TcL/TK ELECTRONIC
REFERENCE
/

for Tcl /Tk version 8.0.x and
]) [incr Tcl] version 3.0
(7 Coverted to Adobe Acrobat

Format (.pdf) by Charles Todd,
Oct 1998.

ctodd@ball.com

BUILT-IN
K 7 Tcl APPLICATIONS
C LIBRARY.
BUILT=IN
t C 1 t k K APPLICATIONS
C LIBRARY.

UNIVERSAL SCRIPTING

[INCR TCcL] [INCR WIDGETS]
[INCR TK]

mailto:ctodd@ball.com
http://www.adobe.com

Tcl Applications tclsh (1)

NAME

SYNOPSIS

tclsh — Simple shell containing Tcl interpreter

tclsh ?fileName arg arg .2

DESCRIPTION

Tclsh is a shell-like application that reads Tcl commands from its standard input or from a file and evalu-
ates them. If invoked with no arguments then it runs interactively, reading Tcl commands from standard
input and printing command results and error messages to standard output. It runs exitich®mand

is invoked or until it reaches end-of-file on its standard input. If there exists &cHlerc in the home
directory of the usetgclsh evaluates the file as a Tcl script just before reading the first command from stan-
dard input.

SCRIPT FILES

If tclsh is invoked with arguments then the first argument is the name of a script file and any additional
arguments are made available to the script as variables (see below). Instead of reading commands from
standard inputclsh will read Tcl commands from the named fikejsh will exit when it reaches the end of

the file. There is no automatic evaluationtofshrc in this case, but the script file can alwapsirceit if

desired.

If you create a Tcl script in a file whose first line is

#!/usr/local/bin/tclsh
then you can invoke the script file directly from your shell if you mark the file as executable. This assumes
thattclsh has been installed in the default location in /usr/local/bin; if it's installed somewhere else then
you'll have to modify the adve line to match. Many UNIX systems do not allow tikeline to exceed
about 30 characters in length, so be sure thatksleexecutable can be accessed with a short file name.

An even better approach is to start your script files with the following three lines:

#!/bin/sh

the next line restarts using tclsh \

exec tclsh "$0" "$@"
This approach has three advantages over the approach in the previous paragraph. First, the location of the
tclsh binary doesn’t have to be hard-wired into the script: it can be anywhere in your shell search path.
Second, it gets around the 30-character file name limit in the previous approach. Third, this approach will
work even iftclsh is itself a shell script (this is done on some systems in order to handle multiple architec-
tures or operating systems: ttesh script selects one of several binaries to run). The three lines cause
bothsh andtclsh to process the script, but tegecis only executed bgh. sh processes the script first; it
treats the second line as a comment and executes the third linexddstatement cause the shell to stop
processing and instead to starttaigh to reprocess the entire script. Whelsh starts up, it treats all three
lines as comments, since the backslash at the end of the second line causes the third line to be treated as
part of the comment on the second line.

VARIABLES

Tcl

Tclsh sets the following Tcl variables:

argc Contains a count of the numberarfy arguments (0 if none), not including the name of
the script file.

argv Contains a Tcl list whose elements aredhlgarguments, in order, or an empty string if
there are narg arguments.

argv0 ContainsfileNameif it was specified. Otherwise, contains the name by wtulsh was

Last change: 1

Tcl Applications tclsh (1)

invoked.

tcl_interactive Contains 1 itclsh is running interactively (néileNamewas specified and standard input

is a terminal-like device), O otherwise.

PROMPTS
Whentclsh is invoked interactively it normally prompts for each command wih ™. You can change
the prompt by setting the variables promptl andtcl_prompt2. If variabletcl_promptl exists then it
must consist of a Tcl script to output a prompt; instead of outputting a ptolstpwvill evaluate the script

in tcl_promptl. The variabldgcl_prompt2 is used in a similar way when a newline is typed but the current
command isn't yet complete; ti€l_prompt2 isn't set then no prompt is output for incomplete commands.

KEYWORDS
argument, interpreter, prompt, script file, shell

Tcl Last change: 2

Tk Applications wish (1)

NAME
wish — Simple windowing shell
SYNOPSIS
wish ZileName arg arg .2
OPTIONS
—colormap new Specifies that the window should have a new private colormap instead of usipg the
default colormap for the screen.
—display display Display (and screen) on which to display window.
—geometrygeometry Initial geometry to use for window. If this option is specified, its value is stored in
thegeometryglobal variable of the application’s Tcl interpreter.
—namename Usenameas the title to be displayed in the window, and as the name of the Inter-
preter forsendcommands.
-sync Execute all X server commands synchronously, so that errors are reported immedi-
ately. This will result in much slower execution, but it is useful for debugging.
—useid Specifies that the main window for the application is to be embedded in thg win-
dow whose identifier isd, instead of being created as an independent toplevel
window. Id must be specified in the same way as the value forubkeoption for
toplevel widgets (i.e. it has a form like that returned bywirgo id command).
—visual visual Specifies the visual to use for the windowsualmay have any of the forms sup-
ported by thél'k_GetVisual procedure.
-= Pass all remaining arguments through to the scrpgs variable without inter-
preting them. This provides a mechanism for passing arguments stichrasto
a script instead of havingish interpret them.
DESCRIPTION
Wish is a simple program consisting of the Tcl command language, the Tk toolkit, and a main program that
reads commands from standard input or from a file. It creates a main window and then processes Tcl com-
mands. lfwish is invoked with no arguments, or with a first argument that starts with “~", then it reads Tcl
commands interactively from standard input. It will continue processing commands until all windows have
been deleted or until end-of-file is reached on standard input. If there existsvasfilee in the home
directory of the useryish evaluates the file as a Tcl script just before reading the first command from stan-
dard input.
If wish is invoked with an initiafileNameargument, thefileNameis treated as the name of a script file.
Wish will evaluate the script ifileName(which presumably creates a user interface), then it will respond
to events until all windows have been deleted. Commands will not be read from standard input. There is
no automatic evaluation ofvishrc in this case, but the script file can alwagsirceit if desired.
OPTIONS

Wish automatically processes all of the command-line options described@PHkONS summary above.
Any other command-line arguments besides these are passed through to the application aigjnguice
argv variables described later.

APPLICATION NAME AND CLASS

Tk

The name of the application, which is used for purposes swsEndsommands, is taken from thmame
option, if it is specified; otherwise it is taken frditeName if it is specified, or from the command name

Last change: 8.0 1

Tk Applications wish (1)

by whichwish was invoked. In the last two cases, if the name contains a “/” character, then only the char-
acters after the last slash are used as the application name.

The class of the application, which is used for purposes such as specifying options with a
RESOURCE_MANAGER property or .Xdefaults file, is the same as its name except that the first letter is
capitalized.

VARIABLES
Wish sets the following Tcl variables:

argc Contains a count of the numberasfy arguments (0 if none), not including the options
described above.

argv Contains a Tcl list whose elements are dng arguments that follow & — option or
don’'t match any of the options described in OPTIONS above, in order, or an empty
string if there are no such arguments.

argv0 ContainsfileNameif it was specified. Otherwise, contains the name by wiish was
invoked.
geometry If the —geometryoption is specifiedyish copies its value into this variable. If the vari-

able still exists aftefileNamehas been evaluatedjsh uses the value of the variable in a
wm geometrycommand to set the main window’s geometry.

tcl_interactive Contains 1 ifwish is reading commands interactiveffifgNamewas not specified and
standard input is a terminal-like device), O otherwise.

SCRIPT FILES
If you create a Tcl script in a file whose first line is
#!/usr/local/bin/wish
then you can invoke the script file directly from your shell if you mark it as executable. This assumes that
wish has been installed in the default location in /usr/local/bin; if it's installed somewhere else then you'll
have to modify the aive line to match. Many UNIX systems do not allow t#eline to exceed about 30
characters in length, so be sure thatish executable can be accessed with a short file name.

An even better approach is to start your script files with the following three lines:

#!/bin/sh

the next line restarts using wish \

exec wish "$0" "$@"
This approach has three advantages over the approach in the previous paragraph. First, the location of the
wish binary doesn’t have to be hard-wired into the script: it can be anywhere in your shell search path.
Second, it gets around the 30-character file name limit in the previous approach. Third, this approach will
work even ifwish is itself a shell script (this is done on some systems in order to handle multiple architec-
tures or operating systems: tish script selects one of several binaries to run). The three lines cause
bothsh andwish to process the script, but te&ecis only executed bgh. sh processes the script first; it
treats the second line as a comment and executes the third linexddstatement cause the shell to stop
processing and instead to startwigh to reprocess the entire script. Wheish starts up, it treats all three
lines as comments, since the backslash at the end of the second line causes the third line to be treated as
part of the comment on the second line.

PROMPTS
Whenwish is invoked interactively it normally prompts for each command wih ™. You can change
the prompt by setting the variables promptl andtcl_prompt2. If variabletcl_promptl exists then it
must consist of a Tcl script to output a prompt; instead of outputting a praisiptvill evaluate the script
in tcl_promptl. The variabldgcl_prompt2 is used in a similar way when a newline is typed but the current

Tk Last change: 8.0 2

Tk Applications wish (1)

command isn’'t yet complete;ti€l_prompt2 isn't set then no prompt is output for incomplete commands.

KEYWORDS
shell, toolkit

Tk Last change: 8.0 3

[incr Tcl] itclsh (1)

NAME
itclsh — Simple shell for [incr Tcl]

SYNOPSIS
itclsh XileName arg arg .2

DESCRIPTION
itclsh is a shell-like application that reads Tcl commands from its standard input, or from a file, and evalu-
ates them. It is just likielsh, but includes th@incr Tcl] extensions for object-oriented programming.

See thdclsh man page for details concerning usage. Seadhman page for an overview fifcr Tcl] .

KEYWORDS
Tcl, itcl, interpreter, script file, shell

itcl Last change: 1

[incr TK] itkwish (1)

NAME
itkwish — Simple windowing shell for [incr Tcl] / [incr TK]
SYNOPSIS
itkwish “ileName arg arg .2
OPTIONS
—display display Display (and screen) on which to display window.
—geometrygeometry Initial geometry to use for window. If this option is specified, its value is stored in
thegeometryglobal variable of the application’s Tcl interpreter.
—namename Usenameas the title to be displayed in the window, and as the name of the Inter-
preter forsendcommands.
-sync Execute all X server commands synchronously, so that errors are reported immedi-
ately. This will result in much slower execution, but it is useful for debugging.
-- Pass all remaining arguments through to the scrips variable without inter-
preting them. This provides a mechanism for passing arguments stichrasto
a script instead of havintkwish interpret them.
DESCRIPTION
itkwish is a simple program consisting of the Tcl command language, the Tk tool{iaah&cl] exten-
sion for object-oriented programming, and flmer Tk] extension for building mega-widgets. The main
program creates an interpreter, creates a main window, and then processes Tcl commands from standard
input or from a file.
itkwish is just likewish, but includes th@ncr Tcl] / [incr Tk] extensions.
See thewish man page for details concerning usage. Sesdtthanditk man pages for an overview of
[incr Tcl] /[incr TK] .
KEYWORDS

Tcl, Tk, itcl, itk, interpreter, shell, toolkit

itk Last change: 3.0 1

Tcl Built-In Commands Tcl(n)

NAME

Tcl = Summary of Tcl language syntax.

DESCRIPTION

Tcl

The following rules define the syntax and semantics of the Tcl language:

[1]

(2]

(3]

[4]

[5]

[6]

[7]

A Tcl script is a string containing one or more commands. Semi-colons and newlines are com-
mand separators unless quoted as described below. Close brackets are command terminators dur-
ing command substitution (see below) unless quoted.

A command is evaluated in two steps. First, the Tcl interpreter breaks the commanarigo

and performs substitutions as described below. These substitutions are performed in the same way
for all commands. The first word is used to locate a command procedure to carry out the com-
mand, then all of the words of the command are passed to the command procedure. The command
procedure is free to interpret each of its words in any way it likes, such as an integer, variable
name, list, or Tcl script. Different commands interpret their words differently.

Words of a command are separated by white space (except for newlines, which are command sepa-
rators).

Wiy

If the first character of a word is double-quote (“"”) then the word is terminated by the next dou-
ble-quote character. If semi-colons, close brackets, or white space characters (including newlines)
appear between the quotes then they are treated as ordinary characters and included in the word.
Command substitution, variable substitution, and backslash substitution are performed on the char-
acters between the quotes as described below. The double-quotes are not retained as part of the
word.

If the first character of a word is an open brace (“{") then the word is terminated by the matching
close brace (“}"). Braces nest within the word: for each additional open brace there must be an
additional close brace (however, if an open brace or close brace within the word is quoted with a
backslash then it is not counted in locating the matching close brace). No substitutions are per-
formed on the characters between the braces except for backslash-newline substitutions described
below, nor do semi-colons, newlines, close brackets, or white space receive any special interpreta-
tion. The word will consist of exactly the characters between the outer braces, not including the
braces themselves.

If a word contains an open bracket (“[") then Tcl perforec@mmand substitutionTo do this it

invokes the Tcl interpreter recursively to process the characters following the open bracket as a Tcl
script. The script may contain any number of commands and must be terminated by a close
bracket (“]”). The result of the script (i.e. the result of its last command) is substituted into the
word in place of the brackets and all of the characters between them. There may be any number of
command substitutions in a single word. Command substitution is not performed on words
enclosed in braces.

If a word contains a dollar-sign (“$”) then Tcl performariable substitution the dollar-sign and
the following characters are replaced in the word by the value of a variable. Variable substitution
may take any of the following forms:

$name Namés the name of a scalar variable; the name is terminated by any character
that isn't a letter, digit, or underscore.

$nameindex) Namegives the name of an array variable amdexgives the name of an ele-
ment within that arrayNamemust contain only letters, digits, and underscores.
Command substitutions, variable substitutions, and backslash substitutions are
performed on the charactersioflex

Last change: 1

Tcl Built-In Commands Tcl(n)

Tcl

(8]

9]

[10]

[11]

${namé Nameis the name of a scalar variable. It may contain any characters whatso-
ever except for close braces.

There may be any number of variable substitutions in a single word. Variable substitution is not
performed on words enclosed in braces.

If a backslash (“\") appears within a word thdrackslash substitutionccurs. In all cases but

those described below the backslash is dropped and the following character is treated as an ordi-
nary character and included in the word. This allows characters such as double quotes, close
brackets, and dollar signs to be included in words without triggering special processing. The fol-
lowing table lists the backslash sequences that are handled specially, along with the value that
replaces each sequence.

\a Audible alert (bell) (0x7).
\b Backspace (0x8).

\f Form feed (Oxc).

\n Newline (0xa).

\r Carriage-return (0xd).

\t Tab (0x9).

\v Vertical tab (Oxb).

\<newline>whiteSpace
A single space character replaces the backslash, newline, and all spaces and tabs after the
newline. This backslash sequence is unique in that it is replaced in a separate pre-pass
before the command is actually parsed. This means that it will be replaced even when it
occurs between braces, and the resulting space will be treated as a word separator if it isn’t
in braces or quotes.

\\ Backslash (“\").
\ooo The digitsooo(one, two, or three of them) give the octal value of the character.

\xhh The hexadecimal digiteh give the hexadecimal value of the character. Any number of
digits may be present.

Backslash substitution is not performed on words enclosed in braces, except for backslash-newline
as described above.

If a hash character (“#") appears at a point where Tcl is expecting the first character of the first
word of a command, then the hash character and the characters that follow it, up through the next
newline, are treated as a comment and ignored. The comment character only has significance
when it appears at the beginning of a command.

Each character is processed exactly once by the Tcl interpreter as part of creating the words of a
command. For example, if variable substitution occurs then no further substitutions are performed
on the value of the variable; the value is inserted into the word verbatim. If command substitution
occurs then the nested command is processed entirely by the recursive call to the Tcl interpreter;
no substitutions are performed before making the recursive call and no additional substitutions are
performed on the result of the nested script.

Substitutions do not affect the word boundaries of a command. For example, during variable sub-
stitution the entire value of the variable becomes part of a single word, even if the variable’s value
contains spaces.

Last change: 2

Tcl Built-In Commands after(n)

NAME
after — Execute a command after a time delay

SYNOPSIS
after ms

after ms?script script script .2
after cancelid

after cancelscript script script ...
after idle ?script script script .2

after info 2d?

DESCRIPTION
This command is used to delay execution of the program or to execute a command in background sometime
in the future. It has several forms, depending on the first argument to the command:

after ms
Ms must be an integer giving a time in milliseconds. The command sleepsstuilliseconds
and then returns. While the command is sleeping the application does not respond to events.

after ms?script script script .2
In this form the command returns immediately, but it arranges for a Tcl command to be executed
ms milliseconds later as an event handler. The command will be executed exactly once, at the
given time. The delayed command is formed by concatenating afictiygt arguments in the
same fashion as tlmoncatcommand. The command will be executed at global level (outside the
context of any Tcl procedure). If an error occurs while executing the delayed command then the
bgerror mechanism is used to report the error. &fter command returns an identifier that can
be used to cancel the delayed command wesiteg cancel

after cancelid
Cancels the execution of a delayed command that was previously scheduledicates which
command should be canceled; it must have been the return value from a paéfeiloobesmmand.
If the command given byd has already been executed then dfter cancel command has no
effect.

after cancelscript script ...
This command also cancels the execution of a delayed commandcrifitearguments are con-
catenated together with space separators (just as eottwat command). If there is a pending
command that matches the string, it is cancelled and will never be executed; if no such command
is currently pending then ttedter cancelcommand has no effect.

after idle script ?script script ..?
Concatenates trezript arguments together with space separators (just as @ottoatcommand),
and arranges for the resulting script to be evaluated later as an idle callback. The script will be run
exactly once, the next time the event loop is entered and there are no events to process. The com-
mand returns an identifier that can be used to cancel the delayed commaraftasicancel If
an error occurs while executing the script thenbiperror mechanism is used to report the error.

after info d?
This command returns information about existing event handlers. itf amument is supplied,

Tcl Last change: 7.5 1

Tcl Built-In Commands after(n)

the command returns a list of the identifiers for all existing event handlers createddfiethe
command for this interpreter. id is supplied, it specifies an existing handldrmust have been

the return value from some previous calbfter and it must not have triggered yet or been can-
celled. In this case the command returns a list with two elements. The first element of the list is
the script associated wittl, and the second element is eitidde or timer to indicate what kind

of event handler it is.

The after msandafter idle forms of the command assume that the application is event driven: the delayed
commands will not be executed unless the application enters the event loop. In applications that are not
normally event-driven, such &dsh, the event loop can be entered with ¥hait andupdate commands.

SEE ALSO
bgerror

KEYWORDS
cancel, delay, idle callback, sleep, time

Tcl Last change: 7.5 2

Tcl Built-In Commands append (n)

NAME
append — Append to variable

SYNOPSIS
appendvarName?value value value 2.

DESCRIPTION
Append all of thevaluearguments to the current value of varialdeName If varNamedoesn't exist, it is
given a value equal to the concatenation of allvihkeie arguments. This command provides an efficient
way to build up long variables incrementally. For examplpgend a $85 is much more efficient than
“seta $aghif $ais long.

KEYWORDS
append, variable

Tcl Last change: 1

Tcl Built-In Commands array (n)

NAME

SYNOPSIS

array — Manipulate array variables

array option arrayNamearg arg ..?

DESCRIPTION

Tcl

This command performs one of several operations on the variable giwragiame Unless otherwise
specified for individual commands belaavyayNamemust be the name of an existing array variable. The
optionargument determines what action is carried out by the command. Theptigals(which may be
abbreviated) are:

array anymore arrayName searchid
Returns 1 if there are any more elements left to be processed in an array search, 0 if all elements
have already been returne8earchldindicates which search arrayNameto check, and must
have been the return value from a previous invocati@iray startsearch. This option is partic-
ularly useful if an array has an element with an empty name, since the return valuerrlpm
nextelementwon’t indicate whether the search has been completed.

array donesearcharrayName searchid
This command terminates an array search and destroys all the state associated with that search.
Searchldindicates which search aarrayNameto destroy, and must have been the return value
from a previous invocation @frray startsearch. Returns an empty string.

array existsarrayName
Returns 1 ifarrayNameis an array variable, O if there is no variable by that name or if it is a scalar
variable.

array get arrayName?patterr?
Returns a list containing pairs of elements. The first element in each pair is the name of an ele-
ment inarrayNameand the second element of each pair is the value of the array element. The
order of the pairs is undefined. gétternis not specified, then all of the elements of the array are
included in the result. Ipatternis specified, then only those elements whose names peitenn
(using the glob-style matching rules sifing match) are included. IlfarrayNameisn't the name
of an array variable, or if the array contains no elements, then an empty list is returned.

array namesarrayName?patterrf?
Returns a list containing the names of all of the elements in the array thatpatéch(using the
glob-style matching rules atring match). If patternis omitted then the command returns all of
the element names in the array. If there are no (matching) elements in the arrayrayName
isn’t the name of an array variable, then an empty string is returned.

array nextelementarrayName searchid
Returns the name of the next elemenairayName or an empty string if all elements afray-
Namehave already been returned in this search. sHagchldargument identifies the search, and
must have been the return value ofaray startsearch command. Warning: if elements are
added to or deleted from the array, then all searches are automatically terminated jagtgs if
donesearchhad been invoked; this will causgray nextelement operations to fail for those
searches.

array setarrayName list
Sets the values of one or more elementriayName list must have a form like that returned by
array get, consisting of an even number of elements. Each odd-numbered elemesttisn
treated as an element name withimayName and the following element ilist is used as a new
value for that array element. If the varialalgayNamedoes not already exist afidt is empty,

Last change: 7.4 1

Tcl Built-In Commands array (n)

arrayNameis created with an empty array value.

array sizearrayName

Returns a decimal string giving the number of elements in the arrayajfNameisn't the name
of an array then 0O is returned.

array startsearch arrayName
This command initializes an element-by-element search through the array gieerayijame
such that invocations of trerray nextelementcommand will return the names of the individual
elements in the array. When the search has been completestrafiedonesearchcommand
should be invoked. The return value is a search identifier that must be @sealinextelement

andarray donesearchcommands; it allows multiple searches to be underway simultaneously for
the same array.

KEYWORDS
array, element names, search

Tcl Last change: 7.4 2

Tcl Built-In Commands bgerror (n)

NAME

SYNOPSIS

bgerror - Command invoked to process background errors

bgerror message

DESCRIPTION

The bgerror command doesn't exist as built-in part of Tcl. Instead, individual applications or users can
define abgerror command (e.g. as a Tcl procedure) if they wish to handle background errors.

A background error is one that occurs in an event handler or some other command that didn't originate with
the application. For example, if an error occurs while executing a command specified \aitiettoom-

mand, then it is a background error. For a non-background error, the error can simply be returned up
through nested Tcl command evaluations until it reaches the top-level code in the application; then the
application can report the error in whatever way it wishes. When a background error occurs, the unwinding
ends in the Tcl library and there is no obvious way for Tcl to report the error.

When Tcl detects a background error, it saves information about the error and invokgertioe com-

mand later as an idle event handler. Before invokiggrror, Tcl restores therrorinfo anderrorCode
variables to their values at the time the error occurred, then it inbgleesor with the error message as its

only argument. Tcl assumes that the application has implementbdedtrer command, and that the com-
mand will report the error in a way that makes sense for the application. Tcl will ignore any result returned
by thebgerror command as long as no error is generated.

If another Tcl error occurs within tHegerror command (for example, becausebgerror command has
been defined) then Tcl reports the error itself by writing a message to stderr.

If several background errors accumulate befogerror is invoked to process thenbgerror will be
invoked once for each error, in the order they occurred. Howevegeifror returns with a break excep-
tion, then any remaining errors are skipped without cabigeyror .

Tcl has no default implementation fogerror. However, in applications using Tk there is a defaghr-
ror procedure which posts a dialog box containing the error message and offers the user a chance to see a
stack trace showing where the error occurred.

KEYWORDS

Tcl

background error, reporting

Last change: 7.5 1

Tcl Built-In Commands binary (n)

NAME
binary — Insert and extract fields from binary strings

SYNOPSIS
binary format formatString?arg arg ..?
binary scanstring formatStringvarName varName ?.

DESCRIPTION
This command provides facilities for manipulating binary data. The first foimayy format, creates a
binary string from normal Tcl values. For example, given the values 16 and 22, it might produce an 8-byte
binary string consisting of two 4-byte integers, one for each of the numbers. The second form of the com-
mand,binary scan, does the opposite: it extracts data from a binary string and returns it as ordinary Tcl
string values.

BINARY FORMAT
The binary format command generates a binary string whose layout is specified lyrtm&tStringand
whose contents come from the additional arguments. The resulting binary value is returned.

The formatStringconsists of a sequence of zero or more field specifiers separated by zero or more spaces.
Each field specifier is a single type character followed by an optional nurnerit Most field specifiers
consume one argument to obtain the value to be formatted. The type character specifies how the value is to
be formatted. Theounttypically indicates how many items of the specified type are taken from the value.

If present, theecountis a non-negative decimal integerldmvhich normally indicates that all of the items in

the value are to be used. If the number of arguments does not match the number of fields in the format
string that consume arguments, then an error is generated.

Each type-count pair moves an imaginary cursor through the binary data, storing bytes at the current posi-
tion and advancing the cursor to just after the last byte stored. The cursor is initially at position O at the
beginning of the data. The type may be any one of the following characters:

a Stores a character string of lengtiuntin the output string. larg has fewer thaeountbytes, then
additional zero bytes are used to pad out the fieldrglfs longer than the specified length, the extra
characters will be ignored. Hountis [J then all of the bytes iarg will be formatted. Ifcountis
omitted, then one character will be formatted. For example,

binary format a7al&a alpha bravo charlie
will return a string equivalent @pha\000\000bravoc

A This form is the same asexcept that spaces are used for padding instead of nulls. For example,
binary format A6A [A alpha bravo charlie
will return alpha bravoc.

b Stores a string ofountbinary digits in low-to-high order within each byte in the output strifgy
must contain a sequence band0 characters. The resulting bytes are emitted in first to last order
with the bits being formatted in low-to-high order within each byteardfhas fewer thacountdig-
its, then zeros will be used for the remaining bitsartf has more than the specified number of dig-
its, the extra digits will be ignored. tountis [J then all of the digits irarg will be formatted. If
countis omitted, then one digit will be formatted. If the number of bits formatted does not end at a
byte boundary, the remaining bits of the last byte will be zeros. For example,

binary format b5b 111100 111000011010

will return a string equivalent {x07\x87\x05

B This form is the same dsexcept that the bits are stored in high-to-low order within each byte. For
example,
binary format B5B (111100 111000011010

Tcl Last change: 8.0 1

Tcl Built-In Commands binary (n)

Tcl

will return a string equivalent fxeO\xe1\xa0

Stores a string afounthexadecimal digits in low-to-high within each byte in the output strig.
must contain a sequence of characters in the set “0123456789abcdefABCDEF". The resulting bytes
are emitted in first to last order with the hex digits being formatted in low-to-high order within each
byte. If arg has fewer thaiountdigits, then zeros will be used for the remaining digitsardf has
more than the specified number of digits, the extra digits will be ignoreduiitis [J then all of the
digits inarg will be formatted. Ifcountis omitted, then one digit will be formatted. If the number of
digits formatted does not end at a byte boundary, the remaining bits of the last byte will be zeros. For
example,

binary format h3h JAB def
will return a string equivalent fxba\xed\x0f

This form is the same dwsexcept that the digits are stored in high-to-low order within each byte. For
example,

binary format H3H Oab DEF
will return a string equivalent fxab\xde\xfQ

Stores one or more 8-bit integer values in the output string. tooatis specified, themarg must
consist of an integer value; otherwisg must consist of a list containing at leasuntinteger ele-
ments. The low-order 8 bits of each integer are stored as a one-byte value at the cursor position. If
countis [J then all of the integers in the list are formatted. If the number of elements in the list is
fewer thancount then an error is generated. If the number of elements in the list is greater than
count then the extra elements are ignored. For example,

binary format c3ccl]{3 -3 128 1} 257 {2 5}
will return a string equivalent tx03\xfd\x80\x01\x02\x05whereas

binary format c {2 5}
will generate an error.

This form is the same a&sexcept that it stores one or more 16-bit integers in little-endian byte order
in the output string. The low-order 16-bits of each integer are stored as a two-byte value at the cursor
position with the least significant byte stored first. For example,
binary format s3 {3 -3 258 1}
will return a string equivalent {x03\x00\xfd\xff\x02\x01

This form is the same aexcept that it stores one or more 16-bit integers in big-endian byte order in
the output string. For example,

binary format S3 {3 -3 258 1}
will return a string equivalent {x00\x03\xff\xfd\x01\x02

This form is the same a&sexcept that it stores one or more 32-bit integers in little-endian byte order
in the output string. The low-order 32-bits of each integer are stored as a four-byte value at the cur-
sor position with the least significant byte stored first. For example,
binary format i3 {3 -3 65536 1}
will return a string equivalent {x03\x00\x00\x00\xfd\xfAxf\xffix00\x00\x10\x00

This form is the same agxcept that it stores one or more one or more 32-bit integers in big-endian
byte order in the output string. For example,

binary format 13 {3 -3 65536 1}
will return a string equivalent fx00\x00\x00\x03\xfAxfAxf\xfd\x00\x10\x00\x00

This form is the same asexcept that it stores one or more one or more single-precision floating in

the machine’s native representation in the output string. This representation is not portable across
architectures, so it should not be used to communicate floating point numbers across the network.
The size of a floating point number may vary across architectures, so the number of bytes that are
generated may vary. If the value overflows the machine’s native representation, then the value of

Last change: 8.0 2

Tcl Built-In Commands binary (n)

FLT_MAX as defined by the system will be used instead. Because Tcl uses double-precision float-
ing-point numbers internally, there may be some loss of precision in the conversion to single-preci-
sion. For example, on a Windows system running on an Intel Pentium processor,

binary format f2 {1.6 3.4}
will return a string equivalent txcd\xcc\xcc\x3f\x9a\x99\x59\x4.0

d This form is the same d®xcept that it stores one or more one or more double-precision floating in
the machine’s native representation in the output string. For example, on a Windows system running
on an Intel Pentium processor,

binary format d1 {1.6}
will return a string equivalent {x9a\x99\x99\x99\x99\x99\xfo\x 3f

X Storescountnull bytes in the output string. tountis not specified, stores one null byte.ctiuntis
0 generates an error. This type does not consume an argument. For example,
binary format a3xa3x2a3 abc def ghi
will return a string equivalent @abc\000def\000\000ghi

X Moves the cursor baatountbytes in the output string. tountis Cor is larger than the current cur-
sor position, then the cursor is positioned at location 0 so that the next byte stored will be the first
byte in the result string. Kountis omitted then the cursor is moved back one byte. This type does
not consume an argument. For example,
binary format a3X[h3X2a3 abc def ghi
will return dghi.

@ Moves the cursor to the absolute location in the output string specifienliby Position O refers to
the first byte in the output string. dbuntrefers to a position beyond the last byte stored so far, then
null bytes will be placed in the unitialized locations and the cursor will be placed at the specified
location. Ifcountis [J then the cursor is moved to the current end of the output strirgputftis
omitted, then an error will be generated. This type does not consume an argument. For example,
binary format ab@2al@h3@10al abcde f ghi j
will return abfdeghi\O00\000Qj

BINARY SCAN

Tcl

The binary scan command parses fields from a binary string, returning the number of conversions per-
formed. String gives the input to be parsed afamatStringindicates how to parse it. EasctarName

gives the name of a variable; when a field is scanned $tong the result is assigned to the corresponding
variable.

As with binary format, the formatStringconsists of a sequence of zero or more field specifiers separated
by zero or more spaces. Each field specifier is a single type character followed by an optional numeric
count Most field specifiers consume one argument to obtain the variable into which the scanned values
should be placed. The type character specifies how the binary data is to be interpretmlnitgpically
indicates how many items of the specified type are taken from the data. If presenyritie a non-neg-

ative decimal integer dr] which normally indicates that all of the remaining items in the data are to be
used. If there are not enough bytes left after the current cursor position to satisfy the current field specifier,
then the corresponding variable is left untouchedkandry scanreturns immediately with the number of
variables that were set. If there are not enough arguments for all of the fields in the format string that con-
sume arguments, then an error is generated.

Each type-count pair moves an imaginary cursor through the binary data, reading bytes from the current
position. The cursor is initially at position 0 at the beginning of the data. The type may be any one of the
following characters:

a The data is a character string of lengtlunt If countis 00 then all of the remaining bytes &tring
will be scanned into the variable. ¢buntis omitted, then one character will be scanned. For

Last change: 8.0 3

Tcl Built-In Commands binary (n)

example,
binary scan abcde\000fghi a6al0 varl var2
will return 1 with the string equivalent tabcde\OOOstored invarl andvar?2 left unmodified.

A This form is the same as except trailing blanks and nulls are stripped from the scanned value
before it is stored in the variable. For example,
binary scan "abc efghi \000" d&Jvarl
will return 1 with abc efghistored invarl.

b The data is turned into a string @funtbinary digits in low-to-high order represented as a sequence
of “1” and “0” characters. The data bytes are scanned in first to last order with the bits being taken
in low-to-high order within each byte. Any extra bits in the last byte are ignorembufitis [J then
all of the remaining bits istring will be scanned. Itountis omitted, then one bit will be scanned.
For example,

binary scan \x07\x87\x05 b5hlvarl var2
will return 2 with 11100stored invarl and111000011010000¢tored invar2.

B This form is the same &, except the bits are taken in high-to-low order within each byte. For
example,
binary scan \x70\x87\x05 b5hblvarl var2
will return 2 with 01110stored invarl and1000011100000104tored invar2.

h The data is turned into a string obunt hexadecimal digits in low-to-high order represented as a
sequence of characters in the set “0123456789abcdef”. The data bytes are scanned in first to last
order with the hex digits being taken in low-to-high order within each byte. Any extra bits in the last
byte are ignored. I€ountis [J then all of the remaining hex digits string will be scanned. IEount
is omitted, then one hex digit will be scanned. For example,

binary scan \x07\x86\x05 h3hlvarl var2
will return 2 with 706 stored invarl and50 stored invar2.

H This form is the same ds except the digits are taken in low-to-high order within each byte. For
example,
binary scan \x07\x86\x05 H3Hlvarl var2
will return 2 with 078stored invarl and05 stored invar2.

c The data is turned intount8-bit signed integers and stored in the corresponding variable as a list. If
countis [J then all of the remaining bytes string will be scanned. Itountis omitted, then one
8-bit integer will be scanned. For example,

binary scan \x07\x86\x05 c2dvarl var2
will return 2 with 7 -122 stored invarl and5 stored invar2. Note that the integers returned are
signed, but they can be converted to unsigned 8-bit quantities using an expression like:

expr ($num + 0x100) % 0x100

s The data is interpreted asunt16-bit signed integers represented in little-endian byte order. The
integers are stored in the corresponding variable as a lisoulitis [J then all of the remaining
bytes instring will be scanned. Itountis omitted, then one 16-bit integer will be scanned. For
example,

binary scan \x05\x00\x07\x00\xfO\xff sZ3varl var2
will return 2 with 5 7 stored invarl and-16 stored invar2. Note that the integers returned are
signed, but they can be converted to unsigned 16-bit quantities using an expression like:

expr ($num + 0x10000) % 0x10000

S This form is the same asexcept that the data is interpretedcasint 16-bit signed integers repre-
sented in big-endian byte order. For example,
binary scan \x00\x05\x00\x07\xff\xf0 S2Svarl var2
will return 2 with 5 7 stored invarl and-16 stored invar2.

Tcl Last change: 8.0 4

Tcl Built-In Commands binary (n)

[The data is interpreted asunt32-bit signed integers represented in little-endian byte order. The
integers are stored in the corresponding variable as a lisbulitis 0 then all of the remaining
bytes instring will be scanned. Itountis omitted, then one 32-bit integer will be scanned. For
example,

binary scan \x05\x00\x00\x00\x07\x00\x00\x00\xfO\xfAxff\xff iZivarl var2
will return 2 with 5 7 stored invarl and-16 stored invar2. Note that the integers returned are
signed and cannot be represented by Tcl as unsigned values.

I This form is the same dsexcept that the data is interpretedcasint 32-bit signed integers repre-
sented in big-endian byte order. For example,
binary \x00\x00\x00\x05\x00\x00\x00\x0 7\xfAxfiAxff\xfO I2[0varl var2
will return 2 with 5 7 stored invarl and-16 stored invar2.

f The data is interpreted asuntsingle-precision floating point numbers in the machine’s native repre-
sentation. The floating point numbers are stored in the corresponding variable as adishti# []
then all of the remaining bytes gtring will be scanned. Itountis omitted, then one single-preci-
sion floating point number will be scanned. The size of a floating point number may vary across
architectures, so the number of bytes that are scanned may vary. If the data does not represent a valid
floating point number, the resulting value is undefined and compiler dependent. For example, on a
Windows system running on an Intel Pentium processor,

binary scan \x3f\xcc\xcc\xed f varl

will return 1 with 1.6000000238418578&ored invarl.

d This form is the same dsxcept that the data is interpretedcaantdouble-precision floating point
numbers in the machine’s native representation. For example, on a Windows system running on an
Intel Pentium processor,
binary scan \x9a\x99\x99\x99\x99\x99\xfo\x3f d varl
will return 1 with 1.600000000000000stored invarl.

X Moves the cursor forwardountbytes instring. If countis Oor is larger than the number of bytes
after the current cursor cursor position, then the cursor is positioned after the lastdisitey.inlf
countis omitted, then the cursor is moved forward one byte. Note that this type does not consume an
argument. For example,
binary scan \x01\x02\x03\x04 x2Hvar1
will return 1 with 0304stored invarl.

X Moves the cursor baatountbytes instring. If countis Cor is larger than the current cursor position,
then the cursor is positioned at location 0 so that the next byte scanned will be the firsstoytg. in
If countis omitted then the cursor is moved back one byte. Note that this type does not consume an
argument. For example,
binary scan \x01\x02\x03\x04 c2XHvar1 var2
will return 2 with 1 2 stored invarl and020304stored invar2.

@ Moves the cursor to the absolute location in the data string specifieauby Note that position 0
refers to the first byte istring. If countrefers to a position beyond the endstifng, then the cursor
is positioned after the last byte. dbuntis omitted, then an error will be generated. For example,

binary scan \x01\x02\x03\x04 c2@ 1Hvarl var2
will return 2 with 1 2 stored invarl and020304stored invar2.

PLATFORM ISSUES
Sometimes it is desirable to format or scan integer values in the native byte order for the machine. Refer to
thebyteOrder element of thecl_platform array to decide which type character to use when formatting or
scanning integers.

Tcl Last change: 8.0 5

Tcl Built-In Commands

SEE ALSO
format, scan, tclvars

KEYWORDS
binary, format, scan

Tcl

Last change: 8.0

binary (n)

Tcl Built-In Commands break (n)

NAME
break — Abort looping command
SYNOPSIS
break
DESCRIPTION
This command is typically invoked inside the body of a looping command sudich @sforeach or while.
It returns a TCL_BREAK code, which causes a break exception to occur. The exception causes the current
script to be aborted out to the innermost containing loop command, which then aborts its execution and
returns normally. Break exceptions are also handled in a few other situations, sucbhaashthemmand,
Tk event bindings, and the outermost scripts of procedure bodies.
KEYWORDS

abort, break, loop

Tcl Last change: 1

Tcl Built-In Commands case(n)

NAME

SYNOPSIS

case — Evaluate one of several scripts, depending on a given value

casestring 2in? patList body?patList body...?

casestring 2in? {patList body?patList body...?}

DESCRIPTION

Note: thecasecommand is obsolete and is supported only for backward compatibility. At some point in the
future it may be removed entirely. You should usewitch command instead.

The casecommand matchestring against each of thgatListarguments in order. EaglatListargument is

a list of one or more patterns. If any of these patterns masthieg then caseevaluates the following
bodyargument by passing it recursively to the Tcl interpreter and returns the result of that evaluation. Each
patListargument consists of a single pattern or list of patterns. Each pattern may contain any of the wild-
cards described undstring match. If a patListargument iglefault, the corresponding body will be eval-

uated if nopatListmatchesstring. If no patListargument matchestring and no default is given, then the
casecommand returns an empty string.

Two syntaxes are provided for thatListandbodyarguments. The first uses a separate argument for each

of the patterns and commands; this form is convenient if substitutions are desired on some of the patterns or
commands. The second form places all of the patterns and commands together into a single argument; the
argument must have proper list structure, with the elements of the list being the patterns and commands.
The second form makes it easy to construct multi-line case commands, since the braces around the whole
list make it unnecessary to include a backslash at the end of each line. Sipad ifisarguments are in

braces in the second form, no command or variable substitutions are performed on them; this makes the
behavior of the second form different than the first form in some cases.

KEYWORDS

Tcl

case, match, regular expression

Last change: 7.0 1

Tcl Built-In Commands catch(n)

NAME

catch — Evaluate script and trap exceptional returns
SYNOPSIS

catch script varNamé
DESCRIPTION

The catch command may be used to prevent errors from aborting command interpre@aioh.calls the

Tcl interpreter recursively to executeript, and always returns a TCL_OK code, regardless of any errors
that might occur while executingcript. The return value fronsatch is a decimal string giving the code
returned by the Tcl interpreter after executsngipt. This will be 0 (TCL_OK) if there were no errors in

script, otherwise it will have a non-zero value corresponding to one of the exceptional return codes (see
tcl.h for the definitions of code values). If therNameargument is given, then it gives the name of a vari-
able;catchwill set the variable to the string returned freomipt (either a result or an error message).

Note thatcatch catches all exceptions, including those generatdaténk andcontinue as well as errors.

KEYWORDS

Tcl

catch, error

Last change: 1

Tcl Built-In Commands cd(n)

NAME
cd — Change working directory
SYNOPSIS
cd dirName?
DESCRIPTION
Change the current working directorydiotName or to the home directory (as specified in the HOME envi-
ronment variable) iflirNameis not given. Returns an empty string.
KEYWORDS

working directory

Tcl Last change: 1

Tcl Built-In Commands clock (n)

NAME
clock — Obtain and manipulate time
SYNOPSIS
clock option?arg arg ..?
DESCRIPTION
This command performs one of several operations that may obtain or manipulate strings or values that rep-
resent some notion of time. Tlogtion argument determines what action is carried out by the command.
The legaloptions(which may be abbreviated) are:
clock clicks
Return a high-resolution time value as a system-dependent integer value. The unit of the value is
system-dependent but should be the highest resolution clock available on the system such as a
CPU cycle counter. This value should only be used for the relative measurement of elapsed time.
clock format clockValue?-format string? ?-gmt boolear?
Converts an integer time value, typically returnedclyck secondsclock scan or the atime,
mtime, or ctime options of thdile command, to human-readable form. If tHermat argument
is present the next argument is a string that describes how the date and time are to be formatted.
Field descriptors consist of% followed by a field descriptor character. All other characters are
copied into the result. Valid field descriptors are:
%% Insert a %.
%a Abbreviated weekday name (Mon, Tue, etc.).
%A Full weekday name (Monday, Tuesday, etc.).
%b Abbreviated month name (Jan, Feb, etc.).
%B Full month name.
%c Locale specific date and time.
%d Day of month (01 - 31).
%H Hour in 24-hour format (00 - 23).
%l Hour in 12-hour format (00 - 12).
%j Day of year (001 - 366).
%m Month number (01 - 12).
%M Minute (00 - 59).
%p AM/PM indicator.
%S Seconds (00 - 59).
%U Week of year (01 - 52), Sunday is the first day of the week.
%w Weekday number (Sunday = 0).
%W Week of year (01 - 52), Monday is the first day of the week.
%X Locale specific date format.
%X Locale specific time format.
%y Year without century (00 - 99).
%Y Year with century (e.g. 1990)
Tcl Last change: 7.4 1

Tcl Built-In Commands clock (n)

Tcl

%Z Time zone name.

In addition, the following field descriptors may be supported on some systems (e.g. Unix but not

Windows):

%D Date as %m/%d/%y.

%e Day of month (1 - 31), no leading zeros.
%h Abbreviated month name.

%n Insert a newline.

%or Time as %1:%M:%S %p.

%R Time as %H:%M.

%t Insert a tab.

%T Time as %H:%M:%S.

If the —format argument is not specified, the format strifga'%b %d %H:%M:%S %Z %Y "

is used. If the-gmt argument is present the next argument must be a boolean which if true speci-
fies that the time will be formatted as Greenwich Mean Time. If false then the local timezone will
be used as defined by the operating environment.

clock scandateString?-baseclockVal? 2gmt boolear?

ConvertdateStringto an integer clock value (setock seconds This command can parse and
convert virtually any standard date and/or time string, which can include standard time zone
mnemonics. If only a time is specified, the current date is assumed. If the string does not contain
a time zone mnemonic, the local time zone is assumed, unlesgrtti@rgument is true, in which

case the clock value is calculated assuming that the specified time is relative to Greenwich Mean
Time.

If the —baseflag is specified, the next argument should contain an integer clock value. Only the
date in this value is used, not the time. This is useful for determining the time on a specific day or
doing other date-relative conversions.

ThedateStringconsists of zero or more specifications of the following form:

time A time of day, which is of the formhh?mm?.ss?? Meridiar? Zon& orhhmm?merid-
ian? Zoné. If no meridian is specifietihis interpreted on a 24-hour clock.

date A specific month and day with optional year. The acceptable formatsardd®/yy?,
monthname d@,yy?,dd monthnam&yy? andday, dd monthname yyr'he default year is
the current year. If the year is less than 100, we treat the years 00-68 as 2000-2068 and
the years 69-99 as 1969-1999. Not all platforms can represent the years 38-70, so an
error may result if these years are used.

relative time
A specification relative to the current time. The formahusnber unitacceptable units
are year, fortnight, month, week day, hour, minute (or min), andsecond(or seq.
The unit can be specified as a singular or plural, 8weeks These modifiers may also
be specifiedtomorrow, yesterday, today, now, last, this, next, aga

The actual date is calculated according to the following steps. First, any absolute date and/or time
is processed and converted. Using that time as the base, day-of-week specifications are added.
Next, relative specifications are used. If a date or day is specified, and no absolute or relative time
is given, midnight is used. Finally, a correction is applied so that the correct hour of the day is

Last change: 7.4 2

Tcl Built-In Commands clock (n)

produced after allowing for daylight savings time differences and the correct date is given when
going from the end of a long month to a short month.

clock seconds
Return the current date and time as a system-dependent integer value. The unit of the value is sec-
onds, allowing it to be used for relative time calculations. The value is usually defined as total
elapsed time from an “epoch”. You shouldn’t assume the value of the epoch.

KEYWORDS
clock, date, time

Tcl Last change: 7.4 3

Tcl Built-In Commands close (n)

NAME

SYNOPSIS

close - Close an open channel.

closechannelld

DESCRIPTION

Closes the channel given lshannelld Channelldmust be a channel identifier such as the return value
from a previousopen or socketcommand. All buffered output is flushed to the channel’'s output device,
any buffered input is discarded, the underlying file or device is closed¢hamtielldbecomes unavailable
for use.

If the channel is blocking, the command does not return until all output is flushed. If the channel is non-
blocking and there is unflushed output, the channel remains open and the command returns immediately;
output will be flushed in the background and the channel will be closed when all the flushing is complete.

If channelldis a blocking channel for a command pipeline tbisewaits for the child processes to com-
plete.

If the channel is shared between interpreters, thesemakeschannelldunavailable in the invoking inter-

preter but has no other effect until all of the sharing interpreters have closed the channel. When the last
interpreter in which the channel is registered invaktese the cleanup actions describedaboccur. See
theinterp command for a description of channel sharing.

Channels are automatically closed when an interpreter is destroyed and when the process exits. Channels
are switched to blocking mode, to ensure that all output is correctly flushed before the process exits.

The command returns an empty string, and may generate an error if an error occurs while flushing output.

KEYWORDS

Tcl

blocking, channel, close, nonblocking

Last change: 7.5 1

Tcl Built-In Commands concat(n)

NAME
concat — Join lists together

SYNOPSIS
concat?arg arg ..?

DESCRIPTION
This command treats each argument as a list and concatenates them into a single list. It also eliminates
leading and trailing spaces in they's and adds a single separator space betwegs It permits any
number of arguments. For example, the command
concatab {c d e} {f {g h}}
will return
abcdef{gh}
as its result.

If no args are supplied, the result is an empty string.

KEYWORDS
concatenate, join, lists

Tcl Last change: 1

Tcl Built-In Commands continue (n)

NAME
continue — Skip to the next iteration of a loop

SYNOPSIS
continue

DESCRIPTION
This command is typically invoked inside the body of a looping command sudich @sforeach or while.
It returns a TCL_CONTINUE code, which causes a continue exception to occur. The exception causes the
current script to be aborted out to the innermost containing loop command, which then continues with the
next iteration of the loop. Catch exceptions are also handled in a few other situations, suctaahthe
command and the outermost scripts of procedure bodies.

KEYWORDS
continue, iteration, loop

Tcl Last change: 1

Tcl Built-In Commands eof (n)

NAME
eof — Check for end of file condition on channel

SYNOPSIS
eofchannelld

DESCRIPTION

Returns 1 if an end of file condition occurred during the most recent input operatibarorelld(such as
get9, 0 otherwise.

KEYWORDS
channel, end of file

Tcl Last change: 7.5 1

Tcl Built-In Commands error(n)

NAME

SYNOPSIS

error — Generate an error

error messagéinfo? Tode?

DESCRIPTION

Returns a TCL_ERROR code, which causes command interpretation to be unwiesghges a string
that is returned to the application to indicate what went wrong.

If the info argument is provided and is non-empty, it is used to initialize the global vagablenfo .
errorinfo is used to accumulate a stack trace of what was in progress when an error occurred; as nested
commands unwind, the Tcl interpreter adds informatioartorinfo . If the info argument is present, it is
used to initializeerrorinfo and the first increment of unwind information will not be added by the Tcl
interpreter. In other words, the command containingetiner command will not appear ierrorinfo ; in
its place will beinfo. This feature is most useful in conjunction with daéch command: if a caught error
cannot be handled successfullyfo can be used to return a stack trace reflecting the original point of
occurrence of the error:

catch {...} errMsg

set savedInfo $errorinfo

error $errMsg $savedinfo

If the codeargument is present, then its value is stored iretrerCode global variable. This variable is
intended to hold a machine-readable description of the error in cases where such information is available;
see thdclvars manual page for information on the proper format for the variable. dbeargument is

not present, thearrorCode is automatically reset to “NONE" by the Tcl interpreter as part of processing

the error generated by the command.

KEYWORDS

Tcl

error, errorCode, errorinfo

Last change: 1

Tcl Built-In Commands eval(n)

NAME
eval — Evaluate a Tcl script

SYNOPSIS
evalarg ?arg ...?

DESCRIPTION
Eval takes one or more arguments, which together comprise a Tcl script containing one or more com-
mands. Eval concatenates all its arguments in the same fashion a®icatcommand, passes the con-
catenated string to the Tcl interpreter recursively, and returns the result of that evaluation (or any error gen-
erated by it).

KEYWORDS
concatenate, evaluate, script

Tcl Last change: 1

Tcl Built-In Commands exec(n)

NAME
exec — Invoke subprocess(es)

SYNOPSIS
exec?switche® arg ?arg ...?

DESCRIPTION
This command treats its arguments as the specification of one or more subprocesses to execute. The argu-
ments take the form of a standard shell pipeline whereagdiecomes one word of a command, and each
distinct command becomes a subprocess.

If the initial arguments texecstart with— then they are treated as command-line switches and are not part
of the pipeline specification. The following switches are currently supported:

—keepnewline Retains a trailing newline in the pipeline’s output. Normally a trailing newline will be
deleted.

-- Marks the end of switches. The argument following this one will be treated as tlaedfirst
even if it starts with a.

If an arg (or pair ofarg's) has one of the forms described below then it is useekbgto control the flow

of input and output among the subprocess(es). Such arguments will not be passed to the subprocess(es). In
forms such as “dileNamé fileNamemay either be in a separate argument from “<” or in the same argu-

ment with no intervening space (i.e.ffleNamé).

| Separates distinct commands in the pipeline. The standard output of the preceding com-
mand will be piped into the standard input of the next command.

|& Separates distinct commands in the pipeline. Both standard output and standard error of
the preceding command will be piped into the standard input of the next command. This
form of redirection overrides forms such as 2> and >&.

< fileName The file named byileNameis opened and used as the standard input for the first com-
mand in the pipeline.

<@ fileld Fileld must be the identifier for an open file, such as the return value from a previous call
to open It is used as the standard input for the first command in the pipdfitedd
must have been opened for reading.

<< value Valuds passed to the first command as its standard input.

> fileName Standard output from the last command is redirected to the file nidai¢dme over-
writing its previous contents.

2> fileName Standard error from all commands in the pipeline is redirected to the file rfdened
Name overwriting its previous contents.

>& fileName Both standard output from the last command and standard error from all commands are
redirected to the file namditeName overwriting its previous contents.

>> fileName Standard output from the last command is redirected to the file fdeMaime append-
ing to it rather than overwriting it.

2>> fileName Standard error from all commands in the pipeline is redirected to the file rfdened
Name appending to it rather than overwriting it.

>>& fileName Both standard output from the last command and standard error from all commands are
redirected to the file namditeName appending to it rather than overwriting it.

>@ fileld Fileld must be the identifier for an open file, such as the return value from a previous call

Tcl Last change: 7.6 1

Tcl Built-In Commands exec(n)

to open Standard output from the last command is redirectéitetd's file, which must
have been opened for writing.

2>@ fileld Fileld must be the identifier for an open file, such as the return value from a previous call
to open Standard error from all commands in the pipeline is redirectéitekds file.
The file must have been opened for writing.

>&@ fileld Fileld must be the identifier for an open file, such as the return value from a previous call
to open Both standard output from the last command and standard error from all com-
mands are redirected fiteld's file. The file must have been opened for writing.

If standard output has not been redirected themxkecommand returns the standard output from the last
command in the pipeline. If any of the commands in the pipeline exit abnormally or are killed or sus-
pended, theexecwill return an error and the error message will include the pipeline’s output followed by
error messages describing the abnormal terminationgrtbeCode variable will contain additional infor-

mation about the last abnormal termination encountered. If any of the commands writes to its standard
error file and that standard error isn’t redirected, teeecwill return an error; the error message will
include the pipeline’s standard output, followed by messages about abnormal terminations (if any), fol-
lowed by the standard error output.

If the last character of the result or error message is a newline then that character is normally deleted from
the result or error message. This is consistent with other Tcl return values, which don’t normally end with
newlines. However, ifkeepnewlineis specified then the trailing newline is retained.

If standard input isn’t redirected with “<” or “<<” or “<@” then the standard input for the first command
in the pipeline is taken from the application’s current standard input.

If the lastarg is “&” then the pipeline will be executed in background. In this casestteccommand will

return a list whose elements are the process identifiers for all of the subprocesses in the pipeline. The stan-
dard output from the last command in the pipeline will go to the application’s standard output if it hasn’t
been redirected, and error output from all of the commands in the pipeline will go to the application’s stan-
dard error file unless redirected.

The first word in each command is taken as the command name; tilde-substitution is performed on it, and if
the result contains no slashes then the directories in the PATH environment variable are searched for an
executable by the given name. If the name contains a slash then it must refer to an executable reachable
from the current directory. No “glob” expansion or other shell-like substitutions are performed on the
arguments to commands.

PORTABILITY ISSUES

Tcl

Windows (all versions)
Reading from or writing to a socket, using th@ “fileld” notation, does not work. When reading
from a socket, a 16-bit DOS application will hang and a 32-bit application will return immediately
with end-of-file. When either type of application writes to a socket, the information is instead sent
to the console, if one is present, or is discarded.

The Tk console text widget does not provide real standard 10 capabilities. Under Tk, when redi-
recting from standard input, all applications will see an immediate end-of-file; information redi-
rected to standard output or standard error will be discarded.

Either forward or backward slashes are accepted as path separators for arguments to Tcl com-
mands. When executing an application, the path hame specified for the application may also con-
tain forward or backward slashes as path separators. Bear in mind, however, that most Windows
applications accept arguments with forward slashes only as option delimiters and backslashes only
in paths. Any arguments to an application that specify a path name with forward slashes will not

Last change: 7.6 2

Tcl Built-In Commands exec(n)

Tcl

automatically be converted to use the backslash character. If an argument contains forward slashes
as the path separator, it may or may not be recognized as a path name, depending on the program.

Additionally, when calling a 16-bit DOS or Windows 3.X application, all path names must use the
short, cryptic, path format (e.g., using “applba™.def” instead of “applbakery.default”).

Two or more forward or backward slashes in a row in a path refer to a network path. For example,
a simple concatenation of the root directerywith a subdirectorywindows/systemwill yield
c:/lwindows/system(two slashes together), which refers to the directsygtemon the machine
windows (and thec:/ is ignored), and is not equivalent¢cdwindows/system which describes a
directory on the current computer.

Windows NT

When attempting to execute an applicatierecfirst searches for the name as it was specified.
Then, in order,com, .exe and.bat are appended to the end of the specified name and it searches
for the longer name. If a directory name was not specified as part of the application name, the fol-
lowing directories are automatically searched in order when attempting to locate the application:

The directory from which the Tcl executable was loaded.
The current directory.

The Windows NT 32-bit system directory.

The Windows NT 16-bit system directory.

The Windows NT home directory.

The directories listed in the path.

In order to execute the shell builtin commands Ildke and copy, the caller must prepend
“cmd.exe /c” to the desired command.

Windows 95

When attempting to execute an applicatierecfirst searches for the name as it was specified.
Then, in order,com, .exe and.bat are appended to the end of the specified name and it searches
for the longer name. If a directory name was not specified as part of the application name, the fol-
lowing directories are automatically searched in order when attempting to locate the application:

The directory from which the Tcl executable was loaded.
The current directory.

The Windows 95 system directory.

The Windows 95 home directory.

The directories listed in the path.

In order to execute the shell builtin commands tlkeand copy, the caller must prepenccbm-
mand.com /c " to the desired command.

Once a 16-bit DOS application has read standard input from a console and then quit, all subse-
guently run 16-bit DOS applications will see the standard input as already closed. 32-bit applica-
tions do not have this problem and will run correctly even after a 16-bit DOS application thinks
that standard input is closed. There is no known workaround for this bug at this time.

Redirection between theUL: device and a 16-bit application does not always work. When redi-
recting fromNUL:, some applications may hang, others will get an infinite stream of “0x01”
bytes, and some will actually correctly get an immediate end-of-file; the behavior seems to depend
upon something compiled into the application itself. When redirecting greater than 4K or so to

Last change: 7.6 3

Tcl Built-In Commands exec(n)

NUL:, some applications will hang. Theate problems do not happen with 32-bit applications.

All DOS 16-bit applications are run synchronously. All standard input from a pipe to a 16-bit
DOS application is collected into a temporary file; the other end of the pipe must be closed before
the 16-bit DOS application begins executing. All standard output or error from a 16-bit DOS
application to a pipe is collected into temporary files; the application must terminate before the
temporary files are redirected to the next stage of the pipeline. This is due to a workaround for a
Windows 95 bug in the implementation of pipes, and is how the Windows 95 command line inter-
preter handles pipes itself.

Certain applications, such asmmand.com should not be executed interactively. Applications
which directly access the console window, rather than reading from their standard input and writ-
ing to their standard output may fail, hang Tcl, or even hang the system if their own private con-
sole window is not available to them.

Windows 3.X
When attempting to execute an applicatierecfirst searches for the name as it was specified.
Then, in order,com, .exe and.bat are appended to the end of the specified name and it searches
for the longer name. If a directory name was not specified as part of the application name, the fol-
lowing directories are automatically searched in order when attempting to locate the application:

The directory from which the Tcl executable was loaded.
The current directory.

The Windows 3.X system directory.

The Windows 3.X home directory.

The directories listed in the path.

In order to execute the shell builtin commands tlkeand copy, the caller must prepenccbm-
mand.com /c " to the desired command.

16-bit and 32-bit DOS and Windows applications may be executed. However, redirection and pip-
ing of standard 10 only works with 16-bit DOS applications. 32-bit applications always see stan-
dard input as already closed, and any standard output or error is discarded, no matter where in the
pipeline the application occurs or what redirection symbols are used by the caller. Additionally,
for 16-bit applications, standard error is always sent to the same place as standard output; it cannot
be redirected to a separate location. In order to achieve pseudo-redirection for 32-bit applications,
the 32-bit application must instead be written to take command line arguments that specify the
files that it should read from and write to and open those files itself.

All applications, both 16-bit and 32-bit, run synchronously; each application runs to completion
before the next one in the pipeline starts. Temporary files are used to simulate piping between
applications. Thexeccommand cannot be used to start an application in the background.

When standard input is redirected from an open file using@éileld” notation, the open file is
completely read up to its end. This is slightly different than under Windows 95 or NT, where the
child application consumes from the open file only as much as it wants. Redirecting to an open
file is supported as normal.

Macintosh
Theexeccommand is not implemented and does not exist under Macintosh.

Unix
Theexeccommand is fully functional and works as described.

Tcl Last change: 7.6 4

Tcl Built-In Commands

SEE ALSO
open(n)

KEYWORDS

execute, pipeline, redirection, subprocess

Tcl

Last change: 7.6

exec(n)

Tcl Built-In Commands exit(n)

NAME
exit — End the application

SYNOPSIS
exit returnCode&

DESCRIPTION

Terminate the process, returnirgjurnCodeto the system as the exit status.refurnCodeisn't specified
then it defaults to O.

KEYWORDS
exit, process

Tcl Last change: 1

Tcl Built-In Commands expr(n)

NAME

SYNOPSIS

expr — Evaluate an expression

expr arg 7arg arg ..?

DESCRIPTION

Concatenatearg's (adding separator spaces between them), evaluates the result as a Tcl expression, and

returns the value. The operators permitted in Tcl expressions are a subset of the operators permitted in C

expressions, and they have the same meaning and precedence as the corresponding C operators. Expres-

sions almost always yield numeric results (integer or floating-point values). For example, the expression
expr8.2+6

evaluates to 14.2. Tcl expressions differ from C expressions in the way that operands are specified. Also,

Tcl expressions support non-numeric operands and string comparisons.

OPERANDS

Tcl

A Tcl expression consists of a combination of operands, operators, and parentheses. White space may be
used between the operands and operators and parentheses; it is ignored by the expression’s instructions.
Where possible, operands are interpreted as integer values. Integer values may be specified in decimal (the
normal case), in octal (if the first character of the opera@y & in hexadecimal (if the first two characters

of the operand ar@x). If an operand does not have one of the integer formats given above, then it is treated
as a floating-point number if that is possible. Floating-point numbers may be specified in any of the ways
accepted by an ANSI-compliant C compiler (except thaf,tkel, andL suffixes will not be permitted in

most installations). For example, all of the following are valid floating-point numbers: 2.1, 3., 6e4,
7.91e+16. If no numeric interpretation is possible, then an operand is left as a string (and only a limited set
of operators may be applied to it).

Operands may be specified in any of the following ways:
[1] As an numeric value, either integer or floating-point.
2] As a Tcl variable, using standaschotation. The variable’s value will be used as the operand.

[3] As a string enclosed in double-quotes. The expression parser will perform backslash, variable, and
command substitutions on the information between the quotes, and use the resulting value as the
operand

[4] As a string enclosed in braces. The characters between the open brace and matching close brace
will be used as the operand without any substitutions.

[5] As a Tcl command enclosed in brackets. The command will be executed and its result will be
used as the operand.

[6] As a mathematical function whose arguments have any of tneérms for operands, such as
sin($x). See below for a list of defined functions.

Where substitutions occur ae (e.g. inside quoted strings), they are performed by the expression’s
instructions. However, an additional layer of substitution may already have been performed by the com-
mand parser before the expression processor was called. As discussed below, it is usually best to enclose
expressions in braces to prevent the command parser from performing substitutions on the contents.

For some examples of simple expressions, suppose the variaddethe value 3 and the variabléas the
value 6. Then the command on the left side of each of the lines below will produce the value on the right
side of the line:

expr 3.1+ $a 6.1

expr 2 + "$a.$b" 5.6

expr 4llength "6 2" 8

Last change: 8.0 1

Tcl Built-In Commands

expr(n)

expr {{word one} < "word $a"} 0

OPERATORS
The valid operators are listed below, grouped in decreasing order of precedence:

Tcl

— + |

o/ %

<< >>

< > <= >=

X?y:z

Unary minus, unary plus, bit-wise NOT, logical NOT. None of these operands
may be applied to string operands, and bit-wise NOT may be applied only to inte-
gers.

Multiply, divide, remainder. None of these operands may be applied to string
operands, and remainder may be applied only to integers. The remainder will
always have the same sign as the divisor and an absolute value smaller than the
divisor.

Add and subtract. Valid for any numeric operands.

Left and right shift. Valid for integer operands only. A right shift always propa-
gates the sign bit.

Boolean less, greater, less than or equal, and greater than or equal. Each operator
produces 1 if the condition is true, O otherwise. These operators may be applied to
strings as well as numeric operands, in which case string comparison is used.

Boolean equal and not equal. Each operator produces a zero/one result. Valid for
all operand types.

Bit-wise AND. Valid for integer operands only.
Bit-wise exclusive OR. Valid for integer operands only.
Bit-wise OR. Valid for integer operands only.

Logical AND. Produces a 1 result if both operands are non-zero, 0 otherwise.
Valid for boolean and numeric (integers or floating-point) operands only.

Logical OR. Produces a 0 result if both operands are zero, 1 otherwise. Valid for
boolean and numeric (integers or floating-point) operands only.

If-then-else, as in C. Ik evaluates to non-zero, then the result is the valye of
Otherwise the result is the valueafThex operand must have a numeric value.

See the C manual for more details on the results produced by each operator. All of the binary operators
group left-to-right within the same precedence level. For example, the command

expra2 <7

returns 0.

The&& , ||, and?: operators have “lazy evaluation”, just as in C, which means that operands are not evalu-
ated if they are not needed to determine the outcome. For example, in the command
expr {$v ? [a] : [b]}
only one offa] or [b] will actually be evaluated, depending on the valu&wfNote, however, that this is
only true if the entire expression is enclosed in braces; otherwise the Tcl parser will evalufaé drudh
[b] before invoking thexpr command.

MATH FUNCTIONS
Tcl supports the following mathematical functions in expressions:

acos
asin
atan
atan2
ceil

cos hypot sinh
cosh log sqrt
exp log10 tan
floor pow tanh
fmod sin

Last change: 8.0 2

Tcl Built-In Commands expr(n)

Each of these functions invokes the math library function of the same name; see the manual entries for the
library functions for details on what they do. Tcl also implements the following functions for conversion
between integers and floating-point numbers and the generation of random numbers:

abs(arg)
Returns the absolute value afg. Arg may be either integer or floating-point, and the result is
returned in the same form.

double(arg)
If arg is a floating value, returrerg, otherwise convertarg to floating and returns the converted
value.

int(arg) If arg is an integer value, retur@sg, otherwise convertarg to integer by truncation and returns
the converted value.

rand() Returns a floating point number from zero to just less than one or, in mathematical terms, the
range [0,1). The seed comes from the internal clock of the machine or may be set manual with the
srand function.

round(arg)
If argis an integer value, returasg, otherwise convertarg to integer by rounding and returns the
converted value.

srand(arg)
The arg, which must be an integer, is used to reset the seed for the random number generator.
Returns the first random number from that seed. Each interpreter has it's own seed.

In addition to these predefined functions, applications may define additional functionsTdkiGge-
ateMathFunc().

TYPES, OVERFLOW, AND PRECISION

All internal computations involving integers are done with the C tgpg, and all internal computations
involving floating-point are done with the C tydeuble When converting a string to floating-point, expo-

nent overflow is detected and results in a Tcl error. For conversion to integer from string, detection of over-
flow depends on the behavior of some routines in the local C library, so it should be regarded as unreliable.
In any case, integer overflow and underflow are generally not detected reliably for intermediate results.
Floating-point overflow and underflow are detected to the degree supported by the hardware, which is gen-
erally pretty reliable.

Conversion among internal representations for integer, floating-point, and string operands is done automati-
cally as needed. For arithmetic computations, integers are used until some floating-point number is intro-
duced, after which floating-point is used. For example,
expr5/4
returns 1, while
expr5/4.0
expr 5/ ([string length "abcd"] + 0.0)
both return 1.25. Floating-point values are always returned with @r‘an e so that they will not look
like integer values. For example,
expr 20.0/5.0
returns4.0, not4.

STRING OPERATIONS

Tcl

String values may be used as operands of the comparison operators, although the expression evaluator tries
to do comparisons as integer or floating-point when it can. If one of the operands of a comparison is a
string and the other has a numeric value, the numeric operand is converted back to a string using the C
sprintfformat specifiefod for integers andbg for floating-point values. For example, the commands

expr {"0x03" > "2"}

Last change: 8.0 3

Tcl Built-In Commands expr(n)

expr {"0y" < "0x12"}
both return 1. The first comparison is done using integer comparison, and the second is done using string
comparison after the second operand is converted to the B&irBecause of Tcl's tendency to treat values
as numbers whenever possible, it isn't generally a good idea to use operatersviken you really want
string comparison and the values of the operands could be arbitrary; it's better in these cases to use the
string compare command instead.

PERFORMANCE CONSIDERATIONS

Enclose expressions in braces for the best speed and the smallest storage requirements. This allows the Tcl
bytecode compiler to generate the best code.

As mentioned above, expressions are substituted twice: once by the Tcl parser and onesgryctira-
mand. For example, the commands

seta3

set b {$a + 2}

expr $hl4
return 11, not a multiple of 4. This is because the Tcl parser will first sub§iEtute? for the variableb,
then theexpr command will evaluate the expressikm+ 24,

Most expressions do not require a second round of substitutions. Either they are enclosed in braces or, if
not, their variable and command substitutions yield numbers or strings that don’t themselves require substi-
tutions. However, because a few unbraced expressions need two rounds of substitutions, the bytecode com-
piler must emit additional instructions to handle this situation. The most expensive code is required for
unbraced expressions that contain command substitutions. These expressions must be implemented by gen-
erating new code each time the expression is executed.

KEYWORDS

Tcl

arithmetic, boolean, compare, expression, fuzzy comparison

Last change: 8.0 4

Tcl Built-In Commands fblocked (n)

NAME
fblocked — Test whether the last input operation exhausted all available input

SYNOPSIS
fblocked channelld

DESCRIPTION
Thefblocked command returns 1 if the most recent input operatiochamnelldreturned less information
than requested because all available input was exhausted. For examelgisifinvoked when there are
only three characters available for input and no end-of-line sequgetse#eturns an empty string and a
subsequent call tiblocked will return 1.

SEE ALSO
gets(n), read(n)

KEYWORDS
blocking, nonblocking

Tcl Last change: 7.5 1

Tcl Built-In Commands fconfigure (n)

NAME
fconfigure — Set and get options on a channel

SYNOPSIS
fconfigure channelld
fconfigure channelld name
fconfigure channelld name valugname value 2.

DESCRIPTION
The fconfigure command sets and retrieves options for chann€lsannelldidentifies the channel for
which to set or query an option. If mameor valuearguments are supplied, the command returns a list
containing alternating option names and values for the channedméis supplied but nwaluethen the
command returns the current value of the given option. If one or more paissnefandvalue are sup-
plied, the command sets each of the named options to the correspeaidman this case the return value
is an empty string.

The options described below are supported for all channels. In addition, each channel type may add options
that only it supports. See the manual entry for the command that creates each type of channels for the
options that that specific type of channel supports. For example, see the manual entrgdoketeom-

mand for its additional options.

—blocking boolean
The —blocking option determines whether 1/O operations on the channel can cause the process to
block indefinitely. The value of the option must be a proper boolean value. Channels are normally
in blocking mode; if a channel is placed into nonblocking mode it will affect the operation of the
gets read, puts, flush, and close commands; see the documentation for those commands for
details. For nonblocking mode to work correctly, the application must be using the Tcl event loop
(e.g. by callingrcl_DoOneEventor invoking thevwait command).

—buffering newValue
If newValues full then the I/O system will buffer output until its internal buffer is full or until the
flush command is invoked. HiewValuds line, then the I/O system will automatically flush output
for the channel whenever a newline character is outpuewValueis none, the 1/0 system will
flush automatically after every output operation. The default is-thoffering to be set tdull
except for channels that connect to terminal-like devices; for these channels the initial setting is
line.

—buffersize newSize
Newvaluemust be an integer; its value is used to set the size of buffers, in bytes, subsequently
allocated for this channel to store input or outpléwvaluemust be between ten and one million,
allowing buffers of ten to one million bytes in size.

—eofcharchar

—eofchar {inChar outChay

This option supports DOS file systems that use Control-z (\x1a) as an end of file machar.islf

not an empty string, then this character signals end of file when it is encountered during input. For
output, the end of file character is output when the channel is closeldar i the empty string,

then there is no special end of file character marker. For read-write channels, a two-element list
specifies the end of file marker for input and output, respectively. As a convenience, when setting
the end-of-file character for a read-write channel you can specify a single value that will apply to

both reading and writing. When querying the end-of-file character of a read-write channel, a two-

element list will always be returned. The default value-feofchar is the empty string in all

cases except for files under Windows. In that case-éudéchar is Control-z (\x1a) for reading

Tcl Last change: 7.5 1

Tcl Built-In Commands fconfigure (n)

and the empty string for writing.

—translation mode

—translation {inMode outModg

SEE ALSO

In Tcl scripts the end of a line is always represented using a single newline character (\n). How-
ever, in actual files and devices the end of a line may be represented differently on different plat-
forms, or even for different devices on the same platform. For example, under UNIX newlines are
used in files, whereas carriage-return-linefeed sequences are normally used in network connec-
tions. On input (i.e., witlgetsandread) the Tcl I/O system automatically translates the external
end-of-line representation into newline characters. Upon output (i.e.puiigh, the 1/0 system
translates newlines to the external end-of-line representation. The default translatiomutmde,
handles all the common cases automatically, buttrenslation option provides explicit control

over the end of line translations.

The value associated wititranslation is a single item for read-only and write-only channels.
The value is a two-element list for read-write channels; the read translation mode is the first ele-
ment of the list, and the write translation mode is the second element. As a convenience, when
setting the translation mode for a read-write channel you can specify a single value that will apply
to both reading and writing. When querying the translation mode of a read-write channel, a two-
element list will always be returned. The following values are currently supported:

auto As the input translation modauto treats any of newlindf(), carriage returncf), or car-
riage return followed by a newliner(f) as the end of line representation. The end of line
representation can even change from line-to-line, and all cases are translated to a newline.
As the output translation modato chooses a platform specific representation; for sock-
ets on all platforms Tcl choosedf, for all Unix flavors, it chooséds, for the Macintosh
platform it choosesr and for the various flavors of Windows it choosdk. The default
setting for-translation is auto for both input and output.

binary No end-of-line translations are performed. This is nearly identidéinmde, except that
in additionbinary mode also sets the end of file character to the empty string, which dis-
ables it. See the description-egofcharfor more information.

cr The end of a line in the underlying file or device is represented by a single carriage return
character. As the input translation mode,mode converts carriage returns to newline
characters. As the output translation mattenode translates newline characters to car-
riage returns. This mode is typically used on Macintosh platforms.

crif The end of a line in the underlying file or device is represented by a carriage return char-
acter followed by a linefeed character. As the input translation ncoflenode converts
carriage-return-linefeed sequences to newline characters. As the output translation mode,
crlf mode translates newline characters to carriage-return-linefeed sequences. This mode
is typically used on Windows platforms and for network connections.

If The end of a line in the underlying file or device is represented by a single newline (line-
feed) character. In this mode no translations occur during either input or output. This
mode is typically used on UNIX platforms.

close(n), flush(n), gets(n), puts(n), read(n), socket(n)

KEYWORDS

blocking, buffering, carriage return, end of line, flushing, linemode, newline, nonblocking, platform, trans-

lation

Tcl

Last change: 7.5 2

Tcl Built-In Commands fcopy (n)

NAME

SYNOPSIS

fcopy — Copy data from one channel to another.

fcopy inchan outchar?-sizesize&? >-commandcallback?

DESCRIPTION

The fcopy command copies data from one I/O chanmehanto another 1/O channaebutchan Thefcopy
command leverages the buffering in the Tcl I/O system to avoid extra copies and to avoid buffering too
much data in main memory when copying large files to slow destinations like network sockets.

The fcopy command transfers data framchanuntil end of file orsizebytes have been transferred. If no
—sizeargument is given, then the copy goes until end of file. All the data readiriatranis copied to
outchan Without the-command option, fcopy blocks until the copy is complete and returns the number
of bytes written tamutchan

The —command argument make&opy work in the background. In this case it returns immediately and

the callbackis invoked later when the copy completes. Thdbackis called with one or two additional
arguments that indicates how many bytes were writtesutohan If an error occurred during the back-
ground copy, the second argument is the error string associated with the error. With a background copy, it
is not necessary to pirichanor outchaninto non-blocking mode; thieopy command takes care of that
automatically. However, it is necessary to enter the event loop by usingvitiecommand or by using

Tk.

You are not allowed to do other 1/O operations vifitthanor outchanduring a background fcopy. If either
inchanor outchanget closed while the copy is in progress, the current copy is stopped and the command
callback isnotmade. Ifinchanis closed, then all data already queuedfachanis written out.

Note thatinchancan become readable during a background copy. You should turn difemwent han-
dlers during a background copy so those handlers do not interfere with the copy. Any I/O attempted by a
fileeventhandler will get a "channel busy" error.

Fcopy translates end-of-line sequencesirinohan and outchanaccording to the-translation option for
these channels. See the manual entryfdonfigure for details on the-translation option. The transla-
tions mean that the number of bytes read fiochancan be different than the number of bytes written to
outchan Only the number of bytes written tautchanis reported, either as the return value of a syn-
chronoudcopy or as the argument to the callback for an asynchroicopy.

EXAMPLE

Tcl

This first example shows how the callback gets passed the number of bytes transferred. It also uses vwait to
put the application into the event loop. Of course, this simplified example could be done without the com-
mand callback.

proc Cleanup {in out bytes {error {}}} {
global total
set total $bytes
close $in
close $out
if {[string length $error] != 0} {
error occurred during the copy
}

}
set in [open $filel]

Last change: 8.0 1

Tcl Built-In Commands fcopy (n)

set out [socket $server $port]
fcopy $in $out -command [list Cleanup $in $out]
vwait total

The second example copies in chunks and tests for end of file in the command callback

proc CopyMore {in out chunk bytes {error {}}} {
global total done
incr total $bytes
if {([string length $error] !=0) || [eof $in] {
set done $total
close $in
close $out
}else {
fcopy $in $out -command [list CopyMore $in $out $chunk] \
-size $chunk
}
}
set in [open $filel]
set out [socket $server $port]
set chunk 1024
set total 0
fcopy $in $out -command [list CopyMore $in $out $chunk] -size $chunk
vwait done

SEE ALSO
eof(n), fblocked(n), fconfigure(n)

KEYWORDS
blocking, channel, end of line, end of file, nonblocking, read, translation

Tcl Last change: 8.0

Tcl Built-In Commands file (n)

NAME

file — Manipulate file names and attributes

SYNOPSIS

file option name?arg arg ..?

DESCRIPTION

This command provides several operations on a file’'s name or attrilNéeseis the name of a file; if it

starts with a tilde, then tilde substitution is done before executing the command (see the manual entry for
filename for details). Optionindicates what to do with the file name. Any unique abbreviatiowgton

is acceptable. The valid options are:

file atime name

Returns a decimal string giving the time at which fisenewas last accessed. The time is mea-
sured in the standard POSIX fashion as seconds from a fixed starting time (often January 1, 1970).
If the file doesn't exist or its access time cannot be queried then an error is generated.

file attributes name

file attributes name?option?

file attributes name?option value option value..?

This subcommand returns or sets platform specific values associated with a file. The first form
returns a list of the platform specific flags and their values. The second form returns the value for
the specific option. The third form sets one or more of the values. The values are as follows:

On Unix,-group gets or sets the group name for the file. A group id can be given to the command,
but it returns a group namewner gets or sets the user name of the owner of the file. The com-
mand returns the owner name, but the numerical id can be passed when setting theemwner.
missionssets or retrieves the octal code that chmod(1) uses. This command does not support the
symbolic attributes for chmod(1) at this time.

On Windows,-archive gives the value or sets or clears the archive attribute of theHitlen
gives the value or sets or clears the hidden attribute of thelditggnamewill expand each path
element to its long version. This attribute cannot be-stdonly gives the value or sets or clears
the readonly attribute of the fileshortname gives a string where every path element is replaced
with its short (8.3) version of the name. This attribute cannot besgstemgives or sets or clears
the value of the system attribute of the file.

On Macintosh-creator gives or sets the Finder creator type of the fikdden gives or sets or
clears the hidden attribute of the fileeadonly gives or sets or clears the readonly attribute of the
file. Note that directories can only be locked if File Sharing is turnedtype gives or sets the
Finder file type for the file.

file copy ?—force? ?- -? source target
file copy ?—force? ?- —? source?source...?targetDir

The first form makes a copy of the file or directespurceunder the pathnamtarget If targetis

an existing directory, then the second form is used. The second form makes a copigstde

Dir of eachsourcefile listed. If a directory is specified asaurce then the contents of the direc-
tory will be recursively copied inttargetDir. Existing files will not be overwritten unless the
—force option is specified. Trying to overwrite a non-empty directory, overwrite a directory with a
file, or a file with a directory will all result in errors even-fbrce was specified. Arguments are
processed in the order specified, halting at the first error, if any— farks the end of switches;
the argument following the — will be treated as sourceeven if it starts with &.

file delete?-force? ?- —? pathname?pathname.. ?

Tcl

Removes the file or directory specified by epethnameargument. Non-empty directories will

Last change: 7.6 1

Tcl Built-In Commands file (n)

Tcl

be removed only if the-force option is specified. Trying to delete a non-existant file is not con-
sidered an error. Trying to delete a read-only file will cause the file to be deleted, even if the
—force flags is not specified. Arguments are processed in the order specified, halting at the first
error, if any. A—- marks the end of switches; the argument following-thewill be treated as a
pathnameeven if it starts with &.

file dirname name

Returns a name comprised of all of the path componentarnreexcluding the last element. If

nameis a relative file name and only contains one path element, then retlifos “ :” on the

Macintosh). Ifnamerefers to a root directory, then the root directory is returned. For example,
file dirname c:/

returnsc:/.

Note that tilde substitution will only be performed if it is necessary to complete the command. For
example,
file dirname “/src/foo.c
returns’/src, whereas
file dirname ~
returns/home (or something similar).

file executablename

Returnsl if file nameis executable by the current usgntherwise.

file existsname

Returnsl if file nameexists and the current user has search privileges for the directories leading to
it, O otherwise.

file extensionname

Returns all of the charactersnameafter and including the last dot in the last elememaohe If
there is no dot in the last elemenmnaimethen returns the empty string.

file isdirectory name

Returnsl if file nameis a directoryp otherwise.

file isfile name

Returnsl if file nameis a regular fileQ otherwise.

file join name?name .2

Takes one or more file names and combines them, using the correct path separator for the current
platform. If a particulanameis relative, then it will be joined to the previous file name argument.
Otherwise, any earlier arguments will be discarded, and joining will proceed from the current
argument. For example,

file join a b /foo bar
returns/foo/bar.

Note that any of the names can contain separators, and that the result is always canonical for the
current platform/ for Unix and Windows, andfor Macintosh.

file Istat name varName

Same astat option (see below) except uses k@t kernel call instead aftat This means that if
namerefers to a symbolic link the information returnedsarNameis for the link rather than the

file it refers to. On systems that don't support symbolic links this option behaves exactly the same
as thestat option.

file mkdir dir 2dir ...?

Creates each directory specified. For each pathrdimepecified, this command will create all
non-existing parent directories as welldisitself. If an existing directory is specified, then no
action is taken and no error is returned. Trying to overwrite an existing file with a directory will

Last change: 7.6 2

Tcl Built-In Commands file (n)

Tcl

result in an error. Arguments are processed in the order specified, halting at the first error, if any.

file mtime name
Returns a decimal string giving the time at which filenewas last modified. The time is mea-
sured in the standard POSIX fashion as seconds from a fixed starting time (often January 1, 1970).
If the file doesn't exist or its modified time cannot be queried then an error is generated.

file nativenamename
Returns the platform-specific name of the file. This is useful if the filename is needed to pass to a
platform-specific call, such as exec under Windows or AppleScript on the Macintosh.

file ownedname
Returnsl if file nameis owned by the current usé@rptherwise.

file pathtype name
Returns one oébsolute relative, volumerelative. If namerefers to a specific file on a specific
volume, the path type will babsolute If namerefers to a file relative to the current working
directory, then the path type will belative. If namerefers to a file relative to the current working
directory on a specified volume, or to a specific file on the current working volume, then the file
type isvolumerelative.

file readablename
Returnsl if file nameis readable by the current useégtherwise.

file readlink name
Returns the value of the symbolic link given bgme(i.e. the name of the file it points to). If
nameisn’t a symbolic link or its value cannot be read, then an error is returned. On systems that
don’t support symbolic links this option is undefined.

file rename ?—force? ?- —? source target

file rename ?—force? ?- —? source?source...?targetDir
The first form takes the file or directory specified by pathnsowugceand renames it ttarget
moving the file if the pathnamarget specifies a name in a different directory.tdfgetis an
existing directory, then the second form is used. The second form movesoeactfile or direc-
tory into the directoryargetDir. Existing files will not be overwritten unless thforce option is
specified. Trying to overwrite a non-empty directory, overwrite a directory with a file, or a file
with a directory will all result in errors. Arguments are processed in the order specified, halting at
the first error, if any. A-— marks the end of switches; the argument following-thewill be
treated as aourceeven if it starts with a.

file rootnamename
Returns all of the charactersnameup to but not including the last “.” character in the last com-
ponent of name. If the last componentamedoesn’t contain a dot, then retumesme

file sizename
Returns a decimal string giving the size of fiemein bytes. If the file doesn't exist or its size
cannot be queried then an error is generated.

file split name
Returns a list whose elements are the path componengsria The first element of the list will
have the same path typersmme All other elements will be relative. Path separators will be dis-
carded unless they are needed ensure that an element is unambiguously relative. For example,
under Unix

file split /foo/"bar/baz

returns/ foo .[bar bazto ensure that later commands that use the third component do not
attempt to perform tilde substitution.

file stat name varName

Last change: 7.6 3

Tcl Built-In Commands file (n)

Invokes thestat kernel call ooname and uses the variable given sgrNameto hold information
returned from the kernel calVarNameis treated as an array variable, and the following elements
of that variable are se#stime, ctime, dev, gid, ino, mode, mtime, nlink, size type, uid. Each
element exceptype is a decimal string with the value of the corresponding field fronmstiie
return structure; see the manual entrydiat for details on the meanings of the values. Tipe
element gives the type of the file in the same form returned by the confileatyge. This com-
mand returns an empty string.

file tail name
Returns all of the charactersnameafter the last directory separator.nEmecontains no separa-

tors then returneame

file type name
Returns a string giving the type of firame which will be one ofile, directory, characterSpe-

cial, blockSpecial fifo, link , or socket

file volume
Returns the absolute paths to the volumes mounted on the system, as a proper Tcl list. On the

Macintosh, this will be a list of the mounted drives, both local and network. N.B. if two drives
have the same name, they will both appear on the volume list, but there is currently no way, from
Tcl, to access any but the first of these drives. On UNIX, the command will always return "/",
since all filesystems are locally mounted. On Windows, it will return a list of the available local

drives (e.g. {a:/ c:/}).

file writable name
Returnsl if file nameis writable by the current usérptherwise.

PORTABILITY ISSUES

Unix
These commands always operate using the real user and group identifiers, not the effective ones.
SEE ALSO
filename
KEYWORDS

attributes, copy files, delete files, directory, filguafiles, name, rename files, stat

Tcl Last change: 7.6 4

Tcl Built-In Commands fileevent (n)

NAME

SYNOPSIS

fileevent — Execute a script when a channel becomes readable or writable

fileeventchannelldreadable ?script?

fileeventchannelldwritable ?script?

DESCRIPTION

Tcl

This command is used to credite event handlersA file event handler is a binding between a channel and

a script, such that the script is evaluated whenever the channel becomes readable or writable. File event
handlers are most commonly used to allow data to be received from another process on an event-driven
basis, so that the receiver can continue to interact with the user while waiting for the data to arrive. If an
application invokegetsor read on a blocking channel when there is no input data available, the process
will block; until the input data arrives, it will not be able to service other events, so it will appear to the user
to “freeze up”. Withfileevent the process can tell when data is present and only imatker read when

they won't block.

The channelldargument tdileevent refers to an open channel, such as the return value from a previous
open or socketcommand. If thescript argument is specified, thditeevent creates a new event handler:
scriptwill be evaluated whenever the channel becomes readable or writable (depending on the second argu-
ment tofileevend. In this casdileeventreturns an empty string. Theadable andwritable event han-

dlers for a file are independent, and may be created and deleted separately. However, there may be at most
onereadableand onewritable handler for a file at a given time in a given interpretefildeventis called

when the specified handler already exists in the invoking interpreter, the new script replaces the old one.

If the scriptargument is not specifiefileeventreturns the current script fahannelld or an empty string

if there is none. If thacript argument is specified as an empty string then the event handler is deleted, so
that no script will be invoked. A file event handler is also deleted automatically whenever its channel is
closed or its interpreter is deleted.

A channel is considered to be readable if there is unread data available on the underlying device. A channel
is also considered to be readable if there is unread data in an input buffer, except in the special case where
the most recent attempt to read from the channel vggetsall that could not find a complete line in the

input buffer. This feature allows a file to be read a line at a time in nonblocking mode using events. A
channel is also considered to be readable if an end of file or error condition is present on the underlying file
or device. Itis important fascriptto check for these conditions and handle them appropriately; for exam-

ple, if there is no special check for end of file, an infinite loop may occur velceipe reads no data,

returns, and is immediately invoked again.

A channel is considered to be writable if at least one byte of data can be written to the underlying file or
device without blocking, or if an error condition is present on the underlying file or device.

Event-driven I/O works best for channels that have been placed into nonblocking mode vaitinfilgeire
command. In blocking mode,puts command may block if you give it more data than the underlying file
or device can accept, angietsor read command will block if you attempt to read more data than is ready;
no events will be processed while the commands block. In nonblocking pot&leead, andgetsnever

block. See the documentation for the individual commands for information on how they handle blocking
and nonblocking channels.

The script for a file event is executed at global level (outside the context of any Tcl procedure) in the inter-
preter in which thdileeventcommand was invoked. If an error occurs while executing the script then the
bgerror mechanism is used to report the error. In addition, the file event handler is deleted if it ever returns
an error; this is done in order to prevent infinite loops due to buggy handlers.

Last change: 7.5 1

Tcl Built-In Commands fileevent (n)

CREDITS
fileeventis based on thaddinput command created by Mark Diekhans.

SEE ALSO
bgerror, fconfigure, gets, puts, read

KEYWORDS
asynchronous I/O, blocking, channel, event handler, nonblocking, readable, script, writable.

Tcl Last change: 7.5 2

Tcl Built-In Commands filename (n)

NAME
filename — File name conventions supported by Tcl commands

INTRODUCTION
All Tcl commands and C procedures that take file names as arguments expect the file names to be in one of
three forms, depending on the current platform. On each platform, Tcl supports file names in the standard
forms(s) for that platform. In addition, on all platforms, Tcl supports a Unix-like syntax intended to pro-
vide a convenient way of constructing simple file names. However, scripts that are intended to be portable
should not assume a particular form for file names. Instead, portable scripts mustfiseplieandfile
join commands to manipulate file names (seditbenanual entry for more details).

PATH TYPES

File names are grouped into three general types based on the starting point for the path used to specify the
file: absolute, relative, and volume-relative. Absolute names are completely qualified, giving a path to the
file relative to a particular volume and the root directory on that volume. Relative names are unqualified,
giving a path to the file relative to the current working directory. Volume-relative names are partially quali-
fied, either giving the path relative to the root directory on the current volume, or relative to the current
directory of the specified volume. Tfike pathtype command can be used to determine the type of a given
path.

PATH SYNTAX

Tcl

The rules for native names depend on the value reported in the Tcl array e@npéatform(platform) :

mac On Apple Macintosh systems, Tcl supports two forms of path names. The normal Mac style
names use colons as path separators. Paths may be relative or absolute, and file nhames may
contain any character other than colon. A leading colon causes the rest of the path to be inter-
preted relative to the current directory. If a path contains a colon that is not at the beginning,
then the path is interpreted as an absolute path. Sequences of two or more colons anywhere in
the path are used to construct relative paths wheedfers to the parent of the current direc-
tory, ::: refers to the parent of the parent, and so forth.

In addition to Macintosh style names, Tcl also supports a subset of Unix-like names. If a path
contains no colons, then it is interpreted like a Unix path. Slash is used as the path separator.
The file name refers to the current directory, andefers to the parent of the current directory.
However, some names likeor /.. have no mapping, and are interpreted as Macintosh names.

In general, commands that generate file names will return Macintosh style names, but com-
mands that accept file names will take both Macintosh and Unix-style names.

The following examples illustrate various forms of path names:
Relative path to the current folder.
MyFile Relative path to a file namaédyFile in the current folder.
MyDisk:MyFile Absolute path to a file namédyFile on the device nameadyDisk.
:MyDir:MyFile Relative path to a file namMyFile in a folder namedyDir in the current

folder.
::MyFile Relative path to a file namédyFile in the folder abvethe current folder.
::MyFile Relative path to a file namedyFile in the folder two levels awvethe cur-
rent folder.
/IMyDisk/MyFile Absolute path to a file namédyFile on the device namedyDisk.
../MyFile Relative path to a file namédyFile in the folder abvethe current folder.

Last change: 7.5 1

Tcl Built-In Commands filename (n)

unix On Unix platforms, Tcl uses path hames where the components are separated by slashes. Path
names may be relative or absolute, and file names may contain any character other than slash.
The file namesand.. are special and refer to the current directory and the parent of the current
directory respectively. Multiple adjacent slash characters are interpreted as a single separator.
The following examples illustrate various forms of path names:

/ Absolute path to the root directory.
/etc/passwd Absolute path to the file nam@adsswdin the directoryetcin the root direc-
tory.
Relative path to the current directory.
foo Relative path to the fillo in the current directory.
foo/bar Relative path to the filbar in the directoryfoo in the current directory.
..[foo Relative path to the fillo in the directory abvethe current directory.

windows On Microsoft Windows platforms, Tcl supports both drive-relative and UNC style names.
Both/ and\ may be used as directory separators in either type of name. Drive-relative names
consist of an optional drive specifier followed by an absolute or relative path. UNC paths fol-
low the general formi\servername\sharename\path\file In both forms, the file namesnd..
are special and refer to the current directory and the parent of the current directory respectively.
The following examples illustrate various forms of path names:

\\Host\share/file Absolute UNC path to a file calléde in the root directory of the export
pointshareon the hosHost.

c:foo Volume-relative path to a fi®o in the current directory on drive
c:/foo Absolute path to a fil®o in the root directory of drive.
foo\bar Relative path to a filear in thefoo directory in the current directory on the

current volume.

\foo Volume-relative path to a fillmo in the root directory of the current volume.

TILDE SUBSTITUTION

In addition to the file name rules described above, Tcl also supstrtyle tilde substitution. If a file

name starts with a tilde, then the file name will be interpreted as if the first element is replaced with the
location of the home directory for the given user. If the tilde is followed immediately by a separator, then
the SHOME environment variable is substituted. Otherwise the characters between the tilde and the next
separator are taken as a user name, which is used to retrieve the user’'s home directory for substitution.

The Macintosh and Windows platforms do not support tilde substitution when a user name follows the
tilde. On these platforms, attempts to use a tilde followed by a user name will generate an error. File
names that have a tilde without a user name will be substituted usiBgi@E environment variable,

just like for Unix.

PORTABILITY ISSUES

Tcl

Not all file systems are case sensitive, so scripts should avoid code that depends on the case of characters in
a file name. In addition, the character sets allowed on different devices may differ, so scripts should choose
file names that do not contain special characters<ike?\|. The safest approach is to use names consist-

ing of alphanumeric characters only. Also Windows 3.1 only supports file names with a root of no more
than 8 characters and an extension of no more than 3 characters.

Last change: 7.5 2

Tcl Built-In Commands filename (n)

KEYWORDS
current directory, absolute file name, relative file name, volume-relative file name, portability

Tcl Last change: 7.5 3

Tcl Built-In Commands flush (n)

NAME
flush — Flush buffered output for a channel

SYNOPSIS
flush channelld

DESCRIPTION
Flushes any output that has been bufferedcfannelld Channelldmust be a channel identifier such as
returned by a previouspenor socketcommand, and it must have been opened for writing. If the channel
is in blocking mode the command does not return until all the buffered output has been flushed to the chan-
nel. If the channel is in nonblocking mode, the command may return before all buffered output has been
flushed; the remainder will be flushed in the background as fast as the underlying file or device is able to
absorb it.

SEE ALSO
open(n), socket(n)

KEYWORDS
blocking, buffer, channel, flush, nonblocking, output

Tcl Last change: 7.5 1

Tcl Built-In Commands for(n)

NAME

SYNOPSIS

for — “For” loop

for start test next body

DESCRIPTION

For is a looping command, similar in structure to th®Cstatement. Thstart next andbodyarguments
must be Tcl command strings, atedtis an expression string. T& command first invokes the Tcl inter-
preter to executstart Then it repeatedly evaluatesstas an expression; if the result is non-zero it invokes
the Tcl interpreter obody, then invokes the Tcl interpreter oext then repeats the loop. The command
terminates whenestevaluates to 0. If @ontinue command is invoked withilbodythen any remaining
commands in the current executionbafdy are skipped; processing continues by invoking the Tcl inter-
preter omext then evaluatingest and so on. If @reak command is invoked withibodyor next then the

for command will return immediately. The operatiorboéak andcontinue are similar to the correspond-
ing statements in CFor returns an empty string.

Note:testshould almost always be enclosed in braces. If not, variable substitutions will be made before the
for command starts executing, which means that variable changes made by the loop body will not be con-
sidered in the expression. This is likely to result in an infinite loopestfis enclosed in braces, variable
substitutions are delayed until the expression is evaluated (before each loop iteration), so changes in the
variables will be visible. For an example, try the following script with and without the braces around
$x<10

for {set x 0} {$x<10} {incr x} {

puts "X is $x"

}

KEYWORDS

Tcl

for, iteration, looping

Last change: 1

Tcl Built-In Commands foreach (n)

NAME

SYNOPSIS

foreach — Iterate over all elements in one or more lists

foreach varname list body
foreachvarlistl list1 varlist2 list2 ..? body

DESCRIPTION

The foreach command implements a loop where the loop variable(s) take on values from one or more lists.
In the simplest case there is one loop varialdename and one listlist, that is a list of values to assign to
varname Thebodyargument is a Tcl script. For each elemenligif(in order from first to lastforeach
assigns the contents of the elementamameas if thelindex command had been used to extract the ele-
ment, then calls the Tcl interpreter to exedady.

In the general case there can be more than one value listig¢lgandlist2), and each value list can be
associated with a list of loop variables (ewatlistl andvarlist?). During each iteration of the loop the
variables of eacharlist are assigned consecutive values from the correspohisliny/alues in eaclist are

used in order from first to last, and each value is used exactly once. The total number of loop iterations is
large enough to use up all the values from all the value lists. If a value list does not contain enough ele-
ments for each of its loop variables in each iteration, empty values are used for the missing elements.

The break andcontinue statements may be invoked insibledy; with the same effect as in tfier com-
mand. Foreachreturns an empty string.

EXAMPLES

Tcl

The following loop uses i and j as loop variables to iterate over pairs of elements of a single list.

set x {}

foreach {ij}{abcdef}{
lappend x $j $i

}

The value of xis"badcfe"
There are 3 iterations of the loop.

The next loop uses i and j to iterate over two lists in parallel.

set x {}
foreachi{abc}j{defg}{
lappend x $i $j

}
The value of xis"adbecf{} g"

There are 4 iterations of the loop.

The two forms are combined in the following example.

set x {}

foreachi{abc}{jk}{defg}{
lappend x $i $j $k

}

The value of xis"adebfgc {} {}"

There are 3 iterations of the loop.

Last change: 1

Tcl Built-In Commands foreach (n)

KEYWORDS
foreach, iteration, list, looping

Tcl Last change: 2

Tcl Built-In Commands format (n)

NAME

format — Format a string in the style of sprintf
SYNOPSIS

format formatString?arg arg ..?
INTRODUCTION

This command generates a formatted string in the same way as the ANBIN procedure (it uses
sprintf in its implementation).FormatStringindicates how to format the result, usi¥tgconversion speci-

fiers as irsprintf, and the additional arguments, if any, provide values to be substituted into the result. The
return value fromormat is the formatted string.

DETAILS ON FORMATTING

Tcl

The command operates by scanriognatStringfrom left to right. Each character from the format string

is appended to the result string unless it is a percent sign. If the charadertien it is not copied to the

result string. Instead, the characters following ¥hecharacter are treated as a conversion specifier. The
conversion specifier controls the conversion of the next succesgite a particular format and the result

is appended to the result string in place of the conversion specifier. If there are multiple conversion speci-
fiers in the format string, then each one controls the conversion of one additipndlhe format com-

mand must be given enouglgs to meet the needs of all of the conversion specifidgmmatString

Each conversion specifier may contain up to six different parts: an XPG3 position specifier, a set of flags, a
minimum field width, a precision, a length modifier, and a conversion character. Any of these fields may be
omitted except for the conversion character. The fields that are present must appear in the order given
above. The paragraphs below discuss each of these fields in turn.

If the % is followed by a decimal number andbaas in “%2$d”, then the value to convert is not taken

from the next sequential argument. Instead, it is taken from the argument indicated by the number, where 1
corresponds to the firarg. If the conversion specifier requires multiple arguments becauseharacters

in the specifier then successive arguments are used, starting with the argument given by the number. This
follows the XPG3 conventions for positional specifiers. If there are any positional speciffermat-
Stringthen all of the specifiers must be positional.

The second portion of a conversion specifier may contain any of the following flag characters, in any order:

- Specifies that the converted argument should be left-justified in its field (numbers are normally
right-justified with leading spaces if needed).

+ Specifies that a number should always be printed with a sign, even if positive.

space Specifies that a space should be added to the beginning of the number if the first character isn’t
a sign.

0 Specifies that the number should be padded on the left with zeroes instead of spaces.

Requests an alternate output form. B@andO conversions it guarantees that the first digit is
always0. Forx or X conversionsQx or OX (respectively) will be added to the beginning of the
result unless it is zero. For all floating-point conversiang(f, g, andG) it guarantees that
the result always has a decimal point. B@ndG conversions it specifies that trailing zeroes
should not be removed.

The third portion of a conversion specifier is a number giving a minimum field width for this conversion. It
is typically used to make columns line up in tabular printouts. If the converted argument contains fewer
characters than the minimum field width then it will be padded so that it is as wide as the minimum field
width. Padding normally occurs by adding extra spaces on the left of the converted argumen@ dd the

- flags may be used to specify padding with zeroes on the left or with spaces on the right, respectively. If

Last change: 1

Tcl Built-In Commands format (n)

the minimum field width is specified &gather than a number, then the next argument téotheat com-
mand determines the minimum field width; it must be a numeric string.

The fourth portion of a conversion specifier is a precision, which consists of a period followed by a number.
The number is used in different ways for different conversions.e Horandf conversions it specifies the
number of digits to appear to the right of the decimal point.graond G conversions it specifies the total
number of digits to appear, including those on both sides of the decimal point (however, trailing zeroes after
the decimal point will still be omitted unless th#ag has been specified). For integer conversions, it spec-
ifies a minimum number of digits to print (leading zeroes will be added if necessang céorersions it
specifies the maximum number of characters to be printed; if the string is longer than this then the trailing
characters will be dropped. If the precision is specified Withther than a number then the next argument

to theformat command determines the precision; it must be a numeric string.

The fifth part of a conversion specifier is a length modifier, which muktdsé. If it is h it specifies that
the numeric value should be truncated to a 16-bit value before converting. This option is rarely useful. The
| modifier is ignored.

The last thing in a conversion specifier is an alphabetic character that determines what kind of conversion to
perform. The following conversion characters are currently supported:

d Convert integer to signed decimal string.
u Convert integer to unsigned decimal string.

[Convert integer to signed decimal string; the integer may either be in decimal, in octal (with a
leading0) or in hexadecimal (with a leadir@x).

o] Convert integer to unsigned octal string.

x or X Convert integer to unsigned hexadecimal string, using digits “0123456789abcdef "afut
“0123456789ABCDEF” forX).

c Convert integer to the 8-bit character it represents.

S No conversion; just insert string.

f Convert floating-point number to signed decimal string of the fotryyy where the number
of y's is determined by the precision (default: 6). If the precision is 0 then no decimal point is
output.

eore Convert floating-point number to scientific notation in the famyyetzz where the number of

y's is determined by the precision (default: 6). If the precision is 0 then no decimal point is
output. If theE form is used thek is printed instead df.

gorG If the exponent is less than —4 or greater than or equal to the precision, then convert floating-
point number as fo¥oe or %E. Otherwise convert as fé@6f. Trailing zeroes and a trailing
decimal point are omitted.

% No conversion: just inse% .

For the numerical conversions the argument being converted must be an integer or floating-point string; for-
mat converts the argument to binary and then converts it back to a string according to the conversion speci-
fier.

DIFFERENCES FROM ANSI SPRINTF
The behavior of the format command is the same as the ANBIGf procedure except for the following

differences:
[1] %p and%n specifiers are not currently supported.
[2] For %c conversions the argument must be a decimal string, which will then be converted to the

Tcl Last change: 2

Tcl Built-In Commands format (n)

corresponding character value.

[3] Thel modifier is ignored; integer values are always converted as if there were no modifier present
and real values are always converted as it thedifier were present (i.e. typmuble is used for
the internal representation). If thamodifier is specified then integer values are truncatstda
before conversion.

KEYWORDS
conversion specifier, format, sprintf, string, substitution

Tcl Last change: 3

Tcl Built-In Commands gets(n)

NAME

SYNOPSIS

gets — Read a line from a channel

getschannellddarNamé

DESCRIPTION

This command reads the next line fraimannelld returns everything in the line up to (but not including)
the end-of-line character(s), and discards the end-of-line character{grNdmeis omitted the line is
returned as the result of the commandvalfNameis specified then the line is placed in the variable by that
name and the return value is a count of the number of characters returned.

If end of file occurs while scanning for an end of line, the command returns whatever input is available up
to the end of file. lichannelldis in nonblocking mode and there is not a full line of input available, the
command returns an empty string and does not consume any inpatN&meis specified and an empty

string is returned itvarNamebecause of end-of-file or because of insufficient data in nonblocking mode,
then the return count is -1. Note thav#rNameis not specified then the end-of-file and no-full-line-avail-

able cases can produce the same results as if there were an input line consisting only of the end-of-line
character(s). Theofandfblocked commands can be used to distinguish these three cases.

SEE ALSO

eof(n), fblocked(n)

KEYWORDS

Tcl

blocking, channel, end of file, end of line, line, nonblocking, read

Last change: 7.5 1

Tcl Built-In Commands glob(n)

NAME

SYNOPSIS

glob — Return names of files that match patterns

glob ?switche® pattern?pattern ..?

DESCRIPTION

This command performs file name “globbing” in a fashion similar to the csh shell. It returns a list of the
files whose names match any of fheternarguments.

If the initial arguments tglob start with— then they are treated as switches. The following switches are
currently supported:

—nocomplain Allows an empty list to be returned without error; without this switch an error is
returned if the result list would be empty.

-- Marks the end of switches. The argument following this one will be treategattean
even if it starts with a.

The patternarguments may contain any of the following special characters:

? Matches any single character.
O Matches any sequence of zero or more characters.
[charg Matches any single characterdhars If charscontains a sequence of the foarb then any

character betweemandb (inclusive) will match.
\x Matches the charactgr

{a,b,...} Matches any of the strings b, etc.

As with csh, a “.” at the beginning of a file’'s name or just after a “/” must be matched explicitly or with a
{} construct. In addition, all “/” characters must be matched explicitly.

If the first character in patternis “” then it refers to the home directory for the user whose name follows
the “™. If the “™ is followed immediately by “/” then the value of the HOME environment variable is
used.

Theglob command differs from csh globbing in two ways. First, it does not sort its result list (Userthe
command if you want the list sorted). Secoglbb only returns the names of files that actually exist; in
csh no check for existence is made unless a pattern contaifsoa [?,construct.

PORTABILITY ISSUES

Unlike other Tcl commands that will accept both network and native style names (§m#me manual

entry for details on how native and network names are specifiedjJdbe&ommand only accepts native
names. Also, for Windows UNC names, the servername and sharename components of the path may not
contain ?[] or [] constructs.

KEYWORDS

Tcl

exist, file, glob, pattern

Last change: 7.5 1

Tcl Built-In Commands global (n)

NAME
global — Access global variables

SYNOPSIS
global varname?arname .2

DESCRIPTION
This command is ignored unless a Tcl procedure is being interpreted. If so then it declares thargiven
names to be global variables rather than local ones. Global variables are variables in the global names-
pace. For the duration of the current procedure (and only while executing in the current procedure), any
reference to any of thearname will refer to the global variable by the same name.

SEE ALSO
namespace(n), variable(n)

KEYWORDS
global, namespace, procedure, variable

Tcl Last change: 1

Tcl Built-In Commands history (n)

NAME

history — Manipulate the history list
SYNOPSIS

history ?optior? 7arg arg ..?
DESCRIPTION

The history command performs one of several operations related to recently-executed commands recorded

in a history list. Each of these recorded commands is referred to as an “event”. When specifying an event

to thehistory command, the following forms may be used:

[1] A number: if positive, it refers to the event with that number (all events are humbered starting at
1). If the number is negative, it selects an event relative to the current eveatdrs to the previ-
ous event;-2 to the one before that, and so on). Ev@refers to the current event.

2] A string: selects the most recent event that matches the string. An event is considered to match
the string either if the string is the same as the first characters of the event, or if the string matches
the event in the sense of thiging match command.

Thehistory command can take any of the following forms:

history Same asistory info, described below.

history add command’exe®@

Adds thecommandargument to the history list as a new eventexXécis specified (or abbrevi-
ated) then the command is also executed and its result is returreececién’t specified then an
empty string is returned as result.

history changenewValue?even®?

Replaces the value recorded for an event néWwValue Eventspecifies the event to replace, and
defaults to theurrentevent (not eventl). This command is intended for use in commands that
implement new forms of history substitution and wish to replace the current event (which invokes
the substitution) with the command created through substitution. The return value is an empty
string.

history clear
Erase the history list. The current keep limit is retained. The history event numbers are reset.

history event?even®?

Returns the value of the event givendwent Eventdefaults to-1.

history info ?coun®
Returns a formatted string (intended for humans to read) giving the event number and contents for
each of the events in the history list except the current evenbultitis specified then only the
most recentountevents are returned.

history keep ?counf?

This command may be used to change the size of the history tsutdevents. Initially, 20
events are retained in the history listcduntis not specified, the current keep limit is returned.

history nextid
Returns the number of the next event to be recorded in the history list. It is useful for things like
printing the event number in command-line prompts.

history redo ?even?

Re-executes the command indicateddwentand return its resultEventdefaults to—1. This
command results in history revision: see below for details.
Tcl Last change: 1

Tcl Built-In Commands history (n)

HISTORY REVISION

Pre-8.0 Tcl had a complex history revision mechanism. The current mechanism is more limited, and the
old history operationsubstitute and words have been removed. (As a consolation, ¢lear operation
was added.)

The history optiorredo results in much simpler “history revision”. When this option is invoked then the
most recent event is modified to eliminate the history command and replace it with the result of the history
command. If you want to redo an event without modifying history, then usa/érgoperation to retrieve

some event, and tteald operation to add it to history and execute it.

KEYWORDS

Tcl

event, history, record

Last change: 2

Tcl Built-In Commands Http (n)

NAME
Http — Client-side implementation of the HTTP/1.0 protocol.
SYNOPSIS
package require http ?2.0?
::http::config ?options?
::http::geturl url ?options?
:http::formatQuery list
::http::reset token
:http::wait token
::http::status token
::http::size token
::http::code token
::http::data token
DESCRIPTION
The http package provides the client side of the HTTP/1.0 protocol. The package implements the GET,
POST, and HEAD operations of HTTP/1.0. It allows configuration of a proxy host to get through firewalls.
The package is compatible with tBafesocksecurity policy, so it can be used by untrusted applets to do
URL fetching from a restricted set of hosts.
The ::http::geturl procedure does a HTTP transaction. dggions determine whether a GET, POST, or
HEAD transaction is performed. The return value:bftp::geturl is a token for the transaction. The
value is also the name of an array in the ::http namespace
that contains state information about the transaction. The elements of this array are described in the
STATE ARRAY section.
If the -command option is specified, then the HTTP operation is done in the backgrounih::geturl
returns immediately after generating the HTTP request and the callback is invoked when the transaction
completes. For this to work, the Tcl event loop must be active. In Tk applications this is always true. For
pure-Tcl applications, the caller can usdtp::wait after calling::http::geturl to start the event loop.
COMMANDS
::http::config ?option®
The ::http::config command is used to set and query the name of the proxy server and port, and
the User-Agent name used in the HTTP requests. If no options are specified, then the current con-
figuration is returned. If a single argument is specified, then it should be one of the flags described
below. In this case the current value of that setting is returned. Otherwise, the options should be a
set of flags and values that define the configuration:
—acceptmimetypes
The Accept header of the request. The defauliliswhich means that all types of docu-
ments are accepted. Otherwise you can supply a comma separated list of mime type pat-
terns that you are willing to receive. For example, "image/gif, image/jpedJtext/
Tcl Last change: 8.0 1

Tcl Built-In Commands Http (n)

Tcl

—proxyhost hostname
The name of the proxy host, if any. If this value is the empty string, the URL host is con-
tacted directly.

—proxyport number
The proxy port number.

—proxyfilter command
The command is a callback that is made durihtip::geturl to determine if a proxy is
required for a given host. One argument, a host name, is addedhtoandwhen it is
invoked. If a proxy is required, the callback should return a two element list containing
the proxy server and proxy port. Otherwise the filter should return an empty list. The
default filter returns the values of th@roxyhost and —proxyport settings if they are
non-empty.

—useragentstring
The value of the User-Agent header in the HTTP request. The defald isttp client
package 2.0."

::http::geturl url 2option®?

The ::http::geturl command is the main procedure in the package. -Tuery option causes a
POST operation and thevalidate option causes a HEAD operation; otherwise, a GET operation
is performed. The:http::geturl command returns tokenvalue that can be used to get informa-
tion about the transaction. See the STATE ARRAY section for details.::tip::geturl com-
mand blocks until the operation completes, unless-timenmand option specifies a callback that

is invoked when the HTTP transaction completelsttp::geturl takes several options:

—blocksizesize
The blocksize used when reading the URL. At nsiz¢bytes are read at once. After
each block, a call to theprogresscallback is made.

—channelname
Copy the URL contents to chanmalmeinstead of saving it istate(body)

—commandcallback
Invoke callbackafter the HTTP transaction completes. This option cauk#p::geturl
to return immediately. Theallbackgets an additional argument that is thkeenreturned
from ::http::geturl . This token is the name of an array that is described in the STATE
ARRAY section. Here is a template for the callback:
proc httpCallback {token} {
upvar #0 $token state
Access state as a Tcl array

}

—handler callback
Invoke callbackwhenever HTTP data is available; if present, nothing else will be done
with the HTTP data. This procedure gets two additional arguments: the socket for the
HTTP data and thiokenreturned front:http::geturl . The token is the name of a global
array that is described in the STATE ARRAY section. The procedure is expected to
return the number of bytes read from the socket. Here is a template for the callback:
proc httpHandlerCallback {socket token} {
upvar #0 $token state
Access socket, and state as a Tcl array

(example: set data [read $socket 1000];set nbytes [string length $data])

Last change: 8.0 2

Tcl Built-In Commands Http (n)

return nbytes
}

—headerskeyvaluelist
This option is used to add extra headers to the HTTP requeskeybvauelisiargument
must be a list with an even number of elements that alternate between keys and values.
The keys become header field names. Newlines are stripped from the values so the
header cannot be corrupted. For exampléeifvaluelists Pragma no-cachethen the
following header is included in the HTTP request:
Pragma: no-cache

—progresscallback
The callbackis made after each transfer of data from the URL. The callback gets three
additional arguments: thiekenfrom ::http::geturl , the expected total size of the con-
tents from theContent-Length meta-data, and the current number of bytes transferred so
far. The expected total size may be unknown, in which case zero is passed to the call-
back. Here is a template for the progress callback:
proc httpProgress {token total current} {
upvar #0 $token state

}

—query query
This flag causeshttp::geturl to do a POST request that passesgtieryto the server.
The querymust be a x-url-encoding formatted query. Thmetp::formatQuery proce-
dure can be used to do the formatting.

—timeout milliseconds
If millisecondds non-zero, therhttp::geturl sets up a timeout to occur after the speci-
fied number of milliseconds. A timeout results in a catlftp::reset and to thecom-
mand callback, if specified. The return value:dfttp::status is timeout after a timeout
has occurred.

—validate boolean
If booleanis non-zero, therhttp::geturl does an HTTP HEAD request. This request
returns meta information about the URL, but the contents are not returned. The meta
information is available in thetate(meta) variable after the transaction. See the STATE
ARRAY section for details.

:http::formatQuery key valueey value..?
This procedure does x-url-encoding of query data. It takes an even number of arguments that are
the keys and values of the query. It encodes the keys and values, and generates one string that has
the proper & and = separators. The result is suitable for—ingery value passed to
::http::geturl .

:http::reset token?why?
This command resets the HTTP transaction identifietbkgn if any. This sets thetate(status)
value towhy, which defaults tweset and then calls the registeredommand callback.

:http::wait token
This is a convenience procedure that blocks and waits for the transaction to complete. This only
works in trusted code because it ugesit.

:‘http::data token
This is a convenience procedure that returnsbtigy element (i.e., the URL data) of the state
array.

::http::status token
This is a convenience procedure that returnstiieis element of the state array.

Tcl Last change: 8.0 3

Tcl Built-In Commands

Http (n)

::http::code token
This is a convenience procedure that returnittpeelement of the state array.

::http::size token
This is a convenience procedure that returngtineentsize element of the state array.

STATE ARRAY

The ::http::geturl procedure returnstakenthat can be used to get to the state of the HTTP transaction in
the form of a Tcl array. Use this construct to create an easy-to-use array variable:

upvar #0 $token state

The following elements of the array are supported:

EXAMPLE

Tcl

body

The contents of the URL. This will be empty if thehanneloption has been specified.
This value is returned by thattp::data command.

currentsize

The current number of bytes fetched from the URL. This value is returned by the
::http::size command.

error If defined, this is the error string seen when the HTTP transaction was aborted.
http The HTTP status reply from the server. This value is returned byhtiye::code com-
mand. The format of this value is:
code string
The codeis a three-digit number defined in the HTTP standard. A code of 200 is OK.
Codes beginning with 4 or 5 indicate errors. Codes beginning with 3 are redirection
errors. In this case thkocation meta-data specifies a new URL that contains the
requested information.
meta The HTTP protocol returns meta-data that describes the URL contentanétaele-
ment of the state array is a list of the keys and values of the meta-data. This is in a format
useful for initializing an array that just contains the meta-data:
array set meta $state(meta)
Some of the meta-data keys are listed below, but the HTTP standard defines more, and
servers are free to add their own.
Content-Type
The type of the URL contents. Examples incltebe/html, image/qgif, applica-
tion/postscript andapplication/x-tcl.
Content-Length
The advertised size of the contents. The actual size obtaindutpy.geturl is
available astate(size)
Location
An alternate URL that contains the requested data.
status Eitherok, for successful completiomesetfor user-reset, oerror for an error condition.
During the transaction this value is the empty string.
totalsize
A copy of theContent-Length meta-data value.
type A copy of theContent-Type meta-data value.
url The requested URL.

Copy a URL to a file and print meta-data
proc ::http::copy { url file {chunk 4096} } {
set out [open $file w]

Last change: 8.0 4

Tcl Built-In Commands

SEE ALSO
safe(n), socket(n), safesock(n)

KEYWORDS
security policy, socket

Tcl

set token [geturl $url -channel $out -progress ::http::Progress \

-blocksize $chunk]
close $out
This ends the line started by http::Progress
puts stderr "
upvar #0 $token state
set max 0
foreach {name value} $state(meta) {
if {[string length $name] > $max} {
set max [string length $name]
}
if {{regexp -nocase “location$ $name]} {
Handle URL redirects
puts stderr "Location:$value”
return [copy [string trim $value] $file $chunk]

}
}

incr max
foreach {name value} $state(meta) {
puts [format "%Es %s" $max $name: $value]

}

return $token

proc ::http::Progress {args} {

puts -nonewline stderr . ; flush stderr

Last change: 8.0

Http (n)

Tcl Built-In Commands if(n)

NAME

SYNOPSIS

if — Execute scripts conditionally

if exprl?then?bodylelseifexpr2?hen? bodyZ2elseif... 2ls&? bodyN?

DESCRIPTION

Theif command evaluatesxprlas an expression (in the same way hair evaluates its argument). The

value of the expression must be a boolean (a numeric value, where 0 is false and anything is true, or a string
value such awue or yesfor true andalse or no for false); if it is true themodylis executed by passing it

to the Tcl interpreter. Otherwigxpr2is evaluated as an expression and if it is true boely2 is executed,

and so on. If none of the expressions evaluates to truebtityriNis executed. Théhen andelseargu-

ments are optional “noise words” to make the command easier to read. There may be any naisledr of
clauses, including zerdBodyNmay also be omitted as long @lseis omitted too. The return value from

the command is the result of the body script that was executed, or an empty string if none of the expressions
was non-zero and there was lmadyN

KEYWORDS

Tcl

boolean, conditional, else, false, if, true

Last change: 1

Tcl Built-In Commands incr(n)

NAME
incr — Increment the value of a variable

SYNOPSIS
incr varName?incremen?

DESCRIPTION
Increments the value stored in the variable whose naweame The value of the variable must be an
integer. Ifincrementis supplied then its value (which must be an integer) is added to the value of variable
varName otherwise 1 is added ttarName The new value is stored as a decimal string in variadle
Nameand also returned as result.

KEYWORDS
add, increment, variable, value

Tcl Last change: 1

Tcl Built-In Commands info (n)

NAME

SYNOPSIS

info — Return information about the state of the Tcl interpreter

info option?arg arg ..?

DESCRIPTION

Tcl

This command provides information about various internals of the Tcl interpreter. Theopxigais
(which may be abbreviated) are:

info args procname
Returns a list containing the names of the arguments to progadereame in order. Procname
must be the name of a Tcl command procedure.

info body procname
Returns the body of proceduseocname Prochamemust be the name of a Tcl command proce-
dure.

info cmdcount
Returns a count of the total number of commands that have been invoked in this interpreter.

info commands?patterr?
If patternisn’t specified, returns a list of names of all the Tcl commands in the current namespace,
including both the built-in commands written in C and the command procedures defined using the
proc command. lfpatternis specified, only those names matchpadternare returned. Matching
is determined using the same rules asstong match. patterncan be a qualified name like
Foo::print 0 That is, it may specify a particular namespace using a sequence of namespace names
separated by:s, and may have pattern matching special characters at the end to specify a set of
commands in that namespace péftternis a qualified name, the resulting list of command names
has each one qualified with the name of the specified namespace.

info completecommand
Returns 1 ifcommands a complete Tcl command in the sense of having no unclosed quotes,
braces, brackets or array element names, If the command doesn't appear to be complete then 0 is
returned. This command is typically used in line-oriented input environments to allow users to
type in commands that span multiple lines; if the command isn’t complete, the script can delay
evaluating it until additional lines have been typed to complete the command.

info default procname arg varname
Procnamemust be the name of a Tcl command procedureaagdhust be the name of an argu-
ment to that procedure. #rg doesn’'t have a default value then the command returrSther-
wise it returngl and places the default valueanfj into variablevarname

info existsvarName
Returnsl if the variable nameglarNameexists in the current context (either as a global or local
variable), returng otherwise.

info globals ?patterr?
If patternisn't specified, returns a list of all the names of currently-defined global variables.
Global variables are variables in the global namespacgattérnis specified, only those names
matchingpatternare returned. Matching is determined using the same rules stsifigrmatch.

info hostname
Returns the name of the computer on which this invocation is being executed.

info level 7numbeP
If numberis not specified, this command returns a number giving the stack level of the invoking

Last change: 7.5 1

Tcl Built-In Commands info (n)

procedure, or 0 if the command is invoked at top-levehuthberis specified, then the result is a

list consisting of the name and arguments for the procedure call ahiewbkeron the stack. If
numberis positive then it selects a particular stack level (1 refers to the top-most active procedure,
2 to the procedure it called, and so on); otherwise it gives a level relative to the current level (O
refers to the current procedure, -1 to its caller, and so on). Segplaeel command for more
information on what stack levels mean.

info library
Returns the name of the library directory in which standard Tcl scripts are stored. This is actually
the value of thecl_library variable and may be changed by settitiglibrary . See theclvars
manual entry for more information.

info loaded Zinterp?
Returns a list describing all of the packages that have been load@utenpovith theload com-
mand. Each list element is a sub-list with two elements consisting of the name of the file from
which the package was loaded and the name of the package. For statically-loaded packages the
file name will be an empty string. ititerpis omitted then information is returned for all packages
loaded in any interpreter in the process. To get a list of just the packages in the current interpreter,
specify an empty string for theterp argument.

info locals ?patterrf?
If patternisn’t specified, returns a list of all the names of currently-defined local variables, includ-
ing arguments to the current procedure, if any. Variables defined withothel andupvar com-
mands will not be returned. Ipatternis specified, only those names matchipaftern are
returned. Matching is determined using the same rules afifog match.

info nameofexecutable
Returns the full path name of the binary file from which the application was invoked. If Tcl was
unable to identify the file, then an empty string is returned.

info patchlevel
Returns the value of the global varialbt®é patchLevel see thetclvars manual entry for more
information.

info procs ?patterr?
If patternisn’t specified, returns a list of all the names of Tcl command procedures in the current
namespace. [batternis specified, only those procedure names in the current namespace matching
patternare returned. Matching is determined using the same rules stsifigrmatch.

info script
If a Tcl script file is currently being evaluated (i.e. there is a cdlttoEvalFile active or there is
an active invocation of theource command), then this command returns the name of the inner-
most file being processed. Otherwise the command returns an empty string.

info sharedlibextension
Returns the extension used on this platform for the names of files containing shared libraries (for
example,.sounder Solaris). If shared libraries aren’t supported on this platform then an empty
string is returned.

info tclversion
Returns the value of the global variabié version; see theclvars manual entry for more infor-
mation.

info vars ?patterrf?
If patternisn’t specified, returns a list of all the names of currently-visible variables. This includes
locals and currently-visible globals. phtternis specified, only those names matchiadgternare
returned. Matching is determined using the same rules astriog match. patterncan be a
qualified name liké-oo::option[] That is, it may specify a particular namespace using a sequence

Tcl Last change: 7.5 2

Tcl Built-In Commands info (n)

of namespace names separatect §yand may have pattern matching special characters at the end
to specify a set of variables in that namespacgatternis a qualified name, the resulting list of
variable names has each matching namespace variable qualified with the name of its namespace.

KEYWORDS
command, information, interpreter, level, namespace, procedure, variable

Tcl Last change: 7.5 3

Tcl Built-In Commands interp(n)

NAME

interp — Create and manipulate Tcl interpreters
SYNOPSIS

interp option?arg arg ..?
DESCRIPTION

This command makes it possible to create one or more new Tcl interpreters that co-exist with the creating
interpreter in the same application. The creating interpreter is calledasterand the new interpreter is

called aslave A master can create any number of slaves, and each slave can itself create additional slaves
for which it is master, resulting in a hierarchy of interpreters.

Each interpreter is independent from the others: it has its own name space for commands, procedures, and
global variables. A master interpreter may create connections between its slaves and itself using a mecha-
nism called aralias. An aliasis a command in a slave interpreter which, when invoked, causes a command

to be invoked in its master interpreter or in another slave interpreter. The only other connections between
interpreters are through environment variables éhe variable), which are normally shared among all
interpreters in the application. Note that the name space for files (such as the names returnegelny the
command) is no longer shared between interpreters. Explicit commands are provided to share files and to
transfer references to open files from one interpreter to another.

Theinterp command also provides support &afeinterpreters. A safe interpreter is a slave whose func-

tions have been greatly restricted, so that it is safe to execute untrusted scripts without fear of them damag-
ing other interpreters or the application’s environment. For example, all IO channel creation commands and
subprocess creation commands are made inaccessible to safe interpreters. See SAFE INTERPRETERS
below for more information on what features are present in a safe interpreter. The dangerous functionality
is not removed from the safe interpreter; instead, litidslen so that only trusted interpreters can obtain
access to it. For a detailed explanation of hidden commands, see HIDDEN COMMANDS, below. The alias
mechanism can be used for protected communication (analogous to a kernel call) between a slave inter-
preter and its master. See ALIAS INVOCATION, below, for more details on how the alias mechanism
works.

A qualified interpreter name is a proper Tcl lists containing a subset of its ancestors in the interpreter hierar-
chy, terminated by the string naming the interpreter in its immediate master. Interpreter names are relative
to the interpreter in which they are used. For exampkejdfa slave of the current interpreter and it has a
slaveal, which in turn has a slal], the qualified name @f11in ais the listal all

Theinterp command, described below, accepts qualified interpreter names as arguments; the interpreter in
which the command is being evaluated can always be referred}tdtlas empty list or string). Note that it

is impossible to refer to a master (ancestor) interpreter by name in a slave interpreter except through aliases.
Also, there is no global name by which one can refer to the first interpreter created in an application. Both
restrictions are motivated by safety concerns.

THE INTERP COMMAND

Tcl

Theinterp command is used to create, delete, and manipulate slave interpreters, and to share or transfer
channels between interpreters. It can have any of several forms, dependingmioti@gument:

interp alias srcPath srcCmd
Returns a Tcl list whose elements aretdrgetCmdandargs associated with the alias nansed-
Cmd(all of these are the values specified when the alias was created; it is possible that the actual
source command in the slave is different fresleCmdif it was renamed).

interp alias srcPath srcCmd}
Deletes the alias fasrcCmdin the slave interpreter identified lsycPath srcCmdrefers to the

Last change: 7.6 1

Tcl Built-In Commands interp(n)

Tcl

name under which the alias was created; if the source command has been renamed, the renamed
command will be deleted.

interp alias srcPath srcCmd targetPath targetCraarg arg ..?

This command creates an alias between one slave and another @iz diave command below

for creating aliases between a slave and its master). In this command, either of the slave inter-
preters may be anywhere in the hierarchy of interpreters under the interpreter invoking the com-
mand. SrcPathand srcCmdidentify the source of the aliasSrcPathis a Tcl list whose elements
select a particular interpreter. For exampla,B” identifies an interpreteb, which is a slave of
interpretera, which is a slave of the invoking interpreter. An empty list specifies the interpreter
invoking the commandsrcCmdgives the name of a new command, which will be created in the
source interpreterTargetPathand targetCmdspecify a target interpreter and command, and the
arg arguments, if any, specify additional argumentdaietCmdwhich are prepended to any
arguments specified in the invocationsafCmd TargetCmdmay be undefined at the time of this

call, or it may already exist; it is not created by this command. The alias arranges for the given
target command to be invoked in the target interpreter whenever the given source command is
invoked in the source interpreter. See ALIAS INVOCATION below for more details.

interp aliases?path?

This command returns a Tcl list of the names of all the source commands for aliases defined in the
interpreter identified bpath

interp create ?-safe? ?- —? path?

Creates a slave interpreter identifieddath and a new command, calledskve commandlhe

name of the slave command is the last componepathf The new slave interpreter and the slave
command are created in the interpreter identified by the path obtained by removing the last com-
ponent frompath For example, ipath isa b cthen a new slave interpreter and slave command
namedc are created in the interpreter identified by the path The slave command may be used

to manipulate the new interpreter as described belgvatlfis omitted, Tcl creates a unique name

of the forminterpx, wherex is an integer, and uses it for the interpreter and the slave command. If
the —safeswitch is specified (or if the master interpreter is a safe interpreter), the new slave inter-
preter will be created as a safe interpreter with limited functionality; otherwise the slave will
include the full set of Tcl built-in commands and variables. Thewitch can be used to mark the

end of switches; it may be needegdfthis an unusual value such-asafe The result of the com-

mand is the name of the new interpreter. The name of a slave interpreter must be unique among all
the slaves for its master; an error occurs if a slave interpreter by the given name already exists in
this master.

interp delete ?path ...?

Deletes zero or more interpreters given by the optipatiarguments, and for each interpreter, it
also deletes its slaves. The command also deletes the slave command for each interpreter deleted.
For eachpathargument, if no interpreter by that name exists, the command raises an error.

interp eval path arg?arg ...?

This command concatenates all of #ig arguments in the same fashion asabecatcommand,
then evaluates the resulting string as a Tcl script in the slave interpreter identipathbyhe
result of this evaluation (including error information such asetiherinfo anderrorCode vari-
ables, if an error occurs) is returned to the invoking interpreter.

interp exists path

Returns 1 if a slave interpreter by the specifipdth exists in this mastef) otherwise. Ifpathis
omitted, the invoking interpreter is used.

interp exposepath hiddenNam&exposedCmdNarfie

Makes the hidden commarfiddenNameexposed, eventually bringing it back under a new
exposedCmdNanmmame (this name is currently accepted only if it is a valid global name space

Last change: 7.6 2

Tcl Built-In Commands interp(n)

Tcl

name without any ::), in the interpreter denotedpbth If an exposed command with the target-
ted name already exists, this command fails. Hidden commands are explained in more detail in
HIDDEN COMMANDS, below.

interp hide path exposedCmdNarffikiddenCmdNanie
Makes the exposed commaexposedCmdNantédden, renaming it to the hidden commadmdt
denCmdNameor keeping the same name hifddenCmdNameés not given, in the interpreter
denoted byath If a hidden command with the targetted name already exists, this command fails.
Currently bothexposedCmdNamend hiddenCmdNamean not contain namespace qualifiers, or
an error is raised. Commands to be hiddembsrp hide are looked up in the global namespace
even if the current namespace is not the global one. This prevents slaves from fooling a master
interpreter into hiding the wrong command, by making the current namespace be different from
the global one. Hidden commands are explained in more detail in HHDDEN COMMANDS,
below.

interp hidden path
Returns a list of the names of all hidden commands in the interpreter identipathby

interp invokehidden path ?-global? hiddenCmdNamearg ...?
Invokes the hidden commarfdddenCmdNamevith the arguments supplied in the interpreter
denoted bypath No substitutions or evaluation are applied to the arguments. {§kbieal flag is
present, the hidden command is invoked at the global level in the target interpreter; otherwise it is
invoked at the current call frame and can access local variables in that and outer call frames. Hid-
den commands are explained in more detail in HHDDEN COMMANDS, below.

interp issafe ?path?
Returnsl if the interpreter identified by the specifigathis safe 0 otherwise.

interp marktrusted path
Marks the interpreter identified lpath as trusted. Does not expose the hidden commands. This
command can only be invoked from a trusted interpreter. The command has no effect if the inter-
preter identified byathis already trusted.

interp share srcPath channelld destPath
Causes the 10 channel identified dhannelldto become shared between the interpreter identified
by srcPathand the interpreter identified lofestPath Both interpreters have the same permissions
on the 10 channel. Both interpreters must close it to close the underlying 10 channel; IO channels
accessible in an interpreter are automatically closed when an interpreter is destroyed.

interp slaves?path?
Returns a Tcl list of the names of all the slave interpreters associated with the interpreter identified
by path If pathis omitted, the invoking interpreter is used.

interp target path alias
Returns a Tcl list describing the target interpreter for an alias. The alias is specified with an inter-
preter path and source command name, just extdrp alias above. The name of the target inter-
preter is returned as an interpreter path, relative to the invoking interpreter. If the target interpreter
for the alias is the invoking interpreter then an empty list is returned. If the target interpreter for
the alias is not the invoking interpreter or one of its descendants then an error is generated. The
target command does not have to be defined at the time of this invocation.

interp transfer srcPath channelld destPath
Causes the 10 channel identified dhyannelldto become available in the interpreter identified by
destPathand unavailable in the interpreter identifiedsbgPath

Last change: 7.6 3

Tcl Built-In Commands interp(n)

SLAVE COMMAND
For each slave interpreter created with ititerp command, a new Tcl command is created in the master
interpreter with the same name as the new interpreter. This command may be used to invoke various opera-
tions on the interpreter. It has the following general form:
slave commandgarg arg ..?
Slaveis the name of the interpreter, acommandand theargs determine the exact behavior of the com-
mand. The valid forms of this command are:

slavealiases
Returns a Tcl list whose elements are the names of all the aliadaganThe names returned are
the srcCmdvalues used when the aliases were created (which may not be the same as the current
names of the commands, if they have been renamed).

slavealias srcCmd
Returns a Tcl list whose elements aretdrgetCmdandargs associated with the alias nansed-
Cmd(all of these are the values specified when the alias was created; it is possible that the actual
source command in the slave is different fresleCmdif it was renamed).

slavealias srcCmd{}
Deletes the alias farcCmdin the slave interpretersrcCmdrefers to the name under which the
alias was created; if the source command has been renamed, the renamed command will be
deleted.

slavealias srcCmd targetCm@arg ..?
Creates an alias such that wheneareCmdis invoked inslave targetCmdis invoked in the mas-
ter. Thearg arguments will be passed targetCmdas additional arguments, prepended before
any arguments passed in the invocatiosro€md See ALIAS INVOCATION below for details.

slaveevalarg 7arg ..?
This command concatenates all of #ig arguments in the same fashion asabecatcommand,
then evaluates the resulting string as a Tcl scriptame The result of this evaluation (including
error information such as tlegrorinfo anderrorCode variables, if an error occurs) is returned to
the invoking interpreter.

slaveexposehiddenNam&exposedCmdNarfie
This command exposes the hidden commhigdilenNamgeventually bringing it back under a
new exposedCmdNanmmame (this name is currently accepted only if it is a valid global name
space name without any ::), stave If an exposed command with the targetted name already
exists, this command fails. For more details on hidden commands, see HIDDEN COMMANDS,
below.

slavehide exposedCmdNan®iddenCmdNante
This command hides the exposed commexplosedCmdNameenaming it to the hidden com-
mandhiddenCmdNameor keeping the same name if the the argument is not given, slae
interpreter. If a hidden command with the targetted name already exists, this command fails. Cur-
rently bothexposedCmdNamend hiddenCmdNamean not contain namespace qualifiers, or an
error is raised. Commands to be hidden are looked up in the global namespace even if the current
namespace is not the global one. This prevents slaves from fooling a master interpreter into hiding
the wrong command, by making the current namespace be different from the global one. For more
details on hidden commands, see HIDDEN COMMANDS, below.

slavehidden
Returns a list of the names of all hidden commandsave

slaveinvokehidden ?-global hiddenNam&arg ..?
This command invokes the hidden comméaimdidenNamewith the supplied arguments, gtave
No substitutions or evaluations are applied to the arguments. Hgtbleal flag is given, the

Tcl Last change: 7.6 4

Tcl Built-In Commands interp(n)

command is invoked at the global level in the slave; otherwise it is invoked at the current call
frame and can access local variables in that or outer call frames. For more details on hidden com-
mands, see HHDDEN COMMANDS, below.

slaveissafe
Returns1 if the slave interpreter is saf@ptherwise.

slavemarktrusted
Marks the slave interpreter as trusted. Can only be invoked by a trusted interpreter. This command
does not expose any hidden commands in the slave interpreter. The command has no effect if the
slave is already trusted.

SAFE INTERPRETERS

A safe interpreter is one with restricted functionality, so that is safe to execute an arbitrary script from your
worst enemy without fear of that script damaging the enclosing application or the rest of your computing
environment. In order to make an interpreter safe, certain commands and variables are removed from the
interpreter. For example, commands to create files on disk are removed, aexdethr®mmand is
removed, since it could be used to cause damage through subprocesses. Limited access to these facilities
can be provided, by creating aliases to the master interpreter which check their arguments carefully and
provide restricted access to a safe subset of facilities. For example, file creation might be allowed in a par-
ticular subdirectory and subprocess invocation might be allowed for a carefully selected and fixed set of

programs.

A safe interpreter is created by specifying #safe switch to theinterp create command. Furthermore,
any slave created by a safe interpreter will also be safe.

A safe interpreter is created with exactly the following set of built-in commands:

after append array break
case catch clock close
concat continue eof error
eval expr fblocked fileevent
flush for foreach format
gets global history if

incr info interp join
lappend lindex linsert list
llength lower Irange Ireplace
Isearch Isort package pid
proc puts read rename
return scan seek set
split string subst switch
tell trace unset update
uplevel upvar vwait while

The following commands are hidden ibyerp create when it creates a safe interpreter:

cd exec exit fconfigure
file glob load open
pwd socket source vwait

These commands can be recreated later as Tcl procedures or aliases, or re-exptespcelpose

Tcl

Last change: 7.6

Tcl Built-In Commands interp(n)

In addition, theenv variable is not present in a safe interpreter, so it cannot share environment variables
with other interpreters. Thenv variable poses a security risk, because users can store sensitive information
in an environment variable. For example, the PGP manual recommends storing the PGP private key protec-
tion password in the environment varial#f&sPPASS Making this variable available to untrusted code
executing in a safe interpreter would incur a security risk.

If extensions are loaded into a safe interpreter, they may also restrict their own functionality to eliminate
unsafe commands. For a discussion of management of extensions for safety see the manual entries for
Safe—-Tcland thdoad Tcl command.

ALIAS INVOCATION

The alias mechanism has been carefully designed so that it can be used safely when an untrusted script is
executing in a safe slave and the target of the alias is a trusted master. The most important thing in guaran-
teeing safety is to ensure that information passed from the slave to the master is never evaluated or substi-
tuted in the master; if this were to occur, it would enable an evil script in the slave to invoke arbitrary func-
tions in the master, which would compromise security.

When the source for an alias is invoked in the slave interpreter, the usual Tcl substitutions are performed
when parsing that command. These substitutions are carried out in the source interpreter just as they would
be for any other command invoked in that interpreter. The command procedure for the source command
takes its arguments and merges them withtéingetCmdand args for the alias to create a new array of
arguments. If the words aircCmdwere “srcCmd argl arg? ... argNthe new set of words will be tar-

getCmd arg arg ... arg argl arg2 ... argNwhere targetCmdandargs are the values supplied when the

alias was createdlargetCmds then used to locate a command procedure in the target interpreter, and that
command procedure is invoked with the new set of arguments. An error occurs if there is no command
namedtargetCmdn the target interpreter. No additional substitutions are performed on the words: the tar-
get command procedure is invoked directly, without going through the normal Tcl evaluation mechanism.
Substitutions are thus performed on each word exactly ¢aggetCmdand args were substituted when
parsing the command that created the alias,aagtl - argNare substituted when the alias’'s source com-
mand is parsed in the source interpreter.

When writing thetargetCmd for aliases in safe interpreters, it is very important that the arguments to that
command never be evaluated or substituted, since this would provide an escape mechanism whereby the
slave interpreter could execute arbitrary code in the master. This in turn would compromise the security of
the system.

HIDDEN COMMANDS

Tcl

Safe interpreters greatly restrict the functionality available to Tcl programs executing within them. Allow-
ing the untrusted Tcl program to have direct access to this functionality is unsafe, because it can be used for
a variety of attacks on the environment. However, there are times when there is a legitimate need to use the
dangerous functionality in the context of the safe interpreter. For example, sometimes a program must be
sourced into the interpreter. Another example is Tk, where windows are bound to the hierarchy of win-
dows for a specific interpreter; some potentially dangerous functions, e.g. window management, must be
performed on these windows within the interpreter context.

The interp command provides a solution to this problem in the fornhidlen commanddnstead of

removing the dangerous commands entirely from a safe interpreter, these commands are hidden so they
become unavailable to Tcl scripts executing in the interpreter. However, such hidden commands can be
invoked by any trusted ancestor of the safe interpreter, in the context of the safe interpreténterging

invoke. Hidden commands and exposed commands reside in separate name spaces. It is possible to define a
hidden command and an exposed command by the same name within one interpreter.

Last change: 7.6 6

Tcl Built-In Commands interp(n)

Hidden commands in a slave interpreter can be invoked in the body of procedures called in the master dur-
ing alias invocation. For example, an alias $ource could be created in a slave interpreter. When it is
invoked in the slave interpreter, a procedure is called in the master interpreter to check that the operation is
allowable (e.g. it asks to source a file that the slave interpreter is allowed to access). The procedure then it
invokes the hiddelsourcecommand in the slave interpreter to actually source in the contents of the file.
Note that two commands namsolurceexist in the slave interpreter: the alias, and the hidden command.

Because a master interpreter may invoke a hidden command as part of handling an alias invocation, great
care must be taken to avoid evaluating any arguments passed in through the alias invocation. Otherwise,
malicious slave interpreters could cause a trusted master interpreter to execute dangerous commands on
their behalf. See the section on ALIAS INVOCATION for a more complete discussion of this topic. To
help avoid this problem, no substitutions or evaluations are applied to argumiaeteéspoinvokehidden.

Safe interpreters are not allowed to invoke hidden commands in themselves or in their descendants. This
prevents safe slaves from gaining access to hidden functionality in themselves or their descendants.

The set of hidden commands in an interpreter can be manipulated by a trusted interpreteteuping
exposeandinterp hide. Theinterp exposecommand moves a hidden command to the set of exposed com-
mands in the interpreter identified pgith, potentially renaming the command in the process. If an exposed
command by the targetted hame already exists, the operation fails. Sinmtarlyhide moves an exposed
command to the set of hidden commands in that interpreter. Safe interpreters are not allowwettmm
mands between the set of hidden and exposed commands, in either themselves or their descendants.

Currently, the names of hidden commands cannot contain namespace qualifiers, and you must first rename
a command in a namespace to the global namespace before you can hide it. Commands to be hidden by
interp hide are looked up in the global namespace even if the current namespace is not the global one. This
prevents slaves from fooling a master interpreter into hiding the wrong command, by making the current
namespace be different from the global one.

CREDITS

This mechanism is based on the Safe-Tcl prototype implemented by Nathaniel Borenstein and Marshall
Rose.

SEE ALSO

load(n), safe(n), Tcl_CreateSlave(3)

KEYWORDS

Tcl

alias, master interpreter, safe interpreter, slave interpreter

Last change: 7.6 7

Tcl Built-In Commands join(n)

NAME
join — Create a string by joining together list elements

SYNOPSIS
join list ZoinString?

DESCRIPTION
Thelist argument must be a valid Tcl list. This command returns the string formed by joining all of the ele-
ments oflist together withjoinString separating each adjacent pair of elements. jdimString argument
defaults to a space character.

KEYWORDS
element, join, list, separator

Tcl Last change: 1

Tcl Built-In Commands lappend (n)

NAME
lappend — Append list elements onto a variable

SYNOPSIS
lappend varName?value value value 2.

DESCRIPTION
This command treats the variable givenvyayNameas a list and appends each of Waéue arguments to
that list as a separate element, with spaces between elemevasNdamedoesn’t exist, it is created as a
list with elements given by thealuearguments.Lappend is similar toappend except that thealues are
appended as list elements rather than raw text. This command provides a relatively efficient way to build

up large lists. For exampledppend a $8 is much more efficient than set a [concat $a [list $b]]
when$ais long.

KEYWORDS
append, element, list, variable

Tcl Last change: 1

Tcl Built-In Commands library (n)

NAME

SYNOPSIS

library — standard library of Tcl procedures

auto_execokemd

auto_loadcmd

auto_mkindexdir pattern pattern ...
auto_mkindex_olddir pattern pattern ...
auto_reset

tcl_findLibrary basename version patch initScript enVarName varName
parray arrayName

tcl_endOfWord str start
tcl_startOfNextWord str start
tcl_startOfPreviousWord str start
tcl_wordBreakAfter str start
tcl_wordBreakBefore str start

INTRODUCTION

Tcl includes a library of Tcl procedures for commonly-needed functions. The procedures defined in the Tcl
library are generic ones suitable for use by many different applications. The location of the Tcl library is
returned by thénfo library command. In addition to the Tcl library, each application will normally have

its own library of support procedures as well; the location of this library is normally given by the value of
the $app _library global variable, wherappis the name of the application. For example, the location of
the Tk library is kept in the variabfk_library .

To access the procedures in the Tcl library, an application should source the.tidein the library, for
example with the Tcl command

source [file join [info library] init.tcl]
If the library procedurdcl_Init is invoked from an application'$cl_Applnit procedure, this happens
automatically. The code imit.tcl will define theunknown procedure and arrange for the other procedures
to be loaded on-demand using the auto-load mechanism defined below.

COMMAND PROCEDURES

Tcl

The following procedures are provided in the Tcl library:

auto_execokemd
Determines whether there is an executable file by the mamde This command examines the
directories in the current search path (given by the PATH environment variable) to see if there is an
executable file namedmdin any of those directories. If so, it returns 1; if not it returns O.
Auto_execremembers information about previous searches in an array rartgedxecs this
avoids the path search in future calls for the sam& The commana@uto_resetmay be used to
forceauto_execokto forget its cached information.

auto_loadcmd
This command attempts to load the definition for a Tcl command named To do this, it
searches aauto-load pathwhich is a list of one or more directories. The auto-load path is given
by the global variablebauto_path if it exists. If there is no$auto_path variable, then the
TCLLIBPATH environment variable is used, if it exists. Otherwise the auto-load path consists of
just the Tcl library directory. Within each directory in the auto-load path there must bécHrfile
dex that describes one or more commands defined in that directory and a script to evaluate to load
each of the commands. Thdindex file should be generated with thato_mkindex command.
If cmdis found in an index file, then the appropriate script is evaluated to create the command.

Last change: 8.0 1

Tcl Built-In Commands library (n)

Tcl

The auto_load command returns 1 émdwas successfully created. The command returns O if
there was no index entry f@md or if the script didn’t actually definemd (e.g. because index
information is out of date). If an error occurs while processing the script, then that error is
returned. Auto_load only reads the index information once and saves it in the autty index

future calls toauto_load check forcmdin the array rather than re-reading the index files. The
cached index information may be deleted with the comnaanal reset This will force the next
auto_loadcommand to reload the index database from disk.

auto_mkindexdir pattern pattern ...

Generates an index suitable for usealbjo_load The command searchds for all files whose
names match any of ttgatternarguments (matching is done with thleb command), generates
an index of all the Tcl command procedures defined in all the matching files, and stores the index
information in a file hamedclindex in dir. If no pattern is given a pattern aftcl will be
assumed. For example, the command

auto_mkindex footcl

will read all the.tcl files in subdirectoryoo and generate a new index fiteo/tclindex.

Auto_mkindex parses the Tcl scripts by sourcing them into a slave interpreter and monitoring the
proc and namespace commands that are executed. Extensions can use the (undocumented)
auto_mkindex_parser package to register other commands that can contribute to the auto_load
index. You will have to read through init.tcl to see how this works.

Auto_mkindex_old parses the Tcl scripts in a relatively unsophisticated way: if any line contains
the wordproc as its first characters then it is assumed to be a procedure definition and the next
word of the line is taken as the procedure’s name. Procedure definitions that don’t appear in this
way (e.g. they have spaces beforepter) will not be indexed.

auto_reset

Destroys all the information cached ayto_execokandauto_load This information will be re-
read from disk the next time it is neededuto_reset also deletes any procedures listed in the
auto-load index, so that fresh copies of them will be loaded the next time that they’re used.

tcl_findLibrary basename version patch initScript enVarName varName

This is a standard search procedure for use by extensions during their initialization. They call this
procedure to look for their script library in several standard directories. The last component of the
name of the library directory is normalbasenameversiofe.g., tk8.0), but it might be "library"

when in the build hierarchies. TheitScript file will be sourced into the interpreter once it is
found. The directory in which this file is found is stored into the global vanesidame If this

variable is already defined (e.g., by C code during application initialization) then no searching is
done. Otherwise the search looks in these directories: the directory named by the environment
variableenVarNamerelative to the Tcl library directory; relative to the executable file in the stan-
dard installation bin or biafch directory; relative to the executable file in the current build tree;
relative to the executable file in a parallel build tree.

parray arrayName

Prints on standard output the names and values of all the elements in thareydame
ArrayName must be an array accessible to the callgranfay. It may be either local or global.

tcl_endOfWord str start

Returns the index of the first end-of-word location that occurs after a startingdtadein the
stringstr. An end-of-word location is defined to be the first non-word character following the first
word character after the starting point. Returns -1 if there are no more end-of-word locations after
the starting point. See the descriptiontdf wordchars andtcl_nonwordchars below for more

details on how Tcl determines which characters are word characters.

tcl_startOfNextWord str start

Last change: 8.0 2

Tcl Built-In Commands library (n)

Returns the index of the first start-of-word location that occurs after a startingstaaein the
string str. A start-of-word location is defined to be the first word character following a non-word
character. Returns -1 if there are no more start-of-word locations after the starting point.

tcl_startOfPreviousWord str start
Returns the index of the first start-of-word location that occurs before a startingstadear the
stringstr. Returns -1 if there are no more start-of-word locations before the starting point.

tcl_wordBreakAfter str start
Returns the index of the first word boundary after the starting isi@detin the stringstr. Returns
-1 if there are no more boundaries after the starting point in the given string. The index returned
refers to the second character of the pair that comprises a boundary.

tcl_wordBreakBefore str start
Returns the index of the first word boundary before the starting istéekin the stringstr.
Returns -1 if there are no more boundaries before the starting point in the given string. The index
returned refers to the second character of the pair that comprises a boundary.

VARIABLES
The following global variables are defined or used by the procedures in the Tcl library:

auto_execs

Used by auto_execokto record information about whether particular commands exist as
executable files.

auto_index
Used byauto_loadto save the index information read from disk.

auto_noexec
If set to any value, theanknown will not attempt to auto-exec any commands.

auto_noload
If set to any value, themnknown will not attempt to auto-load any commands.

auto_path
If set, then it must contain a valid Tcl list giving directories to search during auto-load operations.

env(TCL_LIBRARY)
If set, then it specifies the location of the directory containing library scripts (the value of this vari-

able will be returned by the commaindb library). If this variable isn’t set then a default value is
used.

env(TCLLIBPATH)

If set, then it must contain a valid Tcl list giving directories to search during auto-load operations.
This variable is only used #uto_pathis not defined.

tcl_nonwordchars
This variable contains a regular expression that is used by routinéd_liedOfWord to identify
whether a character is part of a word or not. If the pattern matches a character, the character is
considered to be a non-word character. On Windows platforms, spaces, tabs, and newlines are
considered non-word characters. Under Unix, everything but numbers, letters and underscores are
considered non-word characters.

tcl_wordchars
This variable contains a regular expression that is used by routinéd_liedOfWord to identify
whether a character is part of a word or not. If the pattern matches a character, the character is
considered to be a word character. On Windows platforms, words are comprised of any character
that is not a space, tab, or newline. Under Unix, words are comprised of numbers, letters or

Tcl Last change: 8.0 3

Tcl Built-In Commands library (n)

underscores.

unknown_active
This variable is set bynknown to indicate that it is active. It is used to detect errors where
unknown recurses on itself infinitely. The variable is unset befmdeanown returns.

KEYWORDS
auto-exec, auto-load, library, unknown, word, whitespace

Tcl Last change: 8.0 4

Tcl Built-In Commands lindex(n)

NAME
lindex — Retrieve an element from a list

SYNOPSIS
lindex list index

DESCRIPTION
This command treatst as a Tcl list and returns tledexth element from it (O refers to the first element
of the list). In extracting the elemeriindex observes the same rules concerning braces and quotes and
backslashes as the Tcl command interpreter; however, variable substitution and command substitution do
not occur. Ifindexis negative or greater than or equal to the number of elemewsdui@ then an empty
string is returned. lindexhas the valuend, it refers to the last element in the list.

KEYWORDS
element, index, list

Tcl Last change: 7.4 1

Tcl Built-In Commands linsert(n)

NAME
linsert — Insert elements into a list

SYNOPSIS
linsert list index elemertelement element?..

DESCRIPTION
This command produces a new list frdist by inserting all of theelementarguments just before the
indexh element ofist. Eachelementargument will become a separate element of the new lighdéikis
less than or equal to zero, then the new elements are inserted at the beginning of thedesth#fs the
valueend, or if it is greater than or equal to the number of elements in the list, then the new elements are
appended to the list.

KEYWORDS
element, insert, list

Tcl Last change: 7.4 1

Tcl Built-In Commands list(n)

NAME
list — Create a list
SYNOPSIS
list ?arg arg ..?
DESCRIPTION
This command returns a list comprised of all &ings, or an empty string if nargs are specified. Braces
and backslashes get added as necessary, so thiadlédixecommand may be used on the result to re-extract
the original arguments, and also so #zdl may be used to execute the resulting list, \&ithil comprising
the command’s name and the othegs comprising its argumentd.ist produces slightly different results
thanconcat concatremoves one level of grouping before forming the list, whéeworks directly from
the original arguments. For example, the command
listab {cde}{f{gh}}
will return
ab{cde}{f{gh}}
while concatwith the same arguments will return
abcdef{gh}
KEYWORDS

element, list

Tcl Last change: 1

Tcl Built-In Commands llength (n)

NAME

llength — Count the number of elements in a list
SYNOPSIS

llength list
DESCRIPTION

Treatslist as a list and returns a decimal string giving the number of elements in it.

KEYWORDS
element, list, length

Tcl Last change: 1

Tcl Built-In Commands load (n)

NAME

SYNOPSIS

load — Load machine code and initialize new commands.

load fileName
load fileName packageName
load fileName packageName interp

DESCRIPTION

Tcl

This command loads binary code from a file into the application’s address space and calls an initialization
procedure in the package to incorporate it into an interpriéfieilameis the name of the file containing the
code; its exact form varies from system to system but on most systems it is a shared library, sseh as a
file under Solaris or a DLL under WindowpackageNamés the name of the package, and is used to com-
pute the name of an initialization proceduieterp is the path name of the interpreter into which to load

the package (see theterp manual entry for details); thterp is omitted, it defaults to the interpreter in
which theload command was invoked.

Once the file has been loaded into the application’s address space, one of two initialization procedures will
be invoked in the new code. Typically the initialization procedure will add new commands to a Tcl inter-
preter. The name of the initialization procedure is determingzhblgageNamand whether or not the tar-

get interpreter is a safe one. For normal interpreters the name of the initialization procedure will have the
form pkg_Init, wherepkgis the same gsackageNamexcept that the first letter is converted to upper case
and all other letters are converted to lower case. For exampbgkhgeName foo or FOo, the initializa-

tion procedure’s name will béoo_Init.

If the target interpreter is a safe interpreter, then the name of the initialization procedure will be
pkg Safelnitinstead ofpkg Init. Thepkg Safelnit function should be written carefully, so that it initial-

izes the safe interpreter only with partial functionality provided by the package that is safe for use by
untrusted code. For more information on Safe-Tcl, sesaf@manual entry.

The initialization procedure must match the following prototype:

typedef int Tcl_PackagelnitProc(Tcl_Interimterp);
Theinterp argument identifies the interpreter in which the package is to be loaded. The initialization proce-
dure must returfCL_OK or TCL_ERROR to indicate whether or not it completed successfully; in the
event of an error it should seterp->resultto point to an error message. The result ofitlael command
will be the result returned by the initialization procedure.

The actual loading of a file will only be done once for ddeNamein an application. If a givefileName

is loaded into multiple interpreters, then the fiostd will load the code and call the initialization proce-
dure; subsequetaads will call the initialization procedure without loading the code again. It is not possi-
ble to unload or reload a package.

Theload command also supports packages that are statically linked with the application, if those packages
have been registered by calling thel_StaticPackageprocedure. IffileNameis an empty string, then
packageNamenust be specified.

If packageNames omitted or specified as an empty string, Tcl tries to guess the name of the package. This
may be done differently on different platforms. The default guess, which is used on most UNIX platforms,
is to take the last element fieName strip off the first three characters if they &g and use any follow-

ing alphabetic and underline characters as the module name. For example, the ctomachhioxlyz4.2.s0

uses the module namgz and the commanidad bin/last.so {}uses the module nantest.

If fileNameis an empty string, thepackageNamenust be specified. THead command first searches for
a statically loaded package (one that has been registered by calling_tB¢aticPackageprocedure) by
that name; if one is found, it is used. Otherwise,ltta® command searches for a dynamically loaded

Last change: 7.5 1

Tcl Built-In Commands load (n)

package by that name, and uses it if it is found. If several different files havéohded with different
versions of the package, Tcl picks the file that was loaded first.

BUGS
If the same file isoaded by differenfileNames, it will be loaded into the process’s address space multiple

times. The behavior of this varies from system to system (some systems may detect the redundant loads,
others may not).

SEE ALSO
info sharedlibextension Tcl_StaticPackage, safe(n)

KEYWORDS
binary code, loading, safe interpreter, shared library

Tcl Last change: 7.5 2

Tcl Built-In Commands Irange (n)

NAME
I[range — Return one or more adjacent elements from a list

SYNOPSIS
Irange list first last

DESCRIPTION
List must be a valid Tcl list. This command will return a new list consisting of elerfisstthroughlast,

inclusive. First or last may beend (or any abbreviation of it) to refer to the last element of the lisfirsif

is less than zero, it is treated as if it were zerdadfis greater than or equal to the number of elements in
the list, then it is treated as if it wezad. If firstis greater thafastthen an empty string is returned. Note:
“Irange list first first’ does not always produce the same resultlagiéx list first” (although it often does

for simple fields that aren’t enclosed in braces); it does, however, produce exactly the same rdgilts as “

[lindex list firsf]”

KEYWORDS
element, list, range, sublist

Tcl Last change: 7.4 1

Tcl Built-In Commands Ireplace (n)

NAME
Ireplace — Replace elements in a list with new elements

SYNOPSIS
Ireplace list first last?element element?..

DESCRIPTION
Lreplace returns a new list formed by replacing one or more elemeriist efith the elementarguments.
First gives the index idist of the first element to be replaced (0 refers to the first elemerfijstlis less
than zero then it refers to the first elemenlisif the element indicated Hirst must exist in the listLast
gives the index irlist of the last element to be replaced.ldét is less tharfirst then no elements are
deleted; the new elements are simply inserted bdifste First or last may beend (or any abbreviation of
it) to refer to the last element of the list. Télement&arguments specify zero or more new arguments to be
added to the list in place of those that were deleted. &aarenargument will become a separate element
of the list. If noelementarguments are specified, then the elements betfistrand last are simply
deleted.

KEYWORDS
element, list, replace

Tcl Last change: 7.4 1

Tcl Built-In Commands Isearch (n)

NAME

SYNOPSIS

Isearch — See if a list contains a particular element

Isearch?mode list pattern

DESCRIPTION

This command searches the elementfisbfto see if one of them matchpattern If so, the command
returns the index of the first matching element. If not, the command retlirnBhe modeargument indi-
cates how the elements of the list are to be matched agaitsinand it must have one of the following
values:

—exact The list element must contain exactly the same strintiern

—glob Patternis a glob-style pattern which is matched against each list element using the same rules as
thestring match command.

—-regexp
Patternis treated as a regular expression and matched against each list element using the same
rules as theegexpcommand.

If modeis omitted then it defaults teglob.

KEYWORDS

Tcl

list, match, pattern, regular expression, search, string

Last change: 7.0 1

Tcl Built-In Commands Isort (n)

NAME
Isort — Sort the elements of a list

SYNOPSIS
Isort ?optiong list

DESCRIPTION
This command sorts the elementdisf, returning a new list in sorted order. By default ASCII sorting is
used with the result returned in increasing order. However, any of the following options may be specified
beforelist to control the sorting process (unique abbreviations are accepted):

—ascii Use string comparison with ASCII collation order. This is the default.

—dictionary Use dictionary-style comparison. This is the same-ascii except (a) case is
ignored except as a tie-breaker and (b) if two strings contain embedded numbers,
the numbers compare as integers, not characters. For exampidiciionary
mode, bigBoy sorts betweeibigbang and bigboy, and x10y sorts betweex9y

andx11y.
—integer Convert list elements to integers and use integer comparison.
-real Convert list elements to floating-point values and use floating comparison.

—command command Use commandas a comparison command. To compare two elements, evaluate a
Tcl script consisting oEommandwith the two elements appended as additional
arguments. The script should return an integer less than, equal to, or greater than
zero if the first element is to be considered less than, equal to, or greater than the
second, respectively.

—increasing Sort the list in increasing order (“smallest” items first). This is the default.
—decreasing Sort the list in decreasing order (“largest” items first).
—index index If this option is specified, each of the elementéistfmust itself be a proper Tcl

sublist. Instead of sorting based on whole sublistst will extract theindexth
element from each sublist and sort based on the given element. The keydord
is allowed for thendexto sort on the last sublist element. For example,

Isort -integer -index 1 {{First 24} {Second 18} {Third 30}}
returns{Second 18} {First 24} {Third 30}. This option is much more efficient
than using-commandto achieve the same effect.

KEYWORDS
element, list, order, sort

Tcl Last change: 8.0 1

Tcl Built-In Commands namespace (n)

NAME

namespace — create and manipulate contexts for commands and variables

SYNOPSIS

namespaceoption? 2arg ...?

DESCRIPTION

The namespacecommand lets you create, access, and destroy separate contexts for commands and vari-
ables. See the sectidHAT IS A NAMESPACE? below for a brief overview of namespaces. The legal
optioris are listed below. Note that you can abbreviateofit®ris.

namespace childrerPfnamespace patterr?

Returns a list of all child namespaces that belong to the namespaespace If namespacés

not specified, then the children are returned for the current namespace. This command returns
fully-qualified names, which start with. If the optionalpatternis given, then this command
returns only the names that match the glob-style pattern. The actual pattern used is determined as
follows: a pattern that starts withis used directly, otherwise the namespaamespacéor the
fully-qualified name of the current namespace) is prepended onto the the pattern.

namespace codscript

Captures the current namespace context for later execution of thessdpt It returns a new

script in whichscripthas been wrapped innrmmespace codeommand. The new script has two
important properties. First, it can be evaluated in any namespace and wilscapse® be evalu-

ated in the current namespace (the one wheraahespace codeommand was invoked). Sec-

ond, additional arguments can be appended to the resulting script and they will be passpd to

as additional arguments. For example, suppose the comsearstript [namespace code {foo

bar}] is invoked in namespace::b. Theneval "$script x y" can be executed in any nhamespace
(assuming the value afcript has been passed in properly) and will have the same effect as the
commandamespace eval ::a::b {foo bar x y} This command is needed because extensions like

Tk normally execute callback scripts in the global namespace. A scoped command captures a
command together with its namespace context in a way that allows it to be executed properly later.
See the sectio®COPED VALUES for some examples of how this is used to create callback
scripts.

namespace current

Returns the fully-qualified name for the current namespace. The actual name of the global names-
pace is “” (i.e., an empty string), but this command returrfor the global namespace as a con-
venience to programmers.

namespace delet@namespace namespace ...

Each namespacgamespacés deleted and all variables, procedures, and child namespaces con-
tained in the namespace are deleted. If a procedure is currently executing inside the namespace,
the namespace will be kept alive until the procedure returns; however, the namespace is marked to
prevent other code from looking it up by name. If a nhamespace doesn't exist, this command
returns an error. If no namespace names are given, this command does nothing.

namespace evahamespace argarg ...?

Tcl

Activates a namespace calledmespacand evaluates some code in that context. If the names-
pace does not already exist, it is created. If more tharagnargument is specified, the argu-
ments are concatenated together with a space between each one in the same fashewalas the
command, and the result is evaluated.

If namespacéas leading namespace qualifiers and any leading namespaces do not exist, they are
automatically created.

Last change: 8.0 1

Tcl Built-In Commands namespace (n)

Tcl

namespace exporf-clear? pattern pattern .2

Specifies which commands are exported from a namespace. The exported commands are those
that can be later imported into another namespace ugiagnaspace importcommand. Both
commands defined in a namespace and commands the namespace has previously imported can be
exported by a namespace. The commands do not have to be defined at the tiamaabgace

export command is executed. Eaphtternmay contain glob-style special characters, but it may

not include any namespace qualifiers. That is, the pattern can only specify commands in the cur-
rent (exporting) namespace. Egghtternis appended onto the namespace’s list of export pat-
terns. If the €lear flag is given, the namespace’s export pattern list is reset to empty before any
patternarguments are appended. If patterrs are given and thectear flag isn’t given, this com-

mand returns the namespace’s current export list.

namespace forgePpattern pattern .2

Removes previously imported commands from a namespace. ga#tehn is a qualified name

such adoo::x or a::b::p 0 Qualified names contains and qualify a name with the name of one

or more namespaces. Egudtternis qualified with the name of an exporting namespace and may
have glob-style special characters in the command name at the end of the qualified name. Glob
characters may not appear in a namespace name. This command first finds the matching exported
commands. It then checks whether any of those those commands were previously imported by the
current namespace. If so, this command deletes the corresponding imported commands. In effect,
this un-does the action ofrmmespace importcommand.

namespace import?-force? pattern pattern .2

Imports commands into a namespace. Hmtternis a qualified name likeo::x ora::p0 That

is, it includes the name of an exporting namespace and may have glob-style special characters in
the command name at the end of the qualified name. Glob characters may not appear in a names-
pace name. All the commands that matgtatiernstring and which are currently exported from

their namespace are added to the current namespace. This is done by creating a new command in
the current namespace that points to the exported command in its original namespace; when the
new imported command is called, it invokes the exported command. This command normally
returns an error if an imported command conflicts with an existing command. However, if the
—force option is given, imported commands will silently replace existing commandsnarhes-

pace import command has snapshot semantics: that is, only requested commands that are cur-
rently defined in the exporting namespace are imported. In other words, you can import only the
commands that are in a namespace at the time wheathespace importcommand is executed.

If another command is defined and exported in this namespace later on, it will not be imported.

namespace inscopaamespace argarg ...?

Executes a script in the context of a particular namespace. This command is not expected to be
used directly by programmers; calls to it are generated implicitly when applicationsmss-

pace codecommands to create callback scripts that the applications then register with, e.g., Tk
widgets. Thenamespace inscopeommand is much like theamespace evatommand except

that it hadappend semantics and the namespace must already exist. It treats the first argument as
a list, and appends any arguments after the first onto the end as proper list ele@etspace

inscope ::foo a x y Zs equivalent tmamespace eval ::foo [concat a [list x y z]This lappend
semantics is important because many callback scripts are actually prefixes.

namespace origicommand

Returns the fully-qualified name of the original command to which the imported conmuoand
mandrefers. When a command is imported into a namespace, a new command is created in that
namespace that points to the actual command in the exporting namespace. If a command is
imported into a sequence of namespaxes,...,nwhere each successive namespace just imports
the command from the previous namespace, this command returns the fully-qualified name of the
original command in the first namespaae |f commandloes not refer to an imported command,

Last change: 8.0 2

Tcl Built-In Commands namespace (n)

the command’s own fully-qualified name is returned.

namespace parenfPnamespace
Returns the fully-qualified name of the parent namespace for namespaespace If names-
paceis not specified, the fully-qualified name of the current namespace’s parent is returned.

namespace qualifierstring
Returns any leading namespace qualifiersfiong. Qualifiers are namespace names separated by
::s. For thestring ::foo::bar::x , this command returnsfoo::bar, and for:: it returns*” (an
empty string). This command is the complement ofrthmespace tailcommand. Note that it
does not check whether the hamespace names are, in fact, the names of currently defined names-
paces.

namespace taiktring
Returns the simple name at the end of a qualified string. Qualifiers are namespace names sepa-
rated by::s. For thestring ::foo::bar::x , this command returns, and for:: it returns*” (an
empty string). This command is the complement ofrtamespace qualifiercommand. It does
not check whether the namespace names are, in fact, the names of currently defined namespaces.

namespace whiclt?P-command? ?-variable? name
Looks upnameas either a command or variable and returns its fully-qualified name. For example,
if namedoes not exist in the current namespace but does exist in the global namespace, this com-
mand returns a fully-qualified name in the global namespace. If the command or variable does not
exist, this command returns an empty string. If no flag is gimameis treated as a command
name. See the sectilédAME RESOLUTION below for an explanation of the rules regarding
name resolution.

WHAT IS A NAMESPACE?
A namespace is a collection of commands and variables. It encapsulates the commands and variables to
ensure that they won't interfere with the commands and variables of other namespaces. Tcl has always had
one such collection, which we refer to as ¢hebal namespaceThe global nhamespace holds all global
variables and commands. Thamespace evatommand lets you create new namespaces. For example,
namespace eval Counter {
namespace export Bump
variable num 0

proc Bump {} {
variable num
incr num

}
}

creates a new namespace containing the vamabteand the proceduBump. The commands and vari-

ables in this namespace are separate from other commands and variables in the same program. If there is a
command name®ump in the global namespace, for example, it will be different from the command
Bump in theCounter namespace.

Namespace variables resemble global variables in Tcl. They exist outside of the procedures in a namespace
but can be accessed in a procedure viadin@ble command, as shown in the example above.

Namespaces are dynamic. You can add and delete commands and variables at any time, so you can build
up the contents of a hamespace over time using a senmesnaispace evatommands. For example, the
following series of commands has the same effect as the namespace definition shown above:
namespace eval Counter {
variable num 0

proc Bump {} {

Tcl Last change: 8.0 3

Tcl Built-In Commands namespace (n)

variable num
return [incr num]

}
}

namespace eval Counter {
proc test {args} {
return $args

}
}

namespace eval Counter {
rename test "
}
Note that theest procedure is added to ti@unter namespace, and later removed viarégr@ame com-
mand.

Namespaces can have other namespaces within them, so they nest hierarchically. A nested namespace is
encapsulated inside its parent namespace and can not interfere with other namespaces.

QUALIFIED NAMES

Tcl

Each namespace has a textual name sublistsy or ::safe::interp. Since namespaces may nest, quali-

fied names are used to refer to commands, variables, and child namespaces contained inside namespaces.
Qualified names are similar to the hierarchical path names for Unix files or Tk widgets, excepisthat

used as the separator instead of .. The topmost or global namespace has the name “” (i.e., an empty
string), although: is a synonym. As an example, the namsafe::interp::create refers to the command

createin the namespadaterp that is a child of of namespacsafe, which in turn is a child of the global
namespace.

If you want to access commands and variables from another namespace, you must use some extra syntax.
Names must be qualified by the namespace that contains them. From the global namespace, we might
access th€ounter procedures like this:

Counter::Bump 5

Counter::Reset
We could access the current count like this:

puts “count = $Counter::num"
When one namespace contains another, you may need more than one qualifier to reach its elements. If we
had a namespad®o that contained the namespaceunter, you could invoke it8ump procedure from
the global namespace like this:

Foo::Counter::Bump 3

You can also use qualified names when you create and rename commands. For example, you could add a
procedure to thEoo namespace like this:

proc Foo::Test {args} {return $args}
And you could mvethe same procedure to another namespace like this:

rename Foo::Test Bar::Test

There are a few remaining points about qualified names that we should cover. Namespaces have nonempty
names except for the global namespaceis disallowed in simple command, variable, and namespace
names except as a namespace separator. :Bxira qualified name are ignored; that is, two or merare

treated as a namespace separator. A trailifig a qualified variable or command name refers to the vari-

able or command named {}. However, a trailingn a qualified namespace name is ignored.

Last change: 8.0 4

Tcl Built-In Commands namespace (n)

NAME RESOLUTION

In general, all Tcl commands that take variable and command names support qualified names. This means
you can give qualified names to such commandsetgroc, rename, andinterp alias. If you provide a
fully-qualified name that starts with:g there is no question about what command, variable, or namespace
you mean. However, if the name does not start with(iee., isrelative), Tcl follows a fixed rule for look-

ing it up: Command and variable names are always resolved by looking first in the current namespace, and
then in the global nhamespace. Namespace names, on the other hand, are always resolved by looking in
only the current namespace.

In the following example,

set tracelLevel O
namespace eval Debug {
printTrace $tracelLevel

Tcl looks fortracelLevel in the namespadaebugand then in the global namespace. It looks up the com-
mandprintTrace in the same way. If a variable or command name is not found in either context, the name
is undefined. To make this point absolutely clear, consider the following example:
set tracelLevel O
namespace eval Foo {
variable traceLevel 3

namespace eval Debug {
printTrace $tracelLevel

}
}

Here Tcl looks fortraceLevel first in the namespadeoo::Debug Since it is not found there, Tcl then
looks for it in the global namespace. The varidibe::traceLevelis completely ignored during the name
resolution process.

You can use theamespace whicttcommand to clear up any question about name resolution. For example,
the command:
namespace eval Foo::Debug {namespace which —variable tracelLevel}
returns::itraceLevel. On the other hand, the command,
namespace eval Foo {namespace which —variable tracelLevel}
returns::Foo::traceLevel.

As mentioned above, namespace names are looked up differently than the names of variables and com-
mands. Namespace names are always resolved in the current namespace. This means, for example, that a
namespace evatommand that creates a new namespace always creates a child of the current namespace
unless the new namespace name begins with a

Tcl has no access control to limit what variables, commands, or namespaces you can reference. If you pro-
vide a qualified name that resolves to an element by the name resolution rule above, you can access the ele-
ment.

You can access a hamespace variable from a procedure in the same namespace byvasmgeahmm-

mand. Much like theylobal command, this creates a local link to the hamespace variable. If necessary, it
also creates the variable in the current namespace and initializes it. Note tylabdiecommand only
creates links to variables in the global hamespace. It is not necessary twausbla command if you
always refer to the namespace variable using an appropriate qualified name.

IMPORTING COMMANDS

Tcl

Last change: 8.0 5

Tcl Built-In Commands namespace (n)

Namespaces are often used to represent libraries. Some library commands are used so frequently that it is a
nuisance to type their qualified names. For example, suppose that all of the commands in a package like
BLT are contained in a namespace caB#td Then you might access these commands like this:

Blt::graph .g —background red

Blt::table . .g 0,0
If you use thegraph andtable commands frequently, you may want to access them witho@Ithepre-
fix. You can do this by importing the commands into the current namespace, like this:

namespace import Blt:{]
This adds all exported commands from Bie namespace into the current namespace context, So you can
write code like this:

graph .g —background red

table . .g 0,0
Thenamespace importcommand only imports commands from a namespace that that namespace exported
with anamespace exportommand.

Importing everycommand from a namespace is generally a bad idea since you don’t know what you will
get. Itis better to import just the specific commands you need. For example, the command

namespace import Blt::graph Blt::table
imports only thegraph andtable commands into the current context.

If you try to import a command that already exists, you will get an error. This prevents you from importing
the same command from two different packages. But from time to time (perhaps when debugging), you
may want to get around this restriction. You may want to reissueatinespace importcommand to pick
up new commands that have appeared in a namespace. In that case, you carfoseetbption, and
existing commands will be silently overwritten:

namespace import —force Blt::graph Blt::table
If for some reason, you want to stop using the imported commands, you care them with amames-
pace forgetcommand, like this:

namespace forget Blt:[]
This searches the current namespace for any commands importdsltfrolfrit finds any, it removes them.
Otherwise, it does nothing. After this, tB&# commands must be accessed withBhe prefix.

When you delete a command from the exporting namespace like this:
rename BIt::graph "™
the command is automatically removed from all namespaces that import it.

EXPORTING COMMANDS
You can export commands from a namespace like this:
namespace eval Counter {
namespace export Bump Reset
variable num 0
variable max 100

proc Bump {{by 1}} {
variable num

incr num $by
check
return $num

}
proc Reset {} {

variable num
setnum O

Tcl Last change: 8.0 6

Tcl Built-In Commands namespace (n)

proc check {} {
variable num
variable max
if {$num > $max} {
error "too high!"
}
}
}
The procedureBump andResetare exported, so they are included when you import fronCthnter
namespace, like this:

namespace import Counter:fl
However, theeheckprocedure is not exported, so it is ignored by the import operation.

The namespace importcommand only imports commands that were declared as exported by their names-
pace. Thenamespace exporcommand specifies what commands may be imported by other namespaces.
If a namespace importcommand specifies a command that is not exported, the command is not imported.

SEE ALSO
variable(n)

KEYWORDS
exported, internal, variable

Tcl Last change: 8.0 7

Tcl Built-In Commands open(n)

NAME
open — Open a file-based or command pipeline channel
SYNOPSIS

openfileName

openfileName access

openfileName access permissions

DESCRIPTION

This command opens a file, serial port, or command pipeline and returns a channel identifier that may be

used in future invocations of commands likad, puts, andclose If the first character dileNameis not|

then the command opens a fiidleNamegives the name of the file to open, and it must conform to the con-

ventions described in tHéenamemanual entry.

The accessargument, if present, indicates the way in which the file (or command pipeline) is to be

accessed. In the first foratcessnay have any of the following values:

r Open the file for reading only; the file must already exist. This is the default value if
accesss not specified.

r+ Open the file for both reading and writing; the file must already exist.

w Open the file for writing only. Truncate it if it exists. If it doesn’t exist, create a new
file.

w+ Open the file for reading and writing. Truncate it if it exists. If it doesn’t exist, create a
new file.

a Open the file for writing only. The file must already exist, and the file is positioned so
that new data is appended to the file.

a+ Open the file for reading and writing. If the file doesn’t exist, create a new empty file.
Set the initial access position to the end of the file.

In the second formaccessconsists of a list of any of the following flags, all of which have the standard

POSIX meanings. One of the flags must be ei@2ONLY , WRONLY or RDWR.

RDONLY Open the file for reading only.

WRONLY Open the file for writing only.

RDWR Open the file for both reading and writing.

APPEND Set the file pointer to the end of the file prior to each write.

CREAT Create the file if it doesn’t already exist (without this flag it is an error for the file not to
exist).

EXCL If CREAT is also specified, an error is returned if the file already exists.

NOCTTY If the file is a terminal device, this flag prevents the file from becoming the controlling
terminal of the process.

NONBLOCK Prevents the process from blocking while opening the file, and possibly in subsequent
I/O operations. The exact behavior of this flag is system- and device-dependent; its use
is discouraged (it is better to use feenfigure command to put a file in nonblocking
mode). For details refer to your system documentation onopfem system call’s
O_NONBLOCK flag.

TRUNC If the file exists it is truncated to zero length.

Tcl Last change: 7.6 1

Tcl Built-In Commands open(n)

If a new file is created as part of openingp#grmissiongan integer) is used to set the permissions for the
new file in conjunction with the process’s file mode creation mekmissionslefaults to 0666.

COMMAND PIPELINES
If the first character ofileNameis “|” then the remaining characters ffeNameare treated as a list of
arguments that describe a command pipeline to invoke, in the same style as the argurereds lothis
case, the channel identifier returneddpen may be used to write to the command’s input pipe or read
from its output pipe, depending on the valuaodéess If write-only access is used (ea&rcesdss w), then
standard output for the pipeline is directed to the current standard output unless overridden by the com-
mand. If read-only access is used (agresss r), standard input for the pipeline is taken from the current
standard input unless overridden by the command.

SERIAL COMMUNICATIONS
If fileNamerefers to a serial port, then the specified serial port is opened and initialized in a platform-
dependent manner. Acceptable values forfile®lameto use to open a serial port are described in the
PORTABILITY ISSUES section.

CONFIGURATION OPTIONS
The fconfigure command can be used to query and set the following configuration option for open serial
ports:

—modebaudparity,datastop
This option is a set of 4 comma-separated values: the baud rate, parity, number of data bits, and
number of stop bits for this serial port. Ti@udrate is a simple integer that specifies the connec-
tion speed.Parity is one of the following lettersy, o, €, m, s; respectively signifying the parity
options of “none”, “odd”, “even”, “mark”, or “space”. Data is the number of data bits and
should be an integer from 5 to 8, whilopis the number of stop bits and should be the integer 1

or 2.

PORTABILITY ISSUES
Windows (all versions)
Valid values forfileNameto open a serial port are of the foommX:, whereX is a number, gener-
ally from 1 to 4. An attempt to open a serial port that does not exist will fail.

Windows NT

When running Tcl interactively, there may be some strange interactions between the real console,
if one is present, and a command pipeline that uses standard input or output. If a command
pipeline is opened for reading, some of the lines entered at the console will be sent to the com-
mand pipeline and some will be sent to the Tcl evaluator. If a command pipeline is opened for

writing, keystrokes entered into the console are not visible until the the pipe is closed. This behav-
ior occurs whether the command pipeline is executing 16-bit or 32-bit applications. These prob-

lems only occur because both Tcl and the child application are competing for the console at the
same time. If the command pipeline is started from a script, so that Tcl is not accessing the con-
sole, or if the command pipeline does not use standard input or output, but is redirected from or to
a file, then the atwveproblems do not occur.

Windows 95
A command pipeline that executes a 16-bit DOS application cannot be opened for both reading
and writing, since 16-bit DOS applications that receive standard input from a pipe and send stan-
dard output to a pipe run synchronously. Command pipelines that do not execute 16-bit DOS
applications run asynchronously and can be opened for both reading and writing.

When running Tcl interactively, there may be some strange interactions between the real console,
if one is present, and a command pipeline that uses standard input or output. If a command

Tcl Last change: 7.6 2

Tcl Built-In Commands open(n)

pipeline is opened for reading from a 32-bit application, some of the keystrokes entered at the con-
sole will be sent to the command pipeline and some will be sent to the Tcl evaluator. If a com-
mand pipeline is opened for writing to a 32-bit application, no output is visible on the console
until the the pipe is closed. These problems only occur because both Tcl and the child application
are competing for the console at the same time. If the command pipeline is started from a script,
so that Tcl is not accessing the console, or if the command pipeline does not use standard input or
output, but is redirected from or to a file, then thevalproblems do not occur.

Whether or not Tcl is running interactively, if a command pipeline is opened for reading from a
16-bit DOS application, the call tpenwill not return until end-of-file has been received from the
command pipeline’s standard output. If a command pipeline is opened for writing to a 16-bit DOS
application, no data will be sent to the command pipeline’s standard output until the pipe is actu-
ally closed. This problem occurs because 16-bit DOS applications are run synchronously, as
described above.

Windows 3.X
A command pipeline can execute 16-bit or 32-bit DOS or Windows applications, but the call to
open will not return until the last program in the pipeline has finished executing; command
pipelines run synchronously. If the pipeline is opened with write access (either just writing or both
reading and writing) the first application in the pipeline will instead see an immediate end-of-file;
any data the caller writes to the open pipe will instead be discarded.

Since Tcl cannot be run with a real console under Windows 3.X, there are no interactions between
command pipelines and the console.

Macintosh
Opening a serial port is not currently implemented under Macintosh.

Opening a command pipeline is not supported under Macintosh, since applications do not support
the concept of standard input or output.
Unix
Valid values forfileNameto open a serial port are generally of the fddewv/ttyX, whereXis a or
b, but the name of any pseudo-file that maps to a serial port may be used.

When running Tcl interactively, there may be some strange interactions between the console, if
one is present, and a command pipeline that uses standard input. If a command pipeline is opened
for reading, some of the lines entered at the console will be sent to the command pipeline and
some will be sent to the Tcl evaluator. This problem only occurs because both Tcl and the child
application are competing for the console at the same time. If the command pipeline is started
from a script, so that Tcl is not accessing the console, or if the command pipeline does not use
standard input, but is redirected from a file, then tleweproblem does not occur.

See the PORTABILITY ISSUES section of tegeccommand for additional information not specific to
command pipelines about executing applications on the various platforms

SEE ALSO
close(n), filename(n), gets(n), read(n), puts(n), exec(n)

KEYWORDS
access mode, append, create, file, non-blocking, open, permissions, pipeline, process, serial

Tcl Last change: 7.6 3

Tcl Built-In Commands package (n)

NAME

SYNOPSIS

package - Facilities for package loading and version control

package forgetpackage

package ifneedegackage versiofiscript?
package names

package providepackage?versior?
package require?—exact? packagexversior?
package unknown?comman@

package vcompareversionl version2
package versiongpackage

package vsatisfiegersionl version2

DESCRIPTION

Tcl

This command keeps a simple database of the packages available for use by the current interpreter and how
to load them into the interpreter. It supports multiple versions of each package and arranges for the correct
version of a package to be loaded based on what is needed by the application. This command also detects
and reports version clashes. Typically, only ffeckage require and package providecommands are

invoked in normal Tcl scripts; the other commands are used primarily by system scripts that maintain the
package database.

The behavior of thpackagecommand is determined by its first argument. The following forms are per-
mitted:

package forgetpackage
Removes all information abopiackagefrom this interpreter, including information provided by
bothpackage ifneededaindpackage provide

package ifneedegackage versiofiscript?
This command typically appears only in system configuration scripts to set up the package
database. It indicates that a particular version of a particular package is available if needed, and
that the package can be added to the interpreter by exeesuatipyy The script is saved in a
database for use by subsequamtkage requirecommands; typicallyscript sets up auto-loading
for the commands in the package (or cédizd and/orsource directly), then invokegpackage
provide to indicate that the package is present. There may be information in the database for sev-
eral different versions of a single package. If the database already contains informatiackfor
age andversion the newscript replaces the existing one. If tiseript argument is omitted, the
current script for versiomersionof packagepackages returned, or an empty string if package
ifneededcommand has been invoked for thackageandversion

package names
Returns a list of the names of all packages in the interpreter for which a version has been provided
(via package providg or for which apackage ifneededscript is available. The order of elements
in the list is arbitrary.

package providepackage?versior?
This command is invoked to indicate that versiensionof packageackagds now present in the
interpreter. It is typically invoked once as part of ilmeeded script, and again by the package
itself when it is finally loaded. An error occurs if a different versiopasfkagehas been provided
by a previougpackage providecommand. If theversionargument is omitted, then the command
returns the version number that is currently provided, or an empty stringodiakage provide
command has been invoked foackagdn this interpreter.

Last change: 7.5 1

Tcl Built-In Commands package (n)

package require?—exact? packageversior?
This command is typically invoked by Tcl code that wishes to use a particular version of a particu-
lar package. The arguments indicate which package is wanted, and the command ensures that a
suitable version of the package is loaded into the interpreter. If the command succeeds, it returns
the version number that is loaded; otherwise it generates an error. If botbxthet switch and
the versionargument are specified then only the given version is acceptabtexdttis omitted
but versionis specified, then versions later tharsionare also acceptable as long as they have
the same major version numbenassion If both —exactandversionare omitted then any ver-
sion whatsoever is acceptable. If a versiopatkagehas already been provided (by invoking the
package providecommand), then its version number must satisfy the criteria giveexactand
versionand the command returns immediately. Otherwise, the command searches the database of
information provided by previoysackage ifneedeccommands to see if an acceptable version of
the package is available. If so, the script for the highest acceptable version number is invoked,; it
must do whatever is necessary to load the package, including gadlekgge providefor the
package. If thgpackage ifneededdatabase does not contain an acceptable version of the package
and apackage unknowncommand has been specified for the interpreter then that command is
invoked; when it completes, Tcl checks again to see if the package is now provided or if there is a
package ifneededscript for it. If all of these steps fail to provide an acceptable version of the
package, then the command returns an error.

package unknown?comman@
This command supplies a “last resort” command to invoke dupexckage requireif no suitable
version of a package can be found inplhekage ifneededlatabase. If theommandargument is
supplied, it contains the first part of a command; when the command is invoked dpacigpge
require command, Tcl appends two additional arguments giving the desired package name and
version. For example, fommands foo bar and later the commarghckage require test 2.4s
invoked, then Tcl will execute the commafuh bar test 2.4to load the package. If no version
number is supplied to theackage requirecommand, then the version argument for the invoked
command will be an empty string. If tipackage unknowncommand is invoked without @m-
mandargument, then the currepackage unknownscript is returned, or an empty string if there
is none. Ifcommands specified as an empty string, then the cumpackage unknownscript is
removed, if there is one.

package vcompareversionl version2
Compares the two version numbers givervbysionlandversion2 Returns -1 ifversionlis an
earlier version thamersion2 0 if they are equal, and 1vErsionlis later tharversion2

package versiongpackage

Returns a list of all the version numberspackagefor which information has been provided by
package ifneededcommands.

package vsatisfiegersionl version2
Returns 1 if scripts written forersion2will work unchanged wittversioni(i.e. versionlis equal
to or greater thamersion2and they both have the same major version number), O otherwise.

VERSION NUMBERS

Tcl

Version numbers consist of one or more decimal numbers separated by dots, such as 2 or 1.162 or 3.1.13.1.
The first number is called the major version number. Larger numbers correspond to later versions of a
package, with leftmost numbers having greater significance. For example, version 2.1 is later than 1.3 and
version 3.4.6 is later than 3.3.5. Missing fields are equivalent to zeroes: version 1.3 is the same as version
1.3.0 and 1.3.0.0, so it is earlier than 1.3.1 or 1.3.0.2. A later version number is assumed to be upwards
compatible with an earlier version number as long as both versions have the same major version number.
For example, Tcl scripts written for version 2.3 of a package should work unchanged under versions 2.3.2,
2.4, and 2.5.1. Changes in the major version number signify incompatible changes: if code is written to use

Last change: 7.5 2

Tcl Built-In Commands package (n)

version 2.1 of a package, it is not guaranteed to work unmodified with either version 1.7.3 or version 3.1.

PACKAGE INDICES
The recommended way to use packages in Tcl is to inpakkage requireand package providecom-
mands in scripts, and use the procedakg mkindex to create package index files. Once you've done
this, packages will be loaded automatically in respongatkage requirecommands. See the documen-
tation forpkg_mkIndex for details.

KEYWORDS
package, version

Tcl Last change: 7.5 3

Tcl Built-In Commands pid (n)

NAME
pid — Retrieve process id(s)

SYNOPSIS
pid Zfileld?

DESCRIPTION
If the fileld argument is given then it should normally refer to a process pipeline created vapietem-
mand. In this case tha@d command will return a list whose elements are the process identifiers of all the
processes in the pipeline, in order. The list will be empfijeifd refers to an open file that isn’'t a process
pipeline. If nofileld argument is given thepid returns the process identifier of the current process. All
process identifiers are returned as decimal strings.

KEYWORDS

file, pipeline, process identifier

Tcl Last change: 7.0 1

Tcl Built-In Commands pkg_mkina€ n)

NAME

pkg_mkindex — Build an index for automatic loading of packages
SYNOPSIS

pkg_mkindex dir pattern?pattern pattern .2
DESCRIPTION

Pkg_mkindex is a utility procedure that is part of the standard Tcl library. It is used to create index files
that allow packages to be loaded automatically whatkage requirecommands are executed. To use
pkg_mkindex, follow these steps:

[1]

(2]

3]

[4]

Create the package(s). Each package may consist of one or more Tcl script files or binary files.
Binary files must be suitable for loading with tlimd command with a single argument; for
example, if the file igest.soit must be possible to load this file with the commératl test.so

Each script file must contain @ackage providecommand to declare the package and version
number, and each binary file must contain a calldio PkgProvide.

Create the index by invokingkg_mkindex. Thedir argument gives the name of a directory and
each pattern argument is aglob-style pattern that selects script or binary files din.
Pkg_mkindex will create a filepkgindex.tcl in dir with package information about all the files
given by thepatternarguments. It does this by loading each file and seeing what packages and
new commands appear (this is why it is essential to lgaekage provide commands or
Tcl_PkgProvide calls in the files, as described above).

Install the package as a subdirectory of one of the directories given byt thkgPath variable.

If $tcl_pkgPath contains more than one directory, machine-dependent packages (e.g., those that
contain binary shared libraries) should normally be installed under the first directory and machine-
independent packages (e.g., those that contain only Tcl scripts) should be installed under the sec-
ond directory. The subdirectory should include the package’s script and/or binary files as well as
the pkgindex.tcl file. As long as the package is installed as a subdirectory of a directory in
$tcl_pkgPathit will automatically be found duringackage requirecommands.

If you install the package anywhere else, then you must ensure that the directory contaiingn the
package is in thauto_path global variable or an immediate subdirectory of one of the directories

in auto_path. Auto_path contains a list of directories that are searched by both the auto-loader
and the package loader; by default it incluied pkgPath. The package loader also checks all

of the subdirectories of the directories anto_path. You can add a directory tauto_path
explicitly in your application, or you can add the directory to ybOt.LIBPATH environment
variable: if this environment variable is present, Tcl initialiaag_path from it during applica-

tion startup.

Once the abve steps have been taken, all you need to do to use a package is topavkége
require. For example, if versions 2.1, 2.3, and 3.1 of packég® have been indexed by
pkg_mkindex, the commangackage require Testwill make version 3.1 available and the com-
mandpackage require —exact Test 2.Will make version 2.1 available. There may be many ver-
sions of a package in the various index fileauto_path, but only one will actually be loaded in a
given interpreter, based on the first calpeckage require Different versions of a package may
be loaded in different interpreters.

PACKAGES AND THE AUTO-LOADER

The package management facilities overlap somewhat with the auto-loader, in that both arrange for files to
be loaded on-demand. However, package management is a higher-level mechanism that uses the auto-
loader for the last step in the loading process. It is generally better to index a packaggegwitikindex

Tcl

Last change: 7.6 1

Tcl Built-In Commands pkg_mkina€ n)

rather tharauto_mkindex because the package mechanism provides version control: several versions of a
package can be made available in the index files, with different applications using different versions based
on package requirecommands. In contrasduto_mkindex does not understand versions so it can only
handle a single version of each package. It is probably not a good idea to index a given package with both
pkg_mkindex andauto_mkindex. If you usepkg_mkindex to index a package, its commands cannot be
invoked until package require has been used to select a version; in contrast, packages indexed with
auto_mkindex can be used immediately since there is no version control.

HOW IT WORKS

Pkg_mkindex depends on thpackage unknowncommand, thepackage ifneededcommand, and the
auto-loader. The first time package require command is invoked, thpackage unknown script is
invoked. This is set by Tcl initialization to a script that evaluates all ofpkggndex.tcl files in the
auto_path. The pkgindex.tcl files containpackage ifneededcommands for each version of each avail-
able package; these commands invpkekage providecommands to announce the availability of the
package, and they setup auto-loader information to load the files of the package. A given file of a given
version of a given package isn't actually loaded until the first time one of its commands is invoked. Thus,
after invokingpackage requireyou won't see the package’s commands in the interpreter, but you will be
able to invoke the commands and they will be auto-loaded.

KEYWORDS

Tcl

auto-load, index, package, version

Last change: 7.6 2

Tcl Built-In Commands proc(n)

NAME

SYNOPSIS

proc — Create a Tcl procedure

proc name args body

DESCRIPTION

The proc command creates a new Tcl procedure namade replacing any existing command or proce-

dure there may have been by that name. Whenever the new command is invoked, the cdradptsilbf

be executed by the Tcl interpreter. Normatigmeis unqualified (does not include the names of any con-
taining namespaces), and the new procedure is created in the current namespageeini€ludes any
namespace qualifiers, the procedure is created in the specified naméspgacpecifies the formal argu-

ments to the procedure. It consists of a list, possibly empty, each of whose elements specifies one argu-
ment. Each argument specifier is also a list with either one or two fields. If there is only a single field in
the specifier then it is the hame of the argument; if there are two fields, then the first is the argument name
and the second is its default value.

Whennameis invoked a local variable will be created for each of the formal arguments to the procedure; its
value will be the value of corresponding argument in the invoking command or the argument’s default
value. Arguments with default values need not be specified in a procedure invocation. However, there must
be enough actual arguments for all the formal arguments that don’t have defaults, and there must not be any
extra actual arguments. There is one special case to permit procedures with variable numbers of arguments.
If the last formal argument has the naargs, then a call to the procedure may contain more actual argu-
ments than the procedure has formals. In this case, all of the actual arguments starting at the one that would
be assigned targs are combined into a list (as if thist command had been used); this combined value is
assigned to the local varialdegs.

Whenbodyis being executed, variable names normally refer to local variables, which are created automati-
cally when referenced and deleted when the procedure returns. One local variable is automatically created
for each of the procedure’s arguments. Global variables can only be accessed by invojioigateom-

mand or theupvar command. Namespace variables can only be accessed by invokivayitdi#e com-

mand or theipvar command.

The proc command returns an empty string. When a procedure is invoked, the procedure’s return value is
the value specified in eeturn command. If the procedure doesn’'t execute an exphtitrn, then its

return value is the value of the last command executed in the procedure’s body. If an error occurs while
executing the procedure body, then the procedure-as-a-whole will return that same error.

KEYWORDS

Tcl

argument, procedure

Last change: 1

Tcl Built-In Commands puts (n)

NAME

SYNOPSIS

puts — Write to a channel

puts ?-nonewline? Thannell® string

DESCRIPTION

Writes the characters given Isjring to the channel given bghannelld Channelldmust be a channel
identifier such as returned from a previous invocatioopa or socket It must have been opened for out-
put. If nochannelldis specified then it defaults stdout. Puts normally outputs a newline character after
string, but this feature may be suppressed by specifyingrlbaewline switch.

Newline characters in the output are translategudg to platform-specific end-of-line sequences accord-

ing to the current value of theranslation option for the channel (for example, on PCs newlines are nor-
mally replaced with carriage-return-linefeed sequences; on Macintoshes newlines are normally replaced
with carriage-returns). See tfenfigure manual entry for a discussion of end-of-line translations.

Tcl buffers output internally, so characters written withs may not appear immediately on the output file
or device; Tcl will normally delay output until the buffer is full or the channel is closed. You can force
output to appear immediately with thesh command.

When the output buffer fills up, thputs command will normally block until all the buffered data has been
accepted for output by the operating systenchéinnelldis in nonblocking mode then thpeits command

will not block even if the operating system cannot accept the data. Instead, Tcl continues to buffer the data
and writes it in the background as fast as the underlying file or device can accept it. The application must
use the Tcl event loop for nonblocking output to work; otherwise Tcl never finds out that the file or device
is ready for more output data. It is possible for an arbitrarily large amount of data to be buffered for a chan-
nel in nonblocking mode, which could consume a large amount of memory. To avoid wasting memory,
nonblocking I/O should normally be used in an event-driven fashion witfiléfe®ent command (don’t

invoke puts unless you have recently been notified via a file event that the channel is ready for more output
data).

SEE ALSO

fileevent(n)

KEYWORDS

Tcl

channel, newline, output, write

Last change: 7.5 1

Tcl Built-In Commands pwd (n)

NAME
pwd — Return the current working directory

SYNOPSIS
pwd

DESCRIPTION
Returns the path name of the current working directory.

KEYWORDS
working directory

Tcl Last change: 1

Tcl Built-In Commands read (n)

NAME
read — Read from a channel

SYNOPSIS
read ?-nonewline? channelld

read channelld numBytes

DESCRIPTION
In the first form, theead command reads all of the data framannelldup to the end of the file. If the
—nonewline switch is specified then the last character of the file is discarded if it is a newline. In the sec-
ond form, the extra argument specifies how many bytes to read. Exactly that many bytes will be read and
returned, unless there are fewer tramBytedeft in the file; in this case all the remaining bytes are
returned.

If channelldis in nonblocking mode, the command may not read as many bytes as requested: once all
available input has been read, the command will return the data that is available rather than blocking for
more input. The-nonewlineswitch is ignored if the command returns before reaching the end of the file.

Read translates end-of-line sequences in the input into newline characters according-tr@arbkktion
option for the channel. See the manual entrydonfigure for details on the-translation option.

SEE ALSO
eof(n), fblocked(n), fconfigure(n)

KEYWORDS
blocking, channel, end of line, end of file, nonblocking, read, translation

Tcl Last change: 7.5 1

Tcl Built-In Commands regexp (n)

NAME

regexp — Match a regular expression against a string
SYNOPSIS

regexp ?switche® exp string?matchVa®? subMatchVar subMatchVar?..
DESCRIPTION

Determines whether the regular expresgmpmatches part or all aftring and returns 1 if it does, O if it
doesn't.

If additional arguments are specified afieing then they are treated as the names of variables in which to
return information about which part(s) stfing matchedexp MatchVarwill be set to the range aitring

that matched all ofxp The firstsubMatchVamwill contain the characters istring that matched the left-
most parenthesized subexpression witekp the nextsubMatchVarwill contain the characters that
matched the next parenthesized subexpression to the righy #nd so on.

If the initial arguments toegexp start with— then they are treated as switches. The following switches are
currently supported:

—-nocase Causes upper-case characterstiigto be treated as lower case during the matching process.

—-indices Changes what is stored in thebMatchVas. Instead of storing the matching characters from
string, each variable will contain a list of two decimal strings giving the indicegriimg of the
first and last characters in the matching range of characters.

-- Marks the end of switches. The argument following this one will be treatedpawven if it
starts with a-.

If there are morsubMatchVas than parenthesized subexpressions wixin or if a particular subexpres-

sion inexpdoesn’t match the string (e.g. because it was in a portion of the expression that wasn’t matched),
then the correspondirgubMatchVamwill be set to -1 -1" if —indiceshas been specified or to an empty
string otherwise.

REGULAR EXPRESSIONS

Tcl

Regular expressions are implemented using Henry Spencer’s package (thanks, Henry!), and much of the
description of regular expressions below is copied verbatim from his manual entry.

A regular expression is zero or mdrenches separated by “|”. It matches anything that matches one of
the branches.

A branch is zero or mongieces concatenated. It matches a match for the first, followed by a match for the
second, etc.

A piece is aratompossibly followed by 7, “+”, or “?”". An atom followed by “ [matches a sequence
of 0 or more matches of the atom. An atom followed by “+” matches a sequence of 1 or more matches of
the atom. An atom followed by “?” matches a match of the atom, or the null string.

An atom is a regular expression in parentheses (matching a match for the regular expressigajsee
below), “.” (matching any single character), “” (matching the null string at the beginning of the input
string), “$” (matching the null string at the end of the input string), a “\" followed by a single character
(matching that character), or a single character with no other significance (matching that character).

A rangeis a sequence of characters enclosed in “[]". It normally matches any single character from the
sequence. If the sequence begins with “”, it matches any single charamtérom the rest of the
sequence. If two characters in the sequence are separated by “-", this is shorthand for the full list of
ASCII characters between them (e.g. “[0-9]” matches any decimal digit). To include a literal “]” in the
sequence, make it the first character (following a possible “*"). To include a literal “~", make it the first or

Last change: 1

Tcl Built-In Commands regexp (n)

last character.

CHOOSING AMONG ALTERNATIVE MATCHES

In general there may be more than one way to match a regular expression to an input string. For example,
consider the command

regexp ()b aabaaabb x y
Considering only the rules given so farandy could end up with the valuesmbb andaa, aaabandaag
ab anda, or any of several other combinations. To resolve this potential ambiggiéxp chooses among
alternatives using the rule “first then longest”. In other words, it considers the possible matches in order
working from left to right across the input string and the pattern, and it attempts to match longer pieces of
the input string before shorter ones. More specifically, the following rules apply in decreasing order of pri-
ority:

[1] If a regular expression could match two different parts of an input string then it will match the one
that begins earliest.

[2] If a regular expression contaipeperators then the leftmost matching sub-expression is chosen.

[3] In 00 +, and? constructs, longer matches are chosen in preference to shorter ones.

[4] In sequences of expression components the components are considered from left to right.

In the example from abov&@)bOmatchesaab: the(al) portion of the pattern is matched first and it con-
sumes the leadinga; then thebportion of the pattern consumes the nextOr, consider the following
example:

regexp (abla)(li)c abc x y z
After this command will be abc, y will be ab, andz will be an empty string. Rule 4 specifies tfalb|a)
gets first shot at the input string and Rule 2 specifies thabtheb-expression is checked before deib-
expression. Thus thk has already been claimed before th&) component is checked arfdd must
match an empty string.

KEYWORDS

Tcl

match, regular expression, string

Last change: 2

Tcl Built-In Commands registry (n)

NAME
registry — Manipulate the Windows registry
SYNOPSIS
package require registry 1.0
registry option keyName@arg arg ..?
DESCRIPTION
The registry package provides a general set of operations for manipulating the Windows registry. The
package implements ttregistry Tcl command. This command is only supported on the Windows plat-
form. Warning: this command should be used with caution as a corrupted registry can leave your system in
an unusable state.
KeyNamas the name of a registry key. Registry keys must be one of the following forms:
\\hostnam&ootnamékeypath
roothamékeypath
rootname
Hostnamespecifies the name of any valid Windows host that exports its registryrodtmamecomponent
must be one of HKEY_LOCAL_MACHINE , HKEY_USERS, HKEY_CLASSES_ROOT,
HKEY_CURRENT_USER, or HKEY_CURRENT_CONFIG . Thekeypathcan be one or more registry
key names separated by backslagbH{aracters.
Optionindicates what to do with the registry key name. Any unique abbreviati@pfmnis acceptable.
The valid options are:
registry deletekeyNameévalueNam@
If the optionalvalueNamergument is present, the specified value ukdgNamewill be deleted
from the registry. If the optionalalueNames omitted, the specified key and any subkeys or val-
ues beneath it in the registry heirarchy will be deleted. If the key could not be deleted then an
error is generated. If the key did not exist, the command has no effect.
registry get keyName valueName
Returns the data associated with the valleeNameainder the kekeyName If either the key or
the value does not exist, then an error is generated. For more details on the format of the returned
data, see SUPPORTED TYPES, below.
registry keys keyNamépatterr?
If patternisn’t specified, returns a list of names of all the subkeyewpiName If patternis speci-
fied, only those names matchipgttern are returned. Matching is determined using the same
rules as fostring match. If the specifieckeyNamealoes not exist, then an error is generated.
registry setkeyNameévalueName dat&type??
If valueNamasn't specified, creates the kkgyNaméf it doesn't already exist. IfalueNamas
specified, creates the kkgyNamend valuevalueNamef necessary. The contentswdlueName
are set talatawith the type indicated biype If typeisn’t specified, the typszis assumed. For
more details on the data and type arguments, see SUPPORTED TYPES below.
registry type keyName valueName
Returns the type of the valwalueNaman the keykeyName For more information on the possi-
ble types, see SUPPORTED TYPES, below.
registry valueskeyNamepatterrf?
If patternisn’t specified, returns a list of names of all the valuekeyfName If patternis
Tcl Last change: 8.0 1

Tcl Built-In Commands registry (n)

specified, only those names matchipattern are returned. Matching is determined using the
same rules as fatring match.

SUPPORTED TYPES

Each value under a key in the registry contains some data of a particular type in a type-specific representa-
tion. Theregistry command converts between this internal representation and one that can be manipulated
by Tcl scripts. In most cases, the data is simply returned as a Tcl string. The type indicates the intended
use for the data, but does not actually change the representation. For some tyessttiecommand

returns the data in a different form to make it easier to manipulate. The following types are recognized by
the registry command:

binary The registry value contains arbitrary binary data. The data is represented exactly in
Tcl, including any embedded nulls. Tcl

none The registry value contains arbitrary binary data with no defined type. The data is rep-
resented exactly in Tcl, including any embedded nulls.

sz The registry value contains a null-terminated string. The data is represented in Tcl as
a string.

expand_sz The registry value contains a null-terminated string that contains unexpanded refer-

ences to environment variables in the normal Windows style (for example,
"%PATH%"). The data is represented in Tcl as a string.

dword The registry value contains a little-endian 32-bit number. The data is represented in
Tcl as a decimal string.

dword_big_endian The registry value contains a big-endian 32-bit number. The data is represented in Tcl
as a decimal string.

link The registry value contains a symbolic link. The data is represented exactly in Tcl,
including any embedded nulls.

multi_sz The registry value contains an array of null-terminated strings. The data is repre-
sented in Tcl as a list of strings.

resource_list The registry value contains a device-driver resource list. The data is represented
exactly in Tcl, including any embedded nulls.

In addition to the symbolically named types listed above, unknown types are identified using a 32-bit inte-
ger that corresponds to the type code returned by the system interfaces. In this case, the data is represented
exactly in Tcl, including any embedded nulls.

PORTABILITY ISSUES

The registry command is only available on Windows.

KEYWORDS

Tcl

registry

Last change: 8.0 2

Tcl Built-In Commands regsub (n)

NAME
regsub — Perform substitutions based on regular expression pattern matching

SYNOPSIS
regsub ?switche® exp string subSpec varName

DESCRIPTION

This command matches the regular expressiqragainststring, and it copiestring to the variable whose
name is given byarName If there is a match, then while copyistying to varNamethe portion ofstring
that matcheaxpis replaced wittsubSpec If subSpecontains a “&” or “\0”, then it is replaced in the
substitution with the portion ddtring that matchedexp If subSpeaontains a “h”, where n is a digit
between 1 and 9, then it is replaced in the substitution with the portistmireg that matched the-th
parenthesized subexpressionesfa Additional backslashes may be usedsubSpedo prevent special
interpretation of “&” or “\0” or “\ n” or backslash. The use of backslashesithSpedends to interact
badly with the Tcl parser’s use of backslashes, so it's generally safest to endd@edn braces if it
includes backslashes.

If the initial arguments toegexp start with— then they are treated as switches. The following switches are
currently supported:

—all All ranges instring that matchexp are found and substitution is performed for each of these
ranges. Without this switch only the first matching range is found and substituteall i§
specified, then “&” and “n” sequences are handled for each substitution using the informa-
tion from the corresponding match.

—-nocase Upper-case characters string will be converted to lower-case before matching agargt
however, substitutions specified fiypSpecise the original unconverted formsifing.

-- Marks the end of switches. The argument following this one will be treatedpaven if it
starts with a-.

The command returns a count of the number of matching ranges that were found and replaced. See the
manual entry foregexpfor details on the interpretation of regular expressions.

KEYWORDS
match, pattern, regular expression, substitute

Tcl Last change: 7.4 1

Tcl Built-In Commands rename (n)

NAME
rename — Rename or delete a command

SYNOPSIS
renameoldName newName

DESCRIPTION
Rename the command that used to be calleNameso that it is now calledewName If newNamas an
empty string themldNameis deleted.oldNameandnewNamenay include namespace qualifiers (names of
containing namespaces). If a command is renamed into a different namespace, future invocations of it will
execute in the new namespace. Térsamecommand returns an empty string as result.

KEYWORDS
command, delete, namespace, rename

Tcl Last change: 1

Tcl Built-In Commands resource (n)

NAME

resource — Manipulate Macintosh resources

SYNOPSIS

resourceoption?arg arg ..?

DESCRIPTION

The resource command provides some generic operations for dealing with Macintosh resources. This
command is only supported on the Macintosh platform. Each Macintosh file consistsfofksva data

fork and aresourcefork. You use the normal open, puts, close, etc. commands to manipulate the data fork.
You must use this command, however, to interact with the resource @p#on indicates what resource
command to perform. Any unique abbreviationdptionis acceptable. The valid options are:

resource closasrcRef

Closes the given resource reference (obtained femmurce opef). Resources from that resource
file will no longer be available.

resource delete?option® resourceType

This command will delete the resource specified dptions and type resourceType(see
RESOURCE TYPES below). The options give you several ways to specify the resource to be
deleted.

—id resourceld
If the -id option is given the idesourceld(see RESOURCE IDS below) is used to spec-
ify the resource to be deleted. The id must be a number - to specify a nhame use the
—nameoption.

—-nameresourceName
If -nameis specified, the resource namredourceNamevill be deleted. If theid is also
provided, then there must be a resource with BOTH this nhame and this id. If no name is
provided, then the id will be used regardless of the name of the actual resource.

—file resourceRef
If the -file option is specified then the resource will be deleted from the file pointed to by
resourceRef Otherwise the first resource with the givesourceNameand orresourceld
which is found on the resource file path will be deleted. To inspect the file path, use the
resource filecommand.

resource files PesourceR&f

If resourceRea$ not provided, this command returns a Tcl list of the resource references for all the
currently open resource files. The list is in the normal Macintosh search order for resources. If
resourceReis specified, the command will return the path to the file whose resource fork is repre-
sented by that token.

resource listresourceTypé&resourceRé&f

List all of the resources ids of typesourceTypg¢see RESOURCE TYPES below). réfsourceRef

is specified then the command will limit the search to that particular resource file. Otherwise, all
resource files currently opened by the application will be searched. A Tcl list of either the
resource name’s or resource id’s of the found resources will be returned. See the RESOURCE
IDS section below for more details about what a resource id is.

resource operfileName?permission?

Tcl

Open the resource for the filkeName Standard file permissions may also be specified (see the
manual entry foopenfor details). A resource referenaegourceRéfis returned that can be used

by the other resource commands. An error can occur if the file doesn’t exist or the file does not
have a resource fork. However, if you open the file with write permissions the file and/or resource

Last change: 8.0 1

Tcl Built-In Commands resource (n)

fork will be created instead of generating an error.

resource readresourceType resourcefilesourceRé&f
Read the entire resource of tysourceTypgsee RESOURCE TYPES below) and the name or
id of resourceld(see RESOURCE IDS below) into memory and return the resutsdiirceReis
specified we limit our search to that resource file, otherwise we search all open resource forks in
the application. It is important to note that most Macintosh resource use a binary format and the
data returned from this command may have embedded NULLs or other non-ASCII data.

resource types fesourceRéf
This command returns a Tcl list of all resource types (see RESOURCE TYPES below) found in
the resource file pointed to gsourceRef If resourceRefs not specified it will return all the
resource types found in every resource file currently opened by the application.

resource write Poption® resourceType data
This command will write the passed tata as a new resource of typesourceType(see
RESOURCE TYPES below). Several options are available that describe where and how the
resource is stored.

—id resourceld
If the -id option is given the idesourceld(see RESOURCE IDS below) is used for the
new resource, otherwise a unique id will be generated that will not conflict with any exist-
ing resource. However, the id must be a number - to specify a name useathe
option.

—nameresourceName
If -nameis specified the resource will be nantedourceNameotherwise it will have the
empty string as the name.

—file resourceRef
If the -file option is specified then the resource will be written in the file pointed to by
resourceRefotherwise the most resently open resource will be used.

—force |If the target resource already exists, then by default Tcl will not overwrite it, but raise an
error instead. Use the -force flag to force overwriting the extant resource.

RESOURCE TYPES
Resource types are defined as a four character string that is then mapped to an underlying id. For example,
TEXT refers to the Macintosh resource type for text. The §pR#is a list of counted strings. All Mac-
intosh resources must be of some type. See Macintosh documentation for a more complete list of resource
types that are commonly used.

RESOURCE IDS
For this command the notion of a resource id actually refers to two ideas in Macintosh resources. Every
place you can use a resource Id you can use either the resource name or a resource number. Names are
always searched or returned in preference to numbers. For exampbsdheee listcommand will return
names if they exist or numbers if the name is NULL.

SEE ALSO
open

PORTABILITY ISSUES
The resource command is only available on Macintosh.

Tcl Last change: 8.0 2

Tcl Built-In Commands resource (n)

KEYWORDS
open, resource

Tcl Last change: 8.0 3

Tcl Built-In Commands return(n)

NAME

return — Return from a procedure
SYNOPSIS

return ?—codecode? ?-errorinfo info? ?-errorcode code? string?
DESCRIPTION

Return immediately from the current procedure (or top-level commasouoce command), withstring as
the return value. Itringis not specified then an empty string will be returned as result.

EXCEPTIONAL RETURNS

In the usual case where theodeoption isn't specified the procedure will return normally (its completion
code will be TCL_OK). However, thecodeoption may be used to generate an exceptional return from the
procedure.Codemay have any of the following values:

ok Normal return: same as if the option is omitted.

error Error return: same as if thexror command were used to terminate the procedure, except for
handling oferrorinfo anderrorCode variables (see below).

return The current procedure will return with a completion code of TCL_RETURN, so that the proce-
dure that invoked it will return also.

break The current procedure will return with a completion code of TCL_BREAK, which will termi-
nate the innermost nested loop in the code that invoked the current procedure.

continue The current procedure will return with a completion code of TCL_CONTINUE, which will ter-
minate the current iteration of the innermost nested loop in the code that invoked the current
procedure.

value Valuanust be an integer; it will be returned as the completion code for the current procedure.

The —codeoption is rarely used. It is provided so that procedures that implement new control structures
can reflect exceptional conditions back to their callers.

Two additional options;errorinfo and—errorcode, may be used to provide additional information during
error returns. These options are ignored urdestis error .

The —errorinfo option specifies an initial stack trace for #reorinfo variable; if it is not specified then
the stack trace left ierrorinfo will include the call to the procedure and higher levels on the stack but it
will not include any information about the context of the error within the procedure. Typicallgfthe
value is supplied from the value leftémrorinfo after acatch command trapped an error within the proce-
dure.

If the —errorcode option is specified theocodeprovides a value for therrorCode variable. If the option
is not specified thearrorCode will default toNONE.

KEYWORDS

Tcl

break, continue, error, procedure, return

Last change: 7.0 1

Tcl Built-In Commands Safe T¢(n)

NAME

SYNOPSIS

OPTIONS

Safe Base — A mechanism for creating and manipulating safe interpreters.

::safe::interpCreate ?slave? “options..?
::safe:interplnit slave?options..?
::safe::interpConfigure slave?options..?
::safe::interpDelete slave
::safe::interpAddToAccessPathslave directory
::safe::interpFindinAccessPathslave directory

::safe::setLogCmd?cmd arg..?

?-accessPath pathLis? 2-statics boolear? ?-noStatics? ?-nested boolear? ?-nestedLoadOK?
?-deleteHookscript?

DESCRIPTION

Safe Tcl is a mechanism for executing untrusted Tcl scripts safely and for providing mediated access by
such scripts to potentially dangerous functionality.

The Safe Base ensures that untrusted Tcl scripts cannot harm the hosting application. The Safe Base pre-
vents integrity and privacy attacks. Untrusted Tcl scripts are prevented from corrupting the state of the host-
ing application or computer. Untrusted scripts are also prevented from disclosing information stored on the
hosting computer or in the hosting application to any party.

The Safe Base allows a master interpreter to create safe, restricted interpreters that contain a set of prede-
fined aliases for theource load, file andexit commands and are able to use the auto-loading and package
mechanisms.

No knowledge of the file system structure is leaked to the safe interpreter, because it has access only to a
virtualized path containing tokens. When the safe interpreter requests to source a file, it uses the token in
the virtual path as part of the file name to source; the master interpreter transparently translates the token
into a real directory name and executes the requested operation (see theSECtHRITY below for

details). Different levels of security can be selected by using the optional flags of the commands described

below.

All commands provided in the master interpreter by the Safe Base residesafiehamespace:

COMMANDS

Tcl

The following commands are provided in the master interpreter:

::safe::interpCreate ?slave? “options..?
Creates a safe interpreter, installs the aliases described in the $edASES and initializes the
auto-loading and package mechanism as specified by the supplieds. See theOPTIONS
section below for a description of the optional arguments. I§ldneargument is omitted, a name
will be generated::safe::interpCreate always returns the interpreter name.

::safe:interplnit slave?options..?
This command is similar tmterpCreate except it that does not create the safe interpreleare

Last change: 8.0 1

Tcl Built-In Commands Safe T¢(n)

must have been created by some other meansnidep create —safe

::safe::interpConfigure slave?options..?

If no optionsare given, returns the settings for all options for the named safe interpreter as a list of
options and their current values for tiséve If a single additional argument is provided, it will
return a list of 2 elementsameandvaluewherenameis the full name of that option andluethe
current value for that option and thkave If more than two additional arguments are provided, it
will reconfigure the safe interpreter and change each and only the provided options. See the sec-
tion onOPTIONS below for options description. Example of use:

Create a new interp with the same configuration as "$i0" :

set il [eval safe::interpCreate [safe::interpConfigure $i0]]

Get the current deleteHook

set dh [safe::interpConfigure $i0 —del]

Change (only) the statics loading ok attribute of an interp

and its deleteHook (leaving the rest unchanged) :

safe::interpConfigure $i0 —delete {foo bar} —statics O ;

::safe::interpDelete slave
Deletes the safe interpreter and cleans up the corresponding master interpreter data structures. If a
deleteHookscript was specified for this interpreter it is evaluated before the interpreter is deleted,
with the name of the interpreter as an additional argument.

::safe::interpFindinAccessPathslave directory
This command finds and returns the token for the real diredimggtory in the safe interpreter’s
current virtual access path. It generates an error if the directory is not found. Example of use:
$slave eval [list set tk_library [::safe::interpFindInAccessPath $name $tk_library]]

::safe::interpAddToAccessPathslave directory
This command adddirectoryto the virtual path maintained for the safe interpreter in the master,
and returns the token that can be used in the safe interpreter to obtain access to files in that direc-
tory. If the directory is already in the virtual path, it only returns the token without adding the
directory to the virtual path again. Example of use:
$slave eval [list set tk_library [::safe::interpAddToAccessPath $name $tk_library]]

::safe::setLogCmd?cmd arg..?

This command installs a script that will be called when interesting life cycle events occur for a
safe interpreter. When called with no arguments, it returns the currently installed script. When
called with one argument, an empty string, the currently installed script is removed and logging is
turned off. The script will be invoked with one additional argument, a string describing the event
of interest. The main purpose is to help in debugging safe interpreters. Using this facility you can
get complete error messages while the safe interpreter gets only generic error messages. This pre-
vents a safe interpreter from seeing messages about failures and other events that might contain
sensitive information such as real directory names.
Example of use:

::safe::setLogCmd puts stderr
Below is the output of a sample session in which a safe interpreter attempted to source a file not
found in its virtual access path. Note that the safe interpreter only received an error message say-
ing that the file was not found:

NOTICE for slave interp10 : Created

NOTICE for slave interp10 : Setting accessPath=(/foo/bar) staticsok=1 nestedok=0 deletehook=()

NOTICE for slave interp10 : auto_path in interp10 has been set to {$p(:0:)}

ERROR for slave interp10 : /foo/bar/init.tcl: no such file or directory

Tcl Last change: 8.0 2

Tcl Built-In Commands Safe T¢(n)

OPTIONS
The following options are common tsafe::interpCreate, ::safe::interplnit , and::safe::interpConfig-
ure. Any option name can be abbreviated to its minimal non-ambiguous name. Option hames are not case
sensitive.

—accessPatldirectoryList
This option sets the list of directories from which the safe interpretesazaneandload files. If
this option is not specified, or if it is given as the empty list, the safe interpreter will use the same
directories as its master for auto-loading. See the se8E@QURITY below for more detall
about virtual paths, tokens and access control.

—staticsboolean
This option specifies if the safe interpreter will be allowed to load statically linked packages (like
load {} Tk). The default value isue : safe interpreters are allowed to load statically linked pack-
ages.

—noStatics
This option is a convenience shortcut fstatics falseand thus specifies that the safe interpreter
will not be allowed to load statically linked packages.

—-nestedboolean
This option specifies if the safe interpreter will be allowed to load packages into its own sub-inter-
preters. The default value ialse : safe interpreters are not allowed to load packages into their
own sub-interpreters.

—-nestedLoadOk
This option is a convenience shortcut foested trueand thus specifies the safe interpreter will
be allowed to load packages into its own sub-interpreters.

—deleteHookscript
When this option is given an hon emstyript, it will be evaluated in the master with the name of
the safe interpreter as an additional argument just before actually deleting the safe interpreter.
Giving an empty value removes any currently installed deletion hook script for that safe inter-
preter. The default valug}{ is not to have any deletion call back.

ALIASES
The following aliases are provided in a safe interpreter:

sourcefileName
The requested file, a Tcl source file, is sourced into the safe interpreter if it is founsoufte
alias can only source files from directories in the virtual path for the safe interpretsourbe
alias requires the safe interpreter to use one of the token names in its virtual path to denote the
directory in which the file to be sourced can be found. See the sect®B@URITY for more
discussion of restrictions on valid filenames.

load fileName
The requested file, a shared object file, is dynamically loaded into the safe interpreter if it is found.
The filename must contain a token name mentioned in the virtual path for the safe interpreter for it
to be found successfully. Additionally, the shared object file must contain a safe entry point; see
the manual page for thead command for more details.

file 2subCmd args.?.
Thefile alias provides access to a safe subset of the subcommanddilef ¢tbenmand; it allows
only dirname, join, extension root, tail, pathname andsplit subcommands. For more details on
what these subcommands do see the manual page fie t@mmand.

exit The calling interpreter is deleted and its computation is stopped, but the Tcl process in which this
interpreter exists is not terminated.

Tcl Last change: 8.0 3

Tcl Built-In Commands Safe T¢(n)

SECURITY

The Safe Base does not attempt to completely prevent annoyance and denial of service attacks. These forms
of attack prevent the application or user from temporarily using the computer to perform useful work, for
example by consuming all available CPU time or all available screen real estate. These attacks, while
aggravating, are deemed to be of lesser importance in general than integrity and privacy attacks that the
Safe Base is to prevent.

The commands available in a safe interpreter, in addition to the safe set as defitexgh imanual page,
are mediated aliases feource load, exit, and a safe subset file. The safe interpreter can also auto-load
code and it can request that packages be loaded.

Because some of these commands access the local file system, there is a potential for information leakage
about its directory structure. To prevent this, commands that take file names as arguments in a safe inter-
preter use tokens instead of the real directory names. These tokens are translated to the real directory name
while a request to, e.g., source a file is mediated by the master interpreter. This virtual path system is main-
tained in the master interpreter for each safe interpreter createsaf:interpCreate or initialized by
::safe:interplnit and the path maps tokens accessible in the safe interpreter into real path names on the
local file system thus preventing safe interpreters from gaining knowledge about the structure of the file
system of the host on which the interpreter is executing. The only valid file names arguments for the
sourceandload aliases provided to the slave are path in the foriiilefjoin token filenamle(ie, when

using the native file path formatekerfilenameon Unix, tokenfilenameon Windows, andokenfilename

on the Mac), whertokenis representing one of the directories of dlceessPatlist andfilenameis one file

in that directory (no sub directories access are allowed).

When a token is used in a safe interpreter in a request to source or load a file, the token is checked and
translated to a real path name and the file to be sourced or loaded is located on the file system. The safe
interpreter never gains knowledge of the actual path name under which the file is stored on the file system.

To further prevent potential information leakage from sensitive files that are accidentally included in the set
of files that can be sourced by a safe interpretesdhecealias restricts access to files meeting the follow-

ing constraints: the file name must fourteen characters or shorter, must not contain more than gye dot ("
must end up with the extensidnl or be calledclindex.

Each element of the initial access path list will be assigned a token that will be set in tlaitslapath
and the first element of that list will be set asttelibrary for that slave.

If the access path argument is not given or is the empty list, the default behavior is to let the slave access the
same packages as the master has access to (Or to be more precise: only packages written in Tcl (which by
definition can’t be dangerous as they run in the slave interpreter) and C extensions that provides a Safe_Init
entry point). For that purpose, the mastewso_path will be used to construct the slave access path. In
order that the slave successfully loads the Tcl library files (which includes the auto-loading mechanism
itself) thetcl_library will be added or moved to the first position if necessary, in the slave access path, so
the slavetcl_library will be the same as the master’s (its real path will still be invisible to the slave
though). In order that auto-loading works the same for the slave and the master in this by default case, the
first-level sub directories of each directory in the maatgo_path will also be added (if not already
included) to the slave access path. You can always specify a more restrictive path for which sub directories
will never be searched by explicitly specifying your directory list with-thecessPattilag instead of rely-

ing on this default mechanism.

When theaccessPaths changed after the first creation or initialization (ie througkrpConfigure
-accessPathlist), an auto_resetis automatically evaluated in the safe interpreter to synchronize its
auto_indexwith the new token list.

SEE ALSO

Tcl

interp(n), library(n), load(n), package(n), source(n), unknown(n)

Last change: 8.0 4

Tcl Built-In Commands Safe Té¢(n)

KEYWORDS
alias, auto—loading, auto_mkindex, load, master interpreter, safe interpreter, slave interpreter, source

Tcl Last change: 8.0 5

Tcl Built-In Commands scan(n)

NAME

SYNOPSIS

scan — Parse string using conversion specifiers in the style of sscanf

scanstring format varNamé&varName .2

INTRODUCTION

This command parses fields from an input string in the same fashion as the AN&infprocedure and

returns a count of the number of conversions performed, or -1 if the end of the input string is reached before
any conversions have been performé&tringgives the input to be parsed aiodmatindicates how to parse

it, using% conversion specifiers as g#scanf EachvarNamegives the name of a variable; when a field is
scanned fronstring the result is converted back into a string and assigned to the corresponding variable.

DETAILS ON SCANNING

Tcl

Scanoperates by scannirgjring andformatStringtogether. If the next characterfiormatStringis a blank

or tab then it matches any number of white space charactrinmg(including zero). Otherwise, if it isn’t

a% character then it must match the next charactstrisfy. When a% is encountered iformatString it

indicates the start of a conversion specifier. A conversion specifier contains three fields &teathe

which indicates that the converted value is to be discarded instead of assigned to a variable; a number indi-
cating a maximum field width; and a conversion character. All of these fields are optional except for the
conversion character.

Whenscanfinds a conversion specifier farmatString it first skips any white-space characterssiring.
Then it converts the next input characters according to the conversion specifier and stores the result in the
variable given by the next argumentsitan The following conversion characters are supported:

d The input field must be a decimal integer. It is read in and the value is stored in the variable as
a decimal string.

o] The input field must be an octal integer. It is read in and the value is stored in the variable as a
decimal string.

X The input field must be a hexadecimal integer. It is read in and the value is stored in the vari-
able as a decimal string.

c A single character is read in and its binary value is stored in the variable as a decimal string.
Initial white space is not skipped in this case, so the input field may be a white-space character.
This conversion is different from the ANSI standard in that the input field always consists of a
single character and no field width may be specified.

S The input field consists of all the characters up to the next white-space character; the characters
are copied to the variable.

eorforg The input field must be a floating-point number consisting of an optional sign, a string of deci-
mal digits possibly containing a decimal point, and an optional exponent consisting of an
E followed by an optional sign and a string of decimal digits. It is read in and stored in the
variable as a floating-point string.

[charg The input field consists of any number of charactehars The matching string is stored in
the variable. If the first character between the bracket$ then it is treated as part ofiars
rather than the closing bracket for the set.

[‘charg The input field consists of any number of characters nchéns The matching string is stored
in the variable. If the character immediately following the a] then it is treated as part of
the set rather than the closing bracket for the set.

Last change: 1

Tcl Built-In Commands scan(n)

The number of characters read from the input for a conversion is the largest number that makes sense for
that particular conversion (e.g. as many decimal digits as possit¥edfpas many octal digits as possible

for %0, and so on). The input field for a given conversion terminates either when a white-space character
is encountered or when the maximum field width has been reached, whichever comes finss. pifesent

in the conversion specifier then no variable is assigned and the next scan argument is not consumed.

DIFFERENCES FROM ANSI SSCANF

The behavior of thecancommand is the same as the behavior of the ANSSdanfprocedure except for
the following differences:

[1] %p and%n conversion specifiers are not currently supported.

[2] For %c conversions a single character value is converted to a decimal string, which is then
assigned to the correspondiveyName no field width may be specified for this conversion.

[3] The |, h, andL modifiers are ignored; integer values are always converted as if there were no
modifier present and real values are always converted aslifnbdifier were present (i.e. type
doubleis used for the internal representation).

KEYWORDS
conversion specifier, parse, scan

Tcl Last change: 2

Tcl Built-In Commands seek(n)

NAME

SYNOPSIS

seek — Change the access position for an open channel

seekchannelld offse®origin?

DESCRIPTION

Changes the current access positiorcf@annelld Channelldmust be a channel identifier such as returned
from a previous invocation afpen or socket The offsetand origin arguments specify the position at
which the next read or write will occur fehannelld Offsetmust be an integer (which may be negative)
andorigin must be one of the following:

start The new access position will lnéfsetbytes from the start of the underlying file or device.

current The new access position will ldfsetbytes from the current access position; a negafiget
moves the access position backwards in the underlying file or device.

end The new access position will lndfsetbytes from the end of the file or device. A negatffe
setplaces the access position before the end of file, and a pasiteglaces the access posi-
tion after the end of file.

Theorigin argument defaults tstart.

The command flushes all buffered output for the channel before the command returns, even if the channel is
in nonblocking mode. It also discards any buffered and unread input. This command returns an empty

string. An error occurs if this command is applied to channels whose underlying file or device does not

support seeking.

KEYWORDS

Tcl

access position, file, seek

Last change: 7.5 1

Tcl Built-In Commands set(n)

NAME

SYNOPSIS

set — Read and write variables

setvarNamevalue?

DESCRIPTION

Returns the value of variabl@arName If valueis specified, then set the valuevairNameto valug creat-

ing a new variable if one doesn’t already exist, and return its valuarNfamecontains an open parenthe-

sis and ends with a close parenthesis, then it refers to an array element: the characters before the first open
parenthesis are the name of the array, and the characters between the parentheses are the index within the
array. OtherwiseyarNamerefers to a scalar variable. NormaMarNameis unqualified (does not include

the names of any containing namespaces), and the variable of that name in the current namespace is read or
written. If varNameincludes namespace qualifiers (in the array name if it refers to an array element), the
variable in the specified namespace is read or written.

If no procedure is active, thewarNamerefers to a namespace variable (global variable if the current
namespace is the global namespace). If a procedure is activeatiNamerefers to a parameter or local
variable of the procedure unless tilebal command was invoked to declavarNameto be global, or
unless avariable command was invoked to declararNameto be a namespace variable.

KEYWORDS

Tcl

read, write, variable

Last change: 1

Tcl Built-In Commands socket (n)

NAME

SYNOPSIS

socket — Open a TCP network connection

socket?option¥ host port

socket —servercommand?option port

DESCRIPTION

This command opens a network socket and returns a channel identifier that may be used in future invoca-
tions of commands likeead, puts and flush. At present only the TCP network protocol is supported;
future releases may include support for additional protocols. sbhketcommand may be used to open

either the client or server side of a connection, depending on whethesettver switch is specified.

CLIENT SOCKETS

If the —server option is not specified, then the client side of a connection is opened and the command
returns a channel identifier that can be used for both reading and witinigand hostspecify a port to
connect to; there must be a server accepting connections on thifpdris an integer port number and
hostis either a domain-style name suchnagw.sunlabs.comor a numerical IP address suchl25.0.0.1
Uselocalhostto refer to the host on which the command is invoked.

The following options may also be present betosstto specify additional information about the connec-
tion:

—myaddr addr
Addr gives the domain-style name or numerical IP address of the client-side network interface to
use for the connection. This option may be useful if the client machine has multiple network inter-
faces. If the option is omitted then the client-side interface will be chosen by the system software.

—myport port
Port specifies an integer port number to use for the client’s side of the connection. If this option is
omitted, the client’s port number will be chosen at random by the system software.

—async The —asyncoption will cause the client socket to be connected asynchronously. This means that
the socket will be created immediately but may not yet be connected to the server, when the call to
socketreturns. When getsor flush is done on the socket before the connection attempt succeeds
or fails, if the socket is in blocking mode, the operation will wait until the connection is completed
or fails. If the socket is in nonblocking mode andegsor flush is done on the socket before the
connection attempt succeeds or fails, the operation returns immediatelfplacked on the
socket returns 1.

SERVER SOCKETS

Tcl

If the —server option is specified then the new socket will be a server for the port givparbyTcl will
automatically accept connections to the given port. For each connection Tcl will create a new channel that
may be used to communicate with the client. Tcl then invokesmandvith three additional arguments:

the name of the new channel, the address, in network address notation, of the client’s host, and the client’s
port number.

The following additional option may also be specified befmrst

—myaddr addr
Addr gives the domain-style name or numerical IP address of the server-side network interface to
use for the connection. This option may be useful if the server machine has multiple network
interfaces. If the option is omitted then the server socket is bound to the special address

Last change: 7.5 1

Tcl Built-In Commands socket (n)

INADDR_ANY so that it can accept connections from any interface.

Server channels cannot be used for input or output; their sole use is to accept new client connections. The
channels created for each incoming client connection are opened for input and output. Closing the server
channel shuts down the server so that no new connections will be accepted; however, existing connections
will be unaffected.

Server sockets depend on the Tcl event mechanism to find out when new connections are opened. If the
application doesn’t enter the event loop, for example by invokingwlaé command or calling the C pro-
cedureTcl_DoOneEvent then no connections will be accepted.

CONFIGURATION OPTIONS
Thefconfigure command can be used to query several readonly configuration options for socket channels:

—sockname
This option returns a list of three elements, the address, the host name and the port number for the
socket. If the host hame cannot be computed, the second element is identical to the address, the
first element of the list.

—-peername
This option is not supported by server sockets. For client and accepted sockets, this option returns
a list of three elements; these are the address, the host name and the port to which the peer socket
is connected or bound. If the host name cannot be computed, the second element of the list is iden-
tical to the address, its first element.

SEE ALSO
flush(n), open(n), read(n)

KEYWORDS
bind, channel, connection, domain name, host, network address, socket, tcp

Tcl Last change: 7.5 2

Tcl Built-In Commands source (n)

NAME
source — Evaluate a file or resource as a Tcl script

SYNOPSIS
sourcefileName

source —rsrcresourceNameéfileNamé&

source —rsrcidresourceld?ileNamée

DESCRIPTION
This command takes the contents of the specified file or resource and passes it to the Tcl interpreter as a
text script. The return value frosourceis the return value of the last command executed in the script. If
an error occurs in evaluating the contents of the script thesotireecommand will return that error. If a
return command is invoked from within the script then the remainder of the file will be skipped and the
sourcecommand will return normally with the result from tle¢urn command.

The -rsrc and-rsrcid forms of this command are only available on Macintosh computers. These versions
of the command allow you to source a script fromEBXT resource. You may specify wh@EXT

resource to source by either name or id. By default Tcl searches all open resource files, which include the
current application and any loaded C extensions. Alternatively, you may speciileM@mewhere the

TEXT resource can be found.

KEYWORDS
file, script

Tcl Last change: 1

Tcl Built-In Commands split(n)

NAME
split — Split a string into a proper Tcl list

SYNOPSIS
split string ?splitChars?

DESCRIPTION

Returns a list created by splittistying at each character that is in thgditCharsargument. Each element
of the result list will consist of the characters fratnng that lie between instances of the characters in
splitChars Empty list elements will be generatedsifing contains adjacent characterssplitChars or if
the first or last character efring is in splitChars If splitCharsis an empty string then each character of
string becomes a separate element of the result$iptitCharsdefaults to the standard white-space charac-
ters. For example,

split "comp.unix.misc” .
returns'‘comp unix misc" and

split "Hello world" {}
returnssHello{}world".

KEYWORDS
list, split, string

Tcl Last change: 1

Tcl Built-In Commands string (n)

NAME
string — Manipulate strings
SYNOPSIS
string option arg?arg ...?
DESCRIPTION
Performs one of several string operations, dependiraptton The legaloptions (which may be abbrevi-
ated) are:
string compare stringl string2
Perform a character-by-character comparison of statrgggl andstring2in the same way as the
C strcmp procedure. Return -1, 0, or 1, depending on whettrergl is lexicographically less
than, equal to, or greater thsiming2
string first stringl string2
Searchstring2for a sequence of characters that exactly match the characstrisigd If found,
return the index of the first character in the first such match wsthimg2 If not found, return —1.
string index string charlndex
Returns thecharindexh character of thestring argument. Acharlndexof O corresponds to the
first character of the string. tharindexis less than 0 or greater than or equal to the length of the
string then an empty string is returned.
string last stringl string2
Searchstring2for a sequence of characters that exactly match the characstrisigd If found,
return the index of the first character in the last such match vattimg2 If there is no maitch,
then return —1.
string length string
Returns a decimal string giving the number of charactessing.
string match pattern string
See ifpatternmatchesstring; return 1 if it does, 0O if it doesn’t. Matching is done in a fashion sim-
ilar to that used by the C-shell. For the two strings to match, their contents must be identical
except that the following special sequences may app@aittiern
O Matches any sequence of characterstiimg, including a null string.
? Matches any single characterstring.
[charg Matches any character in the set givendhars If a sequence of the form-y
appears irthars then any character betwerandy, inclusive, will match.
\x Matches the single character This provides a way of avoiding the special interpre-
tation of the charactef®[]\ in pattern
string range string first last
Returns a range of consecutive characters Bting, starting with the character whose index is
firstand ending with the character whose indeast An index of O refers to the first character of
the string. An index oénd (or any abbreviation of it) refers to the last character of the string. If
firstis less than zero then it is treated as if it were zero, dadtifs greater than or equal to the
length of the string then it is treated as if it weral. If firstis greater thamast then an empty
string is returned.
string tolower string
Returns a value equal $tring except that all upper case letters have been converted to lower case.
string toupper string
Tcl Last change: 7.6 1

Tcl Built-In Commands string (n)

Returns a value equal string except that all lower case letters have been converted to upper case.

string trim string ?chars?
Returns a value equal string except that any leading or trailing characters from the set given by
charsare removed. Itharsis not specified then white space is removed (spaces, tabs, newlines,
and carriage returns).

string trimleft string 7chars?
Returns a value equal string except that any leading characters from the set giveshhgsare
removed. Ifcharsis not specified then white space is removed (spaces, tabs, newlines, and car-
riage returns).

string trimright string ?chars?
Returns a value equal string except that any trailing characters from the set giveohaysare
removed. Ifcharsis not specified then white space is removed (spaces, tabs, newlines, and car-
riage returns).

string wordend string index
Returns the index of the character just after the last one in the word containing chiadastef
string. A word is considered to be any contiguous range of alphanumeric or underscore charac-
ters, or any single character other than these.

string wordstart string index
Returns the index of the first character in the word containing chanadéof string. A word is
considered to be any contiguous range of alphanumeric or underscore characters, or any single
character other than these.

KEYWORDS
case conversion, compare, index, match, pattern, string, word

Tcl Last change: 7.6 2

Tcl Built-In Commands subst(n)

NAME

SYNOPSIS

subst — Perform backslash, command, and variable substitutions

subst?-nobackslashe® 2-nocommand® ?>-novariables? string

DESCRIPTION

This command performs variable substitutions, command substitutions, and backslash substitutions on its
string argument and returns the fully-substituted result. The substitutions are performed in exactly the
same way as for Tcl commands. As a resultstiiag argument is actually substituted twice, once by the

Tcl parser in the usual fashion for Tcl commands, and again Isylisfcommand.

If any of the—nobackslashes—nocommands or —novariablesare specified, then the corresponding sub-
stitutions are not performed. For examplerfiocommandsis specified, no command substitution is per-
formed: open and close brackets are treated as ordinary characters with no special interpretation.

Note: when it performs its substitutiorssibstdoes not give any special treatment to double quotes or curly
braces. For example, the script

seta 44

subst {xyz {$a}}
returns ‘xyz {44}", not “ xyz {$a}".

KEYWORDS

Tcl

backslash substitution, command substitution, variable substitution

Last change: 7.4 1

Tcl Built-In Commands switch (n)

NAME
switch — Evaluate one of several scripts, depending on a given value
SYNOPSIS
switch ?option®? string pattern bodypattern body..?
switch ?option®? string { pattern body?pattern body..?}
DESCRIPTION
The switch command matches itring argument against each of tpatternarguments in order. As soon
as it finds gatternthat matchestring it evaluates the followingodyargument by passing it recursively to
the Tcl interpreter and returns the result of that evaluation. If theddistrn argument idefault then it
matches anything. If npatternargument matchestringand no default is given, then te&itch command
returns an empty string.
If the initial arguments tewitch start with— then they are treated as options. The following options are
currently supported:
—exact Use exact matching when comparstgngto a pattern. This is the default.
—glob When matchingstring to the patterns, use glob-style matching (i.e. the same as implemented
by thestring match command).
—-regexp When matchingtring to the patterns, use regular expression matching (i.e. the same as imple-
mented by theegexpcommand).
-= Marks the end of options. The argument following this one will be treatsttiag even if it
starts with a-.
Two syntaxes are provided for thatternandbodyarguments. The first uses a separate argument for each
of the patterns and commands; this form is convenient if substitutions are desired on some of the patterns or
commands. The second form places all of the patterns and commands together into a single argument; the
argument must have proper list structure, with the elements of the list being the patterns and commands.
The second form makes it easy to construct multi-line switch commands, since the braces around the whole
list make it unnecessary to include a backslash at the end of each line. Sipa#dhearguments are in
braces in the second form, no command or variable substitutions are performed on them; this makes the
behavior of the second form different than the first form in some cases.
If a bodyis specified as“” it means that théodyfor the next pattern should also be used as the body for
this pattern (if the next pattern also has a body-dfthen the body after that is used, and so on). This fea-
ture makes it possible to share a sirigldyamong several patterns.
Below are some examples &Witch commands:
switch abc a — b {format 1} abc {format 2} default {format 3}
will return 2,
switch -regexp aaab {
"a.b$ -
b {format 1}
ald {format 2}
default {format 3}
will return 1, and
switch xyz {
a
b
Tcl Last change: 7.0 1

Tcl Built-In Commands switch (n)

{format 1}
ad
{format 2}
default
{format 3}
}
will return 3.

KEYWORDS
switch, match, regular expression

Tcl Last change: 7.0

Tcl Built-In Commands tclvars (n)

NAME
tclvars — Variables used by Tcl

DESCRIPTION
The following global variables are created and managed automatically by the Tcl library. Except where
noted below, these variables should normally be treated as read-only by application-specific code and by
users.

env This variable is maintained by Tcl as an array whose elements are the environment variables for
the process. Reading an element will return the value of the corresponding environment variable.
Setting an element of the array will modify the corresponding environment variable or create a
new one if it doesn’t already exist. Unsetting an elemergnefwill remove the corresponding
environment variable. Changes to #mr array will affect the environment passed to children by
commands likeexec If the entireenv array is unset then Tcl will stop monitorilegv accesses
and will not update environment variables.
Under Windows, the environment variables PATH and COMSPEC in any capitalization are con-
verted automatically to upper case. For instance, the PATH variable could be exported by the
operating system as “path”, “Path”, “PaTh”, etc., causing otherwise simple Tcl code to have to
support many special cases. All other environment variables inherited by Tcl are left unmodified.
On the Macintosh, the environment variable is constructed by Tcl as no global environment vari-
able exists. The environment variables that are created for Tcl include:

LOGIN
This holds the Chooser name of the Macintosh.

USER This also holds the Chooser name of the Macintosh.

SYS_FOLDER
The path to the system directory.

APPLE_M_FOLDER
The path to the Apple Menu directory.

CP_FOLDER
The path to the control panels directory.

DESK_FOLDER
The path to the desk top directory.

EXT_FOLDER
The path to the system extensions directory.

PREF_FOLDER
The path to the preferences directory.

PRINT_MON_FOLDER
The path to the print monitor directory.

SHARED_TRASH_FOLDER
The path to the network trash directory.

TRASH_FOLDER
The path to the trash directory.

START_UP_FOLDER
The path to the start up directory.

PWD The path to the application’s default directory.

Tcl Last change: 8.0 1

Tcl Built-In Commands tclvars (n)

Tcl

You can also create your own environment variables for the Macintosh. A file n&oidehvi-
ronment Variablesnay be placed in the preferences folder in the Mac system folder. Each line of
this file should be of the forMAR_NAME=var_data

The last alternative is to place environment variables in a 'STR# resource fairt&advironment
Variablesof the application. This is considered a little more “Mac like” than a Unix style Envi-
ronment Variable file. Each entry in the 'STR# resource has the same format as above. The
source code filécIMacEnv.ccontains the implementation of the env mechanisms. This file con-
tains many #define’s that allow customization of the env mechanisms to fit your applications
needs.

errorCode

After an error has occurred, this variable will be set to hold additional information about the error
in a form that is easy to process with prograesorCode consists of a Tcl list with one or more
elements. The first element of the list identifies a general class of errors, and determines the for-
mat of the rest of the list. The following formats &rorCode are used by the Tcl core; individ-

ual applications may define additional formats.

ARITH code msg
This format is used when an arithmetic error occurs (e.g. an attempt to divide by zero in
the expr command). Codeidentifies the precise error amasgprovides a human-read-
able description of the erroCodewill be either DIVZERO (for an attempt to divide by
zero), DOMAIN (if an argument is outside the domain of a function, such as acos(-3)),
IOVERFLOW (for integer overflow), OVERFLOW (for a floating-point overflow), or
UNKNOWN (if the cause of the error cannot be determined).

CHILDKILLED pid sigName msg
This format is used when a child process has been killed because of a signal. The second
element oferrorCode will be the process’s identifier (in decimal). The third element
will be the symbolic name of the signal that caused the process to terminate; it will be
one of the names from the include file signal.h, suc8I&PIPE. The fourth element
will be a short human-readable message describing the signal, such as “write on pipe
with no readers” folSIGPIPE.

CHILDSTATUS pid code
This format is used when a child process has exited with a non-zero exit status. The sec-
ond element oérrorCode will be the process’s identifier (in decimal) and the third ele-
ment will be the exit code returned by the process (also in decimal).

CHILDSUSP pid sigName msg
This format is used when a child process has been suspended because of a signal. The
second element arrorCode will be the process’s identifier, in decimal. The third ele-
ment will be the symbolic name of the signal that caused the process to suspend; this will
be one of the names from the include file signal.h, sucBl@3TIN . The fourth ele-
ment will be a short human-readable message describing the signal, such as “background
tty read” for SIGTTIN .

NONE This format is used for errors where no additional information is available for an error
besides the message returned with the error. In these exagaSode will consist of a
list containing a single element whose content$\NG8lE.

POSIX errName msg
If the first element oérrorCode is POSIX, then the error occurred during a POSIX ker-
nel call. The second element of the list will contain the symbolic name of the error that
occurred, such aBENOENT; this will be one of the values defined in the include file
errno.h. The third element of the list will be a human-readable message corresponding to

Last change: 8.0 2

Tcl Built-In Commands tclvars (n)

Tcl

errName such as “no such file or directory” for tHEENOENT case.

To seterrorCode, applications should use library procedures suci @sSetErrorCode and
Tcl_PosixError, or they may invoke therror command. If one of these methods hasn't been
used, then the Tcl interpreter will reset the variablM@NE after the next error.

errorinfo

After an error has occurred, this string will contain one or more lines identifying the Tcl com-
mands and procedures that were being executed when the most recent error occurred. Its contents
take the form of a stack trace showing the various nested Tcl commands that had been invoked at
the time of the error.

tcl_library

This variable holds the name of a directory containing the system library of Tcl scripts, such as
those used for auto-loading. The value of this variable is returned lyfehérary command.

See thdibrary manual entry for details of the facilities provided by the Tcl script library. Nor-
mally each application or package will have its own application-specific script library in addition
to the Tcl script library; each application should set a global variable with a name like
$app library (whereappis the application’s name) to hold the network file name for that applica-
tion’s library directory. The initial value dfcl_library is set when an interpreter is created by
searching several different directories until one is found that contains an appropriate Tcl startup
script. If theTCL_LIBRARY environment variable exists, then the directory it names is checked
first. If TCL_LIBRARY isn't set or doesn't refer to an appropriate directory, then Tcl checks
several other directories based on a compiled-in default location, the location of the binary con-
taining the application, and the current working directory.

tcl_patchLevel

When an interpreter is created Tcl initializes this variable to hold a string giving the current patch
level for Tcl, such ag.3p2for Tcl 7.3 with the first two official patches, @rdb4 for the fourth
beta release of Tcl 7.4. The value of this variable is returned hyftheatchlevel command.

tcl_pkgPath

This variable holds a list of directories indicating where packages are normally installed. It typi-
cally contains either one or two entries; if it contains two entries, the first is normally a directory
for platform-dependent packages (e.g., shared library binaries) and the second is normally a direc-
tory for platform-independent packages (e.g., script files). Typically a package is installed as a
subdirectory of one of the entries$icl_pkgPath. The directories ir$tcl_pkgPath are included

by default in theauto_path variable, so they and their immediate subdirectories are automatically
searched for packages duripgckage requirecommands. Notercl pkgPath it not intended to

be modified by the application. Its value is adde@duto_path at startup; changes tol_pkg-

Path are not reflected iauto_path. If you want Tcl to search additional directories for packages

you should add the names of those directoriesito_path, nottcl_pkgPath.

tcl_platform

This is an associative array whose elements contain information about the platform on which the
application is running, such as the name of the operating system, its current release number, and
the machine’s instruction set. The elements listed below will always be defined, but they may
have empty strings as values if Tcl couldn’t retrieve any relevant information. In addition, exten-
sions and applications may add additional values to the array. The predefined elements are:

byteOrder
The native byte order of this machine: eitligleEndian or bigEndian.

machine
The instruction set executed by this machine, sucimta PPC, 68k, or sun4m On
UNIX machines, this is the value returneduname -m

Last change: 8.0 3

Tcl Built-In Commands tclvars (n)

Tcl

0s The name of the operating system running on this machine, siwinag8s, Windows
NT, MacOS, or SunOS On UNIX machines, this is the value returnedibgme -s
osVersion

The version number for the operating system running on this machine. On UNIX
machines, this is the value returnedumgame -r.

platform
Either windows, macintosh, or unix. This identifies the general operating environment
of the machine.

tcl_precision
This variable controls the number of digits to generate when converting floating-point values to
strings. It defaults to 12. 17 digits is “perfect” for IEEE floating-point in that it allows double-
precision values to be converted to strings and back to binary with no loss of information. How-
ever, using 17 digits prevents any rounding, which produces longer, less intuitive results. For
exampleexpr 1.4returns 1.3999999999999999 witlt precision set to 17, vs. 1.4 iicl_preci-
sionis 12.
All interpreters in a process share a sirtgleprecision value: changing it in one interpreter will
affect all other interpreters as well. However, safe interpreters are not allowed to modify the vari-
able.

tcl_rcFileName
This variable is used during initialization to indicate the name of a user-specific startup file. If it is
set by application-specific initialization, then the Tcl startup code will check for the existence of
this file andsourceit if it exists. For example, fowish the variable is set td.wishrc for Unix
and”/wishrc.tcl for Windows.

tcl_rcRsrcName
This variable is only used on Macintosh systems. The variable is used during initialization to indi-
cate the name of a user-specifiEXT resource located in the application or extension resource
forks. If it is set by application-specific initialization, then the Tcl startup code will check for the
existence of this resource asdurceit if it exists. For example, the Macintostish application
has the variable is settdshrc.

tcl_traceCompile

The value of this variable can be set to control how much tracing information is displayed during
bytecode compilation. By default, tcl_traceCompile is zero and no information is displayed. Set-
ting tcl_traceCompile to 1 generates a one line summary in stdout whenever a procedure or top
level command is compiled. Setting it to 2 generates a detailed listing in stdout of the bytecode
instructions emitted during every compilation. This variable is useful in tracking down suspected
problems with the Tcl compiler. It is also occasionally useful when converting existing code to
use Tcl8.0.

tcl_traceExec

The value of this variable can be set to control how much tracing information is displayed during
bytecode execution. By default, tcl_traceExec is zero and no information is displayed. Setting
tcl_traceExec to 1 generates a one line trace in stdout on each call to a Tcl procedure. Setting it to
2 generates a line of output whenever any Tcl command is invoked that contains the name of the
command and its arguments. Setting it to 3 produces a detailed trace showing the result of execut-
ing each bytecode instruction. Note that when tcl_traceExec is 2 or 3, commands such as set and
incr that have been entirely replaced by a sequence of bytecode instructions are not shown. Set-
ting this variable is useful in tracking down suspected problems with the bytecode compiler and
interpreter. Itis also occasionally useful when converting code to use Tcl8.0.

tcl_version

Last change: 8.0 4

Tcl Built-In Commands tclvars (n)

When an interpreter is created Tcl initializes this variable to hold the version number for this ver-
sion of Tcl in the formx.y. Changes tx represent major changes with probable incompatibilities
and changes tg represent small enhancements and bug fixes that retain backward compatibility.
The value of this variable is returned by thi® tclversion command.

KEYWORDS
arithmetic, bytecode, compiler, error, environment, POSIX, precision, subprocess, variables

Tcl Last change: 8.0 5

Tcl Built-In Commands tell(n)

NAME
tell - Return current access position for an open channel

SYNOPSIS
tell channelld

DESCRIPTION

Returns a decimal string giving the current access positionannelld The value returned is -1 for chan-
nels that do not support seeking.

KEYWORDS
access position, channel, seeking

Tcl Last change: 7.5 1

Tcl Built-In Commands time (n)

NAME
time — Time the execution of a script

SYNOPSIS
time script 2coun®

DESCRIPTION
This command will call the Tcl interpreteounttimes to evaluatscript (or once ifcountisn’t specified).
It will then return a string of the form
503 microseconds per iteration
which indicates the average amount of time required per iteration, in microseconds. Time is measured in
elapsed time, not CPU time.

KEYWORDS
script, time

Tcl Last change: 1

Tcl Built-In Commands trace (n)

NAME

trace — Monitor variable accesses

SYNOPSIS

trace option?arg arg ..?

DESCRIPTION

This command causes Tcl commands to be executed whenever certain operations are invoked. At present,
only variable tracing is implemented. The legptions (which may be abbreviated) are:

trace variable name ops command

Tcl

Arrange forcommando be executed whenever variabkemeis accessed in one of the ways given

by ops Namemay refer to a normal variable, an element of an array, or to an array as a whole (i.e.
namemay be just the name of an array, with no parenthesized indemamiérefers to a whole
array, thercommands invoked whenever any element of the array is manipulated.

Opsindicates which operations are of interest, and consists of one or more of the following letters:

r Invoke commandvhenever the variable is read.
w Invoke commandvhenever the variable is written.
u Invoke commandwhenever the variable is unset. Variables can be unset explicitly with

theunsetcommand, or implicitly when procedures return (all of their local variables are
unset). Variables are also unset when interpreters are deleted, but traces will not be
invoked because there is no interpreter in which to execute them.

When the trace triggers, three arguments are appendedhtnando that the actual command is
as follows:

command namel name2 op
NamelandnameZ2give the name(s) for the variable being accessed: if the variable is a scalar then
namelgives the variable’'s name amame?2is an empty string; if the variable is an array element
thennamelgives the name of the array and name2 gives the index into the array; if an entire array
is being deleted and the trace was registered on the overall array, rather than a single element, then
namelgives the array name amameZ2is an empty stringNamelandnameZ2are not necessarily
the same as the name used intthee variable command: theipvar command allows a proce-
dure to reference a variable under a different nafp.indicates what operation is being per-
formed on the variable, and is onerpiv, or u as defined above.

Commandexecutes in the same context as the code that invoked the traced operation: if the vari-
able was accessed as part of a Tcl procedure,ctamandwill have access to the same local
variables as code in the procedure. This context may be different than the context in which the
trace was created. fommandnvokes a procedure (which it normally does) then the procedure

will have to useupvar or uplevel if it wishes to access the traced variable. Note alsoniduaiel

may not necessarily be the same as the name used to set the trace on the variable; differences can
occur if the access is made through a variable defined witkptla® command.

For read and write tracespmmanctan modify the variable to affect the result of the traced opera-

tion. If commandnodifies the value of a variable during a read or write trace, then the new value
will be returned as the result of the traced operation. The return valuecibonrmands ignored

except that if it returns an error of any sort then the traced operation also returns an error with the
same error message returned by the trace command (this mechanism can be used to implement
read-only variables, for example). For write tracesnmands invoked after the variable’s value

has been changed; it can write a new value into the variable to override the original value specified
in the write operation. To implement read-only variabtEsnmandwill have to restore the old

value of the variable.

Last change: 1

Tcl Built-In Commands trace (n)

While commands executing during a read or write trace, traces on the variable are temporarily
disabled. This means that reads and writes invokeddmgmandwill occur directly, without
invoking command(or any other traces) again. Howevercdmmandunsets the variable then
unset traces will be invoked.

When an unset trace is invoked, the variable has already been deleted: it will appear to be unde-
fined with no traces. If an unset occurs because of a procedure return, then the trace will be
invoked in the variable context of the procedure being returned to: the stack frame of the returning

procedure will no longer exist. Traces are not disabled during unset traces, so if an unset trace
command creates a new trace and accesses the variable, the trace will be invoked. Any errors in
unset traces are ignored.

If there are multiple traces on a variable they are invoked in order of creation, most-recent first. If
one trace returns an error, then no further traces are invoked for the variable. If an array element
has a trace set, and there is also a trace set on the array as a whole, the trace on the overall array is
invoked before the one on the element.

Once created, the trace remains in effect either until the trace is removed witdicthedelete
command described below, until the variable is unset, or until the interpreter is deleted. Unsetting
an element of array will reave anytraces on that element, but will not rewe traces on the over-

all array.

This command returns an empty string.

trace vdeletename ops command

If there is a trace set on variallamewith the operations and command givendpsand com-
mand then the trace is removed, so tbammandvill never again be invoked. Returns an empty
string.

trace vinfo name

KEYWORDS

Returns a list containing one element for each trace currently set on vaaaideEach element

of the list is itself a list containing two elements, which areojpgandcommandassociated with

the trace. Ihamedoesn’t exist or doesn’t have any traces set, then the result of the command will
be an empty string.

read, variable, write, trace, unset

Tcl

Last change: 2

Tcl Built-In Commands unknown (n)

NAME

SYNOPSIS

unknown — Handle attempts to use non-existent commands

unknown cmdNamearg arg ..?

DESCRIPTION

This command is invoked by the Tcl interpreter whenever a script tries to invoke a command that doesn’t
exist. The implementation afnknown isn’t part of the Tcl core; instead, it is a library procedure defined
by default when Tcl starts up. You can override the detmkhown to change its functionality.

If the Tcl interpreter encounters a command name for which there is not a defined command, then Tcl
checks for the existence of a command naaordchown. If there is no such command, then the interpreter
returns an error. If thenknown command exists, then it is invoked with arguments consisting of the fully-
substituted name and arguments for the original non-existent commandnKrievn command typically

does things like searching through library directories for a command procedure with thenmaiameor
expanding abbreviated command names to full-length, or automatically executing unknown commands as
sub-processes. In some cases (such as expanding abbreviatikmayvn will change the original com-

mand slightly and then (re-)execute it. The result ofuhlenown command is used as the result for the
original non-existent command.

The default implementation @inknown behaves as follows. It first calls tla@to_load library procedure

to load the command. If this succeeds, then it executes the original command with its original arguments.
If the auto-load fails thennknown callsauto_execolto see if there is an executable file by the namd

If so, it invokes the Tckxeccommand withcmd and all theargs as arguments. I€md can’t be auto-
executedunknown checks to see if the command was invoked at top-level and outside of any script. If so,
thenunknown takes two additional steps. First, it seegrid has one of the following three formi;

levent or "old"new??. If so, therunknown carries out history substitution in the same way ¢shtwvould

for these constructs. Finallunknown checks to see ifmdis a unique abbreviation for an existing Tcl
command. If so, it expands the command name and executes the command with the original arguments. If
none of the ative eforts has been able to execute the commankipown generates an error return. If the
global variableauto_noload is defined, then the auto-load step is skipped. If the global variable
auto_noexeds defined then the auto-exec step is skipped. Under normal circumstances the return value
from unknown is the return value from the command that was eventually executed.

KEYWORDS

Tcl

error, non-existent command

Last change: 1

Tcl Built-In Commands unset(n)

NAME
unset — Delete variables

SYNOPSIS
unsetname?name name 2.

DESCRIPTION
This command removes one or more variables. Baoheis a variable name, specified in any of the ways
acceptable to theetcommand. If anamerefers to an element of an array then that element is removed
without affecting the rest of the array. Ifnmmeconsists of an array name with no parenthesized index,
then the entire array is deleted. Timesetcommand returns an empty string as result. An error occurs if
any of the variables doesn't exist, and any variables after the non-existent one are not deleted.

KEYWORDS
remove, variable

Tcl Last change: 1

Tcl Built-In Commands update (n)

NAME
update — Process pending events and idle callbacks

SYNOPSIS
update 7dletasks?

DESCRIPTION
This command is used to bring the application “up to date” by entering the event loop repeated until all
pending events (including idle callbacks) have been processed.
If the idletasks keyword is specified as an argument to the command, then no new events or errors are pro-
cessed; only idle callbacks are invoked. This causes operations that are normally deferred, such as display
updates and window layout calculations, to be performed immediately.
Theupdate idletaskscommand is useful in scripts where changes have been made to the application’s state
and you want those changes to appear on the display immediately, rather than waiting for the script to com-
plete. Most display updates are performed as idle callbackgydate idletaskswill cause them to run.
However, there are some kinds of updates that only happen in response to events, such as those triggered by
window size changes; these updates will not occupitate idletasks
Theupdate command with no options is useful in scripts where you are performing a long-running compu-
tation but you still want the application to respond to events such as user interactions; if you occasionally
call update then user input will be processed during the next caiptiate.

KEYWORDS
event, flush, handler, idle, update

Tcl Last change: 7.5 1

Tcl Built-In Commands upleve (n)

NAME

SYNOPSIS

uplevel — Execute a script in a different stack frame

uplevel Aevel? arg ?arg ...?

DESCRIPTION

All of the arg arguments are concatenated as if they had been passmitcas the result is then evaluated
in the variable context indicated lavel Uplevelreturns the result of that evaluation.

If levelis an integer then it gives a distance (up the procedure calling stackyé&before executing the
command. Iflevelconsists of# followed by a number then the number gives an absolute level number. If
levelis omitted then it defaults th Levelcannot be defaulted if the firsbommandargument starts with a
digit or £

For example, suppose that procedareas invoked from top-level, and that it calledand thatb calledc.
Suppose that invokes theuplevel command. Iflevelis 1 or #2 or omitted, then the command will be
executed in the variable contexthof If levelis 2 or #1 then the command will be executed in the variable
context ofa. If levelis 3 or #0 then the command will be executed at top-level (only global variables will
be visible).

The uplevel command causes the invoking procedure to disappear from the procedure calling stack while
the command is being executed. In thevebexample, supposeinvokes the command
uplevel 1 {set x 43; d}
whered is another Tcl procedure. Thetcommand will modify the variable in b’s context, andl will
execute at level 3, as if called frdon If it in turn executes the command
uplevel {set x 42}
then thesetcommand will modify the same variabteén b’s context: the proceduiedoes not appear to be
on the call stack whed is executing. The commandrifo level’ may be used to obtain the level of the
current procedure.

Uplevel makes it possible to implement new control constructs as Tcl procedures (for exaphple]
could be used to implement thdile construct as a Tcl procedure).

namespace evak another way (besides procedure calls) that the Tcl naming context can change. It adds a
call frame to the stack to represent the namespace context. This meamamaspace evatommand

counts as another call level faplevel andupvar commands. For examplafo level 1 will return a list
describing a command that is either the outermost procedure call or the outemespace evatom-

mand. Alsouplevel #0evaluates a script at top-level in the outermost namespace (the global namespace).

SEE ALSO

namespace(n)

KEYWORDS

Tcl

context, level, namespace, stack frame, variables

Last change: 1

Tcl Built-In Commands upvar (n)

NAME

SYNOPSIS

upvar — Create link to variable in a different stack frame

upvar ?evel? otherVar myVarotherVar myVar..?

DESCRIPTION

BUGS

This command arranges for one or more local variables in the current procedure to refer to variables in an
enclosing procedure call or to global variablesvelmay have any of the forms permitted for thgevel
command, and may be omitted if the first letter of the dittsérVarisn't # or a digit (it defaults td). For
eachotherVarargumentupvar makes the variable by that name in the procedure frame giviavédyor

at global level, iflevelis #0) accessible in the current procedure by the name given in the corresponding
myVarargument. The variable named btherVarneed not exist at the time of the call; it will be created

the first timemyVaris referenced, just like an ordinary variable. There must not exist a variable by the
namemyVarat the timeupvar is invoked. MyVar is always treated as the name of a variable, not an array
element. Even if the name looks like an array element, sua{bgs regular variable is create@therVar

may refer to a scalar variable, an array, or an array elerigvar returns an empty string.

The upvar command simplifies the implementation of call-by-name procedure calling and also makes it
easier to build new control constructs as Tcl procedures. For example, consider the following procedure:
proc add2 name {
upvar $name x
set x [expr $x+2]

Add2 is invoked with an argument giving the name of a variable, and it adds two to the value of that vari-
able. Althoughadd? could have been implemented usimglevel instead ofupvar, upvar makes it sim-
pler foradd2to access the variable in the caller’s procedure frame.

namespace evak another way (besides procedure calls) that the Tcl naming context can change. It adds a
call frame to the stack to represent the namespace context. This meamameaspace evatommand

counts as another call level foplevel andupvar commands. For examplifo level 1 will return a list
describing a command that is either the outermost procedure call or the outemmespace evatom-

mand. Alsouplevel #0evaluates a script at top-level in the outermost namespace (the global namespace).

If an upvar variable is unset (exgin add2 above), thainset operation affects the variable it is linked to,
not the upvar variable. There is no way to unset an upvar variable except by exiting the procedure in which
it is defined. However, it is possible to retarget an upvar variable by executing amtaecommand.

If otherVarrefers to an element of an array, then variable traces set for the entire array will not be invoked
whenmyVaris accessed (but traces on the particular element will still be invoked). In particular, if the
array isenv, then changes made rioyVarwill not be passed to subprocesses correctly.

SEE ALSO

namespace(n)

KEYWORDS

Tcl

context, frame, global, level, namespace, procedure, variable

Last change: 1

Tcl Built-In Commands variable (n)

NAME
variable — create and initialize a namespace variable

SYNOPSIS
variable name value.?.name?alue?

DESCRIPTION
This command is normally used withimamespace evatommand to create one or more variables within
a namespace. Each variablemeis initialized withvalue Thevaluefor the last variable is optional.
If a variablenamedoes not exist, it is created. In this casealueis specified, it is assigned to the newly
created variable. If nwalueis specified, the new variable is left undefined. If the variable already exists, it
is set tovalueif valueis specified or left unchanged if malueis given. Normallyhameis unqualified
(does not include the names of any containing namespaces), and the variable is created in the current
namespace. fiameincludes any namespace qualifiers, the variable is created in the specified namespace.
If the variable command is executed inside a Tcl procedure, it creates local variables linked to the corre-
sponding namespace variables. In this way ¥hdable command resembles thglobal command,
although theglobal command only links to variables in the global namespace. IYalugs are given, they
are used to modify the values of the associated namespace variables. If a namespace variable does not
exist, it is created and optionally initialized.
A nameargument cannot reference an element within an array. Insteasishould reference the entire
array, and the initializatiomalue should be left off. After the variable has been declared, elements within
the array can be set using ordinaegor array commands.

SEE ALSO
global(n), namespace(n)

KEYWORDS
global, namespace, procedure, variable

Tcl Last change: 8.0 1

Tcl Built-In Commands vwait (n)

NAME
vwait — Process events until a variable is written

SYNOPSIS
vwait varName

DESCRIPTION
This command enters the Tcl event loop to process events, blocking the application if no events are ready.
It continues processing events until some event handler sets the value of varisbime OncevarName
has been set, thewvait command will return as soon as the event handler that mod#i@éamecom-
pletes.
In some cases thavait command may not return immediately aftarNameis set. This can happen if the
event handler that setarNamedoes not complete immediately. For example, if an event handlerassets
Nameand then itself callswait to wait for a different variable, then it may not return for a long time. Dur-
ing this time the top-levalwait is blocked waiting for the event handler to complete, so it cannot return
either.

KEYWORDS
event, variable, wait

Tcl Last change: 7.5 1

Tcl Built-In Commands while (n)

NAME

SYNOPSIS

while — Execute script repeatedly as long as a condition is met

while test body

DESCRIPTION

The while command evaluategstas an expression (in the same way #hgir evaluates its argument).
The value of the expression must a proper boolean value; if it is a true vallmtlyes executed by pass-
ing it to the Tcl interpreter. Ondeody has been executed thé&stis evaluated again, and the process
repeats until eventualliest evaluates to a false boolean valu@ontinue commands may be executed
inside bodyto terminate the current iteration of the loop, &mdak commands may be executed inside
bodyto cause immediate termination of tlvhile command. Theavhile command always returns an empty
string.

Note:testshould almost always be enclosed in braces. If not, variable substitutions will be made before the
while command starts executing, which means that variable changes made by the loop body will not be
considered in the expression. This is likely to result in an infinite lootestfs enclosed in braces, vari-
able substitutions are delayed until the expression is evaluated (before each loop iteration), so changes in
the variables will be visible. For an example, try the following script with and without the braces around
$x<10
setx 0
while {$x<10} {
puts "X is $x"
incr x

KEYWORDS

Tcl

boolean value, loop, test, while

Last change: 1

Tk Built-In Commands bell(n)

NAME
bell - Ring a display’s bell

SYNOPSIS
bell ?-displayof window?

DESCRIPTION
This command rings the bell on the display ¥andow and returns an empty string. If thelisplayof
option is omitted, the display of the application’s main window is used by default. The command uses the
current bell-related settings for the display, which may be modified with programs stsght as

This command also resets the screen saver for the screen. Some screen savers will ignore this, but others
will reset so that the screen becomes visible again.

KEYWORDS
beep, bell, ring

Tk Last change: 4.0 1

Tk Built-In Commands bind (n)

NAME

SYNOPSIS

bind - Arrange for X events to invoke Tcl scripts

bind tag
bind tag sequence
bind tag sequence script

bind tag sequencescript

INTRODUCTION

The bind command associates Tcl scripts with X events. If all three arguments are spéaified;ill
arrange foiscript (a Tcl script) to be evaluated whenever the event(s) giveseQyenceccur in the win-
dow(s) identified bytag. If scriptis prefixed with a “+”, then it is appended to any existing binding for
sequencge otherwisescriptreplaces any existing binding. dtriptis an empty string then the current bind-
ing for sequences destroyed, leavingequencainbound. In all of the cases whereaipt argument is
provided,bind returns an empty string.

If sequencas specified without a&cript, then the script currently bound sequencas returned, or an
empty string is returned if there is no binding $eguence If neithersequencaor scriptis specified, then
the return value is a list whose elements are all the sequences for which there exist bintiggs for

Thetag argument determines which window(s) the binding applies ttaglbegins with a dot, as ia.b.c

then it must be the path name for a window; otherwise it may be an arbitrary string. Each window has an
associated list of tags, and a binding applies to a particular window if its tag is among those specified for
the window. Although thdindtags command may be used to assign an arbitrary set of binding tags to a
window, the default binding tags provide the following behavior:

If a tag is the name of an internal window the binding applies to that window.

If the tag is the name of a toplevel window the binding applies to the toplevel window and all its
internal windows.

If the tag is the name of a class of widgets, sucBusn, the binding applies to all widgets in
that class;

If tag has the valuall, the binding applies to all windows in the application.

EVENT PATTERNS

Tk

The sequenceargument specifies a sequence of one or more event patterns, with optional white space
between the patterns. Each event pattern may take one of three forms. In the simplest case it is a single
printing ASCII character, such asor [. The character may not be a space character or the chatacter
This form of pattern matcheskeyPressevent for the particular character. The second form of pattern is
longer but more general. It has the following syntax:

<modifier-modifier-type-detail
The entire event pattern is surrounded by angle brackets. Inside the angle brackets are zero or more modi-
fiers, an event type, and an extra piece of informati@ta(]) identifying a particular button or keysym.
Any of the fields may be omitted, as long as at least oigpefanddetail is present. The fields must be
separated by white space or dashes.

The third form of pattern is used to specify a user-defined, named virtual event. It has the following syntax:
<<name->
The entire virtual event pattern is surrounded by double angle brackets. Inside the angle brackets is the

Last change: 4.1 1

Tk Built-In Commands bind (n)

user-defined name of the virtual event. Modifiers, sucBraft or Control, may not be combined with a
virtual event to modify it. Bindings on a virtual event may be created before the virtual event is defined,
and if the definition of a virtual event changes dynamically, all windows bound to that virtual event will
respond immediately to the new definition.

MODIFIERS
Modifiers consist of any of the following values:

Control Mod2, M2
Shift Mod3, M3
Lock Mod4, M4
Button1, B1 Mod5, M5
Button2, B2 Meta, M
Button3, B3 Alt
Button4, B4 Double
Button5, B5 Triple
Mod1, M1

Where more than one value is listed, separated by commas, the values are equivalent. Most of the modifiers
have the obvious X meanings. For exam@attonl requires that button 1 be depressed when the event
occurs. For a binding to match a given event, the modifiers in the event must include all of those specified
in the event pattern. An event may also contain additional modifiers not specified in the binding. For
example, if button 1 is pressed while the shift and control keys are down, the g&ttertnol-Button-1>

will match the event, butMod1-Button-1> will not. If no modifiers are specified, then any combination

of modifiers may be present in the event.

Meta andM refer to whichever of th&11 throughM5 modifiers is associated with the meta key(s) on the
keyboard (keysymbleta R andMeta_L). If there are no meta keys, or if they are not associated with any
modifiers, therMeta and M will not match any events. Similarly, th< modifier refers to whichever
modifier is associated with the alt key(s) on the keyboard (keyaitns andAlt_R).

The Double andTriple modifiers are a convenience for specifying double mouse clicks and other repeated
events. They cause a particular event pattern to be repeated 2 or 3 times, and also place a time and space
requirement on the sequence: for a sequence of events to mBtwhbke or Triple pattern, all of the

events must occur close together in time and without substantial mouse motion in between. For example,
<Double-Button-1>is equivalent ta<Button-1><Button-1> with the extra time and space requirement.

EVENT TYPES
Thetypefield may be any of the standard X event types, with a few extra abbreviations. Below is a list of
all the valid types; where two names appear together, they are synonyms.

ButtonPress, Button Expose Map
ButtonRelease Focusin Motion
Circulate FocusOut Property
Colormap Gravity Reparent
Configure KeyPress, Key Unmap
Destroy KeyRelease Visibility
Enter Leave Activate
Deactivate

The last part of a long event specificatiodésail. In the case of ButtonPressor ButtonReleaseevent, it
is the number of a button (1-5). If a button number is given, then only an event on that particular button
will match; if no button number is given, then an event on any button will match. Note: giving a specific

Tk Last change: 4.1 2

Tk Built-In Commands bind (n)

button number is different than specifying a button modifier; in the first case, it refers to a button being
pressed or released, while in the second it refers to some other button that is already depressed when the
matching event occurs. If a button number is given tiype may be omitted: if will default t&utton-

Press For example, the specifiell> is equivalent te<ButtonPress-1>

If the event type iKeyPressor KeyRelease thendetail may be specified in the form of an X keysym.
Keysyms are textual specifications for particular keys on the keyboard; they include all the alphanumeric
ASCII characters (e.g. “a” is the keysym for the ASCII character “a”), plus descriptions for non-alphanu-
meric characters (“comma” is the keysym for the comma character), plus descriptions for all the non-
ASCII keys on the keyboard (“Shift_L” is the keysm for the left shift key, and “F1” is the keysym for the

F1 function key, if it exists). The complete list of keysyms is not presented here; it is available in other X
documentation and may vary from system to system. If necessary, you can #s¢ tiwation described

below to print out the keysym name for a particular key. If a keydgtailis given, then théypefield may

be omitted; it will default tdeyPress For exampleg<Control-comma> is equivalent ta<Control-Key-
Press-comma>

BINDING SCRIPTS AND SUBSTITUTIONS
The script argument tabind is a Tcl script, which will be executed whenever the given event sequence
occurs. Commandwill be executed in the same interpreter thattimel command was executed in, and it
will run at global level (only global variables will be accessible)sclipt contains anyo characters, then
the script will not be executed directly. Instead, a new script will be generated by replacirtg ,caoth
the character following it, with information from the current event. The replacement depends on the char-
acter following thé%, as defined in the list below. Unless otherwise indicated, the replacement string is the
decimal value of the given field from the current event. Some of the substitutions are only valid for certain
types of events; if they are used for other types of events the value substituted is undefined.

%% Replaced with a single percent.

%# The number of the last client request processed by the servee(iadield from the event). Valid
for all event types.

%a The abovefield from the event, formatted as a hexadecimal number. Valid onlCdofigure
events.

%b The number of the button that was pressed or released. Valid oByittmnPressand ButtonRe-
leaseevents.

%c Thecountfield from the event. Valid only fdExposeevents.

%d The detail field from the event. Thébed is replaced by a string identifying the detail. Forter,
Leave Focusln, andFocusOutevents, the string will be one of the following:

NotifyAncestor NotifyNonlinearVirtual
NotifyDetailNone NotifyPointer
Notifylnferior NotifyPointerRoot
NotifyNonlinear NotifyVirtual

For events other than these, the substituted string is undefined.
%f Thefocusfield from the eventQ or 1). Valid only forEnter andLeaveevents.
%h Theheightfield from the event. Valid only fa€onfigure andExposeevents.
%k Thekeycoddield from the event. Valid only fdfeyPressandKeyReleaseevents.

%m The modefield from the event. The substituted string is on&ofifyNormal, NotifyGrab, Noti-
fyUngrab, or NotifyWhileGrabbed. Valid only for Enter, Focusin, FocusOut andLeaveevents.

Tk Last change: 4.1 3

Tk Built-In Commands bind (n)

%0 Theoverride_redirecfield from the event. Valid only fdvlap, Reparent, andConfigure events.

%p The placefield from the event, substituted as one of the striigseOnTop or PlaceOnBottom
Valid only for Circulate events.

%s The statefield from the event. FoButtonPress ButtonRelease Enter, KeyPress KeyRelease
Leave andMotion events, a decimal string is substituted. Wisibility , one of the string¥isibili-
tyUnobscured, VisibilityPartiallyObscured , andVisibilityFullyObscured is substituted.

%t Thetimefield from the event. Valid only for events that contatmeefield.
%w Thewidthfield from the event. Valid only fa€onfigure andExposeevents.
%x Thexfield from the event. Valid only for events containingxdield.

%y Theyfield from the event. Valid only for events containingfeeld.

%A Substitutes the ASCII character corresponding to the event, or the empty string if the event doesn’t
correspond to an ASCII character (e.g. the shift key was pressedpkupString does all the work
of translating from the event to an ASCII character. Valid onh\KiyPressandKeyReleasesvents.

%B Theborder_widthfield from the event. Valid only fa€onfigure events.
%E Thesend_everfield from the event. Valid for all event types.

%K The keysym corresponding to the event, substituted as a textual string. Valid dddyRressand
KeyReleaseevents.

%N The keysym corresponding to the event, substituted as a decimal number. Valid dtdyPoess
andKeyReleasesvents.

%R Theroot window identifier from the event. Valid only for events containinga field.

%S Thesubwindowwindow identifier from the event, formatted as a hexadecimal number. Valid only for
events containing subwindowfield.

%T Thetypefield from the event. Valid for all event types.

%W The path name of the window to which the event was reportedrtidow field from the event).
Valid for all event types.

%X Thex_rootfield from the event. If a virtual-root window manager is being used then the substituted
value is the corresponding x-coordinate in the virtual root. Valid onlédtonPress ButtonRe-
lease KeyPress KeyReleaseandMotion events.

%Y They_rootfield from the event. If a virtual-root window manager is being used then the substituted
value is the corresponding y-coordinate in the virtual root. Valid onlBédtonPress ButtonRe-
lease KeyPress KeyReleaseandMotion events.

The replacement string for a %-replacement is formatted as a proper Tcl list element. This means that it
will be surrounded with braces if it contains spaces, or special characters $umhddsnay be preceded
by backslashes. This guarantees that the string will be passed through the Tcl parser when the binding
script is evaluated. Most replacements are numbers or well-defined strings s@bbvas for these
replacements no special formatting is ever necessary. The most common case where reformatting occurs is
for the%A substitution. For example, striptis

insert %A
and the character typed is an open square bracket, then the script actually executed will be

insert \[
This will cause thénsert to receive the original replacement string (open square bracket) as its first argu-
ment. If the extra backslash hadn’t been added, Tcl would not have been able to parse the script correctly.

Tk Last change: 4.1 4

Tk Built-In Commands bind (n)

MULTIPLE MATCHES

It is possible for several bindings to match a given X event. If the bindings are associated with different
tags, then each of the bindings will be executed, in order. By default, a binding for the widget will be
executed first, followed by a class binding, a binding for its toplevel, aradl &inding. Thebindtags
command may be used to change this order for a particular window or to associate additional binding tags
with the window.

The continue andbreak commands may be used inside a binding script to control the processing of match-
ing scripts. Ifcontinue is invoked, then the current binding script is terminated but Tk will continue pro-
cessing binding scripts associated with ottagfs. If the break command is invoked within a binding
script, then that script terminates and no other scripts will be invoked for the event.

If more than one binding matches a particular event and they have thaagprieen the most specific

binding is chosen and its script is evaluated. The following tests are applied, in order, to determine which
of several matching sequences is more specific: (a) an event pattern that specifies a specific button or key is
more specific than one that doesn'’t; (b) a longer sequence (in terms of number of events matched) is more
specific than a shorter sequence; (c) if the modifiers specified in one pattern are a subset of the modifiers in
another pattern, then the pattern with more modifiers is more specific. (d) a virtual event whose physical
pattern matches the sequence is less specific than the same physical pattern that is not associated with a vir-
tual event. (e) given a sequence that matches two or more virtual events, one of the virtual events will be
chosen, but the order is undefined.

If the matching sequences contain more than one event, then tests (c)-(e) are applied in order from the most
recent event to the least recent event in the sequences. If these tests fail to determine a winner, then the
most recently registered sequence is the winner.

If there are two (or more) virtual events that are both triggered by the same sequence, and both of those vir-
tual events are bound to the same window tag, then only one of the virtual events will be triggered, and it
will be picked at random:

event add <<Paste>> <Control-y>

event add <<Paste>> <Button-2>

event add <<Scroll>> <Button-2>

bind Entry <<Paste>> {puts Paste}

bind Entry <<Scroll>> {puts Scroll}
If the user types Control-y, the<Paste>>binding will be invoked, but if the user presses button 2 then one
of either the<<Paste>>or the<<Scroll>> bindings will be invoked, but exactly which one gets invoked is
undefined.

If an X event does not match any of the existing bindings, then the event is ignored. An unbound event is
not considered to be an error.

MULTI-EVENT SEQUENCES AND IGNORED EVENTS

Tk

When asequencespecified in aind command contains more than one event pattern, then its script is
executed whenever the recent events (leading up to and including the current event) match the given
sequence. This means, for example, that if button 1 is clicked repeatedly the sedbewicie-Button-
Press-1>will match each button press but the first. If extraneous events that would prevent a match occur
in the middle of an event sequence then the extraneous events are ignored unles&K#dy&ressor But-
tonPressevents. For examplesDouble-ButtonPress-1>will match a sequence of presses of button 1,
even though there will bButtonReleaseevents (and possiblylotion events) between thButtonPress

events. Furthermore KeyPressevent may be preceded by any number of dilegiPressevents for mod-

ifier keys without the modifier keys preventing a match. For example, the event segBamitiematch a

press of thea key, a release of the key, a press of th8hift key, and a press of thekey: the press of

Shift is ignored because it is a modifier key. Finally, if sevbtation events occur in a row, only the last

one is used for purposes of matching binding sequences.

Last change: 4.1 5

Tk Built-In Commands bind (n)

ERRORS

If an error occurs in executing the script for a binding therbgeror mechanism is used to report the
error. Thebgerror command will be executed at global level (outside the context of any Tcl procedure).

SEE ALSO
bgerror

KEYWORDS
form, manual

Tk Last change: 4.1 6

Tk Built-In Commands bindtags (n)

NAME

SYNOPSIS

bindtags — Determine which bindings apply to a window, and order of evaluation

bindtags window2tagL.ist?

DESCRIPTION

When a binding is created with thend command, it is associated either with a particular window such as
.a.b.¢ a class name such Bstton, the keywordall, or any other string. All of these forms are calb#ad-

ing tags Each window contains a list of binding tags that determine how events are processed for the win-
dow. When an event occurs in a window, it is applied to each of the window’s tags in order: for each tag,
the most specific binding that matches the given tag and event is executed. Bied ttemmand for

more information on the matching process.

By default, each window has four binding tags consisting of the name of the window, the window’s class
name, the name of the window’s nearest toplevel ancestorlgrid that order. Toplevel windows have

only three tags by default, since the toplevel name is the same as that of the winddndidgs com-

mand allows the binding tags for a window to be read and modified.

If bindtags is invoked with only one argument, then the current set of binding taggrfdowis returned
as a list. If theagListargument is specified taindtags, then it must be a proper list; the tagsviandow
are changed to the elements of the list. The elemenégbistmay be arbitrary strings; however, any tag
starting with a dot is treated as the name of a window; if no window by that name exists at the time an
event is processed, then the tag is ignored for that event. The order of the elertagitstidetermines
the order in which binding scripts are executed in response to events. For example, the command
bindtags .b {all . Button .b}
reverses the order in which binding scripts will be evaluated for a button narsedhatall bindings are
invoked first, following by bindings foib’s toplevel (“.”), followed by class bindings, followed by bind-
ings for.b. If tagListis an empty list then the binding tags feindow are returned to the default state
described above.

The bindtags command may be used to introduce arbitrary additional binding tags for a window, or to
removestandard tags. For example, the command

bindtags .b {.b TrickyButton . all}
replaces th&utton tag for.b with TrickyButton . This means that the default widget bindings for buttons,
which are associated with thgutton tag, will no longer apply tob, but any bindings associated with
TrickyButton (perhaps some new button behavior) will apply.

SEE ALSO

bind

KEYWORDS

Tk

binding, event, tag

Last change: 4.0 1

Tk Built-In Commands bitmap (n)

NAME

bitmap — Images that display two colors
SYNOPSIS

image create bitmap?namé “ption®
DESCRIPTION

A bitmap is an image whose pixels can display either of two colors or be transparent. A bitmap image is
defined by four things: a background color, a foreground color, and two bitmaps, calkmiitbeand the

mask Each of the bitmaps specifies 0/1 values for a rectangular array of pixels, and the two bitmaps must
have the same dimensions. For pixels where the mask is zero, the image displays nothing, producing a
transparent effect. For other pixels, the image displays the foreground color if the source data is one and
the background color if the source data is zero.

CREATING BITMAPS

Like all images, bitmaps are created using ithage createcommand. Bitmaps support the following
options

—background color
Specifies a background color for the image in any of the standard ways accepted by Tk. If this
option is set to an empty string then the background pixels will be transparent. This effect is
achieved by using the source bitmap as the mask bitmap, ignoringnaaskdata or —maskfile
options.

—data string
Specifies the contents of the source bitmap as a string. The string must adhere to X11 bitmap for-
mat (e.g., as generated by thiemap program). If both the-data and—file options are specified,
the—data option takes precedence.

—file name
namegives the name of a file whose contents define the source bitmap. The file must adhere to
X11 bitmap format (e.g., as generated byltmap program).

—foreground color
Specifies a foreground color for the image in any of the standard ways accepted by Tk.

—maskdatastring
Specifies the contents of the mask as a string. The string must adhere to X11 bitmap format (e.g.,
as generated by tH#@tmap program). If both the-maskdata and —maskfile options are speci-
fied, the-maskdataoption takes precedence.

—maskfile name
namegives the name of a file whose contents define the mask. The file must adhere to X11 bitmap
format (e.g., as generated by thigmap program).

IMAGE COMMAND

Tk

When a bitmap image is created, Tk also creates a new command whose name is the same as the image.

This command may be used to invoke various operations on the image. It has the following general form:
imageName optiofiarg arg ..?

Optionand theargs determine the exact behavior of the command. The following commands are possible

for bitmap images:

imageNamegetoption
Returns the current value of the configuration option giveopbipn Optionmay have any of the

Last change: 4.0 1

Tk Built-In Commands bitmap (n)

values accepted by tliage create bitmapcommand.

imageNameonfigure 2option? dalue option value 2.
Query or modify the configuration options for the image. Ilfoptionis specified, returns a list
describing all of the available options fatageNamé&seeTk_Configurelnfo for information on
the format of this list). Ifoption is specified with novsalug then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooptionis specified). If one or moreption—valuepairs are specified, then the com-
mand modifies the given option(s) to have the given value(s); in this case the command returns an
empty string.Optionmay have any of the values accepted byirttege create bitmapcommand.

KEYWORDS
bitmap, image

Tk Last change: 4.0 2

Tk Built-In Commands button (n)

NAME

SYNOPSIS

STANDARD OPTIONS

WIDGET-SPECIFIC OPTIONS

Tk

button — Create and manipulate button widgets

button pathName?option®?

—activebackground —cursor —highlightthickness —takefocus
—activeforeground —disabledforeground —-image —text
—anchor —font —justify —textvariable
—background —foreground —padx —underline
—bitmap —highlightbackground —pady —wraplength
—borderwidth —highlightcolor —relief

See theoptions manual entry for details on the standard options.

Command-Line Name: —-command
Database Name: command
Database Class: Command

Specifies a Tcl command to associate with the button. This command is typically invoked
mouse button 1 is released over the button window.

Command-Line Name: -default
Database Name: default
Database Class: Default

Specifies one of three states for the default nrmymal, active, or disabled In active state, the

when

button is drawn with the platform specific appearance for a default button. In normal state, the

button is drawn with the platform specific appearance for a non-default button, leaving €
space to draw the default button appearance. The normal and active states will result in by

nough
ttons of

the same size. In disabled state, the button is drawn with the non-default button appearance with-
out leaving space for the default appearance. The disabled state may result in a smaller button

than the active state. ring.

Command-Line Name: —height
Database Name: height
Database Class: Height

Specifies a desired height for the button. If an image or bitmap is being displayed in the
then the value is in screen units (i.e. any of the forms acceptable GetPixels); for text it is in
lines of text. If this option isn’t specified, the button’s desired height is computed from the g
the image or bitmap or text being displayed in it.

Command-Line Name: -state
Database Name: state
Database Class: State

Specifies one of three states for the buttoarmal, active, or disabled In normal state the but;

ton is displayed using tHereground andbackground options. The active state is typically usg
when the pointer is over the button. In active state the button is displayed usaxjive&ore-
ground andactiveBackground options. Disabled state means that the button should be ins
tive: the default bindings will refuse to activate the widget and will ignore mouse button pr
In this state thelisabledForeground and background options determine how the button is di
played.

button

ize of

2d

ensi-
psses.
S-

Last change: 4.4 1

Tk Built-In Commands button (n)

Command-Line Name: —width
Database Name: width
Database Class: Width

Specifies a desired width for the button. If an image or bitmap is being displayed in the |button
then the value is in screen units (i.e. any of the forms acceptable GetPixels); for text it is in
characters. If this option isn't specified, the button’s desired width is computed from the size of
the image or bitmap or text being displayed in it.

DESCRIPTION

Thebutton command creates a new window (given by plaghNameargument) and makes it into a button
widget. Additional options, described above, may be specified on the command line or in the option
database to configure aspects of the button such as its colors, font, text, and initial rell@fttdrheom-

mand returns itpathNameargument. At the time this command is invoked, there must not exist a window
namedpathNamebutpathNamé parent must exist.

A button is a widget that displays a textual string, bitmap or image. If text is displayed, it must all be in a
single font, but it can occupy multiple lines on the screen (if it contains newlines or if wrapping occurs
because of thevrapLength option) and one of the characters may optionally be underlined using the
underline option. It can display itself in either of three different ways, according tstéteoption; it can

be made to appear raised, sunken, or flat; and it can be made to flash. When a user invokes the button (by
pressing mouse button 1 with the cursor over the button), then the Tcl command specifiedlcomnthe
mand option is invoked.

WIDGET COMMAND

Tk

The button command creates a new Tcl command whose napathidName This command may be used
to invoke various operations on the widget. It has the following general form:
pathName optioffarg arg ..?
Optionand theargs determine the exact behavior of the command. The following commands are possible
for button widgets:

pathNamecgetoption
Returns the current value of the configuration option giveopbipn Optionmay have any of the
values accepted by theitton command.

pathNameconfigure ?option? d/alue option value 2.
Query or modify the configuration options of the widget. Ifamtionis specified, returns a list
describing all of the available options foathName(seeTk_Configurelnfo for information on
the format of this list). Ifoption is specified with novalug then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooptionis specified). If one or moreption—valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty stringdptionmay have any of the values accepted bybtiton command.

pathNamelash
Flash the button. This is accomplished by redisplaying the button several times, alternating
between active and normal colors. At the end of the flash the button is left in the same nor-
mal/active state as when the command was invoked. This command is ignored if the button’s state
is disabled

pathNamenvoke
Invoke the Tcl command associated with the button, if there is one. The return value is the return
value from the Tcl command, or an empty string if there is ho command associated with the

Last change: 4.4 2

Tk Built-In Commands button (n)

button. This command is ignored if the button’s statfisabled

DEFAULT BINDINGS

Tk automatically creates class bindings for buttons that give them default behavior:

[1] A button activates whenever the mouse passes over it and deactivates whenever the mouse leaves
the button. Under Windows, this binding is only active when mouse button 1 has been pressed
over the button.

[2] A button’s relief is changed to sunken whenever mouse button 1 is pressed over the button, and the
relief is restored to its original value when button 1 is later released.

[3] If mouse button 1 is pressed over a button and later released over the button, the button is invoked.
However, if the mouse is not over the button when button 1 is released, then no invocation occurs.

[4] When a button has the input focus, the space key causes the button to be invoked.

If the button’s state idisabledthen none of the @lve actions occur: the button is completely non-respon-
sive.

The behavior of buttons can be changed by defining new bindings for individual widgets or by redefining
the class bindings.

KEYWORDS

Tk

button, widget

Last change: 4.4 3

Tk Built-In Commands canvas(n)

NAME
canvas — Create and manipulate canvas widgets

SYNOPSIS
canvaspathName?option®

STANDARD OPTIONS
—background —highlightthickness —insertwidth —takefocus
—borderwidth —-insertbackground —relief —xscrollcommand
—cursor —insertborderwidth —selectbackground -yscrollcommand
—highlightbackground —insertofftime —selectborderwidth
—highlightcolor —insertontime —selectforeground

WIDGET-SPECIFIC OPTIONS

Tk

See theoptions manual entry for details on the standard options.

Command-Line Name: -closeenough
Database Name: closeEnough
Database Class: CloseEnough

Specifies a floating-point value indicating how close the mouse cursor must be to an item b
is considered to be “inside” the item. Defaults to 1.0.

Command-Line Name: -confine
Database Name: confine
Database Class: Confine

Specifies a boolean value that indicates whether or not it should be allowable to set the ¢
view outside the region defined by therollRegionargument. Defaults to true, which means tf
the view will be constrained within the scroll region.

Command-Line Name: —height

Database Name: height

Database Class: Height
Specifies a desired window height that the canvas widget should request from its geomet
ager. The value may be specified in any of the forms described in the COORDINATES <
below.

Command-Line Name: —scrollregion

Database Name: scrollRegion

Database Class: ScrollRegion

Specifies a list with four coordinates describing the left, top, right, and bottom coordinate

efore it

ranvas’s
nat

y man-
ection

s of a

rectangular region. This region is used for scrolling purposes and is considered to be the bpundary

of the information in the canvas. Each of the coordinates may be specified in any of the
given in the COORDINATES section below.

Command-Line Name: —width
Database Name: width
Database Class: width

forms

Specifies a desired window width that the canvas widget should request from its geometry man-

ager. The value may be specified in any of the forms described in the COORDINATES <
below.

Command-Line Name: —xscrollincrement

Database Name: xScrollincrement

Database Class: Scrollincrement

Specifies an increment for horizontal scrolling, in any of the usual forms permitted for S

ection

creen

Last change: 4.0 1

Tk Built-In Commands canvas(n)

distances. If the value of this option is greater than zero, the horizontal view in the window will be
constrained so that the canvas x coordinate at the left edge of the window is always an even multi-
ple of xScrollincrement; furthermore, the units for scrolling (e.g., the change in view when the
left and right arrows of a scrollbar are selected) will alseSmollincrement. If the value of this
option is less than or equal to zero, then horizontal scrolling is unconstrained.

Command-Line Name: -yscrollincrement
Database Name: yScrollincrement
Database Class: Scrollincrement

Specifies an increment for vertical scrolling, in any of the usual forms permitted for screen dis-
tances. If the value of this option is greater than zero, the vertical view in the window will be con-
strained so that the canvas y coordinate at the top edge of the window is always an even multiple
of yScrollincrement; furthermore, the units for scrolling (e.g., the change in view when the top
and bottom arrows of a scrollbar are selected) will alspSmeollincrement. If the value of this
option is less than or equal to zero, then vertical scrolling is unconstrained.

INTRODUCTION

The canvascommand creates a new window (given by plaghNameargument) and makes it into a canvas
widget. Additional options, described above, may be specified on the command line or in the option
database to configure aspects of the canvas such as its colors and 3-D relazfhvBiseommand returns

its pathNameargument. At the time this command is invoked, there must not exist a window pathed
Name butpathNamé& parent must exist.

Canvas widgets implement structured graphics. A canvas displays any nunmibtemgfwhich may be

things like rectangles, circles, lines, and text. Items may be manipulated (e.g. moved or re-colored) and
commands may be associated with items in much the same way thatdlemmand allows commands

to be bound to widgets. For example, a particular command may be associated with the <Button-1> event
so that the command is invoked whenever button 1 is pressed with the mouse cursor over an item. This
means that items in a canvas can have behaviors defined by the Tcl scripts bound to them.

DISPLAY LIST

The items in a canvas are ordered for purposes of display, with the first item in the display list being dis-
played first, followed by the next item in the list, and so on. Items later in the display list obscure those that
are earlier in the display list and are sometimes referred to as being “on top” of earlier items. When a new
item is created it is placed at the end of the display list, on top of everything else. Widget commands may
be used to re-arrange the order of the display list.

Window items are an exception to theoabrules. The underlying window systems require them always to
be drawn on top of other items. In addition, the stacking order of window items is not affected by any of
the canvas widget commands; you must usedise andlower Tk commands instead.

ITEM IDS AND TAGS

Tk

Items in a canvas widget may be named in either of two ways: by id or by tag. Each item has a unique
identifying number which is assigned to that item when it is created. The id of an item never changes and
id numbers are never re-used within the lifetime of a canvas widget.

Each item may also have any numbetagfsassociated with it. A tag is just a string of characters, and it
may take any form except that of an integer. For example, “x123” is OK but “123” isn't. The same tag
may be associated with many different items. This is commonly done to group items in various interesting
ways; for example, all selected items might be given the tag “selected”.

Last change: 4.0 2

Tk Built-In Commands canvas(n)

The tagall is implicitly associated with every item in the canvas; it may be used to invoke operations on all
the items in the canvas.

The tagcurrent is managed automatically by Tk; it applies to teerent item which is the topmost item
whose drawn area covers the position of the mouse cursor. If the mouse is not in the canvas widget or is not
over an item, then no item has th@rent tag.

When specifying items in canvas widget commands, if the specifier is an integer then it is assumed to refer
to the single item with that id. If the specifier is not an integer, then it is assumed to refer to all of the items
in the canvas that have a tag matching the specifier. The syag@alid is used below to indicate that an
argument specifies either an id that selects a single item or a tag that selects zero or more items. Some wid-
get commands only operate on a single item at a timag®rld is specified in a way that names multiple

items, then the normal behavior is for the command to use the first (lowest) of these items in the display list
that is suitable for the command. Exceptions are noted in the widget command descriptions below.

COORDINATES

All coordinates related to canvases are stored as floating-point numbers. Coordinates and distances are
specified in screen units, which are floating-point numbers optionally followed by one of several letters. If
no letter is supplied then the distance is in pixels. If the lettartisen the distance is in millimeters on the
screen; if it isc then the distance is in centimetdrajeans inches, ammeans printers points (1/72 inch).

Larger y-coordinates refer to points lower on the screen; larger x-coordinates refer to points farther to the
right.

TRANSFORMATIONS

Normally the origin of the canvas coordinate system is at the upper-left corner of the window containing the
canvas. It is possible to adjust the origin of the canvas coordinate system relative to the origin of the win-
dow using thexview andyview widget commands; this is typically used for scrolling. Canvases do not
support scaling or rotation of the canvas coordinate system relative to the window coordinate system.

Individual items may be moved or scaled using widget commands described below, but they may not be
rotated.

INDICES

Tk

Text items support the notion of amdexfor identifying particular positions within the item. Indices are

used for commands such as inserting text, deleting a range of characters, and setting the insertion cursor
position. An index may be specified in any of a number of ways, and different types of items may support
different forms for specifying indices. Text items support the following forms for an index; if you define
new types of text-like items, it would be advisable to support as many of these forms as practical. Note that
it is possible to refer to the character just after the last one in the text item; this is necessary for such tasks
as inserting new text at the end of the item.

number A decimal number giving the position of the desired character within the text item. O refers to
the first character, 1 to the next character, and so on. A number less than O is treated as if it
were zero, and a number greater than the length of the text item is treated as if it were equal to
the length of the text item.

end Refers to the character just after the last one in the item (same as the number of characters in
the item).
insert Refers to the character just before which the insertion cursor is drawn in this item.

sel.first Refers to the first selected character in the item. If the selection isn't in this item then this form
is illegal.

sel.last Refers to the last selected character in the item. If the selection isn't in this item then this form

Last change: 4.0 3

Tk Built-In Commands canvas(n)

@xy

is illegal.

Refers to the character at the point giverxtandy, wherex andy are specified in the coordi-
nate system of the canvas.xlandy lie outside the coordinates covered by the text item, then
they refer to the first or last character in the line that is closest to the given point.

WIDGET COMMAND
The canvascommand creates a new Tcl command whose napettidlame This command may be used
to invoke various operations on the widget. It has the following general form:

pathName optioffarg arg ..?

Optionand theargs determine the exact behavior of the command. The following widget commands are
possible for canvas widgets:

pathNameaddtag tag searchSpe®arg arg ..?

For each item that meets the constraints specifiestaschSpeand theargs, addagto the list of

tags associated with the item if it isn’t already present on that list. It is possible that no items will
satisfy the constraints given lsgarchSpeandargs, in which case the command has no effect.
This command returns an empty string as resbéarchSpeandarg's may take any of the fol-
lowing forms:

abovetagOrlid
Selects the item just after (above) the one giveta®ridin the display list. ItagOrid
denotes more than one item, then the last (topmost) of these items in the display list is

used.
all Selects all the items in the canvas.
belowtagOrld

Selects the item just before (below) the one giventdmOrld in the display list. If
tagOrld denotes more than one item, then the first (lowest) of these items in the display
list is used.

closestx y Zhalo? &tart?
Selects the item closest to the point giverxlaydy. If more than one item is at the same
closest distance (e.g. two items overlap the point), then the top-most of these items (the
last one in the display list) is used. Hélo is specified, then it must be a non-negative
value. Any item closer thamalo to the point is considered to overlap it. Tstart argu-
ment may be used to step circularly through all the closest itenstariis specified, it
names an item using a tag or id (if by tag, it selects the first item in the display list with
the given tag). Instead of selecting the topmost closest item, this form will select the top-
most closest item that is belastart in the display list; if no such item exists, then the
selection behaves as if te&artargument had not been specified.

enclosedx1 y1 x2 y2
Selects all the items completely enclosed within the rectangular region gively yily
x2, andy2. X1 must be no greater tha andy1 must be no greater thgg.

overlapping x1 y1 x2 y2
Selects all the items that overlap or are enclosed within the rectangular region given by
x1, y1, x2, andy2. X1 must be no greater the® andyl1 must be no greater thgg.

withtag tagOrld
Selects all the items given tbggOrld.

pathNamebbox tagOrld 2agOrld tagOrld ..?

Tk

Returns a list with four elements giving an approximate bounding box for all the items named by
thetagOrld arguments. The list has the forrt®' y1 x2 y2 such that the drawn areas of all the

Last change: 4.0 4

Tk Built-In Commands canvas(n)

Tk

named elements are within the region bounderllpn the leftx2 on the righty1 on the top, and

y2 on the bottom. The return value may overestimate the actual bounding box by a few pixels. If
no items match any of ttagOrld arguments or if the matching items have empty bounding boxes
(i.e. they have nothing to display) then an empty string is returned.

pathNamebind tagOrld ?sequence Tomman@
This command associateemmandwith all the items given byagOrld such that whenever the
event sequence given Bgquenceccurs for one of the items the command will be invoked. This
widget command is similar to th@nd command except that it operates on items in a canvas
rather than entire widgets. See thimd manual entry for complete details on the syntax of
sequenceand the substitutions performed oommandbefore invoking it. If all arguments are
specified then a new binding is created, replacing any existing binding for thesequemceand
tagOrld (if the first character ofommands “+” then commandaugments an existing binding
rather than replacing it). In this case the return value is an empty stringmthands omitted
then the command returns tbemmandassociated witliagOrld andsequencéan error occurs if
there is no such binding). If bodtommandandsequencare omitted then the command returns a
list of all the sequences for which bindings have been defineddgorid.

The only events for which bindings may be specified are those related to the mouse and keyboard
(such asnter, Leave, ButtonPress Motion, andKeyPresg or virtual events. The handling of
events in canvases uses the current item defined in ITEM IDS AND TAGS aBoter. and
Leaveevents trigger for an item when it becomes the current item or ceases to be the current item;
note that these events are different tikamer and Leave events for windows. Mouse-related
events are directed to the current item, if any. Keyboard-related events are directed to the focus
item, if any (see thécuswidget command below for more on this). If a virtual event is used in a
binding, that binding can trigger only if the virtual event is defined by an underlying mouse-related
or keyboard-related event.

It is possible for multiple bindings to match a particular event. This could occur, for example, if
one binding is associated with the item’s id and another is associated with one of the item’s tags.
When this occurs, all of the matching bindings are invoked. A binding associated wath tege

is invoked first, followed by one binding for each of the item’s tags (in order), followed by a bind-
ing associated with the item’s id. If there are multiple matching bindings for a single tag, then
only the most specific binding is invoked. cdntinue command in a binding script terminates

that script, and &dreak command terminates that script and skips any remaining scripts for the
event, just as for theind command.

If bindings have been created for a canvas window usingititecommand, then they are invoked
in addition to bindings created for the canvas’s items usingitttewidget command. The bind-
ings for items will be invoked before any of the bindings for the window as a whole.

pathNamecanvasxscreenxX?gridspacing@
Given a window x-coordinate in the canvaseenxthis command returns the canvas x-coordinate
that is displayed at that location. gfidspacingis specified, then the canvas coordinate is rounded
to the nearest multiple gfridspacingunits.

pathNamecanvasyscreeny?gridspacing@
Given a window y-coordinate in the canvageenythis command returns the canvas y-coordinate
that is displayed at that location. gfidspacingis specified, then the canvas coordinate is rounded
to the nearest multiple gfridspacingunits.

pathNamecgetoption
Returns the current value of the configuration option giveopbipn Optionmay have any of the
values accepted by tlianvascommand.

pathNameconfigure 7optiorn? ¥alue? option value .2

Last change: 4.0 5

Tk Built-In Commands canvas(n)

Query or modify the configuration options of the widget. Ifamtionis specified, returns a list
describing all of the available options foathName(seeTk_Configurelnfo for information on

the format of this list). Ifoption is specified with novsalug then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooptionis specified). If one or moreption—valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty stringdptionmay have any of the values accepted bycdm®/ascommand.

pathNamecoordstagOrid 2x0 y0 ..?
Query or modify the coordinates that define an item. If no coordinates are specified, this com-
mand returns a list whose elements are the coordinates of the item natag®tig. If coordi-
nates are specified, then they replace the current coordinates for the named tigy@rldfrefers
to multiple items, then the first one in the display list is used.

pathNamecreatetype x y?x y ..? “option value .2
Create a new item ipathNameof type type The exact format of the arguments aftgpe
depends otype, but usually they consist of the coordinates for one or more points, followed by
specifications for zero or more item options. See the subsections on individual item types below
for more on the syntax of this command. This command returns the id for the new item.

pathNamelcharstagOrld firstAast?
For each item given biagOrld, delete the characters in the range givefirsyandlast, inclusive.
If some of the items given bagOrld don't support text operations, then they are ignoreidst
andlast are indices of characters within the item(s) as described in INDICES abolast if
omitted, it defaults téirst. This command returns an empty string.

pathNameleleteagOrld tagOrld ..?
Delete each of the items given by eaajOrld, and return an empty string.

pathNameltag tagOrld 2tagToDelet@
For each of the items given bggOrld, delete the tag given tgpgToDeletdrom the list of those
associated with the item. If an item doesn’t have thedggoDeletehen the item is unaffected
by the command. IfagToDeletds omitted then it defaults tagOrld. This command returns an
empty string.

pathNamdind searchCommantarg arg ..?
This command returns a list consisting of all the items that meet the constraints specified by
searchComman@nd arg's. SearchCommandnd args have any of the forms accepted by the
addtagcommand. The items are returned in stacking order, with the lowest item first.

pathNamdocus ?tagOrid?
Set the keyboard focus for the canvas widget to the item giveag®rid. If tagOrld refers to
several items, then the focus is set to the first such item in the display list that supports the inser-
tion cursor. IftagOrld doesn't refer to any items, or if none of them support the insertion cursor,
then the focus isn’'t changed. tHgOrld is an empty string, then the focus item is reset so that no
item has the focus. HagOrldis not specified then the command returns the id for the item that
currently has the focus, or an empty string if no item has the focus.

Once the focus has been set to an item, the item will display the insertion cursor and all keyboard
events will be directed to that item. The focus item within a canvas and the focus window on the
screen (set with thiocus command) are totally independent: a given item doesn't actually have
the input focus unless (a) its canvas is the focus window and (b) the item is the focus item within
the canvas. In most cases it is advisable to followidbeswidget command with thiacuscom-

mand to set the focus window to the canvas (if it wasn'’t there already).

pathNamegettagstagOrld
Return a list whose elements are the tags associated with the item gitagyObold. If tagOrld

Tk Last change: 4.0 6

Tk Built-In Commands canvas(n)

Tk

refers to more than one item, then the tags are returned from the first such item in the display list.
If tagOrld doesn't refer to any items, or if the item contains no tags, then an empty string is
returned.

pathNamecursor tagOrld index

Set the position of the insertion cursor for the item(s) givetag@rld to just before the character
whose position is given byndex If some or all of the items given bggOrld don’t support an
insertion cursor then this command has no effect on them. See INDI@ESfaba description

of the legal forms foindex Note: the insertion cursor is only displayed in an item if that item
currently has the keyboard focus (see the widget comifoznd below), but the cursor position
may be set even when the item doesn’t have the focus. This command returns an empty string.

pathNamendex tagOrld index

This command returns a decimal string giving the numerical index wabi@rld corresponding
toindex Indexgives a textual description of the desired position as described in INDICES above.
The return value is guaranteed to lie between 0 and the number of characters within the item,
inclusive. IftagOrldrefers to multiple items, then the index is processed in the first of these items
that supports indexing operations (in display list order).

pathNamensert tagOrld beforeThis string

For each of the items given liggOrld, if the item supports text insertion thetring is inserted
into the item’s text just before the character whose indé@efsreThis See INDICES atwe for
information about the forms allowed floeforeThis This command returns an empty string.

pathNameatemcgettagOrld option

Returns the current value of the configuration option for the item givéag®drid whose name is
option This command is similar to thegetwidget command except that it applies to a particular
item rather than the widget as a who@ption may have any of the values accepted bycteate
widget command when the item was createdadfOrldis a tag that refers to more than one item,
the first (lowest) such item is used.

pathNametemconfigure tagOrld ?option? dalue? ption value .2

This command is similar to theonfigure widget command except that it modifies item-specific
options for the items given tggOrld instead of modifying options for the overall canvas widget.

If no optionis specified, returns a list describing all of the available options for the first item given
by tagOrld (seeTk_Configurelnfo for information on the format of this list). ptionis speci-

fied with novalue then the command returns a list describing the one named option (this list will
be identical to the corresponding sublist of the value returnedaptionis specified). If one or
more option—valuepairs are specified, then the command modifies the given widget option(s) to
have the given value(s) in each of the items givetag@rld; in this case the command returns an
empty string. Theptions andvalues are the same as those permissible irctbate widget com-
mand when the item(s) were created; see the sections describing individual item types below for
details on the legal options.

pathNamdower tagOrld ?belowThi&

Move all of the items given byagOrld to a new position in the display list just before the item
given bybelowThis If tagOrld refers to more than one item then all are moved but the relative
order of the moved items will not be changéklowThisis a tag or id; if it refers to more than

one item then the first (lowest) of these items in the display list is used as the destination location
for the moved items. Note: this command has no effect on window items. Window items always
obscure other item types, and the stacking order of window items is determinedraigetand

lower commands, not theaise andlower widget commands for canvases. This command returns

an empty string.

pathNamenovetagOrld xAmount yAmount

Move each of the items given liggOrld in the canvas coordinate space by addiAghountto the

Last change: 4.0 7

Tk Built-In Commands canvas(n)

x-coordinate of each point associated with the itemyaudountto the y-coordinate of each point
associated with the item. This command returns an empty string.

pathNamepostscript ?option value option value ?..
Generate a Postscript representation for part or all of the canvas. filtheption is specified
then the Postscript is written to a file and an empty string is returned; otherwise the Postscript is
returned as the result of the command. If the interpreter that owns the canvas is marked as safe,
the operation will fail because safe interpreters are not allowed to write files. {cktamnel
option is specified, the argument denotes the name of a channel already opened for writing. The
Postscript is written to that channel, and the channel is left open for further writing at the end of
the operation. The Postscript is created in Encapsulated Postscript form using version 3.0 of the
Document Structuring Conventions. Note: by default Postscript is only generated for information
that appears in the canvas’s window on the screen. If the canvas is freshly created it may still have
its initial size of 1x1 pixel so nothing will appear in the Postscript. To get around this problem
either invoke the "update" command to wait for the canvas window to reach its final size, or else
use the-width and-height options to specify the area of the canvas to print. dpton-value
argument pairs provide additional information to control the generation of Postscript. The follow-
ing options are supported:

—colormap varName
VarNamemust be the name of an array variable that specifies a color mapping to use in
the Postscript. Each elementvairNamemust consist of Postscript code to set a particu-
lar color value (e.g. 1.0 1.0 0.0 setrgbcold). When outputting color information in
the Postscript, Tk checks to see if there is an elemergrbfamewith the same name as
the color. If so, Tk uses the value of the element as the Postscript command to set the
color. If this option hasn’t been specified, or if there isn’t an entigaiNamefor a given
color, then Tk uses the red, green, and blue intensities from the X color.

—colormodemode
Specifies how to output color informatioModemust be eithecolor (for full color out-
put), gray (convert all colors to their gray-scale equivalentsinono (convert all colors
to black or white).

—file fileName
Specifies the name of the file in which to write the Postscript. If this option isn’t speci-
fied then the Postscript is returned as the result of the command instead of being written
to a file.

—fontmap varName
VarNamemust be the name of an array variable that specifies a font mapping to use in the
Postscript. Each element edirNamemust consist of a Tcl list with two elements, which
are the name and point size of a Postscript font. When outputting Postscript commands
for a particular font, Tk checks to seevdrNamecontains an element with the same
name as the font. If there is such an element, then the font information contained in that
element is used in the Postscript. Otherwise Tk attempts to guess what Postscript font to
use. Tk’s guesses generally only work for well-known fonts such as Times and Helvetica
and Courier, and only if the X font name does not omit any dashes up through the point
size. For example, -[3-Courier-Bold—R-Normal--3120-0 will work but
[Courier-Bold—R-Normal [(1.200will not; Tk needs the dashes to parse the font name).

—height size
Specifies the height of the area of the canvas to print. Defaults to the height of the canvas
window.

—pageanchoranchor
Specifies which point of the printed area of the canvas should appear over the positioning

Tk Last change: 4.0 8

Tk Built-In Commands canvas(n)

Tk

point on the page (which is given by thpagex and —pagey options). For example,
—pageanchor nmeans that the top center of the area of the canvas being printed (as it
appears in the canvas window) should be over the positioning point. Defazdtsién

—pageheightsize
Specifies that the Postscript should be scaled in both x and y so that the printed area is
sizehigh on the Postscript pag&izeconsists of a floating-point number followed by
for centimetersi for inches,m for millimeters, orp or nothing for printer's points (1/72
inch). Defaults to the height of the printed area on the screen. IHpaiieheightand
—pagewidth are specified then the scale factor frepagewidth is used (non-uniform
scaling is not implemented).

—pagewidth size
Specifies that the Postscript should be scaled in both x and y so that the printed area is
sizewide on the Postscript pag8izehas the same form as fepageheight Defaults to
the width of the printed area on the screen. If bgthgeheightand —pagewidth are
specified then the scale factor frompagewidth is used (non-uniform scaling is not
implemented).

—pagexposition
Positiongives the x-coordinate of the positioning point on the Postscript page, using any
of the forms allowed for-pageheight Used in conjunction with the-pagey and
—pageanchoroptions to determine where the printed area appears on the Postscript page.
Defaults to the center of the page.

—pageyposition
Positiongives the y-coordinate of the positioning point on the Postscript page, using any
of the forms allowed for-pageheight Used in conjunction with the-pagex and
—pageanchoroptions to determine where the printed area appears on the Postscript page.
Defaults to the center of the page.

—rotate boolean
Booleanspecifies whether the printed area is to be rotated 90 degrees. In non-rotated out-
put the x-axis of the printed area runs along the short dimension of the page (“portrait”
orientation); in rotated output the x-axis runs along the long dimension of the page
(“landscape” orientation). Defaults to non-rotated.

—-width size
Specifies the width of the area of the canvas to print. Defaults to the width of the canvas
window.

—X position
Specifies the x-coordinate of the left edge of the area of the canvas that is to be printed, in
canvas coordinates, not window coordinates. Defaults to the coordinate of the left edge
of the window.

-y position
Specifies the y-coordinate of the top edge of the area of the canvas that is to be printed, in
canvas coordinates, not window coordinates. Defaults to the coordinate of the top edge
of the window.

pathNameaise tagOrld 7aboveThi8

Move all of the items given byagOrldto a new position in the display list just after the item given

by aboveThis If tagOrld refers to more than one item then all are moved but the relative order of
the moved items will not be changeAboveThids a tag or id; if it refers to more than one item

then the last (topmost) of these items in the display list is used as the destination location for the
moved items. Note: this command has no effect on window items. Window items always obscure

Last change: 4.0 9

Tk Built-In Commands canvas(n)

other item types, and the stacking order of window items is determined bgisgkeand lower
commands, not theaise and lower widget commands for canvases. This command returns an
empty string.

pathNamescaletagOrld xOrigin yOrigin xScale yScale
Rescale all of the items given tggOrld in canvas coordinate spac¥Origin andyOrigin iden-
tify the origin for the scaling operation ar8caleandyScaleidentify the scale factors for x- and
y-coordinates, respectively (a scale factor of 1.0 implies no change to that coordinate). For each of
the points defining each item, the x-coordinate is adjusted to change the distanc®riigimby
a factor ofxScale Similarly, each y-coordinate is adjusted to change the distancey@oigin by
a factor ofyScale This command returns an empty string.

pathNamescanoption args
This command is used to implement scanning on canvases. It has two forms, depeogiimon

pathNamescan markx y
Recordsx andy and the canvas’s current view; used in conjunction with latan
dragto commands. Typically this command is associated with a mouse button press in
the widget and andy are the coordinates of the mouse. It returns an empty string.

pathNamescan dragtox .
This command computes the difference betweer @&sdy arguments (which are typi-
cally mouse coordinates) and thandy arguments to the lastan mark command for
the widget. It then adjusts the view by 10 times the difference in coordinates. This com-
mand is typically associated with mouse motion events in the widget, to produce the
effect of dragging the canvas at high speed through its window. The return value is an
empty string.

pathNameselectoption 2agOrld ard?
Manipulates the selection in one of several ways, dependigptmn The command may take
any of the forms described below. In all of the descriptions bebwy®rid must refer to an item
that supports indexing and selection; if it refers to multiple items then the first of these that sup-
ports indexing and the selection is usdddex gives a textual description of a position within
tagOrld, as described in INDICES above.

pathNameselect adjusttagOrld index
Locate the end of the selectiontagOrld nearest to the character given ingex and
adjust that end of the selection to bénalex(i.e. including but not going beyondde).
The other end of the selection is made the anchor point for feleet tocommands. If
the selection isn't currently itagOrld then this command behaves the same asdleet
to widget command. Returns an empty string.

pathNameselect clear
Clear the selection if it is in this widget. If the selection isn’t in this widget then the com-
mand has no effect. Returns an empty string.

pathNameselect fromtagOrld index
Set the selection anchor point for the widget to be just before the character gindaxoy
in the item given byagOrld. This command doesn’t change the selection; it just sets the
fixed end of the selection for futuselect tocommands. Returns an empty string.

pathNameselect item
Returns the id of the selected item, if the selection is in an item in this canvas. If the
selection is not in this canvas then an empty string is returned.

pathNameselect totagOrld index
Set the selection to consist of those charactetagidrid between the selection anchor
point andindex The new selection will include the character givenifgex it will

Tk Last change: 4.0 10

Tk Built-In Commands canvas(n)

include the character given by the anchor point onilydéxis greater than or equal to the
anchor point. The anchor point is determined by the most reetadt adjustor select
from command for this widget. If the selection anchor point for the widget isn't cur-
rently intagOrld, then it is set to the same character giverinblgx Returns an empty
string.

pathNameype tagOrld
Returns the type of the item given tagOrld, such agectangleor text. If tagOrldrefers to more
than one item, then the type of the first item in the display list is returnéaQfld doesn't refer
to any items at all then an empty string is returned.

pathNamexview ?args?
This command is used to query and change the horizontal position of the information displayed in
the canvas’s window. It can take any of the following forms:

pathNamexview
Returns a list containing two elements. Each element is a real fraction between 0 and 1;
together they describe the horizontal span that is visible in the window. For example, if
the first element is .2 and the second element is .6, 20% of the canvas’s area (as defined
by the—scrollregion option) is off-screen to the left, the middle 40% is visible in the win-
dow, and 40% of the canvas is off-screen to the right. These are the same values passed
to scrollbars via thexscrollcommandoption.

pathNamexview movetofraction
Adjusts the view in the window so th&fction of the total width of the canvas is off-
screen to the leftFraction must be a fraction between 0 and 1.

pathNamexview scroll number what
This command shifts the view in the window left or right accordinguimberandwhat
Numbermust be an integeiWhatmust be eitheunits or pagesor an abbreviation of one
of these. lfwhatis units, the view adjusts left or right in units of tk&crollincrement
option, if it is greater than zero, or in units of one-tenth the window’s width otherwise. If
what ispagesthen the view adjusts in units of nine-tenths the window’s widtimumhber
is negative then information farther to the left becomes visible; if it is positive then infor-
mation farther to the right becomes visible.

pathNameyview ?args?
This command is used to query and change the vertical position of the information displayed in the
canvas’s window. It can take any of the following forms:

pathNameyview
Returns a list containing two elements. Each element is a real fraction between 0 and 1;
together they describe the vertical span that is visible in the window. For example, if the
first element is .6 and the second element is 1.0, the lowest 40% of the canvas’s area (as
defined by the-scrollregion option) is visible in the window. These are the same values
passed to scrollbars via thgscrollcommandoption.

pathNameyview movetofraction
Adjusts the view in the window so th&gction of the canvas’s area is off-screen to the
top. Fractionis a fraction between 0 and 1.

pathNameyview scroll number what
This command adjusts the view in the window up or down accordingutoberand
what Numbermust be an integeMVhatmust be eitheunits or pages If whatis units,
the view adjusts up or down in units of th8crollincrement option, if it is greater than
zero, or in units of one-tenth the window’s height otherwisewhét is pagesthen the
view adjusts in units of nine-tenths the window’s height.ndimberis negative then

Tk Last change: 4.0 11

Tk Built-In Commands canvas(n)

higher information becomes visible; if it is positive then lower information becomes visi-
ble.

OVERVIEW OF ITEM TYPES
The sections below describe the various types of items supported by canvas widgets. Each item type is
characterized by two things: first, the form of thheatecommand used to create instances of the type; and
second, a set of configuration options for items of that type, which may be usedresatieanditemcon-
figure widget commands. Most items don’t support indexing or selection or the commands related to them,
such asndex andinsert. Where items do support these facilities, it is noted explicitly in the descriptions
below (at present, only text items provide this support).

ARC ITEMS
Items of typearc appear on the display as arc-shaped regions. An arc is a section of an oval delimited by
two angles (specified by thestart and—extent options) and displayed in one of several ways (specified by
the—style option). Arcs are created with widget commands of the following form:

pathNamecreate arcx1 y1 x2 yZoption value option value ?..

The argumentg], y1, x2, andy2 give the coordinates of two diagonally opposite corners of a rectangular
region enclosing the oval that defines the arc. After the coordinates there may be any number of
option-value pairs, each of which sets one of the configuration options for the item. These same
option-value pairs may be used itemconfigure widget commands to change the item’s configuration.
The following options are supported for arcs:

—extentdegrees
Specifies the size of the angular range occupied by the arc. The arc’s range exteledsets
degrees counter-clockwise from the starting angle given by-stet option. Degreesmay be
negative. If itis greater than 360 or less than -360, tegmeeanodulo 360 is used as the extent.

—fill color
Fill the region of the arc witholor. Color may have any of the forms acceptedTiy GetColor.
If coloris an empty string (the default), then then the arc will not be filled.

—outline color
Color specifies a color to use for drawing the arc’s outline; it may have any of the forms accepted
by Tk_GetColor. This option defaults tblack. If color is specified as an empty string then no
outline is drawn for the arc.

—outlinestipple bitmap
Indicates that the outline for the arc should be drawn with a stipple pdiienap specifies the
stipple pattern to use, in any of the forms accepted lbyGetBitmap. If the —outline option
hasn’t been specified then this option has no effediitrifapis an empty string (the default), then
the outline is drawn in a solid fashion.

—start degrees
Specifies the beginning of the angular range occupied by theDagreesis given in units of
degrees measured counter-clockwise from the 3-o’clock position; it may be either positive or neg-
ative.

—stipple bitmap
Indicates that the arc should be filled in a stipple pattdtmap specifies the stipple pattern to
use, in any of the forms acceptedy GetBitmap. If the —fill option hasn't been specified then
this option has no effect. Hitmapis an empty string (the default), then filling is done in a solid
fashion.

—styletype
Specifies how to draw the arc. tifpeis pieslice(the default) then the arc’s region is defined by a

Tk Last change: 4.0 12

Tk Built-In Commands canvas(n)

section of the oval’'s perimeter plus two line segments, one between the center of the oval and each
end of the perimeter section. tifpeis chord then the arc’s region is defined by a section of the
oval's perimeter plus a single line segment connecting the two end points of the perimeter section.
If typeis arc then the arc’s region consists of a section of the perimeter alone. In this last case the
—fill option is ignored.

—tagstagList
Specifies a set of tags to apply to the itefagListconsists of a list of tag nhames, which replace
any existing tags for the itenTagListmay be an empty list.

—width outlineWidth
Specifies the width of the outline to be drawn around the arc’s region, in any of the forms
described in the COORDINATES section above. If Hwaitline option has been specified as an
empty string then this option has no effect. Wide outlines will be drawn centered on the edges of
the arc’s region. This option defaults to 1.0.

BITMAP ITEMS
ltems of typebitmap appear on the display as images with two colors, foreground and background.
Bitmaps are created with widget commands of the following form:

pathNamecreate bitmapx y ?option value option value 2.

The argumentg andy specify the coordinates of a point used to position the bitmap on the display (see the
—anchor option below for more information on how bitmaps are displayed). After the coordinates there
may be any number aption-valuepairs, each of which sets one of the configuration options for the item.
These sameption-valuepairs may be used itemconfigure widget commands to change the item’s con-
figuration. The following options are supported for bitmaps:

—anchor anchorPos
AnchorPostells how to position the bitmap relative to the positioning point for the item; it may
have any of the forms accepted Ty_GetAnchor. For example, ifinchorPods center then the
bitmap is centered on the point; ahchorPosis n then the bitmap will be drawn so that its top
center point is at the positioning point. This option defaultsetder.

—background color
Specifies a color to use for each of the bitmap pixels whose valueCisl@. may have any of the
forms accepted byk_GetColor. If this option isn’t specified, or if it is specified as an empty
string, then nothing is displayed where the bitmap pixels are 0; this produces a transparent effect.

—bitmap bitmap
Specifies the bitmap to display in the iteBitmap may have any of the forms accepted by
Tk_GetBitmap.

—foreground color
Specifies a color to use for each of the bitmap pixels whose valueCisldr may have any of the
forms accepted byk_GetColor and defaults tblack.

—tagstagList
Specifies a set of tags to apply to the itefagListconsists of a list of tag hames, which replace
any existing tags for the itenTagListmay be an empty list.

IMAGE ITEMS
Items of typemageare used to display images on a canvas. Images are created with widget commands of
the following form:
pathNamecreate imagex y ?option value option value ?..
The argumentg andy specify the coordinates of a point used to position the image on the display (see the
—anchor option below for more information). After the coordinates there may be any number of

Tk Last change: 4.0 13

Tk Built-In Commands canvas(n)

option-value pairs, each of which sets one of the configuration options for the item. These same
option-value pairs may be used itemconfigure widget commands to change the item’s configuration.
The following options are supported for images:

—anchor anchorPos
AnchorPostells how to position the image relative to the positioning point for the item; it may
have any of the forms accepted Ty _GetAnchor. For example, ifinchorPods center then the
image is centered on the point;aifichorPods n then the image will be drawn so that its top cen-
ter point is at the positioning point. This option defaultsdnter.

—-imagename
Specifies the name of the image to display in the item. This image must have been created previ-
ously with theimage createcommand.

—tagstagList
Specifies a set of tags to apply to the itefagListconsists of a list of tag hames, which replace
any existing tags for the item; it may be an empty list.

LINE ITEMS
Items of typdine appear on the display as one or more connected line segments or curves. Lines are cre-
ated with widget commands of the following form:

pathNamecreate linex1 y1... xn yroption value option value 2.

The argumentgl throughyn give the coordinates for a series of two or more points that describe a series of
connected line segments. After the coordinates there may be any nundmioofvalue pairs, each of
which sets one of the configuration options for the item. These sptizgrvalue pairs may be used in
itemconfigure widget commands to change the item’s configuration. The following options are supported
for lines:

—arrow where
Indicates whether or not arrowheads are to be drawn at one or both ends of thiéhiaremust
have one of the valuewne (for no arrowheadsfjrst (for an arrowhead at the first point of the
line), last (for an arrowhead at the last point of the line)both (for arrowheads at both ends).
This option defaults taone

—arrowshapeshape
This option indicates how to draw arrowheads. $hapeargument must be a list with three ele-
ments, each specifying a distance in any of the forms described in the COORDINATES section
above. The first element of the list gives the distance along the line from the neck of the arrow-
head to its tip. The second element gives the distance along the line from the trailing points of the
arrowhead to the tip, and the third element gives the distance from the outside edge of the line to
the trailing points. If this option isn’t specified then Tk picks a “reasonable” shape.

—capstylestyle
Specifies the ways in which caps are to be drawn at the endpoints of th8tliteenay have any
of the forms accepted Byk_GetCapStyle (butt, projecting, orround). If this option isn’t speci-
fied then it defaults tbutt. Where arrowheads are drawn the cap style is ignored.

—fill color
Color specifies a color to use for drawing the line; it may have any of the forms acceptable to
Tk_GetColor. It may also be an empty string, in which case the line will be transparent. This
option defaults tdlack.

—joinstyle style
Specifies the ways in which joints are to be drawn at the vertices of theéStiylemay have any

of the forms accepted bk _GetCapStyle (bevel miter, orround). If this option isn't specified
then it defaults toniter. If the line only contains two points then this option is irrelevant.

Tk Last change: 4.0 14

Tk Built-In Commands canvas(n)

—smoothboolean
Booleanmust have one of the forms acceptediky GetBoolean It indicates whether or not the
line should be drawn as a curve. If so, the line is rendered as a set of parabolic splines: one spline
is drawn for the first and second line segments, one for the second and third, and so on. Straight-
line segments can be generated within a curve by duplicating the end-points of the desired line
segment.

—-splinestepshumber
Specifies the degree of smoothness desired for curves: each spline will be approximated with
numberine segments. This option is ignored unless-thimoothoption is true.

—stipple bitmap
Indicates that the line should be filled in a stipple patteitmap specifies the stipple pattern to
use, in any of the forms accepted By GetBitmap. If bitmapis an empty string (the default),
then filling is done in a solid fashion.

—tagstagList
Specifies a set of tags to apply to the itefagListconsists of a list of tag hames, which replace
any existing tags for the itenTagListmay be an empty list.

-width lineWidth
LineWidthspecifies the width of the line, in any of the forms described in the COORDINATES
section above. Wide lines will be drawn centered on the path specified by the points. If this
option isn't specified then it defaults to 1.0.

OVAL ITEMS

Tk

Items of typeoval appear as circular or oval regions on the display. Each oval may have an outline, a fill, or
both. Ovals are created with widget commands of the following form:

pathNamecreate ovalx1 y1 x2 yZoption value option value ?..
The argumentg], y1, x2, andy?2 give the coordinates of two diagonally opposite corners of a rectangular
region enclosing the oval. The oval will include the top and left edges of the rectangle not the lower or
right edges. If the region is square then the resulting oval is circular; otherwise it is elongated in shape.
After the coordinates there may be any numbearption-valuepairs, each of which sets one of the config-
uration options for the item. These saomion-value pairs may be used itemconfigure widget com-
mands to change the item’s configuration. The following options are supported for ovals:

—fill color
Fill the area of the oval witholor. Color may have any of the forms acceptedTty GetColor.
If coloris an empty string (the default), then then the oval will not be filled.

—outline color
Color specifies a color to use for drawing the oval’'s outline; it may have any of the forms
accepted byrk_GetColor. This option defaults tblack. If coloris an empty string then no out-
line will be drawn for the oval.

—stipple bitmap
Indicates that the oval should be filled in a stipple patigitmap specifies the stipple pattern to
use, in any of the forms acceptedy GetBitmap. If the —fill option hasn't been specified then
this option has no effect. Hitmapis an empty string (the default), then filling is done in a solid
fashion.

—tagstagList
Specifies a set of tags to apply to the itefagListconsists of a list of tag names, which replace
any existing tags for the itenTagListmay be an empty list.

—width outlineWidth
outlineWidthspecifies the width of the outline to be drawn around the oval, in any of the forms

Last change: 4.0 15

Tk Built-In Commands canvas(n)

described in the COORDINATES section above. If Hoaitline option hasn't been specified then
this option has no effect. Wide outlines are drawn centered on the oval path defideglhx?2,
andy2. This option defaults to 1.0.

POLYGON ITEMS

Tk

Items of typepolygon appear as polygonal or curved filled regions on the display. Polygons are created
with widget commands of the following form:

pathNamecreate polygonx1 y1 ... xn yrPoption value option value ?..
The argumentg1 throughyn specify the coordinates for three or more points that define a closed polygon.
The first and last points may be the same; whether they are or not, Tk will draw the polygon as a closed
polygon. After the coordinates there may be any numbeptén-valuepairs, each of which sets one of
the configuration options for the item. These samion-valuepairs may be used itemconfigure wid-
get commands to change the item’s configuration. The following options are supported for polygons:

—fill color
Color specifies a color to use for filling the area of the polygon; it may have any of the forms
acceptable tadk_GetColor. If coloris an empty string then the polygon will be transparent. This
option defaults tdlack.

—outline color
Color specifies a color to use for drawing the polygon’s outline; it may have any of the forms
accepted byfk_GetColor. If coloris an empty string then no outline will be drawn for the poly-
gon. This option defaults to empty (no outline).

—smoothboolean
Booleanmust have one of the forms acceptedTBy GetBooleanlt indicates whether or not the
polygon should be drawn with a curved perimeter. If so, the outline of the polygon becomes a set
of parabolic splines, one spline for the first and second line segments, one for the second and third,
and so on. Straight-line segments can be generated in a smoothed polygon by duplicating the end-
points of the desired line segment.

—splinestepsnumber
Specifies the degree of smoothness desired for curves: each spline will be approximated with
numberine segments. This option is ignored unless-thimoothoption is true.

—stipple bitmap
Indicates that the polygon should be filled in a stipple pattéimap specifies the stipple pattern
to use, in any of the forms acceptedTdy GetBitmap. If bitmapis an empty string (the default),
then filling is done in a solid fashion.

—tagstagList
Specifies a set of tags to apply to the itefagListconsists of a list of tag names, which replace
any existing tags for the itenTagListmay be an empty list.

—width outlineWidth
OutlineWidthspecifies the width of the outline to be drawn around the polygon, in any of the
forms described in the COORDINATES section above. If-thetline option hasn’t been speci-
fied then this option has no effect. This option defaults to 1.0.

Polygon items are different from other items such as rectangles, ovals and arcs in that interior points are
considered to be “inside” a polygon (e.g. for purposes offtheé closestandfind overlapping widget
commands) even if it is not filled. For most other item types, an interior point is considered to be inside the
item only if the item is filled or if it has neither a fill nor an outline. If you would like an unfilled polygon
whose interior points are not considered to be inside the polygon, use a line item instead.

Last change: 4.0 16

Tk Built-In Commands canvas(n)

RECTANGLE ITEMS

Items of typerectangleappear as rectangular regions on the display. Each rectangle may have an outline, a
fill, or both. Rectangles are created with widget commands of the following form:

pathNamecreate rectanglex1 y1 x2 yZoption value option value ?..
The argumentg], y1, x2, andy?2 give the coordinates of two diagonally opposite corners of the rectangle
(the rectangle will include its upper and left edges but not its lower or right edges). After the coordinates
there may be any number @ption-valuepairs, each of which sets one of the configuration options for the
item. These sameption-valuepairs may be used itemconfigure widget commands to change the item’s
configuration. The following options are supported for rectangles:

—fill color
Fill the area of the rectangle wittolor, which may be specified in any of the forms accepted by
Tk_GetColor. If coloris an empty string (the default), then the rectangle will not be filled.

—outline color
Draw an outline around the edge of the rectanglealor. Color may have any of the forms
accepted byrk_GetColor. This option defaults tblack. If coloris an empty string then no out-
line will be drawn for the rectangle.

—stipple bitmap
Indicates that the rectangle should be filled in a stipple patigmmapspecifies the stipple pattern
to use, in any of the forms accepted By GetBitmap. If the —fill option hasn’t been specified
then this option has no effect. Bitmapis an empty string (the default), then filling is done in a
solid fashion.

—tagstagList
Specifies a set of tags to apply to the itefagListconsists of a list of tag names, which replace
any existing tags for the itenTagListmay be an empty list.

—width outlineWidth
OutlineWidthspecifies the width of the outline to be drawn around the rectangle, in any of the
forms described in the COORDINATES section above. If-thaetline option hasn’t been speci-
fied then this option has no effect. Wide outlines are drawn centered on the rectangular path
defined byx1, y1, x2, andy2. This option defaults to 1.0.

TEXT ITEMS

Tk

A text item displays a string of characters on the screen in one or more lines. Text items support indexing
and selection, along with the following text-related canvas widget commalufgrs, focus icursor,
index, insert, select Text items are created with widget commands of the following form:

pathNamecreate textx y ?option value option value ?..
The arguments andy specify the coordinates of a point used to position the text on the display (see the
options below for more information on how text is displayed). After the coordinates there may be any
number ofoption-valuepairs, each of which sets one of the configuration options for the item. These same
option-value pairs may be used itemconfigure widget commands to change the item’s configuration.
The following options are supported for text items:

—anchor anchorPos
AnchorPogells how to position the text relative to the positioning point for the text; it may have
any of the forms accepted Bk_GetAnchor. For example, ibnchorPosds centerthen the text is
centered on the point; #nchorPoss n then the text will be drawn such that the top center point
of the rectangular region occupied by the text will be at the positioning point. This option defaults
to center.

—fill color
Color specifies a color to use for filling the text characters; it may have any of the forms accepted

Last change: 4.0 17

Tk Built-In Commands canvas(n)

by Tk_GetColor. If this option isn’t specified then it defaultstitack.

—font fontName
Specifies the font to use for the text itefontNamemay be any string acceptable T&_Get-
FontStruct. If this option isn’t specified, it defaults to a system-dependent font.

—justify how
Specifies how to justify the text within its bounding regidtow must be one of the valudést,
right, or center. This option will only matter if the text is displayed as multiple lines. If the
option is omitted, it defaults teft.

—stipple bitmap
Indicates that the text should be drawn in a stippled pattern rather tharb&oia specifies the
stipple pattern to use, in any of the forms acceptedlbyGetBitmap. If bitmapis an empty
string (the default) then the text is drawn in a solid fashion.

—tagstagList
Specifies a set of tags to apply to the itefagListconsists of a list of tag hames, which replace
any existing tags for the itenTagListmay be an empty list.

—text string
String specifies the characters to be displayed in the text item. Newline characters cause line
breaks. The characters in the item may also be changed withs#te and delete widget com-
mands. This option defaults to an empty string.

—width lineLength
Specifies a maximum line length for the text, in any of the forms described in the COORDINATES
section above. If this option is zero (the default) the text is broken into lines only at newline char-
acters. However, if this option is non-zero then any line that would be longelirtahangthis
broken just before a space character to make the line shortdingslaength the space character
is treated as if it were a newline character.

WINDOW ITEMS

Items of typewindow cause a particular window to be displayed at a given position on the canvas. Window
items are created with widget commands of the following form:

pathNamecreate windowx y ?option value option value ?..
The argumentsg andy specify the coordinates of a point used to position the window on the display (see
the—anchor option below for more information on how bitmaps are displayed). After the coordinates there
may be any number aption-valuepairs, each of which sets one of the configuration options for the item.
These sameption-valuepairs may be used itemconfigure widget commands to change the item’s con-
figuration. The following options are supported for window items:

—anchor anchorPos
AnchorPogtells how to position the window relative to the positioning point for the item; it may
have any of the forms accepted Ty_GetAnchor. For example, ifinchorPods center then the
window is centered on the point; ahchorPoss n then the window will be drawn so that its top
center point is at the positioning point. This option defaultetder.

—height pixels
Specifies the height to assign to the item’s windBixelsmay have any of the forms described in
the COORDINATES section above. If this option isn’t specified, or if it is specified as an empty
string, then the window is given whatever height it requests internally.

—tagstagList
Specifies a set of tags to apply to the itefagListconsists of a list of tag names, which replace
any existing tags for the itenTagListmay be an empty list.

Tk Last change: 4.0 18

Tk Built-In Commands canvas(n)

—width pixels
Specifies the width to assign to the item’s windd®ixelsmay have any of the forms described in
the COORDINATES section above. If this option isn’t specified, or if it is specified as an empty
string, then the window is given whatever width it requests internally.

—window pathName
Specifies the window to associate with this item. The window specifigetiWyNamemust either
be a child of the canvas widget or a child of some ancestor of the canvas viddtigtamemnay
not refer to a top-level window.

Note: due to restrictions in the ways that windows are managed, it is not possible to draw other graphical
items (such as lines and images) on top of window items. A window item always obscures any graphics
that overlap it, regardless of their order in the display list.

APPLICATION-DEFINED ITEM TYPES

It is possible for individual applications to define new item types for canvas widgets using C code. See the
documentation folk_CreateltemType.

BINDINGS

In the current implementation, new canvases are not given any default behavior: you'll have to execute
explicit Tcl commands to give the canvas its behavior.

CREDITS
TK’s canvas widget is a blatant ripoff of ideas from Joel Bartlettdprogram. Ezd provides structured
graphics in a Scheme environment and preceded canvases by a year or two. Its simple mechanisms for
placing and animating graphical objects inspired the functions of canvases.

KEYWORDS
canvas, widget

Tk Last change: 4.0 19

Tk Built-In Commands checkbutton (n)

NAME
checkbutton — Create and manipulate checkbutton widgets

SYNOPSIS
checkbutton pathName?options?

STANDARD OPTIONS

—activebackground —cursor —highlightthickness —takefocus
—activeforeground —disabledforeground —-image —text
—anchor —font —justify —textvariable
—background —foreground —padx —underline
—bitmap —highlightbackground —pady —wraplength
—borderwidth —highlightcolor —relief

See theoptions manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Command-Line Name: -command
Database Name: command
Database Class: Command

Specifies a Tcl command to associate with the button. This command is typically invoked when
mouse button 1 is released over the button window. The button’s global varialéable
option) will be updated before the command is invoked.

Command-Line Name: —height

Database Name: height

Database Class: Height
Specifies a desired height for the button. If an image or bitmap is being displayed in the|button
then the value is in screen units (i.e. any of the forms acceptable GetPixels); for text it is in
lines of text. If this option isn’t specified, the button’s desired height is computed from the size of
the image or bitmap or text being displayed in it.

Command-Line Name: -indicatoron
Database Name: indicatorOn
Database Class: IndicatorOn

Specifies whether or not the indicator should be drawn. Must be a proper boolean value. |f false,
therelief option is ignored and the widget’s relief is always sunken if the widget is selected and
raised otherwise.

Command-Line Name: -offvalue
Database Name: offValue
Database Class: Value

Specifies value to store in the button’s associated variable whenever this button is desglected.
Defaults to “0”.

Command-Line Name: -onvalue
Database Name: onValue
Database Class: Value

Specifies value to store in the button’s associated variable whenever this button is selected.
Defaults to “1".
Command-Line Name: —selectcolor

Database Name: selectColor
Database Class: Background

Specifies a background color to use when the button is selectidlickitorOn is true then the

Tk Last change: 4.4 1

Tk Built-In Commands checkbutton (n)

color applies to the indicator. Under Windows, this color is used as the background for the ndica-
tor regardless of the select stateindicatorOn is false, this color is used as the background |for

the entire widget, in place dfickground or activeBackground, whenever the widget is selected.
If specified as an empty string then no special color is used for displaying when the widget is

selected.
Command-Line Name: -—selectimage
Database Name: selectimage
Database Class: Selectimage

Specifies an image to display (in place of image option) when the checkbutton is selected.
This option is ignored unless thmage option has been specified.

Command-Line Name: -state
Database Name: state
Database Class: State

Specifies one of three states for the checkbuttmmmal, active, or disabled In normal state the
checkbutton is displayed using tfieeground andbackground options. The active state is typ
cally used when the pointer is over the checkbutton. In active state the checkbutton is displayed
using theactiveForeground and activeBackground options. Disabled state means that the
checkbutton should be insensitive: the default bindings will refuse to activate the widget and will
ignore mouse button presses. In this statedisabledForeground and background options
determine how the checkbutton is displayed.

Command-Line Name: -variable
Database Name: variable
Database Class: Variable

Specifies name of global variable to set to indicate whether or not this button is selected. Defaults
to the name of the button within its parent (i.e. the last element of the button window’s path hame).

Command-Line Name: —width
Database Name: width
Database Class: Width

Specifies a desired width for the button. If an image or bitmap is being displayed in the |button
then the value is in screen units (i.e. any of the forms acceptable GetPixels); for text it is in
characters. If this option isn't specified, the button’s desired width is computed from the size of
the image or bitmap or text being displayed in it.

DESCRIPTION

Tk

The checkbutton command creates a new window (given by plaghNameargument) and makes it into a
checkbutton widget. Additional options, described above, may be specified on the command line or in the
option database to configure aspects of the checkbutton such as its colors, font, text, and initial relief. The
checkbutton command returns itgathNameargument. At the time this command is invoked, there must

not exist a window namegathNamebut pathNamé& parent must exist.

A checkbutton is a widget that displays a textual string, bitmap or image and a square daltéchsor.

If text is displayed, it must all be in a single font, but it can occupy multiple lines on the screen (if it con-
tains newlines or if wrapping occurs because ofwh&plLength option) and one of the characters may
optionally be underlined using tluaderline option. A checkbutton has all of the behavior of a simple but-

ton, including the following: it can display itself in either of three different ways, according siatee

option; it can be made to appear raised, sunken, or flat; it can be made to flash; and it invokes a Tcl com-
mand whenever mouse button 1 is clicked over the checkbutton.

Last change: 4.4 2

Tk Built-In Commands checkbutton (n)

In addition, checkbuttons can belected If a checkbutton is selected then the indicator is normally drawn

with a selected appearance, and a Tcl variable associated with the checkbutton is set to a particular value
(normally 1). Under Unix, the indicator is drawn with a sunken relief and a special color. Under Windows,
the indicator is drawn with a check mark inside. If the checkbutton is not selected, then the indicator is
drawn with a deselected appearance, and the associated variable is set to a different value (typically 0).
Under Unix, the indicator is drawn with a raised relief and no special color. Under Windows, the indicator
is drawn without a check mark inside. By default, the name of the variable associated with a checkbutton is
the same as theameused to create the checkbutton. The variable name, and the “on” and “off” values
stored in it, may be modified with options on the command line or in the option database. Configuration
options may also be used to modify the way the indicator is displayed (or whether it is displayed at all). By
default a checkbutton is configured to select and deselect itself on alternate button clicks. In addition, each
checkbutton monitors its associated variable and automatically selects and deselects itself when the vari-
ables value changes to and from the button’s “on” value.

WIDGET COMMAND

Tk

The checkbutton command creates a new Tcl command whose napah®ame This command may be
used to invoke various operations on the widget. It has the following general form:
pathName optioffarg arg ..?
Optionand theargs determine the exact behavior of the command. The following commands are possible
for checkbutton widgets:

pathNamecgetoption
Returns the current value of the configuration option giveopbipn Optionmay have any of the
values accepted by tleheckbutton command.

pathNameconfigure ?option? d/alue option value 2.
Query or modify the configuration options of the widget. Ifamtionis specified, returns a list
describing all of the available options foathName(seeTk_Configurelnfo for information on
the format of this list). Ifoption is specified with novalug then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooptionis specified). If one or moreption—valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty stringOption may have any of the values accepted bydieckbutton com-
mand.

pathNameleselect
Deselects the checkbutton and sets the associated variable to its “off” value.

pathNamelash
Flashes the checkbutton. This is accomplished by redisplaying the checkbutton several times,
alternating between active and normal colors. At the end of the flash the checkbutton is left in the
same normal/active state as when the command was invoked. This command is ignored if the
checkbutton’s state disabled

pathNamenvoke
Does just what would have happened if the user invoked the checkbutton with the mouse: toggle
the selection state of the button and invoke the Tcl command associated with the checkbutton, if
there is one. The return value is the return value from the Tcl command, or an empty string if
there is no command associated with the checkbutton. This command is ignored if the checkbut-
ton’s state iglisabled

pathNameselect
Selects the checkbutton and sets the associated variable to its “on” value.

pathNameoggle

Last change: 4.4 3

Tk Built-In Commands checkbutton (n)

Toggles the selection state of the button, redisplaying it and modifying its associated variable to
reflect the new state.

BINDINGS

Tk automatically creates class bindings for checkbuttons that give them the following default behavior:

[1] On Unix systems, a checkbutton activates whenever the mouse passes over it and deactivates
whenever the mouse leaves the checkbutton. On Mac and Windows systems, when mouse button
1 is pressed over a checkbutton, the button activates whenever the mouse pointer is inside the but-
ton, and deactivates whenever the mouse pointer leaves the button.

[2] When mouse button 1 is pressed over a checkbutton, it is invoked (its selection state toggles and
the command associated with the button is invoked, if there is one).

[3] When a checkbutton has the input focus, the space key causes the checkbutton to be invoked.
Under Windows, there are additional key bindings; plus (+) and equal (=) select the button, and
minus (-) deselects the button.

If the checkbutton’s state disabledthen none of the alve actions occur: the checkbutton is completely
non-responsive.

The behavior of checkbuttons can be changed by defining new bindings for individual widgets or by
redefining the class bindings.

KEYWORDS

Tk

checkbutton, widget

Last change: 4.4 4

Tk Built-In Commands tk_chooseColor (n)

NAME
tk_chooseColor — pops up a dialog box for the user to select a color.

SYNOPSIS
tk_chooseColor?option value .2

DESCRIPTION

The procedurek_chooseColor pops up a dialog box for the user to select a color. The following

option—valuepairs are possible as command line arguments:

—initialcolor color
Specifies the color to display in the color dialog when it popgalpr must be in a form accept-
able to therk_GetColor function.

—parent window
Makeswindowthe logical parent of the color dialog. The color dialog is displayed on top of its
parent window.

—title titleString

Specifies a string to display as the title of the dialog box. If this option is not specified, then a
default title will be displayed.

If the user selects a colak_chooseColorwill return the name of the color in a form acceptable to
Tk_GetColor. If the user cancels the operation, both commands will return the empty string.

EXAMPLE
button .b —fg [tk_chooseColor —initialcolor gray -title "Choose color"]

KEYWORDS
color selection dialog

Tk Last change: 4.2 1

Tk Built-In Commands clipboard (n)

NAME
clipboard — Manipulate Tk clipboard
SYNOPSIS
clipboard option?arg arg ..?
DESCRIPTION
This command provides a Tcl interface to the Tk clipboard, which stores data for later retrieval using the
selection mechanism. In order to copy data into the clipbaépthoard clear must be called, followed by
a sequence of one or more calllipboard append. To ensure that the clipboard is updated atomically,
all appends should be completed before returning to the event loop.
The first argument tolipboard determines the format of the rest of the arguments and the behavior of the
command. The following forms are currently supported:
clipboard clear ?—displayof window?
Claims ownership of the clipboard @nndows display and removes any previous conteiésn-
dowdefaults to “.". Returns an empty string.
clipboard append ?-displayof window? 2-format format? ?-type type? ?- -? data
Appendsdatato the clipboard omvindows display in the form given biypewith the representa-
tion given byformatand claims ownership of the clipboardwimdows display.
Typespecifies the form in which the selection is to be returned (the desired “target” for conver-
sion, in ICCCM terminology), and should be an atom name such as STRING or FILE_NAME; see
the Inter-Client Communication Conventions Manual for complete detdype defaults to
STRING.
The format argument specifies the representation that should be used to transmit the selection to
the requester (the second column of Table 2 of the ICCCM), and defaults to STRifé@nafis
STRING, the selection is transmitted as 8-bit ASCII characterfarrifatis ATOM, then thedata
is divided into fields separated by white space; each field is converted to its atom value, and the
32-bit atom value is transmitted instead of the atom name. For anyfotinat, datais divided
into fields separated by white space and each field is converted to a 32-bit integer; an array of inte-
gers is transmitted to the selection requester. Note that strings pasdipthdard append are
concatenated before conversion, so the caller must take care to ensure appropriate spacing across
string boundaries. All items appended to the clipboard with the sgramust have the sanfer-
mat
The formatargument is needed only for compatibility with clipboard requesters that don't use Tk.
If the Tk toolkit is being used to retrieve the CLIPBOARD selection then the value is converted
back to a string at the requesting endiosmatis irrelevant.
A —--argument may be specified to mark the end of options: the next argument will always be
used aslata This feature may be convenient if, for examplta starts with a-.
KEYWORDS
clear, format, clipboard, append, selection, type
Tk Last change: 4.0 1

Tk Built-In Commands destry (n)

NAME
destroy — Destroy one or more windows

SYNOPSIS
destroy 2window window .2

DESCRIPTION
This command deletes the windows given bywlredowarguments, plus all of their descendants. Wil
dow"“.” is deleted then the entire application will be destroyed. Wnedows are destroyed in order, and if
an error occurs in destroying a window the command aborts without destroying the remaining windows.

No error is returned Wvindowdoes not exist.

KEYWORDS
application, destroy, window

Tk Last change: 1

Tk Built-In Commands tk_dialog (n)

NAME
tk_dialog — Create modal dialog and wait for response

SYNOPSIS
tk_dialog window title text bitmap default string string ...

DESCRIPTION
This procedure is part of the Tk script library. Its arguments describe a dialog box:

window Name of top-level window to use for dialog. Any existing window by this name is destroyed.
title Text to appear in the window manager’s title bar for the dialog.
text Message to appear in the top portion of the dialog box.

bitmap If non-empty, specifies a bitmap to display in the top portion of the dialog, to the left of the text. If
this is an empty string then no bitmap is displayed in the dialog.

default If this is an integer greater than or equal to zero, then it gives the index of the button that is to be
the default button for the dialog (0 for the leftmost button, and so on). If less than zero or an
empty string then there won'’t be any default button.

string There will be one button for each of these arguments. &&oly specifies text to display in a but-
ton, in order from left to right.

After creating a dialog bostk_dialog waits for the user to select one of the buttons either by clicking on
the button with the mouse or by typing return to invoke the default button (if any). Then it returns the index
of the selected button: O for the leftmost button, 1 for the button next to it, and so on. If the dialog’s win-
dow is destroyed before the user selects one of the buttons, then -1 is returned.

While waiting for the user to respontl, dialog sets a local grab. This prevents the user from interacting
with the application in any way except to invoke the dialog box.

KEYWORDS
bitmap, dialog, modal

Tk Last change: 4.1 1

Tk Built-In Commands entry (n)

NAME

SYNOPSIS

STANDARD OPTIONS

WIDGET-SPECIFIC OPTIONS

entry — Create and manipulate entry widgets

entry pathName?options

—background —highlightbackground —insertontime —selectforeground
—borderwidth —highlightcolor —insertwidth —takefocus

—cursor —highlightthickness —justify —textvariable
—exportselection —insertbackground —relief —xscrollcommand
—font —insertborderwidth —selectbackground

—foreground —insertofftime —selectborderwidth

See theoptions manual entry for details on the standard options.

Command-Line Name: -show
Database Name: show
Database Class: Show

If this option is specified, then the true contents of the entry are not displayed in the window.
Instead, each character in the entry’s value will be displayed as the first character in the value of
this option, such as[™. This is useful, for example, if the entry is to be used to enter a password.

If characters in the entry are selected and copied elsewhere, the information copied will be |what is
displayed, not the true contents of the entry.

Command-Line Name: -state
Database Name: state
Database Class: State

Specifies one of two states for the entnormal or disabled If the entry is disabled then the
value may not be changed using widget commands and no insertion cursor will be displayed, even
if the input focus is in the widget.

Command-Line Name: —width
Database Name: width
Database Class: Width

Specifies an integer value indicating the desired width of the entry window, in average-size charac-
ters of the widget's font. If the value is less than or equal to zero, the widget picks a size just large
enough to hold its current text.

DESCRIPTION

Tk

The entry command creates a new window (given by plaghNameargument) and makes it into an entry
widget. Additional options, described above, may be specified on the command line or in the option
database to configure aspects of the entry such as its colors, font, and reliehtrfrmommand returns

its pathNameargument. At the time this command is invoked, there must not exist a window pathed
Name butpathNamé& parent must exist.

An entry is a widget that displays a one-line text string and allows that string to be edited using widget
commands described below, which are typically bound to keystrokes and mouse actions. When first cre-
ated, an entry’s string is empty. A portion of the entry may be selected as described below. If an entry is
exporting its selection (see tegportSelectionoption), then it will observe the standard X11 protocols for
handling the selection; entry selections are available asSypdNG. Entries also observe the standard

Tk rules for dealing with the input focus. When an entry has the input focus it displengedion cursor

Last change: 4.1 1

Tk Built-In Commands entry (n)

to indicate where new characters will be inserted.

Entries are capable of displaying strings that are too long to fit entirely within the widget's window. In this
case, only a portion of the string will be displayed; commands described below may be used to change the
view in the window. Entries use the standagtrollCommand mechanism for interacting with scrollbars

(see the description of theScrollCommand option for details). They also support scanning, as described
below.

WIDGET COMMAND

Tk

Theentry command creates a new Tcl command whose napeth®ame This command may be used to
invoke various operations on the widget. It has the following general form:

pathName optioffarg arg ..?
Optionand theargs determine the exact behavior of the command.

Many of the widget commands for entries take one or more indices as arguments. An index specifies a par-
ticular character in the entry’s string, in any of the following ways:

number Specifies the character as a numerical index, where 0 corresponds to the first character in the
string.

anchor Indicates the anchor point for the selection, which is set wittsélert from and select
adjust widget commands.

end Indicates the character just after the last one in the entry’s string. This is equivalent to speci-
fying a numerical index equal to the length of the entry’s string.

insert Indicates the character adjacent to and immediately following the insertion cursor.

sel.first Indicates the first character in the selection. It is an error to use this form if the selection

isn’t in the entry window.

sel.last Indicates the character just after the last one in the selection. It is an error to use this form if
the selection isn't in the entry window.

@number In this form,numberis treated as an x-coordinate in the entry’s window; the character span-
ning that x-coordinate is used. For exampl@0’ indicates the left-most character in the
window.

Abbreviations may be used for any of the forms above, €gor“ sel.f'. In general, out-of-range indices
are automatically rounded to the nearest legal value.

The following commands are possible for entry widgets:

pathNamebbox index
Returns a list of four numbers describing the bounding box of the character giireekyThe
first two elements of the list give the x and y coordinates of the upper-left corner of the screen area
covered by the character (in pixels relative to the widget) and the last two elements give the width
and height of the character, in pixels. The bounding box may refer to a region outside the visible
area of the window.

pathNamecgetoption
Returns the current value of the configuration option giveopbipn Optionmay have any of the
values accepted by tleatry command.

pathNameconfigure ?option? d/alue option value 2.
Query or modify the configuration options of the widget. Ifamtionis specified, returns a list
describing all of the available options foathName(seeTk_Configurelnfo for information on
the format of this list). Ifoption is specified with novsalug then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreption-value pairs are specified, then the

Last change: 4.1 2

Tk Built-In Commands entry (n)

command modifies the given widget option(s) to have the given value(s); in this case the com-
mand returns an empty strin@ption may have any of the values accepted bydh&y com-
mand.

pathNameleletefirst Aast?
Delete one or more elements of the enfiyst is the index of the first character to delete, kst
is the index of the character just after the last one to deletestlisn’'t specified it defaults to
first+1, i.e. a single character is deleted. This command returns an empty string.

pathNameget
Returns the entry’s string.

pathNamecursor index
Arrange for the insertion cursor to be displayed just before the character giretekyReturns
an empty string.

pathNamendex index
Returns the numerical index correspondingtiex

pathNamensert index string
Insert the characters afring just before the character indicated inglex Returns an empty
string.

pathNamescanoption args
This command is used to implement scanning on entries. It has two forms, depenaiitigron

pathNamescan markx
Recordsx and the current view in the entry window; used in conjunction with &an
dragto commands. Typically this command is associated with a mouse button press in
the widget. It returns an empty string.

pathNamescan dragtox
This command computes the difference betweexatgument and the argument to the
lastscan markcommand for the widget. It then adjusts the view left or right by 10 times
the difference in x-coordinates. This command is typically associated with mouse motion
events in the widget, to produce the effect of dragging the entry at high speed through the
window. The return value is an empty string.

pathNameselectionoption arg
This command is used to adjust the selection within an entry. It has several forms, depending on
option

pathNameselection adjustindex
Locate the end of the selection nearest to the character giveddxyand adjust that end
of the selection to be a&idex(i.e including but not going beyoridde®. The other end
of the selection is made the anchor point for fusekect tocommands. If the selection
isn’t currently in the entry, then a new selection is created to include the characters
betweenindexand the most recent selection anchor point, inclusive. Returns an empty
string.

pathNameselection clear
Clear the selection if it is currently in this widget. If the selection isn't in this widget then
the command has no effect. Returns an empty string.

pathNameselection fromindex
Set the selection anchor point to just before the character givieddsy Doesn’t change
the selection. Returns an empty string.

pathNameselection present

Tk Last change: 4.1 3

Tk Built-In Commands entry (n)

DEFAULT BINDINGS

Tk

Returns 1 if there is are characters selected in the entry, 0 if nothing is selected.

pathNameselection rangestart end
Sets the selection to include the characters starting with the one indestadtbyd end-
ing with the one just beforend If endrefers to the same characterséart or an earlier
one, then the entry’s selection is cleared.

pathNameselection toindex
If indexis before the anchor point, set the selection to the characteranfilerup to but

not including the anchor point. ifdexis the same as the anchor point, do nothing. If
indexis after the anchor point, set the selection to the characters from the anchor point up
to but not includingindex The anchor point is determined by the most reseiect

from or select adjustcommand in this widget. If the selection isn't in this widget then a
new selection is created using the most recent anchor point specified for the widget.
Returns an empty string.

pathNamexview args

This command is used to query and change the horizontal position of the text in the widget's win-
dow. It can take any of the following forms:

pathNamexview

Returns a list containing two elements. Each element is a real fraction between 0 and 1;
together they describe the horizontal span that is visible in the window. For example, if
the first element is .2 and the second element is .6, 20% of the entry’s text is off-screen to
the left, the middle 40% is visible in the window, and 40% of the text is off-screen to the
right. These are the same values passed to scrollbars vizstmllcommandoption.

pathNamexview index

Adjusts the view in the window so that the character giveindexis displayed at the
left edge of the window.

pathNamexview movetofraction

Adjusts the view in the window so that the charaftaction of the way through the text
appears at the left edge of the winddwaction must be a fraction between 0 and 1.

pathNamexview scroll number what

This command shifts the view in the window left or right accordinguimberandwhat
Numbermust be an integeiWhatmust be eitheunits or pagesor an abbreviation of one

of these. Ilfwhatis units, the view adjusts left or right byumberaverage-width charac-

ters on the display; if it ipagesthen the view adjusts hyumberscreenfuls. Ihumber

is negative then characters farther to the left become visible; if it is positive then charac-
ters farther to the right become visible.

Tk automatically creates class bindings for entries that give them the following default behavior. In the

descriptions below, “word” refers to a contiguous group of letters, digits, or

characters, or any single

character other than these.

[1]

(2]

Clicking mouse button 1 positions the insertion cursor just before the character underneath the
mouse cursor, sets the input focus to this widget, and clears any selection in the widget. Dragging
with mouse button 1 strokes out a selection between the insertion cursor and the character under

the mouse.

Double-clicking with mouse button 1 selects the word under the mouse and positions the insertion
cursor at the beginning of the word. Dragging after a double click will stroke out a selection con-

sisting of whole words.

Last change: 4.1 4

Tk Built-In Commands entry (n)

Tk

3]

[4]

[5]

[6]

[7]

(8]

9]

[10]

[11]

[12]

[13]
[14]
[15]

[16]

[17]

[18]

[19]

Triple-clicking with mouse button 1 selects all of the text in the entry and positions the insertion
cursor before the first character.

The ends of the selection can be adjusted by dragging with mouse button 1 while the Shift key is
down; this will adjust the end of the selection that was nearest to the mouse cursor when button 1
was pressed. If the button is double-clicked before dragging then the selection will be adjusted in
units of whole words.

Clicking mouse button 1 with the Control key down will position the insertion cursor in the entry
without affecting the selection.

If any normal printing characters are typed in an entry, they are inserted at the point of the inser-
tion cursor.

The view in the entry can be adjusted by dragging with mouse button 2. If mouse button 2 is
clicked without moving the mouse, the selection is copied into the entry at the position of the
mouse Ccursor.

If the mouse is dragged out of the entry on the left or right sides while button 1 is pressed, the
entry will automatically scroll to make more text visible (if there is more text off-screen on the
side where the mouse left the window).

The Left and Right keys avethe insertion cursor one character to the left or right; they also clear
any selection in the entry and set the selection anchor. If Left or Right is typed with the Shift key
down, then the insertion cursor moves and the selection is extended to include the new character.
Control-Left and Control-Right ove the insertion cursor by words, and Control-Shift-Left and
Control-Shift-Right neve the insertion cursor by words and also extend the selection. Control-b
and Control-f behave the same as Left and Right, respectively. Meta-b and Meta-f behave the
same as Control-Left and Control-Right, respectively.

The Home key, or Control-a, will avethe insertion cursor to the beginning of the entry and clear
any selection in the entry. Shift-Home moves the insertion cursor to the beginning of the entry and
also extends the selection to that point.

The End key, or Control-e, will ove the insertion cursor to the end of the entry and clear any
selection in the entry. Shift-End moves the cursor to the end and extends the selection to that
point.

The Select key and Control-Space set the selection anchor to the position of the insertion cursor.
They don't affect the current selection. Shift-Select and Control-Shift-Space adjust the selection
to the current position of the insertion cursor, selecting from the anchor to the insertion cursor if
there was not any selection previously.

Control-/ selects all the text in the entry.
Control-\ clears any selection in the entry.

The F16 key (labelled Copy on many Sun workstations) or Meta-w copies the selection in the wid-
get to the clipboard, if there is a selection.

The F20 key (labelled Cut on many Sun workstations) or Control-w copies the selection in the
widget to the clipboard and deletes the selection. If there is no selection in the widget then these
keys have no effect.

The F18 key (labelled Paste on many Sun workstations) or Control-y inserts the contents of the
clipboard at the position of the insertion cursor.

The Delete key deletes the selection, if there is one in the entry. If there is no selection, it deletes
the character to the right of the insertion cursor.

The BackSpace key and Control-h delete the selection, if there is one in the entry. If there is no

Last change: 4.1 5

Tk Built-In Commands entry (n)

selection, it deletes the character to the left of the insertion cursor.
[20] Control-d deletes the character to the right of the insertion cursor.
[21] Meta-d deletes the word to the right of the insertion cursor.
[22] Control-k deletes all the characters to the right of the insertion cursor.
[23] Control-t reverses the order of the two characters to the right of the insertion cursor.

If the entry is disabled using thestate option, then the entry’s view can still be adjusted and text in the
entry can still be selected, but no insertion cursor will be displayed and no text modifications will take
place.

The behavior of entries can be changed by defining new bindings for individual widgets or by redefining
the class bindings.

KEYWORDS
entry, widget

Tk Last change: 4.1 6

Tk Built-In Commands event(n)

NAME

SYNOPSIS

event — Miscellaneous event facilities: define virtual events and generate events

eventoption?arg arg ..?

DESCRIPTION

Theeventcommand provides several facilities for dealing with window system events, such as defining vir-
tual events and synthesizing events. The command has several different forms, determined by the first
argument. The following forms are currently supported:

event add <wirtual>> sequencé&sequence 2.
Associates the virtual evenirtual with the physical event sequence(s) given by sequence
arguments, so that the virtual event will trigger whenever any one eéthencg occurs. Virtual
may be any string value asg@quencenay have any of the values allowed for Heguencargu-
ment to thebind command. Ifvirtual is already defined, the new physical event sequences add to
the existing sequences for the event.

event delete <wirtual>> ?sequence sequence ...
Deletes each of theequence from those associated with the virtual event givewikiyal. Vir-
tual may be any string value arsgquencenay have any of the values allowed for gegjuence
argument to théind command. Anysequence not currently associated wittirtual are ignored.
If no sequencargument is provided, all physical event sequences are remowdddat, so that
the virtual event will not trigger anymore.

event generatevindow even®Poption value option value ?..
Generates a window event and arranges for it to be processed just as if it had come from the win-
dow system.Windowgives the path name of the window for which the event will be generated; it
may also be an identifier (such as returneevinfo id) as long as it is for a window in the current
application. Event provides a basic description of the event, such<8hkift-Button-2> or
<<Paste>> Eventmay have any of the forms allowed for thequenceargument of thebind
command except that it must consist of a single event pattern, not a seqDptioa-valuepairs
may be used to specify additional attributes of the event, such as the x and y mouse position; see
EVENT FIELDS below. If the-when option is not specified, the event is processed immediately:
all of the handlers for the event will complete beforeehent generatecommand returns. If the
—whenoption is specified then it determines when the event is processed.

event info ?<<virtual>>?
Returns information about virtual events. If #xevirtual>> argument is omitted, the return value
is a list of all the virtual events that are currently defined<<Mirtual>> is specified then the
return value is a list whose elements are the physical event sequences currently defined for the
given virtual event; if the virtual event is not defined then an empty string is returned.

EVENT FIELDS

Tk

The following options are supported for theent generatecommand. These correspond to the “%”
expansions allowed in binding scripts for thied command.
—abovewindow

Windowspecifies theabovefield for the event, either as a window path name or as an integer win-
dow id. Valid forConfigure events. Corresponds to thiea substitution for binding scripts.

—borderwidth size

Sizemust be a screen distance; it specifiesbibreler_widthfield for the event. Valid fo€onfig-
ure events. Corresponds to theB substitution for binding scripts.

Last change: 4.4 1

Tk Built-In Commands event(n)

—button number
Numbemust be an integer; it specifies tetail field for aButtonPressor ButtonReleaseevent,
overriding any button number provided in the basentargument. Corresponds to thigb sub-
stitution for binding scripts.

—count number
Numbermust be an integer; it specifies tbeuntfield for the event. Valid foExposeevents.
Corresponds to th#c substitution for binding scripts.

—detail detail
Detail specifies theletail field for the event and must be one of the following:

NotifyAncestor NotifyNonlinearVirtual
NotifyDetailNone NotifyPointer
NotifyInferior NotifyPointerRoot
NotifyNonlinear NotifyVirtual

Valid for Enter, Leave Focusin and FocusOut events. Corresponds to tBed substitution for
binding scripts.

—focusboolean
Booleanmust be a boolean value; it specifies theusfield for the event. Valid foEnter and
Leaveevents. Corresponds to the substitution for binding scripts.

—height size
Sizemust be a screen distance; it specifieshbightfield for the event. Valid foConfigure
events. Corresponds to t#éh substitution for binding scripts.

—keycodenumber
Number must be an integer; it specifies tkeycoddfield for the event. Valid foKeyPressand
KeyReleaseevents. Corresponds to tek substitution for binding scripts.

—keysymname
Namemust be the name of a valid keysym, suchgaspace or Return; its corresponding
keycode value is used as tkeycodefield for event, overriding any detail specified in the base
eventargument. Valid foKeyPressandKeyReleaseevents. Corresponds to thiek substitution
for binding scripts.

—modenotify
Notify specifies thenodefield for the event and must be oneNaftifyNormal , NotifyGrab , Noti-
fyUngrab, or N