCallback 704
XmDropProcCallbackStruct 704, 1174

Index

1258 Motif Reference Manual

XmDropSite 701
XmDropSiteConfigureStackingOrder 101,
701
XmDropSiteEndUpdate 102, 701
XmDropSiteEnterCallback 683
XmDropSiteEnterCallbackStruct 683, 1175
XmDropSiteLeaveCallback 683
XmDropSiteLeaveCallbackStruct 683, 1175
XmDropSiteQueryStackingOrder 103, 701
XmDropSiteRegister 105, 701
XmDropSiteRetrieve 108, 701
XmDropSiteStartUpdate 109, 701
XmDropSiteUnregister 110, 701
XmDropSiteUpdate 111, 701
XmDropStartCallback 683
XmDropStartCallbackStruct 683, 1175
XmDropTransfer 706
XmDropTransferAdd 112, 706
XmDropTransferEntry 707, 1176
XmDropTransferEntryRec 707, 1176
xmDropTransferObjectClass 706
XmDropTransferStart 114, 706
XmEACH_SIDE 864
XmErrorDialog 709
XmETCHED_LINE 864, 878
XmEXCLUSIVE_TAB_GROUP 733, 776
XmEXPANDED 657
XmEXPLICIT 600
XmEXTENDED_SELECT 655, 758
XmEXTERNAL_HIGHLIGHT 673
XmFALLBACK_CHARSET 1041
XmFILE_ANY_TYPE 713
XmFILE_DIRECTORY 713
XmFILE_REGULAR 713
XmFileSelectionBox 710
XmFileSelectionBoxCallbackStruct 715, 1176
XmFileSelectionBoxGetChild 117, 710, 719
xmFileSelectionBoxWidgetClass 710
XmFileSelectionDialog 719
XmFileSelectionDoSearch 120, 710, 719
XmFILTER_HIDDEN_FILES 713
XmFILTER_NONE 713
XmFIRST_FIT 655
XmFONT_IS_FONT 844
XmFONT_IS_FONTSET 844
XmFONT_UNITS 67, 69, 603, 734, 777

XmFontContext 1176
XmFontList 1176
XmFontListAdd 121
XmFontListAppendEntry 123
XmFontListCopy 125
XmFontListCreate 127
XmFontListCreate_r 129
XmFontListEntry 1177
XmFontListEntryCreate 130
XmFontListEntryCreate_r 133
XmFontListEntryFree 134
XmFontListEntryGetFont 135
XmFontListEntryGetTag 137
XmFontListEntryLoad 138
XmFontListFree 140
XmFontListFreeFontContext 141
XmFontListGetNextFont 142
XmFontListInitFontContext 144
XmFontListNextEntry 146
XmFontListRemoveEntry 148
XmFontType 1177
XmFOREGROUND_COLOR 865, 878
XmForm 720
XmFormDialog 726
xmFormWidgetClass 720
XmFrame 727
XmFRAME_GENERIC_CHILD 728
XmFRAME_TITLE_CHILD 728
XmFRAME_WORKAREA_CHILD 728
xmFrameWidgetClass 727
XmGadget 731
xmGadgetClass 731
XmGetAtomName 150
XmGetColorCalculation 151
XmGetColors 14, 153
XmGetDestination 155
XmGetDragContext 156
XmGetFocusWidget 157
XmGetMenuCursor 158
XmGetPixmap 159
XmGetPixmapByDepth 161
XmGetPostedFromWidget 163
XmGetScaledPixmap 164
XmGetSecondaryResourceData 166
XmGetTabGroup 169
XmGetTearOffControl 170

Motif Reference Manual 1259

Index

XmGetVisibility 171
XmGetXmDisplay 173, 672
XmGetXmScreen 174, 870
XmGrabShell 641, 736
xmGrabShellWidgetClass 736
XmGRID 656
XmGROW_BALANCED 656
XmGROW_MAJOR 656
XmGROW_MINOR 656
XmHIGHLIGHT_COLOR 654, 758, 948
XmHighlightMode 1178
XmHOR_SCROLLBAR 890
XmHORIZONTAL 801, 810, 851, 863, 877,
902
XmICCEncodingStyle 1178
XmIconGadget 740
xmIconGadgetClass 740
XmIm 175
XmImCloseXIM 177
XmImFreeXIC 178
XmImGetXIC 179
XmImGetXIM 181
XmImMbLookupString 182
XmImMbResetIC 184
XmImRegister 185
XmImSetFocusValues 186
XmImSetValues 187
XmImSetXIC 188
XmImUnregister 189
XmImUnsetFocus 190
XmImVaSetFocusValues 191
XmImVaSetValues 192
XmINCHES 67, 68, 603, 734, 777
XmIncludeStatus 1178
XmINDETERMINATE 949
XmINDICATOR_BOX 947
XmINDICATOR_CHECK 947
XmINDICATOR_CHECK_BOX 947
XmINDICATOR_CROSS 947
XmINDICATOR_CROSS_BOX 947
XmINDICATOR_FILL 947
XmINDICATOR_NONE 947
XmInformationDialog 744
XmInputPolicy 180
XmINSERT 816
XmInstallImage 193

XmINTERNAL_HIGHLIGHT 673
XmInternAtom 195
XmINVOKE 816
XmIsArrowButton 197, 610
XmIsArrowButtonGadget 197, 615
XmIsBulletinBoard 197
XmIsCascadeButton 197, 624
XmIsCascadeButtonGadget 197, 629
XmIsComboBox 197, 634
XmIsCommand 197, 644
XmIsContainer 197
XmIsDialogShell 197, 669
XmIsDisplay 197, 672
XmIsDragContext 197
XmIsDragIconObjectClass 197, 687
XmIsDrawingArea 198, 690
XmIsDrawnButton 198, 695
XmIsDropSiteManager 198
XmIsDropTransfer 198
XmIsFileSelectionBox 198, 710, 719
XmIsForm 198, 720
XmIsFrame 198, 727
XmIsGadget 197
XmIsGrabShell 198, 736
XmIsIconGadget 198, 740
XmIsLabel 198, 745
XmIsLabelGadget 198, 751
XmIsList 198, 754
XmIsMainWindow 198, 771
XmIsManager 197, 774
XmIsMenuShell 198, 785
XmIsMessageBox 198, 789
XmIsMotifWMRunning 196
XmIsNotebook 198, 796
XmIsPanedWindow 198, 809
XmIsPrimitive 197
XmIsPrintShell 199, 821
XmIsPushButton 199, 830
XmIsPushButtonGadget 199, 837
XmIsRowColumn 199, 632, 783, 805, 807,
841, 846
XmIsScale 199, 861
XmIsScreen 199, 870
XmIsScrollBar 199, 875
XmIsScrolledWindow 199, 887
XmIsSelectionBox 199, 827, 893

Index

1260 Motif Reference Manual

XmIsSeparator 199, 901
XmIsSeparatorGadget 199, 904
XmIsText 199, 922
XmIsTextField 199, 940
XmIsToggleButton 199, 945
XmIsToggleButtonGadget 199, 955
XmIsTraversable 202
XmIsVendorShell 199, 598
XmKeySymTable 1178
XmLabel 745
XmLabelGadget 751
xmLabelGadgetClass 751
xmLabelWidgetClass 745
XmLARGE_ICON 653, 743
XmLEFT_TO_RIGHT 94, 600, 733, 776, 787
XmLEFT_TO_RIGHT_BOTTOM_TO_TOP
94, 601, 776, 787
XmLEFT_TO_RIGHT_TOP_TO_BOTTOM
94, 601, 776, 787
XmList 754
XmListAddItem 203
XmListAddItems 203
XmListAddItemsUnselected 204
XmListAddItemUnselected 204
XmListCallbackStruct 760, 1179
XmListDeleteAllItems 207
XmListDeleteItem 208
XmListDeleteItems 208
XmListDeleteItemsPos 209
XmListDeletePos 210
XmListDeletePositions 211
XmListDeselectAllItems 212
XmListDeselectItem 213
XmListDeselectPos 214
XmListGetKbdItemPos 215
XmListGetMatchPos 216
XmListGetSelectedPos 218
XmListItemExists 219
XmListItemPos 220
XmListPosSelected 222
XmListPosToBounds 223
XmListReplaceItems 225
XmListReplaceItemsPos 226
XmListReplaceItemsPosUnselected 227
XmListReplaceItemsUnselected 229
XmListReplacePositions 230

XmListSelectItem 231
XmListSelectPos 232
XmListSetAddMode 234
XmListSetBottomItem 235
XmListSetBottomPos 236
XmListSetHorizPos 237
XmListSetItem 238
XmListSetKbdItemPos 239
XmListSetPos 240
XmListUpdateSelectedList 241
xmListWidgetClass 754
XmListYToPos 242
XmLOAD_DEFERRED 845
XmLOAD_IMMEDIATE 845
XmMainWindow 771
XmMainWindowSep1 243, 771
XmMainWindowSep2 243, 771
XmMainWindowSep3 243, 771
XmMainWindowSetAreas 244, 771
xmMainWindowWidgetClass 771
XmMAJOR_TAB 801
XmManager 774
xmManagerWidgetClass 774
XmMapSegmentEncoding 247
XmMARQUEE 655
XmMARQUEE_EXTEND_BOTH 655
XmMARQUEE_EXTEND_START 655
XmMAX_ON_BOTTOM 863, 877
XmMAX_ON_LEFT 863, 877
XmMAX_ON_RIGHT 863, 877
XmMAX_ON_TOP 863, 877
XmMAX_SIDE 864
XmMENU_BAR 852
XmMENU_OPTION 852
XmMENU_POPUP 852
XmMENU_PULLDOWN 852
XmMenuBar 783
XmMenuPosition 248, 819
XmMenuShell 785
xmMenuShellWidgetClass 785
XmMergeMode 1180
XmMessageBox 789
XmMessageBoxGetChild 250, 709, 744, 789,
795, 840, 921, 958, 959
xmMessageBoxWidgetClass 789
XmMessageDialog 795

Motif Reference Manual 1261

Index

XmMILLIMETERS 67, 68, 603
XmMIN_SIDE 864
XmMINOR_TAB 801
XmMULTI_LINE_EDIT 923
XmMULTIBYTE_TEXT 817
XmMULTICLICK_DISCARD 611, 695, 831
XmMULTICLICK_KEEP 611, 696, 831
XmMULTIPLE_SELECT 655, 758
XmN_OF_MANY 948
XmNaccelerator 745
XmNaccelerators 572
XmNacceleratorText 745
XmNaccessColors 775
XmNactivateCallback 611, 625, 696, 832, 927
XmNadjustLast 847
XmNadjustMargin 847
XmNalignment 741, 745
XmNallowOverlap 617
XmNallowResize 811
XmNallowShellResize 589
XmNancestorSensitive 572, 579
XmNanimationMask 701
XmNanimationPixmap 701
XmNanimationPixmapDepth 701
XmNanimationStyle 701
XmNapplyCallback 896
XmNapplyLabelString 894
XmNargc 566
XmNargv 566
XmNarmCallback 611, 696, 832, 949
XmNarmColor 830
XmNarmPixmap 830
XmNarrowDirection 610
XmNarrowLayout 912
XmNarrowOrientation 912
XmNarrowSensitivity 906, 914
XmNarrowSize 635, 912
XmNarrowSpacing 635
XmNattachment 688
XmNaudibleWarning 598
XmNautoDragModel 888
XmNautomaticSelection 651, 755
XmNautoShowCursorPosition 922
XmNautoUnmanage 617
XmNavigationType 1180
XmNbackground 572, 732

XmNbackgroundPixmap 572, 732
XmNbackPageBackground 798
XmNbackPageForeground 798
XmNbackPageNumber 798
XmNbackPagePlacement 798
XmNbackPageSize 798
XmNbaseHeight 605
XmNbaseWidth 605
XmNbindingPixmap 798
XmNbindingType 798
XmNbindingWidth 798
XmNbitmapConversionModel 870
XmNblendModel 679
XmNblinkRate 925, 940
XmNborderColor 572
XmNborderPixmap 572
XmNborderWidth 572, 579, 615, 640
XmNbottomAttachment 721
XmNbottomOffset 721
XmNbottomPosition 721
XmNbottomShadowColor 732, 736, 775
XmNbottomShadowPixmap 732, 736, 775
XmNbottomWidget 721
XmNbrowseSelectionCallback 759
XmNbuttonAccelerators 853
XmNbuttonAcceleratorText 853
XmNbuttonCount 853
XmNbuttonFontList 598, 617, 786
XmNbuttonMnemonicCharSets 853
XmNbuttonMnemonics 853
XmNbuttonRenderTable 598, 617, 786
XmNbuttons 853
XmNbuttonSet 853
XmNbuttonType 853
XmNcancelButton 617
XmNcancelCallback 791, 896
XmNcancelLabelString 790, 894
XmNcascadePixmap 624
XmNcascadingCallback 625
XmNchildHorizontalAlignment 728
XmNchildHorizontalSpacing 728
XmNchildPlacement 894
XmNchildren 568
XmNchildType 728
XmNchildVerticalAlignment 728
XmNclientData 679, 816

Index

1262 Motif Reference Manual

XmNclipWindow 888
XmNcollapsedStatePixmap 651
XmNcolorAllocationProc 870
XmNcolorCalculationProc 870
XmNcolormap 572
XmNcolumns 635, 906, 925, 940
XmNcomboBoxType 635
XmNcommand 644
XmNcommandChangedCallback 645
XmNcommandEnteredCallback 645
XmNcommandWindow 772
XmNcommandWindowLocation 772
XmNconvertCallback 657, 691, 865
XmNconvertProc 679
XmNcreatePopupChildProc 589
XmNcurrentPageNumber 798
XmNcursorBackground 679
XmNcursorForeground 679
XmNcursorPosition 922, 940
XmNcursorPositionVisible 925, 940
XmNdarkThreshold 870
XmNdecimalPoints 862, 906, 914
XmNdecrementCallback 879
XmNdefaultActionCallback 657, 759
XmNdefaultArrowSensitivity 912
XmNdefaultButton 618
XmNdefaultButtonEmphasis 673
XmNdefaultButtonShadowThickness 830
XmNdefaultButtonType 790
XmNdefaultCopyCursorIcon 870
XmNdefaultFontList 598, 786
XmNdefaultInvalidCursorIcon 870
XmNdefaultLinkCursorIcon 870
XmNdefaultMoveCursorIcon 870
XmNdefaultNoneCursorIcon 871
XmNdefaultPixmapResolution 822
XmNdefaultPosition 618
XmNdefaultSourceCursorIcon 871
XmNdefaultValidCursorIcon 871
XmNdefaultVirtualBindings 673
XmNdeleteResponse 567, 598
XmNdepth 573, 688
XmNdestinationCallback 657, 691, 759, 927
XmNdestroyCallback 573, 576
XmNdetail 650, 741
XmNdetailColumnHeading 650, 651

XmNdetailColumnHeadingCount 651
XmNdetailCount 741
XmNdetailOrder 651
XmNdetailOrderCount 651
XmNdetailShadowThickness 610, 912, 946
XmNdetailTabList 651
XmNdialogStyle 618, 623
XmNdialogTitle 618
XmNdialogType 709, 719, 744, 790, 795, 827,
840, 894, 900, 921, 958, 959
XmNdirectory 711
XmNdirectoryValid 711
XmNdirListItemCount 711
XmNdirListItems 711
XmNdirListLabelString 711
XmNdirMask 711
XmNdirSearchProc 711
XmNdirSpec 711
XmNdirTextLabelString 711
XmNdisarmCallback 611, 696, 832, 949
XmNdoubleClickInterval 755
XmNdragCallback 865, 879
XmNdragDropFinishCallback 681
XmNdragInitiatorProtocolStyle 673
XmNdragMotionCallback 681
XmNdragOperations 679
XmNdragProc 703
XmNdragReceiverProtocolStyle 673
XmNdragStartCallback 676
XmNdropFinishCallback 681
XmNdropProc 703
XmNdropRectangles 702
XmNdropSiteActivity 702
XmNdropSiteEnterCallback 681
XmNdropSiteLeaveCallback 681
XmNdropSiteOperations 702
XmNdropSiteType 702
XmNdropStartCallback 681
XmNdropTransfers 707
XmNeditable 862, 876, 906, 922, 940
XmNeditMode 922
XmNenableBtn1Transfer 673
XmNenableButtonTab 673
XmNenableDragIcon 673
XmNenableEtchedInMenu 673
XmNenableFdbPickList 711

Motif Reference Manual 1263

Index

XmNenableMultiKeyBindings 673
XmNenableThinThickness 611, 673
XmNenableToggleColor 673
XmNenableToggleVisual 673
XmNenableUnselectableDrag 673
XmNenableWarp 673
XmNendJobCallback 823
XmNentryAlignment 847
XmNentryBorder 847
XmNentryCallback 855
XmNentryClass 784, 842, 847
XmNentryParent 656
XmNentryVerticalAlignment 847
XmNentryViewType 651
XmNexpandedStatePixmap 651
XmNexportTargets 679
XmNexposeCallback 691, 696
XmNextendedSelectionCallback 759
XmNfileFilterStyle 711
XmNfileListItemCount 711
XmNfileListItems 711
XmNfileListLabelString 711
XmNfileSearchProc 711
XmNfileTypeMask 711
XmNfillOnArm 830
XmNfillOnSelect 946
XmNfilterLabelString 711
XmNfirstPageNumber 799
XmNfocusCallback 620, 927
XmNfont 844, 871
XmNfontList 635, 651, 741, 745, 755, 862,
925, 940
XmNfontName 844
XmNfontType 844
XmNforeground 732, 775
XmNforegroundThreshold 871
XmNfractionBase 720
XmNframeBackground 799
XmNframeChildType 728
XmNframeShadowThickness 799
XmNgainPrimaryCallback 927
XmNgeometry 589
XmNgrabStyle 737
XmNheight 573, 579, 688
XmNheightInc 605
XmNhelpCallback 734, 778

XmNhelpLabelString 790, 894
XmNhighlightColor 732, 775
XmNhighlightOnEnter 732, 862
XmNhighlightPixmap 732, 775
XmNhighlightThickness 636, 640, 732, 862
XmNhistoryItemCount 644
XmNhistoryItems 644
XmNhistoryMaxItems 644
XmNhistoryVisibleItemCount 644
XmNhorizontalFontUnit 871
XmNhorizontalScrollBar 755, 888
XmNhorizontalSpacing 720
XmNhotX 688
XmNhotY 688
XmNiconic 592
XmNiconMask 605
XmNiconName 592
XmNiconNameEncoding 592
XmNiconPixmap 605
XmNiconWindow 605
XmNiconX 605
XmNiconY 605
XmNimportTargets 702
XmNincludeStatus 816
XmNincrement 876
XmNincremental 679, 707
XmNincrementCallback 879
XmNincrementValue 906, 914
XmNindeterminateInsensitivePixmap 946
XmNindeterminatePixmap 946
XmNindicatorOn 946
XmNindicatorSize 946
XmNindicatorType 946
XmNinitialDelay 876, 912
XmNinitialFocus 775
XmNinitialResourcesPersistent 573
XmNinitialState 605
XmNinnerMarginHeight 799
XmNinnerMarginWidth 799
XmNinput 605
XmNinputCallback 691
XmNinputMethod 598
XmNinputPolicy 599
XmNinsensitiveStippleBitmap 871
XmNinsertPosition 568
XmNinvalidCursorForeground 679

Index

1264 Motif Reference Manual

XmNinvokeParseProc 816
XmNisAligned 847
XmNisHomogeneous 847
XmNisHomogenous 784, 842
XmNitemCount 636, 755
XmNitems 636, 755
XmNkeyboardFocusPolicy 599
XmNlabelFontList 599, 618, 786
XmNlabelInsensitivePixmap 745
XmNlabelPixmap 745
XmNlabelRenderTable 599, 618, 786
XmNlabelString 741, 746, 847
XmNlabelType 746
XmNlargeCellHeight 651
XmNlargeCellWidth 651
XmNlargeIconMask 741
XmNlargeIconPixmap 741
XmNlastPageNumber 799
XmNlayoutDirection 599, 635, 732, 775, 786
XmNlayoutType 649, 650, 651
XmNleftAttachment 721
XmNleftOffset 721
XmNleftPosition 721
XmNleftWidget 721
XmNlightThreshold 871
XmNlist 636
XmNlistItemCount 894
XmNlistItems 894
XmNlistLabelString 827, 894
XmNlistMarginHeight 755
XmNlistMarginWidth 755
XmNlistSizePolicy 640, 755
XmNlistSpacing 755
XmNlistUpdated 712
XmNlistVisibleItemCount 827, 894
XmNloadModel 844
XmNlosePrimaryCallback 927
XmNlosingFocusCallback 927
XmNmainWindowMarginHeight 772
XmNmainWindowMarginWidth 772
XmNmajorTabSpacing 799
XmNmapCallback 620, 855
XmNmappedWhenManaged 573
XmNmappingDelay 624
XmNmargin 902
XmNmarginBottom 746

XmNmarginHeight 618, 636, 651, 690, 727,
741, 746, 809, 847, 912, 922, 940
XmNmarginLeft 746
XmNmarginRight 746
XmNmarginTop 746
XmNmarginWidth 618, 636, 651, 690, 727,
741, 746, 809, 847, 912, 922, 940
XmNmask 688
XmNmatchBehavior 635, 636, 755
XmNmaxAspectX 605
XmNmaxAspectY 606
XmNmaxHeight 606
XmNmaximum 862, 876
XmNmaximumValue 906, 914
XmNmaxLength 923, 941
XmNmaxWIdth 606
XmNmaxX 822
XmNmaxY 822
XmNmenuAccelerator 784, 820, 847
XmNmenuBar 772
XmNmenuCursor 871
XmNmenuHelpWidget 847
XmNmenuHistory 847
XmNmenuPost 784, 806, 808, 820, 847
XmNmessageAlignment 790
XmNmessageString 790
XmNmessageWindow 772
XmNminAspectX 606
XmNminAspectY 606
XmNminHeight 606
XmNminimizeButtons 790, 894
XmNminimum 862, 876
XmNminimumValue 907, 914
XmNminorTabSpacing 799
XmNminWidth 606
XmNminX 822
XmNminY 822
XmNmnemonic 746, 847
XmNmnemonicCharSet 746, 847
XmNmodifyVerifyCallback 916, 927
XmNmodifyVerifyCallbackWcs 927
XmNmotifVersion 673
XmNmotionVerifyCallback 927
XmNmoveOpaque 871
XmNmulciClick 610
XmNmultiClick 695, 830

Motif Reference Manual 1265

Index

XmNmultipleSelectionCallback 759
XmNmustMatch 894
XmNmwmDecorations 599
XmNmwmFunctions 599
XmNmwmInputMode 599
XmNmwmMenu 599
XmNnavigationType 633, 640, 732, 775, 842
XmNnoFontCallback 676
XmNnoMatchCallback 896
XmNnoMatchString 712
XmNnoneCursorForeground 679
XmNnoRenditionCallback 676
XmNnoResize 618
XmNnotebookChildType 801
XmNnumChildren 568
XmNnumColumns 847
XmNnumDropRectangles 702
XmNnumDropTransfers 707
XmNnumExportTargets 679
XmNnumImportTargets 702
XmNnumValues 907, 914
XmNO_AUTO_SELECT 652, 756
XmNO_DROP_SITE 684
XmNO_LINE 654, 845, 902
XmNO_SCROLL 890
XmNoffsetX 688
XmNoffsetY 688
XmNokCallback 791, 896
XmNokLabelString 790, 894
XmNONE 599, 637, 656, 733, 757, 776, 799,
864, 878
XmNoperationChangedCallback 681
XmNoperationCursorIcon 679
XmNoptionLabel 853
XmNoptionMnemonic 853
XmNorientation 784, 799, 806, 808, 809, 848,
862, 876, 902
XmNOT_SELECTED 743
XmNotebook 796
XmNotebookCallbackStruct 802, 1180
XmNotebookGetPageInfo 252, 796
XmNotebookPageInfo 1181
XmNotebookPageInfo structure 253
xmNotebookWidgetClass 796
XmNoutlineButtonPolicy 651
XmNoutlineChangedCallback 657

XmNoutlineColumnWidth 651
XmNoutlineIndentation 651
XmNoutlineLineStyle 651
XmNoutlineState 656
XmNoverrideRedirect 589
XmNownerEvents 737
XmNpacking 848
XmNpageChangedCallback 802
XmNpageDecrementCallback 879
XmNpageIncrement 876
XmNpageIncrementCallback 879
XmNpageNumber 801
XmNpageSetupCallback 823
XmNpaneMaximum 811
XmNpaneMinimum 811
XmNpathMode 712
XmNpattern 712, 816
XmNpatternType 816
XmNpdmNotificationCallback 823
XmNpendingDelete 924, 941
XmNpixmap 688
XmNpopdownCallback 589
XmNpopupCallback 589
XmNpopupEnabled 820, 848
XmNpopupHandlerCallback 778
XmNposition 907, 914
XmNpositionIndex 656, 811, 853
XmNpositionMode 636
XmNpositionType 907, 914
XmNpostFromButton 853
XmNpreeditType 599
XmNprimaryOwnership 651, 755
XmNprocessingDirection 862, 876
XmNpromptString 644
XmNpushButtonEnabled 695
XmNqualifySearchDataProc 712
XmNradioAlwaysOne 842, 848
XmNradioBehavior 633, 842, 848
XmNrecomputeSize 746
XmNrefigureMode 809
XmNrenderTable 636, 640, 651, 741, 746,
755, 862, 925, 941
XmNrenditionBackground 844
XmNrenditionForeground 844
XmNrepeatDelat 912
XmNrepeatDelay 876

Index

1266 Motif Reference Manual

XmNresizable 721, 801
XmNresizeCallback 691, 696
XmNresizeHeight 848, 925
XmNresizePolicy 618, 690
XmNresizeWidth 848, 925, 941
XmNrightAttachment 721
XmNrightOffset 721
XmNrightPosition 721
XmNrightWidget 721
XmNrowColumnType 633, 784, 806, 808,
820, 829, 842, 848
XmNrows 925
XmNrubberPositioning 720
XmNsashHeight 809
XmNsashIndent 810
XmNsashShadowThickness 810
XmNsashWidth 810
XmNsaveUnder 589
XmNscaleHeight 862
XmNscaleMultiple 862
XmNscaleWidth 862
XmNscreen 573
XmNscrollBarDisplayPolicy 755, 885, 886,
888
XmNscrollBarPlacement 888
XmNscrolledWindowChildType 890
XmNscrolledWindowMarginHeight 888
XmNscrolledWindowMarginWidth 888
XmNscrollHorizontal 926
XmNscrollingPolicy 885, 886, 888
XmNscrollLeftSide 926
XmNscrollTopSide 926
XmNscrollVertical 926
XmNselectColor 651, 755, 946
XmNselectedItem 636
XmNselectedItemCount 755
XmNselectedItems 755
XmNselectedObjectCount 651
XmNselectedObjects 651
XmNselectedPosition 636
XmNselectedPositionCount 755
XmNselectedPositions 755
XmNselectInsensitivePixmap 946
XmNselectionArray 924, 941
XmNselectionArrayCount 924, 941
XmNselectionCallback 639, 657

XmNselectionLabelString 894
XmNselectionMode 755
XmNselectionPolicy 640, 651, 755
XmNselectionTechnique 651
XmNselectPixmap 946
XmNselectThreshold 924, 941
XmNsensitive 573, 579
XmNseparatorOn 810
XmNseparatorType 902
XmNset 946
XmNshadowThickness 732, 737, 775
XmNshadowType 618, 695, 727
XmNshellUnitType 599
XmNshowArrows 862, 876
XmNshowAsDefault 830
XmNshowSeparator 772
XmNshowValue 862
XmNsimpleCallback 853
XmNsingleSelectionCallback 759
XmNskipAdjust 811
XmNsliderMark 862, 876
XmNsliderSize 862, 876
XmNsliderVisual 862, 876
XmNslidingMode 862, 876
XmNsmallCellHeight 651
XmNsmallCellWidth 651
XmNsmallIconMask 741
XmNsmallIconPixmap 741
XmNsnapBackMultiple 876
XmNsource 923
XmNsourceCursorIcon 679
XmNsourcePixmapIcon 679
XmNspacing 640, 741, 810, 848, 888, 912,
946
XmNspatialIncludeModel 650, 651
XmNspatialResizeModel 651
XmNspatialSnapModel 650, 651
XmNspatialStyle 650, 651
XmNspecifyLayoutDirection 775
XmNspecifyUnitType 775
XmNspinBoxChildType 907, 914
XmNstartJobCallback 823
XmNstateCursorIcon 679
XmNstrikethruType 844
XmNstringDirection 746, 755, 775
XmNsubMenuId 624, 848

Motif Reference Manual 1267

Index

XmNsubstitute 816
XmNsymbolPixmap 709, 744, 790, 840, 958,
959
XmNtabList 844
XmNtag 844
XmNtearOffMenuActivateCallback 855
XmNtearOffMenuDeactivateCallback 855
XmNtearOffModel 848
XmNtearOffTitle 848
XmNtextAccelerators 894
XmNtextColumns 894
XmNtextField 636, 907
XmNtextFontList 599, 618
XmNtextRenderTable 599, 618
XmNtextString 894
XmNtextTranslations 618
XmNtitle 606
XmNtitleEncoding 606
XmNtitleString 862
XmNtoBottomCallback 879
XmNtoggleMode 946
XmNtopAttachment 721
XmNtopCharacter 923
XmNtopItemPosition 756
XmNtopLevelEnterCallback 681
XmNtopLevelLeaveCallback 681
XmNtopOffset 721
XmNtopPosition 722
XmNtopShadowColor 732, 737, 775
XmNtopShadowPixmap 732, 737, 775
XmNtopWidget 722
XmNtotalLines 923
XmNtoTopCallback 879
XmNtransferProc 707
XmNtransferStatus 707
XmNtransient 606
XmNtransientFor 595
XmNtranslations 573
XmNtraversalOn 633, 640, 732, 775, 842
XmNtraverseObscuredCallback 890
XmNtroughColor 876
XmNUMERIC 908, 915
XmNunderlineType 844
XmNunitType 599, 732, 775
XmNunmapCallback 620, 855
XmNunpostBehavior 871

XmNunselectColor 946
XmNuseAsyncGeometry 599
XmNuseColorObject 871
XmNuserData 673, 732, 775, 871
XmNvalidCursorForeground 679
XmNvalue 862, 876, 923, 941
XmNvalueChangedCallback 865, 879, 916,
927, 949
XmNvalues 907, 914
XmNvalueWcs 923, 941
XmNverifyBell 923, 941
XmNverticalFontUnit 871
XmNverticalScrollBar 756, 888
XmNverticalSpacing 720
XmNviewType 741
XmNvisibleItemCount 636, 756
XmNvisibleWhenOff 946
XmNvisual 589
XmNvisualEmphasis 741
XmNvisualPolicy 640, 885, 886, 888
XmNwaitForWm 606
XmNwhichButton 848
XmNwidth 573, 579, 688
XmNwidthInc 606
XmNwindowGroup 606
XmNwinGravity 606
XmNwmTimeout 606
XmNwordWrap 925
XmNworkWindow 888
XmNwrap 907, 914
XmNx 573, 579
XmNy 573, 579
XmObjectAtPoint 254
XmOFF 674
XmOffset 1181
XmOffsetModel 1181
XmOffsetModel values 423
XmOffsetPtr 1181
XmONE_BASED 638
XmONE_OF_MANY 948
XmONE_OF_MANY_DIAMOND 948
XmONE_OF_MANY_ROUND 948
XmOperationChangedCallback 683
XmOperationChangedCallbackStruct 683,
1181
XmOptionButtonGadget 255, 629, 805, 807

Index

1268 Motif Reference Manual

XmOptionLabelGadget 256, 751, 805, 807
XmOptionMenu 805, 807
XmOUTLINE 649, 653
XmOUTLINE_BUTTON_ABSENT 653
XmOUTLINE_BUTTON_PRESENT 653
XmOWN_ALWAYS 654, 757
XmOWN_MULTIPLE 654, 757
XmOWN_NEVER 654, 757
XmOWN_POSSIBLE_MULTIPLE 654, 757
XmPACK_COLUMN 851
XmPACK_NONE 851
XmPACK_TIGHT 851
XmPAGE 801
XmPAGE_SCROLLER 801
XmPanedWindow 809
xmPanedWindowWidgetClass 809
XmParseMapping 815, 1181
XmParseMappingCreate 257, 815
XmParseMappingFree 260, 815
XmParseMappingGetValues 261, 815
XmParseMappingSetValues 263, 815
XmParseModel 1182
XmParseModel structure 415
XmParseProc 817, 1182
XmParseTable 1182
XmParseTableFree 265
XmPATH_MODE_FULL 714
XmPATH_MODE_RELATIVE 714
XmPER_SHELL 600
XmPER_WIDGET 600
XmPIXELS 67, 68, 80, 603, 734, 777
XmPIXMAP 747, 799
XmPIXMAP_OVERLAP_ONLY 799
XmPLACE_ABOVE_SELECTION 895
XmPLACE_BELOW_SELECTION 895
XmPLACE_TOP 895
XmPOINTER 600
XmPOINTS 67, 69, 603, 734, 777
XmPOPUP_AUTOMATIC 851
XmPOPUP_AUTOMATIC_RECURSIVE 851
XmPOPUP_DISABLED 851
XmPOPUP_KEYBOARD 851
XmPopupHandlerCallbackStruct 778, 1183
XmPopupMenu 819
XmPOSITION_INDEX 908, 915
XmPOSITION_VALUE 908, 915

XmPrintPopupPDM 267, 821
XmPrintSetup 269, 821
XmPrintShell 821
XmPrintShellCallbackStruct 823, 1183
xmPrintShellWidgetClass 821
XmPrintToFile 271, 821
XmProcessTraversal 273
XmPromptDialog 827
XmPulldownMenu 828
XmPUSHBUTTON 854
XmPushButton 830
XmPushButtonCallbackStruct 832, 1182
XmPushButtonGadget 837
xmPushButtonGadgetClass 837
xmPushButtonWidgetClass 830
XmQTaccessColors 598, 615, 731, 741, 751,
904
XmQTaccessTextual 745, 751, 798, 894, 912,
922, 940
XmQTactivatable 610, 615, 695, 711, 790,
798, 830, 837, 894
XmQTcareParentVisual 615, 741, 751, 830,
904, 955
XmQTcontainer 650, 741
XmQTcontainerItem 60, 650, 741
XmQTdialogShellSavvy 617, 669
XmQTjoinSide 798
XmQTmenuSavvy 745, 751, 830, 837, 847,
901, 904, 955
XmQTmenuSystem 624, 629, 695, 745, 751,
772, 785, 830, 837, 847, 945, 955
XmQTnavigator 650, 755, 798, 888, 912, 922
XmQTpointIn 650, 741
XmQTscrollFrame 650, 755, 798, 888, 922
XmQTspecifyLayoutDirection 598, 731, 785
XmQTspecifyRenderTable 598, 617, 624,
629, 650, 695, 741, 745, 751, 755, 785, 830,
837, 861, 922, 940, 945, 955
XmQTspecifyUnhighlight 731, 798
XmQTspecifyUnitType 598, 731
XmQTtakesDefault 617, 830, 837
XmQTtransfer 650, 745, 751, 755, 861, 922,
940
XmQTtraversalControl 650, 798
XmQualifyProc 1183
XmQuestionDialog 840

Motif Reference Manual 1269

Index

XmQUICK_NAVIGATE 637, 757
XmRadioBox 841
XmRADIOBUTTON 854
XmRedisplayWidget 276, 821
XmRegisterSegmentEncoding 279
XmRemoveFromPostFromList 280
XmRemoveProtocolCallback 281
XmRemoveProtocols 282
XmRemoveTabGroup 283
XmRemoveWMProtocolCallback 284
XmRemoveWMProtocols 285
XmRenderTable 1184
XmRenderTableAddRenditions 286
XmRenderTableCopy 289
XmRenderTableCvtFromProp 290
XmRenderTableCvtToProp 291
XmRenderTableFree 292
XmRenderTableGetRendition 293
XmRenderTableGetRenditions 294
XmRenderTableGetTags 296
XmRenderTableRemoveRenditions 298
XmRendition 843, 1183
XmRenditionCreate 299, 843
XmRenditionFree 301, 843
XmRenditionRetrieve 302, 843
XmRenditionUpdate 304, 843
XmRepTypeAddReverse 306
XmRepTypeEntry 1184
XmRepTypeEntry structure 309
XmRepTypeGetId 307
XmRepTypeGetNameList 308
XmRepTypeGetRecord 309
XmRepTypeGetRegistered 311
XmRepTypeId 1184
XmRepTypeInstallTearOffModelConverter
313
XmRepTypeList 1184
XmRepTypeRegister 314
XmRepTypeValidValue 316
XmRESIZE_ANY 620, 691
XmRESIZE_GROW 620, 691
XmRESIZE_IF_POSSIBLE 757
XmRESIZE_NONE 620, 691
XmResolveAllPartOffsets 317
XmResolvePartOffsets 318
XmREVERSED_GROUND_COLORS 654,

758, 948
XmRIGHT_TO_LEFT 94, 600, 733, 776, 787
XmRIGHT_TO_LEFT_BOTTOM_TO_TOP
94, 601, 776, 787
XmRIGHT_TO_LEFT_TOP_TO_BOTTOM
94, 601, 776, 787
XmROUND_MARK 864, 878
XmRowColumn 632, 846
XmRowColumnCallbackStruct 856, 1184
xmRowColumnWidgetClass 632, 783, 805,
807, 841, 846
XmScale 861
XmScaleCallbackStruct 866, 1185
XmScaleGetValue 319, 861
XmScaleSetTicks 320, 861
XmScaleSetValue 323, 861
xmScaleWidgetClass 861
XmScreen 870
xmScreenClass 870
XmScreenColorProc 873, 1185
XmSCROLL_HOR 890
XmSCROLL_VERT 890
XmScrollBar 875
XmScrollBarCallbackStruct 880, 1185
XmScrollBarGetValues 324, 875
XmScrollBarSetValues 325, 875
xmScrollBarWidgetClass 875
XmScrolledList 885
XmScrolledText 886
XmScrolledWindow 887
XmScrolledWindowSetAreas 327, 887
xmScrolledWindowWidgetClass 887
XmScrollVisible 329, 887
XmSearchProc 1186
XmSecondaryResourceData 1186
XmSELECT_ALL 924
XmSELECT_LINE 924, 942
XmSELECT_POSITION 924, 942
XmSELECT_WORD 924, 942
XmSELECTED 743
XmSelectionBox 893
XmSelectionBoxCallbackStruct 897, 1186
XmSelectionBoxGetChild 330, 827, 893, 900
xmSelectionBoxWidgetClass 893
XmSelectionCallbackStruct 1186
XmSelectionDialog 900

Index

1270 Motif Reference Manual

XmSEPARATOR 854
XmSeparator 901
XmSeparatorGadget 904
xmSeparatorGadgetClass 904
xmSeparatorWidgetClass 901
XmSET 949
XmSetColorCalculation 332
XmSetFontUnit 334
XmSetFontUnits 335
XmSetMenuCursor 336
XmSetProtocolHooks 337
XmSetWMProtocolHooks 338
XmSHADOW_ETCHED_IN 620, 696, 728,
902
XmSHADOW_ETCHED_OUT 620, 696, 728,
902
XmSHADOW_IN 620, 696, 728
XmSHADOW_OUT 620, 696, 728
XmSHADOWED_BACKGROUND 865, 878
XmSimpleSpinBox 906
XmSimpleSpinBoxAddItem 339, 906
XmSimpleSpinBoxDeletePos 341, 906
XmSimpleSpinBoxSetItem 342, 906
xmSimpleSpinBoxWidgetClass 906
XmSINGLE 654
XmSINGLE_DASHED_LINE 845, 902
XmSINGLE_LINE 845, 902
XmSINGLE_LINE_EDIT 923
XmSINGLE_SELECT 655, 758
XmSLIDER 865, 878
XmSMALL_ICON 653, 743
XmSNAP_TO_GRID 656
XmSOLID 799
XmSPATIAL 649, 653
XmSpinBox 911
XmSpinBoxCallbackStruct 916, 1187
XmSpinBoxValidatePosition 343, 911
xmSpinBoxWidgetClass 911
XmSPIRAL 799
XmSTATIC 757, 888
XmSTATUS_AREA 801
XmSTICKY_TAB_GROUP 733, 776
XmSTRING 747, 908, 915
XmString 1187
XmSTRING_DIRECTION_DEFAULT 776
XmSTRING_DIRECTION_L_TO_R 747, 759,

776
XmSTRING_DIRECTION_R_TO_L 747, 759,
776
XmStringBaseline 345
XmStringByteCompare 346
XmStringByteStreamLength 347
XmStringCharSet 1188
XmStringCharSetTable 1188
XmStringCompare 348
XmStringComponentCreate 349
XmStringComponentType 1188
XmStringComponentType values 381
XmStringConcat 351
XmStringConcatAndFree 352
XmStringContext 1189
XmStringCopy 354
XmStringCreate 355
XmStringCreateLocalized 357
XmStringCreateLtoR 359
XmStringCreateSimple 361
XmStringDirectionCreate 362
XmStringDirectionToDirection 363
XmStringDraw 364
XmStringDrawImage 366
XmStringDrawUnderline 368
XmStringEmpty 370
XmStringExtent 371
XmStringFree 372
XmStringFreeContext 374
XmStringGenerate 376
XmStringGetLtoR 378
XmStringGetNextComponent 380
XmStringGetNextSegment 383
XmStringGetNextTriple 385
XmStringHasSubstring 388
XmStringHeight 389
XmStringInitContext 390
XmStringIsVoid 392
XmStringLength 393
XmStringLineCount 394
XmStringNConcat 396
XmStringNCopy 397
XmStringParseText 398
XmStringPeekNextComponent 401
XmStringPeekNextTriple 403
XmStringPutRendition 405

Motif Reference Manual 1271

Index

XmStringSegmentCreate 406
XmStringSeparatorCreate 407
XmStringTable 1189
XmStringTable, convert to XTextProperty 83
XmStringTableParseStringArray 408
XmStringTableProposeTablist 410
XmStringTableToXmString 412
XmStringTableUnparse 414
XmStringTag 1189
XmStringToXmStringTable 416
XmStringUnparse 418
XmStringWidth 421
XmTab 1189
XmTAB_GROUP 733, 776
XmTabCreate 422
XmTabFree 425
XmTabGetValues 426
XmTabList 1190
XmTabListCopy 428
XmTabListFree 429
XmTabListGetTab 430
XmTabListInsertTabs 431
XmTabListRemoveTabs 432
XmTabListReplacePositions 433
XmTabListTabCount 435
XmTabSetValue 436
XmTargetsAreCompatible 437
XmTEAR_OFF_DISABLED 852
XmTEAR_OFF_ENABLED 852
XmTemplateDialog 921
XmTERMINATE 816
XmText 922
XmTextBlock 929
XmTextBlockRec 1190
XmTextBlockRecWcs 1190
XmTextBlockWcs 929
XmTextClearSelection 438
XmTextCopy 440
XmTextCopyLink 442
XmTextCut 444
XmTextDirection 1190
XmTextDisableRedisplay 446
XmTextEnableRedisplay 447
XmTextField 940
XmTextFieldClearSelection 438
XmTextFieldCopy 440

XmTextFieldCopyLink 442
XmTextFieldCut 444
XmTextFieldGetBaseline 452
XmTextFieldGetCursorPosition 454
XmTextFieldGetEditable 455
XmTextFieldGetInsertionPosition 456
XmTextFieldGetLastPosition 457
XmTextFieldGetMaxLength 458
XmTextFieldGetSelection 459
XmTextFieldGetSelectionPosition 460
XmTextFieldGetSelectionWcs 461
XmTextFieldGetString 463
XmTextFieldGetStringWcs 465
XmTextFieldGetSubstring 467
XmTextFieldGetSubstringWcs 469
XmTextFieldInsert 472
XmTextFieldInsertWcs 474
XmTextFieldPaste 476
XmTextFieldPasteLink 478
XmTextFieldPosToXY 480
XmTextFieldRemove 481
XmTextFieldReplace 482
XmTextFieldReplaceWcs 484
XmTextFieldSetAddMode 487
XmTextFieldSetCursorPosition 488
XmTextFieldSetEditable 489
XmTextFieldSetHighlight 490
XmTextFieldSetInsertionPosition 492
XmTextFieldSetMaxLength 494
XmTextFieldSetSelection 495
XmTextFieldSetString 497
XmTextFieldSetStringWcs 499
XmTextFieldShowPosition 502
xmTextFieldWidgetClass 940
XmTextFieldXYToPos 504
XmTextFindString 448
XmTextFindStringWcs 450
XmTextGetBaseline 452
XmTextGetCenterline 453
XmTextGetCursorPosition 454
XmTextGetEditable 455
XmTextGetInsertionPosition 456
XmTextGetLastPosition 457
XmTextGetMaxLength 458
XmTextGetSelection 459
XmTextGetSelectionPosition 460

Index

1272 Motif Reference Manual

XmTextGetSelectionWcs 461
XmTextGetSource 462
XmTextGetString 463
XmTextGetStringWcs 465
XmTextGetSubstring 467
XmTextGetSubstringWcs 469
XmTextGetTopCharacter 471
XmTextInsert 472
XmTextInsertWcs 474
XmTextPaste 476
XmTextPasteLink 478
XmTextPosition 1190
XmTextPosToXY 480
XmTextRemove 481
XmTextReplace 482
XmTextReplaceWcs 484
XmTextScroll 486
XmTextSetAddMode 487
XmTextSetCursorPosition 488
XmTextSetEditable 489
XmTextSetHighlight 490
XmTextSetInsertionPosition 492
XmTextSetMaxLength 494
XmTextSetSelection 495
XmTextSetSource 496
XmTextSetString 497
XmTextSetStringWcs 499
XmTextSetTopCharacter 501
XmTextShowPosition 502
XmTextSource 1190
XmTextType 1191
XmTextVerifyCallbackStruct 929, 1191
XmTextVerifyCallbackStructWcs 929, 1192
xmTextWidgetClass 922
XmTextXYToPos 504
XmTHERMOMETER 865, 878
XmTHUMB_MARK 864, 878
XmTITLE 854
XmTOGGLE_BOOLEAN 949
XmTOGGLE_INDETERMINATE 949
XmToggleButton 945
XmToggleButtonCallbackStruct 950, 1192
XmToggleButtonGadget 955
xmToggleButtonGadgetClass 849, 955
XmToggleButtonGadgetGetState 505, 955
XmToggleButtonGadgetSetState 507, 955

XmToggleButtonGadgetSetValue 509, 955
XmToggleButtonGetState 505, 945
XmToggleButtonSetState 507, 945
XmToggleButtonSetValue 509, 945
XmToggleButtonState 1192
xmToggleButtonWidgetClass 945
XmTOP_LEFT 799, 889
XmTOP_RIGHT 799, 889
XmTOP_TO_BOTTOM 94, 600, 776, 787
XmTOP_TO_BOTTOM_LEFT_TO_RIGHT
94, 601, 776, 787
XmTOP_TO_BOTTOM_RIGHT_TO_LEFT
94, 601, 776, 787
XmTopLevelEnterCallback 684
XmTopLevelEnterCallbackStruct 684, 1193
XmTopLevelLeaveCallback 684
XmTopLevelLeaveCallbackStruct 684, 1193
XmTOUCH_ONLY 655
XmTOUCH_OVER 655
XmTrackingEvent 511
XmTrackingLocate 513
XmTRANSFER_FAILURE 707
XmTRANSFER_SUCCESS 707
XmTransferDone 524
XmTransferSendRequest 528
XmTransferSetParameters 529
XmTransferStartRequest 531
XmTransferStatus 1194
XmTransferValue 532
XmTranslateKey 534
XmTraversalDirection 1194
XmTraverseObscureCallbackStruct 1194
XmTraverseObscuredCallbackStruct 890
XmTROUGH_COLOR 865, 878
XmUninstallImage 536
XmUNMAP 600
XmUNSET 949
XmUNSPECIFIED_PAGE_NUMBER 803
XmUpdateDisplay 537
XmVaCreateSimpleCheckBox 538, 632, 846
XmVaCreateSimpleMenuBar 540, 783, 846
XmVaCreateSimpleOptionMenu 543, 805,
807, 846
XmVaCreateSimplePopupMenu 546, 819,
846
XmVaCreateSimplePulldownMenu 549, 828,

Motif Reference Manual 1273

Index

846
XmVaCreateSimpleRadioBox 553, 841, 846
XmVARIABLE 757, 889
XmVERT_SCROLLBAR 890
XmVERTICAL 801, 810, 851, 863, 877, 902
XmVisibility 1195
XmVisibility structure 172
XmWarningDialog 958
XmWIDECHAR_TEXT 817
XmWidgetGetBaselines 555
XmWidgetGetDisplayRect 556
XmWORK_AREA 852, 890
XmWorkingDialog 959
XmZERO_BASED 638
XPFinishProc structure 272
XpStartJob 272
XRectangle 1167
XrmValue 1195
XrmValuePtr 1195
Xt translation table type 1105
XtAccelerators 1195
XtAppCreateShell 565, 581, 672
XtAppInitialize 566, 672
XtCallbackList 1195
XtCallbackProc 1196
XtCheckpointToken 585
XtCheckpointTokenRec 585
XtConvertSelectionIncrProc 1196
XtCreatePopupChildProc 590, 1196
XTextProperty

convert to Compound String Table 81
XTextProperty structure 82
XtIsApplicationShell 565
XtIsComposite 568
XtIsConstraint 570
XtIsOverrideShell 577
XtIsSessionShell 581
XtIsTopLevelShell 592
XtIsTransientShell 595
XtIsWidget 572
XtIsWMShell 605
XtKeyProc 1196
XtNcancelCallback 582
XtNcloneCommand 582
XtNconnection 582
XtNcurrentDirectory 582

XtNdieCallback 582
XtNdiscardCommand 582
XtNenvironment 582
XtNerrorCallback 582
XtNinteractCallback 582
XtNjoinSession 582
XtNprogramPath 582
XtNresignCommand 582
XtNrestartCommand 582
XtNrestartStyle 582
XtNsaveCallback 582
XtNsaveCompleteCallback 582
XtNsessionID 582
XtNshutdownCommand 582
XtOrderProc 569, 1197
XtPointer 1197
XtSelectionCallbackProc 1197
XtTranslations 1197
XtVaAppCreateShell 565, 581
XtVaAppInitialize 565

