
TCL/TK ELECTRONIC
REFERENCE

for Tcl /Tk version 8.0.x and
[incr Tcl] version 3.0

Coverted to Adobe Acrobat
Format (.pdf) by Charles Todd,

Oct 1998.

ctodd@ball.com

Tcl APPLICATIONS
BUILT-IN

C LIBRARY

TK APPLICATIONS
BUILT-IN

C LIBRARY

[INCR TCL]
[INCR TK]

[INCR WIDGETS]

Tcl APPLICATIONS
BUILT-IN

C LIBRARY

TK APPLICATIONS
BUILT-IN

C LIBRARY

[INCR TCL]
[INCR TK]

[INCR WIDGETS]

mailto:ctodd@ball.com
http://www.adobe.com

Tcl Applications tclsh (1)

NAME
tclsh − Simple shell containing Tcl interpreter

SYNOPSIS
tclsh ?fileName arg arg ...?

DESCRIPTION
Tclsh is a shell-like application that reads Tcl commands from its standard input or from a file and evalu-
ates them. If invoked with no arguments then it runs interactively, reading Tcl commands from standard
input and printing command results and error messages to standard output. It runs until theexit command
is invoked or until it reaches end-of-file on its standard input. If there exists a file.tclshrc in the home
directory of the user,tclsh evaluates the file as a Tcl script just before reading the first command from stan-
dard input.

SCRIPT FILES
If tclsh is invoked with arguments then the first argument is the name of a script file and any additional
arguments are made available to the script as variables (see below). Instead of reading commands from
standard inputtclsh will read Tcl commands from the named file;tclsh will exit when it reaches the end of
the file. There is no automatic evaluation of.tclshrc in this case, but the script file can alwayssource it if
desired.

If you create a Tcl script in a file whose first line is
#!/usr/local/bin/tclsh

then you can invoke the script file directly from your shell if you mark the file as executable. This assumes
that tclsh has been installed in the default location in /usr/local/bin; if it’s installed somewhere else then
you’ll have to modify the above line to match. Many UNIX systems do not allow the#! line to exceed
about 30 characters in length, so be sure that thetclsh executable can be accessed with a short file name.

An even better approach is to start your script files with the following three lines:
#!/bin/sh
the next line restarts using tclsh \
exec tclsh "$0" "$@"

This approach has three advantages over the approach in the previous paragraph. First, the location of the
tclsh binary doesn’t hav e to be hard-wired into the script: it can be anywhere in your shell search path.
Second, it gets around the 30-character file name limit in the previous approach. Third, this approach will
work even iftclsh is itself a shell script (this is done on some systems in order to handle multiple architec-
tures or operating systems: thetclsh script selects one of several binaries to run). The three lines cause
bothsh andtclsh to process the script, but theexecis only executed bysh. sh processes the script first; it
treats the second line as a comment and executes the third line. Theexecstatement cause the shell to stop
processing and instead to start uptclsh to reprocess the entire script. Whentclsh starts up, it treats all three
lines as comments, since the backslash at the end of the second line causes the third line to be treated as
part of the comment on the second line.

VARIABLES
Tclsh sets the following Tcl variables:

argc Contains a count of the number ofarg arguments (0 if none), not including the name of
the script file.

argv Contains a Tcl list whose elements are thearg arguments, in order, or an empty string if
there are noarg arguments.

argv0 ContainsfileNameif it was specified. Otherwise, contains the name by whichtclsh was

Tcl Last change: 1

Tcl Applications tclsh (1)

invoked.

tcl_interactive Contains 1 iftclsh is running interactively (nofileNamewas specified and standard input
is a terminal-like device), 0 otherwise.

PROMPTS
When tclsh is invoked interactively it normally prompts for each command with ‘‘% ’’. You can change
the prompt by setting the variablestcl_prompt1 and tcl_prompt2. If variable tcl_prompt1 exists then it
must consist of a Tcl script to output a prompt; instead of outputting a prompttclsh will evaluate the script
in tcl_prompt1. The variabletcl_prompt2 is used in a similar way when a newline is typed but the current
command isn’t yet complete; iftcl_prompt2 isn’t set then no prompt is output for incomplete commands.

KEYWORDS
argument, interpreter, prompt, script file, shell

Tcl Last change: 2

Tk Applications wish (1)

NAME
wish − Simple windowing shell

SYNOPSIS
wish ?fileName arg arg ...?

OPTIONS
−colormap new Specifies that the window should have a new private colormap instead of using the

default colormap for the screen.

−display display Display (and screen) on which to display window.

−geometrygeometry Initial geometry to use for window. If this option is specified, its value is stored in
thegeometryglobal variable of the application’s Tcl interpreter.

−namename Usenameas the title to be displayed in the window, and as the name of the inter-
preter forsendcommands.

−sync Execute all X server commands synchronously, so that errors are reported immedi-
ately. This will result in much slower execution, but it is useful for debugging.

−useid Specifies that the main window for the application is to be embedded in the win-
dow whose identifier isid, instead of being created as an independent toplevel
window. Id must be specified in the same way as the value for the−useoption for
toplevel widgets (i.e. it has a form like that returned by thewinfo id command).

−visual visual Specifies the visual to use for the window.Visualmay have any of the forms sup-
ported by theTk_GetVisual procedure.

− − Pass all remaining arguments through to the script’sargv variable without inter-
preting them. This provides a mechanism for passing arguments such as−nameto
a script instead of havingwish interpret them.

DESCRIPTION
Wish is a simple program consisting of the Tcl command language, the Tk toolkit, and a main program that
reads commands from standard input or from a file. It creates a main window and then processes Tcl com-
mands. Ifwish is invoked with no arguments, or with a first argument that starts with ‘‘−’’, then it reads Tcl
commands interactively from standard input. It will continue processing commands until all windows have
been deleted or until end-of-file is reached on standard input. If there exists a file.wishrc in the home
directory of the user,wish evaluates the file as a Tcl script just before reading the first command from stan-
dard input.

If wish is invoked with an initialfileNameargument, thenfileNameis treated as the name of a script file.
Wish will evaluate the script infileName(which presumably creates a user interface), then it will respond
to events until all windows have been deleted. Commands will not be read from standard input. There is
no automatic evaluation of.wishrc in this case, but the script file can alwayssourceit if desired.

OPTIONS
Wish automatically processes all of the command-line options described in theOPTIONS summary above.
Any other command-line arguments besides these are passed through to the application using theargc and
argv variables described later.

APPLICATION NAME AND CLASS
The name of the application, which is used for purposes such assendcommands, is taken from the−name
option, if it is specified; otherwise it is taken fromfileName, if it is specified, or from the command name

Tk Last change: 8.0 1

Tk Applications wish (1)

by whichwish was inv oked. In the last two cases, if the name contains a ‘‘/’’ character, then only the char-
acters after the last slash are used as the application name.

The class of the application, which is used for purposes such as specifying options with a
RESOURCE_MANAGER property or .Xdefaults file, is the same as its name except that the first letter is
capitalized.

VARIABLES
Wish sets the following Tcl variables:

argc Contains a count of the number ofarg arguments (0 if none), not including the options
described above.

argv Contains a Tcl list whose elements are thearg arguments that follow a− − option or
don’t match any of the options described in OPTIONS above, in order, or an empty
string if there are no such arguments.

argv0 ContainsfileNameif it was specified. Otherwise, contains the name by whichwish was
invoked.

geometry If the −geometryoption is specified,wish copies its value into this variable. If the vari-
able still exists afterfileNamehas been evaluated,wish uses the value of the variable in a
wm geometrycommand to set the main window’s geometry.

tcl_interactive Contains 1 ifwish is reading commands interactively (fileNamewas not specified and
standard input is a terminal-like device), 0 otherwise.

SCRIPT FILES
If you create a Tcl script in a file whose first line is

#!/usr/local/bin/wish
then you can invoke the script file directly from your shell if you mark it as executable. This assumes that
wish has been installed in the default location in /usr/local/bin; if it’s installed somewhere else then you’ll
have to modify the above line to match. Many UNIX systems do not allow the#! line to exceed about 30
characters in length, so be sure that thewish executable can be accessed with a short file name.

An even better approach is to start your script files with the following three lines:
#!/bin/sh
the next line restarts using wish \
exec wish "$0" "$@"

This approach has three advantages over the approach in the previous paragraph. First, the location of the
wish binary doesn’t hav e to be hard-wired into the script: it can be anywhere in your shell search path.
Second, it gets around the 30-character file name limit in the previous approach. Third, this approach will
work even ifwish is itself a shell script (this is done on some systems in order to handle multiple architec-
tures or operating systems: thewish script selects one of several binaries to run). The three lines cause
bothsh andwish to process the script, but theexecis only executed bysh. sh processes the script first; it
treats the second line as a comment and executes the third line. Theexecstatement cause the shell to stop
processing and instead to start upwish to reprocess the entire script. Whenwish starts up, it treats all three
lines as comments, since the backslash at the end of the second line causes the third line to be treated as
part of the comment on the second line.

PROMPTS
Whenwish is invoked interactively it normally prompts for each command with ‘‘% ’’. You can change
the prompt by setting the variablestcl_prompt1 and tcl_prompt2. If variable tcl_prompt1 exists then it
must consist of a Tcl script to output a prompt; instead of outputting a promptwish will evaluate the script
in tcl_prompt1. The variabletcl_prompt2 is used in a similar way when a newline is typed but the current

Tk Last change: 8.0 2

Tk Applications wish (1)

command isn’t yet complete; iftcl_prompt2 isn’t set then no prompt is output for incomplete commands.

KEYWORDS
shell, toolkit

Tk Last change: 8.0 3

[incr Tcl] itclsh (1)

NAME
itclsh − Simple shell for [incr Tcl]

SYNOPSIS
itclsh ?fileName arg arg ...?

DESCRIPTION
itclsh is a shell-like application that reads Tcl commands from its standard input, or from a file, and evalu-
ates them. It is just liketclsh, but includes the[incr Tcl] extensions for object-oriented programming.

See thetclsh man page for details concerning usage. See theitcl man page for an overview of[incr Tcl] .

KEYWORDS
Tcl, itcl, interpreter, script file, shell

itcl Last change: 1

[incr Tk] itkwish (1)

NAME
itkwish − Simple windowing shell for [incr Tcl] / [incr Tk]

SYNOPSIS
itkwish ?fileName arg arg ...?

OPTIONS
−display display Display (and screen) on which to display window.

−geometrygeometry Initial geometry to use for window. If this option is specified, its value is stored in
thegeometryglobal variable of the application’s Tcl interpreter.

−namename Usenameas the title to be displayed in the window, and as the name of the inter-
preter forsendcommands.

−sync Execute all X server commands synchronously, so that errors are reported immedi-
ately. This will result in much slower execution, but it is useful for debugging.

− − Pass all remaining arguments through to the script’sargv variable without inter-
preting them. This provides a mechanism for passing arguments such as−nameto
a script instead of havingitkwish interpret them.

DESCRIPTION
itkwish is a simple program consisting of the Tcl command language, the Tk toolkit, the[incr Tcl] exten-
sion for object-oriented programming, and the[incr Tk] extension for building mega-widgets. The main
program creates an interpreter, creates a main window, and then processes Tcl commands from standard
input or from a file.

itkwish is just likewish, but includes the[incr Tcl] / [incr Tk] extensions.

See thewish man page for details concerning usage. See theitcl and itk man pages for an overview of
[incr Tcl] / [incr Tk] .

KEYWORDS
Tcl, Tk, itcl, itk, interpreter, shell, toolkit

itk Last change: 3.0 1

Tcl Built-In Commands Tcl (n)

NAME
Tcl − Summary of Tcl language syntax.

DESCRIPTION
The following rules define the syntax and semantics of the Tcl language:

[1] A Tcl script is a string containing one or more commands. Semi-colons and newlines are com-
mand separators unless quoted as described below. Close brackets are command terminators dur-
ing command substitution (see below) unless quoted.

[2] A command is evaluated in two steps. First, the Tcl interpreter breaks the command intowords
and performs substitutions as described below. These substitutions are performed in the same way
for all commands. The first word is used to locate a command procedure to carry out the com-
mand, then all of the words of the command are passed to the command procedure. The command
procedure is free to interpret each of its words in any way it likes, such as an integer, variable
name, list, or Tcl script. Different commands interpret their words differently.

[3] Words of a command are separated by white space (except for newlines, which are command sepa-
rators).

[4] If the first character of a word is double-quote (‘‘"’’) then the word is terminated by the next dou-
ble-quote character. If semi-colons, close brackets, or white space characters (including newlines)
appear between the quotes then they are treated as ordinary characters and included in the word.
Command substitution, variable substitution, and backslash substitution are performed on the char-
acters between the quotes as described below. The double-quotes are not retained as part of the
word.

[5] If the first character of a word is an open brace (‘‘{’’) then the word is terminated by the matching
close brace (‘‘}’’). Braces nest within the word: for each additional open brace there must be an
additional close brace (however, if an open brace or close brace within the word is quoted with a
backslash then it is not counted in locating the matching close brace). No substitutions are per-
formed on the characters between the braces except for backslash-newline substitutions described
below, nor do semi-colons, newlines, close brackets, or white space receive any special interpreta-
tion. The word will consist of exactly the characters between the outer braces, not including the
braces themselves.

[6] If a word contains an open bracket (‘‘[’’) then Tcl performscommand substitution. To do this it
invokes the Tcl interpreter recursively to process the characters following the open bracket as a Tcl
script. The script may contain any number of commands and must be terminated by a close
bracket (‘‘]’’). The result of the script (i.e. the result of its last command) is substituted into the
word in place of the brackets and all of the characters between them. There may be any number of
command substitutions in a single word. Command substitution is not performed on words
enclosed in braces.

[7] If a word contains a dollar-sign (‘‘$’’) then Tcl performsvariable substitution: the dollar-sign and
the following characters are replaced in the word by the value of a variable. Variable substitution
may take any of the following forms:

$name Nameis the name of a scalar variable; the name is terminated by any character
that isn’t a letter, digit, or underscore.

$name(index) Namegives the name of an array variable andindexgives the name of an ele-
ment within that array.Namemust contain only letters, digits, and underscores.
Command substitutions, variable substitutions, and backslash substitutions are
performed on the characters ofindex.

Tcl Last change: 1

Tcl Built-In Commands Tcl (n)

${name} Nameis the name of a scalar variable. It may contain any characters whatso-
ev er except for close braces.

There may be any number of variable substitutions in a single word. Variable substitution is not
performed on words enclosed in braces.

[8] If a backslash (‘‘\’’) appears within a word thenbackslash substitutionoccurs. In all cases but
those described below the backslash is dropped and the following character is treated as an ordi-
nary character and included in the word. This allows characters such as double quotes, close
brackets, and dollar signs to be included in words without triggering special processing. The fol-
lowing table lists the backslash sequences that are handled specially, along with the value that
replaces each sequence.

\a Audible alert (bell) (0x7).

\b Backspace (0x8).

\f Form feed (0xc).

\n Newline (0xa).

\r Carriage-return (0xd).

\t Tab (0x9).

\v Vertical tab (0xb).

\<newline>whiteSpace
A single space character replaces the backslash, newline, and all spaces and tabs after the
newline. This backslash sequence is unique in that it is replaced in a separate pre-pass
before the command is actually parsed. This means that it will be replaced even when it
occurs between braces, and the resulting space will be treated as a word separator if it isn’t
in braces or quotes.

\\ Backslash (‘‘\’’).

\ooo The digitsooo(one, two, or three of them) give the octal value of the character.

\xhh The hexadecimal digitshh give the hexadecimal value of the character. Any number of
digits may be present.

Backslash substitution is not performed on words enclosed in braces, except for backslash-newline
as described above.

[9] If a hash character (‘‘#’’) appears at a point where Tcl is expecting the first character of the first
word of a command, then the hash character and the characters that follow it, up through the next
newline, are treated as a comment and ignored. The comment character only has significance
when it appears at the beginning of a command.

[10] Each character is processed exactly once by the Tcl interpreter as part of creating the words of a
command. For example, if variable substitution occurs then no further substitutions are performed
on the value of the variable; the value is inserted into the word verbatim. If command substitution
occurs then the nested command is processed entirely by the recursive call to the Tcl interpreter;
no substitutions are performed before making the recursive call and no additional substitutions are
performed on the result of the nested script.

[11] Substitutions do not affect the word boundaries of a command. For example, during variable sub-
stitution the entire value of the variable becomes part of a single word, even if the variable’s value
contains spaces.

Tcl Last change: 2

Tcl Built-In Commands after (n)

NAME
after − Execute a command after a time delay

SYNOPSIS
after ms

after ms?script script script ...?

after cancelid

after cancelscript script script ...

after idle ?script script script ...?

after info ?id?

DESCRIPTION
This command is used to delay execution of the program or to execute a command in background sometime
in the future. It has several forms, depending on the first argument to the command:

after ms
Ms must be an integer giving a time in milliseconds. The command sleeps forms milliseconds
and then returns. While the command is sleeping the application does not respond to events.

after ms?script script script ...?
In this form the command returns immediately, but it arranges for a Tcl command to be executed
ms milliseconds later as an event handler. The command will be executed exactly once, at the
given time. The delayed command is formed by concatenating all thescript arguments in the
same fashion as theconcatcommand. The command will be executed at global level (outside the
context of any Tcl procedure). If an error occurs while executing the delayed command then the
bgerror mechanism is used to report the error. Theafter command returns an identifier that can
be used to cancel the delayed command usingafter cancel.

after cancelid
Cancels the execution of a delayed command that was previously scheduled.Id indicates which
command should be canceled; it must have been the return value from a previousafter command.
If the command given byid has already been executed then theafter cancel command has no
effect.

after cancelscript script ...
This command also cancels the execution of a delayed command. Thescript arguments are con-
catenated together with space separators (just as in theconcat command). If there is a pending
command that matches the string, it is cancelled and will never be executed; if no such command
is currently pending then theafter cancelcommand has no effect.

after idle script?script script ...?
Concatenates thescript arguments together with space separators (just as in theconcatcommand),
and arranges for the resulting script to be evaluated later as an idle callback. The script will be run
exactly once, the next time the event loop is entered and there are no events to process. The com-
mand returns an identifier that can be used to cancel the delayed command usingafter cancel. If
an error occurs while executing the script then thebgerror mechanism is used to report the error.

after info ?id?
This command returns information about existing event handlers. If noid argument is supplied,

Tcl Last change: 7.5 1

Tcl Built-In Commands after (n)

the command returns a list of the identifiers for all existing event handlers created by theafter
command for this interpreter. Ifid is supplied, it specifies an existing handler;id must have been
the return value from some previous call toafter and it must not have triggered yet or been can-
celled. In this case the command returns a list with two elements. The first element of the list is
the script associated withid, and the second element is eitheridle or timer to indicate what kind
of event handler it is.

Theafter msandafter idle forms of the command assume that the application is event driven: the delayed
commands will not be executed unless the application enters the event loop. In applications that are not
normally event-driven, such astclsh, the event loop can be entered with thevwait andupdatecommands.

SEE ALSO
bgerror

KEYWORDS
cancel, delay, idle callback, sleep, time

Tcl Last change: 7.5 2

Tcl Built-In Commands append (n)

NAME
append − Append to variable

SYNOPSIS
appendvarName?value value value ...?

DESCRIPTION
Append all of thevaluearguments to the current value of variablevarName. If varNamedoesn’t exist, it is
given a value equal to the concatenation of all thevaluearguments. This command provides an efficient
way to build up long variables incrementally. For example, ‘‘append a $b’’ is much more efficient than
‘‘ set a ab’’ if $a is long.

KEYWORDS
append, variable

Tcl Last change: 1

Tcl Built-In Commands array (n)

NAME
array − Manipulate array variables

SYNOPSIS
array option arrayName?arg arg ...?

DESCRIPTION
This command performs one of several operations on the variable given byarrayName. Unless otherwise
specified for individual commands below,arrayNamemust be the name of an existing array variable. The
optionargument determines what action is carried out by the command. The legaloptions(which may be
abbreviated) are:

array anymore arrayName searchId
Returns 1 if there are any more elements left to be processed in an array search, 0 if all elements
have already been returned.SearchIdindicates which search onarrayNameto check, and must
have been the return value from a previous invocation ofarray startsearch. This option is partic-
ularly useful if an array has an element with an empty name, since the return value fromarray
nextelementwon’t indicate whether the search has been completed.

array donesearcharrayName searchId
This command terminates an array search and destroys all the state associated with that search.
SearchIdindicates which search onarrayNameto destroy, and must have been the return value
from a previous invocation ofarray startsearch. Returns an empty string.

array existsarrayName
Returns 1 ifarrayNameis an array variable, 0 if there is no variable by that name or if it is a scalar
variable.

array get arrayName?pattern?
Returns a list containing pairs of elements. The first element in each pair is the name of an ele-
ment inarrayNameand the second element of each pair is the value of the array element. The
order of the pairs is undefined. Ifpatternis not specified, then all of the elements of the array are
included in the result. Ifpatternis specified, then only those elements whose names matchpattern
(using the glob-style matching rules ofstring match) are included. IfarrayNameisn’t the name
of an array variable, or if the array contains no elements, then an empty list is returned.

array namesarrayName?pattern?
Returns a list containing the names of all of the elements in the array that matchpattern(using the
glob-style matching rules ofstring match). If patternis omitted then the command returns all of
the element names in the array. If there are no (matching) elements in the array, or ifarrayName
isn’t the name of an array variable, then an empty string is returned.

array nextelementarrayName searchId
Returns the name of the next element inarrayName, or an empty string if all elements ofarray-
Namehave already been returned in this search. ThesearchIdargument identifies the search, and
must have been the return value of anarray startsearch command. Warning: if elements are
added to or deleted from the array, then all searches are automatically terminated just as ifarray
donesearchhad been invoked; this will causearray nextelement operations to fail for those
searches.

array set arrayName list
Sets the values of one or more elements inarrayName. list must have a form like that returned by
array get, consisting of an even number of elements. Each odd-numbered element inlist is
treated as an element name withinarrayName, and the following element inlist is used as a new
value for that array element. If the variablearrayNamedoes not already exist andlist is empty,

Tcl Last change: 7.4 1

Tcl Built-In Commands array (n)

arrayNameis created with an empty array value.

array sizearrayName
Returns a decimal string giving the number of elements in the array. IfarrayNameisn’t the name
of an array then 0 is returned.

array startsearch arrayName
This command initializes an element-by-element search through the array given byarrayName,
such that invocations of thearray nextelementcommand will return the names of the individual
elements in the array. When the search has been completed, thearray donesearchcommand
should be invoked. The return value is a search identifier that must be used inarray nextelement
andarray donesearchcommands; it allows multiple searches to be underway simultaneously for
the same array.

KEYWORDS
array, element names, search

Tcl Last change: 7.4 2

Tcl Built-In Commands bgerror (n)

NAME
bgerror − Command invoked to process background errors

SYNOPSIS
bgerror message

DESCRIPTION
The bgerror command doesn’t exist as built-in part of Tcl. Instead, individual applications or users can
define abgerror command (e.g. as a Tcl procedure) if they wish to handle background errors.

A background error is one that occurs in an event handler or some other command that didn’t originate with
the application. For example, if an error occurs while executing a command specified with theafter com-
mand, then it is a background error. For a non-background error, the error can simply be returned up
through nested Tcl command evaluations until it reaches the top-level code in the application; then the
application can report the error in whatever way it wishes. When a background error occurs, the unwinding
ends in the Tcl library and there is no obvious way for Tcl to report the error.

When Tcl detects a background error, it sav es information about the error and invokes thebgerror com-
mand later as an idle event handler. Before invokingbgerror , Tcl restores theerrorInfo anderrorCode
variables to their values at the time the error occurred, then it invokesbgerror with the error message as its
only argument. Tcl assumes that the application has implemented thebgerror command, and that the com-
mand will report the error in a way that makes sense for the application. Tcl will ignore any result returned
by thebgerror command as long as no error is generated.

If another Tcl error occurs within thebgerror command (for example, because nobgerror command has
been defined) then Tcl reports the error itself by writing a message to stderr.

If several background errors accumulate beforebgerror is invoked to process them,bgerror will be
invoked once for each error, in the order they occurred. However, ifbgerror returns with a break excep-
tion, then any remaining errors are skipped without callingbgerror .

Tcl has no default implementation forbgerror . Howev er, in applications using Tk there is a defaultbger-
ror procedure which posts a dialog box containing the error message and offers the user a chance to see a
stack trace showing where the error occurred.

KEYWORDS
background error, reporting

Tcl Last change: 7.5 1

Tcl Built-In Commands binary (n)

NAME
binary − Insert and extract fields from binary strings

SYNOPSIS
binary format formatString?arg arg ...?
binary scanstring formatString?varName varName ...?

DESCRIPTION
This command provides facilities for manipulating binary data. The first form,binary format , creates a
binary string from normal Tcl values. For example, given the values 16 and 22, it might produce an 8-byte
binary string consisting of two 4-byte integers, one for each of the numbers. The second form of the com-
mand,binary scan, does the opposite: it extracts data from a binary string and returns it as ordinary Tcl
string values.

BINARY FORMAT
The binary format command generates a binary string whose layout is specified by theformatStringand
whose contents come from the additional arguments. The resulting binary value is returned.

The formatStringconsists of a sequence of zero or more field specifiers separated by zero or more spaces.
Each field specifier is a single type character followed by an optional numericcount. Most field specifiers
consume one argument to obtain the value to be formatted. The type character specifies how the value is to
be formatted. Thecounttypically indicates how many items of the specified type are taken from the value.
If present, thecountis a non-negative decimal integer or∗, which normally indicates that all of the items in
the value are to be used. If the number of arguments does not match the number of fields in the format
string that consume arguments, then an error is generated.

Each type-count pair moves an imaginary cursor through the binary data, storing bytes at the current posi-
tion and advancing the cursor to just after the last byte stored. The cursor is initially at position 0 at the
beginning of the data. The type may be any one of the following characters:

a Stores a character string of lengthcount in the output string. Ifarg has fewer thancountbytes, then
additional zero bytes are used to pad out the field. Ifarg is longer than the specified length, the extra
characters will be ignored. Ifcount is ∗, then all of the bytes inarg will be formatted. Ifcount is
omitted, then one character will be formatted. For example,

binary format a7a∗a alpha bravo charlie
will return a string equivalent toalpha\000\000bravoc.

A This form is the same asa except that spaces are used for padding instead of nulls. For example,
binary format A6A ∗A alpha bravo charlie

will return alpha bravoc.

b Stores a string ofcountbinary digits in low-to-high order within each byte in the output string.Arg
must contain a sequence of1 and0 characters. The resulting bytes are emitted in first to last order
with the bits being formatted in low-to-high order within each byte. Ifarg has fewer thancountdig-
its, then zeros will be used for the remaining bits. Ifarg has more than the specified number of dig-
its, the extra digits will be ignored. Ifcount is ∗, then all of the digits inarg will be formatted. If
count is omitted, then one digit will be formatted. If the number of bits formatted does not end at a
byte boundary, the remaining bits of the last byte will be zeros. For example,

binary format b5b∗ 11100 111000011010
will return a string equivalent to\x07\x87\x05.

B This form is the same asb except that the bits are stored in high-to-low order within each byte. For
example,

binary format B5B∗ 11100 111000011010

Tcl Last change: 8.0 1

Tcl Built-In Commands binary (n)

will return a string equivalent to\xe0\xe1\xa0.

h Stores a string ofcounthexadecimal digits in low-to-high within each byte in the output string.Arg
must contain a sequence of characters in the set ‘‘0123456789abcdefABCDEF’’. The resulting bytes
are emitted in first to last order with the hex digits being formatted in low-to-high order within each
byte. If arg has fewer thancountdigits, then zeros will be used for the remaining digits. Ifarg has
more than the specified number of digits, the extra digits will be ignored. Ifcountis ∗, then all of the
digits inarg will be formatted. Ifcountis omitted, then one digit will be formatted. If the number of
digits formatted does not end at a byte boundary, the remaining bits of the last byte will be zeros. For
example,

binary format h3h∗ AB def
will return a string equivalent to\xba\xed\x0f.

H This form is the same ash except that the digits are stored in high-to-low order within each byte. For
example,

binary format H3H ∗ ab DEF
will return a string equivalent to\xab\xde\xf0.

c Stores one or more 8-bit integer values in the output string. If nocount is specified, thenarg must
consist of an integer value; otherwisearg must consist of a list containing at leastcount integer ele-
ments. The low-order 8 bits of each integer are stored as a one-byte value at the cursor position. If
count is ∗, then all of the integers in the list are formatted. If the number of elements in the list is
fewer thancount, then an error is generated. If the number of elements in the list is greater than
count, then the extra elements are ignored. For example,

binary format c3cc∗ {3 -3 128 1} 257 {2 5}
will return a string equivalent to\x03\xfd\x80\x01\x02\x05, whereas

binary format c {2 5}
will generate an error.

s This form is the same asc except that it stores one or more 16-bit integers in little-endian byte order
in the output string. The low-order 16-bits of each integer are stored as a two-byte value at the cursor
position with the least significant byte stored first. For example,

binary format s3 {3 -3 258 1}
will return a string equivalent to\x03\x00\xfd\xff\x02\x01.

S This form is the same ass except that it stores one or more 16-bit integers in big-endian byte order in
the output string. For example,

binary format S3 {3 -3 258 1}
will return a string equivalent to\x00\x03\xff\xfd\x01\x02.

i This form is the same asc except that it stores one or more 32-bit integers in little-endian byte order
in the output string. The low-order 32-bits of each integer are stored as a four-byte value at the cur-
sor position with the least significant byte stored first. For example,

binary format i3 {3 -3 65536 1}
will return a string equivalent to\x03\x00\x00\x00\xfd\xff\xff\xff\x00\x00\x10\x00.

I This form is the same asi except that it stores one or more one or more 32-bit integers in big-endian
byte order in the output string. For example,

binary format I3 {3 -3 65536 1}
will return a string equivalent to\x00\x00\x00\x03\xff\xff\xff\xfd\x00\x10\x00\x00.

f This form is the same asc except that it stores one or more one or more single-precision floating in
the machine’s native representation in the output string. This representation is not portable across
architectures, so it should not be used to communicate floating point numbers across the network.
The size of a floating point number may vary across architectures, so the number of bytes that are
generated may vary. If the value overflows the machine’s native representation, then the value of

Tcl Last change: 8.0 2

Tcl Built-In Commands binary (n)

FLT_MAX as defined by the system will be used instead. Because Tcl uses double-precision float-
ing-point numbers internally, there may be some loss of precision in the conversion to single-preci-
sion. For example, on a Windows system running on an Intel Pentium processor,

binary format f2 {1.6 3.4}
will return a string equivalent to\xcd\xcc\xcc\x3f\x9a\x99\x59\x40.

d This form is the same asf except that it stores one or more one or more double-precision floating in
the machine’s native representation in the output string. For example, on a Windows system running
on an Intel Pentium processor,

binary format d1 {1.6}
will return a string equivalent to\x9a\x99\x99\x99\x99\x99\xf9\x3f.

x Storescountnull bytes in the output string. Ifcountis not specified, stores one null byte. Ifcountis
∗, generates an error. This type does not consume an argument. For example,

binary format a3xa3x2a3 abc def ghi
will return a string equivalent toabc\000def\000\000ghi.

X Moves the cursor backcountbytes in the output string. Ifcountis ∗ or is larger than the current cur-
sor position, then the cursor is positioned at location 0 so that the next byte stored will be the first
byte in the result string. Ifcount is omitted then the cursor is moved back one byte. This type does
not consume an argument. For example,

binary format a3X∗a3X2a3 abc def ghi
will return dghi.

@ Moves the cursor to the absolute location in the output string specified bycount. Position 0 refers to
the first byte in the output string. Ifcountrefers to a position beyond the last byte stored so far, then
null bytes will be placed in the unitialized locations and the cursor will be placed at the specified
location. If count is ∗, then the cursor is moved to the current end of the output string. Ifcount is
omitted, then an error will be generated. This type does not consume an argument. For example,

binary format a5@2a1@∗a3@10a1 abcde f ghi j
will return abfdeghi\000\000j.

BINARY SCAN
The binary scan command parses fields from a binary string, returning the number of conversions per-
formed. String gives the input to be parsed andformatStringindicates how to parse it. EachvarName
gives the name of a variable; when a field is scanned fromstring the result is assigned to the corresponding
variable.

As with binary format , the formatStringconsists of a sequence of zero or more field specifiers separated
by zero or more spaces. Each field specifier is a single type character followed by an optional numeric
count. Most field specifiers consume one argument to obtain the variable into which the scanned values
should be placed. The type character specifies how the binary data is to be interpreted. Thecounttypically
indicates how many items of the specified type are taken from the data. If present, thecount is a non-neg-
ative decimal integer or∗, which normally indicates that all of the remaining items in the data are to be
used. If there are not enough bytes left after the current cursor position to satisfy the current field specifier,
then the corresponding variable is left untouched andbinary scan returns immediately with the number of
variables that were set. If there are not enough arguments for all of the fields in the format string that con-
sume arguments, then an error is generated.

Each type-count pair moves an imaginary cursor through the binary data, reading bytes from the current
position. The cursor is initially at position 0 at the beginning of the data. The type may be any one of the
following characters:

a The data is a character string of lengthcount. If count is ∗, then all of the remaining bytes instring
will be scanned into the variable. Ifcount is omitted, then one character will be scanned. For

Tcl Last change: 8.0 3

Tcl Built-In Commands binary (n)

example,
binary scan abcde\000fghi a6a10 var1 var2

will return 1 with the string equivalent toabcde\000stored invar1 andvar2 left unmodified.

A This form is the same asa, except trailing blanks and nulls are stripped from the scanned value
before it is stored in the variable. For example,

binary scan "abc efghi \000" a∗ var1
will return 1 with abc efghistored invar1.

b The data is turned into a string ofcountbinary digits in low-to-high order represented as a sequence
of ‘‘1’’ and ‘‘0’’ characters. The data bytes are scanned in first to last order with the bits being taken
in low-to-high order within each byte. Any extra bits in the last byte are ignored. Ifcountis ∗, then
all of the remaining bits instring will be scanned. Ifcount is omitted, then one bit will be scanned.
For example,

binary scan \x07\x87\x05 b5b∗ var1 var2
will return 2 with 11100stored invar1 and1110000110100000stored invar2.

B This form is the same asB, except the bits are taken in high-to-low order within each byte. For
example,

binary scan \x70\x87\x05 b5b∗ var1 var2
will return 2 with 01110stored invar1 and1000011100000101stored invar2.

h The data is turned into a string ofcount hexadecimal digits in low-to-high order represented as a
sequence of characters in the set ‘‘0123456789abcdef ’’. The data bytes are scanned in first to last
order with the hex digits being taken in low-to-high order within each byte. Any extra bits in the last
byte are ignored. Ifcountis ∗, then all of the remaining hex digits instring will be scanned. Ifcount
is omitted, then one hex digit will be scanned. For example,

binary scan \x07\x86\x05 h3h∗ var1 var2
will return 2 with 706stored invar1 and50stored invar2.

H This form is the same ash, except the digits are taken in low-to-high order within each byte. For
example,

binary scan \x07\x86\x05 H3H∗ var1 var2
will return 2 with 078stored invar1 and05stored invar2.

c The data is turned intocount8-bit signed integers and stored in the corresponding variable as a list. If
count is ∗, then all of the remaining bytes instring will be scanned. Ifcount is omitted, then one
8-bit integer will be scanned. For example,

binary scan \x07\x86\x05 c2c∗ var1 var2
will return 2 with 7 -122 stored invar1 and 5 stored invar2. Note that the integers returned are
signed, but they can be converted to unsigned 8-bit quantities using an expression like:

expr ($num + 0x100) % 0x100

s The data is interpreted ascount 16-bit signed integers represented in little-endian byte order. The
integers are stored in the corresponding variable as a list. Ifcount is ∗, then all of the remaining
bytes instring will be scanned. Ifcount is omitted, then one 16-bit integer will be scanned. For
example,

binary scan \x05\x00\x07\x00\xf0\xff s2s∗ var1 var2
will return 2 with 5 7 stored invar1 and -16 stored invar2. Note that the integers returned are
signed, but they can be converted to unsigned 16-bit quantities using an expression like:

expr ($num + 0x10000) % 0x10000

S This form is the same ass except that the data is interpreted ascount16-bit signed integers repre-
sented in big-endian byte order. For example,

binary scan \x00\x05\x00\x07\xff\xf0 S2S∗ var1 var2
will return 2 with 5 7stored invar1 and-16stored invar2.

Tcl Last change: 8.0 4

Tcl Built-In Commands binary (n)

i The data is interpreted ascount 32-bit signed integers represented in little-endian byte order. The
integers are stored in the corresponding variable as a list. Ifcount is ∗, then all of the remaining
bytes instring will be scanned. Ifcount is omitted, then one 32-bit integer will be scanned. For
example,

binary scan \x05\x00\x00\x00\x07\x00\x00\x00\xf0\xff\xff\xff i2i∗ var1 var2
will return 2 with 5 7 stored invar1 and -16 stored invar2. Note that the integers returned are
signed and cannot be represented by Tcl as unsigned values.

I This form is the same asI except that the data is interpreted ascount32-bit signed integers repre-
sented in big-endian byte order. For example,

binary \x00\x00\x00\x05\x00\x00\x00\x07\xff\xff\xff\xf0 I2I∗ var1 var2
will return 2 with 5 7stored invar1 and-16stored invar2.

f The data is interpreted ascountsingle-precision floating point numbers in the machine’s native repre-
sentation. The floating point numbers are stored in the corresponding variable as a list. Ifcountis ∗,
then all of the remaining bytes instring will be scanned. Ifcount is omitted, then one single-preci-
sion floating point number will be scanned. The size of a floating point number may vary across
architectures, so the number of bytes that are scanned may vary. If the data does not represent a valid
floating point number, the resulting value is undefined and compiler dependent. For example, on a
Windows system running on an Intel Pentium processor,

binary scan \x3f\xcc\xcc\xcd f var1
will return 1 with 1.6000000238418579stored invar1.

d This form is the same asf except that the data is interpreted ascountdouble-precision floating point
numbers in the machine’s native representation. For example, on a Windows system running on an
Intel Pentium processor,

binary scan \x9a\x99\x99\x99\x99\x99\xf9\x3f d var1
will return 1 with 1.6000000000000001stored invar1.

x Moves the cursor forwardcountbytes instring. If count is ∗ or is larger than the number of bytes
after the current cursor cursor position, then the cursor is positioned after the last byte instring. If
countis omitted, then the cursor is moved forward one byte. Note that this type does not consume an
argument. For example,

binary scan \x01\x02\x03\x04 x2H∗ var1
will return 1 with 0304stored invar1.

X Moves the cursor backcountbytes instring. If countis ∗ or is larger than the current cursor position,
then the cursor is positioned at location 0 so that the next byte scanned will be the first byte instring.
If countis omitted then the cursor is moved back one byte. Note that this type does not consume an
argument. For example,

binary scan \x01\x02\x03\x04 c2XH∗ var1 var2
will return 2 with 1 2stored invar1 and020304stored invar2.

@ Moves the cursor to the absolute location in the data string specified bycount. Note that position 0
refers to the first byte instring. If countrefers to a position beyond the end ofstring, then the cursor
is positioned after the last byte. Ifcountis omitted, then an error will be generated. For example,

binary scan \x01\x02\x03\x04 c2@1H∗ var1 var2
will return 2 with 1 2stored invar1 and020304stored invar2.

PLATFORM ISSUES
Sometimes it is desirable to format or scan integer values in the native byte order for the machine. Refer to
thebyteOrder element of thetcl_platform array to decide which type character to use when formatting or
scanning integers.

Tcl Last change: 8.0 5

Tcl Built-In Commands binary (n)

SEE ALSO
format, scan, tclvars

KEYWORDS
binary, format, scan

Tcl Last change: 8.0 6

Tcl Built-In Commands break (n)

NAME
break − Abort looping command

SYNOPSIS
break

DESCRIPTION
This command is typically invoked inside the body of a looping command such asfor or foreach or while.
It returns a TCL_BREAK code, which causes a break exception to occur. The exception causes the current
script to be aborted out to the innermost containing loop command, which then aborts its execution and
returns normally. Break exceptions are also handled in a few other situations, such as thecatch command,
Tk event bindings, and the outermost scripts of procedure bodies.

KEYWORDS
abort, break, loop

Tcl Last change: 1

Tcl Built-In Commands case (n)

NAME
case − Evaluate one of several scripts, depending on a given value

SYNOPSIS
casestring?in?patList body?patList body...?

casestring?in? {patList body?patList body...?}

DESCRIPTION
Note: thecasecommand is obsolete and is supported only for backward compatibility. At some point in the
future it may be removed entirely. You should use theswitch command instead.

Thecasecommand matchesstring against each of thepatListarguments in order. EachpatListargument is
a list of one or more patterns. If any of these patterns matchesstring then caseevaluates the following
bodyargument by passing it recursively to the Tcl interpreter and returns the result of that evaluation. Each
patListargument consists of a single pattern or list of patterns. Each pattern may contain any of the wild-
cards described understring match. If a patListargument isdefault, the corresponding body will be eval-
uated if nopatListmatchesstring. If no patListargument matchesstring and no default is given, then the
casecommand returns an empty string.

Tw o syntaxes are provided for thepatListandbodyarguments. The first uses a separate argument for each
of the patterns and commands; this form is convenient if substitutions are desired on some of the patterns or
commands. The second form places all of the patterns and commands together into a single argument; the
argument must have proper list structure, with the elements of the list being the patterns and commands.
The second form makes it easy to construct multi-line case commands, since the braces around the whole
list make it unnecessary to include a backslash at the end of each line. Since thepatList arguments are in
braces in the second form, no command or variable substitutions are performed on them; this makes the
behavior of the second form different than the first form in some cases.

KEYWORDS
case, match, regular expression

Tcl Last change: 7.0 1

Tcl Built-In Commands catch (n)

NAME
catch − Evaluate script and trap exceptional returns

SYNOPSIS
catchscript?varName?

DESCRIPTION
Thecatch command may be used to prevent errors from aborting command interpretation.Catch calls the
Tcl interpreter recursively to executescript, and always returns a TCL_OK code, regardless of any errors
that might occur while executingscript. The return value fromcatch is a decimal string giving the code
returned by the Tcl interpreter after executingscript. This will be0 (TCL_OK) if there were no errors in
script; otherwise it will have a non-zero value corresponding to one of the exceptional return codes (see
tcl.h for the definitions of code values). If thevarNameargument is given, then it gives the name of a vari-
able;catchwill set the variable to the string returned fromscript (either a result or an error message).

Note thatcatchcatches all exceptions, including those generated bybreak andcontinueas well as errors.

KEYWORDS
catch, error

Tcl Last change: 1

Tcl Built-In Commands cd (n)

NAME
cd − Change working directory

SYNOPSIS
cd ?dirName?

DESCRIPTION
Change the current working directory todirName, or to the home directory (as specified in the HOME envi-
ronment variable) ifdirNameis not given. Returns an empty string.

KEYWORDS
working directory

Tcl Last change: 1

Tcl Built-In Commands clock (n)

NAME
clock − Obtain and manipulate time

SYNOPSIS
clock option?arg arg ...?

DESCRIPTION
This command performs one of several operations that may obtain or manipulate strings or values that rep-
resent some notion of time. Theoption argument determines what action is carried out by the command.
The legaloptions(which may be abbreviated) are:

clock clicks
Return a high-resolution time value as a system-dependent integer value. The unit of the value is
system-dependent but should be the highest resolution clock available on the system such as a
CPU cycle counter. This value should only be used for the relative measurement of elapsed time.

clock format clockValue?−format string? ?−gmt boolean?
Converts an integer time value, typically returned byclock seconds, clock scan, or the atime,
mtime, or ctime options of thefile command, to human-readable form. If the−format argument
is present the next argument is a string that describes how the date and time are to be formatted.
Field descriptors consist of a% followed by a field descriptor character. All other characters are
copied into the result. Valid field descriptors are:

%% Insert a %.

%a Abbreviated weekday name (Mon, Tue, etc.).

%A Full weekday name (Monday, Tuesday, etc.).

%b Abbreviated month name (Jan, Feb, etc.).

%B Full month name.

%c Locale specific date and time.

%d Day of month (01 - 31).

%H Hour in 24-hour format (00 - 23).

%I Hour in 12-hour format (00 - 12).

%j Day of year (001 - 366).

%m Month number (01 - 12).

%M Minute (00 - 59).

%p AM/PM indicator.

%S Seconds (00 - 59).

%U Week of year (01 - 52), Sunday is the first day of the week.

%w Weekday number (Sunday = 0).

%W Week of year (01 - 52), Monday is the first day of the week.

%x Locale specific date format.

%X Locale specific time format.

%y Year without century (00 - 99).

%Y Year with century (e.g. 1990)

Tcl Last change: 7.4 1

Tcl Built-In Commands clock (n)

%Z Time zone name.

In addition, the following field descriptors may be supported on some systems (e.g. Unix but not
Windows):

%D Date as %m/%d/%y.

%e Day of month (1 - 31), no leading zeros.

%h Abbreviated month name.

%n Insert a newline.

%r Time as %I:%M:%S %p.

%R Time as %H:%M.

%t Insert a tab.

%T Time as %H:%M:%S.

If the −format argument is not specified, the format string "%a %b %d %H:%M:%S %Z %Y "
is used. If the−gmt argument is present the next argument must be a boolean which if true speci-
fies that the time will be formatted as Greenwich Mean Time. If false then the local timezone will
be used as defined by the operating environment.

clock scandateString?−baseclockVal? ?−gmt boolean?
ConvertdateStringto an integer clock value (seeclock seconds). This command can parse and
convert virtually any standard date and/or time string, which can include standard time zone
mnemonics. If only a time is specified, the current date is assumed. If the string does not contain
a time zone mnemonic, the local time zone is assumed, unless the−gmt argument is true, in which
case the clock value is calculated assuming that the specified time is relative to Greenwich Mean
Time.

If the −baseflag is specified, the next argument should contain an integer clock value. Only the
date in this value is used, not the time. This is useful for determining the time on a specific day or
doing other date-relative conversions.

ThedateStringconsists of zero or more specifications of the following form:

time A time of day, which is of the form:hh?:mm?:ss?? ?meridian? ?zone? orhhmm?merid-
ian? ?zone?. If no meridian is specified,hh is interpreted on a 24-hour clock.

date A specific month and day with optional year. The acceptable formats aremm/dd?/yy?,
monthname dd?,yy?,dd monthname?yy? andday, dd monthname yy. The default year is
the current year. If the year is less than 100, we treat the years 00-68 as 2000-2068 and
the years 69-99 as 1969-1999. Not all platforms can represent the years 38-70, so an
error may result if these years are used.

relative time
A specification relative to the current time. The format isnumber unitacceptable units
are year, fortnight , month, week, day, hour, minute (or min), andsecond(or sec).
The unit can be specified as a singular or plural, as in3 weeks. These modifiers may also
be specified:tomorrow , yesterday, today, now, last, this, next, ago.

The actual date is calculated according to the following steps. First, any absolute date and/or time
is processed and converted. Using that time as the base, day-of-week specifications are added.
Next, relative specifications are used. If a date or day is specified, and no absolute or relative time
is given, midnight is used. Finally, a correction is applied so that the correct hour of the day is

Tcl Last change: 7.4 2

Tcl Built-In Commands clock (n)

produced after allowing for daylight savings time differences and the correct date is given when
going from the end of a long month to a short month.

clock seconds
Return the current date and time as a system-dependent integer value. The unit of the value is sec-
onds, allowing it to be used for relative time calculations. The value is usually defined as total
elapsed time from an ‘‘epoch’’. You shouldn’t assume the value of the epoch.

KEYWORDS
clock, date, time

Tcl Last change: 7.4 3

Tcl Built-In Commands close (n)

NAME
close − Close an open channel.

SYNOPSIS
closechannelId

DESCRIPTION
Closes the channel given bychannelId. ChannelIdmust be a channel identifier such as the return value
from a previousopen or socketcommand. All buffered output is flushed to the channel’s output device,
any buffered input is discarded, the underlying file or device is closed, andchannelIdbecomes unavailable
for use.

If the channel is blocking, the command does not return until all output is flushed. If the channel is non-
blocking and there is unflushed output, the channel remains open and the command returns immediately;
output will be flushed in the background and the channel will be closed when all the flushing is complete.

If channelIdis a blocking channel for a command pipeline thenclosewaits for the child processes to com-
plete.

If the channel is shared between interpreters, thenclosemakeschannelIdunavailable in the invoking inter-
preter but has no other effect until all of the sharing interpreters have closed the channel. When the last
interpreter in which the channel is registered invokesclose, the cleanup actions described above occur. See
the interp command for a description of channel sharing.

Channels are automatically closed when an interpreter is destroyed and when the process exits. Channels
are switched to blocking mode, to ensure that all output is correctly flushed before the process exits.

The command returns an empty string, and may generate an error if an error occurs while flushing output.

KEYWORDS
blocking, channel, close, nonblocking

Tcl Last change: 7.5 1

Tcl Built-In Commands concat (n)

NAME
concat − Join lists together

SYNOPSIS
concat?arg arg ...?

DESCRIPTION
This command treats each argument as a list and concatenates them into a single list. It also eliminates
leading and trailing spaces in thearg’s and adds a single separator space betweenarg’s. It permits any
number of arguments. For example, the command

concat a b {c d e} {f {g h}}
will return

a b c d e f {g h}
as its result.

If no args are supplied, the result is an empty string.

KEYWORDS
concatenate, join, lists

Tcl Last change: 1

Tcl Built-In Commands continue (n)

NAME
continue − Skip to the next iteration of a loop

SYNOPSIS
continue

DESCRIPTION
This command is typically invoked inside the body of a looping command such asfor or foreach or while.
It returns a TCL_CONTINUE code, which causes a continue exception to occur. The exception causes the
current script to be aborted out to the innermost containing loop command, which then continues with the
next iteration of the loop. Catch exceptions are also handled in a few other situations, such as thecatch
command and the outermost scripts of procedure bodies.

KEYWORDS
continue, iteration, loop

Tcl Last change: 1

Tcl Built-In Commands eof (n)

NAME
eof − Check for end of file condition on channel

SYNOPSIS
eofchannelId

DESCRIPTION
Returns 1 if an end of file condition occurred during the most recent input operation onchannelId(such as
gets), 0 otherwise.

KEYWORDS
channel, end of file

Tcl Last change: 7.5 1

Tcl Built-In Commands error (n)

NAME
error − Generate an error

SYNOPSIS
error message?info? ?code?

DESCRIPTION
Returns a TCL_ERROR code, which causes command interpretation to be unwound.Messageis a string
that is returned to the application to indicate what went wrong.

If the info argument is provided and is non-empty, it is used to initialize the global variableerrorInfo .
errorInfo is used to accumulate a stack trace of what was in progress when an error occurred; as nested
commands unwind, the Tcl interpreter adds information toerrorInfo . If the info argument is present, it is
used to initializeerrorInfo and the first increment of unwind information will not be added by the Tcl
interpreter. In other words, the command containing theerror command will not appear inerrorInfo ; in
its place will beinfo. This feature is most useful in conjunction with thecatch command: if a caught error
cannot be handled successfully,info can be used to return a stack trace reflecting the original point of
occurrence of the error:

catch {...} errMsg
set savedInfo $errorInfo
...
error $errMsg $savedInfo

If the codeargument is present, then its value is stored in theerrorCode global variable. This variable is
intended to hold a machine-readable description of the error in cases where such information is available;
see thetclvars manual page for information on the proper format for the variable. If thecodeargument is
not present, thenerrorCode is automatically reset to ‘‘NONE’’ by the Tcl interpreter as part of processing
the error generated by the command.

KEYWORDS
error, errorCode, errorInfo

Tcl Last change: 1

Tcl Built-In Commands eval (n)

NAME
eval − Evaluate a Tcl script

SYNOPSIS
ev alarg ?arg ...?

DESCRIPTION
Eval takes one or more arguments, which together comprise a Tcl script containing one or more com-
mands. Eval concatenates all its arguments in the same fashion as theconcat command, passes the con-
catenated string to the Tcl interpreter recursively, and returns the result of that evaluation (or any error gen-
erated by it).

KEYWORDS
concatenate, evaluate, script

Tcl Last change: 1

Tcl Built-In Commands exec (n)

NAME
exec − Inv oke subprocess(es)

SYNOPSIS
exec?switches?arg ?arg ...?

DESCRIPTION
This command treats its arguments as the specification of one or more subprocesses to execute. The argu-
ments take the form of a standard shell pipeline where eacharg becomes one word of a command, and each
distinct command becomes a subprocess.

If the initial arguments toexecstart with− then they are treated as command-line switches and are not part
of the pipeline specification. The following switches are currently supported:

−keepnewline Retains a trailing newline in the pipeline’s output. Normally a trailing newline will be
deleted.

− − Marks the end of switches. The argument following this one will be treated as the firstarg
ev en if it starts with a−.

If an arg (or pair ofarg’s) has one of the forms described below then it is used byexecto control the flow
of input and output among the subprocess(es). Such arguments will not be passed to the subprocess(es). In
forms such as ‘‘<fileName’’ fileNamemay either be in a separate argument from ‘‘<’’ or in the same argu-
ment with no intervening space (i.e. ‘‘<fileName’’).

| Separates distinct commands in the pipeline. The standard output of the preceding com-
mand will be piped into the standard input of the next command.

|& Separates distinct commands in the pipeline. Both standard output and standard error of
the preceding command will be piped into the standard input of the next command. This
form of redirection overrides forms such as 2> and >&.

< fileName The file named byfileNameis opened and used as the standard input for the first com-
mand in the pipeline.

<@ fileId FileId must be the identifier for an open file, such as the return value from a previous call
to open. It is used as the standard input for the first command in the pipeline.FileId
must have been opened for reading.

<< value Valueis passed to the first command as its standard input.

> fileName Standard output from the last command is redirected to the file namedfileName, over-
writing its previous contents.

2> fileName Standard error from all commands in the pipeline is redirected to the file namedfile-
Name, overwriting its previous contents.

>& fileName Both standard output from the last command and standard error from all commands are
redirected to the file namedfileName, overwriting its previous contents.

>> fileName Standard output from the last command is redirected to the file namedfileName, append-
ing to it rather than overwriting it.

2>> fileName Standard error from all commands in the pipeline is redirected to the file namedfile-
Name, appending to it rather than overwriting it.

>>& fileName Both standard output from the last command and standard error from all commands are
redirected to the file namedfileName, appending to it rather than overwriting it.

>@ fileId FileId must be the identifier for an open file, such as the return value from a previous call

Tcl Last change: 7.6 1

Tcl Built-In Commands exec (n)

to open. Standard output from the last command is redirected tofileId’s file, which must
have been opened for writing.

2>@ fileId FileId must be the identifier for an open file, such as the return value from a previous call
to open. Standard error from all commands in the pipeline is redirected tofileId’s file.
The file must have been opened for writing.

>&@ fileId FileId must be the identifier for an open file, such as the return value from a previous call
to open. Both standard output from the last command and standard error from all com-
mands are redirected tofileId’s file. The file must have been opened for writing.

If standard output has not been redirected then theexeccommand returns the standard output from the last
command in the pipeline. If any of the commands in the pipeline exit abnormally or are killed or sus-
pended, thenexecwill return an error and the error message will include the pipeline’s output followed by
error messages describing the abnormal terminations; theerrorCode variable will contain additional infor-
mation about the last abnormal termination encountered. If any of the commands writes to its standard
error file and that standard error isn’t redirected, thenexecwill return an error; the error message will
include the pipeline’s standard output, followed by messages about abnormal terminations (if any), fol-
lowed by the standard error output.

If the last character of the result or error message is a newline then that character is normally deleted from
the result or error message. This is consistent with other Tcl return values, which don’t normally end with
newlines. However, if−keepnewlineis specified then the trailing newline is retained.

If standard input isn’t redirected with ‘‘<’’ or ‘‘<<’’ or ‘‘<@’’ then the standard input for the first command
in the pipeline is taken from the application’s current standard input.

If the lastarg is ‘‘&’’ then the pipeline will be executed in background. In this case theexeccommand will
return a list whose elements are the process identifiers for all of the subprocesses in the pipeline. The stan-
dard output from the last command in the pipeline will go to the application’s standard output if it hasn’t
been redirected, and error output from all of the commands in the pipeline will go to the application’s stan-
dard error file unless redirected.

The first word in each command is taken as the command name; tilde-substitution is performed on it, and if
the result contains no slashes then the directories in the PATH environment variable are searched for an
executable by the given name. If the name contains a slash then it must refer to an executable reachable
from the current directory. No ‘‘glob’’ expansion or other shell-like substitutions are performed on the
arguments to commands.

PORTABILITY ISSUES
Windows (all versions)

Reading from or writing to a socket, using the ‘‘@ fileId’’ notation, does not work. When reading
from a socket, a 16-bit DOS application will hang and a 32-bit application will return immediately
with end-of-file. When either type of application writes to a socket, the information is instead sent
to the console, if one is present, or is discarded.

The Tk console text widget does not provide real standard IO capabilities. Under Tk, when redi-
recting from standard input, all applications will see an immediate end-of-file; information redi-
rected to standard output or standard error will be discarded.

Either forward or backward slashes are accepted as path separators for arguments to Tcl com-
mands. When executing an application, the path name specified for the application may also con-
tain forward or backward slashes as path separators. Bear in mind, however, that most Windows
applications accept arguments with forward slashes only as option delimiters and backslashes only
in paths. Any arguments to an application that specify a path name with forward slashes will not

Tcl Last change: 7.6 2

Tcl Built-In Commands exec (n)

automatically be converted to use the backslash character. If an argument contains forward slashes
as the path separator, it may or may not be recognized as a path name, depending on the program.

Additionally, when calling a 16-bit DOS or Windows 3.X application, all path names must use the
short, cryptic, path format (e.g., using ‘‘applba˜1.def ’’ instead of ‘‘applbakery.default’’).

Tw o or more forward or backward slashes in a row in a path refer to a network path. For example,
a simple concatenation of the root directoryc:/ with a subdirectory/windows/systemwill yield
c://windows/system(two slashes together), which refers to the directory/systemon the machine
windows (and thec:/ is ignored), and is not equivalent toc:/windows/system, which describes a
directory on the current computer.

Windows NT
When attempting to execute an application,execfirst searches for the name as it was specified.
Then, in order,.com, .exe, and.bat are appended to the end of the specified name and it searches
for the longer name. If a directory name was not specified as part of the application name, the fol-
lowing directories are automatically searched in order when attempting to locate the application:

The directory from which the Tcl executable was loaded.
The current directory.
The Windows NT 32-bit system directory.
The Windows NT 16-bit system directory.
The Windows NT home directory.
The directories listed in the path.

In order to execute the shell builtin commands likedir and copy, the caller must prepend
‘‘ cmd.exe /c ’’ to the desired command.

Windows 95
When attempting to execute an application,execfirst searches for the name as it was specified.
Then, in order,.com, .exe, and.bat are appended to the end of the specified name and it searches
for the longer name. If a directory name was not specified as part of the application name, the fol-
lowing directories are automatically searched in order when attempting to locate the application:

The directory from which the Tcl executable was loaded.
The current directory.
The Windows 95 system directory.
The Windows 95 home directory.
The directories listed in the path.

In order to execute the shell builtin commands likedir andcopy, the caller must prepend ‘‘com-
mand.com /c ’’ to the desired command.

Once a 16-bit DOS application has read standard input from a console and then quit, all subse-
quently run 16-bit DOS applications will see the standard input as already closed. 32-bit applica-
tions do not have this problem and will run correctly even after a 16-bit DOS application thinks
that standard input is closed. There is no known workaround for this bug at this time.

Redirection between theNUL: device and a 16-bit application does not always work. When redi-
recting fromNUL: , some applications may hang, others will get an infinite stream of ‘‘0x01’’
bytes, and some will actually correctly get an immediate end-of-file; the behavior seems to depend
upon something compiled into the application itself. When redirecting greater than 4K or so to

Tcl Last change: 7.6 3

Tcl Built-In Commands exec (n)

NUL: , some applications will hang. The above problems do not happen with 32-bit applications.

All DOS 16-bit applications are run synchronously. All standard input from a pipe to a 16-bit
DOS application is collected into a temporary file; the other end of the pipe must be closed before
the 16-bit DOS application begins executing. All standard output or error from a 16-bit DOS
application to a pipe is collected into temporary files; the application must terminate before the
temporary files are redirected to the next stage of the pipeline. This is due to a workaround for a
Windows 95 bug in the implementation of pipes, and is how the Windows 95 command line inter-
preter handles pipes itself.

Certain applications, such ascommand.com, should not be executed interactively. Applications
which directly access the console window, rather than reading from their standard input and writ-
ing to their standard output may fail, hang Tcl, or even hang the system if their own private con-
sole window is not available to them.

Windows 3.X
When attempting to execute an application,execfirst searches for the name as it was specified.
Then, in order,.com, .exe, and.bat are appended to the end of the specified name and it searches
for the longer name. If a directory name was not specified as part of the application name, the fol-
lowing directories are automatically searched in order when attempting to locate the application:

The directory from which the Tcl executable was loaded.
The current directory.
The Windows 3.X system directory.
The Windows 3.X home directory.
The directories listed in the path.

In order to execute the shell builtin commands likedir andcopy, the caller must prepend ‘‘com-
mand.com /c ’’ to the desired command.

16-bit and 32-bit DOS and Windows applications may be executed. However, redirection and pip-
ing of standard IO only works with 16-bit DOS applications. 32-bit applications always see stan-
dard input as already closed, and any standard output or error is discarded, no matter where in the
pipeline the application occurs or what redirection symbols are used by the caller. Additionally,
for 16-bit applications, standard error is always sent to the same place as standard output; it cannot
be redirected to a separate location. In order to achieve pseudo-redirection for 32-bit applications,
the 32-bit application must instead be written to take command line arguments that specify the
files that it should read from and write to and open those files itself.

All applications, both 16-bit and 32-bit, run synchronously; each application runs to completion
before the next one in the pipeline starts. Temporary files are used to simulate piping between
applications. Theexeccommand cannot be used to start an application in the background.

When standard input is redirected from an open file using the ‘‘@ fileId’’ notation, the open file is
completely read up to its end. This is slightly different than under Windows 95 or NT, where the
child application consumes from the open file only as much as it wants. Redirecting to an open
file is supported as normal.

Macintosh
Theexeccommand is not implemented and does not exist under Macintosh.

Unix
Theexeccommand is fully functional and works as described.

Tcl Last change: 7.6 4

Tcl Built-In Commands exec (n)

SEE ALSO
open(n)

KEYWORDS
execute, pipeline, redirection, subprocess

Tcl Last change: 7.6 5

Tcl Built-In Commands exit (n)

NAME
exit − End the application

SYNOPSIS
exit ?returnCode?

DESCRIPTION
Terminate the process, returningreturnCodeto the system as the exit status. IfreturnCodeisn’t specified
then it defaults to 0.

KEYWORDS
exit, process

Tcl Last change: 1

Tcl Built-In Commands expr (n)

NAME
expr − Evaluate an expression

SYNOPSIS
expr arg ?arg arg ...?

DESCRIPTION
Concatenatesarg’s (adding separator spaces between them), evaluates the result as a Tcl expression, and
returns the value. The operators permitted in Tcl expressions are a subset of the operators permitted in C
expressions, and they hav e the same meaning and precedence as the corresponding C operators. Expres-
sions almost always yield numeric results (integer or floating-point values). For example, the expression

expr 8.2 + 6
evaluates to 14.2. Tcl expressions differ from C expressions in the way that operands are specified. Also,
Tcl expressions support non-numeric operands and string comparisons.

OPERANDS
A Tcl expression consists of a combination of operands, operators, and parentheses. White space may be
used between the operands and operators and parentheses; it is ignored by the expression’s instructions.
Where possible, operands are interpreted as integer values. Integer values may be specified in decimal (the
normal case), in octal (if the first character of the operand is0), or in hexadecimal (if the first two characters
of the operand are0x). If an operand does not have one of the integer formats given above, then it is treated
as a floating-point number if that is possible. Floating-point numbers may be specified in any of the ways
accepted by an ANSI-compliant C compiler (except that thef, F, l, andL suffixes will not be permitted in
most installations). For example, all of the following are valid floating-point numbers: 2.1, 3., 6e4,
7.91e+16. If no numeric interpretation is possible, then an operand is left as a string (and only a limited set
of operators may be applied to it).

Operands may be specified in any of the following ways:

[1] As an numeric value, either integer or floating-point.

[2] As a Tcl variable, using standard$ notation. The variable’s value will be used as the operand.

[3] As a string enclosed in double-quotes. The expression parser will perform backslash, variable, and
command substitutions on the information between the quotes, and use the resulting value as the
operand

[4] As a string enclosed in braces. The characters between the open brace and matching close brace
will be used as the operand without any substitutions.

[5] As a Tcl command enclosed in brackets. The command will be executed and its result will be
used as the operand.

[6] As a mathematical function whose arguments have any of the above forms for operands, such as
sin($x). See below for a list of defined functions.

Where substitutions occur above (e.g. inside quoted strings), they are performed by the expression’s
instructions. However, an additional layer of substitution may already have been performed by the com-
mand parser before the expression processor was called. As discussed below, it is usually best to enclose
expressions in braces to prevent the command parser from performing substitutions on the contents.

For some examples of simple expressions, suppose the variablea has the value 3 and the variableb has the
value 6. Then the command on the left side of each of the lines below will produce the value on the right
side of the line:

expr 3.1 + $a 6.1
expr 2 + "$a.$b" 5.6
expr 4∗[llength "6 2"] 8

Tcl Last change: 8.0 1

Tcl Built-In Commands expr (n)

expr {{word one} < "word $a"} 0

OPERATORS
The valid operators are listed below, grouped in decreasing order of precedence:

− + ˜ ! Unary minus, unary plus, bit-wise NOT, logical NOT. None of these operands
may be applied to string operands, and bit-wise NOT may be applied only to inte-
gers.

∗ / % Multiply, divide, remainder. None of these operands may be applied to string
operands, and remainder may be applied only to integers. The remainder will
always have the same sign as the divisor and an absolute value smaller than the
divisor.

+ − Add and subtract. Valid for any numeric operands.

<< >> Left and right shift. Valid for integer operands only. A right shift always propa-
gates the sign bit.

< > <= >= Boolean less, greater, less than or equal, and greater than or equal. Each operator
produces 1 if the condition is true, 0 otherwise. These operators may be applied to
strings as well as numeric operands, in which case string comparison is used.

== != Boolean equal and not equal. Each operator produces a zero/one result. Valid for
all operand types.

& Bit-wise AND. Valid for integer operands only.

ˆ Bit-wise exclusive OR. Valid for integer operands only.

| Bit-wise OR. Valid for integer operands only.

&& Logical AND. Produces a 1 result if both operands are non-zero, 0 otherwise.
Valid for boolean and numeric (integers or floating-point) operands only.

|| Logical OR. Produces a 0 result if both operands are zero, 1 otherwise. Valid for
boolean and numeric (integers or floating-point) operands only.

x?y:z If-then-else, as in C. Ifx evaluates to non-zero, then the result is the value ofy.
Otherwise the result is the value ofz. Thex operand must have a numeric value.

See the C manual for more details on the results produced by each operator. All of the binary operators
group left-to-right within the same precedence level. For example, the command

expr 4∗2 < 7
returns 0.

The&& , ||, and?: operators have ‘‘lazy evaluation’’, just as in C, which means that operands are not evalu-
ated if they are not needed to determine the outcome. For example, in the command

expr {$v ? [a] : [b]}
only one of[a] or [b] will actually be evaluated, depending on the value of$v. Note, however, that this is
only true if the entire expression is enclosed in braces; otherwise the Tcl parser will evaluate both[a] and
[b] before invoking theexpr command.

MATH FUNCTIONS
Tcl supports the following mathematical functions in expressions:

acos cos hypot sinh
asin cosh log sqrt
atan exp log10 tan
atan2 floor pow tanh
ceil fmod sin

Tcl Last change: 8.0 2

Tcl Built-In Commands expr (n)

Each of these functions invokes the math library function of the same name; see the manual entries for the
library functions for details on what they do. Tcl also implements the following functions for conversion
between integers and floating-point numbers and the generation of random numbers:

abs(arg)
Returns the absolute value ofarg. Arg may be either integer or floating-point, and the result is
returned in the same form.

double(arg)
If arg is a floating value, returnsarg, otherwise convertsarg to floating and returns the converted
value.

int(arg) If arg is an integer value, returnsarg, otherwise convertsarg to integer by truncation and returns
the converted value.

rand() Returns a floating point number from zero to just less than one or, in mathematical terms, the
range [0,1). The seed comes from the internal clock of the machine or may be set manual with the
srand function.

round(arg)
If arg is an integer value, returnsarg, otherwise convertsarg to integer by rounding and returns the
converted value.

srand(arg)
The arg, which must be an integer, is used to reset the seed for the random number generator.
Returns the first random number from that seed. Each interpreter has it’s own seed.

In addition to these predefined functions, applications may define additional functions usingTcl_Cre-
ateMathFunc().

TYPES, OVERFLOW, AND PRECISION
All internal computations involving integers are done with the C typelong, and all internal computations
involving floating-point are done with the C typedouble. When converting a string to floating-point, expo-
nent overflow is detected and results in a Tcl error. For conversion to integer from string, detection of over-
flow depends on the behavior of some routines in the local C library, so it should be regarded as unreliable.
In any case, integer overflow and underflow are generally not detected reliably for intermediate results.
Floating-point overflow and underflow are detected to the degree supported by the hardware, which is gen-
erally pretty reliable.

Conversion among internal representations for integer, floating-point, and string operands is done automati-
cally as needed. For arithmetic computations, integers are used until some floating-point number is intro-
duced, after which floating-point is used. For example,

expr 5 / 4
returns 1, while

expr 5 / 4.0
expr 5 / ([string length "abcd"] + 0.0)

both return 1.25. Floating-point values are always returned with a ‘‘.’’ or an e so that they will not look
like integer values. For example,

expr 20.0/5.0
returns4.0, not4.

STRING OPERATIONS
String values may be used as operands of the comparison operators, although the expression evaluator tries
to do comparisons as integer or floating-point when it can. If one of the operands of a comparison is a
string and the other has a numeric value, the numeric operand is converted back to a string using the C
sprintf format specifier%d for integers and%g for floating-point values. For example, the commands

expr {"0x03" > "2"}

Tcl Last change: 8.0 3

Tcl Built-In Commands expr (n)

expr {"0y" < "0x12"}
both return 1. The first comparison is done using integer comparison, and the second is done using string
comparison after the second operand is converted to the string18. Because of Tcl’s tendency to treat values
as numbers whenever possible, it isn’t generally a good idea to use operators like== when you really want
string comparison and the values of the operands could be arbitrary; it’s better in these cases to use the
string comparecommand instead.

PERFORMANCE CONSIDERATIONS
Enclose expressions in braces for the best speed and the smallest storage requirements. This allows the Tcl
bytecode compiler to generate the best code.

As mentioned above, expressions are substituted twice: once by the Tcl parser and once by theexpr com-
mand. For example, the commands

set a 3
set b {$a + 2}
expr $b∗4

return 11, not a multiple of 4. This is because the Tcl parser will first substitute$a + 2for the variableb,
then theexpr command will evaluate the expression$a + 2∗4.

Most expressions do not require a second round of substitutions. Either they are enclosed in braces or, if
not, their variable and command substitutions yield numbers or strings that don’t themselves require substi-
tutions. However, because a few unbraced expressions need two rounds of substitutions, the bytecode com-
piler must emit additional instructions to handle this situation. The most expensive code is required for
unbraced expressions that contain command substitutions. These expressions must be implemented by gen-
erating new code each time the expression is executed.

KEYWORDS
arithmetic, boolean, compare, expression, fuzzy comparison

Tcl Last change: 8.0 4

Tcl Built-In Commands fblocked (n)

NAME
fblocked − Test whether the last input operation exhausted all available input

SYNOPSIS
fblocked channelId

DESCRIPTION
The fblocked command returns 1 if the most recent input operation onchannelIdreturned less information
than requested because all available input was exhausted. For example, ifgets is invoked when there are
only three characters available for input and no end-of-line sequence,gets returns an empty string and a
subsequent call tofblocked will return 1.

SEE ALSO
gets(n), read(n)

KEYWORDS
blocking, nonblocking

Tcl Last change: 7.5 1

Tcl Built-In Commands fconfigure (n)

NAME
fconfigure − Set and get options on a channel

SYNOPSIS
fconfigure channelId
fconfigure channelId name
fconfigure channelId name value?name value ...?

DESCRIPTION
The fconfigure command sets and retrieves options for channels.ChannelId identifies the channel for
which to set or query an option. If nonameor valuearguments are supplied, the command returns a list
containing alternating option names and values for the channel. Ifnameis supplied but novalue then the
command returns the current value of the given option. If one or more pairs ofnameandvalueare sup-
plied, the command sets each of the named options to the correspondingvalue; in this case the return value
is an empty string.

The options described below are supported for all channels. In addition, each channel type may add options
that only it supports. See the manual entry for the command that creates each type of channels for the
options that that specific type of channel supports. For example, see the manual entry for thesocketcom-
mand for its additional options.

−blocking boolean
The−blocking option determines whether I/O operations on the channel can cause the process to
block indefinitely. The value of the option must be a proper boolean value. Channels are normally
in blocking mode; if a channel is placed into nonblocking mode it will affect the operation of the
gets, read, puts, flush, and close commands; see the documentation for those commands for
details. For nonblocking mode to work correctly, the application must be using the Tcl event loop
(e.g. by callingTcl_DoOneEventor invoking thevwait command).

−buffering newValue
If newValueis full then the I/O system will buffer output until its internal buffer is full or until the
flush command is invoked. IfnewValueis line, then the I/O system will automatically flush output
for the channel whenever a newline character is output. IfnewValueis none, the I/O system will
flush automatically after every output operation. The default is for−buffering to be set tofull
except for channels that connect to terminal-like devices; for these channels the initial setting is
line.

−buffersizenewSize
Newvaluemust be an integer; its value is used to set the size of buffers, in bytes, subsequently
allocated for this channel to store input or output.Newvaluemust be between ten and one million,
allowing buffers of ten to one million bytes in size.

−eofcharchar

−eofchar {inChar outChar}
This option supports DOS file systems that use Control-z (\x1a) as an end of file marker. Ifchar is
not an empty string, then this character signals end of file when it is encountered during input. For
output, the end of file character is output when the channel is closed. Ifchar is the empty string,
then there is no special end of file character marker. For read-write channels, a two-element list
specifies the end of file marker for input and output, respectively. As a convenience, when setting
the end-of-file character for a read-write channel you can specify a single value that will apply to
both reading and writing. When querying the end-of-file character of a read-write channel, a two-
element list will always be returned. The default value for−eofchar is the empty string in all
cases except for files under Windows. In that case the−eofchar is Control-z (\x1a) for reading

Tcl Last change: 7.5 1

Tcl Built-In Commands fconfigure (n)

and the empty string for writing.

−translation mode

−translation { inMode outMode}
In Tcl scripts the end of a line is always represented using a single newline character (\n). How-
ev er, in actual files and devices the end of a line may be represented differently on different plat-
forms, or even for different devices on the same platform. For example, under UNIX newlines are
used in files, whereas carriage-return-linefeed sequences are normally used in network connec-
tions. On input (i.e., withgetsandread) the Tcl I/O system automatically translates the external
end-of-line representation into newline characters. Upon output (i.e., withputs), the I/O system
translates newlines to the external end-of-line representation. The default translation mode,auto,
handles all the common cases automatically, but the−translation option provides explicit control
over the end of line translations.

The value associated with−translation is a single item for read-only and write-only channels.
The value is a two-element list for read-write channels; the read translation mode is the first ele-
ment of the list, and the write translation mode is the second element. As a convenience, when
setting the translation mode for a read-write channel you can specify a single value that will apply
to both reading and writing. When querying the translation mode of a read-write channel, a two-
element list will always be returned. The following values are currently supported:

auto As the input translation mode,auto treats any of newline (lf), carriage return (cr), or car-
riage return followed by a newline (crlf) as the end of line representation. The end of line
representation can even change from line-to-line, and all cases are translated to a newline.
As the output translation mode,auto chooses a platform specific representation; for sock-
ets on all platforms Tcl choosescrlf , for all Unix flavors, it chooseslf , for the Macintosh
platform it choosescr and for the various flavors of Windows it choosescrlf . The default
setting for−translation is auto for both input and output.

binary No end-of-line translations are performed. This is nearly identical tolf mode, except that
in additionbinary mode also sets the end of file character to the empty string, which dis-
ables it. See the description of−eofchar for more information.

cr The end of a line in the underlying file or device is represented by a single carriage return
character. As the input translation mode,cr mode converts carriage returns to newline
characters. As the output translation mode,cr mode translates newline characters to car-
riage returns. This mode is typically used on Macintosh platforms.

crlf The end of a line in the underlying file or device is represented by a carriage return char-
acter followed by a linefeed character. As the input translation mode,crlf mode converts
carriage-return-linefeed sequences to newline characters. As the output translation mode,
crlf mode translates newline characters to carriage-return-linefeed sequences. This mode
is typically used on Windows platforms and for network connections.

lf The end of a line in the underlying file or device is represented by a single newline (line-
feed) character. In this mode no translations occur during either input or output. This
mode is typically used on UNIX platforms.

SEE ALSO
close(n), flush(n), gets(n), puts(n), read(n), socket(n)

KEYWORDS
blocking, buffering, carriage return, end of line, flushing, linemode, newline, nonblocking, platform, trans-
lation

Tcl Last change: 7.5 2

Tcl Built-In Commands fcopy (n)

NAME
fcopy − Copy data from one channel to another.

SYNOPSIS
fcopy inchan outchan?−sizesize? ?−commandcallback?

DESCRIPTION
The fcopy command copies data from one I/O channel,inchanto another I/O channel,outchan. Thefcopy
command leverages the buffering in the Tcl I/O system to avoid extra copies and to avoid buffering too
much data in main memory when copying large files to slow destinations like network sockets.

The fcopy command transfers data frominchanuntil end of file orsizebytes have been transferred. If no
−sizeargument is given, then the copy goes until end of file. All the data read frominchan is copied to
outchan. Without the−commandoption, fcopy blocks until the copy is complete and returns the number
of bytes written tooutchan.

The −command argument makesfcopy work in the background. In this case it returns immediately and
the callback is invoked later when the copy completes. Thecallback is called with one or two additional
arguments that indicates how many bytes were written tooutchan. If an error occurred during the back-
ground copy, the second argument is the error string associated with the error. With a background copy, it
is not necessary to putinchanor outchaninto non-blocking mode; thefcopy command takes care of that
automatically. Howev er, it is necessary to enter the event loop by using thevwait command or by using
Tk.

You are not allowed to do other I/O operations withinchanor outchanduring a background fcopy. If either
inchanor outchanget closed while the copy is in progress, the current copy is stopped and the command
callback isnotmade. Ifinchanis closed, then all data already queued foroutchanis written out.

Note thatinchancan become readable during a background copy. You should turn off anyfileevent han-
dlers during a background copy so those handlers do not interfere with the copy. Any I/O attempted by a
fileeventhandler will get a "channel busy" error.

Fcopy translates end-of-line sequences ininchan and outchanaccording to the−translation option for
these channels. See the manual entry forfconfigure for details on the−translation option. The transla-
tions mean that the number of bytes read frominchancan be different than the number of bytes written to
outchan. Only the number of bytes written tooutchan is reported, either as the return value of a syn-
chronousfcopy or as the argument to the callback for an asynchronousfcopy.

EXAMPLE
This first example shows how the callback gets passed the number of bytes transferred. It also uses vwait to
put the application into the event loop. Of course, this simplified example could be done without the com-
mand callback.

proc Cleanup {in out bytes {error {}}} {
global total
set total $bytes
close $in
close $out
if {[string length $error] != 0} {

error occurred during the copy
}

}
set in [open $file1]

Tcl Last change: 8.0 1

Tcl Built-In Commands fcopy (n)

set out [socket $server $port]
fcopy $in $out -command [list Cleanup $in $out]
vwait total

The second example copies in chunks and tests for end of file in the command callback

proc CopyMore {in out chunk bytes {error {}}} {
global total done
incr total $bytes
if {([string length $error] != 0) || [eof $in] {

set done $total
close $in
close $out

} else {
fcopy $in $out -command [list CopyMore $in $out $chunk] \

-size $chunk
}

}
set in [open $file1]
set out [socket $server $port]
set chunk 1024
set total 0
fcopy $in $out -command [list CopyMore $in $out $chunk] -size $chunk
vwait done

SEE ALSO
eof(n), fblocked(n), fconfigure(n)

KEYWORDS
blocking, channel, end of line, end of file, nonblocking, read, translation

Tcl Last change: 8.0 2

Tcl Built-In Commands file (n)

NAME
file − Manipulate file names and attributes

SYNOPSIS
file option name?arg arg ...?

DESCRIPTION
This command provides several operations on a file’s name or attributes.Nameis the name of a file; if it
starts with a tilde, then tilde substitution is done before executing the command (see the manual entry for
filename for details). Option indicates what to do with the file name. Any unique abbreviation foroption
is acceptable. The valid options are:

file atime name
Returns a decimal string giving the time at which filenamewas last accessed. The time is mea-
sured in the standard POSIX fashion as seconds from a fixed starting time (often January 1, 1970).
If the file doesn’t exist or its access time cannot be queried then an error is generated.

file attributes name
file attributes name?option?
file attributes name?option value option value...?
This subcommand returns or sets platform specific values associated with a file. The first form
returns a list of the platform specific flags and their values. The second form returns the value for
the specific option. The third form sets one or more of the values. The values are as follows:

On Unix,-group gets or sets the group name for the file. A group id can be given to the command,
but it returns a group name.-owner gets or sets the user name of the owner of the file. The com-
mand returns the owner name, but the numerical id can be passed when setting the owner.-per-
missionssets or retrieves the octal code that chmod(1) uses. This command does not support the
symbolic attributes for chmod(1) at this time.

On Windows,-archive gives the value or sets or clears the archive attribute of the file.-hidden
gives the value or sets or clears the hidden attribute of the file.-longnamewill expand each path
element to its long version. This attribute cannot be set.-readonly gives the value or sets or clears
the readonly attribute of the file.-shortname gives a string where every path element is replaced
with its short (8.3) version of the name. This attribute cannot be set.-systemgives or sets or clears
the value of the system attribute of the file.

On Macintosh,-creator gives or sets the Finder creator type of the file.-hidden gives or sets or
clears the hidden attribute of the file.-readonly gives or sets or clears the readonly attribute of the
file. Note that directories can only be locked if File Sharing is turned on.-type gives or sets the
Finder file type for the file.

file copy?−force? ?− −?source target
file copy?−force? ?− −?source?source...?targetDir

The first form makes a copy of the file or directorysourceunder the pathnametarget. If target is
an existing directory, then the second form is used. The second form makes a copy insidetarget-
Dir of eachsourcefile listed. If a directory is specified as asource, then the contents of the direc-
tory will be recursively copied intotargetDir. Existing files will not be overwritten unless the
−force option is specified. Trying to overwrite a non-empty directory, overwrite a directory with a
file, or a file with a directory will all result in errors even if−force was specified. Arguments are
processed in the order specified, halting at the first error, if any. A− − marks the end of switches;
the argument following the− − will be treated as asourceev en if it starts with a−.

file delete?−force? ?− −?pathname?pathname... ?
Removes the file or directory specified by eachpathnameargument. Non-empty directories will

Tcl Last change: 7.6 1

Tcl Built-In Commands file (n)

be removed only if the−force option is specified. Trying to delete a non-existant file is not con-
sidered an error. Trying to delete a read-only file will cause the file to be deleted, even if the
−force flags is not specified. Arguments are processed in the order specified, halting at the first
error, if any. A− − marks the end of switches; the argument following the− − will be treated as a
pathnameev en if it starts with a−.

file dirname name
Returns a name comprised of all of the path components innameexcluding the last element. If
nameis a relative file name and only contains one path element, then returns ‘‘.’’ (or ‘‘ :’’ on the
Macintosh). Ifnamerefers to a root directory, then the root directory is returned. For example,

file dirname c:/
returnsc:/.

Note that tilde substitution will only be performed if it is necessary to complete the command. For
example,

file dirname ˜/src/foo.c
returns̃ /src, whereas

file dirname ˜
returns/home(or something similar).

file executablename
Returns1 if file nameis executable by the current user,0 otherwise.

file existsname
Returns1 if file nameexists and the current user has search privileges for the directories leading to
it, 0 otherwise.

file extensionname
Returns all of the characters innameafter and including the last dot in the last element ofname. If
there is no dot in the last element ofnamethen returns the empty string.

file isdirectory name
Returns1 if file nameis a directory,0 otherwise.

file isfile name
Returns1 if file nameis a regular file,0 otherwise.

file join name?name ...?
Takes one or more file names and combines them, using the correct path separator for the current
platform. If a particularnameis relative, then it will be joined to the previous file name argument.
Otherwise, any earlier arguments will be discarded, and joining will proceed from the current
argument. For example,

file join a b /foo bar
returns/foo/bar.

Note that any of the names can contain separators, and that the result is always canonical for the
current platform:/ for Unix and Windows, and: for Macintosh.

file lstat name varName
Same asstat option (see below) except uses thelstat kernel call instead ofstat. This means that if
namerefers to a symbolic link the information returned invarNameis for the link rather than the
file it refers to. On systems that don’t support symbolic links this option behaves exactly the same
as thestat option.

file mkdir dir ?dir ...?
Creates each directory specified. For each pathnamedir specified, this command will create all
non-existing parent directories as well asdir itself. If an existing directory is specified, then no
action is taken and no error is returned. Trying to overwrite an existing file with a directory will

Tcl Last change: 7.6 2

Tcl Built-In Commands file (n)

result in an error. Arguments are processed in the order specified, halting at the first error, if any.

file mtime name
Returns a decimal string giving the time at which filenamewas last modified. The time is mea-
sured in the standard POSIX fashion as seconds from a fixed starting time (often January 1, 1970).
If the file doesn’t exist or its modified time cannot be queried then an error is generated.

file nativenamename
Returns the platform-specific name of the file. This is useful if the filename is needed to pass to a
platform-specific call, such as exec under Windows or AppleScript on the Macintosh.

file ownedname
Returns1 if file nameis owned by the current user,0 otherwise.

file pathtype name
Returns one ofabsolute, relative, volumerelative. If namerefers to a specific file on a specific
volume, the path type will beabsolute. If namerefers to a file relative to the current working
directory, then the path type will berelative. If namerefers to a file relative to the current working
directory on a specified volume, or to a specific file on the current working volume, then the file
type isvolumerelative.

file readablename
Returns1 if file nameis readable by the current user,0 otherwise.

file readlink name
Returns the value of the symbolic link given byname(i.e. the name of the file it points to). If
nameisn’t a symbolic link or its value cannot be read, then an error is returned. On systems that
don’t support symbolic links this option is undefined.

file rename?−force? ?− −?source target
file rename?−force? ?− −?source?source...?targetDir

The first form takes the file or directory specified by pathnamesourceand renames it totarget,
moving the file if the pathnametarget specifies a name in a different directory. Iftarget is an
existing directory, then the second form is used. The second form moves eachsourcefile or direc-
tory into the directorytargetDir. Existing files will not be overwritten unless the−force option is
specified. Trying to overwrite a non-empty directory, overwrite a directory with a file, or a file
with a directory will all result in errors. Arguments are processed in the order specified, halting at
the first error, if any. A− − marks the end of switches; the argument following the− − will be
treated as asourceev en if it starts with a−.

file rootnamename
Returns all of the characters innameup to but not including the last ‘‘.’’ character in the last com-
ponent of name. If the last component ofnamedoesn’t contain a dot, then returnsname.

file sizename
Returns a decimal string giving the size of filenamein bytes. If the file doesn’t exist or its size
cannot be queried then an error is generated.

file split name
Returns a list whose elements are the path components inname. The first element of the list will
have the same path type asname. All other elements will be relative. Path separators will be dis-
carded unless they are needed ensure that an element is unambiguously relative. For example,
under Unix

file split /foo/˜bar/baz
returns/ foo ./˜bar baz to ensure that later commands that use the third component do not
attempt to perform tilde substitution.

file stat name varName

Tcl Last change: 7.6 3

Tcl Built-In Commands file (n)

Invokes thestat kernel call onname, and uses the variable given byvarNameto hold information
returned from the kernel call.VarNameis treated as an array variable, and the following elements
of that variable are set:atime, ctime, dev, gid, ino, mode, mtime, nlink , size, type, uid. Each
element excepttype is a decimal string with the value of the corresponding field from thestat
return structure; see the manual entry forstat for details on the meanings of the values. Thetype
element gives the type of the file in the same form returned by the commandfile type. This com-
mand returns an empty string.

file tail name
Returns all of the characters innameafter the last directory separator. Ifnamecontains no separa-
tors then returnsname.

file type name
Returns a string giving the type of filename, which will be one offile, directory , characterSpe-
cial, blockSpecial, fifo, link , or socket.

file volume
Returns the absolute paths to the volumes mounted on the system, as a proper Tcl list. On the
Macintosh, this will be a list of the mounted drives, both local and network. N.B. if two drives
have the same name, they will both appear on the volume list, but there is currently no way, from
Tcl, to access any but the first of these drives. On UNIX, the command will always return "/",
since all filesystems are locally mounted. On Windows, it will return a list of the available local
drives (e.g. {a:/ c:/}).

file writable name
Returns1 if file nameis writable by the current user,0 otherwise.

PORTABILITY ISSUES
Unix

These commands always operate using the real user and group identifiers, not the effective ones.

SEE ALSO
filename

KEYWORDS
attributes, copy files, delete files, directory, file, move files, name, rename files, stat

Tcl Last change: 7.6 4

Tcl Built-In Commands fileevent (n)

NAME
fileevent − Execute a script when a channel becomes readable or writable

SYNOPSIS
fileeventchannelIdreadable?script?

fileeventchannelIdwritable ?script?

DESCRIPTION
This command is used to createfile event handlers. A file event handler is a binding between a channel and
a script, such that the script is evaluated whenever the channel becomes readable or writable. File event
handlers are most commonly used to allow data to be received from another process on an event-driven
basis, so that the receiver can continue to interact with the user while waiting for the data to arrive. If an
application invokesgetsor read on a blocking channel when there is no input data available, the process
will block; until the input data arrives, it will not be able to service other events, so it will appear to the user
to ‘‘freeze up’’. Withfileevent, the process can tell when data is present and only invokegetsor read when
they won’t block.

The channelIdargument tofileevent refers to an open channel, such as the return value from a previous
open or socketcommand. If thescript argument is specified, thenfileevent creates a new event handler:
script will be evaluated whenever the channel becomes readable or writable (depending on the second argu-
ment tofileevent). In this casefileevent returns an empty string. Thereadable andwritable ev ent han-
dlers for a file are independent, and may be created and deleted separately. Howev er, there may be at most
onereadableand onewritable handler for a file at a given time in a given interpreter. Iffileevent is called
when the specified handler already exists in the invoking interpreter, the new script replaces the old one.

If the script argument is not specified,fileevent returns the current script forchannelId, or an empty string
if there is none. If thescript argument is specified as an empty string then the event handler is deleted, so
that no script will be invoked. A file event handler is also deleted automatically whenever its channel is
closed or its interpreter is deleted.

A channel is considered to be readable if there is unread data available on the underlying device. A channel
is also considered to be readable if there is unread data in an input buffer, except in the special case where
the most recent attempt to read from the channel was agetscall that could not find a complete line in the
input buffer. This feature allows a file to be read a line at a time in nonblocking mode using events. A
channel is also considered to be readable if an end of file or error condition is present on the underlying file
or device. It is important forscript to check for these conditions and handle them appropriately; for exam-
ple, if there is no special check for end of file, an infinite loop may occur wherescript reads no data,
returns, and is immediately invoked again.

A channel is considered to be writable if at least one byte of data can be written to the underlying file or
device without blocking, or if an error condition is present on the underlying file or device.

Event-driven I/O works best for channels that have been placed into nonblocking mode with thefconfigure
command. In blocking mode, aputs command may block if you give it more data than the underlying file
or device can accept, and agetsor read command will block if you attempt to read more data than is ready;
no events will be processed while the commands block. In nonblocking modeputs, read, andgetsnever
block. See the documentation for the individual commands for information on how they handle blocking
and nonblocking channels.

The script for a file event is executed at global level (outside the context of any Tcl procedure) in the inter-
preter in which thefileeventcommand was invoked. If an error occurs while executing the script then the
bgerror mechanism is used to report the error. In addition, the file event handler is deleted if it ever returns
an error; this is done in order to prevent infinite loops due to buggy handlers.

Tcl Last change: 7.5 1

Tcl Built-In Commands fileevent (n)

CREDITS
fileevent is based on theaddinput command created by Mark Diekhans.

SEE ALSO
bgerror, fconfigure, gets, puts, read

KEYWORDS
asynchronous I/O, blocking, channel, event handler, nonblocking, readable, script, writable.

Tcl Last change: 7.5 2

Tcl Built-In Commands filename (n)

NAME
filename − File name conventions supported by Tcl commands

INTRODUCTION
All Tcl commands and C procedures that take file names as arguments expect the file names to be in one of
three forms, depending on the current platform. On each platform, Tcl supports file names in the standard
forms(s) for that platform. In addition, on all platforms, Tcl supports a Unix-like syntax intended to pro-
vide a convenient way of constructing simple file names. However, scripts that are intended to be portable
should not assume a particular form for file names. Instead, portable scripts must use thefile split andfile
join commands to manipulate file names (see thefile manual entry for more details).

PATH TYPES
File names are grouped into three general types based on the starting point for the path used to specify the
file: absolute, relative, and volume-relative. Absolute names are completely qualified, giving a path to the
file relative to a particular volume and the root directory on that volume. Relative names are unqualified,
giving a path to the file relative to the current working directory. Volume-relative names are partially quali-
fied, either giving the path relative to the root directory on the current volume, or relative to the current
directory of the specified volume. Thefile pathtype command can be used to determine the type of a given
path.

PATH SYNTAX
The rules for native names depend on the value reported in the Tcl array elementtcl_platform(platform) :

mac On Apple Macintosh systems, Tcl supports two forms of path names. The normal Mac style
names use colons as path separators. Paths may be relative or absolute, and file names may
contain any character other than colon. A leading colon causes the rest of the path to be inter-
preted relative to the current directory. If a path contains a colon that is not at the beginning,
then the path is interpreted as an absolute path. Sequences of two or more colons anywhere in
the path are used to construct relative paths where:: refers to the parent of the current direc-
tory, ::: refers to the parent of the parent, and so forth.

In addition to Macintosh style names, Tcl also supports a subset of Unix-like names. If a path
contains no colons, then it is interpreted like a Unix path. Slash is used as the path separator.
The file name. refers to the current directory, and.. refers to the parent of the current directory.
However, some names like/ or /.. have no mapping, and are interpreted as Macintosh names.
In general, commands that generate file names will return Macintosh style names, but com-
mands that accept file names will take both Macintosh and Unix-style names.

The following examples illustrate various forms of path names:

: Relative path to the current folder.

MyFile Relative path to a file namedMyFile in the current folder.

MyDisk:MyFile Absolute path to a file namedMyFile on the device namedMyDisk .

:MyDir:MyFile Relative path to a file nameMyFile in a folder namedMyDir in the current
folder.

::MyFile Relative path to a file namedMyFile in the folder above the current folder.

:::MyFile Relative path to a file namedMyFile in the folder two lev els above the cur-
rent folder.

/MyDisk/MyFile Absolute path to a file namedMyFile on the device namedMyDisk .

../MyFile Relative path to a file namedMyFile in the folder above the current folder.

Tcl Last change: 7.5 1

Tcl Built-In Commands filename (n)

unix On Unix platforms, Tcl uses path names where the components are separated by slashes. Path
names may be relative or absolute, and file names may contain any character other than slash.
The file names. and.. are special and refer to the current directory and the parent of the current
directory respectively. Multiple adjacent slash characters are interpreted as a single separator.
The following examples illustrate various forms of path names:

/ Absolute path to the root directory.

/etc/passwd Absolute path to the file namedpasswdin the directoryetc in the root direc-
tory.

. Relative path to the current directory.

foo Relative path to the filefoo in the current directory.

foo/bar Relative path to the filebar in the directoryfoo in the current directory.

../foo Relative path to the filefoo in the directory above the current directory.

windows On Microsoft Windows platforms, Tcl supports both drive-relative and UNC style names.
Both / and\ may be used as directory separators in either type of name. Drive-relative names
consist of an optional drive specifier followed by an absolute or relative path. UNC paths fol-
low the general form\\servername\sharename\path\file. In both forms, the file names. and..
are special and refer to the current directory and the parent of the current directory respectively.
The following examples illustrate various forms of path names:

\\Host\share/file Absolute UNC path to a file calledfile in the root directory of the export
pointshareon the hostHost.

c:foo Volume-relative path to a filefoo in the current directory on drivec.

c:/foo Absolute path to a filefoo in the root directory of drivec.

foo\bar Relative path to a filebar in thefoo directory in the current directory on the
current volume.

\foo Volume-relative path to a filefoo in the root directory of the current volume.

TILDE SUBSTITUTION
In addition to the file name rules described above, Tcl also supportscsh-style tilde substitution. If a file
name starts with a tilde, then the file name will be interpreted as if the first element is replaced with the
location of the home directory for the given user. If the tilde is followed immediately by a separator, then
the $HOME environment variable is substituted. Otherwise the characters between the tilde and the next
separator are taken as a user name, which is used to retrieve the user’s home directory for substitution.

The Macintosh and Windows platforms do not support tilde substitution when a user name follows the
tilde. On these platforms, attempts to use a tilde followed by a user name will generate an error. File
names that have a tilde without a user name will be substituted using the$HOME environment variable,
just like for Unix.

PORTABILITY ISSUES
Not all file systems are case sensitive, so scripts should avoid code that depends on the case of characters in
a file name. In addition, the character sets allowed on different devices may differ, so scripts should choose
file names that do not contain special characters like:<>:"/\| . The safest approach is to use names consist-
ing of alphanumeric characters only. Also Windows 3.1 only supports file names with a root of no more
than 8 characters and an extension of no more than 3 characters.

Tcl Last change: 7.5 2

Tcl Built-In Commands filename (n)

KEYWORDS
current directory, absolute file name, relative file name, volume-relative file name, portability

Tcl Last change: 7.5 3

Tcl Built-In Commands flush (n)

NAME
flush − Flush buffered output for a channel

SYNOPSIS
flush channelId

DESCRIPTION
Flushes any output that has been buffered forchannelId. ChannelIdmust be a channel identifier such as
returned by a previousopenor socketcommand, and it must have been opened for writing. If the channel
is in blocking mode the command does not return until all the buffered output has been flushed to the chan-
nel. If the channel is in nonblocking mode, the command may return before all buffered output has been
flushed; the remainder will be flushed in the background as fast as the underlying file or device is able to
absorb it.

SEE ALSO
open(n), socket(n)

KEYWORDS
blocking, buffer, channel, flush, nonblocking, output

Tcl Last change: 7.5 1

Tcl Built-In Commands for (n)

NAME
for − ‘‘For’’ loop

SYNOPSIS
for start test next body

DESCRIPTION
For is a looping command, similar in structure to the Cfor statement. Thestart, next, andbodyarguments
must be Tcl command strings, andtestis an expression string. Thefor command first invokes the Tcl inter-
preter to executestart. Then it repeatedly evaluatestestas an expression; if the result is non-zero it invokes
the Tcl interpreter onbody, then invokes the Tcl interpreter onnext, then repeats the loop. The command
terminates whentestevaluates to 0. If acontinue command is invoked withinbody then any remaining
commands in the current execution ofbody are skipped; processing continues by invoking the Tcl inter-
preter onnext, then evaluatingtest, and so on. If abreak command is invoked withinbodyor next, then the
for command will return immediately. The operation ofbreak andcontinue are similar to the correspond-
ing statements in C.For returns an empty string.

Note: testshould almost always be enclosed in braces. If not, variable substitutions will be made before the
for command starts executing, which means that variable changes made by the loop body will not be con-
sidered in the expression. This is likely to result in an infinite loop. Iftest is enclosed in braces, variable
substitutions are delayed until the expression is evaluated (before each loop iteration), so changes in the
variables will be visible. For an example, try the following script with and without the braces around
$x<10:

for {set x 0} {$x<10} {incr x} {
puts "x is $x"

}

KEYWORDS
for, iteration, looping

Tcl Last change: 1

Tcl Built-In Commands foreach (n)

NAME
foreach − Iterate over all elements in one or more lists

SYNOPSIS
foreachvarname list body
foreachvarlist1 list1?varlist2 list2 ...?body

DESCRIPTION
The foreach command implements a loop where the loop variable(s) take on values from one or more lists.
In the simplest case there is one loop variable,varname, and one list,list, that is a list of values to assign to
varname. Thebodyargument is a Tcl script. For each element oflist (in order from first to last),foreach
assigns the contents of the element tovarnameas if thelindex command had been used to extract the ele-
ment, then calls the Tcl interpreter to executebody.

In the general case there can be more than one value list (e.g.,list1 and list2), and each value list can be
associated with a list of loop variables (e.g.,varlist1 andvarlist2). During each iteration of the loop the
variables of eachvarlist are assigned consecutive values from the correspondinglist. Values in eachlist are
used in order from first to last, and each value is used exactly once. The total number of loop iterations is
large enough to use up all the values from all the value lists. If a value list does not contain enough ele-
ments for each of its loop variables in each iteration, empty values are used for the missing elements.

The break andcontinue statements may be invoked insidebody, with the same effect as in thefor com-
mand. Foreachreturns an empty string.

EXAMPLES
The following loop uses i and j as loop variables to iterate over pairs of elements of a single list.

set x {}
foreach {i j} {a b c d e f} {

lappend x $j $i
}
The value of x is "b a d c f e"
There are 3 iterations of the loop.

The next loop uses i and j to iterate over two lists in parallel.

set x {}
foreach i {a b c} j {d e f g} {

lappend x $i $j
}
The value of x is "a d b e c f {} g"
There are 4 iterations of the loop.

The two forms are combined in the following example.

set x {}
foreach i {a b c} {j k} {d e f g} {

lappend x $i $j $k
}
The value of x is "a d e b f g c {} {}"
There are 3 iterations of the loop.

Tcl Last change: 1

Tcl Built-In Commands foreach (n)

KEYWORDS
foreach, iteration, list, looping

Tcl Last change: 2

Tcl Built-In Commands format (n)

NAME
format − Format a string in the style of sprintf

SYNOPSIS
format formatString?arg arg ...?

INTRODUCTION
This command generates a formatted string in the same way as the ANSI Csprintf procedure (it uses
sprintf in its implementation).FormatStringindicates how to format the result, using% conversion speci-
fiers as insprintf , and the additional arguments, if any, provide values to be substituted into the result. The
return value fromformat is the formatted string.

DETAILS ON FORMATTING
The command operates by scanningformatStringfrom left to right. Each character from the format string
is appended to the result string unless it is a percent sign. If the character is a% then it is not copied to the
result string. Instead, the characters following the% character are treated as a conversion specifier. The
conversion specifier controls the conversion of the next successivearg to a particular format and the result
is appended to the result string in place of the conversion specifier. If there are multiple conversion speci-
fiers in the format string, then each one controls the conversion of one additionalarg. The format com-
mand must be given enoughargs to meet the needs of all of the conversion specifiers informatString.

Each conversion specifier may contain up to six different parts: an XPG3 position specifier, a set of flags, a
minimum field width, a precision, a length modifier, and a conversion character. Any of these fields may be
omitted except for the conversion character. The fields that are present must appear in the order given
above. The paragraphs below discuss each of these fields in turn.

If the % is followed by a decimal number and a$, as in ‘‘%2$d’’, then the value to convert is not taken
from the next sequential argument. Instead, it is taken from the argument indicated by the number, where 1
corresponds to the firstarg. If the conversion specifier requires multiple arguments because of∗ characters
in the specifier then successive arguments are used, starting with the argument given by the number. This
follows the XPG3 conventions for positional specifiers. If there are any positional specifiers informat-
Stringthen all of the specifiers must be positional.

The second portion of a conversion specifier may contain any of the following flag characters, in any order:

− Specifies that the converted argument should be left-justified in its field (numbers are normally
right-justified with leading spaces if needed).

+ Specifies that a number should always be printed with a sign, even if positive.

space Specifies that a space should be added to the beginning of the number if the first character isn’t
a sign.

0 Specifies that the number should be padded on the left with zeroes instead of spaces.

Requests an alternate output form. Foro andO conversions it guarantees that the first digit is
always0. Forx or X conversions,0x or 0X (respectively) will be added to the beginning of the
result unless it is zero. For all floating-point conversions (e, E, f, g, andG) it guarantees that
the result always has a decimal point. Forg andG conversions it specifies that trailing zeroes
should not be removed.

The third portion of a conversion specifier is a number giving a minimum field width for this conversion. It
is typically used to make columns line up in tabular printouts. If the converted argument contains fewer
characters than the minimum field width then it will be padded so that it is as wide as the minimum field
width. Padding normally occurs by adding extra spaces on the left of the converted argument, but the0 and
− flags may be used to specify padding with zeroes on the left or with spaces on the right, respectively. If

Tcl Last change: 1

Tcl Built-In Commands format (n)

the minimum field width is specified as∗ rather than a number, then the next argument to theformat com-
mand determines the minimum field width; it must be a numeric string.

The fourth portion of a conversion specifier is a precision, which consists of a period followed by a number.
The number is used in different ways for different conversions. Fore, E, andf conversions it specifies the
number of digits to appear to the right of the decimal point. Forg andG conversions it specifies the total
number of digits to appear, including those on both sides of the decimal point (however, trailing zeroes after
the decimal point will still be omitted unless the# flag has been specified). For integer conversions, it spec-
ifies a minimum number of digits to print (leading zeroes will be added if necessary). Fors conversions it
specifies the maximum number of characters to be printed; if the string is longer than this then the trailing
characters will be dropped. If the precision is specified with∗ rather than a number then the next argument
to theformat command determines the precision; it must be a numeric string.

The fifth part of a conversion specifier is a length modifier, which must beh or l. If it is h it specifies that
the numeric value should be truncated to a 16-bit value before converting. This option is rarely useful. The
l modifier is ignored.

The last thing in a conversion specifier is an alphabetic character that determines what kind of conversion to
perform. The following conversion characters are currently supported:

d Convert integer to signed decimal string.

u Convert integer to unsigned decimal string.

i Convert integer to signed decimal string; the integer may either be in decimal, in octal (with a
leading0) or in hexadecimal (with a leading0x).

o Convert integer to unsigned octal string.

x or X Convert integer to unsigned hexadecimal string, using digits ‘‘0123456789abcdef ’’ forx and
‘‘0123456789ABCDEF’’ forX).

c Convert integer to the 8-bit character it represents.

s No conversion; just insert string.

f Convert floating-point number to signed decimal string of the formxx.yyy, where the number
of y’s is determined by the precision (default: 6). If the precision is 0 then no decimal point is
output.

eor e Convert floating-point number to scientific notation in the formx.yyye±zz, where the number of
y’s is determined by the precision (default: 6). If the precision is 0 then no decimal point is
output. If theE form is used thenE is printed instead ofe.

g or G If the exponent is less than −4 or greater than or equal to the precision, then convert floating-
point number as for%e or %E . Otherwise convert as for%f . Trailing zeroes and a trailing
decimal point are omitted.

% No conversion: just insert% .

For the numerical conversions the argument being converted must be an integer or floating-point string; for-
mat converts the argument to binary and then converts it back to a string according to the conversion speci-
fier.

DIFFERENCES FROM ANSI SPRINTF
The behavior of the format command is the same as the ANSI Csprintf procedure except for the following
differences:

[1] %p and%n specifiers are not currently supported.

[2] For %c conversions the argument must be a decimal string, which will then be converted to the

Tcl Last change: 2

Tcl Built-In Commands format (n)

corresponding character value.

[3] The l modifier is ignored; integer values are always converted as if there were no modifier present
and real values are always converted as if thel modifier were present (i.e. typedouble is used for
the internal representation). If theh modifier is specified then integer values are truncated toshort
before conversion.

KEYWORDS
conversion specifier, format, sprintf, string, substitution

Tcl Last change: 3

Tcl Built-In Commands gets (n)

NAME
gets − Read a line from a channel

SYNOPSIS
getschannelId?varName?

DESCRIPTION
This command reads the next line fromchannelId, returns everything in the line up to (but not including)
the end-of-line character(s), and discards the end-of-line character(s). IfvarNameis omitted the line is
returned as the result of the command. IfvarNameis specified then the line is placed in the variable by that
name and the return value is a count of the number of characters returned.

If end of file occurs while scanning for an end of line, the command returns whatever input is available up
to the end of file. IfchannelIdis in nonblocking mode and there is not a full line of input available, the
command returns an empty string and does not consume any input. IfvarNameis specified and an empty
string is returned invarNamebecause of end-of-file or because of insufficient data in nonblocking mode,
then the return count is -1. Note that ifvarNameis not specified then the end-of-file and no-full-line-avail-
able cases can produce the same results as if there were an input line consisting only of the end-of-line
character(s). Theeofandfblocked commands can be used to distinguish these three cases.

SEE ALSO
eof(n), fblocked(n)

KEYWORDS
blocking, channel, end of file, end of line, line, nonblocking, read

Tcl Last change: 7.5 1

Tcl Built-In Commands glob (n)

NAME
glob − Return names of files that match patterns

SYNOPSIS
glob ?switches?pattern?pattern ...?

DESCRIPTION
This command performs file name ‘‘globbing’’ in a fashion similar to the csh shell. It returns a list of the
files whose names match any of thepatternarguments.

If the initial arguments toglob start with− then they are treated as switches. The following switches are
currently supported:

−nocomplain Allows an empty list to be returned without error; without this switch an error is
returned if the result list would be empty.

− − Marks the end of switches. The argument following this one will be treated as apattern
ev en if it starts with a−.

Thepatternarguments may contain any of the following special characters:

? Matches any single character.

∗ Matches any sequence of zero or more characters.

[chars] Matches any single character inchars. If charscontains a sequence of the forma−b then any
character betweena andb (inclusive) will match.

\x Matches the characterx.

{a,b,...} Matches any of the stringsa, b, etc.

As with csh, a ‘‘.’’ at the beginning of a file’s name or just after a ‘‘/’’ must be matched explicitly or with a
{} construct. In addition, all ‘‘/’’ characters must be matched explicitly.

If the first character in apatternis ‘‘˜’’ then it refers to the home directory for the user whose name follows
the ‘‘˜’’. If the ‘‘˜’’ is followed immediately by ‘‘/’’ then the value of the HOME environment variable is
used.

Theglob command differs from csh globbing in two ways. First, it does not sort its result list (use thelsort
command if you want the list sorted). Second,glob only returns the names of files that actually exist; in
csh no check for existence is made unless a pattern contains a ?,∗, or [] construct.

PORTABILITY ISSUES
Unlike other Tcl commands that will accept both network and native style names (see thefilenamemanual
entry for details on how native and network names are specified), theglob command only accepts native
names. Also, for Windows UNC names, the servername and sharename components of the path may not
contain ?,∗, or [] constructs.

KEYWORDS
exist, file, glob, pattern

Tcl Last change: 7.5 1

Tcl Built-In Commands global (n)

NAME
global − Access global variables

SYNOPSIS
global varname?varname ...?

DESCRIPTION
This command is ignored unless a Tcl procedure is being interpreted. If so then it declares the givenvar-
name’s to be global variables rather than local ones. Global variables are variables in the global names-
pace. For the duration of the current procedure (and only while executing in the current procedure), any
reference to any of thevarnames will refer to the global variable by the same name.

SEE ALSO
namespace(n), variable(n)

KEYWORDS
global, namespace, procedure, variable

Tcl Last change: 1

Tcl Built-In Commands history (n)

NAME
history − Manipulate the history list

SYNOPSIS
history ?option? ?arg arg ...?

DESCRIPTION
Thehistory command performs one of several operations related to recently-executed commands recorded
in a history list. Each of these recorded commands is referred to as an ‘‘event’’. When specifying an event
to thehistory command, the following forms may be used:

[1] A number: if positive, it refers to the event with that number (all events are numbered starting at
1). If the number is negative, it selects an event relative to the current event (−1 refers to the previ-
ous event,−2 to the one before that, and so on). Event0 refers to the current event.

[2] A string: selects the most recent event that matches the string. An event is considered to match
the string either if the string is the same as the first characters of the event, or if the string matches
the event in the sense of thestring match command.

Thehistory command can take any of the following forms:

history Same ashistory info, described below.

history add command?exec?
Adds thecommandargument to the history list as a new event. Ifexecis specified (or abbrevi-
ated) then the command is also executed and its result is returned. Ifexecisn’t specified then an
empty string is returned as result.

history changenewValue?event?
Replaces the value recorded for an event withnewValue. Eventspecifies the event to replace, and
defaults to thecurrentev ent (not event−1). This command is intended for use in commands that
implement new forms of history substitution and wish to replace the current event (which invokes
the substitution) with the command created through substitution. The return value is an empty
string.

history clear
Erase the history list. The current keep limit is retained. The history event numbers are reset.

history event?event?
Returns the value of the event given byevent. Eventdefaults to−1.

history info ?count?
Returns a formatted string (intended for humans to read) giving the event number and contents for
each of the events in the history list except the current event. Ifcount is specified then only the
most recentcountev ents are returned.

history keep?count?
This command may be used to change the size of the history list tocount ev ents. Initially, 20
ev ents are retained in the history list. Ifcountis not specified, the current keep limit is returned.

history nextid
Returns the number of the next event to be recorded in the history list. It is useful for things like
printing the event number in command-line prompts.

history redo ?event?
Re-executes the command indicated byeventand return its result.Eventdefaults to−1. This
command results in history revision: see below for details.

Tcl Last change: 1

Tcl Built-In Commands history (n)

HISTORY REVISION
Pre-8.0 Tcl had a complex history revision mechanism. The current mechanism is more limited, and the
old history operationssubstitute and words have been removed. (As a consolation, theclear operation
was added.)

The history optionredo results in much simpler ‘‘history revision’’. When this option is invoked then the
most recent event is modified to eliminate the history command and replace it with the result of the history
command. If you want to redo an event without modifying history, then use theev entoperation to retrieve
some event, and theadd operation to add it to history and execute it.

KEYWORDS
ev ent, history, record

Tcl Last change: 2

Tcl Built-In Commands Http (n)

NAME
Http − Client-side implementation of the HTTP/1.0 protocol.

SYNOPSIS
package require http ?2.0?

::http::config ?options?

::http::geturl url ?options?

::http::formatQuery list

::http::reset token

::http::wait token

::http::status token

::http::size token

::http::code token

::http::data token

DESCRIPTION
The http package provides the client side of the HTTP/1.0 protocol. The package implements the GET,
POST, and HEAD operations of HTTP/1.0. It allows configuration of a proxy host to get through firewalls.
The package is compatible with theSafesocksecurity policy, so it can be used by untrusted applets to do
URL fetching from a restricted set of hosts.

The ::http::geturl procedure does a HTTP transaction. Itsoptions determine whether a GET, POST, or
HEAD transaction is performed. The return value of::http::geturl is a token for the transaction. The
value is also the name of an array in the ::http namespace
that contains state information about the transaction. The elements of this array are described in the
STATE ARRAY section.

If the -command option is specified, then the HTTP operation is done in the background.::http::geturl
returns immediately after generating the HTTP request and the callback is invoked when the transaction
completes. For this to work, the Tcl event loop must be active. In Tk applications this is always true. For
pure-Tcl applications, the caller can use::http::wait after calling::http::geturl to start the event loop.

COMMANDS
::http::config ?options?

The ::http::config command is used to set and query the name of the proxy server and port, and
the User-Agent name used in the HTTP requests. If no options are specified, then the current con-
figuration is returned. If a single argument is specified, then it should be one of the flags described
below. In this case the current value of that setting is returned. Otherwise, the options should be a
set of flags and values that define the configuration:

−acceptmimetypes
The Accept header of the request. The default is∗/∗, which means that all types of docu-
ments are accepted. Otherwise you can supply a comma separated list of mime type pat-
terns that you are willing to receive. For example, "image/gif, image/jpeg, text/∗".

Tcl Last change: 8.0 1

Tcl Built-In Commands Http (n)

−proxyhost hostname
The name of the proxy host, if any. If this value is the empty string, the URL host is con-
tacted directly.

−proxyport number
The proxy port number.

−proxyfilter command
The command is a callback that is made during::http::geturl to determine if a proxy is
required for a given host. One argument, a host name, is added tocommandwhen it is
invoked. If a proxy is required, the callback should return a two element list containing
the proxy server and proxy port. Otherwise the filter should return an empty list. The
default filter returns the values of the−proxyhost and −proxyport settings if they are
non-empty.

−useragentstring
The value of the User-Agent header in the HTTP request. The default is"Tcl http client
package 2.0."

::http::geturl url ?options?
The ::http::geturl command is the main procedure in the package. The−query option causes a
POST operation and the−validate option causes a HEAD operation; otherwise, a GET operation
is performed. The::http::geturl command returns atokenvalue that can be used to get informa-
tion about the transaction. See the STATE ARRAY section for details. The::http::geturl com-
mand blocks until the operation completes, unless the−commandoption specifies a callback that
is invoked when the HTTP transaction completes.::http::geturl takes several options:

−blocksizesize
The blocksize used when reading the URL. At mostsizebytes are read at once. After
each block, a call to the−progresscallback is made.

−channelname
Copy the URL contents to channelnameinstead of saving it instate(body).

−commandcallback
Invokecallbackafter the HTTP transaction completes. This option causes::http::geturl
to return immediately. Thecallbackgets an additional argument that is thetokenreturned
from ::http::geturl . This token is the name of an array that is described in the STATE
ARRAY section. Here is a template for the callback:

proc httpCallback {token} {
upvar #0 $token state
Access state as a Tcl array

}

−handler callback
Invoke callbackwhenever HTTP data is available; if present, nothing else will be done
with the HTTP data. This procedure gets two additional arguments: the socket for the
HTTP data and thetokenreturned from::http::geturl . The token is the name of a global
array that is described in the STATE ARRAY section. The procedure is expected to
return the number of bytes read from the socket. Here is a template for the callback:

proc httpHandlerCallback {socket token} {
upvar #0 $token state
Access socket, and state as a Tcl array
...
(example: set data [read $socket 1000];set nbytes [string length $data])
...

Tcl Last change: 8.0 2

Tcl Built-In Commands Http (n)

return nbytes
}

−headerskeyvaluelist
This option is used to add extra headers to the HTTP request. Thekeyvaluelistargument
must be a list with an even number of elements that alternate between keys and values.
The keys become header field names. Newlines are stripped from the values so the
header cannot be corrupted. For example, ifkeyvaluelistis Pragma no-cachethen the
following header is included in the HTTP request:
Pragma: no-cache

−progresscallback
The callback is made after each transfer of data from the URL. The callback gets three
additional arguments: thetoken from ::http::geturl , the expected total size of the con-
tents from theContent-Length meta-data, and the current number of bytes transferred so
far. The expected total size may be unknown, in which case zero is passed to the call-
back. Here is a template for the progress callback:

proc httpProgress {token total current} {
upvar #0 $token state

}

−query query
This flag causes::http::geturl to do a POST request that passes thequery to the server.
The querymust be a x-url-encoding formatted query. The::http::formatQuery proce-
dure can be used to do the formatting.

−timeout milliseconds
If millisecondsis non-zero, then::http::geturl sets up a timeout to occur after the speci-
fied number of milliseconds. A timeout results in a call to::http::reset and to the-com-
mand callback, if specified. The return value of::http::status is timeout after a timeout
has occurred.

−validate boolean
If booleanis non-zero, then::http::geturl does an HTTP HEAD request. This request
returns meta information about the URL, but the contents are not returned. The meta
information is available in thestate(meta) variable after the transaction. See the STATE
ARRAY section for details.

::http::formatQuery key value?key value...?
This procedure does x-url-encoding of query data. It takes an even number of arguments that are
the keys and values of the query. It encodes the keys and values, and generates one string that has
the proper & and = separators. The result is suitable for the−query value passed to
::http::geturl .

::http::reset token?why?
This command resets the HTTP transaction identified bytoken, if any. This sets thestate(status)
value towhy, which defaults toreset, and then calls the registered−commandcallback.

::http::wait token
This is a convenience procedure that blocks and waits for the transaction to complete. This only
works in trusted code because it usesvwait.

::http::data token
This is a convenience procedure that returns thebody element (i.e., the URL data) of the state
array.

::http::status token
This is a convenience procedure that returns thestatuselement of the state array.

Tcl Last change: 8.0 3

Tcl Built-In Commands Http (n)

::http::code token
This is a convenience procedure that returns thehttp element of the state array.

::http::size token
This is a convenience procedure that returns thecurrentsizeelement of the state array.

STATE ARRAY
The ::http::geturl procedure returns atokenthat can be used to get to the state of the HTTP transaction in
the form of a Tcl array. Use this construct to create an easy-to-use array variable:

upvar #0 $token state
The following elements of the array are supported:

body The contents of the URL. This will be empty if the−channeloption has been specified.
This value is returned by the::http::data command.

currentsize
The current number of bytes fetched from the URL. This value is returned by the
::http::size command.

error If defined, this is the error string seen when the HTTP transaction was aborted.

http The HTTP status reply from the server. This value is returned by the::http::code com-
mand. The format of this value is:

code string
The code is a three-digit number defined in the HTTP standard. A code of 200 is OK.
Codes beginning with 4 or 5 indicate errors. Codes beginning with 3 are redirection
errors. In this case theLocation meta-data specifies a new URL that contains the
requested information.

meta The HTTP protocol returns meta-data that describes the URL contents. Themeta ele-
ment of the state array is a list of the keys and values of the meta-data. This is in a format
useful for initializing an array that just contains the meta-data:

array set meta $state(meta)
Some of the meta-data keys are listed below, but the HTTP standard defines more, and
servers are free to add their own.

Content-Type
The type of the URL contents. Examples includetext/html , image/gif, applica-
tion/postscript andapplication/x-tcl.

Content-Length
The advertised size of the contents. The actual size obtained by::http::geturl is
available asstate(size).

Location
An alternate URL that contains the requested data.

status Eitherok, for successful completion,reset for user-reset, orerror for an error condition.
During the transaction this value is the empty string.

totalsize
A copy of theContent-Length meta-data value.

type A copy of theContent-Typemeta-data value.

url The requested URL.

EXAMPLE
Copy a URL to a file and print meta-data
proc ::http::copy { url file {chunk 4096} } {

set out [open $file w]

Tcl Last change: 8.0 4

Tcl Built-In Commands Http (n)

set token [geturl $url -channel $out -progress ::http::Progress \
-blocksize $chunk]

close $out
This ends the line started by http::Progress
puts stderr ""
upvar #0 $token state
set max 0
foreach {name value} $state(meta) {

if {[string length $name] > $max} {
set max [string length $name]

}
if {[regexp -nocase ˆlocation$ $name]} {

Handle URL redirects
puts stderr "Location:$value"
return [copy [string trim $value] $file $chunk]

}
}
incr max
foreach {name value} $state(meta) {

puts [format "%-∗s %s" $max $name: $value]
}

return $token
}
proc ::http::Progress {args} {

puts -nonewline stderr . ; flush stderr
}

SEE ALSO
safe(n), socket(n), safesock(n)

KEYWORDS
security policy, socket

Tcl Last change: 8.0 5

Tcl Built-In Commands if (n)

NAME
if − Execute scripts conditionally

SYNOPSIS
if expr1?then?body1elseifexpr2?then?body2elseif... ?else? ?bodyN?

DESCRIPTION
The if command evaluatesexpr1as an expression (in the same way thatexpr evaluates its argument). The
value of the expression must be a boolean (a numeric value, where 0 is false and anything is true, or a string
value such astrue or yesfor true andfalseor no for false); if it is true thenbody1is executed by passing it
to the Tcl interpreter. Otherwiseexpr2is evaluated as an expression and if it is true thenbody2 is executed,
and so on. If none of the expressions evaluates to true thenbodyNis executed. Thethen andelseargu-
ments are optional ‘‘noise words’’ to make the command easier to read. There may be any number ofelseif
clauses, including zero.BodyNmay also be omitted as long aselseis omitted too. The return value from
the command is the result of the body script that was executed, or an empty string if none of the expressions
was non-zero and there was nobodyN.

KEYWORDS
boolean, conditional, else, false, if, true

Tcl Last change: 1

Tcl Built-In Commands incr (n)

NAME
incr − Increment the value of a variable

SYNOPSIS
incr varName?increment?

DESCRIPTION
Increments the value stored in the variable whose name isvarName. The value of the variable must be an
integer. If incrementis supplied then its value (which must be an integer) is added to the value of variable
varName; otherwise 1 is added tovarName. The new value is stored as a decimal string in variablevar-
Nameand also returned as result.

KEYWORDS
add, increment, variable, value

Tcl Last change: 1

Tcl Built-In Commands info (n)

NAME
info − Return information about the state of the Tcl interpreter

SYNOPSIS
info option?arg arg ...?

DESCRIPTION
This command provides information about various internals of the Tcl interpreter. The legaloption’s
(which may be abbreviated) are:

info args procname
Returns a list containing the names of the arguments to procedureprocname, in order. Procname
must be the name of a Tcl command procedure.

info body procname
Returns the body of procedureprocname. Procnamemust be the name of a Tcl command proce-
dure.

info cmdcount
Returns a count of the total number of commands that have been invoked in this interpreter.

info commands?pattern?
If patternisn’t specified, returns a list of names of all the Tcl commands in the current namespace,
including both the built-in commands written in C and the command procedures defined using the
proc command. Ifpatternis specified, only those names matchingpatternare returned. Matching
is determined using the same rules as forstring match. pattern can be a qualified name like
Foo::print ∗. That is, it may specify a particular namespace using a sequence of namespace names
separated by::s, and may have pattern matching special characters at the end to specify a set of
commands in that namespace. Ifpatternis a qualified name, the resulting list of command names
has each one qualified with the name of the specified namespace.

info completecommand
Returns 1 ifcommandis a complete Tcl command in the sense of having no unclosed quotes,
braces, brackets or array element names, If the command doesn’t appear to be complete then 0 is
returned. This command is typically used in line-oriented input environments to allow users to
type in commands that span multiple lines; if the command isn’t complete, the script can delay
evaluating it until additional lines have been typed to complete the command.

info default procname arg varname
Procnamemust be the name of a Tcl command procedure andarg must be the name of an argu-
ment to that procedure. Ifarg doesn’t hav e a default value then the command returns0. Other-
wise it returns1 and places the default value ofarg into variablevarname.

info existsvarName
Returns1 if the variable namedvarNameexists in the current context (either as a global or local
variable), returns0 otherwise.

info globals?pattern?
If pattern isn’t specified, returns a list of all the names of currently-defined global variables.
Global variables are variables in the global namespace. Ifpattern is specified, only those names
matchingpatternare returned. Matching is determined using the same rules as forstring match.

info hostname
Returns the name of the computer on which this invocation is being executed.

info lev el ?number?
If numberis not specified, this command returns a number giving the stack level of the invoking

Tcl Last change: 7.5 1

Tcl Built-In Commands info (n)

procedure, or 0 if the command is invoked at top-level. Ifnumberis specified, then the result is a
list consisting of the name and arguments for the procedure call at levelnumberon the stack. If
numberis positive then it selects a particular stack level (1 refers to the top-most active procedure,
2 to the procedure it called, and so on); otherwise it gives a lev el relative to the current level (0
refers to the current procedure, -1 to its caller, and so on). See theuplevel command for more
information on what stack levels mean.

info library
Returns the name of the library directory in which standard Tcl scripts are stored. This is actually
the value of thetcl_library variable and may be changed by settingtcl_library . See thetclvars
manual entry for more information.

info loaded?interp?
Returns a list describing all of the packages that have been loaded intointerp with the load com-
mand. Each list element is a sub-list with two elements consisting of the name of the file from
which the package was loaded and the name of the package. For statically-loaded packages the
file name will be an empty string. Ifinterp is omitted then information is returned for all packages
loaded in any interpreter in the process. To get a list of just the packages in the current interpreter,
specify an empty string for theinterpargument.

info locals?pattern?
If patternisn’t specified, returns a list of all the names of currently-defined local variables, includ-
ing arguments to the current procedure, if any. Variables defined with theglobal andupvar com-
mands will not be returned. Ifpattern is specified, only those names matchingpattern are
returned. Matching is determined using the same rules as forstring match.

info nameofexecutable
Returns the full path name of the binary file from which the application was invoked. If Tcl was
unable to identify the file, then an empty string is returned.

info patchlevel
Returns the value of the global variabletcl_patchLevel; see thetclvars manual entry for more
information.

info procs ?pattern?
If pattern isn’t specified, returns a list of all the names of Tcl command procedures in the current
namespace. Ifpatternis specified, only those procedure names in the current namespace matching
patternare returned. Matching is determined using the same rules as forstring match.

info script
If a Tcl script file is currently being evaluated (i.e. there is a call toTcl_EvalFile active or there is
an active inv ocation of thesourcecommand), then this command returns the name of the inner-
most file being processed. Otherwise the command returns an empty string.

info sharedlibextension
Returns the extension used on this platform for the names of files containing shared libraries (for
example,.so under Solaris). If shared libraries aren’t supported on this platform then an empty
string is returned.

info tclversion
Returns the value of the global variabletcl_version; see thetclvars manual entry for more infor-
mation.

info vars ?pattern?
If patternisn’t specified, returns a list of all the names of currently-visible variables. This includes
locals and currently-visible globals. Ifpatternis specified, only those names matchingpatternare
returned. Matching is determined using the same rules as forstring match. pattern can be a
qualified name likeFoo::option∗. That is, it may specify a particular namespace using a sequence

Tcl Last change: 7.5 2

Tcl Built-In Commands info (n)

of namespace names separated by::s, and may have pattern matching special characters at the end
to specify a set of variables in that namespace. Ifpattern is a qualified name, the resulting list of
variable names has each matching namespace variable qualified with the name of its namespace.

KEYWORDS
command, information, interpreter, lev el, namespace, procedure, variable

Tcl Last change: 7.5 3

Tcl Built-In Commands interp (n)

NAME
interp − Create and manipulate Tcl interpreters

SYNOPSIS
interp option?arg arg ...?

DESCRIPTION
This command makes it possible to create one or more new Tcl interpreters that co-exist with the creating
interpreter in the same application. The creating interpreter is called themasterand the new interpreter is
called aslave. A master can create any number of slaves, and each slave can itself create additional slaves
for which it is master, resulting in a hierarchy of interpreters.

Each interpreter is independent from the others: it has its own name space for commands, procedures, and
global variables. A master interpreter may create connections between its slaves and itself using a mecha-
nism called analias. An alias is a command in a slave interpreter which, when invoked, causes a command
to be invoked in its master interpreter or in another slave interpreter. The only other connections between
interpreters are through environment variables (theenv variable), which are normally shared among all
interpreters in the application. Note that the name space for files (such as the names returned by theopen
command) is no longer shared between interpreters. Explicit commands are provided to share files and to
transfer references to open files from one interpreter to another.

The interp command also provides support forsafeinterpreters. A safe interpreter is a slave whose func-
tions have been greatly restricted, so that it is safe to execute untrusted scripts without fear of them damag-
ing other interpreters or the application’s environment. For example, all IO channel creation commands and
subprocess creation commands are made inaccessible to safe interpreters. See SAFE INTERPRETERS
below for more information on what features are present in a safe interpreter. The dangerous functionality
is not removed from the safe interpreter; instead, it ishidden, so that only trusted interpreters can obtain
access to it. For a detailed explanation of hidden commands, see HIDDEN COMMANDS, below. The alias
mechanism can be used for protected communication (analogous to a kernel call) between a slave inter-
preter and its master. See ALIAS INVOCATION, below, for more details on how the alias mechanism
works.

A qualified interpreter name is a proper Tcl lists containing a subset of its ancestors in the interpreter hierar-
chy, terminated by the string naming the interpreter in its immediate master. Interpreter names are relative
to the interpreter in which they are used. For example, ifa is a slave of the current interpreter and it has a
slavea1, which in turn has a slavea11, the qualified name ofa11 in a is the lista1 a11.

The interp command, described below, accepts qualified interpreter names as arguments; the interpreter in
which the command is being evaluated can always be referred to as{} (the empty list or string). Note that it
is impossible to refer to a master (ancestor) interpreter by name in a slave interpreter except through aliases.
Also, there is no global name by which one can refer to the first interpreter created in an application. Both
restrictions are motivated by safety concerns.

THE INTERP COMMAND
The interp command is used to create, delete, and manipulate slave interpreters, and to share or transfer
channels between interpreters. It can have any of sev eral forms, depending on theoptionargument:

interp alias srcPath srcCmd
Returns a Tcl list whose elements are thetargetCmdandargs associated with the alias namedsrc-
Cmd(all of these are the values specified when the alias was created; it is possible that the actual
source command in the slave is different fromsrcCmdif it was renamed).

interp alias srcPath srcCmd{}
Deletes the alias forsrcCmdin the slave interpreter identified bysrcPath. srcCmdrefers to the

Tcl Last change: 7.6 1

Tcl Built-In Commands interp (n)

name under which the alias was created; if the source command has been renamed, the renamed
command will be deleted.

interp alias srcPath srcCmd targetPath targetCmd?arg arg ...?
This command creates an alias between one slave and another (see thealias slave command below
for creating aliases between a slave and its master). In this command, either of the slave inter-
preters may be anywhere in the hierarchy of interpreters under the interpreter invoking the com-
mand. SrcPathandsrcCmdidentify the source of the alias.SrcPathis a Tcl list whose elements
select a particular interpreter. For example, ‘‘a b’’ identifies an interpreterb, which is a slave of
interpretera, which is a slave of the invoking interpreter. An empty list specifies the interpreter
invoking the command.srcCmdgives the name of a new command, which will be created in the
source interpreter.Targ etPathand targetCmdspecify a target interpreter and command, and the
arg arguments, if any, specify additional arguments totargetCmdwhich are prepended to any
arguments specified in the invocation ofsrcCmd. Targ etCmdmay be undefined at the time of this
call, or it may already exist; it is not created by this command. The alias arranges for the given
target command to be invoked in the target interpreter whenever the given source command is
invoked in the source interpreter. See ALIAS INVOCATION below for more details.

interp aliases?path?
This command returns a Tcl list of the names of all the source commands for aliases defined in the
interpreter identified bypath.

interp create ?−safe? ?− −? ?path?
Creates a slave interpreter identified bypath and a new command, called aslave command. The
name of the slave command is the last component ofpath. The new slave interpreter and the slave
command are created in the interpreter identified by the path obtained by removing the last com-
ponent frompath. For example, ifpath isa b c then a new slave interpreter and slave command
namedc are created in the interpreter identified by the patha b. The slave command may be used
to manipulate the new interpreter as described below. Ifpath is omitted, Tcl creates a unique name
of the forminterpx, wherex is an integer, and uses it for the interpreter and the slave command. If
the−safeswitch is specified (or if the master interpreter is a safe interpreter), the new slave inter-
preter will be created as a safe interpreter with limited functionality; otherwise the slave will
include the full set of Tcl built-in commands and variables. The− − switch can be used to mark the
end of switches; it may be needed ifpath is an unusual value such as−safe. The result of the com-
mand is the name of the new interpreter. The name of a slave interpreter must be unique among all
the slaves for its master; an error occurs if a slave interpreter by the given name already exists in
this master.

interp delete?path ...?
Deletes zero or more interpreters given by the optionalpatharguments, and for each interpreter, it
also deletes its slaves. The command also deletes the slave command for each interpreter deleted.
For eachpathargument, if no interpreter by that name exists, the command raises an error.

interp eval path arg?arg ...?
This command concatenates all of thearg arguments in the same fashion as theconcatcommand,
then evaluates the resulting string as a Tcl script in the slave interpreter identified bypath. The
result of this evaluation (including error information such as theerrorInfo anderrorCode vari-
ables, if an error occurs) is returned to the invoking interpreter.

interp existspath
Returns 1 if a slave interpreter by the specifiedpath exists in this master,0 otherwise. Ifpath is
omitted, the invoking interpreter is used.

interp exposepath hiddenName?exposedCmdName?
Makes the hidden commandhiddenNameexposed, eventually bringing it back under a new
exposedCmdNamename (this name is currently accepted only if it is a valid global name space

Tcl Last change: 7.6 2

Tcl Built-In Commands interp (n)

name without any ::), in the interpreter denoted bypath. If an exposed command with the target-
ted name already exists, this command fails. Hidden commands are explained in more detail in
HIDDEN COMMANDS, below.

interp hide path exposedCmdName?hiddenCmdName?
Makes the exposed commandexposedCmdNamehidden, renaming it to the hidden commandhid-
denCmdName, or keeping the same name ifhiddenCmdNameis not given, in the interpreter
denoted bypath. If a hidden command with the targetted name already exists, this command fails.
Currently bothexposedCmdNameandhiddenCmdNamecan not contain namespace qualifiers, or
an error is raised. Commands to be hidden byinterp hide are looked up in the global namespace
ev en if the current namespace is not the global one. This prevents slaves from fooling a master
interpreter into hiding the wrong command, by making the current namespace be different from
the global one. Hidden commands are explained in more detail in HIDDEN COMMANDS,
below.

interp hidden path
Returns a list of the names of all hidden commands in the interpreter identified bypath.

interp inv okehidden path?-global?hiddenCmdName?arg ...?
Invokes the hidden commandhiddenCmdNamewith the arguments supplied in the interpreter
denoted bypath. No substitutions or evaluation are applied to the arguments. If the-global flag is
present, the hidden command is invoked at the global level in the target interpreter; otherwise it is
invoked at the current call frame and can access local variables in that and outer call frames. Hid-
den commands are explained in more detail in HIDDEN COMMANDS, below.

interp issafe?path?
Returns1 if the interpreter identified by the specifiedpath is safe,0 otherwise.

interp marktrusted path
Marks the interpreter identified bypath as trusted. Does not expose the hidden commands. This
command can only be invoked from a trusted interpreter. The command has no effect if the inter-
preter identified bypath is already trusted.

interp share srcPath channelId destPath
Causes the IO channel identified bychannelIdto become shared between the interpreter identified
by srcPathand the interpreter identified bydestPath. Both interpreters have the same permissions
on the IO channel. Both interpreters must close it to close the underlying IO channel; IO channels
accessible in an interpreter are automatically closed when an interpreter is destroyed.

interp slaves?path?
Returns a Tcl list of the names of all the slave interpreters associated with the interpreter identified
by path. If path is omitted, the invoking interpreter is used.

interp target path alias
Returns a Tcl list describing the target interpreter for an alias. The alias is specified with an inter-
preter path and source command name, just as ininterp alias above. The name of the target inter-
preter is returned as an interpreter path, relative to the invoking interpreter. If the target interpreter
for the alias is the invoking interpreter then an empty list is returned. If the target interpreter for
the alias is not the invoking interpreter or one of its descendants then an error is generated. The
target command does not have to be defined at the time of this invocation.

interp transfer srcPath channelId destPath
Causes the IO channel identified bychannelIdto become available in the interpreter identified by
destPathand unavailable in the interpreter identified bysrcPath.

Tcl Last change: 7.6 3

Tcl Built-In Commands interp (n)

SLAVE COMMAND
For each slave interpreter created with theinterp command, a new Tcl command is created in the master
interpreter with the same name as the new interpreter. This command may be used to invoke various opera-
tions on the interpreter. It has the following general form:

slave command?arg arg ...?
Slaveis the name of the interpreter, andcommandand theargs determine the exact behavior of the com-
mand. The valid forms of this command are:

slavealiases
Returns a Tcl list whose elements are the names of all the aliases inslave. The names returned are
thesrcCmdvalues used when the aliases were created (which may not be the same as the current
names of the commands, if they hav e been renamed).

slavealiassrcCmd
Returns a Tcl list whose elements are thetargetCmdandargs associated with the alias namedsrc-
Cmd(all of these are the values specified when the alias was created; it is possible that the actual
source command in the slave is different fromsrcCmdif it was renamed).

slavealiassrcCmd{}
Deletes the alias forsrcCmdin the slave interpreter.srcCmdrefers to the name under which the
alias was created; if the source command has been renamed, the renamed command will be
deleted.

slavealiassrcCmd targetCmd?arg ..?
Creates an alias such that wheneversrcCmdis invoked inslave, targetCmdis invoked in the mas-
ter. Thearg arguments will be passed totargetCmdas additional arguments, prepended before
any arguments passed in the invocation ofsrcCmd. See ALIAS INVOCATION below for details.

slaveev alarg ?arg ..?
This command concatenates all of thearg arguments in the same fashion as theconcatcommand,
then evaluates the resulting string as a Tcl script inslave. The result of this evaluation (including
error information such as theerrorInfo anderrorCode variables, if an error occurs) is returned to
the invoking interpreter.

slaveexposehiddenName?exposedCmdName?
This command exposes the hidden commandhiddenName, eventually bringing it back under a
new exposedCmdNamename (this name is currently accepted only if it is a valid global name
space name without any ::), inslave. If an exposed command with the targetted name already
exists, this command fails. For more details on hidden commands, see HIDDEN COMMANDS,
below.

slavehide exposedCmdName?hiddenCmdName?
This command hides the exposed commandexposedCmdName, renaming it to the hidden com-
mandhiddenCmdName, or keeping the same name if the the argument is not given, in theslave
interpreter. If a hidden command with the targetted name already exists, this command fails. Cur-
rently bothexposedCmdNameandhiddenCmdNamecan not contain namespace qualifiers, or an
error is raised. Commands to be hidden are looked up in the global namespace even if the current
namespace is not the global one. This prevents slaves from fooling a master interpreter into hiding
the wrong command, by making the current namespace be different from the global one. For more
details on hidden commands, see HIDDEN COMMANDS, below.

slavehidden
Returns a list of the names of all hidden commands inslave.

slaveinvokehidden?-global hiddenName?arg ..?
This command invokes the hidden commandhiddenNamewith the supplied arguments, inslave.
No substitutions or evaluations are applied to the arguments. If the-global flag is given, the

Tcl Last change: 7.6 4

Tcl Built-In Commands interp (n)

command is invoked at the global level in the slave; otherwise it is invoked at the current call
frame and can access local variables in that or outer call frames. For more details on hidden com-
mands, see HIDDEN COMMANDS, below.

slaveissafe
Returns1 if the slave interpreter is safe,0 otherwise.

slavemarktrusted
Marks the slave interpreter as trusted. Can only be invoked by a trusted interpreter. This command
does not expose any hidden commands in the slave interpreter. The command has no effect if the
slave is already trusted.

SAFE INTERPRETERS
A safe interpreter is one with restricted functionality, so that is safe to execute an arbitrary script from your
worst enemy without fear of that script damaging the enclosing application or the rest of your computing
environment. In order to make an interpreter safe, certain commands and variables are removed from the
interpreter. For example, commands to create files on disk are removed, and theexec command is
removed, since it could be used to cause damage through subprocesses. Limited access to these facilities
can be provided, by creating aliases to the master interpreter which check their arguments carefully and
provide restricted access to a safe subset of facilities. For example, file creation might be allowed in a par-
ticular subdirectory and subprocess invocation might be allowed for a carefully selected and fixed set of
programs.

A safe interpreter is created by specifying the−safeswitch to theinterp create command. Furthermore,
any slave created by a safe interpreter will also be safe.

A safe interpreter is created with exactly the following set of built-in commands:

after append array break
case catch clock close
concat continue eof error
ev al expr fblocked fileevent
flush for foreach format
gets global history if
incr info interp join
lappend lindex linsert list
llength lower lrange lreplace
lsearch lsort package pid
proc puts read rename
return scan seek set
split string subst switch
tell trace unset update
uplevel upvar vwait while

The following commands are hidden byinterp create when it creates a safe interpreter:

cd exec exit fconfigure
file glob load open
pwd socket source vwait

These commands can be recreated later as Tcl procedures or aliases, or re-exposed byinterp expose.

Tcl Last change: 7.6 5

Tcl Built-In Commands interp (n)

In addition, theenv variable is not present in a safe interpreter, so it cannot share environment variables
with other interpreters. Theenv variable poses a security risk, because users can store sensitive information
in an environment variable. For example, the PGP manual recommends storing the PGP private key protec-
tion password in the environment variablePGPPASS. Making this variable available to untrusted code
executing in a safe interpreter would incur a security risk.

If extensions are loaded into a safe interpreter, they may also restrict their own functionality to eliminate
unsafe commands. For a discussion of management of extensions for safety see the manual entries for
Safe−Tcland theload Tcl command.

ALIAS INVOCATION
The alias mechanism has been carefully designed so that it can be used safely when an untrusted script is
executing in a safe slave and the target of the alias is a trusted master. The most important thing in guaran-
teeing safety is to ensure that information passed from the slave to the master is never evaluated or substi-
tuted in the master; if this were to occur, it would enable an evil script in the slave to inv oke arbitrary func-
tions in the master, which would compromise security.

When the source for an alias is invoked in the slave interpreter, the usual Tcl substitutions are performed
when parsing that command. These substitutions are carried out in the source interpreter just as they would
be for any other command invoked in that interpreter. The command procedure for the source command
takes its arguments and merges them with thetargetCmdand args for the alias to create a new array of
arguments. If the words ofsrcCmdwere ‘‘srcCmd arg1 arg2 ... argN’’, the new set of words will be ‘‘tar-
getCmd arg arg ... arg arg1 arg2 ... argN’’, where targetCmdandargs are the values supplied when the
alias was created.Targ etCmdis then used to locate a command procedure in the target interpreter, and that
command procedure is invoked with the new set of arguments. An error occurs if there is no command
namedtargetCmdin the target interpreter. No additional substitutions are performed on the words: the tar-
get command procedure is invoked directly, without going through the normal Tcl evaluation mechanism.
Substitutions are thus performed on each word exactly once:targetCmdand args were substituted when
parsing the command that created the alias, andarg1 - argNare substituted when the alias’s source com-
mand is parsed in the source interpreter.

When writing thetargetCmds for aliases in safe interpreters, it is very important that the arguments to that
command never be evaluated or substituted, since this would provide an escape mechanism whereby the
slave interpreter could execute arbitrary code in the master. This in turn would compromise the security of
the system.

HIDDEN COMMANDS
Safe interpreters greatly restrict the functionality available to Tcl programs executing within them. Allow-
ing the untrusted Tcl program to have direct access to this functionality is unsafe, because it can be used for
a variety of attacks on the environment. However, there are times when there is a legitimate need to use the
dangerous functionality in the context of the safe interpreter. For example, sometimes a program must be
sourced into the interpreter. Another example is Tk, where windows are bound to the hierarchy of win-
dows for a specific interpreter; some potentially dangerous functions, e.g. window management, must be
performed on these windows within the interpreter context.

The interp command provides a solution to this problem in the form ofhidden commands. Instead of
removing the dangerous commands entirely from a safe interpreter, these commands are hidden so they
become unavailable to Tcl scripts executing in the interpreter. Howev er, such hidden commands can be
invoked by any trusted ancestor of the safe interpreter, in the context of the safe interpreter, usinginterp
invoke. Hidden commands and exposed commands reside in separate name spaces. It is possible to define a
hidden command and an exposed command by the same name within one interpreter.

Tcl Last change: 7.6 6

Tcl Built-In Commands interp (n)

Hidden commands in a slave interpreter can be invoked in the body of procedures called in the master dur-
ing alias invocation. For example, an alias forsource could be created in a slave interpreter. When it is
invoked in the slave interpreter, a procedure is called in the master interpreter to check that the operation is
allowable (e.g. it asks to source a file that the slave interpreter is allowed to access). The procedure then it
invokes the hiddensourcecommand in the slave interpreter to actually source in the contents of the file.
Note that two commands namedsourceexist in the slave interpreter: the alias, and the hidden command.

Because a master interpreter may invoke a hidden command as part of handling an alias invocation, great
care must be taken to avoid evaluating any arguments passed in through the alias invocation. Otherwise,
malicious slave interpreters could cause a trusted master interpreter to execute dangerous commands on
their behalf. See the section on ALIAS INVOCATION for a more complete discussion of this topic. To
help avoid this problem, no substitutions or evaluations are applied to arguments ofinterp inv okehidden.

Safe interpreters are not allowed to invoke hidden commands in themselves or in their descendants. This
prevents safe slaves from gaining access to hidden functionality in themselves or their descendants.

The set of hidden commands in an interpreter can be manipulated by a trusted interpreter usinginterp
exposeandinterp hide. Theinterp exposecommand moves a hidden command to the set of exposed com-
mands in the interpreter identified bypath, potentially renaming the command in the process. If an exposed
command by the targetted name already exists, the operation fails. Similarly,interp hide moves an exposed
command to the set of hidden commands in that interpreter. Safe interpreters are not allowed to move com-
mands between the set of hidden and exposed commands, in either themselves or their descendants.

Currently, the names of hidden commands cannot contain namespace qualifiers, and you must first rename
a command in a namespace to the global namespace before you can hide it. Commands to be hidden by
interp hide are looked up in the global namespace even if the current namespace is not the global one. This
prevents slaves from fooling a master interpreter into hiding the wrong command, by making the current
namespace be different from the global one.

CREDITS
This mechanism is based on the Safe-Tcl prototype implemented by Nathaniel Borenstein and Marshall
Rose.

SEE ALSO
load(n), safe(n), Tcl_CreateSlave(3)

KEYWORDS
alias, master interpreter, safe interpreter, slave interpreter

Tcl Last change: 7.6 7

Tcl Built-In Commands join (n)

NAME
join − Create a string by joining together list elements

SYNOPSIS
join list ?joinString?

DESCRIPTION
The list argument must be a valid Tcl list. This command returns the string formed by joining all of the ele-
ments oflist together withjoinString separating each adjacent pair of elements. ThejoinString argument
defaults to a space character.

KEYWORDS
element, join, list, separator

Tcl Last change: 1

Tcl Built-In Commands lappend (n)

NAME
lappend − Append list elements onto a variable

SYNOPSIS
lappendvarName?value value value ...?

DESCRIPTION
This command treats the variable given byvarNameas a list and appends each of thevaluearguments to
that list as a separate element, with spaces between elements. IfvarNamedoesn’t exist, it is created as a
list with elements given by thevaluearguments.Lappend is similar toappendexcept that thevalues are
appended as list elements rather than raw text. This command provides a relatively efficient way to build
up large lists. For example, ‘‘lappend a $b’’ is much more efficient than ‘‘set a [concat $a [list $b]]’’
when$a is long.

KEYWORDS
append, element, list, variable

Tcl Last change: 1

Tcl Built-In Commands library (n)

NAME
library − standard library of Tcl procedures

SYNOPSIS
auto_execokcmd
auto_loadcmd
auto_mkindexdir pattern pattern ...
auto_mkindex_olddir pattern pattern ...
auto_reset
tcl_findLibrary basename version patch initScript enVarName varName
parray arrayName
tcl_endOfWord str start
tcl_startOfNextWord str start
tcl_startOfPreviousWord str start
tcl_wordBreakAfter str start
tcl_wordBreakBefore str start

INTRODUCTION
Tcl includes a library of Tcl procedures for commonly-needed functions. The procedures defined in the Tcl
library are generic ones suitable for use by many different applications. The location of the Tcl library is
returned by theinfo library command. In addition to the Tcl library, each application will normally have
its own library of support procedures as well; the location of this library is normally given by the value of
the $app_library global variable, whereapp is the name of the application. For example, the location of
the Tk library is kept in the variable$tk_library .

To access the procedures in the Tcl library, an application should source the fileinit.tcl in the library, for
example with the Tcl command

source [file join [info library] init.tcl]
If the library procedureTcl_Init is invoked from an application’sTcl_AppInit procedure, this happens
automatically. The code ininit.tcl will define theunknown procedure and arrange for the other procedures
to be loaded on-demand using the auto-load mechanism defined below.

COMMAND PROCEDURES
The following procedures are provided in the Tcl library:

auto_execokcmd
Determines whether there is an executable file by the namecmd. This command examines the
directories in the current search path (given by the PATH environment variable) to see if there is an
executable file namedcmd in any of those directories. If so, it returns 1; if not it returns 0.
Auto_execremembers information about previous searches in an array namedauto_execs; this
avoids the path search in future calls for the samecmd. The commandauto_resetmay be used to
forceauto_execokto forget its cached information.

auto_loadcmd
This command attempts to load the definition for a Tcl command namedcmd. To do this, it
searches anauto-load path, which is a list of one or more directories. The auto-load path is given
by the global variable$auto_path if it exists. If there is no$auto_path variable, then the
TCLLIBPATH environment variable is used, if it exists. Otherwise the auto-load path consists of
just the Tcl library directory. Within each directory in the auto-load path there must be a filetclIn-
dex that describes one or more commands defined in that directory and a script to evaluate to load
each of the commands. ThetclIndex file should be generated with theauto_mkindex command.
If cmd is found in an index file, then the appropriate script is evaluated to create the command.

Tcl Last change: 8.0 1

Tcl Built-In Commands library (n)

The auto_load command returns 1 ifcmd was successfully created. The command returns 0 if
there was no index entry forcmd or if the script didn’t actually definecmd (e.g. because index
information is out of date). If an error occurs while processing the script, then that error is
returned.Auto_load only reads the index information once and saves it in the arrayauto_index;
future calls toauto_load check forcmd in the array rather than re-reading the index files. The
cached index information may be deleted with the commandauto_reset. This will force the next
auto_loadcommand to reload the index database from disk.

auto_mkindexdir pattern pattern ...
Generates an index suitable for use byauto_load. The command searchesdir for all files whose
names match any of thepatternarguments (matching is done with theglob command), generates
an index of all the Tcl command procedures defined in all the matching files, and stores the index
information in a file namedtclIndex in dir. If no pattern is given a pattern of∗.tcl will be
assumed. For example, the command

auto_mkindex foo∗.tcl

will read all the.tcl files in subdirectoryfoo and generate a new index filefoo/tclIndex.

Auto_mkindex parses the Tcl scripts by sourcing them into a slave interpreter and monitoring the
proc and namespace commands that are executed. Extensions can use the (undocumented)
auto_mkindex_parser package to register other commands that can contribute to the auto_load
index. You will have to read through init.tcl to see how this works.

Auto_mkindex_old parses the Tcl scripts in a relatively unsophisticated way: if any line contains
the wordproc as its first characters then it is assumed to be a procedure definition and the next
word of the line is taken as the procedure’s name. Procedure definitions that don’t appear in this
way (e.g. they hav e spaces before theproc) will not be indexed.

auto_reset
Destroys all the information cached byauto_execokandauto_load. This information will be re-
read from disk the next time it is needed.Auto_reset also deletes any procedures listed in the
auto-load index, so that fresh copies of them will be loaded the next time that they’re used.

tcl_findLibrary basename version patch initScript enVarName varName
This is a standard search procedure for use by extensions during their initialization. They call this
procedure to look for their script library in several standard directories. The last component of the
name of the library directory is normallybasenameversion(e.g., tk8.0), but it might be "library"
when in the build hierarchies. TheinitScript file will be sourced into the interpreter once it is
found. The directory in which this file is found is stored into the global variablevarName. If this
variable is already defined (e.g., by C code during application initialization) then no searching is
done. Otherwise the search looks in these directories: the directory named by the environment
variableenVarName; relative to the Tcl library directory; relative to the executable file in the stan-
dard installation bin or bin/arch directory; relative to the executable file in the current build tree;
relative to the executable file in a parallel build tree.

parray arrayName
Prints on standard output the names and values of all the elements in the arrayarrayName.
ArrayName must be an array accessible to the caller ofparray . It may be either local or global.

tcl_endOfWord str start
Returns the index of the first end-of-word location that occurs after a starting indexstart in the
stringstr. An end-of-word location is defined to be the first non-word character following the first
word character after the starting point. Returns -1 if there are no more end-of-word locations after
the starting point. See the description oftcl_wordchars and tcl_nonwordchars below for more
details on how Tcl determines which characters are word characters.

tcl_startOfNextWord str start

Tcl Last change: 8.0 2

Tcl Built-In Commands library (n)

Returns the index of the first start-of-word location that occurs after a starting indexstart in the
stringstr. A start-of-word location is defined to be the first word character following a non-word
character. Returns −1 if there are no more start-of-word locations after the starting point.

tcl_startOfPreviousWord str start
Returns the index of the first start-of-word location that occurs before a starting indexstart in the
stringstr. Returns −1 if there are no more start-of-word locations before the starting point.

tcl_wordBreakAfter str start
Returns the index of the first word boundary after the starting indexstart in the stringstr. Returns
−1 if there are no more boundaries after the starting point in the given string. The index returned
refers to the second character of the pair that comprises a boundary.

tcl_wordBreakBefore str start
Returns the index of the first word boundary before the starting indexstart in the stringstr.
Returns −1 if there are no more boundaries before the starting point in the given string. The index
returned refers to the second character of the pair that comprises a boundary.

VARIABLES
The following global variables are defined or used by the procedures in the Tcl library:

auto_execs
Used by auto_execok to record information about whether particular commands exist as
executable files.

auto_index
Used byauto_loadto save the index information read from disk.

auto_noexec
If set to any value, thenunknown will not attempt to auto-exec any commands.

auto_noload
If set to any value, thenunknown will not attempt to auto-load any commands.

auto_path
If set, then it must contain a valid Tcl list giving directories to search during auto-load operations.

env(TCL_LIBRARY)
If set, then it specifies the location of the directory containing library scripts (the value of this vari-
able will be returned by the commandinfo library). If this variable isn’t set then a default value is
used.

env(TCLLIBPATH)
If set, then it must contain a valid Tcl list giving directories to search during auto-load operations.
This variable is only used ifauto_path is not defined.

tcl_nonwordchars
This variable contains a regular expression that is used by routines liketcl_endOfWord to identify
whether a character is part of a word or not. If the pattern matches a character, the character is
considered to be a non-word character. On Windows platforms, spaces, tabs, and newlines are
considered non-word characters. Under Unix, everything but numbers, letters and underscores are
considered non-word characters.

tcl_wordchars
This variable contains a regular expression that is used by routines liketcl_endOfWord to identify
whether a character is part of a word or not. If the pattern matches a character, the character is
considered to be a word character. On Windows platforms, words are comprised of any character
that is not a space, tab, or newline. Under Unix, words are comprised of numbers, letters or

Tcl Last change: 8.0 3

Tcl Built-In Commands library (n)

underscores.

unknown_active
This variable is set byunknown to indicate that it is active. It is used to detect errors where
unknown recurses on itself infinitely. The variable is unset beforeunknown returns.

KEYWORDS
auto-exec, auto-load, library, unknown, word, whitespace

Tcl Last change: 8.0 4

Tcl Built-In Commands lindex (n)

NAME
lindex − Retrieve an element from a list

SYNOPSIS
lindex list index

DESCRIPTION
This command treatslist as a Tcl list and returns theindex’th element from it (0 refers to the first element
of the list). In extracting the element,lindex observes the same rules concerning braces and quotes and
backslashes as the Tcl command interpreter; however, variable substitution and command substitution do
not occur. Ifindex is negative or greater than or equal to the number of elements invalue, then an empty
string is returned. Ifindexhas the valueend, it refers to the last element in the list.

KEYWORDS
element, index, list

Tcl Last change: 7.4 1

Tcl Built-In Commands linsert (n)

NAME
linsert − Insert elements into a list

SYNOPSIS
linsert list index element?element element ...?

DESCRIPTION
This command produces a new list fromlist by inserting all of theelementarguments just before the
indexth element oflist. Eachelementargument will become a separate element of the new list. Ifindexis
less than or equal to zero, then the new elements are inserted at the beginning of the list. Ifindexhas the
valueend, or if it is greater than or equal to the number of elements in the list, then the new elements are
appended to the list.

KEYWORDS
element, insert, list

Tcl Last change: 7.4 1

Tcl Built-In Commands list (n)

NAME
list − Create a list

SYNOPSIS
list ?arg arg ...?

DESCRIPTION
This command returns a list comprised of all theargs, or an empty string if noargs are specified. Braces
and backslashes get added as necessary, so that theindex command may be used on the result to re-extract
the original arguments, and also so thatev almay be used to execute the resulting list, witharg1 comprising
the command’s name and the otherargs comprising its arguments.List produces slightly different results
thanconcat: concat removes one level of grouping before forming the list, whilelist works directly from
the original arguments. For example, the command

list a b {c d e} {f {g h}}
will return

a b {c d e} {f {g h}}
while concatwith the same arguments will return

a b c d e f {g h}

KEYWORDS
element, list

Tcl Last change: 1

Tcl Built-In Commands llength (n)

NAME
llength − Count the number of elements in a list

SYNOPSIS
llength list

DESCRIPTION
Treatslist as a list and returns a decimal string giving the number of elements in it.

KEYWORDS
element, list, length

Tcl Last change: 1

Tcl Built-In Commands load (n)

NAME
load − Load machine code and initialize new commands.

SYNOPSIS
load fileName
load fileName packageName
load fileName packageName interp

DESCRIPTION
This command loads binary code from a file into the application’s address space and calls an initialization
procedure in the package to incorporate it into an interpreter.fileNameis the name of the file containing the
code; its exact form varies from system to system but on most systems it is a shared library, such as a.so
file under Solaris or a DLL under Windows.packageNameis the name of the package, and is used to com-
pute the name of an initialization procedure.interp is the path name of the interpreter into which to load
the package (see theinterp manual entry for details); ifinterp is omitted, it defaults to the interpreter in
which theload command was invoked.

Once the file has been loaded into the application’s address space, one of two initialization procedures will
be invoked in the new code. Typically the initialization procedure will add new commands to a Tcl inter-
preter. The name of the initialization procedure is determined bypackageNameand whether or not the tar-
get interpreter is a safe one. For normal interpreters the name of the initialization procedure will have the
form pkg_Init , wherepkg is the same aspackageNameexcept that the first letter is converted to upper case
and all other letters are converted to lower case. For example, ifpackageNameis foo or FOo, the initializa-
tion procedure’s name will beFoo_Init.

If the target interpreter is a safe interpreter, then the name of the initialization procedure will be
pkg_SafeInit instead ofpkg_Init . Thepkg_SafeInit function should be written carefully, so that it initial-
izes the safe interpreter only with partial functionality provided by the package that is safe for use by
untrusted code. For more information on Safe−Tcl, see thesafemanual entry.

The initialization procedure must match the following prototype:
typedef int Tcl_PackageInitProc(Tcl_Interp∗interp);

The interpargument identifies the interpreter in which the package is to be loaded. The initialization proce-
dure must returnTCL_OK or TCL_ERROR to indicate whether or not it completed successfully; in the
ev ent of an error it should setinterp->result to point to an error message. The result of theload command
will be the result returned by the initialization procedure.

The actual loading of a file will only be done once for eachfileNamein an application. If a givenfileName
is loaded into multiple interpreters, then the firstload will load the code and call the initialization proce-
dure; subsequentloads will call the initialization procedure without loading the code again. It is not possi-
ble to unload or reload a package.

The load command also supports packages that are statically linked with the application, if those packages
have been registered by calling theTcl_StaticPackageprocedure. IffileNameis an empty string, then
packageNamemust be specified.

If packageNameis omitted or specified as an empty string, Tcl tries to guess the name of the package. This
may be done differently on different platforms. The default guess, which is used on most UNIX platforms,
is to take the last element offileName, strip off the first three characters if they arelib , and use any follow-
ing alphabetic and underline characters as the module name. For example, the commandload libxyz4.2.so
uses the module namexyz and the commandload bin/last.so {}uses the module namelast.

If fileNameis an empty string, thenpackageNamemust be specified. Theload command first searches for
a statically loaded package (one that has been registered by calling theTcl_StaticPackageprocedure) by
that name; if one is found, it is used. Otherwise, theload command searches for a dynamically loaded

Tcl Last change: 7.5 1

Tcl Built-In Commands load (n)

package by that name, and uses it if it is found. If several different files have beenloaded with different
versions of the package, Tcl picks the file that was loaded first.

BUGS
If the same file isloaded by differentfileNames, it will be loaded into the process’s address space multiple
times. The behavior of this varies from system to system (some systems may detect the redundant loads,
others may not).

SEE ALSO
info sharedlibextension, Tcl_StaticPackage, safe(n)

KEYWORDS
binary code, loading, safe interpreter, shared library

Tcl Last change: 7.5 2

Tcl Built-In Commands lrange (n)

NAME
lrange − Return one or more adjacent elements from a list

SYNOPSIS
lrange list first last

DESCRIPTION
List must be a valid Tcl list. This command will return a new list consisting of elementsfirst throughlast,
inclusive. First or last may beend (or any abbreviation of it) to refer to the last element of the list. Iffirst
is less than zero, it is treated as if it were zero. Iflast is greater than or equal to the number of elements in
the list, then it is treated as if it wereend. If first is greater thanlast then an empty string is returned. Note:
‘‘ lrange list first first’’ does not always produce the same result as ‘‘lindex list first’’ (although it often does
for simple fields that aren’t enclosed in braces); it does, however, produce exactly the same results as ‘‘list
[lindex list first]’’

KEYWORDS
element, list, range, sublist

Tcl Last change: 7.4 1

Tcl Built-In Commands lreplace (n)

NAME
lreplace − Replace elements in a list with new elements

SYNOPSIS
lreplace list first last?element element ...?

DESCRIPTION
Lreplace returns a new list formed by replacing one or more elements oflist with theelementarguments.
First gives the index inlist of the first element to be replaced (0 refers to the first element). Iffirst is less
than zero then it refers to the first element oflist; the element indicated byfirst must exist in the list.Last
gives the index inlist of the last element to be replaced. Iflast is less thanfirst then no elements are
deleted; the new elements are simply inserted beforefirst. First or last may beend (or any abbreviation of
it) to refer to the last element of the list. Theelementarguments specify zero or more new arguments to be
added to the list in place of those that were deleted. Eachelementargument will become a separate element
of the list. If no elementarguments are specified, then the elements betweenfirst and last are simply
deleted.

KEYWORDS
element, list, replace

Tcl Last change: 7.4 1

Tcl Built-In Commands lsearch (n)

NAME
lsearch − See if a list contains a particular element

SYNOPSIS
lsearch?mode? list pattern

DESCRIPTION
This command searches the elements oflist to see if one of them matchespattern. If so, the command
returns the index of the first matching element. If not, the command returns−1. Themodeargument indi-
cates how the elements of the list are to be matched againstpatternand it must have one of the following
values:

−exact The list element must contain exactly the same string aspattern.

−glob Pattern is a glob-style pattern which is matched against each list element using the same rules as
thestring match command.

−regexp
Pattern is treated as a regular expression and matched against each list element using the same
rules as theregexpcommand.

If modeis omitted then it defaults to−glob.

KEYWORDS
list, match, pattern, regular expression, search, string

Tcl Last change: 7.0 1

Tcl Built-In Commands lsort (n)

NAME
lsort − Sort the elements of a list

SYNOPSIS
lsort ?options? list

DESCRIPTION
This command sorts the elements oflist, returning a new list in sorted order. By default ASCII sorting is
used with the result returned in increasing order. Howev er, any of the following options may be specified
beforelist to control the sorting process (unique abbreviations are accepted):

−ascii Use string comparison with ASCII collation order. This is the default.

−dictionary Use dictionary-style comparison. This is the same as−ascii except (a) case is
ignored except as a tie-breaker and (b) if two strings contain embedded numbers,
the numbers compare as integers, not characters. For example, in−dictionary
mode,bigBoy sorts betweenbigbang and bigboy, and x10y sorts betweenx9y
andx11y.

−integer Convert list elements to integers and use integer comparison.

−real Convert list elements to floating-point values and use floating comparison.

−command command Usecommandas a comparison command. To compare two elements, evaluate a
Tcl script consisting ofcommandwith the two elements appended as additional
arguments. The script should return an integer less than, equal to, or greater than
zero if the first element is to be considered less than, equal to, or greater than the
second, respectively.

−increasing Sort the list in increasing order (‘‘smallest’’ items first). This is the default.

−decreasing Sort the list in decreasing order (‘‘largest’’ items first).

−index index If this option is specified, each of the elements oflist must itself be a proper Tcl
sublist. Instead of sorting based on whole sublists,lsort will extract theindex’th
element from each sublist and sort based on the given element. The keywordend
is allowed for theindexto sort on the last sublist element. For example,

lsort -integer -index 1 {{First 24} {Second 18} {Third 30}}
returns{Second 18} {First 24} {Third 30}. This option is much more efficient
than using−commandto achieve the same effect.

KEYWORDS
element, list, order, sort

Tcl Last change: 8.0 1

Tcl Built-In Commands namespace (n)

NAME
namespace − create and manipulate contexts for commands and variables

SYNOPSIS
namespace?option? ?arg ...?

DESCRIPTION
The namespacecommand lets you create, access, and destroy separate contexts for commands and vari-
ables. See the sectionWHAT IS A NAMESPACE? below for a brief overview of namespaces. The legal
option’s are listed below. Note that you can abbreviate theoption’s.

namespace children?namespace? ?pattern?
Returns a list of all child namespaces that belong to the namespacenamespace. If namespaceis
not specified, then the children are returned for the current namespace. This command returns
fully-qualified names, which start with:: . If the optionalpattern is given, then this command
returns only the names that match the glob-style pattern. The actual pattern used is determined as
follows: a pattern that starts with:: is used directly, otherwise the namespacenamespace(or the
fully-qualified name of the current namespace) is prepended onto the the pattern.

namespace codescript
Captures the current namespace context for later execution of the scriptscript. It returns a new
script in whichscript has been wrapped in anamespace codecommand. The new script has two
important properties. First, it can be evaluated in any namespace and will causescript to be evalu-
ated in the current namespace (the one where thenamespace codecommand was invoked). Sec-
ond, additional arguments can be appended to the resulting script and they will be passed toscript
as additional arguments. For example, suppose the commandset script [namespace code {foo
bar}] is invoked in namespace::a::b . Thenev al "$script x y" can be executed in any namespace
(assuming the value ofscript has been passed in properly) and will have the same effect as the
commandnamespace eval ::a::b {foo bar x y}. This command is needed because extensions like
Tk normally execute callback scripts in the global namespace. A scoped command captures a
command together with its namespace context in a way that allows it to be executed properly later.
See the sectionSCOPED VALUES for some examples of how this is used to create callback
scripts.

namespace current
Returns the fully-qualified name for the current namespace. The actual name of the global names-
pace is ‘‘’’ (i.e., an empty string), but this command returns:: for the global namespace as a con-
venience to programmers.

namespace delete?namespace namespace ...?
Each namespacenamespaceis deleted and all variables, procedures, and child namespaces con-
tained in the namespace are deleted. If a procedure is currently executing inside the namespace,
the namespace will be kept alive until the procedure returns; however, the namespace is marked to
prevent other code from looking it up by name. If a namespace doesn’t exist, this command
returns an error. If no namespace names are given, this command does nothing.

namespace evalnamespace arg?arg ...?
Activates a namespace callednamespaceand evaluates some code in that context. If the names-
pace does not already exist, it is created. If more than onearg argument is specified, the argu-
ments are concatenated together with a space between each one in the same fashion as theev al
command, and the result is evaluated.

If namespacehas leading namespace qualifiers and any leading namespaces do not exist, they are
automatically created.

Tcl Last change: 8.0 1

Tcl Built-In Commands namespace (n)

namespace export?−clear? ?pattern pattern ...?
Specifies which commands are exported from a namespace. The exported commands are those
that can be later imported into another namespace using anamespace importcommand. Both
commands defined in a namespace and commands the namespace has previously imported can be
exported by a namespace. The commands do not have to be defined at the time thenamespace
export command is executed. Eachpatternmay contain glob-style special characters, but it may
not include any namespace qualifiers. That is, the pattern can only specify commands in the cur-
rent (exporting) namespace. Eachpattern is appended onto the namespace’s list of export pat-
terns. If the −clear flag is given, the namespace’s export pattern list is reset to empty before any
patternarguments are appended. If nopatterns are given and the −clear flag isn’t giv en, this com-
mand returns the namespace’s current export list.

namespace forget?pattern pattern ...?
Removes previously imported commands from a namespace. Eachpattern is a qualified name
such asfoo::x or a::b::p ∗. Qualified names contain::s and qualify a name with the name of one
or more namespaces. Eachpatternis qualified with the name of an exporting namespace and may
have glob-style special characters in the command name at the end of the qualified name. Glob
characters may not appear in a namespace name. This command first finds the matching exported
commands. It then checks whether any of those those commands were previously imported by the
current namespace. If so, this command deletes the corresponding imported commands. In effect,
this un-does the action of anamespace importcommand.

namespace import?−force? ?pattern pattern ...?
Imports commands into a namespace. Eachpatternis a qualified name likefoo::x or a::p∗. That
is, it includes the name of an exporting namespace and may have glob-style special characters in
the command name at the end of the qualified name. Glob characters may not appear in a names-
pace name. All the commands that match apatternstring and which are currently exported from
their namespace are added to the current namespace. This is done by creating a new command in
the current namespace that points to the exported command in its original namespace; when the
new imported command is called, it invokes the exported command. This command normally
returns an error if an imported command conflicts with an existing command. However, if the
−force option is given, imported commands will silently replace existing commands. Thenames-
pace import command has snapshot semantics: that is, only requested commands that are cur-
rently defined in the exporting namespace are imported. In other words, you can import only the
commands that are in a namespace at the time when thenamespace importcommand is executed.
If another command is defined and exported in this namespace later on, it will not be imported.

namespace inscopenamespace arg?arg ...?
Executes a script in the context of a particular namespace. This command is not expected to be
used directly by programmers; calls to it are generated implicitly when applications usenames-
pace codecommands to create callback scripts that the applications then register with, e.g., Tk
widgets. Thenamespace inscopecommand is much like thenamespace evalcommand except
that it haslappend semantics and the namespace must already exist. It treats the first argument as
a list, and appends any arguments after the first onto the end as proper list elements.namespace
inscope ::foo a x y zis equivalent tonamespace eval ::foo [concat a [list x y z]]This lappend
semantics is important because many callback scripts are actually prefixes.

namespace origincommand
Returns the fully-qualified name of the original command to which the imported commandcom-
mandrefers. When a command is imported into a namespace, a new command is created in that
namespace that points to the actual command in the exporting namespace. If a command is
imported into a sequence of namespacesa, b,...,nwhere each successive namespace just imports
the command from the previous namespace, this command returns the fully-qualified name of the
original command in the first namespace,a. If commanddoes not refer to an imported command,

Tcl Last change: 8.0 2

Tcl Built-In Commands namespace (n)

the command’s own fully-qualified name is returned.

namespace parent?namespace?
Returns the fully-qualified name of the parent namespace for namespacenamespace. If names-
paceis not specified, the fully-qualified name of the current namespace’s parent is returned.

namespace qualifiersstring
Returns any leading namespace qualifiers forstring. Qualifiers are namespace names separated by
::s. For thestring ::foo::bar::x , this command returns::foo::bar , and for :: it returns ‘‘’’ (an
empty string). This command is the complement of thenamespace tailcommand. Note that it
does not check whether the namespace names are, in fact, the names of currently defined names-
paces.

namespace tailstring
Returns the simple name at the end of a qualified string. Qualifiers are namespace names sepa-
rated by::s. For thestring ::foo::bar::x , this command returnsx, and for :: it returns ‘‘’’ (an
empty string). This command is the complement of thenamespace qualifierscommand. It does
not check whether the namespace names are, in fact, the names of currently defined namespaces.

namespace which?−command? ?−variable?name
Looks upnameas either a command or variable and returns its fully-qualified name. For example,
if namedoes not exist in the current namespace but does exist in the global namespace, this com-
mand returns a fully-qualified name in the global namespace. If the command or variable does not
exist, this command returns an empty string. If no flag is given,nameis treated as a command
name. See the sectionNAME RESOLUTION below for an explanation of the rules regarding
name resolution.

WHAT IS A NAMESPACE?
A namespace is a collection of commands and variables. It encapsulates the commands and variables to
ensure that they won’t interfere with the commands and variables of other namespaces. Tcl has always had
one such collection, which we refer to as theglobal namespace. The global namespace holds all global
variables and commands. Thenamespace evalcommand lets you create new namespaces. For example,

namespace eval Counter {
namespace export Bump
variable num 0

proc Bump {} {
variable num
incr num

}
}

creates a new namespace containing the variablenum and the procedureBump. The commands and vari-
ables in this namespace are separate from other commands and variables in the same program. If there is a
command namedBump in the global namespace, for example, it will be different from the command
Bump in theCounter namespace.

Namespace variables resemble global variables in Tcl. They exist outside of the procedures in a namespace
but can be accessed in a procedure via thevariable command, as shown in the example above.

Namespaces are dynamic. You can add and delete commands and variables at any time, so you can build
up the contents of a namespace over time using a series ofnamespace evalcommands. For example, the
following series of commands has the same effect as the namespace definition shown above:

namespace eval Counter {
variable num 0
proc Bump {} {

Tcl Last change: 8.0 3

Tcl Built-In Commands namespace (n)

variable num
return [incr num]

}
}
namespace eval Counter {

proc test {args} {
return $args

}
}
namespace eval Counter {

rename test ""
}

Note that thetest procedure is added to theCounter namespace, and later removed via therename com-
mand.

Namespaces can have other namespaces within them, so they nest hierarchically. A nested namespace is
encapsulated inside its parent namespace and can not interfere with other namespaces.

QUALIFIED NAMES
Each namespace has a textual name such ashistory or ::safe::interp . Since namespaces may nest, quali-
fied names are used to refer to commands, variables, and child namespaces contained inside namespaces.
Qualified names are similar to the hierarchical path names for Unix files or Tk widgets, except that:: is
used as the separator instead of/ or .. The topmost or global namespace has the name ‘‘’’ (i.e., an empty
string), although:: is a synonym. As an example, the name::safe::interp::create refers to the command
create in the namespaceinterp that is a child of of namespace::safe, which in turn is a child of the global
namespace:: .

If you want to access commands and variables from another namespace, you must use some extra syntax.
Names must be qualified by the namespace that contains them. From the global namespace, we might
access theCounter procedures like this:

Counter::Bump 5
Counter::Reset

We could access the current count like this:
puts "count = $Counter::num"

When one namespace contains another, you may need more than one qualifier to reach its elements. If we
had a namespaceFoo that contained the namespaceCounter, you could invoke itsBump procedure from
the global namespace like this:

Foo::Counter::Bump 3

You can also use qualified names when you create and rename commands. For example, you could add a
procedure to theFoonamespace like this:

proc Foo::Test {args} {return $args}
And you could move the same procedure to another namespace like this:

rename Foo::Test Bar::Test

There are a few remaining points about qualified names that we should cover. Namespaces have nonempty
names except for the global namespace.:: is disallowed in simple command, variable, and namespace
names except as a namespace separator. Extra:s in a qualified name are ignored; that is, two or more:s are
treated as a namespace separator. A trailing:: in a qualified variable or command name refers to the vari-
able or command named {}. However, a trailing:: in a qualified namespace name is ignored.

Tcl Last change: 8.0 4

Tcl Built-In Commands namespace (n)

NAME RESOLUTION
In general, all Tcl commands that take variable and command names support qualified names. This means
you can give qualified names to such commands asset, proc, rename, andinterp alias. If you provide a
fully-qualified name that starts with a:: , there is no question about what command, variable, or namespace
you mean. However, if the name does not start with a:: (i.e., isrelative), Tcl follows a fixed rule for look-
ing it up: Command and variable names are always resolved by looking first in the current namespace, and
then in the global namespace. Namespace names, on the other hand, are always resolved by looking in
only the current namespace.

In the following example,
set traceLevel 0
namespace eval Debug {

printTrace $traceLevel
}

Tcl looks fortraceLevel in the namespaceDebugand then in the global namespace. It looks up the com-
mandprintTrace in the same way. If a variable or command name is not found in either context, the name
is undefined. To make this point absolutely clear, consider the following example:

set traceLevel 0
namespace eval Foo {

variable traceLevel 3

namespace eval Debug {
printTrace $traceLevel

}
}

Here Tcl looks fortraceLevel first in the namespaceFoo::Debug. Since it is not found there, Tcl then
looks for it in the global namespace. The variableFoo::traceLevel is completely ignored during the name
resolution process.

You can use thenamespace whichcommand to clear up any question about name resolution. For example,
the command:

namespace eval Foo::Debug {namespace which −variable traceLevel}
returns::traceLevel. On the other hand, the command,

namespace eval Foo {namespace which −variable traceLevel}
returns::Foo::traceLevel.

As mentioned above, namespace names are looked up differently than the names of variables and com-
mands. Namespace names are always resolved in the current namespace. This means, for example, that a
namespace evalcommand that creates a new namespace always creates a child of the current namespace
unless the new namespace name begins with a:: .

Tcl has no access control to limit what variables, commands, or namespaces you can reference. If you pro-
vide a qualified name that resolves to an element by the name resolution rule above, you can access the ele-
ment.

You can access a namespace variable from a procedure in the same namespace by using thevariable com-
mand. Much like theglobal command, this creates a local link to the namespace variable. If necessary, it
also creates the variable in the current namespace and initializes it. Note that theglobal command only
creates links to variables in the global namespace. It is not necessary to use avariable command if you
always refer to the namespace variable using an appropriate qualified name.

IMPORTING COMMANDS

Tcl Last change: 8.0 5

Tcl Built-In Commands namespace (n)

Namespaces are often used to represent libraries. Some library commands are used so frequently that it is a
nuisance to type their qualified names. For example, suppose that all of the commands in a package like
BLT are contained in a namespace calledBlt . Then you might access these commands like this:

Blt::graph .g −background red
Blt::table . .g 0,0

If you use thegraph andtable commands frequently, you may want to access them without theBlt:: pre-
fix. You can do this by importing the commands into the current namespace, like this:

namespace import Blt::∗
This adds all exported commands from theBlt namespace into the current namespace context, so you can
write code like this:

graph .g −background red
table . .g 0,0

Thenamespace importcommand only imports commands from a namespace that that namespace exported
with anamespace exportcommand.

Importing everycommand from a namespace is generally a bad idea since you don’t know what you will
get. It is better to import just the specific commands you need. For example, the command

namespace import Blt::graph Blt::table
imports only thegraph andtable commands into the current context.

If you try to import a command that already exists, you will get an error. This prevents you from importing
the same command from two different packages. But from time to time (perhaps when debugging), you
may want to get around this restriction. You may want to reissue thenamespace importcommand to pick
up new commands that have appeared in a namespace. In that case, you can use the−force option, and
existing commands will be silently overwritten:

namespace import −force Blt::graph Blt::table
If for some reason, you want to stop using the imported commands, you can remove them with annames-
pace forgetcommand, like this:

namespace forget Blt::∗
This searches the current namespace for any commands imported fromBlt . If it finds any, it removes them.
Otherwise, it does nothing. After this, theBlt commands must be accessed with theBlt:: prefix.

When you delete a command from the exporting namespace like this:
rename Blt::graph ""

the command is automatically removed from all namespaces that import it.

EXPORTING COMMANDS
You can export commands from a namespace like this:

namespace eval Counter {
namespace export Bump Reset
variable num 0
variable max 100

proc Bump {{by 1}} {
variable num
incr num $by
check
return $num

}
proc Reset {} {

variable num
set num 0

}

Tcl Last change: 8.0 6

Tcl Built-In Commands namespace (n)

proc check {} {
variable num
variable max
if {$num > $max} {

error "too high!"
}

}
}

The proceduresBump andResetare exported, so they are included when you import from theCounter
namespace, like this:

namespace import Counter::∗
However, thecheckprocedure is not exported, so it is ignored by the import operation.

Thenamespace importcommand only imports commands that were declared as exported by their names-
pace. Thenamespace exportcommand specifies what commands may be imported by other namespaces.
If a namespace importcommand specifies a command that is not exported, the command is not imported.

SEE ALSO
variable(n)

KEYWORDS
exported, internal, variable

Tcl Last change: 8.0 7

Tcl Built-In Commands open (n)

NAME
open − Open a file-based or command pipeline channel

SYNOPSIS
openfileName
openfileName access
openfileName access permissions

DESCRIPTION
This command opens a file, serial port, or command pipeline and returns a channel identifier that may be
used in future invocations of commands likeread, puts, andclose. If the first character offileNameis not|
then the command opens a file:fileNamegives the name of the file to open, and it must conform to the con-
ventions described in thefilenamemanual entry.

The accessargument, if present, indicates the way in which the file (or command pipeline) is to be
accessed. In the first formaccessmay have any of the following values:

r Open the file for reading only; the file must already exist. This is the default value if
accessis not specified.

r+ Open the file for both reading and writing; the file must already exist.

w Open the file for writing only. Truncate it if it exists. If it doesn’t exist, create a new
file.

w+ Open the file for reading and writing. Truncate it if it exists. If it doesn’t exist, create a
new file.

a Open the file for writing only. The file must already exist, and the file is positioned so
that new data is appended to the file.

a+ Open the file for reading and writing. If the file doesn’t exist, create a new empty file.
Set the initial access position to the end of the file.

In the second form,accessconsists of a list of any of the following flags, all of which have the standard
POSIX meanings. One of the flags must be eitherRDONLY , WRONLY or RDWR.

RDONLY Open the file for reading only.

WRONLY Open the file for writing only.

RDWR Open the file for both reading and writing.

APPEND Set the file pointer to the end of the file prior to each write.

CREAT Create the file if it doesn’t already exist (without this flag it is an error for the file not to
exist).

EXCL If CREAT is also specified, an error is returned if the file already exists.

NOCTTY If the file is a terminal device, this flag prevents the file from becoming the controlling
terminal of the process.

NONBLOCK Prevents the process from blocking while opening the file, and possibly in subsequent
I/O operations. The exact behavior of this flag is system- and device-dependent; its use
is discouraged (it is better to use thefconfigure command to put a file in nonblocking
mode). For details refer to your system documentation on theopen system call’s
O_NONBLOCK flag.

TRUNC If the file exists it is truncated to zero length.

Tcl Last change: 7.6 1

Tcl Built-In Commands open (n)

If a new file is created as part of opening it,permissions(an integer) is used to set the permissions for the
new file in conjunction with the process’s file mode creation mask.Permissionsdefaults to 0666.

COMMAND PIPELINES
If the first character offileNameis ‘‘|’’ then the remaining characters offileNameare treated as a list of
arguments that describe a command pipeline to invoke, in the same style as the arguments forexec. In this
case, the channel identifier returned byopen may be used to write to the command’s input pipe or read
from its output pipe, depending on the value ofaccess. If write-only access is used (e.g.accessis w), then
standard output for the pipeline is directed to the current standard output unless overridden by the com-
mand. If read-only access is used (e.g.accessis r), standard input for the pipeline is taken from the current
standard input unless overridden by the command.

SERIAL COMMUNICATIONS
If fileNamerefers to a serial port, then the specified serial port is opened and initialized in a platform-
dependent manner. Acceptable values for thefileNameto use to open a serial port are described in the
PORTABILITY ISSUES section.

CONFIGURATION OPTIONS
The fconfigure command can be used to query and set the following configuration option for open serial
ports:

−modebaud,parity,data,stop
This option is a set of 4 comma-separated values: the baud rate, parity, number of data bits, and
number of stop bits for this serial port. Thebaudrate is a simple integer that specifies the connec-
tion speed.Parity is one of the following letters:n, o, e, m, s; respectively signifying the parity
options of ‘‘none’’, ‘‘odd’’, ‘‘even’’, ‘‘mark’’, or ‘‘space’’. Data is the number of data bits and
should be an integer from 5 to 8, whilestopis the number of stop bits and should be the integer 1
or 2.

PORTABILITY ISSUES
Windows (all versions)

Valid values forfileNameto open a serial port are of the formcomX:, whereX is a number, gener-
ally from 1 to 4. An attempt to open a serial port that does not exist will fail.

Windows NT
When running Tcl interactively, there may be some strange interactions between the real console,
if one is present, and a command pipeline that uses standard input or output. If a command
pipeline is opened for reading, some of the lines entered at the console will be sent to the com-
mand pipeline and some will be sent to the Tcl evaluator. If a command pipeline is opened for
writing, keystrokes entered into the console are not visible until the the pipe is closed. This behav-
ior occurs whether the command pipeline is executing 16-bit or 32-bit applications. These prob-
lems only occur because both Tcl and the child application are competing for the console at the
same time. If the command pipeline is started from a script, so that Tcl is not accessing the con-
sole, or if the command pipeline does not use standard input or output, but is redirected from or to
a file, then the above problems do not occur.

Windows 95
A command pipeline that executes a 16-bit DOS application cannot be opened for both reading
and writing, since 16-bit DOS applications that receive standard input from a pipe and send stan-
dard output to a pipe run synchronously. Command pipelines that do not execute 16-bit DOS
applications run asynchronously and can be opened for both reading and writing.

When running Tcl interactively, there may be some strange interactions between the real console,
if one is present, and a command pipeline that uses standard input or output. If a command

Tcl Last change: 7.6 2

Tcl Built-In Commands open (n)

pipeline is opened for reading from a 32-bit application, some of the keystrokes entered at the con-
sole will be sent to the command pipeline and some will be sent to the Tcl evaluator. If a com-
mand pipeline is opened for writing to a 32-bit application, no output is visible on the console
until the the pipe is closed. These problems only occur because both Tcl and the child application
are competing for the console at the same time. If the command pipeline is started from a script,
so that Tcl is not accessing the console, or if the command pipeline does not use standard input or
output, but is redirected from or to a file, then the above problems do not occur.

Whether or not Tcl is running interactively, if a command pipeline is opened for reading from a
16-bit DOS application, the call toopenwill not return until end-of-file has been received from the
command pipeline’s standard output. If a command pipeline is opened for writing to a 16-bit DOS
application, no data will be sent to the command pipeline’s standard output until the pipe is actu-
ally closed. This problem occurs because 16-bit DOS applications are run synchronously, as
described above.

Windows 3.X
A command pipeline can execute 16-bit or 32-bit DOS or Windows applications, but the call to
open will not return until the last program in the pipeline has finished executing; command
pipelines run synchronously. If the pipeline is opened with write access (either just writing or both
reading and writing) the first application in the pipeline will instead see an immediate end-of-file;
any data the caller writes to the open pipe will instead be discarded.

Since Tcl cannot be run with a real console under Windows 3.X, there are no interactions between
command pipelines and the console.

Macintosh
Opening a serial port is not currently implemented under Macintosh.

Opening a command pipeline is not supported under Macintosh, since applications do not support
the concept of standard input or output.

Unix
Valid values forfileNameto open a serial port are generally of the form/dev/ttyX, whereX is a or
b, but the name of any pseudo-file that maps to a serial port may be used.

When running Tcl interactively, there may be some strange interactions between the console, if
one is present, and a command pipeline that uses standard input. If a command pipeline is opened
for reading, some of the lines entered at the console will be sent to the command pipeline and
some will be sent to the Tcl evaluator. This problem only occurs because both Tcl and the child
application are competing for the console at the same time. If the command pipeline is started
from a script, so that Tcl is not accessing the console, or if the command pipeline does not use
standard input, but is redirected from a file, then the above problem does not occur.

See the PORTABILITY ISSUES section of theexeccommand for additional information not specific to
command pipelines about executing applications on the various platforms

SEE ALSO
close(n), filename(n), gets(n), read(n), puts(n), exec(n)

KEYWORDS
access mode, append, create, file, non-blocking, open, permissions, pipeline, process, serial

Tcl Last change: 7.6 3

Tcl Built-In Commands package (n)

NAME
package − Facilities for package loading and version control

SYNOPSIS
package forgetpackage
package ifneededpackage version?script?
package names
package providepackage?version?
package require?−exact?package?version?
package unknown?command?
package vcompareversion1 version2
package versionspackage
package vsatisfiesversion1 version2

DESCRIPTION
This command keeps a simple database of the packages available for use by the current interpreter and how
to load them into the interpreter. It supports multiple versions of each package and arranges for the correct
version of a package to be loaded based on what is needed by the application. This command also detects
and reports version clashes. Typically, only thepackage require and package providecommands are
invoked in normal Tcl scripts; the other commands are used primarily by system scripts that maintain the
package database.

The behavior of thepackagecommand is determined by its first argument. The following forms are per-
mitted:

package forgetpackage
Removes all information aboutpackagefrom this interpreter, including information provided by
bothpackage ifneededandpackage provide.

package ifneededpackage version?script?
This command typically appears only in system configuration scripts to set up the package
database. It indicates that a particular version of a particular package is available if needed, and
that the package can be added to the interpreter by executingscript. The script is saved in a
database for use by subsequentpackage requirecommands; typically,script sets up auto-loading
for the commands in the package (or callsload and/orsource directly), then invokespackage
provide to indicate that the package is present. There may be information in the database for sev-
eral different versions of a single package. If the database already contains information forpack-
ageandversion, the newscript replaces the existing one. If thescript argument is omitted, the
current script for versionversionof packagepackageis returned, or an empty string if nopackage
ifneededcommand has been invoked for thispackageandversion.

package names
Returns a list of the names of all packages in the interpreter for which a version has been provided
(via package provide) or for which apackage ifneededscript is available. The order of elements
in the list is arbitrary.

package providepackage?version?
This command is invoked to indicate that versionversionof packagepackageis now present in the
interpreter. It is typically invoked once as part of anifneededscript, and again by the package
itself when it is finally loaded. An error occurs if a different version ofpackagehas been provided
by a previouspackage providecommand. If theversionargument is omitted, then the command
returns the version number that is currently provided, or an empty string if nopackage provide
command has been invoked forpackagein this interpreter.

Tcl Last change: 7.5 1

Tcl Built-In Commands package (n)

package require?−exact?package?version?
This command is typically invoked by Tcl code that wishes to use a particular version of a particu-
lar package. The arguments indicate which package is wanted, and the command ensures that a
suitable version of the package is loaded into the interpreter. If the command succeeds, it returns
the version number that is loaded; otherwise it generates an error. If both the−exactswitch and
theversionargument are specified then only the given version is acceptable. If−exact is omitted
but versionis specified, then versions later thanversionare also acceptable as long as they hav e
the same major version number asversion. If both −exactandversionare omitted then any ver-
sion whatsoever is acceptable. If a version ofpackagehas already been provided (by invoking the
package providecommand), then its version number must satisfy the criteria given by−exactand
versionand the command returns immediately. Otherwise, the command searches the database of
information provided by previouspackage ifneededcommands to see if an acceptable version of
the package is available. If so, the script for the highest acceptable version number is invoked; it
must do whatever is necessary to load the package, including callingpackage provide for the
package. If thepackage ifneededdatabase does not contain an acceptable version of the package
and apackage unknowncommand has been specified for the interpreter then that command is
invoked; when it completes, Tcl checks again to see if the package is now provided or if there is a
package ifneededscript for it. If all of these steps fail to provide an acceptable version of the
package, then the command returns an error.

package unknown?command?
This command supplies a ‘‘last resort’’ command to invoke duringpackage requireif no suitable
version of a package can be found in thepackage ifneededdatabase. If thecommandargument is
supplied, it contains the first part of a command; when the command is invoked during apackage
require command, Tcl appends two additional arguments giving the desired package name and
version. For example, ifcommandis foo bar and later the commandpackage require test 2.4is
invoked, then Tcl will execute the commandfoo bar test 2.4to load the package. If no version
number is supplied to thepackage requirecommand, then the version argument for the invoked
command will be an empty string. If thepackage unknowncommand is invoked without acom-
mandargument, then the currentpackage unknownscript is returned, or an empty string if there
is none. Ifcommandis specified as an empty string, then the currentpackage unknownscript is
removed, if there is one.

package vcompareversion1 version2
Compares the two version numbers given byversion1andversion2. Returns -1 ifversion1is an
earlier version thanversion2, 0 if they are equal, and 1 ifversion1is later thanversion2.

package versionspackage
Returns a list of all the version numbers ofpackagefor which information has been provided by
package ifneededcommands.

package vsatisfiesversion1 version2
Returns 1 if scripts written forversion2will work unchanged withversion1(i.e. version1is equal
to or greater thanversion2and they both have the same major version number), 0 otherwise.

VERSION NUMBERS
Version numbers consist of one or more decimal numbers separated by dots, such as 2 or 1.162 or 3.1.13.1.
The first number is called the major version number. Larger numbers correspond to later versions of a
package, with leftmost numbers having greater significance. For example, version 2.1 is later than 1.3 and
version 3.4.6 is later than 3.3.5. Missing fields are equivalent to zeroes: version 1.3 is the same as version
1.3.0 and 1.3.0.0, so it is earlier than 1.3.1 or 1.3.0.2. A later version number is assumed to be upwards
compatible with an earlier version number as long as both versions have the same major version number.
For example, Tcl scripts written for version 2.3 of a package should work unchanged under versions 2.3.2,
2.4, and 2.5.1. Changes in the major version number signify incompatible changes: if code is written to use

Tcl Last change: 7.5 2

Tcl Built-In Commands package (n)

version 2.1 of a package, it is not guaranteed to work unmodified with either version 1.7.3 or version 3.1.

PA CKAGE INDICES
The recommended way to use packages in Tcl is to invokepackage requireandpackage providecom-
mands in scripts, and use the procedurepkg_mkIndex to create package index files. Once you’ve done
this, packages will be loaded automatically in response topackage requirecommands. See the documen-
tation forpkg_mkIndex for details.

KEYWORDS
package, version

Tcl Last change: 7.5 3

Tcl Built-In Commands pid (n)

NAME
pid − Retrieve process id(s)

SYNOPSIS
pid ?fileId?

DESCRIPTION
If the fileId argument is given then it should normally refer to a process pipeline created with theopencom-
mand. In this case thepid command will return a list whose elements are the process identifiers of all the
processes in the pipeline, in order. The list will be empty iffileId refers to an open file that isn’t a process
pipeline. If nofileId argument is given thenpid returns the process identifier of the current process. All
process identifiers are returned as decimal strings.

KEYWORDS
file, pipeline, process identifier

Tcl Last change: 7.0 1

Tcl Built-In Commands pkg_mkIndex (n)

NAME
pkg_mkIndex − Build an index for automatic loading of packages

SYNOPSIS
pkg_mkIndex dir pattern?pattern pattern ...?

DESCRIPTION
Pkg_mkIndex is a utility procedure that is part of the standard Tcl library. It is used to create index files
that allow packages to be loaded automatically whenpackage requirecommands are executed. To use
pkg_mkIndex, follow these steps:

[1] Create the package(s). Each package may consist of one or more Tcl script files or binary files.
Binary files must be suitable for loading with theload command with a single argument; for
example, if the file istest.soit must be possible to load this file with the commandload test.so.
Each script file must contain apackage providecommand to declare the package and version
number, and each binary file must contain a call toTcl_PkgProvide.

[2] Create the index by inv okingpkg_mkIndex. Thedir argument gives the name of a directory and
each pattern argument is aglob-style pattern that selects script or binary files indir.
Pkg_mkIndex will create a filepkgIndex.tcl in dir with package information about all the files
given by thepatternarguments. It does this by loading each file and seeing what packages and
new commands appear (this is why it is essential to havepackage provide commands or
Tcl_PkgProvidecalls in the files, as described above).

[3] Install the package as a subdirectory of one of the directories given by thetcl_pkgPath variable.
If $tcl_pkgPath contains more than one directory, machine-dependent packages (e.g., those that
contain binary shared libraries) should normally be installed under the first directory and machine-
independent packages (e.g., those that contain only Tcl scripts) should be installed under the sec-
ond directory. The subdirectory should include the package’s script and/or binary files as well as
the pkgIndex.tcl file. As long as the package is installed as a subdirectory of a directory in
$tcl_pkgPath it will automatically be found duringpackage requirecommands.

If you install the package anywhere else, then you must ensure that the directory contaiingn the
package is in theauto_path global variable or an immediate subdirectory of one of the directories
in auto_path. Auto_path contains a list of directories that are searched by both the auto-loader
and the package loader; by default it includes$tcl_pkgPath. The package loader also checks all
of the subdirectories of the directories inauto_path. You can add a directory toauto_path
explicitly in your application, or you can add the directory to yourTCLLIBPATH environment
variable: if this environment variable is present, Tcl initializesauto_path from it during applica-
tion startup.

[4] Once the above steps have been taken, all you need to do to use a package is to invokepackage
require. For example, if versions 2.1, 2.3, and 3.1 of packageTest have been indexed by
pkg_mkIndex, the commandpackage require Testwill make version 3.1 available and the com-
mandpackage require −exact Test 2.1will make version 2.1 available. There may be many ver-
sions of a package in the various index files inauto_path, but only one will actually be loaded in a
given interpreter, based on the first call topackage require. Different versions of a package may
be loaded in different interpreters.

PA CKAGES AND THE AUTO-LOADER
The package management facilities overlap somewhat with the auto-loader, in that both arrange for files to
be loaded on-demand. However, package management is a higher-level mechanism that uses the auto-
loader for the last step in the loading process. It is generally better to index a package withpkg_mkIndex

Tcl Last change: 7.6 1

Tcl Built-In Commands pkg_mkIndex (n)

rather thanauto_mkindex because the package mechanism provides version control: several versions of a
package can be made available in the index files, with different applications using different versions based
on package requirecommands. In contrast,auto_mkindex does not understand versions so it can only
handle a single version of each package. It is probably not a good idea to index a giv en package with both
pkg_mkIndex andauto_mkindex. If you usepkg_mkIndex to index a package, its commands cannot be
invoked until package require has been used to select a version; in contrast, packages indexed with
auto_mkindexcan be used immediately since there is no version control.

HOW IT WORKS
Pkg_mkIndex depends on thepackage unknowncommand, thepackage ifneededcommand, and the
auto-loader. The first time apackage require command is invoked, thepackage unknown script is
invoked. This is set by Tcl initialization to a script that evaluates all of thepkgIndex.tcl files in the
auto_path. The pkgIndex.tcl files containpackage ifneededcommands for each version of each avail-
able package; these commands invokepackage providecommands to announce the availability of the
package, and they setup auto-loader information to load the files of the package. A giv en file of a given
version of a given package isn’t actually loaded until the first time one of its commands is invoked. Thus,
after invokingpackage requireyou won’t see the package’s commands in the interpreter, but you will be
able to invoke the commands and they will be auto-loaded.

KEYWORDS
auto-load, index, package, version

Tcl Last change: 7.6 2

Tcl Built-In Commands proc (n)

NAME
proc − Create a Tcl procedure

SYNOPSIS
proc name args body

DESCRIPTION
The proc command creates a new Tcl procedure namedname, replacing any existing command or proce-
dure there may have been by that name. Whenever the new command is invoked, the contents ofbodywill
be executed by the Tcl interpreter. Normally,nameis unqualified (does not include the names of any con-
taining namespaces), and the new procedure is created in the current namespace. Ifnameincludes any
namespace qualifiers, the procedure is created in the specified namespace.Args specifies the formal argu-
ments to the procedure. It consists of a list, possibly empty, each of whose elements specifies one argu-
ment. Each argument specifier is also a list with either one or two fields. If there is only a single field in
the specifier then it is the name of the argument; if there are two fields, then the first is the argument name
and the second is its default value.

Whennameis invoked a local variable will be created for each of the formal arguments to the procedure; its
value will be the value of corresponding argument in the invoking command or the argument’s default
value. Arguments with default values need not be specified in a procedure invocation. However, there must
be enough actual arguments for all the formal arguments that don’t hav e defaults, and there must not be any
extra actual arguments. There is one special case to permit procedures with variable numbers of arguments.
If the last formal argument has the nameargs, then a call to the procedure may contain more actual argu-
ments than the procedure has formals. In this case, all of the actual arguments starting at the one that would
be assigned toargs are combined into a list (as if thelist command had been used); this combined value is
assigned to the local variableargs.

Whenbodyis being executed, variable names normally refer to local variables, which are created automati-
cally when referenced and deleted when the procedure returns. One local variable is automatically created
for each of the procedure’s arguments. Global variables can only be accessed by invoking theglobal com-
mand or theupvar command. Namespace variables can only be accessed by invoking thevariable com-
mand or theupvar command.

Theproc command returns an empty string. When a procedure is invoked, the procedure’s return value is
the value specified in areturn command. If the procedure doesn’t execute an explicitreturn , then its
return value is the value of the last command executed in the procedure’s body. If an error occurs while
executing the procedure body, then the procedure-as-a-whole will return that same error.

KEYWORDS
argument, procedure

Tcl Last change: 1

Tcl Built-In Commands puts (n)

NAME
puts − Write to a channel

SYNOPSIS
puts ?−nonewline? ?channelId?string

DESCRIPTION
Writes the characters given bystring to the channel given bychannelId. ChannelIdmust be a channel
identifier such as returned from a previous invocation ofopenor socket. It must have been opened for out-
put. If nochannelIdis specified then it defaults tostdout. Puts normally outputs a newline character after
string, but this feature may be suppressed by specifying the−nonewlineswitch.

Newline characters in the output are translated byputs to platform-specific end-of-line sequences accord-
ing to the current value of the−translation option for the channel (for example, on PCs newlines are nor-
mally replaced with carriage-return-linefeed sequences; on Macintoshes newlines are normally replaced
with carriage-returns). See thefconfigure manual entry for a discussion of end-of-line translations.

Tcl buffers output internally, so characters written withputs may not appear immediately on the output file
or device; Tcl will normally delay output until the buffer is full or the channel is closed. You can force
output to appear immediately with theflush command.

When the output buffer fills up, theputs command will normally block until all the buffered data has been
accepted for output by the operating system. IfchannelIdis in nonblocking mode then theputs command
will not block even if the operating system cannot accept the data. Instead, Tcl continues to buffer the data
and writes it in the background as fast as the underlying file or device can accept it. The application must
use the Tcl event loop for nonblocking output to work; otherwise Tcl never finds out that the file or device
is ready for more output data. It is possible for an arbitrarily large amount of data to be buffered for a chan-
nel in nonblocking mode, which could consume a large amount of memory. To avoid wasting memory,
nonblocking I/O should normally be used in an event-driven fashion with thefileevent command (don’t
invokeputs unless you have recently been notified via a file event that the channel is ready for more output
data).

SEE ALSO
fileevent(n)

KEYWORDS
channel, newline, output, write

Tcl Last change: 7.5 1

Tcl Built-In Commands pwd (n)

NAME
pwd − Return the current working directory

SYNOPSIS
pwd

DESCRIPTION
Returns the path name of the current working directory.

KEYWORDS
working directory

Tcl Last change: 1

Tcl Built-In Commands read (n)

NAME
read − Read from a channel

SYNOPSIS
read ?−nonewline?channelId

read channelId numBytes

DESCRIPTION
In the first form, theread command reads all of the data fromchannelIdup to the end of the file. If the
−nonewlineswitch is specified then the last character of the file is discarded if it is a newline. In the sec-
ond form, the extra argument specifies how many bytes to read. Exactly that many bytes will be read and
returned, unless there are fewer thannumBytesleft in the file; in this case all the remaining bytes are
returned.

If channelIdis in nonblocking mode, the command may not read as many bytes as requested: once all
available input has been read, the command will return the data that is available rather than blocking for
more input. The−nonewlineswitch is ignored if the command returns before reaching the end of the file.

Read translates end-of-line sequences in the input into newline characters according to the−translation
option for the channel. See the manual entry forfconfigure for details on the−translation option.

SEE ALSO
eof(n), fblocked(n), fconfigure(n)

KEYWORDS
blocking, channel, end of line, end of file, nonblocking, read, translation

Tcl Last change: 7.5 1

Tcl Built-In Commands regexp (n)

NAME
regexp − Match a regular expression against a string

SYNOPSIS
regexp?switches?exp string?matchVar? ?subMatchVar subMatchVar ...?

DESCRIPTION
Determines whether the regular expressionexpmatches part or all ofstring and returns 1 if it does, 0 if it
doesn’t.

If additional arguments are specified afterstring then they are treated as the names of variables in which to
return information about which part(s) ofstring matchedexp. MatchVarwill be set to the range ofstring
that matched all ofexp. The firstsubMatchVarwill contain the characters instring that matched the left-
most parenthesized subexpression withinexp, the next subMatchVarwill contain the characters that
matched the next parenthesized subexpression to the right inexp, and so on.

If the initial arguments toregexpstart with− then they are treated as switches. The following switches are
currently supported:

−nocase Causes upper-case characters instring to be treated as lower case during the matching process.

−indices Changes what is stored in thesubMatchVars. Instead of storing the matching characters from
string, each variable will contain a list of two decimal strings giving the indices instring of the
first and last characters in the matching range of characters.

− − Marks the end of switches. The argument following this one will be treated asexpev en if it
starts with a−.

If there are moresubMatchVar’s than parenthesized subexpressions withinexp, or if a particular subexpres-
sion inexpdoesn’t match the string (e.g. because it was in a portion of the expression that wasn’t matched),
then the correspondingsubMatchVarwill be set to ‘‘−1 −1’’ if −indiceshas been specified or to an empty
string otherwise.

REGULAR EXPRESSIONS
Regular expressions are implemented using Henry Spencer’s package (thanks, Henry!), and much of the
description of regular expressions below is copied verbatim from his manual entry.

A regular expression is zero or morebranches, separated by ‘‘|’’. It matches anything that matches one of
the branches.

A branch is zero or morepieces, concatenated. It matches a match for the first, followed by a match for the
second, etc.

A piece is anatompossibly followed by ‘‘∗’’, ‘‘+’’, or ‘‘?’’. An atom followed by ‘‘ ∗’’ matches a sequence
of 0 or more matches of the atom. An atom followed by ‘‘+’’ matches a sequence of 1 or more matches of
the atom. An atom followed by ‘‘?’’ matches a match of the atom, or the null string.

An atom is a regular expression in parentheses (matching a match for the regular expression), arange(see
below), ‘‘.’’ (matching any single character), ‘‘ˆ’’ (matching the null string at the beginning of the input
string), ‘‘$’’ (matching the null string at the end of the input string), a ‘‘\’’ followed by a single character
(matching that character), or a single character with no other significance (matching that character).

A range is a sequence of characters enclosed in ‘‘[]’’. It normally matches any single character from the
sequence. If the sequence begins with ‘‘ˆ’’, it matches any single characternot from the rest of the
sequence. If two characters in the sequence are separated by ‘‘−’’, this is shorthand for the full list of
ASCII characters between them (e.g. ‘‘[0-9]’’ matches any decimal digit). To include a literal ‘‘]’’ in the
sequence, make it the first character (following a possible ‘‘ˆ’’). To include a literal ‘‘−’’, make it the first or

Tcl Last change: 1

Tcl Built-In Commands regexp (n)

last character.

CHOOSING AMONG ALTERNATIVE MATCHES
In general there may be more than one way to match a regular expression to an input string. For example,
consider the command

regexp (a∗)b∗ aabaaabb x y
Considering only the rules given so far,x andy could end up with the valuesaabb andaa, aaabandaaa,
ab anda, or any of sev eral other combinations. To resolve this potential ambiguityregexpchooses among
alternatives using the rule ‘‘first then longest’’. In other words, it considers the possible matches in order
working from left to right across the input string and the pattern, and it attempts to match longer pieces of
the input string before shorter ones. More specifically, the following rules apply in decreasing order of pri-
ority:

[1] If a regular expression could match two different parts of an input string then it will match the one
that begins earliest.

[2] If a regular expression contains| operators then the leftmost matching sub-expression is chosen.

[3] In ∗, +, and? constructs, longer matches are chosen in preference to shorter ones.

[4] In sequences of expression components the components are considered from left to right.

In the example from above,(a∗)b∗ matchesaab: the (a∗) portion of the pattern is matched first and it con-
sumes the leadingaa; then theb∗ portion of the pattern consumes the nextb. Or, consider the following
example:

regexp (ab|a)(b∗)c abc x y z
After this commandx will be abc, y will be ab, andz will be an empty string. Rule 4 specifies that(ab|a)
gets first shot at the input string and Rule 2 specifies that theab sub-expression is checked before thea sub-
expression. Thus theb has already been claimed before the(b∗) component is checked and(b∗) must
match an empty string.

KEYWORDS
match, regular expression, string

Tcl Last change: 2

Tcl Built-In Commands registry (n)

NAME
registry − Manipulate the Windows registry

SYNOPSIS
package require registry 1.0

registry option keyName?arg arg ...?

DESCRIPTION
The registry package provides a general set of operations for manipulating the Windows registry. The
package implements theregistry Tcl command. This command is only supported on the Windows plat-
form. Warning: this command should be used with caution as a corrupted registry can leave your system in
an unusable state.

Ke yNameis the name of a registry key. Registry keys must be one of the following forms:

\\hostname\rootname\keypath

rootname\keypath

rootname

Hostnamespecifies the name of any valid Windows host that exports its registry. Therootnamecomponent
must be one of HKEY_LOCAL_MACHINE , HKEY_USERS, HKEY_CLASSES_ROOT,
HKEY_CURRENT_USER, or HKEY_CURRENT_CONFIG . Thekeypathcan be one or more registry
key names separated by backslash (\) characters.

Option indicates what to do with the registry key name. Any unique abbreviation foroption is acceptable.
The valid options are:

registry deletekeyName?valueName?
If the optionalvalueNameargument is present, the specified value underkeyNamewill be deleted
from the registry. If the optionalvalueNameis omitted, the specified key and any subkeys or val-
ues beneath it in the registry heirarchy will be deleted. If the key could not be deleted then an
error is generated. If the key did not exist, the command has no effect.

registry get keyName valueName
Returns the data associated with the valuevalueNameunder the keykeyName. If either the key or
the value does not exist, then an error is generated. For more details on the format of the returned
data, see SUPPORTED TYPES, below.

registry keyskeyName?pattern?
If patternisn’t specified, returns a list of names of all the subkeys ofkeyName. If patternis speci-
fied, only those names matchingpattern are returned. Matching is determined using the same
rules as forstring match. If the specifiedkeyNamedoes not exist, then an error is generated.

registry setkeyName?valueName data?type??
If valueNameisn’t specified, creates the keykeyNameif it doesn’t already exist. IfvalueNameis
specified, creates the keykeyNameand valuevalueNameif necessary. The contents ofvalueName
are set todatawith the type indicated bytype. If typeisn’t specified, the typesz is assumed. For
more details on the data and type arguments, see SUPPORTED TYPES below.

registry type keyName valueName
Returns the type of the valuevalueNamein the keykeyName. For more information on the possi-
ble types, see SUPPORTED TYPES, below.

registry valueskeyName?pattern?
If pattern isn’t specified, returns a list of names of all the values ofkeyName. If pattern is

Tcl Last change: 8.0 1

Tcl Built-In Commands registry (n)

specified, only those names matchingpattern are returned. Matching is determined using the
same rules as forstring match.

SUPPORTED TYPES
Each value under a key in the registry contains some data of a particular type in a type-specific representa-
tion. Theregistry command converts between this internal representation and one that can be manipulated
by Tcl scripts. In most cases, the data is simply returned as a Tcl string. The type indicates the intended
use for the data, but does not actually change the representation. For some types, theregistry command
returns the data in a different form to make it easier to manipulate. The following types are recognized by
the registry command:

binary The registry value contains arbitrary binary data. The data is represented exactly in
Tcl, including any embedded nulls. Tcl

none The registry value contains arbitrary binary data with no defined type. The data is rep-
resented exactly in Tcl, including any embedded nulls.

sz The registry value contains a null-terminated string. The data is represented in Tcl as
a string.

expand_sz The registry value contains a null-terminated string that contains unexpanded refer-
ences to environment variables in the normal Windows style (for example,
"%PATH%"). The data is represented in Tcl as a string.

dw ord The registry value contains a little-endian 32-bit number. The data is represented in
Tcl as a decimal string.

dw ord_big_endian The registry value contains a big-endian 32-bit number. The data is represented in Tcl
as a decimal string.

link The registry value contains a symbolic link. The data is represented exactly in Tcl,
including any embedded nulls.

multi_sz The registry value contains an array of null-terminated strings. The data is repre-
sented in Tcl as a list of strings.

resource_list The registry value contains a device-driver resource list. The data is represented
exactly in Tcl, including any embedded nulls.

In addition to the symbolically named types listed above, unknown types are identified using a 32-bit inte-
ger that corresponds to the type code returned by the system interfaces. In this case, the data is represented
exactly in Tcl, including any embedded nulls.

PORTABILITY ISSUES
The registry command is only available on Windows.

KEYWORDS
registry

Tcl Last change: 8.0 2

Tcl Built-In Commands regsub (n)

NAME
regsub − Perform substitutions based on regular expression pattern matching

SYNOPSIS
regsub?switches?exp string subSpec varName

DESCRIPTION
This command matches the regular expressionexpagainststring, and it copiesstring to the variable whose
name is given byvarName. If there is a match, then while copyingstring to varNamethe portion ofstring
that matchedexp is replaced withsubSpec. If subSpeccontains a ‘‘&’’ or ‘‘\0’’, then it is replaced in the
substitution with the portion ofstring that matchedexp. If subSpeccontains a ‘‘\n’’, where n is a digit
between 1 and 9, then it is replaced in the substitution with the portion ofstring that matched then-th
parenthesized subexpression ofexp. Additional backslashes may be used insubSpecto prevent special
interpretation of ‘‘&’’ or ‘‘\0’’ or ‘‘\ n’’ or backslash. The use of backslashes insubSpectends to interact
badly with the Tcl parser’s use of backslashes, so it’s generally safest to enclosesubSpecin braces if it
includes backslashes.

If the initial arguments toregexpstart with− then they are treated as switches. The following switches are
currently supported:

−all All ranges instring that matchexpare found and substitution is performed for each of these
ranges. Without this switch only the first matching range is found and substituted. If−all is
specified, then ‘‘&’’ and ‘‘\n’’ sequences are handled for each substitution using the informa-
tion from the corresponding match.

−nocase Upper-case characters instring will be converted to lower-case before matching againstexp;
however, substitutions specified bysubSpecuse the original unconverted form ofstring.

− − Marks the end of switches. The argument following this one will be treated asexpev en if it
starts with a−.

The command returns a count of the number of matching ranges that were found and replaced. See the
manual entry forregexpfor details on the interpretation of regular expressions.

KEYWORDS
match, pattern, regular expression, substitute

Tcl Last change: 7.4 1

Tcl Built-In Commands rename (n)

NAME
rename − Rename or delete a command

SYNOPSIS
renameoldName newName

DESCRIPTION
Rename the command that used to be calledoldNameso that it is now callednewName. If newNameis an
empty string thenoldNameis deleted.oldNameandnewNamemay include namespace qualifiers (names of
containing namespaces). If a command is renamed into a different namespace, future invocations of it will
execute in the new namespace. Therenamecommand returns an empty string as result.

KEYWORDS
command, delete, namespace, rename

Tcl Last change: 1

Tcl Built-In Commands resource (n)

NAME
resource − Manipulate Macintosh resources

SYNOPSIS
resourceoption?arg arg ...?

DESCRIPTION
The resource command provides some generic operations for dealing with Macintosh resources. This
command is only supported on the Macintosh platform. Each Macintosh file consists of twoforks: a data
fork and aresourcefork. You use the normal open, puts, close, etc. commands to manipulate the data fork.
You must use this command, however, to interact with the resource fork.Option indicates what resource
command to perform. Any unique abbreviation foroption is acceptable. The valid options are:

resource closersrcRef
Closes the given resource reference (obtained fromresource open). Resources from that resource
file will no longer be available.

resource delete?options? resourceType
This command will delete the resource specified byoptions and type resourceType(see
RESOURCE TYPES below). The options give you several ways to specify the resource to be
deleted.

−id resourceId
If the -id option is given the idresourceId(see RESOURCE IDS below) is used to spec-
ify the resource to be deleted. The id must be a number - to specify a name use the
−nameoption.

−nameresourceName
If -name is specified, the resource namedresourceNamewill be deleted. If the-id is also
provided, then there must be a resource with BOTH this name and this id. If no name is
provided, then the id will be used regardless of the name of the actual resource.

−file resourceRef
If the -file option is specified then the resource will be deleted from the file pointed to by
resourceRef. Otherwise the first resource with the givenresourceNameand orresourceId
which is found on the resource file path will be deleted. To inspect the file path, use the
resource filescommand.

resource files ?resourceRef?
If resourceRefis not provided, this command returns a Tcl list of the resource references for all the
currently open resource files. The list is in the normal Macintosh search order for resources. If
resourceRefis specified, the command will return the path to the file whose resource fork is repre-
sented by that token.

resource listresourceType?resourceRef?
List all of the resources ids of typeresourceType(see RESOURCE TYPES below). IfresourceRef
is specified then the command will limit the search to that particular resource file. Otherwise, all
resource files currently opened by the application will be searched. A Tcl list of either the
resource name’s or resource id’s of the found resources will be returned. See the RESOURCE
IDS section below for more details about what a resource id is.

resource openfileName?permissions?
Open the resource for the filefileName. Standard file permissions may also be specified (see the
manual entry foropen for details). A resource reference (resourceRef) is returned that can be used
by the other resource commands. An error can occur if the file doesn’t exist or the file does not
have a resource fork. However, if you open the file with write permissions the file and/or resource

Tcl Last change: 8.0 1

Tcl Built-In Commands resource (n)

fork will be created instead of generating an error.

resource readresourceType resourceId?resourceRef?
Read the entire resource of typeresourceType(see RESOURCE TYPES below) and the name or
id of resourceId(see RESOURCE IDS below) into memory and return the result. IfresourceRefis
specified we limit our search to that resource file, otherwise we search all open resource forks in
the application. It is important to note that most Macintosh resource use a binary format and the
data returned from this command may have embedded NULLs or other non-ASCII data.

resource types ?resourceRef?
This command returns a Tcl list of all resource types (see RESOURCE TYPES below) found in
the resource file pointed to byresourceRef. If resourceRefis not specified it will return all the
resource types found in every resource file currently opened by the application.

resource write?options? resourceType data
This command will write the passed indata as a new resource of typeresourceType(see
RESOURCE TYPES below). Several options are available that describe where and how the
resource is stored.

−id resourceId
If the -id option is given the idresourceId(see RESOURCE IDS below) is used for the
new resource, otherwise a unique id will be generated that will not conflict with any exist-
ing resource. However, the id must be a number - to specify a name use the−name
option.

−nameresourceName
If -name is specified the resource will be namedresourceName, otherwise it will have the
empty string as the name.

−file resourceRef
If the -file option is specified then the resource will be written in the file pointed to by
resourceRef, otherwise the most resently open resource will be used.

−force If the target resource already exists, then by default Tcl will not overwrite it, but raise an
error instead. Use the -force flag to force overwriting the extant resource.

RESOURCE TYPES
Resource types are defined as a four character string that is then mapped to an underlying id. For example,
TEXT refers to the Macintosh resource type for text. The typeSTR# is a list of counted strings. All Mac-
intosh resources must be of some type. See Macintosh documentation for a more complete list of resource
types that are commonly used.

RESOURCE IDS
For this command the notion of a resource id actually refers to two ideas in Macintosh resources. Every
place you can use a resource Id you can use either the resource name or a resource number. Names are
always searched or returned in preference to numbers. For example, theresource listcommand will return
names if they exist or numbers if the name is NULL.

SEE ALSO
open

PORTABILITY ISSUES
The resource command is only available on Macintosh.

Tcl Last change: 8.0 2

Tcl Built-In Commands resource (n)

KEYWORDS
open, resource

Tcl Last change: 8.0 3

Tcl Built-In Commands return (n)

NAME
return − Return from a procedure

SYNOPSIS
return ?−codecode? ?−errorinfo info? ?−errorcode code? ?string?

DESCRIPTION
Return immediately from the current procedure (or top-level command orsourcecommand), withstring as
the return value. Ifstring is not specified then an empty string will be returned as result.

EXCEPTIONAL RETURNS
In the usual case where the−codeoption isn’t specified the procedure will return normally (its completion
code will be TCL_OK). However, the−codeoption may be used to generate an exceptional return from the
procedure.Codemay have any of the following values:

ok Normal return: same as if the option is omitted.

error Error return: same as if theerror command were used to terminate the procedure, except for
handling oferrorInfo anderrorCode variables (see below).

return The current procedure will return with a completion code of TCL_RETURN, so that the proce-
dure that invoked it will return also.

break The current procedure will return with a completion code of TCL_BREAK, which will termi-
nate the innermost nested loop in the code that invoked the current procedure.

continue The current procedure will return with a completion code of TCL_CONTINUE, which will ter-
minate the current iteration of the innermost nested loop in the code that invoked the current
procedure.

value Valuemust be an integer; it will be returned as the completion code for the current procedure.

The −codeoption is rarely used. It is provided so that procedures that implement new control structures
can reflect exceptional conditions back to their callers.

Tw o additional options,−errorinfo and−errorcode, may be used to provide additional information during
error returns. These options are ignored unlesscodeis error .

The −errorinfo option specifies an initial stack trace for theerrorInfo variable; if it is not specified then
the stack trace left inerrorInfo will include the call to the procedure and higher levels on the stack but it
will not include any information about the context of the error within the procedure. Typically theinfo
value is supplied from the value left inerrorInfo after acatch command trapped an error within the proce-
dure.

If the −errorcode option is specified thencodeprovides a value for theerrorCode variable. If the option
is not specified thenerrorCode will default toNONE.

KEYWORDS
break, continue, error, procedure, return

Tcl Last change: 7.0 1

Tcl Built-In Commands Safe Tcl (n)

NAME
Safe Base − A mechanism for creating and manipulating safe interpreters.

SYNOPSIS
::safe::interpCreate ?slave? ?options...?

::safe::interpInit slave?options...?

::safe::interpConfigure slave?options...?

::safe::interpDeleteslave

::safe::interpAddToAccessPathslave directory

::safe::interpFindInAccessPathslave directory

::safe::setLogCmd?cmd arg...?

OPTIONS
?−accessPath pathList? ?−statics boolean? ?−noStatics? ?−nested boolean? ?−nestedLoadOk?
?−deleteHookscript?

DESCRIPTION
Safe Tcl is a mechanism for executing untrusted Tcl scripts safely and for providing mediated access by
such scripts to potentially dangerous functionality.

The Safe Base ensures that untrusted Tcl scripts cannot harm the hosting application. The Safe Base pre-
vents integrity and privacy attacks. Untrusted Tcl scripts are prevented from corrupting the state of the host-
ing application or computer. Untrusted scripts are also prevented from disclosing information stored on the
hosting computer or in the hosting application to any party.

The Safe Base allows a master interpreter to create safe, restricted interpreters that contain a set of prede-
fined aliases for thesource, load, file andexit commands and are able to use the auto-loading and package
mechanisms.

No knowledge of the file system structure is leaked to the safe interpreter, because it has access only to a
virtualized path containing tokens. When the safe interpreter requests to source a file, it uses the token in
the virtual path as part of the file name to source; the master interpreter transparently translates the token
into a real directory name and executes the requested operation (see the sectionSECURITY below for
details). Different levels of security can be selected by using the optional flags of the commands described
below.

All commands provided in the master interpreter by the Safe Base reside in thesafenamespace:

COMMANDS
The following commands are provided in the master interpreter:

::safe::interpCreate ?slave? ?options...?
Creates a safe interpreter, installs the aliases described in the sectionALIASES and initializes the
auto-loading and package mechanism as specified by the suppliedoptions. See theOPTIONS
section below for a description of the optional arguments. If theslaveargument is omitted, a name
will be generated.::safe::interpCreate always returns the interpreter name.

::safe::interpInit slave?options...?
This command is similar tointerpCreate except it that does not create the safe interpreter.slave

Tcl Last change: 8.0 1

Tcl Built-In Commands Safe Tcl (n)

must have been created by some other means, likeinterp create −safe.

::safe::interpConfigure slave?options...?
If no optionsare given, returns the settings for all options for the named safe interpreter as a list of
options and their current values for thatslave. If a single additional argument is provided, it will
return a list of 2 elementsnameandvaluewherenameis the full name of that option andvaluethe
current value for that option and theslave. If more than two additional arguments are provided, it
will reconfigure the safe interpreter and change each and only the provided options. See the sec-
tion onOPTIONS below for options description. Example of use:

Create a new interp with the same configuration as "$i0" :
set i1 [eval safe::interpCreate [safe::interpConfigure $i0]]
Get the current deleteHook
set dh [safe::interpConfigure $i0 −del]
Change (only) the statics loading ok attribute of an interp
and its deleteHook (leaving the rest unchanged) :
safe::interpConfigure $i0 −delete {foo bar} −statics 0 ;

::safe::interpDeleteslave
Deletes the safe interpreter and cleans up the corresponding master interpreter data structures. If a
deleteHookscript was specified for this interpreter it is evaluated before the interpreter is deleted,
with the name of the interpreter as an additional argument.

::safe::interpFindInAccessPathslave directory
This command finds and returns the token for the real directorydirectory in the safe interpreter’s
current virtual access path. It generates an error if the directory is not found. Example of use:

$slave eval [list set tk_library [::safe::interpFindInAccessPath $name $tk_library]]

::safe::interpAddToAccessPathslave directory
This command addsdirectory to the virtual path maintained for the safe interpreter in the master,
and returns the token that can be used in the safe interpreter to obtain access to files in that direc-
tory. If the directory is already in the virtual path, it only returns the token without adding the
directory to the virtual path again. Example of use:

$slave eval [list set tk_library [::safe::interpAddToAccessPath $name $tk_library]]

::safe::setLogCmd?cmd arg...?
This command installs a script that will be called when interesting life cycle events occur for a
safe interpreter. When called with no arguments, it returns the currently installed script. When
called with one argument, an empty string, the currently installed script is removed and logging is
turned off. The script will be invoked with one additional argument, a string describing the event
of interest. The main purpose is to help in debugging safe interpreters. Using this facility you can
get complete error messages while the safe interpreter gets only generic error messages. This pre-
vents a safe interpreter from seeing messages about failures and other events that might contain
sensitive information such as real directory names.
Example of use:

::safe::setLogCmd puts stderr
Below is the output of a sample session in which a safe interpreter attempted to source a file not
found in its virtual access path. Note that the safe interpreter only received an error message say-
ing that the file was not found:

NOTICE for slave interp10 : Created
NOTICE for slave interp10 : Setting accessPath=(/foo/bar) staticsok=1 nestedok=0 deletehook=()
NOTICE for slave interp10 : auto_path in interp10 has been set to {$p(:0:)}
ERROR for slave interp10 : /foo/bar/init.tcl: no such file or directory

Tcl Last change: 8.0 2

Tcl Built-In Commands Safe Tcl (n)

OPTIONS
The following options are common to::safe::interpCreate, ::safe::interpInit , and::safe::interpConfig-
ure. Any option name can be abbreviated to its minimal non-ambiguous name. Option names are not case
sensitive.

−accessPathdirectoryList
This option sets the list of directories from which the safe interpreter cansourceandload files. If
this option is not specified, or if it is given as the empty list, the safe interpreter will use the same
directories as its master for auto-loading. See the sectionSECURITY below for more detail
about virtual paths, tokens and access control.

−staticsboolean
This option specifies if the safe interpreter will be allowed to load statically linked packages (like
load {} Tk). The default value istrue : safe interpreters are allowed to load statically linked pack-
ages.

−noStatics
This option is a convenience shortcut for-statics falseand thus specifies that the safe interpreter
will not be allowed to load statically linked packages.

−nestedboolean
This option specifies if the safe interpreter will be allowed to load packages into its own sub-inter-
preters. The default value isfalse : safe interpreters are not allowed to load packages into their
own sub-interpreters.

−nestedLoadOk
This option is a convenience shortcut for-nested trueand thus specifies the safe interpreter will
be allowed to load packages into its own sub-interpreters.

−deleteHookscript
When this option is given an non emptyscript, it will be evaluated in the master with the name of
the safe interpreter as an additional argument just before actually deleting the safe interpreter.
Giving an empty value removes any currently installed deletion hook script for that safe inter-
preter. The default value ({}) is not to have any deletion call back.

ALIASES
The following aliases are provided in a safe interpreter:

sourcefileName
The requested file, a Tcl source file, is sourced into the safe interpreter if it is found. Thesource
alias can only source files from directories in the virtual path for the safe interpreter. Thesource
alias requires the safe interpreter to use one of the token names in its virtual path to denote the
directory in which the file to be sourced can be found. See the section onSECURITY for more
discussion of restrictions on valid filenames.

load fileName
The requested file, a shared object file, is dynamically loaded into the safe interpreter if it is found.
The filename must contain a token name mentioned in the virtual path for the safe interpreter for it
to be found successfully. Additionally, the shared object file must contain a safe entry point; see
the manual page for theload command for more details.

file ?subCmd args...?
Thefile alias provides access to a safe subset of the subcommands of thefile command; it allows
only dirname, join , extension, root, tail , pathnameandsplit subcommands. For more details on
what these subcommands do see the manual page for thefile command.

exit The calling interpreter is deleted and its computation is stopped, but the Tcl process in which this
interpreter exists is not terminated.

Tcl Last change: 8.0 3

Tcl Built-In Commands Safe Tcl (n)

SECURITY
The Safe Base does not attempt to completely prevent annoyance and denial of service attacks. These forms
of attack prevent the application or user from temporarily using the computer to perform useful work, for
example by consuming all available CPU time or all available screen real estate. These attacks, while
aggravating, are deemed to be of lesser importance in general than integrity and privacy attacks that the
Safe Base is to prevent.

The commands available in a safe interpreter, in addition to the safe set as defined ininterp manual page,
are mediated aliases forsource, load, exit, and a safe subset offile. The safe interpreter can also auto-load
code and it can request that packages be loaded.

Because some of these commands access the local file system, there is a potential for information leakage
about its directory structure. To prevent this, commands that take file names as arguments in a safe inter-
preter use tokens instead of the real directory names. These tokens are translated to the real directory name
while a request to, e.g., source a file is mediated by the master interpreter. This virtual path system is main-
tained in the master interpreter for each safe interpreter created by::safe::interpCreate or initialized by
::safe::interpInit and the path maps tokens accessible in the safe interpreter into real path names on the
local file system thus preventing safe interpreters from gaining knowledge about the structure of the file
system of the host on which the interpreter is executing. The only valid file names arguments for the
sourceand load aliases provided to the slave are path in the form of[file join token filename] (ie, when
using the native file path formats:token/filenameon Unix, token\filenameon Windows, andtoken:filename
on the Mac), wheretokenis representing one of the directories of theaccessPathlist andfilenameis one file
in that directory (no sub directories access are allowed).

When a token is used in a safe interpreter in a request to source or load a file, the token is checked and
translated to a real path name and the file to be sourced or loaded is located on the file system. The safe
interpreter never gains knowledge of the actual path name under which the file is stored on the file system.

To further prevent potential information leakage from sensitive files that are accidentally included in the set
of files that can be sourced by a safe interpreter, thesourcealias restricts access to files meeting the follow-
ing constraints: the file name must fourteen characters or shorter, must not contain more than one dot ("."),
must end up with the extension.tcl or be calledtclIndex.

Each element of the initial access path list will be assigned a token that will be set in the slaveauto_path
and the first element of that list will be set as thetcl_library for that slave.

If the access path argument is not given or is the empty list, the default behavior is to let the slave access the
same packages as the master has access to (Or to be more precise: only packages written in Tcl (which by
definition can’t be dangerous as they run in the slave interpreter) and C extensions that provides a Safe_Init
entry point). For that purpose, the master’sauto_path will be used to construct the slave access path. In
order that the slave successfully loads the Tcl library files (which includes the auto-loading mechanism
itself) thetcl_library will be added or moved to the first position if necessary, in the slave access path, so
the slavetcl_library will be the same as the master’s (its real path will still be invisible to the slave
though). In order that auto-loading works the same for the slave and the master in this by default case, the
first-level sub directories of each directory in the masterauto_path will also be added (if not already
included) to the slave access path. You can always specify a more restrictive path for which sub directories
will never be searched by explicitly specifying your directory list with the−accessPathflag instead of rely-
ing on this default mechanism.

When theaccessPathis changed after the first creation or initialization (ie throughinterpConfigure
-accessPathlist), an auto_reset is automatically evaluated in the safe interpreter to synchronize its
auto_indexwith the new token list.

SEE ALSO
interp(n), library(n), load(n), package(n), source(n), unknown(n)

Tcl Last change: 8.0 4

Tcl Built-In Commands Safe Tcl (n)

KEYWORDS
alias, auto−loading, auto_mkindex, load, master interpreter, safe interpreter, slave interpreter, source

Tcl Last change: 8.0 5

Tcl Built-In Commands scan (n)

NAME
scan − Parse string using conversion specifiers in the style of sscanf

SYNOPSIS
scanstring format varName?varName ...?

INTRODUCTION
This command parses fields from an input string in the same fashion as the ANSI Csscanfprocedure and
returns a count of the number of conversions performed, or -1 if the end of the input string is reached before
any conversions have been performed.Stringgives the input to be parsed andformat indicates how to parse
it, using% conversion specifiers as insscanf. EachvarNamegives the name of a variable; when a field is
scanned fromstring the result is converted back into a string and assigned to the corresponding variable.

DETAILS ON SCANNING
Scanoperates by scanningstring andformatStringtogether. If the next character informatStringis a blank
or tab then it matches any number of white space characters instring (including zero). Otherwise, if it isn’t
a % character then it must match the next character ofstring. When a% is encountered informatString, it
indicates the start of a conversion specifier. A conversion specifier contains three fields after the% : a ∗,
which indicates that the converted value is to be discarded instead of assigned to a variable; a number indi-
cating a maximum field width; and a conversion character. All of these fields are optional except for the
conversion character.

Whenscanfinds a conversion specifier informatString, it first skips any white-space characters instring.
Then it converts the next input characters according to the conversion specifier and stores the result in the
variable given by the next argument toscan. The following conversion characters are supported:

d The input field must be a decimal integer. It is read in and the value is stored in the variable as
a decimal string.

o The input field must be an octal integer. It is read in and the value is stored in the variable as a
decimal string.

x The input field must be a hexadecimal integer. It is read in and the value is stored in the vari-
able as a decimal string.

c A single character is read in and its binary value is stored in the variable as a decimal string.
Initial white space is not skipped in this case, so the input field may be a white-space character.
This conversion is different from the ANSI standard in that the input field always consists of a
single character and no field width may be specified.

s The input field consists of all the characters up to the next white-space character; the characters
are copied to the variable.

eor f or g The input field must be a floating-point number consisting of an optional sign, a string of deci-
mal digits possibly containing a decimal point, and an optional exponent consisting of ane or
E followed by an optional sign and a string of decimal digits. It is read in and stored in the
variable as a floating-point string.

[chars] The input field consists of any number of characters inchars. The matching string is stored in
the variable. If the first character between the brackets is a] then it is treated as part ofchars
rather than the closing bracket for the set.

[ˆchars] The input field consists of any number of characters not inchars. The matching string is stored
in the variable. If the character immediately following theˆ is a] then it is treated as part of
the set rather than the closing bracket for the set.

Tcl Last change: 1

Tcl Built-In Commands scan (n)

The number of characters read from the input for a conversion is the largest number that makes sense for
that particular conversion (e.g. as many decimal digits as possible for%d , as many octal digits as possible
for %o, and so on). The input field for a given conversion terminates either when a white-space character
is encountered or when the maximum field width has been reached, whichever comes first. If a∗ is present
in the conversion specifier then no variable is assigned and the next scan argument is not consumed.

DIFFERENCES FROM ANSI SSCANF
The behavior of thescancommand is the same as the behavior of the ANSI Csscanfprocedure except for
the following differences:

[1] %p and%n conversion specifiers are not currently supported.

[2] For %c conversions a single character value is converted to a decimal string, which is then
assigned to the correspondingvarName; no field width may be specified for this conversion.

[3] The l, h, andL modifiers are ignored; integer values are always converted as if there were no
modifier present and real values are always converted as if thel modifier were present (i.e. type
double is used for the internal representation).

KEYWORDS
conversion specifier, parse, scan

Tcl Last change: 2

Tcl Built-In Commands seek (n)

NAME
seek − Change the access position for an open channel

SYNOPSIS
seekchannelId offset?origin?

DESCRIPTION
Changes the current access position forchannelId. ChannelIdmust be a channel identifier such as returned
from a previous invocation ofopen or socket. The offsetand origin arguments specify the position at
which the next read or write will occur forchannelId. Offsetmust be an integer (which may be negative)
andorigin must be one of the following:

start The new access position will beoffsetbytes from the start of the underlying file or device.

current The new access position will beoffsetbytes from the current access position; a negativeoffset
moves the access position backwards in the underlying file or device.

end The new access position will beoffsetbytes from the end of the file or device. A negativeoff-
setplaces the access position before the end of file, and a positiveoffsetplaces the access posi-
tion after the end of file.

Theorigin argument defaults tostart.

The command flushes all buffered output for the channel before the command returns, even if the channel is
in nonblocking mode. It also discards any buffered and unread input. This command returns an empty
string. An error occurs if this command is applied to channels whose underlying file or device does not
support seeking.

KEYWORDS
access position, file, seek

Tcl Last change: 7.5 1

Tcl Built-In Commands set (n)

NAME
set − Read and write variables

SYNOPSIS
setvarName?value?

DESCRIPTION
Returns the value of variablevarName. If valueis specified, then set the value ofvarNameto value, creat-
ing a new variable if one doesn’t already exist, and return its value. IfvarNamecontains an open parenthe-
sis and ends with a close parenthesis, then it refers to an array element: the characters before the first open
parenthesis are the name of the array, and the characters between the parentheses are the index within the
array. OtherwisevarNamerefers to a scalar variable. Normally,varNameis unqualified (does not include
the names of any containing namespaces), and the variable of that name in the current namespace is read or
written. If varNameincludes namespace qualifiers (in the array name if it refers to an array element), the
variable in the specified namespace is read or written.

If no procedure is active, thenvarNamerefers to a namespace variable (global variable if the current
namespace is the global namespace). If a procedure is active, thenvarNamerefers to a parameter or local
variable of the procedure unless theglobal command was invoked to declarevarNameto be global, or
unless avariable command was invoked to declarevarNameto be a namespace variable.

KEYWORDS
read, write, variable

Tcl Last change: 1

Tcl Built-In Commands socket (n)

NAME
socket − Open a TCP network connection

SYNOPSIS
socket?options?host port

socket −servercommand?options?port

DESCRIPTION
This command opens a network socket and returns a channel identifier that may be used in future invoca-
tions of commands likeread, puts and flush. At present only the TCP network protocol is supported;
future releases may include support for additional protocols. Thesocketcommand may be used to open
either the client or server side of a connection, depending on whether the−serverswitch is specified.

CLIENT SOCKETS
If the −server option is not specified, then the client side of a connection is opened and the command
returns a channel identifier that can be used for both reading and writing.Port andhostspecify a port to
connect to; there must be a server accepting connections on this port.Port is an integer port number and
host is either a domain-style name such aswww.sunlabs.comor a numerical IP address such as127.0.0.1.
Uselocalhostto refer to the host on which the command is invoked.

The following options may also be present beforehostto specify additional information about the connec-
tion:

−myaddr addr
Addr gives the domain-style name or numerical IP address of the client-side network interface to
use for the connection. This option may be useful if the client machine has multiple network inter-
faces. If the option is omitted then the client-side interface will be chosen by the system software.

−myport port
Port specifies an integer port number to use for the client’s side of the connection. If this option is
omitted, the client’s port number will be chosen at random by the system software.

−async The −asyncoption will cause the client socket to be connected asynchronously. This means that
the socket will be created immediately but may not yet be connected to the server, when the call to
socketreturns. When agetsor flush is done on the socket before the connection attempt succeeds
or fails, if the socket is in blocking mode, the operation will wait until the connection is completed
or fails. If the socket is in nonblocking mode and agetsor flush is done on the socket before the
connection attempt succeeds or fails, the operation returns immediately andfblocked on the
socket returns 1.

SERVER SOCKETS
If the −server option is specified then the new socket will be a server for the port given byport. Tcl will
automatically accept connections to the given port. For each connection Tcl will create a new channel that
may be used to communicate with the client. Tcl then invokescommandwith three additional arguments:
the name of the new channel, the address, in network address notation, of the client’s host, and the client’s
port number.

The following additional option may also be specified beforehost:

−myaddr addr
Addr gives the domain-style name or numerical IP address of the server-side network interface to
use for the connection. This option may be useful if the server machine has multiple network
interfaces. If the option is omitted then the server socket is bound to the special address

Tcl Last change: 7.5 1

Tcl Built-In Commands socket (n)

INADDR_ANY so that it can accept connections from any interface.

Server channels cannot be used for input or output; their sole use is to accept new client connections. The
channels created for each incoming client connection are opened for input and output. Closing the server
channel shuts down the server so that no new connections will be accepted; however, existing connections
will be unaffected.

Server sockets depend on the Tcl event mechanism to find out when new connections are opened. If the
application doesn’t enter the event loop, for example by invoking thevwait command or calling the C pro-
cedureTcl_DoOneEvent, then no connections will be accepted.

CONFIGURATION OPTIONS
Thefconfigure command can be used to query several readonly configuration options for socket channels:

−sockname
This option returns a list of three elements, the address, the host name and the port number for the
socket. If the host name cannot be computed, the second element is identical to the address, the
first element of the list.

−peername
This option is not supported by server sockets. For client and accepted sockets, this option returns
a list of three elements; these are the address, the host name and the port to which the peer socket
is connected or bound. If the host name cannot be computed, the second element of the list is iden-
tical to the address, its first element.

SEE ALSO
flush(n), open(n), read(n)

KEYWORDS
bind, channel, connection, domain name, host, network address, socket, tcp

Tcl Last change: 7.5 2

Tcl Built-In Commands source (n)

NAME
source − Evaluate a file or resource as a Tcl script

SYNOPSIS
sourcefileName

source −rsrcresourceName?fileName?

source −rsrcidresourceId?fileName?

DESCRIPTION
This command takes the contents of the specified file or resource and passes it to the Tcl interpreter as a
text script. The return value fromsourceis the return value of the last command executed in the script. If
an error occurs in evaluating the contents of the script then thesourcecommand will return that error. If a
return command is invoked from within the script then the remainder of the file will be skipped and the
sourcecommand will return normally with the result from thereturn command.

The−rsrc and−rsrcid forms of this command are only available on Macintosh computers. These versions
of the command allow you to source a script from aTEXT resource. You may specify whatTEXT
resource to source by either name or id. By default Tcl searches all open resource files, which include the
current application and any loaded C extensions. Alternatively, you may specify thefileNamewhere the
TEXT resource can be found.

KEYWORDS
file, script

Tcl Last change: 1

Tcl Built-In Commands split (n)

NAME
split − Split a string into a proper Tcl list

SYNOPSIS
split string?splitChars?

DESCRIPTION
Returns a list created by splittingstring at each character that is in thesplitCharsargument. Each element
of the result list will consist of the characters fromstring that lie between instances of the characters in
splitChars. Empty list elements will be generated ifstring contains adjacent characters insplitChars, or if
the first or last character ofstring is in splitChars. If splitCharsis an empty string then each character of
string becomes a separate element of the result list.SplitCharsdefaults to the standard white-space charac-
ters. For example,

split "comp.unix.misc" .
returns"comp unix misc" and

split "Hello world" {}
returns"H e l l o { } w o r l d" .

KEYWORDS
list, split, string

Tcl Last change: 1

Tcl Built-In Commands string (n)

NAME
string − Manipulate strings

SYNOPSIS
string option arg?arg ...?

DESCRIPTION
Performs one of several string operations, depending onoption. The legaloptions (which may be abbrevi-
ated) are:

string comparestring1 string2
Perform a character-by-character comparison of stringsstring1andstring2 in the same way as the
C strcmp procedure. Return −1, 0, or 1, depending on whetherstring1 is lexicographically less
than, equal to, or greater thanstring2.

string first string1 string2
Searchstring2 for a sequence of characters that exactly match the characters instring1. If found,
return the index of the first character in the first such match withinstring2. If not found, return −1.

string index string charIndex
Returns thecharIndex’th character of thestring argument. AcharIndexof 0 corresponds to the
first character of the string. IfcharIndexis less than 0 or greater than or equal to the length of the
string then an empty string is returned.

string last string1 string2
Searchstring2 for a sequence of characters that exactly match the characters instring1. If found,
return the index of the first character in the last such match withinstring2. If there is no match,
then return −1.

string length string
Returns a decimal string giving the number of characters instring.

string match pattern string
See ifpatternmatchesstring; return 1 if it does, 0 if it doesn’t. Matching is done in a fashion sim-
ilar to that used by the C-shell. For the two strings to match, their contents must be identical
except that the following special sequences may appear inpattern:

∗ Matches any sequence of characters instring, including a null string.

? Matches any single character instring.

[chars] Matches any character in the set given bychars. If a sequence of the formx−y
appears inchars, then any character betweenx andy, inclusive, will match.

\x Matches the single characterx. This provides a way of avoiding the special interpre-
tation of the characters∗?[]\ in pattern.

string range string first last
Returns a range of consecutive characters fromstring, starting with the character whose index is
first and ending with the character whose index islast. An index of 0 refers to the first character of
the string. An index ofend (or any abbreviation of it) refers to the last character of the string. If
first is less than zero then it is treated as if it were zero, and iflast is greater than or equal to the
length of the string then it is treated as if it wereend. If first is greater thanlast then an empty
string is returned.

string tolower string
Returns a value equal tostring except that all upper case letters have been converted to lower case.

string toupper string

Tcl Last change: 7.6 1

Tcl Built-In Commands string (n)

Returns a value equal tostring except that all lower case letters have been converted to upper case.

string trim string?chars?
Returns a value equal tostring except that any leading or trailing characters from the set given by
charsare removed. Ifchars is not specified then white space is removed (spaces, tabs, newlines,
and carriage returns).

string trimleft string?chars?
Returns a value equal tostring except that any leading characters from the set given bycharsare
removed. Ifchars is not specified then white space is removed (spaces, tabs, newlines, and car-
riage returns).

string trimright string?chars?
Returns a value equal tostring except that any trailing characters from the set given bycharsare
removed. Ifchars is not specified then white space is removed (spaces, tabs, newlines, and car-
riage returns).

string wordend string index
Returns the index of the character just after the last one in the word containing characterindexof
string. A word is considered to be any contiguous range of alphanumeric or underscore charac-
ters, or any single character other than these.

string wordstart string index
Returns the index of the first character in the word containing characterindexof string. A word is
considered to be any contiguous range of alphanumeric or underscore characters, or any single
character other than these.

KEYWORDS
case conversion, compare, index, match, pattern, string, word

Tcl Last change: 7.6 2

Tcl Built-In Commands subst (n)

NAME
subst − Perform backslash, command, and variable substitutions

SYNOPSIS
subst?−nobackslashes? ?−nocommands? ?−novariables?string

DESCRIPTION
This command performs variable substitutions, command substitutions, and backslash substitutions on its
string argument and returns the fully-substituted result. The substitutions are performed in exactly the
same way as for Tcl commands. As a result, thestring argument is actually substituted twice, once by the
Tcl parser in the usual fashion for Tcl commands, and again by thesubstcommand.

If any of the−nobackslashes, −nocommands, or −novariablesare specified, then the corresponding sub-
stitutions are not performed. For example, if−nocommandsis specified, no command substitution is per-
formed: open and close brackets are treated as ordinary characters with no special interpretation.

Note: when it performs its substitutions,substdoes not give any special treatment to double quotes or curly
braces. For example, the script

set a 44
subst {xyz {$a}}

returns ‘‘xyz {44}’’, not ‘‘ xyz {$a}’’.

KEYWORDS
backslash substitution, command substitution, variable substitution

Tcl Last change: 7.4 1

Tcl Built-In Commands switch (n)

NAME
switch − Evaluate one of several scripts, depending on a given value

SYNOPSIS
switch ?options?string pattern body?pattern body...?

switch ?options?string { pattern body?pattern body...?}

DESCRIPTION
Theswitch command matches itsstring argument against each of thepatternarguments in order. As soon
as it finds apatternthat matchesstring it evaluates the followingbodyargument by passing it recursively to
the Tcl interpreter and returns the result of that evaluation. If the lastpatternargument isdefault then it
matches anything. If nopatternargument matchesstring and no default is given, then theswitch command
returns an empty string.

If the initial arguments toswitch start with− then they are treated as options. The following options are
currently supported:

−exact Use exact matching when comparingstring to a pattern. This is the default.

−glob When matchingstring to the patterns, use glob-style matching (i.e. the same as implemented
by thestring match command).

−regexp When matchingstring to the patterns, use regular expression matching (i.e. the same as imple-
mented by theregexpcommand).

− − Marks the end of options. The argument following this one will be treated asstring ev en if it
starts with a−.

Tw o syntaxes are provided for thepatternandbodyarguments. The first uses a separate argument for each
of the patterns and commands; this form is convenient if substitutions are desired on some of the patterns or
commands. The second form places all of the patterns and commands together into a single argument; the
argument must have proper list structure, with the elements of the list being the patterns and commands.
The second form makes it easy to construct multi-line switch commands, since the braces around the whole
list make it unnecessary to include a backslash at the end of each line. Since thepatternarguments are in
braces in the second form, no command or variable substitutions are performed on them; this makes the
behavior of the second form different than the first form in some cases.

If a bodyis specified as ‘‘−’’ it means that thebodyfor the next pattern should also be used as the body for
this pattern (if the next pattern also has a body of ‘‘−’’ then the body after that is used, and so on). This fea-
ture makes it possible to share a singlebodyamong several patterns.

Below are some examples ofswitch commands:
switch abc a − b {format 1} abc {format 2} default {format 3}

will return 2,
switch −regexp aaab {

ˆa.∗b$ −
b {format 1}
a∗ {format 2}
default {format 3}

}
will return 1, and

switch xyz {
a

−
b

Tcl Last change: 7.0 1

Tcl Built-In Commands switch (n)

{format 1}
a∗

{format 2}
default

{format 3}
}

will return 3.

KEYWORDS
switch, match, regular expression

Tcl Last change: 7.0 2

Tcl Built-In Commands tclvars (n)

NAME
tclvars − Variables used by Tcl

DESCRIPTION
The following global variables are created and managed automatically by the Tcl library. Except where
noted below, these variables should normally be treated as read-only by application-specific code and by
users.

env This variable is maintained by Tcl as an array whose elements are the environment variables for
the process. Reading an element will return the value of the corresponding environment variable.
Setting an element of the array will modify the corresponding environment variable or create a
new one if it doesn’t already exist. Unsetting an element ofenv will remove the corresponding
environment variable. Changes to theenv array will affect the environment passed to children by
commands likeexec. If the entireenv array is unset then Tcl will stop monitoringenv accesses
and will not update environment variables.
Under Windows, the environment variables PATH and COMSPEC in any capitalization are con-
verted automatically to upper case. For instance, the PATH variable could be exported by the
operating system as ‘‘path’’, ‘‘Path’’, ‘‘PaTh’’, etc., causing otherwise simple Tcl code to have to
support many special cases. All other environment variables inherited by Tcl are left unmodified.
On the Macintosh, the environment variable is constructed by Tcl as no global environment vari-
able exists. The environment variables that are created for Tcl include:

LOGIN
This holds the Chooser name of the Macintosh.

USER This also holds the Chooser name of the Macintosh.

SYS_FOLDER
The path to the system directory.

APPLE_M_FOLDER
The path to the Apple Menu directory.

CP_FOLDER
The path to the control panels directory.

DESK_FOLDER
The path to the desk top directory.

EXT_FOLDER
The path to the system extensions directory.

PREF_FOLDER
The path to the preferences directory.

PRINT_MON_FOLDER
The path to the print monitor directory.

SHARED_TRASH_FOLDER
The path to the network trash directory.

TRASH_FOLDER
The path to the trash directory.

START_UP_FOLDER
The path to the start up directory.

PWD The path to the application’s default directory.

Tcl Last change: 8.0 1

Tcl Built-In Commands tclvars (n)

You can also create your own environment variables for the Macintosh. A file namedTcl Envi-
ronment Variablesmay be placed in the preferences folder in the Mac system folder. Each line of
this file should be of the formVAR_NAME=var_data.

The last alternative is to place environment variables in a ’STR#’ resource namedTcl Environment
Variablesof the application. This is considered a little more ‘‘Mac like’’ than a Unix style Envi-
ronment Variable file. Each entry in the ’STR#’ resource has the same format as above. The
source code filetclMacEnv.ccontains the implementation of the env mechanisms. This file con-
tains many #define’s that allow customization of the env mechanisms to fit your applications
needs.

errorCode
After an error has occurred, this variable will be set to hold additional information about the error
in a form that is easy to process with programs.errorCode consists of a Tcl list with one or more
elements. The first element of the list identifies a general class of errors, and determines the for-
mat of the rest of the list. The following formats forerrorCode are used by the Tcl core; individ-
ual applications may define additional formats.

ARITH code msg
This format is used when an arithmetic error occurs (e.g. an attempt to divide by zero in
the expr command).Code identifies the precise error andmsgprovides a human-read-
able description of the error.Codewill be either DIVZERO (for an attempt to divide by
zero), DOMAIN (if an argument is outside the domain of a function, such as acos(−3)),
IOVERFLOW (for integer overflow), OVERFLOW (for a floating-point overflow), or
UNKNOWN (if the cause of the error cannot be determined).

CHILDKILLED pid sigName msg
This format is used when a child process has been killed because of a signal. The second
element oferrorCode will be the process’s identifier (in decimal). The third element
will be the symbolic name of the signal that caused the process to terminate; it will be
one of the names from the include file signal.h, such asSIGPIPE. The fourth element
will be a short human-readable message describing the signal, such as ‘‘write on pipe
with no readers’’ forSIGPIPE.

CHILDSTATUS pid code
This format is used when a child process has exited with a non-zero exit status. The sec-
ond element oferrorCode will be the process’s identifier (in decimal) and the third ele-
ment will be the exit code returned by the process (also in decimal).

CHILDSUSP pid sigName msg
This format is used when a child process has been suspended because of a signal. The
second element oferrorCode will be the process’s identifier, in decimal. The third ele-
ment will be the symbolic name of the signal that caused the process to suspend; this will
be one of the names from the include file signal.h, such asSIGTTIN . The fourth ele-
ment will be a short human-readable message describing the signal, such as ‘‘background
tty read’’ for SIGTTIN .

NONE This format is used for errors where no additional information is available for an error
besides the message returned with the error. In these caseserrorCode will consist of a
list containing a single element whose contents areNONE.

POSIX errName msg
If the first element oferrorCode is POSIX, then the error occurred during a POSIX ker-
nel call. The second element of the list will contain the symbolic name of the error that
occurred, such asENOENT; this will be one of the values defined in the include file
errno.h. The third element of the list will be a human-readable message corresponding to

Tcl Last change: 8.0 2

Tcl Built-In Commands tclvars (n)

errName, such as ‘‘no such file or directory’’ for theENOENT case.

To seterrorCode, applications should use library procedures such asTcl_SetErrorCode and
Tcl_PosixError , or they may invoke theerror command. If one of these methods hasn’t been
used, then the Tcl interpreter will reset the variable toNONE after the next error.

errorInfo
After an error has occurred, this string will contain one or more lines identifying the Tcl com-
mands and procedures that were being executed when the most recent error occurred. Its contents
take the form of a stack trace showing the various nested Tcl commands that had been invoked at
the time of the error.

tcl_library
This variable holds the name of a directory containing the system library of Tcl scripts, such as
those used for auto-loading. The value of this variable is returned by theinfo library command.
See thelibrary manual entry for details of the facilities provided by the Tcl script library. Nor-
mally each application or package will have its own application-specific script library in addition
to the Tcl script library; each application should set a global variable with a name like
$app_library (whereapp is the application’s name) to hold the network file name for that applica-
tion’s library directory. The initial value oftcl_library is set when an interpreter is created by
searching several different directories until one is found that contains an appropriate Tcl startup
script. If theTCL_LIBRARY environment variable exists, then the directory it names is checked
first. If TCL_LIBRARY isn’t set or doesn’t refer to an appropriate directory, then Tcl checks
several other directories based on a compiled-in default location, the location of the binary con-
taining the application, and the current working directory.

tcl_patchLevel
When an interpreter is created Tcl initializes this variable to hold a string giving the current patch
level for Tcl, such as7.3p2 for Tcl 7.3 with the first two official patches, or7.4b4 for the fourth
beta release of Tcl 7.4. The value of this variable is returned by theinfo patchlevelcommand.

tcl_pkgPath
This variable holds a list of directories indicating where packages are normally installed. It typi-
cally contains either one or two entries; if it contains two entries, the first is normally a directory
for platform-dependent packages (e.g., shared library binaries) and the second is normally a direc-
tory for platform-independent packages (e.g., script files). Typically a package is installed as a
subdirectory of one of the entries in$tcl_pkgPath. The directories in$tcl_pkgPath are included
by default in theauto_path variable, so they and their immediate subdirectories are automatically
searched for packages duringpackage requirecommands. Note:tcl_pkgPath it not intended to
be modified by the application. Its value is added toauto_path at startup; changes totcl_pkg-
Path are not reflected inauto_path. If you want Tcl to search additional directories for packages
you should add the names of those directories toauto_path, not tcl_pkgPath.

tcl_platform
This is an associative array whose elements contain information about the platform on which the
application is running, such as the name of the operating system, its current release number, and
the machine’s instruction set. The elements listed below will always be defined, but they may
have empty strings as values if Tcl couldn’t retrieve any relevant information. In addition, exten-
sions and applications may add additional values to the array. The predefined elements are:

byteOrder
The native byte order of this machine: eitherlittleEndian or bigEndian.

machine
The instruction set executed by this machine, such asintel, PPC, 68k, or sun4m. On
UNIX machines, this is the value returned byuname -m.

Tcl Last change: 8.0 3

Tcl Built-In Commands tclvars (n)

os The name of the operating system running on this machine, such asWin32s, Windows
NT, MacOS, or SunOS. On UNIX machines, this is the value returned byuname -s.

osVersion
The version number for the operating system running on this machine. On UNIX
machines, this is the value returned byuname -r.

platform
Either windows, macintosh, or unix. This identifies the general operating environment
of the machine.

tcl_precision
This variable controls the number of digits to generate when converting floating-point values to
strings. It defaults to 12. 17 digits is ‘‘perfect’’ for IEEE floating-point in that it allows double-
precision values to be converted to strings and back to binary with no loss of information. How-
ev er, using 17 digits prevents any rounding, which produces longer, less intuitive results. For
example,expr 1.4 returns 1.3999999999999999 withtcl_precision set to 17, vs. 1.4 iftcl_preci-
sion is 12.
All interpreters in a process share a singletcl_precision value: changing it in one interpreter will
affect all other interpreters as well. However, safe interpreters are not allowed to modify the vari-
able.

tcl_rcFileName
This variable is used during initialization to indicate the name of a user-specific startup file. If it is
set by application-specific initialization, then the Tcl startup code will check for the existence of
this file andsource it if it exists. For example, forwish the variable is set tõ/.wishrc for Unix
and˜/wishrc.tcl for Windows.

tcl_rcRsrcName
This variable is only used on Macintosh systems. The variable is used during initialization to indi-
cate the name of a user-specificTEXT resource located in the application or extension resource
forks. If it is set by application-specific initialization, then the Tcl startup code will check for the
existence of this resource andsource it if it exists. For example, the Macintoshwish application
has the variable is set totclshrc.

tcl_traceCompile
The value of this variable can be set to control how much tracing information is displayed during
bytecode compilation. By default, tcl_traceCompile is zero and no information is displayed. Set-
ting tcl_traceCompile to 1 generates a one line summary in stdout whenever a procedure or top
level command is compiled. Setting it to 2 generates a detailed listing in stdout of the bytecode
instructions emitted during every compilation. This variable is useful in tracking down suspected
problems with the Tcl compiler. It is also occasionally useful when converting existing code to
use Tcl8.0.

tcl_traceExec
The value of this variable can be set to control how much tracing information is displayed during
bytecode execution. By default, tcl_traceExec is zero and no information is displayed. Setting
tcl_traceExec to 1 generates a one line trace in stdout on each call to a Tcl procedure. Setting it to
2 generates a line of output whenever any Tcl command is invoked that contains the name of the
command and its arguments. Setting it to 3 produces a detailed trace showing the result of execut-
ing each bytecode instruction. Note that when tcl_traceExec is 2 or 3, commands such as set and
incr that have been entirely replaced by a sequence of bytecode instructions are not shown. Set-
ting this variable is useful in tracking down suspected problems with the bytecode compiler and
interpreter. It is also occasionally useful when converting code to use Tcl8.0.

tcl_version

Tcl Last change: 8.0 4

Tcl Built-In Commands tclvars (n)

When an interpreter is created Tcl initializes this variable to hold the version number for this ver-
sion of Tcl in the formx.y. Changes tox represent major changes with probable incompatibilities
and changes toy represent small enhancements and bug fixes that retain backward compatibility.
The value of this variable is returned by theinfo tclversion command.

KEYWORDS
arithmetic, bytecode, compiler, error, environment, POSIX, precision, subprocess, variables

Tcl Last change: 8.0 5

Tcl Built-In Commands tell (n)

NAME
tell − Return current access position for an open channel

SYNOPSIS
tell channelId

DESCRIPTION
Returns a decimal string giving the current access position inchannelId. The value returned is -1 for chan-
nels that do not support seeking.

KEYWORDS
access position, channel, seeking

Tcl Last change: 7.5 1

Tcl Built-In Commands time (n)

NAME
time − Time the execution of a script

SYNOPSIS
time script?count?

DESCRIPTION
This command will call the Tcl interpretercount times to evaluatescript (or once ifcount isn’t specified).
It will then return a string of the form

503 microseconds per iteration
which indicates the average amount of time required per iteration, in microseconds. Time is measured in
elapsed time, not CPU time.

KEYWORDS
script, time

Tcl Last change: 1

Tcl Built-In Commands trace (n)

NAME
trace − Monitor variable accesses

SYNOPSIS
trace option?arg arg ...?

DESCRIPTION
This command causes Tcl commands to be executed whenever certain operations are invoked. At present,
only variable tracing is implemented. The legaloption’s (which may be abbreviated) are:

trace variable name ops command
Arrange forcommandto be executed whenever variablenameis accessed in one of the ways given
by ops. Namemay refer to a normal variable, an element of an array, or to an array as a whole (i.e.
namemay be just the name of an array, with no parenthesized index). Ifnamerefers to a whole
array, thencommandis invoked whenever any element of the array is manipulated.

Opsindicates which operations are of interest, and consists of one or more of the following letters:

r Invokecommandwhenever the variable is read.

w Invokecommandwhenever the variable is written.

u Invoke commandwhenever the variable is unset. Variables can be unset explicitly with
theunsetcommand, or implicitly when procedures return (all of their local variables are
unset). Variables are also unset when interpreters are deleted, but traces will not be
invoked because there is no interpreter in which to execute them.

When the trace triggers, three arguments are appended tocommandso that the actual command is
as follows:

command name1 name2 op
Name1andname2give the name(s) for the variable being accessed: if the variable is a scalar then
name1gives the variable’s name andname2is an empty string; if the variable is an array element
thenname1gives the name of the array and name2 gives the index into the array; if an entire array
is being deleted and the trace was registered on the overall array, rather than a single element, then
name1gives the array name andname2is an empty string.Name1andname2are not necessarily
the same as the name used in thetrace variable command: theupvar command allows a proce-
dure to reference a variable under a different name.Op indicates what operation is being per-
formed on the variable, and is one ofr , w, or u as defined above.

Commandexecutes in the same context as the code that invoked the traced operation: if the vari-
able was accessed as part of a Tcl procedure, thencommandwill have access to the same local
variables as code in the procedure. This context may be different than the context in which the
trace was created. Ifcommandinvokes a procedure (which it normally does) then the procedure
will have to useupvar or uplevel if it wishes to access the traced variable. Note also thatname1
may not necessarily be the same as the name used to set the trace on the variable; differences can
occur if the access is made through a variable defined with theupvar command.

For read and write traces,commandcan modify the variable to affect the result of the traced opera-
tion. If commandmodifies the value of a variable during a read or write trace, then the new value
will be returned as the result of the traced operation. The return value fromcommandis ignored
except that if it returns an error of any sort then the traced operation also returns an error with the
same error message returned by the trace command (this mechanism can be used to implement
read-only variables, for example). For write traces,commandis invoked after the variable’s value
has been changed; it can write a new value into the variable to override the original value specified
in the write operation. To implement read-only variables,commandwill have to restore the old
value of the variable.

Tcl Last change: 1

Tcl Built-In Commands trace (n)

While commandis executing during a read or write trace, traces on the variable are temporarily
disabled. This means that reads and writes invoked bycommandwill occur directly, without
invoking command(or any other traces) again. However, ifcommandunsets the variable then
unset traces will be invoked.

When an unset trace is invoked, the variable has already been deleted: it will appear to be unde-
fined with no traces. If an unset occurs because of a procedure return, then the trace will be
invoked in the variable context of the procedure being returned to: the stack frame of the returning
procedure will no longer exist. Traces are not disabled during unset traces, so if an unset trace
command creates a new trace and accesses the variable, the trace will be invoked. Any errors in
unset traces are ignored.

If there are multiple traces on a variable they are invoked in order of creation, most-recent first. If
one trace returns an error, then no further traces are invoked for the variable. If an array element
has a trace set, and there is also a trace set on the array as a whole, the trace on the overall array is
invoked before the one on the element.

Once created, the trace remains in effect either until the trace is removed with thetrace vdelete
command described below, until the variable is unset, or until the interpreter is deleted. Unsetting
an element of array will remove any traces on that element, but will not remove traces on the over-
all array.

This command returns an empty string.

trace vdeletename ops command
If there is a trace set on variablenamewith the operations and command given byopsandcom-
mand, then the trace is removed, so thatcommandwill never again be invoked. Returns an empty
string.

trace vinfo name
Returns a list containing one element for each trace currently set on variablename. Each element
of the list is itself a list containing two elements, which are theopsandcommandassociated with
the trace. Ifnamedoesn’t exist or doesn’t hav e any traces set, then the result of the command will
be an empty string.

KEYWORDS
read, variable, write, trace, unset

Tcl Last change: 2

Tcl Built-In Commands unknown (n)

NAME
unknown − Handle attempts to use non-existent commands

SYNOPSIS
unknown cmdName?arg arg ...?

DESCRIPTION
This command is invoked by the Tcl interpreter whenever a script tries to invoke a command that doesn’t
exist. The implementation ofunknown isn’t part of the Tcl core; instead, it is a library procedure defined
by default when Tcl starts up. You can override the defaultunknown to change its functionality.

If the Tcl interpreter encounters a command name for which there is not a defined command, then Tcl
checks for the existence of a command namedunknown. If there is no such command, then the interpreter
returns an error. If theunknown command exists, then it is invoked with arguments consisting of the fully-
substituted name and arguments for the original non-existent command. Theunknown command typically
does things like searching through library directories for a command procedure with the namecmdName, or
expanding abbreviated command names to full-length, or automatically executing unknown commands as
sub-processes. In some cases (such as expanding abbreviations)unknown will change the original com-
mand slightly and then (re-)execute it. The result of theunknown command is used as the result for the
original non-existent command.

The default implementation ofunknown behaves as follows. It first calls theauto_load library procedure
to load the command. If this succeeds, then it executes the original command with its original arguments.
If the auto-load fails thenunknown callsauto_execokto see if there is an executable file by the namecmd.
If so, it invokes the Tclexeccommand withcmd and all theargs as arguments. Ifcmd can’t be auto-
executed,unknown checks to see if the command was invoked at top-level and outside of any script. If so,
then unknown takes two additional steps. First, it sees ifcmd has one of the following three forms:!! ,
!event, or ˆoldˆnew?̂ ?. If so, thenunknown carries out history substitution in the same way thatcshwould
for these constructs. Finally,unknown checks to see ifcmd is a unique abbreviation for an existing Tcl
command. If so, it expands the command name and executes the command with the original arguments. If
none of the above efforts has been able to execute the command,unknown generates an error return. If the
global variableauto_noload is defined, then the auto-load step is skipped. If the global variable
auto_noexecis defined then the auto-exec step is skipped. Under normal circumstances the return value
from unknown is the return value from the command that was eventually executed.

KEYWORDS
error, non-existent command

Tcl Last change: 1

Tcl Built-In Commands unset (n)

NAME
unset − Delete variables

SYNOPSIS
unsetname?name name ...?

DESCRIPTION
This command removes one or more variables. Eachnameis a variable name, specified in any of the ways
acceptable to theset command. If anamerefers to an element of an array then that element is removed
without affecting the rest of the array. If anameconsists of an array name with no parenthesized index,
then the entire array is deleted. Theunset command returns an empty string as result. An error occurs if
any of the variables doesn’t exist, and any variables after the non-existent one are not deleted.

KEYWORDS
remove, variable

Tcl Last change: 1

Tcl Built-In Commands update (n)

NAME
update − Process pending events and idle callbacks

SYNOPSIS
update?idletasks?

DESCRIPTION
This command is used to bring the application ‘‘up to date’’ by entering the event loop repeated until all
pending events (including idle callbacks) have been processed.

If the idletaskskeyword is specified as an argument to the command, then no new events or errors are pro-
cessed; only idle callbacks are invoked. This causes operations that are normally deferred, such as display
updates and window layout calculations, to be performed immediately.

Theupdate idletaskscommand is useful in scripts where changes have been made to the application’s state
and you want those changes to appear on the display immediately, rather than waiting for the script to com-
plete. Most display updates are performed as idle callbacks, soupdate idletaskswill cause them to run.
However, there are some kinds of updates that only happen in response to events, such as those triggered by
window size changes; these updates will not occur inupdate idletasks.

Theupdate command with no options is useful in scripts where you are performing a long-running compu-
tation but you still want the application to respond to events such as user interactions; if you occasionally
call update then user input will be processed during the next call toupdate.

KEYWORDS
ev ent, flush, handler, idle, update

Tcl Last change: 7.5 1

Tcl Built-In Commands uplevel (n)

NAME
uplevel − Execute a script in a different stack frame

SYNOPSIS
uplevel?level?arg ?arg ...?

DESCRIPTION
All of the arg arguments are concatenated as if they had been passed toconcat; the result is then evaluated
in the variable context indicated bylevel. Uplevel returns the result of that evaluation.

If level is an integer then it gives a distance (up the procedure calling stack) to move before executing the
command. Iflevelconsists of# followed by a number then the number gives an absolute level number. If
level is omitted then it defaults to1. Levelcannot be defaulted if the firstcommandargument starts with a
digit or #.

For example, suppose that procedurea was inv oked from top-level, and that it calledb, and thatb calledc.
Suppose thatc invokes theuplevel command. Iflevel is 1 or #2 or omitted, then the command will be
executed in the variable context ofb. If level is 2 or #1 then the command will be executed in the variable
context ofa. If level is 3 or #0 then the command will be executed at top-level (only global variables will
be visible).

The uplevel command causes the invoking procedure to disappear from the procedure calling stack while
the command is being executed. In the above example, supposec invokes the command

uplevel 1 {set x 43; d}
whered is another Tcl procedure. Theset command will modify the variablex in b’s context, andd will
execute at level 3, as if called fromb. If it in turn executes the command

uplevel {set x 42}
then thesetcommand will modify the same variablex in b’s context: the procedurec does not appear to be
on the call stack whend is executing. The command ‘‘info lev el’’ may be used to obtain the level of the
current procedure.

Uplevel makes it possible to implement new control constructs as Tcl procedures (for example,uplevel
could be used to implement thewhile construct as a Tcl procedure).

namespace evalis another way (besides procedure calls) that the Tcl naming context can change. It adds a
call frame to the stack to represent the namespace context. This means eachnamespace evalcommand
counts as another call level foruplevel andupvar commands. For example,info lev el 1 will return a list
describing a command that is either the outermost procedure call or the outermostnamespace evalcom-
mand. Also,uplevel #0evaluates a script at top-level in the outermost namespace (the global namespace).

SEE ALSO
namespace(n)

KEYWORDS
context, level, namespace, stack frame, variables

Tcl Last change: 1

Tcl Built-In Commands upvar (n)

NAME
upvar − Create link to variable in a different stack frame

SYNOPSIS
upvar ?level?otherVar myVar?otherVar myVar...?

DESCRIPTION
This command arranges for one or more local variables in the current procedure to refer to variables in an
enclosing procedure call or to global variables.Levelmay have any of the forms permitted for theuplevel
command, and may be omitted if the first letter of the firstotherVarisn’t # or a digit (it defaults to1). For
eachotherVarargument,upvar makes the variable by that name in the procedure frame given bylevel (or
at global level, iflevel is #0) accessible in the current procedure by the name given in the corresponding
myVarargument. The variable named byotherVarneed not exist at the time of the call; it will be created
the first timemyVar is referenced, just like an ordinary variable. There must not exist a variable by the
namemyVarat the timeupvar is invoked. MyVar is always treated as the name of a variable, not an array
element. Even if the name looks like an array element, such asa(b), a regular variable is created.OtherVar
may refer to a scalar variable, an array, or an array element.Upvar returns an empty string.

The upvar command simplifies the implementation of call-by-name procedure calling and also makes it
easier to build new control constructs as Tcl procedures. For example, consider the following procedure:

proc add2 name {
upvar $name x
set x [expr $x+2]

}
Add2 is invoked with an argument giving the name of a variable, and it adds two to the value of that vari-
able. Althoughadd2 could have been implemented usinguplevel instead ofupvar, upvar makes it sim-
pler foradd2 to access the variable in the caller’s procedure frame.

namespace evalis another way (besides procedure calls) that the Tcl naming context can change. It adds a
call frame to the stack to represent the namespace context. This means eachnamespace evalcommand
counts as another call level foruplevel andupvar commands. For example,info lev el 1 will return a list
describing a command that is either the outermost procedure call or the outermostnamespace evalcom-
mand. Also,uplevel #0evaluates a script at top-level in the outermost namespace (the global namespace).

If an upvar variable is unset (e.g.x in add2 above), theunset operation affects the variable it is linked to,
not the upvar variable. There is no way to unset an upvar variable except by exiting the procedure in which
it is defined. However, it is possible to retarget an upvar variable by executing anotherupvar command.

BUGS
If otherVarrefers to an element of an array, then variable traces set for the entire array will not be invoked
when myVar is accessed (but traces on the particular element will still be invoked). In particular, if the
array isenv, then changes made tomyVarwill not be passed to subprocesses correctly.

SEE ALSO
namespace(n)

KEYWORDS
context, frame, global, level, namespace, procedure, variable

Tcl Last change: 1

Tcl Built-In Commands variable (n)

NAME
variable − create and initialize a namespace variable

SYNOPSIS
variable ?name value...?name?value?

DESCRIPTION
This command is normally used within anamespace evalcommand to create one or more variables within
a namespace. Each variablenameis initialized withvalue. Thevaluefor the last variable is optional.

If a variablenamedoes not exist, it is created. In this case, ifvalueis specified, it is assigned to the newly
created variable. If novalueis specified, the new variable is left undefined. If the variable already exists, it
is set tovalue if value is specified or left unchanged if novalue is given. Normally,nameis unqualified
(does not include the names of any containing namespaces), and the variable is created in the current
namespace. Ifnameincludes any namespace qualifiers, the variable is created in the specified namespace.

If the variable command is executed inside a Tcl procedure, it creates local variables linked to the corre-
sponding namespace variables. In this way thevariable command resembles theglobal command,
although theglobal command only links to variables in the global namespace. If anyvalues are given, they
are used to modify the values of the associated namespace variables. If a namespace variable does not
exist, it is created and optionally initialized.

A nameargument cannot reference an element within an array. Instead,nameshould reference the entire
array, and the initializationvalueshould be left off. After the variable has been declared, elements within
the array can be set using ordinarysetor array commands.

SEE ALSO
global(n), namespace(n)

KEYWORDS
global, namespace, procedure, variable

Tcl Last change: 8.0 1

Tcl Built-In Commands vwait (n)

NAME
vwait − Process events until a variable is written

SYNOPSIS
vwait varName

DESCRIPTION
This command enters the Tcl event loop to process events, blocking the application if no events are ready.
It continues processing events until some event handler sets the value of variablevarName. OncevarName
has been set, thevwait command will return as soon as the event handler that modifiedvarNamecom-
pletes.

In some cases thevwait command may not return immediately aftervarNameis set. This can happen if the
ev ent handler that setsvarNamedoes not complete immediately. For example, if an event handler setsvar-
Nameand then itself callsvwait to wait for a different variable, then it may not return for a long time. Dur-
ing this time the top-levelvwait is blocked waiting for the event handler to complete, so it cannot return
either.

KEYWORDS
ev ent, variable, wait

Tcl Last change: 7.5 1

Tcl Built-In Commands while (n)

NAME
while − Execute script repeatedly as long as a condition is met

SYNOPSIS
while test body

DESCRIPTION
The while command evaluatestest as an expression (in the same way thatexpr evaluates its argument).
The value of the expression must a proper boolean value; if it is a true value thenbodyis executed by pass-
ing it to the Tcl interpreter. Oncebody has been executed thentest is evaluated again, and the process
repeats until eventuallytest evaluates to a false boolean value.Continue commands may be executed
inside body to terminate the current iteration of the loop, andbreak commands may be executed inside
bodyto cause immediate termination of thewhile command. Thewhile command always returns an empty
string.

Note: testshould almost always be enclosed in braces. If not, variable substitutions will be made before the
while command starts executing, which means that variable changes made by the loop body will not be
considered in the expression. This is likely to result in an infinite loop. Iftest is enclosed in braces, vari-
able substitutions are delayed until the expression is evaluated (before each loop iteration), so changes in
the variables will be visible. For an example, try the following script with and without the braces around
$x<10:

set x 0
while {$x<10} {

puts "x is $x"
incr x

}

KEYWORDS
boolean value, loop, test, while

Tcl Last change: 1

Tk Built-In Commands bell (n)

NAME
bell − Ring a display’s bell

SYNOPSIS
bell ?−displayof window?

DESCRIPTION
This command rings the bell on the display forwindow and returns an empty string. If the−displayof
option is omitted, the display of the application’s main window is used by default. The command uses the
current bell-related settings for the display, which may be modified with programs such asxset.

This command also resets the screen saver for the screen. Some screen savers will ignore this, but others
will reset so that the screen becomes visible again.

KEYWORDS
beep, bell, ring

Tk Last change: 4.0 1

Tk Built-In Commands bind (n)

NAME
bind − Arrange for X events to invoke Tcl scripts

SYNOPSIS
bind tag

bind tag sequence

bind tag sequence script

bind tag sequence+script

INTRODUCTION
The bind command associates Tcl scripts with X events. If all three arguments are specified,bind will
arrange forscript (a Tcl script) to be evaluated whenever the event(s) given bysequenceoccur in the win-
dow(s) identified bytag. If script is prefixed with a ‘‘+’’, then it is appended to any existing binding for
sequence; otherwisescript replaces any existing binding. Ifscript is an empty string then the current bind-
ing for sequenceis destroyed, leavingsequenceunbound. In all of the cases where ascript argument is
provided,bind returns an empty string.

If sequenceis specified without ascript, then the script currently bound tosequenceis returned, or an
empty string is returned if there is no binding forsequence. If neithersequencenor script is specified, then
the return value is a list whose elements are all the sequences for which there exist bindings fortag.

The tag argument determines which window(s) the binding applies to. Iftag begins with a dot, as in.a.b.c,
then it must be the path name for a window; otherwise it may be an arbitrary string. Each window has an
associated list of tags, and a binding applies to a particular window if its tag is among those specified for
the window. Although thebindtags command may be used to assign an arbitrary set of binding tags to a
window, the default binding tags provide the following behavior:

If a tag is the name of an internal window the binding applies to that window.

If the tag is the name of a toplevel window the binding applies to the toplevel window and all its
internal windows.

If the tag is the name of a class of widgets, such asButton, the binding applies to all widgets in
that class;

If taghas the valueall, the binding applies to all windows in the application.

EVENT PATTERNS
The sequenceargument specifies a sequence of one or more event patterns, with optional white space
between the patterns. Each event pattern may take one of three forms. In the simplest case it is a single
printing ASCII character, such asa or [. The character may not be a space character or the character<.
This form of pattern matches aKeyPressev ent for the particular character. The second form of pattern is
longer but more general. It has the following syntax:

<modifier-modifier-type-detail>
The entire event pattern is surrounded by angle brackets. Inside the angle brackets are zero or more modi-
fiers, an event type, and an extra piece of information (detail) identifying a particular button or keysym.
Any of the fields may be omitted, as long as at least one oftypeanddetail is present. The fields must be
separated by white space or dashes.

The third form of pattern is used to specify a user-defined, named virtual event. It has the following syntax:
<<name>>

The entire virtual event pattern is surrounded by double angle brackets. Inside the angle brackets is the

Tk Last change: 4.1 1

Tk Built-In Commands bind (n)

user-defined name of the virtual event. Modifiers, such asShift or Control , may not be combined with a
virtual event to modify it. Bindings on a virtual event may be created before the virtual event is defined,
and if the definition of a virtual event changes dynamically, all windows bound to that virtual event will
respond immediately to the new definition.

MODIFIERS
Modifiers consist of any of the following values:

Control Mod2, M2
Shift Mod3, M3
Lock Mod4, M4
Button1, B1 Mod5, M5
Button2, B2 Meta, M
Button3, B3 Alt
Button4, B4 Double
Button5, B5 Triple
Mod1, M1

Where more than one value is listed, separated by commas, the values are equivalent. Most of the modifiers
have the obvious X meanings. For example,Button1 requires that button 1 be depressed when the event
occurs. For a binding to match a given event, the modifiers in the event must include all of those specified
in the event pattern. An event may also contain additional modifiers not specified in the binding. For
example, if button 1 is pressed while the shift and control keys are down, the pattern<Control-Button-1>
will match the event, but<Mod1-Button-1> will not. If no modifiers are specified, then any combination
of modifiers may be present in the event.

Meta andM refer to whichever of theM1 throughM5 modifiers is associated with the meta key(s) on the
keyboard (keysymsMeta_R andMeta_L). If there are no meta keys, or if they are not associated with any
modifiers, thenMeta and M will not match any events. Similarly, theAlt modifier refers to whichever
modifier is associated with the alt key(s) on the keyboard (keysymsAlt_L andAlt_R).

TheDouble andTriple modifiers are a convenience for specifying double mouse clicks and other repeated
ev ents. They cause a particular event pattern to be repeated 2 or 3 times, and also place a time and space
requirement on the sequence: for a sequence of events to match aDouble or Triple pattern, all of the
ev ents must occur close together in time and without substantial mouse motion in between. For example,
<Double-Button-1> is equivalent to<Button-1><Button-1> with the extra time and space requirement.

EVENT TYPES
The typefield may be any of the standard X event types, with a few extra abbreviations. Below is a list of
all the valid types; where two names appear together, they are synonyms.

ButtonPress, Button Expose Map
ButtonRelease FocusIn Motion
Circulate FocusOut Property
Colormap Gravity Reparent
Configure KeyPress, Key Unmap
Destroy KeyRelease Visibility
Enter Leave Activate
Deactivate

The last part of a long event specification isdetail. In the case of aButtonPressor ButtonReleaseev ent, it
is the number of a button (1-5). If a button number is given, then only an event on that particular button
will match; if no button number is given, then an event on any button will match. Note: giving a specific

Tk Last change: 4.1 2

Tk Built-In Commands bind (n)

button number is different than specifying a button modifier; in the first case, it refers to a button being
pressed or released, while in the second it refers to some other button that is already depressed when the
matching event occurs. If a button number is given thentypemay be omitted: if will default toButton-
Press. For example, the specifier<1> is equivalent to<ButtonPress-1>.

If the event type isKeyPressor KeyRelease, thendetail may be specified in the form of an X keysym.
Ke ysyms are textual specifications for particular keys on the keyboard; they include all the alphanumeric
ASCII characters (e.g. ‘‘a’’ is the keysym for the ASCII character ‘‘a’’), plus descriptions for non-alphanu-
meric characters (‘‘comma’’ is the keysym for the comma character), plus descriptions for all the non-
ASCII keys on the keyboard (‘‘Shift_L’’ is the keysm for the left shift key, and ‘‘F1’’ is the keysym for the
F1 function key, if it exists). The complete list of keysyms is not presented here; it is available in other X
documentation and may vary from system to system. If necessary, you can use the%K notation described
below to print out the keysym name for a particular key. If a keysymdetail is given, then thetypefield may
be omitted; it will default toKeyPress. For example,<Control-comma> is equivalent to<Control-Key-
Press-comma>.

BINDING SCRIPTS AND SUBSTITUTIONS
The script argument tobind is a Tcl script, which will be executed whenever the given event sequence
occurs. Commandwill be executed in the same interpreter that thebind command was executed in, and it
will run at global level (only global variables will be accessible). Ifscript contains any% characters, then
the script will not be executed directly. Instead, a new script will be generated by replacing each% , and
the character following it, with information from the current event. The replacement depends on the char-
acter following the% , as defined in the list below. Unless otherwise indicated, the replacement string is the
decimal value of the given field from the current event. Some of the substitutions are only valid for certain
types of events; if they are used for other types of events the value substituted is undefined.

%% Replaced with a single percent.

%# The number of the last client request processed by the server (theserial field from the event). Valid
for all event types.

%a The abovefield from the event, formatted as a hexadecimal number. Valid only forConfigure
ev ents.

%b The number of the button that was pressed or released. Valid only forButtonPressandButtonRe-
leaseev ents.

%c Thecountfield from the event. Valid only forExposeev ents.

%d The detail field from the event. The%d is replaced by a string identifying the detail. ForEnter,
Leave, FocusIn, andFocusOutev ents, the string will be one of the following:

NotifyAncestor NotifyNonlinearVirtual
NotifyDetailNone NotifyPointer
NotifyInferior NotifyPointerRoot
NotifyNonlinear NotifyVirtual

For events other than these, the substituted string is undefined.

%f Thefocusfield from the event (0 or 1). Valid only forEnter andLeaveev ents.

%h Theheightfield from the event. Valid only forConfigure andExposeev ents.

%k Thekeycodefield from the event. Valid only forKeyPressandKeyReleaseev ents.

%m The modefield from the event. The substituted string is one ofNotifyNormal , NotifyGrab , Noti-
fyUngrab, or NotifyWhileGrabbed . Valid only forEnter, FocusIn, FocusOut, andLeaveev ents.

Tk Last change: 4.1 3

Tk Built-In Commands bind (n)

%o Theoverride_redirectfield from the event. Valid only forMap, Reparent, andConfigure ev ents.

%p The place field from the event, substituted as one of the stringsPlaceOnTop or PlaceOnBottom.
Valid only forCirculate ev ents.

%s The statefield from the event. ForButtonPress, ButtonRelease, Enter, KeyPress, KeyRelease,
Leave, andMotion ev ents, a decimal string is substituted. ForVisibility , one of the stringsVisibili-
tyUnobscured, VisibilityPartiallyObscured , andVisibilityFullyObscured is substituted.

%t Thetimefield from the event. Valid only for events that contain atimefield.

%w Thewidthfield from the event. Valid only forConfigure andExposeev ents.

%x Thex field from the event. Valid only for events containing anx field.

%y They field from the event. Valid only for events containing ay field.

%A Substitutes the ASCII character corresponding to the event, or the empty string if the event doesn’t
correspond to an ASCII character (e.g. the shift key was pressed).XLookupString does all the work
of translating from the event to an ASCII character. Valid only forKeyPressandKeyReleaseev ents.

%B Theborder_widthfield from the event. Valid only forConfigure ev ents.

%E Thesend_eventfield from the event. Valid for all event types.

%K The keysym corresponding to the event, substituted as a textual string. Valid only forKeyPressand
KeyReleaseev ents.

%N The keysym corresponding to the event, substituted as a decimal number. Valid only forKeyPress
andKeyReleaseev ents.

%R Theroot window identifier from the event. Valid only for events containing aroot field.

%S Thesubwindowwindow identifier from the event, formatted as a hexadecimal number. Valid only for
ev ents containing asubwindowfield.

%T Thetypefield from the event. Valid for all event types.

%W The path name of the window to which the event was reported (thewindow field from the event).
Valid for all event types.

%X Thex_rootfield from the event. If a virtual-root window manager is being used then the substituted
value is the corresponding x-coordinate in the virtual root. Valid only forButtonPress, ButtonRe-
lease, KeyPress, KeyRelease, andMotion ev ents.

%Y They_rootfield from the event. If a virtual-root window manager is being used then the substituted
value is the corresponding y-coordinate in the virtual root. Valid only forButtonPress, ButtonRe-
lease, KeyPress, KeyRelease, andMotion ev ents.

The replacement string for a %-replacement is formatted as a proper Tcl list element. This means that it
will be surrounded with braces if it contains spaces, or special characters such as$ and{ may be preceded
by backslashes. This guarantees that the string will be passed through the Tcl parser when the binding
script is evaluated. Most replacements are numbers or well-defined strings such asAbove; for these
replacements no special formatting is ever necessary. The most common case where reformatting occurs is
for the%A substitution. For example, ifscript is

insert %A
and the character typed is an open square bracket, then the script actually executed will be

insert \[
This will cause theinsert to receive the original replacement string (open square bracket) as its first argu-
ment. If the extra backslash hadn’t been added, Tcl would not have been able to parse the script correctly.

Tk Last change: 4.1 4

Tk Built-In Commands bind (n)

MULTIPLE MATCHES
It is possible for several bindings to match a given X event. If the bindings are associated with different
tag’s, then each of the bindings will be executed, in order. By default, a binding for the widget will be
executed first, followed by a class binding, a binding for its toplevel, and anall binding. Thebindtags
command may be used to change this order for a particular window or to associate additional binding tags
with the window.

Thecontinue andbreak commands may be used inside a binding script to control the processing of match-
ing scripts. Ifcontinue is invoked, then the current binding script is terminated but Tk will continue pro-
cessing binding scripts associated with othertag’s. If the break command is invoked within a binding
script, then that script terminates and no other scripts will be invoked for the event.

If more than one binding matches a particular event and they hav e the sametag, then the most specific
binding is chosen and its script is evaluated. The following tests are applied, in order, to determine which
of several matching sequences is more specific: (a) an event pattern that specifies a specific button or key is
more specific than one that doesn’t; (b) a longer sequence (in terms of number of events matched) is more
specific than a shorter sequence; (c) if the modifiers specified in one pattern are a subset of the modifiers in
another pattern, then the pattern with more modifiers is more specific. (d) a virtual event whose physical
pattern matches the sequence is less specific than the same physical pattern that is not associated with a vir-
tual event. (e) given a sequence that matches two or more virtual events, one of the virtual events will be
chosen, but the order is undefined.

If the matching sequences contain more than one event, then tests (c)-(e) are applied in order from the most
recent event to the least recent event in the sequences. If these tests fail to determine a winner, then the
most recently registered sequence is the winner.

If there are two (or more) virtual events that are both triggered by the same sequence, and both of those vir-
tual events are bound to the same window tag, then only one of the virtual events will be triggered, and it
will be picked at random:

ev ent add <<Paste>> <Control-y>
ev ent add <<Paste>> <Button-2>
ev ent add <<Scroll>> <Button-2>
bind Entry <<Paste>> {puts Paste}
bind Entry <<Scroll>> {puts Scroll}

If the user types Control-y, the<<Paste>>binding will be invoked, but if the user presses button 2 then one
of either the<<Paste>>or the<<Scroll>> bindings will be invoked, but exactly which one gets invoked is
undefined.

If an X event does not match any of the existing bindings, then the event is ignored. An unbound event is
not considered to be an error.

MULTI-EVENT SEQUENCES AND IGNORED EVENTS
When asequencespecified in abind command contains more than one event pattern, then its script is
executed whenever the recent events (leading up to and including the current event) match the given
sequence. This means, for example, that if button 1 is clicked repeatedly the sequence<Double-Button-
Press-1>will match each button press but the first. If extraneous events that would prevent a match occur
in the middle of an event sequence then the extraneous events are ignored unless they areKeyPressor But-
tonPressev ents. For example,<Double-ButtonPress-1>will match a sequence of presses of button 1,
ev en though there will beButtonReleaseev ents (and possiblyMotion ev ents) between theButtonPress
ev ents. Furthermore, aKeyPressev ent may be preceded by any number of otherKeyPressev ents for mod-
ifier keys without the modifier keys preventing a match. For example, the event sequenceaB will match a
press of thea key, a release of thea key, a press of theShift key, and a press of theb key: the press of
Shift is ignored because it is a modifier key. Finally, if sev eralMotion ev ents occur in a row, only the last
one is used for purposes of matching binding sequences.

Tk Last change: 4.1 5

Tk Built-In Commands bind (n)

ERRORS
If an error occurs in executing the script for a binding then thebgerror mechanism is used to report the
error. Thebgerror command will be executed at global level (outside the context of any Tcl procedure).

SEE ALSO
bgerror

KEYWORDS
form, manual

Tk Last change: 4.1 6

Tk Built-In Commands bindtags (n)

NAME
bindtags − Determine which bindings apply to a window, and order of evaluation

SYNOPSIS
bindtagswindow?tagList?

DESCRIPTION
When a binding is created with thebind command, it is associated either with a particular window such as
.a.b.c, a class name such asButton, the keywordall, or any other string. All of these forms are calledbind-
ing tags. Each window contains a list of binding tags that determine how events are processed for the win-
dow. When an event occurs in a window, it is applied to each of the window’s tags in order: for each tag,
the most specific binding that matches the given tag and event is executed. See thebind command for
more information on the matching process.

By default, each window has four binding tags consisting of the name of the window, the window’s class
name, the name of the window’s nearest toplevel ancestor, andall, in that order. Toplevel windows have
only three tags by default, since the toplevel name is the same as that of the window. Thebindtags com-
mand allows the binding tags for a window to be read and modified.

If bindtags is invoked with only one argument, then the current set of binding tags forwindow is returned
as a list. If thetagListargument is specified tobindtags, then it must be a proper list; the tags forwindow
are changed to the elements of the list. The elements oftagListmay be arbitrary strings; however, any tag
starting with a dot is treated as the name of a window; if no window by that name exists at the time an
ev ent is processed, then the tag is ignored for that event. The order of the elements intagList determines
the order in which binding scripts are executed in response to events. For example, the command

bindtags .b {all . Button .b}
reverses the order in which binding scripts will be evaluated for a button named.b so thatall bindings are
invoked first, following by bindings for.b’s toplevel (‘‘.’’), followed by class bindings, followed by bind-
ings for .b. If tagList is an empty list then the binding tags forwindow are returned to the default state
described above.

The bindtags command may be used to introduce arbitrary additional binding tags for a window, or to
remove standard tags. For example, the command

bindtags .b {.b TrickyButton . all}
replaces theButton tag for.b with TrickyButton . This means that the default widget bindings for buttons,
which are associated with theButton tag, will no longer apply to.b, but any bindings associated with
TrickyButton (perhaps some new button behavior) will apply.

SEE ALSO
bind

KEYWORDS
binding, event, tag

Tk Last change: 4.0 1

Tk Built-In Commands bitmap (n)

NAME
bitmap − Images that display two colors

SYNOPSIS
image create bitmap?name? ?options?

DESCRIPTION
A bitmap is an image whose pixels can display either of two colors or be transparent. A bitmap image is
defined by four things: a background color, a foreground color, and two bitmaps, called thesourceand the
mask. Each of the bitmaps specifies 0/1 values for a rectangular array of pixels, and the two bitmaps must
have the same dimensions. For pixels where the mask is zero, the image displays nothing, producing a
transparent effect. For other pixels, the image displays the foreground color if the source data is one and
the background color if the source data is zero.

CREATING BITMAPS
Like all images, bitmaps are created using theimage createcommand. Bitmaps support the following
options:

−background color
Specifies a background color for the image in any of the standard ways accepted by Tk. If this
option is set to an empty string then the background pixels will be transparent. This effect is
achieved by using the source bitmap as the mask bitmap, ignoring any−maskdata or −maskfile
options.

−data string
Specifies the contents of the source bitmap as a string. The string must adhere to X11 bitmap for-
mat (e.g., as generated by thebitmap program). If both the−data and−file options are specified,
the−data option takes precedence.

−file name
namegives the name of a file whose contents define the source bitmap. The file must adhere to
X11 bitmap format (e.g., as generated by thebitmap program).

−foreground color
Specifies a foreground color for the image in any of the standard ways accepted by Tk.

−maskdatastring
Specifies the contents of the mask as a string. The string must adhere to X11 bitmap format (e.g.,
as generated by thebitmap program). If both the−maskdata and−maskfile options are speci-
fied, the−maskdataoption takes precedence.

−maskfilename
namegives the name of a file whose contents define the mask. The file must adhere to X11 bitmap
format (e.g., as generated by thebitmap program).

IMAGE COMMAND
When a bitmap image is created, Tk also creates a new command whose name is the same as the image.
This command may be used to invoke various operations on the image. It has the following general form:

imageName option?arg arg ...?
Optionand theargs determine the exact behavior of the command. The following commands are possible
for bitmap images:

imageNamecgetoption
Returns the current value of the configuration option given byoption. Optionmay have any of the

Tk Last change: 4.0 1

Tk Built-In Commands bitmap (n)

values accepted by theimage create bitmapcommand.

imageNameconfigure?option? ?value option value ...?
Query or modify the configuration options for the image. If nooption is specified, returns a list
describing all of the available options forimageName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given option(s) to have the given value(s); in this case the command returns an
empty string.Optionmay have any of the values accepted by theimage create bitmapcommand.

KEYWORDS
bitmap, image

Tk Last change: 4.0 2

Tk Built-In Commands button (n)

NAME
button − Create and manipulate button widgets

SYNOPSIS
button pathName?options?

STANDARD OPTIONS
−activebackground −cursor −highlightthickness −takefocus
−activeforeground −disabledforeground −image −text
−anchor −font −justify −textvariable
−background −foreground −padx −underline
−bitmap −highlightbackground −pady −wraplength
−borderwidth −highlightcolor −relief

See theoptionsmanual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Command-Line Name: −command
Database Name: command
Database Class: Command

Specifies a Tcl command to associate with the button. This command is typically invoked when
mouse button 1 is released over the button window.

Command-Line Name: −default
Database Name: default
Database Class: Default

Specifies one of three states for the default ring:normal, active, or disabled. In active state, the
button is drawn with the platform specific appearance for a default button. In normal state, the
button is drawn with the platform specific appearance for a non-default button, leaving enough
space to draw the default button appearance. The normal and active states will result in buttons of
the same size. In disabled state, the button is drawn with the non-default button appearance with-
out leaving space for the default appearance. The disabled state may result in a smaller button
than the active state. ring.

Command-Line Name: −height
Database Name: height
Database Class: Height

Specifies a desired height for the button. If an image or bitmap is being displayed in the button
then the value is in screen units (i.e. any of the forms acceptable toTk_GetPixels); for text it is in
lines of text. If this option isn’t specified, the button’s desired height is computed from the size of
the image or bitmap or text being displayed in it.

Command-Line Name: −state
Database Name: state
Database Class: State

Specifies one of three states for the button:normal, active, or disabled. In normal state the but-
ton is displayed using theforeground andbackground options. The active state is typically used
when the pointer is over the button. In active state the button is displayed using theactiveFore-
ground andactiveBackground options. Disabled state means that the button should be insensi-
tive: the default bindings will refuse to activate the widget and will ignore mouse button presses.
In this state thedisabledForegroundandbackground options determine how the button is dis-
played.

Tk Last change: 4.4 1

Tk Built-In Commands button (n)

Command-Line Name: −width
Database Name: width
Database Class: Width

Specifies a desired width for the button. If an image or bitmap is being displayed in the button
then the value is in screen units (i.e. any of the forms acceptable toTk_GetPixels); for text it is in
characters. If this option isn’t specified, the button’s desired width is computed from the size of
the image or bitmap or text being displayed in it.

DESCRIPTION
Thebutton command creates a new window (given by thepathNameargument) and makes it into a button
widget. Additional options, described above, may be specified on the command line or in the option
database to configure aspects of the button such as its colors, font, text, and initial relief. Thebutton com-
mand returns itspathNameargument. At the time this command is invoked, there must not exist a window
namedpathName, butpathName’s parent must exist.

A button is a widget that displays a textual string, bitmap or image. If text is displayed, it must all be in a
single font, but it can occupy multiple lines on the screen (if it contains newlines or if wrapping occurs
because of thewrapLength option) and one of the characters may optionally be underlined using the
underline option. It can display itself in either of three different ways, according to thestateoption; it can
be made to appear raised, sunken, or flat; and it can be made to flash. When a user invokes the button (by
pressing mouse button 1 with the cursor over the button), then the Tcl command specified in the−com-
mand option is invoked.

WIDGET COMMAND
Thebutton command creates a new Tcl command whose name ispathName. This command may be used
to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?
Optionand theargs determine the exact behavior of the command. The following commands are possible
for button widgets:

pathNamecgetoption
Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thebutton command.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thebutton command.

pathNameflash
Flash the button. This is accomplished by redisplaying the button several times, alternating
between active and normal colors. At the end of the flash the button is left in the same nor-
mal/active state as when the command was invoked. This command is ignored if the button’s state
is disabled.

pathNameinvoke
Invoke the Tcl command associated with the button, if there is one. The return value is the return
value from the Tcl command, or an empty string if there is no command associated with the

Tk Last change: 4.4 2

Tk Built-In Commands button (n)

button. This command is ignored if the button’s state isdisabled.

DEFAULT BINDINGS
Tk automatically creates class bindings for buttons that give them default behavior:

[1] A button activates whenever the mouse passes over it and deactivates whenever the mouse leaves
the button. Under Windows, this binding is only active when mouse button 1 has been pressed
over the button.

[2] A button’s relief is changed to sunken whenever mouse button 1 is pressed over the button, and the
relief is restored to its original value when button 1 is later released.

[3] If mouse button 1 is pressed over a button and later released over the button, the button is invoked.
However, if the mouse is not over the button when button 1 is released, then no invocation occurs.

[4] When a button has the input focus, the space key causes the button to be invoked.

If the button’s state isdisabled then none of the above actions occur: the button is completely non-respon-
sive.

The behavior of buttons can be changed by defining new bindings for individual widgets or by redefining
the class bindings.

KEYWORDS
button, widget

Tk Last change: 4.4 3

Tk Built-In Commands canvas (n)

NAME
canvas − Create and manipulate canvas widgets

SYNOPSIS
canvaspathName?options?

STANDARD OPTIONS
−background −highlightthickness −insertwidth −takefocus
−borderwidth −insertbackground −relief −xscrollcommand
−cursor −insertborderwidth −selectbackground −yscrollcommand
−highlightbackground −insertofftime −selectborderwidth
−highlightcolor −insertontime −selectforeground

See theoptionsmanual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Command-Line Name: −closeenough
Database Name: closeEnough
Database Class: CloseEnough

Specifies a floating-point value indicating how close the mouse cursor must be to an item before it
is considered to be ‘‘inside’’ the item. Defaults to 1.0.

Command-Line Name: −confine
Database Name: confine
Database Class: Confine

Specifies a boolean value that indicates whether or not it should be allowable to set the canvas’s
view outside the region defined by thescrollRegionargument. Defaults to true, which means that
the view will be constrained within the scroll region.

Command-Line Name: −height
Database Name: height
Database Class: Height

Specifies a desired window height that the canvas widget should request from its geometry man-
ager. The value may be specified in any of the forms described in the COORDINATES section
below.

Command-Line Name: −scrollregion
Database Name: scrollRegion
Database Class: ScrollRegion

Specifies a list with four coordinates describing the left, top, right, and bottom coordinates of a
rectangular region. This region is used for scrolling purposes and is considered to be the boundary
of the information in the canvas. Each of the coordinates may be specified in any of the forms
given in the COORDINATES section below.

Command-Line Name: −width
Database Name: width
Database Class: width

Specifies a desired window width that the canvas widget should request from its geometry man-
ager. The value may be specified in any of the forms described in the COORDINATES section
below.

Command-Line Name: −xscrollincrement
Database Name: xScrollIncrement
Database Class: ScrollIncrement

Specifies an increment for horizontal scrolling, in any of the usual forms permitted for screen

Tk Last change: 4.0 1

Tk Built-In Commands canvas (n)

distances. If the value of this option is greater than zero, the horizontal view in the window will be
constrained so that the canvas x coordinate at the left edge of the window is always an even multi-
ple of xScrollIncrement; furthermore, the units for scrolling (e.g., the change in view when the
left and right arrows of a scrollbar are selected) will also bexScrollIncrement. If the value of this
option is less than or equal to zero, then horizontal scrolling is unconstrained.

Command-Line Name: −yscrollincrement
Database Name: yScrollIncrement
Database Class: ScrollIncrement

Specifies an increment for vertical scrolling, in any of the usual forms permitted for screen dis-
tances. If the value of this option is greater than zero, the vertical view in the window will be con-
strained so that the canvas y coordinate at the top edge of the window is always an even multiple
of yScrollIncrement; furthermore, the units for scrolling (e.g., the change in view when the top
and bottom arrows of a scrollbar are selected) will also beyScrollIncrement. If the value of this
option is less than or equal to zero, then vertical scrolling is unconstrained.

INTRODUCTION
Thecanvascommand creates a new window (given by thepathNameargument) and makes it into a canvas
widget. Additional options, described above, may be specified on the command line or in the option
database to configure aspects of the canvas such as its colors and 3-D relief. Thecanvascommand returns
its pathNameargument. At the time this command is invoked, there must not exist a window namedpath-
Name, butpathName’s parent must exist.

Canvas widgets implement structured graphics. A canvas displays any number ofitems, which may be
things like rectangles, circles, lines, and text. Items may be manipulated (e.g. moved or re-colored) and
commands may be associated with items in much the same way that thebind command allows commands
to be bound to widgets. For example, a particular command may be associated with the <Button-1> event
so that the command is invoked whenever button 1 is pressed with the mouse cursor over an item. This
means that items in a canvas can have behaviors defined by the Tcl scripts bound to them.

DISPLAY LIST
The items in a canvas are ordered for purposes of display, with the first item in the display list being dis-
played first, followed by the next item in the list, and so on. Items later in the display list obscure those that
are earlier in the display list and are sometimes referred to as being ‘‘on top’’ of earlier items. When a new
item is created it is placed at the end of the display list, on top of everything else. Widget commands may
be used to re-arrange the order of the display list.

Window items are an exception to the above rules. The underlying window systems require them always to
be drawn on top of other items. In addition, the stacking order of window items is not affected by any of
the canvas widget commands; you must use theraiseandlower Tk commands instead.

ITEM IDS AND TAGS
Items in a canvas widget may be named in either of two ways: by id or by tag. Each item has a unique
identifying number which is assigned to that item when it is created. The id of an item never changes and
id numbers are never re-used within the lifetime of a canvas widget.

Each item may also have any number oftagsassociated with it. A tag is just a string of characters, and it
may take any form except that of an integer. For example, ‘‘x123’’ is OK but ‘‘123’’ isn’t. The same tag
may be associated with many different items. This is commonly done to group items in various interesting
ways; for example, all selected items might be given the tag ‘‘selected’’.

Tk Last change: 4.0 2

Tk Built-In Commands canvas (n)

The tagall is implicitly associated with every item in the canvas; it may be used to invoke operations on all
the items in the canvas.

The tagcurrent is managed automatically by Tk; it applies to thecurrent item, which is the topmost item
whose drawn area covers the position of the mouse cursor. If the mouse is not in the canvas widget or is not
over an item, then no item has thecurrent tag.

When specifying items in canvas widget commands, if the specifier is an integer then it is assumed to refer
to the single item with that id. If the specifier is not an integer, then it is assumed to refer to all of the items
in the canvas that have a tag matching the specifier. The symboltagOrId is used below to indicate that an
argument specifies either an id that selects a single item or a tag that selects zero or more items. Some wid-
get commands only operate on a single item at a time; iftagOrId is specified in a way that names multiple
items, then the normal behavior is for the command to use the first (lowest) of these items in the display list
that is suitable for the command. Exceptions are noted in the widget command descriptions below.

COORDINATES
All coordinates related to canvases are stored as floating-point numbers. Coordinates and distances are
specified in screen units, which are floating-point numbers optionally followed by one of several letters. If
no letter is supplied then the distance is in pixels. If the letter ism then the distance is in millimeters on the
screen; if it isc then the distance is in centimeters;i means inches, andp means printers points (1/72 inch).
Larger y-coordinates refer to points lower on the screen; larger x-coordinates refer to points farther to the
right.

TRANSFORMATIONS
Normally the origin of the canvas coordinate system is at the upper-left corner of the window containing the
canvas. It is possible to adjust the origin of the canvas coordinate system relative to the origin of the win-
dow using thexview andyview widget commands; this is typically used for scrolling. Canvases do not
support scaling or rotation of the canvas coordinate system relative to the window coordinate system.

Individual items may be moved or scaled using widget commands described below, but they may not be
rotated.

INDICES
Te xt items support the notion of anindex for identifying particular positions within the item. Indices are
used for commands such as inserting text, deleting a range of characters, and setting the insertion cursor
position. An index may be specified in any of a number of ways, and different types of items may support
different forms for specifying indices. Te xt items support the following forms for an index; if you define
new types of text-like items, it would be advisable to support as many of these forms as practical. Note that
it is possible to refer to the character just after the last one in the text item; this is necessary for such tasks
as inserting new text at the end of the item.

number A decimal number giving the position of the desired character within the text item. 0 refers to
the first character, 1 to the next character, and so on. A number less than 0 is treated as if it
were zero, and a number greater than the length of the text item is treated as if it were equal to
the length of the text item.

end Refers to the character just after the last one in the item (same as the number of characters in
the item).

insert Refers to the character just before which the insertion cursor is drawn in this item.

sel.first Refers to the first selected character in the item. If the selection isn’t in this item then this form
is illegal.

sel.last Refers to the last selected character in the item. If the selection isn’t in this item then this form

Tk Last change: 4.0 3

Tk Built-In Commands canvas (n)

is illegal.

@x,y Refers to the character at the point given byx andy, wherex andy are specified in the coordi-
nate system of the canvas. Ifx andy lie outside the coordinates covered by the text item, then
they refer to the first or last character in the line that is closest to the given point.

WIDGET COMMAND
Thecanvascommand creates a new Tcl command whose name ispathName. This command may be used
to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?
Option and theargs determine the exact behavior of the command. The following widget commands are
possible for canvas widgets:

pathNameaddtag tag searchSpec?arg arg ...?
For each item that meets the constraints specified bysearchSpecand theargs, addtag to the list of
tags associated with the item if it isn’t already present on that list. It is possible that no items will
satisfy the constraints given bysearchSpecandargs, in which case the command has no effect.
This command returns an empty string as result.SearchSpecandarg’s may take any of the fol-
lowing forms:

abovetagOrId
Selects the item just after (above) the one given bytagOrId in the display list. IftagOrId
denotes more than one item, then the last (topmost) of these items in the display list is
used.

all Selects all the items in the canvas.

below tagOrId
Selects the item just before (below) the one given bytagOrId in the display list. If
tagOrId denotes more than one item, then the first (lowest) of these items in the display
list is used.

closestx y?halo? ?start?
Selects the item closest to the point given byx andy. If more than one item is at the same
closest distance (e.g. two items overlap the point), then the top-most of these items (the
last one in the display list) is used. Ifhalo is specified, then it must be a non-negative
value. Any item closer thanhalo to the point is considered to overlap it. Thestart argu-
ment may be used to step circularly through all the closest items. Ifstart is specified, it
names an item using a tag or id (if by tag, it selects the first item in the display list with
the given tag). Instead of selecting the topmost closest item, this form will select the top-
most closest item that is belowstart in the display list; if no such item exists, then the
selection behaves as if thestart argument had not been specified.

enclosedx1 y1 x2 y2
Selects all the items completely enclosed within the rectangular region given byx1, y1,
x2, andy2. X1must be no greater thenx2andy1must be no greater thany2.

overlapping x1 y1 x2 y2
Selects all the items that overlap or are enclosed within the rectangular region given by
x1, y1, x2, andy2. X1must be no greater thenx2andy1must be no greater thany2.

withtag tagOrId
Selects all the items given bytagOrId.

pathNamebbox tagOrId?tagOrId tagOrId ...?
Returns a list with four elements giving an approximate bounding box for all the items named by
the tagOrId arguments. The list has the form ‘‘x1 y1 x2 y2’’ such that the drawn areas of all the

Tk Last change: 4.0 4

Tk Built-In Commands canvas (n)

named elements are within the region bounded byx1 on the left,x2 on the right,y1 on the top, and
y2 on the bottom. The return value may overestimate the actual bounding box by a few pixels. If
no items match any of thetagOrId arguments or if the matching items have empty bounding boxes
(i.e. they hav e nothing to display) then an empty string is returned.

pathNamebind tagOrId?sequence? ?command?
This command associatescommandwith all the items given bytagOrId such that whenever the
ev ent sequence given bysequenceoccurs for one of the items the command will be invoked. This
widget command is similar to thebind command except that it operates on items in a canvas
rather than entire widgets. See thebind manual entry for complete details on the syntax of
sequenceand the substitutions performed oncommandbefore invoking it. If all arguments are
specified then a new binding is created, replacing any existing binding for the samesequenceand
tagOrId (if the first character ofcommandis ‘‘+’’ then commandaugments an existing binding
rather than replacing it). In this case the return value is an empty string. Ifcommandis omitted
then the command returns thecommandassociated withtagOrId andsequence(an error occurs if
there is no such binding). If bothcommandandsequenceare omitted then the command returns a
list of all the sequences for which bindings have been defined fortagOrId.

The only events for which bindings may be specified are those related to the mouse and keyboard
(such asEnter, Leave, ButtonPress, Motion , andKeyPress) or virtual events. The handling of
ev ents in canvases uses the current item defined in ITEM IDS AND TAGS above.Enter and
Leaveev ents trigger for an item when it becomes the current item or ceases to be the current item;
note that these events are different thanEnter and Leave ev ents for windows. Mouse-related
ev ents are directed to the current item, if any. Keyboard-related events are directed to the focus
item, if any (see thefocuswidget command below for more on this). If a virtual event is used in a
binding, that binding can trigger only if the virtual event is defined by an underlying mouse-related
or keyboard-related event.

It is possible for multiple bindings to match a particular event. This could occur, for example, if
one binding is associated with the item’s id and another is associated with one of the item’s tags.
When this occurs, all of the matching bindings are invoked. A binding associated with theall tag
is invoked first, followed by one binding for each of the item’s tags (in order), followed by a bind-
ing associated with the item’s id. If there are multiple matching bindings for a single tag, then
only the most specific binding is invoked. Acontinue command in a binding script terminates
that script, and abreak command terminates that script and skips any remaining scripts for the
ev ent, just as for thebind command.

If bindings have been created for a canvas window using thebind command, then they are invoked
in addition to bindings created for the canvas’s items using thebind widget command. The bind-
ings for items will be invoked before any of the bindings for the window as a whole.

pathNamecanvasxscreenx?gridspacing?
Given a window x-coordinate in the canvasscreenx, this command returns the canvas x-coordinate
that is displayed at that location. Ifgridspacingis specified, then the canvas coordinate is rounded
to the nearest multiple ofgridspacingunits.

pathNamecanvasyscreeny?gridspacing?
Given a window y-coordinate in the canvasscreenythis command returns the canvas y-coordinate
that is displayed at that location. Ifgridspacingis specified, then the canvas coordinate is rounded
to the nearest multiple ofgridspacingunits.

pathNamecgetoption
Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thecanvascommand.

pathNameconfigure ?option? ?value? ?option value ...?

Tk Last change: 4.0 5

Tk Built-In Commands canvas (n)

Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thecanvascommand.

pathNamecoordstagOrId?x0 y0 ...?
Query or modify the coordinates that define an item. If no coordinates are specified, this com-
mand returns a list whose elements are the coordinates of the item named bytagOrId. If coordi-
nates are specified, then they replace the current coordinates for the named item. IftagOrId refers
to multiple items, then the first one in the display list is used.

pathNamecreatetype x y?x y ...? ?option value ...?
Create a new item inpathNameof type type. The exact format of the arguments aftertype
depends ontype, but usually they consist of the coordinates for one or more points, followed by
specifications for zero or more item options. See the subsections on individual item types below
for more on the syntax of this command. This command returns the id for the new item.

pathNamedchars tagOrId first?last?
For each item given bytagOrId, delete the characters in the range given byfirst andlast, inclusive.
If some of the items given bytagOrId don’t support text operations, then they are ignored.First
and last are indices of characters within the item(s) as described in INDICES above. Iflast is
omitted, it defaults tofirst. This command returns an empty string.

pathNamedelete?tagOrId tagOrId ...?
Delete each of the items given by eachtagOrId, and return an empty string.

pathNamedtag tagOrId?tagToDelete?
For each of the items given bytagOrId, delete the tag given bytagToDeletefrom the list of those
associated with the item. If an item doesn’t hav e the tagtagToDeletethen the item is unaffected
by the command. IftagToDeleteis omitted then it defaults totagOrId. This command returns an
empty string.

pathNamefind searchCommand?arg arg ...?
This command returns a list consisting of all the items that meet the constraints specified by
searchCommandand arg’s. SearchCommandand args have any of the forms accepted by the
addtagcommand. The items are returned in stacking order, with the lowest item first.

pathNamefocus?tagOrId?
Set the keyboard focus for the canvas widget to the item given bytagOrId. If tagOrId refers to
several items, then the focus is set to the first such item in the display list that supports the inser-
tion cursor. IftagOrId doesn’t refer to any items, or if none of them support the insertion cursor,
then the focus isn’t changed. IftagOrId is an empty string, then the focus item is reset so that no
item has the focus. IftagOrId is not specified then the command returns the id for the item that
currently has the focus, or an empty string if no item has the focus.

Once the focus has been set to an item, the item will display the insertion cursor and all keyboard
ev ents will be directed to that item. The focus item within a canvas and the focus window on the
screen (set with thefocus command) are totally independent: a given item doesn’t actually have
the input focus unless (a) its canvas is the focus window and (b) the item is the focus item within
the canvas. In most cases it is advisable to follow thefocuswidget command with thefocuscom-
mand to set the focus window to the canvas (if it wasn’t there already).

pathNamegettagstagOrId
Return a list whose elements are the tags associated with the item given bytagOrId. If tagOrId

Tk Last change: 4.0 6

Tk Built-In Commands canvas (n)

refers to more than one item, then the tags are returned from the first such item in the display list.
If tagOrId doesn’t refer to any items, or if the item contains no tags, then an empty string is
returned.

pathNameicursor tagOrId index
Set the position of the insertion cursor for the item(s) given bytagOrId to just before the character
whose position is given byindex. If some or all of the items given bytagOrId don’t support an
insertion cursor then this command has no effect on them. See INDICES above for a description
of the legal forms forindex. Note: the insertion cursor is only displayed in an item if that item
currently has the keyboard focus (see the widget commandfocus, below), but the cursor position
may be set even when the item doesn’t hav e the focus. This command returns an empty string.

pathNameindex tagOrId index
This command returns a decimal string giving the numerical index withintagOrId corresponding
to index. Indexgives a textual description of the desired position as described in INDICES above.
The return value is guaranteed to lie between 0 and the number of characters within the item,
inclusive. If tagOrId refers to multiple items, then the index is processed in the first of these items
that supports indexing operations (in display list order).

pathNameinsert tagOrId beforeThis string
For each of the items given bytagOrId, if the item supports text insertion thenstring is inserted
into the item’s text just before the character whose index isbeforeThis. See INDICES above for
information about the forms allowed forbeforeThis. This command returns an empty string.

pathNameitemcgettagOrId option
Returns the current value of the configuration option for the item given bytagOrId whose name is
option. This command is similar to thecgetwidget command except that it applies to a particular
item rather than the widget as a whole.Optionmay have any of the values accepted by thecreate
widget command when the item was created. IftagOrId is a tag that refers to more than one item,
the first (lowest) such item is used.

pathNameitemconfigure tagOrId?option? ?value? ?option value ...?
This command is similar to theconfigure widget command except that it modifies item-specific
options for the items given bytagOrId instead of modifying options for the overall canvas widget.
If no option is specified, returns a list describing all of the available options for the first item given
by tagOrId (seeTk_ConfigureInfo for information on the format of this list). Ifoption is speci-
fied with novalue, then the command returns a list describing the one named option (this list will
be identical to the corresponding sublist of the value returned if nooption is specified). If one or
moreoption−valuepairs are specified, then the command modifies the given widget option(s) to
have the given value(s) in each of the items given bytagOrId; in this case the command returns an
empty string. Theoptions andvalues are the same as those permissible in thecreatewidget com-
mand when the item(s) were created; see the sections describing individual item types below for
details on the legal options.

pathNamelower tagOrId?belowThis?
Move all of the items given bytagOrId to a new position in the display list just before the item
given bybelowThis. If tagOrId refers to more than one item then all are moved but the relative
order of the moved items will not be changed.BelowThisis a tag or id; if it refers to more than
one item then the first (lowest) of these items in the display list is used as the destination location
for the moved items. Note: this command has no effect on window items. Window items always
obscure other item types, and the stacking order of window items is determined by theraise and
lower commands, not theraise andlower widget commands for canvases. This command returns
an empty string.

pathNamemovetagOrId xAmount yAmount
Move each of the items given bytagOrId in the canvas coordinate space by addingxAmountto the

Tk Last change: 4.0 7

Tk Built-In Commands canvas (n)

x-coordinate of each point associated with the item andyAmountto the y-coordinate of each point
associated with the item. This command returns an empty string.

pathNamepostscript ?option value option value ...?
Generate a Postscript representation for part or all of the canvas. If the−file option is specified
then the Postscript is written to a file and an empty string is returned; otherwise the Postscript is
returned as the result of the command. If the interpreter that owns the canvas is marked as safe,
the operation will fail because safe interpreters are not allowed to write files. If the−channel
option is specified, the argument denotes the name of a channel already opened for writing. The
Postscript is written to that channel, and the channel is left open for further writing at the end of
the operation. The Postscript is created in Encapsulated Postscript form using version 3.0 of the
Document Structuring Conventions. Note: by default Postscript is only generated for information
that appears in the canvas’s window on the screen. If the canvas is freshly created it may still have
its initial size of 1x1 pixel so nothing will appear in the Postscript. To get around this problem
either invoke the "update" command to wait for the canvas window to reach its final size, or else
use the−width and−height options to specify the area of the canvas to print. Theoption−value
argument pairs provide additional information to control the generation of Postscript. The follow-
ing options are supported:

−colormap varName
VarNamemust be the name of an array variable that specifies a color mapping to use in
the Postscript. Each element ofvarNamemust consist of Postscript code to set a particu-
lar color value (e.g. ‘‘1.0 1.0 0.0 setrgbcolor’’). When outputting color information in
the Postscript, Tk checks to see if there is an element ofvarNamewith the same name as
the color. If so, Tk uses the value of the element as the Postscript command to set the
color. If this option hasn’t been specified, or if there isn’t an entry invarNamefor a given
color, then Tk uses the red, green, and blue intensities from the X color.

−colormodemode
Specifies how to output color information.Modemust be eithercolor (for full color out-
put), gray (convert all colors to their gray-scale equivalents) ormono (convert all colors
to black or white).

−file fileName
Specifies the name of the file in which to write the Postscript. If this option isn’t speci-
fied then the Postscript is returned as the result of the command instead of being written
to a file.

−fontmap varName
VarNamemust be the name of an array variable that specifies a font mapping to use in the
Postscript. Each element ofvarNamemust consist of a Tcl list with two elements, which
are the name and point size of a Postscript font. When outputting Postscript commands
for a particular font, Tk checks to see ifvarNamecontains an element with the same
name as the font. If there is such an element, then the font information contained in that
element is used in the Postscript. Otherwise Tk attempts to guess what Postscript font to
use. Tk’s guesses generally only work for well-known fonts such as Times and Helvetica
and Courier, and only if the X font name does not omit any dashes up through the point
size. For example, −∗−Courier−Bold−R−Normal−−∗−120−∗ will work but
∗Courier−Bold−R−Normal∗120∗ will not; Tk needs the dashes to parse the font name).

−height size
Specifies the height of the area of the canvas to print. Defaults to the height of the canvas
window.

−pageanchoranchor
Specifies which point of the printed area of the canvas should appear over the positioning

Tk Last change: 4.0 8

Tk Built-In Commands canvas (n)

point on the page (which is given by the−pagex and −pagey options). For example,
−pageanchor nmeans that the top center of the area of the canvas being printed (as it
appears in the canvas window) should be over the positioning point. Defaults tocenter.

−pageheightsize
Specifies that the Postscript should be scaled in both x and y so that the printed area is
sizehigh on the Postscript page.Sizeconsists of a floating-point number followed byc
for centimeters,i for inches,m for millimeters, orp or nothing for printer’s points (1/72
inch). Defaults to the height of the printed area on the screen. If both−pageheightand
−pagewidth are specified then the scale factor from−pagewidth is used (non-uniform
scaling is not implemented).

−pagewidthsize
Specifies that the Postscript should be scaled in both x and y so that the printed area is
sizewide on the Postscript page.Sizehas the same form as for−pageheight. Defaults to
the width of the printed area on the screen. If both−pageheightand −pagewidth are
specified then the scale factor from−pagewidth is used (non-uniform scaling is not
implemented).

−pagexposition
Positiongives the x-coordinate of the positioning point on the Postscript page, using any
of the forms allowed for−pageheight. Used in conjunction with the−pagey and
−pageanchoroptions to determine where the printed area appears on the Postscript page.
Defaults to the center of the page.

−pageyposition
Positiongives the y-coordinate of the positioning point on the Postscript page, using any
of the forms allowed for−pageheight. Used in conjunction with the−pagex and
−pageanchoroptions to determine where the printed area appears on the Postscript page.
Defaults to the center of the page.

−rotate boolean
Booleanspecifies whether the printed area is to be rotated 90 degrees. In non-rotated out-
put the x-axis of the printed area runs along the short dimension of the page (‘‘portrait’’
orientation); in rotated output the x-axis runs along the long dimension of the page
(‘‘landscape’’ orientation). Defaults to non-rotated.

−width size
Specifies the width of the area of the canvas to print. Defaults to the width of the canvas
window.

−x position
Specifies the x-coordinate of the left edge of the area of the canvas that is to be printed, in
canvas coordinates, not window coordinates. Defaults to the coordinate of the left edge
of the window.

−y position
Specifies the y-coordinate of the top edge of the area of the canvas that is to be printed, in
canvas coordinates, not window coordinates. Defaults to the coordinate of the top edge
of the window.

pathNameraise tagOrId?aboveThis?
Move all of the items given bytagOrId to a new position in the display list just after the item given
by aboveThis. If tagOrId refers to more than one item then all are moved but the relative order of
the moved items will not be changed.AboveThisis a tag or id; if it refers to more than one item
then the last (topmost) of these items in the display list is used as the destination location for the
moved items. Note: this command has no effect on window items. Window items always obscure

Tk Last change: 4.0 9

Tk Built-In Commands canvas (n)

other item types, and the stacking order of window items is determined by theraise and lower
commands, not theraise and lower widget commands for canvases. This command returns an
empty string.

pathNamescaletagOrId xOrigin yOrigin xScale yScale
Rescale all of the items given bytagOrId in canvas coordinate space.XOrigin andyOrigin iden-
tify the origin for the scaling operation andxScaleandyScaleidentify the scale factors for x- and
y-coordinates, respectively (a scale factor of 1.0 implies no change to that coordinate). For each of
the points defining each item, the x-coordinate is adjusted to change the distance fromxOrigin by
a factor ofxScale. Similarly, each y-coordinate is adjusted to change the distance fromyOrigin by
a factor ofyScale. This command returns an empty string.

pathNamescanoption args
This command is used to implement scanning on canvases. It has two forms, depending onoption:

pathNamescan markx y
Recordsx and y and the canvas’s current view; used in conjunction with laterscan
dragto commands. Typically this command is associated with a mouse button press in
the widget andx andy are the coordinates of the mouse. It returns an empty string.

pathNamescan dragtox y.
This command computes the difference between itsx andy arguments (which are typi-
cally mouse coordinates) and thex andy arguments to the lastscan mark command for
the widget. It then adjusts the view by 10 times the difference in coordinates. This com-
mand is typically associated with mouse motion events in the widget, to produce the
effect of dragging the canvas at high speed through its window. The return value is an
empty string.

pathNameselectoption?tagOrId arg?
Manipulates the selection in one of several ways, depending onoption. The command may take
any of the forms described below. In all of the descriptions below,tagOrId must refer to an item
that supports indexing and selection; if it refers to multiple items then the first of these that sup-
ports indexing and the selection is used.Index gives a textual description of a position within
tagOrId, as described in INDICES above.

pathNameselect adjusttagOrId index
Locate the end of the selection intagOrId nearest to the character given byindex, and
adjust that end of the selection to be atindex(i.e. including but not going beyondindex).
The other end of the selection is made the anchor point for futureselect tocommands. If
the selection isn’t currently intagOrId then this command behaves the same as theselect
to widget command. Returns an empty string.

pathNameselect clear
Clear the selection if it is in this widget. If the selection isn’t in this widget then the com-
mand has no effect. Returns an empty string.

pathNameselect fromtagOrId index
Set the selection anchor point for the widget to be just before the character given byindex
in the item given bytagOrId. This command doesn’t change the selection; it just sets the
fixed end of the selection for futureselect tocommands. Returns an empty string.

pathNameselect item
Returns the id of the selected item, if the selection is in an item in this canvas. If the
selection is not in this canvas then an empty string is returned.

pathNameselect totagOrId index
Set the selection to consist of those characters oftagOrId between the selection anchor
point andindex. The new selection will include the character given byindex; it will

Tk Last change: 4.0 10

Tk Built-In Commands canvas (n)

include the character given by the anchor point only ifindexis greater than or equal to the
anchor point. The anchor point is determined by the most recentselect adjustor select
from command for this widget. If the selection anchor point for the widget isn’t cur-
rently in tagOrId, then it is set to the same character given byindex. Returns an empty
string.

pathNametype tagOrId
Returns the type of the item given bytagOrId, such asrectangleor text. If tagOrId refers to more
than one item, then the type of the first item in the display list is returned. IftagOrId doesn’t refer
to any items at all then an empty string is returned.

pathNamexview ?args?
This command is used to query and change the horizontal position of the information displayed in
the canvas’s window. It can take any of the following forms:

pathNamexview
Returns a list containing two elements. Each element is a real fraction between 0 and 1;
together they describe the horizontal span that is visible in the window. For example, if
the first element is .2 and the second element is .6, 20% of the canvas’s area (as defined
by the−scrollregion option) is off-screen to the left, the middle 40% is visible in the win-
dow, and 40% of the canvas is off-screen to the right. These are the same values passed
to scrollbars via the−xscrollcommandoption.

pathNamexview movetofraction
Adjusts the view in the window so thatfraction of the total width of the canvas is off-
screen to the left.Fr actionmust be a fraction between 0 and 1.

pathNamexview scroll number what
This command shifts the view in the window left or right according tonumberandwhat.
Numbermust be an integer.Whatmust be eitherunits or pagesor an abbreviation of one
of these. Ifwhat is units, the view adjusts left or right in units of thexScrollIncrement
option, if it is greater than zero, or in units of one-tenth the window’s width otherwise. If
what ispagesthen the view adjusts in units of nine-tenths the window’s width. Ifnumber
is negative then information farther to the left becomes visible; if it is positive then infor-
mation farther to the right becomes visible.

pathNameyview ?args?
This command is used to query and change the vertical position of the information displayed in the
canvas’s window. It can take any of the following forms:

pathNameyview
Returns a list containing two elements. Each element is a real fraction between 0 and 1;
together they describe the vertical span that is visible in the window. For example, if the
first element is .6 and the second element is 1.0, the lowest 40% of the canvas’s area (as
defined by the−scrollregion option) is visible in the window. These are the same values
passed to scrollbars via the−yscrollcommandoption.

pathNameyview movetofraction
Adjusts the view in the window so thatfraction of the canvas’s area is off-screen to the
top. Fr action is a fraction between 0 and 1.

pathNameyview scroll number what
This command adjusts the view in the window up or down according tonumberand
what. Numbermust be an integer.Whatmust be eitherunits or pages. If what is units,
the view adjusts up or down in units of theyScrollIncrement option, if it is greater than
zero, or in units of one-tenth the window’s height otherwise. Ifwhat is pagesthen the
view adjusts in units of nine-tenths the window’s height. Ifnumber is negative then

Tk Last change: 4.0 11

Tk Built-In Commands canvas (n)

higher information becomes visible; if it is positive then lower information becomes visi-
ble.

OVERVIEW OF ITEM TYPES
The sections below describe the various types of items supported by canvas widgets. Each item type is
characterized by two things: first, the form of thecreatecommand used to create instances of the type; and
second, a set of configuration options for items of that type, which may be used in thecreateanditemcon-
figure widget commands. Most items don’t support indexing or selection or the commands related to them,
such asindex and insert. Where items do support these facilities, it is noted explicitly in the descriptions
below (at present, only text items provide this support).

ARC ITEMS
Items of typearc appear on the display as arc-shaped regions. An arc is a section of an oval delimited by
two angles (specified by the−start and−extentoptions) and displayed in one of several ways (specified by
the−styleoption). Arcs are created with widget commands of the following form:

pathNamecreate arcx1 y1 x2 y2?option value option value ...?
The argumentsx1, y1, x2, andy2 give the coordinates of two diagonally opposite corners of a rectangular
region enclosing the oval that defines the arc. After the coordinates there may be any number of
option−value pairs, each of which sets one of the configuration options for the item. These same
option−value pairs may be used initemconfigure widget commands to change the item’s configuration.
The following options are supported for arcs:

−extentdegrees
Specifies the size of the angular range occupied by the arc. The arc’s range extends fordegrees
degrees counter-clockwise from the starting angle given by the−start option. Degreesmay be
negative. If it is greater than 360 or less than -360, thendegreesmodulo 360 is used as the extent.

−fill color
Fill the region of the arc withcolor. Color may have any of the forms accepted byTk_GetColor.
If color is an empty string (the default), then then the arc will not be filled.

−outline color
Color specifies a color to use for drawing the arc’s outline; it may have any of the forms accepted
by Tk_GetColor. This option defaults toblack. If color is specified as an empty string then no
outline is drawn for the arc.

−outlinestipple bitmap
Indicates that the outline for the arc should be drawn with a stipple pattern;bitmapspecifies the
stipple pattern to use, in any of the forms accepted byTk_GetBitmap. If the −outline option
hasn’t been specified then this option has no effect. Ifbitmapis an empty string (the default), then
the outline is drawn in a solid fashion.

−start degrees
Specifies the beginning of the angular range occupied by the arc.Degreesis given in units of
degrees measured counter-clockwise from the 3-o’clock position; it may be either positive or neg-
ative.

−stipple bitmap
Indicates that the arc should be filled in a stipple pattern;bitmapspecifies the stipple pattern to
use, in any of the forms accepted byTk_GetBitmap. If the −fill option hasn’t been specified then
this option has no effect. Ifbitmap is an empty string (the default), then filling is done in a solid
fashion.

−style type
Specifies how to draw the arc. Iftypeis pieslice(the default) then the arc’s region is defined by a

Tk Last change: 4.0 12

Tk Built-In Commands canvas (n)

section of the oval’s perimeter plus two line segments, one between the center of the oval and each
end of the perimeter section. Iftype is chord then the arc’s region is defined by a section of the
oval’s perimeter plus a single line segment connecting the two end points of the perimeter section.
If typeis arc then the arc’s region consists of a section of the perimeter alone. In this last case the
−fill option is ignored.

−tagstagList
Specifies a set of tags to apply to the item.Ta gListconsists of a list of tag names, which replace
any existing tags for the item.Ta gListmay be an empty list.

−width outlineWidth
Specifies the width of the outline to be drawn around the arc’s region, in any of the forms
described in the COORDINATES section above. If the−outline option has been specified as an
empty string then this option has no effect. Wide outlines will be drawn centered on the edges of
the arc’s region. This option defaults to 1.0.

BITMAP ITEMS
Items of typebitmap appear on the display as images with two colors, foreground and background.
Bitmaps are created with widget commands of the following form:

pathNamecreate bitmapx y?option value option value ...?
The argumentsx andy specify the coordinates of a point used to position the bitmap on the display (see the
−anchor option below for more information on how bitmaps are displayed). After the coordinates there
may be any number ofoption−valuepairs, each of which sets one of the configuration options for the item.
These sameoption−valuepairs may be used initemconfigure widget commands to change the item’s con-
figuration. The following options are supported for bitmaps:

−anchor anchorPos
AnchorPostells how to position the bitmap relative to the positioning point for the item; it may
have any of the forms accepted byTk_GetAnchor. For example, ifanchorPosis center then the
bitmap is centered on the point; ifanchorPosis n then the bitmap will be drawn so that its top
center point is at the positioning point. This option defaults tocenter.

−background color
Specifies a color to use for each of the bitmap pixels whose value is 0.Color may have any of the
forms accepted byTk_GetColor. If this option isn’t specified, or if it is specified as an empty
string, then nothing is displayed where the bitmap pixels are 0; this produces a transparent effect.

−bitmap bitmap
Specifies the bitmap to display in the item.Bitmap may have any of the forms accepted by
Tk_GetBitmap.

−foreground color
Specifies a color to use for each of the bitmap pixels whose value is 1.Color may have any of the
forms accepted byTk_GetColor and defaults toblack.

−tagstagList
Specifies a set of tags to apply to the item.Ta gListconsists of a list of tag names, which replace
any existing tags for the item.Ta gListmay be an empty list.

IMAGE ITEMS
Items of typeimageare used to display images on a canvas. Images are created with widget commands of
the following form:

pathNamecreate imagex y?option value option value ...?
The argumentsx andy specify the coordinates of a point used to position the image on the display (see the
−anchor option below for more information). After the coordinates there may be any number of

Tk Last change: 4.0 13

Tk Built-In Commands canvas (n)

option−value pairs, each of which sets one of the configuration options for the item. These same
option−value pairs may be used initemconfigure widget commands to change the item’s configuration.
The following options are supported for images:

−anchor anchorPos
AnchorPostells how to position the image relative to the positioning point for the item; it may
have any of the forms accepted byTk_GetAnchor. For example, ifanchorPosis center then the
image is centered on the point; ifanchorPosis n then the image will be drawn so that its top cen-
ter point is at the positioning point. This option defaults tocenter.

−imagename
Specifies the name of the image to display in the item. This image must have been created previ-
ously with theimage createcommand.

−tagstagList
Specifies a set of tags to apply to the item.Ta gListconsists of a list of tag names, which replace
any existing tags for the item; it may be an empty list.

LINE ITEMS
Items of typeline appear on the display as one or more connected line segments or curves. Lines are cre-
ated with widget commands of the following form:

pathNamecreate linex1 y1... xn yn?option value option value ...?
The argumentsx1 throughyn give the coordinates for a series of two or more points that describe a series of
connected line segments. After the coordinates there may be any number ofoption−valuepairs, each of
which sets one of the configuration options for the item. These sameoption−valuepairs may be used in
itemconfigure widget commands to change the item’s configuration. The following options are supported
for lines:

−arrow where
Indicates whether or not arrowheads are to be drawn at one or both ends of the line.Wheremust
have one of the valuesnone (for no arrowheads),first (for an arrowhead at the first point of the
line), last (for an arrowhead at the last point of the line), orboth (for arrowheads at both ends).
This option defaults tonone.

−arrowshapeshape
This option indicates how to draw arrowheads. Theshapeargument must be a list with three ele-
ments, each specifying a distance in any of the forms described in the COORDINATES section
above. The first element of the list gives the distance along the line from the neck of the arrow-
head to its tip. The second element gives the distance along the line from the trailing points of the
arrowhead to the tip, and the third element gives the distance from the outside edge of the line to
the trailing points. If this option isn’t specified then Tk picks a ‘‘reasonable’’ shape.

−capstylestyle
Specifies the ways in which caps are to be drawn at the endpoints of the line.Stylemay have any
of the forms accepted byTk_GetCapStyle(butt , projecting, or round). If this option isn’t speci-
fied then it defaults tobutt . Where arrowheads are drawn the cap style is ignored.

−fill color
Color specifies a color to use for drawing the line; it may have any of the forms acceptable to
Tk_GetColor. It may also be an empty string, in which case the line will be transparent. This
option defaults toblack.

−joinstyle style
Specifies the ways in which joints are to be drawn at the vertices of the line.Stylemay have any
of the forms accepted byTk_GetCapStyle (bevel, miter , or round). If this option isn’t specified
then it defaults tomiter . If the line only contains two points then this option is irrelevant.

Tk Last change: 4.0 14

Tk Built-In Commands canvas (n)

−smoothboolean
Booleanmust have one of the forms accepted byTk_GetBoolean. It indicates whether or not the
line should be drawn as a curve. If so, the line is rendered as a set of parabolic splines: one spline
is drawn for the first and second line segments, one for the second and third, and so on. Straight-
line segments can be generated within a curve by duplicating the end-points of the desired line
segment.

−splinestepsnumber
Specifies the degree of smoothness desired for curves: each spline will be approximated with
numberline segments. This option is ignored unless the−smoothoption is true.

−stipple bitmap
Indicates that the line should be filled in a stipple pattern;bitmapspecifies the stipple pattern to
use, in any of the forms accepted byTk_GetBitmap. If bitmap is an empty string (the default),
then filling is done in a solid fashion.

−tagstagList
Specifies a set of tags to apply to the item.Ta gListconsists of a list of tag names, which replace
any existing tags for the item.Ta gListmay be an empty list.

−width lineWidth
LineWidthspecifies the width of the line, in any of the forms described in the COORDINATES
section above. Wide lines will be drawn centered on the path specified by the points. If this
option isn’t specified then it defaults to 1.0.

OVAL ITEMS
Items of typeoval appear as circular or oval regions on the display. Each oval may have an outline, a fill, or
both. Ovals are created with widget commands of the following form:

pathNamecreate ovalx1 y1 x2 y2?option value option value ...?
The argumentsx1, y1, x2, andy2 give the coordinates of two diagonally opposite corners of a rectangular
region enclosing the oval. The oval will include the top and left edges of the rectangle not the lower or
right edges. If the region is square then the resulting oval is circular; otherwise it is elongated in shape.
After the coordinates there may be any number ofoption−valuepairs, each of which sets one of the config-
uration options for the item. These sameoption−valuepairs may be used initemconfigure widget com-
mands to change the item’s configuration. The following options are supported for ovals:

−fill color
Fill the area of the oval withcolor. Color may have any of the forms accepted byTk_GetColor.
If color is an empty string (the default), then then the oval will not be filled.

−outline color
Color specifies a color to use for drawing the oval’s outline; it may have any of the forms
accepted byTk_GetColor. This option defaults toblack. If color is an empty string then no out-
line will be drawn for the oval.

−stipple bitmap
Indicates that the oval should be filled in a stipple pattern;bitmapspecifies the stipple pattern to
use, in any of the forms accepted byTk_GetBitmap. If the −fill option hasn’t been specified then
this option has no effect. Ifbitmap is an empty string (the default), then filling is done in a solid
fashion.

−tagstagList
Specifies a set of tags to apply to the item.Ta gListconsists of a list of tag names, which replace
any existing tags for the item.Ta gListmay be an empty list.

−width outlineWidth
outlineWidthspecifies the width of the outline to be drawn around the oval, in any of the forms

Tk Last change: 4.0 15

Tk Built-In Commands canvas (n)

described in the COORDINATES section above. If the−outline option hasn’t been specified then
this option has no effect. Wide outlines are drawn centered on the oval path defined byx1, y1, x2,
andy2. This option defaults to 1.0.

POLYGON ITEMS
Items of typepolygon appear as polygonal or curved filled regions on the display. Polygons are created
with widget commands of the following form:

pathNamecreate polygonx1 y1 ... xn yn?option value option value ...?
The argumentsx1 throughyn specify the coordinates for three or more points that define a closed polygon.
The first and last points may be the same; whether they are or not, Tk will draw the polygon as a closed
polygon. After the coordinates there may be any number ofoption−valuepairs, each of which sets one of
the configuration options for the item. These sameoption−valuepairs may be used initemconfigure wid-
get commands to change the item’s configuration. The following options are supported for polygons:

−fill color
Color specifies a color to use for filling the area of the polygon; it may have any of the forms
acceptable toTk_GetColor. If color is an empty string then the polygon will be transparent. This
option defaults toblack.

−outline color
Color specifies a color to use for drawing the polygon’s outline; it may have any of the forms
accepted byTk_GetColor. If color is an empty string then no outline will be drawn for the poly-
gon. This option defaults to empty (no outline).

−smoothboolean
Booleanmust have one of the forms accepted byTk_GetBoolean It indicates whether or not the
polygon should be drawn with a curved perimeter. If so, the outline of the polygon becomes a set
of parabolic splines, one spline for the first and second line segments, one for the second and third,
and so on. Straight-line segments can be generated in a smoothed polygon by duplicating the end-
points of the desired line segment.

−splinestepsnumber
Specifies the degree of smoothness desired for curves: each spline will be approximated with
numberline segments. This option is ignored unless the−smoothoption is true.

−stipple bitmap
Indicates that the polygon should be filled in a stipple pattern;bitmapspecifies the stipple pattern
to use, in any of the forms accepted byTk_GetBitmap. If bitmapis an empty string (the default),
then filling is done in a solid fashion.

−tagstagList
Specifies a set of tags to apply to the item.Ta gListconsists of a list of tag names, which replace
any existing tags for the item.Ta gListmay be an empty list.

−width outlineWidth
OutlineWidthspecifies the width of the outline to be drawn around the polygon, in any of the
forms described in the COORDINATES section above. If the−outline option hasn’t been speci-
fied then this option has no effect. This option defaults to 1.0.

Polygon items are different from other items such as rectangles, ovals and arcs in that interior points are
considered to be ‘‘inside’’ a polygon (e.g. for purposes of thefind closestand find overlapping widget
commands) even if it is not filled. For most other item types, an interior point is considered to be inside the
item only if the item is filled or if it has neither a fill nor an outline. If you would like an unfilled polygon
whose interior points are not considered to be inside the polygon, use a line item instead.

Tk Last change: 4.0 16

Tk Built-In Commands canvas (n)

RECTANGLE ITEMS
Items of typerectangleappear as rectangular regions on the display. Each rectangle may have an outline, a
fill, or both. Rectangles are created with widget commands of the following form:

pathNamecreate rectanglex1 y1 x2 y2?option value option value ...?
The argumentsx1, y1, x2, andy2 give the coordinates of two diagonally opposite corners of the rectangle
(the rectangle will include its upper and left edges but not its lower or right edges). After the coordinates
there may be any number ofoption−valuepairs, each of which sets one of the configuration options for the
item. These sameoption−valuepairs may be used initemconfigurewidget commands to change the item’s
configuration. The following options are supported for rectangles:

−fill color
Fill the area of the rectangle withcolor, which may be specified in any of the forms accepted by
Tk_GetColor. If color is an empty string (the default), then the rectangle will not be filled.

−outline color
Draw an outline around the edge of the rectangle incolor. Color may have any of the forms
accepted byTk_GetColor. This option defaults toblack. If color is an empty string then no out-
line will be drawn for the rectangle.

−stipple bitmap
Indicates that the rectangle should be filled in a stipple pattern;bitmapspecifies the stipple pattern
to use, in any of the forms accepted byTk_GetBitmap. If the −fill option hasn’t been specified
then this option has no effect. Ifbitmap is an empty string (the default), then filling is done in a
solid fashion.

−tagstagList
Specifies a set of tags to apply to the item.Ta gListconsists of a list of tag names, which replace
any existing tags for the item.Ta gListmay be an empty list.

−width outlineWidth
OutlineWidthspecifies the width of the outline to be drawn around the rectangle, in any of the
forms described in the COORDINATES section above. If the−outline option hasn’t been speci-
fied then this option has no effect. Wide outlines are drawn centered on the rectangular path
defined byx1, y1, x2, andy2. This option defaults to 1.0.

TEXT ITEMS
A text item displays a string of characters on the screen in one or more lines. Te xt items support indexing
and selection, along with the following text-related canvas widget commands:dchars, focus, icursor,
index, insert, select. Text items are created with widget commands of the following form:

pathNamecreate textx y?option value option value ...?
The argumentsx andy specify the coordinates of a point used to position the text on the display (see the
options below for more information on how text is displayed). After the coordinates there may be any
number ofoption−valuepairs, each of which sets one of the configuration options for the item. These same
option−value pairs may be used initemconfigure widget commands to change the item’s configuration.
The following options are supported for text items:

−anchor anchorPos
AnchorPostells how to position the text relative to the positioning point for the text; it may have
any of the forms accepted byTk_GetAnchor. For example, ifanchorPosis center then the text is
centered on the point; ifanchorPosis n then the text will be drawn such that the top center point
of the rectangular region occupied by the text will be at the positioning point. This option defaults
to center.

−fill color
Color specifies a color to use for filling the text characters; it may have any of the forms accepted

Tk Last change: 4.0 17

Tk Built-In Commands canvas (n)

by Tk_GetColor. If this option isn’t specified then it defaults toblack.

−font fontName
Specifies the font to use for the text item.FontNamemay be any string acceptable toTk_Get-
FontStruct. If this option isn’t specified, it defaults to a system-dependent font.

−justify how
Specifies how to justify the text within its bounding region.How must be one of the valuesleft,
right , or center. This option will only matter if the text is displayed as multiple lines. If the
option is omitted, it defaults toleft.

−stipple bitmap
Indicates that the text should be drawn in a stippled pattern rather than solid;bitmapspecifies the
stipple pattern to use, in any of the forms accepted byTk_GetBitmap. If bitmap is an empty
string (the default) then the text is drawn in a solid fashion.

−tagstagList
Specifies a set of tags to apply to the item.Ta gListconsists of a list of tag names, which replace
any existing tags for the item.Ta gListmay be an empty list.

−text string
String specifies the characters to be displayed in the text item. Newline characters cause line
breaks. The characters in the item may also be changed with theinsert anddeletewidget com-
mands. This option defaults to an empty string.

−width lineLength
Specifies a maximum line length for the text, in any of the forms described in the COORDINATES
section above. If this option is zero (the default) the text is broken into lines only at newline char-
acters. However, if this option is non-zero then any line that would be longer thanlineLengthis
broken just before a space character to make the line shorter thanlineLength; the space character
is treated as if it were a newline character.

WINDOW ITEMS
Items of typewindow cause a particular window to be displayed at a given position on the canvas. Window
items are created with widget commands of the following form:

pathNamecreate windowx y?option value option value ...?
The argumentsx andy specify the coordinates of a point used to position the window on the display (see
the−anchor option below for more information on how bitmaps are displayed). After the coordinates there
may be any number ofoption−valuepairs, each of which sets one of the configuration options for the item.
These sameoption−valuepairs may be used initemconfigure widget commands to change the item’s con-
figuration. The following options are supported for window items:

−anchor anchorPos
AnchorPostells how to position the window relative to the positioning point for the item; it may
have any of the forms accepted byTk_GetAnchor. For example, ifanchorPosis center then the
window is centered on the point; ifanchorPosis n then the window will be drawn so that its top
center point is at the positioning point. This option defaults tocenter.

−height pixels
Specifies the height to assign to the item’s window.Pixelsmay have any of the forms described in
the COORDINATES section above. If this option isn’t specified, or if it is specified as an empty
string, then the window is giv en whatever height it requests internally.

−tagstagList
Specifies a set of tags to apply to the item.Ta gListconsists of a list of tag names, which replace
any existing tags for the item.Ta gListmay be an empty list.

Tk Last change: 4.0 18

Tk Built-In Commands canvas (n)

−width pixels
Specifies the width to assign to the item’s window.Pixelsmay have any of the forms described in
the COORDINATES section above. If this option isn’t specified, or if it is specified as an empty
string, then the window is giv en whatever width it requests internally.

−window pathName
Specifies the window to associate with this item. The window specified bypathNamemust either
be a child of the canvas widget or a child of some ancestor of the canvas widget.PathNamemay
not refer to a top-level window.

Note: due to restrictions in the ways that windows are managed, it is not possible to draw other graphical
items (such as lines and images) on top of window items. A window item always obscures any graphics
that overlap it, regardless of their order in the display list.

APPLICATION-DEFINED ITEM TYPES
It is possible for individual applications to define new item types for canvas widgets using C code. See the
documentation forTk_CreateItemType.

BINDINGS
In the current implementation, new canvases are not given any default behavior: you’ll have to execute
explicit Tcl commands to give the canvas its behavior.

CREDITS
Tk’s canvas widget is a blatant ripoff of ideas from Joel Bartlett’sezdprogram. Ezdprovides structured
graphics in a Scheme environment and preceded canvases by a year or two. Its simple mechanisms for
placing and animating graphical objects inspired the functions of canvases.

KEYWORDS
canvas, widget

Tk Last change: 4.0 19

Tk Built-In Commands checkbutton (n)

NAME
checkbutton − Create and manipulate checkbutton widgets

SYNOPSIS
checkbuttonpathName?options?

STANDARD OPTIONS
−activebackground −cursor −highlightthickness −takefocus
−activeforeground −disabledforeground −image −text
−anchor −font −justify −textvariable
−background −foreground −padx −underline
−bitmap −highlightbackground −pady −wraplength
−borderwidth −highlightcolor −relief

See theoptionsmanual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Command-Line Name: −command
Database Name: command
Database Class: Command

Specifies a Tcl command to associate with the button. This command is typically invoked when
mouse button 1 is released over the button window. The button’s global variable (−variable
option) will be updated before the command is invoked.

Command-Line Name: −height
Database Name: height
Database Class: Height

Specifies a desired height for the button. If an image or bitmap is being displayed in the button
then the value is in screen units (i.e. any of the forms acceptable toTk_GetPixels); for text it is in
lines of text. If this option isn’t specified, the button’s desired height is computed from the size of
the image or bitmap or text being displayed in it.

Command-Line Name: −indicatoron
Database Name: indicatorOn
Database Class: IndicatorOn

Specifies whether or not the indicator should be drawn. Must be a proper boolean value. If false,
the relief option is ignored and the widget’s relief is always sunken if the widget is selected and
raised otherwise.

Command-Line Name: −offvalue
Database Name: offValue
Database Class: Value

Specifies value to store in the button’s associated variable whenever this button is deselected.
Defaults to ‘‘0’’.

Command-Line Name: −onvalue
Database Name: onValue
Database Class: Value

Specifies value to store in the button’s associated variable whenever this button is selected.
Defaults to ‘‘1’’.

Command-Line Name: −selectcolor
Database Name: selectColor
Database Class: Background

Specifies a background color to use when the button is selected. IfindicatorOn is true then the

Tk Last change: 4.4 1

Tk Built-In Commands checkbutton (n)

color applies to the indicator. Under Windows, this color is used as the background for the indica-
tor regardless of the select state. IfindicatorOn is false, this color is used as the background for
the entire widget, in place ofbackground or activeBackground, whenever the widget is selected.
If specified as an empty string then no special color is used for displaying when the widget is
selected.

Command-Line Name: −selectimage
Database Name: selectImage
Database Class: SelectImage

Specifies an image to display (in place of theimage option) when the checkbutton is selected.
This option is ignored unless theimageoption has been specified.

Command-Line Name: −state
Database Name: state
Database Class: State

Specifies one of three states for the checkbutton:normal, active, or disabled. In normal state the
checkbutton is displayed using theforeground andbackground options. The active state is typi-
cally used when the pointer is over the checkbutton. In active state the checkbutton is displayed
using theactiveForeground and activeBackground options. Disabled state means that the
checkbutton should be insensitive: the default bindings will refuse to activate the widget and will
ignore mouse button presses. In this state thedisabledForeground and background options
determine how the checkbutton is displayed.

Command-Line Name: −variable
Database Name: variable
Database Class: Variable

Specifies name of global variable to set to indicate whether or not this button is selected. Defaults
to the name of the button within its parent (i.e. the last element of the button window’s path name).

Command-Line Name: −width
Database Name: width
Database Class: Width

Specifies a desired width for the button. If an image or bitmap is being displayed in the button
then the value is in screen units (i.e. any of the forms acceptable toTk_GetPixels); for text it is in
characters. If this option isn’t specified, the button’s desired width is computed from the size of
the image or bitmap or text being displayed in it.

DESCRIPTION
Thecheckbutton command creates a new window (given by thepathNameargument) and makes it into a
checkbutton widget. Additional options, described above, may be specified on the command line or in the
option database to configure aspects of the checkbutton such as its colors, font, text, and initial relief. The
checkbutton command returns itspathNameargument. At the time this command is invoked, there must
not exist a window namedpathName, butpathName’s parent must exist.

A checkbutton is a widget that displays a textual string, bitmap or image and a square called anindicator.
If text is displayed, it must all be in a single font, but it can occupy multiple lines on the screen (if it con-
tains newlines or if wrapping occurs because of thewrapLength option) and one of the characters may
optionally be underlined using theunderline option. A checkbutton has all of the behavior of a simple but-
ton, including the following: it can display itself in either of three different ways, according to thestate
option; it can be made to appear raised, sunken, or flat; it can be made to flash; and it invokes a Tcl com-
mand whenever mouse button 1 is clicked over the checkbutton.

Tk Last change: 4.4 2

Tk Built-In Commands checkbutton (n)

In addition, checkbuttons can beselected. If a checkbutton is selected then the indicator is normally drawn
with a selected appearance, and a Tcl variable associated with the checkbutton is set to a particular value
(normally 1). Under Unix, the indicator is drawn with a sunken relief and a special color. Under Windows,
the indicator is drawn with a check mark inside. If the checkbutton is not selected, then the indicator is
drawn with a deselected appearance, and the associated variable is set to a different value (typically 0).
Under Unix, the indicator is drawn with a raised relief and no special color. Under Windows, the indicator
is drawn without a check mark inside. By default, the name of the variable associated with a checkbutton is
the same as thenameused to create the checkbutton. The variable name, and the ‘‘on’’ and ‘‘off’’ values
stored in it, may be modified with options on the command line or in the option database. Configuration
options may also be used to modify the way the indicator is displayed (or whether it is displayed at all). By
default a checkbutton is configured to select and deselect itself on alternate button clicks. In addition, each
checkbutton monitors its associated variable and automatically selects and deselects itself when the vari-
ables value changes to and from the button’s ‘‘on’’ value.

WIDGET COMMAND
Thecheckbutton command creates a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?
Optionand theargs determine the exact behavior of the command. The following commands are possible
for checkbutton widgets:

pathNamecgetoption
Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thecheckbuttoncommand.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Option may have any of the values accepted by thecheckbutton com-
mand.

pathNamedeselect
Deselects the checkbutton and sets the associated variable to its ‘‘off’’ value.

pathNameflash
Flashes the checkbutton. This is accomplished by redisplaying the checkbutton several times,
alternating between active and normal colors. At the end of the flash the checkbutton is left in the
same normal/active state as when the command was invoked. This command is ignored if the
checkbutton’s state isdisabled.

pathNameinvoke
Does just what would have happened if the user invoked the checkbutton with the mouse: toggle
the selection state of the button and invoke the Tcl command associated with the checkbutton, if
there is one. The return value is the return value from the Tcl command, or an empty string if
there is no command associated with the checkbutton. This command is ignored if the checkbut-
ton’s state isdisabled.

pathNameselect
Selects the checkbutton and sets the associated variable to its ‘‘on’’ value.

pathNametoggle

Tk Last change: 4.4 3

Tk Built-In Commands checkbutton (n)

Toggles the selection state of the button, redisplaying it and modifying its associated variable to
reflect the new state.

BINDINGS
Tk automatically creates class bindings for checkbuttons that give them the following default behavior:

[1] On Unix systems, a checkbutton activates whenever the mouse passes over it and deactivates
whenever the mouse leaves the checkbutton. On Mac and Windows systems, when mouse button
1 is pressed over a checkbutton, the button activates whenever the mouse pointer is inside the but-
ton, and deactivates whenever the mouse pointer leaves the button.

[2] When mouse button 1 is pressed over a checkbutton, it is invoked (its selection state toggles and
the command associated with the button is invoked, if there is one).

[3] When a checkbutton has the input focus, the space key causes the checkbutton to be invoked.
Under Windows, there are additional key bindings; plus (+) and equal (=) select the button, and
minus (-) deselects the button.

If the checkbutton’s state isdisabled then none of the above actions occur: the checkbutton is completely
non-responsive.

The behavior of checkbuttons can be changed by defining new bindings for individual widgets or by
redefining the class bindings.

KEYWORDS
checkbutton, widget

Tk Last change: 4.4 4

Tk Built-In Commands tk_chooseColor (n)

NAME
tk_chooseColor − pops up a dialog box for the user to select a color.

SYNOPSIS
tk_chooseColor?option value ...?

DESCRIPTION
The proceduretk_chooseColor pops up a dialog box for the user to select a color. The following
option−valuepairs are possible as command line arguments:

−initialcolor color
Specifies the color to display in the color dialog when it pops up.color must be in a form accept-
able to theTk_GetColor function.

−parent window
Makeswindow the logical parent of the color dialog. The color dialog is displayed on top of its
parent window.

−title titleString
Specifies a string to display as the title of the dialog box. If this option is not specified, then a
default title will be displayed.

If the user selects a color,tk_chooseColor will return the name of the color in a form acceptable to
Tk_GetColor. If the user cancels the operation, both commands will return the empty string.

EXAMPLE
button .b −fg [tk_chooseColor −initialcolor gray −title "Choose color"]

KEYWORDS
color selection dialog

Tk Last change: 4.2 1

Tk Built-In Commands clipboard (n)

NAME
clipboard − Manipulate Tk clipboard

SYNOPSIS
clipboard option?arg arg ...?

DESCRIPTION
This command provides a Tcl interface to the Tk clipboard, which stores data for later retrieval using the
selection mechanism. In order to copy data into the clipboard,clipboard clear must be called, followed by
a sequence of one or more calls toclipboard append. To ensure that the clipboard is updated atomically,
all appends should be completed before returning to the event loop.

The first argument toclipboard determines the format of the rest of the arguments and the behavior of the
command. The following forms are currently supported:

clipboard clear ?−displayof window?
Claims ownership of the clipboard onwindow’s display and removes any previous contents.Win-
dowdefaults to ‘‘.’’. Returns an empty string.

clipboard append?−displayof window? ?−format format? ?−type type? ?− −?data
Appendsdata to the clipboard onwindow’s display in the form given bytypewith the representa-
tion given byformatand claims ownership of the clipboard onwindow’s display.

Typespecifies the form in which the selection is to be returned (the desired ‘‘target’’ for conver-
sion, in ICCCM terminology), and should be an atom name such as STRING or FILE_NAME; see
the Inter-Client Communication Conventions Manual for complete details.Type defaults to
STRING.

The format argument specifies the representation that should be used to transmit the selection to
the requester (the second column of Table 2 of the ICCCM), and defaults to STRING. Ifformat is
STRING, the selection is transmitted as 8-bit ASCII characters. Ifformat is ATOM, then thedata
is divided into fields separated by white space; each field is converted to its atom value, and the
32-bit atom value is transmitted instead of the atom name. For any otherformat, data is divided
into fields separated by white space and each field is converted to a 32-bit integer; an array of inte-
gers is transmitted to the selection requester. Note that strings passed toclipboard append are
concatenated before conversion, so the caller must take care to ensure appropriate spacing across
string boundaries. All items appended to the clipboard with the sametypemust have the samefor-
mat.

The formatargument is needed only for compatibility with clipboard requesters that don’t use Tk.
If the Tk toolkit is being used to retrieve the CLIPBOARD selection then the value is converted
back to a string at the requesting end, soformat is irrelevant.

A − − argument may be specified to mark the end of options: the next argument will always be
used asdata. This feature may be convenient if, for example,datastarts with a−.

KEYWORDS
clear, format, clipboard, append, selection, type

Tk Last change: 4.0 1

Tk Built-In Commands destroy (n)

NAME
destroy − Destroy one or more windows

SYNOPSIS
destroy?window window ...?

DESCRIPTION
This command deletes the windows given by thewindowarguments, plus all of their descendants. If awin-
dow ‘‘.’’ is deleted then the entire application will be destroyed. Thewindows are destroyed in order, and if
an error occurs in destroying a window the command aborts without destroying the remaining windows.
No error is returned ifwindowdoes not exist.

KEYWORDS
application, destroy, window

Tk Last change: 1

Tk Built-In Commands tk_dialog (n)

NAME
tk_dialog − Create modal dialog and wait for response

SYNOPSIS
tk_dialog window title text bitmap default string string ...

DESCRIPTION
This procedure is part of the Tk script library. Its arguments describe a dialog box:

window Name of top-level window to use for dialog. Any existing window by this name is destroyed.

title Te xt to appear in the window manager’s title bar for the dialog.

text Message to appear in the top portion of the dialog box.

bitmap If non-empty, specifies a bitmap to display in the top portion of the dialog, to the left of the text. If
this is an empty string then no bitmap is displayed in the dialog.

default If this is an integer greater than or equal to zero, then it gives the index of the button that is to be
the default button for the dialog (0 for the leftmost button, and so on). If less than zero or an
empty string then there won’t be any default button.

string There will be one button for each of these arguments. Eachstring specifies text to display in a but-
ton, in order from left to right.

After creating a dialog box,tk_dialog waits for the user to select one of the buttons either by clicking on
the button with the mouse or by typing return to invoke the default button (if any). Then it returns the index
of the selected button: 0 for the leftmost button, 1 for the button next to it, and so on. If the dialog’s win-
dow is destroyed before the user selects one of the buttons, then -1 is returned.

While waiting for the user to respond,tk_dialog sets a local grab. This prevents the user from interacting
with the application in any way except to invoke the dialog box.

KEYWORDS
bitmap, dialog, modal

Tk Last change: 4.1 1

Tk Built-In Commands entry (n)

NAME
entry − Create and manipulate entry widgets

SYNOPSIS
entry pathName?options?

STANDARD OPTIONS
−background −highlightbackground −insertontime −selectforeground
−borderwidth −highlightcolor −insertwidth −takefocus
−cursor −highlightthickness −justify −textvariable
−exportselection −insertbackground −relief −xscrollcommand
−font −insertborderwidth −selectbackground
−foreground −insertofftime −selectborderwidth

See theoptionsmanual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Command-Line Name: −show
Database Name: show
Database Class: Show

If this option is specified, then the true contents of the entry are not displayed in the window.
Instead, each character in the entry’s value will be displayed as the first character in the value of
this option, such as ‘‘∗’’. This is useful, for example, if the entry is to be used to enter a password.
If characters in the entry are selected and copied elsewhere, the information copied will be what is
displayed, not the true contents of the entry.

Command-Line Name: −state
Database Name: state
Database Class: State

Specifies one of two states for the entry:normal or disabled. If the entry is disabled then the
value may not be changed using widget commands and no insertion cursor will be displayed, even
if the input focus is in the widget.

Command-Line Name: −width
Database Name: width
Database Class: Width

Specifies an integer value indicating the desired width of the entry window, in average-size charac-
ters of the widget’s font. If the value is less than or equal to zero, the widget picks a size just large
enough to hold its current text.

DESCRIPTION
The entry command creates a new window (given by thepathNameargument) and makes it into an entry
widget. Additional options, described above, may be specified on the command line or in the option
database to configure aspects of the entry such as its colors, font, and relief. Theentry command returns
its pathNameargument. At the time this command is invoked, there must not exist a window namedpath-
Name, butpathName’s parent must exist.

An entry is a widget that displays a one-line text string and allows that string to be edited using widget
commands described below, which are typically bound to keystrokes and mouse actions. When first cre-
ated, an entry’s string is empty. A portion of the entry may be selected as described below. If an entry is
exporting its selection (see theexportSelectionoption), then it will observe the standard X11 protocols for
handling the selection; entry selections are available as typeSTRING. Entries also observe the standard
Tk rules for dealing with the input focus. When an entry has the input focus it displays aninsertion cursor

Tk Last change: 4.1 1

Tk Built-In Commands entry (n)

to indicate where new characters will be inserted.

Entries are capable of displaying strings that are too long to fit entirely within the widget’s window. In this
case, only a portion of the string will be displayed; commands described below may be used to change the
view in the window. Entries use the standardxScrollCommand mechanism for interacting with scrollbars
(see the description of thexScrollCommand option for details). They also support scanning, as described
below.

WIDGET COMMAND
Theentry command creates a new Tcl command whose name ispathName. This command may be used to
invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?
Optionand theargs determine the exact behavior of the command.

Many of the widget commands for entries take one or more indices as arguments. An index specifies a par-
ticular character in the entry’s string, in any of the following ways:

number Specifies the character as a numerical index, where 0 corresponds to the first character in the
string.

anchor Indicates the anchor point for the selection, which is set with theselect from and select
adjust widget commands.

end Indicates the character just after the last one in the entry’s string. This is equivalent to speci-
fying a numerical index equal to the length of the entry’s string.

insert Indicates the character adjacent to and immediately following the insertion cursor.

sel.first Indicates the first character in the selection. It is an error to use this form if the selection
isn’t in the entry window.

sel.last Indicates the character just after the last one in the selection. It is an error to use this form if
the selection isn’t in the entry window.

@number In this form,numberis treated as an x-coordinate in the entry’s window; the character span-
ning that x-coordinate is used. For example, ‘‘@0’’ indicates the left-most character in the
window.

Abbreviations may be used for any of the forms above, e.g. ‘‘e’’ or ‘‘ sel.f’’. In general, out-of-range indices
are automatically rounded to the nearest legal value.

The following commands are possible for entry widgets:

pathNamebbox index
Returns a list of four numbers describing the bounding box of the character given byindex. The
first two elements of the list give the x and y coordinates of the upper-left corner of the screen area
covered by the character (in pixels relative to the widget) and the last two elements give the width
and height of the character, in pixels. The bounding box may refer to a region outside the visible
area of the window.

pathNamecgetoption
Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by theentry command.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−value pairs are specified, then the

Tk Last change: 4.1 2

Tk Built-In Commands entry (n)

command modifies the given widget option(s) to have the given value(s); in this case the com-
mand returns an empty string.Option may have any of the values accepted by theentry com-
mand.

pathNamedeletefirst ?last?
Delete one or more elements of the entry.First is the index of the first character to delete, andlast
is the index of the character just after the last one to delete. Iflast isn’t specified it defaults to
first+1, i.e. a single character is deleted. This command returns an empty string.

pathNameget
Returns the entry’s string.

pathNameicursor index
Arrange for the insertion cursor to be displayed just before the character given byindex. Returns
an empty string.

pathNameindex index
Returns the numerical index corresponding toindex.

pathNameinsert index string
Insert the characters ofstring just before the character indicated byindex. Returns an empty
string.

pathNamescanoption args
This command is used to implement scanning on entries. It has two forms, depending onoption:

pathNamescan markx
Recordsx and the current view in the entry window; used in conjunction with laterscan
dragto commands. Typically this command is associated with a mouse button press in
the widget. It returns an empty string.

pathNamescan dragtox
This command computes the difference between itsx argument and thex argument to the
lastscan markcommand for the widget. It then adjusts the view left or right by 10 times
the difference in x-coordinates. This command is typically associated with mouse motion
ev ents in the widget, to produce the effect of dragging the entry at high speed through the
window. The return value is an empty string.

pathNameselectionoption arg
This command is used to adjust the selection within an entry. It has several forms, depending on
option:

pathNameselection adjustindex
Locate the end of the selection nearest to the character given byindex, and adjust that end
of the selection to be atindex(i.e including but not going beyondindex). The other end
of the selection is made the anchor point for futureselect tocommands. If the selection
isn’t currently in the entry, then a new selection is created to include the characters
betweenindexand the most recent selection anchor point, inclusive. Returns an empty
string.

pathNameselection clear
Clear the selection if it is currently in this widget. If the selection isn’t in this widget then
the command has no effect. Returns an empty string.

pathNameselection fromindex
Set the selection anchor point to just before the character given byindex. Doesn’t change
the selection. Returns an empty string.

pathNameselection present

Tk Last change: 4.1 3

Tk Built-In Commands entry (n)

Returns 1 if there is are characters selected in the entry, 0 if nothing is selected.

pathNameselection rangestart end
Sets the selection to include the characters starting with the one indexed bystart and end-
ing with the one just beforeend. If endrefers to the same character asstart or an earlier
one, then the entry’s selection is cleared.

pathNameselection toindex
If indexis before the anchor point, set the selection to the characters fromindexup to but
not including the anchor point. Ifindex is the same as the anchor point, do nothing. If
indexis after the anchor point, set the selection to the characters from the anchor point up
to but not includingindex. The anchor point is determined by the most recentselect
from or select adjustcommand in this widget. If the selection isn’t in this widget then a
new selection is created using the most recent anchor point specified for the widget.
Returns an empty string.

pathNamexview args
This command is used to query and change the horizontal position of the text in the widget’s win-
dow. It can take any of the following forms:

pathNamexview
Returns a list containing two elements. Each element is a real fraction between 0 and 1;
together they describe the horizontal span that is visible in the window. For example, if
the first element is .2 and the second element is .6, 20% of the entry’s text is off-screen to
the left, the middle 40% is visible in the window, and 40% of the text is off-screen to the
right. These are the same values passed to scrollbars via the−xscrollcommandoption.

pathNamexview index
Adjusts the view in the window so that the character given byindex is displayed at the
left edge of the window.

pathNamexview movetofraction
Adjusts the view in the window so that the characterfraction of the way through the text
appears at the left edge of the window.Fr actionmust be a fraction between 0 and 1.

pathNamexview scroll number what
This command shifts the view in the window left or right according tonumberandwhat.
Numbermust be an integer.Whatmust be eitherunits or pagesor an abbreviation of one
of these. Ifwhat is units, the view adjusts left or right bynumberav erage-width charac-
ters on the display; if it ispagesthen the view adjusts bynumberscreenfuls. Ifnumber
is negative then characters farther to the left become visible; if it is positive then charac-
ters farther to the right become visible.

DEFAULT BINDINGS
Tk automatically creates class bindings for entries that give them the following default behavior. In the
descriptions below, ‘‘word’’ refers to a contiguous group of letters, digits, or ‘‘_’’ characters, or any single
character other than these.

[1] Clicking mouse button 1 positions the insertion cursor just before the character underneath the
mouse cursor, sets the input focus to this widget, and clears any selection in the widget. Dragging
with mouse button 1 strokes out a selection between the insertion cursor and the character under
the mouse.

[2] Double-clicking with mouse button 1 selects the word under the mouse and positions the insertion
cursor at the beginning of the word. Dragging after a double click will stroke out a selection con-
sisting of whole words.

Tk Last change: 4.1 4

Tk Built-In Commands entry (n)

[3] Triple-clicking with mouse button 1 selects all of the text in the entry and positions the insertion
cursor before the first character.

[4] The ends of the selection can be adjusted by dragging with mouse button 1 while the Shift key is
down; this will adjust the end of the selection that was nearest to the mouse cursor when button 1
was pressed. If the button is double-clicked before dragging then the selection will be adjusted in
units of whole words.

[5] Clicking mouse button 1 with the Control key down will position the insertion cursor in the entry
without affecting the selection.

[6] If any normal printing characters are typed in an entry, they are inserted at the point of the inser-
tion cursor.

[7] The view in the entry can be adjusted by dragging with mouse button 2. If mouse button 2 is
clicked without moving the mouse, the selection is copied into the entry at the position of the
mouse cursor.

[8] If the mouse is dragged out of the entry on the left or right sides while button 1 is pressed, the
entry will automatically scroll to make more text visible (if there is more text off-screen on the
side where the mouse left the window).

[9] The Left and Right keys move the insertion cursor one character to the left or right; they also clear
any selection in the entry and set the selection anchor. If Left or Right is typed with the Shift key
down, then the insertion cursor moves and the selection is extended to include the new character.
Control-Left and Control-Right move the insertion cursor by words, and Control-Shift-Left and
Control-Shift-Right move the insertion cursor by words and also extend the selection. Control-b
and Control-f behave the same as Left and Right, respectively. Meta-b and Meta-f behave the
same as Control-Left and Control-Right, respectively.

[10] The Home key, or Control-a, will move the insertion cursor to the beginning of the entry and clear
any selection in the entry. Shift-Home moves the insertion cursor to the beginning of the entry and
also extends the selection to that point.

[11] The End key, or Control-e, will move the insertion cursor to the end of the entry and clear any
selection in the entry. Shift-End moves the cursor to the end and extends the selection to that
point.

[12] The Select key and Control-Space set the selection anchor to the position of the insertion cursor.
They don’t affect the current selection. Shift-Select and Control-Shift-Space adjust the selection
to the current position of the insertion cursor, selecting from the anchor to the insertion cursor if
there was not any selection previously.

[13] Control-/ selects all the text in the entry.

[14] Control-\ clears any selection in the entry.

[15] The F16 key (labelled Copy on many Sun workstations) or Meta-w copies the selection in the wid-
get to the clipboard, if there is a selection.

[16] The F20 key (labelled Cut on many Sun workstations) or Control-w copies the selection in the
widget to the clipboard and deletes the selection. If there is no selection in the widget then these
keys have no effect.

[17] The F18 key (labelled Paste on many Sun workstations) or Control-y inserts the contents of the
clipboard at the position of the insertion cursor.

[18] The Delete key deletes the selection, if there is one in the entry. If there is no selection, it deletes
the character to the right of the insertion cursor.

[19] The BackSpace key and Control-h delete the selection, if there is one in the entry. If there is no

Tk Last change: 4.1 5

Tk Built-In Commands entry (n)

selection, it deletes the character to the left of the insertion cursor.

[20] Control-d deletes the character to the right of the insertion cursor.

[21] Meta-d deletes the word to the right of the insertion cursor.

[22] Control-k deletes all the characters to the right of the insertion cursor.

[23] Control-t reverses the order of the two characters to the right of the insertion cursor.

If the entry is disabled using the−state option, then the entry’s view can still be adjusted and text in the
entry can still be selected, but no insertion cursor will be displayed and no text modifications will take
place.

The behavior of entries can be changed by defining new bindings for individual widgets or by redefining
the class bindings.

KEYWORDS
entry, widget

Tk Last change: 4.1 6

Tk Built-In Commands ev ent (n)

NAME
ev ent − Miscellaneous event facilities: define virtual events and generate events

SYNOPSIS
ev entoption?arg arg ...?

DESCRIPTION
Theev entcommand provides several facilities for dealing with window system events, such as defining vir-
tual events and synthesizing events. The command has several different forms, determined by the first
argument. The following forms are currently supported:

ev ent add <<virtual>> sequence?sequence ...?
Associates the virtual eventvirtual with the physical event sequence(s) given by thesequence
arguments, so that the virtual event will trigger whenever any one of thesequences occurs.Virtual
may be any string value andsequencemay have any of the values allowed for thesequenceargu-
ment to thebind command. Ifvirtual is already defined, the new physical event sequences add to
the existing sequences for the event.

ev ent delete <<virtual>> ?sequence sequence ...?
Deletes each of thesequences from those associated with the virtual event given byvirtual. Vir-
tual may be any string value andsequencemay have any of the values allowed for thesequence
argument to thebind command. Anysequences not currently associated withvirtual are ignored.
If no sequenceargument is provided, all physical event sequences are removed forvirtual, so that
the virtual event will not trigger anymore.

ev ent generatewindow event?option value option value ...?
Generates a window event and arranges for it to be processed just as if it had come from the win-
dow system.Windowgives the path name of the window for which the event will be generated; it
may also be an identifier (such as returned bywinfo id) as long as it is for a window in the current
application. Event provides a basic description of the event, such as<Shift-Button-2> or
<<Paste>>. Eventmay have any of the forms allowed for thesequenceargument of thebind
command except that it must consist of a single event pattern, not a sequence.Option-valuepairs
may be used to specify additional attributes of the event, such as the x and y mouse position; see
EVENT FIELDS below. If the−when option is not specified, the event is processed immediately:
all of the handlers for the event will complete before theev ent generatecommand returns. If the
−whenoption is specified then it determines when the event is processed.

ev ent info?<<virtual>>?
Returns information about virtual events. If the<<virtual>> argument is omitted, the return value
is a list of all the virtual events that are currently defined. If<<virtual>> is specified then the
return value is a list whose elements are the physical event sequences currently defined for the
given virtual event; if the virtual event is not defined then an empty string is returned.

EVENT FIELDS
The following options are supported for theev ent generatecommand. These correspond to the ‘‘%’’
expansions allowed in binding scripts for thebind command.

−abovewindow
Windowspecifies theabovefield for the event, either as a window path name or as an integer win-
dow id. Valid forConfigure ev ents. Corresponds to the%a substitution for binding scripts.

−borderwidth size
Sizemust be a screen distance; it specifies theborder_widthfield for the event. Valid forConfig-
ure ev ents. Corresponds to the%B substitution for binding scripts.

Tk Last change: 4.4 1

Tk Built-In Commands ev ent (n)

−button number
Numbermust be an integer; it specifies thedetail field for aButtonPressor ButtonReleaseev ent,
overriding any button number provided in the baseeventargument. Corresponds to the%b sub-
stitution for binding scripts.

−count number
Numbermust be an integer; it specifies thecount field for the event. Valid forExposeev ents.
Corresponds to the%c substitution for binding scripts.

−detail detail
Detail specifies thedetailfield for the event and must be one of the following:

NotifyAncestor NotifyNonlinearVirtual
NotifyDetailNone NotifyPointer
NotifyInferior NotifyPointerRoot
NotifyNonlinear NotifyVirtual

Valid for Enter, Leave, FocusIn andFocusOut ev ents. Corresponds to the%d substitution for
binding scripts.

−focusboolean
Booleanmust be a boolean value; it specifies thefocusfield for the event. Valid forEnter and
Leaveev ents. Corresponds to the%f substitution for binding scripts.

−height size
Sizemust be a screen distance; it specifies theheight field for the event. Valid forConfigure
ev ents. Corresponds to the%h substitution for binding scripts.

−keycodenumber
Number must be an integer; it specifies thekeycodefield for the event. Valid forKeyPressand
KeyReleaseev ents. Corresponds to the%k substitution for binding scripts.

−keysymname
Namemust be the name of a valid keysym, such asg, space, or Return; its corresponding
keycode value is used as thekeycodefield for event, overriding any detail specified in the base
eventargument. Valid forKeyPressandKeyReleaseev ents. Corresponds to the%K substitution
for binding scripts.

−modenotify
Notify specifies themodefield for the event and must be one ofNotifyNormal , NotifyGrab , Noti-
fyUngrab, or NotifyWhileGrabbed . Valid for Enter, Leave, FocusIn, and FocusOut ev ents.
Corresponds to the%m substitution for binding scripts.

−override boolean
Booleanmust be a boolean value; it specifies theoverride_redirectfield for the event. Valid for
Map, Reparent, andConfigure ev ents. Corresponds to the%o substitution for binding scripts.

−placewhere
Wherespecifies theplacefield for the event; it must be eitherPlaceOnTopor PlaceOnBottom.
Valid for Circulate ev ents. Corresponds to the%p substitution for binding scripts.

−root window
Windowmust be either a window path name or an integer window identifier; it specifies theroot
field for the event. Valid forKeyPress, KeyRelease, ButtonPress, ButtonRelease, Enter, Leave,
andMotion ev ents. Corresponds to the%R substitution for binding scripts.

−rootx coord
Coord must be a screen distance; it specifies thex_root field for the event. Valid forKeyPress,

Tk Last change: 4.4 2

Tk Built-In Commands ev ent (n)

KeyRelease, ButtonPress, ButtonRelease, Enter, Leave, and Motion ev ents. Corresponds to
the%X substitution for binding scripts.

−rooty coord
Coord must be a screen distance; it specifies thy_root field for the event. Valid forKeyPress,
KeyRelease, ButtonPress, ButtonRelease, Enter, Leave, and Motion ev ents. Corresponds to
the%Y substitution for binding scripts.

−sendeventboolean
Boolean must be a boolean value; it specifies thesend_eventfield for the event. Valid for all
ev ents. Corresponds to the%E substitution for binding scripts.

−serial number
Numbermust be an integer; it specifies theserial field for the event. Valid for all events. Corre-
sponds to the%# substitution for binding scripts.

−statestate
Statespecifies thestatefield for the event. ForKeyPress, KeyRelease, ButtonPress, ButtonRe-
lease, Enter, Leave, andMotion ev ents it must be an integer value. ForVisibility ev ents it must
be one ofVisibilityUnobscured, VisibilityPartiallyObscured , or VisibilityFullyObscured . This
option overrides any modifiers such asMeta or Control specified in the baseevent. Corresponds
to the%s substitution for binding scripts.

−subwindowwindow
Windowspecifies thesubwindowfield for the event, either as a path name for a Tk widget or as an
integer window identifier. Valid forKeyPress, KeyRelease, ButtonPress, ButtonRelease, Enter,
Leave, andMotion ev ents. Similar to%S substitution for binding scripts.

−time integer
Integer must be an integer value; it specifies thetime field for the event. Valid forKeyPress,
KeyRelease, ButtonPress, ButtonRelease, Enter, Leave, Motion , andProperty ev ents. Corre-
sponds to the%t substitution for binding scripts.

−width size
Sizemust be a screen distance; it specifies thewidth field for the event. Valid forConfigure
ev ents. Corresponds to the%w substitution for binding scripts.

−whenwhen
Whendetermines when the event will be processed; it must have one of the following values:

now Process the event immediately, before the command returns. This also happens if the
−whenoption is omitted.

tail Place the event on Tcl’s event queue behind any events already queued for this appli-
cation.

head Place the event at the front of Tcl’s event queue, so that it will be handled before any
other events already queued.

mark Place the event at the front of Tcl’s event queue but behind any other events already
queued with−when mark. This option is useful when generating a series of events
that should be processed in order but at the front of the queue.

−x coord
Coordmust be a screen distance; it specifies thex field for the event. Valid forKeyPress, KeyRe-
lease, ButtonPress, ButtonRelease, Motion , Enter, Leave, Expose, Configure, Gravity , and
Reparentev ents. Corresponds to the the%x substitution for binding scripts.

−y coord
Coord must be a screen distance; it specifies they field for the event. Valid forKeyPress,

Tk Last change: 4.4 3

Tk Built-In Commands ev ent (n)

KeyRelease, ButtonPress, ButtonRelease, Motion , Enter, Leave, Expose, Configure, Gravity ,
andReparentev ents. Corresponds to the the%y substitution for binding scripts.

Any options that are not specified when generating an event are filled with the value 0, except forserial,
which is filled with the next X event serial number.

VIRTUAL EVENT EXAMPLES
In order for a virtual event binding to trigger, two things must happen. First, the virtual event must be
defined with theev ent addcommand. Second, a binding must be created for the virtual event with the
bind command. Consider the following virtual event definitions:

ev ent add <<Paste>> <Control-y>
ev ent add <<Paste>> <Button-2>
ev ent add <<Save>> <Control-X><Control-S>
ev ent add <<Save>> <Shift-F12>

In thebind command, a virtual event can be bound like any other builtin event type as follows:
bind Entry <<Paste>> {%W insert [selection get]}

The double angle brackets are used to specify that a virtual event is being bound. If the user types Control-
y or presses button 2, or if a<<Paste>> virtual event is synthesized withev ent generate, then the
<<Paste>>binding will be invoked.

If a virtual binding has the exact same sequence as a separate physical binding, then the physical binding
will take precedence. Consider the following example:

ev ent add <<Paste>> <Control-y> <Meta-Control-y>
bind Entry <Control-y> {puts Control-y}
bind Entry <<Paste>> {puts Paste}

When the user types Control-y the<Control-y> binding will be invoked, because a physical event is con-
sidered more specific than a virtual event, all other things being equal. However, when the user types Meta-
Control-y the<<Paste>>binding will be invoked, because theMeta modifier in the physical pattern asso-
ciated with the virtual binding is more specific than the<Control-y> sequence for the physical event.

Bindings on a virtual event may be created before the virtual event exists. Indeed, the virtual event never
actually needs to be defined, for instance, on platforms where the specific virtual event would meaningless
or ungeneratable.

When a definition of a virtual event changes at run time, all windows will respond immediately to the new
definition. Starting from the preceding example, if the following code is executed:

bind <Entry> <Control-y> {}
ev ent add <<Paste>> <Key-F6>

the behavior will change such in two ways. First, the shadowed<<Paste>>binding will emerge. Typing
Control-y will no longer invoke the<Control-y> binding, but instead invoke the virtual event<<Paste>>.
Second, pressing the F6 key will now also invoke the<<Paste>>binding.

SEE ALSO
bind

KEYWORDS
ev ent, binding, define, handle, virtual event

Tk Last change: 4.4 4

Tk Built-In Commands focus (n)

NAME
focus − Manage the input focus

SYNOPSIS
focus

focuswindow

focusoption?arg arg ...?

DESCRIPTION
The focuscommand is used to manage the Tk input focus. At any giv en time, one window on each display
is designated as thefocus window; any key press or key release events for the display are sent to that win-
dow. It is normally up to the window manager to redirect the focus among the top-level windows of a dis-
play. For example, some window managers automatically set the input focus to a top-level window when-
ev er the mouse enters it; others redirect the input focus only when the user clicks on a window. Usually
the window manager will set the focus only to top-level windows, leaving it up to the application to redirect
the focus among the children of the top-level.

Tk remembers one focus window for each top-level (the most recent descendant of that top-level to receive
the focus); when the window manager gives the focus to a top-level, Tk automatically redirects it to the
remembered window. Within a top-level Tk uses anexplicit focus model by default. Moving the mouse
within a top-level does not normally change the focus; the focus changes only when a widget decides
explicitly to claim the focus (e.g., because of a button click), or when the user types a key such as Tab that
moves the focus.

The Tcl proceduretk_focusFollowsMousemay be invoked to create animplicit focus model: it reconfig-
ures Tk so that the focus is set to a window whenever the mouse enters it. The Tcl procedurestk_focus-
Next and tk_focusPrev implement a focus order among the windows of a top-level; they are used in the
default bindings for Tab and Shift-Tab, among other things.

Thefocuscommand can take any of the following forms:

focus Returns the path name of the focus window on the display containing the application’s main win-
dow, or an empty string if no window in this application has the focus on that display. Note: it is
better to specify the display explicitly using−displayof (see below) so that the code will work in
applications using multiple displays.

focuswindow
If the application currently has the input focus onwindow’s display, this command resets the input
focus forwindow’s display towindowand returns an empty string. If the application doesn’t cur-
rently have the input focus onwindow’s display,windowwill be remembered as the focus for its
top-level; the next time the focus arrives at the top-level, Tk will redirect it towindow. If window
is an empty string then the command does nothing.

focus −displayofwindow
Returns the name of the focus window on the display containingwindow. If the focus window for
window’s display isn’t in this application, the return value is an empty string.

focus −forcewindow
Sets the focus ofwindow’s display towindow, even if the application doesn’t currently have the
input focus for the display. This command should be used sparingly, if at all. In normal usage, an
application should not claim the focus for itself; instead, it should wait for the window manager to
give it the focus. Ifwindowis an empty string then the command does nothing.

focus −lastforwindow

Tk Last change: 4.0 1

Tk Built-In Commands focus (n)

Returns the name of the most recent window to hav e the input focus among all the windows in the
same top-level aswindow. If no window in that top-level has ever had the input focus, or if the
most recent focus window has been deleted, then the name of the top-level is returned. The return
value is the window that will receive the input focus the next time the window manager gives the
focus to the top-level.

QUIRKS
When an internal window receives the input focus, Tk doesn’t actually set the X focus to that window; as
far as X is concerned, the focus will stay on the top-level window containing the window with the focus.
However, Tk generates FocusIn and FocusOut events just as if the X focus were on the internal window.
This approach gets around a number of problems that would occur if the X focus were actually moved; the
fact that the X focus is on the top-level is invisible unless you use C code to query the X server directly.

KEYWORDS
ev ents, focus, keyboard, top-level, window manager

Tk Last change: 4.0 2

Tk Built-In Commands tk_focusNext (n)

NAME
tk_focusNext, tk_focusPrev, tk_focusFollowsMouse − Utility procedures for managing the input focus.

SYNOPSIS
tk_focusNextwindow

tk_focusPrevwindow

tk_focusFollowsMouse

DESCRIPTION
tk_focusNext is a utility procedure used for keyboard traversal. It returns the ‘‘next’’ window afterwindow
in focus order. The focus order is determined by the stacking order of windows and the structure of the
window hierarchy. Among siblings, the focus order is the same as the stacking order, with the lowest win-
dow being first. If a window has children, the window is visited first, followed by its children (recursively),
followed by its next sibling. Top-level windows other thanwindoware skipped, so thattk_focusNextnever
returns a window in a different top-level fromwindow.

After computing the next window,tk_focusNextexamines the window’s−takefocusoption to see whether
it should be skipped. If so,tk_focusNextcontinues on to the next window in the focus order, until it even-
tually finds a window that will accept the focus or returns back towindow.

tk_focusPrev is similar totk_focusNextexcept that it returns the window just beforewindow in the focus
order.

tk_focusFollowsMousechanges the focus model for the application to an implicit one where the window
under the mouse gets the focus. After this procedure is called, whenever the mouse enters a window Tk
will automatically give it the input focus. Thefocuscommand may be used to move the focus to a window
other than the one under the mouse, but as soon as the mouse moves into a new window the focus will jump
to that window. Note: at present there is no built-in support for returning the application to an explicit
focus model; to do this you’ll have to write a script that deletes the bindings created bytk_focusFollows-
Mouse.

KEYWORDS
focus, keyboard traversal, top-level

Tk Last change: 4.0 1

Tk Built-In Commands font (n)

NAME
font − Create and inspect fonts.

SYNOPSIS
font option?arg arg ...?

DESCRIPTION
The font command provides several facilities for dealing with fonts, such as defining named fonts and
inspecting the actual attributes of a font. The command has several different forms, determined by the first
argument. The following forms are currently supported:

font actual font?−displayof window? ?option?
Returns information about the the actual attributes that are obtained whenfont is used onwindow’s
display; the actual attributes obtained may differ from the attributes requested due to platform-
dependant limitations, such as the availability of font families and pointsizes.font is a font
description; see FONT DESCRIPTIONS below. If thewindowargument is omitted, it defaults to
the main window. Ifoption is specified, returns the value of that attribute; if it is omitted, the
return value is a list of all the attributes and their values. See FONT OPTIONS below for a list of
the possible attributes.

font configure fontname?option? ?value option value ...?
Query or modify the desired attributes for the named font calledfontname. If no option is speci-
fied, returns a list describing all the options and their values forfontname. If a singleoption is
specified with novalue, then returns the current value of that attribute. If one or more
option−value pairs are specified, then the command modifies the given named font to have the
given values; in this case, all widgets using that font will redisplay themselves using the new
attributes for the font. See FONT OPTIONS below for a list of the possible attributes.

font create?fontname? ?option value ...?
Creates a new named font and returns its name.fontnamespecifies the name for the font; if it is
omitted, then Tk generates a new name of the formfontx, wherex is an integer. There may be any
number ofoption−valuepairs, which provide the desired attributes for the new named font. See
FONT OPTIONS below for a list of the possible attributes.

font deletefontname?fontname ...?
Delete the specified named fonts. If there are widgets using the named font, the named font won’t
actually be deleted until all the instances are released. Those widgets will continue to display
using the last known values for the named font. If a deleted named font is subsequently recreated
with another call tofont create, the widgets will use the new named font and redisplay themselves
using the new attributes of that font.

font families ?−displayof window?
The return value is a list of the case-insensitive names of all font families that exist onwindow’s
display. If thewindowargument is omitted, it defaults to the main window.

font measurefont?−displayof window? text
Measures the amount of space the stringtext would use in the givenfont when displayed inwin-
dow. font is a font description; see FONT DESCRIPTIONS below. If thewindow argument is
omitted, it defaults to the main window. The return value is the total width in pixels oftext, not
including the extra pixels used by highly exagerrated characters such as cursive ‘‘f ’’. If the string
contains newlines or tabs, those characters are not expanded or treated specially when measuring
the string.

font metrics font?−displayof window? ?option?
Returns information about the metrics (the font-specific data), forfont when it is used onwindow’s
display. font is a font description; see FONT DESCRIPTIONS below. If thewindowargument is

Tk Last change: 8.0 1

Tk Built-In Commands font (n)

omitted, it defaults to the main window. Ifoption is specified, returns the value of that metric; if it
is omitted, the return value is a list of all the metrics and their values. See FONT METRICS
below for a list of the possible metrics.

font names
The return value is a list of all the named fonts that are currently defined.

FONT DESCRIPTION
The following formats are accepted as a font description anywherefont is specified as an argument above;
these same forms are also permitted when specifying the−font option for widgets.

[1] fontname
The name of a named font, created using thefont createcommand. When a widget uses a named
font, it is guaranteed that this will never cause an error, as long as the named font exists, no matter
what potentially invalid or meaningless set of attributes the named font has. If the named font can-
not be displayed with exactly the specified attributes, some other close font will be substituted
automatically.

[2] systemfont
The platform-specific name of a font, interpreted by the graphics server. This also includes, under
X, an XLFD (see [4]) for which a single ‘‘∗’’ character was used to elide more than one field in the
middle of the name. See PLATFORM-SPECIFIC issues for a list of the system fonts.

[3] family?size? ?style? ?style ...?
A properly formed list whose first element is the desired fontfamily and whose optional second
element is the desiredsize. The interpretation of thesizeattribute follows the same rules described
for −size in FONT OPTIONS below. Any additional optional arguments following thesizeare
font styles. Possible values for thestylearguments are as follows:

normal bold roman italic
underline overstrike

[4] X-font names (XLFD)
A Unix-centric font name of the form-foundry-family-weight-slant-setwidth-addstyle-pixel-point-
resx-resy-spacing-width-charset-encoding. The ‘‘∗’’ character may be used to skip individual
fields that the user does not care about. There must be exactly one ‘‘∗’’ for each field skipped,
except that a ‘‘∗’’ at the end of the XLFD skips any remaining fields; the shortest valid XLFD is
simply ‘‘∗’’, signifying all fields as defaults. Any fields that were skipped are given default values.
For compatibility, an XLFD always chooses a font of the specified pixel size (not point size);
although this interpretation is not strictly correct, all existing applications using XLFDs assumed
that one ‘‘point’’ was in fact one pixel and would display incorrectly (generally larger) if the cor-
rect size font were actually used.

[5] option value?option value ...?
A properly formed list ofoption−valuepairs that specify the desired attributes of the font, in the
same format used when defining a named font; see FONT OPTIONS below.

When font descriptionfont is used, the system attempts to parse the description according to each of the
above five rules, in the order specified. Cases [1] and [2] must match the name of an existing named font or
of a system font. Cases [3], [4], and [5] are accepted on all platforms and the closest available font will be
used. In some situations it may not be possible to find any close font (e.g., the font family was a garbage
value); in that case, some system-dependant default font is chosen. If the font description does not match
any of the above patterns, an error is generated.

Tk Last change: 8.0 2

Tk Built-In Commands font (n)

FONT METRICS
The following options are used by thefont metrics command to query font-specific data determined when
the font was created. These properties are for the whole font itself and not for individual characters drawn
in that font. In the following definitions, the ‘‘baseline’’ of a font is the horizontal line where the bottom of
most letters line up; certain letters, such as lower-case ‘‘g’’ stick below the baseline.

−ascent
The amount in pixels that the tallest letter sticks up above the baseline of the font, plus any extra
blank space added by the designer of the font.

−descent
The largest amount in pixels that any letter sticks down below the baseline of the font, plus any
extra blank space added by the designer of the font.

−linespace
Returns how far apart vertically in pixels two lines of text using the same font should be placed so
that none of the characters in one line overlap any of the characters in the other line. This is gener-
ally the sum of the ascent above the baseline line plus the descent below the baseline.

−fixed
Returns a boolean flag that is ‘‘1’’ if this is a fixed-width font, where each normal character is the
the same width as all the other characters, or is ‘‘0’’ if this is a proportionally-spaced font, where
individual characters have different widths. The widths of control characters, tab characters, and
other non-printing characters are not included when calculating this value.

FONT OPTIONS
The following options are supported on all platforms, and are used when constructing a named font or when
specifying a font using style [5] as above:

−family name
The case-insensitive font family name. Tk guarantees to support the font families namedCourier
(a monospaced ‘‘typewriter’’ font),Times (a serifed ‘‘newspaper’’ font), andHelvetica (a sans-
serif ‘‘European’’ font). The most closely matching native font family will automatically be sub-
stituted when one of the above font families is used. Thenamemay also be the name of a native,
platform-specific font family; in that case it will work as desired on one platform but may not dis-
play correctly on other platforms. If the family is unspecified or unrecognized, a platform-specific
default font will be chosen.

−sizesize
The desired size of the font. If thesizeargument is a positive number, it is interpreted as a size in
points. If sizeis a negative number, its absolute value is interpreted as a size in pixels. If a font
cannot be displayed at the specified size, a nearby size will be chosen. Ifsize is unspecified or
zero, a platform-dependent default size will be chosen.

Sizes should normally be specified in points so the application will remain the same ruler size on
the screen, even when changing screen resolutions or moving scripts across platforms. However,
specifying pixels is useful in certain circumstances such as when a piece of text must line up with
respect to a fixed-size bitmap. The mapping between points and pixels is set when the application
starts, based on properties of the installed monitor, but it can be overridden by calling thetk scal-
ing command.

−weight weight
The nominal thickness of the characters in the font. The valuenormal specifies a normal weight
font, while bold specifies a bold font. The closest available weight to the one specified will be
chosen. The default weight isnormal.

−slant slant
The amount the characters in the font are slanted away from the vertical. Valid values for slant are

Tk Last change: 8.0 3

Tk Built-In Commands font (n)

roman anditalic . A roman font is the normal, upright appearance of a font, while an italic font is
one that is tilted some number of degrees from upright. The closest available slant to the one spec-
ified will be chosen. The default slant isroman.

−underline boolean
The value is a boolean flag that specifies whether characters in this font should be underlined. The
default value for underline isfalse.

−overstrike boolean
The value is a boolean flag that specifies whether a horizontal line should be drawn through the
middle of characters in this font. The default value for overstrike isfalse.

PLATFORM-SPECIFIC ISSUES
The following named system fonts are supported:

X Windows:
All valid X font names, including those listed by xlsfonts(1), are available.

MS Windows:

system ansi device
systemfixed ansifixed oemfixed

Macintosh:

system application

SEE ALSO
options

KEYWORDS
font

Tk Last change: 8.0 4

Tk Built-In Commands frame (n)

NAME
frame − Create and manipulate frame widgets

SYNOPSIS
frame pathName?options?

STANDARD OPTIONS
−borderwidth −highlightbackground −highlightthickness −takefocus
−cursor −highlightcolor −relief

See theoptionsmanual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Command-Line Name: −background
Database Name: background
Database Class: Background

This option is the same as the standardbackground option except that its value may also be speci-
fied as an empty string. In this case, the widget will display no background or border, and no col-
ors will be consumed from its colormap for its background and border.

Command-Line Name: −class
Database Name: class
Database Class: Class

Specifies a class for the window. This class will be used when querying the option database for
the window’s other options, and it will also be used later for other purposes such as bindings. The
classoption may not be changed with theconfigurewidget command.

Command-Line Name: −colormap
Database Name: colormap
Database Class: Colormap

Specifies a colormap to use for the window. The value may be eithernew, in which case a new
colormap is created for the window and its children, or the name of another window (which must
be on the same screen and have the same visual aspathName), in which case the new window will
use the colormap from the specified window. If thecolormap option is not specified, the new
window uses the same colormap as its parent. This option may not be changed with theconfigure
widget command.

Command-Line Name: −container
Database Name: container
Database Class: Container

The value must be a boolean. If true, it means that this window will be used as a container in
which some other application will be embedded (for example, a Tk toplevel can be embedded
using the−useoption). The window will support the appropriate window manager protocols for
things like geometry requests. The window should not have any children of its own in this appli-
cation. This option may not be changed with theconfigurewidget command.

Command-Line Name: −height
Database Name: height
Database Class: Height

Specifies the desired height for the window in any of the forms acceptable toTk_GetPixels. If
this option is less than or equal to zero then the window will not request any size at all.

Command-Line Name: −visual
Database Name: visual
Database Class: Visual

Tk Last change: 8.0 1

Tk Built-In Commands frame (n)

Specifies visual information for the new window in any of the forms accepted byTk_GetVisual.
If this option is not specified, the new window will use the same visual as its parent. Thevisual
option may not be modified with theconfigurewidget command.

Command-Line Name: −width
Database Name: width
Database Class: Width

Specifies the desired width for the window in any of the forms acceptable toTk_GetPixels. If this
option is less than or equal to zero then the window will not request any size at all.

DESCRIPTION
The frame command creates a new window (given by thepathNameargument) and makes it into a frame
widget. Additional options, described above, may be specified on the command line or in the option
database to configure aspects of the frame such as its background color and relief. Theframe command
returns the path name of the new window.

A frame is a simple widget. Its primary purpose is to act as a spacer or container for complex window lay-
outs. The only features of a frame are its background color and an optional 3-D border to make the frame
appear raised or sunken.

WIDGET COMMAND
The frame command creates a new Tcl command whose name is the same as the path name of the frame’s
window. This command may be used to invoke various operations on the widget. It has the following gen-
eral form:

pathName option?arg arg ...?
PathNameis the name of the command, which is the same as the frame widget’s path name.Optionand the
args determine the exact behavior of the command. The following commands are possible for frame wid-
gets:

pathNamecgetoption
Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by theframe command.

pathNameconfigure?option??value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by theframe command.

BINDINGS
When a new frame is created, it has no default event bindings: frames are not intended to be interactive.

KEYWORDS
frame, widget

Tk Last change: 8.0 2

Tk Built-In Commands tk_getOpenFile (n)

NAME
tk_getOpenFile, tk_getSaveFile − pop up a dialog box for the user to select a file to open or save.

SYNOPSIS
tk_getOpenFile?option value ...?
tk_getSaveFile?option value ...?

DESCRIPTION
The procedurestk_getOpenFile and tk_getSaveFilepop up a dialog box for the user to select a file to
open or save. Thetk_getOpenFile command is usually associated with theOpen command in theFile
menu. Its purpose is for the user to select an existing fileonly. If the user enters an non-existent file, the dia-
log box gives the user an error prompt and requires the user to give an alternative selection. If an applica-
tion allows the user to create new files, it should do so by providing a separateNewmenu command.

The tk_getSaveFilecommand is usually associated with theSave ascommand in theFile menu. If the user
enters a file that already exists, the dialog box prompts the user for confirmation whether the existing file
should be overwritten or not.

The followingoption−valuepairs are possible as command line arguments to these two commands:

−defaultextensionextension
Specifies a string that will be appended to the filename if the user enters a filename without an
extension. The defaut value is the empty string, which means no extension will be appended to the
filename in any case. This option is ignored on the Macintosh platform, which does not require
extensions to filenames.

−filetypesfilePatternList
If a File types listbox exists in the file dialog on the particular platform, this option gives thefile-
types in this listbox. When the user choose a filetype in the listbox, only the files of that type are
listed. If this option is unspecified, or if it is set to the empty list, or if theFile types listbox is not
supported by the particular platform then all files are listed regardless of their types. See the sec-
tion SPECIFYING FILE PATTERNS below for a discussion on the contents offilePatternList.

−initialdir directory
Specifies that the files indirectoryshould be displayed when the dialog pops up. If this parameter
is not specified, then the files in the current working directory are displayed. If the parameter spec-
ifies a relative path, the return value will convert the relative path to an absolute path. This option
may not always work on the Macintosh. This is not a bug. Rather, theGeneral Controlscontrol
panel on the Mac allows the end user to override the application default directory.

−initialfile filename
Specifies a filename to be displayed in the dialog when it pops up. This option is ignored by the
tk_getOpenFilecommand.

−parent window
Makeswindowthe logical parent of the file dialog. The file dialog is displayed on top of its parent
window.

−title titleString
Specifies a string to display as the title of the dialog box. If this option is not specified, then a
default title is displayed. This option is ignored on the Macintosh platform.

If the user selects a file, bothtk_getOpenFile and tk_getSaveFilereturn the full pathname of this file. If
the user cancels the operation, both commands return the empty string.

Tk Last change: 4.2 1

Tk Built-In Commands tk_getOpenFile (n)

SPECIFYING FILE PATTERNS
ThefilePatternListvalue given by the−filetypesoption is a list of file patterns. Each file pattern is a list of
the form

typeName{ extension?extension ...?} ?{macType?macType ...?}?
typeNameis the name of the file type described by this file pattern and is the text string that appears in the
File types listbox. extensionis a file extension for this file pattern.macTypeis a four-character Macintosh
file type. The list ofmacTypes is optional and may be omitted for applications that do not need to execute
on the Macintosh platform.

Several file patterns may have the sametypeName,in which case they refer to the same file type and share
the same entry in the listbox. When the user selects an entry in the listbox, all the files that match at least
one of the file patterns corresponding to that entry are listed. Usually, each file pattern corresponds to a dis-
tinct type of file. The use of more than one file patterns for one type of file is necessary on the Macintosh
platform only.

On the Macintosh platform, a file matches a file pattern if its name matches at least one of theextension(s)
AND it belongs to at least one of themacType(s) of the file pattern. For example, theC Source Filesfile
pattern in the sample code matches with files that have a.c extension AND belong to themacTypeTEXT .
To use the OR rule instead, you can use two file patterns, one with theextensionsonly and the other with
themacTypeonly. TheGIF Files file type in the sample code matches files that EITHER have a.gif exten-
sion OR belong to themacTypeGIFF .

On the Unix and Windows platforms, a file matches a file pattern if its name matches at at least one of the
extension(s) of the file pattern. ThemacTypes are ignored.

SPECIFYING EXTENSIONS
On the Unix and Macintosh platforms, extensions are matched using glob-style pattern matching. On the
Windows platforms, extensions are matched by the underlying operating system. The types of possible
extensions are: (1) the special extension∗ matches any file; (2) the special extension "" matches any files
that do not have an extension (i.e., the filename contains no full stop character); (3) any character string that
does not contain any wild card characters (∗ and ?).

Due to the different pattern matching rules on the various platforms, to ensure portability, wild card charac-
ters are not allowed in the extensions, except as in the special extension∗. Extensions without a full stop
character (e.g, ˜) are allowed but may not work on all platforms.

EXAMPLE
set types {

{{Text Files} {.txt} }
{{TCL Scripts} {.tcl} }
{{C Source Files} {.c} TEXT}
{{GIF Files} {.gif} }
{{GIF Files} {} GIFF}
{{All Files} ∗ }

}
set filename [tk_getOpenFile -filetypes $types]

if {$filename != ""} {
Open the file ...

}

KEYWORDS
file selection dialog

Tk Last change: 4.2 2

Tk Built-In Commands grab (n)

NAME
grab − Confine pointer and keyboard events to a window sub-tree

SYNOPSIS
grab ?−global?window

grab option?arg arg ...?

DESCRIPTION
This command implements simple pointer and keyboard grabs for Tk. Tk’s grabs are different than the
grabs described in the Xlib documentation. When a grab is set for a particular window, Tk restricts all
pointer events to the grab window and its descendants in Tk’s window hierarchy. Whenever the pointer is
within the grab window’s subtree, the pointer will behave exactly the same as if there had been no grab at
all and all events will be reported in the normal fashion. When the pointer is outsidewindow’s tree, button
presses and releases and mouse motion events are reported towindow, and window entry and window exit
ev ents are ignored. The grab subtree ‘‘owns’’ the pointer: windows outside the grab subtree will be visible
on the screen but they will be insensitive until the grab is released. The tree of windows underneath the
grab window can include top-level windows, in which case all of those top-level windows and their descen-
dants will continue to receive mouse events during the grab.

Tw o forms of grabs are possible: local and global. A local grab affects only the grabbing application:
ev ents will be reported to other applications as if the grab had never occurred. Grabs are local by default.
A global grab locks out all applications on the screen, so that only the given subtree of the grabbing appli-
cation will be sensitive to pointer events (mouse button presses, mouse button releases, pointer motions,
window entries, and window exits). During global grabs the window manager will not receive pointer
ev ents either.

During local grabs, keyboard events (key presses and key releases) are delivered as usual: the window
manager controls which application receives keyboard events, and if they are sent to any window in the
grabbing application then they are redirected to the focus window. During a global grab Tk grabs the
keyboard so that all keyboard events are always sent to the grabbing application. Thefocus command is
still used to determine which window in the application receives the keyboard events. The keyboard grab is
released when the grab is released.

Grabs apply to particular displays. If an application has windows on multiple displays then it can establish
a separate grab on each display. The grab on a particular display affects only the windows on that display.
It is possible for different applications on a single display to have simultaneous local grabs, but only one
application can have a global grab on a given display at once.

Thegrab command can take any of the following forms:

grab ?−global?window
Same asgrab set, described below.

grab current ?window?
If window is specified, returns the name of the current grab window in this application forwin-
dow’s display, or an empty string if there is no such window. Ifwindow is omitted, the command
returns a list whose elements are all of the windows grabbed by this application for all displays, or
an empty string if the application has no grabs.

grab releasewindow
Releases the grab onwindowif there is one, otherwise does nothing. Returns an empty string.

grab set?−global?window
Sets a grab onwindow. If −global is specified then the grab is global, otherwise it is local. If a
grab was already in effect for this application onwindow’s display then it is automatically

Tk Last change: 1

Tk Built-In Commands grab (n)

released. If there is already a grab onwindow and it has the same global/local form as the
requested grab, then the command does nothing. Returns an empty string.

grab statuswindow
Returnsnone if no grab is currently set onwindow, local if a local grab is set onwindow, and
global if a global grab is set.

BUGS
It took an incredibly complex and gross implementation to produce the simple grab effect described above.
Given the current implementation, it isn’t safe for applications to use the Xlib grab facilities at all except
through the Tk grab procedures. If applications try to manipulate X’s grab mechanisms directly, things will
probably break.

If a single process is managing several different Tk applications, only one of those applications can have a
local grab for a given display at any giv en time. If the applications are in different processes, this restric-
tion doesn’t exist.

KEYWORDS
grab, keyboard events, pointer events, window

Tk Last change: 2

Tk Built-In Commands grid (n)

NAME
grid − Geometry manager that arranges widgets in a grid

SYNOPSIS
grid option arg?arg ...?

DESCRIPTION
Thegrid command is used to communicate with the grid geometry manager that arranges widgets in rows
and columns inside of another window, called the geometry master (or master window). Thegrid com-
mand can have any of sev eral forms, depending on theoptionargument:

grid slave?slave ...? ?options?
If the first argument togrid is a window name (any value starting with ‘‘.’’), then the command is
processed in the same way asgrid configure.

grid bbox master?column row? ?column2 row2?
With no arguments, the bounding box (in pixels) of the grid is returned. The return value consists
of 4 integers. The first two are the pixel offset from the master window (x then y) of the top-left
corner of the grid, and the second two integers are the width and height of the grid, also in pixels.
If a singlecolumnandrow is specified on the command line, then the bounding box for that cell is
returned, where the top left cell is numbered from zero. If bothcolumnand row arguments are
specified, then the bounding box spanning the rows and columns indicated is returned.

grid columnconfigure master index?−option value...?
Query or set the column properties of theindexcolumn of the geometry master,master. The valid
options are−minsize, −weight and-pad. If one or more options are provided, thenindexmay be
given as a list of column indeces to which the configuration options will operate on. The−minsize
option sets the minimum size, in screen units, that will be permitted for this column. The−weight
option (an integer value) sets the relative weight for apportioning any extra spaces among
columns. A weight of zero (0) indicates the column will not deviate from its requested size. A
column whose weight is two will grow at twice the rate as a column of weight one when extra
space is allocated to the layout. The-pad option specifies the number of screen units that will be
added to the largest window contained completely in that column when the grid geometry manager
requests a size from the containing window. If only an option is specified, with no value, the cur-
rent value of that option is returned. If only the master window and index is specified, all the cur-
rent settings are returned in an list of "-option value" pairs.

grid configure slave?slave ...? ?options?
The arguments consist of the names of one or more slave windows followed by pairs of arguments
that specify how to manage the slaves. The characters−, x and ˆ, can be specified instead of a
window name to alter the default location of aslave, as described in the ‘‘RELATIVE PLACE-
MENT’’ section, below. The following options are supported:

−column n
Insert the slave so that it occupies thenth column in the grid. Column numbers start with
0. If this option is not supplied, then the slave is arranged just to the right of previous
slave specified on this call togrid, or column "0" if it is the first slave. For eachx that
immediately precedes theslave, the column position is incremented by one. Thus thex
represents a blank column for this row in the grid.

−columnspann
Insert the slave so that it occupiesn columns in the grid. The default is one column,
unless the window name is followed by a−, in which case the columnspan is incremented
once for each immediately following−.

Tk Last change: 4.1 1

Tk Built-In Commands grid (n)

−in other
Insert the slave(s) in the master window giv en byother. The default is the first slave’s
parent window.

−ipadx amount
The amountspecifies how much horizontal internal padding to leave on each side of the
slave(s). This is space is added inside the slave(s) border. Theamountmust be a valid
screen distance, such as2 or .5c. It defaults to 0.

−ipady amount
Theamountspecifies how much vertical internal padding to leave on on the top and bot-
tom of the slave(s). This space is added inside the slave(s) border. Theamount defaults
to 0.

−padx amount
Theamountspecifies how much horizontal external padding to leave on each side of the
slave(s), in screen units. Theamountdefaults to 0. This space is added outside the
slave(s) border.

−pady amount
Theamountspecifies how much vertical external padding to leave on the top and bottom
of the slave(s), in screen units. Theamountdefaults to 0. This space is added outside the
slave(s) border.

−row n Insert the slave so that it occupies thenth row in the grid. Row numbers start with 0. If
this option is not supplied, then the slave is arranged on the same row as the previous
slave specified on this call togrid , or the first unoccupied row if this is the first slave.

−rowspann
Insert the slave so that it occupiesn rows in the grid. The default is one row. If the next
grid command containŝcharacters instead ofslavesthat line up with the columns of this
slave, then thero wspanof thisslaveis extended by one.

−sticky style
If a slave’s cell is larger than its requested dimensions, this option may be used to posi-
tion (or stretch) the slave within its cell.Style is a string that contains zero or more of the
charactersn, s, e or w. The string can optionally contains spaces or commas, but they are
ignored. Each letter refers to a side (north, south, east, or west) that the slave will "stick"
to. If bothn ands (or e andw) are specified, the slave will be stretched to fill the entire
height (or width) of its cavity. Thesticky option subsumes the combination of−anchor
and−fill that is used bypack. The default is{} , which causes the slave to be centered in
its cavity, at its requested size.

If any of the slaves are already managed by the geometry manager then any unspecified options for
them retain their previous values rather than receiving default values.

grid forget slave?slave ...?
Removes each of theslaves from grid for its master and unmaps their windows. The slaves will no
longer be managed by the grid geometry manager. The configuration options for that window are
forgotten, so that if the slave is managed once more by the grid geometry manager, the initial
default settings are used.

grid info slave
Returns a list whose elements are the current configuration state of the slave giv en byslavein the
same option-value form that might be specified togrid configure. The first two elements of the
list are ‘‘−in master’’ where masteris the slave’s master.

grid location master x y

Tk Last change: 4.1 2

Tk Built-In Commands grid (n)

Given x andy values in screen units relative to the master window, the column and row number at
that x and y location is returned. For locations that are above or to the left of the grid,-1 is
returned.

grid propagate master?boolean?
If booleanhas a true boolean value such as1 or on then propagation is enabled formaster, which
must be a window name (see ‘‘GEOMETRY PROPA GATION’’ below). Ifbooleanhas a false
boolean value then propagation is disabled formaster. In either of these cases an empty string is
returned. Ifbooleanis omitted then the command returns0 or 1 to indicate whether propagation is
currently enabled formaster. Propagation is enabled by default.

grid rowconfigure master index?−option value...?
Query or set the row properties of theindexrow of the geometry master,master. The valid options
are−minsize, −weight and-pad. If one or more options are provided, thenindexmay be given as
a list of row indeces to which the configuration options will operate on. The−minsizeoption sets
the minimum size, in screen units, that will be permitted for this row. The−weight option (an
integer value) sets the relative weight for apportioning any extra spaces among rows. A weight of
zero (0) indicates the row will not deviate from its requested size. A row whose weight is two will
grow at twice the rate as a row of weight one when extra space is allocated to the layout. The-pad
option specifies the number of screen units that will be added to the largest window contained
completely in that row when the grid geometry manager requests a size from the containing win-
dow. If only an option is specified, with no value, the current value of that option is returned. If
only the master window and index is specified, all the current settings are returned in an list of
"-option value" pairs.

grid remove slave?slave ...?
Removes each of theslaves from grid for its master and unmaps their windows. The slaves will no
longer be managed by the grid geometry manager. Howev er, the configuration options for that
window are remembered, so that if the slave is managed once more by the grid geometry manager,
the previous values are retained.

grid sizemaster
Returns the size of the grid (in columns then rows) formaster. The size is determined either by
the slave occupying the largest row or column, or the largest column or row with aminsize,
weight, or pad that is non-zero.

grid slavesmaster?−option value?
If no options are supplied, a list of all of the slaves inmasterare returned, most recently manages
first. Optioncan be either−row or −column which causes only the slaves in the row (or column)
specified byvalueto be returned.

RELATIVE PLACEMENT
The grid command contains a limited set of capabilities that permit layouts to be created without specify-
ing the row and column information for each slave. This permits slaves to be rearranged, added, or
removed without the need to explicitly specify row and column information. When no column or row
information is specified for aslave, default values are chosen forcolumn, ro w, columnspanandro wspan
at the time theslaveis managed. The values are chosen based upon the current layout of the grid, the posi-
tion of theslaverelative to otherslaves in the same grid command, and the presence of the characters−, ˆ,
andˆ in grid command whereslavenames are normally expected.

− This increases the columnspan of theslaveto the left. Several−’s in a row will succes-
sively increase the columnspan. A− may not follow â or ax.

x This leaves an empty column between theslaveon the left and theslaveon the right.

ˆ This extends thero wspan of theslaveabove thê ’s in the grid. The number of̂’s in a
row must match the number of columns spanned by theslaveabove it.

Tk Last change: 4.1 3

Tk Built-In Commands grid (n)

THE GRID ALGORITHM
The grid geometry manager lays out its slaves in three steps. In the first step, the minimum size needed to
fit all of the slaves is computed, then (if propagation is turned on), a request is made of the master window
to become that size. In the second step, the requested size is compared against the actual size of the master.
If the sizes are different, then spaces is added to or taken away from the layout as needed. For the final
step, each slave is positioned in its row(s) and column(s) based on the setting of itsstickyflag.

To compute the minimum size of a layout, the grid geometry manager first looks at all slaves whose
columnspan and rowspan values are one, and computes the nominal size of each row or column to be either
theminsizefor that row or column, or the sum of thepadding plus the size of the largest slave, whichever is
greater. Then the slaves whose rowspans or columnspans are greater than one are examined. If a group of
rows or columns need to be increased in size in order to accommodate these slaves, then extra space is
added to each row or column in the group according to itsweight. For each group whose weights are all
zero, the additional space is apportioned equally.

For masters whose size is larger than the requested layout, the additional space is apportioned according to
the row and column weights. If all of the weights are zero, the layout is centered within its master. For
masters whose size is smaller than the requested layout, space is taken away from columns and rows
according to their weights. However, once a column or row shrinks to its minsize, its weight is taken to be
zero. If more space needs to be removed from a layout than would be permitted, as when all the rows or
columns are at there minimum sizes, the layout is clipped on the bottom and right.

GEOMETRY PROPA GATION
The grid geometry manager normally computes how large a master must be to just exactly meet the needs
of its slaves, and it sets the requested width and height of the master to these dimensions. This causes
geometry information to propagate up through a window hierarchy to a top-level window so that the entire
sub-tree sizes itself to fit the needs of the leaf windows. However, thegrid propagate command may be
used to turn off propagation for one or more masters. If propagation is disabled then grid will not set the
requested width and height of the master window. This may be useful if, for example, you wish for a mas-
ter window to hav e a fixed size that you specify.

RESTRICTIONS ON MASTER WINDOWS
The master for each slave must either be the slave’s parent (the default) or a descendant of the slave’s par-
ent. This restriction is necessary to guarantee that the slave can be placed over any part of its master that is
visible without danger of the slave being clipped by its parent. In addition, all slaves in one call togrid
must have the same master.

STACKING ORDER
If the master for a slave is not its parent then you must make sure that the slave is higher in the stacking
order than the master. Otherwise the master will obscure the slave and it will appear as if the slave hasn’t
been managed correctly. The easiest way to make sure the slave is higher than the master is to create the
master window first: the most recently created window will be highest in the stacking order.

CREDITS
The grid command is based on ideas taken from theGridBag geometry manager written by Doug. Stein,
and theblt_table geometry manager, written by George Howlett.

KEYWORDS
geometry manager, location, grid, cell, propagation, size, pack

Tk Last change: 4.1 4

Tk Built-In Commands image (n)

NAME
image − Create and manipulate images

SYNOPSIS
imageoption?arg arg ...?

DESCRIPTION
The image command is used to create, delete, and query images. It can take sev eral different forms,
depending on theoptionargument. The legal forms are:

image createtype?name? ?option value ...?
Creates a new image and returns its name.typespecifies the type of the image, which must be one
of the types currently defined (e.g.,bitmap). namespecifies the name for the image; if it is omit-
ted then Tk picks a name of the formimagex, wherex is an integer. There may be any number of
option−value pairs, which provide configuration options for the new image. The legal set of
options is defined separately for each image type; see below for details on the options for built-in
image types. If an image already exists by the given name then it is replaced with the new image
and any instances of that image will redisplay with the new contents.

image delete?name name...?
Deletes each of the named images and returns an empty string. If there are instances of the images
displayed in widgets, the images won’t actually be deleted until all of the instances are released.
However, the association between the instances and the image manager will be dropped. Existing
instances will retain their sizes but redisplay as empty areas. If a deleted image is recreated with
another call toimage create, the existing instances will use the new image.

image heightname
Returns a decimal string giving the height of imagenamein pixels.

image names
Returns a list containing the names of all existing images.

image typename
Returns the type of imagename(the value of thetypeargument toimage createwhen the image
was created).

image types
Returns a list whose elements are all of the valid image types (i.e., all of the values that may be
supplied for thetypeargument toimage create).

image width name
Returns a decimal string giving the width of imagenamein pixels.

BUILT-IN IMAGE TYPES
The following image types are defined by Tk so they will be available in any Tk application. Individual
applications or extensions may define additional types.

bitmap Each pixel in the image displays a foreground color, a background color, or nothing. See the
bitmap manual entry for more information.

photo Displays a variety of full-color images, using dithering to approximate colors on displays with
limited color capabilities. See thephoto manual entry for more information.

KEYWORDS
height, image, types of images, width

Tk Last change: 4.0 1

Tk Built-In Commands label (n)

NAME
label − Create and manipulate label widgets

SYNOPSIS
label pathName?options?

STANDARD OPTIONS
−anchor −font −image −takefocus
−background −foreground −justify −text
−bitmap −highlightbackground −padx −textvariable
−borderwidth −highlightcolor −pady −underline
−cursor −highlightthickness −relief −wraplength

See theoptionsmanual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Command-Line Name: −height
Database Name: height
Database Class: Height

Specifies a desired height for the label. If an image or bitmap is being displayed in the label then
the value is in screen units (i.e. any of the forms acceptable toTk_GetPixels); for text it is in lines
of text. If this option isn’t specified, the label’s desired height is computed from the size of the
image or bitmap or text being displayed in it.

Command-Line Name: −width
Database Name: width
Database Class: Width

Specifies a desired width for the label. If an image or bitmap is being displayed in the label then
the value is in screen units (i.e. any of the forms acceptable toTk_GetPixels); for text it is in char-
acters. If this option isn’t specified, the label’s desired width is computed from the size of the
image or bitmap or text being displayed in it.

DESCRIPTION
The label command creates a new window (given by thepathNameargument) and makes it into a label
widget. Additional options, described above, may be specified on the command line or in the option
database to configure aspects of the label such as its colors, font, text, and initial relief. Thelabel com-
mand returns itspathNameargument. At the time this command is invoked, there must not exist a window
namedpathName, butpathName’s parent must exist.

A label is a widget that displays a textual string, bitmap or image. If text is displayed, it must all be in a
single font, but it can occupy multiple lines on the screen (if it contains newlines or if wrapping occurs
because of thewrapLength option) and one of the characters may optionally be underlined using the
underline option. The label can be manipulated in a few simple ways, such as changing its relief or text,
using the commands described below.

WIDGET COMMAND
The label command creates a new Tcl command whose name ispathName. This command may be used to
invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?
Optionand theargs determine the exact behavior of the command. The following commands are possible
for label widgets:

pathNamecgetoption

Tk Last change: 4.0 1

Tk Built-In Commands label (n)

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thelabel command.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thelabel command.

BINDINGS
When a new label is created, it has no default event bindings: labels are not intended to be interactive.

KEYWORDS
label, widget

Tk Last change: 4.0 2

Tk Built-In Commands listbox (n)

NAME
listbox − Create and manipulate listbox widgets

SYNOPSIS
listbox pathName?options?

STANDARD OPTIONS
−background −foreground −relief −takefocus
−borderwidth −height −selectbackground −width
−cursor −highlightbackground −selectborderwidth −xscrollcommand
−exportselection −highlightcolor −selectforeground −yscrollcommand
−font −highlightthickness −setgrid

See theoptionsmanual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Command-Line Name: −height
Database Name: height
Database Class: Height

Specifies the desired height for the window, in lines. If zero or less, then the desired height for the
window is made just large enough to hold all the elements in the listbox.

Command-Line Name: −selectmode
Database Name: selectMode
Database Class: SelectMode

Specifies one of several styles for manipulating the selection. The value of the option may be arbi-
trary, but the default bindings expect it to be eithersingle, browse, multiple , or extended; the
default value isbrowse.

Command-Line Name: −width
Database Name: width
Database Class: Width

Specifies the desired width for the window in characters. If the font doesn’t hav e a uniform width
then the width of the character ‘‘0’’ is used in translating from character units to screen units. If
zero or less, then the desired width for the window is made just large enough to hold all the ele-
ments in the listbox.

DESCRIPTION
The listbox command creates a new window (given by thepathNameargument) and makes it into a listbox
widget. Additional options, described above, may be specified on the command line or in the option
database to configure aspects of the listbox such as its colors, font, text, and relief. Thelistbox command
returns itspathNameargument. At the time this command is invoked, there must not exist a window
namedpathName, butpathName’s parent must exist.

A listbox is a widget that displays a list of strings, one per line. When first created, a new listbox has no
elements. Elements may be added or deleted using widget commands described below. In addition, one or
more elements may be selected as described below. If a listbox is exporting its selection (seeexportSelec-
tion option), then it will observe the standard X11 protocols for handling the selection. Listbox selections
are available as typeSTRING; the value of the selection will be the text of the selected elements, with
newlines separating the elements.

It is not necessary for all the elements to be displayed in the listbox window at once; commands described
below may be used to change the view in the window. Listboxes allow scrolling in both directions using
the standardxScrollCommand andyScrollCommand options. They also support scanning, as described

Tk Last change: 8.0 1

Tk Built-In Commands listbox (n)

below.

INDICES
Many of the widget commands for listboxes take one or more indices as arguments. An index specifies a
particular element of the listbox, in any of the following ways:

number Specifies the element as a numerical index, where 0 corresponds to the first element in the
listbox.

active Indicates the element that has the location cursor. This element will be displayed with an
underline when the listbox has the keyboard focus, and it is specified with theactivate wid-
get command.

anchor Indicates the anchor point for the selection, which is set with theselection anchorwidget
command.

end Indicates the end of the listbox. For most commands this refers to the last element in the
listbox, but for a few commands such asindex and insert it refers to the element just after
the last one.

@x,y Indicates the element that covers the point in the listbox window specified byx and y (in
pixel coordinates). If no element covers that point, then the closest element to that point is
used.

In the widget command descriptions below, arguments namedindex, first, and last always contain text
indices in one of the above forms.

WIDGET COMMAND
The listbox command creates a new Tcl command whose name ispathName. This command may be used
to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?
Optionand theargs determine the exact behavior of the command. The following commands are possible
for listbox widgets:

pathNameactivate index
Sets the active element to the one indicated byindex. If index is outside the range of elements in
the listbox then the closest element is activated. The active element is drawn with an underline
when the widget has the input focus, and its index may be retrieved with the indexactive.

pathNamebbox index
Returns a list of four numbers describing the bounding box of the text in the element given by
index. The first two elements of the list give the x and y coordinates of the upper-left corner of the
screen area covered by the text (specified in pixels relative to the widget) and the last two elements
give the width and height of the area, in pixels. If no part of the element given byindexis visible
on the screen, or ifindexrefers to a non-existent element, then the result is an empty string; if the
element is partially visible, the result gives the full area of the element, including any parts that are
not visible.

pathNamecgetoption
Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thelistbox command.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value

Tk Last change: 8.0 2

Tk Built-In Commands listbox (n)

returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thelistbox command.

pathNamecurselection
Returns a list containing the numerical indices of all of the elements in the listbox that are cur-
rently selected. If there are no elements selected in the listbox then an empty string is returned.

pathNamedeletefirst ?last?
Deletes one or more elements of the listbox.First andlast are indices specifying the first and last
elements in the range to delete. Iflast isn’t specified it defaults tofirst, i.e. a single element is
deleted.

pathNamegetfirst ?last?
If last is omitted, returns the contents of the listbox element indicated byfirst, or an empty string if
first refers to a non-existent element. Iflast is specified, the command returns a list whose ele-
ments are all of the listbox elements betweenfirst andlast, inclusive. Bothfirst andlast may have
any of the standard forms for indices.

pathNameindex index
Returns the integer index value that corresponds toindex. If index is end the return value is a
count of the number of elements in the listbox (not the index of the last element).

pathNameinsert index?element element ...?
Inserts zero or more new elements in the list just before the element given byindex. If index is
specified asend then the new elements are added to the end of the list. Returns an empty string.

pathNamenearesty
Given a y-coordinate within the listbox window, this command returns the index of the (visible)
listbox element nearest to that y-coordinate.

pathNamescanoption args
This command is used to implement scanning on listboxes. It has two forms, depending on
option:

pathNamescan markx y
Recordsx andy and the current view in the listbox window; used in conjunction with
laterscan dragtocommands. Typically this command is associated with a mouse button
press in the widget. It returns an empty string.

pathNamescan dragtox y.
This command computes the difference between itsx andy arguments and thex andy
arguments to the lastscan markcommand for the widget. It then adjusts the view by 10
times the difference in coordinates. This command is typically associated with mouse
motion events in the widget, to produce the effect of dragging the list at high speed
through the window. The return value is an empty string.

pathNameseeindex
Adjust the view in the listbox so that the element given byindex is visible. If the element is
already visible then the command has no effect; if the element is near one edge of the window then
the listbox scrolls to bring the element into view at the edge; otherwise the listbox scrolls to center
the element.

pathNameselectionoption arg
This command is used to adjust the selection within a listbox. It has several forms, depending on
option:

pathNameselection anchorindex
Sets the selection anchor to the element given byindex. If indexrefers to a non-existent

Tk Last change: 8.0 3

Tk Built-In Commands listbox (n)

element, then the closest element is used. The selection anchor is the end of the selection
that is fixed while dragging out a selection with the mouse. The indexanchor may be
used to refer to the anchor element.

pathNameselection clearfirst ?last?
If any of the elements betweenfirst and last (inclusive) are selected, they are deselected.
The selection state is not changed for elements outside this range.

pathNameselection includesindex
Returns 1 if the element indicated byindexis currently selected, 0 if it isn’t.

pathNameselection setfirst ?last?
Selects all of the elements in the range betweenfirst andlast, inclusive, without affecting
the selection state of elements outside that range.

pathNamesize
Returns a decimal string indicating the total number of elements in the listbox.

pathNamexview args
This command is used to query and change the horizontal position of the information in the wid-
get’s window. It can take any of the following forms:

pathNamexview
Returns a list containing two elements. Each element is a real fraction between 0 and 1;
together they describe the horizontal span that is visible in the window. For example, if
the first element is .2 and the second element is .6, 20% of the listbox’s text is off-screen
to the left, the middle 40% is visible in the window, and 40% of the text is off-screen to
the right. These are the same values passed to scrollbars via the−xscrollcommand
option.

pathNamexview index
Adjusts the view in the window so that the character position given byindexis displayed
at the left edge of the window. Character positions are defined by the width of the char-
acter0.

pathNamexview movetofraction
Adjusts the view in the window so thatfraction of the total width of the listbox text is off-
screen to the left.fractionmust be a fraction between 0 and 1.

pathNamexview scroll number what
This command shifts the view in the window left or right according tonumberandwhat.
Numbermust be an integer.Whatmust be eitherunits or pagesor an abbreviation of one
of these. Ifwhat is units, the view adjusts left or right bynumbercharacter units (the
width of the0 character) on the display; if it ispagesthen the view adjusts bynumber
screenfuls. Ifnumberis negative then characters farther to the left become visible; if it is
positive then characters farther to the right become visible.

pathNameyview ?args?
This command is used to query and change the vertical position of the text in the widget’s window.
It can take any of the following forms:

pathNameyview
Returns a list containing two elements, both of which are real fractions between 0 and 1.
The first element gives the position of the listbox element at the top of the window, rela-
tive to the listbox as a whole (0.5 means it is halfway through the listbox, for example).
The second element gives the position of the listbox element just after the last one in the
window, relative to the listbox as a whole. These are the same values passed to scrollbars
via the−yscrollcommandoption.

Tk Last change: 8.0 4

Tk Built-In Commands listbox (n)

pathNameyview index
Adjusts the view in the window so that the element given byindexis displayed at the top
of the window.

pathNameyview movetofraction
Adjusts the view in the window so that the element given byfraction appears at the top of
the window. Fr action is a fraction between 0 and 1; 0 indicates the first element in the
listbox, 0.33 indicates the element one-third the way through the listbox, and so on.

pathNameyview scroll number what
This command adjusts the view in the window up or down according tonumberand
what. Numbermust be an integer.Whatmust be eitherunits or pages. If what is units,
the view adjusts up or down bynumberlines; if it is pagesthen the view adjusts bynum-
ber screenfuls. Ifnumberis negative then earlier elements become visible; if it is posi-
tive then later elements become visible.

DEFAULT BINDINGS
Tk automatically creates class bindings for listboxes that give them Motif-like behavior. Much of the
behavior of a listbox is determined by itsselectModeoption, which selects one of four ways of dealing
with the selection.

If the selection mode issingle or browse, at most one element can be selected in the listbox at once. In
both modes, clicking button 1 on an element selects it and deselects any other selected item. Inbrowse
mode it is also possible to drag the selection with button 1.

If the selection mode ismultiple or extended, any number of elements may be selected at once, including
discontiguous ranges. Inmultiple mode, clicking button 1 on an element toggles its selection state without
affecting any other elements. Inextended mode, pressing button 1 on an element selects it, deselects
ev erything else, and sets the anchor to the element under the mouse; dragging the mouse with button 1
down extends the selection to include all the elements between the anchor and the element under the
mouse, inclusive.

Most people will probably want to usebrowsemode for single selections andextendedmode for multiple
selections; the other modes appear to be useful only in special situations.

In addition to the above behavior, the following additional behavior is defined by the default bindings:

[1] In extendedmode, the selected range can be adjusted by pressing button 1 with the Shift key
down: this modifies the selection to consist of the elements between the anchor and the element
under the mouse, inclusive. The un-anchored end of this new selection can also be dragged with
the button down.

[2] In extendedmode, pressing button 1 with the Control key down starts a toggle operation: the
anchor is set to the element under the mouse, and its selection state is reversed. The selection state
of other elements isn’t changed. If the mouse is dragged with button 1 down, then the selection
state of all elements between the anchor and the element under the mouse is set to match that of
the anchor element; the selection state of all other elements remains what it was before the toggle
operation began.

[3] If the mouse leaves the listbox window with button 1 down, the window scrolls away from the
mouse, making information visible that used to be off-screen on the side of the mouse. The
scrolling continues until the mouse re-enters the window, the button is released, or the end of the
listbox is reached.

[4] Mouse button 2 may be used for scanning. If it is pressed and dragged over the listbox, the con-
tents of the listbox drag at high speed in the direction the mouse moves.

[5] If the Up or Down key is pressed, the location cursor (active element) moves up or down one

Tk Last change: 8.0 5

Tk Built-In Commands listbox (n)

element. If the selection mode isbrowseor extendedthen the new active element is also selected
and all other elements are deselected. Inextendedmode the new active element becomes the
selection anchor.

[6] In extended mode, Shift-Up and Shift-Down move the location cursor (active element) up or
down one element and also extend the selection to that element in a fashion similar to dragging
with mouse button 1.

[7] The Left and Right keys scroll the listbox view left and right by the width of the character0. Con-
trol-Left and Control-Right scroll the listbox view left and right by the width of the window. Con-
trol-Prior and Control-Next also scroll left and right by the width of the window.

[8] The Prior and Next keys scroll the listbox view up and down by one page (the height of the win-
dow).

[9] The Home and End keys scroll the listbox horizontally to the left and right edges, respectively.

[10] Control-Home sets the location cursor to the the first element in the listbox, selects that element,
and deselects everything else in the listbox.

[11] Control-End sets the location cursor to the the last element in the listbox, selects that element, and
deselects everything else in the listbox.

[12] In extendedmode, Control-Shift-Home extends the selection to the first element in the listbox and
Control-Shift-End extends the selection to the last element.

[13] In multiple mode, Control-Shift-Home moves the location cursor to the first element in the listbox
and Control-Shift-End moves the location cursor to the last element.

[14] The space and Select keys make a selection at the location cursor (active element) just as if mouse
button 1 had been pressed over this element.

[15] In extendedmode, Control-Shift-space and Shift-Select extend the selection to the active element
just as if button 1 had been pressed with the Shift key down.

[16] In extendedmode, the Escape key cancels the most recent selection and restores all the elements
in the selected range to their previous selection state.

[17] Control-slash selects everything in the widget, except insingleandbrowsemodes, in which case
it selects the active element and deselects everything else.

[18] Control-backslash deselects everything in the widget, except inbrowse mode where it has no
effect.

[19] The F16 key (labelled Copy on many Sun workstations) or Meta-w copies the selection in the wid-
get to the clipboard, if there is a selection.

The behavior of listboxes can be changed by defining new bindings for individual widgets or by redefining
the class bindings.

KEYWORDS
listbox, widget

Tk Last change: 8.0 6

Tk Built-In Commands Safe Tk (n)

NAME
loadTk − Load Tk into a safe interpreter.

SYNOPSIS
::safe::loadTk slave?−usewindowId? ?−display displayName?

Safe Tk is based on Safe Tcl, which provides a mechanism that allows restricted and mediated access to
auto-loading and packages for safe interpreters. Safe Tk adds the ability to configure the interpreter for
safe Tk operations and load Tk into safe interpreters.

DESCRIPTION
The ::safe::loadTk command initializes the required data structures in the named safe interpreter and then
loads Tk into it. The command returns the name of the safe interpreter. If−use is specified, the window
identified by the specified system dependent identifierwindowId is used to contain the‘‘.’’ window of the
safe interpreter; it can be any valid id, eventually referencing a window belonging to another application.
As a convenience, if the window you plan to use is a Tk Window of the application you can use the window
name (eg:.x.y) instead of its window Id ([winfo id .x.y]). When−useis not specified, a new toplevel win-
dow is created for the‘‘.’’ window of the safe interpreter. On X11 if you want the embedded window to use
another display than the default one, specify it with−display. See theSECURITY ISSUESsection below
for implementation details.

SECURITY ISSUES
Please read thesafemanual page for Tcl to learn about the basic security considerations for Safe Tcl.

::safe::loadTk adds the value oftk_library taken from the master interpreter to the virtual access path of
the safe interpreter so that auto-loading will work in the safe interpreter.

Tk initialization is now safe with respect to not trusting the slave’s state for startup.::safe::loadTk registers
the slave’s name so when the Tk initialization (Tk_SafeInit) is called and in turn calls the master’s
::safe::InitTk it will return the desiredargv equivalent (−usewindowId, correct−display, etc...).

When−useis not used, the new toplevel created is specially decorated so the user is always aware that the
user interface presented comes from a potentially unsafe code and can easily delete the corresponding inter-
preter.

On X11, conflicting−useand−display are likely to generate a fatal X error.

SEE ALSO
safe(n), interp(n), library(n), load(n), package(n), source(n), unknown(n)

KEYWORDS
alias, auto−loading, auto_mkindex, load, master interpreter, safe interpreter, slave interpreter, source

Tk Last change: 8.0 1

Tk Built-In Commands lower (n)

NAME
lower − Change a window’s position in the stacking order

SYNOPSIS
lower window?belowThis?

DESCRIPTION
If the belowThisargument is omitted then the command lowerswindowso that it is below all of its siblings
in the stacking order (it will be obscured by any siblings that overlap it and will not obscure any siblings).
If belowThisis specified then it must be the path name of a window that is either a sibling ofwindowor the
descendant of a sibling ofwindow. In this case thelower command will insertwindow into the stacking
order just belowbelowThis(or the ancestor ofbelowThisthat is a sibling ofwindow); this could end up
either raising or loweringwindow.

SEE ALSO
raise

KEYWORDS
lower, obscure, stacking order

Tk Last change: 3.3 1

Tk Built-In Commands menu (n)

NAME
menu − Create and manipulate menu widgets

SYNOPSIS
menupathName?options?

STANDARD OPTIONS
−activebackground −background −disabledforeground −relief
−activeborderwidth −borderwidth −font −takefocus
−activeforeground −cursor −foreground

See theoptionsmanual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Command-Line Name: −postcommand
Database Name: postCommand
Database Class: Command

If this option is specified then it provides a Tcl command to execute each time the menu is posted.
The command is invoked by thepost widget command before posting the menu. Note that in 8.0
on Macintosh and Windows, all commands in a menu systems are executed before any are posted.
This is due to the limitations in the individual platforms’ menu managers.

Command-Line Name: −selectcolor
Database Name: selectColor
Database Class: Background

For menu entries that are check buttons or radio buttons, this option specifies the color to display
in the indicator when the check button or radio button is selected.

Command-Line Name: −tearoff
Database Name: tearOff
Database Class: TearOff

This option must have a proper boolean value, which specifies whether or not the menu should
include a tear-off entry at the top. If so, it will exist as entry 0 of the menu and the other entries
will number starting at 1. The default menu bindings arrange for the menu to be torn off when the
tear-off entry is invoked.

Command-Line Name: −tearoffcommand
Database Name: tearOffCommand
Database Class: TearOffCommand

If this option has a non-empty value, then it specifies a Tcl command to invoke whenever the menu
is torn off. The actual command will consist of the value of this option, followed by a space, fol-
lowed by the name of the menu window, followed by a space, followed by the name of the name
of the torn off menu window. For example, if the option’s is ‘‘a b’’ and menu.x.y is torn off to
create a new menu.x.tearoff1, then the command ‘‘a b .x.y .x.tearoff1’’ will be invoked.

Command-Line Name: −title
Database Name: title
Database Class: Title

The string will be used to title the window created when this menu is torn off. If the title is NULL,
then the window will have the title of the menubutton or the text of the cascade item from which
this menu was invoked.

Command-Line Name: −type
Database Name: type
Database Class: Type

Tk Last change: 4.1 1

Tk Built-In Commands menu (n)

This option can be one ofmenubar, tearoff, or normal, and is set when the menu is created.
While the string returned by the configuration database will change if this option is changed, this
does not affect the menu widget’s behavior. This is used by the cloning mechanism and is not nor-
mally set outside of the Tk library.

INTRODUCTION
Themenucommand creates a new top-level window (given by thepathNameargument) and makes it into a
menu widget. Additional options, described above, may be specified on the command line or in the option
database to configure aspects of the menu such as its colors and font. Themenu command returns itspath-
Nameargument. At the time this command is invoked, there must not exist a window namedpathName,
butpathName’s parent must exist.

A menu is a widget that displays a collection of one-line entries arranged in one or more columns. There
exist several different types of entries, each with different properties. Entries of different types may be
combined in a single menu. Menu entries are not the same as entry widgets. In fact, menu entries are not
ev en distinct widgets; the entire menu is one widget.

Menu entries are displayed with up to three separate fields. The main field is a label in the form of a text
string, a bitmap, or an image, controlled by the−label, −bitmap, and−imageoptions for the entry. If the
−acceleratoroption is specified for an entry then a second textual field is displayed to the right of the label.
The accelerator typically describes a keystroke sequence that may be typed in the application to cause the
same result as invoking the menu entry. The third field is anindicator. The indicator is present only for
checkbutton or radiobutton entries. It indicates whether the entry is selected or not, and is displayed to the
left of the entry’s string.

In normal use, an entry becomes active (displays itself differently) whenever the mouse pointer is over the
entry. If a mouse button is released over the entry then the entry isinvoked. The effect of invocation is dif-
ferent for each type of entry; these effects are described below in the sections on individual entries.

Entries may bedisabled, which causes their labels and accelerators to be displayed with dimmer colors.
The default menu bindings will not allow a disabled entry to be activated or invoked. Disabled entries may
be re-enabled, at which point it becomes possible to activate and invoke them again.

Whenever a menu’s active entry is changed, a <<MenuSelect>> virtual event is send to the menu. The
active item can then be queried from the menu, and an action can be taken, such as setting context-sensitive
help text for the entry.

COMMAND ENTRIES
The most common kind of menu entry is a command entry, which behaves much like a button widget.
When a command entry is invoked, a Tcl command is executed. The Tcl command is specified with the
−commandoption.

SEPARATOR ENTRIES
A separator is an entry that is displayed as a horizontal dividing line. A separator may not be activated or
invoked, and it has no behavior other than its display appearance.

CHECKBUTTON ENTRIES
A checkbutton menu entry behaves much like a checkbutton widget. When it is invoked it toggles back and
forth between the selected and deselected states. When the entry is selected, a particular value is stored in a
particular global variable (as determined by the−onvalueand−variable options for the entry); when the
entry is deselected another value (determined by the−offvalue option) is stored in the global variable. An
indicator box is displayed to the left of the label in a checkbutton entry. If the entry is selected then the

Tk Last change: 4.1 2

Tk Built-In Commands menu (n)

indicator’s center is displayed in the color given by the-selectcoloroption for the entry; otherwise the indi-
cator’s center is displayed in the background color for the menu. If a−commandoption is specified for a
checkbutton entry, then its value is evaluated as a Tcl command each time the entry is invoked; this hap-
pens after toggling the entry’s selected state.

RADIOBUTTON ENTRIES
A radiobutton menu entry behaves much like a radiobutton widget. Radiobutton entries are organized in
groups of which only one entry may be selected at a time. Whenever a particular entry becomes selected it
stores a particular value into a particular global variable (as determined by the−value and −variable
options for the entry). This action causes any previously-selected entry in the same group to deselect itself.
Once an entry has become selected, any change to the entry’s associated variable will cause the entry to
deselect itself. Grouping of radiobutton entries is determined by their associated variables: if two entries
have the same associated variable then they are in the same group. An indicator diamond is displayed to
the left of the label in each radiobutton entry. If the entry is selected then the indicator’s center is displayed
in the color given by the−selectcoloroption for the entry; otherwise the indicator’s center is displayed in
the background color for the menu. If a−command option is specified for a radiobutton entry, then its
value is evaluated as a Tcl command each time the entry is invoked; this happens after selecting the entry.

CASCADE ENTRIES
A cascade entry is one with an associated menu (determined by the−menu option). Cascade entries allow
the construction of cascading menus. Thepostcascadewidget command can be used to post and unpost
the associated menu just next to of the cascade entry. The associated menu must be a child of the menu
containing the cascade entry (this is needed in order for menu traversal to work correctly).

A cascade entry posts its associated menu by invoking a Tcl command of the form
menupostx y

wheremenuis the path name of the associated menu, andx andy are the root-window coordinates of the
upper-right corner of the cascade entry. On Unix, the lower-level menu is unposted by executing a Tcl
command with the form

menuunpost
wheremenuis the name of the associated menu. On other platforms, the platform’s native code takes care
of unposting the menu.

If a −commandoption is specified for a cascade entry then it is evaluated as a Tcl command whenever the
entry is invoked. This is not supported on Windows.

TEAR-OFF ENTRIES
A tear-off entry appears at the top of the menu if enabled with thetearOff option. It is not like other menu
entries in that it cannot be created with theadd widget command and cannot be deleted with thedelete
widget command. When a tear-off entry is created it appears as a dashed line at the top of the menu.
Under the default bindings, invoking the tear-off entry causes a torn-off copy to be made of the menu and
all of its submenus.

MENUBARS
Any menu can be set as a menubar for a toplevel window (seetoplevel command for syntax). On the Mac-
intosh, whenever the toplevel is in front, this menu’s cascade items will appear in the menubar across the
top of the main monitor. On Windows and Unix, this menu’s items will be displayed in a menubar accross
the top of the window. These menus will behave according to the interface guidelines of their platforms.
For every menu set as a menubar, a clone menu is made. See theCLONES section for more information.

Tk Last change: 4.1 3

Tk Built-In Commands menu (n)

SPECIAL MENUS IN MENUBARS
Certain menus in a menubar will be treated specially. On the Macintosh, access to the special Apple and
Help menus is provided. On Windows, access to the Windows System menu in each window is provided.
On X Windows, a special right-justified help menu is provided. In all cases, these menus must be created
with the command name of the menubar menu concatenated with the special name. So for a menubar
named .menubar, on the Macintosh, the special menus would be .menubar.apple and .menubar.help; on
Windows, the special menu would be .menubar.system; on X Windows, the help menu would be
.menubar.help.

When Tk sees an Apple menu on the Macintosh, that menu’s contents make up the first items of the Apple
menu on the screen whenever the window containing the menubar is in front. The menu is the first one that
the user sees and has a title which is an Apple logo. After all of the Tk-defined items, the menu will have a
separator, followed by all of the items in the user’s Apple Menu Items folder. Since the System uses a dif-
ferent menu definition procedure for the Apple menu than Tk uses for its menus, and the system APIs do
not fully support everything Tk tries to do, the menu item will only have its text displayed. No font
attributes, images, bitmaps, or colors will be displayed. In addition, a menu with a tearoff item will have the
tearoff item displayed as "(TearOff)".

When Tk see a Help menu on the Macintosh, the menu’s contents are appended to the standard help menu
on the right of the user’s menubar whenever the user’s menubar is in front. The first items in the menu are
provided by Apple. Similar to the Apple Menu, cusomization in this menu is limited to what the system
provides.

When Tk sees a System menu on Windows, its items are appended to the system menu that the menubar is
attached to. This menu has an icon representing a spacebar, and can be invoked with the mouse or by typing
Alt+Spacebar. Due to limitations in the Windows API, any font changes, colors, images, bitmaps, or
tearoff images will not appear in the system menu.

When Tk see a Help menu on X Windows, the menu is moved to be last in the menubar and is right justi-
fied.

CLONES
When a menu is set as a menubar for a toplevel window, or when a menu is torn off, a clone of the menu is
made. This clone is a menu widget in its own right, but it is a child of the original. Changes in the configu-
ration of the original are reflected in the clone. Additionally, any cascades that are pointed to are also
cloned so that menu traversal will work right. Clones are destroyed when either the tearoff or menubar goes
aw ay, or when the original menu is destroyed.

WIDGET COMMAND
The menu command creates a new Tcl command whose name ispathName. This command may be used
to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?
Optionand theargs determine the exact behavior of the command.

Many of the widget commands for a menu take as one argument an indicator of which entry of the menu to
operate on. These indicators are calledindexes and may be specified in any of the following forms:

number Specifies the entry numerically, where 0 corresponds to the top-most entry of the menu, 1 to
the entry below it, and so on.

active Indicates the entry that is currently active. If no entry is active then this form is equivalent to
none. This form may not be abbreviated.

end Indicates the bottommost entry in the menu. If there are no entries in the menu then this
form is equivalent tonone. This form may not be abbreviated.

Tk Last change: 4.1 4

Tk Built-In Commands menu (n)

last Same asend.

none Indicates ‘‘no entry at all’’; this is used most commonly with theactivate option to deacti-
vate all the entries in the menu. In most cases the specification ofnone causes nothing to
happen in the widget command. This form may not be abbreviated.

@number In this form,numberis treated as a y-coordinate in the menu’s window; the entry closest to
that y-coordinate is used. For example, ‘‘@0’’ indicates the top-most entry in the window.

pattern If the index doesn’t satisfy one of the above forms then this form is used.Patternis pattern-
matched against the label of each entry in the menu, in order from the top down, until a
matching entry is found. The rules ofTcl_StringMatch are used.

The following widget commands are possible for menu widgets:

pathNameactivate index
Change the state of the entry indicated byindex to active and redisplay it using its active colors.
Any previously-active entry is deactivated. Ifindexis specified asnone, or if the specified entry is
disabled, then the menu ends up with no active entry. Returns an empty string.

pathNameadd type?option value option value ...?
Add a new entry to the bottom of the menu. The new entry’s type is given bytypeand must be
one ofcascade, checkbutton, command, radiobutton , or separator, or a unique abbreviation of
one of the above. If additional arguments are present, they specify any of the following options:

−activebackgroundvalue
Specifies a background color to use for displaying this entry when it is active. If this
option is specified as an empty string (the default), then theactiveBackgroundoption for
the overall menu is used. If thetk_strictMotif variable has been set to request strict
Motif compliance, then this option is ignored and the−background option is used in its
place. This option is not available for separator or tear-off entries.

−activeforegroundvalue
Specifies a foreground color to use for displaying this entry when it is active. If this
option is specified as an empty string (the default), then theactiveForegroundoption for
the overall menu is used. This option is not available for separator or tear-off entries.

−acceleratorvalue
Specifies a string to display at the right side of the menu entry. Normally describes an
accelerator keystroke sequence that may be typed to invoke the same function as the
menu entry. This option is not available for separator or tear-off entries.

−background value
Specifies a background color to use for displaying this entry when it is in the normal state
(neither active nor disabled). If this option is specified as an empty string (the default),
then thebackground option for the overall menu is used. This option is not available for
separator or tear-off entries.

−bitmap value
Specifies a bitmap to display in the menu instead of a textual label, in any of the forms
accepted byTk_GetBitmap. This option overrides the−label option but may be reset to
an empty string to enable a textual label to be displayed. If a−image option has been
specified, it overrides−bitmap. This option is not available for separator or tear-off
entries.

−columnbreak value
When this option is zero, the appears below the previous entry. When this option is one,
the menu appears at the top of a new column in the menu.

Tk Last change: 4.1 5

Tk Built-In Commands menu (n)

−commandvalue
Specifies a Tcl command to execute when the menu entry is invoked. Not available for
separator or tear-off entries.

−font value
Specifies the font to use when drawing the label or accelerator string in this entry. If this
option is specified as an empty string (the default) then thefont option for the overall
menu is used. This option is not available for separator or tear-off entries.

−foreground value
Specifies a foreground color to use for displaying this entry when it is in the normal state
(neither active nor disabled). If this option is specified as an empty string (the default),
then theforeground option for the overall menu is used. This option is not available for
separator or tear-off entries.

−hidemargin value
Specifies whether the standard margins should be drawn for this menu entry. This is use-
ful when creating palette with images in them, i.e., color palettes, pattern palettes, etc. 1
indicates that the margin for the entry is hidden; 0 means that the margin is used.

−imagevalue
Specifies an image to display in the menu instead of a text string or bitmap The image
must have been created by some previous invocation ofimage create. This option over-
rides the−label and−bitmap options but may be reset to an empty string to enable a tex-
tual or bitmap label to be displayed. This option is not available for separator or tear-off
entries.

−indicatoron value
Av ailable only for checkbutton and radiobutton entries.Value is a boolean that deter-
mines whether or not the indicator should be displayed.

−label value
Specifies a string to display as an identifying label in the menu entry. Not available for
separator or tear-off entries.

−menuvalue
Av ailable only for cascade entries. Specifies the path name of the submenu associated
with this entry. The submenu must be a child of the menu.

−offvalue value
Av ailable only for checkbutton entries. Specifies the value to store in the entry’s associ-
ated variable when the entry is deselected.

−onvaluevalue
Av ailable only for checkbutton entries. Specifies the value to store in the entry’s associ-
ated variable when the entry is selected.

−selectcolorvalue
Av ailable only for checkbutton and radiobutton entries. Specifies the color to display in
the indicator when the entry is selected. If the value is an empty string (the default) then
theselectColoroption for the menu determines the indicator color.

−selectimagevalue
Av ailable only for checkbutton and radiobutton entries. Specifies an image to display in
the entry (in place of the−image option) when it is selected.Value is the name of an
image, which must have been created by some previous invocation ofimage create. This
option is ignored unless the−imageoption has been specified.

−statevalue

Tk Last change: 4.1 6

Tk Built-In Commands menu (n)

Specifies one of three states for the entry:normal, active, or disabled. In normal state
the entry is displayed using theforeground option for the menu and thebackground
option from the entry or the menu. The active state is typically used when the pointer is
over the entry. In active state the entry is displayed using theactiveForeground option
for the menu along with theactivebackground option from the entry. Disabled state
means that the entry should be insensitive: the default bindings will refuse to activate or
invoke the entry. In this state the entry is displayed according to thedisabledFore-
ground option for the menu and thebackground option from the entry. This option is
not available for separator entries.

−underline value
Specifies the integer index of a character to underline in the entry. This option is also
queried by the default bindings and used to implement keyboard traversal. 0 corresponds
to the first character of the text displayed in the entry, 1 to the next character, and so on.
If a bitmap or image is displayed in the entry then this option is ignored. This option is
not available for separator or tear-off entries.

−valuevalue
Av ailable only for radiobutton entries. Specifies the value to store in the entry’s associ-
ated variable when the entry is selected. If an empty string is specified, then the−label
option for the entry as the value to store in the variable.

−variable value
Av ailable only for checkbutton and radiobutton entries. Specifies the name of a global
value to set when the entry is selected. For checkbutton entries the variable is also set
when the entry is deselected. For radiobutton entries, changing the variable causes the
currently-selected entry to deselect itself.

Theadd widget command returns an empty string.

pathNamecgetoption
Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by themenucommand.

pathNameclonenewPathname ?cloneType?
Makes a clone of the current menu namednewPathName. This clone is a menu in its own right,
but any changes to the clone are propogated to the original menu and vice versa.cloneTypecan be
normal, menubar, or tearoff. Should not normally be called outside of the Tk library. See the
CLONES section for more information.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by themenucommand.

pathNamedeleteindex1?index2?
Delete all of the menu entries betweenindex1and index2 inclusive. If index2 is omitted then it
defaults toindex1. Attempts to delete a tear-off menu entry are ignored (instead, you should
change thetearOff option to remove the tear-off entry).

pathNameentrycget index option
Returns the current value of a configuration option for the entry given byindex. Optionmay have
any of the values accepted by theadd widget command.

Tk Last change: 4.1 7

Tk Built-In Commands menu (n)

pathNameentryconfigure index?options?
This command is similar to theconfigure command, except that it applies to the options for an
individual entry, whereasconfigure applies to the options for the menu as a whole.Optionsmay
have any of the values accepted by theadd widget command. Ifoptionsare specified, options are
modified as indicated in the command and the command returns an empty string. If nooptionsare
specified, returns a list describing the current options for entryindex (seeTk_ConfigureInfo for
information on the format of this list).

pathNameindex index
Returns the numerical index corresponding toindex, or none if indexwas specified asnone.

pathNameinsert index type?option value option value ...?
Same as theadd widget command except that it inserts the new entry just before the entry given
by index, instead of appending to the end of the menu. Thetype, option, andvaluearguments have
the same interpretation as for theadd widget command. It is not possible to insert new menu
entries before the tear-off entry, if the menu has one.

pathNameinvoke index
Invoke the action of the menu entry. See the sections on the individual entries above for details on
what happens. If the menu entry is disabled then nothing happens. If the entry has a command
associated with it then the result of that command is returned as the result of theinvoke widget
command. Otherwise the result is an empty string. Note: invoking a menu entry does not auto-
matically unpost the menu; the default bindings normally take care of this before invoking the
invoke widget command.

pathNamepostx y
Arrange for the menu to be displayed on the screen at the root-window coordinates given byx and
y. These coordinates are adjusted if necessary to guarantee that the entire menu is visible on the
screen. This command normally returns an empty string. If thepostCommandoption has been
specified, then its value is executed as a Tcl script before posting the menu and the result of that
script is returned as the result of thepost widget command. If an error returns while executing the
command, then the error is returned without posting the menu.

pathNamepostcascadeindex
Posts the submenu associated with the cascade entry given byindex, and unposts any previously
posted submenu. Ifindexdoesn’t correspond to a cascade entry, or ifpathNameisn’t posted, the
command has no effect except to unpost any currently posted submenu.

pathNametype index
Returns the type of the menu entry given byindex. This is thetypeargument passed to theadd
widget command when the entry was created, such ascommand or separator, or tearoff for a
tear-off entry.

pathNameunpost
Unmap the window so that it is no longer displayed. If a lower-level cascaded menu is posted,
unpost that menu. Returns an empty string. This subcommand does not work on Windows and the
Macintosh, as those platforms have their own way of unposting menus.

pathNameyposition index
Returns a decimal string giving the y-coordinate within the menu window of the topmost pixel in
the entry specified byindex.

MENU CONFIGURATIONS
The default bindings support four different ways of using menus:

Pulldown Menus in Menubar
This is the most command case. You create a menu widget that will become the menu bar. You

Tk Last change: 4.1 8

Tk Built-In Commands menu (n)

then add cascade entries to this menu, specifying the pull down menus you wish to use in your
menu bar. You then create all of the pulldowns. Once you have done this, specify the menu using
the-menuoption of the toplevel’s widget command. See thetoplevelmanual entry for details.

Pulldown Menus in Menu Buttons
This is the compatable way to do menu bars. You create one menubutton widget for each top-level
menu, and typically you arrange a series of menubuttons in a row in a menubar window. You also
create the top-level menus and any cascaded submenus, and tie them together with−menu options
in menubuttons and cascade menu entries. The top-level menu must be a child of the menubutton,
and each submenu must be a child of the menu that refers to it. Once you have done this, the
default bindings will allow users to traverse and invoke the tree of menus via its menubutton; see
themenubutton manual entry for details.

Popup Menus
Popup menus typically post in response to a mouse button press or keystroke. You create the
popup menus and any cascaded submenus, then you call thetk_popup procedure at the appropri-
ate time to post the top-level menu.

Option Menus
An option menu consists of a menubutton with an associated menu that allows you to select one of
several values. The current value is displayed in the menubutton and is also stored in a global
variable. Use thetk_optionMenu procedure to create option menubuttons and their menus.

Torn-off Menus
You create a torn-off menu by invoking the tear-off entry at the top of an existing menu. The
default bindings will create a new menu that is a copy of the original menu and leave it perma-
nently posted as a top-level window. The torn-off menu behaves just the same as the original
menu.

DEFAULT BINDINGS
Tk automatically creates class bindings for menus that give them the following default behavior:

[1] When the mouse enters a menu, the entry underneath the mouse cursor activates; as the mouse
moves around the menu, the active entry changes to track the mouse.

[2] When the mouse leaves a menu all of the entries in the menu deactivate, except in the special case
where the mouse moves from a menu to a cascaded submenu.

[3] When a button is released over a menu, the active entry (if any) is invoked. The menu also unposts
unless it is a torn-off menu.

[4] The Space and Return keys inv oke the active entry and unpost the menu.

[5] If any of the entries in a menu have letters underlined with with−underline option, then pressing
one of the underlined letters (or its upper-case or lower-case equivalent) invokes that entry and
unposts the menu.

[6] The Escape key aborts a menu selection in progress without invoking any entry. It also unposts
the menu unless it is a torn-off menu.

[7] The Up and Down keys activate the next higher or lower entry in the menu. When one end of the
menu is reached, the active entry wraps around to the other end.

[8] The Left key moves to the next menu to the left. If the current menu is a cascaded submenu, then
the submenu is unposted and the current menu entry becomes the cascade entry in the parent. If
the current menu is a top-level menu posted from a menubutton, then the current menubutton is
unposted and the next menubutton to the left is posted. Otherwise the key has no effect. The left-
right order of menubuttons is determined by their stacking order: Tk assumes that the lowest

Tk Last change: 4.1 9

Tk Built-In Commands menu (n)

menubutton (which by default is the first one created) is on the left.

[9] The Right key moves to the next menu to the right. If the current entry is a cascade entry, then the
submenu is posted and the current menu entry becomes the first entry in the submenu. Otherwise,
if the current menu was posted from a menubutton, then the current menubutton is unposted and
the next menubutton to the right is posted.

Disabled menu entries are non-responsive: they don’t activate and they ignore mouse button presses and
releases.

The behavior of menus can be changed by defining new bindings for individual widgets or by redefining the
class bindings.

BUGS
At present it isn’t possible to use the option database to specify values for the options to individual entries.

KEYWORDS
menu, widget

Tk Last change: 4.1 10

Tk Built-In Commands tk_menuBar (n)

NAME
tk_menuBar, tk_bindForTraversal − Obsolete support for menu bars

SYNOPSIS
tk_menuBar frame?menu menu ...?

tk_bindForTraversal arg arg ...

DESCRIPTION
These procedures were used in Tk 3.6 and earlier releases to help manage pulldown menus and to imple-
ment keyboard traversal of menus. In Tk 4.0 and later releases they are no longer needed. Stubs for these
procedures have been retained for backward compatibility, but they hav e no effect. You should remove
calls to these procedures from your code, since eventually the procedures will go away.

KEYWORDS
keyboard traversal, menu, menu bar, post

Tk Last change: 1

Tk Built-In Commands menubutton (n)

NAME
menubutton − Create and manipulate menubutton widgets

SYNOPSIS
menubutton pathName?options?

STANDARD OPTIONS
−activebackground −cursor −highlightthickness −takefocus
−activeforeground −disabledforeground −image −text
−anchor −font −justify −textvariable
−background −foreground −padx −underline
−bitmap −highlightbackground −pady −wraplength
−borderwidth −highlightcolor −relief

See theoptionsmanual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Command-Line Name: −direction
Database Name: direction
Database Class: Height

Specifies where the menu is going to be popup up.above tries to pop the menu above the
menubutton.below tries to pop the menu below the menubutton.left tries to pop the menu to the
left of the menubutton.right tries to pop the menu to the right of the menu button.flush pops the
menu directly over the menubutton.

Command-Line Name: −height
Database Name: height
Database Class: Height

Specifies a desired height for the menubutton. If an image or bitmap is being displayed in the
menubutton then the value is in screen units (i.e. any of the forms acceptable toTk_GetPixels);
for text it is in lines of text. If this option isn’t specified, the menubutton’s desired height is com-
puted from the size of the image or bitmap or text being displayed in it.

Command-Line Name: −indicatoron
Database Name: indicatorOn
Database Class: IndicatorOn

The value must be a proper boolean value. If it is true then a small indicator rectangle will be dis-
played on the right side of the menubutton and the default menu bindings will treat this as an
option menubutton. If false then no indicator will be displayed.

Command-Line Name: −menu
Database Name: menu
Database Class: MenuName

Specifies the path name of the menu associated with this menubutton. The menu must be a child
of the menubutton.

Command-Line Name: −state
Database Name: state
Database Class: State

Specifies one of three states for the menubutton:normal, active, or disabled. In normal state the
menubutton is displayed using theforeground andbackground options. The active state is typi-
cally used when the pointer is over the menubutton. In active state the menubutton is displayed
using theactiveForeground and activeBackground options. Disabled state means that the
menubutton should be insensitive: the default bindings will refuse to activate the widget and will

Tk Last change: 4.0 1

Tk Built-In Commands menubutton (n)

ignore mouse button presses. In this state thedisabledForeground and background options
determine how the button is displayed.

Command-Line Name: −width
Database Name: width
Database Class: Width

Specifies a desired width for the menubutton. If an image or bitmap is being displayed in the
menubutton then the value is in screen units (i.e. any of the forms acceptable toTk_GetPixels);
for text it is in characters. If this option isn’t specified, the menubutton’s desired width is com-
puted from the size of the image or bitmap or text being displayed in it.

INTRODUCTION
The menubutton command creates a new window (given by thepathNameargument) and makes it into a
menubutton widget. Additional options, described above, may be specified on the command line or in the
option database to configure aspects of the menubutton such as its colors, font, text, and initial relief. The
menubutton command returns itspathNameargument. At the time this command is invoked, there must
not exist a window namedpathName, butpathName’s parent must exist.

A menubutton is a widget that displays a textual string, bitmap, or image and is associated with a menu
widget. If text is displayed, it must all be in a single font, but it can occupy multiple lines on the screen (if
it contains newlines or if wrapping occurs because of thewrapLength option) and one of the characters
may optionally be underlined using theunderline option. In normal usage, pressing mouse button 1 over
the menubutton causes the associated menu to be posted just underneath the menubutton. If the mouse is
moved over the menu before releasing the mouse button, the button release causes the underlying menu
entry to be invoked. When the button is released, the menu is unposted.

Menubuttons are typically organized into groups called menu bars that allow scanning: if the mouse button
is pressed over one menubutton (causing it to post its menu) and the mouse is moved over another menubut-
ton in the same menu bar without releasing the mouse button, then the menu of the first menubutton is
unposted and the menu of the new menubutton is posted instead.

There are several interactions between menubuttons and menus; see themenu manual entry for informa-
tion on various menu configurations, such as pulldown menus and option menus.

WIDGET COMMAND
Themenubutton command creates a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?
Optionand theargs determine the exact behavior of the command. The following commands are possible
for menubutton widgets:

pathNamecgetoption
Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by themenubutton command.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Option may have any of the values accepted by themenubutton

Tk Last change: 4.0 2

Tk Built-In Commands menubutton (n)

command.

DEFAULT BINDINGS
Tk automatically creates class bindings for menubuttons that give them the following default behavior:

[1] A menubutton activates whenever the mouse passes over it and deactivates whenever the mouse
leaves it.

[2] Pressing mouse button 1 over a menubutton posts the menubutton: its relief changes to raised and
its associated menu is posted under the menubutton. If the mouse is dragged down into the menu
with the button still down, and if the mouse button is then released over an entry in the menu, the
menubutton is unposted and the menu entry is invoked.

[3] If button 1 is pressed over a menubutton and then released over that menubutton, the menubutton
stays posted: you can still move the mouse over the menu and click button 1 on an entry to invoke
it. Once a menu entry has been invoked, the menubutton unposts itself.

[4] If button 1 is pressed over a menubutton and then dragged over some other menubutton, the origi-
nal menubutton unposts itself and the new menubutton posts.

[5] If button 1 is pressed over a menubutton and released outside any menubutton or menu, the
menubutton unposts without invoking any menu entry.

[6] When a menubutton is posted, its associated menu claims the input focus to allow keyboard traver-
sal of the menu and its submenus. See themenumanual entry for details on these bindings.

[7] If the underline option has been specified for a menubutton then keyboard traversal may be used
to post the menubutton: Alt+x, wherex is the underlined character (or its lower-case or upper-case
equivalent), may be typed in any window under the menubutton’s toplevel to post the menubutton.

[8] The F10 key may be typed in any window to post the first menubutton under its toplevel window
that isn’t disabled.

[9] If a menubutton has the input focus, the space and return keys post the menubutton.

If the menubutton’s state isdisabled then none of the above actions occur: the menubutton is completely
non-responsive.

The behavior of menubuttons can be changed by defining new bindings for individual widgets or by
redefining the class bindings.

KEYWORDS
menubutton, widget

Tk Last change: 4.0 3

Tk Built-In Commands message (n)

NAME
message − Create and manipulate message widgets

SYNOPSIS
messagepathName?options?

STANDARD OPTIONS
−anchor −font −highlightthickness −takefocus
−background −foreground −padx −text
−borderwidth −highlightbackground −pady −textvariable
−cursor −highlightcolor −relief −width

See theoptionsmanual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Command-Line Name: −aspect
Database Name: aspect
Database Class: Aspect

Specifies a non-negative integer value indicating desired aspect ratio for the text. The aspect ratio
is specified as 100∗width/height. 100 means the text should be as wide as it is tall, 200 means the
text should be twice as wide as it is tall, 50 means the text should be twice as tall as it is wide, and
so on. Used to choose line length for text ifwidth option isn’t specified. Defaults to 150.

Command-Line Name: −justify
Database Name: justify
Database Class: Justify

Specifies how to justify lines of text. Must be one ofleft, center, or right . Defaults toleft. This
option works together with theanchor, aspect, padX, padY, andwidth options to provide a vari-
ety of arrangements of the text within the window. Theaspectandwidth options determine the
amount of screen space needed to display the text. Theanchor, padX, andpadY options deter-
mine where this rectangular area is displayed within the widget’s window, and thejustify option
determines how each line is displayed within that rectangular region. For example, suppose
anchor is e and justify is left, and that the message window is much larger than needed for the
text. The the text will displayed so that the left edges of all the lines line up and the right edge of
the longest line ispadX from the right side of the window; the entire text block will be centered
in the vertical span of the window.

Command-Line Name: −width
Database Name: width
Database Class: Width

Specifies the length of lines in the window. The value may have any of the forms acceptable to
Tk_GetPixels. If this option has a value greater than zero then theaspectoption is ignored and
the width option determines the line length. If this option has a value less than or equal to zero,
then theaspectoption determines the line length.

DESCRIPTION
Themessagecommand creates a new window (given by thepathNameargument) and makes it into a mes-
sage widget. Additional options, described above, may be specified on the command line or in the option
database to configure aspects of the message such as its colors, font, text, and initial relief. Themessage
command returns itspathNameargument. At the time this command is invoked, there must not exist a win-
dow namedpathName, butpathName’s parent must exist.

Tk Last change: 4.0 1

Tk Built-In Commands message (n)

A message is a widget that displays a textual string. A message widget has three special features. First, it
breaks up its string into lines in order to produce a given aspect ratio for the window. The line breaks are
chosen at word boundaries wherever possible (if not even a single word would fit on a line, then the word
will be split across lines). Newline characters in the string will force line breaks; they can be used, for
example, to leave blank lines in the display.

The second feature of a message widget is justification. The text may be displayed left-justified (each line
starts at the left side of the window), centered on a line-by-line basis, or right-justified (each line ends at the
right side of the window).

The third feature of a message widget is that it handles control characters and non-printing characters spe-
cially. Tab characters are replaced with enough blank space to line up on the next 8-character boundary.
Newlines cause line breaks. Other control characters (ASCII code less than 0x20) and characters not
defined in the font are displayed as a four-character sequence\xhh wherehh is the two-digit hexadecimal
number corresponding to the character. In the unusual case where the font doesn’t contain all of the charac-
ters in ‘‘0123456789abcdef\x’’ then control characters and undefined characters are not displayed at all.

WIDGET COMMAND
The messagecommand creates a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?
Optionand theargs determine the exact behavior of the command. The following commands are possible
for message widgets:

pathNamecgetoption
Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by themessagecommand.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by themessagecommand.

DEFAULT BINDINGS
When a new message is created, it has no default event bindings: messages are intended for output purposes
only.

BUGS
Tabs don’t work very well with text that is centered or right-justified. The most common result is that the
line is justified wrong.

KEYWORDS
message, widget

Tk Last change: 4.0 2

Tk Built-In Commands tk_messageBox (n)

NAME
tk_messageBox − pops up a message window and waits for user response.

SYNOPSIS
tk_messageBox?option value ...?

DESCRIPTION
This procedure creates and displays a message window with an application-specified message, an icon and
a set of buttons. Each of the buttons in the message window is identified by a unique symbolic name (see
the −type options). After the message window is popped up,tk_messageBoxwaits for the user to select
one of the buttons. Then it returns the symbolic name of the selected button.

The following option-value pairs are supported:

−default name
Namegives the symbolic name of the default button for this message window (’ok’, ’cancel’, and
so on). See−type for a list of the symbolic names. If the message box has just one button it will
automatically be made the default, otherwise if this option is not specified, there won’t be any
default button.

−icon iconImage
Specifies an icon to display.IconImagemust be one of the following:error , info, question or
warning. If this option is not specified, then no icon will be displayed.

−messagestring
Specifies the message to display in this message box.

−parent window
Makeswindowthe logical parent of the message box. The message box is displayed on top of its
parent window.

−title titleString
Specifies a string to display as the title of the message box. The default value is an empty string.

−type predefinedType
Arranges for a predefined set of buttons to be displayed. The following values are possible forpre-
definedType:

abortretryignore Displays three buttons whose symbolic names areabort, retry andignore.

ok Displays one button whose symbolic name isok.

okcancel Displays two buttons whose symbolic names areok andcancel.

retrycancel Displays two buttons whose symbolic names areretry andcancel.

yesno Displays two buttons whose symbolic names areyesandno.

yesnocancel Displays three buttons whose symbolic names areyes, no andcancel.

EXAMPLE
set answer [tk_messageBox −message "Really quit?" −type yesno −icon question]
case $answer {

yes exit
no {tk_messageBox −message "I know you like this application!" −type ok}

}

Tk Last change: 4.2 1

Tk Built-In Commands tk_messageBox (n)

KEYWORDS
message box

Tk Last change: 4.2 2

Tk Built-In Commands option (n)

NAME
option − Add/retrieve window options to/from the option database

SYNOPSIS
option add pattern value?priority?

option clear

option getwindow name class

option readfile fileName?priority?

DESCRIPTION
The option command allows you to add entries to the Tk option database or to retrieve options from the
database. Theadd form of the command adds a new option to the database.Patterncontains the option
being specified, and consists of names and/or classes separated by asterisks or dots, in the usual X format.
Value contains a text string to associate withpattern; this is the value that will be returned in calls to
Tk_GetOption or by invocations of theoption getcommand. Ifpriority is specified, it indicates the prior-
ity level for this option (see below for legal values); it defaults tointeractive. This command always
returns an empty string.

The option clear command clears the option database. Default options (from theRESOURCE_MAN-
AGER property or the.Xdefaults file) will be reloaded automatically the next time an option is added to
the database or removed from it. This command always returns an empty string.

The option get command returns the value of the option specified forwindowundernameandclass. If
several entries in the option database matchwindow, name, andclass, then the command returns whichever
was created with highestpriority level. If there are several matching entries at the same priority level, then
it returns whichever entry was most recently entered into the option database. If there are no matching
entries, then the empty string is returned.

The readfile form of the command readsfileName, which should have the standard format for an X
resource database such as.Xdefaults, and adds all the options specified in that file to the option database.
If priority is specified, it indicates the priority level at which to enter the options;priority defaults tointer-
active.

The priority arguments to theoption command are normally specified symbolically using one of the fol-
lowing values:

widgetDefault
Level 20. Used for default values hard-coded into widgets.

startupFile
Level 40. Used for options specified in application-specific startup files.

userDefault
Level 60. Used for options specified in user-specific defaults files, such as.Xdefaults, resource
databases loaded into the X server, or user-specific startup files.

interactive
Level 80. Used for options specified interactively after the application starts running. Ifpriority
isn’t specified, it defaults to this level.

Any of the above keywords may be abbreviated. In addition, priorities may be specified numerically using
integers between 0 and 100, inclusive. The numeric form is probably a bad idea except for new priority
levels other than the ones given above.

Tk Last change: 1

Tk Built-In Commands option (n)

KEYWORDS
database, option, priority, retrieve

Tk Last change: 2

Tk Built-In Commands tk_optionMenu (n)

NAME
tk_optionMenu − Create an option menubutton and its menu

SYNOPSIS
tk_optionMenu w varName value?value value ...?

DESCRIPTION
This procedure creates an option menubutton whose name isw, plus an associated menu. Together they
allow the user to select one of the values given by thevaluearguments. The current value will be stored in
the global variable whose name is given byvarNameand it will also be displayed as the label in the option
menubutton. The user can click on the menubutton to display a menu containing all of thevalues and
thereby select a new value. Once a new value is selected, it will be stored in the variable and appear in the
option menubutton. The current value can also be changed by setting the variable.

The return value fromtk_optionMenu is the name of the menu associated withw, so that the caller can
change its configuration options or manipulate it in other ways.

KEYWORDS
option menu

Tk Last change: 4.0 1

Tk Built-In Commands options (n)

NAME
options − Standard options supported by widgets

DESCRIPTION
This manual entry describes the common configuration options supported by widgets in the Tk toolkit.
Every widget does not necessarily support every option (see the manual entries for individual widgets for a
list of the standard options supported by that widget), but if a widget does support an option with one of the
names listed below, then the option has exactly the effect described below.

In the descriptions below, ‘‘Command-Line Name’’ refers to the switch used in class commands andcon-
figure widget commands to set this value. For example, if an option’s command-line switch is−fore-
ground and there exists a widget.a.b.c, then the command

.a.b.c configure −foreground black
may be used to specify the valueblack for the option in the the widget.a.b.c. Command-line switches may
be abbreviated, as long as the abbreviation is unambiguous. ‘‘Database Name’’ refers to the option’s name
in the option database (e.g. in .Xdefaults files). ‘‘Database Class’’ refers to the option’s class value in the
option database.

Command-Line Name: −activebackground
Database Name: activeBackground
Database Class: Foreground

Specifies background color to use when drawing active elements. An element (a widget or portion
of a widget) is active if the mouse cursor is positioned over the element and pressing a mouse but-
ton will cause some action to occur. If strict Motif compliance has been requested by setting the
tk_strictMotif variable, this option will normally be ignored; the normal background color will
be used instead. For some elements on Windows and Macintosh systems, the active color will
only be used while mouse button 1 is pressed over the element.

Command-Line Name: −activeborderwidth
Database Name: activeBorderWidth
Database Class: BorderWidth

Specifies a non-negative value indicating the width of the 3-D border drawn around active ele-
ments. See above for definition of active elements. The value may have any of the forms accept-
able toTk_GetPixels. This option is typically only available in widgets displaying more than one
element at a time (e.g. menus but not buttons).

Command-Line Name: −activeforeground
Database Name: activeForeground
Database Class: Background

Specifies foreground color to use when drawing active elements. See above for definition of active
elements.

Command-Line Name: −anchor
Database Name: anchor
Database Class: Anchor

Specifies how the information in a widget (e.g. text or a bitmap) is to be displayed in the widget.
Must be one of the valuesn, ne, e, se, s, sw, w, nw, or center. For example,nw means display the
information such that its top-left corner is at the top-left corner of the widget.

Command-Line Name: −background or −bg
Database Name: background
Database Class: Background

Tk Last change: 4.4 1

Tk Built-In Commands options (n)

Specifies the normal background color to use when displaying the widget.

Command-Line Name: −bitmap
Database Name: bitmap
Database Class: Bitmap

Specifies a bitmap to display in the widget, in any of the forms acceptable toTk_GetBitmap. The
exact way in which the bitmap is displayed may be affected by other options such asanchor or
justify . Typically, if this option is specified then it overrides other options that specify a textual
value to display in the widget; thebitmap option may be reset to an empty string to re-enable a
text display. In widgets that support bothbitmap andimageoptions,imagewill usually override
bitmap.

Command-Line Name: −borderwidth or −bd
Database Name: borderWidth
Database Class: BorderWidth

Specifies a non-negative value indicating the width of the 3-D border to draw around the outside of
the widget (if such a border is being drawn; therelief option typically determines this). The value
may also be used when drawing 3-D effects in the interior of the widget. The value may have any
of the forms acceptable toTk_GetPixels.

Command-Line Name: −cursor
Database Name: cursor
Database Class: Cursor

Specifies the mouse cursor to be used for the widget. The value may have any of the forms accept-
able toTk_GetCursor.

Command-Line Name: −disabledforeground
Database Name: disabledForeground
Database Class: DisabledForeground

Specifies foreground color to use when drawing a disabled element. If the option is specified as an
empty string (which is typically the case on monochrome displays), disabled elements are drawn
with the normal foreground color but they are dimmed by drawing them with a stippled fill pattern.

Command-Line Name: −exportselection
Database Name: exportSelection
Database Class: ExportSelection

Specifies whether or not a selection in the widget should also be the X selection. The value may
have any of the forms accepted byTcl_GetBoolean, such astrue, false, 0, 1, yes, or no. If the
selection is exported, then selecting in the widget deselects the current X selection, selecting out-
side the widget deselects any widget selection, and the widget will respond to selection retrieval
requests when it has a selection. The default is usually for widgets to export selections.

Command-Line Name: −font
Database Name: font
Database Class: Font

Specifies the font to use when drawing text inside the widget.

Command-Line Name: −foreground or −fg
Database Name: foreground
Database Class: Foreground

Specifies the normal foreground color to use when displaying the widget.

Tk Last change: 4.4 2

Tk Built-In Commands options (n)

Command-Line Name: −highlightbackground
Database Name: highlightBackground
Database Class: HighlightBackground

Specifies the color to display in the traversal highlight region when the widget does not have the
input focus.

Command-Line Name: −highlightcolor
Database Name: highlightColor
Database Class: HighlightColor

Specifies the color to use for the traversal highlight rectangle that is drawn around the widget
when it has the input focus.

Command-Line Name: −highlightthickness
Database Name: highlightThickness
Database Class: HighlightThickness

Specifies a non-negative value indicating the width of the highlight rectangle to draw around the
outside of the widget when it has the input focus. The value may have any of the forms acceptable
to Tk_GetPixels. If the value is zero, no focus highlight is drawn around the widget.

Command-Line Name: −image
Database Name: image
Database Class: Image

Specifies an image to display in the widget, which must have been created with theimage create
command. Typically, if theimageoption is specified then it overrides other options that specify a
bitmap or textual value to display in the widget; theimageoption may be reset to an empty string
to re-enable a bitmap or text display.

Command-Line Name: −insertbackground
Database Name: insertBackground
Database Class: Foreground

Specifies the color to use as background in the area covered by the insertion cursor. This color
will normally override either the normal background for the widget (or the selection background if
the insertion cursor happens to fall in the selection).

Command-Line Name: −insertborderwidth
Database Name: insertBorderWidth
Database Class: BorderWidth

Specifies a non-negative value indicating the width of the 3-D border to draw around the insertion
cursor. The value may have any of the forms acceptable toTk_GetPixels.

Command-Line Name: −insertofftime
Database Name: insertOffTime
Database Class: OffTime

Specifies a non-negative integer value indicating the number of milliseconds the insertion cursor
should remain ‘‘off’’ in each blink cycle. If this option is zero then the cursor doesn’t blink: it is
on all the time.

Command-Line Name: −insertontime
Database Name: insertOnTime
Database Class: OnTime

Specifies a non-negative integer value indicating the number of milliseconds the insertion cursor
should remain ‘‘on’’ in each blink cycle.

Tk Last change: 4.4 3

Tk Built-In Commands options (n)

Command-Line Name: −insertwidth
Database Name: insertWidth
Database Class: InsertWidth

Specifies a value indicating the total width of the insertion cursor. The value may have any of the
forms acceptable toTk_GetPixels. If a border has been specified for the insertion cursor (using
the insertBorderWidth option), the border will be drawn inside the width specified by theinser-
tWidth option.

Command-Line Name: −jump
Database Name: jump
Database Class: Jump

For widgets with a slider that can be dragged to adjust a value, such as scrollbars, this option
determines when notifications are made about changes in the value. The option’s value must be a
boolean of the form accepted byTcl_GetBoolean. If the value is false, updates are made continu-
ously as the slider is dragged. If the value is true, updates are delayed until the mouse button is
released to end the drag; at that point a single notification is made (the value ‘‘jumps’’ rather than
changing smoothly).

Command-Line Name: −justify
Database Name: justify
Database Class: Justify

When there are multiple lines of text displayed in a widget, this option determines how the lines
line up with each other. Must be one ofleft, center, or right . Left means that the lines’ left edges
all line up,center means that the lines’ centers are aligned, andright means that the lines’ right
edges line up.

Command-Line Name: −orient
Database Name: orient
Database Class: Orient

For widgets that can lay themselves out with either a horizontal or vertical orientation, such as
scrollbars, this option specifies which orientation should be used. Must be eitherhorizontal or
vertical or an abbreviation of one of these.

Command-Line Name: −padx
Database Name: padX
Database Class: Pad

Specifies a non-negative value indicating how much extra space to request for the widget in the X-
direction. The value may have any of the forms acceptable toTk_GetPixels. When computing
how large a window it needs, the widget will add this amount to the width it would normally need
(as determined by the width of the things displayed in the widget); if the geometry manager can
satisfy this request, the widget will end up with extra internal space to the left and/or right of what
it displays inside. Most widgets only use this option for padding text: if they are displaying a
bitmap or image, then they usually ignore padding options.

Command-Line Name: −pady
Database Name: padY
Database Class: Pad

Specifies a non-negative value indicating how much extra space to request for the widget in the
Y-direction. The value may have any of the forms acceptable toTk_GetPixels. When computing
how large a window it needs, the widget will add this amount to the height it would normally need
(as determined by the height of the things displayed in the widget); if the geometry manager can
satisfy this request, the widget will end up with extra internal space above and/or below what it

Tk Last change: 4.4 4

Tk Built-In Commands options (n)

displays inside. Most widgets only use this option for padding text: if they are displaying a
bitmap or image, then they usually ignore padding options.

Command-Line Name: −relief
Database Name: relief
Database Class: Relief

Specifies the 3-D effect desired for the widget. Acceptable values areraised, sunken, flat, ridge,
solid, andgroove. The value indicates how the interior of the widget should appear relative to its
exterior; for example,raised means the interior of the widget should appear to protrude from the
screen, relative to the exterior of the widget.

Command-Line Name: −repeatdelay
Database Name: repeatDelay
Database Class: RepeatDelay

Specifies the number of milliseconds a button or key must be held down before it begins to auto-
repeat. Used, for example, on the up- and down-arrows in scrollbars.

Command-Line Name: −repeatinterval
Database Name: repeatInterval
Database Class: RepeatInterval

Used in conjunction withrepeatDelay: once auto-repeat begins, this option determines the num-
ber of milliseconds between auto-repeats.

Command-Line Name: −selectbackground
Database Name: selectBackground
Database Class: Foreground

Specifies the background color to use when displaying selected items.

Command-Line Name: −selectborderwidth
Database Name: selectBorderWidth
Database Class: BorderWidth

Specifies a non-negative value indicating the width of the 3-D border to draw around selected
items. The value may have any of the forms acceptable toTk_GetPixels.

Command-Line Name: −selectforeground
Database Name: selectForeground
Database Class: Background

Specifies the foreground color to use when displaying selected items.

Command-Line Name: −setgrid
Database Name: setGrid
Database Class: SetGrid

Specifies a boolean value that determines whether this widget controls the resizing grid for its top-
level window. This option is typically used in text widgets, where the information in the widget
has a natural size (the size of a character) and it makes sense for the window’s dimensions to be
integral numbers of these units. These natural window sizes form a grid. If thesetGrid option is
set to true then the widget will communicate with the window manager so that when the user inter-
actively resizes the top-level window that contains the widget, the dimensions of the window will
be displayed to the user in grid units and the window size will be constrained to integral numbers
of grid units. See the section GRIDDED GEOMETRY MANAGEMENT in thewm manual entry
for more details.

Tk Last change: 4.4 5

Tk Built-In Commands options (n)

Command-Line Name: −takefocus
Database Name: takeFocus
Database Class: TakeFocus

Determines whether the window accepts the focus during keyboard traversal (e.g., Tab and Shift-
Tab). Before setting the focus to a window, the traversal scripts consult the value of thetakeFocus
option. A value of0 means that the window should be skipped entirely during keyboard traversal.
1 means that the window should receive the input focus as long as it is viewable (it and all of its
ancestors are mapped). An empty value for the option means that the traversal scripts make the
decision about whether or not to focus on the window: the current algorithm is to skip the window
if it is disabled, if it has no key bindings, or if it is not viewable. If the value has any other form,
then the traversal scripts take the value, append the name of the window to it (with a separator
space), and evaluate the resulting string as a Tcl script. The script must return0, 1, or an empty
string: a0 or 1 value specifies whether the window will receive the input focus, and an empty
string results in the default decision described above. Note: this interpretation of the option is
defined entirely by the Tcl scripts that implement traversal: the widget implementations ignore the
option entirely, so you can change its meaning if you redefine the keyboard traversal scripts.

Command-Line Name: −text
Database Name: text
Database Class: Text

Specifies a string to be displayed inside the widget. The way in which the string is displayed
depends on the particular widget and may be determined by other options, such asanchor or jus-
tify .

Command-Line Name: −textvariable
Database Name: textVariable
Database Class: Variable

Specifies the name of a variable. The value of the variable is a text string to be displayed inside
the widget; if the variable value changes then the widget will automatically update itself to reflect
the new value. The way in which the string is displayed in the widget depends on the particular
widget and may be determined by other options, such asanchor or justify .

Command-Line Name: −troughcolor
Database Name: troughColor
Database Class: Background

Specifies the color to use for the rectangular trough areas in widgets such as scrollbars and scales.

Command-Line Name: −underline
Database Name: underline
Database Class: Underline

Specifies the integer index of a character to underline in the widget. This option is used by the
default bindings to implement keyboard traversal for menu buttons and menu entries. 0 corre-
sponds to the first character of the text displayed in the widget, 1 to the next character, and so on.

Command-Line Name: −wraplength
Database Name: wrapLength
Database Class: WrapLength

For widgets that can perform word-wrapping, this option specifies the maximum line length.
Lines that would exceed this length are wrapped onto the next line, so that no line is longer than
the specified length. The value may be specified in any of the standard forms for screen distances.
If this value is less than or equal to 0 then no wrapping is done: lines will break only at newline
characters in the text.

Tk Last change: 4.4 6

Tk Built-In Commands options (n)

Command-Line Name: −xscrollcommand
Database Name: xScrollCommand
Database Class: ScrollCommand

Specifies the prefix for a command used to communicate with horizontal scrollbars. When the
view in the widget’s window changes (or whenever anything else occurs that could change the dis-
play in a scrollbar, such as a change in the total size of the widget’s contents), the widget will gen-
erate a Tcl command by concatenating the scroll command and two numbers. Each of the num-
bers is a fraction between 0 and 1, which indicates a position in the document. 0 indicates the
beginning of the document, 1 indicates the end, .333 indicates a position one third the way through
the document, and so on. The first fraction indicates the first information in the document that is
visible in the window, and the second fraction indicates the information just after the last portion
that is visible. The command is then passed to the Tcl interpreter for execution. Typically the
xScrollCommand option consists of the path name of a scrollbar widget followed by ‘‘set’’, e.g.
‘‘.x.scrollbar set’’: this will cause the scrollbar to be updated whenever the view in the window
changes. If this option is not specified, then no command will be executed.

Command-Line Name: −yscrollcommand
Database Name: yScrollCommand
Database Class: ScrollCommand

Specifies the prefix for a command used to communicate with vertical scrollbars. This option is
treated in the same way as thexScrollCommand option, except that it is used for vertical scroll-
bars and is provided by widgets that support vertical scrolling. See the description ofxScroll-
Command for details on how this option is used.

KEYWORDS
class, name, standard option, switch

Tk Last change: 4.4 7

Tk Built-In Commands pack-old (n)

NAME
pack − Obsolete syntax for packer geometry manager

SYNOPSIS
pack after sibling window options?window options...?

pack appendparent window options?window options...?

pack beforesibling window options?window options...?

pack unpackwindow

DESCRIPTION
Note: this manual entry describes the syntax for thepack command as it existed before Tk version 3.3.
Although this syntax continues to be supported for backward compatibility, it is obsolete and should not be
used anymore. At some point in the future it may cease to be supported.

The packer is a geometry manager that arranges the children of a parent by packing them in order around
the edges of the parent. The first child is placed against one side of the window, occupying the entire span
of the window along that side. This reduces the space remaining for other children as if the side had been
moved in by the size of the first child. Then the next child is placed against one side of the remaining cav-
ity, and so on until all children have been placed or there is no space left in the cavity.

Thebefore, after, andappend forms of thepack command are used to insert one or more children into the
packing order for their parent. Thebefore form inserts the children before windowsibling in the order; all
of the other windows must be siblings ofsibling. Theafter form inserts the windows aftersibling, and the
append form appends one or more windows to the end of the packing order forparent. If a windownamed
in any of these commands is already packed in its parent, it is removed from its current position in the pack-
ing order and repositioned as indicated by the command. All of these commands return an empty string as
result.

Theunpack form of thepack command removeswindowfrom the packing order of its parent and unmaps
it. After the execution of this command the packer will no longer managewindow’s geometry.

The placement of each child is actually a four-step process; theoptionsargument following eachwindow
consists of a list of one or more fields that govern the placement of that window. In the discussion below,
the termcavity refers to the space left in a parent when a particular child is placed (i.e. all the space that
wasn’t claimed by earlier children in the packing order). The termparcel refers to the space allocated to a
particular child; this is not necessarily the same as the child window’s final geometry.

The first step in placing a child is to determine which side of the cavity it will lie against. Any one of the
following options may be used to specify a side:

top Position the child’s parcel against the top of the cavity, occupying the full width of the cavity.

bottom Position the child’s parcel against the bottom of the cavity, occupying the full width of the cavity.

left Position the child’s parcel against the left side of the cavity, occupying the full height of the cavity.

right Position the child’s parcel against the right side of the cavity, occupying the full height of the cav-
ity.

At most one of these options should be specified for any giv en window. If no side is specified, then the
default istop.

The second step is to decide on a parcel for the child. Fortop andbottom windows, the desired parcel
width is normally the cavity width and the desired parcel height is the window’s requested height, as passed

Tk Last change: 4.0 1

Tk Built-In Commands pack-old (n)

to Tk_GeometryRequest. For left and right windows, the desired parcel height is normally the cavity
height and the desired width is the window’s requested width. However, extra space may be requested for
the window using any of the following options:

padx num Add num pixels to the window’s requested width before computing the parcel size as
described above.

pady num Add num pixels to the window’s requested height before computing the parcel size as
described above.

expand This option requests that the window’s parcel absorb any extra space left over in the parent’s
cavity after packing all the children. The amount of space left over depends on the sizes
requested by the other children, and may be zero. If several windows have all specified
expand then the extra width will be divided equally among all theleft and right windows
that specifiedexpand and the extra height will be divided equally among all thetop and
bottom windows that specifiedexpand.

If the desired width or height for a parcel is larger than the corresponding dimension of the cavity, then the
cavity’s dimension is used instead.

The third step in placing the window is to decide on the window’s width and height. The default is for the
window to receive either its requested width and height or the those of the parcel, whichever is smaller. If
the parcel is larger than the window’s requested size, then the following options may be used to expand the
window to partially or completely fill the parcel:

fill Set the window’s size to equal the parcel size.

fillx Increase the window’s width to equal the parcel’s width, but retain the window’s requested height.

filly Increase the window’s height to equal the parcel’s height, but retain the window’s requested width.

The last step is to decide the window’s location within its parcel. If the window’s size equals the parcel’s
size, then the window simply fills the entire parcel. If the parcel is larger than the window, then one of the
following options may be used to specify where the window should be positioned within its parcel:

frame center Center the window in its parcel. This is the default if no framing option is specified.

frame n Position the window with its top edge centered on the top edge of the parcel.

frame ne Position the window with its upper-right corner at the upper-right corner of the parcel.

frame e Position the window with its right edge centered on the right edge of the parcel.

frame se Position the window with its lower-right corner at the lower-right corner of the parcel.

frame s Position the window with its bottom edge centered on the bottom edge of the parcel.

frame sw Position the window with its lower-left corner at the lower-left corner of the parcel.

frame w Position the window with its left edge centered on the left edge of the parcel.

frame nw Position the window with its upper-left corner at the upper-left corner of the parcel.

The packer manages the mapped/unmapped state of all the packed children windows. It automatically
maps the windows when it packs them, and it unmaps any windows for which there was no space left in the
cavity.

The packer makes geometry requests on behalf of the parent windows it manages. For each parent window
it requests a size large enough to accommodate all the options specified by all the packed children, such
that zero space would be leftover forexpandoptions.

Tk Last change: 4.0 2

Tk Built-In Commands pack-old (n)

KEYWORDS
geometry manager, location, packer, parcel, size

Tk Last change: 4.0 3

Tk Built-In Commands pack (n)

NAME
pack − Geometry manager that packs around edges of cavity

SYNOPSIS
pack option arg?arg ...?

DESCRIPTION
Thepack command is used to communicate with the packer, a geometry manager that arranges the children
of a parent by packing them in order around the edges of the parent. Thepack command can have any of
several forms, depending on theoptionargument:

pack slave?slave ...? ?options?
If the first argument topack is a window name (any value starting with ‘‘.’’), then the command is
processed in the same way aspack configure.

pack configureslave?slave ...? ?options?
The arguments consist of the names of one or more slave windows followed by pairs of arguments
that specify how to manage the slaves. See ‘‘THE PACKER ALGORITHM’’ below for details on
how the options are used by the packer. The following options are supported:

−after other
Othermust the name of another window. Use its master as the master for the slaves, and
insert the slaves just afterother in the packing order.

−anchor anchor
Anchor must be a valid anchor position such asn or sw; it specifies where to position
each slave in its parcel. Defaults tocenter.

−beforeother
Othermust the name of another window. Use its master as the master for the slaves, and
insert the slaves just beforeother in the packing order.

−expandboolean
Specifies whether the slaves should be expanded to consume extra space in their master.
Booleanmay have any proper boolean value, such as1 or no. Defaults to 0.

−fill style
If a slave’s parcel is larger than its requested dimensions, this option may be used to
stretch the slave.Stylemust have one of the following values:

none Give the slave its requested dimensions plus any internal padding requested with
−ipadx or −ipady. This is the default.

x Stretch the slave horizontally to fill the entire width of its parcel (except leave
external padding as specified by−padx).

y Stretch the slave vertically to fill the entire height of its parcel (except leave
external padding as specified by−pady).

both Stretch the slave both horizontally and vertically.

−in other
Insert the slave(s) at the end of the packing order for the master window giv en byother.

−ipadx amount
Amountspecifies how much horizontal internal padding to leave on each side of the
slave(s).Amountmust be a valid screen distance, such as2 or .5c. It defaults to 0.

−ipady amount

Tk Last change: 4.0 1

Tk Built-In Commands pack (n)

Amountspecifies how much vertical internal padding to leave on each side of the slave(s).
Amount defaults to 0.

−padx amount
Amountspecifies how much horizontal external padding to leave on each side of the
slave(s).Amountdefaults to 0.

−pady amount
Amount specifies how much vertical external padding to leave on each side of the
slave(s).Amountdefaults to 0.

−sideside
Specifies which side of the master the slave(s) will be packed against. Must beleft,
right , top, or bottom. Defaults totop.

If no −in, −after or −before option is specified then each of the slaves will be inserted at the end
of the packing list for its parent unless it is already managed by the packer (in which case it will be
left where it is). If one of these options is specified then all the slaves will be inserted at the speci-
fied point. If any of the slaves are already managed by the geometry manager then any unspecified
options for them retain their previous values rather than receiving default values.

pack forget slave?slave ...?
Removes each of theslaves from the packing order for its master and unmaps their windows. The
slaves will no longer be managed by the packer.

pack info slave
Returns a list whose elements are the current configuration state of the slave giv en byslavein the
same option-value form that might be specified topack configure. The first two elements of the
list are ‘‘−in master’’ where masteris the slave’s master.

pack propagatemaster?boolean?
If booleanhas a true boolean value such as1 or on then propagation is enabled formaster, which
must be a window name (see ‘‘GEOMETRY PROPA GATION’’ below). Ifbooleanhas a false
boolean value then propagation is disabled formaster. In either of these cases an empty string is
returned. Ifbooleanis omitted then the command returns0 or 1 to indicate whether propagation is
currently enabled formaster. Propagation is enabled by default.

pack slavesmaster
Returns a list of all of the slaves in the packing order formaster. The order of the slaves in the list
is the same as their order in the packing order. Ifmasterhas no slaves then an empty string is
returned.

THE PACKER ALGORITHM
For each master the packer maintains an ordered list of slaves called thepacking list. The−in, −after, and
−before configuration options are used to specify the master for each slave and the slave’s position in the
packing list. If none of these options is given for a slave then the slave is added to the end of the packing
list for its parent.

The packer arranges the slaves for a master by scanning the packing list in order. At the time it processes
each slave, a rectangular area within the master is still unallocated. This area is called thecavity; for the
first slave it is the entire area of the master.

For each slave the packer carries out the following steps:

[1] The packer allocates a rectangularparcel for the slave along the side of the cavity given by the
slave’s−side option. If the side is top or bottom then the width of the parcel is the width of the
cavity and its height is the requested height of the slave plus the−ipady and−pady options. For
the left or right side the height of the parcel is the height of the cavity and the width is the

Tk Last change: 4.0 2

Tk Built-In Commands pack (n)

requested width of the slave plus the−ipadx and−padx options. The parcel may be enlarged fur-
ther because of the−expandoption (see ‘‘EXPANSION’’ below)

[2] The packer chooses the dimensions of the slave. The width will normally be the slave’s requested
width plus twice its−ipadx option and the height will normally be the slave’s requested height
plus twice its−ipady option. However, if the−fill option isx or both then the width of the slave is
expanded to fill the width of the parcel, minus twice the−padx option. If the−fill option isy or
both then the height of the slave is expanded to fill the width of the parcel, minus twice the−pady
option.

[3] The packer positions the slave over its parcel. If the slave is smaller than the parcel then the
−anchor option determines where in the parcel the slave will be placed. If−padx or −pady is
non-zero, then the given amount of external padding will always be left between the slave and the
edges of the parcel.

Once a given slave has been packed, the area of its parcel is subtracted from the cavity, leaving a smaller
rectangular cavity for the next slave. If a slave doesn’t use all of its parcel, the unused space in the parcel
will not be used by subsequent slaves. If the cavity should become too small to meet the needs of a slave
then the slave will be given whatever space is left in the cavity. If the cavity shrinks to zero size, then all
remaining slaves on the packing list will be unmapped from the screen until the master window becomes
large enough to hold them again.

EXPANSION
If a master window is so large that there will be extra space left over after all of its slaves hav e been packed,
then the extra space is distributed uniformly among all of the slaves for which the−expand option is set.
Extra horizontal space is distributed among the expandable slaves whose−side is left or right , and extra
vertical space is distributed among the expandable slaves whose−side is top or bottom.

GEOMETRY PROPA GATION
The packer normally computes how large a master must be to just exactly meet the needs of its slaves, and
it sets the requested width and height of the master to these dimensions. This causes geometry information
to propagate up through a window hierarchy to a top-level window so that the entire sub-tree sizes itself to
fit the needs of the leaf windows. However, thepack propagatecommand may be used to turn off propa-
gation for one or more masters. If propagation is disabled then the packer will not set the requested width
and height of the packer. This may be useful if, for example, you wish for a master window to hav e a fixed
size that you specify.

RESTRICTIONS ON MASTER WINDOWS
The master for each slave must either be the slave’s parent (the default) or a descendant of the slave’s par-
ent. This restriction is necessary to guarantee that the slave can be placed over any part of its master that is
visible without danger of the slave being clipped by its parent.

PA CKING ORDER
If the master for a slave is not its parent then you must make sure that the slave is higher in the stacking
order than the master. Otherwise the master will obscure the slave and it will appear as if the slave hasn’t
been packed correctly. The easiest way to make sure the slave is higher than the master is to create the
master window first: the most recently created window will be highest in the stacking order. Or, you can
use theraiseandlower commands to change the stacking order of either the master or the slave.

KEYWORDS
geometry manager, location, packer, parcel, propagation, size

Tk Last change: 4.0 3

Tk Built-In Commands tk_setPalette (n)

NAME
tk_setPalette, tk_bisque − Modify the Tk color palette

SYNOPSIS
tk_setPalettebackground

tk_setPalettename value?name value ...?

tk_bisque

DESCRIPTION
The tk_setPaletteprocedure changes the color scheme for Tk. It does this by modifying the colors of
existing widgets and by changing the option database so that future widgets will use the new color scheme.
If tk_setPaletteis invoked with a single argument, the argument is the name of a color to use as the normal
background color;tk_setPalettewill compute a complete color palette from this background color. Alter-
natively, the arguments totk_setPalettemay consist of any number ofname−valuepairs, where the first
argument of the pair is the name of an option in the Tk option database and the second argument is the new
value to use for that option. The following database names are currently supported:

activeBackground foreground selectColor
activeForeground highlightBackground selectBackground
background highlightColor selectForeground
disabledForeground insertBackground troughColor

tk_setPalettetries to compute reasonable defaults for any options that you don’t specify. You can specify
options other than the above ones and Tk will change those options on widgets as well. This feature may
be useful if you are using custom widgets with additional color options.

Once it has computed the new value to use for each of the color options,tk_setPalettescans the widget
hierarchy to modify the options of all existing widgets. For each widget, it checks to see if any of the above
options is defined for the widget. If so, and if the option’s current value is the default, then the value is
changed; if the option has a value other than the default,tk_setPalettewill not change it. The default for
an option is the one provided by the widget ([lindex [$w configure $option] 3]) unlesstk_setPalettehas
been run previously, in which case it is the value specified in the previous invocation oftk_setPalette.

After modifying all the widgets in the application,tk_setPaletteadds options to the option database to
change the defaults for widgets created in the future. The new options are added at prioritywidgetDefault,
so they will be overridden by options from the .Xdefaults file or options specified on the command-line that
creates a widget.

The proceduretk_bisque is provided for backward compatibility: it restores the application’s colors to the
light brown (‘‘bisque’’) color scheme used in Tk 3.6 and earlier versions.

KEYWORDS
bisque, color, palette

Tk Last change: 4.0 1

Tk Built-In Commands photo (n)

NAME
photo − Full-color images

SYNOPSIS
image create photo?name? ?options?

DESCRIPTION
A photo is an image whose pixels can display any color or be transparent. A photo image is stored inter-
nally in full color (24 bits per pixel), and is displayed using dithering if necessary. Image data for a photo
image can be obtained from a file or a string, or it can be supplied from C code through a procedural inter-
face. At present, only GIF and PPM/PGM formats are supported, but an interface exists to allow additional
image file formats to be added easily. A photo image is transparent in regions where no image data has
been supplied.

CREATING PHOTOS
Like all images, photos are created using theimage createcommand. Photos support the following
options:

−data string
Specifies the contents of the image as a string. The format of the string must be one of those for
which there is an image file format handler that will accept string data. If both the−data and−file
options are specified, the−file option takes precedence.

−format format-name
Specifies the name of the file format for the data specified with the−data or −file option.

−file name
namegives the name of a file that is to be read to supply data for the photo image. The file format
must be one of those for which there is an image file format handler that can read data.

−gammavalue
Specifies that the colors allocated for displaying this image in a window should be corrected for a
non-linear display with the specified gamma exponent value. (The intensity produced by most
CRT displays is a power function of the input value, to a good approximation; gamma is the expo-
nent and is typically around 2). The value specified must be greater than zero. The default value
is one (no correction). In general, values greater than one will make the image lighter, and values
less than one will make it darker.

−height number
Specifies the height of the image, in pixels. This option is useful primarily in situations where the
user wishes to build up the contents of the image piece by piece. A value of zero (the default)
allows the image to expand or shrink vertically to fit the data stored in it.

−palettepalette-spec
Specifies the resolution of the color cube to be allocated for displaying this image, and thus the
number of colors used from the colormaps of the windows where it is displayed. Thepalette-spec
string may be either a single decimal number, specifying the number of shades of gray to use, or
three decimal numbers separated by slashes (/), specifying the number of shades of red, green and
blue to use, respectively. If the first form (a single number) is used, the image will be displayed in
monochrome (i.e., grayscale).

−width number
Specifies the width of the image, in pixels. This option is useful primarily in situations where the
user wishes to build up the contents of the image piece by piece. A value of zero (the default)
allows the image to expand or shrink horizontally to fit the data stored in it.

Tk Last change: 4.0 1

Tk Built-In Commands photo (n)

IMAGE COMMAND
When a photo image is created, Tk also creates a new command whose name is the same as the image.
This command may be used to invoke various operations on the image. It has the following general form:

imageName option?arg arg ...?
Optionand theargs determine the exact behavior of the command.

Those options that write data to the image generally expand the size of the image, if necessary, to accom-
modate the data written to the image, unless the user has specified non-zero values for the−width and/or
−height configuration options, in which case the width and/or height, respectively, of the image will not be
changed.

The following commands are possible for photo images:

imageNameblank
Blank the image; that is, set the entire image to have no data, so it will be displayed as transparent,
and the background of whatever window it is displayed in will show through.

imageNamecgetoption
Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by theimage create photocommand.

imageNameconfigure?option? ?value option value ...?
Query or modify the configuration options for the image. If nooption is specified, returns a list
describing all of the available options forimageName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given option(s) to have the given value(s); in this case the command returns an
empty string.Optionmay have any of the values accepted by theimage create photocommand.

imageNamecopysourceImage?option value(s) ...?
Copies a region from the image calledsourceImage(which must be a photo image) to the image
called imageName, possibly with pixel zooming and/or subsampling. If no options are specified,
this command copies the whole ofsourceImageinto imageName, starting at coordinates (0,0) in
imageName. The following options may be specified:

−from x1 y1 x2 y2
Specifies a rectangular sub-region of the source image to be copied. (x1,y1) and (x2,y2)
specify diagonally opposite corners of the rectangle. Ifx2 andy2 are not specified, the
default value is the bottom-right corner of the source image. The pixels copied will
include the left and top edges of the specified rectangle but not the bottom or right edges.
If the −from option is not given, the default is the whole source image.

−to x1 y1 x2 y2
Specifies a rectangular sub-region of the destination image to be affected. (x1,y1) and
(x2,y2) specify diagonally opposite corners of the rectangle. Ifx2 andy2 are not speci-
fied, the default value is (x1,y1) plus the size of the source region (after subsampling and
zooming, if specified). Ifx2 andy2 are specified, the source region will be replicated if
necessary to fill the destination region in a tiled fashion.

−shrink
Specifies that the size of the destination image should be reduced, if necessary, so that the
region being copied into is at the bottom-right corner of the image. This option will not
affect the width or height of the image if the user has specified a non-zero value for the
−width or −height configuration option, respectively.

−zoomx y
Specifies that the source region should be magnified by a factor ofx in the X direction

Tk Last change: 4.0 2

Tk Built-In Commands photo (n)

andy in the Y direction. Ify is not given, the default value is the same asx. With this
option, each pixel in the source image will be expanded into a block ofx x y pixels in the
destination image, all the same color.x andy must be greater than 0.

−subsamplex y
Specifies that the source image should be reduced in size by using only everyxth pixel in
the X direction andyth pixel in the Y direction. Negative values will cause the image to
be flipped about the Y or X axes, respectively. Ify is not given, the default value is the
same asx.

imageNamegetx y
Returns the color of the pixel at coordinates (x,y) in the image as a list of three integers between 0
and 255, representing the red, green and blue components respectively.

imageNameput data?−to x1 y1 x2 y2?
Sets pixels inimageNameto the colors specified indata. data is used to form a two-dimensional
array of pixels that are then copied into theimageName. data is structured as a list of horizontal
rows, from top to bottom, each of which is a list of colors, listed from left to right. Each color
may be specified by name (e.g., blue) or in hexadecimal form (e.g., #2376af). The−to option can
be used to specify the area ofimageNameto be affected. If onlyx1 and y1 are given, the area
affected has its top-left corner at (x1,y1) and is the same size as the array given indata. If all four
coordinates are given, they specify diagonally opposite corners of the affected rectangle, and the
array given indatawill be replicated as necessary in the X and Y directions to fill the rectangle.

imageNameread filename?option value(s) ...?
Reads image data from the file namedfilenameinto the image. This command first searches the
list of image file format handlers for a handler that can interpret the data infilename, and then
reads the image infilenameinto imageName(the destination image). The following options may
be specified:

−format format-name
Specifies the format of the image data infilename. Specifically, only image file format
handlers whose names begin withformat-namewill be used while searching for an image
data format handler to read the data.

−from x1 y1 x2 y2
Specifies a rectangular sub-region of the image file data to be copied to the destination
image. If onlyx1 and y1 are specified, the region extends from (x1,y1) to the bottom-
right corner of the image in the image file. If all four coordinates are specified, they spec-
ify diagonally opposite corners or the region. The default, if this option is not specified,
is the whole of the image in the image file.

−shrink
If this option, the size ofimageNamewill be reduced, if necessary, so that the region into
which the image file data are read is at the bottom-right corner of theimageName. This
option will not affect the width or height of the image if the user has specified a non-zero
value for the−width or −height configuration option, respectively.

−to x y Specifies the coordinates of the top-left corner of the region ofimageNameinto which
data fromfilenameare to be read. The default is (0,0).

imageNameredither
The dithering algorithm used in displaying photo images propagates quantization errors from one
pixel to its neighbors. If the image data forimageNameis supplied in pieces, the dithered image
may not be exactly correct. Normally the difference is not noticeable, but if it is a problem, this
command can be used to recalculate the dithered image in each window where the image is dis-
played.

Tk Last change: 4.0 3

Tk Built-In Commands photo (n)

imageNamewrite filename?option value(s) ...?
Writes image data fromimageNameto a file namedfilename. The following options may be spec-
ified:

−format format-name
Specifies the name of the image file format handler to be used to write the data to the file.
Specifically, this subcommand searches for the first handler whose name matches a initial
substring offormat-nameand which has the capability to write an image file. If this
option is not given, this subcommand uses the first handler that has the capability to write
an image file.

−from x1 y1 x2 y2
Specifies a rectangular region ofimageNameto be written to the image file. If onlyx1
andy1 are specified, the region extends from(x1,y1) to the bottom-right corner ofima-
geName. If all four coordinates are given, they specify diagonally opposite corners of the
rectangular region. The default, if this option is not given, is the whole image.

IMAGE FORMATS
The photo image code is structured to allow handlers for additional image file formats to be added easily.
The photo image code maintains a list of these handlers. Handlers are added to the list by registering them
with a call to Tk_CreatePhotoImageFormat. The standard Tk distribution comes with handlers for
PPM/PGM and GIF formats, which are automatically registered on initialization.

When reading an image file or processing string data specified with the−data configuration option, the
photo image code invokes each handler in turn until one is found that claims to be able to read the data in
the file or string. Usually this will find the correct handler, but if it doesn’t, the user may give a format
name with the−format option to specify which handler to use. In fact the photo image code will try those
handlers whose names begin with the string specified for the−format option (the comparison is case-insen-
sitive). For example, if the user specifies−format gif , then a handler named GIF87 or GIF89 may be
invoked, but a handler named JPEG may not (assuming that such handlers had been registered).

When writing image data to a file, the processing of the−format option is slightly different: the string
value given for the−format option must begin with the complete name of the requested handler, and may
contain additional information following that, which the handler can use, for example, to specify which
variant to use of the formats supported by the handler.

COLOR ALLOCATION
When a photo image is displayed in a window, the photo image code allocates colors to use to display the
image and dithers the image, if necessary, to display a reasonable approximation to the image using the col-
ors that are available. The colors are allocated as a color cube, that is, the number of colors allocated is the
product of the number of shades of red, green and blue.

Normally, the number of colors allocated is chosen based on the depth of the window. For example, in an
8-bit PseudoColor window, the photo image code will attempt to allocate seven shades of red, seven shades
of green and four shades of blue, for a total of 198 colors. In a 1-bit StaticGray (monochrome) window, it
will allocate two colors, black and white. In a 24-bit DirectColor or TrueColor window, it will allocate 256
shades each of red, green and blue. Fortunately, because of the way that pixel values can be combined in
DirectColor and TrueColor windows, this only requires 256 colors to be allocated. If not all of the colors
can be allocated, the photo image code reduces the number of shades of each primary color and tries again.

The user can exercise some control over the number of colors that a photo image uses with the−palette
configuration option. If this option is used, it specifies the maximum number of shades of each primary
color to try to allocate. It can also be used to force the image to be displayed in shades of gray, even on a
color display, by giving a single number rather than three numbers separated by slashes.

Tk Last change: 4.0 4

Tk Built-In Commands photo (n)

CREDITS
The photo image type was designed and implemented by Paul Mackerras, based on his earlier photo widget
and some suggestions from John Ousterhout.

KEYWORDS
photo, image, color

Tk Last change: 4.0 5

Tk Built-In Commands place (n)

NAME
place − Geometry manager for fixed or rubber-sheet placement

SYNOPSIS
placewindow option value?option value ...?

place configurewindow option value?option value ...?

place forgetwindow

place infowindow

place slaveswindow

DESCRIPTION
The placer is a geometry manager for Tk. It provides simple fixed placement of windows, where you spec-
ify the exact size and location of one window, called theslave, within another window, called themaster.
The placer also provides rubber-sheet placement, where you specify the size and location of the slave in
terms of the dimensions of the master, so that the slave changes size and location in response to changes in
the size of the master. Lastly, the placer allows you to mix these styles of placement so that, for example,
the slave has a fixed width and height but is centered inside the master.

If the first argument to theplacecommand is a window path name orconfigure then the command arranges
for the placer to manage the geometry of a slave whose path name iswindow. The remaining arguments
consist of one or moreoption−valuepairs that specify the way in whichwindow’s geometry is managed. If
the placer is already managingwindow, then theoption−valuepairs modify the configuration forwindow.
In this form theplace command returns an empty string as result. The followingoption−valuepairs are
supported:

−in master
Masterspecifes the path name of the window relative to whichwindow is to be placed.Master
must either bewindow’s parent or a descendant ofwindow’s parent. In addition,masterandwin-
dow must both be descendants of the same top-level window. These restrictions are necessary to
guarantee thatwindow is visible whenevermasteris visible. If this option isn’t specified then the
master defaults towindow’s parent.

−x location
Locationspecifies the x-coordinate within the master window of the anchor point forwindow. The
location is specified in screen units (i.e. any of the forms accepted byTk_GetPixels) and need not
lie within the bounds of the master window.

−relx location
Locationspecifies the x-coordinate within the master window of the anchor point forwindow. In
this case the location is specified in a relative fashion as a floating-point number: 0.0 corresponds
to the left edge of the master and 1.0 corresponds to the right edge of the master.Locationneed
not be in the range 0.0−1.0. If both−x and−relx are specified for a slave then their values are
summed. For example,−relx 0.5 −x −2positions the left edge of the slave 2 pixels to the left of
the center of its master.

−y location
Locationspecifies the y-coordinate within the master window of the anchor point forwindow. The
location is specified in screen units (i.e. any of the forms accepted byTk_GetPixels) and need not
lie within the bounds of the master window.

Tk Last change: 1

Tk Built-In Commands place (n)

−rely location
Locationspecifies the y-coordinate within the master window of the anchor point forwindow. In
this case the value is specified in a relative fashion as a floating-point number: 0.0 corresponds to
the top edge of the master and 1.0 corresponds to the bottom edge of the master.Locationneed
not be in the range 0.0−1.0. If both−y and−rely are specified for a slave then their values are
summed. For example,−rely 0.5 −x 3positions the top edge of the slave 3 pixels below the center
of its master.

−anchor where
Wherespecifies which point ofwindowis to be positioned at the (x,y) location selected by the−x,
−y, −relx, and−rely options. The anchor point is in terms of the outer area ofwindow including
its border, if any. Thus ifwhereis sethen the lower-right corner ofwindow’s border will appear at
the given (x,y) location in the master. The anchor position defaults tonw.

−width size
Sizespecifies the width forwindowin screen units (i.e. any of the forms accepted byTk_GetPix-
els). The width will be the outer width ofwindow including its border, if any. Ifsizeis an empty
string, or if no−width or −relwidth option is specified, then the width requested internally by the
window will be used.

−relwidth size
Sizespecifies the width forwindow. In this case the width is specified as a floating-point number
relative to the width of the master: 0.5 meanswindowwill be half as wide as the master, 1.0 means
window will have the same width as the master, and so on. If both−width and −relwidth are
specified for a slave, their values are summed. For example,−relwidth 1.0 −width 5 makes the
slave 5 pixels wider than the master.

−height size
Sizespecifies the height forwindowin screen units (i.e. any of the forms accepted byTk_GetPix-
els). The height will be the outer dimension ofwindow including its border, if any. Ifsizeis an
empty string, or if no−height or −relheight option is specified, then the height requested inter-
nally by the window will be used.

−relheight size
Sizespecifies the height forwindow. In this case the height is specified as a floating-point number
relative to the height of the master: 0.5 meanswindowwill be half as high as the master, 1.0 means
windowwill have the same height as the master, and so on. If both−height and−relheight are
specified for a slave, their values are summed. For example,−relheight 1.0 −height −2makes the
slave 2 pixels shorter than the master.

−bordermodemode
Modedetermines the degree to which borders within the master are used in determining the place-
ment of the slave. The default and most common value isinside. In this case the placer considers
the area of the master to be the innermost area of the master, inside any border: an option of−x 0
corresponds to an x-coordinate just inside the border and an option of−relwidth 1.0 meanswin-
dow will fill the area inside the master’s border. Ifmodeis outside then the placer considers the
area of the master to include its border; this mode is typically used when placingwindowoutside
its master, as with the options−x 0 −y 0 −anchor ne. Lastly,modemay be specified asignore, in
which case borders are ignored: the area of the master is considered to be its official X area,
which includes any internal border but no external border. A bordermode ofignore is probably
not very useful.

If the same value is specified separately with two different options, such as−x and−relx, then the most
recent option is used and the older one is ignored.

Tk Last change: 2

Tk Built-In Commands place (n)

Theplace slavescommand returns a list of all the slave windows for whichwindow is the master. If there
are no slaves forwindowthen an empty string is returned.

Theplace forgetcommand causes the placer to stop managing the geometry ofwindow. As a side effect of
this commandwindowwill be unmapped so that it doesn’t appear on the screen. Ifwindow isn’t currently
managed by the placer then the command has no effect.Place forgetreturns an empty string as result.

The place info command returns a list giving the current configuration ofwindow. The list consists of
option−valuepairs in exactly the same form as might be specified to theplace configurecommand. If the
configuration of a window has been retrieved withplace info, that configuration can be restored later by
first usingplace forgetto erase any existing information for the window and then invokingplace configure
with the saved information.

FINE POINTS
It is not necessary for the master window to be the parent of the slave window. This feature is useful in at
least two situations. First, for complex window layouts it means you can create a hierarchy of subwindows
whose only purpose is to assist in the layout of the parent. The ‘‘real children’’ of the parent (i.e. the win-
dows that are significant for the application’s user interface) can be children of the parent yet be placed
inside the windows of the geometry-management hierarchy. This means that the path names of the ‘‘real
children’’ don’t reflect the geometry-management hierarchy and users can specify options for the real chil-
dren without being aware of the structure of the geometry-management hierarchy.

A second reason for having a master different than the slave’s parent is to tie two siblings together. For
example, the placer can be used to force a window always to be positioned centered just below one of its
siblings by specifying the configuration

−in sibling−relx 0.5 −rely 1.0 −anchor n −bordermode outside
Whenever the sibling is repositioned in the future, the slave will be repositioned as well.

Unlike many other geometry managers (such as the packer) the placer does not make any attempt to manip-
ulate the geometry of the master windows or the parents of slave windows (i.e. it doesn’t set their requested
sizes). To control the sizes of these windows, make them windows like frames and canvases that provide
configuration options for this purpose.

KEYWORDS
geometry manager, height, location, master, place, rubber sheet, slave, width

Tk Last change: 3

Tk Built-In Commands tk_popup (n)

NAME
tk_popup − Post a popup menu

SYNOPSIS
tk_popup menu x y?entry?

DESCRIPTION
This procedure posts a menu at a given position on the screen and configures Tk so that the menu and its
cascaded children can be traversed with the mouse or the keyboard.Menu is the name of a menu widget
andx andy are the root coordinates at which to display the menu. Ifentry is omitted or an empty string, the
menu’s upper left corner is positioned at the given point. Otherwiseentry gives the index of an entry in
menuand the menu will be positioned so that the entry is positioned over the given point.

KEYWORDS
menu, popup

Tk Last change: 4.0 1

Tk Built-In Commands radiobutton (n)

NAME
radiobutton − Create and manipulate radiobutton widgets

SYNOPSIS
radiobutton pathName?options?

STANDARD OPTIONS
−activebackground −cursor −highlightthickness −takefocus
−activeforeground −disabledforeground −image −text
−anchor −font −justify −textvariable
−background −foreground −padx −underline
−bitmap −highlightbackground −pady −wraplength
−borderwidth −highlightcolor −relief

See theoptionsmanual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Command-Line Name: −command
Database Name: command
Database Class: Command

Specifies a Tcl command to associate with the button. This command is typically invoked when
mouse button 1 is released over the button window. The button’s global variable (−variable
option) will be updated before the command is invoked.

Command-Line Name: −height
Database Name: height
Database Class: Height

Specifies a desired height for the button. If an image or bitmap is being displayed in the button
then the value is in screen units (i.e. any of the forms acceptable toTk_GetPixels); for text it is in
lines of text. If this option isn’t specified, the button’s desired height is computed from the size of
the image or bitmap or text being displayed in it.

Command-Line Name: −indicatoron
Database Name: indicatorOn
Database Class: IndicatorOn

Specifies whether or not the indicator should be drawn. Must be a proper boolean value. If false,
the relief option is ignored and the widget’s relief is always sunken if the widget is selected and
raised otherwise.

Command-Line Name: −selectcolor
Database Name: selectColor
Database Class: Background

Specifies a background color to use when the button is selected. IfindicatorOn is true then the
color applies to the indicator. Under Windows, this color is used as the background for the indica-
tor regardless of the select state. IfindicatorOn is false, this color is used as the background for
the entire widget, in place ofbackground or activeBackground, whenever the widget is selected.
If specified as an empty string then no special color is used for displaying when the widget is
selected.

Command-Line Name: −selectimage
Database Name: selectImage
Database Class: SelectImage

Specifies an image to display (in place of theimageoption) when the radiobutton is selected. This
option is ignored unless theimageoption has been specified.

Tk Last change: 4.4 1

Tk Built-In Commands radiobutton (n)

Command-Line Name: −state
Database Name: state
Database Class: State

Specifies one of three states for the radiobutton:normal, active, or disabled. In normal state the
radiobutton is displayed using theforeground andbackground options. The active state is typi-
cally used when the pointer is over the radiobutton. In active state the radiobutton is displayed
using theactiveForeground and activeBackground options. Disabled state means that the
radiobutton should be insensitive: the default bindings will refuse to activate the widget and will
ignore mouse button presses. In this state thedisabledForeground and background options
determine how the radiobutton is displayed.

Command-Line Name: −value
Database Name: value
Database Class: Value

Specifies value to store in the button’s associated variable whenever this button is selected.

Command-Line Name: −variable
Database Name: variable
Database Class: Variable

Specifies name of global variable to set whenever this button is selected. Changes in this variable
also cause the button to select or deselect itself. Defaults to the valueselectedButton.

Command-Line Name: −width
Database Name: width
Database Class: Width

Specifies a desired width for the button. If an image or bitmap is being displayed in the button, the
value is in screen units (i.e. any of the forms acceptable toTk_GetPixels); for text it is in charac-
ters. If this option isn’t specified, the button’s desired width is computed from the size of the
image or bitmap or text being displayed in it.

DESCRIPTION
The radiobutton command creates a new window (given by thepathNameargument) and makes it into a
radiobutton widget. Additional options, described above, may be specified on the command line or in the
option database to configure aspects of the radiobutton such as its colors, font, text, and initial relief. The
radiobutton command returns itspathNameargument. At the time this command is invoked, there must
not exist a window namedpathName, butpathName’s parent must exist.

A radiobutton is a widget that displays a textual string, bitmap or image and a diamond or circle called an
indicator. If text is displayed, it must all be in a single font, but it can occupy multiple lines on the screen
(if it contains newlines or if wrapping occurs because of thewrapLength option) and one of the characters
may optionally be underlined using theunderline option. A radiobutton has all of the behavior of a simple
button: it can display itself in either of three different ways, according to thestateoption; it can be made to
appear raised, sunken, or flat; it can be made to flash; and it invokes a Tcl command whenever mouse but-
ton 1 is clicked over the check button.

In addition, radiobuttons can beselected. If a radiobutton is selected, the indicator is normally drawn with
a selected appearance, and a Tcl variable associated with the radiobutton is set to a particular value (nor-
mally 1). Under Unix, the indicator is drawn with a sunken relief and a special color. Under Windows, the
indicator is drawn with a round mark inside. If the radiobutton is not selected, then the indicator is drawn
with a deselected appearance, and the associated variable is set to a different value (typically 0). Under
Unix, the indicator is drawn with a raised relief and no special color. Under Windows, the indicator is
drawn without a round mark inside. Typically, sev eral radiobuttons share a single variable and the value of

Tk Last change: 4.4 2

Tk Built-In Commands radiobutton (n)

the variable indicates which radiobutton is to be selected. When a radiobutton is selected it sets the value of
the variable to indicate that fact; each radiobutton also monitors the value of the variable and automatically
selects and deselects itself when the variable’s value changes. By default the variableselectedButtonis
used; its contents give the name of the button that is selected, or the empty string if no button associated
with that variable is selected. The name of the variable for a radiobutton, plus the variable to be stored into
it, may be modified with options on the command line or in the option database. Configuration options
may also be used to modify the way the indicator is displayed (or whether it is displayed at all). By default
a radiobutton is configured to select itself on button clicks.

WIDGET COMMAND
The radiobutton command creates a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?
Optionand theargs determine the exact behavior of the command. The following commands are possible
for radiobutton widgets:

pathNamecgetoption
Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by theradiobutton command.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, the command returns a list describing
the one named option (this list will be identical to the corresponding sublist of the value returned if
no option is specified). If one or moreoption−valuepairs are specified, the command modifies the
given widget option(s) to have the given value(s); in this case the command returns an empty
string. Optionmay have any of the values accepted by theradiobutton command.

pathNamedeselect
Deselects the radiobutton and sets the associated variable to an empty string. If this radiobutton
was not currently selected, the command has no effect.

pathNameflash
Flashes the radiobutton. This is accomplished by redisplaying the radiobutton several times, alter-
nating between active and normal colors. At the end of the flash the radiobutton is left in the same
normal/active state as when the command was invoked. This command is ignored if the radiobut-
ton’s state isdisabled.

pathNameinvoke
Does just what would have happened if the user invoked the radiobutton with the mouse: selects
the button and invokes its associated Tcl command, if there is one. The return value is the return
value from the Tcl command, or an empty string if there is no command associated with the
radiobutton. This command is ignored if the radiobutton’s state isdisabled.

pathNameselect
Selects the radiobutton and sets the associated variable to the value corresponding to this widget.

BINDINGS
Tk automatically creates class bindings for radiobuttons that give them the following default behavior:

[1] On Unix systems, a radiobutton activates whenever the mouse passes over it and deactivates when-
ev er the mouse leaves the radiobutton. On Mac and Windows systems, when mouse button 1 is
pressed over a radiobutton, the button activates whenever the mouse pointer is inside the button,
and deactivates whenever the mouse pointer leaves the button.

Tk Last change: 4.4 3

Tk Built-In Commands radiobutton (n)

[2] When mouse button 1 is pressed over a radiobutton it is invoked (it becomes selected and the com-
mand associated with the button is invoked, if there is one).

[3] When a radiobutton has the input focus, the space key causes the radiobutton to be invoked.

If the radiobutton’s state isdisabled then none of the above actions occur: the radiobutton is completely
non-responsive.

The behavior of radiobuttons can be changed by defining new bindings for individual widgets or by redefin-
ing the class bindings.

KEYWORDS
radiobutton, widget

Tk Last change: 4.4 4

Tk Built-In Commands raise (n)

NAME
raise − Change a window’s position in the stacking order

SYNOPSIS
raisewindow?aboveThis?

DESCRIPTION
If the aboveThisargument is omitted then the command raiseswindowso that it is above all of its siblings
in the stacking order (it will not be obscured by any siblings and will obscure any siblings that overlap it).
If aboveThisis specified then it must be the path name of a window that is either a sibling ofwindowor the
descendant of a sibling ofwindow. In this case theraise command will insertwindow into the stacking
order just aboveaboveThis(or the ancestor ofaboveThisthat is a sibling ofwindow); this could end up
either raising or loweringwindow.

SEE ALSO
lower

KEYWORDS
obscure, raise, stacking order

Tk Last change: 3.3 1

Tk Built-In Commands scale (n)

NAME
scale − Create and manipulate scale widgets

SYNOPSIS
scalepathName?options?

STANDARD OPTIONS
−activebackground −font −highlightthickness −repeatinterval
−background −foreground −orient −takefocus
−borderwidth −highlightbackground −relief −troughcolor
−cursor −highlightcolor −repeatdelay

See theoptionsmanual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Command-Line Name: −bigincrement
Database Name: bigIncrement
Database Class: BigIncrement

Some interactions with the scale cause its value to change by ‘‘large’’ increments; this option
specifies the size of the large increments. If specified as 0, the large increments default to 1/10 the
range of the scale.

Command-Line Name: −command
Database Name: command
Database Class: Command

Specifies the prefix of a Tcl command to invoke whenever the scale’s value is changed via a wid-
get command. The actual command consists of this option followed by a space and a real number
indicating the new value of the scale.

Command-Line Name: −digits
Database Name: digits
Database Class: Digits

An integer specifying how many significant digits should be retained when converting the value of
the scale to a string. If the number is less than or equal to zero, then the scale picks the smallest
value that guarantees that every possible slider position prints as a different string.

Command-Line Name: −from
Database Name: from
Database Class: From

A real value corresponding to the left or top end of the scale.

Command-Line Name: −label
Database Name: label
Database Class: Label

A string to display as a label for the scale. For vertical scales the label is displayed just to the right
of the top end of the scale. For horizontal scales the label is displayed just above the left end of
the scale. If the option is specified as an empty string, no label is displayed.

Command-Line Name: −length
Database Name: length
Database Class: Length

Specifies the desired long dimension of the scale in screen units (i.e. any of the forms acceptable
to Tk_GetPixels). For vertical scales this is the scale’s height; for horizontal scales it is the
scale’s width.

Tk Last change: 4.1 1

Tk Built-In Commands scale (n)

Command-Line Name: −resolution
Database Name: resolution
Database Class: Resolution

A real value specifying the resolution for the scale. If this value is greater than zero then the
scale’s value will always be rounded to an even multiple of this value, as will tick marks and the
endpoints of the scale. If the value is less than zero then no rounding occurs. Defaults to 1 (i.e.,
the value will be integral).

Command-Line Name: −showvalue
Database Name: showValue
Database Class: ShowValue

Specifies a boolean value indicating whether or not the current value of the scale is to be dis-
played.

Command-Line Name: −sliderlength
Database Name: sliderLength
Database Class: SliderLength

Specfies the size of the slider, measured in screen units along the slider’s long dimension. The
value may be specified in any of the forms acceptable toTk_GetPixels.

Command-Line Name: −sliderrelief
Database Name: sliderRelief
Database Class: SliderRelief

Specifies the relief to use when drawing the slider, such asraisedor sunken.

Command-Line Name: −state
Database Name: state
Database Class: State

Specifies one of three states for the scale:normal, active, or disabled. If the scale is disabled
then the value may not be changed and the scale won’t activate. If the scale is active, the slider is
displayed using the color specified by theactiveBackgroundoption.

Command-Line Name: −tickinterval
Database Name: tickInterval
Database Class: TickInterval

Must be a real value. Determines the spacing between numerical tick marks displayed below or to
the left of the slider. If 0, no tick marks will be displayed.

Command-Line Name: −to
Database Name: to
Database Class: To

Specifies a real value corresponding to the right or bottom end of the scale. This value may be
either less than or greater than thefrom option.

Command-Line Name: −variable
Database Name: variable
Database Class: Variable

Specifies the name of a global variable to link to the scale. Whenever the value of the variable
changes, the scale will update to reflect this value. Whenever the scale is manipulated interac-
tively, the variable will be modified to reflect the scale’s new value.

Tk Last change: 4.1 2

Tk Built-In Commands scale (n)

Command-Line Name: −width
Database Name: width
Database Class: Width

Specifies the desired narrow dimension of the trough in screen units (i.e. any of the forms accept-
able toTk_GetPixels). For vertical scales this is the trough’s width; for horizontal scales this is
the trough’s height.

DESCRIPTION
The scalecommand creates a new window (given by thepathNameargument) and makes it into a scale
widget. Additional options, described above, may be specified on the command line or in the option
database to configure aspects of the scale such as its colors, orientation, and relief. Thescalecommand
returns itspathNameargument. At the time this command is invoked, there must not exist a window
namedpathName, butpathName’s parent must exist.

A scale is a widget that displays a rectangulartroughand a smallslider. The trough corresponds to a range
of real values (determined by thefrom , to, andresolution options), and the position of the slider selects a
particular real value. The slider’s position (and hence the scale’s value) may be adjusted with the mouse or
keyboard as described in the BINDINGS section below. Whenever the scale’s value is changed, a Tcl com-
mand is invoked (using thecommandoption) to notify other interested widgets of the change. In addition,
the value of the scale can be linked to a Tcl variable (using thevariable option), so that changes in either
are reflected in the other.

Three annotations may be displayed in a scale widget: a label appearing at the top right of the widget (top
left for horizontal scales), a number displayed just to the left of the slider (just above the slider for horizon-
tal scales), and a collection of numerical tick marks just to the left of the current value (just below the
trough for horizontal scales). Each of these three annotations may be enabled or disabled using the config-
uration options.

WIDGET COMMAND
Thescalecommand creates a new Tcl command whose name ispathName. This command may be used to
invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?
Optionand theargs determine the exact behavior of the command. The following commands are possible
for scale widgets:

pathNamecgetoption
Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thescalecommand.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thescalecommand.

pathNamecoords?value?
Returns a list whose elements are the x and y coordinates of the point along the centerline of the
trough that corresponds tovalue. If valueis omitted then the scale’s current value is used.

pathNameget?x y?

Tk Last change: 4.1 3

Tk Built-In Commands scale (n)

If x andy are omitted, returns the current value of the scale. Ifx andy are specified, they giv e
pixel coordinates within the widget; the command returns the scale value corresponding to the
given pixel. Only one ofx or y is used: for horizontal scalesy is ignored, and for vertical scalesx
is ignored.

pathNameidentify x y
Returns a string indicating what part of the scale lies under the coordinates given byx andy. A
return value ofslider means that the point is over the slider;trough1 means that the point is over
the portion of the slider above or tothe left of the slider; andtrough2 means that the point is over
the portion of the slider below or to the right of the slider. If the point isn’t over one of these ele-
ments, an empty string is returned.

pathNamesetvalue
This command is invoked to change the current value of the scale, and hence the position at which
the slider is displayed.Valuegives the new value for the scale. The command has no effect if the
scale is disabled.

BINDINGS
Tk automatically creates class bindings for scales that give them the following default behavior. Where the
behavior is different for vertical and horizontal scales, the horizontal behavior is described in parentheses.

[1] If button 1 is pressed in the trough, the scale’s value will be incremented or decremented by the
value of theresolution option so that the slider moves in the direction of the cursor. If the button
is held down, the action auto-repeats.

[2] If button 1 is pressed over the slider, the slider can be dragged with the mouse.

[3] If button 1 is pressed in the trough with the Control key down, the slider moves all the way to the
end of its range, in the direction towards the mouse cursor.

[4] If button 2 is pressed, the scale’s value is set to the mouse position. If the mouse is dragged with
button 2 down, the scale’s value changes with the drag.

[5] The Up and Left keys move the slider up (left) by the value of theresolution option.

[6] The Down and Right keys move the slider down (right) by the value of theresolution option.

[7] Control-Up and Control-Left move the slider up (left) by the value of thebigIncrement option.

[8] Control-Down and Control-Right move the slider down (right) by the value of thebigIncrement
option.

[9] Home moves the slider to the top (left) end of its range.

[10] End moves the slider to the bottom (right) end of its range.

If the scale is disabled using thestateoption then none of the above bindings have any effect.

The behavior of scales can be changed by defining new bindings for individual widgets or by redefining the
class bindings.

KEYWORDS
scale, slider, trough, widget

Tk Last change: 4.1 4

Tk Built-In Commands scrollbar (n)

NAME
scrollbar − Create and manipulate scrollbar widgets

SYNOPSIS
scrollbar pathName?options?

STANDARD OPTIONS
−activebackground −highlightbackground −orient −takefocus
−background −highlightcolor −relief −troughcolor
−borderwidth −highlightthickness −repeatdelay
−cursor −jump −repeatinterval

See theoptionsmanual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Command-Line Name: −activerelief
Database Name: activeRelief
Database Class: ActiveRelief

Specifies the relief to use when displaying the element that is active, if any. Elements other than
the active element are always displayed with a raised relief.

Command-Line Name: −command
Database Name: command
Database Class: Command

Specifies the prefix of a Tcl command to invoke to change the view in the widget associated with
the scrollbar. When a user requests a view change by manipulating the scrollbar, a Tcl command
is invoked. The actual command consists of this option followed by additional information as
described later. This option almost always has a value such as.t xview or .t yview, consisting of
the name of a widget and eitherxview (if the scrollbar is for horizontal scrolling) oryview (for
vertical scrolling). All scrollable widgets havexview andyview commands that take exactly the
additional arguments appended by the scrollbar as described in SCROLLING COMMANDS
below.

Command-Line Name: −elementborderwidth
Database Name: elementBorderWidth
Database Class: BorderWidth

Specifies the width of borders drawn around the internal elements of the scrollbar (the two arrows
and the slider). The value may have any of the forms acceptable toTk_GetPixels. If this value is
less than zero, the value of theborderWidth option is used in its place.

Command-Line Name: −width
Database Name: width
Database Class: Width

Specifies the desired narrow dimension of the scrollbar window, not including 3-D border, if any.
For vertical scrollbars this will be the width and for horizontal scrollbars this will be the height.
The value may have any of the forms acceptable toTk_GetPixels.

DESCRIPTION
The scrollbar command creates a new window (given by thepathNameargument) and makes it into a
scrollbar widget. Additional options, described above, may be specified on the command line or in the
option database to configure aspects of the scrollbar such as its colors, orientation, and relief. Thescroll-
bar command returns itspathNameargument. At the time this command is invoked, there must not exist a
window namedpathName, butpathName’s parent must exist.

Tk Last change: 4.1 1

Tk Built-In Commands scrollbar (n)

A scrollbar is a widget that displays two arrows, one at each end of the scrollbar, and aslider in the middle
portion of the scrollbar. It provides information about what is visible in anassociated windowthat displays
an document of some sort (such as a file being edited or a drawing). The position and size of the slider
indicate which portion of the document is visible in the associated window. For example, if the slider in a
vertical scrollbar covers the top third of the area between the two arrows, it means that the associated win-
dow displays the top third of its document.

Scrollbars can be used to adjust the view in the associated window by clicking or dragging with the mouse.
See the BINDINGS section below for details.

ELEMENTS
A scrollbar displays five elements, which are referred to in the widget commands for the scrollbar:

arrow1 The top or left arrow in the scrollbar.

trough1 The region between the slider andarrow1.

slider The rectangle that indicates what is visible in the associated widget.

trough2 The region between the slider andarrow2.

arrow2 The bottom or right arrow in the scrollbar.

WIDGET COMMAND
The scrollbar command creates a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?
Optionand theargs determine the exact behavior of the command. The following commands are possible
for scrollbar widgets:

pathNameactivate?element?
Marks the element indicated byelementas active, which causes it to be displayed as specified by
the activeBackground and activeRelief options. The only element values understood by this
command arearrow1, slider, or arrow2. If any other value is specified then no element of the
scrollbar will be active. Ifelementis not specified, the command returns the name of the element
that is currently active, or an empty string if no element is active.

pathNamecgetoption
Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thescrollbar command.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thescrollbar command.

pathNamedelta deltaX deltaY
Returns a real number indicating the fractional change in the scrollbar setting that corresponds to a
given change in slider position. For example, if the scrollbar is horizontal, the result indicates how
much the scrollbar setting must change to move the sliderdeltaX pixels to the right (deltaY is
ignored in this case). If the scrollbar is vertical, the result indicates how much the scrollbar setting
must change to move the sliderdeltaYpixels down. The arguments and the result may be zero or
negative.

Tk Last change: 4.1 2

Tk Built-In Commands scrollbar (n)

pathNamefraction x y
Returns a real number between 0 and 1 indicating where the point given byx and y lies in the
trough area of the scrollbar. The value 0 corresponds to the top or left of the trough, the value 1
corresponds to the bottom or right, 0.5 corresponds to the middle, and so on.X and y must be
pixel coordinates relative to the scrollbar widget. Ifx andy refer to a point outside the trough, the
closest point in the trough is used.

pathNameget
Returns the scrollbar settings in the form of a list whose elements are the arguments to the most
recentsetwidget command.

pathNameidentify x y
Returns the name of the element under the point given byx andy (such asarrow1), or an empty
string if the point does not lie in any element of the scrollbar.X andy must be pixel coordinates
relative to the scrollbar widget.

pathNamesetfirst last
This command is invoked by the scrollbar’s associated widget to tell the scrollbar about the current
view in the widget. The command takes two arguments, each of which is a real fraction between 0
and 1. The fractions describe the range of the document that is visible in the associated widget.
For example, iffirst is 0.2 andlast is 0.4, it means that the first part of the document visible in the
window is 20% of the way through the document, and the last visible part is 40% of the way
through.

SCROLLING COMMANDS
When the user interacts with the scrollbar, for example by dragging the slider, the scrollbar notifies the
associated widget that it must change its view. The scrollbar makes the notification by evaluating a Tcl
command generated from the scrollbar’s−commandoption. The command may take any of the following
forms. In each case,prefix is the contents of the−commandoption, which usually has a form like.t yview

prefixmovetofraction
Fr action is a real number between 0 and 1. The widget should adjust its view so that the point
given byfraction appears at the beginning of the widget. Iffraction is 0 it refers to the beginning
of the document. 1.0 refers to the end of the document, 0.333 refers to a point one-third of the
way through the document, and so on.

prefixscroll numberunits
The widget should adjust its view bynumberunits. The units are defined in whatever way makes
sense for the widget, such as characters or lines in a text widget.Numberis either 1, which means
one unit should scroll off the top or left of the window, or −1, which means that one unit should
scroll off the bottom or right of the window.

prefixscroll numberpages
The widget should adjust its view bynumberpages. It is up to the widget to define the meaning of
a page; typically it is slightly less than what fits in the window, so that there is a slight overlap
between the old and new views.Numberis either 1, which means the next page should become
visible, or −1, which means that the previous page should become visible.

OLD COMMAND SYNTAX
In versions of Tk before 4.0, thesetandget widget commands used a different form. This form is still sup-
ported for backward compatibility, but it is deprecated. In the old command syntax, theset widget com-
mand has the following form:

pathNamesettotalUnits windowUnits firstUnit lastUnit
In this form the arguments are all integers.TotalUnits gives the total size of the object being

Tk Last change: 4.1 3

Tk Built-In Commands scrollbar (n)

displayed in the associated widget. The meaning of one unit depends on the associated widget;
for example, in a text editor widget units might correspond to lines of text.WindowUnitsindicates
the total number of units that can fit in the associated window at one time.FirstUnit and lastUnit
give the indices of the first and last units currently visible in the associated window (zero corre-
sponds to the first unit of the object).

Under the old syntax theget widget command returns a list of four integers, consisting of thetotalUnits,
windowUnits, firstUnit, andlastUnitvalues from the lastsetwidget command.

The commands generated by scrollbars also have a different form when the old syntax is being used:

prefix unit
Unit is an integer that indicates what should appear at the top or left of the associated widget’s
window. It has the same meaning as thefirstUnit and lastUnit arguments to theset widget com-
mand.

The most recentset widget command determines whether or not to use the old syntax. If it is given two
real arguments then the new syntax will be used in the future, and if it is given four integer arguments then
the old syntax will be used.

BINDINGS
Tk automatically creates class bindings for scrollbars that give them the following default behavior. If the
behavior is different for vertical and horizontal scrollbars, the horizontal behavior is described in parenthe-
ses.

[1] Pressing button 1 overarrow1 causes the view in the associated widget to shift up (left) by one
unit so that the document appears to move down(right) one unit. If the button is held down, the
action auto-repeats.

[2] Pressing button 1 overtrough1 causes the view in the associated widget to shift up (left) by one
screenful so that the document appears to move down(right) one screenful. If the button is held
down, the action auto-repeats.

[3] Pressing button 1 over the slider and dragging causes the view to drag with the slider. If thejump
option is true, then the view doesn’t drag along with the slider; it changes only when the mouse
button is released.

[4] Pressing button 1 overtrough2 causes the view in the associated widget to shift down (right) by
one screenful so that the document appears to move up(left) one screenful. If the button is held
down, the action auto-repeats.

[5] Pressing button 1 overarrow2 causes the view in the associated widget to shift down (right) by
one unit so that the document appears to move up(left) one unit. If the button is held down, the
action auto-repeats.

[6] If button 2 is pressed over the trough or the slider, it sets the view to correspond to the mouse posi-
tion; dragging the mouse with button 2 down causes the view to drag with the mouse. If button 2
is pressed over one of the arrows, it causes the same behavior as pressing button 1.

[7] If button 1 is pressed with the Control key down, then if the mouse is overarrow1 or trough1 the
view changes to the very top (left) of the document; if the mouse is overarrow2 or trough2 the
view changes to the very bottom (right) of the document; if the mouse is anywhere else then the
button press has no effect.

[8] In vertical scrollbars the Up and Down keys hav e the same behavior as mouse clicks overarrow1
andarrow2, respectively. In horizontal scrollbars these keys hav e no effect.

[9] In vertical scrollbars Control-Up and Control-Down have the same behavior as mouse clicks over

Tk Last change: 4.1 4

Tk Built-In Commands scrollbar (n)

trough1 andtrough2, respectively. In horizontal scrollbars these keys hav e no effect.

[10] In horizontal scrollbars the Up and Down keys hav e the same behavior as mouse clicks over
arrow1 andarrow2, respectively. In vertical scrollbars these keys hav e no effect.

[11] In horizontal scrollbars Control-Up and Control-Down have the same behavior as mouse clicks
overtrough1 andtrough2, respectively. In vertical scrollbars these keys hav e no effect.

[12] The Prior and Next keys hav e the same behavior as mouse clicks overtrough1 and trough2,
respectively.

[13] The Home key adjusts the view to the top (left edge) of the document.

[14] The End key adjusts the view to the bottom (right edge) of the document.

KEYWORDS
scrollbar, widget

Tk Last change: 4.1 5

Tk Built-In Commands selection (n)

NAME
selection − Manipulate the X selection

SYNOPSIS
selectionoption?arg arg ...?

DESCRIPTION
This command provides a Tcl interface to the X selection mechanism and implements the full selection
functionality described in the X Inter-Client Communication Conventions Manual (ICCCM).

The first argument toselectiondetermines the format of the rest of the arguments and the behavior of the
command. The following forms are currently supported:

selection clear?−displayof window? ?−selectionselection?
If selectionexists anywhere onwindow’s display, clear it so that no window owns the selection
anymore.Selectionspecifies the X selection that should be cleared, and should be an atom name
such as PRIMARY or CLIPBOARD; see the Inter-Client Communication Conventions Manual for
complete details.Selectiondefaults to PRIMARY andwindowdefaults to ‘‘.’’. Returns an empty
string.

selection get?−displayof window? ?−selectionselection? ?−type type?
Retrieves the value ofselectionfrom window’s display and returns it as a result.Selectiondefaults
to PRIMARY andwindowdefaults to ‘‘.’’. Typespecifies the form in which the selection is to be
returned (the desired ‘‘target’’ for conversion, in ICCCM terminology), and should be an atom
name such as STRING or FILE_NAME; see the Inter-Client Communication Conventions Manual
for complete details.Typedefaults to STRING. The selection owner may choose to return the
selection in any of sev eral different representation formats, such as STRING, ATOM, INTEGER,
etc. (this format is different than the selection type; see the ICCCM for all the confusing details).
If the selection is returned in a non-string format, such as INTEGER or ATOM, theselectioncom-
mand converts it to string format as a collection of fields separated by spaces: atoms are converted
to their textual names, and anything else is converted to hexadecimal integers.

selection handle?−selectionselection? ?−type type? ?−format format?window command
Creates a handler for selection requests, such thatcommandwill be executed wheneverselectionis
owned bywindowand someone attempts to retrieve it in the form given bytype(e.g.typeis speci-
fied in theselection getcommand).Selectiondefaults to PRIMARY,typedefaults to STRING,
andformatdefaults to STRING. Ifcommandis an empty string then any existing handler forwin-
dow, type, andselectionis removed.

Whenselectionis requested,window is the selection owner, andtype is the requested type,com-
mandwill be executed as a Tcl command with two additional numbers appended to it (with space
separators). The two additional numbers areoffsetandmaxBytes: offsetspecifies a starting char-
acter position in the selection andmaxBytesgives the maximum number of bytes to retrieve. The
command should return a value consisting of at mostmaxBytesof the selection, starting at position
offset. For very large selections (larger thanmaxBytes) the selection will be retrieved using several
invocations ofcommandwith increasingoffsetvalues. Ifcommandreturns a string whose length
is less thanmaxBytes, the return value is assumed to include all of the remainder of the selection;
if the length ofcommand’s result is equal tomaxBytesthencommandwill be invoked again, until
it eventually returns a result shorter thanmaxBytes. The value ofmaxByteswill always be rela-
tively large (thousands of bytes).

If commandreturns an error then the selection retrieval is rejected just as if the selection didn’t
exist at all.

Tk Last change: 4.0 1

Tk Built-In Commands selection (n)

The format argument specifies the representation that should be used to transmit the selection to
the requester (the second column of Table 2 of the ICCCM), and defaults to STRING. Ifformat is
STRING, the selection is transmitted as 8-bit ASCII characters (i.e. just in the form returned by
command). If format is ATOM, then the return value fromcommandis divided into fields sepa-
rated by white space; each field is converted to its atom value, and the 32-bit atom value is trans-
mitted instead of the atom name. For any otherformat, the return value fromcommandis divided
into fields separated by white space and each field is converted to a 32-bit integer; an array of
integers is transmitted to the selection requester.

The formatargument is needed only for compatibility with selection requesters that don’t use Tk.
If Tk is being used to retrieve the selection then the value is converted back to a string at the
requesting end, soformat is irrelevant.

selection own?−displayof window? ?−selectionselection?

selection own?−commandcommand? ?−selectionselection?window
The first form ofselection ownreturns the path name of the window in this application that owns
selectionon the display containingwindow, or an empty string if no window in this application
owns the selection.Selectiondefaults to PRIMARY andwindowdefaults to ‘‘.’’.

The second form ofselection owncauseswindowto become the new owner ofselectionon window’s dis-
play, returning an empty string as result. The existing owner, if any, is notified that it has lost the selection.
If commandis specified, it is a Tcl script to execute when some other window claims ownership of the
selection away fromwindow. Selectiondefaults to PRIMARY.

KEYWORDS
clear, format, handler, ICCCM, own, selection, target, type

Tk Last change: 4.0 2

Tk Built-In Commands send (n)

NAME
send − Execute a command in a different application

SYNOPSIS
send ?options?app cmd?arg arg ...?

DESCRIPTION
This command arranges forcmd(andargs) to be executed in the application named byapp. It returns the
result or error from that command execution.Appmay be the name of any application whose main window
is on the display containing the sender’s main window; it need not be within the same process. If noarg
arguments are present, then the command to be executed is contained entirely within thecmdargument. If
one or moreargs are present, they are concatenated to form the command to be executed, just as for the
ev alcommand.

If the initial arguments of the command begin with ‘‘−’’ they are treated as options. The following options
are currently defined:

−async Requests asynchronous invocation. In this case thesend command will complete immediately
without waiting for cmd to complete in the target application; no result will be available and
errors in the sent command will be ignored. If the target application is in the same process as the
sending application then the−asyncoption is ignored.

−displayof pathName
Specifies that the target application’s main window is on the display of the window giv en bypath-
Name, instead of the display containing the application’s main window.

− − Serves no purpose except to terminate the list of options. This option is needed only ifappcould
contain a leading ‘‘−’’ character.

APPLICATION NAMES
The name of an application is set initially from the name of the program or script that created the applica-
tion. You can query and change the name of an application with thetk appnamecommand.

DISABLING SENDS
If the sendcommand is removed from an application (e.g. with the commandrename send {}) then the
application will not respond to incoming send requests anymore, nor will it be able to issue outgoing
requests. Communication can be reenabled by invoking thetk appnamecommand.

SECURITY
Thesendcommand is potentially a serious security loophole, since any application that can connect to your
X server can send scripts to your applications. These incoming scripts can use Tcl to read and write your
files and invoke subprocesses under your name. Host-based access control such as that provided byxhost
is particularly insecure, since it allows anyone with an account on particular hosts to connect to your server,
and if disabled it allows anyone anywhere to connect to your server. In order to provide at least a small
amount of security, Tk checks the access control being used by the server and rejects incoming sends unless
(a) xhost-style access control is enabled (i.e. only certain hosts can establish connections) and (b) the list of
enabled hosts is empty. This means that applications cannot connect to your server unless they use some
other form of authorization such as that provide byxauth.

KEYWORDS
application, name, remote execution, security, send

Tk Last change: 4.0 1

Tk Built-In Commands text (n)

NAME
text − Create and manipulate text widgets

SYNOPSIS
text pathName?options?

STANDARD OPTIONS
−background −highlightbackground −insertontime −selectborderwidth
−borderwidth −highlightcolor −insertwidth −selectforeground
−cursor −highlightthickness −padx −setgrid
−exportselection −insertbackground −pady −takefocus
−font −insertborderwidth −relief −xscrollcommand
−foreground −insertofftime −selectbackground −yscrollcommand

See theoptionsmanual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Command-Line Name: −height
Database Name: height
Database Class: Height

Specifies the desired height for the window, in units of characters in the font given by the−font
option. Must be at least one.

Command-Line Name: −spacing1
Database Name: spacing1
Database Class: Spacing1

Requests additional space above each text line in the widget, using any of the standard forms for
screen distances. If a line wraps, this option only applies to the first line on the display. This
option may be overriden with−spacing1options in tags.

Command-Line Name: −spacing2
Database Name: spacing2
Database Class: Spacing2

For lines that wrap (so that they cover more than one line on the display) this option specifies addi-
tional space to provide between the display lines that represent a single line of text. The value
may have any of the standard forms for screen distances. This option may be overriden with
−spacing2options in tags.

Command-Line Name: −spacing3
Database Name: spacing3
Database Class: Spacing3

Requests additional space below each text line in the widget, using any of the standard forms for
screen distances. If a line wraps, this option only applies to the last line on the display. This
option may be overriden with−spacing3options in tags.

Command-Line Name: −state
Database Name: state
Database Class: State

Specifies one of two states for the text:normal or disabled. If the text is disabled then characters
may not be inserted or deleted and no insertion cursor will be displayed, even if the input focus is
in the widget.

Command-Line Name: −tabs
Database Name: tabs
Database Class: Tabs

Tk Last change: 4.0 1

Tk Built-In Commands text (n)

Specifies a set of tab stops for the window. The option’s value consists of a list of screen distances
giving the positions of the tab stops. Each position may optionally be followed in the next list ele-
ment by one of the keywordsleft, right , center, or numeric, which specifies how to justify text
relative to the tab stop.Left is the default; it causes the text following the tab character to be posi-
tioned with its left edge at the tab position.Right means that the right edge of the text following
the tab character is positioned at the tab position, andcenter means that the text is centered at the
tab position.Numeric means that the decimal point in the text is positioned at the tab position; if
there is no decimal point then the least significant digit of the number is positioned just to the left
of the tab position; if there is no number in the text then the text is right-justified at the tab posi-
tion. For example,−tabs {2c left 4c 6c center}creates three tab stops at two-centimeter intervals;
the first two use left justification and the third uses center justification. If the list of tab stops does
not have enough elements to cover all of the tabs in a text line, then Tk extrapolates new tab stops
using the spacing and alignment from the last tab stop in the list. The value of thetabs option
may be overridden by−tabs options in tags. If no−tabs option is specified, or if it is specified as
an empty list, then Tk uses default tabs spaced every eight (average size) characters.

Command-Line Name: −width
Database Name: width
Database Class: Width

Specifies the desired width for the window in units of characters in the font given by the−font
option. If the font doesn’t hav e a uniform width then the width of the character ‘‘0’’ is used in
translating from character units to screen units.

Command-Line Name: −wrap
Database Name: wrap
Database Class: Wrap

Specifies how to handle lines in the text that are too long to be displayed in a single line of the
text’s window. The value must benoneor char or word. A wrap mode ofnonemeans that each
line of text appears as exactly one line on the screen; extra characters that don’t fit on the screen
are not displayed. In the other modes each line of text will be broken up into several screen lines
if necessary to keep all the characters visible. Inchar mode a screen line break may occur after
any character; inword mode a line break will only be made at word boundaries.

DESCRIPTION
The text command creates a new window (given by thepathNameargument) and makes it into a text wid-
get. Additional options, described above, may be specified on the command line or in the option database
to configure aspects of the text such as its default background color and relief. Thetext command returns
the path name of the new window.

A text widget displays one or more lines of text and allows that text to be edited. Te xt widgets support four
different kinds of annotations on the text, called tags, marks, embedded windows or embedded images.
Tags allow different portions of the text to be displayed with different fonts and colors. In addition, Tcl
commands can be associated with tags so that scripts are invoked when particular actions such as
keystrokes and mouse button presses occur in particular ranges of the text. See TA GS below for more
details.

The second form of annotation consists of marks, which are floating markers in the text. Marks are used to
keep track of various interesting positions in the text as it is edited. See MARKS below for more details.

The third form of annotation allows arbitrary windows to be embedded in a text widget. See EMBEDDED
WINDOWS below for more details.

Tk Last change: 4.0 2

Tk Built-In Commands text (n)

The fourth form of annotation allows Tk images to be embedded in a text widget. See EMBEDDED
IMAGES below for more details.

INDICES
Many of the widget commands for texts take one or more indices as arguments. An index is a string used to
indicate a particular place within a text, such as a place to insert characters or one endpoint of a range of
characters to delete. Indices have the syntax

base modifier modifier modifier ...
Wherebasegives a starting point and themodifiers adjust the index from the starting point (e.g. move for-
ward or backward one character). Every index must contain abase, but themodifiers are optional.

Thebasefor an index must have one of the following forms:

line.char Indicateschar’th character on lineline. Lines are numbered from 1 for consistency with
other UNIX programs that use this numbering scheme. Within a line, characters are num-
bered from 0. Ifchar is end then it refers to the newline character that ends the line.

@x,y Indicates the character that covers the pixel whose x and y coordinates within the text’s win-
dow arex andy.

end Indicates the end of the text (the character just after the last newline).

mark Indicates the character just after the mark whose name ismark.

tag.first Indicates the first character in the text that has been tagged withtag. This form generates an
error if no characters are currently tagged withtag.

tag.last Indicates the character just after the last one in the text that has been tagged withtag. This
form generates an error if no characters are currently tagged withtag.

pathName Indicates the position of the embedded window whose name ispathName. This form gener-
ates an error if there is no embedded window by the given name.

imageName Indicates the position of the embedded image whose name isimageName. This form gener-
ates an error if there is no embedded image by the given name.

If the basecould match more than one of the above forms, such as amarkandimageNameboth having the
same value, then the form earlier in the above list takes precedence. If modifiers follow the base index,
each one of them must have one of the forms listed below. Keywords such aschars andwordend may be
abbreviated as long as the abbreviation is unambiguous.

+ countchars
Adjust the index forward bycountcharacters, moving to later lines in the text if necessary. If there
are fewer thancount characters in the text after the current index, then set the index to the last
character in the text. Spaces on either side ofcountare optional.

− countchars
Adjust the index backward bycountcharacters, moving to earlier lines in the text if necessary. If
there are fewer thancountcharacters in the text before the current index, then set the index to the
first character in the text. Spaces on either side ofcountare optional.

+ countlines
Adjust the index forward bycount lines, retaining the same character position within the line. If
there are fewer thancount lines after the line containing the current index, then set the index to
refer to the same character position on the last line of the text. Then, if the line is not long enough
to contain a character at the indicated character position, adjust the character position to refer to
the last character of the line (the newline). Spaces on either side ofcountare optional.

− countlines
Adjust the index backward bycountlines, retaining the same character position within the line. If

Tk Last change: 4.0 3

Tk Built-In Commands text (n)

there are fewer thancount lines before the line containing the current index, then set the index to
refer to the same character position on the first line of the text. Then, if the line is not long enough
to contain a character at the indicated character position, adjust the character position to refer to
the last character of the line (the newline). Spaces on either side ofcountare optional.

linestart
Adjust the index to refer to the first character on the line.

lineend Adjust the index to refer to the last character on the line (the newline).

wordstart
Adjust the index to refer to the first character of the word containing the current index. A word
consists of any number of adjacent characters that are letters, digits, or underscores, or a single
character that is not one of these.

wordend
Adjust the index to refer to the character just after the last one of the word containing the current
index. If the current index refers to the last character of the text then it is not modified.

If more than one modifier is present then they are applied in left-to-right order. For example, the index
‘‘ end − 1 chars’’ refers to the next-to-last character in the text and ‘‘insert wordstart − 1 c’’ refers to the
character just before the first one in the word containing the insertion cursor.

TA GS
The first form of annotation in text widgets is a tag. A tag is a textual string that is associated with some of
the characters in a text. Tags may contain arbitrary characters, but it is probably best to avoid using the the
characters ‘‘ ’’ (space),+, or −: these characters have special meaning in indices, so tags containing them
can’t be used as indices. There may be any number of tags associated with characters in a text. Each tag
may refer to a single character, a range of characters, or several ranges of characters. An individual charac-
ter may have any number of tags associated with it.

A priority order is defined among tags, and this order is used in implementing some of the tag-related func-
tions described below. When a tag is defined (by associating it with characters or setting its display options
or binding commands to it), it is given a priority higher than any existing tag. The priority order of tags
may be redefined using the ‘‘pathNametag raise’’ and ‘‘ pathNametag lower’’ widget commands.

Tags serve three purposes in text widgets. First, they control the way information is displayed on the
screen. By default, characters are displayed as determined by thebackground, font, and foreground
options for the text widget. However, display options may be associated with individual tags using the
‘‘ pathNametag configure’’ widget command. If a character has been tagged, then the display options
associated with the tag override the default display style. The following options are currently supported for
tags:

−background color
Color specifies the background color to use for characters associated with the tag. It may have any
of the forms accepted byTk_GetColor.

−bgstipplebitmap
Bitmapspecifies a bitmap that is used as a stipple pattern for the background. It may have any of
the forms accepted byTk_GetBitmap. If bitmaphasn’t been specified, or if it is specified as an
empty string, then a solid fill will be used for the background.

−borderwidth pixels
Pixelsspecifies the width of a 3-D border to draw around the background. It may have any of the
forms accepted byTk_GetPixels. This option is used in conjunction with the−relief option to
give a 3-D appearance to the background for characters; it is ignored unless the−background
option has been set for the tag.

Tk Last change: 4.0 4

Tk Built-In Commands text (n)

−fgstipple bitmap
Bitmapspecifies a bitmap that is used as a stipple pattern when drawing text and other foreground
information such as underlines. It may have any of the forms accepted byTk_GetBitmap. If
bitmaphasn’t been specified, or if it is specified as an empty string, then a solid fill will be used.

−font fontName
FontNameis the name of a font to use for drawing characters. It may have any of the forms
accepted byTk_GetFontStruct.

−foreground color
Color specifies the color to use when drawing text and other foreground information such as
underlines. It may have any of the forms accepted byTk_GetColor.

−justify justify
If the first character of a display line has a tag for which this option has been specified, thenjustify
determines how to justify the line. It must be one ofleft, right , or center. If a line wraps, then
the justification for each line on the display is determined by the first character of that display line.

−lmargin1 pixels
If the first character of a text line has a tag for which this option has been specified, thenpixels
specifies how much the line should be indented from the left edge of the window.Pixelsmay have
any of the standard forms for screen distances. If a line of text wraps, this option only applies to
the first line on the display; the−lmargin2 option controls the indentation for subsequent lines.

−lmargin2 pixels
If the first character of a display line has a tag for which this option has been specified, and if the
display line is not the first for its text line (i.e., the text line has wrapped), thenpixelsspecifies how
much the line should be indented from the left edge of the window.Pixelsmay have any of the
standard forms for screen distances. This option is only used when wrapping is enabled, and it
only applies to the second and later display lines for a text line.

−offsetpixels
Pixelsspecifies an amount by which the text’s baseline should be offset vertically from the base-
line of the overall line, in pixels. For example, a positive offset can be used for superscripts and a
negative offset can be used for subscripts.Pixelsmay have any of the standard forms for screen
distances.

−overstrike boolean
Specifies whether or not to draw a horizontal rule through the middle of characters.Booleanmay
have any of the forms accepted byTk_GetBoolean.

−relief relief
Relief specifies the 3-D relief to use for drawing backgrounds, in any of the forms accepted by
Tk_GetRelief. This option is used in conjunction with the−borderwidth option to give a 3-D
appearance to the background for characters; it is ignored unless the−background option has
been set for the tag.

−rmargin pixels
If the first character of a display line has a tag for which this option has been specified, thenpixels
specifies how wide a margin to leave between the end of the line and the right edge of the window.
Pixelsmay have any of the standard forms for screen distances. This option is only used when
wrapping is enabled. If a text line wraps, the right margin for each line on the display is deter-
mined by the first character of that display line.

−spacing1pixels
Pixelsspecifies how much additional space should be left above each text line, using any of the
standard forms for screen distances. If a line wraps, this option only applies to the first line on the
display.

Tk Last change: 4.0 5

Tk Built-In Commands text (n)

−spacing2pixels
For lines that wrap, this option specifies how much additional space to leave between the display
lines for a single text line.Pixelsmay have any of the standard forms for screen distances.

−spacing3pixels
Pixelsspecifies how much additional space should be left below each text line, using any of the
standard forms for screen distances. If a line wraps, this option only applies to the last line on the
display.

−tabs tabList
TabListspecifies a set of tab stops in the same form as for the−tabs option for the text widget.
This option only applies to a display line if it applies to the first character on that display line. If
this option is specified as an empty string, it cancels the option, leaving it unspecified for the tag
(the default). If the option is specified as a non-empty string that is an empty list, such as
−tags { }, then it requests default 8-character tabs as described for thetagswidget option.

−underline boolean
Booleanspecifies whether or not to draw an underline underneath characters. It may have any of
the forms accepted byTk_GetBoolean.

−wrap mode
Modespecifies how to handle lines that are wider than the text’s window. It has the same legal
values as the−wrap option for the text widget:none, char, or word. If this tag option is speci-
fied, it overrides the−wrap option for the text widget.

If a character has several tags associated with it, and if their display options conflict, then the options of the
highest priority tag are used. If a particular display option hasn’t been specified for a particular tag, or if it
is specified as an empty string, then that option will never be used; the next-highest-priority tag’s option
will used instead. If no tag specifies a particular display option, then the default style for the widget will be
used.

The second purpose for tags is event bindings. You can associate bindings with a tag in much the same way
you can associate bindings with a widget class: whenever particular X events occur on characters with the
given tag, a given Tcl command will be executed. Tag bindings can be used to give behaviors to ranges of
characters; among other things, this allows hypertext-like features to be implemented. For details, see the
description of thetag bind widget command below.

The third use for tags is in managing the selection. See THE SELECTION below.

MARKS
The second form of annotation in text widgets is a mark. Marks are used for remembering particular places
in a text. They are something like tags, in that they hav e names and they refer to places in the file, but a
mark isn’t associated with particular characters. Instead, a mark is associated with the gap between two
characters. Only a single position may be associated with a mark at any giv en time. If the characters
around a mark are deleted the mark will still remain; it will just have new neighbor characters. In contrast,
if the characters containing a tag are deleted then the tag will no longer have an association with characters
in the file. Marks may be manipulated with the ‘‘pathNamemark ’’ widget command, and their current
locations may be determined by using the mark name as an index in widget commands.

Each mark also has agravity, which is eitherleft or right . The gravity for a mark specifies what happens
to the mark when text is inserted at the point of the mark. If a mark has left gravity, then the mark is treated
as if it were attached to the character on its left, so the mark will remain to the left of any text inserted at the
mark position. If the mark has right gravity, new text inserted at the mark position will appear to the right
of the mark. The gravity for a mark defaults toright .

Tk Last change: 4.0 6

Tk Built-In Commands text (n)

The name space for marks is different from that for tags: the same name may be used for both a mark and a
tag, but they will refer to different things.

Tw o marks have special significance. First, the markinsert is associated with the insertion cursor, as
described under THE INSERTION CURSOR below. Second, the markcurrent is associated with the char-
acter closest to the mouse and is adjusted automatically to track the mouse position and any changes to the
text in the widget (one exception:current is not updated in response to mouse motions if a mouse button
is down; the update will be deferred until all mouse buttons have been released). Neither of these special
marks may be deleted.

EMBEDDED WINDOWS
The third form of annotation in text widgets is an embedded window. Each embedded window annotation
causes a window to be displayed at a particular point in the text. There may be any number of embedded
windows in a text widget, and any widget may be used as an embedded window (subject to the usual rules
for geometry management, which require the text window to be the parent of the embedded window or a
descendant of its parent). The embedded window’s position on the screen will be updated as the text is
modified or scrolled, and it will be mapped and unmapped as it moves into and out of the visible area of the
text widget. Each embedded window occupies one character’s worth of index space in the text widget, and
it may be referred to either by the name of its embedded window or by its position in the widget’s index
space. If the range of text containing the embedded window is deleted then the window is destroyed.

When an embedded window is added to a text widget with thewindow create widget command, several
configuration options may be associated with it. These options may be modified later with thewindow
configurewidget command. The following options are currently supported:

−align where
If the window is not as tall as the line in which it is displayed, this option determines where the
window is displayed in the line.Wheremust have one of the valuestop (align the top of the win-
dow with the top of the line),center (center the window within the range of the line),bottom
(align the bottom of the window with the bottom of the line’s area), orbaseline(align the bottom
of the window with the baseline of the line).

−createscript
Specifies a Tcl script that may be evaluated to create the window for the annotation. If no−win-
dow option has been specified for the annotation this script will be evaluated when the annotation
is about to be displayed on the screen.Scriptmust create a window for the annotation and return
the name of that window as its result. If the annotation’s window should ever be deleted,script
will be evaluated again the next time the annotation is displayed.

−padx pixels
Pixelsspecifies the amount of extra space to leave on each side of the embedded window. It may
have any of the usual forms defined for a screen distance.

−pady pixels
Pixelsspecifies the amount of extra space to leave on the top and on the bottom of the embedded
window. It may have any of the usual forms defined for a screen distance.

−stretch boolean
If the requested height of the embedded window is less than the height of the line in which it is
displayed, this option can be used to specify whether the window should be stretched vertically to
fill its line. If the −pady option has been specified as well, then the requested padding will be
retained even if the window is stretched.

−window pathName
Specifies the name of a window to display in the annotation.

Tk Last change: 4.0 7

Tk Built-In Commands text (n)

EMBEDDED IMAGES
The final form of annotation in text widgets is an embedded image. Each embedded image annotation
causes an image to be displayed at a particular point in the text. There may be any number of embedded
images in a text widget, and a particular image may be embedded in multiple places in the same text wid-
get. The embedded image’s position on the screen will be updated as the text is modified or scrolled. Each
embedded image occupies one character’s worth of index space in the text widget, and it may be referred to
either by its position in the widget’s index space, or the name it is assigned when the image is inserted into
the text widget widhimage create. If the range of text containing the embedded image is deleted then that
copy of the image is removed from the screen.

When an embedded image is added to a text widget with theimage createwidget command, a name
unique to this instance of the image is returned. This name may then be used to refer to this image
instance. The name is taken to be the value of the-nameoption (described below). If the-nameoption is
not provided, the-imagename is used instead. If theimageNameis already in use in the text widget, then
#nn is added to the end of theimageName, wherenn is an arbitrary integer. This insures theimageNameis
unique. Once this name is assigned to this instance of the image, it does not change, even though the
-imageor -namevalues can be changed withimage configure.

When an embedded image is added to a text widget with theimage createwidget command, several con-
figuration options may be associated with it. These options may be modified later with theimage config-
ure widget command. The following options are currently supported:

−align where
If the image is not as tall as the line in which it is displayed, this option determines where the
image is displayed in the line.Wheremust have one of the valuestop (align the top of the image
with the top of the line),center (center the image within the range of the line),bottom (align the
bottom of the image with the bottom of the line’s area), orbaseline(align the bottom of the image
with the baseline of the line).

−image image
Specifies the name of the Tk image to display in the annotation. Ifimageis not a valid Tk image,
then an error is returned.

−nameImageName
Specifies the name by which this image instance may be referenced in the text widget. IfIma-
geNameis not supplied, then the name of the Tk image is used instead. If theimageNameis
already in use,#nn is appended to the end of the name as described above.

−padx pixels
Pixelsspecifies the amount of extra space to leave on each side of the embedded image. It may
have any of the usual forms defined for a screen distance.

−pady pixels
Pixelsspecifies the amount of extra space to leave on the top and on the bottom of the embedded
image. It may have any of the usual forms defined for a screen distance.

THE SELECTION
Selection support is implemented via tags. If theexportSelectionoption for the text widget is true then the
seltag will be associated with the selection:

[1] Whenever characters are tagged withselthe text widget will claim ownership of the selection.

[2] Attempts to retrieve the selection will be serviced by the text widget, returning all the characters
with theseltag.

[3] If the selection is claimed away by another application or by another window within this applica-
tion, then theseltag will be removed from all characters in the text.

Tk Last change: 4.0 8

Tk Built-In Commands text (n)

Thesel tag is automatically defined when a text widget is created, and it may not be deleted with the ‘‘path-
Nametag delete’’ widget command. Furthermore, theselectBackground, selectBorderWidth, andselect-
Foreground options for the text widget are tied to the−background, −borderwidth , and−foreground
options for theseltag: changes in either will automatically be reflected in the other.

THE INSERTION CURSOR
The mark namedinsert has special significance in text widgets. It is defined automatically when a text
widget is created and it may not be unset with the ‘‘pathNamemark unset’’ widget command. Theinsert
mark represents the position of the insertion cursor, and the insertion cursor will automatically be drawn at
this point whenever the text widget has the input focus.

WIDGET COMMAND
The text command creates a new Tcl command whose name is the same as the path name of the text’s win-
dow. This command may be used to invoke various operations on the widget. It has the following general
form:

pathName option?arg arg ...?
PathNameis the name of the command, which is the same as the text widget’s path name.Optionand the
args determine the exact behavior of the command. The following commands are possible for text widgets:

pathNamebbox index
Returns a list of four elements describing the screen area of the character given byindex. The first
two elements of the list give the x and y coordinates of the upper-left corner of the area occupied
by the character, and the last two elements give the width and height of the area. If the character is
only partially visible on the screen, then the return value reflects just the visible part. If the char-
acter is not visible on the screen then the return value is an empty list.

pathNamecgetoption
Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thetext command.

pathNamecompare index1 op index2
Compares the indices given byindex1andindex2according to the relational operator given byop,
and returns 1 if the relationship is satisfied and 0 if it isn’t.Op must be one of the operators <, <=,
==, >=, >, or !=. Ifop is == then 1 is returned if the two indices refer to the same character, ifop
is < then 1 is returned ifindex1refers to an earlier character in the text thanindex2, and so on.

pathNameconfigure?option??value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thetext command.

pathNamedebug?boolean?
If booleanis specified, then it must have one of the true or false values accepted by Tcl_Get-
Boolean. If the value is a true one then internal consistency checks will be turned on in the B-tree
code associated with text widgets. Ifbooleanhas a false value then the debugging checks will be
turned off. In either case the command returns an empty string. Ifbooleanis not specified then
the command returnson or off to indicate whether or not debugging is turned on. There is a single
debugging switch shared by all text widgets: turning debugging on or off in any widget turns it on
or off for all widgets. For widgets with large amounts of text, the consistency checks may cause a
noticeable slow-down.

Tk Last change: 4.0 9

Tk Built-In Commands text (n)

pathNamedeleteindex1?index2?
Delete a range of characters from the text. If bothindex1and index2are specified, then delete all
the characters starting with the one given byindex1and stopping just beforeindex2(i.e. the char-
acter atindex2 is not deleted). Ifindex2doesn’t specify a position later in the text thanindex1
then no characters are deleted. Ifindex2 isn’t specified then the single character atindex1 is
deleted. It is not allowable to delete characters in a way that would leave the text without a new-
line as the last character. The command returns an empty string.

pathNamedlineinfo index
Returns a list with five elements describing the area occupied by the display line containingindex.
The first two elements of the list give the x and y coordinates of the upper-left corner of the area
occupied by the line, the third and fourth elements give the width and height of the area, and the
fifth element gives the position of the baseline for the line, measured down from the top of the
area. All of this information is measured in pixels. If the current wrap mode isnoneand the line
extends beyond the boundaries of the window, the area returned reflects the entire area of the line,
including the portions that are out of the window. If the line is shorter than the full width of the
window then the area returned reflects just the portion of the line that is occupied by characters
and embedded windows. If the display line containingindex is not visible on the screen then the
return value is an empty list.

pathNamedump ?switches? index1?index2?
Return the contents of the text widget fromindex1up to, but not includingindex2, including the
text and information about marks, tags, and embedded windows. Ifindex2is not specified, then it
defaults to one character pastindex1. The information is returned in the following format:

key1 value1 index1 key2 value2 index2...

The possiblekeyvalues aretext, mark , tagon, tagoff, andwindow. The correspondingvalue is
the text, mark name, tag name, or window name. Theindexinformation is the index of the start of
the text, the mark, the tag transition, or the window. One or more of the following switches (or
abbreviations thereof) may be specified to control the dump:

−all Return information about all elements: text, marks, tags, and windows. This is the
default.

−commandcommand
Instead of returning the information as the result of the dump operation, invoke thecom-
mandon each element of the text widget within the range. The command has three argu-
ments appended to it before it is evaluated: thekey, value, andindex.

−mark Include information about marks in the dump results.

−tag Include information about tag transitions in the dump results. Tag information is returned
as tagon and tagoff elements that indicate the begin and end of each range of each tag,
respectively.

−text Include information about text in the dump results. The value is the text up to the next
element or the end of range indicated byindex2. A text element does not span newlines.
A multi-line block of text that contains no marks or tag transitions will still be dumped as
a set of text seqments that each end with a newline. The newline is part of the value.

−window
Include information about embedded windows in the dump results. The value of a win-
dow is its Tk pathname, unless the window has not been created yet. (It must have a cre-
ate script.) In this case an empty string is returned, and you must query the window by its
index position to get more information.

pathNameget index1?index2?

Tk Last change: 4.0 10

Tk Built-In Commands text (n)

Return a range of characters from the text. The return value will be all the characters in the text
starting with the one whose index isindex1and ending just before the one whose index isindex2
(the character atindex2will not be returned). Ifindex2 is omitted then the single character at
index1is returned. If there are no characters in the specified range (e.g.index1is past the end of
the file orindex2is less than or equal toindex1) then an empty string is returned. If the specified
range contains embedded windows, no information about them is included in the returned string.

pathNameimageoption?arg arg ...?
This command is used to manipulate embedded images. The behavior of the command depends
on theoption argument that follows thetag argument. The following forms of the command are
currently supported:

pathNameimage cgetindex option
Returns the value of a configuration option for an embedded image.Index identifies the
embedded image, andoption specifies a particular configuration option, which must be
one of the ones listed in the section EMBEDDED IMAGES.

pathNameimage configureindex?option value ...?
Query or modify the configuration options for an embedded image. If nooption is speci-
fied, returns a list describing all of the available options for the embedded image atindex
(seeTk_ConfigureInfo for information on the format of this list). Ifoption is specified
with no value, then the command returns a list describing the one named option (this list
will be identical to the corresponding sublist of the value returned if nooption is speci-
fied). If one or moreoption−valuepairs are specified, then the command modifies the
given option(s) to have the given value(s); in this case the command returns an empty
string. See EMBEDDED IMAGES for information on the options that are supported.

pathNameimage createindex?option value ...?
This command creates a new image annotation, which will appear in the text at the posi-
tion given byindex. Any number ofoption−valuepairs may be specified to configure the
annotation. Returns a unique identifier that may be used as an index to refer to this
image. See EMBEDDED IMAGES for information on the options that are supported,
and a description of the identifier returned.

pathNameimage names
Returns a list whose elements are the names of all image instances currently embedded in
window.

pathNameindex index
Returns the position corresponding toindexin the formline.charwhereline is the line number and
char is the character number.Indexmay have any of the forms described under INDICES above.

pathNameinsert index chars?tagList chars tagList ...?
Inserts all of thecharsarguments just before the character atindex. If index refers to the end of
the text (the character after the last newline) then the new text is inserted just before the last new-
line instead. If there is a singlecharsargument and notagList, then the new text will receive any
tags that are present on both the character before and the character after the insertion point; if a tag
is present on only one of these characters then it will not be applied to the new text. IftagList is
specified then it consists of a list of tag names; the new characters will receive all of the tags in
this list and no others, regardless of the tags present around the insertion point. If multiple
chars−tagListargument pairs are present, they produce the same effect as if a separateinsert wid-
get command had been issued for each pair, in order. The lasttagListargument may be omitted.

pathNamemark option?arg arg ...?
This command is used to manipulate marks. The exact behavior of the command depends on the
option argument that follows themark argument. The following forms of the command are

Tk Last change: 4.0 11

Tk Built-In Commands text (n)

currently supported:

pathNamemark gravity markName?direction?
If direction is not specified, returnsleft or right to indicate which of its adjacent charac-
tersmarkNameis attached to. Ifdirection is specified, it must beleft or right ; the gravity
of markNameis set to the given value.

pathNamemark names
Returns a list whose elements are the names of all the marks that are currently set.

pathNamemark next index
Returns the name of the next mark at or afterindex. If index is specified in numerical
form, then the search for the next mark begins at that index. Ifindex is the name of a
mark, then the search for the next mark begins immediately after that mark. This can still
return a mark at the same position if there are multiple marks at the same index. These
semantics mean that themark next operation can be used to step through all the marks in
a text widget in the same order as the mark information returned by thedump operation.
If a mark has been set to the specialend index, then it appears to beafter end with
respect to themark next operation. An empty string is returned if there are no marks
after index.

pathNamemark previous index
Returns the name of the mark at or beforeindex. If indexis specified in numerical form,
then the search for the previous mark begins with the character just before that index. If
indexis the name of a mark, then the search for the next mark begins immediately before
that mark. This can still return a mark at the same position if there are multiple marks at
the same index. These semantics mean that themark previous operation can be used to
step through all the marks in a text widget in the reverse order as the mark information
returned by thedump operation. An empty string is returned if there are no marks before
index.

pathNamemark set markName index
Sets the mark namedmarkNameto a position just before the character atindex. If mark-
Namealready exists, it is moved from its old position; if it doesn’t exist, a new mark is
created. This command returns an empty string.

pathNamemark unset markName?markName markName ...?
Remove the mark corresponding to each of themarkNamearguments. The removed
marks will not be usable in indices and will not be returned by future calls to ‘‘pathName
mark names’’. This command returns an empty string.

pathNamescanoption args
This command is used to implement scanning on texts. It has two forms, depending onoption:

pathNamescan markx y
Recordsx andy and the current view in the text window, for use in conjunction with later
scan dragtocommands. Typically this command is associated with a mouse button press
in the widget. It returns an empty string.

pathNamescan dragtox y
This command computes the difference between itsx andy arguments and thex andy
arguments to the lastscan markcommand for the widget. It then adjusts the view by 10
times the difference in coordinates. This command is typically associated with mouse
motion events in the widget, to produce the effect of dragging the text at high speed
through the window. The return value is an empty string.

pathNamesearch?switches?pattern index?stopIndex?
Searches the text inpathNamestarting atindexfor a range of characters that matchespattern. If a

Tk Last change: 4.0 12

Tk Built-In Commands text (n)

match is found, the index of the first character in the match is returned as result; otherwise an
empty string is returned. One or more of the following switches (or abbreviations thereof) may be
specified to control the search:

−forwards
The search will proceed forward through the text, finding the first matching range starting
at or after the position given byindex. This is the default.

−backwards
The search will proceed backward through the text, finding the matching range closest to
indexwhose first character is beforeindex.

−exact Use exact matching: the characters in the matching range must be identical to those in
pattern. This is the default.

−regexp
Treatpatternas a regular expression and match it against the text using the rules for regu-
lar expressions (see theregexpcommand for details).

−nocase
Ignore case differences between the pattern and the text.

−count varName
The argument following−count gives the name of a variable; if a match is found, the
number of characters in the matching range will be stored in the variable.

− − This switch has no effect except to terminate the list of switches: the next argument will
be treated aspatternev en if it starts with−.

The matching range must be entirely within a single line of text. For regular expression matching
the newlines are removed from the ends of the lines before matching: use the$ feature in regular
expressions to match the end of a line. For exact matching the newlines are retained. IfstopIndex
is specified, the search stops at that index: for forward searches, no match at or afterstopIndexwill
be considered; for backward searches, no match earlier in the text thanstopIndexwill be consid-
ered. IfstopIndexis omitted, the entire text will be searched: when the beginning or end of the
text is reached, the search continues at the other end until the starting location is reached again; if
stopIndexis specified, no wrap-around will occur.

pathNameseeindex
Adjusts the view in the window so that the character given byindexis completely visible. Ifindex
is already visible then the command does nothing. Ifindex is a short distance out of view, the
command adjusts the view just enough to makeindexvisible at the edge of the window. Ifindexis
far out of view, then the command centersindexin the window.

pathNametag option?arg arg ...?
This command is used to manipulate tags. The exact behavior of the command depends on the
option argument that follows thetag argument. The following forms of the command are cur-
rently supported:

pathNametag add tagName index1?index2 index1 index2 ...?
Associate the tagtagNamewith all of the characters starting withindex1and ending just
beforeindex2(the character atindex2isn’t tagged). A single command may contain any
number ofindex1−index2pairs. If the lastindex2is omitted then the single character at
index1is tagged. If there are no characters in the specified range (e.g.index1is past the
end of the file orindex2is less than or equal toindex1) then the command has no effect.

pathNametag bind tagName?sequence? ?script?
This command associatesscript with the tag given bytagName. Whenever the event
sequence given bysequenceoccurs for a character that has been tagged withtagName,

Tk Last change: 4.0 13

Tk Built-In Commands text (n)

the script will be invoked. This widget command is similar to thebind command except
that it operates on characters in a text rather than entire widgets. See thebind manual
entry for complete details on the syntax ofsequenceand the substitutions performed on
script before invoking it. If all arguments are specified then a new binding is created,
replacing any existing binding for the samesequenceand tagName(if the first character
of script is ‘‘+’’ then script augments an existing binding rather than replacing it). In this
case the return value is an empty string. Ifscript is omitted then the command returns the
script associated withtagNameandsequence(an error occurs if there is no such binding).
If both script and sequenceare omitted then the command returns a list of all the
sequences for which bindings have been defined fortagName.

The only events for which bindings may be specified are those related to the mouse and
keyboard (such asEnter, Leave, ButtonPress, Motion , andKeyPress) or virtual events.
Event bindings for a text widget use thecurrent mark described under MARKS above.
An Enter ev ent triggers for a tag when the tag first becomes present on the current char-
acter, and aLeave ev ent triggers for a tag when it ceases to be present on the current
character.Enter andLeave ev ents can happen either because thecurrent mark moved
or because the character at that position changed. Note that these events are different
thanEnter andLeave ev ents for windows. Mouse and keyboard events are directed to
the current character. If a virtual event is used in a binding, that binding can trigger only
if the virtual event is defined by an underlying mouse-related or keyboard-related event.

It is possible for the current character to have multiple tags, and for each of them to have
a binding for a particular event sequence. When this occurs, one binding is invoked for
each tag, in order from lowest-priority to highest priority. If there are multiple matching
bindings for a single tag, then the most specific binding is chosen (see the manual entry
for the bind command for details).continue and break commands within binding
scripts are processed in the same way as for bindings created with thebind command.

If bindings are created for the widget as a whole using thebind command, then those
bindings will supplement the tag bindings. The tag bindings will be invoked first, fol-
lowed by bindings for the window as a whole.

pathNametag cgettagName option
This command returns the current value of the option namedoption associated with the
tag given bytagName. Optionmay have any of the values accepted by thetag configure
widget command.

pathNametag configuretagName?option? ?value? ?option value ...?
This command is similar to theconfigure widget command except that it modifies
options associated with the tag given bytagNameinstead of modifying options for the
overall text widget. If nooption is specified, the command returns a list describing all of
the available options fortagName(seeTk_ConfigureInfo for information on the format
of this list). If option is specified with novalue, then the command returns a list describ-
ing the one named option (this list will be identical to the corresponding sublist of the
value returned if nooption is specified). If one or moreoption−valuepairs are specified,
then the command modifies the given option(s) to have the given value(s) intagName; in
this case the command returns an empty string. See TAGS above for details on the
options available for tags.

pathNametag deletetagName?tagName ...?
Deletes all tag information for each of thetagNamearguments. The command removes
the tags from all characters in the file and also deletes any other information associated
with the tags, such as bindings and display information. The command returns an empty
string.

Tk Last change: 4.0 14

Tk Built-In Commands text (n)

pathNametag lower tagName?belowThis?
Changes the priority of tagtagNameso that it is just lower in priority than the tag whose
name isbelowThis. If belowThisis omitted, thentagName’s priority is changed to make
it lowest priority of all tags.

pathNametag names?index?
Returns a list whose elements are the names of all the tags that are active at the character
position given byindex. If index is omitted, then the return value will describe all of the
tags that exist for the text (this includes all tags that have been named in a ‘‘pathName
tag’’ widget command but haven’t been deleted by a ‘‘pathNametag delete’’ widget
command, even if no characters are currently marked with the tag). The list will be
sorted in order from lowest priority to highest priority.

pathNametag nextrangetagName index1?index2?
This command searches the text for a range of characters tagged withtagNamewhere the
first character of the range is no earlier than the character atindex1and no later than the
character just beforeindex2(a range starting atindex2will not be considered). If several
matching ranges exist, the first one is chosen. The command’s return value is a list con-
taining two elements, which are the index of the first character of the range and the index
of the character just after the last one in the range. If no matching range is found then the
return value is an empty string. Ifindex2is not given then it defaults to the end of the
text.

pathNametag prevrangetagName index1?index2?
This command searches the text for a range of characters tagged withtagNamewhere the
first character of the range is before the character atindex1and no earlier than the charac-
ter at index2(a range starting atindex2will be considered). If several matching ranges
exist, the one closest toindex1is chosen. The command’s return value is a list containing
two elements, which are the index of the first character of the range and the index of the
character just after the last one in the range. If no matching range is found then the return
value is an empty string. Ifindex2 is not given then it defaults to the beginning of the
text.

pathNametag raisetagName?aboveThis?
Changes the priority of tagtagNameso that it is just higher in priority than the tag whose
name isaboveThis. If aboveThisis omitted, thentagName’s priority is changed to make
it highest priority of all tags.

pathNametag rangestagName
Returns a list describing all of the ranges of text that have been tagged withtagName.
The first two elements of the list describe the first tagged range in the text, the next two
elements describe the second range, and so on. The first element of each pair contains the
index of the first character of the range, and the second element of the pair contains the
index of the character just after the last one in the range. If there are no characters tagged
with tag then an empty string is returned.

pathNametag removetagName index1?index2 index1 index2 ...?
Remove the tagtagNamefrom all of the characters starting atindex1and ending just
beforeindex2(the character atindex2isn’t affected). A single command may contain any
number ofindex1−index2pairs. If the lastindex2is omitted then the single character at
index1is tagged. If there are no characters in the specified range (e.g.index1is past the
end of the file orindex2is less than or equal toindex1) then the command has no effect.
This command returns an empty string.

pathNamewindow option?arg arg ...?
This command is used to manipulate embedded windows. The behavior of the command depends

Tk Last change: 4.0 15

Tk Built-In Commands text (n)

on theoption argument that follows thetag argument. The following forms of the command are
currently supported:

pathNamewindow cget index option
Returns the value of a configuration option for an embedded window.Indexidentifies the
embedded window, andoptionspecifies a particular configuration option, which must be
one of the ones listed in the section EMBEDDED WINDOWS.

pathNamewindow configure index?option value ...?
Query or modify the configuration options for an embedded window. If nooption is
specified, returns a list describing all of the available options for the embedded window at
index (seeTk_ConfigureInfo for information on the format of this list). Ifoption is
specified with novalue, then the command returns a list describing the one named option
(this list will be identical to the corresponding sublist of the value returned if nooption is
specified). If one or moreoption−valuepairs are specified, then the command modifies
the given option(s) to have the given value(s); in this case the command returns an empty
string. See EMBEDDED WINDOWS for information on the options that are supported.

pathNamewindow create index?option value ...?
This command creates a new window annotation, which will appear in the text at the
position given byindex. Any number ofoption−valuepairs may be specified to config-
ure the annotation. See EMBEDDED WINDOWS for information on the options that are
supported. Returns an empty string.

pathNamewindow names
Returns a list whose elements are the names of all windows currently embedded inwin-
dow.

pathNamexview option args
This command is used to query and change the horizontal position of the text in the widget’s win-
dow. It can take any of the following forms:

pathNamexview
Returns a list containing two elements. Each element is a real fraction between 0 and 1;
together they describe the portion of the document’s horizontal span that is visible in the
window. For example, if the first element is .2 and the second element is .6, 20% of the
text is off-screen to the left, the middle 40% is visible in the window, and 40% of the text
is off-screen to the right. The fractions refer only to the lines that are actually visible in
the window: if the lines in the window are all very short, so that they are entirely visible,
the returned fractions will be 0 and 1, even if there are other lines in the text that are
much wider than the window. These are the same values passed to scrollbars via the
−xscrollcommandoption.

pathNamexview movetofraction
Adjusts the view in the window so thatfraction of the horizontal span of the text is off-
screen to the left.Fr action is a fraction between 0 and 1.

pathNamexview scroll number what
This command shifts the view in the window left or right according tonumberandwhat.
Numbermust be an integer.Whatmust be eitherunits or pagesor an abbreviation of one
of these. Ifwhat is units, the view adjusts left or right bynumberav erage-width charac-
ters on the display; if it ispagesthen the view adjusts bynumberscreenfuls. Ifnumber
is negative then characters farther to the left become visible; if it is positive then charac-
ters farther to the right become visible.

pathNameyview ?args?
This command is used to query and change the vertical position of the text in the widget’s window.

Tk Last change: 4.0 16

Tk Built-In Commands text (n)

It can take any of the following forms:

pathNameyview
Returns a list containing two elements, both of which are real fractions between 0 and 1.
The first element gives the position of the first character in the top line in the window, rel-
ative to the text as a whole (0.5 means it is halfway through the text, for example). The
second element gives the position of the character just after the last one in the bottom line
of the window, relative to the text as a whole. These are the same values passed to scroll-
bars via the−yscrollcommandoption.

pathNameyview movetofraction
Adjusts the view in the window so that the character given byfraction appears on the top
line of the window.Fr action is a fraction between 0 and 1; 0 indicates the first character
in the text, 0.33 indicates the character one-third the way through the text, and so on.

pathNameyview scroll number what
This command adjust the view in the window up or down according tonumberandwhat.
Numbermust be an integer.Whatmust be eitherunits or pages. If what is units, the
view adjusts up or down bynumberlines on the display; if it ispagesthen the view
adjusts bynumberscreenfuls. Ifnumber is negative then earlier positions in the text
become visible; if it is positive then later positions in the text become visible.

pathNameyview ?−pickplace? index
Changes the view in the widget’s window to makeindexvisible. If the−pickplaceoption
isn’t specified thenindexwill appear at the top of the window. If−pickplace is specified
then the widget chooses whereindexappears in the window:

[1] If index is already visible somewhere in the window then the command does
nothing.

[2] If index is only a few lines off-screen above the window then it will be posi-
tioned at the top of the window.

[3] If index is only a few lines off-screen below the window then it will be posi-
tioned at the bottom of the window.

[4] Otherwise,indexwill be centered in the window.

The−pickplace option has been obsoleted by theseewidget command (seehandles both
x- and y-motion to make a location visible, whereas−pickplace only handles motion in
y).

pathNameyview number
This command makes the first character on the line after the one given bynumbervisible
at the top of the window.Numbermust be an integer. This command used to be used for
scrolling, but now it is obsolete.

BINDINGS
Tk automatically creates class bindings for texts that give them the following default behavior. In the
descriptions below, ‘‘word’’ refers to a contiguous group of letters, digits, or ‘‘_’’ characters, or any single
character other than these.

[1] Clicking mouse button 1 positions the insertion cursor just before the character underneath the
mouse cursor, sets the input focus to this widget, and clears any selection in the widget. Dragging
with mouse button 1 strokes out a selection between the insertion cursor and the character under
the mouse.

[2] Double-clicking with mouse button 1 selects the word under the mouse and positions the insertion

Tk Last change: 4.0 17

Tk Built-In Commands text (n)

cursor at the beginning of the word. Dragging after a double click will stroke out a selection con-
sisting of whole words.

[3] Triple-clicking with mouse button 1 selects the line under the mouse and positions the insertion
cursor at the beginning of the line. Dragging after a triple click will stroke out a selection consist-
ing of whole lines.

[4] The ends of the selection can be adjusted by dragging with mouse button 1 while the Shift key is
down; this will adjust the end of the selection that was nearest to the mouse cursor when button 1
was pressed. If the button is double-clicked before dragging then the selection will be adjusted in
units of whole words; if it is triple-clicked then the selection will be adjusted in units of whole
lines.

[5] Clicking mouse button 1 with the Control key down will reposition the insertion cursor without
affecting the selection.

[6] If any normal printing characters are typed, they are inserted at the point of the insertion cursor.

[7] The view in the widget can be adjusted by dragging with mouse button 2. If mouse button 2 is
clicked without moving the mouse, the selection is copied into the text at the position of the mouse
cursor. The Insert key also inserts the selection, but at the position of the insertion cursor.

[8] If the mouse is dragged out of the widget while button 1 is pressed, the entry will automatically
scroll to make more text visible (if there is more text off-screen on the side where the mouse left
the window).

[9] The Left and Right keys move the insertion cursor one character to the left or right; they also clear
any selection in the text. If Left or Right is typed with the Shift key down, then the insertion cur-
sor moves and the selection is extended to include the new character. Control-Left and Control-
Right move the insertion cursor by words, and Control-Shift-Left and Control-Shift-Right move
the insertion cursor by words and also extend the selection. Control-b and Control-f behave the
same as Left and Right, respectively. Meta-b and Meta-f behave the same as Control-Left and
Control-Right, respectively.

[10] The Up and Down keys move the insertion cursor one line up or down and clear any selection in
the text. If Up or Right is typed with the Shift key down, then the insertion cursor moves and the
selection is extended to include the new character. Control-Up and Control-Down move the inser-
tion cursor by paragraphs (groups of lines separated by blank lines), and Control-Shift-Up and
Control-Shift-Down move the insertion cursor by paragraphs and also extend the selection. Con-
trol-p and Control-n behave the same as Up and Down, respectively.

[11] The Next and Prior keys move the insertion cursor forward or backwards by one screenful and
clear any selection in the text. If the Shift key is held down while Next or Prior is typed, then the
selection is extended to include the new character. Control-v moves the view down one screenful
without moving the insertion cursor or adjusting the selection.

[12] Control-Next and Control-Prior scroll the view right or left by one page without moving the inser-
tion cursor or affecting the selection.

[13] Home and Control-a move the insertion cursor to the beginning of its line and clear any selection
in the widget. Shift-Home moves the insertion cursor to the beginning of the line and also extends
the selection to that point.

[14] End and Control-e move the insertion cursor to the end of the line and clear any selection in the
widget. Shift-End moves the cursor to the end of the line and extends the selection to that point.

[15] Control-Home and Meta-< move the insertion cursor to the beginning of the text and clear any
selection in the widget. Control-Shift-Home moves the insertion cursor to the beginning of the
text and also extends the selection to that point.

Tk Last change: 4.0 18

Tk Built-In Commands text (n)

[16] Control-End and Meta-> move the insertion cursor to the end of the text and clear any selection in
the widget. Control-Shift-End moves the cursor to the end of the text and extends the selection to
that point.

[17] The Select key and Control-Space set the selection anchor to the position of the insertion cursor.
They don’t affect the current selection. Shift-Select and Control-Shift-Space adjust the selection
to the current position of the insertion cursor, selecting from the anchor to the insertion cursor if
there was not any selection previously.

[18] Control-/ selects the entire contents of the widget.

[19] Control-\ clears any selection in the widget.

[20] The F16 key (labelled Copy on many Sun workstations) or Meta-w copies the selection in the wid-
get to the clipboard, if there is a selection.

[21] The F20 key (labelled Cut on many Sun workstations) or Control-w copies the selection in the
widget to the clipboard and deletes the selection. If there is no selection in the widget then these
keys have no effect.

[22] The F18 key (labelled Paste on many Sun workstations) or Control-y inserts the contents of the
clipboard at the position of the insertion cursor.

[23] The Delete key deletes the selection, if there is one in the widget. If there is no selection, it deletes
the character to the right of the insertion cursor.

[24] Backspace and Control-h delete the selection, if there is one in the widget. If there is no selection,
they delete the character to the left of the insertion cursor.

[25] Control-d deletes the character to the right of the insertion cursor.

[26] Meta-d deletes the word to the right of the insertion cursor.

[27] Control-k deletes from the insertion cursor to the end of its line; if the insertion cursor is already at
the end of a line, then Control-k deletes the newline character.

[28] Control-o opens a new line by inserting a newline character in front of the insertion cursor without
moving the insertion cursor.

[29] Meta-backspace and Meta-Delete delete the word to the left of the insertion cursor.

[30] Control-x deletes whatever is selected in the text widget.

[31] Control-t reverses the order of the two characters to the right of the insertion cursor.

If the widget is disabled using the−state option, then its view can still be adjusted and text can still be
selected, but no insertion cursor will be displayed and no text modifications will take place.

The behavior of texts can be changed by defining new bindings for individual widgets or by redefining the
class bindings.

PERFORMANCE ISSUES
Te xt widgets should run efficiently under a variety of conditions. The text widget uses about 2-3 bytes of
main memory for each byte of text, so texts containing a megabyte or more should be practical on most
workstations. Text is represented internally with a modified B-tree structure that makes operations rela-
tively efficient even with large texts. Tags are included in the B-tree structure in a way that allows tags to
span large ranges or have many disjoint smaller ranges without loss of efficiency. Marks are also imple-
mented in a way that allows large numbers of marks. In most cases it is fine to have large numbers of
unique tags, or a tag that has many distinct ranges.

Tk Last change: 4.0 19

Tk Built-In Commands text (n)

One performance problem can arise if you have hundreds or thousands of different tags that all have the fol-
lowing characteristics: the first and last ranges of each tag are near the beginning and end of the text,
respectively, or a single tag range covers most of the text widget. The cost of adding and deleting tags like
this is proportional to the number of other tags with the same properties. In contrast, there is no problem
with having thousands of distinct tags if their overall ranges are localized and spread uniformly throughout
the text.

Very long text lines can be expensive, especially if they hav e many marks and tags within them.

The display line with the insert cursor is redrawn each time the cursor blinks, which causes a steady stream
of graphics traffic. Set theinsertOffTime attribute to 0 avoid this.

KEYWORDS
text, widget

Tk Last change: 4.0 20

Tk Built-In Commands tk (n)

NAME
tk − Manipulate Tk internal state

SYNOPSIS
tk option?arg arg ...?

DESCRIPTION
The tk command provides access to miscellaneous elements of Tk’s internal state. Most of the information
manipulated by this command pertains to the application as a whole, or to a screen or display, rather than to
a particular window. The command can take any of a number of different forms depending on theoption
argument. The legal forms are:

tk appname?newName?
If newNameisn’t specified, this command returns the name of the application (the name that may
be used insendcommands to communicate with the application). IfnewNameis specified, then
the name of the application is changed tonewName. If the given name is already in use, then a
suffix of the form ‘‘#2’’ or ‘‘ #3’’ is appended in order to make the name unique. The command’s
result is the name actually chosen.newNameshould not start with a capital letter. This will inter-
fere with option processing, since names starting with capitals are assumed to be classes; as a
result, Tk may not be able to find some options for the application. If sends have been disabled by
deleting thesendcommand, this command will reenable them and recreate thesendcommand.

tk scaling ?−displayof window? ?number?
Sets and queries the current scaling factor used by Tk to convert between physical units (for exam-
ple, points, inches, or millimeters) and pixels. Thenumberargument is a floating point number
that specifies the number of pixels per point onwindow’s display. If thewindowargument is omit-
ted, it defaults to the main window. If thenumberargument is omitted, the current value of the
scaling factor is returned.

A ‘‘point’’ is a unit of measurement equal to 1/72 inch. A scaling factor of 1.0 corresponds to 1
pixel per point, which is equivalent to a standard 72 dpi monitor. A scaling factor of 1.25 would
mean 1.25 pixels per point, which is the setting for a 90 dpi monitor; setting the scaling factor to
1.25 on a 72 dpi monitor would cause everything in the application to be displayed 1.25 times as
large as normal. The initial value for the scaling factor is set when the application starts, based on
properties of the installed monitor, but it can be changed at any time. Measurements made after
the scaling factor is changed will use the new scaling factor, but it is undefined whether existing
widgets will resize themselves dynamically to accomodate the new scaling factor.

KEYWORDS
application name, send

Tk Last change: 4.0 1

Tk Built-In Commands tkerror (n)

NAME
tkerror − Command invoked to process background errors

SYNOPSIS
tkerror message

DESCRIPTION
Note: as of Tk 4.1 thetkerror command has been renamed tobgerror because the event loop (which is
what usually invokes it) is now part of Tcl. For backward compatibility thebgerror provided by the cur-
rent Tk version still tries to calltkerror if there is one (or an auto loadable one), so old script defining that
error handler should still work, but you should anyhow modify your scripts to usebgerror instead oftker-
ror because that support for the old name might vanish in the near future. If that call fails,bgerror posts a
dialog showing the error and offering to see the stack trace to the user. If you want your own error manage-
ment you should directly overridebgerror instead oftkerror . Documentation forbgerror is available as
part of Tcl’s documentation.

KEYWORDS
background error, reporting

Tk Last change: 4.1 1

Tk Built-In Commands tkvars (n)

NAME
tkvars − Variables used or set by Tk

DESCRIPTION
The following Tcl variables are either set or used by Tk at various times in its execution:

tk_library This variable holds the file name for a directory containing a library of Tcl scripts related
to Tk. These scripts include an initialization file that is normally processed whenever a
Tk application starts up, plus other files containing procedures that implement default
behaviors for widgets. The initial value oftcl_library is set when Tk is added to an
interpreter; this is done by searching several different directories until one is found that
contains an appropriate Tk startup script. If theTK_LIBRARY environment variable
exists, then the directory it names is checked first. IfTK_LIBRARY isn’t set or doesn’t
refer to an appropriate directory, then Tk checks several other directories based on a
compiled-in default location, the location of the Tcl library directory, the location of the
binary containing the application, and the current working directory. The variable can be
modified by an application to switch to a different library.

tk_patchLevel Contains a decimal integer giving the current patch level for Tk. The patch level is
incremented for each new release or patch, and it uniquely identifies an official version
of Tk.

tkPriv This variable is an array containing several pieces of information that are private to Tk.
The elements oftkPriv are used by Tk library procedures and default bindings. They
should not be accessed by any code outside Tk.

tk_strictMotif This variable is set to zero by default. If an application sets it to one, then Tk attempts to
adhere as closely as possible to Motif look-and-feel standards. For example, active ele-
ments such as buttons and scrollbar sliders will not change color when the pointer passes
over them.

tk_version Tk sets this variable in the interpreter for each application. The variable holds the cur-
rent version number of the Tk library in the formmajor.minor. Major and minor are
integers. The major version number increases in any Tk release that includes changes
that are not backward compatible (i.e. whenever existing Tk applications and scripts may
have to change to work with the new release). The minor version number increases with
each new release of Tk, except that it resets to zero whenever the major version number
changes.

KEYWORDS
variables, version

Tk Last change: 4.1 1

Tk Built-In Commands tkwait (n)

NAME
tkwait − Wait for variable to change or window to be destroyed

SYNOPSIS
tkwait variable name

tkwait visibility name

tkwait window name

DESCRIPTION
The tkwait command waits for one of several things to happen, then it returns without taking any other
actions. The return value is always an empty string. If the first argument isvariable (or any abbreviation
of it) then the second argument is the name of a global variable and the command waits for that variable to
be modified. If the first argument isvisibility (or any abbreviation of it) then the second argument is the
name of a window and thetkwait command waits for a change in its visibility state (as indicated by the
arrival of a VisibilityNotify event). This form is typically used to wait for a newly-created window to
appear on the screen before taking some action. If the first argument iswindow (or any abbreviation of it)
then the second argument is the name of a window and thetkwait command waits for that window to be
destroyed. This form is typically used to wait for a user to finish interacting with a dialog box before using
the result of that interaction.

While thetkwait command is waiting it processes events in the normal fashion, so the application will con-
tinue to respond to user interactions. If an event handler invokestkwait again, the nested call totkwait
must complete before the outer call can complete.

KEYWORDS
variable, visibility, wait, window

Tk Last change: 1

Tk Built-In Commands toplevel (n)

NAME
toplevel − Create and manipulate toplevel widgets

SYNOPSIS
toplevelpathName?options?

STANDARD OPTIONS
−borderwidth −highlightbackground −highlightthickness −takefocus
−cursor −highlightcolor −relief

See theoptionsmanual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Command-Line Name: −background
Database Name: background
Database Class: Background

This option is the same as the standardbackground option except that its value may also be speci-
fied as an empty string. In this case, the widget will display no background or border, and no col-
ors will be consumed from its colormap for its background and border.

Command-Line Name: −class
Database Name: class
Database Class: Class

Specifies a class for the window. This class will be used when querying the option database for
the window’s other options, and it will also be used later for other purposes such as bindings. The
classoption may not be changed with theconfigurewidget command.

Command-Line Name: −colormap
Database Name: colormap
Database Class: Colormap

Specifies a colormap to use for the window. The value may be eithernew, in which case a new
colormap is created for the window and its children, or the name of another window (which must
be on the same screen and have the same visual aspathName), in which case the new window will
use the colormap from the specified window. If thecolormap option is not specified, the new
window uses the default colormap of its screen. This option may not be changed with theconfig-
ure widget command.

Command-Line Name: −container
Database Name: container
Database Class: Container

The value must be a boolean. If true, it means that this window will be used as a container in
which some other application will be embedded (for example, a Tk toplevel can be embedded
using the−useoption). The window will support the appropriate window manager protocols for
things like geometry requests. The window should not have any children of its own in this appli-
cation. This option may not be changed with theconfigurewidget command.

Command-Line Name: −height
Database Name: height
Database Class: Height

Specifies the desired height for the window in any of the forms acceptable toTk_GetPixels. If
this option is less than or equal to zero then the window will not request any size at all.

Command-Line Name: −menu
Database Name: menu
Database Class: Menu

Tk Last change: 8.0 1

Tk Built-In Commands toplevel (n)

Specifies a menu widget to be used as a menubar. On the Macintosh, the menubar will be dis-
played accross the top of the main monitor. On Microsoft Windows and all UNIX platforms, the
menu will appear accross the toplevel window as part of the window dressing maintained by the
window manager.

Command-Line Name: −screen
Database Name:
Database Class:

Specifies the screen on which to place the new window. Any valid screen name may be used, even
one associated with a different display. Defaults to the same screen as its parent. This option is
special in that it may not be specified via the option database, and it may not be modified with the
configurewidget command.

Command-Line Name: −use
Database Name: use
Database Class: Use

This option is used for embedding. If the value isn’t an empty string, it must be the the window
identifier of a container window, specified as a hexadecimal string like the ones returned by the
winfo id command. The toplevel widget will be created as a child of the given container instead of
the root window for the screen. If the container window is in a Tk application, it must be a frame
or toplevel widget for which the−container option was specified. This option may not be
changed with theconfigurewidget command.

Command-Line Name: −visual
Database Name: visual
Database Class: Visual

Specifies visual information for the new window in any of the forms accepted byTk_GetVisual.
If this option is not specified, the new window will use the default visual for its screen. Thevisual
option may not be modified with theconfigurewidget command.

Command-Line Name: −width
Database Name: width
Database Class: Width

Specifies the desired width for the window in any of the forms acceptable toTk_GetPixels. If this
option is less than or equal to zero then the window will not request any size at all.

DESCRIPTION
The toplevel command creates a new toplevel widget (given by thepathNameargument). Additional
options, described above, may be specified on the command line or in the option database to configure
aspects of the toplevel such as its background color and relief. Thetoplevel command returns the path
name of the new window.

A toplevel is similar to a frame except that it is created as a top-level window: its X parent is the root win-
dow of a screen rather than the logical parent from its path name. The primary purpose of a toplevel is to
serve as a container for dialog boxes and other collections of widgets. The only visible features of a
toplevel are its background color and an optional 3-D border to make the toplevel appear raised or sunken.

WIDGET COMMAND
The toplevel command creates a new Tcl command whose name is the same as the path name of the
toplevel’s window. This command may be used to invoke various operations on the widget. It has the fol-
lowing general form:

Tk Last change: 8.0 2

Tk Built-In Commands toplevel (n)

pathName option?arg arg ...?
PathNameis the name of the command, which is the same as the toplevel widget’s path name.Optionand
theargs determine the exact behavior of the command. The following commands are possible for toplevel
widgets:

pathNamecgetoption
Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thetoplevelcommand.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thetoplevelcommand.

BINDINGS
When a new toplevel is created, it has no default event bindings: toplevels are not intended to be interactive.

KEYWORDS
toplevel, widget

Tk Last change: 8.0 3

Tk Built-In Commands winfo (n)

NAME
winfo − Return window-related information

SYNOPSIS
winfo option?arg arg ...?

DESCRIPTION
The winfo command is used to retrieve information about windows managed by Tk. It can take any of a
number of different forms, depending on theoptionargument. The legal forms are:

winfo atom ?−displayof window?name
Returns a decimal string giving the integer identifier for the atom whose name isname. If no atom
exists with the namenamethen a new one is created. If the−displayof option is given then the
atom is looked up on the display ofwindow; otherwise it is looked up on the display of the appli-
cation’s main window.

winfo atomname?−displayof window? id
Returns the textual name for the atom whose integer identifier isid. If the −displayof option is
given then the identifier is looked up on the display ofwindow; otherwise it is looked up on the
display of the application’s main window. This command is the inverse of thewinfo atom com-
mand. It generates an error if no such atom exists.

winfo cellswindow
Returns a decimal string giving the number of cells in the color map forwindow.

winfo children window
Returns a list containing the path names of all the children ofwindow. The list is in stacking
order, with the lowest window first. Top-level windows are returned as children of their logical
parents.

winfo classwindow
Returns the class name forwindow.

winfo colormapfull window
Returns 1 if the colormap forwindow is known to be full, 0 otherwise. The colormap for a win-
dow is ‘‘known’’ to be full if the last attempt to allocate a new color on that window failed and this
application hasn’t freed any colors in the colormap since the failed allocation.

winfo containing ?−displayof window? rootX rootY
Returns the path name for the window containing the point given byrootX androotY. RootXand
rootY are specified in screen units (i.e. any form acceptable toTk_GetPixels) in the coordinate
system of the root window (if a virtual-root window manager is in use then the coordinate system
of the virtual root window is used). If the−displayof option is given then the coordinates refer to
the screen containingwindow; otherwise they refer to the screen of the application’s main win-
dow. If no window in this application contains the point then an empty string is returned. In
selecting the containing window, children are given higher priority than parents and among sib-
lings the highest one in the stacking order is chosen.

winfo depth window
Returns a decimal string giving the depth ofwindow(number of bits per pixel).

winfo existswindow
Returns 1 if there exists a window namedwindow, 0 if no such window exists.

winfo fpixels window number
Returns a floating-point value giving the number of pixels inwindowcorresponding to the distance
given bynumber. Numbermay be specified in any of the forms acceptable toTk_GetScreenMM,

Tk Last change: 4.3 1

Tk Built-In Commands winfo (n)

such as ‘‘2.0c’’ or ‘‘1i’’. The return value may be fractional; for an integer value, usewinfo pix-
els.

winfo geometrywindow
Returns the geometry forwindow, in the formwidthxheight+x+y. All dimensions are in pixels.

winfo height window
Returns a decimal string givingwindow’s height in pixels. When a window is first created its
height will be 1 pixel; the height will eventually be changed by a geometry manager to fulfill the
window’s needs. If you need the true height immediately after creating a widget, invokeupdate to
force the geometry manager to arrange it, or usewinfo reqheight to get the window’s requested
height instead of its actual height.

winfo id window
Returns a hexadecimal string giving a low-level platform-specific identifier forwindow. On Unix
platforms, this is the X window identifier. Under Windows, this is the Windows HWND. On the
Macintosh the value has no meaning outside Tk.

winfo interps ?−displayof window?
Returns a list whose members are the names of all Tcl interpreters (e.g. all Tk-based applications)
currently registered for a particular display. If the−displayof option is given then the return value
refers to the display ofwindow; otherwise it refers to the display of the application’s main win-
dow.

winfo ismappedwindow
Returns1 if windowis currently mapped,0 otherwise.

winfo managerwindow
Returns the name of the geometry manager currently responsible forwindow, or an empty string if
window isn’t managed by any geometry manager. The name is usually the name of the Tcl com-
mand for the geometry manager, such aspack or place. If the geometry manager is a widget, such
as canvases or text, the name is the widget’s class command, such ascanvas.

winfo namewindow
Returnswindow’s name (i.e. its name within its parent, as opposed to its full path name). The
commandwinfo name .will return the name of the application.

winfo parent window
Returns the path name ofwindow’s parent, or an empty string ifwindowis the main window of the
application.

winfo pathname?−displayof window? id
Returns the path name of the window whose X identifier isid. Id must be a decimal, hexadecimal,
or octal integer and must correspond to a window in the invoking application. If the−displayof
option is given then the identifier is looked up on the display ofwindow; otherwise it is looked up
on the display of the application’s main window.

winfo pixels window number
Returns the number of pixels inwindowcorresponding to the distance given bynumber. Number
may be specified in any of the forms acceptable toTk_GetPixels, such as ‘‘2.0c’’ or ‘‘1i’’. The
result is rounded to the nearest integer value; for a fractional result, usewinfo fpixels.

winfo pointerx window
If the mouse pointer is on the same screen aswindow, returns the pointer’s x coordinate, measured
in pixels in the screen’s root window. If a virtual root window is in use on the screen, the position
is measured in the virtual root. If the mouse pointer isn’t on the same screen aswindowthen -1 is
returned.

winfo pointerxy window

Tk Last change: 4.3 2

Tk Built-In Commands winfo (n)

If the mouse pointer is on the same screen aswindow, returns a list with two elements, which are
the pointer’s x and y coordinates measured in pixels in the screen’s root window. If a virtual root
window is in use on the screen, the position is computed in the virtual root. If the mouse pointer
isn’t on the same screen aswindowthen both of the returned coordinates are -1.

winfo pointery window
If the mouse pointer is on the same screen aswindow, returns the pointer’s y coordinate, measured
in pixels in the screen’s root window. If a virtual root window is in use on the screen, the position
is computed in the virtual root. If the mouse pointer isn’t on the same screen aswindowthen -1 is
returned.

winfo reqheight window
Returns a decimal string givingwindow’s requested height, in pixels. This is the value used by
window’s geometry manager to compute its geometry.

winfo reqwidth window
Returns a decimal string givingwindow’s requested width, in pixels. This is the value used by
window’s geometry manager to compute its geometry.

winfo rgb window color
Returns a list containing three decimal values, which are the red, green, and blue intensities that
correspond tocolor in the window giv en bywindow. Color may be specified in any of the forms
acceptable for a color option.

winfo rootx window
Returns a decimal string giving the x-coordinate, in the root window of the screen, of the upper-
left corner ofwindow’s border (orwindowif it has no border).

winfo rooty window
Returns a decimal string giving the y-coordinate, in the root window of the screen, of the upper-
left corner ofwindow’s border (orwindowif it has no border).

winfo screenwindow
Returns the name of the screen associated withwindow, in the formdisplayName.screenIndex.

winfo screencellswindow
Returns a decimal string giving the number of cells in the default color map forwindow’s screen.

winfo screendepthwindow
Returns a decimal string giving the depth of the root window ofwindow’s screen (number of bits
per pixel).

winfo screenheightwindow
Returns a decimal string giving the height ofwindow’s screen, in pixels.

winfo screenmmheightwindow
Returns a decimal string giving the height ofwindow’s screen, in millimeters.

winfo screenmmwidthwindow
Returns a decimal string giving the width ofwindow’s screen, in millimeters.

winfo screenvisualwindow
Returns one of the following strings to indicate the default visual class forwindow’s screen:
directcolor, grayscale, pseudocolor, staticcolor, staticgray, or truecolor.

winfo screenwidthwindow
Returns a decimal string giving the width ofwindow’s screen, in pixels.

winfo server window
Returns a string containing information about the server forwindow’s display. The exact format of
this string may vary from platform to platform. For X servers the string has the form

Tk Last change: 4.3 3

Tk Built-In Commands winfo (n)

‘‘ XmajorRminor vendor vendorVersion’’ where major and minor are the version and revision
numbers provided by the server (e.g.,X11R5), vendoris the name of the vendor for the server, and
vendorReleaseis an integer release number provided by the server.

winfo toplevel window
Returns the path name of the top-level window containingwindow.

winfo viewablewindow
Returns 1 ifwindowand all of its ancestors up through the nearest toplevel window are mapped.
Returns 0 if any of these windows are not mapped.

winfo visual window
Returns one of the following strings to indicate the visual class forwindow: directcolor,
grayscale, pseudocolor, staticcolor, staticgray, or truecolor.

winfo visualid window
Returns the X identifier for the visual forwindow.

winfo visualsavailablewindow?includeids?
Returns a list whose elements describe the visuals available forwindow’s screen. Each element
consists of a visual class followed by an integer depth. The class has the same form as returned by
winfo visual. The depth gives the number of bits per pixel in the visual. In addition, if the
includeidsargument is provided, then the depth is followed by the X identifier for the visual.

winfo vrootheight window
Returns the height of the virtual root window associated withwindow if there is one; otherwise
returns the height ofwindow’s screen.

winfo vrootwidth window
Returns the width of the virtual root window associated withwindow if there is one; otherwise
returns the width ofwindow’s screen.

winfo vrootx window
Returns the x-offset of the virtual root window associated withwindow, relative to the root win-
dow of its screen. This is normally either zero or negative. Returns 0 if there is no virtual root
window forwindow.

winfo vrooty window
Returns the y-offset of the virtual root window associated withwindow, relative to the root win-
dow of its screen. This is normally either zero or negative. Returns 0 if there is no virtual root
window forwindow.

winfo width window
Returns a decimal string givingwindow’s width in pixels. When a window is first created its
width will be 1 pixel; the width will eventually be changed by a geometry manager to fulfill the
window’s needs. If you need the true width immediately after creating a widget, invokeupdate to
force the geometry manager to arrange it, or usewinfo reqwidth to get the window’s requested
width instead of its actual width.

winfo x window
Returns a decimal string giving the x-coordinate, inwindow’s parent, of the upper-left corner of
window’s border (orwindowif it has no border).

winfo y window
Returns a decimal string giving the y-coordinate, inwindow’s parent, of the upper-left corner of
window’s border (orwindowif it has no border).

Tk Last change: 4.3 4

Tk Built-In Commands winfo (n)

KEYWORDS
atom, children, class, geometry, height, identifier, information, interpreters, mapped, parent, path name,
screen, virtual root, width, window

Tk Last change: 4.3 5

Tk Built-In Commands wm (n)

NAME
wm − Communicate with window manager

SYNOPSIS
wm option window?args?

DESCRIPTION
Thewm command is used to interact with window managers in order to control such things as the title for a
window, its geometry, or the increments in terms of which it may be resized. Thewm command can take
any of a number of different forms, depending on theoptionargument. All of the forms expect at least one
additional argument,window, which must be the path name of a top-level window.

The legal forms for thewm command are:

wm aspectwindow?minNumer minDenom maxNumer maxDenom?
If minNumer, minDenom, maxNumer, andmaxDenomare all specified, then they will be passed to
the window manager and the window manager should use them to enforce a range of acceptable
aspect ratios forwindow. The aspect ratio ofwindow (width/length) will be constrained to lie
betweenminNumer/minDenomandmaxNumer/maxDenom. If minNumeretc. are all specified as
empty strings, then any existing aspect ratio restrictions are removed. IfminNumeretc. are speci-
fied, then the command returns an empty string. Otherwise, it returns a Tcl list containing four
elements, which are the current values ofminNumer, minDenom, maxNumer, andmaxDenom(if
no aspect restrictions are in effect, then an empty string is returned).

wm client window?name?
If nameis specified, this command storesname(which should be the name of the host on which
the application is executing) inwindow’s WM_CLIENT_MACHINE property for use by the
window manager or session manager. The command returns an empty string in this case. Ifname
isn’t specified, the command returns the last name set in awm client command forwindow. If
nameis specified as an empty string, the command deletes theWM_CLIENT_MACHINE prop-
erty fromwindow.

wm colormapwindowswindow?windowList?
This command is used to manipulate theWM_COLORMAP_WINDOWS property, which pro-
vides information to the window managers about windows that have private colormaps. Ifwin-
dowList isn’t specified, the command returns a list whose elements are the names of the windows
in theWM_COLORMAP_WINDOWS property. IfwindowListis specified, it consists of a list
of window path names; the command overwrites theWM_COLORMAP_WINDOWS property
with the given windows and returns an empty string. TheWM_COLORMAP_WINDOWS
property should normally contain a list of the internal windows withinwindowwhose colormaps
differ from their parents. The order of the windows in the property indicates a priority order: the
window manager will attempt to install as many colormaps as possible from the head of this list
when window gets the colormap focus. Ifwindow is not included among the windows inwin-
dowList, Tk implicitly adds it at the end of theWM_COLORMAP_WINDOWS property, so that
its colormap is lowest in priority. Ifwm colormapwindows is not invoked, Tk will automatically
set the property for each top-level window to all the internal windows whose colormaps differ
from their parents, followed by the top-level itself; the order of the internal windows is undefined.
See the ICCCM documentation for more information on theWM_COLORMAP_WINDOWS
property.

wm commandwindow?value?
If value is specified, this command storesvalue in window’s WM_COMMAND property for use
by the window manager or session manager and returns an empty string.Valuemust have proper
list structure; the elements should contain the words of the command used to invoke the

Tk Last change: 4.3 1

Tk Built-In Commands wm (n)

application. Ifvalue isn’t specified then the command returns the last value set in awm com-
mand command forwindow. If value is specified as an empty string, the command deletes the
WM_COMMAND property fromwindow.

wm deiconify window
Arrange forwindowto be displayed in normal (non-iconified) form. This is done by mapping the
window. If the window has never been mapped then this command will not map the window, but
it will ensure that when the window is first mapped it will be displayed in de-iconified form.
Returns an empty string.

wm focusmodelwindow?active|passive?
If active or passiveis supplied as an optional argument to the command, then it specifies the focus
model forwindow. In this case the command returns an empty string. If no additional argument is
supplied, then the command returns the current focus model forwindow. An active focus model
means thatwindowwill claim the input focus for itself or its descendants, even at times when the
focus is currently in some other application.Passivemeans thatwindow will never claim the
focus for itself: the window manager should give the focus towindowat appropriate times. How-
ev er, once the focus has been given towindowor one of its descendants, the application may re-
assign the focus amongwindow’s descendants. The focus model defaults topassive, and Tk’s
focuscommand assumes a passive model of focusing.

wm frame window
If window has been reparented by the window manager into a decorative frame, the command
returns the platform specific window identifier for the outermost frame that containswindow(the
window whose parent is the root or virtual root). Ifwindowhasn’t been reparented by the window
manager then the command returns the platform specific window identifier forwindow.

wm geometrywindow?newGeometry?
If newGeometryis specified, then the geometry ofwindow is changed and an empty string is
returned. Otherwise the current geometry forwindowis returned (this is the most recent geometry
specified either by manual resizing or in awm geometrycommand).NewGeometryhas the form
=widthxheight±x±y, where any of=, widthxheight, or ±x±y may be omitted.Widthandheightare
positive integers specifying the desired dimensions ofwindow. If window is gridded (see GRID-
DED GEOMETRY MANAGEMENT below) then the dimensions are specified in grid units; oth-
erwise they are specified in pixel units.X and y specify the desired location ofwindow on the
screen, in pixels. Ifx is preceded by+, it specifies the number of pixels between the left edge of
the screen and the left edge ofwindow’s border; if preceded by− thenx specifies the number of
pixels between the right edge of the screen and the right edge ofwindow’s border. Ify is preceded
by + then it specifies the number of pixels between the top of the screen and the top ofwindow’s
border; if y is preceded by− then it specifies the number of pixels between the bottom ofwin-
dow’s border and the bottom of the screen. IfnewGeometryis specified as an empty string then
any existing user-specified geometry forwindow is cancelled, and the window will revert to the
size requested internally by its widgets.

wm grid window?baseWidth baseHeight widthInc heightInc?
This command indicates thatwindow is to be managed as a gridded window. It also specifies the
relationship between grid units and pixel units.BaseWidthandbaseHeightspecify the number of
grid units corresponding to the pixel dimensions requested internally bywindowusingTk_Geom-
etryRequest. WidthIncandheightIncspecify the number of pixels in each horizontal and vertical
grid unit. These four values determine a range of acceptable sizes forwindow, corresponding to
grid-based widths and heights that are non-negative integers. Tk will pass this information to the
window manager; during manual resizing, the window manager will restrict the window’s size to
one of these acceptable sizes. Furthermore, during manual resizing the window manager will dis-
play the window’s current size in terms of grid units rather than pixels. IfbaseWidthetc. are all
specified as empty strings, thenwindow will no longer be managed as a gridded window. If

Tk Last change: 4.3 2

Tk Built-In Commands wm (n)

baseWidthetc. are specified then the return value is an empty string. Otherwise the return value is
a Tcl list containing four elements corresponding to the currentbaseWidth, baseHeight, widthInc,
and heightInc; if window is not currently gridded, then an empty string is returned. Note: this
command should not be needed very often, since theTk_SetGrid library procedure and theset-
Grid option provide easier access to the same functionality.

wm group window?pathName?
If pathNameis specified, it gives the path name for the leader of a group of related windows. The
window manager may use this information, for example, to unmap all of the windows in a group
when the group’s leader is iconified.PathNamemay be specified as an empty string to remove
windowfrom any group association. IfpathNameis specified then the command returns an empty
string; otherwise it returns the path name ofwindow’s current group leader, or an empty string if
windowisn’t part of any group.

wm iconbitmap window?bitmap?
If bitmap is specified, then it names a bitmap in the standard forms accepted by Tk (see the
Tk_GetBitmap manual entry for details). This bitmap is passed to the window manager to be dis-
played inwindow’s icon, and the command returns an empty string. If an empty string is specified
for bitmap, then any current icon bitmap is cancelled forwindow. If bitmap is specified then the
command returns an empty string. Otherwise it returns the name of the current icon bitmap asso-
ciated withwindow, or an empty string ifwindowhas no icon bitmap.

wm iconify window
Arrange forwindowto be iconified. Itwindowhasn’t yet been mapped for the first time, this com-
mand will arrange for it to appear in the iconified state when it is eventually mapped.

wm iconmaskwindow?bitmap?
If bitmap is specified, then it names a bitmap in the standard forms accepted by Tk (see the
Tk_GetBitmap manual entry for details). This bitmap is passed to the window manager to be
used as a mask in conjunction with theiconbitmap option: where the mask has zeroes no icon
will be displayed; where it has ones, the bits from the icon bitmap will be displayed. If an empty
string is specified forbitmapthen any current icon mask is cancelled forwindow(this is equivalent
to specifying a bitmap of all ones). Ifbitmap is specified then the command returns an empty
string. Otherwise it returns the name of the current icon mask associated withwindow, or an
empty string if no mask is in effect.

wm iconnamewindow?newName?
If newNameis specified, then it is passed to the window manager; the window manager should
displaynewNameinside the icon associated withwindow. In this case an empty string is returned
as result. IfnewNameisn’t specified then the command returns the current icon name forwindow,
or an empty string if no icon name has been specified (in this case the window manager will nor-
mally display the window’s title, as specified with thewm title command).

wm iconpositionwindow?x y?
If x andy are specified, they are passed to the window manager as a hint about where to position
the icon forwindow. In this case an empty string is returned. Ifx andy are specified as empty
strings then any existing icon position hint is cancelled. If neitherx nor y is specified, then the
command returns a Tcl list containing two values, which are the current icon position hints (if no
hints are in effect then an empty string is returned).

wm iconwindow window?pathName?
If pathNameis specified, it is the path name for a window to use as icon forwindow: whenwin-
dow is iconified thenpathNamewill be mapped to serve as icon, and whenwindowis de-iconified
then pathNamewill be unmapped again. IfpathNameis specified as an empty string then any
existing icon window association forwindow will be cancelled. If thepathNameargument is
specified then an empty string is returned. Otherwise the command returns the path name of the

Tk Last change: 4.3 3

Tk Built-In Commands wm (n)

current icon window forwindow, or an empty string if there is no icon window currently specified
for window. Button press events are disabled forwindowas long as it is an icon window; this is
needed in order to allow window managers to ‘‘own’’ those events. Note: not all window man-
agers support the notion of an icon window.

wm maxsizewindow?width height?
If width andheightare specified, they giv e the maximum permissible dimensions forwindow. For
gridded windows the dimensions are specified in grid units; otherwise they are specified in pixel
units. The window manager will restrict the window’s dimensions to be less than or equal towidth
andheight. If width andheightare specified, then the command returns an empty string. Other-
wise it returns a Tcl list with two elements, which are the maximum width and height currently in
effect. The maximum size defaults to the size of the screen. If resizing has been disabled with the
wm resizablecommand, then this command has no effect. See the sections on geometry manage-
ment below for more information.

wm minsizewindow?width height?
If width andheightare specified, they giv e the minimum permissible dimensions forwindow. For
gridded windows the dimensions are specified in grid units; otherwise they are specified in pixel
units. The window manager will restrict the window’s dimensions to be greater than or equal to
width andheight. If width andheightare specified, then the command returns an empty string.
Otherwise it returns a Tcl list with two elements, which are the minimum width and height cur-
rently in effect. The minimum size defaults to one pixel in each dimension. If resizing has been
disabled with thewm resizablecommand, then this command has no effect. See the sections on
geometry management below for more information.

wm overrideredirect window?boolean?
If booleanis specified, it must have a proper boolean form and the override-redirect flag forwin-
dow is set to that value. Ifbooleanis not specified then1 or 0 is returned to indicate whether or
not the override-redirect flag is currently set forwindow. Setting the override-redirect flag for a
window causes it to be ignored by the window manager; among other things, this means that the
window will not be reparented from the root window into a decorative frame and the user will not
be able to manipulate the window using the normal window manager mechanisms.

wm positionfrom window?who?
If who is specified, it must be eitherprogram or user, or an abbreviation of one of these two. It
indicates whetherwindow’s current position was requested by the program or by the user. Many
window managers ignore program-requested initial positions and ask the user to manually position
the window; if user is specified then the window manager should position the window at the
given place without asking the user for assistance. Ifwho is specified as an empty string, then the
current position source is cancelled. Ifwho is specified, then the command returns an empty
string. Otherwise it returnsuser or window to indicate the source of the window’s current posi-
tion, or an empty string if no source has been specified yet. Most window managers interpret ‘‘no
source’’ as equivalent toprogram. Tk will automatically set the position source touser when a
wm geometrycommand is invoked, unless the source has been set explicitly toprogram.

wm protocol window?name? ?command?
This command is used to manage window manager protocols such asWM_DELETE_WIN-
DOW. Name is the name of an atom corresponding to a window manager protocol, such as
WM_DELETE_WINDOW or WM_SAVE_YOURSELF or WM_TAKE_FOCUS . If both
nameand commandare specified, thencommandis associated with the protocol specified by
name. Namewill be added towindow’s WM_PROT OCOLS property to tell the window man-
ager that the application has a protocol handler forname, andcommandwill be invoked in the
future whenever the window manager sends a message to the client for that protocol. In this case
the command returns an empty string. Ifnameis specified butcommandisn’t, then the current
command fornameis returned, or an empty string if there is no handler defined forname. If

Tk Last change: 4.3 4

Tk Built-In Commands wm (n)

commandis specified as an empty string then the current handler fornameis deleted and it is
removed from theWM_PROT OCOLS property onwindow; an empty string is returned. Lastly,
if neithernamenor commandis specified, the command returns a list of all the protocols for which
handlers are currently defined forwindow.

Tk always defines a protocol handler forWM_DELETE_WINDOW , even if you haven’t asked
for one withwm protocol. If a WM_DELETE_WINDOW message arrives when you haven’t
defined a handler, then Tk handles the message by destroying the window for which it was
received.

wm resizablewindow?width height?
This command controls whether or not the user may interactively resize a top-level window. If
width and height are specified, they are boolean values that determine whether the width and
height ofwindowmay be modified by the user. In this case the command returns an empty string.
If width andheightare omitted then the command returns a list with two 0/1 elements that indicate
whether the width and height ofwindoware currently resizable. By default, windows are resizable
in both dimensions. If resizing is disabled, then the window’s size will be the size from the most
recent interactive resize orwm geometrycommand. If there has been no such operation then the
window’s natural size will be used.

wm sizefromwindow?who?
If who is specified, it must be eitherprogram or user, or an abbreviation of one of these two. It
indicates whetherwindow’s current size was requested by the program or by the user. Some win-
dow managers ignore program-requested sizes and ask the user to manually size the window; if
user is specified then the window manager should give the window its specified size without ask-
ing the user for assistance. Ifwho is specified as an empty string, then the current size source is
cancelled. Ifwho is specified, then the command returns an empty string. Otherwise it returns
useror window to indicate the source of the window’s current size, or an empty string if no source
has been specified yet. Most window managers interpret ‘‘no source’’ as equivalent toprogram.

wm statewindow
Returns the current state ofwindow: eithernormal, iconic, withdrawn , or icon. The difference
betweeniconic and icon is that iconic refers to a window that has been iconified (e.g., with the
wm iconify command) whileicon refers to a window whose only purpose is to serve as the icon
for some other window (via thewm iconwindow command).

wm title window?string?
If string is specified, then it will be passed to the window manager for use as the title forwindow
(the window manager should display this string inwindow’s title bar). In this case the command
returns an empty string. Ifstring isn’t specified then the command returns the current title for the
window. The title for a window defaults to its name.

wm transient window?master?
If masteris specified, then the window manager is informed thatwindow is a transient window
(e.g. pull-down menu) working on behalf ofmaster(wheremasteris the path name for a top-level
window). Some window managers will use this information to managewindowspecially. Ifmas-
ter is specified as an empty string thenwindow is marked as not being a transient window any
more. Ifmasteris specified, then the command returns an empty string. Otherwise the command
returns the path name ofwindow’s current master, or an empty string ifwindow isn’t currently a
transient window.

wm withdraw window
Arranges forwindow to be withdrawn from the screen. This causes the window to be unmapped
and forgotten about by the window manager. If the window has never been mapped, then this
command causes the window to be mapped in the withdrawn state. Not all window managers
appear to know how to handle windows that are mapped in the withdrawn state. Note: it

Tk Last change: 4.3 5

Tk Built-In Commands wm (n)

sometimes seems to be necessary to withdraw a window and then re-map it (e.g. withwm
deiconify) to get some window managers to pay attention to changes in window attributes such as
group.

GEOMETRY MANAGEMENT
By default a top-level window appears on the screen in itsnatural size, which is the one determined inter-
nally by its widgets and geometry managers. If the natural size of a top-level window changes, then the
window’s size changes to match. A top-level window can be given a size other than its natural size in two
ways. First, the user can resize the window manually using the facilities of the window manager, such as
resize handles. Second, the application can request a particular size for a top-level window using thewm
geometry command. These two cases are handled identically by Tk; in either case, the requested size
overrides the natural size. You can return the window to its natural by invokingwm geometry with an
emptygeometrystring.

Normally a top-level window can have any size from one pixel in each dimension up to the size of its
screen. However, you can use thewm minsizeandwm maxsizecommands to limit the range of allowable
sizes. The range set bywm minsizeandwm maxsizeapplies to all forms of resizing, including the win-
dow’s natural size as well as manual resizes and thewm geometrycommand. You can also use the com-
mandwm resizableto completely disable interactive resizing in one or both dimensions.

GRIDDED GEOMETRY MANAGEMENT
Gridded geometry management occurs when one of the widgets of an application supports a range of useful
sizes. This occurs, for example, in a text editor where the scrollbars, menus, and other adornments are fixed
in size but the edit widget can support any number of lines of text or characters per line. In this case, it is
usually desirable to let the user specify the number of lines or characters-per-line, either with thewm
geometry command or by interactively resizing the window. In the case of text, and in other interesting
cases also, only discrete sizes of the window make sense, such as integral numbers of lines and characters-
per-line; arbitrary pixel sizes are not useful.

Gridded geometry management provides support for this kind of application. Tk (and the window man-
ager) assume that there is a grid of some sort within the application and that the application should be
resized in terms ofgrid units rather than pixels. Gridded geometry management is typically invoked by
turning on thesetGrid option for a widget; it can also be invoked with thewm grid command or by call-
ing Tk_SetGrid. In each of these approaches the particular widget (or sometimes code in the application
as a whole) specifies the relationship between integral grid sizes for the window and pixel sizes. To return
to non-gridded geometry management, invokewm grid with empty argument strings.

When gridded geometry management is enabled then all the dimensions specified inwm minsize, wm
maxsize, andwm geometrycommands are treated as grid units rather than pixel units. Interactive resizing
is also carried out in even numbers of grid units rather than pixels.

BUGS
Most existing window managers appear to have bugs that affect the operation of thewm command. For
example, some changes won’t take effect if the window is already active: the window will have to be with-
drawn and de-iconified in order to make the change happen.

KEYWORDS
aspect ratio, deiconify, focus model, geometry, grid, group, icon, iconify, increments, position, size, title,
top-level window, units, window manager

Tk Last change: 4.3 6

[incr Tcl] body (n)

NAME
body − change the body for a class method/proc

SYNOPSIS
body className:: function args body

DESCRIPTION
Thebody command is used outside of an[incr Tcl] class definition to define or redefine the body of a class
method or proc. This facility allows a class definition to have separate "interface" and "implementation"
parts. The "interface" part is aclasscommand with declarations for methods, procs, instance variables and
common variables. The "implementation" part is a series ofbody and configbody commands. If the
"implementation" part is kept in a separate file, it can be sourced again and again as bugs are fixed, to sup-
port interactive dev elopment. When using the "tcl" mode in theemacseditor, the "interface" and "imple-
mentation" parts can be kept in the same file; as bugs are fixed, individual bodies can be highlighted and
sent to the test application.

The name "className:: function" identifies the method/proc being changed.

If an args list was specified when thefunctionwas defined in the class definition, theargs list for thebody
command must match in meaning. Variable names can change, but the argument lists must have the same
required arguments and the same default values for optional arguments. The specialargs argument acts as
a wildcard when included in theargs list in the class definition; it will match zero or more arguments of any
type when the body is redefined.

If the bodystring starts with "@", it is treated as the symbolic name for a C procedure. Theargs list has lit-
tle meaning for the C procedure, except to document the expected usage. (The C procedure is not guaran-
teed to use arguments in this manner.) Ifbody does not start with "@", it is treated as a Tcl command
script. When the function is invoked, command line arguments are matched against theargs list, and local
variables are created to represent each argument. This is the usual behavior for a Tcl-style proc.

Symbolic names for C procedures are established by registering procedures viaItcl_RegisterC(). This is
usually done in theTcl_AppInit() procedure, which is automatically called when the interpreter starts up.
In the following example, the procedureMy_FooCmd() is registered with the symbolic name "foo". This
procedure can be referenced in thebody command as "@foo".

int
Tcl_AppInit(interp)

Tcl_Interp∗interp; /∗ Interpreter for application.∗/
{

if (Itcl_Init(interp) == TCL_ERROR) {
return TCL_ERROR;

}

if (Itcl_RegisterC(interp, "foo", My_FooCmd) != TCL_OK) {
return TCL_ERROR;

}
}

EXAMPLE
In the following example, a "File" class is defined to represent open files. The method bodies are included
below the class definition via thebody command. Note that the bodies of the constructor/destructor must
be included in the class definition, but they can be redefined via thebody command as well.

class File {
private variable fid ""

itcl Last change: 3.0 1

[incr Tcl] body (n)

constructor {name access} {
set fid [open $name $access]

}
destructor {

close $fid
}

method get {}
method put {line}
method eof {}

}

body File::get {} {
return [gets $fid]

}
body File::put {line} {

puts $fid $line
}
body File::eof {} {

return [::eof $fid]
}

#
See the File class in action:
#
File x /etc/passwd "r"
while {![x eof]} {

puts "=> [x get]"
}
delete object x

KEYWORDS
class, object, procedure

itcl Last change: 3.0 2

[incr Tcl] class (n)

NAME
class − create a class of objects

SYNOPSIS
classclassName{

inherit baseClass?baseClass...?
constructor args?init?body
destructor body
methodname?args? ?body?
proc name ?args? ?body?
variable varName?init? ?config?
commonvarName?init?

public command?arg arg ...?
protectedcommand?arg arg ...?
private command?arg arg ...?

setvarName?value?
array option?arg arg ...?

}

className objName?arg arg ...?

objName method?arg arg ...?

className::proc ?arg arg ...?

DESCRIPTION
The fundamental construct in[incr Tcl] is the class definition. Each class acts as a template for actual
objects that can be created. The class itself is a namespace which contains things common to all objects.
Each object has its own unique bundle of data which contains instances of the "variables" defined in the
class definition. Each object also has a built-in variable named "this", which contains the name of the
object. Classes can also have "common" data members that are shared by all objects in a class.

Tw o types of functions can be included in the class definition. "Methods" are functions which operate on a
specific object, and therefore have access to both "variables" and "common" data members. "Procs" are
ordinary procedures in the class namespace, and only have access to "common" data members.

If the body of any method or proc starts with "@", it is treated as the symbolic name for a C procedure.
Otherwise, it is treated as a Tcl code script. See below for details on registering and using C procedures.

A class can only be defined once, although the bodies of class methods and procs can be defined again and
again for interactive debugging. See thebody andconfigbodycommands for details.

Each namespace can have its own collection of objects and classes. The list of classes available in the cur-
rent context can be queried using the "itcl::find classes" command, and the list of objects, with the
"itcl::find objects" command.

A class can be deleted using the "delete class" command. Individual objects can be deleted using the
"delete object" command.

CLASS DEFINITIONS
classclassName definition

itcl Last change: 1

[incr Tcl] class (n)

Provides the definition for a class namedclassName. If the classclassNamealready exists, or if a
command calledclassNameexists in the current namespace context, this command returns an
error. If the class definition is successfully parsed,classNamebecomes a command in the current
context, handling the creation of objects for this class.

The classdefinitionis evaluated as a series of Tcl statements that define elements within the class. The fol-
lowing class definition commands are recognized:

inherit baseClass?baseClass...?
Causes the current class to inherit characteristics from one or more base classes. Classes
must have been defined by a previousclasscommand, or must be available to the auto-
loading facility (see "AUTO-LOADING" below). A single class definition can contain
no more than oneinherit command.

The order ofbaseClassnames in theinherit list affects the name resolution for class
members. When the same member name appears in two or more base classes, the base
class that appears first in theinherit list takes precedence. For example, if classes "Foo"
and "Bar" both contain the member "x", and if another class has the "inherit " statement:
inherit Foo Bar

then the name "x" means "Foo::x". Other inherited members named "x" must be referenced with
their explicit name, like "Bar::x".

constructor args?init?body
Declares theargsargument list andbodyused for the constructor, which is automatically
invoked whenever an object is created.

Before thebody is executed, the optionalinit statement is used to invoke any base class
constructors that require arguments. Variables in theargsspecification can be accessed in
the init code fragment, and passed to base class constructors. After evaluating theinit
statement, any base class constructors that have not been executed are invoked automati-
cally without arguments. This ensures that all base classes are fully constructed before
the constructorbody is executed. By default, this scheme causes constructors to be
invoked in order from least- to most-specific. This is exactly the opposite of the order
that classes are reported by theinfo heritage command.

If construction is successful, the constructor always returns the object name−regardless of
how thebodyis defined−and the object name becomes a command in the current names-
pace context. If construction fails, an error message is returned.

destructor body
Declares thebodyused for the destructor, which is automatically invoked when an object
is deleted. If the destructor is successful, the object data is destroyed and the object name
is removed as a command from the interpreter. If destruction fails, an error message is
returned and the object remains.

When an object is destroyed, all destructors in its class hierarchy are invoked in order
from most- to least-specific. This is the order that the classes are reported by the "info
heritage" command, and it is exactly the opposite of the default constructor order.

methodname?args? ?body?
Declares a method calledname. When the methodbody is executed, it will have auto-
matic access to object-specific variables and common data members.

If the args list is specified, it establishes the usage information for this method. Thebody
command can be used to redefine the method body, but theargs list must match this

itcl Last change: 2

[incr Tcl] class (n)

specification.

Within the body of another class method, a method can be invoked like any other com-
mand−simply by using its name. Outside of the class context, the method name must be
prefaced an object name, which provides the context for the data that it manipulates.
Methods in a base class that are redefined in the current class, or hidden by another base
class, can be qualified using the "className::method" syntax.

proc name?args? ?body?
Declares a proc calledname. A proc is an ordinary procedure within the class names-
pace. Unlike a method, a proc is invoked without referring to a specific object. When the
procbodyis executed, it will have automatic access only to common data members.

If the args list is specified, it establishes the usage information for this proc. Thebody
command can be used to redefine the proc body, but theargs list must match this specifi-
cation.

Within the body of another class method or proc, a proc can be invoked like any other
command−simply by using its name. In any other namespace context, the proc is invoked
using a qualified name like "className::proc". Procs in a base class that are redefined in
the current class, or hidden by another base class, can also be accessed via their qualified
name.

variable varName?init? ?config?
Defines an object-specific variable namedvarName. All object-specific variables are
automatically available in class methods. They need not be declared with anything like
theglobal command.

If the optionalinit string is specified, it is used as the initial value of the variable when a
new object is created. Initialization forces the variable to be a simple scalar value; unini-
tialized variables, on the other hand, can be set within the constructor and used as arrays.

The optionalconfig script is only allowed for public variables. If specified, this code
fragment is executed whenever a public variable is modified by the built-in "configure"
method. Theconfigscript can also be specified outside of the class definition using the
configbodycommand.

commonvarName?init?
Declares a common variable namedvarName. Common variables reside in the class
namespace and are shared by all objects belonging to the class. They are just like global
variables, except that they need not be declared with the usualglobal command. They
are automatically visible in all class methods and procs.

If the optionalinit string is specified, it is used as the initial value of the variable. Initial-
ization forces the variable to be a simple scalar value; uninitialized variables, on the other
hand, can be set with subsequentsetandarray commands and used as arrays.

Once a common data member has been defined, it can be set usingset andarray com-
mands within the class definition. This allows common data members to be initialized as
arrays. For example:
class Foo {

common boolean
set boolean(true) 1

itcl Last change: 3

[incr Tcl] class (n)

set boolean(false) 0
}

Note that if common data members are initialized within the constructor, they get initialized again
and again whenever new objects are created.

public command?arg arg ...?

protectedcommand?arg arg ...?

private command?arg arg ...?
These commands are used to set the protection level for class members that are created
whencommandis evaluated. Thecommandis usuallymethod, proc, variable orcom-
mon, and the remainingarg’s complete the member definition. However,commandcan
also be a script containing many different member definitions, and the protection level
will apply to all of the members that are created.

CLASS USAGE
Once a class has been defined, the class name can be used as a command to create new objects belonging to
the class.

className objName?args...?
Creates a new object in classclassNamewith the nameobjName. Remaining arguments are
passed to the constructor of the most-specific class. This in turn passes arguments to base class
constructors before invoking its own body of commands. If construction is successful, a command
calledobjNameis created in the current namespace context, andobjNameis returned as the result
of this operation. If an error is encountered during construction, the destructors are automatically
invoked to free any resources that have been allocated, the object is deleted, and an error is
returned.

If objNamecontains the string "#auto", that string is replaced with an automatically generated
name. Names have the formclassName<number>, where theclassNamepart is modified to start
with a lowercase letter. In class "Toaster", for example, the "#auto" specification would produce
names like toaster0, toaster1, etc. Note that "#auto" can be also be buried within an object name:
fileselectiondialog .foo.bar.#auto -background red

This would generate an object named ".foo.bar.fileselectiondialog0".

OBJECT USAGE
Once an object has been created, the object name can be used as a command to invoke methods that operate
on the object.

objName method?args...?
Invokes a method namedmethodon an object namedobjName. Remaining arguments are passed
to the argument list for the method. The method name can be "constructor", "destructor", any
method name appearing in the class definition, or any of the following built-in methods.

BUILT-IN METHODS
objNamecget option

Provides access to public variables as configuration options. This mimics the behavior of the
usual "cget" operation for Tk widgets. Theoption argument is a string of the form "-varName",
and this method returns the current value of the public variablevarName.

objNameconfigure?option? ?value option value ...?
Provides access to public variables as configuration options. This mimics the behavior of the
usual "configure" operation for Tk widgets. With no arguments, this method returns a list of lists
describing all of the public variables. Each list has three elements: the variable name, its initial

itcl Last change: 4

[incr Tcl] class (n)

value and its current value.

If a singleoptionof the form "-varName" is specified, then this method returns the information for
that one variable.

Otherwise, the arguments are treated asoption/value pairs assigning new values to public vari-
ables. Each variable is assigned its new value, and if it has any "config" code associated with it, it
is executed in the context of the class where it was defined. If the "config" code generates an error,
the variable is set back to its previous value, and theconfiguremethod returns an error.

objNameisaclassName
Returns non-zero if the givenclassNamecan be found in the object’s heritage, and zero otherwise.

objNameinfo option?args...?
Returns information related to a particular object namedobjName, or to its class definition. The
optionparameter includes the following things, as well as the options recognized by the usual Tcl
"info" command:

objNameinfo class
Returns the name of the most-specific class for objectobjName.

objNameinfo inherit
Returns the list of base classes as they were defined in the "inherit " command, or an
empty string if this class has no base classes.

objNameinfo heritage
Returns the current class name and the entire list of base classes in the order that they are
traversed for member lookup and object destruction.

objNameinfo function ?cmdName? ?-protection? ?-type? ?-name? ?-args? ?-body?
With no arguments, this command returns a list of all class methods and procs. Ifcmd-
Nameis specified, it returns information for a specific method or proc. If no flags are
specified, this command returns a list with the following elements: the protection level,
the type (method/proc), the qualified name, the argument list and the body. Flags can be
used to request specific elements from this list.

objNameinfo variable ?varName? ?-protection? ?-type? ?-name? ?-init ? ?-value? ?-config?
With no arguments, this command returns a list of all object-specific variables and com-
mon data members. IfvarNameis specified, it returns information for a specific data
member. If no flags are specified, this command returns a list with the following ele-
ments: the protection level, the type (variable/common), the qualified name, the initial
value, and the current value. IfvarName is a public variable, the "config" code is
included on this list. Flags can be used to request specific elements from this list.

CHAINING METHODS/PROCS
Sometimes a base class has a method or proc that is redefined with the same name in a derived class. This
is a way of making the derived class handle the same operations as the base class, but with its own special-
ized behavior. For example, suppose we have a Toaster class that looks like this:

class Toaster {
variable crumbs 0
method toast {nslices} {

if {$crumbs > 50} {
error "== FIRE! FIRE! =="

}
set crumbs [expr $crumbs+4∗$nslices]

itcl Last change: 5

[incr Tcl] class (n)

}
method clean {} {

set crumbs 0
}

}
We might create another class like SmartToaster that redefines the "toast" method. If we want to access the
base class method, we can qualify it with the base class name, to avoid ambiguity:

class SmartToaster {
inherit Toaster
method toast {nslices} {

if {$crumbs > 40} {
clean

}
return [Toaster::toast $nslices]

}
}

Instead of hard-coding the base class name, we can use the "chain" command like this:
class SmartToaster {

inherit Toaster
method toast {nslices} {

if {$crumbs > 40} {
clean

}
return [chain $nslices]

}
}

The chain command searches through the class hierarchy for a slightly more generic (base class) implemen-
tation of a method or proc, and invokes it with the specified arguments. It starts at the current class context
and searches through base classes in the order that they are reported by the "info heritage" command. If
another implementation is not found, this command does nothing and returns the null string.

AUTO-LOADING
Class definitions need not be loaded explicitly; they can be loaded as needed by the usual Tcl auto-loading
facility. Each directory containing class definition files should have an accompanying "tclIndex" file. Each
line in this file identifies a Tcl procedure or[incr Tcl] class definition and the file where the definition can
be found.

For example, suppose a directory contains the definitions for classes "Toaster" and "SmartToaster". Then
the "tclIndex" file for this directory would look like:

Tcl autoload index file, version 2.0 for [incr Tcl]
This file is generated by the "auto_mkindex" command
and sourced to set up indexing information for one or
more commands. Typically each line is a command that
sets an element in the auto_index array, where the
element name is the name of a command and the value is
a script that loads the command.

set auto_index(::Toaster) "source $dir/Toaster.itcl"
set auto_index(::SmartToaster) "source $dir/SmartToaster.itcl"

Theauto_mkindexcommand is used to automatically
generate "tclIndex" files.

itcl Last change: 6

[incr Tcl] class (n)

The auto-loader must be made aware of this directory by appending the directory name to the "auto_path"
variable. When this is in place, classes will be auto-loaded as needed when used in an application.

C PROCEDURES
C procedures can be integrated into an[incr Tcl] class definition to implement methods, procs, and the
"config" code for public variables. Any body that starts with "@" is treated as the symbolic name for a C
procedure.

Symbolic names are established by registering procedures viaItcl_RegisterC(). This is usually done in the
Tcl_AppInit() procedure, which is automatically called when the interpreter starts up. In the following
example, the procedureMy_FooCmd() is registered with the symbolic name "foo". This procedure can be
referenced in thebody command as "@foo".

int
Tcl_AppInit(interp)

Tcl_Interp∗interp; /∗ Interpreter for application.∗/
{

if (Itcl_Init(interp) == TCL_ERROR) {
return TCL_ERROR;

}

if (Itcl_RegisterC(interp, "foo", My_FooCmd) != TCL_OK) {
return TCL_ERROR;

}
}

C procedures are implemented just like ordinary Tcl commands. See theCrtCommand man page for
details. Within the procedure, class data members can be accessed like ordinary variables usingTcl_Set-
Var() , Tcl_GetVar(), Tcl_TraceVar(), etc. Class methods and procs can be executed like ordinary com-
mands usingTcl_Eval(). [incr Tcl] makes this possible by automatically setting up the context before
executing the C procedure.

This scheme provides a natural migration path for code development. Classes can be developed quickly
using Tcl code to implement the bodies. An entire application can be built and tested. When necessary,
individual bodies can be implemented with C code to improve performance.

KEYWORDS
class, object, object-oriented

itcl Last change: 7

[incr Tcl] code (n)

NAME
code − capture the namespace context for a code fragment

SYNOPSIS
code?-namespacename?command?arg arg ...?

DESCRIPTION
Creates a scoped value for the specifiedcommandand its associatedarg arguments. A scoped value is a list
with three elements: the "@scope" keyword, a namespace context, and a value string. For example, the
command

namespace foo {
code puts "Hello World!"

}
produces the scoped value:

@scope ::foo {puts {Hello World!}}
Note that thecodecommand captures the current namespace context. If the-namespaceflag is specified,
then the current context is ignored, and thenamestring is used as the namespace context.

Extensions like Tk execute ordinary code fragments in the global namespace. A scoped value captures a
code fragment together with its namespace context in a way that allows it to be executed properly later. It
is needed, for example, to wrap up code fragments when a Tk widget is used within a namespace:

namespace foo {
private proc report {mesg} {

puts "click: $mesg"
}

button .b1 -text "Push Me" -command [code report "Hello World!"]
pack .b1

}
The code fragment associated with button.b1 only makes sense in the context of namespace "foo". Fur-
thermore, the "report" procedure is private, and can only be accessed within that namespace. Thecode
command wraps up the code fragment in a way that allows it to be executed properly when the button is
pressed.

Also, note that thecodecommand preserves the integrity of arguments on the command line. This makes it
a natural replacement for thelist command, which is often used to format Tcl code fragments. In other
words, instead of using thelist command like this:

after 1000 [list puts "Hello $name!"]
use thecodecommand like this:

after 1000 [code puts "Hello $name!"]
This not only formats the command correctly, but also captures its namespace context.

Scoped commands can be invoked like ordinary code fragments, with or without theev al command. For
example, the following statements work properly:

set cmd {@scope ::foo .b1}
$cmd configure -background red

set opts {-bg blue -fg white}
eval $cmd configure $opts

Note that scoped commands by-pass the usual protection mechanisms; the command:
@scope ::foo {report {Hello World!}}

can be used to access the "foo::report" proc from any namespace context, even though it is private.

itcl Last change: 3.0 1

[incr Tcl] code (n)

KEYWORDS
scope, callback, namespace, public, protected, private

itcl Last change: 3.0 2

[incr Tcl] configbody (n)

NAME
configbody − change the "config" code for a public variable

SYNOPSIS
configbodyclassName::varName body

DESCRIPTION
Theconfigbodycommand is used outside of an[incr Tcl] class definition to define or redefine the configu-
ration code associated with a public variable. Public variables act like configuration options for an object.
They can be modified outside the class scope using the built-inconfiguremethod. Each variable can have a
bit of "config" code associate with it that is automatically executed when the variable is configured. The
configbodycommand can be used to define or redefine this body of code.

Like thebody command, this facility allows a class definition to have separate "interface" and "implemen-
tation" parts. The "interface" part is aclasscommand with declarations for methods, procs, instance vari-
ables and common variables. The "implementation" part is a series ofbody andconfigbodycommands. If
the "implementation" part is kept in a separate file, it can be sourced again and again as bugs are fixed, to
support interactive dev elopment. When using the "tcl" mode in theemacseditor, the "interface" and
"implementation" parts can be kept in the same file; as bugs are fixed, individual bodies can be highlighted
and sent to the test application.

The name "className::varName" identifies the public variable being updated. If thebodystring starts with
"@", it is treated as the symbolic name for a C procedure. Otherwise, it is treated as a Tcl command script.

Symbolic names for C procedures are established by registering procedures viaItcl_RegisterC(). This is
usually done in theTcl_AppInit() procedure, which is automatically called when the interpreter starts up.
In the following example, the procedureMy_FooCmd() is registered with the symbolic name "foo". This
procedure can be referenced in theconfigbodycommand as "@foo".

int
Tcl_AppInit(interp)

Tcl_Interp∗interp; /∗ Interpreter for application.∗/
{

if (Itcl_Init(interp) == TCL_ERROR) {
return TCL_ERROR;

}

if (Itcl_RegisterC(interp, "foo", My_FooCmd) != TCL_OK) {
return TCL_ERROR;

}
}

EXAMPLE
In the following example, a "File" class is defined to represent open files. Whenever the "-name" option is
configured, the existing file is closed, and a new file is opened. Note that the "config" code for a public
variable is optional. The "-access" option, for example, does not have it.

class File {
private variable fid ""

public variable name ""
public variable access "r"

constructor {args} {

itcl Last change: 3.0 1

[incr Tcl] configbody (n)

eval configure $args
}
destructor {

if {$fid != ""} {
close $fid

}
}

method get {}
method put {line}
method eof {}

}

body File::get {} {
return [gets $fid]

}
body File::put {line} {

puts $fid $line
}
body File::eof {} {

return [::eof $fid]
}

configbody File::name {
if {$fid != ""} {

close $fid
}
set fid [open $name $access]

}

#
See the File class in action:
#
File x

x configure -name /etc/passwd
while {![x eof]} {

puts "=> [x get]"
}
delete object x

KEYWORDS
class, object, variable, configure

itcl Last change: 3.0 2

[incr Tcl] delete (n)

NAME
delete − delete things in the interpreter

SYNOPSIS
deleteoption?arg arg ...?

DESCRIPTION
Thedeletecommand is used to delete things in the interpreter. It is implemented as an ensemble, so exten-
sions can add their own options and extend the behavior of this command. By default, thedeletecommand
handles the destruction of namespaces.

Theoptionargument determines what action is carried out by the command. The legaloptions(which may
be abbreviated) are:

delete classname?name...?
Deletes one or more[incr Tcl] classes calledname. This deletes all objects in the class, and all
derived classes as well.

If an error is encountered while destructing an object, it will prevent the destruction of the class
and any remaining objects. To destroy the entire class without regard for errors, use the "delete
namespace" command.

delete objectname?name...?
Deletes one or more[incr Tcl] objects calledname. An object is deleted by invoking all destruc-
tors in its class hierarchy, in order from most- to least-specific. If all destructors are successful,
data associated with the object is deleted and thenameis removed as a command from the inter-
preter.

If the access command for an object resides in another namespace, then its qualified name can be
used:
delete object foo::bar::x

If an error is encountered while destructing an object, thedelete command is aborted and the object
remains alive. To destroy an object without regard for errors, use the "rename" command to destroy the
object access command.

delete namespacename?name...?
Deletes one or more namespaces calledname. This deletes all commands and variables in the
namespace, and deletes all child namespaces as well. When a namespace is deleted, it is automati-
cally removed from the import lists of all other namespaces.

KEYWORDS
namespace, proc, variable, ensemble

itcl Last change: 3.0 1

[incr Tcl] ensemble (n)

NAME
ensemble − create or modify a composite command

SYNOPSIS
ensembleensName?command arg arg ...?
or
ensembleensName{

part partName args body
...
ensemblepartName{

part subPartName args body
part subPartName args body

...
}

}

DESCRIPTION
Theensemblecommand is used to create or modify a composite command. See the sectionWHAT IS AN
ENSEMBLE? below for a brief overview of ensembles.

If the ensemblecommand finds an existing ensemble calledensName, it updates that ensemble. Otherwise,
it creates an ensemble calledensName. If the ensNameis a simple name like "foo", then an ensemble com-
mand named "foo" is added to the current namespace context. If a command named "foo" already exists in
that context, then it is deleted. If theensNamecontains namespace qualifiers like "a::b::foo", then the
namespace path is resolved, and the ensemble command is added that namespace context. Parent names-
paces like "a" and "b" are created automatically, as needed.

If the ensNamecontains spaces like "a::b::foo bar baz", then additional words like "bar" and "baz" are
treated as sub-ensembles. Sub-ensembles are merely parts within an ensemble; they do not have a Tcl com-
mand associated with them. An ensemble like "foo" can have a sub-ensemble called "foo bar", which in
turn can have a sub-ensemble called "foo bar baz". In this case, the sub-ensemble "foo bar" must be created
before the sub-ensemble "foo bar baz" that resides within it.

If there are any arguments followingensName, then they are treated as commands, and they are executed to
update the ensemble. The following commands are recognized in this context:part andensemble.

Thepart command defines a new part for the ensemble. Its syntax is identical to the usualproc command,
but it defines a part within an ensemble, instead of a Tcl command. If a part calledpartNamealready exists
within the ensemble, then thepart command returns an error.

Theensemblecommand can be nested inside anotherensemblecommand to define a sub-ensemble.

WHAT IS AN ENSEMBLE?
The usual "info" command is a composite command--the command nameinfo must be followed by a sub-
command likebody or globals. We will refer to a command likeinfo as anensemble, and to sub-com-
mands likebody or globalsas itsparts.

Ensembles can be nested. For example, theinfo command has an ensembleinfo namespacewithin it.
This ensemble has parts likeinfo namespace allandinfo namespace children.

With ensembles, composite commands can be created and extended in an automatic way. Any package can
find an existing ensemble and add new parts to it. So extension writers can add their own parts, for exam-
ple, to theinfo command.

itcl Last change: 3.0 1

[incr Tcl] ensemble (n)

The ensemble facility manages all of the part names and keeps track of unique abbreviations. Normally,
you can abbreviateinfo complete to info comp. But if an extension adds the partinfo complexity, the
minimum abbreviation forinfo completebecomesinfo complet.

The ensemble facility not only automates the construction of composite commands, but it automates the
error handling as well. If you invoke an ensemble command without specifying a part name, you get an
automatically generated error message that summarizes the usage information. For example, when theinfo
command is invoked without any arguments, it produces the following error message:

wrong # args: should be one of...
info args procname
info body procname
info cmdcount
info commands ?pattern?
info complete command
info context
info default procname arg varname
info exists varName
info globals ?pattern?
info level ?number?
info library
info locals ?pattern?
info namespace option ?arg arg ...?
info patchlevel
info procs ?pattern?
info protection ?-command? ?-variable? name
info script
info tclversion
info vars ?pattern?
info which ?-command? ?-variable? ?-namespace? name

You can also customize the way an ensemble responds to errors. When an ensemble encounters an unspec-
ified or ambiguous part name, it looks for a part called@error. If it exists, then it is used to handle the
error. This part will receive all of the arguments on the command line starting with the offending part
name. It can find another way of resolving the command, or generate its own error message.

EXAMPLE
We could use an ensemble to clean up the syntax of the various "wait" commands in Tcl/Tk. Instead of
using a series of strange commands like this:

vwait x
tkwait visibility .top
tkwait window .

we could use commands with a uniform syntax, like this:
wait variable x
wait visibility .top
wait window .

The Tcl package could define the following ensemble:
ensemble wait part variable {name} {

uplevel vwait $name
}

The Tk package could add some options to this ensemble, with a command like this:
ensemble wait {

part visibility {name} {
tkwait visibility $name

itcl Last change: 3.0 2

[incr Tcl] ensemble (n)

}
part window {name} {

tkwait window $name
}

}
Other extensions could add their own parts to thewait command too.

KEYWORDS
ensemble, part, info

itcl Last change: 3.0 3

[incr Tcl] find (n)

NAME
find − search for classes and objects

SYNOPSIS
find option?arg arg ...?

DESCRIPTION
The find command is used to find classes and objects that are available in the current context. A class or
object is "available" if its access command can be found in the current namespace context or in the global
namespace. Therefore, classes and objects created in the global namespace are available to all other names-
paces in a program. Classes and objects created in one namespace can also be imported into another using
thenamespace importcommand.

Theoptionargument determines what action is carried out by the command. The legaloptions(which may
be abbreviated) are:

find classes ?pattern?
Returns a list of classes found in the current namespace context. If the optionalpattern is speci-
fied, then the reported names are compared using the rules of the "string match" command, and
only matching names are reported.

If a class resides in the current namespace context, this command reports its simple name--without
any qualifiers. However, if thepatterncontains:: qualifiers, or if the class resides in another con-
text, this command reports its fully-qualified name.

find objects ?pattern? ?-classclassName? ?-isaclassName?
Returns a list of objects found in the current namespace context. If the optionalpattern is speci-
fied, then the reported names are compared using the rules of the "string match" command, and
only matching names are reported. If the optional "-class" parameter is specified, this list is
restricted to objects whose most-specific class isclassName. If the optional "-isa" parameter is
specified, this list is further restricted to objects having the givenclassNameanywhere in their her-
itage.

If an object resides in the current namespace context, this command reports its simple name--with-
out any qualifiers. However, if thepatterncontains:: qualifiers, or if the object resides in another
context, this command reports its fully-qualified name.

KEYWORDS
class, object, search, import

itcl Last change: 3.0 1

[incr Tcl] itcl (n)

NAME
itcl − object-oriented extensions to Tcl

DESCRIPTION
[incr Tcl] provides object-oriented extensions to Tcl, much as C++ provides object-oriented extensions to
C. The emphasis of this work, however, is not to create a whiz-bang object-oriented programming environ-
ment. Rather, it is to support more structured programming practices in Tcl without changing the flavor of
the language. More than anything else,[incr Tcl] provides a means of encapsulating related procedures
together with their shared data in a namespace that is hidden from the outside world. It encourages better
programming by promoting the object-oriented "library" mindset. It also allows for code re-use through
inheritance.

CLASSES
The fundamental construct in[incr Tcl] is the class definition. Each class acts as a template for actual
objects that can be created. Each object has its own unique bundle of data, which contains instances of the
"variables" defined in the class. Special procedures called "methods" are used to manipulate individual
objects. Methods are just like the operations that are used to manipulate Tk widgets. The "button" widget,
for example, has methods such as "flash" and "invoke" that cause a particular button to blink and invoke its
command.

Within the body of a method, the "variables" defined in the class are automatically available. They need not
be declared with anything like theglobal command. Within another class method, a method can be
invoked like any other command−simply by using its name. From any other context, the method name
must be prefaced by an object name, which provides a context for the data that the method can access.

Each class has its own namespace containing things that are common to all objects which belong to the
class. For example, "common" data members are shared by all objects in the class. They are global vari-
ables that exist in the class namespace, but since they are included in the class definition, they need not be
declared using theglobal command; they are automatically available to any code executing in the class
context. A class can also create ordinary global variables, but these must be declared using theglobal com-
mand each time they are used.

Classes can also have ordinary procedures declared as "procs". Within another class method or proc, a proc
can be invoked like any other command−simply by using its name. From any other context, the procedure
name should be qualified with the class namespace like "className::proc". Class procs execute in the
class context, and therefore have automatic access to all "common" data members. However, they cannot
access object-specific "variables", since they are invoked without reference to any specific object. They are
usually used to perform generic operations which affect all objects belonging to the class.

Each of the elements in a class can be declared "public", "protected" or "private". Public elements can be
accessed by the class, by derived classes (other classes that inherit this class), and by external clients that
use the class. Protected elements can be accessed by the class, and by derived classes. Private elements are
only accessible in the class where they are defined.

The "public" elements within a class define its interface to the external world. Public methods define the
operations that can be used to manipulate an object. Public variables are recognized as configuration
options by the "configure" and "cget" methods that are built into each class. The public interface sayswhat
an object will do but nothow it will do it. Protected and private members, along with the bodies of class
methods and procs, provide the implementation details. Insulating the application developer from these
details leaves the class designer free to change them at any time, without warning, and without affecting
programs that rely on the class. It is precisely this encapsulation that makes object-oriented programs eas-
ier to understand and maintain.

itcl Last change: 3.0 1

[incr Tcl] itcl (n)

The fact that[incr Tcl] objects look like Tk widgets is no accident.[incr Tcl] was designed this way, to
blend naturally into a Tcl/Tk application. But[incr Tcl] extends the Tk paradigm from being merely
object-based to being fully object-oriented. An object-oriented system supports inheritance, allowing
classes to share common behaviors by inheriting them from an ancestor or base class. Having a base class
as a common abstraction allows a programmer to treat related classes in a similar manner. For example, a
toaster and a blender perform different (specialized) functions, but both share the abstraction of being appli-
ances. By abstracting common behaviors into a base class, code can besharedrather thancopied. The
resulting application is easier to understand and maintain, and derived classes (e.g., specialized appliances)
can be added or removed more easily.

This description was merely a brief overview of object-oriented programming and[incr Tcl] . A more tuto-
rial introduction is presented in the paper included with this distribution. See theclasscommand for more
details on creating and using classes.

NAMESPACES
[incr Tcl] now includes a complete namespace facility. A namespace is a collection of commands and
global variables that is kept apart from the usual global scope. This allows Tcl code libraries to be pack-
aged in a well-defined manner, and prevents unwanted interactions with other libraries. A namespace can
also have child namespaces within it, so one library can contain its own private copy of many other
libraries. A namespace can also be used to wrap up a group of related classes. The global scope (named
":: ") is the root namespace for an interpreter; all other namespaces are contained within it.

See thenamespacecommand for details on creating and using namespaces.

MEGA-WIDGETS
Mega-widgets are high-level widgets that are constructed using Tk widgets as component parts, usually
without any C code. A fileselectionbox, for example, may have a few listboxes, some entry widgets and
some control buttons. These individual widgets are put together in a way that makes them act like one big
widget.

[incr Tk] is a framework for building mega-widgets. It uses[incr Tcl] to support the object paradigm, and
adds base classes which provide default widget behaviors. See theitk man page for more details.

[incr Widgets] is a library of mega-widgets built using[incr Tk] . It contains more than 30 different wid-
get classes that can be used right out of the box to build Tcl/Tk applications. Each widget class has its own
man page describing the features available.

KEYWORDS
class, object, object-oriented, namespace, mega-widget

itcl Last change: 3.0 2

[incr Tcl] itcl_class (n)

NAME
itcl_class − create a class of objects (obsolete)

SYNOPSIS
itcl_classclassName{

inherit baseClass?baseClass...?
constructor args?init?body
destructor body
methodname args body
proc name args body
public varName?init? ?config?
protectedvarName?init?
commonvarName?init?

}

className objName?args...?
className#auto?args...?
className:: proc?args...?

objName method?args...?

Commands available within class methods/procs:
global varName?varName...?
previouscommand?args...?
virtual command?args...?

DESCRIPTION
This command is considered obsolete, but is retained for backward-compatibility with earlier versions of
[incr Tcl] . It has been replaced by theclasscommand, which should be used for any new dev elopment.

itcl_classclassName definition
Provides the definition for a class namedclassName. If classNameis already defined, then this
command returns an error. If the class definition is successfully parsed,classNamebecomes a
command in the current namespace context, handling the creation of objects and providing access
to class scope. The classdefinition is evaluated as a series of Tcl statements that define elements
within the class. In addition to the usual commands, the following class definition commands are
recognized:

inherit baseClass?baseClass...?
Declares one or more base classes, causing the current class to inherit their characteris-
tics. Classes must have been defined by a previousitcl_classcommand, or must be avail-
able to the auto-loading facility (see "AUTO-LOADING" below). A single class defini-
tion can contain no more than oneinherit command.

When the same member name appears in two or more base classes, the base class that
appears first in theinherit list takes precedence. For example, if classes "Foo" and "Bar"
both contain the member "x", then the "inherit " statement:

inherit Foo Bar
allows "Foo::x" to be accessed simply as "x" but forces "Bar::x" (and all other inherited
members named "x") to be referenced with their explicit "class::member" name.

constructor args?init?body

itcl Last change: 3.0 1

[incr Tcl] itcl_class (n)

Declares the argument list and body used for the constructor, which is automatically
invoked whenever an object is created. Before thebody is executed, the optionalinit
statement is used to invoke any base class constructors that require arguments. Variables
in the args specification can be accessed in theinit code fragment, and passed to base
class constructors. After evaluating theinit statement, any base class constructors that
have not been executed are invoked without arguments. This ensures that all base classes
are fully constructed before the constructorbody is executed. If construction is success-
ful, the constructor always returns the object name−regardless of how thebody is
defined−and the object name becomes a command in the current namespace context. If
construction fails, an error message is returned.

destructor body
Declares the body used for the destructor, which is automatically invoked whenever an
object is deleted. If the destructor is successful, the object data is destroyed and the
object name is removed as a command from the interpreter. If destruction fails, an error
message is returned and the object remains.

When an object is destroyed, all destructors in a class hierarchy are invoked in order from
most- to least-specific. This is the order that the classes are reported by the "info her-
itage" command, and it is exactly the opposite of the default constructor order.

methodname args body
Declares a method callednamewith an argument listargsand abodyof Tcl statements.
A method is just like the usual Tcl "proc" except that it has transparent access to object-
specific variables, as well as common variables. Within the class scope, a method can be
invoked like any other command−simply by using its name. Outside of the class scope,
the method name must be prefaced by an object name. Methods in a base class that are
redefined in the current class or hidden by another base class can be explicitly scoped
using the "class::method" syntax.

proc name args body
Declares a proc callednamewith an argument listargsand abodyof Tcl statements. A
proc is similar to a method, except that it can be invoked without referring to a specific
object, and therefore has access only to common variables−not to object-specific vari-
ables declared with thepublic andprotected commands. Within the class scope, a proc
can be invoked like any other command−simply by using its name. In any other names-
pace context, the proc is invoked using a qualified name like "className::proc". Procs in
a base class that are redefined in the current class, or hidden by another base class, can
also be accessed via their qualified name.

public varName?init? ?config?
Declares a public variable namedvarName. Public variables are visible in methods
within the scope of their class and any derived class. In addition, they can be modified
outside of the class scope using the special "config" formal argument (see "ARGUMENT
LISTS" above). If the optionalinit is specified, it is used as the initial value of the vari-
able when a new object is created. If the optionalconfig command is specified, it is
invoked whenever a public variable is modified via the "config" formal argument; if the
configcommand returns an error, the public variable is reset to its value before configura-
tion, and the method handling the configuration returns an error.

protectedvarName?init?
Declares a protected variable namedvarName. Protected variables are visible in methods
within the scope of their class and any derived class, but cannot be modified outside of
the class scope. If the optionalinit is specified, it is used as the initial value of the vari-
able when a new object is created. Initialization forces the variable to be a simple scalar

itcl Last change: 3.0 2

[incr Tcl] itcl_class (n)

value; uninitialized variables, on the other hand, can be used as arrays. All objects have a
built-in protected variable named "this" which is initialized to the instance name for the
object.

commonvarName?init?
Declares a common variable namedvarName. Common variables are shared among all
objects in a class. They are visible in methods and procs in the scope of their class and
any derived class, but cannot be modified outside of the class scope. If the optionalinit is
specified, it is used as the initial value of the variable. Initialization forces the variable to
be a simple scalar value; uninitialized variables, on the other hand, can be used as arrays.

Once a common variable has been declared, it can be configured using ordinary Tcl code
within the class definition. This facility is particularly useful when the initialization of
the variable is non-trivial−when the variable contains an array of values, for example:

itcl_class Foo {
.
.
common boolean
set boolean(true) 1
set boolean(false) 0

}

CLASS USAGE
When a class definition has been loaded (or made available to the auto-loader), the class name can be used
as a command.

className objName?args...?
Creates a new object in classclassNamewith the nameobjName. Remaining arguments are
passed to the constructor. If construction is successful, the object name is returned and this name
becomes a command in the current namespace context. Otherwise, an error is returned.

className#auto ?args...?
Creates a new object in classclassNamewith an automatically generated name. Names are of the
form className<number>, where theclassNamepart is modified to start with a lowercase letter.
In class "Toaster", for example, the "#auto" specification would produce names toaster0, toaster1,
etc. Remaining arguments are passed to the constructor. If construction is successful, the object
name is returned and this name becomes a command in the current namespace context. Other-
wise, an error is returned.

className:: proc?args...?
Used outside of the class scope to invoke a class proc namedproc. Class procs are like ordinary
Tcl procs, except that they are executed in the scope of the class and therefore have transparent
access to common data members.

Notice that, unlike any other scope qualifier in[incr Tcl] , the "::" shown above issurrounded by
spaces. This is unnecessary with the new namespace facility, and is considered obsolete. The
capability is still supported, however, to provide backward-compatibility with earlier versions.

OBJECT USAGE
objName method?args...?

Invokes a method namedmethodto operate on the specified object. Remaining arguments are
passed to the method. The method name can be "constructor", "destructor", any method name
appearing in the class definition, or any of the following built-in methods.

itcl Last change: 3.0 3

[incr Tcl] itcl_class (n)

BUILT-IN METHODS
objNameisaclassName

Returns non-zero if the givenclassNamecan be found in the object’s heritage, and zero otherwise.

objNamedelete
Invokes the destructor associated with an object. If the destructor is successful, data associated
with the object is deleted andobjNameis removed as a command from the interpreter. Returns the
empty string, regardless of the destructor body.

The built-in delete method has been replaced by the "delete object" command in the global
namespace, and is considered obsolete. The capability is still supported, however, to provide
backward-compatibility with earlier versions.

objNameinfo option?args...?
Returns information related to the class definition or to a particular object namedobjName. The
optionparameter includes the following things, as well as the options recognized by the usual Tcl
"info" command:

objNameinfo class
Returns the name of the most-specific class for objectobjName.

objNameinfo inherit
Returns the list of base classes as they were defined in the "inherit " command, or an
empty string if this class has no base classes.

objNameinfo heritage
Returns the current class name and the entire list of base classes in the order that they are
traversed for member lookup and object destruction.

objNameinfo method ?methodName? ?-args? ?-body?
With no arguments, this command returns a list of all class methods. IfmethodNameis
specified, it returns information for a specific method. If neither of the optional-args or
-body flags is specified, a complete method definition is returned as a list of three ele-
ments including the method name, argument list and body. Otherwise, the requested
information is returned without the method name. If themethodNameis not recognized,
an empty string is returned.

objNameinfo proc ?procName? ?-args? ?-body?
With no arguments, this command returns a list of all class procs. IfprocNameis speci-
fied, it returns information for a specific proc. If neither of the optional-args or -body
flags is specified, a complete proc definition is returned as a list of three elements includ-
ing the proc name, argument list and body. Otherwise, the requested information is
returned without the proc name. If theprocNameis not recognized, an empty string is
returned.

objNameinfo public ?varName? ?-init ? ?-value? ?-config?
With no arguments, this command returns a list of all public variables. IfvarNameis
specified, it returns information for a specific public variable. If none of the optional
-init , -value or -config flags are specified, all available information is returned as a list of
four elements including the variable name, initial value, current value, and configuration
commands. Otherwise, the requested information is returned without the variable name.
If the varNameis not recognized, an empty string is returned.

objNameinfo protected ?varName? ?-init ? ?-value?
With no arguments, this command returns a list of all protected variables. IfvarNameis
specified, it returns information for a specific protected variable. If neither of the optional
-init or -value flags is specified, all available information is returned as a list of three ele-
ments including the variable name, initial value and current value. Otherwise, the

itcl Last change: 3.0 4

[incr Tcl] itcl_class (n)

requested information is returned without the variable name. If thevarNameis not recog-
nized, an empty string is returned.

objNameinfo common?varName? ?-init ? ?-value?
With no arguments, this command returns a list of all common variables. IfvarNameis
specified, it returns information for a specific common variable. If neither of the optional
-init or -value flags is specified, all available information is returned as a list of three ele-
ments including the variable name, initial value and current value. Otherwise, the
requested information is returned without the variable name. If thevarNameis not recog-
nized, an empty string is returned.

OTHER BUILT-IN COMMANDS
The following commands are also available within the scope of each class. They cannot be accessed from
outside of the class as proper methods or procs; rather, they are useful inside the class when implementing
its functionality.

global varName?varName...?
Creates a link to one or more global variables in the current namespace context. Global variables
can also be accessed in other namespaces by including namespace qualifiers invarName. This is
useful when communicating with Tk widgets that rely on global variables.

previouscommand?args...?
Invokescommandin the scope of the most immediate base class (i.e., the "previous" class) for the
object. For classes using single inheritance, this facility can be used to avoid hard-wired base class
references of the form "class::command", making code easier to maintain. For classes using mul-
tiple inheritance, the utility of this function is dubious. If the class at the relevant scope has no
base class, an error is returned.

virtual command?args...?
Invokescommandin the scope of the most-specific class for the object. The methods within a
class are automatically virtual; whenever an unqualified method name is used, it always refers to
the most-specific implementation for that method. This function provides a way of evaluating
code fragments in a base class that have access to the most-specific object information. It is use-
ful, for example, for creating base classes that can capture and save an object’s state. It inverts the
usual notions of object-oriented programming, however, and should therefore be used sparingly.

AUTO-LOADING
Class definitions need not be loaded explicitly; they can be loaded as needed by the usual Tcl auto-loading
facility. Each directory containing class definition files should have an accompanying "tclIndex" file. Each
line in this file identifies a Tcl procedure or[incr Tcl] class definition and the file where the definition can
be found.

For example, suppose a directory contains the definitions for classes "Toaster" and "SmartToaster". Then
the "tclIndex" file for this directory would look like:

Tcl autoload index file, version 2.0 for [incr Tcl]
This file is generated by the "auto_mkindex" command
and sourced to set up indexing information for one or
more commands. Typically each line is a command that
sets an element in the auto_index array, where the
element name is the name of a command and the value is
a script that loads the command.

set auto_index(::Toaster) "source $dir/Toaster.itcl"
set auto_index(::SmartToaster) "source $dir/SmartToaster.itcl"

itcl Last change: 3.0 5

[incr Tcl] itcl_class (n)

Theauto_mkindexcommand is used to automatically
generate "tclIndex" files.

The auto-loader must be made aware of this directory by appending the directory name to the "auto_path"
variable. When this is in place, classes will be auto-loaded as needed when used in an application.

KEYWORDS
class, object, object-oriented

itcl Last change: 3.0 6

[incr Tcl] itcl_info (n)

NAME
itcl_info − query info regarding classes and objects (obsolete)

SYNOPSIS
itcl_info classes ?pattern?
itcl_info objects ?pattern? ?-classclassName? ?-isaclassName?

DESCRIPTION
This command is considered obsolete, but is retained for backward-compatibility with earlier versions of
[incr Tcl] . It has been replaced by the "info classes" and "info objects" commands, which should be used
for any new dev elopment.

The following commands are available in the global namespace to query information about classes and
objects that have been created.

itcl_info classes ?pattern?
Returns a list of classes available in the current namespace context. If a class belongs to the cur-
rent namespace context, its simple name is reported; otherwise, if a class is imported from another
namespace, its fully-qualified name is reported.

If the optionalpattern is specified, then the reported names are compared using the rules of the
"string match" command, and only matching names are reported.

itcl_info objects ?pattern? ?-classclassName? ?-isaclassName?
Returns a list of objects available in the current namespace context. If an object belongs to the
current namespace context, its simple name is reported; otherwise, if an object is imported from
another namespace, its fully-qualified access command is reported.

If the optionalpattern is specified, then the reported names are compared using the rules of the
"string match" command, and only matching names are reported. If the optional "-class" parame-
ter is specified, this list is restricted to objects whose most-specific class isclassName. If the
optional "-isa" parameter is specified, this list is further restricted to objects having the given
classNameanywhere in their heritage.

KEYWORDS
class, object, object-oriented

itcl Last change: 3.0 1

[incr Tcl] itclvars (n)

NAME
itclvars − variables used by [incr Tcl]

DESCRIPTION
The following global variables are created and managed automatically by the[incr Tcl] library. Except
where noted below, these variables should normally be treated as read-only by application-specific code and
by users.

itcl::library
When an interpreter is created,[incr Tcl] initializes this variable to hold the name of a directory
containing the system library of[incr Tcl] scripts. The initial value ofitcl::library is set from the
ITCL_LIBRARY environment variable if it exists, or from a compiled-in value otherwise.

itcl::patchLevel
When an interpreter is created,[incr Tcl] initializes this variable to hold the current patch level for
[incr Tcl] . For example, the value "2.0p1" indicates[incr Tcl] version 2.0 with the first set of
patches applied.

itcl::purist
When an interpreter is created containing Tcl/Tk and the[incr Tcl] namespace facility, this vari-
able controls a "backward-compatibility" mode for widget access.

In vanilla Tcl/Tk, there is a single pool of commands, so the access command for a widget is the
same as the window name. When a widget is created within a namespace, however, its access
command is installed in that namespace, and should be accessed outside of the namespace using a
qualified name. For example,
namespace foo {

namespace bar {
button .b -text "Testing"

}
}
foo::bar::.b configure -background red
pack .b

Note that the window name ".b " is still used in conjunction with commands likepack anddestroy. How-
ev er, the access command for the widget (i.e., name that appears as thefirst argument on a command line)
must be more specific.

The "winfo command" command can be used to query the fully-qualified access command for any widget,
so one can write:

[winfo command .b] configure -background red
and this is good practice when writing library procedures. Also, in conjunction with thebind command,
the "%q" field can be used in place of "%W" as the access command:

bind Button <Key-Return> {%q flash; %q invoke}
While this behavior makes sense from the standpoint of encapsulation, it causes problems with existing
Tcl/Tk applications. Many existing applications are written with bindings that use "%W". Many library
procedures assume that the window name is the access command.

The itcl::purist variable controls a backward-compatibility mode. By default, this variable is "0", and the
window name can be used as an access command in any context. Whenever theunknown procedure stum-
bles across a widget name, it simply uses "winfo command" to determine the appropriate command name.
If this variable is set to "1", this backward-compatibility mode is disabled. This gives better encapsulation,
but using the window name as the access command may lead to "invalid command" errors.

itcl Last change: 3.0 1

[incr Tcl] itclvars (n)

itcl::version
When an interpreter is created,[incr Tcl] initializes this variable to hold the version number of the
form x.y. Changes tox represent major changes with probable incompatibilities and changes toy
represent small enhancements and bug fixes that retain backward compatibility.

KEYWORDS
itcl, variables

itcl Last change: 3.0 2

[incr Tcl] local (n)

NAME
local − create an object local to a procedure

SYNOPSIS
local className objName?arg arg ...?

DESCRIPTION
The local command creates an[incr Tcl] object that is local to the current call frame. When the call frame
goes away, the object is automatically deleted. This command is useful for creating objects that are local to
a procedure.

As a side effect, this command creates a variable named "itcl-local- xxx", wherexxx is the name of
the object that is created. This variable detects when the call frame is destroyed and automatically deletes
the associated object.

EXAMPLE
In the following example, a simple "counter" object is used within the procedure "test". The counter is cre-
ated as a local object, so it is automatically deleted each time the procedure exits. Theputs statements
included in the constructor/destructor show the object coming and going as the procedure is called.

class counter {
private variable count 0
constructor {} {

puts "created: $this"
}
destructor {

puts "deleted: $this"
}

method bump {{by 1}} {
incr count $by

}
method get {} {

return $count
}

}

proc test {val} {
local counter x
for {set i 0} {$i < $val} {incr i} {

x bump
}
return [x get]

}

set result [test 5]
puts "test: $result"

set result [test 10]
puts "test: $result"

puts "objects: [info objects]"

itcl Last change: 1

[incr Tcl] local (n)

KEYWORDS
class, object, procedure

itcl Last change: 2

[incr Tcl] scope (n)

NAME
scope − capture the namespace context for a variable

SYNOPSIS
scopename

DESCRIPTION
Creates a scoped value for the specifiedname, which must be a variable name. If thenameis an instance
variable, then the scope command returns a string of the following form:

@itcl object varName
This is recognized in any context as an instance variable belonging toobject. So with itcl3.0 and beyond, it
is possible to use instance variables in conjunction with widgets. For example, if you have an object with a
private variablex , and you can usex in conjunction with the-textvariable option of an entry widget.
Before itcl3.0, only common variables could be used in this manner.

If the nameis not an instance variable, then it must be a common variable or a global variable. In that case,
the scope command returns the fully qualified name of the variable, e.g.,::foo::bar::x .

If the nameis not recognized as a variable, the scope command returns an error.

Ordinary variable names refer to variables in the global namespace. A scoped value captures a variable
name together with its namespace context in a way that allows it to be referenced properly later. It is
needed, for example, to wrap up variable names when a Tk widget is used within a namespace:

namespace foo {
private variable mode 1

radiobutton .rb1 -text "Mode #1" -variable [scope mode] -value 1
pack .rb1

radiobutton .rb2 -text "Mode #2" -variable [scope mode] -value 2
pack .rb2

}
Radiobuttons.rb1 and .rb2 interact via the variable "mode" contained in the namespace "foo". The
scopecommand guarantees this by returning the fully qualified variable name::foo::mode .

You should never use the@itcl syntax directly. For example, it is a bad idea to write code like this:
set {@itcl ::fred x} 3
puts "value = ${@itcl ::fred x}"

Instead, you should always use the scope command to generate the variable name dynamically. Then, you
can pass that name to a widget or to any other bit of code in your program.

KEYWORDS
code, namespace, variable

Tcl Last change: 1

[incr Tk] Archetype (n)

NAME
Archetype − base class for all [incr Tk] mega-widgets

INHERITANCE
none

WIDGET-SPECIFIC OPTIONS
Name: clientData
Class: ClientData
Command-Line Switch: -clientdata

This does not affect the widget operation in any way. It is simply a hook that clients can use to
store a bit of data with each widget. This can come in handy when using widgets to build applica-
tions.

DESCRIPTION
TheArchetype class is the basis for all[incr Tk] mega-widgets. It keeps track of component widgets and
provides methods like "configure" and "cget" that are used to access the composite configuration options.
Each component widget must be registered with theArchetype base class using the "itk_component add"
method. When the component is registered, its configuration options are integrated into the composite
option list. Configuring a composite option like "-background" causes all of the internal components to
change their background color.

It is not used as a widget by itself, but is used as a base class for more specialized widgets. TheWidget
base class inherits fromArchetype, and adds a Tk frame which acts as the "hull" for the mega-widget. The
Toplevelbase class inherits fromArchetype, but adds a Tk toplevel which acts as the "hull".

Each derived class must invoke theitk_initialize method within its constructor, so that all options are prop-
erly integrated and initialized in the composite list.

PUBLIC METHODS
The following methods are provided to support the public interface of the mega-widget.

pathNamecgetoption
Returns the current value of the configuration option given byoption.

In this case,option refers to a composite configuration option for the mega-widget. Individual
components integrate their own configuration options onto the composite list when they are regis-
tered by the "itk_component add" method.

pathNamecomponent?name? ?command arg arg ...?
Used to query or access component widgets within a mega-widget. With no arguments, this
returns a list of symbolic names for component widgets that are accessible in the current scope.
The symbolic name for a component is established when it is registered by the "itk_component
add" method. Note that component widgets obey any public/protected/private access restriction
that is in force when the component is created.

If a symbolicnameis specified, this method returns the window path name for that component.

Otherwise, thecommandand any remainingarg arguments are invoked as a method on the compo-
nent with the symbolic namename. This provides a well-defined way of accessing internal com-
ponents without relying on specific window path names, which are really details of the implemen-
tation.

itk Last change: 3.0 1

[incr Tk] Archetype (n)

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.

In this case, theoptionsrefer to composite configuration options for the mega-widget. Individual
components integrate their own configuration options onto the composite list when they are regis-
tered by the "itk_component add" method.

PROTECTED METHODS
The following methods are used in derived classes as part of the implementation for a mega-widget.

itk_component add?-protected? ?-private? ?--?name createCmds?optionCmds?
Creates a component widget by executing thecreateCmdsargument and registers the new compo-
nent with the symbolic namename. The-protected and-private options can be used to keep the
component hidden from the outside world. These options have a similar effect on component visi-
bility as they hav e on class members.

The createCmdscode can contain any number of commands, but it must return the window path
name for the new component widget.

TheoptionCmdsscript contains commands that describe how the configuration options for the new
component should be integrated into the composite list for the mega-widget. It can contain any of
the following commands:

ignore option?option option ...?
Removes one or more configurationoptions from the composite list. All options are
ignored by default, so theignore command is only used to negate the effect of a previous
keep or rename command. This is useful, for example, when the some of the options
added by theusual command should not apply to a particular component, and need to be
ignored.

keepoption?option option ...?
Integrates one or more configurationoptionsinto the composite list, keeping the name the
same. Whenever the mega-widget option is configured, the new value is also applied to
the current component. Options like "-background" and "-cursor" are commonly found
on thekeep list.

renameoption switchName resourceName resourceClass
Integrates the configurationoption into the composite list with a different name. The
option will be calledswitchNameon the composite list. It will also be modified by set-
ting values forresourceNameand resourceClassin the X11 resource database. The
"-highlightbackground" option is commonly renamed to "-background", so that when the
mega-widget background changes, the background of the focus ring will change as well.

usual ?tag?
Finds the usual option-handling commands for the specifiedtag name and executes them.
If the tag is not specified, then the widget class name is used as thetag name. The
"usual" option-handling commands are registered via theusualcommand.

itk Last change: 3.0 2

[incr Tk] Archetype (n)

If the optionCmdsscript is not specified, the usual option-handling commands associated with the class of
the component widget are used by default.

itk_component deletename?name name ...?
Removes the component widget with the symbolic namenamefrom the mega-widget. The com-
ponent widget will still exist, but it will no longer be accessible as a component of the mega-wid-
get. Also, any options associated with the component are removed from the composite option list.

Note that you can destroy a component using thedestroy command, just as you would destroy any
Tk widget. Components automatically detach themselves from their mega-widget parent when
destroyed, so "itk_component delete" is rarely used.

itk_initialize ?option value option value...?
This method must be invoked within the constructor for each class in a mega-widget hierarchy.It
makes sure that all options are properly integrated into the composite option list, and synchronizes
all components to the initial option values. It is usually invoked near the bottom of the construc-
tor, after all component widgets have been added.

If any option/valuepairs are specified, they override settings determined from the X11 resource
database. The arguments to the constructor are usually passed along to this method as follows:
class MyWidget {

inherit Widget

constructor {args} {
.
.
.
eval itk_initialize $args

}
}

itk_option add optName?optName optName ...?
Adds one or more options to the composite option list for a mega-widget. Here,optNamecan
have one of the following forms:

component.option
Accesses anoption belonging to a component with the symbolic namecomponent. The
optionname is specified without a leading "-" sign.

className::option
Accesses anoption defined by the "itk_option define" command in classclassName.
Theoptionname is specified without a leading "-" sign.

Options are normally integrated into the composite option list when a component widget is first created.
This method can be used to add options at a later time. For example, theWidget andToplevel base classes
keep only the bare minimum options for their "hull" component: -background and -cursor. A derived class
can override this decision, and add options that control the border of the "hull" component as well:

class MyWidget {
inherit Widget

constructor {args} {
itk_option add hull.borderwidth hull.relief

itk Last change: 3.0 3

[incr Tk] Archetype (n)

itk_component add label {
label $itk_interior.l1 -text "Hello World!"

}
pack $itk_component(label)

eval itk_initialize $args
}

}

itk_option define switchName resourceName resourceClass init?config?
This command is used at the level of the class definition to define a synthetic mega-widget option.
Within theconfigure andcgetmethods, this option is referenced byswitchName, which must start
with a "-" sign. It can also be modified by setting values forresourceNameandresourceClassin
the X11 resource database. Theinit value string is used as a last resort to initialize the option if no
other value can be used from an existing option, or queried from the X11 resource database. If
any config code is specified, it is executed whenever the option is modified via theconfigure
method. Theconfigcode can also be specified outside of the class definition via theconfigbody
command.

In the following example, a synthetic "-background" option is added to the class, so that whenever
the background changes, the new value is reported to standard output. Note that this synthetic
option is integrated with the rest of the "-background" options that have been kept from compo-
nent widgets:
class MyWidget {

inherit Widget
constructor {args} {

itk_component add label {
label $itk_interior.l1 -text "Hello World!"

}
pack $itk_component(label)

eval itk_initialize $args
}
itk_option define -background background Background #d9d9d9 {

puts "new background: $itk_option(-background)"
}

}

itk_option remove optName?optName optName ...?
Removes one or more options from the composite option list for a mega-widget. Here,optName
can have one of the forms described above for the "itk_option add" command.

Options are normally integrated into the composite option list when a component widget is first
created. This method can be used to remove options at a later time. For example, a derived class
can override an option defined in a base class by removing and redefining the option:
class Base {

inherit Widget
constructor {args} {

eval itk_initialize $args
}

itk Last change: 3.0 4

[incr Tk] Archetype (n)

itk_option define -foo foo Foo "" {
puts "Base: $itk_option(-foo)"

}
}

class Derived {
inherit Base

constructor {args} {
itk_option remove Base::foo
eval itk_initialize $args

}
itk_option define -foo foo Foo "" {

puts "Derived: $itk_option(-foo)"
}

}
Without the "itk_option remove" command, the code fragments for both of the "-foo" options would be
executed each time the composite "-foo" option is configured. In the example above, theBase::foo
option is suppressed in all Derived class widgets, so only theDerived::foo option remains.

PROTECTED VARIABLES
Derived classes can find useful information in the following protected variables.

itk_component(name)
The "itk_component" array returns the real window path name for a component widget with the
symbolic namename. The same information can be queried using thecomponent method, but
accessing this array is faster and more convenient.

itk_interior
This variable contains the name of the window that acts as a parent for internal components. It is
initialized to the name of the "hull" component provided by theWidget and Toplevel classes.
Derived classes can override the initial setting to point to another interior window to be used for
further-derived classes.

itk_option(option)
The "itk_option" array returns the current option value for the composite widget option named
option. Here, theoption name should include a leading "-" sign. The same information can be
queried using thecgetmethod, but accessing this array is faster and more convenient.

KEYWORDS
itk, Widget, Toplevel, mega-widget

itk Last change: 3.0 5

[incr Tk] Toplevel (n)

NAME
Toplevel − base class for mega-widgets in a top-level window

INHERITANCE
itk::Archetype <- itk::Toplevel

STANDARD OPTIONS
background cursor

See the "options" manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Name: title
Class: Title
Command-Line Switch: -title

Sets the title that the window manager displays in the title bar above the window. The default title
is the null string.

DESCRIPTION
The Toplevel class inherits everything from theArchetype class, and adds a Tk toplevel called the "hull"
component to represent the body of the mega-widget. The window class name for the hull is set to the
most-specific class name for the mega-widget. The protected variableitk_interior contains the window
path name for the "hull" component. Derived classes specialize this widget by packing other widget com-
ponents into the hull.

Since the hull for theToplevel class is implemented with a Tk toplevel, mega-widgets in theToplevel class
have their own toplevel window. This class is used to create dialog boxes and other pop-up windows.

COMPONENTS
Name: hull
Class: Toplevel

The "hull" component acts as the body for the entire mega-widget. Other components are packed
into the hull to further specialize the widget.

EXAMPLE
The following example implements aMessageInfomega-widget. It creates a pop-up message that the user
can dismiss by pushing the "Dismiss" button.

option add∗MessageInfo.title "Notice" widgetDefault

class MessageInfo {
inherit itk::Toplevel

constructor {args} {
itk_component add dismiss {

button $itk_interior.dismiss -text "Dismiss" -command "destroy $itk_component(hull)"
}
pack $itk_component(dismiss) -side bottom -pady 4

itk_component add separator {
frame $itk_interior.sep -height 2 -borderwidth 1 -relief sunken

}
pack $itk_component(separator) -side bottom -fill x -padx 4

itk Last change: 3.0 1

[incr Tk] Toplevel (n)

itk_component add icon {
label $itk_interior.icon -bitmap info

}
pack $itk_component(icon) -side left -padx 8 -pady 8

itk_component add infoFrame {
frame $itk_interior.info

}
pack $itk_component(infoFrame) -side left -expand yes -fill both -padx 4 -pady 4

itk_component add message {
label $itk_interior.mesg -width 20

} {
usual
rename -text -message message Text

}
pack $itk_component(message) -expand yes -fill both

eval itk_initialize $args

after idle [code $this centerOnScreen]
}

protected method centerOnScreen {} {
update idletasks
set wd [winfo reqwidth $itk_component(hull)]
set ht [winfo reqheight $itk_component(hull)]
set x [expr ([winfo screenwidth $itk_component(hull)]-$wd)/2]
set y [expr ([winfo screenheight $itk_component(hull)]-$ht)/2]
wm geometry $itk_component(hull) +$x+$y

}
}

usual MessageInfo {
keep -background -cursor -foreground -font
keep -activebackground -activeforeground -disabledforeground
keep -highlightcolor -highlightthickness

}

#
EXAMPLE: Create a notice window:
#
MessageInfo .m -message "File not found:\n/usr/local/bin/foo"

KEYWORDS
itk, Archetype, Widget, mega-widget

itk Last change: 3.0 2

[incr Tk] Widget (n)

NAME
Widget − base class for mega-widgets within a frame

INHERITANCE
itk::Archetype <- itk::Widget

STANDARD OPTIONS
background cursor

See the "options" manual entry for details on the standard options.

DESCRIPTION
TheWidget class inherits everything from theArchetype class, and adds a Tk frame called the "hull" com-
ponent to represent the body of the mega-widget. The window class name for the hull is set to the most-
specific class name for the mega-widget. The protected variableitk_interior contains the window path
name for the "hull" component. Derived classes specialize this widget by packing other widget compo-
nents into the hull.

Since the hull for theWidget class is implemented with a Tk frame, mega-widgets in theWidget class can
be packed into other frames and toplevels.

COMPONENTS
Name: hull
Class: Frame

The "hull" component acts as the body for the entire mega-widget. Other components are packed
into the hull to further specialize the widget.

EXAMPLE
The following example implements a simpleTextDisplay mega-widget. It creates a read-only display of
text with a text widget and a scrollbar.

option add∗Te xtDisplay.wrap none widgetDefault
option add∗Te xtDisplay.textBackground ivory widgetDefault
option add∗Te xtDisplay.width 40 widgetDefault
option add∗Te xtDisplay.height 10 widgetDefault

class TextDisplay {
inherit itk::Widget

constructor {args} {
itk_component add text {

text $itk_interior.info -state disabled -yscrollcommand [code $itk_interior.sbar set]
} {

usual
keep -tabs -wrap -width -height
rename -background -textbackground textBackground Background

}
pack $itk_component(text) -side left -expand yes -fill both

itk_component add scrollbar {
scrollbar $itk_interior.sbar -command [code $itk_interior.info yview]

}

itk Last change: 3.0 1

[incr Tk] Widget (n)

pack $itk_component(scrollbar) -side right -fill y

eval itk_initialize $args
}

public method display {info}
public method append {info}

}

body TextDisplay::display {info} {
$itk_component(text) configure -state normal
$itk_component(text) delete 1.0 end
$itk_component(text) insert 1.0 $info
$itk_component(text) configure -state disabled

}

body TextDisplay::append {info} {
$itk_component(text) configure -state normal
$itk_component(text) insert end $info
$itk_component(text) configure -state disabled

}

usual TextDisplay {
keep -background -cursor -foreground -font
keep -activebackground -activerelief
keep -highlightcolor -highlightthickness
keep -insertbackground -insertborderwidth -insertwidth
keep -insertontime -insertofftime
keep -selectbackground -selectborderwidth -selectforeground
keep -textbackground -troughcolor

}

#
EXAMPLE: Display the /etc/passwd file
#
Te xtDisplay .file -background red
pack .file

.file display [exec cat /etc/passwd]

KEYWORDS
itk, Archetype, Widget, mega-widget

itk Last change: 3.0 2

[incr Tk] itk (n)

NAME
itk − framework for building mega-widgets in Tcl/Tk

DESCRIPTION
Mega-widgets are high-level widgets that are constructed using Tk widgets as component parts, usually
without any C code. A fileselectionbox, for example, may have a few listboxes, some entry widgets and
some control buttons. These individual widgets are put together in a way that makes them act like one big
widget. A fileselectionbox mega-widget can be created with a command like:

fileselectionbox .fsb -background blue -foreground white
Once it has been created, it can be reconfigured with a command like:

.fsb configure -background green -foreground black
and all of its internal components will change color. Each mega-widget has a set of methods that can be
used to manipulate it. For example, the current selection can be queried from a fileselectionbox like this:

set fileName [.fsb get]
In effect, a mega-widget looks and acts exactly like a Tk widget, but is considerably easier to implement.

[incr Tk] is a framework for building mega-widgets. It uses[incr Tcl] to support the object paradigm, and
adds base classes which provide default widget behaviors.

All [incr Tk] widgets are derived from theArchetype base class. This class manages internal component
widgets, and provides methods like "configure" and "cget" to access configuration options.

TheWidget base class inherits everything fromArchetype, and adds a Tk frame which acts as a container
for the mega-widget. It is used to build mega-widgets that sit inside of other frames and toplevels. Derived
classes create other internal components and pack them into the "hull" frame created by theWidget base
class.

The Toplevel base class inherits everything fromArchetype, but adds a Tk toplevel which acts as a con-
tainer for the mega-widget. It is used to build mega-widgets, such as dialog boxes, that have their own
toplevel window. Derived classes create other internal components and pack them into the "hull" toplevel
created by theToplevelbase class.

[incr Widgets] LIBRARY
[incr Widgets] is a mega-widget library built using[incr Tk] . It can be used right out of the box, and con-
tains more than 30 different widget classes, including:

- fileselectiondialog

- tabnotebook

- panedwindow

- combobox

- optionmenu

- scrolledlistbox

- scrolledframe

- messagedialog

- and many others...

The catalog demo in the "iwidgets/demos" directory shows all of the available widgets in action. Each
widget class has its own man page describing the features available.

itk Last change: 3.0 1

[incr Tk] itk (n)

KEYWORDS
class, object, object-oriented, mega-widget

itk Last change: 3.0 2

[incr Tk] itkvars (n)

NAME
itkvars − variables used by [incr Tk]

DESCRIPTION
The following global variables are created and managed automatically by the[incr Tk] library. Except
where noted below, these variables should normally be treated as read-only by application-specific code and
by users.

itk::library
When an interpreter is created,[incr Tk] initializes this variable to hold the name of a directory
containing the system library of[incr Tk] scripts. The initial value ofitk::library is set from the
ITK_LIBRARY environment variable if it exists, or from a compiled-in value otherwise.

When [incr Tk] is added to an interpreter, it executes the script "init.itk " in this directory.
This script, in turn, looks for other script files with the name "init. xxx". Mega-widget libraries
will be automatically initialized if they install a script named "init. xxx" in this directory, where
"xxx" is the name of the mega-widget library. For example, the[incr Widgets] library installs the
script "init.iwidgets " in this directory. This script establishes the "iwidgets" namespace,
and sets up autoloading for all[incr Widgets] commands.

KEYWORDS
itcl, itk, variables

itk Last change: 3.0 1

[incr Tk] usual (n)

NAME
usual − access default option-handling commands

for a mega-widget component

SYNOPSIS
usual ?tag? ?commands?

DESCRIPTION
The usual command is used outside of an[incr Tcl] class definition to define the usual set of option-han-
dling commands for a component widget. Option-handling commands are used when a component is regis-
tered with theArchetype base class via the "itk_component add" method. They specify how the compo-
nent’s configuration options should be integrated into the composite option list for the mega-widget.
Options can be kept, renamed, or ignored, as described in theArchetype man page.

It is tedious to include the same declarations again and again whenever components are added. Theusual
command allows a standard code fragment to be registered for each widget class, which is used by default
to handle the options. All of the standard Tk widgets haveusual declarations defined in the[incr Tk]
library. Similar usual declarations should be created whenever a new meg a-widget class is conceived.
Only the most-generic options should be included in theusualdeclaration.

The tag name is usually the name of a widget class, which starts with a capital letter; however, any string
registered here can be used later with theusualcommand described on theArchetype man page.

If the commandsargument is specified, it is associated with thetag string, and can be accessed later via
itk_component add.

If only the tag argument is specified, this command looks for an existingtag name and returns the com-
mands associated with it. If there are no commands associated withtag, this command returns the null
string.

If no arguments are specified, this command returns a list of alltagnames previously registered.

EXAMPLE
Following is theusualdeclaration for the standard Tk button widget:

usual Button {
keep -background -cursor -foreground -font
keep -activebackground -activeforeground -disabledforeground
keep -highlightcolor -highlightthickness
rename -highlightbackground -background background Background

}
Only the options that would be common to all buttons in a single mega-widget are kept or renamed.
Options like "-text" that would be unique to a particular button are ignored.

KEYWORDS
itk, Archetype, component, mega-widget

itk Last change: 3.0 1

[incr Widgets] buttonbox (n)

NAME
buttonbox − Create and manipulate a manager widget for buttons

SYNOPSIS
buttonbox pathName?options?

INHERITANCE
itk::Widget <- buttonbox

STANDARD OPTIONS
background cursor

See the "options" manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Name: orient
Class: Orient
Command-Line Switch: -orient

Orientation of the button box:horizontal or vertical. The default is horizontal.

Name: padX
Class: PadX
Command-Line Switch: -padx

Specifies a non-negative padding distance to leave between the button group and the outer edge of
the button box in the x direction. The value may be given in any of the forms acceptable to
Tk_GetPixels. The default is 5 pixels.

Name: padY
Class: PadY
Command-Line Switch: -pady

Specifies a non-negative padding distance to leave between the button group and the outer edge of
the button box in the y direction. The value may be given in any of the forms acceptable to
Tk_GetPixels. The default is 5 pixels.

DESCRIPTION
The buttonbox command creates a manager widget for controlling buttons. The button box also supports
the display and invocation of a default button. The button box can be configured either horizontally or ver-
tically.

METHODS
The buttonbox command creates a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command.

Many of the widget commands for the buttonbox take as one argument an indicator of which button of the
button box to operate on. These indicators are calledindexesand allow reference and manipulation of but-
tons regardless of their current map state. buttonbox indexes may be specified in any of the following
forms:

number Specifies the button numerically, where 0 corresponds to the left/top-most button of the but-
ton box.

Tk Last change: 3.0.0 1

[incr Widgets] buttonbox (n)

end Indicates the right/bottom-most button of the button box.

default Indicates the current default button of the button box. This is the button with the default ring
displayed.

pattern If the index doesn’t satisfy one of the above forms then this form is used.Patternis pattern-
matched against the tag of each button in the button box, in order from left/top to right/left,
until a matching entry is found. The rules ofTcl_StringMatch are used.

WIDGET-SPECIFIC METHODS
pathNameadd tag args

Add a button distinguished bytag to the end of the button box. If additional arguments are present
they specify options to be applied to the button. SeePushButton for information on the options
available.

pathNamebuttonconfigure index?options?
This command is similar to theconfigure command, except that it applies to the options for an
individual button, whereasconfigure applies to the options for the button box as a whole.Options
may have any of the values accepted by thePushButton command. Ifoptions are specified,
options are modified as indicated in the command and the command returns an empty string. If no
optionsare specified, returns a list describing the current options for entryindex(seeTk_Config-
ureInfo for information on the format of this list).

pathNamecgetoption
Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thebuttonbox command.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thebuttonbox command.

pathNamedefault index
Sets the default button to the button given byindex. This causes the default ring to appear arround
the specified button.

pathNamedeleteindex
Deletes the button given byindexfrom the button box.

pathNamehide index
Hides the button denoted byindex. This doesn’t remove the button permanently, just inhibits its
display.

pathNameindex index
Returns the numerical index corresponding toindex.

pathNameinsert index tag?option value option value ...?
Same as theadd command except that it inserts the new button just before the one given byindex,
instead of appending to the end of the button box. Theoption, andvaluearguments have the same
interpretation as for theadd widget command.

pathNameinvoke ?index?
Invoke the command associated with a button. If no arguments are given then the current default
button is invoked, otherwise the argument is expected to be a buttonindex.

Tk Last change: 3.0.0 2

[incr Widgets] buttonbox (n)

pathNameshow index
Display a previously hidden button denoted byindex.

EXAMPLE
buttonbox .bb

.bb add Yes -text Yes -command "puts Yes"

.bb add No -text No -command "puts No"

.bb add Maybe -text Maybe -command "puts Maybe"

.bb default Yes

pack .bb -expand yes -fill both

AUTHOR
Bret A. Schuhmacher

Mark L. Ulferts

KEYWORDS
buttonbox, pushbutton, button, widget

Tk Last change: 3.0.0 3

[incr Widgets] calendar (n)

NAME
calendar − Create and manipulate a monthly calendar

SYNOPSIS
calendarpathName?options?

INHERITANCE
itk::Widget <- calendar

STANDARD OPTIONS
background cursor foreground

See the "options" manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Name: backwardImage
Class: Image
Command-Line Switch: -backwardimage

Specifies a image to be displayed on the backwards calendar button. This image must have been
created previously with theimage createcommand. If none is specified, a default is provided.

Name: buttonForeground
Class: Foreground
Command-Line Switch: -buttonforeground

Specifies the foreground color of the forward and backward buttons in any of the forms acceptable
to Tk_GetColor. The default color is blue.

Name: command
Class: Command
Command-Line Switch: -command

Specifies a Tcl script to executed upon selection of a date in the calendar. If the command script
contains any% characters, then the script will not be executed directly. Instead, a new script will
be generated by replacing each% , and the character following it, with information from the calen-
dar. The replacement depends on the character following the% , as defined in the list below.

%d Replaced with the date selected in the format mm/dd/yyyy.

Name: currentDateFont
Class: Font
Command-Line Switch: -currentdatefont

Specifies the font used for the current date text in any of the forms acceptable toTk_GetFont.

Name: dateFont
Class: Font
Command-Line Switch: -datefont

Specifies the font used for the days of the month text in any of the forms acceptable toTk_Get-
Font.

Name: dayFont
Class: Font
Command-Line Switch: -dayfont

Specifies the font used for the days of the week text in any of the forms acceptable toTk_Get-
Font.

Name: days
Class: days

Tk Last change: 3.0.0 1

[incr Widgets] calendar (n)

Command-Line Switch: -days

Specifies a list of values to be used for the days of the week text to displayed above the days of the
month. The default value is {Su Mo Tu We Th Fr Sa}.

Name: forewardImage
Class: Image
Command-Line Switch: -forewardimage

Specifies a image to be displayed on the forewards calendar button. This image must have been
created previously with theimage createcommand. If none is specified, a default is provided.

Name: height
Class: Height
Command-Line Switch: -height

Specifies a desired window height that the calendar widget should request from its geometry man-
ager. The value may be specified in any of the forms acceptable toTk_GetPixels. The default
height is 165 pixels.

Name: outline
Class: Outline
Command-Line Switch: -outline

Specifies the outline color used to surround the days of the month text in any of the forms accept-
able toTk_GetColor. The default is the same color as the background.

Name: selectColor
Class: Foreground
Command-Line Switch: -selectcolor

Specifies the color of the ring displayed that distinguishes the currently selected date in any of the
forms acceptable toTk_GetColor. The default is red.

Name: selectThickness
Class: SelectThickness
Command-Line Switch: -selectthickness

Specifies the thickness of the ring displayed that distinguishes the currently selected date. The
default is 3 pixels.

Name: startday
Class: Day
Command-Line Switch: -startday

Specifies the starting day for the week:sunday, monday, tuesday, wednesday, thursday, friday ,
or saturday. The default is sunday.

Name: titleFont
Class: Font
Command-Line Switch: -titlefont

Specifies the font used for the title text which consists of the month and year. The font may be
given in any of the forms acceptable toTk_GetFont.

Name: weekdayBackground
Class: Background
Command-Line Switch: -weekdaybackground

Specifies the background color for the weekdays which allows it to be visually distinguished from
the weekend. The color may be given in any of the forms acceptable toTk_GetColor. The
default is the same as the background.

Tk Last change: 3.0.0 2

[incr Widgets] calendar (n)

Name: weekendBackground
Class: Background
Command-Line Switch: -weekendbackground

Specifies the background color for the weekends which allows it to be visually distinguished from
the weekdays. The color may be given in any of the forms acceptable toTk_GetColor. The
default is the same as the background.

Name: width
Class: Width
Command-Line Switch: -width

Specifies a desired window width that the calendar widget should request from its geometry man-
ager. The value may be specified in any of the forms acceptable toTk_GetPixels. The default
width is 200 pixels.

DESCRIPTION
Thecalendar command creates a calendar widget for the selection of a date, displaying a single month at a
time. Buttons exist on the top to change the month in effect turning the pages of a calendar. As a page is
turned, the dates for the month are modified. Selection of a date visually marks that date. The selected
value can be monitored via the -command option or just retrieved using the get command.

METHODS
The calendar command creates a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command. The following commands are possible
for calendar widgets:

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thecalendarcommand.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thecalendarcommand.

pathNameget?format?
Returns the currently selected date in a format of string or as an integer clock value using the
-string and-clicks format options respectively. The default is by string. Reference the clock com-
mand for more information on obtaining dates and their formats.

pathNameselectdate
Changes the currently selected date to the value specified which must be in the form of a date
string, an integer clock value or as the keyword "now". Reference the clock command for more

Tk Last change: 3.0.0 3

[incr Widgets] calendar (n)

information on obtaining dates and their formats. Note that selecting a date does not change the
month being shown to that of the date given. This chore is left to theshowcommand.

pathNameshowdate
Changes the currently displayed date to be that of the date argument which must be in the form of
a date string, an integer clock value or as the keyword "now". Reference the clock command for
more information on obtaining dates and their formats.

COMPONENTS
Name: forward
Class: Button

The forward component provides the button on the upper right of the calendar that changes the
month to be the next. See the "button" widget manual entry for details on the forward component
item.

Name: page
Class: Canvas

The page component provides the canvas on which the title, days of the week, and days of the
month appear. See the "canvas" widget manual entry for details on the page component item.

Name: backward
Class: Button

The backward component provides the button on the upper right of the calendar that changes the
month to be the next. See the "button" widget manual entry for details on the backward compo-
nent item.

EXAMPLE
proc selectCmd {date} {
puts $date

}

calendar .c -command {selectCmd %d} -weekendbackground mistyrose \
-weekdaybackground ghostwhite -outline black \

-startday wednesday -days {We Th Fr Sa Su Mo Tu}
pack .c

AUTHOR
Mark L. Ulferts

Michael J. McLennan

KEYWORDS
calendar, widget

Tk Last change: 3.0.0 4

[incr Widgets] canvasprintbox (n)

NAME
canvasprintbox − Create and manipulate a canvas print box widget

SYNOPSIS
canvasprintboxpathName?options?

INHERITANCE
itk::Widget <- Canvasprintbox

STANDARD OPTIONS
activeBackground background borderWidth cursor
foreground highlightBackground highlightColor highlightThickness
insertBackground insertBorderWidth insertOffTime insertOnTime
insertWidth relief repeatDelay repeatInterval
selectBackground selectBorderWidth selectForeground

See the "options" manual entry for details on the standard options.

ASSOCIATED OPTIONS

WIDGET-SPECIFIC OPTIONS
Name: filename
Class: FileName
Command-Line Switch: -filename

The file to write the postscript output to (Only when output is set to "file"). If posterizing is turned
on andhpagecntand/orvpagecnt is more than 1, x.y is appended to the filename where x is the
horizontal page number and y the vertical page number.

Name: hpagecnt
Class: PageCnt
Command-Line Switch: -hpagecnt

Is used in combination withposterizeto determine over how many pages the output should be dis-
tributed. This attribute specifies how many pages should be used horizontaly. Any change to this
attribute will automatically update the "stamp". Defaults to 1.

Name: orient
Class: Orient
Command-Line Switch: -orient

Determines the orientation of the output to the printer (or file). It can take the value "portrait" or
"landscape" (default). Changes to this attribute will be reflected immediately in the "stamp".
Defaults to "landscape" but will be changed automaticaly to the value deemed appropiate for the
current canvas. Setting this attribute when the canvasprintbox is first constructed (instead of using
the "configure" method) will turn off the auto adjustment of this attribute.

Name: output
Class: Output
Command-Line Switch: -output

Specifies where the postscript output should go: to the printer or to a file. Can take on the values
"printer" or "file". The corresponding entry-widget will reflect the contents of either theprintcmd
attribute or thefilenameattribute. Defaults to "printer".

Name: pageSize
Class: PageSize
Command-Line Switch: -pagesize

The pagesize the printer supports. Changes to this attribute will be reflected immediately in the

Tk Last change: 3.0.0 1

[incr Widgets] canvasprintbox (n)

"stamp". Defaults to "a4".

Name: posterize
Class: Posterize
Command-Line Switch: -posterize

Indicates if posterizing is turned on or not. Posterizing the output means that it is possible to dis-
tribute the output over more than one page. This way it is possible to print a canvas/region which
is larger than the specified pagesize without stretching. If used in combination with stretching it
can be used to "blow up" the contents of a canvas to as large as size as you want (See attributes:
hpagecnt and vpagecnt). Any change to this attribute will automatically update the "stamp".
Defaults to 0.

Name: printCmd
Class: PrintCmd
Command-Line Switch: -printcmd

The command to execute when printing the postscript output. The command will get the
postscript directed to its standard input (Only when output is set to "printer"). Defaults to "lpr".

Name: printRegion
Class: PrintRegion
Command-Line Switch: -printregion

A list of four coordinates specifying which part of the canvas to print. An empty list means that
the canvas’ entirescrollregion should be printed. Any change to this attribute will automatically
update the "stamp". Defaults to an empty list.

Name: stretch
Class: Stretch
Command-Line Switch: -stretch

Determines if the output should be stretched to fill the page (as defined by the attribute pagesize)
as large as possible. The aspect-ratio of the output will be retained and the output will never fall
outside of the boundaries of the page. Defaults to 0 but will be changed automaticaly to the value
deemed appropiate for the current canvas. Setting this attribute when the canvasprintbox is first
constructed (instead of using the "configure" method) will turn off the auto adjustment of this
attribute.

Name: vPageCnt
Class: PageCnt
Command-Line Switch: -vpagecnt

Is used in combination with "posterize" to determine over how many pages the output should be
distributed. This attribute specifies how many pages should be used verticaly. Any change to this
attribute will automatically update the "stamp". Defaults to 1.

DESCRIPTION
Implements a print box for printing the contents of a canvas widget to a printer or a file. It is possible to
specify page orientation, the number of pages to print the image on and if the output should be stretched to
fit the page. Options exist to control the appearance and actions of the widget.

METHODS
Thecanvasprintbox command creates a new Tcl command whose name ispathName. This command may
be used to invoke various operations on the widget. It has the following general form:

Tk Last change: 3.0.0 2

[incr Widgets] canvasprintbox (n)

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command. The following commands are possible
for canvasprintbox widgets:

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thecanvasprintboxcommand.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thecanvasprintbox com-
mand.

pathNamegetoutput
Returns the value of theprintercmd or filename option depending on the current setting ofout-
put.

pathNameprint
Perfrom the actual printing of the canvas using the current settings of all the attributes. Returns a
boolean indicating wether the printing was successful or not.

pathNamerefresh
Retrieves the current value for all edit fields and updates the stamp accordingly. Is useful for
Apply-buttons.

pathNamesetcanvascanvas
This is used to set thecanvasthat has to be printed. A stamp-sized copy will automatically be
drawn to show how the output would look with the current settings.

pathNamestop
Stops the drawing of the "stamp". I’m currently unable to detect when a Canvasprintbox gets
destroyed or withdrawn. It’s therefore advised that you perform a stop before you do something
like that.

COMPONENTS
Name: prtflentry
Class: Entry

The prtflentry component is the entry field for user input of thefilename or printer command
(depending on the value ofoutput).

Name: hpcnt
Class: Entry

The hpcnt component is the entry field for user input of the number of pages to use horizontaly
whenposterizeis turned on.
Name: vpcnt
Class: Entry

The vpcnt component is the entry field for user input of the number of pages to use verticaly when
posterizeis turned on.

Tk Last change: 3.0.0 3

[incr Widgets] canvasprintbox (n)

EXAMPLE
canvasprintbox .fsb -orient landscape -stretch 1
pack .fsb -padx 10 -pady 10 -fill both -expand yes

AUTHOR
Tako Schotanus

Tako.Schotanus@bouw.tno.nl

KEYWORDS
canvasprintbox, widget

Tk Last change: 3.0.0 4

[incr Widgets] canvasprintdialog (n)

NAME
canvasprintdialog − Create and manipulate a canvas print dialog widget

SYNOPSIS
canvasprintdialogpathName?options?

INHERITANCE
itk::Toplevel <- Dialogshell <- Dialog <- Canvasprintdialog

STANDARD OPTIONS
activeBackground background borderWidth cursor
foreground highlightBackground highlightColor highlightThickness
insertBackground insertBorderWidth insertOffTime insertOnTime
insertWidth relief repeatDelay repeatInterval
selectBackground selectBorderWidth selectForeground

See the "options" manual entry for details on the standard options.

ASSOCIATED OPTIONS
filename hpagecnt orient output
pagesize posterize printcmd printregion
vpagecnt

See the "canvasprintbox" widget manual entry for details on the above associated options.

INHERITED OPTIONS
buttonBoxPadX buttonBoxPadY buttonBoxPos padX
padY separator thickness

See the "dialogshell" widget manual entry for details on the above inherited options.

master modality

See the "shell" widget manual entry for details on the above inherited options.

title

See the "Toplevel" widget manual entry for details on the above inherited options.

WIDGET-SPECIFIC OPTIONS

DESCRIPTION
The canvasprintdialog command creates a print dialog for printing the contents of a canvas widget to a
printer or a file. It is possible to specify page orientation, the number of pages to print the image on and if
the output should be stretched to fit the page.

METHODS
The canvasprintdialog command creates a new Tcl command whose name ispathName. This command
may be used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command. The following commands are possible
for canvasprintdialog widgets:

Tk Last change: 3.0.0 1

[incr Widgets] canvasprintdialog (n)

ASSOCIATED METHODS
getoutput setcanvas refresh print

See the "canvasprintbox" class manual entry for details on the associated methods.

INHERITED METHODS
add buttonconfigure default hide
insert invoke show

See the "buttonbox" widget manual entry for details on the above inherited methods.

activate deactivate

See the "dialogshell" widget manual entry for details on the above inherited methods.

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thecanvasprintdialogcommand.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Option may have any of the values accepted by thecanvasprintdialog
command.

COMPONENTS
Name: cpb
Class: Canvasprintbox

The cpb component is the canvas print box for the canvas print dialog. See the "canvasprintbox"
widget manual entry for details on the cpb component item.

EXAMPLE
canvasprintdialog .cpb
.cpb activate

AUTHOR
Tako Schotanus

Tako.Schotanus@bouw.tno.nl

KEYWORDS
canvasprintdialog, canvasprintbox, dialog, widget

Tk Last change: 3.0.0 2

[incr Widgets] checkbox (n)

NAME
checkbox − Create and manipulate a checkbox widget

SYNOPSIS
checkboxpathName?options?

INHERITANCE
itk::Widget <- labeledframe <- checkbox

STANDARD OPTIONS
background borderWidth cursor disabledForeground
foreground relief selectColor

See the "options" manual entry for details on the standard options.

INHERITED OPTIONS
labelBitmap labelFont labelImage labelMargin
labelPos labelText labelVariable

See the "labeledframe" class manual entry for details on the inherited options.

WIDGET-SPECIFIC OPTIONS
Name: command
Class: Command
Command-Line Switch: -command

Specifies a Tcl command procedure to be evaluated following a change in the current check box
selection.

DESCRIPTION
Thecheckboxcommand creates a check button box widget capable of adding, inserting, deleting, selecting,
and configuring checkbuttons as well as obtaining the currently selected button.

METHODS
The checkboxcommand creates a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command.

Many of the widget commands for thecheckbox take as one argument an indicator of which checkbutton
of the checkbox to operate on. These indicators are calledindexesand allow reference and manipulation of
checkbuttons. Checkbox indexes may be specified in any of the following forms:

number Specifies the checkbutton numerically, where 0 corresponds to the top checkbutton of the
checkbox.

end Indicates the last checkbutton of the checkbox.

pattern If the index doesn’t satisfy one of the above forms then this form is used.Patternis pattern-
matched against the tag of each checkbutton in the checkbox, in order from top to bottom,
until a matching entry is found. The rules ofTcl_StringMatch are used.

Tk Last change: 3.0.0 1

[incr Widgets] checkbox (n)

WIDGET-SPECIFIC METHODS
pathNameadd tag?option value option value?

Adds a new checkbutton to the checkbuttond window on the bottom. The command takes addi-
tional options which are passed on to the checkbutton as construction arguments. These include
the standard Tk checkbutton options. The tag is returned.

pathNamebuttonconfigure index?options?
This command is similar to theconfigure command, except that it applies to the options for an
individual checkbutton, whereasconfigureapplies to the options for the checkbox as a whole.
Optionsmay have any of the values accepted by theadd widget command. Ifoptionsare speci-
fied, options are modified as indicated in the command and the command returns an empty string.
If no options are specified, returns a list describing the current options for entryindex (see
Tk_ConfigureInfo for information on the format of this list).

pathNamecgetoption
Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thecheckboxcommand.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thecheckboxcommand.

pathNamedeleteindex
Deletes a specified checkbutton given anindex.

pathNamedeselectindex
Deselects a specified checkbutton given anindex.

pathNameflash index
Flashes a specified checkbutton given anindex.

pathNameget?index?
Returns the tags of the currently selected checkbuttons or the selection status of specific checkbut-
ton when given an index.

pathNameindex index
Returns the numerical index corresponding to index.

pathNameinsert index tag?option value option value ...?
Same as theadd command except that it inserts the new checkbutton just before the one given by
index, instead of appending to the end of the checkbox. Theoption, andvaluearguments have the
same interpretation as for theadd widget command.

pathNameselectindex
Selects a specified checkbutton given anindex.

EXAMPLE
checkbox .cb -labeltext Styles
.cb add bold -text Bold
.cb add italic -text Italic
.cb add underline -text Underline
.cb select underline

Tk Last change: 3.0.0 2

[incr Widgets] checkbox (n)

pack .cb -padx 10 -pady 10 -fill both -expand yes

AUTHOR
John A. Tucker

KEYWORDS
checkbox, widget

Tk Last change: 3.0.0 3

[incr Widgets] combobox (n)

NAME
combobox − Create and manipulate combination box widgets

SYNOPSIS
comboboxpathName?options?

INHERITANCE
itk::Widget <- LabeledWidget <- Entryfield <- Combobox

STANDARD OPTIONS
background borderWidth cursor justify
exportSelection foreground highlightColor highlightThickness
relief width insertWidth insertBackground
insertOffTime insertOnTime insertWidth insertBorderWidth
selectForeground selectBackground
selectBorderWidth textVariable

See the "options" manual entry for details on the standard options.

ASSOCIATED OPTIONS
hscrollmode textBackground textFont vscrollmode

See the "scrolledlistbox" manual entry for details on the above inherited options.

show

See the "entry" manual entry for details on the above inherited option.

INHERITED OPTIONS
childSitePos command fixed focusCommand
invalid textBackground textFont validate

See the "entryfield" class manual entry for details on the inherited options.

labelBitmap labelFont labelImage labelMargin
labelPos labelText labelVariable

See the "labeledwidget" class manual entry for details on the inherited options.

WIDGET-SPECIFIC OPTIONS
Name: arrowRelief
Class: Relief
Command-Line Switch: -arrowrelief

Specifies the relief style to use for a dropdown Combobox’s arrow button in a normal (not
depressed) state. Acceptable values areraised, sunken, flat, ridge, andgroove. Sunken is dis-
couraged as this is the relief used to indicate a depressed state. This option has no effect on simple
Comboboxes. The default is raised.

Name: completion
Class: Completion
Command-Line Switch: -completion

Boolean given in any of the forms acceptable toTcl_GetBooleanwhich determines whether inser-
tions into the entry field, whether from the keyboard or programmatically via theinsert method,
are automatically completed with the first matching item from the listbox. The default is true.

Name: dropdown
Class: Dropdown
Command-Line Switch: -dropdown

Tk Last change: 3.0.0 1

[incr Widgets] combobox (n)

Boolean describing the Combobox layout style given in any of the forms acceptable toTcl_Get-
Boolean. If true, the Combobox will be a dropdown style widget which displays an entry field and
an arrow button which when activated will pop up a scrollable list of items. If false, a simple Com-
bobox style will be used which has an entry field and a scrollable list beneath it which is always
visible. Both styles allow an optional label for the entry field area. The default is true.

Name: editable
Class: Editable
Command-Line Switch: -editable

Boolean describing whether or not the text entry area is editable by the user. If true the user can
add items to the combobox by entering text into the entry area and then pressing Return. If false,
the list of items is non-editable and can only be changed by calling the insert or delete methods.
(The value in the entry field can still be modified by selecting from the list.) Given in any of the
forms acceptable toTcl_GetBoolean. The default is true.

Name: grab
Class: Grab
Command-Line Switch: -grab

This option sets the grab scope for the appearance of the listbox in drop-down comboboxes. It can
be either global or local. The default is local.

Name: listHeight
Class: Height
Command-Line Switch: -listheight

Height of the listbox specified in any of the forms acceptable toTk_GetPixels. The default is 150
pixels.

Name: margin
Class: Margin
Command-Line Switch: -margin

Specifies the width in pixels between the entry component and the arrow button for a dropdown
Combobox given in any of the forms acceptable toTk_GetPixels. This option has no effect on a
simple Combobox. The default is 1.

Name: popupCursor
Class: Cursor
Command-Line Switch: -popupcursor

Specifies the cursor to be used for dropdown style listboxes. The value may have any of the forms
acceptable toTk_GetCursor. The default is arrow.

Name: selectionCommand
Class: SelectionCommand
Command-Line Switch: -selectioncommand

Specifies a Tcl command procedure which is called when an item in the listbox area is selected.
The item will be selected in the list, the listbox will be removed if it is a dropdown Combobox,
and the selected item’s text will be inserted into the entry field before the -selectioncommand proc
is called. The default is {}.

Name: state
Class: State
Command-Line Switch: -state

Specifies the overall state of the Combobox megawidget. Can be either normal or disabled. If the
Combobox is disabled, no text can be entered into the entry field, no selection can be made in the

Tk Last change: 3.0.0 2

[incr Widgets] combobox (n)

listbox, and the arrowBtn component is disabled. The default is normal.

Name: unique
Class: Unique
Command-Line Switch: -unique

Boolean describing whether or not duplicate items are allowed in the combobox list. If true, then
duplicates are not allowed to be inserted. If false, a duplicate entry causes selection of the item.
Given in any of the forms acceptable toTcl_GetBoolean. The default is true.

DESCRIPTION
The comboboxcommand creates an enhanced entry field widget with an optional associated label and a
scrollable list. When an item is selected in the list area of a Combobox, its value is then displayed in the
entry field text area. Functionally similar to an Optionmenu, the Combobox adds (optional) list scrolling
and (optional) item editing and inserting capabilities.

There are two basic styles of Comboboxes (determined by the -dropdown option): dropdown and simple.
The dropdown style adds an arrow button to the right of the entry field which when activated will pop up
(and down) the scrolled listbox beneath the entry field. The simple (non-dropdown) Combobox perma-
nently displays the listbox beneath the entry field and has no arrow button. Either style allows an optional
entry field label.

METHODS
The comboboxcommand creates a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Option and theargs determine the exact behavior of the command. The following commands are possible
for Combobox widgets:

ASSOCIATED METHODS
icursor scan

See the "entry" manual entries for details on the above associated methods.

curselection index see size
xview yview

See the "listbox" manual entries for details on the above associated methods.

getcurselection justify sort

See the "scrolledlistbox" manual entries for details on the above associated methods.

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thecomboboxcommand.

pathNameclear ?component?
Clears the contents from one or both components. Valid component values arelist, or entry. With
no component specified, both are cleared.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list

Tk Last change: 3.0.0 3

[incr Widgets] combobox (n)

describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thecomboboxcommand.

pathNamedeletecomponent first?last?
Delete one or more elements from a given component,list or entry. If a list item to be removed is
currently selected (displayed in the entry field area), the entry field will be cleared.

pathNameget ?index?
With no arguments, returns the contents currently in the entry field area. With a single argument,
returns the contents of the listbox item at the indicated index.

pathNameinsert component index element?element element ...?
Insert one or more new elements into the given component,list or entry, just before the element
given byindex.

pathNameselectionoption first?last?
Adjust the selection within the listbox component and updates the contents of the entry field com-
ponent to the value of the selected item. See the "listbox" manual entry for more details on param-
eter options.

COMPONENTS
Name: entry
Class: Entry

Te xt entry area where the current selection is displayed. If the Combobox is editable and its state is
normal, the user can edit the contents of this item.

Name: list
Class: Scrolledlistbox

Scrollable list which stores all the items which the user can select from. For dropdown Com-
boboxes, this component is hidden until the user pops it up by pressing on the arrow button to the
right of the entry component. For simple Comboboxes this component is always visible just
beneath the entry component.

DEFAULT BINDINGS
The Combobox generally has the same bindings as its primary component items - the Scrolledlistbox and
Entryfield. However it also adds these:

[1] Button-1 mouse press on the arrow key of a dropdown Combobox causes the list to be popped up. If the
combobox is non-editable, a Button-1 press on the entry field area will also pop up the list.

[2] Button-1 mouse press anywhere on the display removes a dropdown listbox which has been popped up,
unless the keypress is upon one of the Combobox scrollbars which scrolls the list. If it is pressed upon an
item in the list area, that item will be selected before the list is removed.

[3] Button-3 mouse press on the arrow key of a dropdown Combobox causes the next item to be selected.
Shift-Button-3 causes the previous item to be selected.

[4] Escape keypress removes a dropdown list which has been popped up.

[5] The <space> and <Return> keystrokes select the current item. They also remove the popped up list for
dropdown comboboxes.

[6] Up and Down arrow keypresses from the entry field and arrow button component cause the previous and
next items in the listbox to be selected respectively. Ctl-P and Ctl-N are similarly mapped for emacs emula-
tion.

Tk Last change: 3.0.0 4

[incr Widgets] combobox (n)

[7] Entry field and arrow button component Shift-Up and Shift-Down arrow keys pop up and down the list-
box of a dropdown Combobox. The arrow button component also maps <Return> and <space> similarly.

EXAMPLE
proc selectCmd {} {

puts stdout "[.cb2 getcurselection]"
}

#
Non-editable Dropdown Combobox
#
combobox .cb1 -labeltext Month: \

-selectioncommand {puts "selected: [.cb1 getcurselection]"} \
-editable false -listheight 185 -popupcursor hand1

.cb1 insert list end Jan Feb Mar Apr May June Jul Aug Sept Oct Nov Dec

#
Editable Dropdown Combobox
#
combobox .cb2 -labeltext "Operating System:" -selectioncommand selectCmd
.cb2 insert list end Linux HP-UX SunOS Solaris Irix
.cb2 insert entry end L

pack .cb1 -padx 10 -pady 10 -fill x
pack .cb2 -padx 10 -pady 10 -fill x

ORIGINAL AUTHOR
John S. Sigler

CURRENT MAINTAINER
Mitch Gorman (logain@erols.com)

KEYWORDS
combobox, entryfield, scrolledlistbox, itk::Widget, entry, listbox, widget, iwidgets

Tk Last change: 3.0.0 5

[incr Widgets] dateentry (n)

NAME
dateentry − Create and manipulate a dateentry widget

SYNOPSIS
dateentry pathName?options?

INHERITANCE
itk::Widget <- LabeledWidget <- Datefield <- Dateentry

STANDARD OPTIONS
background borderWidth cursor exportSelection
foreground highlightColor highlightThickness insertBackground
justify relief

See the "options" manual entry for details on the standard options.

INHERITED OPTIONS
disabledForeground labelBitmap labelFont labelImage
labelMargin labelPos labelText labelVariable
state

See the "labeledwidget" class manual entry for details on these inherited options.

command iq state textBackground
textFont

See the "datefield" class manual entry for details on these inherited options.

ASSOCIATED OPTIONS
backwardImage buttonForeground command currentDateFont
dateFont dayFont days forwardImage
outline selectColor selectThickness startDay
titleFont weekdayBackground weekendBackground

See the "calendar" manual entry for details on the associated options.

WIDGET-SPECIFIC OPTIONS
Name: grab
Class: Grab
Command-Line Switch: -grab

Specifies the grab level,local or global, to be obtained before bringing up the popup calendar.
The default is global. For more information concerning grab levels, consult the documentation for
Tk’s grab command.

Name: icon
Class: Icon
Command-Line Switch: -icon

Specifies the calendar icon image to be used in the dateentry. This image must have been created
previously with theimage createcommand. Should one not be provided, then one will be gener-
ated, pixmap if possible, bitmap otherwise.

DESCRIPTION
The dateentry command creates a quicken style date entry field with a popup calendar by combining the
datefield and calendar widgets together. This allows a user to enter the date via the keyboard or by using
the mouse and selecting the calendar icon which brings up a popup calendar.

Tk Last change: 3.0.0 1

[incr Widgets] dateentry (n)

METHODS
The dateentry command creates a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command. The following commands are possible
for dateentry widgets:

INHERITED METHODS
get isvalid show

See the "datefield" manual entry for details on the associated methods.

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thedateentry command.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thedateentry command.

COMPONENTS
Name: label
Class: Label

The label component provides a label component to used to identify the date. See the "label" wid-
get manual entry for details on the label component item.

Name: iconbutton
Class: Label

The iconbutton component provides a labelbutton component to act as a lightweight button dis-
playing the calendar icon. Upon pressing the labelbutton, the calendar appears. See the "label"
widget manual entry for details on the labelbutton component item.

Name: date
Class: Entry

The date component provides the entry field for date input and display. See the "entry" widget
manual entry for details on the date component item.

EXAMPLE
dateentry .de
pack .de

AUTHOR
Mark L. Ulferts

Tk Last change: 3.0.0 2

[incr Widgets] dateentry (n)

KEYWORDS
dateentry, widget

Tk Last change: 3.0.0 3

[incr Widgets] datefield (n)

NAME
datefield − Create and manipulate a date field widget

SYNOPSIS
datefieldpathName?options?

INHERITANCE
itk::Widget <- LabeledWidget <- datefield

STANDARD OPTIONS
background borderWidth cursor exportSelection
foreground highlightColor highlightThickness insertBackground
justify relief

See the "options" manual entry for details on the standard options.

INHERITED OPTIONS
disabledForeground labelBitmap labelFont labelImage
labelMargin labelPos labelText labelVariable
state

See the "labeledwidget" class manual entry for details on the inherited options.

WIDGET-SPECIFIC OPTIONS
Name: childSitePos
Class: Position
Command-Line Switch: -childsitepos

Specifies the position of the child site in the date field:n, s, e, or w. The default is e.

Name: command
Class: Command
Command-Line Switch: -command

Specifies a Tcl command to be executed upon detection of a Return key press event.

Name: iq
Class: Iq
Command-Line Switch: -iq

Specifies the level of intelligence to be shown in the actions taken by the datefield during the pro-
cessing of keypress events. Valid settings includehigh, av erage, andlow. With a high iq,the date
prevents the user from typing in an invalid date. For example, if the current date is 05/31/1997 and
the user changes the month to 04, then the day will be instantly modified for them to be 30. In
addition, leap years are fully taken into account. With average iq, the month is limited to the val-
ues of 01-12, but it is possible to type in an invalid day. A setting of low iq instructs the widget to
do no validity checking at all during date entry. With both average and low iq lev els, it is assumed
that the validity will be determined at a later time using the date’sisvalid command.

Name: state
Class: State
Command-Line Switch: -state

Specifies one of two states for the datefield:normal or disabled. If the datefield is disabled then
input is not accepted. The default is normal.

Name: textBackground
Class: Background
Command-Line Switch: -textbackground

Background color for inside textual portion of the entry field. The value may be given in any of

Tk Last change: 3.0.0 1

[incr Widgets] datefield (n)

the forms acceptable toTk_GetColor.

Name: textFont
Class: Font
Command-Line Switch: -textfont

Name of font to use for display of text in datefield. The value may be given in any of the forms
acceptable toTk_GetFont.

DESCRIPTION
The datefield command creates an enhanced text entry widget for the purpose of date entry with various
degrees of built-in intelligence.

METHODS
The datefield command creates a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command. The following commands are possible
for datefield widgets:

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thedatefieldcommand.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thedatefieldcommand.

pathNameget?format?
Returns the current contents of the datefield in a format of string or as an integer clock value using
the -string and-clicks format options respectively. The default is by string. Reference the clock
command for more information on obtaining dates and their formats.

pathNameisvalid
Returns a boolean indication of the validity of the currently displayed date value. For example,
03/03/1960 is valid whereas 02/29/1997 is invalid.

pathNameshowdate
Changes the currently displayed date to be that of the date argument. The date may be specified
either as a string, an integer clock value or the keyword "now". Reference the clock command for
more information on obtaining dates and their formats.

Tk Last change: 3.0.0 2

[incr Widgets] datefield (n)

COMPONENTS
Name: date
Class: Entry

The date component provides the entry field for date input and display. See the "entry" widget
manual entry for details on the date component item.

EXAMPLE
proc returnCmd {} {
puts [.df get]

}

datefield .df -command returnCmd
pack .df -fill x -expand yes -padx 10 -pady 10

AUTHOR
Mark L. Ulferts

KEYWORDS
datefield, widget

Tk Last change: 3.0.0 3

[incr Widgets] dialog (n)

NAME
dialog − Create and manipulate a dialog widget

SYNOPSIS
dialog pathName?options?

INHERITANCE
itk::Toplevel <- Shell <- Dialogshell <- Dialog

STANDARD OPTIONS
background cursor foreground

See the "options" manual entry for details on the standard options.

INHERITED OPTIONS
buttonBoxPadX buttonBoxPadY buttonBoxPos padX
padY separator thickness

See the "dialogshell" manual entry for details on the above inherited options.

height master modality width

See the "shell" manual entry for details on the above inherited options.

title

See the "Toplevel" manual entry for details on the above inherited options.

DESCRIPTION
The dialog command creates a dialog box providing standard buttons and a child site for use in derived
classes. The buttons include ok, apply, cancel, and help. Methods and Options exist to configure the but-
tons and their containing box.

METHODS
Thedialog command creates a new Tcl command whose name ispathName. This command may be used
to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command. The following commands are possible
for dialog widgets:

INHERITED METHODS
add buttonconfigure default hide
index insert invoke show

See the "buttonbox" manual entry for details on the above inherited methods.

childsite

See the "dialogshell" manual entry for details on the above inherited methods.

activate center deactivate

See the "shell" manual entry for details on the above inherited methods.

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the

Tk Last change: 3.0.0 1

[incr Widgets] dialog (n)

values accepted by thedialog command.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thedialog command.

EXAMPLE
dialog .d -modality global
.d buttonconfigure OK -command {puts OK; .d deactivate 1}
.d buttonconfigure Apply -command {puts Apply}
.d buttonconfigure Cancel -command {puts Cancel; .d deactivate 0}
.d buttonconfigure Help -command {puts Help}

listbox [.d childsite].lb -relief sunken
pack [.d childsite].lb -expand yes -fill both

if {[.d activate]} {
puts "Exit via OK button"

} else {
puts "Exit via Cancel button"

}

AUTHOR
Mark L. Ulferts

Bret A. Schuhmacher

KEYWORDS
dialog, dialogshell, shell, widget

Tk Last change: 3.0.0 2

[incr Widgets] dialogshell (n)

NAME
dialogshell − Create and manipulate a dialog shell widget

SYNOPSIS
dialogshellpathName?options?

INHERITANCE
itk::Toplevel <- Shell <- Dialogshell

STANDARD OPTIONS
background cursor foreground

See the "options" manual entry for details on the standard options.

INHERITED OPTIONS
height master modality width

See the "shell" manual entry for details on the above inherited options.

title

See the "Toplevel" manual entry for details on the above inherited options.

WIDGET-SPECIFIC OPTIONS
Name: buttonBoxPadX
Class: Pad
Command-Line Switch: -buttonboxpadx

Specifies a non-negative padding distance to leave between the button group and the outer edge of
the button box in the x direction. The value may be given in any of the forms accpetable to
Tk_GetPixels. The default is 5 pixels.

Name: buttonBoxPadY
Class: Pad
Command-Line Switch: -buttonboxpady

Specifies a non-negative padding distance to leave between the button group and the outer edge of
the button box in the y direction. The value may be given in any of the forms accpetable to
Tk_GetPixels. The default is 5 pixels.

Name: buttonBoxPos
Class: Position
Command-Line Switch: -buttonboxpos

Attaches buttons to the given side of the dialog:n, s, eor w. The default is s.

Name: padX
Class: Pad
Command-Line Switch: -padx

Specifies a padding distance for the childsite in the X-direction in any of the forms acceptable to
Tk_GetPixels. The default is 10.

Name: padY
Class: Pad
Command-Line Switch: -pady

Specifies a padding distance for the childsite in the Y-direction in any of the forms acceptable to
Tk_GetPixels. The default is 10.

Tk Last change: 3.0.0 1

[incr Widgets] dialogshell (n)

Name: separator
Class: Separator
Command-Line Switch: -separator

Specifies whether a line is drawn to separate the buttons from the dialog box contents in any of the
forms acceptable toTcl_GetBoolean. The default is true.

Name: thickness
Class: Thickness
Command-Line Switch: -thickness

Specifies the thickness of the separator in any of the forms acceptable toTk_GetPixels. The
default is 3 pixels.

DESCRIPTION
Thedialogshellcommand creates a dialog shell which is a top level widget composed of a button box, sep-
arator, and child site area. The class also has methods to control button construction.

METHODS
The dialogshell command create a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command. The following commands are possible
for dialogshell widgets:

INHERITED METHODS
activate center deactivate

See the "shell" manual entry for details on the above inherited methods.

ASSOCIATED METHODS
add buttonconfigure default delete
hide index insert invoke
show

See the "buttonbox" manual entry for details on the associated methods.

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thedialogshellcommand.

pathNamechildsite
Returns the pathname of the child site widget.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thedialogshellcommand.

Tk Last change: 3.0.0 2

[incr Widgets] dialogshell (n)

COMPONENTS
Name: dschildsite
Class: frame

The dschildsite component is the user child site for the dialog shell. See the "frame" widget man-
ual entry for details on the dschildsite component item.

Name: separator
Class: frame

The separator component devides the area between the user child site and the button box. See the
"frame" widget manual entry for details on the separator component item.

Name: bbox
Class: ButtonBox

The bbox component is the button box containing the buttons for the dialog shell. See the "But-
tonBox" widget manual entry for details on the bbox component item.

EXAMPLE
dialogshell .ds -modality none

.ds add OK -text "OK"

.ds add Cancel -text "Cancel"

.ds default OK

.ds activate

AUTHOR
Mark L. Ulferts

KEYWORDS
dialogshell, dialog, shell, widget

Tk Last change: 3.0.0 3

[incr Widgets] disjointlistbox (n)

NAME
disjointlistbox − Create and manipulate a disjointlistbox widget

SYNOPSIS
disjointlistbox pathName?options?

INHERITANCE
itk::Widget <- Disjointlistbox

STANDARD OPTIONS
activeBackground selectBorderWidth selectForeground
activeForeground activeRelief background
borderWidth buttonPlacement clientData
cursor foreground highlightColor
highlightThickness disabledForeground elementBorderWidth

See the "options" manual entry for details on the standard options.

ASSOCIATED OPTIONS
lhsButtonLabel rhsButtonLabel

See the "button" widget manual entry for details on the above associated options.

labelFont lhsLabelText rhsLabelText

See the "label" widget manual entry for details on the above associated options.

jump troughColor

See the "scrollbar" widget class manual entry for details on the above associated options.

textBackground textFont
lhsItems rhsItems

See the "scrolledlistbox" widget manual entry for details on the above associated options.

WIDGET-SPECIFIC OPTIONS
Name: buttonPlacement
Class: ButtonPlacement
Command-Line Switch: -buttonplacement

Specifies the placement of the insertion and removal buttons relative to the scrolledlistbox wid-
getsn, bottom, or center. The default is bottom.

Name: lhsLabelText
Class: LabelText
Command-Line Switch: -lhslabeltext

Specifies the text for the label of the lhs scrolledlistbox. The default is "Available".

Name: rhsLabelText
Class: LabelText
Command-Line Switch: -rhslabeltext

Specifies the text for the label of the rhs scrolledlistbox. The default is "Available".

Name: lhsButtonLabel
Class: LabelText
Command-Line Switch: -lhsbuttonlabel

Specifies the text for the button of the lhs scrolledlistbox. The default is "Insert >>".

Tk Last change: 3.0.0 1

[incr Widgets] disjointlistbox (n)

Name: rhsButtonLabel
Class: LabelText
Command-Line Switch: -rhsbuttonlabel

Specifies the text for the button of the rhs scrolledlistbox. The default is "<< Remove".

DESCRIPTION
The disjointlistbox command creates a disjoint pair of listboxs similar to the OSF/Motif "Book" printing
dialog of the "FrameMaker" program. It is implementation constists of a two Scrolledlistboxs, 2 buttons,
and 2 labels.

The disjoint behavior of this widget exists between the interaction of the two Scrolledlistboxes with one
another. That is, a given instance of a Disjointlistbox will never exist, without the aid of a hack magician,
which has Scrolledlistbox widgets with items in common. That means the relationship between the two is
maintained similar to that of disjoint sets.

Users may transfer items between the two Listbox widgets using the the two buttons.

Options exists which include the ability to configure the "items" displayed by the 2 Scrolledlistboxes and to
control the placement of the insertion and removal buttons.

METHODS
Thedisjointlistbox command creates a new Tcl command whose name ispathName. This command may
be used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command. The following commands are possible
for disjointlistbox widgets:

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thedisjointlistbox command.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thedisjointlistbox com-
mand.

pathNamesetlhs
Set the current contents of the left-most Scrolledlistbox with the input list of items. Removes all
(if any) items from the right-most Scrolledlistbox which exist in the input list option to maintain
the disjoint property between the two

pathNamesetrhs
Set the current contents of the right-most Scrolledlistbox with the input list of items. Removes all
(if any) items from the left-most Scrolledlistbox which exist in the input list option to maintain the

Tk Last change: 3.0.0 2

[incr Widgets] disjointlistbox (n)

disjoint property between the two

pathNamegetlhs
Returns the current contents of the left-most Scrolledlistbox

pathNamegetrhs
Returns the current contents of the right-most Scrolledlistbox

pathNameinsertlhs
Add the input list of items to the current contents of the left-most Scrolledlistbox. Removes all (if
any) items from the right-most Scrolledlistbox which exist in the input list option to maintain the
disjoint property between the two

pathNameinsertrhs
Add the input list of items to the current contents of the right-most Scrolledlistbox. Removes all
(if any) items from the left-most Scrolledlistbox which exist in the input list option to maintain the
disjoint property between the two.

Name: lhs
Class: Scrolledlistbox

The lhs component is the scrolledlistbox for the rhs button. See the "scrolledlistbox" widget man-
ual entry for details on the lhs component item.

Name: rhs
Class: Scrolledlistbox

The rhs component is the scrolledlistbox for the rhs button. See the "scrolledlistbox" widget man-
ual entry for details on the rhs component item.

Name: lhsbutton
Class: utton

The lhsbutton component is the button for users to remove selected items from the lhs Scrolledlist-
box. See the "button" widget manual entry for details on the lhs button component.

Name: rhsbutton
Class: Button

The rhsbutton component is the button for users to remove selected items from the rhs Scrolledlist-
box. See the "button" widget manual entry for details on the rhs button component.

Name: lhsCount
Class: Label

The lhsCount component is the label for displaying a count of the current items in the Scrolledlist-
box. See the "Label" widget manual entry for details on the lhsCount label component.

Name: rhsCount
Class: Label

The rhsCount component is the label for displaying a count of the current items in the Scrolledlist-
box. See the "Label" widget manual entry for details on the rhsCount label component.

EXAMPLE
disjointlistbox .dlb
pack .dlb -padx 10 -pady 10 -fill both -expand yes

Tk Last change: 3.0.0 3

[incr Widgets] disjointlistbox (n)

AUTHOR(S)
John A. Tucker

Anthony Parent

KEYWORDS
disjointlistbox, widget

Tk Last change: 3.0.0 4

[incr Widgets] entryfield (n)

NAME
entryfield − Create and manipulate a entry field widget

SYNOPSIS
entryfield pathName?options?

INHERITANCE
itk::Widget <- LabeledWidget <- entryfield

STANDARD OPTIONS
background borderWidth cursor exportSelection
foreground highlightColor highlightThickness insertBackground
insertBorderWidth insertOffTime insertOnTime insertWidth
justify relief selectBackground selectBorderWidth
selectForeground textVariable width

See the "options" manual entry for details on the standard options.

ASSOCIATED OPTIONS
show state

See the "entry" manual entry for details on the associated options.

INHERITED OPTIONS
disabledForeground labelBitmap labelFont labelImage
labelMargin labelPos labelText labelVariable
state

See the "labeledwidget" class manual entry for details on the inherited options.

WIDGET-SPECIFIC OPTIONS
Name: childSitePos
Class: Position
Command-Line Switch: -childsitepos

Specifies the position of the child site in the entry field:n, s, e, or w. The default is e.

Name: command
Class: Command
Command-Line Switch: -command

Specifies a Tcl command to be executed upon detection of a Return key press event.

Name: fixed
Class: Fixed
Command-Line Switch: -fixed

Restrict entry to the specified number of chars. A value of 0, which is the default, denotes no
limit. The value is the maximum number of chars the user may type into the field, regardles of
field width. For example, if the field width is set to 20 and the fixed value is 10, the user will only
be able to type 10 characters into the field which is 20 characters long.

Name: focusCommand
Class: Command
Command-Line Switch: -focuscommand

Specifies a Tcl command to be executed upon reception of focus.

Name: invalid
Class: Command
Command-Line Switch: -invalid

Tk Last change: 3.0.0 1

[incr Widgets] entryfield (n)

Specifies a Tcl command to be executed upon determination of invalid input. The default is bell.

Name: textBackground
Class: Background
Command-Line Switch: -textbackground

Background color for inside textual portion of the entry field. The value may be given in any of
the forms acceptable toTk_GetColor.

Name: textFont
Class: Font
Command-Line Switch: -textfont

Name of font to use for display of text in entryfield. The value may be given in any of the forms
acceptable toTk_GetFont.

Name: validate
Class: Command
Command-Line Switch: -validate

The validate option allows specification of a validation mechanism. Standard character validation
such asnumeric, alphabetic, integer, hexidecimal, real, and alphanumeric can be handled
through the use of keywords. Should more extensive validation be necessary, the value may con-
tain the name of a command script. The script should return a boolean value. True for valid, false
for invalid. If false is returned, then the procedure associated with the invalid option will be
invoked. If the validation script contains any% characters, then the script will not be executed
directly. Instead, a new script will be generated by replacing each% , and the character following
it, with information from the entryfield. The replacement depends on the character following the
% , as defined in the list below.

%c Replaced with the current input character.

%P Replaced with the contents of the entryfield modified to include the latest keystoke. This is equiv-
alent to peeking at the future contents, enabling rejection prior to the update.

%S Replaced with the current contents of the entryfield prior to the latest keystroke being added.

%W Replaced with the entryfield widget pathname.

DESCRIPTION
The entryfield command creates an enhanced text entry widget with an optional associated label.
Addtional options support validation and establishing a upper limit on the number of characters which may
be entered in the field.

METHODS
The entryfield command creates a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command. The following commands are possible
for entryfield widgets:

Tk Last change: 3.0.0 2

[incr Widgets] entryfield (n)

ASSOCIATED METHODS
delete get icursor index
insert scan selection xview

See the "entry" manual entry for details on the associated methods.

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by theentryfield command.

pathNamechildsite
Returns the path name of the child site.

pathNameclear
Clear entry widget

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by theentryfield command.

COMPONENTS
Name: efchildsite
Class: frame

The efchildsite component is the user child site for the entry field. See the "frame" widget manual
entry for details on the efchildsite component item.

Name: entry
Class: entry

The entry component provides the entry field for user text input and display. See the "entry" wid-
get manual entry for details on the entry component item.

EXAMPLE
option add∗textBackground white

proc returnCmd {} {
puts stdout "Return Pressed"

}

proc invalidCmd {} {
puts stdout "Alphabetic contents invalid"

}

entryfield .ef -command returnCmd

entryfield .fef -labeltext "Fixed:" -fixed 10 -width 12

entryfield .nef -labeltext "Numeric:" -validate numeric -width 12

Tk Last change: 3.0.0 3

[incr Widgets] entryfield (n)

entryfield .aef -labeltext "Alphabetic:" \
-validate alphabetic -width 12 -invalid invalidCmd

entryfield .pef -labeltext "Password:" \
-show 267 -width 12 -command returnCmd

Labeledwidget::alignlabels .ef .fef .nef .aef .pef

pack .ef -fill x -expand yes -padx 10 -pady 5
pack .fef -fill x -expand yes -padx 10 -pady 5
pack .nef -fill x -expand yes -padx 10 -pady 5
pack .aef -fill x -expand yes -padx 10 -pady 5
pack .pef -fill x -expand yes -padx 10 -pady 5

AUTHOR
Sue Yockey

Mark L. Ulferts

KEYWORDS
entryfield, widget

Tk Last change: 3.0.0 4

[incr Widgets] extfileselectionbox (n)

NAME
extfileselectionbox − Create and manipulate a file selection box widget

SYNOPSIS
extfileselectionboxpathName?options?

INHERITANCE
itk::Widget <- Extfileselectionbox

STANDARD OPTIONS
activeBackground background borderWidth cursor
foreground highlightColor highlightThickness insertBackground
insertBorderWidth insertOffTime insertOnTime insertWidth
selectBackground selectBorderWidth selectForeground

See the "options" manual entry for details on the standard options.

ASSOCIATED OPTIONS
popupCursor textBackground textFont

See the "combobox" widget manual entry for details on the above associated options.

labelFont

See the "labeledwidget" widget manual entry for details on the above associated options.

sashCursor

See the "panedwindow" widget manual entry for details on the above associated options.

activeRelief elementBorderWidth jump troughColor

See the "scrollbar" widget class manual entry for details on the above associated options.

textBackground textFont

See the "scrolledlistbox" widget manual entry for details on the above associated options.

WIDGET-SPECIFIC OPTIONS
Name: childSitePos
Class: Position
Command-Line Switch: -childsitepos

Specifies the position of the child site in the extended fileselection box:n, s, e, w, top, or bottom.
The default is s.

Name: directory
Class: Directory
Command-Line Switch: -directory

Specifies the initial default directory. The default is the present working directory.

Name: dirSearchCommand
Class: Command
Command-Line Switch: -dirsearchcommand

Specifies a Tcl command to be executed to perform a directory search. The command will receive
the current working directory and filter mask as arguments. The command should return a list of
files which will be placed into the directory list.

Name: dirsLabel
Class: Text
Command-Line Switch: -dirslabel

Specifies the text of the label for the directory list. The default is "Directories".

Tk Last change: 3.0.0 1

[incr Widgets] extfileselectionbox (n)

Name: dirsOn
Class: DirsOn
Command-Line Switch: -dirson

Specifies whether or not to display the directory list. The value may be given in any of the forms
acceptable toTcl_GetBoolean. The default is true.

Name: fileSearchCommand
Class: Command
Command-Line Switch: -filesearchcommand

Specifies a Tcl command to be executed to perform a file search. The command will receive the
current working directory and filter mask as arguments. The command should return a list of files
which will be placed into the file list.

Name: filesLabel
Class: Text
Command-Line Switch: -fileslabel

Specifies the text of the label for the files list. The default is "Files".

Name: filesOn
Class: FilesOn
Command-Line Switch: -fileson

Specifies whether or not to display the files list. The value may be given in any of the forms
acceptable toTcl_GetBoolean. The default is true.

Name: fileType
Class: FileType
Command-Line Switch: -filetype

Specify the type of files which may appear in the file list:regular, directory , or any. The default
is regular.

Name: filterCommand
Class: Command
Command-Line Switch: -filtercommand

Specifies a Tcl command to be executed upon hitting the Return key in the filter combobox wid-
get.

Name: filterLabel
Class: Text
Command-Line Switch: -filterlabel

Specifies the text of the label for the filter combobox. The default is "Filter".

Name: filterOn
Class: FilterOn
Command-Line Switch: -filteron

Specifies whether or not to display the filter combobox. The value may be given in any of the
forms acceptable toTcl_GetBoolean. The default is true.

Name: height
Class: Height
Command-Line Switch: -height

Specifies the height of the selection box. The value may be specified in any of the forms accept-
able to Tk_GetPixels. The default is 300 pixels.

Tk Last change: 3.0.0 2

[incr Widgets] extfileselectionbox (n)

Name: invalid
Class: Command
Command-Line Switch: -invalid

Command to be executed should the filter contents be proven inv alid. The default is {bell}.

Name: mask
Class: Mask
Command-Line Switch: -mask

Specifies the initial file mask string. The default is "∗".

Name: noMatchString
Class: NoMatchString
Command-Line Switch: -nomatchstring

Specifies the string to be displayed in the files list should no files match the mask. The default is
"".

Name: selectDirCommand
Class: Command
Command-Line Switch: -selectdirommand

Specifies a Tcl command to be executed following selection of a directory in the directory list.

Name: selectFileCommand
Class: Command
Command-Line Switch: -selectfileommand

Specifies a Tcl command to be executed following selection of a file in the files list.

Name: selectionCommand
Class: Command
Command-Line Switch: -selectioncommand

Specifies a Tcl command to be executed upon hitting the Return key in the selection combobox
widget.

Name: selectionLabel
Class: Text
Command-Line Switch: -selectionlabel

Specifies the text of the label for the selection combobox. The default is "Selection".

Name: selectionOn
Class: SelectionOn
Command-Line Switch: -selectionon

Specifies whether or not to display the selection combobox. The value may be given in any of the
forms acceptable toTcl_GetBoolean. The default is true.

Name: width
Class: Width
Command-Line Switch: -width

Specifies the width of the selection box. The value may be specified in any of the forms accept-
able to Tk_GetPixels. The default is 350 pixels.

Tk Last change: 3.0.0 3

[incr Widgets] extfileselectionbox (n)

DESCRIPTION
Theextfileselectionboxcommand creates an extended file selection box which is slightly different than the
fileselectionbox widget. The differences are mostly cosmetic in that the listboxes are within a panedwin-
dow and the entryfields for the filter and selection have been replaced by comboboxes. Other than that the
interface is practically the same.

METHODS
The extfileselectionboxcommand creates a new Tcl command whose name ispathName. This command
may be used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command. The following commands are possible
for extfileselectionbox widgets:

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by theextfileselectionboxcommand.

pathNamechildsite
Returns the child site widget path name.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Option may have any of the values accepted by theextfileselectionbox
command.

pathNamefilter
Update the current contents of the extended file selection box based on the current filter combobox
value.

pathNameget
Returns the current value of the selection combobox widget.

COMPONENTS
Name: dirs
Class: Scrolledlistbox

The dirs component is the directory list box for the extended fileselection box. See the
"scrolledlistbox" widget manual entry for details on the dirs component item.

Name: files
Class: Scrolledlistbox

The files component is the file list box for the extended fileselection box. See the "scrolledlistbox"
widget manual entry for details on the files component item.

Tk Last change: 3.0.0 4

[incr Widgets] extfileselectionbox (n)

Name: filter
Class: Combobox

The filter component is the field for user input of the filter value. See the "combobox" widget
manual entry for details on the filter component item.

Name: selection
Class: Combobox

The selection component is the field for user input of the currently selected file value. See the
"combobox" widget manual entry for details on the selection component item.

EXAMPLE
extfileselectionbox .fsb
pack .fsb -padx 10 -pady 10 -fill both -expand yes

AUTHOR(S)
Mark L. Ulferts

Anthony Parent

KEYWORDS
extfileselectionbox, widget

Tk Last change: 3.0.0 5

[incr Widgets] extfileselectiondialog (n)

NAME
extfileselectiondialog − Create and manipulate a file selection dialog widget

SYNOPSIS
extfileselectiondialogpathName?options?

INHERITANCE
itk::Toplevel <- Shell <- Dialogshell <- Dialog <- Extfileselectiondialog

STANDARD OPTIONS
activeBackground background borderWidth cursor
foreground highlightColor highlightThickness insertBackground
insertBorderWidth insertOffTime insertOnTime insertWidth
selectBackground selectBorderWidth selectForeground

See the "options" manual entry for details on the standard options.

ASSOCIATED OPTIONS
popupCursor textBackground textFont

See the "combobox" widget manual entry for details on the above associated options.

childSitePos directory dirsLabel dirSearchCommand
dirsOn filesLabel filesLabelOn fileSearchCommand
filesOn fileType filterLabel filterOn
invalid mask noMatchString selectionLabel
selectionOn

See the "extfileselectionbox" widget manual entry for details on the above associated options.

labelFont

See the "labeledwidget" widget manual entry for details on the above associated options.

sashCursor

See the "panedwindow" widget manual entry for details on the above associated options.

labelFont

See the "labeledwidget" widget manual entry for details on the above associated options.

activeRelief elementBorderWidth jump troughColor

See the "scrollbar" widget class manual entry for details on the above associated options.

textBackground textFont

See the "scrolledlistbox" widget manual entry for details on the above associated options.

INHERITED OPTIONS
buttonBoxPadX buttonBoxPadY buttonBoxPos padX
padY separator thickness

See the "dialogshell" widget manual entry for details on the above inherited options.

height master modality width

See the "shell" widget manual entry for details on the above inherited options.

title

See the "Toplevel" widget manual entry for details on the above inherited options.

Tk Last change: 3.0.0 1

[incr Widgets] extfileselectiondialog (n)

DESCRIPTION
The extfileselectiondialogcommand creates an extended file selection dialog which is slightly different
than the fileselectiondialog widget. The differences are mostly cosmetic in that the listboxes are within a
panedwindow and the entryfields for the filter and selection have been replaced by comboboxes. Other than
that the interface is practically the same.

METHODS
The extfileselectiondialogcommand creates a new Tcl command whose name ispathName. This com-
mand may be used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command. The following commands are possible
for extfileselectiondialog widgets:

ASSOCIATED METHODS
get childsite filter

See the "fileselectionbox" class manual entry for details on the associated methods.

INHERITED METHODS
add buttonconfigure default hide
insert invoke show

See the "buttonbox" widget manual entry for details on the above inherited methods.

activate center deactivate

See the "shell" widget manual entry for details on the above inherited methods.

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by theextfileselectiondialogcommand.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by theextfileselectiondialog
command.

COMPONENTS
Name: fsb
Class: Fileselectionbox

The fsb component is the extfileselectionbox for the extfileselectiondialog. See the "extfileselec-
tionbox" widget manual entry for details on the fsb component item.

EXAMPLE
#
Non-modal example

Tk Last change: 3.0.0 2

[incr Widgets] extfileselectiondialog (n)

#
proc okCallback {} {

puts "You selected [.nmfsd get]"
.nmfsd deactivate

}

extfileselectiondialog .nmfsd -title Non-Modal
.nmfsd buttonconfigure OK -command okCallback

.nmfsd activate

#
Modal example
#
extfileselectiondialog .mfsd -modality application
.mfsd center

if {[.mfsd activate]} {
puts "You selected [.mfsd get]"

} else {
puts "You cancelled the dialog"

}

AUTHOR
Mark L. Ulferts

Anthony L. Parent

KEYWORDS
extfileselectiondialog, extfileselectionbox, dialog, dialogshell, shell, widget

Tk Last change: 3.0.0 3

[incr Widgets] feedback (n)

NAME
feedback − Create and manipulate a feedback widget to display feedback on the current status of an ongo-
ing operation to the user.

SYNOPSIS
feedbackpathName?options?

INHERITANCE
itk::Widget <- Labeledwidget <- Feedback

STANDARD OPTIONS
background cursor foreground highlightColor
highlightThickness

See the "options" manual entry for details on the standard options.

INHERITED OPTIONS
labelBitmap labelFont labelImage labelMargin
labelPos labelText labelVariable

See the "labeledwidget" class manual entry for details on the inherited options.

WIDGET-SPECIFIC OPTIONS
Name: barcolor
Class: BarColor
Command-Line Switch: -barcolor

Specifies the color of the status bar, in any of the forms acceptable toTk_GetColor. The default
is DodgerBlue.

Name: barheight
Class: BarHeight
Command-Line Switch: -barheight

Specifies the height of the status bar, in any of the forms acceptable toTk_GetPixels. The default
is 20.

Name: troughColor
Class: Tr oughColor
Command-Line Switch: -troughcolor

Specifies the color of the frame in which the status bar sits, in any of the forms acceptable to
Tk_GetColor. The default is white.

Name: steps
Class: Steps
Command-Line Switch: -steps

Specifies the total number of steps for the status bar. The default is 10.

DESCRIPTION
The feedbackcommand creates a widget to display feedback on the current status of an ongoing operation
to the user. Display is given as a percentage and as a thermometer type bar. Options exist for adding a label
and controlling its position.

METHODS
The feedbackcommand creates a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Tk Last change: 3.0.0 1

[incr Widgets] feedback (n)

Optionand theargs determine the exact behavior of the command. The following commands are possible
for scrolledtext widgets:

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thescrolledhtml command.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thefeedbackcommand.

pathNamereset
Reset the current number of steps completed to 0, and configures the percentage complete label
text to 0%

pathNamestep?inc?
Increase the current number of steps completed by the amount specified byinc. Inc defaults to 1.

EXAMPLE
feedback .fb -labeltext "Status" -steps 20
pack .fb -padx 10 -pady 10 -fill both -expand yes

for {set i 0} {$i < 20} {incr i} {
.fb step
after 500

}

ACKNOWLEDGEMENTS
Sam Shen

This code is based largely on his feedback.tcl code from tk inspect. The original feedback code is
copyright 1995 Lawrence Berkeley Laboratory.

AUTHOR
Kris Raney

KEYWORDS
feedback, widget

Tk Last change: 3.0.0 2

[incr Widgets] fileselectionbox (n)

NAME
fileselectionbox − Create and manipulate a file selection box widget

SYNOPSIS
fileselectionboxpathName?options?

INHERITANCE
itk::Widget <- Fileselectionbox

STANDARD OPTIONS
activeBackground background borderWidth cursor
foreground highlightColor highlightThickness insertBackground
insertBorderWidth insertOffTime insertOnTime insertWidth
selectBackground selectBorderWidth selectForeground

See the "options" manual entry for details on the standard options.

ASSOCIATED OPTIONS
textBackground textFont

See the "entryfield" widget manual entry for details on the above associated options.

labelFont

See the "labeledwidget" widget manual entry for details on the above associated options.

activeRelief elementBorderWidth jump troughColor

See the "scrollbar" widget class manual entry for details on the above associated options.

textBackground textFont

See the "scrolledlistbox" widget manual entry for details on the above associated options.

WIDGET-SPECIFIC OPTIONS
Name: childSitePos
Class: Position
Command-Line Switch: -childsitepos

Specifies the position of the child site in the selection box:n, s, e, w, top, bottom, or center. The
default is s.

Specifies a Tcl command procedure which is called when an file list item is double clicked. Typi-
cally this occurs when mouse button 1 is double clicked over a file name.

Name: directory
Class: Directory
Command-Line Switch: -directory

Specifies the initial default directory. The default is the present working directory.

Name: dirSearchCommand
Class: Command
Command-Line Switch: -dirsearchcommand

Specifies a Tcl command to be executed to perform a directory search. The command will receive
the current working directory and filter mask as arguments. The command should return a list of
files which will be placed into the directory list.

Name: dirsLabel
Class: Text
Command-Line Switch: -dirslabel

Specifies the text of the label for the directory list. The default is "Directories".

Tk Last change: 3.0.0 1

[incr Widgets] fileselectionbox (n)

Name: dirsOn
Class: DirsOn
Command-Line Switch: -dirson

Specifies whether or not to display the directory list. The value may be given in any of the forms
acceptable toTcl_GetBoolean. The default is true.

Name: fileSearchCommand
Class: Command
Command-Line Switch: -filesearchcommand

Specifies a Tcl command to be executed to perform a file search. The command will receive the
current working directory and filter mask as arguments. The command should return a list of files
which will be placed into the file list.

Name: filesLabel
Class: Text
Command-Line Switch: -fileslabel

Specifies the text of the label for the files list. The default is "Files".

Name: filesOn
Class: FilesOn
Command-Line Switch: -fileson

Specifies whether or not to display the files list. The value may be given in any of the forms
acceptable toTcl_GetBoolean. The default is true.

Name: fileType
Class: FileType
Command-Line Switch: -filetype

Specify the type of files which may appear in the file list:regular, directory , or any. The default
is regular.

Name: filterCommand
Class: Command
Command-Line Switch: -filtercommand

Specifies a Tcl command to be executed upon hitting the Return key in the filter entry widget.

Name: filterLabel
Class: Text
Command-Line Switch: -filterlabel

Specifies the text of the label for the filter entry field. The default is "Filter".

Name: filterOn
Class: FilterOn
Command-Line Switch: -filteron

Specifies whether or not to display the filter entry. The value may be given in any of the forms
acceptable toTcl_GetBoolean. The default is true.

Name: height
Class: Height
Command-Line Switch: -height

Specifies the height of the selection box. The value may be specified in any of the forms accept-
able to Tk_GetPixels. The default is 360 pixels.

Tk Last change: 3.0.0 2

[incr Widgets] fileselectionbox (n)

Name: invalid
Class: Command
Command-Line Switch: -invalid

Command to be executed should the filter contents be proven inv alid. The default is {bell}.

Name: mask
Class: Mask
Command-Line Switch: -mask

Specifies the initial file mask string. The default is "∗".

Name: noMatchString
Class: NoMatchString
Command-Line Switch: -nomatchstring

Specifies the string to be displayed in the files list should no files match the mask. The default is
"".

Name: selectDirCommand
Class: Command
Command-Line Switch: -selectdirommand

Specifies a Tcl command to be executed following selection of a directory in the directory list.

Name: selectFileCommand
Class: Command
Command-Line Switch: -selectfileommand

Specifies a Tcl command to be executed following selection of a file in the files list.

Name: selectionCommand
Class: Command
Command-Line Switch: -selectioncommand

Specifies a Tcl command to be executed upon hitting the Return key in the selection entry widget.

Name: selectionLabel
Class: Text
Command-Line Switch: -selectionlabel

Specifies the text of the label for the selection entry field. The default is "Selection".

Name: selectionOn
Class: SelectionOn
Command-Line Switch: -selectionon

Specifies whether or not to display the selection entry. The value may be given in any of the forms
acceptable toTcl_GetBoolean. The default is true.

Name: width
Class: Width
Command-Line Switch: -width

Specifies the width of the selection box. The value may be specified in any of the forms accept-
able to Tk_GetPixels. The default is 470 pixels.

DESCRIPTION

Tk Last change: 3.0.0 3

[incr Widgets] fileselectionbox (n)

Thefileselectionboxcommand creates a file selection box similar to the OSF/Motif standard Xmfileselec-
tionbox composite widget. The fileselectionbox is composed of directory and file scrolled lists as well as
filter and selection entry fields. Bindings are in place such that selection of a directory list item loads the
filter entry field and selection of a file list item loads the selection entry field. Options exist to control the
appearance and actions of the widget.

METHODS
Thefileselectionboxcommand creates a new Tcl command whose name ispathName. This command may
be used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command. The following commands are possible
for fileselectionbox widgets:

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thefileselectionboxcommand.

pathNamechildsite
Returns the child site widget path name.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thefileselectionboxcom-
mand.

pathNamefilter
Update the current contents of the file selection box based on the current filter entry field value.

pathNameget
Returns the current value of the selection entry widget.

COMPONENTS
Name: dirs
Class: Scrolledlistbox

The dirs component is the directory list box for the file selection box. See the "scrolledlistbox"
widget manual entry for details on the dirs component item.

Name: files
Class: Scrolledlistbox

The files component is the file list box for the file selection box. See the "scrolledlistbox" widget
manual entry for details on the files component item.

Name: filter
Class: Entryfield

The filter component is the entry field for user input of the filter value. See the "entryfield" widget

Tk Last change: 3.0.0 4

[incr Widgets] fileselectionbox (n)

manual entry for details on the filter component item.

Name: selection
Class: Entryfield

The selection component is the entry field for user input of the currently selected file value. See
the "entryfield" widget manual entry for details on the selection component item.

EXAMPLE
fileselectionbox .fsb
pack .fsb -padx 10 -pady 10 -fill both -expand yes

AUTHOR(S)
Mark L. Ulferts

KEYWORDS
fileselectionbox, widget

Tk Last change: 3.0.0 5

[incr Widgets] fileselectiondialog (n)

NAME
fileselectiondialog − Create and manipulate a file selection dialog widget

SYNOPSIS
fileselectiondialogpathName?options?

INHERITANCE
itk::Toplevel <- Shell <- Dialogshell <- Dialog <- Fileselectiondialog

STANDARD OPTIONS
activeBackground background borderWidth cursor
foreground highlightColor highlightThickness insertBackground
insertBorderWidth insertOffTime insertOnTime insertWidth
selectBackground selectBorderWidth selectForeground

See the "options" manual entry for details on the standard options.

ASSOCIATED OPTIONS
textBackground textFont

See the "entryfield" widget manual entry for details on the above associated options.

childSitePos directory dirsLabel dirSearchCommand
dirsOn filesLabel filesLabelOn fileSearchCommand
filesOn fileType filterLabel filterOn
invalid mask noMatchString selectionLabel
selectionOn

See the "fileselectionbox" widget manual entry for details on the above associated options.

labelFont

See the "labeledwidget" widget manual entry for details on the above associated options.

textBackground textFont

See the "scrolledlistbox" widget manual entry for details on the above associated options.

activeRelief elementBorderWidth jump troughColor

See the "scrollbar" widget class manual entry for details on the above associated options.

INHERITED OPTIONS
buttonBoxPadX buttonBoxPadY buttonBoxPos padX
padY separator thickness

See the "dialogshell" widget manual entry for details on the above inherited options.

height master modality width

See the "shell" widget manual entry for details on the above inherited options.

title

See the "Toplevel" widget manual entry for details on the above inherited options.

DESCRIPTION
Thefileselectiondialogcommand creates a file selection dialog similar to the OSF/Motif standard compos-
ite widget. The fileselectiondialog is derived from the Dialog class and is composed of a FileSelectionBox
with attributes set to manipulate the dialog buttons.

Tk Last change: 3.0.0 1

[incr Widgets] fileselectiondialog (n)

METHODS
The fileselectiondialogcommand creates a new Tcl command whose name ispathName. This command
may be used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command. The following commands are possible
for fileselectiondialog widgets:

ASSOCIATED METHODS
get childsite filter

See the "fileselectionbox" class manual entry for details on the associated methods.

INHERITED METHODS
add buttonconfigure default hide
insert invoke show

See the "buttonbox" widget manual entry for details on the above inherited methods.

activate center deactivate

See the "shell" widget manual entry for details on the above inherited methods.

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thefileselectiondialogcommand.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Option may have any of the values accepted by thefileselectiondialog
command.

COMPONENTS
Name: fsb
Class: Fileselectionbox

The fsb component is the file selection box for the file selection dialog. See the "fileselectionbox"
widget manual entry for details on the fsb component item.

EXAMPLE
#
Non-modal example
#
proc okCallback {} {

puts "You selected [.nmfsd get]"
.nmfsd deactivate

}

Tk Last change: 3.0.0 2

[incr Widgets] fileselectiondialog (n)

fileselectiondialog .nmfsd -title Non-Modal
.nmfsd buttonconfigure OK -command okCallback

.nmfsd activate

#
Modal example
#
fileselectiondialog .mfsd -modality application
.mfsd center

if {[.mfsd activate]} {
puts "You selected [.mfsd get]"

} else {
puts "You cancelled the dialog"

}

AUTHOR
Mark L. Ulferts

KEYWORDS
fileselectiondialog, fileselectionbox, dialog, dialogshell, shell, widget

Tk Last change: 3.0.0 3

[incr Widgets] finddialog (n)

NAME
finddialog − Create and manipulate a find dialog widget

SYNOPSIS
finddialog pathName?options?

INHERITANCE
itk::Toplevel <- Shell <- Dialogshell <- Finddialog

STANDARD OPTIONS
activeBackground activeForeground background borderWidth
cursor disabledForeground font foreground
highlightColor highlightThickness insertBackground insertBorderWidth
insertOffTime insertOnTime insertWidth selectBackground
selectBorderWidth selectColor selectForeground

See the "options" manual entry for details on the standard options.

ASSOCIATED OPTIONS
selectColor

See the "checkbutton" widget manual entry for details on the above associated options.

selectColor

See the "entryfield" widget manual entry for details on the above associated options.

labelFont

See the "labeledwidget" widget manual entry for details on the above associated options.

INHERITED OPTIONS
buttonBoxPadX buttonBoxPadY buttonBoxPos padX
padY separator thickness

See the "dialogshell" widget manual entry for details on the above inherited options.

height master modality width

See the "shell" widget manual entry for details on the above inherited options.

title

See the "Toplevel" widget manual entry for details on the above inherited options.

WIDGET-SPECIFIC OPTIONS
Name: clearCommand
Class: Command
Command-Line Switch: -clearcommand

Specifies a command to be invoked following a clear operation. The option is meant to be used as
means of notification that the clear has taken place and allow other actions to take place such as
disabling a find again menu.

Name: matchCommand
Class: Command
Command-Line Switch: -matchcommand

Specifies a command to be invoked following a find operation. The command is called with a
match point as an argument which identifies where exactly where in the text or scrolledtext widget
that the match is located. Should a match not be found the match point is {}. The option is meant
to be used as a means of notification that the find operation has completed and allow other actions
to take place such as disabling a find again menu option if the match point was {}.

Tk Last change: 3.0.0 1

[incr Widgets] finddialog (n)

Name: patternBackground
Class: Background
Command-Line Switch: -patternbackground

Specifies the background color of the text matching the search pattern. It may have any of the
forms accepted by Tk_GetColor. The default is gray44.

Name: patternForeground
Class: Background
Command-Line Switch: -patternforeground

Specifies the foreground color of the text matching the search pattern. It may have any of the
forms accepted by Tk_GetColor. The default is white.

Name: searchBackground
Class: Background
Command-Line Switch: -searchbackground

Specifies the background color of the line containing the matching the search pattern. It may have
any of the forms accepted by Tk_GetColor. The default is gray77.

Name: searchForeground
Class: Background
Command-Line Switch: -searchforeground

Specifies the foreground color of the line containing the matching the search pattern. It may have
any of the forms accepted by Tk_GetColor. The default is black.

Name: textWidget
Class: TextWidget
Command-Line Switch: -textwidget

Specifies the text or scrolledtext widget to be searched.

DESCRIPTION
Thefinddialog command creates a find dialog that works in conjunction with a text or scrolledtext widget
to provide a means of performing search operations. The user is prompted for a text pattern to be found in
the text or scrolledtext widget. The search can be for all occurances, by regular expression, considerate of
the case, or backwards.

METHODS
The finddialog command creates a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command. The following commands are possible
for finddialog widgets:

INHERITED METHODS
add buttonconfigure default hide
invoke show

See the "buttonbox" widget manual entry for details on the above inherited methods.

Tk Last change: 3.0.0 2

[incr Widgets] finddialog (n)

activate center deactivate

See the "shell" widget manual entry for details on the above inherited methods.

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thefinddialog command.

pathNameclear
Clears the pattern in the entry field and the pattern matchin indicators in the text or scrolledtext
widget.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thefinddialog command.

pathNamefind
Search for a specific text string in the text widget given by the -textwidget option. This method is
the standard callback for the Find button. It is made available such that it can be bound to a find
again action.

COMPONENTS
Name: all
Class: Checkbutton

The all component specifies that all the matches of the pattern should be found when performing
the search. See the "checkbutton" widget manual entry for details on the all component item.

Name: backwards
Class: Checkbutton

The backwards component specifies that the search should continue in a backwards direction
towards the beginning of the text or scrolledtext widget. See the "checkbutton" widget manual
entry for details on the backwards component item.

Name: case
Class: Checkbutton

The case component specifies that the case of the pattern should be taken into consideration when
performing the search. See the "checkbutton" widget manual entry for details on the case compo-
nent item.

Name: pattern
Class: Entryfield

The pattern component provides the pattern entry field. See the "entryfield" widget manual entry
for details on the pattern component item.

Name: regexp
Class: Checkbutton

The regexp component specifies that the pattern is a regular expression. See the "checkbutton"
widget manual entry for details on the regexp component item.

Tk Last change: 3.0.0 3

[incr Widgets] finddialog (n)

EXAMPLE
scrolledtext .st
pack .st
.st insert end "Now is the time for all good men\n"
.st insert end "to come to the aid of their country"

finddialog .fd -textwidget .st
.fd center .st
.fd activate

AUTHOR
Mark L. Ulferts

KEYWORDS
finddialog, dialogshell, shell, widget

Tk Last change: 3.0.0 4

[incr Widgets] hierarchy (n)

NAME
hierarchy − Create and manipulate a hierarchy widget

SYNOPSIS
hierarchy pathName?options?

INHERITANCE
itk::Widget <- Labeledwidget <- Scrolledwidget <- Hierarchy

STANDARD OPTIONS
activeBackground activeForeground background borderWidth
cursor disabledForeground foreground highlightColor
highlightThickness relief selectBackground selectForeground

See the "options" manual entry for details on the standard options.

ASSOCIATED OPTIONS
activeRelief elementBorderWidth jump troughColor

See the "scrollbar" widget manual entry for details on the above associated options.

spacing1 spacing2 spacing3 tabs

See the "text" widget manual entry for details on the above associated options.

INHERITED OPTIONS
labelBitmap labelFont labelImage labelMargin
labelPos labelText labelVariable

See the "labeledwidget" class manual entry for details on the inherited options.

WIDGET-SPECIFIC OPTIONS
Name: alwaysQuery
Class: AlwaysQuery
Command-Line Switch: -alwaysquery

Boolean flag which tells the hierarchy widget weather or not each refresh of the display should be
via a new query using the command value of the -querycommand option or use the values previous
found the last time the query was made. The default is no.

Name: closedIcon
Class: Icon
Command-Line Switch: -closedicon

Specifies the name of an existing closed icon image to be used in the hierarchy before those nodes
that are collapsed. Should one not be provided, then a folder icon will be generated, pixmap if
possible, bitmap otherwise.

Name: expanded
Class: Expanded
Command-Line Switch: -expanded

When true, the hierarchy will be completely expanded when it is first displayed. A fresh display
can be triggered by resetting the -querycommand option. The default is false.

Name: filter
Class: Filter
Command-Line Switch: -filter

When true only the branch nodes and selected items are displayed. This gives a compact view of
important items. The default is false.

Tk Last change: 3.0.0 1

[incr Widgets] hierarchy (n)

Name: height
Class: Height
Command-Line Switch: -height

Specifies the height of the hierarchy as an entire unit. The value may be specified in any of the
forms acceptable toTk_GetPixels. Any additional space needed to display the other components
such as labels, margins, and scrollbars force the hierarchy to be compressed. A value of zero
along with the same value for the width causes the value given for the visibleitems option to be
applied which administers geometry constraints in a different manner. The default height is zero.

Name: iconCommand
Class: Command
Command-Line Switch: -iconcommand

Specifies a command to be executed upon user selection via mouse button one of any additional
icons given in the values returned by the command associated with the -querycommand option. If
this command contains "%n", it is replaced with the name of the node the icon belongs to. Should
it contain "%i" then the icon name is substituted.

Name: markBackground
Class: Foreground
Command-Line Switch: -markbackground

Specifies the background color to use when displaying marked nodes.

Name: markForeground
Class: Background
Command-Line Switch: -markforeground

Specifies the foreground color to use when displaying marked nodes.

Name: menuCursor
Class: Cursor
Command-Line Switch: -menucursor

Specifies the mouse cursor to be used for the item and background menus. The value may have
any of the forms accept able to Tk_GetCursor.

Name: nodeIcon
Class: Icon
Command-Line Switch: -nodeicon

Specifies the name of an existing node icon image to be used in the hierarchy before those nodes
that are leafs. Should one not be provided, then a dog-eared page icon will be generated, pixmap
if possible, bitmap otherwise.

Name: openIcon
Class: Icon
Command-Line Switch: -openicon

Specifies the name of an existing open icon image to be used in the hierarchy before those nodes
that are expanded. Should one not be provided, then an open folder icon will be generated,
pixmap if possible, bitmap otherwise.

Name: queryCommand
Class: Command
Command-Line Switch: -querycommand

Specifies the command executed to query the contents of each node. If this command contains
"%n", it is replaced with the name of the desired node. In its simpilest form it should return the
children of the given node as a list which will be depicted in the display. Since the names of the

Tk Last change: 3.0.0 2

[incr Widgets] hierarchy (n)

children are used as tags in the underlying text widget, each child must be unique in the hierarchy.
Due to the unique requirement, the nodes shall be reffered to as uids or uid in the singular sense.
The format of returned list is

{uid [uid ...]}

where uid is a unique id and primary key for the hierarchy entry

Should the unique requirement pose a problem, the list returned can take on another more
extended form which enables the association of text to be displayed with the uids. The uid must
still be unique, but the text does not have to obey the unique rule. In addition, the format also
allows the specification of additional tags to be used on the same entry in the hierarchy as the uid
and additional icons to be displayed just before the node. The tags and icons are considered to be
the property of the user in that the hierarchy widget will not depend on any of their values. The
extended format is

{{uid [text [tags [icons]]]} {uid [text [tags [icons]]]} ...}

where uid is a unique id and primary key for the hierarchy entry
text is the text to be displayed for this uid
tags is a list of user tags to be applied to the entry
icons is a list of icons to be displayed in front of the text

The hierarchy widget does a look ahead from each node to determine if the node has a children.
This can be cost some performace with large hierarchies. User’s can avoid this by providing a hint
in the user tags. A tag of "leaf" or "branch" tells the hierarchy widget the information it needs to
know thereby avoiding the look ahead operation.

Name: hscrollMode
Class: ScrollMode
Command-Line Switch: -hscrollmode

Specifies the the display mode to be used for the horizontal scrollbar:static, dynamic, or none.
In static mode, the scroll bar is displayed at all times. Dynamic mode displays the scroll bar as
required, and none disables the scroll bar display. The default is static.

Name: sbWidth
Class: Width
Command-Line Switch: -sbwidth

Specifies the width of the scrollbar in any of the forms acceptable toTk_GetPixels.

Name: scrollMargin
Class: Margin
Command-Line Switch: -scrollmargin

Specifies the distance between the text portion of the hierarchy and the scrollbars in any of the
forms acceptable toTk_GetPixels. The default is 3 pixels.

Name: textBackground
Class: Background
Command-Line Switch: -textbackground

Specifies the background color for the text portion of the hierarchy in any of the forms acceptable
to Tk_GetColor.

Name: textFont
Class: Font
Command-Line Switch: -textfont

Specifies the font to be used in the text portion of the hierarchy.

Tk Last change: 3.0.0 3

[incr Widgets] hierarchy (n)

Name: visibleitems
Class: VisibleItems
Command-Line Switch: -visibleitems

Specifies the widthxheight in characters and lines for the hierarchy. This option is only adminis-
tered if the width and height options are both set to zero, otherwise they take precedence. The
default value is 80x24. With the visibleitems option engaged, geometry constraints are maintained
only on the text portion of the hierarchy. The size of the other components such as labels, mar-
gins, and scroll bars, are additive and independent, effecting the overall size of the hierarchy. In
contrast, should the width and height options have non zero values, they are applied to the hierar-
chy as a whole. The hierarchy is compressed or expanded to maintain the geometry constraints.

Name: vscrollMode
Class: ScrollMode
Command-Line Switch: -vscrollmode

Specifies the the display mode to be used for the vertical scrollbar:static, dynamic,or none. In
static mode, the scroll bar is displayed at all times. Dynamic mode displays the scroll bar as
required, and none disables the scroll bar display. The default is static.

Name: width
Class: Width
Command-Line Switch: -width

Specifies the width of the hierarchy as an entire unit. The value may be specified in any of the
forms acceptable toTk_GetPixels. Any additional space needed to display the other components
such as labels, margins, and scrollbars force the text portion of the hierarchy to be compressed. A
value of zero along with the same value for the height causes the value given for the visibleitems
option to be applied which administers geometry constraints in a different manner. The default
width is zero.

DESCRIPTION
Thehierarchy command creates a hierarchical data view widget. It allows the graphical management of a
a list of nodes that can be expanded or collapsed. Individual nodes can be highlighted. Clicking with the
right mouse button on any item brings up a special item menu. Clicking on the background area brings up
a different popup menu. Options exist to provide user control over the loading of the nodes and actions
associated with node selection. Since the hierarchy is based on the scrolledtext widget, it includes options
to control the method in which the scrollbars are displayed, i.e. statically or dynamically. Options also
exist for adding a label to the hierarchy and controlling its position.

METHODS
The hierarchy command creates a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command. The following commands are possible
for hierarchy widgets:

ASSOCIATED METHODS
bbox compare debug delete
dlineinfo dump get index
insert scan search see

Tk Last change: 3.0.0 4

[incr Widgets] hierarchy (n)

tag window xview yview

See the "text" manual entry for details on the standard methods.

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thehierarchy command.

pathNameclear
Removes all items from the hierarchy display including all tags and icons. The display will
remain empty until the -filter or -querycommand options are set.

pathNamecollapseuid
Collapses the hierarchy beneath the node with the specified unique id by one level. Since this can
take a moment for large hierarchies, the cursor will be changed to a watch during the collapse.
Also, if any of the nodes beneath the node being collapsed are selected, their status is changed to
unselected.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thehierarchy command.

pathNamecurrent
Returns the tags for the node that was most recently selected by the right mouse button when the
item menu was posted. Usually used by the code in the item menu to figure out what item is being
manipulated.

pathNamedraw ?when?
Performs a complete redraw of the entire hierarchy. When may be either -now or -ev entually
where the latter means the draw can be performed after idle.

pathNameexpanduid
Expands the hierarchy beneath the node with the specified unique id by one level. Since this can
take a moment for large hierarchies, the cursor will be changed to a watch during the expansion.

pathNamemark option ?arg arg ...?
This command is used to manipulate marks which is quite similar to selection, adding a secondary
means of hilighting an item in the hierarchy. The exact behavior of the command depends on the
option argument that follows themark argument. The following forms of the command are cur-
rently supported:

pathNamemark clear
Clears all the currently marked nodes in the hierarchy.

pathNamemark add uid ?uid uid ...?
Marks the nodes with the specified uids in the hierarchy using the-markbackground
and -markforeground options and without affecting the mark state of any other nodes
that were already marked.

pathNamemark remove uid ?uid uid ...?
Unmarks the nodes with the specified uids in the hierarchy without affecting the mark
state of any other nodes that were already marked.

Tk Last change: 3.0.0 5

[incr Widgets] hierarchy (n)

pathNamemark get
Returns a list of the unique ids that are currently marked.

pathNamerefresh uid
Performs a redraw of a specific node that has the given uid. If the node is not currently visible or
in other words already drawn on the text, then no action is taken.

pathNameprune uid
Removes the node specified by the given uid from the hierarchy. Should the node have children,
then all of its children will be removed as well.

pathNameselectionoption?arg arg ...?
This command is used to manipulate the selection of nodes in the hierarchy. The exact behavior of
the command depends on theoptionargument that follows theselectionargument. The following
forms of the command are currently supported:

pathNameselection clear
Clears all the currently selected nodes in the hierarchy.

pathNameselection adduid ?uid uid ...?
Selects the nodes with the specified uids in the hierarchy using the-selectionbackground
and -selectionforegroundoptions and without affecting the selection state of any other
nodes that were already selected.

pathNameselection removeuid ?uid uid ...?
Deselects the nodes with the specified uids in the hierarchy without affecting the selection
state of any other nodes that were already selected.

pathNameselection get
Returns a list of the unique ids that are currently selected.

A nodes selection status is also dependent on it being visible. If a node is selected and its parent is then
collapsed making the selected node not visible, then its selection status is changed to unselected.

pathNametoggleuid
Toggles the hierarchy beneath the node with the specified unique id. If the hierarchy is currently
expanded, then it is collapsed, and vice-versa.

COMPONENTS
Name: list
Class: Text

The list component is the text widget in which the hierarchy is displayed. See the "text" widget
manual entry for details on the text component item.

Name: bgMenu
Class: Menu

The bgMenu component is the popup menu which is displayed upon pressing the right mouse but-
ton in the background, i.e. not over a specific node. Menu items can be added along with their
commands via the component command. See the "menu" widget manual entry for details on the
bgMenu component item.

Name: horizsb
Class: Scrollbar

The horizsb component is the horizontal scroll bar. See the "scrollbar" widget manual entry for
details on the horizsb component item.

Tk Last change: 3.0.0 6

[incr Widgets] hierarchy (n)

Name: itemMenu
Class: Menu

The itemMenu component is the popup menu which is displayed upon selection of a hierarchy
node with the right mouse button. Menu items can be added along with their commands via the
component command. See the "menu" widget manual entry for details on the itemMenu compo-
nent item.

Name: vertsb
Class: Scrollbar

The vertsb component is the vertical scroll bar. See the "scrollbar" widget manual entry for details
on the vertsb component item.

EXAMPLE
proc get_files {file} {

global env

if {$file == ""} {
set dir $env(HOME)

} else {
set dir $file

}

if {[catch {cd $dir}] != 0} {
return ""

}

set rlist ""

foreach file [lsort [glob -nocomplain∗]] {
lappend rlist [list [file join $dir $file] $file]

}

return $rlist
}

hierarchy .h -querycommand "get_files %n" -visibleitems 30x15 -labeltext $env(HOME)
pack .h -side left -expand yes -fill both

AUTHOR
Mark L. Ulferts

Michael J. McLennan

KEYWORDS
hierarchy, text, widget

Tk Last change: 3.0.0 7

[incr Widgets] hyperhelp (n)

NAME
hyperhelp − Create and manipulate a hyperhelp widget

SYNOPSIS
hyperhelp pathName?options?

INHERITANCE
itk::Toplevel <- shell <- hyperhelp

STANDARD OPTIONS
activeBackground background borderWidth
closecmd cursor exportSelection
foreground highlightColor highlightThickness
insertBackground insertBorderWidth insertOffTime
insertOnTime insertWidth padX
padY relief repeatDelay
repeatInterval selectBackground selectBorderWidth
selectForeground setGrid

See the "options" manual entry for details on the standard options.

ASSOCIATED OPTIONS
hscrollmode vscrollmode textbackground fontname
fontsize fixedfont link linkhighlight
width height state wrap
unknownimage

See the "scrolledhtml" widget manual entry for details on the above associated options.

INHERITED OPTIONS
modality title

See the "shell" manual entry for details on the above inherited options.

WIDGET-SPECIFIC OPTIONS
Name: topics
Class: Topics
Command-Line Switch: -topics

Specifies a list of help topics in the form {?topic? ... }. Topicmay either be a topic name, in which
case the document associated with the topic should be in the filehelpdir /topic.html, or it may be
of the form {name file}. In the latter case,nameis displayed in the topic menu, and selecting the
name loadsfile. If file has a relative path, it is assumed to be relative to helpdir.

Name: helpdir
Class: Directory
Command-Line Switch: -helpdir

Specifies the directory where help files are located.

Name: closeCmd
Class: CloseCmd
Command-Line Switch: -closecmd

Specifies the tcl command to be executed when the close option is selected from the topics menu.

Name: maxHistory
Class: MaxHistory
Command-Line Switch: -maxhistory

Specifies the maximum number of entries stored in the history list

Tk Last change: 3.0.0 1

[incr Widgets] hyperhelp (n)

Name: beforelink
Class: BeforeLink
Command-Line Switch: -beforelink

Specifies a command to be eval’ed before a new link is displayed. The path of the link to be dis-
played is appended before evaling the command. A suggested use might be to busy the widget
while a new page is being displayed.

Name: afterlink
Class: AfterLink
Command-Line Switch: -afterlink

Specifies a command to be eval’ed after a new link is completely displayed. The path of the link
that was displayed is appended before evaling the command.

DESCRIPTION
Thehyperhelp command creates a shell window with a pulldown menu showing a list of topics. The topics
are displayed by importing a HTML formatted file namedhelpdir /topic.html. For a list of supported
HTML tags, seescrolledhtml(n).

METHODS
The hyperhelp command creates a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command. The following commands are possible
for dialog widgets:

INHERITED METHODS
activate center childsite deactivate

See the "shell" manual entry for details on the above inherited methods.

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thehyperhelp command.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thehyperhelp command.

pathNameshowtopictopic
Display html filehelpdir /topic.html. Topicmay optionally be of the formtopicname#anchorname.
In this form, eithertopicnameor anchornameor both may be empty. Iftopicnameis empty, the
current topic is assumed. Ifanchornameis empty, the top of the document is assumed

pathNamefollowlink href

Tk Last change: 3.0.0 2

[incr Widgets] hyperhelp (n)

Display html filehref. Href may be optionally be of the formfilename#anchorname. In this form,
eitherfilenameor anchornameor both may be empty. Iffilenameis empty, the current document is
assumed. Ifanchornameis empty, the top of the document is assumed.

pathNameforward
Display html file one forward in history list, if applicable.

pathNameback
Display html file one back in history list, if applicable.

EXAMPLE
hyperhelp .h -topics { Intro Help } -helpdir ˜/help
.h showtopic Intro

AUTHOR
Kris Raney

KEYWORDS
hyperhelp, html, help, shell, widget

Tk Last change: 3.0.0 3

[incr Widgets] labeledframe (n)

NAME
labeledframe − Create and manipulate a labeled frame widget

SYNOPSIS
labeledframepathName?options?

INHERITANCE
itk::Archetype <- labeledframe

STANDARD OPTIONS
background borderwidth cursor
foreground relief

See the "options" manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Name: iPadX
Class: IPad
Command-Line Switch: -ipadx

Specifies horizontal padding space between the border and the childsite. The value may have any
of the forms acceptable toTk_GetPixels. The default is 0.

Name: iPadY
Class: IPad
Command-Line Switch: -ipady

Specifies vertical padding space between the border and the childsite. The value may have any of
the forms acceptable toTk_GetPixels. The default is 0.

Name: labelBitmap
Class: Bitmap
Command-Line Switch: -labelbitmap

Specifies a bitmap to display in the label, in any of the forms acceptable toTk_GetBitmap. This
option overrides thelabeltextoption.

Name: labelImage
Class: Image
Command-Line Switch: -labelimage

Specifies a image to be used as the label. The image may be any of the values created by the
image createcommand. This option overrides both thelabelbitmapandlabeletextoptions.

Name: labelMargin
Class: Margin
Command-Line Switch: -labelmargin

Specifies the distance between the inner ede of the hull frames relief, and the label in any of the
forms acceptable toTk_GetPixels. The default is 10 pixels.

Name: labelText
Class: Text
Command-Line Switch: -labeltext

Specifies the text of the label around the childsite.

Name: labelVariable
Class: Variable
Command-Line Switch: -labelvariable

Specifies the text variable of the label around the childsite.

Tk Last change: 3.0.0 1

[incr Widgets] labeledframe (n)

Name: labelFont
Class: Font
Command-Line Switch: -labelfont

Specifies the font of the label around the childsite.

Name: labelPos
Class: Position
Command-Line Switch: -labelpos

Specifies the position of the label within the grooved relief of the hull widget.
ne, n, nw, se, s, sw, en, e, es, wn, w, wsDefault isn.

DESCRIPTION
The labeledframe command creates a hull frame with a grooved relief, a label positioned within the
grooved relief of the hull frame, and a frame childsite. The frame childsite can filled with any widget via a
derived class or though the use of the childsite method. This class was designed to be a general purpose
base class for supporting the combination of labeled frame and a childsite. The options include the ability
to position the label at configurable locations within the grooved relief of the hull frame, and control the
display of the label.

METHODS
The labeledframe command creates a new Tcl command whose name ispathName. This command may
be used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command. The following commands are possible
for labeledframe widgets:

WIDGET-SPECIFIC METHODS
pathNamechildsite

Return the path name of the child site.

pathNamecgetoption
Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thelabeledframecommand.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Option may have any of the values accepted by thelabeledframe com-
mand.

COMPONENTS
Name: label
Class: label

The label component provides the label for the labeled widget. See the "label" widget manual
entry for details on the label component item.

Tk Last change: 3.0.0 2

[incr Widgets] labeledframe (n)

EXAMPLE
The labeledframe was primarily meant to be a base class. The Radiobox is a good example of a
derived classe of the labeledframe class. In order to provide equal support for composite classes,
the ’childsite’ methods also exists. The following is an example of ’childsite’ method usage.

labeledframe .lw -labeltext "Entry Frame" -labelpos n
pack .lw -fill both -expand yes -padx 10 -pady 10
set cs [.lw childsite]

pack [Entryfield $cs.entry1 -labeltext "Name:"] -side top -fill x
pack [Spinint $cs.entry2 -labeltext "Number:"] -side top -fill x
pack [Pushbutton $cs.entry3 -text "Details:"] -side top -fill x

AUTHOR
John A. Tucker

KEYWORDS
labeledframe, widget

Tk Last change: 3.0.0 3

[incr Widgets] labeledwidget (n)

NAME
labeledwidget − Create and manipulate a labeled widget

SYNOPSIS
labeledwidgetpathName?options?

INHERITANCE
itk::Widget <- labeledwidget

STANDARD OPTIONS
background cursor foreground

See the "options" manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Name: disabledForeground
Class: DisabledForeground
Command-Line Switch: -disabledforeground

Specifies the foreground to be used when the state is disabled.

Name: labelBitmap
Class: Bitmap
Command-Line Switch: -labelbitmap

Specifies a bitmap to display in the widget, in any of the forms acceptable toTk_GetBitmap.
This option overrides thelabeltextoption.

Name: labelFont
Class: Font
Command-Line Switch: -labelfont

Specifies the font to be used for the label.

Name: labelImage
Class: Image
Command-Line Switch: -labelimage

Specifies a image to be used as the label. The image may be any of the values created by the
image createcommand. This option overrides both thelabelbitmapandlabeletextoptions.

Name: labelMargin
Class: Margin
Command-Line Switch: -labelmargin

Specifies the distance between the childsite and label in any of the forms acceptable toTk_Get-
Pixels. The default is 2 pixel.

Name: labelPos
Class: Position
Command-Line Switch: -labelpos

Specifies the position of the label along the side of the childsite:nw, n, ne, sw, s, se, en, e, es, wn,
w, or ws. The default is w.

Name: labelText
Class: Text
Command-Line Switch: -labeltext

Specifies the text of the label around the childsite.

Tk Last change: 3.0.0 1

[incr Widgets] labeledwidget (n)

Name: labelVariable
Class: Variable
Command-Line Switch: -labelvariable

Specifies the text variable of the label around the childsite.

Name: state
Class: State
Command-Line Switch: -state

Specifies one of two states for the label:normal or disabled. If the label is disabled then it is dis-
played in a disabled foreground color. The default is normal.

DESCRIPTION
The labeledwidgetcommand creates a labeled widget which contains a label and child site. The child site
is a frame which can filled with any widget via a derived class or though the use of the childsite method.
This class was designed to be a general purpose base class for supporting the combination of label widget
and a childsite. The options include the ability to position the label around the childsite widget, modify the
font and margin, and control the display of the labels.

METHODS
The labeledwidgetcommand creates a new Tcl command whose name ispathName. This command may
be used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command. The following commands are possible
for labeledwidget widgets:

WIDGET-SPECIFIC METHODS
pathNamechildsite

Return the path name of the child site.

pathNamecgetoption
Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thelabeledwidgetcommand.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thelabeledwidgetcom-
mand.

STATIC METHODS
Labeledwidget::alignlabelswidget?widget ...?

The alignlabels procedure takes a list of widgets derived from the Labeledwidget class and uses
the label margin to make each widget have the same total space for the combination of label and
margin. The net effect is to left align the labels. Generally, this method is only useful with a label
position of w, which is the default.

Tk Last change: 3.0.0 2

[incr Widgets] labeledwidget (n)

COMPONENTS
Name: label
Class: label

The label component provides the label for the labeled widget. See the "label" widget manual
entry for details on the label component item.

Name: lwchildsite
Class: frame

The lwchildsite component is the user child site for the labeled widget. See the "frame" widget
manual entry for details on the lwchildsite component item.

EXAMPLE
The labeledwidget was primarily meant to be a base class. The ScrolledListBox and EntryField
are good examples of derived classes of the labeledwidget class. In order to provide equal support
for composite classes, the ’childsite’ methods also exists. The following is an example of ’child-
site’ method usage.

labeledwidget .lw -labeltext "Canvas Widget" -labelpos s
pack .lw -fill both -expand yes -padx 10 -pady 10

set cw [canvas [.lw childsite].c -relief raised -width 200 -height 200]
pack $cw -padx 10 -pady 10

AUTHOR
Mark L. Ulferts

KEYWORDS
labeledwidget, widget

Tk Last change: 3.0.0 3

[incr Widgets] mainwindow (n)

NAME
mainwindow − Create and manipulate a mainwindow widget

SYNOPSIS
mainwindow pathName?options?

INHERITANCE
itk::Toplevel <- shell <- mainwindow

STANDARD OPTIONS
background cursor disabledForeground font
foreground highlightBackground highlightColor highlightThickness

See the "options" manual entry for details on the standard options.

ASSOCIATED OPTIONS
balloonBackground balloonDelay1 balloonDelay2 ballonFont
balloonForeground

See the "toolbar" manual entry for details on the above associated options.

INHERITED OPTIONS
title

See the "Toplevel" manual entry for details on the above inherited options.

height master modality padX
padY width

See the "shell" manual entry for details on the above inherited options.

WIDGET-SPECIFIC OPTIONS
Name: helpLine
Class: HelpLine
Command-Line Switch: -helpline

Specifies whether or not to display the help line. The value may be given in any of the forms
acceptable to Tk_GetBoolean. The default is yes.

Name: menuBarBackground
Class: Background
Command-Line Switch: -menubarbackground

Specifies the normal background color for the menubar.

Name: menuBarFont
Class: Font
Command-Line Switch: -menubarfont

Specifies the font to use when drawing text inside the menubar.

Name: menuBarForeround
Class: Foreground
Command-Line Switch: -menubarforeground

Specifies the normal foreground color for the menubar.

Name: statusLine
Class: StatusLine
Command-Line Switch: -statusline

Specifies whether or not to display the status line. The value may be given in any of the forms
acceptable to Tk_GetBoolean. The default is yes.

Tk Last change: 3.0.0 1

[incr Widgets] mainwindow (n)

Name: toolBarBackground
Class: Background
Command-Line Switch: -toolbarbackground

Specifies the normal background color for the toolbar.

Name: toolBarFont
Class: Font
Command-Line Switch: -toolbarfont

Specifies the font to use when drawing text inside the toolbar.

Name: toolBarForeround
Class: Foreground
Command-Line Switch: -toolbarforeground

Specifies the normal foreground color for the toolbar.

DESCRIPTION
The mainwindow command creates a mainwindow shell which contains a menubar, toolbar, mousebar,
childsite, status line, and help line. Each item may be filled and configured to suit individual needs.

METHODS
Themainwindow command create a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command. The following commands are possible
for mainwindow widgets:

INHERITED METHODS
activate center deactivate

See the "shell" manual entry for details on the above inherited methods.

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by themainwindow command.

pathNamechildsite
Returns the pathname of the child site widget.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Option may have any of the values accepted by themainwindow com-
mand.

pathNamemenubar ?args?
The menubar method provides access to the menubar. Inv oked with no arguments it returns the

Tk Last change: 3.0.0 2

[incr Widgets] mainwindow (n)

pathname of the menubar. With arguments, they are evaluated against the menubar which in effect
provides access to the entire API of the menubar. See the "menubar" manual entry for details on
the commands available in the menubar.

pathNamemousebar?args?
Themousebarmethod provides access to the mousebar which is a vertical toolbar. Inv oked with
no arguments it returns the pathname of the mousebar. With arguments, they are evaluated against
the mousebar which in effect provides access to the entire API of the underlying toolbar. See the
"toolbar" manual entry for details on the commands available in the mousebar.

pathNamemsgd?args?
The msgd method provides access to the messagedialog contained in the mainwindow. Inv oked
with no arguments it returns the pathname of the messagedialog. With arguments, they are evalu-
ated against the messagedialog which in effect provides access to the entire API of the messagedi-
alog. See the "messagedialog" manual entry for details on the commands available in the mes-
sagedialog.

pathNametoolbar ?args?
The toolbar method provides access to the toolbar. Inv oked with no arguments it returns the path-
name of the toolbar. With arguments, they are evaluated against the toolbar which in effect pro-
vides access to the entire API of the toolbar. See the "toolbar" manual entry for details on the
commands available in the toolbar.

COMPONENTS
Name: help
Class: Label

The help component provides a location for displaying any help strings provided in the menubar,
toolbar, or mousebar. See the "label" widget manual entry for details on the help component item.

Name: menubar
Class: Menubar

The menubar component is the menubar located at the top of the window. See the "menubar" wid-
get manual entry for details on the menubar component item.

Name: mousebar
Class: Toolbar

The mousebar component is the vertical toolbar located on the right side of the window. See the
"toolbar" widget manual entry for details on the mousebar component item.

Name: msgd
Class: Messagedialog

The msgd component is a messagedialog which may be reconfigured as needed and used repeat-
edly throughout the application. See the "messagedialog" widget manual entry for details on the
messagedialog component item.

Name: status
Class: Label

The status component provides a location for displaying application status information. See the
"label" widget manual entry for details on the status component item.

Name: toolbar
Class: Toolbar

The toolbar component is the horizontal toolbar located on the top of the window. See the "tool-
bar" widget manual entry for details on the toolbar component item.

Tk Last change: 3.0.0 3

[incr Widgets] mainwindow (n)

EXAMPLE
mainwindow .mw

#
Add a File menubutton
#
.mw menubar add menubutton file -text "File" -underline 0 -padx 8 -pady 2 \

-menu {options -tearoff no
command new -label "New" -underline 0 \

-helpstr "Create a new file"
command open -label "Open ..." -underline 0 \

-helpstr "Open an existing file"
command save -label "Save" -underline 0 \

-helpstr "Save the current file"
command saveas -label "Save As ..." -underline 5 \

-helpstr "Save the file as a differnet name"
command print -label "Print" -underline 0 \

-helpstr "Print the file"
separator sep1

command close -label "Close" -underline 0 \
-helpstr "Close the file"

separator sep2
command exit -label "Exit" -underline 1 \

-helpstr "Exit this application"
}

#
Install a scrolledtext widget in the childsite.
#
scrolledtext [.mw childsite].st
pack [.mw childsite].st -fill both -expand yes

#
Activate the main window.
#
.mw activate

AUTHOR
Mark L. Ulferts

John A. Tucker

KEYWORDS
mainwindow, shell, widget

Tk Last change: 3.0.0 4

[incr Widgets] menubar (n)

NAME
menubar − Create and manipulate menubar menu widgets

SYNOPSIS
menubar pathName?options?

INHERITANCE
itk::Widget <- menubar

STANDARD OPTIONS
activeBackground borderWidth highlightBackground padY
activeBorderWidth cursor highligthThickness relief
activeForeground disabledForeground highlightColor wrapLength
anchor font justify
background foreground padX

See the "options" manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Name: helpVariable
Class: HelpVariable
Command-Line Switch: -helpvariable

Specifies the global variable to update whenever the mouse is in motion over a menu entry. This
global variable is updated with the current value of the active menu entry’shelpStr. Other widgets
can "watch" this variable with the trace command, or as is the case with entry or label widgets,
they can set theirtextVariable to the same global variable. This allows for a simple implementa-
tion of a help status bar. Whenever the mouse leaves a menu entry, the helpVariable is set to the
empty string {}. The mainwindow(1) associates its helpstatus and its menubar in this fashion.

Name: menuButtons
Class: MenuButtons
Command-Line Switch: -menubuttons

The menuButton option is a string which specifies the arrangement of menubuttons on the
menubar frame. Each menubutton entry is delimited by the newline character.

menubar .mb -menubuttons {
menubutton file -text File
menubutton edit -text Edit
menubutton options -text Options

}

specifies that three menubuttons will be added to the menubar (file, edit, options). Each entry is
translated into an add command call.

The menuButtons option can accept embedded variables, commands, and backslash quoting.
Embedded variables and commands must be enclosed in curly braces ({}) to ensure proper parsing
of the substituted values.

DESCRIPTION
The menubar command creates a new window (given by thepathNameargument) and makes it into a
menubar menu widget. Additional options, described above may be specified on the command line or in
the option database to configure aspects of the menubar such as its colors and font. Themenubar com-
mand returns itspathNameargument. At the time this command is invoked, there must not exist a window
named pathName, but pathName’s parent must exist.

Tk Last change: 3.0.0 1

[incr Widgets] menubar (n)

A menubar is a widget that simplifies the task of creating menu hierarchies. It encapsulates aframe wid-
get, as well asmenubuttons, menus, and menuentries. The menubar allows menus to be specified and ref-
erenced in a more consistent manner than using Tk to build menus directly.

Menubar allows a menu tree to be expressed in a hierachical "language". Themenubar accepts a
menuButtonsoption that allows a list of menubuttons to be added to the menubar. In turn, each menubut-
ton accepts amenu option that specifies a list of menu entries to be added to the menubutton’s menu. Cas-
cade entries also accept themenu option for specifying a list of menu entries to be added to the cascade’s
menu.

Additionally, the menubar allows each component of the menubar system to be referenced by a simple
menuPathNamesyntax. The menubar also extends the set of options for menu entries to include ahelpStr
option.

MENU PATH NAMES
A menuPathNameis a series of component names separated by the ‘.’ character. Each menubar component
can be referenced via thesemenuPathNames. menuPathNamesare similar to widget pathNames in Tk.
Some correspond directly to a widget pathName (components of typemenu or menubutton), others corre-
spond to a menu entry type. Every widget and entry in a menubar can be referenced with themenuPath-
Namenaming convention. A menubar can have four types of components:

frame. A menubar holds exactly one frame which manages menubuttons. The frame is always sig-
nified by the ‘.’ character as the path name.

menubutton. A menubutton corresponds directly to a Tk menubutton. See menubutton(n).

menu. A menu is attached to a menubutton and corresponds directly to Tk’s menu widget. A menu
is always signified by themenuPathNameending with the keywordmenu. See menu(n).

entry. An entry corresponds directly to Tk’s menu widget entries. Menus consist of a column of
one line entries. Entries may be of type:command, checkbutton, radiobutton , separator, or
cascade. For a complete description of these types see the discussion onENTRIES in menu(n).

The suffix of amenuPathNamemay have the form of:

tkWidgetName Specifies the name of the component, either aframe, menubutton, menu, or anentry.
This is the normal naming of widgets. For example, .file references amenubutton named
file.

ThemenuPathNameis a series of segment names, each separated by the ’.’ character. Segment names may
be one of the following forms:

number Specifies the index of the the component. For menubuttons, 0 corresponds to the left-most
menubutton of the menu bar frame. As an example,.1 would correspond to the second
menubutton on the menu bar frame.

For entries, 0 corresponds to the top-most entry of the menu. For example, .file.0 would
correspond to the first entry on the menu attached to the menubutton namedfile.

end Specifes the last component. For menubuttons, it specifies the right-most entry of the
menu bar frame. For menu entries, it specifies the bottom-most entry of the menu.

last Same as end.

Finally, menu components always end with themenu keyword. These components are automatically cre-
ated via the -menu option on menubuttons and cascades or via theadd or insert commands.

menu Specifes the menu pane that is associated with the given menubutton prefix. For example,
.file.menuspecifies the menu pane attached to the.file menubutton.

Tk Last change: 3.0.0 2

[incr Widgets] menubar (n)

For example, the path.file.newspecifies the entry named new on the menu associated with the file menubut-
ton located on the menu bar. The path.file.menuspecifies the menu pane associated with the menubutton
.file. The path.last specifies the last menu on the menu bar. The path.0.lastwould specify the first menu
(file) and the last entry on that menu (quit), yielding.file.quit.

As a restriction, the last name segment ofmenuPathNamecannot be one of the keywords last, menu, end,
nor may it be a numeric value (integer).

WIDGET-SPECIFIC METHODS
The menubar command creates a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

optionand theargs determine the exact behavior of the command.

In addition, many of the widget commands for menubar take as one argument a path name to a menu com-
ponent. These path names are calledmenuPathNames. See the discussion onMENUBAR PATH NAMES
above.

The following commands are possible for menubar widgets:

pathNameadd type menuPathName?option value option value?
Adds either a menu to the menu bar or a menu entry to a menu pane.

If additional arguments are present, they specifyoptions available to component typeentry. See
the man pages formenu(1) in the section onENTRIES.

If typeis one ofcascade, checkbutton, command, radiobutton , or separator it adds a new entry
to the bottom of the menu denoted by the prefix ofmenuPathName. If additonal arguments are pre-
sent, they specify options available to menuentry widgets. In addition, thehelpStr option is
added by the menubar widget to all components of type entry.

-helpstr value
Specifes the string to associate with the entry. When the mouse moves over the associated
entry, the variable denoted byhelpVariable is set. Another widget can bind to the help-
Variable and thus display status help.

If the type of the component added ismenubutton or cascade, a menubutton or cascade is added
to the menubar. If additional arguments are present, they specify options available to menubutton
or cascade widgets. In addition, themenu option is added by the menubar widget to all menubut-
ton and cascade widgets.

-menumenuSpec
This is only valid formenuPathNames of type menubutton or cascade. Specifes an
option set and/or a set of entries to place on a menu and associate with the menubutton or
cascade. Theoption keyword allows the menu widget to be configured. Each item in the
menuSpecis treated as add commands (each with the possibility of having other -menu
options). In this way a menu can be recursively built.

The last segment ofmenuPathNamecannot be one of the keywordslast, menu, end.
Additionally, it may not be anumber. Howev er themenuPathNamemay be referenced in
this manner (see discussion ofCOMPONENT PATH NAMES).

Note that the same curly brace quoting rules apply to-menu option strings as did to
-menubuttons option strings. See the earlier discussion onumenubuttons in the
"WIDGET-SPECIFIC OPTIONS " section.

Tk Last change: 3.0.0 3

[incr Widgets] menubar (n)

pathNamecgetoption
Returns the current value of the configuration option given byoption.

pathNameconfigure?options value option value?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName (seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with no value, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if no option is specified). If one or more option-value pairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.

pathNamedeletemenuPathName?menuPathName2?
If menuPathNameis of component typeMenubutton or Menu, delete operates on menus. If
menuPathNameis of component typeEntry , delete operates on menu entries.

This command deletes all components betweenmenuPathNameandmenuPathName2inclusive. If
menuPathName2is omitted then it defaults tomenuPathName. Returns an empty string.

If menuPathNameis of type menubar, then all menus and the menu bar frame will be destroyed. In
this casemenuPathName2is ignored.

pathNameindex menuPathName
If menuPathNameis of type menubutton or menu, it returns the position of the menu/menubutton
on the menubar frame.

If menuPathNameis of type command, separator, radiobutton , checkbutton, or cascade, it
returns the menu widget’s numerical index for the entry corresponding tomenuPathName. If path
is not found or the path is equal to ".", a value of -1 is returned.

pathNameinsert menuPathName type name?option value?
Insert a new component named name before the component specified bymenuPathName.

If menuPathNameis of typeMenubutton or Menu, the new component inserted is of typeMenu
and given the name name. In this case validoption valuepairs are those accepted by menubuttons.

If menuPathNameis of typeEntry , the new component inserted is of typeentry and given the
namename. In this case, validoption valuepairs are those accepted by menu entries.Namecan-
not be one of the keywordslast, menu, end. Additionally, it may not be a number. Howev er the
menuPathNamemay be referenced in this manner (see discussion ofCOMPONENT PATH
NAMES).

pathNameinvoke menuPathName
Invoke the action of the menu entry denoted bymenuPathName. See the sections on the individual
entries in the menu(1) man pages. If the menu entry is disabled then nothing happens. If the entry
has a command associated with it then the result of that command is returned as the result of the
invoke widget command. Otherwise the result is an empty string.

If menuPathNameis not a menu entry, an error is issued.

pathNamemenucgetmenuPathName option
Returns the current value of the configuration option given byoption. The component type of
menuPathNamedetermines the valid available options.

pathNamemenuconfiguremenuPathName?option value?
Query or modify the configuration options of the componet of the menubar specified bymenu-
PathName. If no option is specified, returns a list describing all of the available options for

Tk Last change: 3.0.0 4

[incr Widgets] menubar (n)

menuPathName(seeTk_ConfigureInfo for information on the format of this list). Ifoption is
specified with no value, then the command returns a list describing the one named option (this list
will be identical to the corresponding sublist of the value returned if no option is specified). If one
or more option-value pairs are specified, then the command modifies the given widget option(s) to
have the given value(s); in this case the command returns an empty string. The component type of
menuPathNamedetermines the valid available options.

pathNamepath ?mode?pattern
Returns a fully formedmenuPathNamethat matchespattern. If no match is found it returns -1.
Themodeargument indicates how the search is to be matched againstpatternand it must have one
of the following values:

-glob Pattern is a glob-style pattern which is matched against each component path using the
same rules as the string match command.

-regexp Pattern is treated as a regular expression and matched against each component of the
menuPathNameusing the same rules as the regexp command. The default mode is -glob.

pathNametype menuPathName
Returns the type of the component specified bymenuPathName. For menu entries, this is the type
argument passed to theadd/insert widget command when the entry was created, such ascom-
mand or separator. Othewise it is either amenubutton or amenu.

pathNameyposition menuPathName
Returns a decimal string giving the y-coordinate within the menu window of the topmost pixel in
the entry specified bymenuPathName. If the menuPathNameis not an entry, an error is issued.

EXAMPLE ONE: USING GRAMMAR
The following example creates a menubar with "File", "Edit", "Options" menubuttons. Each of these
menubuttons has an associated menu. In turn the File menu has menu entries, as well as the Edit menu and
the Options menu. The Options menu is a tearoff menu with selectColor (for radiobuttons) set to blue. In
addition, the Options menu has a cascade titled More, with several menu entries attached to it as well. An
entry widget is provided to display help status.

menubar .mb -helpvariable helpVar -menubuttons {
menubutton file -text File -menu {

options -tearoff false
command new -label New \

-helpstr "Open new document" \
-command {puts NEW}

command close -label Close \
-helpstr "Close current document" \
-command {puts CLOSE}

separator sep1
command exit -label Exit -command {exit} \

-helpstr "Exit application"
}
menubutton edit -text Edit -menu {

options -tearoff false
command undo -label Undo -underline 0 \

-helpstr "Undo last command" \
-command {puts UNDO}

separator sep2
command cut -label Cut -underline 1 \

-helpstr "Cut selection to clipboard" \
-command {puts CUT}

Tk Last change: 3.0.0 5

[incr Widgets] menubar (n)

command copy -label Copy -underline 1 \
-helpstr "Copy selection to clipboard" \
-command {puts COPY}

command paste -label Paste -underline 0 \
-helpstr "Paste clipboard contents" \
-command {puts PASTE}

}
menubutton options -text Options -menu {

options -tearoff false -selectcolor blue
radiobutton byName -variable viewMode \

-value NAME -label "by Name" \
-helpstr "View files by name order" \
-command {puts NAME}

radiobutton byDate -variable viewMode \
-value DATE -label "by Date" \
-helpstr "View files by date order" \
-command {puts DATE}

cascade prefs -label Preferences -menu {
command colors -label Colors... \

-helpstr "Change text colors" \
-command {puts COLORS}

command fonts -label Fonts... \
-helpstr "Change text font" \
-command {puts FONT}

}
}

} frame .fr -width 300 -height 300 entry .ef -textvariable helpVar pack .mb -anchor nw -fill x -expand yes
pack .fr -fill both -expand yes pack .ef -anchor sw -fill x -expand yes Alternatively the same menu could be
created by using the add and configure methods:

menubar .mb
.mb configure -menubuttons {

menubutton file -text File -menu {
command new -label New
command close -label Close
separator sep1
command quit -label Quit

}
menubutton edit -text Edit

}
.mb add command .edit.undo -label Undo -underline 0
.mb add separator .edit.sep2
.mb add command .edit.cut -label Cut -underline 1
.mb add command .edit.copy -label Copy -underline 1
.mb add command .edit.paste -label Paste -underline 0

.mb add menubutton .options -text Options -menu {
radiobutton byName -variable viewMode \

-value NAME -label "by Name"
radiobutton byDate -variable viewMode \

-value DATE -label "by Date"

Tk Last change: 3.0.0 6

[incr Widgets] menubar (n)

}

.mb add cascade .options.prefs -label Preferences -menu {
command colors -label Colors...
command fonts -label Fonts...

}
pack .mb -side left -anchor nw -fill x -expand yes

CAVEATS
The -menubuttonsoption as well as the-menu option is evaluated by menubar with thesubst command.
The positive side of this is that the option string may contain variables, commands, and/or backslash substi-
tutions. However, substitutions might expand into more than a single word. These expansions can be pro-
tected by enclosing candidate substitutions in curly braces ({}). This ensures, for example, a value for an
option will still be treated as a single value and not multiple values. The following example illustrates this
case:

set fileMenuName "File Menu"
set var {}
menubar .mb -menubuttons {

menubutton file -text {$fileMenuName}
menubutton edit -text Edit -menu {

checkbutton check \
-label Check \
-variable {[scope var]} \
-onvalue 1 \
-offvalue 0

}
menubutton options -text Options

}

The variablefileMenuNamewill expand to "File Menu" when thesubst command is used on the
menubutton specification. In addition, the [scope...] command will expand to @scope :: var. By
enclosing these inside {} they stay as a single value. Note that only {} work for this. [list...], "" etc.
will not protect these from the subst command.

ACKNOWLEDGMENTS
Bret Schumaker

1994 - Early work on a menubar widget.

Mark Ulferts, Mark Harrison, John Sigler

Invaluable feedback on grammar and usability of the menubar widget

AUTHOR
Bill W. Scott

KEYWORDS
frame, menu, menubutton, entries, help

Tk Last change: 3.0.0 7

[incr Widgets] messagebox (n)

NAME
messagebox − Create and manipulate a messagebox text widget

SYNOPSIS
messageboxpathName?options?

INHERITANCE
itk::Widget <- Labeledwidget <- Scrolledwidget <- Messagebox

STANDARD OPTIONS
activeBackground activeForeground background borderWidth
cursor exportSelection font foreground
highlightColor highlightThickness padX padY
relief setGrid

See the "options" manual entry for details on the standard options.

ASSOCIATED OPTIONS
labelBitmap labelFont labelImage labelMargin
labelPos labelText labelVariable

See the "labeledwidget" class manual entry for details on the above associated options.

activeRelief elementBorderWidth jump troughColor

See the "scrollbar" widget manual entry for details on the above associated options.

height hscrollMode sbWidth scrollMargin
textBackground visibleItems vscrollMode width

See the "scrolledtext" widget manual entry for details on the above associated options.

spacing1 spacing2 spacing3

See the "text" widget manual entry for details on the above associated options.

WIDGET-SPECIFIC OPTIONS
Name: fileName
Class: FileName
Command-Line Switch: -filename

Specifies the filename to be displayed in the file selection dialog when it pops up during a save of
the messagebox contents operation.

Name: maxLines
Class: MaxLines
Command-Line Switch: -maxlines

Specifies the maximum number of lines allowed in the text area of the messagebox. When this
limit is reached, the oldest line will be deleted such that the total number of lines remainsmax-
lines.

Name: saveDir
Class: SaveDir
Command-Line Switch: -savedir

Specifies the default directory to display when the file selection dialog pops up during a save of the
messagebox contents operation. If this parameter is not specified, then the files in the current
working directory are displayed.

Tk Last change: 3.0.0 1

[incr Widgets] messagebox (n)

DESCRIPTION
The messageboxcommand creates a scrolled information messages area widget. Message types can be
user defined and configured. Their options include foreground, background, font, bell, and their display
mode of on or off. This allows message types to defined as needed, removed when no longer so, and modi-
fied when necessary. An export method is provided for file I/O.

The number of lines displayed may be limited with the default being 1000. When this limit is reached, the
oldest line is removed. A popup menu which appears when the right mouse button has been pressed in the
message area has been predefined. The contents of the popup menu by default support clearing the area
and saving its contents to a file. Additional operations may be defined or existing operations removed by
using the component command to access the popup menu.

MESSAGE TYPES
The display characteristics of messages issued to the messagebox vary with the message type. Types are
defined by the user and they may be added, removed, and configured. The options of the message type con-
trol the display include the following:

−background color
Color specifies the background color to use for characters associated with the message type. It
may have any of the forms accepted byTk_GetColor.

−bell boolean
Specifies whether or not to ring the bell whenenver a message of this type is issued.Booleanmay
have any of the forms accepted byTk_GetBoolean. The default is 0.

-font fontName
FontNameis the name of a font to use for drawing characters. It may have any of the forms
accepted by Tk_GetFontStruct.

−foreground color
Color specifies the foreground color to use for characters associated with the message type. It
may have any of the forms accepted byTk_GetColor.

−showboolean
Specifies whether of not to display this message type when issued.Booleanmay have any of the
forms accepted byTk_GetBoolean. The default is 1.

METHODS
Themessageboxcommand creates a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command. The following commands are possible
for messagebox widgets:

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by themessageboxcommand.

Tk Last change: 3.0.0 2

[incr Widgets] messagebox (n)

pathNameclear
Clear the messagebox of all messages.

pathNameexport filename
Write text to a file. Iffilenameexists then contents are replaced with text widget contents.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Option may have any of the values accepted by themessageboxcom-
mand.

pathNametype option msgtype?arg arg ...?
This command is used to manipulate message types. The behavior of the command depends on
the option argument that follows the type keyword. The following forms of the command are sup-
ported:

Name: itemMenu
Class: Menu

This is the popup menu that gets displayed when you right-click in the text area of the message-
box. Its contents may be modified via the component command.

Name: text
Class: Scrolledtext

The text component is the scrolledtext widget. See the "scrolledtext" widget manual entry for
details on the text component item.

EXAMPLE
messagebox .mb -hscrollmode dynamic -labeltext "Messages" -labelpos n \

-height 120 -width 550 -savedir "/tmp" -textbackground #d9d9d9

pack .mb -padx 5 -pady 5 -fill both -expand yes

.mb type add ERROR -background red -foreground white -bell 1

.mb type add WARNING -background yellow -foreground black

.mb type add INFO -background white -foreground black

.mb issue "This is an error message in red with a beep" ERROR

.mb issue "This warning message in yellow" WARNING

.mb issue "This is an informational message" INFO

AUTHOR
Alfredo Jahn V

Mark L. Ulferts

KEYWORDS
messagebox, scrolledtext, text, widget

Tk Last change: 3.0.0 3

[incr Widgets] messagedialog (n)

NAME
messagedialog − Create and manipulate a message dialog widget

SYNOPSIS
messagedialogpathName?options?

INHERITANCE
itk::Toplevel <- Shell <- Dialogshell <- Dialog <- Messagedialog

STANDARD OPTIONS
background bitmap cursor font
foreground image text

See the "options" manual entry for details on the standard options.

INHERITED OPTIONS
buttonBoxPadX buttonBoxPadY buttonBoxPos padX
padY separator thickness

See the "dialogshell" widget manual entry for details on the above inherited options.

master modality

See the "shell" widget manual entry for details on the above inherited options.

title

See the "Toplevel" widget manual entry for details on the above inherited options.

WIDGET-SPECIFIC OPTIONS
Name: imagePos
Class: Position
Command-Line Switch: -imagepos

Specifies the image position relative to the message text:n, s, e, or w. The default is w.

Name: textPadX
Class: Pad
Command-Line Switch: -textpadx

Specifies a non-negative value indicating how much extra space to request for the message text in
the X direction. The value may have any of the forms acceptable to Tk_GetPixels.

Name: textPadY
Class: Pad
Command-Line Switch: -textpady

Specifies a non-negative value indicating how much extra space to request for the message text in
the X direction. The value may have any of the forms acceptable to Tk_GetPixels.

DESCRIPTION
The messagedialogcommand creates a message dialog composite widget. The messagedialog is derived
from the Dialog class and is composed of an image and associated message text with commands to manipu-
late the dialog buttons.

METHODS
Themessagedialogcommand creates a new Tcl command whose name ispathName. This command may
be used to invoke various operations on the widget. It has the following general form:

Tk Last change: 3.0.0 1

[incr Widgets] messagedialog (n)

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command. The following commands are possible
for messagedialog widgets:

INHERITED METHODS
add buttonconfigure default hide
insert invoke show

See the "buttonbox" widget manual entry for details on the above inherited methods.

childsite

See the "dialogshell" widget manual entry for details on the above inherited methods.

activate center deactivate

See the "dialogshell" widget manual entry for details on the above inherited methods.

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by themessagedialogcommand.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by themessagedialogcom-
mand.

COMPONENTS
Name: image
Class: Label

The image component is the bitmap or image of the message dialog. See the "label" widget man-
ual entry for details on the image component item.

Name: message
Class: Label

The message component provides the textual portion of the message dialog. See the "label" wid-
get manual entry for details on the message component item.

EXAMPLE
#
Standard question message dialog used for confirmation.
#
messagedialog .md -title "Message Dialog" -text "Are you sure ?" \

-bitmap questhead -modality global

.md buttonconfigure OK -text Yes

.md buttonconfigure Cancel -text No

Tk Last change: 3.0.0 2

[incr Widgets] messagedialog (n)

if {[.md activate]} {
.md configure -text "Are you really sure ?"
if {[.md activate]} {

puts stdout "Yes"
} else {

puts stdout "No"
}

} else {
puts stdout "No"

}

destroy .md

#
Copyright notice with automatic deactivation.
#
messagedialog .cr -title "Copyright" -bitmap @dsc.xbm -imagepos n \

-text "Copyright 1995 DSC Communications Corporation\n \
All rights reserved"

.cr hide Cancel

.cr activate
after 10000 ".cr deactivate"

AUTHOR
Mark L. Ulferts

KEYWORDS
messagedialog, dialog, dialogshell, shell, widget

Tk Last change: 3.0.0 3

[incr Widgets] notebook (n)

NAME
notebook − create and manipulate notebook widgets

SYNOPSIS
notebookpathName?options?

INHERITANCE
itk::Widget <- notebook

STANDARD OPTIONS
background foreground scrollCommand width
cursor height

See the "options" manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Name: auto
Class: Auto
Command-Line Switch: -auto

Specifies whether to use the automatic packing/unpacking algorithm of the notebook. A value of
true indicates that page frames will be unpacked and packed acoording to the algorithm described
in the selectcommand. A value offalse leaves the current page packed and subsequent selects,
next, or previous commands do not switch pages automatically. In either case the page’s associated
command (see theadd command’s description of thecommandoption) is invoked. The value may
have any of the forms accepted by theTcl_GetBoolean, such as true, false, 0, 1, yes, or no.

For example, if a series of pages in a notebook simply change certain display configurations of a
graphical display, the-auto flag could be used. By setting it, the-command procs could do the
appropriate reconfiguring of the page when the page is switched.

DESCRIPTION
The notebook command creates a new window (given by the pathName argument) and makes it into a
notebook widget. Additional options, described above may be specified on the command line or in the
option database to configure aspects of the notebook such as its colors, font, and text. Thenotebookcom-
mand returns itspathNameargument. At the time this command is invoked, there must not exist a window
named pathName, but pathName’s parent must exist.

A notebook is a widget that contains a set of pages. It displays one page from the set as the selected page.
When a page is selected, the page’s contents are displayed in the page area. When first created a notebook
has no pages. Pages may be added or deleted using widget commands described below.

NOTEBOOK PAGES
A notebook’s pages area contains a single child siteframe. When a new page is created it is a child of this
frame. The page’s child site frame serves as a geometry container for applications to pack widgets into. It is
this frame that is automatically unpacked or packed when theauto option istrue. This creates the effect of
one page being visible at a time. When a new page is selected, the previously selected page’s child site
frame is automatically unpacked from the notebook’s child site frame and the newly selected page’s child
site is packed into the notebook’s child site frame.

However, sometimes it is desirable to handle page changes in a different manner. By specifying theauto
option asfalse, child site packing can be disabled and done differently. For example, all widgets might be
packed into the first page’s child site frame. Then when a new page is selected, the application can reconfig-
ure the widgets and give the appearance that the page was flipped.

Tk Last change: 3.0.0 1

[incr Widgets] notebook (n)

In both cases thecommand option for a page specifies a Tcl Command to execute when the page is
selected. In the case ofauto beingtrue, it is called between the unpacking of the previously selected page
and the packing of the newly selected page.

WIDGET-SPECIFIC METHODS
ThenotebookfR command creates a new Tcl command whose name ispathName. This command may
be used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

optionand theargs determine the exact behavior of the command.

Many of the widget commands for a notebook take as one argument an indicator of which page of the note-
book to operate on. These indicators are called indexes and may be specified in any of the following forms:

number Specifies the index of the the component. For menus, 0 corresponds to the left-most menu of the
menu bar. For entries, 0 corresponds to the top-most entry of the menu.numberSpecifies the page
numerically, where 0 corresponds to the first page in the notebook, 1 to the second, and so on.

select Specifies the currently selected page’s index. If no page is currently selected, the value -1 is
returned.

end Specifes the last page in the notebooks’s index. If the notebook is empty this will return -1.

pattern If the index doesn’t satisfy the form of a number, then this form is used. Pattern is pattern-
matched against thelabel of each page in the notebook, in order from the first to the last page,
until a matching entry is found. The rules ofTcl_StringMatch are used.

The following commands are possible for notebook widgets:

pathNameadd ?option value?
Add a new page at the end of the notebook. A new child site frame is created. Returns the child
site pathName. If additional arguments are present, they specify any of the following options:

-background value
Specifies a background color to use for displaying the child site frame of this page. If this
option is specified as an empty string (the default), then the background option for the
overall notebook is used.

-commandvalue
Specifies a Tcl command to be executed when this page is selected. This allows the pro-
grammer a hook to reconfigure this page’s widgets or any other page’s widgets.

If the notebook has the auto option set to true, when a page is selected this command will
be called immediately after the previously selected page is unpacked and immediately
before this page is selected. The index value select is valid during this Tcl command.
‘index select’ will return this page’s page number.

If the auto option is set to false, when a page is selected the unpack and pack calls are
bypassed. This Tcl command is still called.

-foreground value
Specifies a foreground color to use for displaying tab labels when tabs are in their normal
unselected state. If this option is specified as an empty string (the default), then the fore-
ground option for the overall notebook is used.

-label value
Specifies a string to associate with this page. This label serves as an additional identifier
used to reference the page. This label may be used for the index value in widget

Tk Last change: 3.0.0 2

[incr Widgets] notebook (n)

commands.

pathNamechildSite ?index?
If passed no arguments, returns a list of pathNames for all the pages in the notebook. If the note-
book is empty, an empty list is returned

If index is passed, it returns the pathName for the page’s child site frame specified by index. Wid-
gets that are created with this pathName will be displayed when the associated page is selected. If
index is not a valid index, an empty string is returned.

pathNamecgetoption
Returns the current value of the configuration option given byoption.

pathNameconfigure?option? ?value option value...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if no option is specified). If one or more option-value pairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thenotebookcommand.

pathNamedeleteindex1?index2?
Delete all of the pages betweenindex1andindex2inclusive. If index2is omitted then it defaults to
index1. Returns an empty string.

pathNameindex index
Returns the numerical index corresponding toindex.

pathName insertindex?option value?
Insert a new page in the notebook before the page specified byindex. A new child siteframe is
created. See theadd command for valid options. Returns the child site pathName.

pathNamenext
Advances the selected page to the next page (order is determined by insertion order). If the cur-
rently selected page is the last page in the notebook, the selection wraps around to the first page in
the notebook.

For notebooks with auto set to true the current page’s child site is unpacked from the notebook’s
child site frame. Then the next page’s child site is packed into the notebooks child site frame. The
Tcl command given with the command option will be invoked between these two operations.

For notebooks with auto set to false the Tcl command given with the command option will be
invoked.

pathNamepagecgetindex?option?
Returns the current value of the configuration option given byoption for the page specified by
index. The valid available options are the same as available to theadd command.

pathNamepageconfigureindex?option? ?value option value...?
This command is similar to the configure command, except that it applies to the options for an
individual page, whereas configure applies to the options for the notebook. Options may have any
of the values accepted by the add widget command. If options are specified, options are modified
as indicated in the command and the command returns an empty string. If no options are specified,
returns a list describing the current options for pageindex(seeTk_ConfigureInfo for information
on the format of this list).

pathNameprev
Moves the selected page to the previous page (order is determined by insertion order). If the

Tk Last change: 3.0.0 3

[incr Widgets] notebook (n)

currently selected page is the first page in the notebook, the selection wraps around to the last page
in the notebook.

For notebooks withauto set totrue the current page’s child site is unpacked from the notebook’s
child site frame. Then the previous page’s child site is packed into the notebooks child site frame.
The Tcl command given with the command option will be invoked between these two operations.

For notebooks withauto set tofalse the Tcl command given with the command option will be
invoked.

pathNameselectindex
Selects the page specified byindexas the currently selected page.

For notebooks withauto set totrue the current page’s child site is unpacked from the notebook’s
child site frame. Then the index page’s child site is packed into the notebooks child site frame. The
Tcl command given with the command option will be invoked between these two operations.

For notebooks withauto set tofalse the Tcl command given with the command option will be
invoked.

pathNameview
Returns the currently selected page. This command is for compatibility with the scrollbar widget.

pathNameview index
Selects the page specified byindexas the currently selected page. This command is for compati-
bility with the scrollbar widget.

pathNameview moveto fraction
Uses the fraction value to determine the corresponding page to move to. This command is for
compatibility with the scrollbar widget.

pathNameview scroll num what
Uses thenumvalue to determine how many pages to move forward or backward (num can be neg-
ative or positive). Thewhat argument is ignored. This command is for compatibility with the
scrollbar widget.

EXAMPLE
Following is an example that creates a notebook with two pages. In this example, we use a scrollbar widget
to control the notebook widget.

Create the notebook widget and pack it.
notebook .nb -width 100 -height 100
pack .nb -anchor nw \

-fill both \
-expand yes \
-side left \
-padx 10 \
-pady 10

Add two pages to the notebook, labelled
"Page One" and "Page Two", respectively.
.nb add -label "Page One"
.nb add -label "Page Two"

Get the child site frames of these two pages.
set page1CS [.nb childsite 0]
set page2CS [.nb childsite "Page Two"]

Create buttons on each page of the notebook

Tk Last change: 3.0.0 4

[incr Widgets] notebook (n)

button $page1CS.b -text "Button One"
pack $page1CS.b
button $page2CS.b -text "Button Two"
pack $page2CS.b

Select the first page of the notebook
.nb select 0

Create the scrollbar and associate teh scrollbar
and the notebook together, then pack the scrollbar
ScrollBar .scroll -command ".nb view"
.nb configure -scrollcommand ".scroll set"
pack .scroll -fill y -expand yes -pady 10

AUTHOR
Bill W. Scott

KEYWORDS
notebook page

Tk Last change: 3.0.0 5

[incr Widgets] optionmenu (n)

NAME
optionmenu − Create and manipulate a option menu widget

SYNOPSIS
optionmenupathName?options?

INHERITANCE
itk::Widget <- Labeledwidget <- optionmenu

STANDARD OPTIONS
activeBackground activeBorderWidth activeForeground background
borderWidth cursor disabledForeground font
foreground highlightColor highlightThickness relief

See the "options" manual entry for details on the standard options.

INHERITED OPTIONS
disabledForeground labelBitmap labelFont labelImage
labelMargin labelPos labelText labelVariable
state

See the "LabeledWidget" manual entry for details on the inherited options.

WIDGET-SPECIFIC OPTIONS
Name: clickTime
Class: ClickTime
Command-Line Switch: -clicktime

Interval time, in msec, used to determine that a single mouse click has occurred. Used to post
menu on a "quick" mouse click.Note: changing this value may cause the sigle-click functionality
to not work properly. The default is 150 msec.

Name: command
Class: Command
Command-Line Switch: -command

Specifies a Tcl command procedure to be evaluated following a change in the current option menu
selection.

Name: cyclicOn
Class: CyclicOn
Command-Line Switch: -cyclicon

Turns on/off the 3rd mouse button capability. The value may be specified in any of the forms
acceptable toTcl_GetBoolean. This feature allows the right mouse button to cycle through the
popup menu list without poping it up. The right mouse button cycles through the menu in reverse
order. The default is true.

Name: popupCursor
Class: Cursor
Command-Line Switch: -popupcursor

Specifies the mouse cursor to be used for the popup menu. The value may have any of the forms
acceptable toTk_GetCursor.

Name: state
Class: State
Command-Line Switch: -state

Specified one of two states for the optionmenu:normal, or disabled. If the optionmenu is dis-
abled, then option menu selection is ignored.

Tk Last change: 3.0.0 1

[incr Widgets] optionmenu (n)

Name: width
Class: Width
Command-Line Switch: -width

Specifies a fixed size for the menu button label in any of the forms acceptable to Tk_GetPixels. If
the text is too small to fit in the label, the text is clipped. Note: Normally, when a new list is cre-
ated, or new items are added to an existing list, the menu button label is resized automatically.
Setting this option overrides that functionality.

DESCRIPTION
Theoptionmenu command creates an option menu widget with options to manage it. An option menu dis-
plays a frame containing a label and a button. A pop-up menu will allow for the value of the button to
change.

METHODS
Theoptionmenu command creates a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command.

Many of the widget commands for an optionmenu take as one argument an indicator of which entry of the
option menu to operate on. These indicators are calledindexes and may be specified in any of the follow-
ing forms:

number Specifies the entry numerically, where 0 corresponds to the top-most entry of the option
menu, 1 to the entry below it, and so on.

end Indicates the bottommost entry in the menu. If there are no entries in the menu then zero is
returned.

select Returns the numerical index of the currently selected option menu entry. If no entries exist
in the menu, then -1 is returned.

pattern If the index doesn’t satisfy one of the above forms then this form is used.Patternis pattern-
matched against the label of each entry in the option menu, in order from the top down, until
a matching entry is found. The rules ofTcl_StringMatch are used.

The following widget commands are possible for optionmenu widgets:

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by theoptionmenucommand.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Option may have any of the values accepted by theoptionmenu

Tk Last change: 3.0.0 2

[incr Widgets] optionmenu (n)

command.

pathNamedeletefirst ?last?
Delete all of the option menu entries betweenfirst and last inclusive. If last is omitted then it
defaults tofirst.

pathNamedisable index
Disable the option menu entry specified byindex. Disabling a menu item will prevent the user
from being able to select this item from the menu. This only effects the state of the item in the
menu, in other words, should the item be the currently selected item, the programmer is responsi-
ble for determining this condition and taking appropriate action.

pathNameenableindex
Enable the option menu entry specified byindex. Enabling a menu item allows the user to select
this item from the menu.

pathNameget?first? ?last?
If no arguments are specified, this operation returns the currently selected option menu item. Oth-
erwise, it returns the name of the option at indexfirst, or a range of options betweenfirst andlast.

pathNameindex index
Returns the numerical index corresponding toindex.

pathNameinsert index string?string?
Insert an item, or list of items, into the menu at locationindex.

pathNameselectindex
Select an item from the option menu to be displayed as the currently selected item.

pathNamesort mode
Sort the current menu in eitherascending, or descendingorder. The valuesincreasing, or
decreasingare also accepted.

COMPONENTS
Name: menuBtn
Class: Menubutton

The menuBtn component is the option menu button which displays the current choice from the
popup menu. See the "menubutton" widget manual entry for details on the menuBtn component
item.

Name: popupMenu
Class: Menu

The popupMenu component is menu displayed upon selection of the menu button. The menu con-
tains the choices for the option menu. See the "menu" widget manual entry for details on the pop-
upMenu component item.

EXAMPLE
optionmenu .om -labelmargin 5 \

-labelon true -labelpos w -labeltext "Operating System :"

.om insert end Unix VMS Linux OS/2 {Windows NT} DOS

.om sort ascending

.om select Linux

pack .om -padx 10 -pady 10

Tk Last change: 3.0.0 3

[incr Widgets] optionmenu (n)

ACKNOWLEDGEMENTS:
Michael J. McLennan

Borrowed some ideas (next & previous) from OptionButton class.

Steven B. Jaggers

Provided an initial prototype in [incr Tcl].

Bret Schuhmacher

Helped with popup menu functionality.

AUTHOR
Alfredo Jahn

KEYWORDS
optionmenu, widget

Tk Last change: 3.0.0 4

[incr Widgets] panedwindow (n)

NAME
panedwindow − Create and manipulate a paned window widget

SYNOPSIS
panedwindowpathName?options?

INHERITANCE
itk::Widget <- panedwindow

STANDARD OPTIONS
background cursor

See the "options" manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Name: height
Class: Height
Command-Line Switch: -height

Specifies the overall height of the paned window in any of the forms acceptable toTk_GetPixels.
The default is 10 pixels.

Name: orient
Class: Orient
Command-Line Switch: -orient

Specifies the orientation of the separators:vertical or horizontal. The default is horizontal.

Name: sashBorderWidth
Class: BorderWidth
Command-Line Switch: -sashborderwidth

Specifies a value indicating the width of the 3-D border to draw around the outside of the sash in
any of the forms acceptable toTk_GetPixels. The default is 2 pixels.

Name: sashCursor
Class: Cursor
Command-Line Switch: -sashcursor

Specifies the type of cursor to be displayed in the sash. The default is crosshair.

Name: sashHeight
Class: Height
Command-Line Switch: -sashheight

Specifies the height of the sash in any of the forms acceptable toTk_GetPixels. The default is 10
pixels.

Name: sashIndent
Class: SashIndent
Command-Line Switch sashindent

Specifies the placement of the sash along the panes in any of the forms acceptable toTk_GetPix-
els. A positive value causes the sash to be offset from the near (left/top) side of the pane, and a
negative value causes the sash to be offset from the far (right/bottom) side. If the offset is greater
than the width, then the sash is placed flush against the side. The default is -10 pixels.

Name: sashWidth
Class: Width
Command-Line Switch: -sashwidth

Specifies the width of the sash in any of the forms acceptable toTk_GetPixels. The default is 10

Tk Last change: 3.0.0 1

[incr Widgets] panedwindow (n)

pixels.

Name: thickness
Class: Thickness
Command-Line Switch: -thickness

Specifies the thickness of the separators in any of the forms acceptable toTk_GetPixels. The
default is 3 pixels.

Name: width
Class: Width
Command-Line Switch: -width

Specifies the overall width of the paned window in any of the forms acceptable toTk_GetPixels.
The default is 10 pixels.

DESCRIPTION
Thepanedwindowcommand creates a multiple paned window widget capable of orienting the panes either
vertically or horizontally. Each pane is itself a frame acting as a child site for other widgets. The border
separating each pane contains a sash which allows user positioning of the panes relative to one another.

METHODS
Thepanedwindowcommand creates a new Tcl command whose name ispathName. This command may
be used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command.

Many of the widget commands for thepanedwindow take as one argument an indicator of which pane of
the paned window to operate on. These indicators are calledindexesand allow reference and manipulation
of panes regardless of their current map state. Paned window indexes may be specified in any of the fol-
lowing forms:

number Specifies the pane numerically, where 0 corresponds to the nearest (top/left-most) pane of
the paned window.

end Indicates the farthest (bottom/right-most) pane of the paned window.

pattern If the index doesn’t satisfy one of the above forms then this form is used.Patternis pattern-
matched against the tag of each pane in the panedwindow, in order from left/top to right/left,
until a matching entry is found. The rules ofTcl_StringMatch are used.

WIDGET-SPECIFIC METHODS
pathNameadd tag?option value option value?

Adds a new pane to the paned window on the far side (right/bottom). The following options may
be specified:

-margin value
Specifies the border distance between the pane and pane contents is any of the forms
acceptable toTk_GetPixels. The default is 8 pixels.

-minimum value
Specifies the minimum size that a pane’s contents may reach not inclusive of twice the
margin in any of the forms acceptable toTk_GetPixels. The default is 10 pixels.

Tk Last change: 3.0.0 2

[incr Widgets] panedwindow (n)

Theadd method returns the path name of the pane.

pathNamecgetoption
Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thepanedwindowcommand.

pathNamechildsite ?index?
Returns a list of the child site path names or a specific child site given an index. The list is con-
structed from the near side (left/top) to the far side (right/bottom).

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thepanedwindowcom-
mand.

pathNamedeleteindex
Deletes a specified pane given anindex.

pathNamefraction percentage percentage?percentage percentage ...?
Sets the visible percentage of the panes. Specifies a set of percentages which are applied to the
visible panes from the near side (left/top). The number of percentages must be equal to the current
number of visible (mapped) panes and add up to 100.

pathNamehide index
Changes the visiblity of the specified pane, allowing a previously displayed pane to be visually
removed rather than deleted.

pathNameindex index
Returns the numerical index corresponding to index.

pathNameinsert index tag?option value option value ...?
Same as theadd command except that it inserts the new pane just before the one given byindex,
instead of appending to the end of the panedwindow. Theoption, andvaluearguments have the
same interpretation as for theadd widget command.

pathNamepaneconfigureindex?options?
This command is similar to theconfigure command, except that it applies to the options for an
individual pane, whereasconfigure applies to the options for the paned window as a whole.
Optionsmay have any of the values accepted by theadd widget command. Ifoptionsare speci-
fied, options are modified as indicated in the command and the command returns an empty string.
If no options are specified, returns a list describing the current options for entryindex (see
Tk_ConfigureInfo for information on the format of this list).

pathNamereset
Redisplays the pane window using default percentages.

pathNameshow index
Changes the visiblity of the specified pane, allowing a previously hidden pane to be displayed.

NOTES
Dynamic changing of the margin and or minimum options to values which make the current con-
figuration invalid will block subsequent sash movement until the fractions are modified via the
fraction method. For example a panedwindow is created with three panes and the minimum and

Tk Last change: 3.0.0 3

[incr Widgets] panedwindow (n)

margin options are at their default settings. Next the user moves the sashes to compact the panes
to one side. Now, if the minimum is increased on the most compressed pane via the paneconfigure
method to a large enough value, then sash movement is blocked until the fractions are adjusted.
This situation is unusual and under normal operation of the panedwindow, this problem will never
occur.

EXAMPLE
panedwindow .pw -width 300 -height 300
.pw add top
.pw add middle -margin 10
.pw add bottom -margin 10 -minimum 10

pack .pw -fill both -expand yes

foreach pane [.pw childSite] {
button $pane.b -text $pane -relief raised -borderwidth 2
pack $pane.b -fill both -expand yes

}

.pw fraction 50 30 20

.pw paneconfigure 0 -minimum 20

.pw paneconfigure bottom -margin 15

ACKNOWLEDGEMENTS:
Jay Schmidgall

1994 - Base logic posted to comp.lang.tcl

Joe Hidebrand <hildjj@fuentez.com>

07/25/94 - Posted first multipane version to comp.lang.tcl

07/28/94 - Added support for vertical panes

Ken Copeland <ken@hilco.com>

09/28/95 - Smoothed out the sash movement and added squeezable panes.

AUTHOR
Mark L. Ulferts

KEYWORDS
panedwindow, widget

Tk Last change: 3.0.0 4

[incr Widgets] promptdialog (n)

NAME
promptdialog − Create and manipulate a prompt dialog widget

SYNOPSIS
promptdialog pathName?options?

INHERITANCE
itk::Toplevel <- dialogshell <- dialog <- promptdialog

STANDARD OPTIONS
background borderWidth cursor exportSelection
foreground highlightColor highlightThickness insertBackground
insertBorderWidth insertOffTime insertOnTime insertWidth
relief selectBackground selectBorderWidth selectForeground

See the "options" manual entry for details on the standard options.

ASSOCIATED OPTIONS
show

See the "entry" widget manual entry for details on the above associated options.

invalid textBackground textFont validate

See the "entryfield" widget manual entry for details on the above associated options.

labelFont labelPos labelText

See the "labeledwidget" widget manual entry for details on the above associated options.

INHERITED OPTIONS
buttonBoxPadX buttonBoxPadY buttonBoxPos padX
padY separator thickness

See the "dialogshell" widget manual entry for details on the above inherited options.

height master modality width

See the "shell" widget manual entry for details on the above inherited options.

title

See the "Toplevel" widget manual entry for details on the above inherited options.

DESCRIPTION
The promptdialog command creates a prompt dialog similar to the OSF/Motif standard prompt dialog
composite widget. The promptdialog is derived from the dialog class and is composed of a EntryField with
commands to manipulate the dialog buttons.

METHODS
Thepromptdialog command creates a new Tcl command whose name ispathName. This command may
be used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command. The following commands are possible
for promptdialog widgets:

Tk Last change: 3.0.0 1

[incr Widgets] promptdialog (n)

ASSOCIATED METHODS
delete get icursor index
insert scan selection xview

See the "entry" widget manual entry for details on the above associated methods.

clear

See the "entryfield" widget manual entry for details on the above associated methods.

INHERITED METHODS
add buttonconfigure default hide
invoke show

See the "buttonbox" widget manual entry for details on the above inherited methods.

childsite

See the "dialogshell" widget manual entry for details on the above inherited methods.

activate center deactivate

See the "shell" widget manual entry for details on the above inherited methods.

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thepromptdialog command.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Option may have any of the values accepted by thepromptdialog com-
mand.

COMPONENTS
Name: prompt
Class: Entryfield

The prompt component is the entry field for user input in the prompt dialog. See the "entryfield"
widget manual entry for details on the prompt component item.

EXAMPLE
option add∗textBackground white

promptdialog .pd -modality global -title Password -labeltext Password: -show∗
.pd hide Apply

if {[.pd activate]} {
puts "Password entered: [.pd get]"

} else {
puts "Password prompt cancelled"

}

Tk Last change: 3.0.0 2

[incr Widgets] promptdialog (n)

AUTHOR
Mark L. Ulferts

KEYWORDS
promptdialog, dialog, dialogshell, shell, widget

Tk Last change: 3.0.0 3

[incr Widgets] pushbutton (n)

NAME
pushbutton − Create and manipulate a push button widget

SYNOPSIS
pushbutton pathName?options?

INHERITANCE
itk::Widget <- pushbutton

STANDARD OPTIONS
activeBackground activeForeground background bitmap
borderWidth command cursor disabledForeground
font foreground highlightBackground highlightColor
highlightThickness image padX padY
state text underline wrapLength

See the "options" manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Name: defaultRing
Class: DefaultRing
Command-Line Switch: -defaultring

Boolean describing whether the button displays its default ring given in any of the forms accept-
able toTcl_GetBoolean. The default is false.

Name: defaultRingPad
Class: Pad
Command-Line Switch: -defaultringpad

Specifies the amount of space to be allocated to the indentation of the default ring ring given in
any of the forms acceptable toTcl_GetPixels. The option has no effect if the defaultring option is
set to false. The default is 2 pixels.

Name: height
Class: Height
Command-Line Switch: -height

Specifies the height of the button inclusive of any default ring given in any of the forms acceptable
to Tk_GetPixels. A value of zero lets the push button determine the height based on the requested
height plus highlightring and defaultringpad.

Name: width
Class: Width
Command-Line Switch: -width

Specifies the width of the button inclusive of any default ring given in any of the forms acceptable
to Tk_GetPixels. A value of zero lets the push button determine the width based on the requested
width plus highlightring and defaultringpad.

DESCRIPTION
Thepushbutton command creates a push button with an optional default ring used for default designation
and traversal.

METHODS

Tk Last change: 3.0.0 1

[incr Widgets] pushbutton (n)

Thepushbutton command creates a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command. The following commands are possible
for pushbutton widgets:

ASSOCIATED METHODS
flash invoke

See the "button" manual entry for details on the associated methods.

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thepushbutton command.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Option may have any of the values accepted by thepushbutton com-
mand.

COMPONENTS
Name: pushbutton
Class: Button

The pushbutton component is the button surrounded by the optional default ring. See the "button"
widget manual entry for details on the pushbutton component item.

EXAMPLE
pushbutton .pb -text "Hello" -command {puts "Hello World"} -defaultring 1
pack .pb -padx 10 -pady 10

AUTHOR
Bret A. Schuhmacher

Mark L. Ulferts

KEYWORDS
pushbutton, widget

Tk Last change: 3.0.0 2

[incr Widgets] radiobox (n)

NAME
radiobox − Create and manipulate a radiobox widget

SYNOPSIS
radiobox pathName?options?

INHERITANCE
itk::Widget <- labeledframe <- radiobox

STANDARD OPTIONS
background borderWidth cursor disabledForeground
foreground relief selectColor

See the "options" manual entry for details on the standard options.

INHERITED OPTIONS
labelBitmap labelFont labelImage labelMargin
labelPos labelText labelVariable

See the "labeledframe" class manual entry for details on the inherited options.

WIDGET-SPECIFIC OPTIONS
Name: command
Class: Command
Command-Line Switch: -command

Specifies a Tcl command procedure to be evaluated following a change in the current radio box
selection.

DESCRIPTION
The radiobox command creates a radio button box widget capable of adding, inserting, deleting, selecting,
and configuring radiobuttons as well as obtaining the currently selected button.

METHODS
The radiobox command creates a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command.

Many of the widget commands for theradiobox take as one argument an indicator of which radiobutton of
the radiobox to operate on. These indicators are calledindexesand allow reference and manipulation of
radiobuttons. Radiobox indexes may be specified in any of the following forms:

number Specifies the radiobutton numerically, where 0 corresponds to the top radiobutton of the
radiobox.

end Indicates the last radiobutton of the radiobox.

pattern If the index doesn’t satisfy one of the above forms then this form is used.Patternis pattern-
matched against the tag of each radiobutton in the radiobox, in order from top to bottom,
until a matching entry is found. The rules ofTcl_StringMatch are used.

Tk Last change: 3.0.0 1

[incr Widgets] radiobox (n)

WIDGET-SPECIFIC METHODS
pathNameadd tag?option value option value?

Adds a new radiobutton to the radiobuttond window on the bottom. The command takes addi-
tional options which are passed on to the radiobutton as construction arguments. These include
the standard Tk radiobutton options. The tag is returned.

pathNamebuttonconfigure index?options?
This command is similar to theconfigure command, except that it applies to the options for an
individual radiobutton, whereasconfigureapplies to the options for the radiobox as a whole.
Optionsmay have any of the values accepted by theadd widget command. Ifoptionsare speci-
fied, options are modified as indicated in the command and the command returns an empty string.
If no options are specified, returns a list describing the current options for entryindex (see
Tk_ConfigureInfo for information on the format of this list).

pathNamecgetoption
Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by theradiobox command.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by theradiobox command.

pathNamedeleteindex
Deletes a specified radiobutton given anindex.

pathNamedeselectindex
Deselects a specified radiobutton given anindex.

pathNameflash index
Flashes a specified radiobutton given anindex.

pathNameget
Returns the tag of the currently selected radiobutton.

pathNameindex index
Returns the numerical index corresponding to index.

pathNameinsert index tag?option value option value ...?
Same as theadd command except that it inserts the new radiobutton just before the one given by
index, instead of appending to the end of the radiobox. Theoption, andvaluearguments have the
same interpretation as for theadd widget command.

pathNameselectindex
Selects a specified radiobutton given anindex.

EXAMPLE
radiobox .rb -labeltext Fonts
.rb add times -text Times
.rb add helvetica -text Helvetica
.rb add courier -text Courier
.rb add symbol -text Symbol
.rb select courier

Tk Last change: 3.0.0 2

[incr Widgets] radiobox (n)

pack .rb -padx 10 -pady 10 -fill both -expand yes

AUTHOR
Michael J. McLennan

Mark L. Ulferts

KEYWORDS
radiobox, widget

Tk Last change: 3.0.0 3

[incr Widgets] scopedobject (n)

NAME
scopedobject − Create and manipulate a scoped [incr Tcl] class object.

SYNOPSIS
scopedobjectobjName?options?

INHERITANCE
None

STANDARD OPTIONS
Name: enterscopecommand:
Command-Line Switch: -enterscopecommand

Specifies a Tcl command to invoke when an object enters scope (i.e. when it is created..). The
default is {}.

Name: enterscopecommand:
Command-Line Switch: -enterscopecommand

Specifies a Tcl command to invoke when an object exits scope (i.e. when it is deleted..). The
default is {}.

DESCRIPTION
Thescopedobjectcommand creates a base class for defining Itcl classes which posses scoped behavior like
Tcl variables. The objects are only accessible within the procedure in which they are instantiated and are
deleted when the procedure returns. This class was designed to be a general purpose base class for support-
ing scoped incr Tcl classes. The options include the execute a Tcl script command when an object enters
and exits its scope.

METHODS
The scopedobjectcommand creates a new Tcl command whose name ispathName. This command may
be used to invoke various operations on the object. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command. The following commands are possible
for scopedobject objects:

OBJECT-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thescopedobjectcommand.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the object. If nooption is specified, returns a list
describing all of the available options forpathName. If option is specified with novalue, then the
command returns a list describing the one named option (this list will be identical to the corre-
sponding sublist of the value returned if nooption is specified). If one or moreoption−valuepairs
are specified, then the command modifies the given objects option(s) to have the given value(s); in
this case the command returns an empty string.Option may have any of the values accepted by
thescopedobjectcommand.

EXAMPLE
The scopedobject was primarily meant to be a base class. The following is an example of usage
without inheritance:

Tk Last change: 3.0.0 1

[incr Widgets] scopedobject (n)

proc scopedobject_demo {} {
scopedobject #auto -exitscopecommand {puts "enter scopedobject_demo"} -exitscopecommand {puts "e

}

scopedobject_demo

AUTHOR
John A. Tucker

KEYWORDS
scopedobject, object

Tk Last change: 3.0.0 2

[incr Widgets] scrolledcanvas (n)

NAME
scrolledcanvas − Create and manipulate scrolled canvas widgets

SYNOPSIS
scrolledcanvaspathName?options?

INHERITANCE
itk::Widget <- Labeledwidget <- Scrolledwidget <- Scrolledcanvas

STANDARD OPTIONS
activeBackground background borderWidth cursor
exportSelection font foreground highlightColor
highlightThickness insertBorderWidth insertOffTime insertOnTime
insertWidth relief selectBackground selectBorderWidth
selectForeground

See the "options" manual entry for details on the standard options.

ASSOCIATED OPTIONS
closeEnough confine scrollRegion xScrollIncrement
yScrollIncrement

See the "canvas" widget manual entry for details on the above associated options.

activeRelief elementBorderWidth jump troughColor

See the "scrollbar" widget manual entry for details on the above associated options.

INHERITED OPTIONS
disabledForeground labelBitmap labelFont labelImage
labelMargin labelPos labelText labelVariable
state

See the "labeledwidget" class manual entry for details on the inherited options.

WIDGET-SPECIFIC OPTIONS
Name: autoMargin
Class: AutoMargin
Command-Line Switch: -automargin

Specifies the autoresize extra margin to reserve. This option is only effective with autoresize
turned on. The default is 10.

Name: autoResize
Class: AutoResize
Command-Line Switch: -autoresize

Automatically adjusts the scrolled region to be the bounding box covering all the items in the can-
vas following the execution of any method which creates or destroys items. Thus, as new items
are added, the scrollbars adjust accordingly.

Name: height
Class: Height
Command-Line Switch: -height

Specifies the height of the scrolled canvas widget in any of the forms acceptable toTk_GetPixels.
The default height is 30 pixels.

Name: hscrollMode
Class: ScrollMode
Command-Line Switch: -hscrollmode

Tk Last change: 3.0.0 1

[incr Widgets] scrolledcanvas (n)

Specifies the the display mode to be used for the horizontal scrollbar:static, dynamic, or none.
In static mode, the scroll bar is displayed at all times. Dynamic mode displays the scroll bar as
required, and none disables the scroll bar display. The default is static.

Name: sbWidth
Class: Width
Command-Line Switch: -sbwidth

Specifies the width of the scrollbar in any of the forms acceptable toTk_GetPixels. The default
width is 15 pixels..

Name: scrollMargin
Class: ScrollMargin
Command-Line Switch: -scrollmargin

Specifies the distance between the canvas and scrollbar in any of the forms acceptable toTk_Get-
Pixels. The default is 3 pixels.

Name: textBackground
Class: Background
Command-Line Switch-textbackground

Specifies the background color for the canvas. This allows the background within the canvas to be
different from the normal background color.

Name: vscrollMode
Class: ScrollMode
Command-Line Switch: -vscrollmode

Specifies the the display mode to be used for the vertical scrollbar:static, dynamic,or none. In
static mode, the scroll bar is displayed at all times. Dynamic mode displays the scroll bar as
required, and none disables the scroll bar display. The default is static.

Name: width
Class: Width
Command-Line Switch: -width

Specifies the width of the scrolled canvas widget in any of the forms acceptable toTk_GetPixels.
The default height is 30 pixels.

DESCRIPTION
The scrolledcanvascommand creates a scrolled canvas with additional options to manage horizontal and
vertical scrollbars. This includes options to control which scrollbars are displayed and the method, i.e. stat-
ically or dynamically.

METHODS
Thescrolledcanvascommand creates a new Tcl command whose name ispathName. This command may
be used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command. The following commands are possible
for scrolledcanvas widgets:

ASSOCIATED METHODS

Tk Last change: 3.0.0 2

[incr Widgets] scrolledcanvas (n)

addtag bbox bind canvasx
canvasy coords create dchars
delete dtag find focus
gettags icursor index insert
itemconfigure lower move postscript
raise scale scan select
type xview yview

See the "canvas" manual entry for details on the associated methods.

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thescrolledcanvascommand.

pathNamechildsite
Returns the child site widget path name.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thescrolledcanvascom-
mand.

pathNamejustify direction
Justifies the canvas contents via the scroll bars in one of four directions:left, right , top, or bot-
tom.

COMPONENTS
Name: canvas
Class: Canvas

The canvas component is the canvas widget. See the "canvas" widget manual entry for details on
the canvas component item.

Name: horizsb
Class: Scrollbar

The horizsb component is the horizontal scroll bar. See the "ScrollBar" widget manual entry for
details on the horizsb component item.

Name: vertsb
Class: Scrollbar

The vertsb component is the vertical scroll bar. See the "ScrollBar" widget manual entry for
details on the vertsb component item.

EXAMPLE
scrolledcanvas .sc

.sc create rectangle 100 100 400 400 -fill red

.sc create rectangle 300 300 600 600 -fill green

Tk Last change: 3.0.0 3

[incr Widgets] scrolledcanvas (n)

.sc create rectangle 200 200 500 500 -fill blue

pack .sc -padx 10 -pady 10 -fill both -expand yes

AUTHOR
Mark L. Ulferts

KEYWORDS
scrolledcanvas, canvas, widget

Tk Last change: 3.0.0 4

[incr Widgets] scrolledframe (n)

NAME
scrolledframe − Create and manipulate scrolled frame widgets

SYNOPSIS
scrolledframepathName?options?

INHERITANCE
itk::Widget <- Labeledwidget <-Scrolledwidget <- Scrolledframe

STANDARD OPTIONS
activeBackground background borderWidth cursor
font foreground highlightColor highlightThickness
relief selectBackground selectBorderWidth selectForeground

See the "options" manual entry for details on the standard options.

ASSOCIATED OPTIONS
activeRelief elementBorderWidth jump troughColor

See the "scrollbar" manual entry for details on the associated options.

INHERITED OPTIONS
LabelBitmap labelFont labelImage labelMargin
labelPos labelText labelVariable

See the "labeledwidget" class manual entry for details on the inherited options.

WIDGET-SPECIFIC OPTIONS
Name: height
Class: Height
Command-Line Switch: -height

Specifies the height of the scrolled frame widget in any of the forms acceptable toTk_GetPixels.
The default height is 100 pixels.

Name: hscrollMode
Class: ScrollMode
Command-Line Switch: -hscrollmode

Specifies the the display mode to be used for the horizontal scrollbar:static, dynamic, or none.
In static mode, the scroll bar is displayed at all times. Dynamic mode displays the scroll bar as
required, and none disables the scroll bar display. The default is static.

Name: sbWidth
Class: Width
Command-Line Switch: -sbwidth

Specifies the width of the scrollbar in any of the forms acceptable toTk_GetPixels. The default
width is 15 pixels.

Name: scrollMargin
Class: Margin
Command-Line Switch: -scrollmargin

Specifies the distance between the frame and scrollbar in any of the forms acceptable toTk_Get-
Pixels. The default is 3 pixels.

Name: vscrollMode
Class: ScrollMode
Command-Line Switch: -vscrollmode

Specifies the the display mode to be used for the vertical scrollbar:static, dynamic, or none. In

Tk Last change: 3.0.0 1

[incr Widgets] scrolledframe (n)

static mode, the scroll bar is displayed at all times. Dynamic mode displays the scroll bar as
required, and none disables the scroll bar display. The default is static.

Name: width
Class: Width
Command-Line Switch: -width

Specifies the width of the scrolled frame widget in any of the forms acceptable toTk_GetPixels.
The default height is 100 pixels.

DESCRIPTION
The scrolledframe combines the functionallity of scrolling with that of a typical frame widget to imple-
ment a clipable viewing area whose visible region may be modified with the scroll bars. This enables the
contruction of visually larger areas than which could normally be displayed, containing a heterogenous mix
of other widgets. Options exist which allow full control over which scrollbars are displayed and the
method, i.e. statically or dynamically. The frame itself may be accessed by thechildsite method and then
filled with other widget combinations.

METHODS
Thescrolledframe command creates a new Tcl command whose name ispathName. This command may
be used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command. The following commands are possible
for scrolledframe widgets:

ASSOCIATED METHODS
xview yview

See the "canvas" manual entry for details on the associated methods.

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thescrolledframecommand.

pathNamechildsite
Return the path name of the child site.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thescrolledframe com-
mand.

pathNamejustify direction
Justifies the frame contents via the scroll bars in one of four directions:left, right , top, or bottom.

Tk Last change: 3.0.0 2

[incr Widgets] scrolledframe (n)

COMPONENTS
Name: horizsb
Class: Scrollbar

The horizsb component is the horizontal scroll bar. See the "ScrollBar" widget manual entry for
details on the horizsb component item.

Name: vertsb
Class: Scrollbar

The vertsb component is the vertical scroll bar. See the "ScrollBar" widget manual entry for
details on the vertsb component item.

EXAMPLE
scrolledframe .sf -width 150 -height 180 -labelon yes -labeltext scrolledframe

set cs [.sf childsite]
pack [button $cs.b1 -text Hello] -pady 10
pack [button $cs.b2 -text World] -pady 10
pack [button $cs.b3 -text "This is a test"] -pady 10
pack [button $cs.b4 -text "This is a really big button"] -pady 10
pack [button $cs.b5 -text "This is another really big button"] -pady 10
pack [button $cs.b6 -text "This is the last really big button"] -pady 10

pack .sf -expand yes -fill both -padx 10 -pady 10

AUTHOR
Mark L. Ulferts

Sue Yockey

KEYWORDS
scrolledframe, frame, widget

Tk Last change: 3.0.0 3

[incr Widgets] scrolledhtml (n)

NAME
scrolledhtml − Create and manipulate a scrolled text widget with the capability of displaying HTML for-
matted documents.

SYNOPSIS
scrolledhtml pathName?options?

INHERITANCE
itk::Widget <- Labeledwidget <- Scrolledtext <- Scrolledhtml

STANDARD OPTIONS
activeBackground background borderWidth cursor
exportSelection foreground highlightColor highlightThickness
insertBackground insertBorderWidth insertOffTime insertOnTime
insertWidth padX padY relief
repeatDelay repeatInterval selectBackground selectBorderWidth
selectForeground setGrid

See the "options" manual entry for details on the standard options.

ASSOCIATED OPTIONS
activeRelief elementBorderWidth jump troughColor

See the "scrollbar" widget manual entry for details on the above associated options.

spacing1 spacing2 spacing3 state
wrap

See the "text" widget manual entry for details on the above associated options.

INHERITED OPTIONS
labelBitmap labelFont labelImage labelMargin
labelPos labelText labelVariable height
hscrollMode sbWidth scrollMargin visibleitems
vscrollMode width

See the "scrolledtext" class manual entry for details on the inherited options.

WIDGET-SPECIFIC OPTIONS
Name: feedback
Class: FeedBack
Command-Line Switch: -feedback

Specifies the callback command to use to give feedback on current status. The command is
executed in the formcommand <number of characters remaining>

Name: fixedfont
Class: FixedFont
Command-Line Switch: -fixedfont

Specifies the name of the font to be used for fixed-width character text (such as <pre>...</pre> or
<tt>...</tt>.) The size, style, and other font attributes are determined by the format tags in the doc-
ument. The default is courier.

Name: fontname
Class: FontName
Command-Line Switch: -fontname

Specifies the name of the font to be used for normal-width character spaced text. The size, style,
and other font attributes are determined by the format tags in the document. The default is times.

Tk Last change: 3.0.0 1

[incr Widgets] scrolledhtml (n)

Name: fontsize
Class: FontSize
Command-Line Switch: -fontsize

Specifies the general size of the fonts used. One of small, medium, large, or huge. The default is
medium.

Name: foreground
Class: Foreground
Command-Line Switch: -foreground

Specifies the color of text other than hypertext links, in any of the forms acceptable toTk_Get-
Color. This value may be overridden in a particular document by thetext attribute of theBody
HTML tag.

Name: link
Class: Link
Command-Line Switch: -link

Specifies the default color of hypertext links in any of the forms acceptable toTk_GetColor. This
value may be overridden in a particular document by thelink attribute of theBody HTML tag. The
default is blue.

Name: linkcommand
Class: LinkCommand
Command-Line Switch: -linkcommand

Specifies the command to execute when the user clicks on a hypertext link. Execution is of the
form linkcommand href, wherehref is the value given in thehrefattribute of theA HTML tag.

Name: alink
Class: alink
Command-Line Switch: -alink

Specifies the color of hypertext links when the cursor is over the link in any of the forms accept-
able toTk_GetColor. The default is red.

Name: textBackground
Class: Background
Command-Line Switch: -textbackground

Specifies the background color for the text area in any of the forms acceptable toTk_GetColor.
This value may be overridden in a particular document by thebgcolor attribute of theBody
HTML tag.

Name: unknownimage
Class: UnknownImage
Command-Line Switch: -unknownimage

Specifies the name of the image file to display when animg specified in the html document cannot
be loaded.

Name: update
Class: Update
Command-Line Switch: -alink

A boolean value indicating whether to call update during html rendering.

Tk Last change: 3.0.0 2

[incr Widgets] scrolledhtml (n)

DESCRIPTION
Thescrolledhtml command creates a scrolled text widget with the additional capability to display html for-
matted documents. An import method is provided to read an html document file, and a render method is
provided to display a html formatted text string.

METHODS
Thescrolledhtml command creates a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command. The following commands are possible
for scrolledhtml widgets:

ASSOCIATED METHODS
bbox compare debug delete
dlineinfo get index insert
mark scan search see
tag window xview yview

See the "text" manual entry for details on the standard methods.

INHERITED METHODS
export clear

See the "scrolledhtml" manual entry for details on the inherited methods.

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thescrolledhtml command.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Option may have any of the values accepted by thescrolledhtml com-
mand.

pathNameimport ?option?href
Load html formatted text from a file.Href must exist. Ifoption is -link, href is assumed to be rela-
tive to the application’s current working directory. Otherwise,href is assumed to be relative to the
path of the last page loaded.Href is either a filename, or a reference of the formfilename#anchor-
name. In the latter form, fIFilename and/oranchornamemay be empty. Iffilenameis empty, the
current document is assumed. Ifanchornameis empty, the top of the document is assumed.

pathNamepwd
Print the current working directory of the widget, i.e. the directory of the last page loaded.

pathNamerender htmltext?wd?
Display HTML formatted texthtmltext. Wd gives the base path to use for all links and images in
the document.Wddefaults to the application’s current working directory.

Tk Last change: 3.0.0 3

[incr Widgets] scrolledhtml (n)

pathNametitle
Return the title of the current page, as given in the <title>...</title> field in the document.

HTML COMPLIANCE
This widget is compliant with HTML 3.2 with the following exceptions:

No features requiring a connection to an http server are supported.

Some image alignments aren’t supported, because they are not supported by the text widget.

The
 attributes dealing with image alignments aren’t supported.

Automatic table sizing is not supported very well, due to limitations of the text widget

EXAMPLE
option add∗textBackground white

scrolledhtml .sh -fontname helvetica -linkcommand "this import -link"

pack .sh -padx 10 -pady 10 -fill both -expand yes

.sh import ˜/public_html/index.html

BUGS
Cells in a table can be caused to overlap. ex:

<table border width="100%">
<tr><td>cell1</td><td align=right rowspan=2>cell2</td></tr>
<tr><td colspan=2>cell3 w/ overlap</td>
</table> It hasn’t been fixed because 1) it’s a pain to fix, 2) it will slow tables down by a signifi-

cant amount, and 3) netscape has the same bug, as of V3.01.

ACKNOWLEDGEMENTS
Sam Shen

This code is based largely on his tkhtml.tcl code from tk inspect. Tkhtml is copyright 1995
Lawrence Berkeley Laboratory.

AUTHOR
Kris Raney

KEYWORDS
scrolledhtml, html, text, widget

Tk Last change: 3.0.0 4

[incr Widgets] scrolledlistbox (n)

NAME
scrolledlistbox − Create and manipulate scrolled listbox widgets

SYNOPSIS
scrolledlistboxpathName?options?

INHERITANCE
itk::Widget <- Labeledwidget <- Scrolledwidget <- Scrolledlistbox

STANDARD OPTIONS
activeBackground background borderWidth cursor
exportSelection foreground highlightColor highlightThickness
relief selectBackground selectBorderWidth selectForeground

See the "options" manual entry for details on the standard options.

ASSOCIATED OPTIONS
selectMode

See the "listbox" widget manual entry for details on the above associated options.

activeRelief elementBorderwidth jump troughColor

See the "scrollbar" widget manual entry for details on the above associated options.

INHERITED OPTIONS
disabledForeground labelBitmap labelFont labelImage
labelMargin labelPos labelText labelVariable
state

See the "labeledwidget" class manual entry for details on the inherited options.

WIDGET-SPECIFIC OPTIONS
Name: dblClickCommand
Class: Command
Command-Line Switch: -dblclickcommand

Specifies a Tcl command procedure which is called when an item is double clicked. Typically this
occurs when mouse button 1 is double clicked over an item. Selection policy does not matter.

Name: height
Class: Height
Command-Line Switch: -height

Specifies the height of the scrolled list box as an entire unit. The value may be specified in any of
the forms acceptable toTk_GetPixels. Any additional space needed to display the other compo-
nents such as labels, margins, and scrollbars force the listbox to be compressed. A value of zero
along with the same value for the width causes the value given for the visibleitems option to be
applied which administers geometry constraints in a different manner. The default height is zero.

Name: hscrollMode
Class: ScrollMode
Command-Line Switch: -hscrollmode

Specifies the the display mode to be used for the horizontal scrollbar:static, dynamic, or none.
In static mode, the scroll bar is displayed at all times. Dynamic mode displays the scroll bar as
required, and none disables the scroll bar display. The default is static.

Name: sbWidth
Class: Width
Command-Line Switch: -sbwidth

Tk Last change: 3.0.0 1

[incr Widgets] scrolledlistbox (n)

Specifies the width of the scrollbar in any of the forms acceptable toTk_GetPixels. The default
width is 15 pixels..

Name: scrollMargin
Class: Margin
Command-Line Switch: -scrollmargin

Specifies the distance between the listbox and scrollbar in any of the forms acceptable toTk_Get-
Pixels. The default is 3 pixels.

Name: selectionCommand
Class: Command
Command-Line Switch: -selectioncommand

Specifies a Tcl command procedure which is called when an item is selected. Selection policy
does not matter.

Name: state
Class: State
Command-Line Switch: -state

Specifies one of two states for the listbox:normal or disabled. If the listbox is disabled then
selection is ignored. The default is normal.

Name: textBackground
Class: Background
Command-Line Switch-textbackground

Specifies the background color for the listbox. This allows the background within the listbox to be
different from the normal background color.

Name: textFont
Class: Font
Command-Line Switch: -textfont

Specifies the font to be used for text in the listbox. This allows for the font associated with text
internal to the scrolled listbox to be different than the font for labels.

Name: visibleitems
Class: VisibleItems
Command-Line Switch: -visibleitems

Specifies the widthxheight in characters and lines for the listbox. This option is only administered
if the width and height options are both set to zero, otherwise they take precedence. The default
value is 20x10. With the visibleitems option engaged, geometry constraints are maintained only
on the listbox. The size of the other components such as labels, margins, and scroll bars, are addi-
tive and independent, effecting the overall size of the scrolled list box. In contrast, should the
width and height options have non zero values, they are applied to the scrolled list box as a whole.
The listbox is compressed or expanded to maintain the geometry constraints.

Name: vscrollMode
Class: ScrollMode
Command-Line Switch: -vscrollmode

Specifies the the display mode to be used for the vertical scrollbar:static, dynamic,or none. In
static mode, the scroll bar is displayed at all times. Dynamic mode displays the scroll bar as
required, and none disables the scroll bar display. The default is static.

Name: width
Class: Width
Command-Line Switch: -width

Tk Last change: 3.0.0 2

[incr Widgets] scrolledlistbox (n)

Specifies the width of the scrolled list box as an entire unit. The value may be specified in any of
the forms acceptable toTk_GetPixels. Any additional space needed to display the other compo-
nents such as labels, margins, and scrollbars force the listbox to be compressed. A value of zero
along with the same value for the height causes the value given for the visibleitems option to be
applied which administers geometry constraints in a different manner. The default width is zero.

DESCRIPTION
The scrolledlistbox command creates a scrolled listbox with additional options to manage horizontal and
vertical scrollbars. This includes options to control which scrollbars are displayed and the method, i.e. stat-
ically or dynamically.

METHODS
Thescrolledlistbox command creates a new Tcl command whose name ispathName. This command may
be used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command.

Many of the widget commands for a scrolledlistbox take as one argument an indicator of which entry of the
list box to operate on. These indicators are calledindexes and may be specified in any of the following
forms:

number Specifies the element as a numerical index, where 0 corresponds to the first element in the
listbox.

active Indicates the element that has the location cursor. This element will be displayed with an
underline when the listbox has the keyboard focus, and it is specified with theactivate wid-
get command.

anchor Indicates the anchor point for the selection, which is set with theselection anchorwidget
command.

end Indicates the end of the listbox. For some commands this means just after the last element;
for other commands it means the last element.

@x,y Indicates the element that covers the point in the listbox window specified byx and y (in
pixel coordinates). If no element covers that point, then the closest element to that point is
used.

pattern If the index doesn’t satisfy one of the above forms then this form is used.Patternis pattern-
matched against the items in the list box, in order from the top down, until a matching entry
is found. The rules ofTcl_StringMatch are used.

The following widget commands are possible for scrolledlistbox widgets:

ASSOCIATED METHODS
activate bbox curselection delete
get index insert nearest
scan see selection size
xview yview

See the "listbox" manual entry for details on the associated methods.

Tk Last change: 3.0.0 3

[incr Widgets] scrolledlistbox (n)

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thescrolledlistboxcommand.

pathNameclear
Clears the listbox of all items.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thescrolledlistbox com-
mand.

pathNamegetcurselection
Returns the contents of the listbox element indicated by the current selection indexes. Short cut
version of get and curselection command combination.

pathNamejustify direction
Justifies the list contents via teh scroll bars in one of four directions:left, right , top, or bottom.

pathNameselecteditemcount
Returns the number of items currently selected in the list.

pathNamesort order
Sort the current list in eitherascendingor descendingorder. The valuesincreasinganddecreas-
ing are also accepted.

COMPONENTS
Name: listbox
Class: listbox

The listbox component is the listbox widget. See the "listbox" widget manual entry for details on
the listbox component item.

Name: horizsb
Class: Scrollbar

The horizsb component is the horizontal scroll bar. See the "scrollbar" widget manual entry for
details on the horizsb component item.

Name: vertsb
Class: Scrollbar

The vertsb component is the vertical scroll bar. See the "scrollbar" widget manual entry for details
on the vertsb component item.

EXAMPLE
option add∗textBackground white
proc selCmd {} {

puts stdout "[.slb getcurselection]"
}
proc defCmd {} {

Tk Last change: 3.0.0 4

[incr Widgets] scrolledlistbox (n)

puts stdout "Double Click"
return [selCmd]

}
scrolledlistbox .slb -selection single \

-vscrollmode static -hscrollmode dynamic -labeltext "List" \
-selectioncommand selCmd -dblclickcommand defCmd

pack .slb -padx 10 -pady 10 -fill both -expand yes
.slb insert end {Hello {Out There} World}

AUTHOR
Mark L. Ulferts

KEYWORDS
scrolledlistbox, listbox, widget

Tk Last change: 3.0.0 5

[incr Widgets] scrolledtext (n)

NAME
scrolledtext − Create and manipulate a scrolled text widget

SYNOPSIS
scrolledtextpathName?options?

INHERITANCE
itk::Widget <- Labeledwidget <- Scrolledwidget <- Scrolledtext

STANDARD OPTIONS
activeBackground background borderWidth cursor
exportSelection foreground highlightColor highlightThickness
insertBackground insertBorderWidth insertOffTime insertOnTime
insertWidth padX padY relief
selectBackground selectBorderWidth selectForeground setGrid

See the "options" manual entry for details on the standard options.

ASSOCIATED OPTIONS
activeRelief elementBorderWidth jump troughColor

See the "scrollbar" widget manual entry for details on the above associated options.

spacing1 spacing2 spacing3 state
wrap

See the "text" widget manual entry for details on the above associated options.

INHERITED OPTIONS
disabledForeground labelBitmap labelFont labelImage
labelMargin labelPos labelText labelVariable
state

See the "labeledwidget" class manual entry for details on the inherited options.

WIDGET-SPECIFIC OPTIONS
Name: height
Class: Height
Command-Line Switch: -height

Specifies the height of the scrolled text as an entire unit. The value may be specified in any of the
forms acceptable toTk_GetPixels. Any additional space needed to display the other components
such as labels, margins, and scrollbars force the text to be compressed. A value of zero along with
the same value for the width causes the value given for the visibleitems option to be applied which
administers geometry constraints in a different manner. The default height is zero.

Name: hscrollMode
Class: ScrollMode
Command-Line Switch: -hscrollmode

Specifies the the display mode to be used for the horizontal scrollbar:static, dynamic, or none.
In static mode, the scroll bar is displayed at all times. Dynamic mode displays the scroll bar as
required, and none disables the scroll bar display. The default is static.

Name: sbWidth
Class: Width
Command-Line Switch: -sbwidth

Specifies the width of the scrollbar in any of the forms acceptable toTk_GetPixels.

Tk Last change: 3.0.0 1

[incr Widgets] scrolledtext (n)

Name: scrollMargin
Class: Margin
Command-Line Switch: -scrollmargin

Specifies the distance between the text area and scrollbar in any of the forms acceptable to
Tk_GetPixels. The default is 3 pixels.

Name: textBackground
Class: Background
Command-Line Switch: -textbackground

Specifies the background color for the text area in any of the forms acceptable toTk_GetColor.

Name: textFont
Class: Font
Command-Line Switch: -textfont

Specifies the font to be used in the scrolled text area.

Name: visibleitems
Class: VisibleItems
Command-Line Switch: -visibleitems

Specifies the widthxheight in characters and lines for the text. This option is only administered if
the width and height options are both set to zero, otherwise they take precedence. The default
value is 80x24. With the visibleitems option engaged, geometry constraints are maintained only
on the text. The size of the other components such as labels, margins, and scroll bars, are additive
and independent, effecting the overall size of the scrolled text. In contrast, should the width and
height options have non zero values, they are applied to the scrolled text as a whole. The text is
compressed or expanded to maintain the geometry constraints.

Name: vscrollMode
Class: ScrollMode
Command-Line Switch: -vscrollmode

Specifies the the display mode to be used for the vertical scrollbar:static, dynamic,or none. In
static mode, the scroll bar is displayed at all times. Dynamic mode displays the scroll bar as
required, and none disables the scroll bar display. The default is static.

Name: width
Class: Width
Command-Line Switch: -width

Specifies the width of the scrolled text as an entire unit. The value may be specified in any of the
forms acceptable toTk_GetPixels. Any additional space needed to display the other components
such as labels, margins, and scrollbars force the text to be compressed. A value of zero along with
the same value for the height causes the value given for the visibleitems option to be applied which
administers geometry constraints in a different manner. The default width is zero.

DESCRIPTION
Thescrolledtext command creates a scrolled text widget with additional options to manage the scrollbars.
This includes options to control the method in which the scrollbars are displayed, i.e. statically or dynami-
cally. Options also exist for adding a label to the scrolled text area and controlling its position.
Import/export of methods are provided for file I/O.

Tk Last change: 3.0.0 2

[incr Widgets] scrolledtext (n)

METHODS
Thescrolledtext command creates a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command. The following commands are possible
for scrolledtext widgets:

ASSOCIATED METHODS
bbox compare debug delete
dlineinfo get index insert
mark scan search see
tag window xview yview

See the "text" manual entry for details on the standard methods.

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thescrolledtextcommand.

pathNamechildsite
Returns the child site widget path name.

pathNameclear
Clear the text area of all characters.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Option may have any of the values accepted by thescrolledtext com-
mand.

pathNameimport filename?index?
Load the text from a file into the text area at theindex. Thefilenamemust exist.

pathNameexport filename
Write text to a file. Iffilenameexists then contents are replaced with text widget contents.

COMPONENTS
Name: text
Class: Text

The text component is the text widget. See the "text" widget manual entry for details on the text
component item.

Name: horizsb
Class: Scrollbar

The horizsb component is the horizontal scroll bar. See the "scrollbar" widget manual entry for
details on the horizsb component item.

Tk Last change: 3.0.0 3

[incr Widgets] scrolledtext (n)

Name: vertsb
Class: Scrollbar

The vertsb component is the vertical scroll bar. See the "scrollbar" widget manual entry for details
on the vertsb component item.

EXAMPLE
option add∗textBackground white

scrolledtext .st -scrollmode dynamic -labeltext "Password File"

pack .st -padx 10 -pady 10 -fill both -expand yes

.st import /etc/passwd

AUTHOR
Mark L. Ulferts

KEYWORDS
scrolledtext, text, widget

Tk Last change: 3.0.0 4

[incr Widgets] selectionbox (n)

NAME
selectionbox − Create and manipulate a selection box widget

SYNOPSIS
selectionboxpathName?options?

INHERITANCE
itk::Widget <- selectionbox

STANDARD OPTIONS
activeBackground background borderWidth cursor
exportSelection foreground highlightColor highlightThickness
insertBackground insertBorderWidth insertOffTime insertOnTime
insertWidth relief repeatDelay repeatInterval
selectBackground selectBorderWidth selectForeground

See the "options" manual entry for details on the standard options.

ASSOCIATED OPTIONS
textBackground textFont

See the "entryfield" widget class manual entry for details on the above associated options.

labelFont labelMargin

See the "labeledwidget" class manual entry for details on the above associated options.

activeRelief elementBorderWidth jump troughColor

See the "scrollbar" widget class manual entry for details on the above associated options.

dblClickCommand hscrollMode sbWidth scrollMargin
textBackground textFont vscrollMode

See the "scrolledlistbox" widget class manual entry for details on the above associated options.

WIDGET-SPECIFIC OPTIONS
Name: childSitePos
Class: Position
Command-Line Switch: -childsitepos

Specifies the position of the child site in the selection box:n, s, e, w, or . The default is center

Name: height
Class: Height
Command-Line Switch: -height

Specifies the height of the selection box. The value may be specified in any of the forms accept-
able to Tk_GetPixels. The default is 320 pixels.

Name: itemsCommand
Class: Command
Command-Line Switch: -itemscommand

Specifies a command to be evaluated following selection of an item.

Name: itemsLabel
Class: Text
Command-Line Switch: -itemslabel

Specifies the text of the label for the items list. The default is "List".

Tk Last change: 3.0.0 1

[incr Widgets] selectionbox (n)

Name: itemsLabelPos
Class: Position
Command-Line Switch: -itemslabelpos

Specifies the position of the label along the side of the items list:n, ne, e, se, s, sw, w, or nw. The
default is nw.

Name: itemsOn
Class: ItemsOn
Command-Line Switch: -itemson

Specifies whether or not to display the items list in any of the forms acceptable toTcl_Get-
Boolean. The default is true.

Name: margin
Class: Margin
Command-Line Switch: -margin

Specifies distance between the items list and selection entry in any of the forms acceptable to
Tk_GetPixels. The default is 7 pixels.

Name: selectionCommand
Class: Command
Command-Line Switch: -selectioncommand

Specifies a Tcl procedure to be associated with a return key press event in the selection entry field.

Name: selectionLabel
Class: Text
Command-Line Switch: -selectionlabel

Specifies the text of the label for the selection entry field. The default is "Selection".

Name: selectionLabelPos
Class: Position
Command-Line Switch: -selectionlabelpos

Specifies the position of the label along the side of the selection:n, ne, e, se, s, sw, w, or nw. The
default is nw.

Name: selectionOn
Class: SelectionOn
Command-Line Switch: -selectionon

Specifies whether or not to display the selection entry in any of the forms acceptable toTcl_Get-
Boolean. The default is true.

Name: width
Class: Width
Command-Line Switch: -width

Specifies the width of the selection box. The value may be specified in any of the forms accept-
able to Tk_GetPixels. The default is 260 pixels.

DESCRIPTION
Theselectionboxcommand creates a scrolled list of items and a selection entry field. The user may choose
any of the items displayed in the scrolled list of alternatives and the selection field will be filled with the
choice. The user is also free to enter a new value in the selection entry field. Both the list and entry areas
have labels. A child site is also provided in which the user may create other widgets to be used in

Tk Last change: 3.0.0 2

[incr Widgets] selectionbox (n)

conjunction with the selection box.

METHODS
Theselectionboxcommand creates a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command.

ASSOCIATED METHODS
curselection delete index nearest
scan selection size

See the "listbox" widget class manual entry for details on the associated methods.

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by theselectionboxcommand.

pathNamechildsite
Returns the child site widget path name.

pathNameclear component
Delete the contents of either the selection entry widget or items list. Thecomponentargument
may be eitheritemsor selection.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Option may have any of the values accepted by theselectionboxcom-
mand.

pathNameget
Returns the current value of the selection entry widget.

pathNameinsert component args
Insert element(s) into either the selection entry widget or items list. Thecomponentargument may
be eitheritems or selection. Theargs follow the rules of either an entry or list widget depending
on thecomponentvalue.

pathNameselectitem
Replace the selection entry field contents with the currently selected items value.

COMPONENTS
Name: childsite
Class: Frame

The childsite component is the user child site for the selection box. See the "frame" widget man-
ual entry for details on the childsite component item.

Tk Last change: 3.0.0 3

[incr Widgets] selectionbox (n)

Name: items
Class: Scrolledlistbox

The items component provides the scrolled list box of items for the selection box. See the
"scrolledlistbox" widget manual entry for details on the items component item.

Name: selection
Class: Entryfield

The selection component provides the entry field in the selection box for display of the selected
item in the items component. See the "entryfield" widget manual entry for details on the selection
component item.

EXAMPLE
option add∗textBackground white

selectionbox .sb -items {Hello {Out There} World}
pack .sb -padx 10 -pady 10 -fill both -expand yes

set cs [label [.sb childsite].label -text "Child Site"]
pack $cs -fill x -padx 10 -pady 10

.sb insert items 2 {Cruel Cruel}

.sb selection set 1

AUTHOR
Mark L. Ulferts

KEYWORDS
selectionbox, widget

Tk Last change: 3.0.0 4

[incr Widgets] selectiondialog (n)

NAME
selectiondialog − Create and manipulate a selection dialog widget

SYNOPSIS
selectiondialogpathName?options?

INHERITANCE
itk::Toplevel <- Shell <- Dialogshell <- Dialog <- Selectiondialog

STANDARD OPTIONS
activeBackground background borderWidth cursor
exportSelection foreground highlightColor highlightThickness
insertBackground insertBorderWidth insertOffTime insertOnTime
insertWidth selectBackground selectBorderWidth selectForeground

See the "options" manual entry for details on the standard options.

ASSOCIATED OPTIONS
textBackground textFont

See the "entryfield" widget manual entry for details on the above associated options.

labelFont

See the "labeledwidget" widget manual entry for details on the above associated options.

activeRelief elementBorderWidth jump troughColor

See the "scrollbar" widget class manual entry for details on the above associated options.

textBackground textFont

See the "scrolledlistbox" widget class manual entry for details on the above associated options.
childsitepos itemsCommand itemsLabel itemsOn
selectionCommand selectionLabel selectionOn

See the "selectionbox" widget manual entry for details on the above associated options.

INHERITED OPTIONS
buttonBoxPadX buttonBoxPadY buttonBoxPos padX
padY separator thickness

See the "dialogshell" widget manual entry for details on the above inherited options.

height master modality width

See the "shell" widget manual entry for details on the above inherited options.

title

See the "Toplevel" widget manual entry for details on the above inherited options.

DESCRIPTION
The selectiondialogcommand creates a selection box similar to the OSF/Motif standard selection dialog
composite widget. The selectiondialog is derived from the Dialog class and is composed of a selectionbox
with commands to manipulate the dialog buttons.

METHODS
Theselectiondialogcommand creates a new Tcl command whose name ispathName. This command may
be used to invoke various operations on the widget. It has the following general form:

Tk Last change: 3.0.0 1

[incr Widgets] selectiondialog (n)

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command. The following commands are possible
for selectiondialog widgets:

ASSOCIATED METHODS
childsite clear get insert
selectitem

See the "selectionbox" widget manual entry for details on the above associated methods.

curselection delete index nearest
scan selection size

See the "listbox" widget manual entry for details on the above associated methods.

INHERITED METHODS
add buttonconfigure default hide
invoke show

See the "buttonbox" widget manual entry for details on the above inherited methods.

activate center deactivate

See the "shell" widget manual entry for details on the above inherited methods.

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by theselectiondialogcommand.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by theselectiondialogcom-
mand.

COMPONENTS
Name: selectionbox
Class: Selectionbox

The selectionbox component is the selection box for the selection dialog. See the "selectionbox"
widget manual entry for details on the selectionbox component item.

EXAMPLE
selectiondialog .sd
.sd activate

AUTHOR
Mark L. Ulferts

KEYWORDS
selectiondialog, selectionbox, dialog, dialogshell, shell, widget

Tk Last change: 3.0.0 2

[incr Widgets] selectiondialog (n)

Tk Last change: 3.0.0 3

[incr Widgets] shell (n)

NAME
shell − Create and manipulate a shell widget

SYNOPSIS
shellpathName?options?

INHERITANCE
itk::Toplevel <- shell

STANDARD OPTIONS
background cursor foreground

See the "options" manual entry for details on the standard options.

INHERITED OPTIONS
title

See the "Toplevel" manual entry for details on the above inherited options.

WIDGET-SPECIFIC OPTIONS
Name: height
Class: Height
Command-Line Switch: -height

Specifies the height of the shell. The value may be specified in any of the forms acceptable to
Tk_GetPixels. A value of zero causes the height to be adjusted to the required value based on the
size requests of the components placed in the childsite. Otherwise, the height is fixed. The default
is zero. NOTE: This may cause some amount of flickering on slower machines. To prevent it sim-
ply set the width and height to a appropriate value.

Name: master
Class: Window
Command-Line Switch: -master

Defines the shell as being a transient window with the master window giv en by the master option.
The master window should be either another existing toplevel window or {} for no master. The
default is {} for shells and "." for dialogs.

Name: modality
Class: Modality
Command-Line Switch: -modality

Allows the shell to grab control of the screen in one of three different ways:application, system,
or none. Application modal prevents any other toplevel windows within the application which are
direct children of ’.’ from gaining focus. System modal locks the screen and prevents all windows
from gaining focus regardless of application. A modality of none performs no grabs at all. The
default is none.

Name: padX
Class: Pad
Command-Line Switch: -padx

Specifies a padding distance for the childsite in the X-direction in any of the forms acceptable to
Tk_GetPixels. The default is 10.

Name: padY
Class: Pad
Command-Line Switch: -pady

Specifies a padding distance for the childsite in the Y-direction in any of the forms acceptable to

Tk Last change: 3.0.0 1

[incr Widgets] shell (n)

Tk_GetPixels. The default is 10.

Name: width
Class: Width
Command-Line Switch: -width

Specifies the width of the shell. The value may be specified in any of the forms acceptable to
Tk_GetPixels. A value of zero causes the width to be adjusted to the required value based on the
size requests of the components placed in the childsite. Otherwise, the width is fixed. The default
is zero. NOTE: This may cause some amount of flickering on slower machines. To prevent it sim-
ply set the width and height to a appropriate value.

DESCRIPTION
Theshellcommand creates a shell which is a top level widget which supports modal operation.

METHODS
Theshell command create a new Tcl command whose name ispathName. This command may be used to
invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command. The following commands are possible
for shell widgets:

WIDGET-SPECIFIC METHODS
pathNameactivate

Display the shell and wait based on the modality. For application and system modal activations,
perform a grab operation, and wait for the result. The result may be returned via an argument to
thedeactivatemethod.

pathNamecenter?widget?
Centers the shell with respect to another widget. The widget argument is optional. If provided, it
should be the path of another widget with to center upon. If absent, then the shell will be centered
on the screen as a whole.

pathNamecgetoption
Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by theshellcommand.

pathNamechildsite
Returns the pathname of the child site widget.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by theshellcommand.

pathNamedeactivate?arg?
Deactivate the display of the shell. The method takes an optional argument to be passed to the
activate method which returns the value. The optional argument is only effective for application
and system modal dialogs.

Tk Last change: 3.0.0 2

[incr Widgets] shell (n)

COMPONENTS
Name: shellchildsite
Class: frame

The shellchildsite component is the user child site for the shell. See the "frame" widget manual
entry for details on the shellchildsite component item.

EXAMPLE
shell .sh -modality application -padx 20 -pady 20 -title Shell

pack [label [.sh childsite].l -text SHELL]

.sh center

.sh activate

AUTHOR
Mark L. Ulferts

Kris Raney

KEYWORDS
shell, widget

Tk Last change: 3.0.0 3

[incr Widgets] spindate (n)

NAME
spindate − Create and manipulate time spinner widgets

SYNOPSIS
spindatepathName?options?

INHERITANCE
itk::Widget <- Spindate

STANDARD OPTIONS
background cursor foreground relief

See the "options" manual entry for details on the standard options.

ASSOCIATED OPTIONS
textBackground textFont

See the "entryfield" manual entry for details on the above associated options.

labelFont labelMargin

See the "labeledwidget" manual entry for details on the above associated options.

arrowOrient repeatDelay repeatInterval

See the "spinner" manual entry for details on the above associated options.

WIDGET-SPECIFIC OPTIONS
Name: dateMargin
Class: Margin
Command-Line Switch: -datemargin

Specifies the margin space between the month, day, and year spinners is any of the forms
accpetable toTcl_GetPixels. The default is 1 pixel.

Name: dayLabel
Class: Text
Command-Line Switch: -daylabel

Specifies the text of the label for the day spinner. The default is "Day".

Name: dayOn
Class: dayOn
Command-Line Switch: -dayon

Specifies whether or not to display the day spinner in any of the forms acceptable toTcl_Get-
Boolean. The default is true.

Name: dayWidth
Class: Width
Command-Line Switch: -daywidth

Specifies the width of the day spinner in any of the forms acceptable toTcl_GetPixels. The
default is 3 pixels.

Name: labelPos
Class: Position
Command-Line Switch: -labelpos

Specifies the position of the label along the sides of the various spinners:n, e, s, or w. The default
is w.

Tk Last change: 3.0.0 1

[incr Widgets] spindate (n)

Name: monthFormat
Class: MonthFormat
Command-Line Switch: -monthformat

Specifies the format of month display,integer (1-12) orbrief strings (Jan - Dec), orfull strings
(January - December).

Name: monthLabel
Class: Text
Command-Line Switch: -monthlabel

Specifies the text of the label for the month spinner. The default is "Month".

Name: monthOn
Class: monthOn
Command-Line Switch: -monthon

Specifies whether or not to display the month spinner in any of the forms acceptable toTcl_Get-
Boolean. The default is true.

Name: monthWidth
Class: Width
Command-Line Switch: -monthwidth

Specifies the width of the month spinner in any of the forms acceptable toTcl_GetPixels. The
default is 3 pixels.

Name: orient
Class: Orient
Command-Line Switch: -orient

Specifies the orientation of the month, day, and year spinners:vertical or horizontal. The default
is horizontal.

Name: yearDigits
Class: YearDigits
Command-Line Switch: -yeardigits

Specifies the number of digits to be displayed as the value for the year spinner. The valid values
are 2 and 4. The default is 2.

Name: yearLabel
Class: Text
Command-Line Switch: -yearlabel

Specifies the text of the label for the year spinner. The default is "Year"

Name: yearOn
Class: yearOn
Command-Line Switch: -yearon

Specifies whether or not to display the year spinner in any of the forms acceptable toTcl_Get-
Boolean. The default is true.

Name: yearWidth
Class: Width
Command-Line Switch: -yearwidth

Specifies the width of the year spinner in any of the forms acceptable toTcl_GetPixels. The
default is 3 pixels.

Tk Last change: 3.0.0 2

[incr Widgets] spindate (n)

DESCRIPTION
The spindate command creates a set of spinners for use in date value entry. The set includes an month,
day, and year spinner widget.

METHODS
The spindate command creates a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Option and theargs determine the exact behavior of the command. The following commands are possible
for spindate widgets:

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thespindatecommand.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thespindatecommand.

pathNameget?format?
Returns the current contents of the spindate widget in a format of string or as an integer clock
value using the-string and -clicks format options respectively. The default is by string. Refer-
ence the clock command for more information on obtaining dates and their formats.

pathNameshowdate
Changes the currently displayed date to be that of the date argument. The date may be specified
either as a string, an integer clock value or the keyword "now". Reference the clock command for
more information on obtaining dates and their formats.

COMPONENTS
Name: month
Class: Spinner

The month spinner component is the month spinner of the date spinner. See the Spinner widget
manual entry for details on the month component item.

Name: day
Class: Spinint

The day spinner component is the day spinner of the date spinner. See the SpinInt widget manual
entry for details on the day component item.

Tk Last change: 3.0.0 3

[incr Widgets] spindate (n)

Name: year
Class: Spinint

The year spinner component is the year spinner of the date spinner. See the SpinInt widget man-
ual entry fordetails on the year component item.

EXAMPLE
spindate .sd
pack .sd -padx 10 -pady 10

AUTHOR
Sue Yockey

Mark L. Ulferts

KEYWORDS
spindate, spinint, spinner, entryfield, entry, widget

Tk Last change: 3.0.0 4

[incr Widgets] spinint (n)

NAME
spinint − Create and manipulate a integer spinner widget

SYNOPSIS
spinint pathName?options?

INHERITANCE
itk::Widget <- Labeledwidget <- Spinner <- Spinint

STANDARD OPTIONS
background borderWidth cursor exportSelection
foreground highlightColor highlightThickness insertBackground
insertBorderWidth insertOffTime insertOnTime insertWidth
justify relief selectBackground selectBorderWidth
selectForeground textVariable

See the "options" manual entry for details on the standard options.

ASSOCIATED OPTIONS
show state

See the "entry" manual entry for details on the associated options.

INHERITED OPTIONS
command childSitePos fixed focusCommand
invalid textBackground textFont validate
width

See the "entryfield" widget manual entry for details on the above inherited options.

disabledForeground labelBitmap labelFont labelImage
labelMargin labelPos labelText labelVariable
state

See the "labeledwidget" widget manual entry for details on the above inherited options.

arroworient decrement increment repeatDelay
repeatInterval

See the "spinner" widget manual entry for details on the above inherited options.

WIDGET-SPECIFIC OPTIONS
Name: range
Class: Range
Command-Line Switch: -range

Specifies a two element list of minimum and maximum integer values. The default is no range,
{{} {}}.

Name: step
Class: Step
Command-Line Switch: -step

Specifies the increment/decrement value. The default is 1.

Name: wrap
Class: Wrap
Command-Line Switch: -wrap

Specifies whether to wrap the spinner value upon reaching the minimum or maximum value in any
of the forms acceptable toTcl_GetBoolean. The default is true.

Tk Last change: 3.0.0 1

[incr Widgets] spinint (n)

DESCRIPTION
The spinint command creates a spinint widget. The spinint allows "spinning" of integer values within a
specified range with wrap support. The spinner arrows may be drawn horizontally or vertically.

METHODS
Thespinint command creates a new Tcl command whose name ispathName. This command may be used
to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command. The following commands are possible
for spinint widgets:

ASSOCIATED METHODS
delete get icursor index
insert peek scan selection
xview

See the "entry" manual entry for details on the associated methods.

INHERITED METHODS
childsite clear

See the "entryfield" manual entry for details on the associated methods.

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thespinint command.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thespinint command.

pathNamedown
Decrement the spinner value by the value given in the step option.

pathNameup
Increment the spinner value by the value given in the step option.

COMPONENTS
See the "Spinner" widget manual entry for details on the integer spinner component items.

EXAMPLE
option add∗textBackground white

spinint .si -labeltext "Temperature" -labelpos w \

Tk Last change: 3.0.0 2

[incr Widgets] spinint (n)

-fixed yes -width 5 -range {32 212}

pack .si -pady 10

AUTHOR
Sue Yockey

KEYWORDS
spinint, widget

Tk Last change: 3.0.0 3

[incr Widgets] spinner (n)

NAME
spinner − Create and manipulate a spinner widget

SYNOPSIS
spinner pathName?options?

INHERITANCE
itk::Widget <- Labeledwidget <- Spinner

STANDARD OPTIONS
background borderWidth cursor exportSelection
foreground highlightColor highlightThickness insertBackground
insertBorderWidth insertOffTime insertOnTime insertWidth
justify relief selectBackground selectBorderWidth
selectForeground textVariable

See the "options" manual entry for details on the standard options.

ASSOCIATED OPTIONS
show state

See the "entry" manual entry for details on the associated options.

INHERITED OPTIONS
childSitePos command fixed focusCommand
invalid textBackground textFont validate
width

See the "entryfield" widget manual entry for details on the above inherited options.

disabledForeground labelBitmap labelFont labelImage
labelMargin labelPos labelText labelVariable
state

See the "labeledwidget" widget manual entry for details on the above inherited options.

WIDGET-SPECIFIC OPTIONS
Name: arrowOrient
Class: Orient
Command-Line Switch: -arroworient

Specifies placement of arrow buttons:horizontal or vertical. The default is vertical.

Name: decrement
Class: Command
Command-Line Switch: -decrement

Tcl command to be executed when down arrow is pressed.

Name: increment
Class: Command
Command-Line Switch: -increment

Tcl command to be executed when up arrow is pressed.

Name: repeatDelay
Class: RepeatDelay
Command-Line Switch: -repeatdelay

Specifies the initial delay in milliseconds before the spinner repeat action on the arrow buttons
engages. The default is 300 milliseconds.

Tk Last change: 3.0.0 1

[incr Widgets] spinner (n)

Name: repeatInterval
Class: RepeatInterval
Command-Line Switch: -repeatinterval

Specifies the repeat delay in milliseconds between selections of the arrow buttons. A repeatinter-
val of 0 disables button repeat. The default is 100 milliseconds.

DESCRIPTION
The spinner command creates a spinner widget. The spinner is comprised of an entryfield plus up and
down arrow buttons. Arrows may be drawn horizontally or vertically.

METHODS
Thespinner command creates a new Tcl command whose name ispathName. This command may be used
to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command. The following commands are possible
for spinner widgets:

ASSOCIATED METHODS
delete get icursor index
insert scan selection xview

See the "entry" manual entry for details on the associated methods.

INHERITED METHODS
childsite clear peek

See the "entryfield" manual entry for details on the associated methods.

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thespinner command.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thespinner command.

pathNamedown
Derived classes may overload this method to specialize functionality.

pathNameup
Derived classes may overload this method to specialize functionality.

COMPONENTS

Tk Last change: 3.0.0 2

[incr Widgets] spinner (n)

Name: downarrow
Class: Canvas

The downarrow component is the downward pointing button of the spinner. See the "canvas" wid-
get manual entry for details on the downarrow component item.

Name: uparrow
Class: Canvas

The uparrow component is the upward pointing button of the spinner. See the "canvas" widget
manual entry for details on the uparrow component item.

EXAMPLE
set months {January February March April May June July \

August September October November December}

proc blockInput {char} {
return 0

}

proc spinMonth {step} {
global months

set index [expr [lsearch $months [.sm get]] + $step]

if {$index < 0} {set index 11}
if {$index > 11} {set index 0}

.sm delete 0 end

.sm insert 0 [lindex $months $index]
}

spinner .sm -labeltext "Month : " -width 10 -fixed 10 -validate blockInput \
-decrement {spinMonth -1} -increment {spinMonth 1}

.sm insert 0 January

pack .sm -padx 10 -pady 10

ACKNOWLEDGEMENTS:
Ken Copeland <ken@hilco.com>

10/18/95 - Added auto-repeat action to spinner arrow buttons.

AUTHOR
Sue Yockey

KEYWORDS
spinner, widget

Tk Last change: 3.0.0 3

[incr Widgets] spintime (n)

NAME
spintime − Create and manipulate time spinner widgets

SYNOPSIS
spintime pathName?options?

INHERITANCE
itk::Widget <- Spintime

STANDARD OPTIONS
background cursor foreground relief

See the "options" manual entry for details on the standard options.

ASSOCIATED OPTIONS
textBackground textFont

See the "entryfield" manual entry for details on the above associated options.

labelFont labelMargin

See the "labeledwidget" manual entry for details on the above associated options.

arrowOrient repeatDelay repeatInterval

See the "spinner" manual entry for details on the above associated options.

WIDGET-SPECIFIC OPTIONS
Name: labelPos
Class: Position
Command-Line Switch: -labelpos

Specifies the position of the label along the sides of the various spinners:n, e, s, or w. The default
is w.

Name: hourLabel
Class: Text
Command-Line Switch: -hourlabel

Specifies the text of the label for the hour spinner. The default is "Hour".

Name: hourOn
Class: hourOn
Command-Line Switch: -houron

Specifies whether or not to display the hour spinner in any of the forms acceptable toTcl_Get-
Boolean. The default is true.

Name: hourWidth
Class: Width
Command-Line Switch: -hourwidth

Specifies the width of the hour spinner in any of the forms acceptable toTcl_GetPixels. The
default is 3 pixels.

Name: militaryOn
Class: militaryOn
Command-Line Switch: -militaryon

Specifies use of a 24 hour clock for hour display in any of the forms acceptable toTcl_Get-
Boolean. The default is true.

Tk Last change: 3.0.0 1

[incr Widgets] spintime (n)

Name: minuteLabel
Class: Text
Command-Line Switch: -minutelabel

Specifies the text of the label for the minute spinner. The default is "Minute".

Name: minuteOn
Class: minuteOn
Command-Line Switch: -minuteon

Specifies whether or not to display the minute spinner in any of the forms acceptable toTcl_Get-
Boolean. The default is true.

Name: minuteWidth
Class: Width
Command-Line Switch: -minutewidth

Specifies the width of the minute spinner in any of the forms acceptable toTcl_GetPixels. The
default is 3 pixels.

Name: orient
Class: Orient
Command-Line Switch: -orient

Specifies the orientation of the hour, minute, and second spinners:vertical or horizontal. The
default is horizontal.

Name: secondLabel
Class: Text
Command-Line Switch: -secondlabel

Specifies the text of the label for the second spinner. The default is "Second"

Name: secondOn
Class: secondOn
Command-Line Switch: -secondon

Specifies whether or not to display the second spinner in any of the forms acceptable toTcl_Get-
Boolean. The default is true.

Name: secondWidth
Class: Width
Command-Line Switch: -secondwidth

Specifies the width of the second spinner in any of the forms acceptable toTcl_GetPixels. The
default is 3 pixels.

Name: timeMargin
Class: Margin
Command-Line Switch: -timemargin

Specifies the margin space between the hour, minute, and second spinners is any of the forms
accpetable toTcl_GetPixels. The default is 1 pixel.

DESCRIPTION
The spintime command creates a set of spinners for use in time value entry. The set includes an hour,
minute, and second spinner widget.

Tk Last change: 3.0.0 2

[incr Widgets] spintime (n)

METHODS
The spintime command creates a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Option and theargs determine the exact behavior of the command. The following commands are possible
for spintime widgets:

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thespintime command.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thespintime command.

pathNameget?format?
Returns the current contents of the spintime widget in a format of string or as an integer clock
value using the-string and -clicks format options respectively. The default is by string. Refer-
ence the clock command for more information on obtaining time and its formats.

pathNameshowtime
Changes the currently displayed time to be that of the time argument. The time may be specified
either as a string, an integer clock value or the keyword "now". Reference the clock command for
more information on obtaining times and its format.

COMPONENTS
Name: hour
Class: Spinint

The hour component is the hour spinner of the time spinner. See the SpinInt widget manual entry
for details on the hour component item.

Name: minute
Class: Spinint

The minute component is the minute spinner of the time spinner. See the SpinInt widget manual
entry for details on the minute component item.

Name: second
Class: Spinint

The second component is the second spinner of the time spinner. See the SpinInt widget manual
entry for details on the second component item.

EXAMPLE
spintime .st
pack .st -padx 10 -pady 10

Tk Last change: 3.0.0 3

[incr Widgets] spintime (n)

AUTHOR
Sue Yockey

Mark L. Ulferts

KEYWORDS
spintime, spinint, spinner, entryfield, entry, widget

Tk Last change: 3.0.0 4

[incr Widgets] tabnotebook (n)

NAME
tabnotebook − create and manipulate tabnotebook widgets

SYNOPSIS
tabnotebookpathName?options?

INHERITANCE
itk::Widget <- tabnotebook

STANDARD OPTIONS
background disabledForeground foreground scrollCommand
cursor font height width

See the "options" manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Name: angle
Class: Angle
Command-Line Switch: -angle

Specifes the angle of slope from the inner edge to the outer edge of the tab. An angle of 0 speci-
fies square tabs. Valid ranges are 0 to 45 degrees inclusive. Default is 15 degrees. IftabPosis e or
w, this option is ignored.

Name: auto
Class: Auto
Command-Line Switch: -auto

Specifies whether to use the automatic packing/unpacking algorithm of the notebook. A value of
true indicates that page frames will be unpacked and packed acoording to the algorithm described
in the select command. A value offalse leaves the current page packed and subsequentselects,
next, or previous commands do not switch pages automatically. In either case the page’s associ-
ated command (see theadd command’s description of the command option) is invoked. The value
may have any of the forms accepted by theTcl_GetBoolean, such astrue, false, 0, 1, yes, or no.

Name: backdrop
Class: Backdrop
Command-Line Switch: -backdrop

Specifies a background color to use when filling in the backdrop area behind the tabs.

Name: background
Class: Background
Command-Line Switch: -background

Specifies a background color to use for displaying a page and its associated tab. This can be
thought of as the selected tab background color, since the tab associated with the selected page is
the selected tab.

Name: bevelAmount
Class: BevelAmount
Command-Line Switch: -bevelamount

Specifes the size of tab corners. A value of 0 withangle set to 0 results in square tabs. A
bevelAmount of 4, means that the tab will be drawn with angled corners that cut in 4 pixels from
the edge of the tab. The default is 0.

Name: borderWidth
Class: BorderWidth
Command-Line Switch: -borderwidth

Tk Last change: 3.0.0 1

[incr Widgets] tabnotebook (n)

Specifies the width of shadowed border to place around the notebook area of the tabnotebook. The
default value is 2.

Name: disabledForeground
Class: DisabledForeground
Command-Line Switch: -disabledforeground

Specifies a foreground color to use for displaying a tab’s label when itsstate is disabled.

Name: equalTabs
Class: EqualTabs
Command-Line Switch: -equaltabs

Specifies whether to force tabs to be equal sized or not. A value oftrue means constrain tabs to be
equal sized. A value offalse allows each tab to size based on the text label size. The value may
have any of the forms accepted by theTcl_GetBoolean, such astrue, false, 0, 1, yes, or no.

For horizontally positioned tabs (tabpos is eithers or n), true forces all tabs to be equal width (the
width being equal to the longest label plus anypadX specified). Horizontal tabs are always equal
in height.

For vertically positioned tabs (tabpos is eitherw or e), true forces all tabs to be equal height (the
height being equal to the height of the label with the largest font). Vertically oriented tabs are
always equal in width.

Name: foreground
Class: Foreground
Command-Line Switch: -foreground

Specifies a foreground color to use for displaying a page and its associated tab label. This can be
thought of as the selected tab background color, since the tab associated with the selected page is
the selected tab.

Name: gap
Class: Gap
Command-Line Switch: -gap

Specifies the amount of pixel space to place between each tab. Value may be any pixel offset
value. In addition, a special keywordoverlap can be used as the value to achieve a standard over-
lap of tabs. This value may have any of the forms acceptable toTk_GetPixels.

Name: margin
Class: Margin
Command-Line Switch: -Bmargin

Specifies the amount of space to place between the outside edge of the tabnotebook and the out-
side edge of its tabs. IftabPosis s, this is the amount of space between the bottom edge of the tab-
notebook and the bottom edge of the set of tabs. IftabPos is n, this is the amount of space
between the top edge of the tabnotebook and the top edge of the set of tabs. IftabPos is e, this is
the amount of space between the right edge of the tabnotebook and the right edge of the set of
tabs. IftabPos is w, this is the amount of space between the left edge of the tabnotebook and the
left edge of the set of tabs. This value may have any of the forms acceptable toTk_GetPixels.

Name: padX
Class: PadX
Command-Line Switch: -padx

Specifies a non-negative value indicating how much extra space to request for a tab around its
label in the X-direction. When computing how large a window it needs, the tab will add this
amount to the width it would normally need The tab will end up with extra internal space to the

Tk Last change: 3.0.0 2

[incr Widgets] tabnotebook (n)

left and right of its text label. This value may have any of the forms acceptable toTk_GetPixels.

Name: padY
Class: PadY
Command-Line Switch: -pady

Specifies a non-negative value indicating how much extra space to request for a tab around its
label in the Y-direction. When computing how large a window it needs, the tab will add this
amount to the height it would normally need The tab will end up with extra internal space to the
top and bottom of its text label. This value may have any of the forms acceptable toTk_GetPixels.

Name: raiseSelect
Class: RaiseSelect
Command-Line Switch: -raiseselect

Specifes whether to slightly raise the selected tab from the rest of the tabs. The selected tab is
drawn 2 pixels closer to the outside of the tabnotebook than the unselected tabs. A value oftrue
says to raise selected tabs, a value offalse turns this feature off. The default isfalse. The value
may have any of the forms accepted by theTcl_GetBoolean, such astrue, false, 0, 1, yes, or no.

Name: start
Class: Start
Command-Line Switch: -start

Specifies the amount of space to place between the left or top edge of the tabnotebook and the
starting edge of its tabs. For horizontally positioned tabs, this is the amount of space between the
left edge of the notebook and the left edge of the first tab. For vertically positioned tabs, this is the
amount of space between the top of the notebook and the top of the first tab. This value may
change if the user performs a MButton-2 scroll on the tabs. This value may have any of the forms
acceptable toTk_GetPixels.

Name: state
Class: State
Command-Line Switch: -state

Sets the active state of the tabnotebook. Specifyingnormal allows all pages to be selectable. Spec-
ifying disabled disables the notebook causing all page tabs to be drawn in thedisabledFore-
ground color.

Name: tabBackground
Class: TabBackground
Command-Line Switch: -tabbackground

Specifies a background color to use for displaying tab backgrounds when they are in their unse-
lected state. This is the background associated with tabs on all pages other than the selected page.

Name: tabBorders
Class: TabBorders
Command-Line Switch: -tabborders

Specifies whether to draw the borders of tabs that are not selected. Specifyingtrue (the default)
draws these borders, specifyingfalsedraws only the border around the selected tab. The value may
have any of the forms accepted by theTcl_GetBoolean, such astrue, false, 0, 1, yes, or no.

Name: tabForeground
Class: TabForeground
Command-Line Switch: -tabforeground

Specifies a foreground color to use for displaying tab labels when they are in their unselected state.
This is the foreground associated with tabs on all pages other than the selected page.

Tk Last change: 3.0.0 3

[incr Widgets] tabnotebook (n)

Name: tabPos
Class: TabPos
Command-Line Switch: -tabpos

Specifies the location of the set of tabs in relation to the notebook area. Must be n, s, e, or w.
Defaults to s.

DESCRIPTION
The tabnotebookcommand creates a new window (given by the pathName argument) and makes it into a
tabnotebookwidget. Additional options, described above may be specified on the command line or in the
option database to configure aspects of the tabnotebook such as its colors, font, and text. The tabnotebook
command returns its pathName argument. At the time this command is invoked, there must not exist a win-
dow named pathName, but pathName’s parent must exist.

A tabnotebook is a widget that contains a set of tabbed pages. It displays one page from the set as the
selected page. A Tab displays the label for the page to which it is attached and serves as a page selector.
When a page’s tab is selected, the page’s contents are displayed in the page area. The selected tab has a
three-dimensional effect to make it appear to float above the other tabs. The tabs are displayed as a group
along either the left, top, right, or bottom edge. When first created a tabnotebook has no pages. Pages may
be added or deleted using widget commands described below.

A special option may be provided to the tabnotebook. The-auto option specifies whether the tabnotebook
will automatically handle the unpacking and packing of pages when pages are selected. A value of true sig-
nifies that the notebook will automatically manage it. This is the default value. A value of false signifies the
notebook will not perform automatic switching of pages.

NOTEBOOK PAGES
A tabnotebook’s pages area contains a single child site frame. When a new page is created it is a child of
this frame. The page’s child site frame serves as a geometry container for applications to pack widgets into.
It is this frame that is automatically unpacked or packed when the auto option is true. This creates the effect
of one page being visible at a time. When a new page is selected, the previously selected page’s child site
frame is automatically unpacked from the tabnotebook’s child site frame and the newly selected page’s
child site is packed into the tabnotebook’s child site frame.

However, sometimes it is desirable to handle page changes in a different manner. By specifying theauto
option asfalse, child site packing can be disabled and done differently. For example, all widgets might be
packed into the first page’s child siteframe. Then when a new page is selected, the application can recon-
figure the widgets and give the appearance that the page was flipped.

In both cases the command option for a page specifies a Tcl Command to execute when the page is
selected. In the case ofauto beingtrue, it is between the unpacking of the previously selected page and the
packing of the newly selected page.

Notebook pages can also be controlled with scroll bars or other widgets that obey thescrollcommandpro-
tocol. By giving a scrollbar a-command to call the tabnotebook’sselectmethod, the tabnotebook can be
controlled with a scrollbar.

The notebook area is implemented with the notebook mega widget.

TABS
Tabs appear along the edge of the notebook area. Tabs are drawn to appear attached to their associated
page. When a tab is clicked on, the associated page is selected and the tab is drawn as raised above all other
tabs and as a seamless part of its notebook page. Tabs can be controlled in their location along the edges,
the angle tab sides are drawn with, gap between tabs, starting margin of tabs, internal padding around text
labels in a tab, the font, and its label.

Tk Last change: 3.0.0 4

[incr Widgets] tabnotebook (n)

The Tab area is implemented with thetabset mega widget. Seetabset(1). Tabs may be oriented along
either the north, south, east, or west sides with thetabPos option. North and south tabs may appear as
angled, square, or bevelled. West and east tabs may appear as square or bevelled. By changing tab gaps, tab
angles, bevelling, orientations, colors, fonts, start locations, and margins; tabs may appear in a wide variety
of styles. For example, it is possible to implement Microsoft-style tabs, Borland property tab styles, or Bor-
land Delphi style tabs all with the same tabnotebook.

WIDGET-SPECIFIC METHODS
The tabnotebookcommand creates a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

optionand theargs determine the exact behavior of the command.

Many of the widget commands for a notebook take as one argument an indicator of which page of the note-
book to operate on. These indicators are called indexes and may be specified in any of the following forms:

number Specifies the page numerically, where 0 corresponds to the first page in the notebook, 1 to the sec-
ond, and so on.

select Specifies the currently selected page’s index. If no page is currently selected, the value -1 is
returned.

end Specifes the last page in the tabnotebook’s index. If the notebook is empty this will return -1.

pattern If the index doesn’t satisfy any of the above forms, then this form is used. Pattern is pattern-
matched against the label of each page in the notebook, in order from the first to the last page,
until a matching entry is found. The rules of Tcl_StringMatch are used. The following commands
are possible for tabnotebook widgets:

pathNameadd ?option value option value...?
Add a new page at the end of the tabnotebook. A new child site frame is created. Returns the child
site pathName. If additional arguments are present, they specify any of the following options:

-anglevalue
Specifes the angle of slope from the inner edge to the outer edge of the tab. An angle of 0
specifies square tabs. Valid ranges are 0 to 45 degrees inclusive. Default is 15 degrees. If
this option is specified as an empty string (the default), then the angle option for the over-
all tabnotebook is used. This is generally only set at the tabnotebook level. Tabs normally
will want to share the same angle value.

-background value
Specifies a background color to use for displaying tabs when they are selected and for
displaying the current page. If this option is specified as an empty string (the default),
then the background option for the overall tabnotebook is used.

-bevelamountvalue
Specifes the size of tab corners. A value of 0 with angle set to 0 results in square tabs. A
bevelAmount of 4, means that the tab will be drawn with angled corners that cut in 4 pix-
els from the edge of the tab. The default is 0. This is generally only set at the tabnote-
book level. Tabs normally will want to share the same bevelAmount.

-bitmap value
If label is a non-empty string, specifies a bitmap to display in this page’s tab. Bitmap may
be of any of the forms accepted by Tk_GetPixmap.

-commandvalue
Specifies a Tcl command to be executed when this page is selected. This allows the

Tk Last change: 3.0.0 5

[incr Widgets] tabnotebook (n)

programmer a hook to reconfigure this page’s widgets or any other page’s widgets.

If the tabnotebook has the auto option set to true, when a page is selected this command
will be called immediately after the previously selected page is unpacked and immedi-
ately before this page is selected. The index value select is valid during this Tcl com-
mand. ‘index select’ will return this page’s page number.

If the auto option is set to false, when a page is selected the unpack and pack calls are
bypassed. This Tcl command is still called.

-disabledforegroundvalue
Specifies a foreground color to use for displaying tab labels when tabs are in their disable
state. If this option is specified as an empty string (the default), then the disabledfore-
ground option for the overall tabnotebook is used.

-font value
Specifies the font to use when drawing a text label on a page tab. If this option is speci-
fied as an empty string then the font option for the overall tabnotebook is used..

-foreground value
Specifies a foreground color to use for displaying tab labels when they are selected. If this
option is specified as an empty string (the default), then the foreground option for the
overall tabnotebook is used.

-label value
Specifies a string to display as an identifying label for a notebook page. This label serves
as an additional identifier used to reference the page. This label may be used for the index
value in widget commands.

-tabbackground value
Specifies a background color to use for displaying a tab when it is not elected. If this
option is specified as an empty string (the default), then the tabBackground option for the
overall tabnotebook is used.

-tabforeground value
Specifies a foreground color to use for displaying the tab’s text label when it is not
selected. If this option is specified as an empty string (the default), then the tabFore-
ground option for the overall tabnotebook is used.

-padx value
Specifies a non-negative value indicating how much extra space to request for a tab
around its label in the X-direction. When computing how large a window it needs, the tab
will add this amount to the width it would normally need The tab will end up with extra
internal space to the left and right of its text label. This value may have any of the forms
acceptable to Tk_GetPixels. If this option is specified as an empty string (the default),
then the padX option for the overall tabnotebook is used

-pady value
Specifies a non-negative value indicating how much extra space to request for a tab
around its label in the Y-direction. When computing how large a window it needs, the tab
will add this amount to the height it would normally need The tab will end up with extra
internal space to the top and bottom of its text label. This value may have any of the
forms acceptable to Tk_GetPixels. If this option is specified as an empty string (the
default), then the padY option for the overall tabnotebook is used

-statevalue
Specifies one of two states for the page: normal or disabled. In normal state unselected
tabs are displayed using the tabforeground and tabbackground option from the

Tk Last change: 3.0.0 6

[incr Widgets] tabnotebook (n)

tabnotebook or the page. Selected tabs and pages are displayed using the foreground and
background option from the tabnotebook or the page. The disabled state means that the
page and its tab is insensitive: it doesn’t respond to mouse button presses or releases. In
this state the entry is displayed according to its disabledForeground option for the tab-
notebook and the background/tabbackground option from the page or the tabnotebook.

pathNamechildSite ?index?
If passed no arguments, returns a list of pathNames for all the pages in the tabnotebook. If the tab
notebook is empty, an empty list is returned

If indexis passed, it returns thepathNamefor the page’s child siteframe specified byindex. Wid-
gets that are created with thispathNamewill be displayed when the associated page is selected. If
indexis not a valid index, an empty string is returned.

pathNameconfigure?option? ?value option value...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). If option is specified with no value, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if no option is specified). If one or more option-value pairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Option may have any of the values accepted by the tabnotebook com-
mand.

pathNamedeleteindex1?index2?
Delete all of the pages betweenindex1andindex2inclusive. If index2is omitted then it defaults to
index1. Returns an empty string.

pathNameindex index
Returns the numerical index corresponding toindex.

pathNameinsert index?option value option value...?
Insert a new page in the tabnotebook before the page specified byindex. A new child siteframe is
created. The additional arguments are the same as for theadd command. Returns the child site
pathName.

pathNamenext
Advances the selected page to the next page (order is determined by insertion order). If the cur-
rently selected page is the last page in the notebook, the selection wraps around to the first page in
the notebook. It behaves as if the user selected the new page.

For notebooks withauto set totrue the current page’s child site is unpacked from the notebook’s
child site frame. Then the next page’s child site is packed into the notebook’s child site frame. The
Tcl command given with the command option will be invoked between these two operations.

For notebooks withauto set tofalse the Tcl command given with the command option will be
invoked.

pathNamepageconfigureindex?option? ?value option value...?
This command is similar to theconfigure command, except that it applies to the options for an
individual page, whereas configure applies to the options for the tabnotebook as a whole.Options
may have any of the values accepted by the add widget command. If options are specified, options
are modified as indicated in the command and the command returns an empty string. If no options
are specified, returns a list describing the current options for page index (seeTk_ConfigureInfo
for information on the format of this list).

pathNameprev
Moves the selected page to the previous page (order is determined by insertion order). If the

Tk Last change: 3.0.0 7

[incr Widgets] tabnotebook (n)

currently selected page is the first page in the notebook, the selection wraps around to the last page
in the notebook. It behaves as if the user selected the new page.

For notebooks withauto set totrue the current page’s child site is unpacked from the notebook’s
child siteframe. Then the previous page’s child site is packed into the notebook’s child site frame.
The Tcl command given with the command option will be invoked between these two operations.

For notebooks withauto set tofalse the Tcl command given with the command option will be
invoked.

pathNameselectindex
Selects the page specified byindexas the currently selected page. It behaves as if the user selected
the new page.

For notebooks withauto set totrue the current page’s child site is unpacked from the notebook’s
child site frame. Then theindexpage’s child site is packed into the notebook’s child site frame.
The Tcl command given with the command option will be invoked between these two operations.

For notebooks withauto set tofalse the Tcl command given with the command option will be
invoked.

pathNameview
Returns the currently selected page. This command is for compatibility with thescrollbar widget.

pathNameview index
Selects the page specified byindexas the currently selected page. This command is for compati-
bility with thescrollbar widget.

pathNameview movetofraction
Uses thefraction value to determine the corresponding page to move to. This command is for
compatibility with thescrollbar widget.

pathNameview scroll num what
Uses thenumvalue to determine how many pages to move forward or backward (numcan be neg-
ative or positive). Thewhat argument is ignored. This command is for compatibility with the
scrollbar widget.

COMPONENTS
Generally all behavior of the internal components,tabsetandnotebookare controlled via thepageconfig-
ure method. The following section documents these two components.

Name: tabset
Class: Tabset

This is the tabset component. It implements the tabs that are associated with the notebook compo-
nent.

See the "Tabset" widget manual entry for details on thetabsetcomponent item.

Name: notebook
Class: Notebook

This is the notebook component. It implements the notebook that contains the pages of the tab-
notebook.

See the "Notebook" widget manual entry for details on thenotebookcomponent item.

EXAMPLE
Following is an example that creates a tabnotebook with two pages.

Create the tabnotebook widget and pack it.
tabnotebook .tn -width 100 -height 100

Tk Last change: 3.0.0 8

[incr Widgets] tabnotebook (n)

pack .tn \
-anchor nw \
-fill both \
-expand yes \
-side left \
-padx 10 \
-pady 10

Add two pages to the tabnotebook,
labelled "Page One" and "Page Two"
.tn add -label "Page One"
.tn add -label "Page Two"

Get the child site frames of these two pages.
set page1CS [.tn childsite 0]
set page2CS [.tn childsite "Page Two"]

Create buttons on each page of the tabnotebook.
button $page1CS.b -text "Button One"
pack $page1CS.b
button $page2CS.b -text "Button Two"
pack $page2CS.b

Select the first page of the tabnotebook.
.tn select 0

AUTHOR
Bill W. Scott

KEYWORDS
tab tabset notebook tabnotebook page

Tk Last change: 3.0.0 9

[incr Widgets] tabset (n)

NAME
tabset − create and manipulate tabs as as set

SYNOPSIS
tabsetpathName?options?

INHERITANCE
itk::Widget <- tabset

STANDARD OPTIONS
background font selectBackground cursor
foreground selectForeground disabledForeground height
width

See the "options" manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Name: angle
Class: Angle
Command-Line Switch: -angle

Specifes the angle of slope from the inner edge to the outer edge of the tab. An angle of 0 specifies
square tabs. Valid ranges are 0 to 45 degrees inclusive. Default is 15 degrees. If tabPos is e or w,
this option is ignored.

Name: backdrop
Class: Backdrop
Command-Line Switch: -backdrop

Specifies a background color to use when filling in the area behind the tabs.

Name: bevelAmount
Class: BevelAmount
Command-Line Switch: -bevelamount

Specifes the size of tab corners. A value of 0 with angle set to 0 results in square tabs. A
bevelAmount of 4, means that the tab will be drawn with angled corners that cut in 4 pixels from
the edge of the tab. The default is 0.

Name: command
Class: Command
Command-Line Switch: -command
Specifes the prefix of a Tcl command to invoke to change the view in the
widget associated with the tabset. When a user selects a tab, a Tcl command
is invoked. The actual command consists of this option followed by a space
and a number. The number is the numerical index of the tab that has been
selected.

Name: equalTabs
Class: EqualTabs
Command-Line Switch: -equaltabs

Specifies whether to force tabs to be equal sized or not. A value oftrue means constrain tabs to be
equal sized. A value offalse allows each tab to size based on the text label size. The value may
have any of the forms accepted by theTcl_GetBoolean, such astrue, false, 0, 1, yes, or no.

For horizontally positioned tabs (tabPosis eithers or n), true forces all tabs to be equal width (the
width being equal to the longest label plus any padX specified). Horizontal tabs are always equal
in height.

For vertically positioned tabs (tabPosis eitherw or e), true forces all tabs to be equal height (the

Tk Last change: 3.0.0 1

[incr Widgets] tabset (n)

height being equal to the height of the label with the largest font). Vertically oriented tabs are
always equal in width.

Name: gap
Class: Gap
Command-Line Switch: -gap

Specifies the amount of pixel space to place between each tab. Value may be any pixel offset
value. In addition, a special keywordoverlap can be used as the value to achieve a standard over-
lap of tabs. This value may have any of the forms acceptable toTk_GetPixels.

Name: margin
Class: Margin
Command-Line Switch: -margin

Specifies the amount of space to place between the outside edge of the tabset and the outside edge
of its tabs. IftabPosis s, this is the amount of space between the bottom edge of the tabset and the
bottom edge of the set of tabs. IftabPosis n, this is the amount of space between the top edge of
the tabset and the top edge of the set of tabs. IftabPosis e, this is the amount of space between the
right edge of the tabset and the right edge of the set of tabs. IftabPos is w, this is the amount of
space between the left edge of the tabset and the left edge of the set of tabs. This value may have
any of the forms acceptable toTk_GetPixels.

Name: padX
Class: PadX
Command-Line Switch: -padx

Specifies a non-negative value indicating how much extra space to request for a tab around its
label in the X-direction. When computing how large a window it needs, the tab will add this
amount to the width it would normally need The tab will end up with extra internal space to the
left and right of its text label. This value may have any of the forms acceptable toTk_GetPixels.

Name: padY
Class: PadY
Command-Line Switch: -pady

Specifies a non-negative value indicating how much extra space to request for a tab around its
label in the Y-direction. When computing how large a window it needs, the tab will add this
amount to the height it would normally need The tab will end up with extra internal space to the
top and bottom of its text label. This value may have any of the forms acceptable toTk_GetPixels.

Name: raiseSelect
Class: RaiseSelect
Command-Line Switch: -raiseselect

Specifes whether to slightly raise the selected tab from the rest of the tabs. The selected tab is
drawn 2 pixels closer to the outside edge of the tabset than the unselected tabs. A value of true
says to raise selected tabs, a value of false turns this off. The default is false. The value may have
any of the forms accepted by theTcl_GetBoolean, such astrue, false, 0, 1, yes, or no.

Name: start
Class: Start
Command-Line Switch: -start

Specifies the amount of space to place between the left or top edge of the tabset and the starting
edge of its tabs. For horizontally positioned tabs, this is the amount of space between the left edge
of the tabset and the left edge of the first tab. For vertically positioned tabs, this is the amount of
space between the top of the tabset and the top of the first tab. This value may change if the user
performs a MButton-2 scroll on the tabs. This value may have any of the forms acceptable to

Tk Last change: 3.0.0 2

[incr Widgets] tabset (n)

Tk_GetPixels.

Name: state
Class: State
Command-Line Switch: -state

Sets the active state of the tabset. Specifyingnormal allows all tabs to be selectable. Specifying
disableddisables the tabset causing all tabs to be drawn in the disabledForeground color.

Name: tabBorders
Class: TabBorders
Command-Line Switch: -tabborders

Specifies whether to draw the borders of tabs that are not selected. Specifying true (the default)
draws these borders, specifying false draws only the border around the selected tab. The value may
have any of the forms accepted by theTcl_GetBoolean, such astrue, false, 0, 1, yes, or no.

Name: tabPos
Class: TabPos
Command-Line Switch: -tabpos

Specifies the location of the set of tabs in relation to another widget. Must ben, s, e, or w. Defaults
to s. North tabs open downward, South tabs open upward. West tabs open to the right, east tabs
open to the left.

DESCRIPTION
The tabsetcommand creates a new window (given by the pathName argument) and makes it into atabset
widget. Additional options, described above may be specified on the command line or in the option
database to configure aspects of the tabset such as its colors, font, and text. Thetabsetcommand returns its
pathNameargument. At the time this command is invoked, there must not exist a window namedpath-
Name, but pathName’s parent must exist.

A tabset is a widget that contains a set of Tab buttons. It displays these tabs in a row or column depending
on it tabpos. When a tab is clicked on, it becomes the only tab in the tab set that is selected. All other tabs
are deselected. The Tcl command prefix associated with this tab (through the command tab configure
option) is invoked with the tab index number appended to its argument list. This allows the tabset to control
another widget such as a Notebook.

TABS
Tabs are drawn to appear attached to another widget. The tabset draws an edge boundary along one of its
edges. This edge is known as the attachment edge. This edge location is dependent on the value oftabPos.
For example, iftabPosis s, the attachment edge wil be on the top side of the tabset (in order to attach to the
bottom or south side of its attached widget). The selected tab is draw with a 3d relief to appear above the
other tabs. This selected tab "opens" toward attachment edge.

Tabs can be controlled in their location along the edges, the angle that tab sides are drawn with, gap
between tabs, starting margin of tabs, internal padding around labels in a tab, the font, and its text or
bitmap.

WIDGET-SPECIFIC METHODS
Thetabsetcommand creates a new Tcl command whose name ispathName. This command may be used to
invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

optionand theargs determine the exact behavior of the command.

Tk Last change: 3.0.0 3

[incr Widgets] tabset (n)

Many of the widget commands for a tabset take as one argument an indicator of which tab of the tabset to
operate on. These indicators are called indexes and may be specified in any of the following forms:

number Specifies the tab numerically, where 0 corresponds to the first tab in the tab set, 1 to the second,
and so on.

select Specifies the currently selected tab’s index. If no tab is currently selected, the value -1 is returned.

end Specifes the last tab in the tabset’s index. If the tabset is empty this will return -1.

pattern If the index doesn’t satisfy any of the above forms, then this form is used. Pattern is pattern-
matched against the label of each tab in the tabset, in order from the first to the last tab, until a
matching entry is found. The rules of Tcl_StringMatch are used.

The following commands are possible for tabset widgets:

pathNameadd ?option value option value...?
Add a new tab at the end of the tabset. Returns the child sitepathName. If additional
arguments are present, they specify any of the following options:

-anglevalue
Specifes the angle of slope from the inner edge to the outer edge of the tab. An
angle of 0 specifies square tabs. Valid ranges are 0 to 45 degrees inclusive.
Default is 15 degrees. If this option is specified as an empty string (the default),
then the angle option for the overall tabset is used.

-background value
Specifies a background color to use for displaying tabs when they are in their
normal state (unselected). If this option is specified as an empty string (the
default), then the background option for the overall tabset is used.

-bevelamountvalue
Specifes the size of tab corners. A value of 0 with angle set to 0 results in square
tabs. A bevelAmount of 4, means that the tab will be drawn with angled corners
that cut in 4 pixels from the edge of the tab. The default is 0. This is generally
only set at the tabset configuration level. Tabs normally will want to share the
same bevelAmount.

-bitmap value
If label is a non-empty string, specifies a bitmap to display in the tab. Bitmap
may be of any of the forms accepted by Tk_GetBitmap.

-disabledforegroundvalue
Specifies a foreground color to use for displaying tab labels when tabs are in
their disable state. If this option is specified as an empty string (the default), then
the disabledforeground option for the overall tabset is used.

-font value
Specifies the font to use when drawing the label on a tab. If this option is speci-
fied as an empty string then the font option for the overall tabset is used.

-foreground value
Specifies a foreground color to use for displaying tab labels when tabs are in
their normal unselected state. If this option is specified as an empty string (the
default), then the foreground option for the overall tabset is used.

-imagevalue
If label is a non-empty string, specifies an image to display in the tab. Image
must have been created with the image create command. Typically, if the image
option is specified then it overrides other options that specify a bitmap or textual

Tk Last change: 3.0.0 4

[incr Widgets] tabset (n)

value to display in the widget; the image option may be reset to an empty string
to re-enable a bitmap or text display.

-label value
Specifies a text string to be placed in the tabs label. If this value is set, the
bitmap option is overridden and this option is used instead. This label serves as
an additional identifier used to reference the tab. This label may be used for the
index value in widget commands.

-selectbackgroundvalue
Specifies a background color to use for displaying the selected tab. If this option
is specified as an empty string (the default), then the selectBackground option
for the overall tabset is used.

-selectforegroundvalue
Specifies a foreground color to use for displaying the selected tab. If this option
is specified as an empty string (the default), then the selectForeground option for
the overall tabset is used.

-padx value
Specifies a non-negative value indicating how much extra space to request for a
tab around its label in the X-direction. When computing how large a window it
needs, the tab will add this amount to the width it would normally need The tab
will end up with extra internal space to the left and right of its text label. This
value may have any of the forms acceptable to Tk_GetPixels. If this option is
specified as an empty string (the default), then the padX option for the overall
tabset is used

-pady value
Specifies a non-negative value indicating how much extra space to request for a
tab around its label in the Y-direction. When computing how large a window it
needs, the tab will add this amount to the height it would normally need The tab
will end up with extra internal space to the top and bottom of its text label. This
value may have any of the forms acceptable to Tk_GetPixels. If this option is
specified as an empty string (the default), then the padY option for the overall
tabset is used

-statevalue
Sets the state of the tab. Specifying normal allows this tab to be selectable. Spec-
ifying disabled disables the this tab causing its tab label to be drawn in the dis-
abledForeground color. The tab will not respond to events until the state is set
back to normal.

pathNameconfigure?option? ?value option value...?
Query or modify the configuration options of the widget. If nooption is specified, returns
a list describing all of the available options forpathName(seeTk_ConfigureInfo for
information on the format of this list). If option is specified with no value, then the com-
mand returns a list describing the one named option (this list will be identical to the cor-
responding sublist of the value returned if no option is specified). If one or more option-
value pairs are specified, then the command modifies the given widget option(s) to have
the given value(s); in this case the command returns an empty string.Option may have
any of the values accepted by the tabset command.

pathNamedeleteindex1?index2?
Delete all of the tabs betweenindex1and index2 inclusive. If index2 is omitted then it
defaults toindex1. Returns an empty string.

Tk Last change: 3.0.0 5

[incr Widgets] tabset (n)

pathNameindex index
Returns the numerical index corresponding toindex.

pathNameinsert index?option value option value...?
Insert a new tab in the tabset before the tab specified byindex. The additional arguments
are the same as for theadd command. Returns the tab’spathName.

pathNamenext
Advances the selected tab to the next tab (order is determined by insertion order). If the
currently selected tab is the last tab in the tabset, the selection wraps around to the first
tab. It behaves as if the user selected the next tab.

pathNametabconfigure index?option? ?value?
This command is similar to theconfigure command, except that it applies to the options
for an individual tab, whereas configure applies to the options for the tabset as a whole.
Options may have any of the values accepted by theadd widget command. If options are
specified, options are modified as indicated in the command and the command returns an
empty string. If no options are specified, returns a list describing the current options for
tab index (seeTk_ConfigureInfo for information on the format of this list).

pathNameprev
Moves the selected tab to the previous tab (order is determined by insertion order). If the
currently selected tab is the first tab in the tabset, the selection wraps around to the last
tab in the tabset. It behaves as if the user selected the previous tab.

pathNameselectindex
Selects the tab specified byindexas the currently selected tab. It behaves as if the user
selected the new tab.

EXAMPLE
Following is an example that creates a tabset with two tabs and a list box that the tabset controls. In addi-
tion selecting an item from the list also selects the corresponding tab.

Define a proc that knows how to select an item
from a list given an index from the tabset -command callback.
proc selectItem { item } {
.l selection clear [.l curselection]
.l selection set $item
.l see $item

}

Define a proc that knows how to select a tab
giv en a y pixel coordinate from the list..
proc selectTab { y } {
set whichItem [.l nearest $y]
.ts select $whichItem

}

Create a listbox with two items (one and two)
and bind button 1 press to the selectTab procedure.
listbox .l -selectmode single -exportselection false
.l insert end one
.l insert end two
.l selection set 0
pack .l
bind .l <ButtonPress-1> { selectTab %y }

Tk Last change: 3.0.0 6

[incr Widgets] tabset (n)

Create a tabset, set its -command to call selectItem
Add two labels to the tabset (one and two).
tabset .ts -command selectItem
.ts add -label 1
.ts add -label 2
.ts select 0
pack .ts -fill x -expand no

AUTHOR
Bill W. Scott

KEYWORDS
tab tabset notebook tabnotebook

Tk Last change: 3.0.0 7

[incr Widgets] timeentry (n)

NAME
timeentry − Create and manipulate a timeentry widget

SYNOPSIS
timeentry pathName?options?

INHERITANCE
itk::Widget <- LabeledWidget <- Timefield <- Timeentry

STANDARD OPTIONS
background borderWidth cursor exportSelection
foreground highlightColor highlightThickness insertBackground
justify relief

See the "options" manual entry for details on the standard options.

INHERITED OPTIONS
disabledForeground labelBitmap labelFont labelImage
labelMargin labelPos labelText labelVariable
state

See the "labeledwidget" class manual entry for details on these inherited options.

command format seconds textBackground
textFont

See the "timefield" class manual entry for details on these inherited options.

ASSOCIATED OPTIONS
hourRadius hourColor minuteRadius minuteColor
pivotRadius pivotColor secondRadius secondColor
clockColor clockStipple tickColor watchHeight
watchWidth

See the "watch" manual entry for details on the associated options.

WIDGET-SPECIFIC OPTIONS
Name: closeText
Class: Text
Command-Line Switch: -closetext

Specifies the text to be displayed on the close button of the watch popup. The default is Close.

Name: grab
Class: Grab
Command-Line Switch: -grab

Specifies the grab level,local or global, to be obtained before bringing up the popup watch. The
default is global. For more information concerning grab levels, consult the documentation for Tk’s
grab command.

Name: icon
Class: Icon
Command-Line Switch: -icon

Specifies the watch icon image to be used in the timeentry. This image must have been created
previously with theimage createcommand. Should one not be provided, then one will be gener-
ated, pixmap if possible, bitmap otherwise.

Name: state
Class: State
Command-Line Switch: -state

Tk Last change: 3.0.0 1

[incr Widgets] timeentry (n)

Specifies the state of the widget which may bedisabled or normal. A disabled state prevents
selection of the timefield or time icon button.

DESCRIPTION
The timeentry command creates a time entry field with a popup watch by combining the timefield and
watch widgets together. This allows a user to enter the time via the keyboard or by using the mouse and
selecting the watch icon which brings up a popup watch.

METHODS
The timeentry command creates a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command. The following commands are possible
for timeentry widgets:

INHERITED METHODS
get isvalid show

See the "timefield" manual entry for details on the associated methods.

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thetimeentry command.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thetimeentry command.

COMPONENTS
Name: label
Class: Label

The label component provides a label component to used to identify the time. See the "label" wid-
get manual entry for details on the label component item.

Name: iconbutton
Class: Label

The iconbutton component provides a labelbutton component to act as a lightweight button dis-
playing the watch icon. Upon pressing the labelbutton, the watch appears. See the "label" widget
manual entry for details on the labelbutton component item.

Name: time
Class: Entry

Tk Last change: 3.0.0 2

[incr Widgets] timeentry (n)

The time component provides the entry field for time input and display. See the "entry" widget
manual entry for details on the time component item.

EXAMPLE
timeentry .te
pack .te

AUTHOR
Mark L. Ulferts

KEYWORDS
timeentry, widget

Tk Last change: 3.0.0 3

[incr Widgets] timefield (n)

NAME
timefield − Create and manipulate a time field widget

SYNOPSIS
timefield pathName?options?

INHERITANCE
itk::Widget <- LabeledWidget <- timefield

STANDARD OPTIONS
background borderWidth cursor exportSelection
foreground highlightColor highlightThickness insertBackground
justify relief

See the "options" manual entry for details on the standard options.

INHERITED OPTIONS
disabledForeground labelBitmap labelFont labelImage
labelMargin labelPos labelText labelVariable
state

See the "labeledwidget" class manual entry for details on the inherited options.

WIDGET-SPECIFIC OPTIONS
Name: childSitePos
Class: Position
Command-Line Switch: -childsitepos

Specifies the position of the child site in the time field:n, s, e, or w. The default is e.

Name: command
Class: Command
Command-Line Switch: -command

Specifies a Tcl command to be executed upon detection of a Return key press event.

Name: state
Class: State
Command-Line Switch: -state

Specifies one of two states for the timefield:normal or disabled. If the timefield is disabled then
input is not accepted. The default is normal.

Name: textBackground
Class: Background
Command-Line Switch: -textbackground

Background color for inside textual portion of the entry field. The value may be given in any of
the forms acceptable toTk_GetColor.

Name: textFont
Class: Font
Command-Line Switch: -textfont

Name of font to use for display of text in timefield. The value may be given in any of the forms
acceptable toTk_GetFont.

DESCRIPTION

Tk Last change: 3.0.0 1

[incr Widgets] timefield (n)

The timefield command creates an enhanced text entry widget for the purpose of time entry with various
degrees of built-in intelligence.

METHODS
The timefield command creates a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command. The following commands are possible
for timefield widgets:

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thetimefield command.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thetimefield command.

pathNameget?format?
Returns the current contents of the timefield in a format of string or as an integer clock value using
the -string and-clicks format options respectively. The default is by string. Reference the clock
command for more information on obtaining times and their formats.

pathNameisvalid
Returns a boolean indication of the validity of the currently displayed time value. For example,
12:59:59 is valid whereas 25:59:59 is invalid.

pathNameshowtime
Changes the currently displayed time to be that of the time argument. The time may be specified
either as a string, an integer clock value or the keyword "now" (the default). Reference the clock
command for more information on obtaining times and their formats.

COMPONENTS
Name: time
Class: Entry

The time component provides the entry field for time input and display. See the "entry" widget
manual entry for details on the time component item.

EXAMPLE
proc returnCmd {} {
puts [.tf get]

}

timefield .tf -command returnCmd

Tk Last change: 3.0.0 2

[incr Widgets] timefield (n)

pack .tf -fill x -expand yes -padx 10 -pady 10

AUTHOR
John A. Tucker

Mark L. Ulferts

KEYWORDS
timefield, widget

Tk Last change: 3.0.0 3

[incr Widgets] toolbar (n)

NAME
toolbar − Create and manipulate a tool bar

SYNOPSIS
toolbar pathName?options?

STANDARD OPTIONS
activeBackground font insertForeground selectForeground
activeForeground foreground orient state
background highlightBackground relief troughColor
borderWidth highlightColor selectBackground cursor
highlightThickness selectBorderWidth disabledForeground insertBackground
selectColor

See the "options" manual entry for details on the standard options. For widgets added to the toolbar, these
options will be propogated if the widget supports the option. For example, all widgets that support a font
option will be changed if the the toolbar’s font option is configured.

WIDGET-SPECIFIC OPTIONS
Name: balloonBackground
Class: BalloonBackground
Command-Line Switch: -ballooonbackground

Specifies the background color of the balloon help displayed at the bottom center of a widget on
the toolbar that has a non empty string for its balloonStr option. The default color is yellow.

Name: balloonDelay1
Class: BalloonDelay1
Command-Line Switch: -balloondelay1

Specifies the length of time (in milliseconds) to wait before initially posting a balloon help hint
window. This delay is in effect whenever 1) the mouse leaves the toolbar, or 2) a toolbar item is
selected with the mouse button.

Name: balloonDelay2
Class: BalloonDelay2
Command-Line Switch: -balloondelay2

Specifies the length of time (in milliseconds) to wait before continuing to post balloon help hint
windows. This delay is in effect after the first time a balloon hint window is activated. It remains in
effect until 1) the mouse leaves the toolbar, or 2) a toolbar item is selected with the mouse button.

Name: balloonFont
Class: BalloonFont
Command-Line Switch: -balloonfont

Specifies the font of the balloon help text displayed at the bottom center of a widget on the toolbar
that has a non empty string for its balloonStr option. The default font is 6x10.

Name: balloonForeground
Class: BalloonForeground
Command-Line Switch: -ballooonforeground

Specifies the foreground color of the balloon help displayed at the bottom center of a widget on
the toolbar that has a non empty string for its balloonStr option. The default color is black.

Name: helpVariable
Class: HelpVariable
Command-Line Switch: -helpvariable

Specifies the global variable to update whenever the mouse is in motion over a toolbar widget.

Tk Last change: 3.0.0 1

[incr Widgets] toolbar (n)

This global variable is updated with the current value of the active widget’s helpStr. Other widgets
can "watch" this variable with the trace command, or as is the case with entry or label widgets,
they can set their textVariable to the same global variable. This allows for a simple implementation
of a help status bar. Whenever the mouse leaves a menu entry, the helpVariable is set to the empty
string {}.

Name: orient
Class: Orient
Command-Line Switch: -orient

Specifies the orientation of the toolbar. Must be either horizontal or vertical.

DESCRIPTION
The toolbar command creates a new window (given by the pathName argument) and makes it into atool-
bar widget. Additional options, described above may be specified on the command line or in the option
database to configure aspects of the toolbar such as its colors, font, and orientation. Thetoolbar command
returns its pathName argument. At the time this command is invoked, there must not exist a window named
pathName, but pathName’s parent must exist.

A toolbar is a widget that displays a collection of widgets arranged either in a row or a column (depending
on the value of the -orient option). This collection of widgets is usually for user convenience to give access
to a set of commands or settings. Any widget may be placed on a toolbar. Howev er, command or value-ori-
ented widgets (such as button, radiobutton, etc.) are usually the most useful kind of widgets to appear on a
toolbar.

In addition, the toolbar adds two new options to all widgets that are added to it. These are thehelpStr and
balloonStr options. See the discussion for the widget command add below.

WIDGET-SPECIFIC METHODS
The toolbar command creates a new Tcl command whose name is pathName. This command may be used
to invoke various operations on the widget. It has the following general form:

pathName option ?arg arg ...?

Option and args determine the exact behavior of the command.

Many of the widget commands for a toolbar take as one argument an indicator of which widget item of the
toolbar to operate on. The indicator is called anindex and may be specified in any of the following forms:

number Specifies the widget numerically, where 0 corresponds to the first widget in the notebook, 1 to the
second, and so on. (For horizontal, 0 is the leftmost; for vertical, 0 is the topmost).

end Specifes the last widget in the toolbar’s index. If the toolbar is empty this will return -1.

last Same as end.

pattern If the index doesn’t satisfy any of the above forms, then this form is used. Pattern is pattern-
matched against the widgetName of each widget in the toolbar, in order from the first to the last
widget, until a matching entry is found. An exact match must occur.

The following commands are possible for toolbar widgets:

pathNameadd widgetCommand widgetName ?option value?
Adds a widget with the command widgetCommand whose name is widgetName to the toolbar. If
widgetCommand is radiobutton or checkbutton, its packing is slightly padded to match the geome-
try of button widgets. In addition, the indicatorOn option is false by default and the selectColor is
that of the toolbar background by default. This allows Radiobutton and Checkbutton widgets to be

Tk Last change: 3.0.0 2

[incr Widgets] toolbar (n)

added as icons by simply setting their bitmap or image options. If additional arguments are pre-
sent, they are the set of available options that the widget type ofwidgetCommandsupports. In
addition they may also be one of the following options:

-helpstr value
Specifes the help string to associate with the widget. When the mouse moves over the
widget, the variable denoted byhelpVariable is set tohelpStr. Another widget can bind
to the helpVariable and thus track status help.

-balloonstr value
Specifes the string to display in a balloon window for this widget. A balloon window is a
small popup window centered at the bottom of the widget. Usually theballoonStr value
is the name of the item on the toolbar. It is sometimes known as a hint window.

When the mouse moves into an item on the toolbar, a timer is set based on the value of
balloonDelay1. If the mouse stays inside the item forballoonDelay1, the balloon win-
dow will pop up displaying theballoonStr value. Once the balloon window is posted, a
new timer based onballoonDelay2is set. This is typically a shorter timer. If the mouse is
moved to another item, the window is unposted and a new window will be posted over the
item if the shorter delay time is satisfied.

While the balloon window is posted, it can also be unposted if the item is selected. In this
case the timer is reset toballoonDelay1. Whenever the mouse leaves the toolbar, the
timer is also reset toballoonDelay1.

This window posting/unposting model is the same model used in the Windows95 envi-
ronment.

pathNamecgetoption
Returns the current value of the configuration option given byoption.

pathNameconfigure?option value?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options for pathName (see Tk_ConfigureInfo for information on the
format of this list). Ifoption is specified with no value, then the command returns a list describing
the one named option (this list will be identical to the corresponding sublist of the value returned if
no option is specified). If one or more option-value pairs are specified, then the command modifies
the given widget option(s) to have the given value(s); in this case the command returns an empty
string.

pathNamedeleteindex?index2?
This command deletes all items betweenindexand index2 inclusive. If index2 is omitted then it
defaults toindex. Returns an empty string.

pathNameindex index
Returns the widget’s numerical index for the entry corresponding toindex. If indexis not found, -1
is returned.

pathNameinsert beforeIndex widgetCommand widgetName ?option value?

Insert a new item namedwidgetNamewith the
commandwidgetCommandbefore the item specified bybeforeIndex. If widgetCommandis
radiobutton or checkbutton, its packing is slightly padded to match the geometry of button wid-
gets. In addition, theindicatorOn option isfalseby default and theselectColoris that of the tool-
bar background by default. This allowsRadiobutton and Checkbutton widgets to be added as
icons by simply setting theirbitmap or imageoptions. The set of available options is the same as
specified in thead command.

pathNameitemcget index option

Tk Last change: 3.0.0 3

[incr Widgets] toolbar (n)

Returns the current value of the configuration option given byoption for index. The item type of
indexdetermines the valid available options.

pathNameitemconfigure index ?option value?
Query or modify the configuration options of the widget of the toolbar specified byindex. If no
option is specified, returns a list describing all of the available options forindex(seeTk_Config-
ureInfo for information on the format of this list). Ifoption is specified with no value, then the
command returns a list describing the one named option (this list will be identical to the corre-
sponding sublist of the value returned if no option is specified). If one or more option-value pairs
are specified, then the command modifies the given widget option(s) to have the given value(s); in
this case the command returns an empty string. The item type ofindexdetermines the valid avail-
able options. The set of available options is the same as specified in thead command.

EXAMPLE
toolbar .tb -helpvariable statusVar

.tb add button item1 \
-helpstr "Save It" -bitmap @./icons/Tool_32_box.xbm \
-balloonstr "Save" -command {puts 1}

.tb add button item2 \
-helpstr "Save It" -bitmap @./icons/Tool_32_brush.xbm \
-balloonstr "Save" -command {puts 1}

.tb add button item3 \
-helpstr "Save It" -bitmap @./icons/Tool_32_cut.xbm \
-balloonstr "Save" -command {puts 1}

.tb add button item4 \
-helpstr "Save It" -bitmap @./icons/Tool_32_draw.xbm \
-balloonstr "Save" -command {puts 1}

.tb add button item5 \
-bitmap @./icons/Tool_32_erase.xbm -helpstr "Play It" \
-command {puts 2}

.tb add frame filler \
-borderwidth 1 -width 10 -height 10

.tb add radiobutton item6 \
-bitmap @./icons/Tool_32_oval.xbm -command {puts 4} \
-variable result -value OPEN -helpstr "Radio Button # 1" \
-balloonstr "Radio"

.tb add radiobutton item7 \
-bitmap @./icons/Tool_32_line.xbm -command {puts 5} \
-variable result -value CLOSED

.tb add checkbutton item8 \
-bitmap @./icons/Tool_32_text.xbm -command {puts 6} \
-variable checkit -onvalue yes -offvalue no

.tb add checkbutton check2 \
-bitmap @./icons/Tool_32_points.xbm -command {puts 7} \
-variable checkit2 -onvalue yes -offvalue no

pack .tb -side top -anchor nw

AUTHOR
Bill Scott

Tk Last change: 3.0.0 4

[incr Widgets] toolbar (n)

KEYWORDS
toolbar, button, radiobutton, checkbutton, iwidgets, widget

Tk Last change: 3.0.0 5

[incr Widgets] watch (n)

NAME
watch − Create and manipulate time with a watch widgets

SYNOPSIS
watch pathName?options?

INHERITANCE
itk::Widget <- Watch

STANDARD OPTIONS
background cursor foreground relief

See the "options" manual entry for details on the standard options.

ASSOCIATED OPTIONS
See the "Canvas" manual entry for details on the above associated options.

WIDGET-SPECIFIC OPTIONS
Name: clockColor
Class: ColorfR
Command-Line Switch: -clockcolor

Fill color for the main oval encapsulating the watch, in any of the forms acceptable toTk_Get-
Color. The default is "White".

Name: clockStipple
Class: BitmapfR
Command-Line Switch: -clockstipple

Bitmap for the main oval encapsulating the watch, in any of the forms acceptable toTk_Get-
Bitmap. The default is "".

Name: height
Class: Height
Command-Line Switch: -height

Specifies the height of the watch widget in any of the forms acceptable toTk_GetPixels. The
default height is 175 pixels.

Name: hourColor
Class: ColorfR
Command-Line Switch: -hourcolor

Fill color for the hour hand, in any of the forms acceptable toTk_GetColor. The default is "Red".

Name: hourRadius
Class: Radius
Command-Line Switch: -hourradius

Specifies the radius of the hour hand as a percentage of the radius from the center to the out
perimeter of the clock. The value must be a fraction <= 1. The default is ".5".

Name: minuteColor
Class: ColorfR
Command-Line Switch: -minutecolor

Fill color for the minute hand, in any of the forms acceptable toTk_GetColor. The default is
"Yellow".

Tk Last change: 3.0.0 1

[incr Widgets] watch (n)

Name: minuteRadius
Class: Radius
Command-Line Switch: -minuteradius

Specifies the radius of the minute hand as a percentage of the radius from the center to the out
perimeter of the clock. The value must be a fraction <= 1. The default is ".8".

Name: pivotColor
Class: ColorfR
Command-Line Switch: -pivotcolor

Fill color for the circle in which the watch hands rotate in any of the forms acceptable toTk_Get-
Color. The default is "White".

Name: pivotRadius
Class: Radius
Command-Line Switch: -pivotradius

Specifies the radius of the circle in which the watch hands rotate as a percentage of the radius.
The value must be a fraction <= 1. The default is ".1".

Name: secondColor
Class: ColorfR
Command-Line Switch: -secondcolor

Fill color for the second hand, in any of the forms acceptable toTk_GetColor. The default is
"Black".

Name: secondRadius
Class: Radius
Command-Line Switch: -secondradius

Specifies the radius of the second hand as a percentage of the radius from the center to the out
perimeter of the clock. The value must be a fraction <= 1. The default is ".9".

Name: showAmPm
Class: ShosAmPm
Command-Line Switch: -showampm

Specifies whether the AM/PM radiobuttons should be displayed, in any of the forms acceptable to
Tcl_GetBoolean. The default is yes.

Name: state
Class: State
Command-Line Switch: -state

Specifies the editable state for the hands on the watch. In a normal state, the user can select and
move the hands via mouse button 1. The valid values arenormal, anddisabled. The defult is
normal.

Name: tickColor
Class: ColorfR
Command-Line Switch: -tickcolor

Fill color for the 60 ticks around the perimeter of the watch, in any of the forms acceptable to
Tk_GetColor. The default is "Black".

Name: width
Class: Width
Command-Line Switch: -width

Specifies the width of the watch widget in any of the forms acceptable toTk_GetPixels. The

Tk Last change: 3.0.0 2

[incr Widgets] watch (n)

default height is 155 pixels.

DESCRIPTION
Thewatch command creates a watch with hour, minute, and second hands modifying the time value.

METHODS
Thewatch command creates a new Tcl command whose name ispathName. This command may be used to
invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Option and theargs determine the exact behavior of the command. The following commands are possible
for watch widgets:

WIDGET-SPECIFIC METHODS
pathNamecgetoption

Returns the current value of the configuration option given byoption. Optionmay have any of the
values accepted by thewatch command.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget. If nooption is specified, returns a list
describing all of the available options forpathName(seeTk_ConfigureInfo for information on
the format of this list). Ifoption is specified with novalue, then the command returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value
returned if nooption is specified). If one or moreoption−valuepairs are specified, then the com-
mand modifies the given widget option(s) to have the given value(s); in this case the command
returns an empty string.Optionmay have any of the values accepted by thewatch command.

pathNameget?format?
Returns the current time of the watch in a format of string or as an integer clock value using the
-string and-clicks format options respectively. The default is by string. Reference the clock com-
mand for more information on obtaining time and its formats.

pathNameshowtime
Changes the currently displayed time to be that of the time argument. The time may be specified
either as a string, an integer clock value or the keyword "now". Reference the clock command for
more information on obtaining time and its format.

pathNamewatch ?args?
Evaluates the specifiedsargsagainst the canvas component.

COMPONENTS
Name: canvas
Class: Canvas

The canvas component is the where the clock is drawn. See the Canvas widget manual entry for
details.

Name: frame
Class: Frame

The frame component is the where the "AM" and "PM" radiobuttons are displayed. See the Frame
widget manual entry for details.

Tk Last change: 3.0.0 3

[incr Widgets] watch (n)

Name: am
Class: Radiobutton

The am component indicates whether on not the time is relative to "AM". See the Radiobutton
widget manual entry for details.

Name: pm
Class: Radiobutton

The pm component indicates whether on not the time is relative to "PM". See the Radiobutton
widget manual entry for details.

EXAMPLE
watch .w -state disabled -showampm no -width 155 -height 155
pack .w -padx 10 -pady 10 -fill both -expand yes

while {1} {
after 1000
.w show
update

}

AUTHOR
John Tucker

Mark L. Ulferts

KEYWORDS
watch, hand, ticks, pivot, widget

Tk Last change: 3.0.0 4

Tcl Library Procedures Tcl_AddErrorInfo (3)

NAME
Tcl_AddObjErrorInfo, Tcl_AddErrorInfo, Tcl_SetErrorCode, Tcl_PosixError − record information about
errors

SYNOPSIS
#include <tcl.h>

Tcl_AddObjErrorInfo (interp, message, length)

Tcl_AddErrorInfo (interp, message)

Tcl_SetObjErrorCode(interp, errorObjPtr)

Tcl_SetErrorCode(interp, element, element, ...(char ∗) NULL)

char∗
Tcl_PosixError (interp)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter in which to record information.

char ∗message (in) ForTcl_AddObjErrorInfo , this points to the first byte of an array of
bytes containing a string to record in theerrorInfo variable. This
byte array may contain embedded null bytes unlesslengthis negative.
For Tcl_AddErrorInfo , this is a conventional C string to record in
theerrorInfo variable.

int length (in) The number of bytes to copy frommessagewhen setting theerror-
Info variable. If negative, all bytes up to the first null byte are used.

Tcl_Obj ∗errorObjPtr(in) This variableerrorCode will be set to this value.

char ∗element (in) String to record as one element oferrorCode variable. Lastelement
argument must be NULL.

DESCRIPTION
These procedures are used to manipulate two Tcl global variables that hold information about errors. The
variableerrorInfo holds a stack trace of the operations that were in progress when an error occurred, and is
intended to be human-readable. The variableerrorCode holds a list of items that are intended to be
machine-readable. The first item inerrorCode identifies the class of error that occurred (e.g. POSIX
means an error occurred in a POSIX system call) and additional elements inerrorCode hold additional
pieces of information that depend on the class. See the Tcl overview manual entry for details on the various
formats forerrorCode.

TheerrorInfo variable is gradually built up as an error unwinds through the nested operations. Each time
an error code is returned toTcl_EvalObj (or Tcl_Eval, which callsTcl_EvalObj) it calls the procedure
Tcl_AddObjErrorInfo to add additional text toerrorInfo describing the command that was being
executed when the error occurred. By the time the error has been passed all the way back to the applica-
tion, it will contain a complete trace of the activity in progress when the error occurred.

It is sometimes useful to add additional information toerrorInfo beyond what can be supplied automati-
cally byTcl_EvalObj . Tcl_AddObjErrorInfo may be used for this purpose: itsmessageandlengthargu-
ments describe an additional string to be appended toerrorInfo . For example, thesourcecommand calls
Tcl_AddObjErrorInfo to record the name of the file being processed and the line number on which the
error occurred; for Tcl procedures, the procedure name and line number within the procedure are recorded,

Tcl Last change: 7.5 1

Tcl Library Procedures Tcl_AddErrorInfo (3)

and so on. The best time to callTcl_AddObjErrorInfo is just after Tcl_EvalObj has returned
TCL_ERROR . In callingTcl_AddObjErrorInfo , you may find it useful to use theerrorLine field of the
interpreter (see theTcl_Interp manual entry for details).

Tcl_AddErrorInfo resemblesTcl_AddObjErrorInfo but differs in initializingerrorInfo from the string
value of the interpreter’s result if the error is just starting to be logged. It does not use the result as a Tcl
object so any embedded null characters in the result will cause information to be lost. It also takes a con-
ventional C string inmessageinstead ofTcl_AddObjErrorInfo ’s counted string.

The procedureTcl_SetObjErrorCode is used to set theerrorCode variable.errorObjPtr contains a list
object built up by the caller.errorCode is set to this value.Tcl_SetObjErrorCode is typically invoked just
before returning an error in an object command. If an error is returned without callingTcl_SetObjError-
Codeor Tcl_SetErrorCode the Tcl interpreter automatically setserrorCode to NONE.

The procedureTcl_SetErrorCode is also used to set theerrorCode variable. However, it takes one or
more strings to record instead of an object. Otherwise, it is similar toTcl_SetObjErrorCode in behavior.

Tcl_PosixError sets theerrorCode variable after an error in a POSIX kernel call. It reads the value of the
errno C variable and callsTcl_SetErrorCode to seterrorCode in the POSIX format. The caller must
previously have calledTcl_SetErrno to seterrno; this is necessary on some platforms (e.g. Windows)
where Tcl is linked into an application as a shared library, or when the error occurs in a dynamically loaded
extension. See the manual entry forTcl_SetErrno for more information.

Tcl_PosixError returns a human-readable diagnostic message for the error (this is the same value that will
appear as the third element inerrorCode). It may be convenient to include this string as part of the error
message returned to the application in the interpreter’s result.

It is important to call the procedures described here rather than settingerrorInfo or errorCode directly
with Tcl_ObjSetVar2. The reason for this is that the Tcl interpreter keeps information about whether these
procedures have been called. For example, the first timeTcl_AddObjErrorInfo is called for an error, it
clears the existing value oferrorInfo and adds the error message in the interpreter’s result to the variable
before appendingmessage; in subsequent calls, it just appends the newmessage. When Tcl_SetError-
Code is called, it sets a flag indicating thaterrorCode has been set; this allows the Tcl interpreter to set
errorCode to NONE if it receives an error return whenTcl_SetErrorCode hasn’t been called.

If the procedureTcl_ResetResultis called, it clears all of the state associated witherrorInfo anderror-
Code (but it doesn’t actually modify the variables). If an error had occurred, this will clear the error state
to make it appear as if no error had occurred after all.

SEE ALSO
Tcl_DecrRefCount, Tcl_IncrRefCount, Tcl_Interp, Tcl_ResetResult, Tcl_SetErrno

KEYWORDS
error, object, object result, stack, trace, variable

Tcl Last change: 7.5 2

Tcl Library Procedures Tcl_Alloc (3)

NAME
Tcl_Alloc, Tcl_Free, Tcl_Realloc − allocate or free heap memory

SYNOPSIS
#include <tcl.h>

char∗
Tcl_Alloc(size)

Tcl_Free(ptr)

char∗
Tcl_Realloc(ptr, size)

ARGUMENTS
int size (in) Size in bytes of the memory block to allocate.

char ∗ptr (in) Pointer to memory block to free or realloc.

DESCRIPTION
These procedures provide a platform and compiler independent interface for memory allocation. Programs
that need to transfer ownership of memory blocks between Tcl and other modules should use these routines
rather than the nativemalloc() andfree() routines provided by the C run-time library.

Tcl_Alloc returns a pointer to a block of at leastsizebytes suitably aligned for any use.

Tcl_Freemakes the space referred to byptr available for further allocation.

Tcl_Realloc changes the size of the block pointed to byptr to sizebytes and returns a pointer to the new
block. The contents will be unchanged up to the lesser of the new and old sizes. The returned location may
be different fromptr.

KEYWORDS
alloc, allocation, free, malloc, memory, realloc

Tcl Last change: 7.5 1

Tcl Library Procedures Tcl_AllowExceptions (3)

NAME
Tcl_AllowExceptions − allow all exceptions in next script evaluation

SYNOPSIS
#include <tcl.h>

Tcl_AllowExceptions(interp)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter in which script will be evaluated.

DESCRIPTION
If a script is evaluated at top-level (i.e. no other scripts are pending evaluation when the script is invoked),
and if the script terminates with a completion code other than TCL_OK, TCL_CONTINUE or
TCL_RETURN, then Tcl normally converts this into a TCL_ERROR return with an appropriate message.

However, if Tcl_AllowExceptions is invoked immediately before calling a procedure such asTcl_Eval,
then arbitrary completion codes are permitted from the script, and they are returned without modification.
This is useful in cases where the caller can deal with exceptions such as TCL_BREAK or TCL_CON-
TINUE in a meaningful way.

KEYWORDS
continue, break, exception, interpreter

Tcl Last change: 7.4 1

Tcl Library Procedures Tcl_AppInit (3)

NAME
Tcl_AppInit − perform application-specific initialization

SYNOPSIS
#include <tcl.h>

int
Tcl_AppInit (interp)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter for the application.

DESCRIPTION
Tcl_AppInit is a ‘‘hook’’ procedure that is invoked by the main programs for Tcl applications such astclsh
andwish. Its purpose is to allow new Tcl applications to be created without modifying the main programs
provided as part of Tcl and Tk. To create a new application you write a new version ofTcl_AppInit to
replace the default version provided by Tcl, then link your newTcl_AppInit with the Tcl library.

Tcl_AppInit is invoked after byTcl_Main andTk_Main after their own initialization and before entering
the main loop to process commands. Here are some examples of things thatTcl_AppInit might do:

[1] Call initialization procedures for various packages used by the application. Each initialization pro-
cedure adds new commands tointerp for its package and performs other package-specific initial-
ization.

[2] Process command-line arguments, which can be accessed from the Tcl variablesargv andargv0
in interp.

[3] Invoke a startup script to initialize the application.

Tcl_AppInit returns TCL_OK or TCL_ERROR. If it returns TCL_ERROR then it must leave an error
message ininterp->result; otherwise the result is ignored.

In addition toTcl_AppInit , your application should also contain a proceduremain that callsTcl_Main as
follows:

Tcl_Main(argc, argv, Tcl_AppInit);
The third argument toTcl_Main gives the address of the application-specific initialization procedure to
invoke. This means that you don’t hav e to use the nameTcl_AppInit for the procedure, but in practice the
name is nearly alwaysTcl_AppInit (in versions before Tcl 7.4 the nameTcl_AppInit was implicit; there
was no way to specify the procedure explicitly). The best way to get started is to make a copy of the file
tclAppInit.c from the Tcl library or source directory. It already contains amain procedure and a template
for Tcl_AppInit that you can modify for your application.

KEYWORDS
application, argument, command, initialization, interpreter

Tcl Last change: 7.0 1

Tcl Library Procedures Tcl_SetAssocData (3)

NAME
Tcl_GetAssocData, Tcl_SetAssocData, Tcl_DeleteAssocData − manage associations of string keys and
user specified data with Tcl interpreters.

SYNOPSIS
#include <tcl.h>

ClientData
Tcl_GetAssocData(interp, key, delProcPtr)

Tcl_SetAssocData(interp, key, delProc, clientData)

Tcl_DeleteAssocData(interp, key)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter in which to execute the specified command.

char ∗key (in) Key for association with which to store data or from
which to delete or retrieve data. Typically the module
prefix for a package.

Tcl_InterpDeleteProc ∗delProc (in) Procedure to call wheninterp is deleted.

Tcl_InterpDeleteProc ∗∗delProcPtr (in) Pointer to location in which to store address of current
deletion procedure for association. Ignored if NULL.

ClientData clientData (in) Arbitrary one-word value associated with the given key
in this interpreter. This data is owned by the caller.

DESCRIPTION
These procedures allow extensions to associate their own data with a Tcl interpreter. An association con-
sists of a string key, typically the name of the extension, and a one-word value, which is typically a pointer
to a data structure holding data specific to the extension. Tcl makes no interpretation of either the key or
the value for an association.

Storage management is facilitated by storing with each association a procedure to call when the interpreter
is deleted. This procedure can dispose of the storage occupied by the client’s data in any way it sees fit.

Tcl_SetAssocDatacreates an association between a string key and a user specified datum in the given
interpreter. If there is already an association with the givenkey, Tcl_SetAssocDataoverwrites it with the
new information. It is up to callers to organize their use of names to avoid conflicts, for example, by using
package names as the keys. If thedeleteProcargument is non-NULL it specifies the address of a procedure
to invoke if the interpreter is deleted before the association is deleted.DeleteProcshould have arguments
and result that match the typeTcl_InterpDeleteProc:

typedef void Tcl_InterpDeleteProc(
ClientDataclientData,
Tcl_Interp∗interp);

When deleteProcis invoked theclientData and interp arguments will be the same as the corresponding
arguments passed toTcl_SetAssocData. The deletion procedure willnot be invoked if the association is
deleted before the interpreter is deleted.

Tcl_GetAssocDatareturns the datum stored in the association with the specified key in the given inter-
preter, and if thedelProcPtrfield is non-NULL , the address indicated by it gets the address of the delete
procedure stored with this association. If no association with the specified key exists in the given interpreter
Tcl_GetAssocDatareturnsNULL .

Tcl Last change: 7.5 1

Tcl Library Procedures Tcl_SetAssocData (3)

Tcl_DeleteAssocDatadeletes an association with a specified key in the given interpreter. It does not call
the deletion procedure.

KEYWORDS
association, data, deletion procedure, interpreter, key

Tcl Last change: 7.5 2

Tcl Library Procedures Tcl_AsyncCreate (3)

NAME
Tcl_AsyncCreate, Tcl_AsyncMark, Tcl_AsyncInvoke, Tcl_AsyncDelete − handle asynchronous events

SYNOPSIS
#include <tcl.h>

Tcl_AsyncHandler
Tcl_AsyncCreate(proc, clientData)

Tcl_AsyncMark (async)

int
Tcl_AsyncInvoke(interp, code)

Tcl_AsyncDelete(async)

int
Tcl_AsyncReady()

ARGUMENTS
Tcl_AsyncProc ∗proc (in) Procedure to invoke to handle an asynchronous event.

ClientData clientData (in) One-word value to pass toproc.

Tcl_AsyncHandler async (in) Token for asynchronous event handler.

Tcl_Interp ∗interp (in) Tcl interpreter in which command was being evaluated when
handler was invoked, or NULL if handler was invoked when
there was no interpreter active.

int code (in) Completion code from command that just completed in
interp, or 0 if interp is NULL.

DESCRIPTION
These procedures provide a safe mechanism for dealing with asynchronous events such as signals. If an
ev ent such as a signal occurs while a Tcl script is being evaluated then it isn’t safe to take any substantive
action to process the event. For example, it isn’t safe to evaluate a Tcl script since the interpreter may
already be in the middle of evaluating a script; it may not even be safe to allocate memory, since a memory
allocation could have been in progress when the event occurred. The only safe approach is to set a flag
indicating that the event occurred, then handle the event later when the world has returned to a clean state,
such as after the current Tcl command completes.

Tcl_AsyncCreatecreates an asynchronous handler and returns a token for it. The asynchronous handler
must be created before any occurrences of the asynchronous event that it is intended to handle (it is not safe
to create a handler at the time of an event). When an asynchronous event occurs the code that detects the
ev ent (such as a signal handler) should callTcl_AsyncMark with the token for the handler.Tcl_Async-
Mark will mark the handler as ready to execute, but it will not invoke the handler immediately. Tcl will
call theproc associated with the handler later, when the world is in a safe state, andproc can then carry out
the actions associated with the asynchronous event.Proc should have arguments and result that match the
typeTcl_AsyncProc:

typedef int Tcl_AsyncProc(
ClientDataclientData,
Tcl_Interp∗interp,
int code);

Tcl Last change: 7.0 1

Tcl Library Procedures Tcl_AsyncCreate (3)

TheclientDatawill be the same as theclientDataargument passed toTcl_AsyncCreatewhen the handler
was created. Ifproc is invoked just after a command has completed execution in an interpreter, theninterp
will identify the interpreter in which the command was evaluated andcodewill be the completion code
returned by that command. The command’s result will be present ininterp->result. Whenproc returns,
whatever it leaves ininterp->result will be returned as the result of the command and the integer value
returned byprocwill be used as the new completion code for the command.

It is also possible forproc to be invoked when no interpreter is active. This can happen, for example, if an
asynchronous event occurs while the application is waiting for interactive input or an X event. In this case
interpwill be NULL andcodewill be 0, and the return value fromprocwill be ignored.

The procedureTcl_AsyncInvoke is called to invoke all of the handlers that are ready. The procedure
Tcl_AsyncReadywill return non-zero whenever any asynchronous handlers are ready; it can be checked
to avoid calls toTcl_AsyncInvoke when there are no ready handlers. Tcl callsTcl_AsyncReadyafter
each command is evaluated and callsTcl_AsyncInvoke if needed. Applications may also callTcl_Async-
Invoke at interesting times for that application. For example, Tcl’s event handler callsTcl_AsyncReady
after each event and callsTcl_AsyncInvoke if needed. Theinterp andcodearguments toTcl_AsyncIn-
voke have the same meaning as forproc: they identify the active interpreter, if any, and the completion
code from the command that just completed.

Tcl_AsyncDeleteremoves an asynchronous handler so that itsproc will never be inv oked again. A handler
can be deleted even when ready, and it will still not be invoked.

If multiple handlers become active at the same time, the handlers are invoked in the order they were created
(oldest handler first). Thecodeand interp->result for later handlers reflect the values returned by earlier
handlers, so that the most recently created handler has last say about the interpreter’s result and completion
code. If new handlers become ready while handlers are executing,Tcl_AsyncInvoke will invoke them all;
at each point it invokes the highest-priority (oldest) ready handler, repeating this over and over until there
are no longer any ready handlers.

WARNING
It is almost always a bad idea for an asynchronous event handler to modifyinterp->resultor return a code
different from itscodeargument. This sort of behavior can disrupt the execution of scripts in subtle ways
and result in bugs that are extremely difficult to track down. If an asynchronous event handler needs to
evaluate Tcl scripts then it should first saveinterp->result plus the values of the variableserrorInfo and
errorCode (this can be done, for example, by storing them in dynamic strings). When the asynchronous
handler is finished it should restoreinterp->result, errorInfo , anderrorCode, and return thecodeargu-
ment.

KEYWORDS
asynchronous event, handler, signal

Tcl Last change: 7.0 2

Tcl Library Procedures Tcl_BackgroundError (3)

NAME
Tcl_BackgroundError − report Tcl error that occurred in background processing

SYNOPSIS
#include <tcl.h>

Tcl_BackgroundError (interp)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter in which the error occurred.

DESCRIPTION
This procedure is typically invoked when a Tcl error occurs during ‘‘background processing’’ such as
executing an event handler. When such an error occurs, the error condition is reported to Tcl or to a widget
or some other C code, and there is not usually any obvious way for that code to report the error to the user.
In these cases the code callsTcl_BackgroundError with an interp argument identifying the interpreter in
which the error occurred. At the timeTcl_BackgroundError is invoked, interp->result is expected to
contain an error message.Tcl_BackgroundError will invoke the bgerror Tcl command to report the
error in an application-specific fashion. If nobgerror command exists, or if it returns with an error condi-
tion, thenTcl_BackgroundError reports the error itself by printing a message on the standard error file.

Tcl_BackgroundError does not invokebgerror immediately because this could potentially interfere with
scripts that are in process at the time the error occurred. Instead, it invokesbgerror later as an idle call-
back. Tcl_BackgroundError saves the values of theerrorInfo and errorCode variables and restores
these values just before invokingbgerror .

It is possible for many background errors to accumulate beforebgerror is invoked. When this happens,
each of the errors is processed in order. Howev er, ifbgerror returns a break exception, then all remaining
error reports for the interpreter are skipped.

KEYWORDS
background, bgerror, error

Tcl Last change: 7.5 1

Tcl Library Procedures Tcl_Backslash (3)

NAME
Tcl_Backslash − parse a backslash sequence

SYNOPSIS
#include <tcl.h>

char
Tcl_Backslash(src, countPtr)

ARGUMENTS
char ∗src (in) Pointer to a string starting with a backslash.

int ∗countPtr (out) If countPtr isn’t NULL, ∗countPtrgets filled in with number of characters
in the backslash sequence, including the backslash character.

DESCRIPTION
This is a utility procedure used by several of the Tcl commands. It parses a backslash sequence and returns
the single character corresponding to the sequence.Tcl_Backslashmodifies∗countPtrto contain the num-
ber of characters in the backslash sequence.

See the Tcl manual entry for information on the valid backslash sequences. All of the sequences described
in the Tcl manual entry are supported byTcl_Backslash.

KEYWORDS
backslash, parse

Tcl Last change: 1

Tcl Library Procedures Tcl_BooleanObj (3)

NAME
Tcl_NewBooleanObj, Tcl_SetBooleanObj, Tcl_GetBooleanFromObj − manipulate Tcl objects as boolean
values

SYNOPSIS
#include <tcl.h>

Tcl_Obj ∗
Tcl_NewBooleanObj(boolValue)

Tcl_SetBooleanObj(objPtr, boolValue)

int
Tcl_GetBooleanFromObj(interp, objPtr, boolPtr)

ARGUMENTS
int boolValue(in) Integer value used to initialize or set a boolean object. If the integer is

nonzero, the boolean object is set to 1; otherwise the boolean object is
set to 0.

Tcl_Obj ∗objPtr (in/out) For Tcl_SetBooleanObj, this points to the object to be converted to
boolean type. ForTcl_GetBooleanFromObj, this refers to the object
from which to get a boolean value; ifobjPtr does not already point to a
boolean object, an attempt will be made to convert it to one.

Tcl_Interp ∗interp (in/out) If an error occurs during conversion, an error message is left in the inter-
preter’s result object unlessinterp is NULL.

int ∗boolPtr (out) Points to place whereTcl_GetBooleanFromObj stores the boolean
value (0 or 1) obtained fromobjPtr.

DESCRIPTION
These procedures are used to create, modify, and read boolean Tcl objects from C code.Tcl_New-
BooleanObj andTcl_SetBooleanObjwill create a new object of boolean type or modify an existing object
to have boolean type. Both of these procedures set the object to have the boolean value (0 or 1) specified
by boolValue; if boolValueis nonzero, the object is set to 1, otherwise to 0.Tcl_NewBooleanObjreturns a
pointer to a newly created object with reference count zero. Both procedures set the object’s type to be
boolean and assign the boolean value to the object’s internal representationlongValuemember. Tcl_Set-
BooleanObj invalidates any old string representation and, if the object is not already a boolean object, frees
any old internal representation.

Tcl_GetBooleanFromObj attempts to return a boolean value from the Tcl objectobjPtr. If the object is
not already a boolean object, it will attempt to convert it to one. If an error occurs during conversion, it
returnsTCL_ERROR and leaves an error message in the interpreter’s result object unlessinterp is NULL.
Otherwise,Tcl_GetBooleanFromObj returnsTCL_OK and stores the boolean value in the address given
by boolPtr. If the object is not already a boolean object, the conversion will free any old internal represen-
tation.

SEE ALSO
Tcl_NewObj, Tcl_DecrRefCount, Tcl_IncrRefCount, Tcl_GetObjResult

Tcl Last change: 8.0 1

Tcl Library Procedures Tcl_BooleanObj (3)

KEYWORDS
boolean, boolean object, boolean type, internal representation, object, object type, string representation

Tcl Last change: 8.0 2

Tcl Library Procedures Tcl_CallWhenDeleted (3)

NAME
Tcl_CallWhenDeleted, Tcl_DontCallWhenDeleted − Arrange for callback when interpreter is deleted

SYNOPSIS
#include <tcl.h>

Tcl_CallWhenDeleted(interp, proc, clientData)

Tcl_DontCallWhenDeleted(interp, proc, clientData)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter with which to associated callback.

Tcl_InterpDeleteProc ∗proc (in) Procedure to call wheninterp is deleted.

ClientData clientData (in) Arbitrary one-word value to pass toproc.

DESCRIPTION
Tcl_CallWhenDeleted arranges forproc to be called byTcl_DeleteInterp if/when interp is deleted at
some future time.Proc will be invoked just before the interpreter is deleted, but the interpreter will still be
valid at the time of the call.Proc should have arguments and result that match the typeTcl_Inter-
pDeleteProc:

typedef void Tcl_InterpDeleteProc(
ClientDataclientData,
Tcl_Interp∗interp);

TheclientDataandinterp parameters are copies of theclientDataandinterp arguments given toTcl_Call-
WhenDeleted. Typically, clientDatapoints to an application-specific data structure thatproc uses to per-
form cleanup when an interpreter is about to go away.Procdoes not return a value.

Tcl_DontCallWhenDeletedcancels a previous call toTcl_CallWhenDeletedwith the same arguments, so
that proc won’t be called after all wheninterp is deleted. If there is no deletion callback that matches
interp, proc, andclientDatathen the call toTcl_DontCallWhenDeletedhas no effect.

KEYWORDS
callback, delete, interpreter

Tcl Last change: 7.0 1

Tcl Library Procedures Tcl_CommandComplete (3)

NAME
Tcl_CommandComplete − Check for unmatched braces in a Tcl command

SYNOPSIS
#include <tcl.h>

int
Tcl_CommandComplete(cmd)

ARGUMENTS
char ∗cmd (in) Command string to test for completeness.

DESCRIPTION
Tcl_CommandCompletetakes a Tcl command string as argument and determines whether it contains one
or more complete commands (i.e. there are no unclosed quotes, braces, brackets, or variable references). If
the command string is complete then it returns 1; otherwise it returns 0.

KEYWORDS
complete command, partial command

Tcl Last change: 1

Tcl Library Procedures Tcl_Concat (3)

NAME
Tcl_Concat − concatenate a collection of strings

SYNOPSIS
#include <tcl.h>

char∗
Tcl_Concat(argc, argv)

ARGUMENTS
int argc (in) Number of strings.

char ∗argv[] (in) Array of strings to concatenate. Must haveargcentries.

DESCRIPTION
Tcl_Concat is a utility procedure used by several of the Tcl commands. Given a collection of strings, it
concatenates them together into a single string, with the original strings separated by spaces. This proce-
dure behaves differently thanTcl_Merge, in that the arguments are simply concatenated: no effort is made
to ensure proper list structure. However, in most common usage the arguments will all be proper lists
themselves; if this is true, then the result will also have proper list structure.

Tcl_Concat eliminates leading and trailing white space as it copies strings fromargv to the result. If an
element ofargv consists of nothing but white space, then that string is ignored entirely. This white-space
removal was added to make the output of theconcatcommand cleaner-looking.

The result string is dynamically allocated usingTcl_Alloc; the caller must eventually release the space by
callingTcl_Free.

SEE ALSO
Tcl_ConcatObj

KEYWORDS
concatenate, strings

Tcl Last change: 7.5 1

Tcl Library Procedures Tcl_CreateChannel (3)

NAME
Tcl_CreateChannel, Tcl_GetChannelInstanceData, Tcl_GetChannelType, Tcl_GetChannelName,
Tcl_GetChannelHandle, Tcl_GetChannelMode, Tcl_GetChannelBufferSize, Tcl_SetDefaultTranslation,
Tcl_SetChannelBufferSize, Tcl_NotifyChannel, Tcl_BadChannelOption − procedures for creating and
manipulating channels

SYNOPSIS
#include <tcl.h>

Tcl_Channel
Tcl_CreateChannel(typePtr, channelName, instanceData, mask)

ClientData
Tcl_GetChannelInstanceData(channel)

Tcl_ChannelType∗
Tcl_GetChannelType(channel)

char∗
Tcl_GetChannelName(channel)

int
Tcl_GetChannelHandle(channel, direction, handlePtr)

int
Tcl_GetChannelFlags(channel)

Tcl_SetDefaultTranslation(channel, transMode)

int
Tcl_GetChannelBufferSize(channel)

Tcl_SetChannelBufferSize(channel, size)

Tcl_NotifyChannel(channel, mask)

int
Tcl_BadChannelOption(interp, optionName, optionList)

ARGUMENTS
Tcl_ChannelType ∗typePtr (in) Points to a structure containing the addresses of proce-

dures that can be called to perform I/O and other func-
tions on the channel.

char ∗channelName (in) The name of this channel, such asfile3; must not be in
use by any other channel. Can be NULL, in which case
the channel is created without a name.

ClientData instanceData (in) Arbitrary one-word value to be associated with this
channel. This value is passed to procedures intypePtr
when they are invoked.

int mask (in) OR-ed combination of TCL_READABLE and
TCL_WRITABLE to indicate whether a channel is

Tcl Last change: 8.0 1

Tcl Library Procedures Tcl_CreateChannel (3)

readable and writable.

Tcl_Channel channel (in) The channel to operate on.

int direction (in) TCL_READABLE means the input handle is wanted;
TCL_WRITABLE means the output handle is wanted.

ClientData ∗handlePtr (out) Points to the location where the desired OS-specific
handle should be stored.

Tcl_EolTranslation transMode (in) The translation mode; one of the constants
TCL_TRANSLATE_AUTO , TCL_TRANS-
LATE_CR , TCL_TRANSLATE_LF and
TCL_TRANSLATE_CRLF .

int size (in) The size, in bytes, of buffers to allocate in this channel.

int mask (in) An OR-ed combination of TCL_READABLE ,
TCL_WRITABLE andTCL_EXCEPTION that indi-
cates events that have occurred on this channel.

Tcl_Interp ∗interp (in) Current interpreter. (can be NULL)

char ∗optionName (in) Name of the invalid option.

char ∗optionList (in) Specific options list (space separated words, without
"-") to append to the standard generic options list. Can
be NULL for generic options error message only.

DESCRIPTION
Tcl uses a two-layered channel architecture. It provides a generic upper layer to enable C and Tcl programs
to perform input and output using the same APIs for a variety of files, devices, sockets etc. The generic C
APIs are described in the manual entry forTcl_OpenFileChannel.

The lower layer provides type-specific channel drivers for each type of device supported on each platform.
This manual entry describes the C APIs used to communicate between the generic layer and the type-spe-
cific channel drivers. It also explains how new types of channels can be added by providing new channel
drivers.

Channel drivers consist of a number of components: First, each channel driver provides aTcl_Channel-
Type structure containing pointers to functions implementing the various operations used by the generic
layer to communicate with the channel driver. TheTcl_ChannelType structure and the functions refer-
enced by it are described in the section TCL_CHANNELTYPE, below.

Second, channel drivers usually provide a Tcl command to create instances of that type of channel. For
example, the Tclopen command creates channels that use the file and command channel drivers, and the
Tcl socketcommand creates channels that use TCP sockets for network communication.

Third, a channel driver optionally provides a C function to open channel instances of that type. For exam-
ple, Tcl_OpenFileChannel opens a channel that uses the file channel driver, andTcl_OpenTcpClient
opens a channel that uses the TCP network protocol. These creation functions typically useTcl_Create-
Channel internally to open the channel.

To add a new type of channel you must implement a C API or a Tcl command that opens a channel by
invoking Tcl_CreateChannel. When your driver callsTcl_CreateChannel it passes in aTcl_Channel-
Type structure describing the driver’s I/O procedures. The generic layer will then invoke the functions ref-
erenced in that structure to perform operations on the channel.

Tcl Last change: 8.0 2

Tcl Library Procedures Tcl_CreateChannel (3)

Tcl_CreateChannel opens a new channel and associates the suppliedtypePtr and instanceDatawith it.
The channel is opened in the mode indicated bymask. For a discussion of channel drivers, their operations
and theTcl_ChannelTypestructure, see the section TCL_CHANNELTYPE, below.

Tcl_GetChannelInstanceDatareturns the instance data associated with the channel inchannel. This is the
same as theinstanceDataargument in the call toTcl_CreateChannelthat created this channel.

Tcl_GetChannelType returns a pointer to theTcl_ChannelType structure used by the channel in the
channelargument. This is the same as thetypePtrargument in the call toTcl_CreateChannelthat created
this channel.

Tcl_GetChannelNamereturns a string containing the name associated with the channel, or NULL if the
channelNameargument toTcl_CreateChannelwas NULL.

Tcl_GetChannelHandleplaces the OS-specific device handle associated withchannelfor the givendirec-
tion in the location specified byhandlePtrand returnsTCL_OK . If the channel does not have a device
handle for the specified direction, thenTCL_ERROR is returned instead. Different channel drivers will
return different types of handle. Refer to the manual entries for each driver to determine what type of han-
dle is returned.

Tcl_GetChannelMode returns an OR-ed combination ofTCL_READABLE and TCL_WRITABLE ,
indicating whether the channel is open for input and output.

Tcl_SetDefaultTranslation sets the default end of line translation mode. This mode will be installed as the
translation mode for the channel if an attempt is made to output on the channel while it is still in
TCL_TRANSLATE_AUTO mode. For a description of end of line translation modes, see the manual
entry forfconfigure.

Tcl_GetChannelBufferSizereturns the size, in bytes, of buffers allocated to store input or output inchan.
If the value was not set by a previous call toTcl_SetChannelBufferSize, described below, then the default
value of 4096 is returned.

Tcl_SetChannelBufferSizesets the size, in bytes, of buffers that will be allocated in subsequent operations
on the channel to store input or output. Thesizeargument should be between ten and one million, allowing
buffers of ten bytes to one million bytes. Ifsizeis outside this range,Tcl_SetChannelBufferSizesets the
buffer size to 4096.

Tcl_NotifyChannel is called by a channel driver to indicate to the generic layer that the events specified by
maskhave occurred on the channel. Channel drivers are responsible for invoking this function whenever
the channel handlers need to be called for the channel. SeeWA TCHPROC below for more details.

Tcl_BadChannelOption is called from driver specific set or get option procs to generate a complete error
message.

TCL_CHANNELTYPE
A channel driver provides aTcl_ChannelTypestructure that contains pointers to functions that implement
the various operations on a channel; these operations are invoked as needed by the generic layer. The
Tcl_ChannelTypestructure contains the following fields:

typedef struct Tcl_ChannelType {
char∗typeName;
Tcl_DriverBlockModeProc∗blockModeProc;
Tcl_DriverCloseProc∗closeProc;
Tcl_DriverInputProc∗inputProc;
Tcl_DriverOutputProc∗outputProc;
Tcl_DriverSeekProc∗seekProc;
Tcl_DriverSetOptionProc∗setOptionProc;
Tcl_DriverGetOptionProc∗getOptionProc;

Tcl Last change: 8.0 3

Tcl Library Procedures Tcl_CreateChannel (3)

Tcl_DriverWatchProc∗watchProc;
Tcl_DriverGetHandleProc∗getHandleProc;

} Tcl_ChannelType;

The driver must provide implementations for all functions exceptblockModeProc, seekProc, setOption-
Proc, andgetOptionProc, which may be specified as NULL to indicate that the channel does not support
seeking. Other functions that can not be implemented for this type of device should returnEINVAL when
invoked to indicate that they are not implemented.

TYPENAME
The typeNamefield contains a null-terminated string that identifies the type of the device implemented by
this driver, e.g.file or socket.

BLOCKMODEPROC
TheblockModeProcfield contains the address of a function called by the generic layer to set blocking and
nonblocking mode on the device.BlockModeProcshould match the following prototype:

typedef int Tcl_DriverBlockModeProc(
ClientDatainstanceData,
int mode);

The instanceDatais the same as the value passed toTcl_CreateChannelwhen this channel was created.
The modeargument is eitherTCL_MODE_BLOCKING or TCL_MODE_NONBLOCKING to set the
device into blocking or nonblocking mode. The function should return zero if the operation was successful,
or a nonzero POSIX error code if the operation failed.

If the operation is successful, the function can modify the suppliedinstanceDatato record that the channel
entered blocking or nonblocking mode and to implement the blocking or nonblocking behavior. For some
device types, the blocking and nonblocking behavior can be implemented by the underlying operating sys-
tem; for other device types, the behavior must be emulated in the channel driver.

CLOSEPROC
ThecloseProcfield contains the address of a function called by the generic layer to clean up driver-related
information when the channel is closed.CloseProcmust match the following prototype:

typedef int Tcl_DriverCloseProc(
ClientDatainstanceData,
Tcl_Interp∗interp);

The instanceDataargument is the same as the value provided toTcl_CreateChannel when the channel
was created. The function should release any storage maintained by the channel driver for this channel, and
close the input and output devices encapsulated by this channel. All queued output will have been flushed
to the device before this function is called, and no further driver operations will be invoked on this instance
after calling thecloseProc. If the close operation is successful, the procedure should return zero; otherwise
it should return a nonzero POSIX error code. In addition, if an error occurs andinterp is not NULL, the
procedure should store an error message ininterp->result.

INPUTPROC
The inputProcfield contains the address of a function called by the generic layer to read data from the file
or device and store it in an internal buffer.InputProcmust match the following prototype:

typedef int Tcl_DriverInputProc(
ClientDatainstanceData,
char∗buf,

Tcl Last change: 8.0 4

Tcl Library Procedures Tcl_CreateChannel (3)

int bufSize,
int ∗errorCodePtr);

InstanceDatais the same as the value passed toTcl_CreateChannelwhen the channel was created. The
buf argument points to an array of bytes in which to store input from the device, and thebufSizeargument
indicates how many bytes are available atbuf.

The errorCodePtrargument points to an integer variable provided by the generic layer. If an error occurs,
the function should set the variable to a POSIX error code that identifies the error that occurred.

The function should read data from the input device encapsulated by the channel and store it atbuf. On
success, the function should return a nonnegative integer indicating how many bytes were read from the
input device and stored atbuf. On error, the function should return -1. If an error occurs after some data has
been read from the device, that data is lost.

If inputProccan determine that the input device has some data available but less than requested by thebuf-
Sizeargument, the function should only attempt to read as much data as is available and return without
blocking. If the input device has no data available whatsoever and the channel is in nonblocking mode, the
function should return anEAGAIN error. If the input device has no data available whatsoever and the chan-
nel is in blocking mode, the function should block for the shortest possible time until at least one byte of
data can be read from the device; then, it should return as much data as it can read without blocking.

OUTPUTPROC
TheoutputProcfield contains the address of a function called by the generic layer to transfer data from an
internal buffer to the output device.OutputProcmust match the following prototype:

typedef int Tcl_DriverOutputProc(
ClientDatainstanceData,
char∗buf,
int toWrite,
int ∗errorCodePtr);

InstanceDatais the same as the value passed toTcl_CreateChannelwhen the channel was created. The
buf argument contains an array of bytes to be written to the device, and thetoWriteargument indicates how
many bytes are to be written from thebufargument.

The errorCodePtrargument points to an integer variable provided by the generic layer. If an error occurs,
the function should set this variable to a POSIX error code that identifies the error.

The function should write the data atbuf to the output device encapsulated by the channel. On success, the
function should return a nonnegative integer indicating how many bytes were written to the output device.
The return value is normally the same astoWrite, but may be less in some cases such as if the output opera-
tion is interrupted by a signal. If an error occurs the function should return -1. In case of error, some data
may have been written to the device.

If the channel is nonblocking and the output device is unable to absorb any data whatsoever, the function
should return -1 with anEAGAIN error without writing any data.

SEEKPROC
TheseekProcfield contains the address of a function called by the generic layer to move the access point at
which subsequent input or output operations will be applied.SeekProcmust match the following prototype:

typedef int Tcl_DriverSeekProc(
ClientDatainstanceData,
longoffset,
int seekMode,
int ∗errorCodePtr);

Tcl Last change: 8.0 5

Tcl Library Procedures Tcl_CreateChannel (3)

The instanceDataargument is the same as the value given toTcl_CreateChannelwhen this channel was
created.OffsetandseekModehave the same meaning as for theTcl_SeekChannelprocedure (described in
the manual entry forTcl_OpenFileChannel).

TheerrorCodePtrargument points to an integer variable provided by the generic layer for returningerrno
values from the function. The function should set this variable to a POSIX error code if an error occurs.
The function should store anEINVAL error code if the channel type does not implement seeking.

The return value is the new access point or -1 in case of error. If an error occurred, the function should not
move the access point.

SETOPTIONPROC
ThesetOptionProcfield contains the address of a function called by the generic layer to set a channel type
specific option on a channel.setOptionProcmust match the following prototype:

typedef int Tcl_DriverSetOptionProc(
ClientDatainstanceData,
Tcl_Interp∗interp,
char∗optionName,
char∗optionValue);

optionNameis the name of an option to set, andoptionValueis the new value for that option, as a string.
The instanceDatais the same as the value given toTcl_CreateChannelwhen this channel was created.
The function should do whatever channel type specific action is required to implement the new value of the
option.

Some options are handled by the generic code and this function is never called to set them, e.g.-block-
mode. Other options are specific to each channel type and thesetOptionProcprocedure of the channel
driver will get called to implement them. ThesetOptionProcfield can be NULL, which indicates that this
channel type supports no type specific options.

If the option value is successfully modified to the new value, the function returnsTCL_OK . It should call
Tcl_BadChannelOptionwhich itself returnsTCL_ERROR if the optionNameis unrecognized. Ifoption-
Value specifies a value for the option that is not supported or if a system call error occurs, the function
should leave an error message in theresult field of interp if interp is not NULL. The function should also
call Tcl_SetErrno to store an appropriate POSIX error code.

GETOPTIONPROC
ThegetOptionProcfield contains the address of a function called by the generic layer to get the value of a
channel type specific option on a channel.getOptionProcmust match the following prototype:

typedef int Tcl_DriverGetOptionProc(
ClientDatainstanceData,
Tcl_Interp∗interp,
char∗optionName,
Tcl_DString∗dsPtr);

OptionNameis the name of an option supported by this type of channel. If the option name is not NULL,
the function stores its current value, as a string, in the Tcl dynamic stringdsPtr. If optionNameis NULL,
the function stores indsPtran alternating list of all supported options and their current values. On success,
the function returnsTCL_OK . It should callTcl_BadChannelOption which itself returnsTCL_ERROR
if the optionNameis unrecognized. If a system call error occurs, the function should leave an error message
in the result field of interp if interp is not NULL. The function should also callTcl_SetErrno to store an
appropriate POSIX error code.

Tcl Last change: 8.0 6

Tcl Library Procedures Tcl_CreateChannel (3)

Some options are handled by the generic code and this function is never called to retrieve their value, e.g.
-blockmode. Other options are specific to each channel type and thegetOptionProcprocedure of the chan-
nel driver will get called to implement them. ThegetOptionProcfield can be NULL, which indicates that
this channel type supports no type specific options.

WA TCHPROC
The watchProcfield contains the address of a function called by the generic layer to initialize the event
notification mechanism to notice events of interest on this channel.WatchProcshould match the following
prototype:

typedef void Tcl_DriverWatchProc(
ClientDatainstanceData,
int mask);

The instanceDatais the same as the value passed toTcl_CreateChannelwhen this channel was created.
The mask argument is an OR-ed combination ofTCL_READABLE , TCL_WRITABLE and
TCL_EXCEPTION ; it indicates events the caller is interested in noticing on this channel.

The function should initialize device type specific mechanisms to notice when an event of interest is present
on the channel. When one or more of the designated events occurs on the channel, the channel driver is
responsible for callingTcl_NotifyChannel to inform the generic channel module. The driver should take
care not to starve other channel drivers or sources of callbacks by invoking Tcl_NotifyChannel too fre-
quently. Fairness can be insured by using the Tcl event queue to allow the channel event to be scheduled in
sequence with other events. See the description ofTcl_QueueEventfor details on how to queue an event.

GETHANDLEPROC
ThegetHandleProcfield contains the address of a function called by the generic layer to retrieve a device-
specific handle from the channel.GetHandleProcshould match the following prototype:

typedef int Tcl_DriverGetHandleProc(
ClientDatainstanceData,
int direction,
ClientData∗handlePtr);

InstanceData is the same as the value passed toTcl_CreateChannelwhen this channel was created. The
direction argument is eitherTCL_READABLE to retrieve the handle used for input, or
TCL_WRITABLE to retrieve the handle used for output.

If the channel implementation has device-specific handles, the function should retrieve the appropriate han-
dle associated with the channel, according thedirectionargument. The handle should be stored in the loca-
tion referred to byhandlePtr, andTCL_OK should be returned. If the channel is not open for the specified
direction, or if the channel implementation does not use device handles, the function should return
TCL_ERROR .

TCL_BADCHANNELOPTION
This procedure generates a "bad option" error message in an (optional) interpreter. It is used by channel
drivers when a invalid Set/Get option is requested. Its purpose is to concatenate the generic options list to
the specific ones and factorize the generic options error message string.

It always returnTCL_ERROR

An error message is generated in interp’s result object to indicate that a command was invoked with the a
bad option The message has the form

bad option "blah": should be one of
<...generic options...>+<...specific options...>

Tcl Last change: 8.0 7

Tcl Library Procedures Tcl_CreateChannel (3)

so you get for instance:
bad option "-blah": should be one of -blocking,
-buffering, -buffersize, -eofchar, -translation,
-peername, or -sockname

when called with optionList="peername sockname"
"blah" is the optionName argument and "<specific options>" is a space separated list of specific option
words. The function takes good care of inserting minus signs before each option, commas after, and an
"or" before the last option.

SEE ALSO
Tcl_Close(3), Tcl_OpenFileChannel(3), Tcl_SetErrno(3), Tcl_QueueEvent(3)

KEYWORDS
blocking, channel driver, channel registration, channel type, nonblocking

Tcl Last change: 8.0 8

Tcl Library Procedures Tcl_CreateChannelHandler (3)

NAME
Tcl_CreateChannelHandler, Tcl_DeleteChannelHandler − call a procedure when a channel becomes read-
able or writable

SYNOPSIS
#include <tcl.h>

void
Tcl_CreateChannelHandler(channel, mask, proc, clientData)

void
Tcl_DeleteChannelHandler(channel, proc, clientData)

ARGUMENTS
Tcl_Channel channel (in) Tcl channel such as returned byTcl_CreateChannel.

int mask (in) Conditions under whichproc should be called: OR-ed combi-
nation of TCL_READABLE , TCL_WRITABLE and
TCL_EXCEPTION . Specify a zero value to temporarily dis-
able an existing handler.

Tcl_FileProc ∗proc (in) Procedure to invoke whenever the channel indicated bychan-
nelmeets the conditions specified bymask.

ClientData clientData (in) Arbitrary one-word value to pass toproc.

DESCRIPTION
Tcl_CreateChannelHandlerarranges forproc to be called in the future whenever input or output becomes
possible on the channel identified bychannel, or whenever an exceptional condition exists forchannel. The
conditions of interest under whichproc will be invoked are specified by themaskargument. See the man-
ual entry forfileevent for a precise description of what it means for a channel to be readable or writable.
Procmust conform to the following prototype:

typedef void Tcl_ChannelProc(
ClientDataclientData,
int mask);

TheclientDataargument is the same as the value passed toTcl_CreateChannelHandlerwhen the handler
was created. Typically,clientData points to a data structure containing application-specific information
about the channel.Mask is an integer mask indicating which of the requested conditions actually exists for
the channel; it will contain a subset of the bits from themaskargument toTcl_CreateChannelHandler
when the handler was created.

Each channel handler is identified by a unique combination ofchannel, proc andclientData. There may be
many handlers for a given channel as long as they don’t hav e the samechannel, proc, andclientData. If
Tcl_CreateChannelHandler is invoked when there is already a handler forchannel, proc, andclientData,
then no new handler is created; instead, themaskis changed for the existing handler.

Tcl_DeleteChannelHandlerdeletes a channel handler identified bychannel, proc and clientData; if no
such handler exists, the call has no effect.

Channel handlers are invoked via the Tcl event mechanism, so they are only useful in applications that are
ev ent-driven. Note also that the conditions specified in themaskargument toproc may no longer exist
whenproc is invoked: for example, if there are two handlers forTCL_READABLE on the same channel,
the first handler could consume all of the available input so that the channel is no longer readable when the
second handler is invoked. For this reason it may be useful to use nonblocking I/O on channels for which

Tcl Last change: 7.5 1

Tcl Library Procedures Tcl_CreateChannelHandler (3)

there are event handlers.

SEE ALSO
Notifier(3), Tcl_CreateChannel(3), Tcl_OpenFileChannel(3), vwait(n).

KEYWORDS
blocking, callback, channel, events, handler, nonblocking.

Tcl Last change: 7.5 2

Tcl Library Procedures Tcl_CreateCloseHandler (3)

NAME
Tcl_CreateCloseHandler, Tcl_DeleteCloseHandler − arrange for callbacks when channels are closed

SYNOPSIS
#include <tcl.h>

void
Tcl_CreateCloseHandler(channel, proc, clientData)

void
Tcl_DeleteCloseHandler(channel, proc, clientData)

ARGUMENTS
Tcl_Channel channel (in) The channel for which to create or delete a close callback.

Tcl_CloseProc ∗proc (in) The procedure to call as the callback.

ClientData clientData (in) Arbitrary one-word value to pass toproc.

DESCRIPTION
Tcl_CreateCloseHandler arranges forproc to be called whenchannel is closed withTcl_Close or
Tcl_UnregisterChannel, or using the Tclclosecommand.Procshould match the following prototype:

typedef void Tcl_CloseProc(
ClientDataclientData);

TheclientDatais the same as the value provided in the call toTcl_CreateCloseHandler.

Tcl_DeleteCloseHandlerremoves a close callback forchannel. The proc andclientData identify which
close callback to remove;Tcl_DeleteCloseHandlerdoes nothing if itsproc andclientDataarguments do
not match theprocandclientDatafor a close handler forchannel.

SEE ALSO
close(n), Tcl_Close(3), Tcl_UnregisterChannel(3)

KEYWORDS
callback, channel closing

Tcl Last change: 7.5 1

Tcl Library Procedures Tcl_CreateCommand (3)

NAME
Tcl_CreateCommand − implement new commands in C

SYNOPSIS
#include <tcl.h>

Tcl_Command
Tcl_CreateCommand(interp, cmdName, proc, clientData, deleteProc)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter in which to create new command.

char ∗cmdName (in) Name of command.

Tcl_CmdProc ∗proc (in) Implementation of new command:proc will be
called whenevercmdNameis invoked as a command.

ClientData clientData (in) Arbitrary one-word value to pass toproc and
deleteProc.

Tcl_CmdDeleteProc ∗deleteProc (in) Procedure to call beforecmdNameis deleted from the
interpreter; allows for command-specific cleanup. If
NULL, then no procedure is called before the com-
mand is deleted.

DESCRIPTION
Tcl_CreateCommanddefines a new command ininterp and associates it with procedureproc such that
whenevercmdNameis invoked as a Tcl command (via a call toTcl_Eval) the Tcl interpreter will callproc
to process the command. It differs fromTcl_CreateObjCommand in that a new string-based command is
defined; that is, a command procedure is defined that takes an array of argument strings instead of objects.
The object-based command procedures registered byTcl_CreateObjCommand can execute significantly
faster than the string-based command procedures defined byTcl_CreateCommand. This is because they
take Tcl objects as arguments and those objects can retain an internal representation that can be manipu-
lated more efficiently. Also, Tcl’s interpreter now uses objects internally. In order to invoke a string-based
command procedure registered byTcl_CreateCommand, it must generate and fetch a string representation
from each argument object before the call and create a new Tcl object to hold the string result returned by
the string-based command procedure. New commands should be defined usingTcl_CreateObjCommand.
We supportTcl_CreateCommandfor backwards compatibility.

The proceduresTcl_DeleteCommand, Tcl_GetCommandInfo, and Tcl_SetCommandInfo are used in
conjunction withTcl_CreateCommand.

Tcl_CreateCommand will delete an existing commandcmdName, if one is already associated with the
interpreter. It returns a token that may be used to refer to the command in subsequent calls toTcl_Get-
CommandName. If cmdNamecontains any:: namespace qualifiers, then the command is added to the
specified namespace; otherwise the command is added to the global namespace. IfTcl_CreateCommand
is called for an interpreter that is in the process of being deleted, then it does not create a new command and
it returns NULL. Procshould have arguments and result that match the typeTcl_CmdProc:

typedef int Tcl_CmdProc(
ClientDataclientData,
Tcl_Interp∗interp,
int argc,
char∗argv[]);

Whenproc is invoked theclientDataandinterp parameters will be copies of theclientDataandinterp argu-
ments given toTcl_CreateCommand. Typically,clientDatapoints to an application-specific data structure

Tcl Last change: 1

Tcl Library Procedures Tcl_CreateCommand (3)

that describes what to do when the command procedure is invoked.Argc andargv describe the arguments
to the command,argc giving the number of arguments (including the command name) andargv giving the
values of the arguments as strings. Theargv array will containargc+1 values; the firstargc values point to
the argument strings, and the last value is NULL.

Proc must return an integer code that is eitherTCL_OK , TCL_ERROR , TCL_RETURN ,
TCL_BREAK , or TCL_CONTINUE . See the Tcl overview man page for details on what these codes
mean. Most normal commands will only returnTCL_OK or TCL_ERROR . In addition,proc must set
the interpreter result to point to a string value; in the case of aTCL_OK return code this gives the result of
the command, and in the case ofTCL_ERROR it gives an error message. TheTcl_SetResultprocedure
provides an easy interface for setting the return value; for complete details on how the the interpreter result
field is managed, see theTcl_Interp man page. Before invoking a command procedure,Tcl_Eval sets the
interpreter result to point to an empty string, so simple commands can return an empty result by doing noth-
ing at all.

The contents of theargv array belong to Tcl and are not guaranteed to persist onceproc returns: proc
should not modify them, nor should it set the interpreter result to point anywhere within theargv values.
Call Tcl_SetResultwith statusTCL_VOLATILE if you want to return something from theargvarray.

DeleteProc will be invoked when (if) cmdName is deleted. This can occur through a call to
Tcl_DeleteCommandor Tcl_DeleteInterp, or by replacingcmdNamein another call toTcl_CreateCom-
mand. DeleteProcis invoked before the command is deleted, and gives the application an opportunity to
release any structures associated with the command.DeleteProcshould have arguments and result that
match the typeTcl_CmdDeleteProc:

typedef void Tcl_CmdDeleteProc(ClientDataclientData);
TheclientDataargument will be the same as theclientDataargument passed toTcl_CreateCommand.

SEE ALSO
Tcl_CreateObjCommand, Tcl_DeleteCommand, Tcl_GetCommandInfo, Tcl_SetCommandInfo, Tcl_Get-
CommandName, Tcl_SetObjResult

KEYWORDS
bind, command, create, delete, interpreter, namespace

Tcl Last change: 2

Tcl Library Procedures Tcl_CreateFileHandler (3)

NAME
Tcl_CreateFileHandler, Tcl_DeleteFileHandler − associate procedure callbacks with files or devices (Unix
only)

SYNOPSIS
#include <tcl.h>

Tcl_CreateFileHandler(fd, mask, proc, clientData)

Tcl_DeleteFileHandler(fd)

ARGUMENTS
int fd (in) Unix file descriptor for an open file or device.

int mask (in) Conditions under whichproc should be called: OR-ed combination
of TCL_READABLE , TCL_WRITABLE , and TCL_EXCEP-
TION . May be set to 0 to temporarily disable a handler.

Tcl_FileProc ∗proc (in) Procedure to invoke whenever the file or device indicated byfile
meets the conditions specified bymask.

ClientData clientData (in) Arbitrary one-word value to pass toproc.

DESCRIPTION
Tcl_CreateFileHandler arranges forproc to be invoked in the future whenever I/O becomes possible on a
file or an exceptional condition exists for the file. The file is indicated byfd, and the conditions of interest
are indicated bymask. For example, ifmaskis TCL_READABLE , proc will be called when the file is
readable. The callback toproc is made byTcl_DoOneEvent, soTcl_CreateFileHandler is only useful in
programs that dispatch events throughTcl_DoOneEventor through Tcl commands such asvwait.

Procshould have arguments and result that match the typeTcl_FileProc:
typedef void Tcl_FileProc(

ClientDataclientData,
int mask);

The clientDataparameter toproc is a copy of theclientDataargument given toTcl_CreateFileHandler
when the callback was created. Typically,clientDatapoints to a data structure containing application-spe-
cific information about the file.Maskis an integer mask indicating which of the requested conditions actu-
ally exists for the file; it will contain a subset of the bits in themaskargument toTcl_CreateFileHandler.

There may exist only one handler for a given file at a given time. IfTcl_CreateFileHandler is called when
a handler already exists forfd, then the new callback replaces the information that was previously recorded.

Tcl_DeleteFileHandlermay be called to delete the file handler forfd; if no handler exists for the file given
by fd then the procedure has no effect.

The purpose of file handlers is to enable an application to respond to events while waiting for files to
become ready for I/O. For this to work correctly, the application may need to use non-blocking I/O opera-
tions on the files for which handlers are declared. Otherwise the application may block if it reads or writes
too much data; while waiting for the I/O to complete the application won’t be able to service other events.
Use Tcl_SetChannelOption with −blocking to set the channel into blocking or nonblocking mode as
required.

Note that these interfaces are only supported by the Unix implementation of the Tcl notifier.

Tcl Last change: 8.0 1

Tcl Library Procedures Tcl_CreateFileHandler (3)

KEYWORDS
callback, file, handler

Tcl Last change: 8.0 2

Tcl Library Procedures Tcl_CreateInterp (3)

NAME
Tcl_CreateInterp, Tcl_DeleteInterp, Tcl_InterpDeleted − create and delete Tcl command interpreters

SYNOPSIS
#include <tcl.h>

Tcl_Interp∗
Tcl_CreateInterp()

Tcl_DeleteInterp(interp)

int
Tcl_InterpDeleted(interp)

ARGUMENTS
Tcl_Interp ∗interp (in) Token for interpreter to be destroyed.

DESCRIPTION
Tcl_CreateInterp creates a new interpreter structure and returns a token for it. The token is required in
calls to most other Tcl procedures, such asTcl_CreateCommand, Tcl_Eval, and Tcl_DeleteInterp.
Clients are only allowed to access a few of the fields of Tcl_Interp structures; see the Tcl_Interp and
Tcl_CreateCommandman pages for details. The new interpreter is initialized with no defined variables
and only the built-in Tcl commands. To bind in additional commands, callTcl_CreateCommand.

Tcl_DeleteInterp marks an interpreter as deleted; the interpreter will eventually be deleted when all calls
to Tcl_Preservefor it have been matched by calls toTcl_Release. At that time, all of the resources associ-
ated with it, including variables, procedures, and application-specific command bindings, will be deleted.
After Tcl_DeleteInterp returns any attempt to useTcl_Eval on the interpreter will fail and return
TCL_ERROR . After the call toTcl_DeleteInterp it is safe to examineinterp->result, query or set the val-
ues of variables, define, undefine or retrieve procedures, and examine the runtime evaluation stack. See
below, in the sectionINTERPRETERS AND MEMORY MANAGEMENT for details.

Tcl_InterpDeleted returns nonzero ifTcl_DeleteInterp was called withinterp as its argument; this indi-
cates that the interpreter will eventually be deleted, when the last call toTcl_Preservefor it is matched by a
call to Tcl_Release. If nonzero is returned, further calls toTcl_Eval in this interpreter will return
TCL_ERROR .

Tcl_InterpDeleted is useful in deletion callbacks to distinguish between when only the memory the call-
back is responsible for is being deleted and when the whole interpreter is being deleted. In the former case
the callback may recreate the data being deleted, but this would lead to an infinite loop if the interpreter
were being deleted.

INTERPRETERS AND MEMORY MANAGEMENT
Tcl_DeleteInterp can be called at any time on an interpreter that may be used by nested evaluations and C
code in various extensions. Tcl implements a simple mechanism that allows callers to use interpreters with-
out worrying about the interpreter being deleted in a nested call, and without requiring special code to pro-
tect the interpreter, in most cases. This mechanism ensures that nested uses of an interpreter can safely
continue using it even afterTcl_DeleteInterp is called.

The mechanism relies on matching up calls toTcl_Preservewith calls toTcl_Release. If Tcl_DeleteIn-
terp has been called, only when the last call toTcl_Preserveis matched by a call toTcl_Release, will the
interpreter be freed. See the manual entry forTcl_Preservefor a description of these functions.

Tcl Last change: 7.5 1

Tcl Library Procedures Tcl_CreateInterp (3)

The rules for when the user of an interpreter must callTcl_PreserveandTcl_Releaseare simple:

Interpreters Passed As Arguments
Functions that are passed an interpreter as an argument can safely use the interpreter without any
special protection. Thus, when you write an extension consisting of new Tcl commands, no special
code is needed to protect interpreters received as arguments. This covers the majority of all uses.

Interpreter Creation And Deletion
When a new interpreter is created and used in a call toTcl_Eval, Tcl_VarEval , Tcl_GlobalEval,
Tcl_SetVar, or Tcl_GetVar, a pair of calls toTcl_PreserveandTcl_Releaseshould be wrapped
around all uses of the interpreter. Remember that it is unsafe to use the interpreter once
Tcl_Releasehas been called. To ensure that the interpreter is properly deleted when it is no longer
needed, callTcl_InterpDeleted to test if some other code already calledTcl_DeleteInterp; if not,
call Tcl_DeleteInterp before callingTcl_Releasein your own code. Do not callTcl_DeleteIn-
terp on an interpreter for whichTcl_InterpDeleted returns nonzero.

Retrieving An Interpreter From A Data Structure
When an interpreter is retrieved from a data structure (e.g. the client data of a callback) for use in
Tcl_Eval, Tcl_VarEval , Tcl_GlobalEval, Tcl_SetVar, or Tcl_GetVar, a pair of calls to
Tcl_PreserveandTcl_Releaseshould be wrapped around all uses of the interpreter; it is unsafe to
reuse the interpreter onceTcl_Releasehas been called. If an interpreter is stored inside a callback
data structure, an appropriate deletion cleanup mechanism should be set up by the code that cre-
ates the data structure so that the interpreter is removed from the data structure (e.g. by setting the
field to NULL) when the interpreter is deleted. Otherwise, you may be using an interpreter that has
been freed and whose memory may already have been reused.

All uses of interpreters in Tcl and Tk have already been protected. Extension writers should ensure that
their code also properly protects any additional interpreters used, as described above.

KEYWORDS
command, create, delete, interpreter

SEE ALSO
Tcl_Preserve(3), Tcl_Release(3)

Tcl Last change: 7.5 2

Tcl Library Procedures Tcl_CreateMathFunc (3)

NAME
Tcl_CreateMathFunc − Define a new math function for expressions

SYNOPSIS
#include <tcl.h>

Tcl_CreateMathFunc(interp, name, numArgs, argTypes, proc, clientData)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter in which new function will be defined.

char ∗name (in) Name for new function.

int numArgs (in) Number of arguments to new function; also gives size of
argTypesarray.

Tcl_ValueType ∗argTypes (in) Points to an array giving the permissible types for each argu-
ment to function.

Tcl_MathProc ∗proc (in) Procedure that implements the function.

ClientData clientData (in) Arbitrary one-word value to pass toprocwhen it is invoked.

DESCRIPTION
Tcl allows a number of mathematical functions to be used in expressions, such assin, cos, and hypot.
Tcl_CreateMathFunc allows applications to add additional functions to those already provided by Tcl or
to replace existing functions.Nameis the name of the function as it will appear in expressions. Ifname
doesn’t already exist as a function then a new function is created. If it does exist, then the existing function
is replaced.NumArgsand argTypesdescribe the arguments to the function. Each entry in theargTypes
array must be either TCL_INT, TCL_DOUBLE, or TCL_EITHER to indicate whether the corresponding
argument must be an integer, a double-precision floating value, or either, respectively.

Whenever the function is invoked in an expression Tcl will invokeproc. Proc should have arguments and
result that match the typeTcl_MathProc:

typedef int Tcl_MathProc(
ClientDataclientData,
Tcl_Interp∗interp,
Tcl_Value∗args,
Tcl_Value∗resultPtr);

Whenproc is invoked theclientDataand interp arguments will be the same as those passed toTcl_Cre-
ateMathFunc. Args will point to an array ofnumArgsTcl_Value structures, which describe the actual
arguments to the function:

typedef struct Tcl_Value {
Tcl_ValueTypetype;
long intValue;
doubledoubleValue;

} Tcl_Value;

The typefield indicates the type of the argument and is either TCL_INT or TCL_DOUBLE. It will match
theargTypesvalue specified for the function unless theargTypesvalue was TCL_EITHER. Tcl converts the
argument supplied in the expression to the type requested inargTypes, if that is necessary. Depending on
the value of thetypefield, theintValueor doubleValuefield will contain the actual value of the argument.

Proc should compute its result and store it either as an integer inresultPtr->intValueor as a floating value
in resultPtr->doubleValue. It should set alsoresultPtr->type to either TCL_INT or TCL_DOUBLE to
indicate which value was set. Under normal circumstancesproc should return TCL_OK. If an error occurs

Tcl Last change: 7.0 1

Tcl Library Procedures Tcl_CreateMathFunc (3)

while executing the function,proc should return TCL_ERROR and leave an error message in
interp->result.

KEYWORDS
expression, mathematical function

Tcl Last change: 7.0 2

Tcl Library Procedures Tcl_CreateObjCommand (3)

NAME
Tcl_CreateObjCommand, Tcl_DeleteCommand, Tcl_DeleteCommandFromToken, Tcl_GetCommandInfo,
Tcl_SetCommandInfo, Tcl_GetCommandName − implement new commands in C

SYNOPSIS
#include <tcl.h>

Tcl_Command
Tcl_CreateObjCommand(interp, cmdName, proc, clientData, deleteProc)

int
Tcl_DeleteCommand(interp, cmdName)

int
Tcl_DeleteCommandFromToken(interp, token)

int
Tcl_GetCommandInfo(interp, cmdName, infoPtr)

int
Tcl_SetCommandInfo(interp, cmdName, infoPtr)

char∗
Tcl_GetCommandName(interp, token)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter in which to create a new command or that con-

tains a command.

char ∗cmdName (in) Name of command.

Tcl_ObjCmdProc ∗proc (in) Implementation of the new command:proc will be called
whenevercmdNameis invoked as a command.

ClientData clientData (in) Arbitrary one-word value to pass toprocanddeleteProc.

Tcl_CmdDeleteProc∗deleteProc (in) Procedure to call beforecmdNameis deleted from the inter-
preter; allows for command-specific cleanup. If NULL, then
no procedure is called before the command is deleted.

Tcl_Command token (in) Token for command, returned by previous call toTcl_Cre-
ateObjCommand. The command must not have been
deleted.

Tcl_CmdInfo ∗infoPtr (in/out) Pointer to structure containing various information about a
Tcl command.

DESCRIPTION
Tcl_CreateObjCommand defines a new command ininterp and associates it with procedureproc such
that whenevernameis invoked as a Tcl command (e.g., via a call toTcl_EvalObj) the Tcl interpreter will
call proc to process the command.

Tcl_CreateObjCommand will delete any commandname already associated with the interpreter. It
returns a token that may be used to refer to the command in subsequent calls toTcl_GetCommandName.
If namecontains any:: namespace qualifiers, then the command is added to the specified namespace; other-
wise the command is added to the global namespace. IfTcl_CreateObjCommand is called for an inter-
preter that is in the process of being deleted, then it does not create a new command and it returns NULL.

Tcl Last change: 8.0 1

Tcl Library Procedures Tcl_CreateObjCommand (3)

procshould have arguments and result that match the typeTcl_ObjCmdProc:
typedef int Tcl_ObjCmdProc(

ClientDataclientData,
Tcl_Interp∗interp,
int objc,
Tcl_Obj ∗CONSTobjv[]);

When proc is invoked, theclientData and interp parameters will be copies of theclientData and interp
arguments given toTcl_CreateObjCommand. Typically, clientDatapoints to an application-specific data
structure that describes what to do when the command procedure is invoked.Objc andobjv describe the
arguments to the command,objc giving the number of argument objects (including the command name)
andobjv giving the values of the arguments. Theobjv array will containobjc values, pointing to the argu-
ment objects. Unlikeargv[argv] used in a string-based command procedure,objv[objc] will not contain
NULL.

Additionally, whenproc is invoked, it must not modify the contents of theobjv array by assigning new
pointer values to any element of the array (for example,objv[2] = NULL) because this will cause memory
to be lost and the runtime stack to be corrupted. TheCONST in the declaration ofobjv will cause ANSI-
compliant compilers to report any such attempted assignment as an error. Howev er, it is acceptable to mod-
ify the internal representation of any individual object argument. For instance, the user may callTcl_Get-
IntFromObject on objv[2] to obtain the integer representation of that object; that call may change the type
of the object thatobjv[2] points at, but will not change whereobjv[2] points.

proc must return an integer code that is eitherTCL_OK , TCL_ERROR , TCL_RETURN ,
TCL_BREAK , or TCL_CONTINUE . See the Tcl overview man page for details on what these codes
mean. Most normal commands will only returnTCL_OK or TCL_ERROR . In addition, ifproc needs to
return a non-empty result, it can callTcl_SetObjResult to set the interpreter’s result. In the case of a
TCL_OK return code this gives the result of the command, and in the case ofTCL_ERROR this gives an
error message. Before invoking a command procedure,Tcl_EvalObj sets interpreter’s result to point to an
object representing an empty string, so simple commands can return an empty result by doing nothing at
all.

The contents of theobjv array belong to Tcl and are not guaranteed to persist onceproc returns:proc
should not modify them. CallTcl_SetObjResult if you want to return something from theobjvarray.

DeleteProcwill be invoked when (if)nameis deleted. This can occur through a call toTcl_DeleteCom-
mand, Tcl_DeleteCommandFromToken, or Tcl_DeleteInterp, or by replacingnamein another call to
Tcl_CreateObjCommand. DeleteProcis invoked before the command is deleted, and gives the applica-
tion an opportunity to release any structures associated with the command.DeleteProcshould have argu-
ments and result that match the typeTcl_CmdDeleteProc:

typedef void Tcl_CmdDeleteProc(ClientDataclientData);
The clientData argument will be the same as theclientData argument passed toTcl_CreateObjCom-
mand.

Tcl_DeleteCommanddeletes a command from a command interpreter. Once the call completes, attempts
to invokecmdNamein interp will result in errors. IfcmdNameisn’t bound as a command ininterp then
Tcl_DeleteCommanddoes nothing and returns -1; otherwise it returns 0. There are no restrictions on
cmdName: it may refer to a built-in command, an application-specific command, or a Tcl procedure. If
namecontains any:: namespace qualifiers, the command is deleted from the specified namespace.

Given a token returned byTcl_CreateObjCommand, Tcl_DeleteCommandFromTokendeletes the com-
mand from a command interpreter. It will delete a command even if that command has been renamed.
Once the call completes, attempts to invoke the command ininterp will result in errors. If the command
corresponding totokenhas already been deleted frominterp thenTcl_DeleteCommanddoes nothing and
returns -1; otherwise it returns 0.

Tcl Last change: 8.0 2

Tcl Library Procedures Tcl_CreateObjCommand (3)

Tcl_GetCommandInfo checks to see whether itscmdNameargument exists as a command ininterp. cmd-
Namemay include:: namespace qualifiers to identify a command in a particular namespace. If the com-
mand is not found, then it returns 0. Otherwise it places information about the command in theTcl_Cmd-
Info structure pointed to byinfoPtr and returns 1. ATcl_CmdInfo structure has the following fields:

typedef struct Tcl_CmdInfo {
int isNativeObjectProc;
Tcl_ObjCmdProc∗objProc;
ClientData objClientData;
Tcl_CmdProc∗proc;
ClientData clientData;
Tcl_CmdDeleteProc∗deleteProc;
ClientData deleteData;
Tcl_Namespace∗namespacePtr;

} Tcl_CmdInfo;
The isNativeObjectProcfield has the value 1 ifTcl_CreateObjCommand was called to register the com-
mand; it is 0 if onlyTcl_CreateCommand was called. It allows a program to determine whether it is
faster to callobjProcor proc: objProc is normally faster ifisNativeObjectProchas the value 1. The fields
objProc and objClientData have the same meaning as theproc and clientData arguments toTcl_Cre-
ateObjCommand; they hold information about the object-based command procedure that the Tcl inter-
preter calls to implement the command. The fieldsproc andclientDatahold information about the string-
based command procedure that implements the command. IfTcl_CreateCommand was called for this
command, this is the procedure passed to it; otherwise, this is a compatibility procedure registered by
Tcl_CreateObjCommand that simply calls the command’s object-based procedure after converting its
string arguments to Tcl objects. The fielddeleteDatais the ClientData value to pass todeleteProc; it is
normally the same asclientDatabut may be set independently using theTcl_SetCommandInfoprocedure.
The fieldnamespacePtrholds a pointer to the Tcl_Namespace that contains the command.

Tcl_SetCommandInfo is used to modify the procedures and ClientData values associated with a com-
mand. ItscmdNameargument is the name of a command ininterp. cmdNamemay include:: namespace
qualifiers to identify a command in a particular namespace. If this command does not exist thenTcl_Set-
CommandInfo returns 0. Otherwise, it copies the information from∗infoPtr to Tcl’s internal structure for
the command and returns 1. Note that this procedure allows the ClientData for a command’s deletion pro-
cedure to be given a different value than the ClientData for its command procedure. Note that
Tcl_SetCmdInfo will not change a command’s namespace; you must useTcl_RenameCommandto do
that.

Tcl_GetCommandNameprovides a mechanism for tracking commands that have been renamed. Given a
token returned byTcl_CreateObjCommand when the command was created,Tcl_GetCommandName
returns the string name of the command. If the command has been renamed since it was created, then
Tcl_GetCommandNamereturns the current name. This name does not include any:: namespace quali-
fiers. The command corresponding totokenmust not have been deleted. The string returned byTcl_Get-
CommandNameis in dynamic memory owned by Tcl and is only guaranteed to retain its value as long as
the command isn’t deleted or renamed; callers should copy the string if they need to keep it for a long time.

SEE ALSO
Tcl_CreateCommand, Tcl_ResetResult, Tcl_SetObjResult

KEYWORDS
bind, command, create, delete, namespace, object

Tcl Last change: 8.0 3

Tcl Library Procedures Tcl_CreateSlave (3)

NAME
Tcl_IsSafe, Tcl_MakeSafe, Tcl_CreateSlave, Tcl_GetSlave, Tcl_GetMaster, Tcl_GetInterpPath, Tcl_Cre-
ateAlias, Tcl_CreateAliasObj, Tcl_GetAlias, Tcl_GetAliasObj, Tcl_ExposeCommand, Tcl_HideCommand
− manage multiple Tcl interpreters, aliases and hidden commands.

SYNOPSIS
#include <tcl.h>

int
Tcl_IsSafe(interp)

int
Tcl_MakeSafe(interp)

Tcl_Interp∗
Tcl_CreateSlave(interp, slaveName, isSafe)

Tcl_Interp∗
Tcl_GetSlave(interp, slaveName)

Tcl_Interp∗
Tcl_GetMaster(interp)

int
Tcl_GetInterpPath(askingInterp, slaveInterp)

int
Tcl_CreateAlias(slaveInterp, srcCmd, targetInterp, targetCmd, argc, argv)

int
Tcl_CreateAliasObj(slaveInterp, srcCmd, targetInterp, targetCmd, objc, objv)

int
Tcl_GetAlias(interp, srcCmd, targetInterpPtr, targetCmdPtr, argcPtr, argvPtr)

int
Tcl_GetAliasObj(interp, srcCmd, targetInterpPtr, targetCmdPtr, objcPtr, objvPtr)

int
Tcl_ExposeCommand(interp, hiddenCmdName, cmdName)

int
Tcl_HideCommand(interp, cmdName, hiddenCmdName)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter in which to execute the specified

command.

char ∗slaveName (in) Name of slave interpreter to create or manipu-
late.

int isSafe (in) If non-zero, a ‘‘safe’’ slave that is suitable for
running untrusted code is created, otherwise a
trusted slave is created.

Tcl Last change: 7.6 1

Tcl Library Procedures Tcl_CreateSlave (3)

Tcl_Interp ∗slaveInterp (in) Interpreter to use for creating the source com-
mand for an alias (see below).

char ∗srcCmd (in) Name of source command for alias.

Tcl_Interp ∗targetInterp (in) Interpreter that contains the target command for
an alias.

char ∗targetCmd (in) Name of target command for alias intarget-
Interp.

int argc (in) Count of additional arguments to pass to the
alias command.

char ∗∗argv (in) Vector of strings, the additional arguments to
pass to the alias command. This storage is
owned by the caller.

int objc (in) Count of additional object arguments to pass to
the alias object command.

Tcl_Object ∗∗objv (in) Vector of Tcl_Obj structures, the additional
object argumenst to pass to the alias object com-
mand. This storage is owned by the caller.

Tcl_Interp ∗∗targetInterpPtr (in) Pointer to location to store the address of the
interpreter where a target command is defined
for an alias.

char ∗∗targetCmdPtr (out) Pointer to location to store the address of the
name of the target command for an alias.

int ∗argcPtr (out) Pointer to location to store count of additional
arguments to be passed to the alias. The location
is in storage owned by the caller.

char ∗∗∗argvPtr (out) Pointer to location to store a vector of strings,
the additional arguments to pass to an alias. The
location is in storage owned by the caller, the
vector of strings is owned by the called func-
tion.

int ∗objcPtr (out) Pointer to location to store count of additional
object arguments to be passed to the alias. The
location is in storage owned by the caller.

Tcl_Obj ∗∗∗objvPtr (out) Pointer to location to store a vector of Tcl_Obj
structures, the additional arguments to pass to an
object alias command. The location is in storage
owned by the caller, the vector of Tcl_Obj struc-
tures is owned by the called function.

char ∗cmdName (in) Name of an exposed command to hide or create.

char ∗hiddenCmdName (in) Name under which a hidden command is stored
and with which it can be exposed or invoked.

Tcl Last change: 7.6 2

Tcl Library Procedures Tcl_CreateSlave (3)

DESCRIPTION
These procedures are intended for access to the multiple interpreter facility from inside C programs. They
enable managing multiple interpreters in a hierarchical relationship, and the management of aliases, com-
mands that when invoked in one interpreter execute a command in another interpreter. The return value for
those procedures that return anint is eitherTCL_OK or TCL_ERROR . If TCL_ERROR is returned then
theresult field of the interpreter contains an error message.

Tcl_CreateSlavecreates a new interpreter as a slave ofinterp. It also creates a slave command named
slaveNamein interp which allowsinterp to manipulate the new slave. IfisSafeis zero, the command cre-
ates a trusted slave in which Tcl code has access to all the Tcl commands. If it is1, the command creates a
‘‘safe’’ slave in which Tcl code has access only to set of Tcl commands defined as ‘‘Safe Tcl’’; see the
manual entry for the Tclinterp command for details. If the creation of the new slave interpreter failed,
NULL is returned.

Tcl_IsSafe returns1 if interp is ‘‘safe’’ (was created with theTCL_SAFE_INTERPRETER flag speci-
fied),0 otherwise.

Tcl_MakeSafemakesinterp ‘‘safe’’ by removing all non-core and core unsafe functionality. Note that if
you call this after adding some extension to an interpreter, all traces of that extension will be removed from
the interpreter.

Tcl_GetSlavereturns a pointer to a slave interpreter ofinterp. The slave interpreter is identified byslave-
Name. If no such slave interpreter exists,NULL is returned.

Tcl_GetMaster returns a pointer to the master interpreter ofinterp. If interp has no master (it is a top-level
interpreter) thenNULL is returned.

Tcl_GetInterpPath sets theresult field in askingInterpto the relative path betweenaskingInterpand
slaveInterp; slaveInterpmust be a slave ofaskingInterp. If the computation of the relative path succeeds,
TCL_OK is returned, elseTCL_ERROR is returned and theresultfield in askingInterpcontains the error
message.

Tcl_CreateAlias creates an object command namedsrcCmdin slaveInterpthat when invoked, will cause
the commandtargetCmdto be invoked intargetInterp. The arguments specified by the strings contained in
argv are always prepended to any arguments supplied in the invocation ofsrcCmdand passed totargetCmd.
This operation returnsTCL_OK if it succeeds, orTCL_ERROR if it fails; in that case, an error message
is left in the object result ofslaveInterp. Note that there are no restrictions on the ancestry relationship (as
created byTcl_CreateSlave) betweenslaveInterpandtargetInterp. Any two interpreters can be used, with-
out any restrictions on how they are related.

Tcl_CreateAliasObj is similar toTcl_CreateAliasObj except that it takes a vector of objects to pass as
additional arguments instead of a vector of strings.

Tcl_GetAlias returns information about an aliasaliasNamein interp. Any of the result fields can be
NULL , in which case the corresponding datum is not returned. If a result field is non−NULL , the address
indicated is set to the corresponding datum. For example, iftargetNamePtris non−NULL it is set to a
pointer to the string containing the name of the target command.

Tcl_GetAliasObj is similar toTcl_GetAlias except that it returns a pointer to a vector of Tcl_Obj struc-
tures instead of a vector of strings.

Tcl_ExposeCommandmoves the command namedhiddenCmdNamefrom the set of hidden commands to
the set of exposed commands, putting it under the namecmdName. HiddenCmdNamemust be the name of
an existing hidden command, or the operation will returnTCL_ERROR and leave an error message in the
result field in interp. If an exposed command namedcmdNamealready exists, the operation returns
TCL_ERROR and leaves an error message in the object result ofinterp. If the operation succeeds, it
returnsTCL_OK . After executing this command, attempts to usecmdNamein a call toTcl_Eval or with
the Tclev alcommand will again succeed.

Tcl Last change: 7.6 3

Tcl Library Procedures Tcl_CreateSlave (3)

Tcl_HideCommand moves the command namedcmdNamefrom the set of exposed commands to the set
of hidden commands, under the namehiddenCmdName. CmdNamemust be the name of an existing
exposed command, or the operation will returnTCL_ERROR and leave an error message in the object
result ofinterp. Currently bothcmdNameandhiddenCmdNamemust not contain namespace qualifiers, or
the operation will returnTCL_ERROR and leave an error message in the object result ofinterp. The
CmdNamewill be looked up in the global namespace, and not relative to the current namespace, even if the
current namespace is not the global one. If a hidden command whose name ishiddenCmdNamealready
exists, the operation also returnsTCL_ERROR and theresultfield in interp contains an error message. If
the operation succeeds, it returnsTCL_OK . After executing this command, attempts to usecmdNamein a
call toTcl_Eval or with the Tclev alcommand will fail.

SEE ALSO
For a description of the Tcl interface to multiple interpreters, seeinterp(n).

KEYWORDS
alias, command, exposed commands, hidden commands, interpreter, inv oke, master, slave,

Tcl Last change: 7.6 4

Tcl Library Procedures Tcl_CreateTimerHandler (3)

NAME
Tcl_CreateTimerHandler, Tcl_DeleteTimerHandler − call a procedure at a given time

SYNOPSIS
#include <tcl.h>

Tcl_TimerToken
Tcl_CreateTimerHandler(milliseconds, proc, clientData)

Tcl_DeleteTimerHandler(token)

ARGUMENTS
int milliseconds (in) How many milliseconds to wait before invokingproc.

Tcl_TimerProc ∗proc (in) Procedure to invoke aftermillisecondshave elapsed.

ClientData clientData (in) Arbitrary one-word value to pass toproc.

Tcl_TimerToken token (in) Token for previously-created timer handler (the return value
from some previous call toTcl_CreateTimerHandler).

DESCRIPTION
Tcl_CreateTimerHandler arranges forproc to be invoked at a timemillisecondsmilliseconds in the
future. The callback toproc will be made byTcl_DoOneEvent, soTcl_CreateTimerHandler is only use-
ful in programs that dispatch events throughTcl_DoOneEventor through Tcl commands such asvwait.
The call toproc may not be made at the exact time given bymilliseconds: it will be made at the next
opportunity after that time. For example, ifTcl_DoOneEvent isn’t called until long after the time has
elapsed, or if there are other pending events to process before the call toproc, then the call toproc will be
delayed.

Procshould have arguments and return value that match the typeTcl_TimerProc:
typedef void Tcl_TimerProc(ClientDataclientData);

TheclientDataparameter toproc is a copy of theclientDataargument given toTcl_CreateTimerHandler
when the callback was created. Typically,clientDatapoints to a data structure containing application-spe-
cific information about what to do inproc.

Tcl_DeleteTimerHandler may be called to delete a previously-created timer handler. It deletes the han-
dler indicated bytokenso that no call toproc will be made; if that handler no longer exists (e.g. because
the time period has already elapsed andproc has been invoked thenTcl_DeleteTimerHandler does noth-
ing. The tokens returned byTcl_CreateTimerHandler never hav e a value of NULL, so if NULL is passed
to Tcl_DeleteTimerHandler then the procedure does nothing.

KEYWORDS
callback, clock, handler, timer

Tcl Last change: 7.5 1

Tcl Library Procedures Tcl_CreateTrace (3)

NAME
Tcl_CreateTrace, Tcl_DeleteTrace − arrange for command execution to be traced

SYNOPSIS
#include <tcl.h>

Tcl_Trace
Tcl_CreateTrace(interp, level, proc, clientData)

Tcl_DeleteTrace(interp, trace)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter containing command to be traced or untraced.

int level (in) Only commands at or below this nesting level will be
traced. 1 means top-level commands only, 2 means top-
level commands or those that are invoked as immediate
consequences of executing top-level commands (proce-
dure bodies, bracketed commands, etc.) and so on.

Tcl_CmdTraceProc ∗proc (in) Procedure to call for each command that’s executed. See
below for details on the calling sequence.

ClientData clientData (in) Arbitrary one-word value to pass toproc.

Tcl_Trace trace (in) Token for trace to be removed (return value from previ-
ous call toTcl_CreateTrace).

DESCRIPTION
Tcl_CreateTracearranges for command tracing. From now on,proc will be invoked before Tcl calls com-
mand procedures to process commands ininterp. The return value fromTcl_CreateTrace is a token for
the trace, which may be passed toTcl_DeleteTrace to remove the trace. There may be many traces in
effect simultaneously for the same command interpreter.

Procshould have arguments and result that match the typeTcl_CmdTraceProc:
typedef void Tcl_CmdTraceProc(

ClientDataclientData,
Tcl_Interp∗interp,
int level,
char∗command,
Tcl_CmdProc∗cmdProc,
ClientDatacmdClientData,
int argc,
char∗argv[]);

The clientData and interp parameters are copies of the corresponding arguments given toTcl_Create-
Trace. ClientDatatypically points to an application-specific data structure that describes what to do when
proc is invoked. Level gives the nesting level of the command (1 for top-level commands passed to
Tcl_Eval by the application, 2 for the next-level commands passed toTcl_Eval as part of parsing or inter-
preting level-1 commands, and so on).Commandpoints to a string containing the text of the command,
before any argument substitution.CmdProccontains the address of the command procedure that will be
called to process the command (i.e. theproc argument of some previous call toTcl_CreateCommand) and
cmdClientDatacontains the associated client data forcmdProc(theclientDatavalue passed toTcl_Create-
Command). Argc andargv give the final argument information that will be passed tocmdProc, after com-
mand, variable, and backslash substitution.Procmust not modify thecommandor argvstrings.

Tcl Last change: 1

Tcl Library Procedures Tcl_CreateTrace (3)

Tracing will only occur for commands at nesting level less than or equal to thelevelparameter (i.e. thelevel
parameter toprocwill always be less than or equal to thelevelparameter toTcl_CreateTrace).

Calls toproc will be made by the Tcl parser immediately before it calls the command procedure for the
command (cmdProc). This occurs after argument parsing and substitution, so tracing for substituted com-
mands occurs before tracing of the commands containing the substitutions. If there is a syntax error in a
command, or if there is no command procedure associated with a command name, then no tracing will
occur for that command. If a string passed to Tcl_Eval contains multiple commands (bracketed, or on dif-
ferent lines) then multiple calls toproc will occur, one for each command. Thecommandstring for each of
these trace calls will reflect only a single command, not the entire string passed to Tcl_Eval.

Tcl_DeleteTraceremoves a trace, so that no future calls will be made to the procedure associated with the
trace. AfterTcl_DeleteTracereturns, the caller should never again use thetracetoken.

KEYWORDS
command, create, delete, interpreter, trace

Tcl Last change: 2

Tcl Library Procedures Tcl_DString (3)

NAME
Tcl_DStringInit, Tcl_DStringAppend, Tcl_DStringAppendElement, Tcl_DStringStartSublist, Tcl_DStrin-
gEndSublist, Tcl_DStringLength, Tcl_DStringValue, Tcl_DStringSetLength, Tcl_DStringFree,
Tcl_DStringResult, Tcl_DStringGetResult − manipulate dynamic strings

SYNOPSIS
#include <tcl.h>

Tcl_DStringInit (dsPtr)

char∗
Tcl_DStringAppend(dsPtr, string, length)

char∗
Tcl_DStringAppendElement(dsPtr, string)

Tcl_DStringStartSublist(dsPtr)

Tcl_DStringEndSublist(dsPtr)

int
Tcl_DStringLength(dsPtr)

char∗
Tcl_DStringValue(dsPtr)

Tcl_DStringSetLength(dsPtr, newLength)

Tcl_DStringFree(dsPtr)

Tcl_DStringResult(interp, dsPtr)

Tcl_DStringGetResult(interp, dsPtr)

ARGUMENTS
Tcl_DString ∗dsPtr (in/out) Pointer to structure that is used to manage a dynamic string.

char ∗string (in) Pointer to characters to add to dynamic string.

int length (in) Number of characters from string to add to dynamic string. If -1,
add all characters up to null terminating character.

int newLength (in) New length for dynamic string, not including null terminating
character.

Tcl_Interp ∗interp (in/out) Interpreter whose result is to be set from or moved to the dynamic
string.

DESCRIPTION
Dynamic strings provide a mechanism for building up arbitrarily long strings by gradually appending infor-
mation. If the dynamic string is short then there will be no memory allocation overhead; as the string gets
larger, additional space will be allocated as needed.

Tcl Last change: 7.4 1

Tcl Library Procedures Tcl_DString (3)

Tcl_DStringInit initializes a dynamic string to zero length. The Tcl_DString structure must have been
allocated by the caller. No assumptions are made about the current state of the structure; anything already
in it is discarded. If the structure has been used previously,Tcl_DStringFree should be called first to free
up any memory allocated for the old string.

Tcl_DStringAppend adds new information to a dynamic string, allocating more memory for the string if
needed. Iflength is less than zero then everything instring is appended to the dynamic string; otherwise
lengthspecifies the number of bytes to append.Tcl_DStringAppend returns a pointer to the characters of
the new string. The string can also be retrieved from thestringfield of the Tcl_DString structure.

Tcl_DStringAppendElement is similar toTcl_DStringAppend except that it doesn’t take alengthargu-
ment (it appends all ofstring) and it converts the string to a proper list element before appending.
Tcl_DStringAppendElement adds a separator space before the new list element unless the new list ele-
ment is the first in a list or sub-list (i.e. either the current string is empty, or it contains the single character
‘‘{’’, or the last two characters of the current string are ‘‘ {’’).Tcl_DStringAppendElement returns a
pointer to the characters of the new string.

Tcl_DStringStartSublist andTcl_DStringEndSublist can be used to create nested lists. To append a list
element that is itself a sublist, first callTcl_DStringStartSublist, then callTcl_DStringAppendElement
for each of the elements in the sublist, then callTcl_DStringEndSublist to end the sublist.
Tcl_DStringStartSublist appends a space character if needed, followed by an open brace;Tcl_DStrin-
gEndSublistappends a close brace. Lists can be nested to any depth.

Tcl_DStringLength is a macro that returns the current length of a dynamic string (not including the termi-
nating null character).Tcl_DStringValue is a macro that returns a pointer to the current contents of a
dynamic string.

Tcl_DStringSetLength changes the length of a dynamic string. IfnewLengthis less than the string’s cur-
rent length, then the string is truncated. IfnewLengthis greater than the string’s current length, then the
string will become longer and new space will be allocated for the string if needed. However,
Tcl_DStringSetLength will not initialize the new space except to provide a terminating null character; it
is up to the caller to fill in the new space.Tcl_DStringSetLength does not free up the string’s storage
space even if the string is truncated to zero length, soTcl_DStringFree will still need to be called.

Tcl_DStringFree should be called when you’re finished using the string. It frees up any memory that was
allocated for the string and reinitializes the string’s value to an empty string.

Tcl_DStringResult sets the result ofinterp to the value of the dynamic string given bydsPtr. It does this
by moving a pointer fromdsPtr to interp->result. This saves the cost of allocating new memory and copy-
ing the string.Tcl_DStringResult also reinitializes the dynamic string to an empty string.

Tcl_DStringGetResult does the opposite ofTcl_DStringResult. It sets the value ofdsPtr to the result of
interp and it clearsinterp’s result. If possible it does this by moving a pointer rather than by copying the
string.

KEYWORDS
append, dynamic string, free, result

Tcl Last change: 7.4 2

Tcl Library Procedures Tcl_DetachPids (3)

NAME
Tcl_DetachPids, Tcl_ReapDetachedProcs − manage child processes in background

SYNOPSIS
#include <tcl.h>

Tcl_DetachPids(numPids, pidPtr)

Tcl_ReapDetachedProcs()

ARGUMENTS
int numPids (in) Number of process ids contained in the array pointed to bypidPtr.

int ∗pidPtr (in) Address of array containingnumPidsprocess ids.

DESCRIPTION
Tcl_DetachPidsandTcl_ReapDetachedProcsprovide a mechanism for managing subprocesses that are
running in background. These procedures are needed because the parent of a process must eventually
invoke thewaitpid kernel call (or one of a few other similar kernel calls) to wait for the child to exit. Until
the parent waits for the child, the child’s state cannot be completely reclaimed by the system. If a parent
continually creates children and doesn’t wait on them, the system’s process table will eventually overflow,
ev en if all the children have exited.

Tcl_DetachPidsmay be called to ask Tcl to take responsibility for one or more processes whose process
ids are contained in thepidPtr array passed as argument. The caller presumably has started these processes
running in background and doesn’t want to have to deal with them again.

Tcl_ReapDetachedProcsinvokes thewaitpid kernel call on each of the background processes so that its
state can be cleaned up if it has exited. If the process hasn’t exited yet,Tcl_ReapDetachedProcsdoesn’t
wait for it to exit; it will check again the next time it is invoked. Tcl automatically callsTcl_ReapDe-
tachedProcseach time theexeccommand is executed, so in most cases it isn’t necessary for any code out-
side of Tcl to invokeTcl_ReapDetachedProcs. Howev er, if you callTcl_DetachPidsin situations where
the execcommand may never get executed, you may wish to callTcl_ReapDetachedProcsfrom time to
time so that background processes can be cleaned up.

KEYWORDS
background, child, detach, process, wait

Tcl Last change: 1

Tcl Library Procedures Tcl_DoOneEvent (3)

NAME
Tcl_DoOneEvent − wait for events and invoke event handlers

SYNOPSIS
#include <tcl.h>

int
Tcl_DoOneEvent(flags)

ARGUMENTS
int flags (in) This parameter is normally zero. It may be an OR-ed combination of any of the

following flag bits: TCL_WINDOW_EVENTS, TCL_FILE_EVENTS,
TCL_TIMER_EVENTS, TCL_IDLE_EVENTS, TCL_ALL_EVENTS, or
TCL_DONT_WAIT.

DESCRIPTION
This procedure is the entry point to Tcl’s event loop; it is responsible for waiting for events and dispatching
ev ent handlers created with procedures such asTk_CreateEventHandler, Tcl_CreateFileHandler,
Tcl_CreateTimerHandler, andTcl_DoWhenIdle. Tcl_DoOneEventchecks to see if events are already
present on the Tcl event queue; if so, it calls the handler(s) for the first (oldest) event, removes it from the
queue, and returns. If there are no events ready to be handled, thenTcl_DoOneEvent checks for new
ev ents from all possible sources. If any are found, it puts all of them on Tcl’s event queue, calls handlers
for the first event on the queue, and returns. If no events are found,Tcl_DoOneEvent checks for
Tcl_DoWhenIdle callbacks; if any are found, it invokes all of them and returns. Finally, if no events or
idle callbacks have been found, thenTcl_DoOneEventsleeps until an event occurs; then it adds any new
ev ents to the Tcl event queue, calls handlers for the first event, and returns. The normal return value is 1 to
signify that some event was processed (see below for other alternatives).

If the flagsargument toTcl_DoOneEventis non-zero, it restricts the kinds of events that will be processed
by Tcl_DoOneEvent. Flagsmay be an OR-ed combination of any of the following bits:

TCL_WINDOW_EVENTS − Process window system events.

TCL_FILE_EVENTS − Process file events.

TCL_TIMER_EVENTS − Process timer events.

TCL_IDLE_EVENTS − Process idle callbacks.

TCL_ALL_EVENTS − Process all kinds of events: equivalent to OR-ing together all of the above
flags or specifying none of them.

TCL_DONT_WAIT − Don’t sleep: process only events that are ready at the time of the call.

If any of the flagsTCL_WINDOW_EVENTS , TCL_FILE_EVENTS , TCL_TIMER_EVENTS , or
TCL_IDLE_EVENTS is set, then the only events that will be considered are those for which flags are set.
Setting none of these flags is equivalent to the valueTCL_ALL_EVENTS , which causes all event types to
be processed. If an application has defined additional event sources withTcl_CreateEventSource, then
additionalflagvalues may also be valid, depending on those event sources.

The TCL_DONT_WAIT flag causesTcl_DoOneEventnot to put the process to sleep: it will check for
ev ents but if none are found then it returns immediately with a return value of 0 to indicate that no work
was done.Tcl_DoOneEventwill also return 0 without doing anything if the only alternative is to block
forever (this can happen, for example, ifflagsis TCL_IDLE_EVENTS and there are noTcl_DoWhenIdle
callbacks pending, or if no event handlers or timer handlers exist).

Tcl Last change: 7.5 1

Tcl Library Procedures Tcl_DoOneEvent (3)

Tcl_DoOneEvent may be invoked recursively. For example, it is possible to invokeTcl_DoOneEvent
recursively from a handler called byTcl_DoOneEvent. This sort of operation is useful in some modal sit-
uations, such as when a notification dialog has been popped up and an application wishes to wait for the
user to click a button in the dialog before doing anything else.

KEYWORDS
callback, event, handler, idle, timer

Tcl Last change: 7.5 2

Tcl Library Procedures Tcl_DoWhenIdle (3)

NAME
Tcl_DoWhenIdle, Tcl_CancelIdleCall − invoke a procedure when there are no pending events

SYNOPSIS
#include <tcl.h>

Tcl_DoWhenIdle(proc, clientData)

Tcl_CancelIdleCall(proc, clientData)

ARGUMENTS
Tcl_IdleProc ∗proc (in) Procedure to invoke.

ClientData clientData (in) Arbitrary one-word value to pass toproc.

DESCRIPTION
Tcl_DoWhenIdle arranges forproc to be invoked when the application becomes idle. The application is
considered to be idle whenTcl_DoOneEventhas been called, couldn’t find any events to handle, and is
about to go to sleep waiting for an event to occur. At this point all pendingTcl_DoWhenIdle handlers are
invoked. For each call toTcl_DoWhenIdle there will be a single call toproc; after proc is invoked the
handler is automatically removed.Tcl_DoWhenIdle is only usable in programs that useTcl_DoOneEvent
to dispatch events.

Procshould have arguments and result that match the typeTcl_IdleProc:
typedef void Tcl_IdleProc(ClientDataclientData);

The clientDataparameter toproc is a copy of theclientDataargument given toTcl_DoWhenIdle. Typi-
cally, clientData points to a data structure containing application-specific information about whatproc
should do.

Tcl_CancelIdleCall may be used to cancel one or more previous calls toTcl_DoWhenIdle: if there is a
Tcl_DoWhenIdle handler registered forproc and clientData, then it is removed without invoking it. If
there is more than one handler on the idle list that refers toproc and clientData, all of the handlers are
removed. If no existing handlers matchprocandclientDatathen nothing happens.

Tcl_DoWhenIdle is most useful in situations where (a) a piece of work will have to be done but (b) it’s
possible that something will happen in the near future that will change what has to be done or require some-
thing different to be done.Tcl_DoWhenIdle allows the actual work to be deferred until all pending events
have been processed. At this point the exact work to be done will presumably be known and it can be done
exactly once.

For example,Tcl_DoWhenIdle might be used by an editor to defer display updates until all pending com-
mands have been processed. Without this feature, redundant redisplays might occur in some situations,
such as the processing of a command file.

BUGS
At present it is not safe for an idle callback to reschedule itself continuously. This will interact badly with
certain features of Tk that attempt to wait for all idle callbacks to complete. If you would like for an idle
callback to reschedule itself continuously, it is better to use a timer handler with a zero timeout period.

KEYWORDS
callback, defer, idle callback

Tcl Last change: 7.5 1

Tcl Library Procedures Tcl_DoubleObj (3)

NAME
Tcl_NewDoubleObj, Tcl_SetDoubleObj, Tcl_GetDoubleFromObj − manipulate Tcl objects as floating-
point values

SYNOPSIS
#include <tcl.h>

Tcl_Obj ∗
Tcl_NewDoubleObj(doubleValue)

Tcl_SetDoubleObj(objPtr, doubleValue)

int
Tcl_GetDoubleFromObj(interp, objPtr, doublePtr)

ARGUMENTS
double doubleValue (in) A double-precision floating point value used to initialize or set a

double object.

Tcl_Obj ∗objPtr (in/out) ForTcl_SetDoubleObj, this points to the object to be converted to
double type. ForTcl_GetDoubleFromObj, this refers to the
object from which to get a double value; ifobjPtr does not already
point to a double object, an attempt will be made to convert it to
one.

Tcl_Interp ∗interp (in/out) If an error occurs during conversion, an error message is left in the
interpreter’s result object unlessinterp is NULL.

double ∗doublePtr (out) Points to place to store the double value obtained fromobjPtr.

DESCRIPTION
These procedures are used to create, modify, and read double Tcl objects from C code.Tcl_NewDou-
bleObj and Tcl_SetDoubleObj will create a new object of double type or modify an existing object to
have double type. Both of these procedures set the object to have the double-precision floating point value
given bydoubleValue; Tcl_NewDoubleObj returns a pointer to a newly created object with reference count
zero. Both procedures set the object’s type to be double and assign the double value to the object’s internal
representationdoubleValuemember. Tcl_SetDoubleObj invalidates any old string representation and, if
the object is not already a double object, frees any old internal representation.

Tcl_GetDoubleFromObj attempts to return a double value from the Tcl objectobjPtr. If the object is not
already a double object, it will attempt to convert it to one. If an error occurs during conversion, it returns
TCL_ERROR and leaves an error message in the interpreter’s result object unlessinterp is NULL. Other-
wise, it returnsTCL_OK and stores the double value in the address given bydoublePtr. If the object is not
already a double object, the conversion will free any old internal representation.

SEE ALSO
Tcl_NewObj, Tcl_DecrRefCount, Tcl_IncrRefCount, Tcl_GetObjResult

KEYWORDS
double, double object, double type, internal representation, object, object type, string representation

Tcl Last change: 8.0 1

Tcl Library Procedures Tcl_Eval (3)

NAME
Tcl_Eval, Tcl_VarEval, Tcl_EvalFile, Tcl_GlobalEval − execute Tcl commands

SYNOPSIS
#include <tcl.h>

int
Tcl_Eval(interp, cmd)

int
Tcl_VarEval (interp, string, string, ...(char ∗) NULL)

int
Tcl_EvalFile(interp, fileName)

int
Tcl_GlobalEval(interp, cmd)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter in which to execute the command. A string result will be

stored ininterp->result.

char ∗cmd (in) Command (or sequence of commands) to execute. Must be in
writable memory (Tcl_Eval makes temporary modifications to the
command).

char ∗string (in) String forming part of Tcl command.

char ∗fileName (in) Name of file containing Tcl command string.

DESCRIPTION
All four of these procedures execute Tcl commands.Tcl_Eval is the core procedure and is used by all the
others. It executes the commands in the script held bycmduntil either an error occurs or it reaches the end
of the script.

Note that Tcl_Eval and Tcl_GlobalEval have been largely replaced by the object-based procedures
Tcl_EvalObj and Tcl_GlobalEvalObj . Those object-based procedures evaluate a script held in a Tcl
object instead of a string. The object argument can retain the bytecode instructions for the script and so
avoid reparsing the script each time it is executed.Tcl_Eval is implemented usingTcl_EvalObj but is
slower because it must reparse the script each time since there is no object to retain the bytecode instruc-
tions.

The return value fromTcl_Eval is one of the Tcl return codesTCL_OK , TCL_ERROR ,
TCL_RETURN , TCL_BREAK , or TCL_CONTINUE , and interp->result will point to a string with
additional information (a result value or error message). If an error occurs during compilation, this return
information describes the error. Otherwise, this return information corresponds to the last command
executed fromcmd.

Tcl_VarEval takes any number of string arguments of any length, concatenates them into a single string,
then callsTcl_Eval to execute that string as a Tcl command. It returns the result of the command and also
modifiesinterp->result in the usual fashion for Tcl commands. The last argument toTcl_VarEval must be
NULL to indicate the end of arguments.

Tcl_EvalFile reads the file given byfileNameand evaluates its contents as a Tcl command by calling
Tcl_Eval. It returns a standard Tcl result that reflects the result of evaluating the file. If the file couldn’t be
read then a Tcl error is returned to describe why the file couldn’t be read.

Tcl Last change: 7.0 1

Tcl Library Procedures Tcl_Eval (3)

During the processing of a Tcl command it is legal to make nested calls to evaluate other commands (this is
how procedures and some control structures are implemented). If a code other thanTCL_OK is returned
from a nestedTcl_Eval invocation, then the caller should normally return immediately, passing that same
return code back to its caller, and so on until the top-level application is reached. A few commands, like
for , will check for certain return codes, likeTCL_BREAK andTCL_CONTINUE , and process them spe-
cially without returning.

Tcl_Eval keeps track of how many nestedTcl_Eval invocations are in progress forinterp. If a code of
TCL_RETURN , TCL_BREAK , or TCL_CONTINUE is about to be returned from the topmost
Tcl_Eval invocation for interp, it converts the return code toTCL_ERROR and setsinterp->result to
point to an error message indicating that thereturn , break, or continue command was invoked in an inap-
propriate place. This means that top-level applications should never see a return code fromTcl_Eval other
thenTCL_OK or TCL_ERROR .

SEE ALSO
Tcl_EvalObj, Tcl_GlobalEvalObj

KEYWORDS
command, execute, file, global, object, object result, variable

Tcl Last change: 7.0 2

Tcl Library Procedures Tcl_EvalObj (3)

NAME
Tcl_EvalObj, Tcl_GlobalEvalObj − execute Tcl commands

SYNOPSIS
#include <tcl.h>

int
Tcl_EvalObj (interp, objPtr)

int
Tcl_GlobalEvalObj (interp, objPtr)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter in which to execute the command. The command’s result

will be stored in the interpreter’s result object and can be retrieved
usingTcl_GetObjResult.

Tcl_Obj ∗objPtr (in) A Tcl object containing a command string (or sequence of com-
mands in a string) to execute.

DESCRIPTION
These two procedures execute Tcl commands.Tcl_EvalObj is the core procedure and is used by
Tcl_GlobalEvalObj . It executes the commands in the script held byobjPtr until either an error occurs or
it reaches the end of the script. If this is the first timeobjPtr has been executed, its commands are compiled
into bytecode instructions that are then executed if there are no compilation errors.

The return value fromTcl_EvalObj is one of the Tcl return codesTCL_OK , TCL_ERROR ,
TCL_RETURN , TCL_BREAK , or TCL_CONTINUE , and a result object containing additional informa-
tion (a result value or error message) that can be retrieved usingTcl_GetObjResult. If an error occurs dur-
ing compilation, this return information describes the error. Otherwise, this return information corresponds
to the last command executed fromobjPtr.

Tcl_GlobalEvalObj is similar toTcl_EvalObj except that it processes the command at global level. This
means that the variable context for the command consists of global variables only (it ignores any Tcl proce-
dure that is active). This produces an effect similar to the Tcl command ‘‘uplevel 0’’.

During the processing of a Tcl command it is legal to make nested calls to evaluate other commands (this is
how procedures and some control structures are implemented). If a code other thanTCL_OK is returned
from a nestedTcl_EvalObj invocation, then the caller should normally return immediately, passing that
same return code back to its caller, and so on until the top-level application is reached. A few commands,
like for , will check for certain return codes, likeTCL_BREAK andTCL_CONTINUE , and process them
specially without returning.

Tcl_EvalObj keeps track of how many nestedTcl_EvalObj invocations are in progress forinterp. If a
code ofTCL_RETURN , TCL_BREAK , or TCL_CONTINUE is about to be returned from the topmost
Tcl_EvalObj invocation forinterp, it converts the return code toTCL_ERROR and sets the interpreter’s
result object to point to an error message indicating that thereturn , break, or continue command was
invoked in an inappropriate place. This means that top-level applications should never see a return code
from Tcl_EvalObj other thenTCL_OK or TCL_ERROR .

SEE ALSO
Tcl_GetObjResult, Tcl_SetObjResult

Tcl Last change: 8.0 1

Tcl Library Procedures Tcl_EvalObj (3)

KEYWORDS
command, execute, file, global, object, object result, variable

Tcl Last change: 8.0 2

Tcl Library Procedures Tcl_Exit (3)

NAME
Tcl_Exit, Tcl_Finalize, Tcl_CreateExitHandler, Tcl_DeleteExitHandler − end the application (and invoke
exit handlers)

SYNOPSIS
#include <tcl.h>

Tcl_Exit (status)

Tcl_Finalize()

Tcl_CreateExitHandler(proc, clientData)

Tcl_DeleteExitHandler(proc, clientData)

ARGUMENTS
int status (in) Provides information about why application exited. Exact mean-

ing may be platform-specific. 0 usually means a normal exit, any
nonzero value usually means that an error occurred.

Tcl_ExitProc ∗proc (in) Procedure to invoke before exiting application.

ClientData clientData (in) Arbitrary one-word value to pass toproc.

DESCRIPTION
The procedures described here provide a graceful mechanism to end the execution of aTcl application. Exit
handlers are invoked to cleanup the application’s state before ending the execution ofTcl code.

Invoke Tcl_Exit to end aTcl application and to exit from this process. This procedure is invoked by the
exit command, and can be invoked anyplace else to terminate the application. No-one should ever inv oke
the exit system procedure directly; always invokeTcl_Exit instead, so that it can invoke exit handlers.
Note that if other code invokesexit system procedure directly, or otherwise causes the application to termi-
nate without callingTcl_Exit , the exit handlers will not be run.Tcl_Exit internally invokes theexit system
call, thus it never returns control to its caller.

Tcl_Finalize is similar toTcl_Exit except that it does not exit from the current process. It is useful for
cleaning up when a process is finished usingTcl but wishes to continue executing, and whenTcl is used in
a dynamically loaded extension that is about to be unloaded. On some systemsTcl is automatically noti-
fied when it is being unloaded, and it callsTcl_Finalize internally; on these systems it not necessary for the
caller to explicitly callTcl_Finalize. Howev er, to ensure portability, your code should always invoke
Tcl_Finalize whenTcl is being unloaded, to ensure that the code will work on all platforms.Tcl_Finalize
can be safely called more than once.

Tcl_CreateExitHandler arranges forproc to be invoked byTcl_Finalize andTcl_Exit . This provides a
hook for cleanup operations such as flushing buffers and freeing global memory.Proc should match the
typeTcl_ExitProc:

typedef void Tcl_ExitProc(ClientDataclientData);
The clientDataparameter toproc is a copy of theclientDataargument given toTcl_CreateExitHandler
when the callback was created. Typically,clientDatapoints to a data structure containing application-spe-
cific information about what to do inproc.

Tcl_DeleteExitHandler may be called to delete a previously-created exit handler. It removes the handler
indicated byproc and clientData so that no call toproc will be made. If no such handler exists then
Tcl_DeleteExitHandler does nothing.

Tcl Last change: 7.7 1

Tcl Library Procedures Tcl_Exit (3)

Tcl_Finalize and Tcl_Exit execute all registered exit handlers, in reverse order from the order in which
they were registered. This matches the natural order in which extensions are loaded and unloaded; if exten-
sionA loads extensionB, it usually unloadsB before it itself is unloaded. If extensionA registers its exit
handlers before loading extensionB, this ensures that any exit handlers forB will be executed before the
exit handlers forA.

KEYWORDS
callback, cleanup, dynamic loading, end application, exit, unloading

Tcl Last change: 7.7 2

Tcl Library Procedures Tcl_ExprLong (3)

NAME
Tcl_ExprLong, Tcl_ExprDouble, Tcl_ExprBoolean, Tcl_ExprString − evaluate an expression

SYNOPSIS
#include <tcl.h>

int
Tcl_ExprLong (interp, string, longPtr)

int
Tcl_ExprDouble(interp, string, doublePtr)

int
Tcl_ExprBoolean(interp, string, booleanPtr)

int
Tcl_ExprString (interp, string)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter in whose context to evaluatestringor objPtr.

char ∗string (in) Expression to be evaluated. Must be in writable memory (the
expression parser makes temporary modifications to the string dur-
ing parsing, which it undoes before returning).

long ∗longPtr (out) Pointer to location in which to store the integer value of the expres-
sion.

int ∗doublePtr (out) Pointer to location in which to store the floating-point value of the
expression.

int ∗booleanPtr (out) Pointer to location in which to store the 0/1 boolean value of the
expression.

DESCRIPTION
These four procedures all evaluate the expression given by thestring argument and return the result in one
of four different forms. The expression can have any of the forms accepted by theexpr command. Note
that these procedures have been largely replaced by the object-based proceduresTcl_ExprLongObj ,
Tcl_ExprDoubleObj , Tcl_ExprBooleanObj, and Tcl_ExprStringObj . Those object-based procedures
evaluate an expression held in a Tcl object instead of a string. The object argument can retain an internal
representation that is more efficient to execute.

The interp argument refers to an interpreter used to evaluate the expression (e.g. for variables and nested
Tcl commands) and to return error information.interp->result is assumed to be initialized in the standard
fashion when they are invoked.

For all of these procedures the return value is a standard Tcl result:TCL_OK means the expression was
successfully evaluated, andTCL_ERROR means that an error occurred while evaluating the expression. If
TCL_ERROR is returned theninterp->resultwill hold a message describing the error. If an error occurs
while executing a Tcl command embedded in the expression then that error will be returned.

If the expression is successfully evaluated, then its value is returned in one of four forms, depending on
which procedure is invoked.Tcl_ExprLong stores an integer value at∗longPtr. If the expression’s actual
value is a floating-point number, then it is truncated to an integer. If the expression’s actual value is a non-
numeric string then an error is returned.

Tcl Last change: 7.0 1

Tcl Library Procedures Tcl_ExprLong (3)

Tcl_ExprDouble stores a floating-point value at∗doublePtr. If the expression’s actual value is an integer,
it is converted to floating-point. If the expression’s actual value is a non-numeric string then an error is
returned.

Tcl_ExprBoolean stores a 0/1 integer value at∗booleanPtr. If the expression’s actual value is an integer
or floating-point number, then they store 0 at∗booleanPtrif the value was zero and 1 otherwise. If the
expression’s actual value is a non-numeric string then it must be one of the values accepted byTcl_Get-
Booleansuch as ‘‘yes’’ or ‘‘no’’, or else an error occurs.

Tcl_ExprString returns the value of the expression as a string stored ininterp->result. If the expression’s
actual value is an integer thenTcl_ExprString converts it to a string usingsprintf with a ‘‘%d’’ converter.
If the expression’s actual value is a floating-point number, thenTcl_ExprString callsTcl_PrintDouble to
convert it to a string.

SEE ALSO
Tcl_ExprLongObj, Tcl_ExprDoubleObj, Tcl_ExprBooleanObj, Tcl_ExprObj

KEYWORDS
boolean, double, evaluate, expression, integer, object, string

Tcl Last change: 7.0 2

Tcl Library Procedures Tcl_ExprLongObj (3)

NAME
Tcl_ExprLongObj, Tcl_ExprDoubleObj, Tcl_ExprBooleanObj, Tcl_ExprObj − evaluate an expression

SYNOPSIS
#include <tcl.h>

int
Tcl_ExprLongObj (interp, objPtr, longPtr)

int
Tcl_ExprDoubleObj (interp, objPtr, doublePtr)

int
Tcl_ExprBooleanObj(interp, objPtr, booleanPtr)

int
Tcl_ExprObj (interp, objPtr, resultPtrPtr)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter in whose context to evaluatestringor objPtr.

Tcl_Obj ∗objPtr (in) Pointer to an object containing the expression to evaluate.

long ∗longPtr (out) Pointer to location in which to store the integer value of the
expression.

int ∗doublePtr (out) Pointer to location in which to store the floating-point value of the
expression.

int ∗booleanPtr (out) Pointer to location in which to store the 0/1 boolean value of the
expression.

Tcl_Obj ∗resultPtrPtr (out) Pointer to location in which to store a pointer to the object that is
the result of the expression.

DESCRIPTION
These four procedures all evaluate an expression, returning the result in one of four different forms. The
expression is given by theobjPtr argument, and it can have any of the forms accepted by theexpr com-
mand.

The interp argument refers to an interpreter used to evaluate the expression (e.g. for variables and nested
Tcl commands) and to return error information.

For all of these procedures the return value is a standard Tcl result:TCL_OK means the expression was
successfully evaluated, andTCL_ERROR means that an error occurred while evaluating the expression. If
TCL_ERROR is returned, then a message describing the error can be retrieved usingTcl_GetObjResult.
If an error occurs while executing a Tcl command embedded in the expression then that error will be
returned.

If the expression is successfully evaluated, then its value is returned in one of four forms, depending on
which procedure is invoked.Tcl_ExprLongObj stores an integer value at∗longPtr. If the expression’s
actual value is a floating-point number, then it is truncated to an integer. If the expression’s actual value is a
non-numeric string then an error is returned.

Tcl_ExprDoubleObj stores a floating-point value at∗doublePtr. If the expression’s actual value is an inte-
ger, it is converted to floating-point. If the expression’s actual value is a non-numeric string then an error is
returned.

Tcl Last change: 8.0 1

Tcl Library Procedures Tcl_ExprLongObj (3)

Tcl_ExprBooleanObj stores a 0/1 integer value at∗booleanPtr. If the expression’s actual value is an inte-
ger or floating-point number, then they store 0 at∗booleanPtrif the value was zero and 1 otherwise. If the
expression’s actual value is a non-numeric string then it must be one of the values accepted byTcl_Get-
Booleansuch as ‘‘yes’’ or ‘‘no’’, or else an error occurs.

If Tcl_ExprObj successfully evaluates the expression, it stores a pointer to the Tcl object containing the
expression’s value at∗resultPtrPtr. In this case, the caller is responsible for callingTcl_DecrRefCount to
decrement the object’s reference count when it is finished with the object.

SEE ALSO
Tcl_ExprLong, Tcl_ExprDouble, Tcl_ExprBoolean, Tcl_ExprString, Tcl_GetObjResult

KEYWORDS
boolean, double, evaluate, expression, integer, object, string

Tcl Last change: 8.0 2

Tcl Library Procedures Tcl_FindExecutable (3)

NAME
Tcl_FindExecutable, Tcl_GetNameOfExecutable − identify or return the name of the binary file containing
the application

SYNOPSIS
#include <tcl.h>

char∗
Tcl_FindExecutable(argv0)

CONST char∗
Tcl_GetNameOfExecutable()

ARGUMENTS
char ∗argv0 (in) The first command-line argument to the program, which gives the application’s

name.

DESCRIPTION
The Tcl_FindExecutable procedure computes the full path name of the executable file from which the
application was invoked and saves it for Tcl’s internal use. The executable’s path name is needed for sev-
eral purposes in Tcl. For example, it is needed on some platforms in the implementation of theload com-
mand. It is also returned by theinfo nameofexecutablecommand.

On UNIX platforms this procedure is typically invoked as the very first thing in the application’s main pro-
gram; it must be passedargv[0] as its argument.Tcl_FindExecutable usesargv0 along with thePATH
environment variable to find the application’s executable, if possible. If it fails to find the binary, then
future calls toinfo nameofexecutablewill return an empty string.

Tcl_GetNameOfExecutablesimply returns a pointer to the internal full path name of the executable file as
computed byTcl_FindExecutable. This procedure call is the C API equivalent to theinfo nameofexe-
cutablecommand. NULL is returned if the internal full path name has not been computed or unknown.

KEYWORDS
binary, executable file

Tcl Last change: 7.5 1

Tcl Library Procedures Tcl_GetIndexFromObj (3)

NAME
Tcl_GetIndexFromObj − lookup string in table of keywords

SYNOPSIS
#include <tcl.h>

int
Tcl_GetIndexFromObj (interp, objPtr, tablePtr, msg, flags, indexPtr)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter to use for error reporting; if NULL, then no message is

provided on errors.

Tcl_Obj ∗objPtr (in/out) The string value of this object is used to search throughtablePtr.
The internal representation is modified to hold the index of the
matching table entry.

char ∗∗tablePtr (in) An array of null-terminated strings. The end of the array is marked
by a NULL string pointer.

char ∗msg (in) Null-terminated string describing what is being looked up, such as
option. This string is included in error messages.

int flags (in) OR-ed combination of bits providing additional information for oper-
ation. The only bit that is currently defined isTCL_EXACT .

int ∗indexPtr (out) The index of the string intablePtr that matches the value ofobjPtr is
returned here.

DESCRIPTION
This procedure provides an efficient way for looking up keywords, switch names, option names, and similar
things where the value of an object must be one of a predefined set of values.ObjPtr is compared against
each of the strings intablePtr to find a match. A match occurs ifobjPtr’s string value is identical to one of
the strings intablePtr, or if it is a unique abbreviation for exactly one of the strings intablePtr and the
TCL_EXACT flag was not specified; in either case the index of the matching entry is stored at∗indexPtr
and TCL_OK is returned.

If there is no matching entry, TCL_ERROR is returned and an error message is left ininterp’s result if
interp isn’t NULL. Msg is included in the error message to indicate what was being looked up. For exam-
ple, if msgis option the error message will have a form likebad option "firt": must be first, second, or
third .

If Tcl_GetIndexFromObj completes successfully it modifies the internal representation ofobjPtr to hold
the address of the table and the index of the matching entry. IfTcl_GetIndexFromObj is invoked again
with the sameobjPtr and tablePtr arguments (e.g. during a reinvocation of a Tcl command), it returns the
matching index immediately without having to redo the lookup operation. Note:Tcl_GetIndexFromObj
assumes that the entries intablePtrare static: they must not change between invocations.

SEE ALSO
Tcl_WrongNumArgs

KEYWORDS
index, object, table lookup

Tcl Last change: 8.0 1

Tcl Library Procedures Tcl_GetInt (3)

NAME
Tcl_GetInt, Tcl_GetDouble, Tcl_GetBoolean − convert from string to integer, double, or boolean

SYNOPSIS
#include <tcl.h>

int
Tcl_GetInt (interp, string, intPtr)

int
Tcl_GetDouble(interp, string, doublePtr)

int
Tcl_GetBoolean(interp, string, boolPtr)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter to use for error reporting.

char ∗string (in) Textual value to be converted.

int ∗intPtr (out) Points to place to store integer value converted fromstring.

double ∗doublePtr (out) Points to place to store double-precision floating-point value con-
verted fromstring.

int ∗boolPtr (out) Points to place to store boolean value (0 or 1) converted fromstring.

DESCRIPTION
These procedures convert from strings to integers or double-precision floating-point values or booleans
(represented as 0- or 1-valued integers). Each of the procedures takes astring argument, converts it to an
internal form of a particular type, and stores the converted value at the location indicated by the procedure’s
third argument. If all goes well, each of the procedures returns TCL_OK. Ifstring doesn’t hav e the proper
syntax for the desired type then TCL_ERROR is returned, an error message is left ininterp->result, and
nothing is stored at∗intPtr or ∗doublePtror ∗boolPtr.

Tcl_GetInt expectsstring to consist of a collection of integer digits, optionally signed and optionally pre-
ceded by white space. If the first two characters ofstringare ‘‘0x’’ then string is expected to be in hexadec-
imal form; otherwise, if the first character ofstring is ‘‘0’’ then string is expected to be in octal form; oth-
erwise,string is expected to be in decimal form.

Tcl_GetDouble expectsstring to consist of a floating-point number, which is: white space; a sign; a
sequence of digits; a decimal point; a sequence of digits; the letter ‘‘e’’; and a signed decimal exponent.
Any of the fields may be omitted, except that the digits either before or after the decimal point must be pre-
sent and if the ‘‘e’’ is present then it must be followed by the exponent number.

Tcl_GetBooleanexpectsstring to specify a boolean value. Ifstring is any of0, false, no, or off, then
Tcl_GetBooleanstores a zero value at∗boolPtr. If string is any of1, true, yes, or on, then 1 is stored at
∗boolPtr. Any of these values may be abbreviated, and upper-case spellings are also acceptable.

KEYWORDS
boolean, conversion, double, floating-point, integer

Tcl Last change: 1

Tcl Library Procedures Tcl_GetOpenFile (3)

NAME
Tcl_GetOpenFile − Get a standard IO File∗ handle from a channel. (Unix only)

SYNOPSIS
#include <tcl.h>

int
Tcl_GetOpenFile(interp, string, write, checkUsage, filePtr)

ARGUMENTS
Tcl_Interp ∗interp (in) Tcl interpreter from which file handle is to be obtained.

char ∗string (in) String identifying channel, such asstdin or file4.

int write (in) Non-zero means the file will be used for writing, zero means it will
be used for reading.

int checkUsage (in) If non-zero, then an error will be generated if the file wasn’t opened
for the access indicated bywrite.

ClientData ∗filePtr (out) Points to word in which to store pointer to FILE structure for the
file given bystring.

DESCRIPTION
Tcl_GetOpenFile takes as argument a file identifier of the form returned by theopencommand and returns
at ∗filePtr a pointer to the FILE structure for the file. Thewrite argument indicates whether the FILE
pointer will be used for reading or writing. In some cases, such as a channel that connects to a pipeline of
subprocesses, different FILE pointers will be returned for reading and writing.Tcl_GetOpenFilenormally
returns TCL_OK. If an error occurs inTcl_GetOpenFile(e.g.string didn’t make any sense orcheckUsage
was set and the file wasn’t opened for the access specified bywrite) then TCL_ERROR is returned and
interp->result will contain an error message. In the current implementationcheckUsageis ignored and
consistency checks are always performed.

Note that this interface is only supported on the Unix platform.

KEYWORDS
channel, file handle, permissions, pipeline, read, write

Tcl Last change: 8.0 1

Tcl Library Procedures Tcl_GetStdChannel (3)

NAME
Tcl_GetStdChannel, Tcl_SetStdChannel − procedures for retrieving and replacing the standard channels

SYNOPSIS
#include <tcl.h>

Tcl_Channel
Tcl_GetStdChannel(type)

Tcl_SetStdChannel(channel, type)

ARGUMENTS
int type (in) The identifier for the standard channel to retrieve or modify. Must be

one ofTCL_STDIN , TCL_STDOUT , or TCL_STDERR.

Tcl_Channel channel (in) The channel to use as the new value for the specified standard chan-
nel.

DESCRIPTION
Tcl defines three special channels that are used by various I/O related commands if no other channels are
specified. The standard input channel has a channel name ofstdin and is used byread andgets. The stan-
dard output channel is namedstdout and is used byputs. The standard error channel is namedstderr and
is used for reporting errors. In addition, the standard channels are inherited by any child processes created
usingexecor open in the absence of any other redirections.

The standard channels are actually aliases for other normal channels. The current channel associated with a
standard channel can be retrieved by callingTcl_GetStdChannelwith one ofTCL_STDIN , TCL_STD-
OUT, or TCL_STDERR as thetype. The return value will be a valid channel, or NULL.

A new channel can be set for the standard channel specified bytypeby callingTcl_SetStdChannelwith a
new channel or NULL in thechannelargument. If the specified channel is closed by a later call to
Tcl_Close, then the corresponding standard channel will automatically be set to NULL.

If Tcl_GetStdChannel is called beforeTcl_SetStdChannel, Tcl will construct a new channel to wrap the
appropriate platform-specific standard file handle. IfTcl_SetStdChannel is called beforeTcl_GetStd-
Channel, then the default channel will not be created.

If one of the standard channels is set to NULL, either by callingTcl_SetStdChannelwith a null channel
argument, or by callingTcl_Closeon the channel, then the next call toTcl_CreateChannelwill automati-
cally set the standard channel with the newly created channel. If more than one standard channel is NULL,
then the standard channels will be assigned starting with standard input, followed by standard output, with
standard error being last.

SEE ALSO
Tcl_Close(3), Tcl_CreateChannel(3)

KEYWORDS
standard channel, standard input, standard output, standard error

Tcl Last change: 7.5 1

Tcl Library Procedures Tcl_Hash (3)

NAME
Tcl_InitHashTable, Tcl_DeleteHashTable, Tcl_CreateHashEntry, Tcl_DeleteHashEntry, Tcl_FindHashEn-
try, Tcl_GetHashValue, Tcl_SetHashValue, Tcl_GetHashKey, Tcl_FirstHashEntry, Tcl_NextHashEntry,
Tcl_HashStats − procedures to manage hash tables

SYNOPSIS
#include <tcl.h>

Tcl_InitHashTable(tablePtr, keyType)

Tcl_DeleteHashTable(tablePtr)

Tcl_HashEntry∗
Tcl_CreateHashEntry(tablePtr, key, newPtr)

Tcl_DeleteHashEntry(entryPtr)

Tcl_HashEntry∗
Tcl_FindHashEntry (tablePtr, key)

ClientData
Tcl_GetHashValue(entryPtr)

Tcl_SetHashValue(entryPtr, value)

char∗
Tcl_GetHashKey(tablePtr, entryPtr)

Tcl_HashEntry∗
Tcl_FirstHashEntry (tablePtr, searchPtr)

Tcl_HashEntry∗
Tcl_NextHashEntry(searchPtr)

char∗
Tcl_HashStats(tablePtr)

ARGUMENTS
Tcl_HashTable ∗tablePtr (in) Address of hash table structure (for all procedures but

Tcl_InitHashTable, this must have been initialized by previ-
ous call toTcl_InitHashTable).

int keyType (in) Kind of keys to use for new hash table. Must be either
TCL_STRING_KEYS, TCL_ONE_WORD_KEYS, or an inte-
ger value greater than 1.

char ∗key (in) Key to use for probe into table. Exact form depends on
keyTypeused to create table.

int ∗newPtr (out) The word at∗newPtris set to 1 if a new entry was created and
0 if there was already an entry forkey.

Tcl_HashEntry ∗entryPtr (in) Pointer to hash table entry.

ClientData value (in) New value to assign to hash table entry. Need not have type
ClientData, but must fit in same space as ClientData.

Tcl Last change: 1

Tcl Library Procedures Tcl_Hash (3)

Tcl_HashSearch ∗searchPtr (in) Pointer to record to use to keep track of progress in enumerat-
ing all the entries in a hash table.

DESCRIPTION
A hash table consists of zero or more entries, each consisting of a key and a value. Given the key for an
entry, the hashing routines can very quickly locate the entry, and hence its value. There may be at most one
entry in a hash table with a particular key, but many entries may have the same value. Keys can take one of
three forms: strings, one-word values, or integer arrays. All of the keys in a giv en table have the same
form, which is specified when the table is initialized.

The value of a hash table entry can be anything that fits in the same space as a ‘‘char∗’’ pointer. Values for
hash table entries are managed entirely by clients, not by the hash module itself. Typically each entry’s
value is a pointer to a data structure managed by client code.

Hash tables grow gracefully as the number of entries increases, so that there are always less than three
entries per hash bucket, on average. This allows for fast lookups regardless of the number of entries in a
table.

Tcl_InitHashTable initializes a structure that describes a new hash table. The space for the structure is
provided by the caller, not by the hash module. The value ofkeyTypeindicates what kinds of keys will be
used for all entries in the table.Ke yTypemust have one of the following values:

TCL_STRING_KEYS Ke ys are null-terminated ASCII strings. They are passed to hashing rou-
tines using the address of the first character of the string.

TCL_ONE_WORD_KEYS Ke ys are single-word values; they are passed to hashing routines and stored
in hash table entries as ‘‘char∗’’ values. The pointer value is the key; it
need not (and usually doesn’t) actually point to a string.

other If keyTypeis not TCL_STRING_KEYS or TCL_ONE_WORD_KEYS, then
it must be an integer value greater than 1. In this case the keys will be
arrays of ‘‘int’’ values, wherekeyTypegives the number of ints in each key.
This allows structures to be used as keys. All keys must have the same size.
Array keys are passed into hashing functions using the address of the first
int in the array.

Tcl_DeleteHashTabledeletes all of the entries in a hash table and frees up the memory associated with the
table’s bucket array and entries. It does not free the actual table structure (pointed to bytablePtr), since
that memory is assumed to be managed by the client.Tcl_DeleteHashTablealso does not free or other-
wise manipulate the values of the hash table entries. If the entry values point to dynamically-allocated
memory, then it is the client’s responsibility to free these structures before deleting the table.

Tcl_CreateHashEntry locates the entry corresponding to a particular key, creating a new entry in the table
if there wasn’t already one with the given key. If an entry already existed with the given key then∗newPtr
is set to zero. If a new entry was created, then∗newPtris set to a non-zero value and the value of the new
entry will be set to zero. The return value fromTcl_CreateHashEntry is a pointer to the entry, which may
be used to retrieve and modify the entry’s value or to delete the entry from the table.

Tcl_DeleteHashEntry will remove an existing entry from a table. The memory associated with the entry
itself will be freed, but the client is responsible for any cleanup associated with the entry’s value, such as
freeing a structure that it points to.

Tcl_FindHashEntry is similar toTcl_CreateHashEntry except that it doesn’t create a new entry if the
key doesn’t exist; instead, it returns NULL as result.

Tcl Last change: 2

Tcl Library Procedures Tcl_Hash (3)

Tcl_GetHashValueandTcl_SetHashValueare used to read and write an entry’s value, respectively. Val-
ues are stored and retrieved as type ‘‘ClientData’’, which is large enough to hold a pointer value. On almost
all machines this is large enough to hold an integer value too.

Tcl_GetHashKey returns the key for a given hash table entry, either as a pointer to a string, a one-word
(‘‘char ∗’’) key, or as a pointer to the first word of an array of integers, depending on thekeyTypeused to
create a hash table. In all casesTcl_GetHashKey returns a result with type ‘‘char∗’’. When the key is a
string or array, the result ofTcl_GetHashKeypoints to information in the table entry; this information will
remain valid until the entry is deleted or its table is deleted.

Tcl_FirstHashEntry andTcl_NextHashEntry may be used to scan all of the entries in a hash table. A
structure of type ‘‘Tcl_HashSearch’’, provided by the client, is used to keep track of progress through the
table. Tcl_FirstHashEntry initializes the search record and returns the first entry in the table (or NULL if
the table is empty). Each subsequent call toTcl_NextHashEntry returns the next entry in the table or
NULL if the end of the table has been reached. A call toTcl_FirstHashEntry followed by calls to
Tcl_NextHashEntry will return each of the entries in the table exactly once, in an arbitrary order. It is
unadvisable to modify the structure of the table, e.g. by creating or deleting entries, while the search is in
progress.

Tcl_HashStatsreturns a dynamically-allocated string with overall information about a hash table, such as
the number of entries it contains, the number of buckets in its hash array, and the utilization of the buckets.
It is the caller’s responsibility to free the result string by passing it tofree.

The header filetcl.h defines the actual data structures used to implement hash tables. This is necessary so
that clients can allocate Tcl_HashTable structures and so that macros can be used to read and write the val-
ues of entries. However, users of the hashing routines should never refer directly to any of the fields of any
of the hash-related data structures; use the procedures and macros defined here.

KEYWORDS
hash table, key, lookup, search, value

Tcl Last change: 3

Tcl Library Procedures Tcl_IntObj (3)

NAME
Tcl_NewIntObj, Tcl_NewLongObj, Tcl_SetIntObj, Tcl_SetLongObj, Tcl_GetIntFromObj, Tcl_Get-
LongFromObj − manipulate Tcl objects as integers

SYNOPSIS
#include <tcl.h>

Tcl_Obj ∗
Tcl_NewIntObj (intValue)

Tcl_Obj ∗
Tcl_NewLongObj(longValue)

Tcl_SetIntObj (objPtr, intValue)

Tcl_SetLongObj(objPtr, longValue)

int
Tcl_GetIntFromObj (interp, objPtr, intPtr)

int
Tcl_GetLongFromObj (interp, objPtr, longPtr)

ARGUMENTS
int intValue (in) Integer value used to initialize or set an integer object.

long longValue(in) Long integer value used to initialize or set an integer object.

Tcl_Obj ∗objPtr (in/out) ForTcl_SetIntObj andTcl_SetLongObj, this points to the object to be
converted to integer type. ForTcl_GetIntFromObj and Tcl_Get-
LongFromObj , this refers to the object from which to get an integer or
long integer value; ifobjPtr does not already point to an integer object,
an attempt will be made to convert it to one.

Tcl_Interp ∗interp (in/out) If an error occurs during conversion, an error message is left in the inter-
preter’s result object unlessinterp is NULL.

int ∗intPtr (out) Points to place to store the integer value obtained byTcl_GetIntFro-
mObj from objPtr.

long ∗longPtr (out) Points to place to store the long integer value obtained byTcl_Get-
LongFromObj from objPtr.

DESCRIPTION
These procedures are used to create, modify, and read integer Tcl objects from C code.Tcl_NewIntObj ,
Tcl_NewLongObj, Tcl_SetIntObj , andTcl_SetLongObj create a new object of integer type or modify an
existing object to have integer type.Tcl_NewIntObj andTcl_SetIntObj set the object to have the integer
value given byintValue, while Tcl_NewLongObj and Tcl_SetLongObj set the object to have the long
integer value given bylongValue. Tcl_NewIntObj andTcl_NewLongObj return a pointer to a newly cre-
ated object with reference count zero. These procedures set the object’s type to be integer and assign the
integer value to the object’s internal representationlongValuemember. Tcl_SetIntObj andTcl_SetLon-
gObj invalidate any old string representation and, if the object is not already an integer object, free any old
internal representation.

Tcl Last change: 8.0 1

Tcl Library Procedures Tcl_IntObj (3)

Tcl_GetIntFromObj andTcl_GetLongFromObj attempt to return an integer value from the Tcl object
objPtr. If the object is not already an integer object, they will attempt to convert it to one. If an error
occurs during conversion, they returnTCL_ERROR and leave an error message in the interpreter’s result
object unlessinterp is NULL. Also, if the long integer held in the object’s internal representationlong-
Valuemember can not be represented in a (non-long) integer,Tcl_GetIntFromObj returnsTCL_ERROR
and leaves an error message in the interpreter’s result object unlessinterp is NULL. Otherwise, both proce-
dures returnTCL_OK and store the integer or the long integer value in the address given byintPtr and
longPtr respectively. If the object is not already an integer object, the conversion will free any old internal
representation.

SEE ALSO
Tcl_NewObj, Tcl_DecrRefCount, Tcl_IncrRefCount, Tcl_GetObjResult

KEYWORDS
integer, integer object, integer type, internal representation, object, object type, string representation

Tcl Last change: 8.0 2

Tcl Library Procedures Tcl_Interp (3)

NAME
Tcl_Interp − client-visible fields of interpreter structures

SYNOPSIS
#include <tcl.h>

typedef struct {
char∗result;
Tcl_FreeProc∗freeProc;
int errorLine;

} Tcl_Interp;

typedef void Tcl_FreeProc(char∗blockPtr);

DESCRIPTION
The Tcl_CreateInterp procedure returns a pointer to a Tcl_Interp structure. This pointer is then passed
into other Tcl procedures to process commands in the interpreter and perform other operations on the inter-
preter. Interpreter structures contain many many fields that are used by Tcl, but only three that may be
accessed by clients:result, freeProc, anderrorLine.

The result and freeProcfields are used to return results or error messages from commands. This informa-
tion is returned by command procedures back toTcl_Eval, and byTcl_Eval back to its callers. Theresult
field points to the string that represents the result or error message, and thefreeProcfield tells how to dis-
pose of the storage for the string when it isn’t needed anymore. The easiest way for command procedures
to manipulate these fields is to call procedures likeTcl_SetResultor Tcl_AppendResult; they will hide
all the details of managing the fields. The description below is for those procedures that manipulate the
fields directly.

Whenever a command procedure returns, it must ensure that theresult field of its interpreter points to the
string being returned by the command. Theresultfield must always point to a valid string. If a command
wishes to return no result theninterp->result should point to an empty string. Normally, results are
assumed to be statically allocated, which means that the contents will not change before the next time
Tcl_Eval is called or some other command procedure is invoked. In this case, thefreeProcfield must be
zero. Alternatively, a command procedure may dynamically allocate its return value (e.g. usingTcl_Alloc)
and store a pointer to it ininterp->result. In this case, the command procedure must also setinterp->freeP-
roc to the address of a procedure that can free the value, orTCL_DYNAMIC if the storage was allocated
directly by Tcl or by a call toTcl_Alloc. If interp->freeProcis non-zero, then Tcl will callfreeProcto free
the space pointed to byinterp->resultbefore it invokes the next command. If a client procedure overwrites
interp->resultwhen interp->freeProcis non-zero, then it is responsible for callingfreeProcto free the old
interp->result(theTcl_FreeResultmacro should be used for this purpose).

Fr eeProcshould have arguments and result that match theTcl_FreeProc declaration above: it receives a
single argument which is a pointer to the result value to free. In most applicationsTCL_DYNAMIC is the
only non-zero value ever used forfreeProc. Howev er, an application may store a different procedure
address infreeProcin order to use an alternate memory allocator or in order to do other cleanup when the
result memory is freed.

As part of processing each command,Tcl_Eval initializes interp->resultand interp->freeProcjust before
calling the command procedure for the command. ThefreeProc field will be initialized to zero, and
interp->resultwill point to an empty string. Commands that do not return any value can simply leave the
fields alone. Furthermore, the empty string pointed to byresult is actually part of an array of
TCL_RESULT_SIZE characters (approximately 200). If a command wishes to return a short string, it can
simply copy it to the area pointed to byinterp->result. Or, it can use the sprintf procedure to generate a

Tcl Last change: 7.5 1

Tcl Library Procedures Tcl_Interp (3)

short result string at the location pointed to byinterp->result.

It is a general convention in Tcl-based applications that the result of an interpreter is normally in the initial-
ized state described in the previous paragraph. Procedures that manipulate an interpreter’s result (e.g. by
returning an error) will generally assume that the result has been initialized when the procedure is called. If
such a procedure is to be called after the result has been changed, thenTcl_ResetResultshould be called
first to reset the result to its initialized state.

TheerrorLine field is valid only afterTcl_Eval returns aTCL_ERROR return code. In this situation the
errorLinefield identifies the line number of the command being executed when the error occurred. The line
numbers are relative to the command being executed: 1 means the first line of the command passed to
Tcl_Eval, 2 means the second line, and so on. TheerrorLine field is typically used in conjunction with
Tcl_AddErrorInfo to report information about where an error occurred.ErrorLine should not normally be
modified except byTcl_Eval.

KEYWORDS
free, initialized, interpreter, malloc, result

Tcl Last change: 7.5 2

Tcl Library Procedures Tcl_LinkVar (3)

NAME
Tcl_LinkVar, Tcl_UnlinkVar, Tcl_UpdateLinkedVar − link Tcl variable to C variable

SYNOPSIS
#include <tcl.h>

int
Tcl_LinkVar (interp, varName, addr, type)

Tcl_UnlinkVar (interp, varName)

Tcl_UpdateLinkedVar (interp, varName)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter that containsvarName. Also used byTcl_LinkVar to

return error messages.

char ∗varName (in) Name of global variable. Must be in writable memory: Tcl may make
temporary modifications to it while parsing the variable name.

char ∗addr (in) Address of C variable that is to be linked tovarName.

int type (in) Type of C variable. Must be one of TCL_LINK_INT,
TCL_LINK_DOUBLE, TCL_LINK_BOOLEAN, or
TCL_LINK_STRING, optionally OR’ed with
TCL_LINK_READ_ONLY to make Tcl variable read-only.

DESCRIPTION
Tcl_LinkVar uses variable traces to keep the Tcl variable named byvarNamein sync with the C variable
at the address given byaddr. Whenever the Tcl variable is read the value of the C variable will be returned,
and whenever the Tcl variable is written the C variable will be updated to have the same value.
Tcl_LinkVar normally returns TCL_OK; if an error occurs while setting up the link (e.g. becausevar-
Nameis the name of array) then TCL_ERROR is returned andinterp->resultcontains an error message.

The typeargument specifies the type of the C variable, and must have one of the following values, option-
ally OR’ed with TCL_LINK_READ_ONLY:

TCL_LINK_INT
The C variable is of typeint . Any value written into the Tcl variable must have a proper integer
form acceptable toTcl_GetInt ; attempts to write non-integer values intovarNamewill be
rejected with Tcl errors.

TCL_LINK_DOUBLE
The C variable is of typedouble. Any value written into the Tcl variable must have a proper real
form acceptable toTcl_GetDouble; attempts to write non-real values intovarNamewill be
rejected with Tcl errors.

TCL_LINK_BOOLEAN
The C variable is of typeint . If its value is zero then it will read from Tcl as ‘‘0’’; otherwise it will
read from Tcl as ‘‘1’’. WhenevervarNameis modified, the C variable will be set to a 0 or 1 value.
Any value written into the Tcl variable must have a proper boolean form acceptable toTcl_Get-
Boolean; attempts to write non-boolean values intovarNamewill be rejected with Tcl errors.

TCL_LINK_STRING
The C variable is of typechar ∗. If its value is not null then it must be a pointer to a string allo-
cated withTcl_Alloc. Whenever the Tcl variable is modified the current C string will be freed and

Tcl Last change: 7.5 1

Tcl Library Procedures Tcl_LinkVar (3)

new memory will be allocated to hold a copy of the variable’s new value. If the C variable con-
tains a null pointer then the Tcl variable will read as ‘‘NULL’’.

If the TCL_LINK_READ_ONLY flag is present intype then the variable will be read-only from Tcl, so
that its value can only be changed by modifying the C variable. Attempts to write the variable from Tcl
will be rejected with errors.

Tcl_UnlinkVar removes the link previously set up for the variable given byvarName. If there does not
exist a link forvarNamethen the procedure has no effect.

Tcl_UpdateLinkedVar may be invoked after the C variable has changed to force the Tcl variable to be
updated immediately. In many cases this procedure is not needed, since any attempt to read the Tcl vari-
able will return the latest value of the C variable. However, if a trace has been set on the Tcl variable (such
as a Tk widget that wishes to display the value of the variable), the trace will not trigger when the C vari-
able has changed.Tcl_UpdateLinkedVar ensures that any traces on the Tcl variable are invoked.

KEYWORDS
boolean, integer, link, read-only, real, string, traces, variable

Tcl Last change: 7.5 2

Tcl Library Procedures Tcl_ListObj (3)

NAME
Tcl_ListObjAppendList, Tcl_ListObjAppendElement, Tcl_NewListObj, Tcl_SetListObj, Tcl_ListOb-
jGetElements, Tcl_ListObjLength, Tcl_ListObjIndex, Tcl_ListObjReplace − manipulate Tcl objects as lists

SYNOPSIS
#include <tcl.h>

int
Tcl_ListObjAppendList (interp, listPtr, elemListPtr)

int
Tcl_ListObjAppendElement(interp, listPtr, objPtr)

Tcl_Obj ∗
Tcl_NewListObj (objc, objv)

Tcl_SetListObj(objPtr, objc, objv)

int
Tcl_ListObjGetElements(interp, listPtr, objcPtr, objvPtr)

int
Tcl_ListObjLength (interp, listPtr, intPtr)

int
Tcl_ListObjIndex (interp, listPtr, index, objPtrPtr)

int
Tcl_ListObjReplace(interp, listPtr, first, count, objc, objv)

ARGUMENTS
Tcl_Interp ∗interp (in) If an error occurs while converting an object to be a list object,

an error message is left in the interpreter’s result object unless
interp is NULL.

Tcl_Obj ∗listPtr (in/out) Points to the list object to be manipulated. IflistPtr does not
already point to a list object, an attempt will be made to convert
it to one.

Tcl_Obj ∗elemListPtr (in/out) ForTcl_ListObjAppendList , this points to a list object con-
taining elements to be appended ontolistPtr. Each element of
∗elemListPtrwill become a new element oflistPtr. If ∗elem-
ListPtr is not NULL and does not already point to a list object,
an attempt will be made to convert it to one.

Tcl_Obj ∗objPtr (in) For Tcl_ListObjAppendElement, points to the Tcl object that
will be appended tolistPtr. For Tcl_SetListObj, this points to
the Tcl object that will be converted to a list object containing
theobjcelements of the array referenced byobjv.

int ∗objcPtr (in) Points to location whereTcl_ListObjGetElements stores the
number of element objects inlistPtr.

Tcl_Obj ∗∗∗objvPtr (out) A location whereTcl_ListObjGetElements stores a pointer to
an array of pointers to the element objects oflistPtr.

Tcl Last change: 8.0 1

Tcl Library Procedures Tcl_ListObj (3)

int objc (in) The number of Tcl objects thatTcl_NewListObj will insert
into a new list object, andTcl_ListObjReplace will insert into
listPtr. For Tcl_SetListObj, the number of Tcl objects to
insert intoobjPtr.

Tcl_Obj ∗CONSTobjv[] (in) An array of pointers to objects.Tcl_NewListObj will insert
these objects into a new list object andTcl_ListObjReplace
will insert them into an existinglistPtr. Each object will
become a separate list element.

int ∗intPtr (out) Points to location whereTcl_ListObjLength stores the length
of the list.

int index (in) Index of the list element thatTcl_ListObjIndex is to return.
The first element has index 0.

Tcl_Obj ∗∗objPtrPtr (out) Points to place whereTcl_ListObjIndex is to store a pointer to
the resulting list element object.

int first (in) Index of the starting list element thatTcl_ListObjReplace is
to replace. The list’s first element has index 0.

int count (in) The number of elements thatTcl_ListObjReplace is to
replace.

DESCRIPTION
Tcl list objects have an internal representation that supports the efficient indexing and appending. The pro-
cedures described in this man page are used to create, modify, index, and append to Tcl list objects from C
code.

Tcl_ListObjAppendList andTcl_ListObjAppendElement both add one or more objects to the end of the
list object referenced bylistPtr. Tcl_ListObjAppendList appends each element of the list object refer-
enced byelemListPtrwhile Tcl_ListObjAppendElement appends the single object referenced byobjPtr.
Both procedures will convert the object referenced bylistPtr to a list object if necessary. If an error occurs
during conversion, both procedures returnTCL_ERROR and leave an error message in the interpreter’s
result object ifinterp is not NULL. Similarly, if elemListPtrdoes not already refer to a list object,Tcl_Lis-
tObjAppendList will attempt to convert it to one and if an error occurs during conversion, will return
TCL_ERROR and leave an error message in the interpreter’s result object if interp is not NULL. Both
procedures invalidate any old string representation oflistPtr and, if it was converted to a list object, free any
old internal representation. Similarly,Tcl_ListObjAppendList frees any old internal representation of
elemListPtrif it converts it to a list object. After appending each element inelemListPtr, Tcl_ListObjAp-
pendList increments the element’s reference count sincelistPtr now also refers to it. For the same reason,
Tcl_ListObjAppendElement incrementsobjPtr’s reference count. If no error occurs, the two procedures
returnTCL_OK after appending the objects.

Tcl_NewListObj andTcl_SetListObj create a new object or modify an existing object to hold theobjc
elements of the array referenced byobjv where each element is a pointer to a Tcl object. Ifobjc is less than
or equal to zero, they return an empty object. The new object’s string representation is left invalid. The
two procedures increment the reference counts of the elements inobjc since the list object now refers to
them. The new list object returned byTcl_NewListObj has reference count zero.

Tcl_ListObjGetElements returns a count and a pointer to an array of the elements in a list object. It
returns the count by storing it in the addressobjcPtr. Similarly, it returns the array pointer by storing it in
the addressobjvPtr. If listPtr is not already a list object,Tcl_ListObjGetElements will attempt to convert
it to one; if the conversion fails, it returnsTCL_ERROR and leaves an error message in the interpreter’s
result object ifinterp is not NULL. Otherwise it returnsTCL_OK after storing the count and array pointer.

Tcl Last change: 8.0 2

Tcl Library Procedures Tcl_ListObj (3)

Tcl_ListObjLength returns the number of elements in the list object referenced bylistPtr. It returns this
count by storing an integer in the addressintPtr. If the object is not already a list object,Tcl_ListOb-
jLength will attempt to convert it to one; if the conversion fails, it returnsTCL_ERROR and leaves an
error message in the interpreter’s result object ifinterp is not NULL. Otherwise it returnsTCL_OK after
storing the list’s length.

The procedureTcl_ListObjIndex returns a pointer to the object at elementindex in the list referenced by
listPtr. It returns this object by storing a pointer to it in the addressobjPtrPtr. If listPtr does not already
refer to a list object,Tcl_ListObjIndex will attempt to convert it to one; if the conversion fails, it returns
TCL_ERROR and leaves an error message in the interpreter’s result object ifinterp is not NULL. If the
index is out of range, that is,indexis negative or greater than or equal to the number of elements in the list,
Tcl_ListObjIndex stores a NULL inobjPtrPtr and returnsTCL_OK . Otherwise it returnsTCL_OK after
storing the element’s object pointer. The reference count for the list element is not incremented; the caller
must do that if it needs to retain a pointer to the element.

Tcl_ListObjReplace replaces zero or more elements of the list referenced bylistPtr with theobjc objects
in the array referenced byobjv. If listPtr does not point to a list object,Tcl_ListObjReplace will attempt
to convert it to one; if the conversion fails, it returnsTCL_ERROR and leaves an error message in the
interpreter’s result object ifinterp is not NULL. Otherwise, it returnsTCL_OK after replacing the objects.
If objv is NULL, no new elements are added. If the argumentfirst is zero or negative, it refers to the first
element. Iffirst is greater than or equal to the number of elements in the list, then no elements are deleted;
the new elements are appended to the list.countgives the number of elements to replace. Ifcount is zero
or negative then no elements are deleted; the new elements are simply inserted before the one designated by
first. Tcl_ListObjReplace invalidateslistPtr’s old string representation. The reference counts of any ele-
ments inserted fromobjv are incremented since the resulting list now refers to them. Similarly, the refer-
ence counts for any replaced objects are decremented.

BecauseTcl_ListObjReplace combines both element insertion and deletion, it can be used to implement a
number of list operations. For example, the following code inserts theobjc objects referenced by the array
of object pointersobjv just before the elementindexof the list referenced bylistPtr:

result = Tcl_ListObjReplace(interp, listPtr, index, 0, objc, objv);
Similarly, the following code appends theobjc objects referenced by the arrayobjv to the end of the list
listPtr:

result = Tcl_ListObjLength(interp, listPtr, &length);
if (result == TCL_OK) {

result = Tcl_ListObjReplace(interp, listPtr, length, 0, objc, objv);
}

Thecountlist elements starting atfirst can be deleted by simply callingTcl_ListObjReplace with a NULL
objvPtr:

result = Tcl_ListObjReplace(interp, listPtr, first, count, 0, NULL);

SEE ALSO
Tcl_NewObj, Tcl_DecrRefCount, Tcl_IncrRefCount, Tcl_GetObjResult

KEYWORDS
append, index, insert, internal representation, length, list, list object, list type, object, object type, replace,
string representation

Tcl Last change: 8.0 3

Tcl Library Procedures Notifier (3)

NAME
Tcl_CreateEventSource, Tcl_DeleteEventSource, Tcl_SetMaxBlockTime, Tcl_QueueEvent, Tcl_Dele-
teEvents, Tcl_WaitForEvent, Tcl_SetTimer, Tcl_ServiceAll, Tcl_ServiceEvent, Tcl_GetServiceMode,
Tcl_SetServiceMode − the event queue and notifier interfaces

SYNOPSIS
#include <tcl.h>

Tcl_CreateEventSource(setupProc, checkProc, clientData)

Tcl_DeleteEventSource(setupProc, checkProc, clientData)

Tcl_SetMaxBlockTime(timePtr)

Tcl_QueueEvent(evPtr, position)

Tcl_DeleteEvents(deleteProc, clientData)

int
Tcl_WaitForEvent (timePtr)

Tcl_SetTimer(timePtr)

int
Tcl_ServiceAll()

int
Tcl_ServiceEvent(flags)

int
Tcl_GetServiceMode()

int
Tcl_SetServiceMode(mode)

ARGUMENTS
Tcl_EventSetupProc ∗setupProc (in) Procedure to invoke to prepare for event wait in

Tcl_DoOneEvent.

Tcl_EventCheckProc ∗checkProc (in) Procedure forTcl_DoOneEvent to invoke after waiting
for events. Checks to see if any events have occurred and,
if so, queues them.

ClientData clientData (in) Arbitrary one-word value to pass tosetupProc, checkProc,
or deleteProc.

Tcl_Time ∗timePtr (in) Indicates the maximum amount of time to wait for an
ev ent. This is specified as an interval (how long to wait),
not an absolute time (when to wakeup). If the pointer
passed toTcl_WaitForEvent is NULL, it means there is
no maximum wait time: wait forever if necessary.

Tcl_Event ∗evPtr (in) An ev ent to add to the event queue. The storage for the

Tcl Last change: 8.0 1

Tcl Library Procedures Notifier (3)

ev ent must have been allocated by the caller using
Tcl_Alloc or ckalloc.

Tcl_QueuePosition position (in) Where to add the new event in the queue:
TCL_QUEUE_TAIL , TCL_QUEUE_HEAD , or
TCL_QUEUE_MARK .

int flags (in) What types of events to service. These flags are the same
as those passed toTcl_DoOneEvent.

Tcl_EventDeleteProc ∗deleteProc (in) Procedure to invoke for each queued event inTcl_Dele-
teEvents.

int mode (in) Inidicates whether events should be serviced byTcl_Ser-
viceAll. Must be one ofTCL_SERVICE_NONE or
TCL_SERVICE_ALL .

INTRODUCTION
The interfaces described here are used to customize the Tcl event loop. The two most common customiza-
tions are to add new sources of events and to merge Tcl’s event loop with some other event loop, such as
one provided by an application in which Tcl is embedded. Each of these tasks is described in a separate
section below.

The procedures in this manual entry are the building blocks out of which the Tcl event notifier is con-
structed. The ev ent notifier is the lowest layer in the Tcl event mechanism. It consists of three things:

[1] Event sources: these represent the ways in which events can be generated. For example, there is a
timer event source that implements theTcl_CreateTimerHandler procedure and theafter com-
mand, and there is a file event source that implements theTcl_CreateFileHandler procedure on
Unix systems. An event source must work with the notifier to detect events at the right times,
record them on the event queue, and eventually notify higher-level software that they hav e
occurred. The proceduresTcl_CreateEventSource, Tcl_DeleteEventSource, and Tcl_Set-
MaxBlockTime, Tcl_QueueEvent, andTcl_DeleteEventsare used primarily by event sources.

[2] The ev ent queue: there is a single queue for the whole application, containing events that have
been detected but not yet serviced. Event sources place events onto the queue so that they may be
processed in order at appropriate times during the event loop. The event queue guarantees a fair
discipline of event handling, so that no event source can starve the others. It also allows events to
be saved for servicing at a future time.Tcl_QueueEventis used (primarily by event sources) to
add events to the event queue andTcl_DeleteEventsis used to remove events from the queue
without processing them.

[3] The ev ent loop: in order to detect and process events, the application enters a loop that waits for
ev ents to occur, places them on the event queue, and then processes them. Most applications will
do this by calling the procedureTcl_DoOneEvent, which is described in a separate manual entry.

Most Tcl applications need not worry about any of the internals of the Tcl notifier. Howev er, the notifier
now has enough flexibility to be retargeted either for a new platform or to use an external event loop (such
as the Motif event loop, when Tcl is embedded in a Motif application). The proceduresTcl_WaitForEvent
andTcl_SetTimer are normally implemented by Tcl, but may be replaced with new versions to retarget the
notifier (theTcl_Sleep, Tcl_CreateFileHandler, andTcl_DeleteFileHandler must also be replaced; see
CREATING A NEW NOTIFIER below for details). The proceduresTcl_ServiceAll, Tcl_ServiceEvent,
Tcl_GetServiceMode, andTcl_SetServiceModeare provided to help connect Tcl’s event loop to an exter-
nal event loop such as Motif’s.

Tcl Last change: 8.0 2

Tcl Library Procedures Notifier (3)

NOTIFIER BASICS
The easiest way to understand how the notifier works is to consider what happens whenTcl_DoOneEvent
is called. Tcl_DoOneEventis passed aflagsargument that indicates what sort of events it is OK to process
and also whether or not to block if no events are ready.Tcl_DoOneEventdoes the following things:

[1] Check the event queue to see if it contains any events that can be serviced. If so, service the first
possible event, remove it from the queue, and return. It does this by callingTcl_ServiceEventand
passing in theflagsargument.

[2] Prepare to block for an event. To do this,Tcl_DoOneEvent invokes asetup procedurein each
ev ent source. The event source will perform event-source specific initialization and possibly call
Tcl_SetMaxBlockTime to limit how longTcl_WaitForEvent will block if no new events occur.

[3] Call Tcl_WaitForEvent . This procedure is implemented differently on different platforms; it
waits for an event to occur, based on the information provided by the event sources. It may cause
the application to block iftimePtr specifies an interval other than 0.Tcl_WaitForEvent returns
when something has happened, such as a file becoming readable or the interval given bytimePtr
expiring. If there are no events forTcl_WaitForEvent to wait for, so that it would block forever,
then it returns immediately andTcl_DoOneEventreturns 0.

[4] Call a check procedurein each event source. The check procedure determines whether any events
of interest to this source occurred. If so, the events are added to the event queue.

[5] Check the event queue to see if it contains any events that can be serviced. If so, service the first
possible event, remove it from the queue, and return.

[6] See if there are idle callbacks pending. If so, invoke all of them and return.

[7] Either return 0 to indicate that no events were ready, or go back to step [2] if blocking was
requested by the caller.

CREATING A NEW EVENT SOURCE
An event source consists of three procedures invoked by the notifier, plus additional C procedures that are
invoked by higher-level code to arrange for event-driven callbacks. The three procedures called by the noti-
fier consist of the setup and check procedures described above, plus an additional procedure that is invoked
when an event is removed from the event queue for servicing.

The procedureTcl_CreateEventSourcecreates a new event source. Its arguments specify the setup proce-
dure and check procedure for the event source.SetupProcshould match the following prototype:

typedef void Tcl_EventSetupProc(
ClientDataclientData,
int flags);

The clientData argument will be the same as theclientData argument toTcl_CreateEventSource; it is
typically used to point to private information managed by the event source. Theflagsargument will be the
same as theflagsargument passed toTcl_DoOneEventexcept that it will never be 0 (Tcl_DoOneEvent
replaces 0 withTCL_ALL_EVENTS). Flags indicates what kinds of events should be considered; if the
bit corresponding to this event source isn’t set, the event source should return immediately without doing
anything. For example, the file event source checks for theTCL_FILE_EVENTS bit.

SetupProc’s job is to make sure that the application wakes up when events of the desired type occur. This is
typically done in a platform-dependent fashion. For example, under Unix an event source might call
Tcl_CreateFileHandler; under Windows it might request notification with a Windows event. For timer-
driven event sources such as timer events or any polled event, the event source can callTcl_SetMaxBlock-
Time to force the application to wake up after a specified time even if no events have occurred. If no event
source callsTcl_SetMaxBlockTime thenTcl_WaitForEvent will wait as long as necessary for an event to
occur; otherwise, it will only wait as long as the shortest interval passed toTcl_SetMaxBlockTime by one
of the event sources. If an event source knows that it already has events ready to report, it can request a

Tcl Last change: 8.0 3

Tcl Library Procedures Notifier (3)

zero maximum block time. For example, the setup procedure for the X event source looks to see if there
are events already queued. If there are, it callsTcl_SetMaxBlockTime with a 0 block time so that
Tcl_WaitForEvent does not block if there is no new data on the X connection. ThetimePtr argument to
Tcl_WaitForEvent points to a structure that describes a time interval in seconds and microseconds:

typedef struct Tcl_Time {
longsec;
longusec;

} Tcl_Time;
Theusecfield should be less than 1000000.

Information provided toTcl_SetMaxBlockTime is only used for the next call toTcl_WaitForEvent ; it is
discarded afterTcl_WaitForEvent returns. The next time an event wait is done each of the event sources’
setup procedures will be called again, and they can specify new information for that event wait.

If the application uses an external event loop rather thanTcl_DoOneEvent, the event sources may need to
call Tcl_SetMaxBlockTime at other times. For example, if a new event handler is registered that needs to
poll for events, the event source may callTcl_SetMaxBlockTime to set the block time to zero to force the
external event loop to call Tcl. In this case,Tcl_SetMaxBlockTime invokesTcl_SetTimer with the short-
est interval seen since the last call toTcl_DoOneEventor Tcl_ServiceAll.

In addition to the generic procedureTcl_SetMaxBlockTime, other platform-specific procedures may also
be available forsetupProc, if there is additional information needed byTcl_WaitForEvent on that plat-
form. For example, on Unix systems theTcl_CreateFileHandler interface can be used to wait for file
ev ents.

The second procedure provided by each event source is its check procedure, indicated by thecheckProc
argument toTcl_CreateEventSource. CheckProcmust match the following prototype:

typedef void Tcl_EventCheckProc(
ClientDataclientData,
int flags);

The arguments to this procedure are the same as those forsetupProc. CheckProc is invoked by
Tcl_DoOneEventafter it has waited for events. Presumably at least one event source is now prepared to
queue an event.Tcl_DoOneEvent calls each of the event sources in turn, so they all have a chance to
queue any events that are ready. The check procedure does two things. First, it must see if any events have
triggered. Different event sources do this in different ways.

If an event source’s check procedure detects an interesting event, it must add the event to Tcl’s event queue.
To do this, the event source callsTcl_QueueEvent. TheevPtrargument is a pointer to a dynamically allo-
cated structure containing the event (see below for more information on memory management issues).
Each event source can define its own event structure with whatever information is relevant to that event
source. However, the first element of the structure must be a structure of typeTcl_Event, and the address
of this structure is used when communicating between the event source and the rest of the notifier. A
Tcl_Event has the following definition:

typedef struct Tcl_Event {
Tcl_EventProc∗proc;
struct Tcl_Event∗nextPtr;

};
The event source must fill in theproc field of the event before callingTcl_QueueEvent. The nextPtr is
used to link together the events in the queue and should not be modified by the event source.

An event may be added to the queue at any of three positions, depending on theposition argument to
Tcl_QueueEvent:

TCL_QUEUE_TAIL Add the event at the back of the queue, so that all other pending events will
be serviced first. This is almost always the right place for new events.

Tcl Last change: 8.0 4

Tcl Library Procedures Notifier (3)

TCL_QUEUE_HEAD Add the event at the front of the queue, so that it will be serviced before all
other queued events.

TCL_QUEUE_MARK Add the event at the front of the queue, unless there are other events at the
front whose position isTCL_QUEUE_MARK ; if so, add the new event just
after all otherTCL_QUEUE_MARK ev ents. This value ofposition is used
to insert an ordered sequence of events at the front of the queue, such as a
series of Enter and Leave events synthesized during a grab or ungrab opera-
tion in Tk.

When it is time to handle an event from the queue (steps 1 and 4 above)Tcl_ServiceEventwill invoke the
procspecified in the first queuedTcl_Event structure.Procmust match the following prototype:

typedef int Tcl_EventProc(
Tcl_Event∗evPtr,
int flags);

The first argument toproc is a pointer to the event, which will be the same as the first argument to the
Tcl_QueueEventcall that added the event to the queue. The second argument toproc is theflagsargument
for the current call toTcl_ServiceEvent; this is used by the event source to return immediately if its events
are not relevant.

It is up toproc to handle the event, typically by invoking one or more Tcl commands or C-level callbacks.
Once the event source has finished handling the event it returns 1 to indicate that the event can be removed
from the queue. If for some reason the event source decides that the event cannot be handled at this time, it
may return 0 to indicate that the event should be deferred for processing later; in this caseTcl_Ser-
viceEventwill go on to the next event in the queue and attempt to service it. There are several reasons why
an event source might defer an event. One possibility is that events of this type are excluded by theflags
argument. For example, the file event source will always return 0 if theTCL_FILE_EVENTS bit isn’t set
in flags. Another example of deferring events happens in Tk ifTk_RestrictEvents has been invoked to
defer certain kinds of window events.

Whenproc returns 1,Tcl_ServiceEventwill remove the event from the event queue and free its storage.
Note that the storage for an event must be allocated by the event source (usingTcl_Alloc or the Tcl macro
ckalloc) before callingTcl_QueueEvent, but it will be freed byTcl_ServiceEvent, not by the event
source.

Tcl_DeleteEventscan be used to explicitly remove one or more events from the event queue.Tcl_Dele-
teEventscallsproc for each event in the queue, deleting those for with the procedure returns 1. Events for
which the procedure returns 0 are left in the queue.Procshould match the following prototype:

typedef int Tcl_EventDeleteProc(
Tcl_Event∗evPtr,
ClientDataclientData);

The clientDataargument will be the same as theclientDataargument toTcl_DeleteEvents; it is typically
used to point to private information managed by the event source. TheevPtrwill point to the next event in
the queue.

CREATING A NEW NOTIFIER
The notifier consists of all the procedures described in this manual entry, plusTcl_DoOneEvent and
Tcl_Sleep, which are available on all platforms, andTcl_CreateFileHandler andTcl_DeleteFileHandler,
which are Unix-specific. Most of these procedures are generic, in that they are the same for all notifiers.
However, five of the procedures are notifier-dependent:Tcl_SetTimer, Tcl_Sleep, Tcl_WaitForEvent ,
Tcl_CreateFileHandler andTcl_DeleteFileHandler. To support a new platform or to integrate Tcl with
an application-specific event loop, you must write new versions of these procedures.

Tcl Last change: 8.0 5

Tcl Library Procedures Notifier (3)

Tcl_WaitForEvent is the lowest-level procedure in the notifier; it is responsible for waiting for an ‘‘inter-
esting’’ event to occur or for a given time to elapse. BeforeTcl_WaitForEvent is invoked, each of the
ev ent sources’ setup procedure will have been invoked. ThetimePtrargument toTcl_WaitForEvent gives
the maximum time to block for an event, based on calls toTcl_SetMaxBlockTime made by setup proce-
dures and on other information (such as theTCL_DONT_WAIT bit in flags).

Ideally, Tcl_WaitForEvent should only wait for an event to occur; it should not actually process the event
in any way. Later on, the event sources will process the raw events and create Tcl_Events on the event
queue in theircheckProcprocedures. However, on some platforms (such as Windows) this isn’t possible;
ev ents may be processed inTcl_WaitForEvent , including queuing Tcl_Events and more (for example,
callbacks for native widgets may be invoked). The return value fromTcl_WaitForEvent must be either 0,
1, or −1. On platforms such as Windows where events get processed inTcl_WaitForEvent , a return value
of 1 means that there may be more events still pending that haven’t been processed. This is a sign to the
caller that it must callTcl_WaitForEvent again if it wants all pending events to be processed. A 0 return
value means that callingTcl_WaitForEvent again will not have any effect: either this is a platform where
Tcl_WaitForEvent only waits without doing any event processing, orTcl_WaitForEvent knows for sure
that there are no additional events to process (e.g. it returned because the time elapsed). Finally, a return
value of −1 means that the event loop is no longer operational and the application should probably unwind
and terminate. Under Windows this happens when a WM_QUIT message is received; under Unix it hap-
pens whenTcl_WaitForEvent would have waited forever because there were no active event sources and
the timeout was infinite.

If the notifier will be used with an external event loop, then it must also support theTcl_SetTimer inter-
face. Tcl_SetTimer is invoked byTcl_SetMaxBlockTime whenever the maximum blocking time has
been reduced.Tcl_SetTimer should arrange for the external event loop to invokeTcl_ServiceAll after the
specified interval even if no events have occurred. This interface is needed becauseTcl_WaitForEvent
isn’t inv oked when there is an external event loop. If the notifier will only be used fromTcl_DoOneEvent,
thenTcl_SetTimer need not do anything.

On Unix systems, the file event source also needs support from the notifier. The file event source consists
of theTcl_CreateFileHandler andTcl_DeleteFileHandlerprocedures, which are described elsewhere.

TheTcl_SleepandTcl_DoOneEventinterfaces are described elsewhere.

The easiest way to create a new notifier is to look at the code for an existing notifier, such as the files
unix/tclUnixNotfy.c or win/tclWinNotify.c in the Tcl source distribution.

EXTERNAL EVENT LOOPS
The notifier interfaces are designed so that Tcl can be embedded into applications that have their own pri-
vate event loops. In this case, the application does not callTcl_DoOneEventexcept in the case of recur-
sive event loops such as calls to the Tcl commandsupdate or vwait. Most of the time is spent in the exter-
nal event loop of the application. In this case the notifier must arrange for the external event loop to call
back into Tcl when something happens on the various Tcl event sources. These callbacks should arrange
for appropriate Tcl events to be placed on the Tcl event queue.

Because the external event loop is not callingTcl_DoOneEventon a regular basis, it is up to the notifier to
arrange forTcl_ServiceEventto be called whenever events are pending on the Tcl event queue. The easi-
est way to do this is to invokeTcl_ServiceAll at the end of each callback from the external event loop.
This will ensure that all of the event sources are polled, any queued events are serviced, and any pending
idle handlers are processed before returning control to the application. In addition, event sources that need
to poll for events can callTcl_SetMaxBlockTime to force the external event loop to call Tcl even if no
ev ents are available on the system event queue.

As a side effect of processing events detected in the main external event loop, Tcl may invoke
Tcl_DoOneEvent to start a recursive event loop in commands likevwait. Tcl_DoOneEventwill invoke

Tcl Last change: 8.0 6

Tcl Library Procedures Notifier (3)

the external event loop, which will result in callbacks as described in the preceding paragraph, which will
result in calls toTcl_ServiceAll. Howev er, in these cases it is undesirable to service events inTcl_Ser-
viceAll. Servicing events there is unnecessary because control will immediately return to the external event
loop and hence toTcl_DoOneEvent, which can service the events itself. Furthermore,Tcl_DoOneEvent
is supposed to service only a single event, whereasTcl_ServiceAll normally services all pending events.
To handle this situation,Tcl_DoOneEventsets a flag forTcl_ServiceAll that causes it to return without
servicing any events. This flag is called theservice mode; Tcl_DoOneEvent restores it to its previous
value before it returns.

In some cases, however, it may be necessary forTcl_ServiceAll to service events even when it has been
invoked fromTcl_DoOneEvent. This happens when there is yet another recursive event loop invoked via
an event handler called byTcl_DoOneEvent (such as one that is part of a native widget). In this case,
Tcl_DoOneEventmay not have a chance to service events soTcl_ServiceAll must service them all. Any
recursive event loop that calls an external event loop rather thanTcl_DoOneEventmust reset the service
mode so that all events get processed inTcl_ServiceAll. This is done by invoking theTcl_SetService-
Mode procedure. IfTcl_SetServiceModeis passedTCL_SERVICE_NONE , then calls toTcl_Ser-
viceAll will return immediately without processing any events. IfTcl_SetServiceMode is passed
TCL_SERVICE_ALL , then calls toTcl_ServiceAll will behave normally.Tcl_SetServiceModereturns
the previous value of the service mode, which should be restored when the recursive loop exits.Tcl_Get-
ServiceModereturns the current value of the service mode.

KEYWORDS
ev ent, notifier, event queue, event sources, file events, timer, idle, service mode

Tcl Last change: 8.0 7

Tcl Library Procedures Tcl_ObjSetVar2 (3)

NAME
Tcl_ObjSetVar2, Tcl_ObjGetVar2 − manipulate Tcl variables

SYNOPSIS
#include <tcl.h>

Tcl_Obj ∗
Tcl_ObjSetVar2(interp, part1Ptr, part2Ptr, newValuePtr, flags)

Tcl_Obj ∗
Tcl_ObjGetVar2 (interp, part1Ptr, part2Ptr, flags)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter containing variable.

Tcl_Obj ∗part1Ptr (in) Points to a Tcl object containing the variable’s name. The name
may include a series of:: namespace qualifiers to specify a vari-
able in a particular namespace. May refer to a scalar variable or
an element of an array variable.

Tcl_Obj ∗part2Ptr (in) If non-NULL, points to an object containing the name of an ele-
ment within an array andpart1Ptr must refer to an array variable.

Tcl_Obj ∗newValuePtr (in) Points to a Tcl object containing the new value for the variable.

int flags (in) OR-ed combination of bits providing additional information for
operation. See below for valid values.

DESCRIPTION
These two procedures may be used to read and modify Tcl variables from C code.Tcl_ObjSetVar2 will
create a new variable or modify an existing one. It sets the specified variable to the object referenced by
newValuePtrand returns a pointer to the object which is the variable’s new value. The returned object may
not be the same one referenced bynewValuePtr; this might happen because variable traces may modify the
variable’s value. The reference count for the variable’s old value is decremented and the reference count
for its new value is incremented. If the new value for the variable is not the same one referenced bynew-
ValuePtr (perhaps as a result of a variable trace), thennewValuePtr’s reference count is left unchanged.
The reference count for the returned object is not incremented to reflect the returned reference. If the caller
needs to keep a reference to the object, say in a data structure, it must increment its reference count using
Tcl_IncrRefCount . If an error occurs in setting the variable (e.g. an array variable is referenced without
giving an index into the array), then NULL is returned.

The variable name specified toTcl_ObjSetVar2 consists of two parts.part1Ptr contains the name of a
scalar or array variable. Ifpart2Ptr is NULL, the variable must be a scalar. Ifpart2Ptr is not NULL, it
contains the name of an element in the array named bypart2Ptr. As a special case, if the flag
TCL_PARSE_PART1 is specified,part1Ptr may contain both an array and an element name: if the name
contains an open parenthesis and ends with a close parenthesis, then the value between the parentheses is
treated as an element name (which can have any string value) and the characters before the first open paren-
thesis are treated as the name of an array variable. If the flag TCL_PARSE_PART1 is given,part2Ptr
should be NULL since the array and element names are taken frompart2Ptr.

Theflagsargument may be used to specify any of sev eral options to the procedures. It consists of an OR-
ed combination of any of the following bits:

TCL_GLOBAL_ONLY
Under normal circumstances the procedures look up variables as follows: If a procedure call is
active ininterp, a variable is looked up at the current level of procedure call. Otherwise, a variable

Tcl Last change: 8.0 1

Tcl Library Procedures Tcl_ObjSetVar2 (3)

is looked up first in the current namespace, then in the global namespace. However, if this bit is
set inflagsthen the variable is looked up only in the global namespace even if there is a procedure
call active. If both TCL_GLOBAL_ONLY and TCL_NAMESPACE_ONLY are given,
TCL_GLOBAL_ONLY is ignored.

TCL_NAMESPACE_ONLY
Under normal circumstances the procedures look up variables as follows: If a procedure call is
active ininterp, a variable is looked up at the current level of procedure call. Otherwise, a variable
is looked up first in the current namespace, then in the global namespace. However, if this bit is
set inflags then the variable is looked up only in the current namespace even if there is a proce-
dure call active.

TCL_LEAVE_ERR_MSG
If an error is returned and this bit is set inflags, then an error message will be left in the inter-
preter’s result, where it can be retrieved withTcl_GetObjResult or Tcl_GetStringResult. If this
flag bit isn’t set then no error message is left and the interpreter’s result will not be modified.

TCL_APPEND_VALUE
If this bit is set thennewValuePtris appended to the current value, instead of replacing it. If the
variable is currently undefined, then this bit is ignored.

TCL_LIST_ELEMENT
If this bit is set, thennewValuePtris converted to a valid Tcl list element before setting (or append-
ing to) the variable. A separator space is appended before the new list element unless the list ele-
ment is going to be the first element in a list or sublist (i.e. the variable’s current value is empty, or
contains the single character ‘‘{’’, or ends in ‘‘ }’’).

TCL_PARSE_PART1
If this bit is set, thenTcl_ObjGetVar2 andTcl_ObjSetVar2 will parsepart1Ptr to obtain both an
array name and an element name. If the name inpart1Ptr contains an open parenthesis and ends
with a close parenthesis, the name is treated as the name of an element of an array; otherwise, the
name inpart1Ptr is interpreted as the name of a scalar variable. When this bit is set,part2Ptr is
ignored.

Tcl_ObjGetVar2 returns the value of the specified variable. Its arguments are treated the same way as
those forTcl_ObjSetVar2. It returns a pointer to the object which is the variable’s value. The reference
count for the returned object is not incremented. If the caller needs to keep a reference to the object, say in
a data structure, it must increment the reference count usingTcl_IncrRefCount . If an error occurs in set-
ting the variable (e.g. an array variable is referenced without giving an index into the array), then NULL is
returned.

SEE ALSO
Tcl_GetObjResult, Tcl_GetStringResult, Tcl_GetVar, Tcl_GetVar2, Tcl_SetVar, Tcl_SetVar2, Tcl_Trace-
Var, Tcl_UnsetVar, Tcl_UnsetVar2

KEYWORDS
array, interpreter, object, scalar, set, unset, variable

Tcl Last change: 8.0 2

Tcl Library Procedures Tcl_Obj (3)

NAME
Tcl_NewObj, Tcl_DuplicateObj, Tcl_IncrRefCount, Tcl_DecrRefCount, Tcl_IsShared − manipulate Tcl
objects

SYNOPSIS
#include <tcl.h>

Tcl_Obj ∗
Tcl_NewObj()

Tcl_Obj ∗
Tcl_DuplicateObj(objPtr)

Tcl_IncrRefCount (objPtr)

Tcl_DecrRefCount(objPtr)

int
Tcl_IsShared(objPtr)

Tcl_InvalidateStringRep(objPtr)

ARGUMENTS
Tcl_Obj ∗objPtr (in) Points to an object; must have been the result of a previous call to

Tcl_NewObj.

INTRODUCTION
This man page presents an overview of Tcl objects and how they are used. It also describes generic proce-
dures for managing Tcl objects. These procedures are used to create and copy objects, and increment and
decrement the count of references (pointers) to objects. The procedures are used in conjunction with ones
that operate on specific types of objects such asTcl_GetIntFromObj andTcl_ListObjAppendElement.
The individual procedures are described along with the data structures they manipulate.

Tcl’s dual-portedobjects provide a general-purpose mechanism for storing and exchanging Tcl values.
They largely replace the use of strings in Tcl. For example, they are used to store variable values, com-
mand arguments, command results, and scripts. Tcl objects behave like strings but also hold an internal
representation that can be manipulated more efficiently. For example, a Tcl list is now represented as an
object that holds the list’s string representation as well as an array of pointers to the objects for each list ele-
ment. Dual-ported objects avoid most runtime type conversions. They also improve the speed of many
operations since an appropriate representation is immediately available. The compiler itself uses Tcl
objects to cache the instruction bytecodes resulting from compiling scripts.

The two representations are a cache of each other and are computed lazily. That is, each representation is
only computed when necessary, it is computed from the other representation, and, once computed, it is
saved. In addition, a change in one representation invalidates the other one. As an example, a Tcl program
doing integer calculations can operate directly on a variable’s internal machine integer representation with-
out having to constantly convert between integers and strings. Only when it needs a string representing the
variable’s value, say to print it, will the program regenerate the string representation from the integer.
Although objects contain an internal representation, their semantics are defined in terms of strings: an up-
to-date string can always be obtained, and any change to the object will be reflected in that string when the
object’s string representation is fetched. Because of this representation invalidation and regeneration, it is
dangerous for extension writers to accessTcl_Obj fields directly. It is better to access Tcl_Obj information
using procedures likeTcl_GetStringFromObj .

Tcl Last change: 8.0 1

Tcl Library Procedures Tcl_Obj (3)

Objects are allocated on the heap and are referenced using a pointer to theirTcl_Obj structure. Objects are
shared as much as possible. This significantly reduces storage requirements because some objects such as
long lists are very large. Also, most Tcl values are only read and never modified. This is especially true for
procedure arguments, which can be shared between the caller and the called procedure. Assignment and
argument binding is done by simply assigning a pointer to the value. Reference counting is used to deter-
mine when it is safe to reclaim an object’s storage.

Tcl objects are typed. An object’s internal representation is controlled by its type. Seven types are prede-
fined in the Tcl core including integer, double, list, and bytecode. Extension writers can extend the set of
types by using the procedureTcl_RegisterObjType .

THE TCL_OBJ STRUCTURE
Each Tcl object is represented by aTcl_Obj structure which is defined as follows.

typedef struct Tcl_Obj {
int refCount;
char∗bytes;
int length;
Tcl_ObjType∗typePtr;
union {

long longValue;
doubledoubleValue;
VOID ∗otherValuePtr;
struct {

VOID ∗ptr1;
VOID ∗ptr2;

} twoPtrValue;
} internalRep;

} Tcl_Obj;
The bytesand thelength members together hold an object’s string representation, which is acountedor
binary stringthat may contain binary data with embedded null bytes.bytespoints to the first byte of the
string representation. Thelengthmember gives the number of bytes. The byte array must always have a
null after the last byte, at offsetlength; this allows string representations that do not contain nulls to be
treated as conventional null-terminated C strings. C programs useTcl_GetStringFromObj to get an
object’s string representation. Ifbytesis NULL, the string representation is invalid.

An object’s type manages its internal representation. The membertypePtrpoints to the Tcl_ObjType struc-
ture that describes the type. IftypePtris NULL, the internal representation is invalid.

The internalRepunion member holds an object’s internal representation. This is either a (long) integer, a
double-precision floating point number, a pointer to a value containing additional information needed by
the object’s type to represent the object, or two arbitrary pointers.

The refCountmember is used to tell when it is safe to free an object’s storage. It holds the count of active
references to the object. Maintaining the correct reference count is a key responsibility of extension writ-
ers. Reference counting is discussed below in the sectionSTORAGE MANAGEMENT OF OBJECTS .

Although extension writers can directly access the members of a Tcl_Obj structure, it is much better to use
the appropriate procedures and macros. For example, extension writers should never read or updateref-
Countdirectly; they should use macros such asTcl_IncrRefCount andTcl_IsShared instead.

A key property of Tcl objects is that they hold two representations. An object typically starts out contain-
ing only a string representation: it is untyped and has a NULLtypePtr. An object containing an empty
string or a copy of a specified string is created usingTcl_NewObj or Tcl_NewStringObj respectively. An
object’s string value is gotten withTcl_GetStringFromObj and changed withTcl_SetStringObj. If the
object is later passed to a procedure likeTcl_GetIntFromObj that requires a specific internal

Tcl Last change: 8.0 2

Tcl Library Procedures Tcl_Obj (3)

representation, the procedure will create one and set the object’stypePtr. The internal representation is
computed from the string representation. An object’s two representations are duals of each other: changes
made to one are reflected in the other. For example,Tcl_ListObjReplace will modify an object’s internal
representation and the next call toTcl_GetStringFromObj will reflect that change.

Representations are recomputed lazily for efficiency. A change to one representation made by a procedure
such asTcl_ListObjReplace is not reflected immediately in the other representation. Instead, the other
representation is marked invalid so that it is only regenerated if it is needed later. Most C programmers
never hav e to be concerned with how this is done and simply use procedures such asTcl_GetBooleanFro-
mObj or Tcl_ListObjIndex . Programmers that implement their own object types must check for invalid
representations and mark representations invalid when necessary. The procedureTcl_InvalidateStringRep
is used to mark an object’s string representation invalid and to free any storage associated with the old
string representation.

Objects usually remain one type over their life, but occasionally an object must be converted from one type
to another. For example, a C program might build up a string in an object with repeated calls to
Tcl_StringObjAppend , and then callTcl_ListObjIndex to extract a list element from the object. The
same object holding the same string value can have sev eral different internal representations at different
times. Extension writers can also force an object to be converted from one type to another using the
Tcl_ConvertToType procedure. Only programmers that create new object types need to be concerned
about how this is done. A procedure defined as part of the object type’s implementation creates a new inter-
nal representation for an object and changes itstypePtr. See the man page forTcl_RegisterObjType to see
how to create a new object type.

EXAMPLE OF THE LIFETIME OF AN OBJECT
As an example of the lifetime of an object, consider the following sequence of commands:

set x 123
This assigns tox an untyped object whosebytesmember points to123andlengthmember contains 3. The
object’stypePtrmember is NULL.

puts "x is $x"
x’s string representation is valid (sincebytesis non-NULL) and is fetched for the command.

incr x
The incr command first gets an integer fromx’s object by callingTcl_GetIntFromObj . This procedure
checks whether the object is already an integer object. Since it is not, it converts the object by setting the
object’s internalRep.longValuemember to the integer123 and setting the object’stypePtr to point to the
integer Tcl_ObjType structure. Both representations are now valid.incr increments the object’s integer
internal representation then invalidates its string representation (by callingTcl_InvalidateStringRep) since
the string representation no longer corresponds to the internal representation.

puts "x is now $x"
The string representation ofx’s object is needed and is recomputed. The string representation is now124.
and both representations are again valid.

STORAGE MANAGEMENT OF OBJECTS
Tcl objects are allocated on the heap and are shared as much as possible to reduce storage requirements.
Reference counting is used to determine when an object is no longer needed and can safely be freed. An
object just created byTcl_NewObj or Tcl_NewStringObj hasrefCount0. The macroTcl_IncrRefCount
increments the reference count when a new reference to the object is created. The macroTcl_DecrRef-
Count decrements the count when a reference is no longer needed and, if the object’s reference count drops
to zero, frees its storage. An object shared by different code or data structures hasrefCountgreater than 1.
Incrementing an object’s reference count ensures that it won’t be freed too early or have its value change
accidently.

Tcl Last change: 8.0 3

Tcl Library Procedures Tcl_Obj (3)

As an example, the bytecode interpreter shares argument objects between calling and called Tcl procedures
to avoid having to copy objects. It assigns the call’s argument objects to the procedure’s formal parameter
variables. In doing so, it callsTcl_IncrRefCount to increment the reference count of each argument since
there is now a new reference to it from the formal parameter. When the called procedure returns, the inter-
preter callsTcl_DecrRefCount to decrement each argument’s reference count. When an object’s reference
count drops to zero,Tcl_DecrRefCount reclaims its storage. Most command procedures do not have to be
concerned about reference counting since they use an object’s value immediately and don’t retain a pointer
to the object after they return. However, if they do retain a pointer to an object in a data structure, they
must be careful to increment its reference count since the retained pointer is a new reference.

Command procedures that directly modify objects such as those forlappend andlinsert must be careful to
copy a shared object before changing it. They must first check whether the object is shared by calling
Tcl_IsShared. If the object is shared they must copy the object by usingTcl_DuplicateObj; this returns a
new duplicate of the original object that hasrefCount0. If the object is not shared, the command procedure
"owns" the object and can safely modify it directly. For example, the following code appears in the com-
mand procedure that implementslinsert. This procedure modifies the list object passed to it inobjv[1] by
insertingobjc-3new elements beforeindex.

listPtr = objv[1];
if (Tcl_IsShared(listPtr)) {

listPtr = Tcl_DuplicateObj(listPtr);
}
result = Tcl_ListObjReplace(interp, listPtr, index, 0, (objc-3), &(objv[3]));

As another example,incr ’s command procedure must check whether the variable’s object is shared before
incrementing the integer in its internal representation. If it is shared, it needs to duplicate the object in
order to avoid accidently changing values in other data structures.

SEE ALSO
Tcl_ConvertToType, Tcl_GetIntFromObj, Tcl_ListObjAppendElement, Tcl_ListObjIndex, Tcl_ListObjRe-
place, Tcl_RegisterObjType

KEYWORDS
internal representation, object, object creation, object type, reference counting, string representation, type
conversion

Tcl Last change: 8.0 4

Tcl Library Procedures Tcl_ObjType (3)

NAME
Tcl_RegisterObjType, Tcl_GetObjType, Tcl_AppendAllObjTypes, Tcl_ConvertToType − manipulate Tcl
object types

SYNOPSIS
#include <tcl.h>

Tcl_RegisterObjType(typePtr)

Tcl_ObjType∗
Tcl_GetObjType(typeName)

int
Tcl_AppendAllObjTypes(interp, objPtr)

int
Tcl_ConvertToType(interp, objPtr, typePtr)

ARGUMENTS
Tcl_ObjType ∗typePtr (in) Points to the structure containing information about the Tcl

object type. This storage must must live forever, typically by
being statically allocated.

char ∗typeName (in) The name of a Tcl object type thatTcl_GetObjType should look
up.

Tcl_Interp ∗interp (in) Interpreter to use for error reporting.

Tcl_Obj ∗objPtr (in) For Tcl_AppendAllObjTypes, this points to the object onto
which it appends the name of each object type as a list element.
For Tcl_ConvertToType, this points to an object that must have
been the result of a previous call toTcl_NewObj.

DESCRIPTION
The procedures in this man page manage Tcl object types. The are used to register new object types, look
up types, and force conversions from one type to another.

Tcl_RegisterObjType registers a new Tcl object type in the table of all object types supported by Tcl. The
argumenttypePtrpoints to a Tcl_ObjType structure that describes the new type by giving its name and by
supplying pointers to four procedures that implement the type. If the type table already containes a type
with the same name as intypePtr, it is replaced with the new type. The Tcl_ObjType structure is described
in the sectionTHE TCL_OBJTYPE STRUCTURE below.

Tcl_GetObjType returns a pointer to the Tcl_ObjType with nametypeName. It returns NULL if no type
with that name is registered.

Tcl_AppendAllObjTypes appends the name of each object type as a list element onto the Tcl object refer-
enced byobjPtr. The return value isTCL_OK unless there was an error convertingobjPtr to a list object;
in that caseTCL_ERROR is returned.

Tcl_ConvertToType converts an object from one type to another if possible. It creates a new internal rep-
resentation forobjPtr appropriate for the target typetypePtrand sets itstypePtrmember to that type. Any
internal representation forobjPtr’s old type is freed. If an error occurs during conversion, it returns
TCL_ERROR and leaves an error message in the result object forinterp unlessinterp is NULL. Other-
wise, it returnsTCL_OK . Passing a NULLinterp allows this procedure to be used as a test whether the
conversion can be done (and in fact was done).

Tcl Last change: 8.0 1

Tcl Library Procedures Tcl_ObjType (3)

THE TCL_OBJTYPE STRUCTURE
Extension writers can define new object types by defining four procedures, initializing a Tcl_ObjType
structure to describe the type, and callingTcl_RegisterObjType. TheTcl_ObjType structure is defined as
follows:

typedef struct Tcl_ObjType {
char∗name;
Tcl_FreeInternalRepProc∗freeIntRepProc;
Tcl_DupInternalRepProc∗dupIntRepProc;
Tcl_UpdateStringProc∗updateStringProc;
Tcl_SetFromAnyProc∗setFromAnyProc;

} Tcl_ObjType;

The namemember describes the name of the type, e.g.int . Extension writers can look up an object type
using its name with theTcl_GetObjType procedure. The remaining four members are pointers to proce-
dures called by the generic Tcl object code:

ThesetFromAnyProcmember contains the address of a function called to create a valid internal representa-
tion from an object’s string representation.

typedef int (Tcl_SetFromAnyProc) (Tcl_Interp∗interp, Tcl_Obj∗objPtr);
If an internal representation can’t be created from the string, it returnsTCL_ERROR and puts a message
describing the error in the result object forinterp unlessinterp is NULL. If setFromAnyProcis successful,
it stores the new internal representation, setsobjPtr’s typePtr member to point tosetFromAnyProc’s
Tcl_ObjType, and returnsTCL_OK . Before setting the new internal representation, thesetFromAnyProc
must free any internal representation ofobjPtr’s old type; it does this by calling the old type’sfreeIntRep-
Proc if it is not NULL. As an example, thesetFromAnyProcfor the builtin Tcl integer type gets an up-to-
date string representation forobjPtr by callingTcl_GetStringFromObj . It parses the string to obtain an
integer and, if this succeeds, stores the integer inobjPtr’s internal representation and setsobjPtr’s typePtr
member to point to the integer type’s Tcl_ObjType structure.

TheupdateStringProcmember contains the address of a function called to create a valid string representa-
tion from an object’s internal representation.

typedef void (Tcl_UpdateStringProc) (Tcl_Obj∗objPtr);
objPtr’s bytesmember is always NULL when it is called. It must always setbytesnon-NULL before
returning. We require the string representation’s byte array to have a null after the last byte, at offset
length; this allows string representations that do not contain null bytes to be treated as conventional null
character-terminated C strings. Storage for the byte array must be allocated in the heap byTcl_Alloc.
Note thatupdateStringProcs must allocate enough storage for the string’s bytes and the terminating null
byte. TheupdateStringProcfor Tcl’s builtin list type, for example, builds an array of strings for each ele-
ment object and then callsTcl_Merge to construct a string with proper Tcl list structure. It stores this
string as the list object’s string representation.

The dupIntRepProcmember contains the address of a function called to copy an internal representation
from one object to another.

typedef void (Tcl_DupInternalRepProc) (Tcl_Obj∗srcPtr, Tcl_Obj∗dupPtr);
dupPtr’s internal representation is made a copy ofsrcPtr’s internal representation. Before the call,srcPtr’s
internal representation is valid anddupPtr’s is not. srcPtr’s object type determines what copying its inter-
nal representation means. For example, thedupIntRepProcfor the Tcl integer type simply copies an inte-
ger. The builtin list type’sdupIntRepProcallocates a new array that points at the original element objects;
the elements are shared between the two lists (and their reference counts are incremented to reflect the new
references).

ThefreeIntRepProcmember contains the address of a function that is called when an object is freed.
typedef void (Tcl_FreeInternalRepProc) (Tcl_Obj∗objPtr);

The freeIntRepProcfunction can deallocate the storage for the object’s internal representation and do other
type-specific processing necessary when an object is freed. For example, Tcl list objects have an

Tcl Last change: 8.0 2

Tcl Library Procedures Tcl_ObjType (3)

internalRep.otherValuePtrthat points to an array of pointers to each element in the list. The list type’s
freeIntRepProcdecrements the reference count for each element object (since the list will no longer refer to
those objects), then deallocates the storage for the array of pointers. ThefreeIntRepProcmember can be set
to NULL to indicate that the internal representation does not require freeing.

SEE ALSO
Tcl_NewObj, Tcl_DecrRefCount, Tcl_IncrRefCount

KEYWORDS
internal representation, object, object type, string representation, type conversion

Tcl Last change: 8.0 3

Tcl Library Procedures Tcl_OpenFileChannel (3)

NAME
Tcl_OpenFileChannel, Tcl_OpenCommandChannel, Tcl_MakeFileChannel, Tcl_GetChannel, Tcl_Regis-
terChannel, Tcl_UnregisterChannel, Tcl_Close, Tcl_Read, Tcl_Gets, Tcl_Write, Tcl_Flush, Tcl_Seek,
Tcl_Tell, Tcl_Eof, Tcl_InputBlocked, Tcl_InputBuffered, Tcl_GetChannelOption, Tcl_SetChannelOption
− buffered I/O facilities using channels

SYNOPSIS
#include <tcl.h>

typedef ... Tcl_Channel;

Tcl_Channel
Tcl_OpenFileChannel(interp, fileName, mode, permissions)

Tcl_Channel
Tcl_OpenCommandChannel(interp, argc, argv, flags)

Tcl_Channel
Tcl_MakeFileChannel(handle, readOrWrite)

Tcl_Channel
Tcl_GetChannel(interp, channelName, modePtr)

void
Tcl_RegisterChannel(interp, channel)

int
Tcl_UnregisterChannel(interp, channel)

int
Tcl_Close(interp, channel)

int
Tcl_Read(channel, buf, toRead)

int
Tcl_Gets(channel, lineRead)

int
Tcl_GetsObj(channel, lineObjPtr)

int
Tcl_Write (channel, buf, toWrite)

int
Tcl_Flush(channel)

int
Tcl_Seek(channel, offset, seekMode)

int
Tcl_Tell(channel)

Tcl Last change: 8.0 1

Tcl Library Procedures Tcl_OpenFileChannel (3)

int
Tcl_GetChannelOption(interp, channel, optionName, optionValue)

int
Tcl_SetChannelOption(interp, channel, optionName, newValue)

int
Tcl_Eof(channel)

int
Tcl_InputBlocked(channel)

int
Tcl_InputBuffered (channel)

ARGUMENTS
Tcl_Interp ∗interp (in) Used for error reporting and to look up a channel reg-

istered in it.

char ∗fileName (in) The name of a local or network file.

char ∗mode (in) Specifies how the file is to be accessed. May have any
of the values allowed for themodeargument to the Tcl
open command. ForTcl_OpenCommandChannel,
may be NULL.

int permissions (in) POSIX-style permission flags such as 0644. If a new
file is created, these permissions will be set on the cre-
ated file.

int argc (in) The number of elements inargv.

char ∗∗argv (in) Arguments for constructing a command pipeline.
These values have the same meaning as the non-
switch arguments to the Tclexeccommand.

int flags (in) Specifies the disposition of the stdio handles in
pipeline: OR-ed combination ofTCL_STDIN ,
TCL_STDOUT , TCL_STDERR, and
TCL_ENFORCE_MODE . If TCL_STDIN is set,
stdin for the first child in the pipe is the pipe channel,
otherwise it is the same as the standard input of the
invoking process; likewise forTCL_STDOUT and
TCL_STDERR. If TCL_ENFORCE_MODE is not
set, then the pipe can redirect stdio handles to override
the stdio handles for which TCL_STDIN ,
TCL_STDOUT and TCL_STDERR have been set.
If it is set, then such redirections cause an error.

ClientData handle (in) Operating system specific handle for I/O to a file. For
Unix this is a file descriptor, for Windows it is a HAN-
DLE.

int readOrWrite (in) OR-ed combination of TCL_READABLE and
TCL_WRITABLE to indicate what operations are
valid onhandle.

Tcl Last change: 8.0 2

Tcl Library Procedures Tcl_OpenFileChannel (3)

int ∗modePtr (out) Points at an integer variable that will receive an OR-ed
combination of TCL_READABLE and
TCL_WRITABLE denoting whether the channel is
open for reading and writing.

Tcl_Channel channel (in) A Tcl channel for input or output. Must have been the
return value from a procedure such asTcl_Open-
FileChannel.

char ∗buf (in) An array of bytes in which to store channel input, or
from which to read channel output.

int len (in) The length of the input or output.

int atEnd (in) If nonzero, store the input at the end of the input
queue, otherwise store it at the head of the input
queue.

int toRead (in) The number of bytes to read from the channel.

Tcl_DString ∗lineRead (in) A pointer to a Tcl dynamic string in which to store the
line read from the channel. Must have been initialized
by the caller. The line read will be appended to any
data already in the dynamic string.

Tcl_Obj ∗linePtrObj (in) A pointer to a Tcl object in which to store the line read
from the channel. The line read will be appended to
the current value of the object.

int toWrite (in) The number of bytes to read frombuf and output to
the channel.

int offset (in) How far to move the access point in the channel at
which the next input or output operation will be
applied, measured in bytes from the position given by
seekMode. May be either positive or neg ative.

int seekMode (in) Relative to which point to seek; used withoffsetto cal-
culate the new access point for the channel. Legal val-
ues areSEEK_SET, SEEK_CUR, andSEEK_END.

char ∗optionName (in) The name of an option applicable to this channel, such
as −blocking. May have any of the values accepted
by thefconfigure command.

Tcl_DString ∗optionValue (in) Where to store the value of an option or a list of all
options and their values. Must have been initialized by
the caller.

char ∗newValue (in) New value for the option given byoptionName.

DESCRIPTION
The Tcl channel mechanism provides a device-independent and platform-independent mechanism for per-
forming buffered input and output operations on a variety of file, socket, and device types. The channel
mechanism is extensible to new channel types, by providing a low lev el channel driver for the new type; the
channel driver interface is described in the manual entry forTcl_CreateChannel. The channel mechanism
provides a buffering scheme modelled after Unix’s standard I/O, and it also allows for nonblocking I/O on
channels.

Tcl Last change: 8.0 3

Tcl Library Procedures Tcl_OpenFileChannel (3)

The procedures described in this manual entry comprise the C APIs of the generic layer of the channel
architecture. For a description of the channel driver architecture and how to implement channel drivers for
new types of channels, see the manual entry forTcl_CreateChannel.

TCL_OPENFILECHANNEL
Tcl_OpenFileChannelopens a file specified byfileNameand returns a channel handle that can be used to
perform input and output on the file. This API is modelled after thefopen procedure of the Unix standard
I/O library. The syntax and meaning of all arguments is similar to those given in the Tclopen command
when opening a file. If an error occurs while opening the channel,Tcl_OpenFileChannelreturns NULL
and records a POSIX error code that can be retrieved withTcl_GetErrno . In addition, if interp is non-
NULL, Tcl_OpenFileChannelleaves an error message ininterp->resultafter any error.

The newly created channel is not registered in the supplied interpreter; to register it, useTcl_Register-
Channel, described below. If one of the standard channels,stdin, stdout or stderr was previously closed,
the act of creating the new channel also assigns it as a replacement for the standard channel.

TCL_OPENCOMMANDCHANNEL
Tcl_OpenCommandChannelprovides a C-level interface to the functions of theexecand open com-
mands. It creates a sequence of subprocesses specified by theargv andargc arguments and returns a chan-
nel that can be used to communicate with these subprocesses. Theflagsargument indicates what sort of
communication will exist with the command pipeline.

If the TCL_STDIN flag is set then the standard input for the first subprocess will be tied to the channel:
writing to the channel will provide input to the subprocess. IfTCL_STDIN is not set, then standard input
for the first subprocess will be the same as this application’s standard input. IfTCL_STDOUT is set then
standard output from the last subprocess can be read from the channel; otherwise it goes to this applica-
tion’s standard output. IfTCL_STDERR is set, standard error output for all subprocesses is returned to
the channel and results in an error when the channel is closed; otherwise it goes to this application’s stan-
dard error. IfTCL_ENFORCE_MODE is not set, thenargc andargv can redirect the stdio handles to
overrideTCL_STDIN , TCL_STDOUT , andTCL_STDERR; if it is set, then it is an error for argc and
argv to override stdio channels for whichTCL_STDIN , TCL_STDOUT , andTCL_STDERR have been
set.

If an error occurs while opening the channel,Tcl_OpenCommandChannelreturns NULL and records a
POSIX error code that can be retrieved withTcl_GetErrno . In addition,Tcl_OpenCommandChannel
leaves an error message ininterp->resultif interp is not NULL.

The newly created channel is not registered in the supplied interpreter; to register it, useTcl_Register-
Channel, described below. If one of the standard channels,stdin, stdout or stderr was previously closed,
the act of creating the new channel also assigns it as a replacement for the standard channel.

TCL_MAKEFILECHANNEL
Tcl_MakeFileChannel makes aTcl_Channel from an existing, platform-specific, file handle. The newly
created channel is not registered in the supplied interpreter; to register it, useTcl_RegisterChannel,
described below. If one of the standard channels,stdin, stdout or stderr was previously closed, the act of
creating the new channel also assigns it as a replacement for the standard channel.

TCL_GETCHANNEL
Tcl_GetChannel returns a channel given thechannelNameused to create it withTcl_CreateChanneland
a pointer to a Tcl interpreter ininterp. If a channel by that name is not registered in that interpreter, the pro-
cedure returns NULL. If themodeargument is not NULL, it points at an integer variable that will receive
an OR-ed combination ofTCL_READABLE andTCL_WRITABLE describing whether the channel is

Tcl Last change: 8.0 4

Tcl Library Procedures Tcl_OpenFileChannel (3)

open for reading and writing.

TCL_REGISTERCHANNEL
Tcl_RegisterChanneladds a channel to the set of channels accessible ininterp. After this call, Tcl pro-
grams executing in that interpreter can refer to the channel in input or output operations using the name
given in the call toTcl_CreateChannel. After this call, the channel becomes the property of the inter-
preter, and the caller should not callTcl_Close for the channel; the channel will be closed automatically
when it is unregistered from the interpreter.

Code executing outside of any Tcl interpreter can callTcl_RegisterChannelwith interp as NULL, to indi-
cate that it wishes to hold a reference to this channel. Subsequently, the channel can be registered in a Tcl
interpreter and it will only be closed when the matching number of calls toTcl_UnregisterChannel have
been made. This allows code executing outside of any interpreter to safely hold a reference to a channel
that is also registered in a Tcl interpreter.

TCL_UNREGISTERCHANNEL
Tcl_UnregisterChannel removes a channel from the set of channels accessible ininterp. After this call,
Tcl programs will no longer be able to use the channel’s name to refer to the channel in that interpreter. If
this operation removed the last registration of the channel in any interpreter, the channel is also closed and
destroyed.

Code not associated with a Tcl interpreter can callTcl_UnregisterChannelwith interp as NULL, to indi-
cate to Tcl that it no longer holds a reference to that channel. If this is the last reference to the channel, it
will now be closed.

TCL_CLOSE
Tcl_Closedestroys the channelchannel, which must denote a currently open channel. The channel should
not be registered in any interpreter whenTcl_Close is called. Buffered output is flushed to the channel’s
output device prior to destroying the channel, and any buffered input is discarded. If this is a blocking
channel, the call does not return until all buffered data is successfully sent to the channel’s output device. If
this is a nonblocking channel and there is buffered output that cannot be written without blocking, the call
returns immediately; output is flushed in the background and the channel will be closed once all of the
buffered data has been output. In this case errors during flushing are not reported.

If the channel was closed successfully,Tcl_ClosereturnsTCL_OK . If an error occurs,Tcl_Closereturns
TCL_ERROR and records a POSIX error code that can be retrieved withTcl_GetErrno . If the channel is
being closed synchronously and an error occurs during closing of the channel andinterp is not NULL, an
error message is left ininterp->result.

Note: it is not safe to callTcl_Closeon a channel that has been registered usingTcl_RegisterChannel; see
the documentation forTcl_RegisterChannel, above, for details. If the channel has ever been given as the
chan argument in a call toTcl_RegisterChannel, you should instead useTcl_UnregisterChannel, which
will internally call Tcl_Closewhen all calls toTcl_RegisterChannelhave been matched by corresponding
calls toTcl_UnregisterChannel.

TCL_READ
Tcl_Read consumes up totoReadbytes of data fromchanneland stores it atbuf. The return value of
Tcl_Read is the number of characters written atbuf. The buffer produced byTcl_Read is not NULL ter-
minated. Its contents are valid from the zeroth position up to and excluding the position indicated by the
return value. If an error occurs, the return value is -1 andTcl_Readrecords a POSIX error code that can be
retrieved withTcl_GetErrno .

Tcl Last change: 8.0 5

Tcl Library Procedures Tcl_OpenFileChannel (3)

The return value may be smaller than the value oftoRead, indicating that less data than requested was avail-
able, also called ashort read. In blocking mode, this can only happen on an end-of-file. In nonblocking
mode, a short read can also occur if there is not enough input currently available:Tcl_Readreturns a short
count rather than waiting for more data.

If the channel is in blocking mode, a return value of zero indicates an end of file condition. If the channel is
in nonblocking mode, a return value of zero indicates either that no input is currently available or an end of
file condition. UseTcl_Eof andTcl_InputBlocked to tell which of these conditions actually occurred.

Tcl_Read translates platform-specific end-of-line representations into the canonical\n internal representa-
tion according to the current end-of-line recognition mode. End-of-line recognition and the various plat-
form-specific modes are described in the manual entry for the Tclfconfigure command.

TCL_GETS AND TCL_GETSOBJ
Tcl_Gets reads a line of input from a channel and appends all of the characters of the line except for the
terminating end-of-line character(s) to the dynamic string given bydsPtr. The end-of-line character(s) are
read and discarded.

If a line was successfully read, the return value is greater than or equal to zero, and it indicates the number
of characters stored in the dynamic string. If an error occurs,Tcl_Gets returns -1 and records a POSIX
error code that can be retrieved withTcl_GetErrno . Tcl_Gets also returns -1 if the end of the file is
reached; theTcl_Eof procedure can be used to distinguish an error from an end-of-file condition.

If the channel is in nonblocking mode, the return value can also be -1 if no data was available or the data
that was available did not contain an end-of-line character. When -1 is returned, theTcl_InputBlocked
procedure may be invoked to determine if the channel is blocked because of input unavailability.

Tcl_GetsObj is the same asTcl_Getsexcept the resulting characters are appended to a Tcl objectlineOb-
jPtr rather than a dynamic string.

TCL_WRITE
Tcl_Write acceptstoWritebytes of data atbuf for output onchannel. This data may not appear on the out-
put device immediately. If the data should appear immediately, callTcl_Flush after the call toTcl_Write ,
or set the-buffering option on the channel tonone. If you wish the data to appear as soon as an end of line
is accepted for output, set the−buffering option on the channel toline mode.

The toWriteargument specifies how many bytes of data are provided in thebuf argument. If it is negative,
Tcl_Write expects the data to be NULL terminated and it outputs everything up to the NULL.

The return value ofTcl_Write is a count of how many characters were accepted for output to the channel.
This is either equal totoWrite or -1 to indicate that an error occurred. If an error occurs,Tcl_Write also
records a POSIX error code that may be retrieved withTcl_GetErrno .

Newline characters in the output data are translated to platform-specific end-of-line sequences according to
the−translation option for the channel.

TCL_FLUSH
Tcl_Flush causes all of the buffered output data forchannelto be written to its underlying file or device as
soon as possible. If the channel is in blocking mode, the call does not return until all the buffered data has
been sent to the channel or some error occurred. The call returns immediately if the channel is nonblock-
ing; it starts a background flush that will write the buffered data to the channel eventually, as fast as the
channel is able to absorb it.

The return value is normallyTCL_OK . If an error occurs,Tcl_Flush returnsTCL_ERROR and records a
POSIX error code that can be retrieved withTcl_GetErrno .

Tcl Last change: 8.0 6

Tcl Library Procedures Tcl_OpenFileChannel (3)

TCL_SEEK
Tcl_Seekmoves the access point inchannelwhere subsequent data will be read or written. Buffered output
is flushed to the channel and buffered input is discarded, prior to the seek operation.

Tcl_Seeknormally returns the new access point. If an error occurs,Tcl_Seek returns -1 and records a
POSIX error code that can be retrieved withTcl_GetErrno . After an error, the access point may or may
not have been moved.

TCL_TELL
Tcl_Tell returns the current access point for a channel. The returned value is -1 if the channel does not sup-
port seeking.

TCL_GETCHANNELOPTION
Tcl_GetChannelOption retrieves, indsPtr, the value of one of the options currently in effect for a channel,
or a list of all options and their values. Thechannelargument identifies the channel for which to query an
option or retrieve all options and their values. IfoptionNameis not NULL, it is the name of the option to
query; the option’s value is copied to the Tcl dynamic string denoted byoptionValue. If optionNameis
NULL, the function stores an alternating list of option names and their values inoptionValue, using a series
of calls to Tcl_DStringAppendElement. The various preexisting options and their possible values are
described in the manual entry for the Tclfconfigure command. Other options can be added by each channel
type. These channel type specific options are described in the manual entry for the Tcl command that cre-
ates a channel of that type; for example, the additional options for TCP based channels are described in the
manual entry for the Tclsocketcommand. The procedure normally returnsTCL_OK . If an error occurs, it
returnsTCL_ERROR and callsTcl_SetErrno to store an appropriate POSIX error code.

TCL_SETCHANNELOPTION
Tcl_SetChannelOptionsets a new value for an option onchannel. OptionNameis the option to set and
newValueis the value to set. The procedure normally returnsTCL_OK . If an error occurs, it returns
TCL_ERROR ; in addition, if interp is non-NULL, Tcl_SetChannelOption leaves an error message in
interp->result.

TCL_EOF
Tcl_Eof returns a nonzero value ifchannelencountered an end of file during the last input operation.

TCL_INPUTBLOCKED
Tcl_InputBlocked returns a nonzero value ifchannelis in nonblocking mode and the last input operation
returned less data than requested because there was insufficient data available. The call always returns zero
if the channel is in blocking mode.

TCL_INPUTBUFFERED
Tcl_InputBuffered returns the number of bytes of input currently buffered in the internal buffers for a
channel. If the channel is not open for reading, this function always returns zero.

PLATFORM ISSUES
The handles returned fromTcl_GetChannelHandle depend on the platform and the channel type. On
Unix platforms, the handle is always a Unix file descriptor as returned from theopensystem call. On Win-
dows platforms, the handle is a fileHANDLE when the channel was created withTcl_OpenFileChannel,
Tcl_OpenCommandChannel, or Tcl_MakeFileChannel. Other channel types may return a different type
of handle on Windows platforms. On the Macintosh platform, the handle is a file reference number as

Tcl Last change: 8.0 7

Tcl Library Procedures Tcl_OpenFileChannel (3)

returned fromHOpenDF.

SEE ALSO
DString(3), fconfigure(n), filename(n), fopen(2), Tcl_CreateChannel(3)

KEYWORDS
access point, blocking, buffered I/O, channel, channel driver, end of file, flush, input, nonblocking, output,
read, seek, write

Tcl Last change: 8.0 8

Tcl Library Procedures Tcl_OpenTcpClient (3)

NAME
Tcl_OpenTcpClient, Tcl_MakeTcpClientChannel, Tcl_OpenTcpServer − procedures to open channels
using TCP sockets

SYNOPSIS
#include <tcl.h>

Tcl_Channel
Tcl_OpenTcpClient(interp, port, host, myaddr, myport, async)

Tcl_Channel
Tcl_MakeTcpClientChannel(sock)

Tcl_Channel
Tcl_OpenTcpServer(interp, port, myaddr, proc, clientData)

ARGUMENTS
Tcl_Interp ∗interp (in) Tcl interpreter to use for error reporting. If non-

NULL and an error occurs, an error message is left in
interp->result.

int port (in) A port number to connect to as a client or to listen on
as a server.

char ∗host (in) A string specifying a host name or address for the
remote end of the connection.

int myport (in) A port number for the client’s end of the socket. If 0,
a port number is allocated at random.

char ∗myaddr (in) A string specifying the host name or address for net-
work interface to use for the local end of the connec-
tion. If NULL, a default interface is chosen.

int async (in) If nonzero, the client socket is connected asyn-
chronously to the server.

ClientData sock (in) Platform-specific handle for client TCP socket.

Tcl_TcpAcceptProc∗proc (in) Pointer to a procedure to invoke each time a new con-
nection is accepted via the socket.

ClientData clientData (in) Arbitrary one-word value to pass toproc.

DESCRIPTION
These functions are convenience procedures for creating channels that communicate over TCP sockets.
The operations on a channel are described in the manual entry forTcl_OpenFileChannel.

TCL_OPENTCPCLIENT
Tcl_OpenTcpClient opens a client TCP socket connected to aport on a specifichost, and returns a chan-
nel that can be used to communicate with the server. The host to connect to can be specified either as a
domain name style name (e.g.www.sunlabs.com), or as a string containing the alphanumeric representa-
tion of its four-byte address (e.g.127.0.0.1). Use the stringlocalhost to connect to a TCP socket on the
host on which the function is invoked.

Tcl Last change: 8.0 1

Tcl Library Procedures Tcl_OpenTcpClient (3)

Themyaddrandmyportarguments allow a client to specify an address for the local end of the connection.
If myaddris NULL, then an interface is chosen automatically by the operating system. Ifmyportis 0, then
a port number is chosen at random by the operating system.

If asyncis zero, the call toTcl_OpenTcpClient returns only after the client socket has either successfully
connected to the server, or the attempted connection has failed. Ifasyncis nonzero the socket is connected
asynchronously and the returned channel may not yet be connected to the server when the call to
Tcl_OpenTcpClient returns. If the channel is in blocking mode and an input or output operation is done on
the channel before the connection is completed or fails, that operation will wait until the connection either
completes successfully or fails. If the channel is in nonblocking mode, the input or output operation will
return immediately and a subsequent call toTcl_InputBlocked on the channel will return nonzero.

The returned channel is opened for reading and writing. If an error occurs in opening the socket,
Tcl_OpenTcpClient returns NULL and records a POSIX error code that can be retrieved withTcl_GetEr-
rno. In addition, ifinterp is non-NULL, an error message is left ininterp->result.

The newly created channel is not registered in the supplied interpreter; to register it, useTcl_Register-
Channel. If one of the standard channels,stdin, stdout or stderr was previously closed, the act of creating
the new channel also assigns it as a replacement for the standard channel.

TCL_MAKETCPCLIENTCHANNEL
Tcl_MakeTcpClientChannel creates aTcl_Channel around an existing, platform specific, handle for a
client TCP socket.

The newly created channel is not registered in the supplied interpreter; to register it, useTcl_Register-
Channel. If one of the standard channels,stdin, stdout or stderr was previously closed, the act of creating
the new channel also assigns it as a replacement for the standard channel.

TCL_OPENTCPSERVER
Tcl_OpenTcpServer opens a TCP socket on the local host on a specifiedport and uses the Tcl event
mechanism to accept requests from clients to connect to it. Themyaddrargument specifies the network
interface. Ifmyaddr is NULL the special address INADDR_ANY should be used to allow connections
from any network interface. Each time a client connects to this socket, Tcl creates a channel for the new
connection and invokesprocwith information about the channel.Procmust match the following prototype:

typedef void Tcl_TcpAcceptProc(
ClientDataclientData,
Tcl_Channelchannel,
char∗hostName,
int port);

The clientData argument will be the same as theclientData argument toTcl_OpenTcpServer, channel
will be the handle for the new channel,hostNamepoints to a string containing the name of the client host
making the connection, andport will contain the client’s port number. The new channel is opened for both
input and output. Ifproc raises an error, the connection is closed automatically.Proc has no return value,
but if it wishes to reject the connection it can closechannel.

Tcl_OpenTcpServer normally returns a pointer to a channel representing the server socket. If an error
occurs,Tcl_OpenTcpServer returns NULL and records a POSIX error code that can be retrieved with
Tcl_GetErrno . In addition, ifinterp->resultis non-NULL, an error message is left ininterp->result.

The channel returned byTcl_OpenTcpServercannot be used for either input or output. It is simply a han-
dle for the socket used to accept connections. The caller can close the channel to shut down the server and
disallow further connections from new clients.

Tcl Last change: 8.0 2

Tcl Library Procedures Tcl_OpenTcpClient (3)

TCP server channels operate correctly only in applications that dispatch events throughTcl_DoOneEvent
or through Tcl commands such asvwait; otherwise Tcl will never notice that a connection request from a
remote client is pending.

The newly created channel is not registered in the supplied interpreter; to register it, useTcl_Register-
Channel. If one of the standard channels,stdin, stdout or stderr was previously closed, the act of creating
the new channel also assigns it as a replacement for the standard channel.

PLATFORM ISSUES
On Unix platforms, the socket handle is a Unix file descriptor as returned by thesocketsystem call. On the
Windows platform, the socket handle is aSOCKET as defined in the WinSock API. On the Macintosh
platform, the socket handle is aStreamPtr.

SEE ALSO
Tcl_OpenFileChannel(3), Tcl_RegisterChannel(3), vwait(n)

KEYWORDS
client, server, TCP

Tcl Last change: 8.0 3

Tcl Library Procedures Tcl_PkgRequire (3)

NAME
Tcl_PkgRequire, Tcl_PkgProvide − package version control

SYNOPSIS
#include <tcl.h>

char∗
Tcl_PkgRequire(interp, name, version, exact)

int
Tcl_PkgProvide(interp, name, version)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter where package is needed or available.

char ∗name (in) Name of package.

char ∗version (in) A version string consisting of one or more decimal numbers sepa-
rated by dots.

int exact (in) Non-zero means that only the particular version specified byver-
sion is acceptable. Zero means that newer versions thanversion
are also acceptable as long as they hav e the same major version
number asversion.

DESCRIPTION
These procedures provide C-level interfaces to Tcl’s package and version management facilities.
Tcl_PkgRequire is equivalent to thepackage requirecommand, andTcl_PkgProvide is equivalent to the
package providecommand. See the documentation for the Tcl commands for details on what these proce-
dures do. IfTcl_PkgRequire completes successfully it returns a pointer to the version string for the ver-
sion of the package that is provided in the interpreter (which may be different thanversion); if an error
occurs it returns NULL and leaves an error message ininterp->result. Tcl_PkgProvide returns TCL_OK
if it completes successfully; if an error occurs it returns TCL_ERROR and leaves an error message in
interp->result.

KEYWORDS
package, provide, require, version

Tcl Last change: 7.5 1

Tcl Library Procedures Tcl_Preserve (3)

NAME
Tcl_Preserve, Tcl_Release, Tcl_EventuallyFree − avoid freeing storage while it’s being used

SYNOPSIS
#include <tcl.h>

Tcl_Preserve(clientData)

Tcl_Release(clientData)

Tcl_EventuallyFree(clientData, freeProc)

ARGUMENTS
ClientData clientData (in) Token describing structure to be freed or reallocated. Usually a

pointer to memory for structure.

Tcl_FreeProc ∗freeProc (in) Procedure to invoke to freeclientData.

DESCRIPTION
These three procedures help implement a simple reference count mechanism for managing storage. They
are designed to solve a problem having to do with widget deletion, but are also useful in many other situa-
tions. When a widget is deleted, its widget record (the structure holding information specific to the widget)
must be returned to the storage allocator. Howev er, it’s possible that the widget record is in active use by
one of the procedures on the stack at the time of the deletion. This can happen, for example, if the com-
mand associated with a button widget causes the button to be destroyed: an X event causes an event-han-
dling C procedure in the button to be invoked, which in turn causes the button’s associated Tcl command to
be executed, which in turn causes the button to be deleted, which in turn causes the button’s widget record
to be de-allocated. Unfortunately, when the Tcl command returns, the button’s event-handling procedure
will need to reference the button’s widget record. Because of this, the widget record must not be freed as
part of the deletion, but must be retained until the event-handling procedure has finished with it. In other
situations where the widget is deleted, it may be possible to free the widget record immediately.

Tcl_PreserveandTcl_Releaseimplement short-term reference counts for theirclientDataargument. The
clientDataargument identifies an object and usually consists of the address of a structure. The reference
counts guarantee that an object will not be freed until each call toTcl_Preservefor the object has been
matched by calls toTcl_Release. There may be any number of unmatchedTcl_Preservecalls in effect at
once.

Tcl_EventuallyFree is invoked to free up itsclientDataargument. It checks to see if there are unmatched
Tcl_Preservecalls for the object. If not, thenTcl_EventuallyFree calls freeProcimmediately. Otherwise
Tcl_EventuallyFree records the fact thatclientData needs eventually to be freed. When all calls to
Tcl_Preservehave been matched with calls toTcl_ReleasethenfreeProcwill be called byTcl_Releaseto
do the cleanup.

All the work of freeing the object is carried out byfreeProc. Fr eeProcmust have arguments and result that
match the typeTcl_FreeProc:

typedef void Tcl_FreeProc(char∗blockPtr);
The blockPtr argument tofreeProcwill be the same as theclientDataargument toTcl_EventuallyFree.
The type ofblockPtr (char ∗) is different than the type of theclientDataargument toTcl_EventuallyFree
for historical reasons, but the value is the same.

This mechanism can be used to solve the problem described above by placing Tcl_Preserve and
Tcl_Releasecalls around actions that may cause undesired storage re-allocation. The mechanism is
intended only for short-term use (i.e. while procedures are pending on the stack); it will not work

Tcl Last change: 7.5 1

Tcl Library Procedures Tcl_Preserve (3)

efficiently as a mechanism for long-term reference counts. The implementation does not depend in any
way on the internal structure of the objects being freed; it keeps the reference counts in a separate struc-
ture.

KEYWORDS
free, reference count, storage

Tcl Last change: 7.5 2

Tcl Library Procedures Tcl_PrintDouble (3)

NAME
Tcl_PrintDouble − Convert floating value to string

SYNOPSIS
#include <tcl.h>

Tcl_PrintDouble(interp, value, dst)

ARGUMENTS
Tcl_Interp ∗interp (in) Before Tcl 8.0, thetcl_precision variable in this interpreter controlled

the conversion. As of Tcl 8.0, this argument is ignored and the conver-
sion is controlled by thetcl_precision variable that is now shared by all
interpreters.

double value (in) Floating-point value to be converted.

char ∗dst (out) Where to store string representingvalue. Must have at least TCL_DOU-
BLE_SPACE characters of storage.

DESCRIPTION
Tcl_PrintDouble generates a string that represents the value ofvalueand stores it in memory at the loca-
tion given bydst. It uses%g format to generate the string, with one special twist: the string is guaranteed
to contain either a ‘‘.’’ or an ‘‘e’’ so that it doesn’t look like an integer. Where%g would generate an inte-
ger with no decimal point,Tcl_PrintDouble adds ‘‘.0’’.

KEYWORDS
conversion, double-precision, floating-point, string

Tcl Last change: 8.0 1

Tcl Library Procedures Tcl_RecordAndEvalObj (3)

NAME
Tcl_RecordAndEvalObj − save command on history list before evaluating

SYNOPSIS
#include <tcl.h>

int
Tcl_RecordAndEvalObj(interp, cmdPtr, flags)

ARGUMENTS
Tcl_Interp ∗interp (in) Tcl interpreter in which to evaluate command.

Tcl_Obj ∗cmdPtr (in) Points to a Tcl object containing a command (or sequence of com-
mands) to execute.

int flags (in) An OR’ed combination of flag bits. TCL_NO_EVAL means record the
command but don’t evaluate it. TCL_EVAL_GLOBAL means evaluate
the command at global level instead of the current stack level.

DESCRIPTION
Tcl_RecordAndEvalObj is invoked to record a command as an event on the history list and then execute it
usingTcl_EvalObj (or Tcl_GlobalEvalObj if the TCL_EVAL_GLOBAL bit is set inflags). It returns a
completion code such as TCL_OK just likeTcl_EvalObj , as well as a result object containing additional
information (a result value or error message) that can be retrieved usingTcl_GetObjResult. If you don’t
want the command recorded on the history list then you should invokeTcl_EvalObj instead ofTcl_Recor-
dAndEvalObj . Normally Tcl_RecordAndEvalObj is only called with top-level commands typed by the
user, since the purpose of history is to allow the user to re-issue recently-invoked commands. If theflags
argument contains the TCL_NO_EVAL bit then the command is recorded without being evaluated.

SEE ALSO
Tcl_EvalObj, Tcl_GetObjResult

KEYWORDS
command, event, execute, history, interpreter, object, record

Tcl Last change: 8.0 1

Tcl Library Procedures Tcl_RecordAndEval (3)

NAME
Tcl_RecordAndEval − save command on history list before evaluating

SYNOPSIS
#include <tcl.h>

int
Tcl_RecordAndEval(interp, cmd, flags)

ARGUMENTS
Tcl_Interp ∗interp (in) Tcl interpreter in which to evaluate command.

char ∗cmd (in) Command (or sequence of commands) to execute.

int flags (in) An OR’ed combination of flag bits. TCL_NO_EVAL means record the
command but don’t evaluate it. TCL_EVAL_GLOBAL means evaluate
the command at global level instead of the current stack level.

DESCRIPTION
Tcl_RecordAndEval is invoked to record a command as an event on the history list and then execute it
usingTcl_Eval (or Tcl_GlobalEval if the TCL_EVAL_GLOBAL bit is set inflags). It returns a comple-
tion code such as TCL_OK just likeTcl_Eval and it leaves information ininterp->result. If you don’t
want the command recorded on the history list then you should invokeTcl_Eval instead ofTcl_Recor-
dAndEval. Normally Tcl_RecordAndEval is only called with top-level commands typed by the user,
since the purpose of history is to allow the user to re-issue recently-invoked commands. If theflagsargu-
ment contains the TCL_NO_EVAL bit then the command is recorded without being evaluated.

Note thatTcl_RecordAndEval has been largely replaced by the object-based procedureTcl_RecordAn-
dEvalObj . That object-based procedure records and optionally executes a command held in a Tcl object
instead of a string.

SEE ALSO
Tcl_RecordAndEvalObj

KEYWORDS
command, event, execute, history, interpreter, record

Tcl Last change: 7.4 1

Tcl Library Procedures Tcl_RegExpMatch (3)

NAME
Tcl_RegExpMatch, Tcl_RegExpCompile, Tcl_RegExpExec, Tcl_RegExpRange − Pattern matching with
regular expressions

SYNOPSIS
#include <tcl.h>

int
Tcl_RegExpMatch(interp, string, pattern)

Tcl_RegExp
Tcl_RegExpCompile(interp, pattern)

int
Tcl_RegExpExec(interp, regexp, string, start)

Tcl_RegExpRange(regexp, index, startPtr, endPtr)

ARGUMENTS
Tcl_Interp ∗interp (in) Tcl interpreter to use for error reporting.

char ∗string (in) String to check for a match with a regular expression.

char ∗pattern (in) String in the form of a regular expression pattern.

Tcl_RegExp regexp (in) Compiled regular expression. Must have been returned previously by
Tcl_RegExpCompile.

char ∗start (in) If string is just a portion of some other string, this argument identifies
the beginning of the larger string. If it isn’t the same asstring, then nô
matches will be allowed.

int index (in) Specifies which range is desired: 0 means the range of the entire match,
1 or greater means the range that matched a parenthesized sub-expres-
sion.

char ∗∗startPtr (out) The address of the first character in the range is stored here, or NULL if
there is no such range.

char ∗∗endPtr (out) The address of the character just after the last one in the range is stored
here, or NULL if there is no such range.

DESCRIPTION
Tcl_RegExpMatch determines whether itspatternargument matchesregexp, whereregexpis interpreted
as a regular expression using the same rules as for theregexp Tcl command. If there is a match then
Tcl_RegExpMatch returns 1. If there is no match thenTcl_RegExpMatch returns 0. If an error occurs in
the matching process (e.g.patternis not a valid regular expression) thenTcl_RegExpMatch returns −1 and
leaves an error message ininterp->result.

Tcl_RegExpCompile, Tcl_RegExpExec, andTcl_RegExpRangeprovide lower-level access to the regu-
lar expression pattern matcher.Tcl_RegExpCompilecompiles a regular expression string into the internal
form used for efficient pattern matching. The return value is a token for this compiled form, which can be
used in subsequent calls toTcl_RegExpExecor Tcl_RegExpRange. If an error occurs while compiling
the regular expression thenTcl_RegExpCompile returns NULL and leaves an error message in
interp->result. Note: the return value fromTcl_RegExpCompile is only valid up to the next call to
Tcl_RegExpCompile; it is not safe to retain these values for long periods of time.

Tcl Last change: 7.4 1

Tcl Library Procedures Tcl_RegExpMatch (3)

Tcl_RegExpExecexecutes the regular expression pattern matcher. It returns 1 ifstring contains a range of
characters that matchregexp, 0 if no match is found, and −1 if an error occurs. In the case of an error,
Tcl_RegExpExecleaves an error message ininterp->result. When searching a string for multiple matches
of a pattern, it is important to distinguish between the start of the original string and the start of the current
search. For example, when searching for the second occurrence of a match, thestring argument might
point to the character just after the first match; however, it is important for the pattern matcher to know that
this is not the start of the entire string, so that it doesn’t allowˆ atoms in the pattern to match. Thestart
argument provides this information by pointing to the start of the overall string containingstring. Startwill
be less than or equal tostring; if it is less thanstring then nô matches will be allowed.

Tcl_RegExpRangemay be invoked afterTcl_RegExpExecreturns; it provides detailed information about
what ranges of the string matched what parts of the pattern.Tcl_RegExpRangereturns a pair of pointers
in ∗startPtr and∗endPtr that identify a range of characters in the source string for the most recent call to
Tcl_RegExpExec. Indexindicates which of several ranges is desired: ifindexis 0, information is returned
about the overall range of characters that matched the entire pattern; otherwise, information is returned
about the range of characters that matched theindex’th parenthesized subexpression within the pattern. If
there is no range corresponding toindexthen NULL is stored in∗firstPtr and∗lastPtr.

KEYWORDS
match, pattern, regular expression, string, subexpression

Tcl Last change: 7.4 2

Tcl Library Procedures Tcl_SetErrno (3)

NAME
Tcl_SetErrno, Tcl_GetErrno − manipulate errno to store and retrieve error codes

SYNOPSIS
#include <tcl.h>

void
Tcl_SetErrno(errorCode)

int
Tcl_GetErrno ()

ARGUMENTS
int errorCode (in) A POSIX error code such asENOENT.

DESCRIPTION
Tcl_SetErrno andTcl_GetErrno provide portable access to theerrno variable, which is used to record a
POSIX error code after system calls and other operations such asTcl_Gets. These procedures are neces-
sary because global variable accesses cannot be made across module boundaries on some platforms.

Tcl_SetErrno sets theerrno variable to the value of theerrorCodeargument C procedures that wish to
return error information to their callers viaerrno should callTcl_SetErrno rather than settingerrno
directly.

Tcl_GetErrno returns the current value oferrno. Procedures wishing to accesserrno should call this pro-
cedure instead of accessingerrno directly.

KEYWORDS
errno, error code, global variables

Tcl Last change: 7.5 1

Tcl Library Procedures Tcl_SetRecursionLimit (3)

NAME
Tcl_SetRecursionLimit − set maximum allowable nesting depth in interpreter

SYNOPSIS
#include <tcl.h>

int
Tcl_SetRecursionLimit(interp, depth)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter whose recursion limit is to be set. Must be greater than zero.

int depth (in) New limit for nested calls toTcl_Eval for interp.

DESCRIPTION
At any giv en time Tcl enforces a limit on the number of recursive calls that may be active forTcl_Eval and
related procedures such asTcl_GlobalEval. Any call toTcl_Eval that exceeds this depth is aborted with
an error. By default the recursion limit is 1000.

Tcl_SetRecursionLimit may be used to change the maximum allowable nesting depth for an interpreter.
Thedepthargument specifies a new limit forinterp, andTcl_SetRecursionLimit returns the old limit. To
read out the old limit without modifying it, invokeTcl_SetRecursionDepthwith depthequal to 0.

TheTcl_SetRecursionLimit only sets the size of the Tcl call stack: it cannot by itself prevent stack over-
flows on the C stack being used by the application. If your machine has a limit on the size of the C stack,
you may get stack overflows before reaching the limit set byTcl_SetRecursionLimit. If this happens, see
if there is a mechanism in your system for increasing the maximum size of the C stack.

KEYWORDS
nesting depth, recursion

Tcl Last change: 7.0 1

Tcl Library Procedures Tcl_SetResult (3)

NAME
Tcl_SetObjResult, Tcl_GetObjResult, Tcl_SetResult, Tcl_GetStringResult, Tcl_AppendResult,
Tcl_AppendElement, Tcl_ResetResult − manipulate Tcl result

SYNOPSIS
#include <tcl.h>

Tcl_SetObjResult(interp, objPtr)

Tcl_Obj ∗
Tcl_GetObjResult(interp)

Tcl_SetResult(interp, string, freeProc)

char∗
Tcl_GetStringResult(interp)

Tcl_AppendResult(interp, string, string, ... ,(char ∗) NULL)

Tcl_AppendElement(interp, string)

Tcl_ResetResult(interp)

Tcl_FreeResult(interp)

ARGUMENTS
Tcl_Interp ∗interp (out) Interpreter whose result is to be modified or read.

Tcl_Obj ∗objPtr (in) Object value to become result forinterp.

char ∗string (in) String value to become result forinterp or to be appended to the
existing result.

Tcl_FreeProc ∗freeProc (in) Address of procedure to call to release storage atstring, or
TCL_STATIC , TCL_DYNAMIC , or TCL_VOLATILE .

DESCRIPTION
The procedures described here are utilities for manipulating the result value in a Tcl interpreter. The inter-
preter result may be either a Tcl object or a string. For example,Tcl_SetObjResultandTcl_SetResultset
the interpreter result to, respectively, an object and a string. Similarly,Tcl_GetObjResult andTcl_Get-
StringResult return the interpreter result as an object and as a string. The procedures always keep the
string and object forms of the interpreter result consistent. For example, ifTcl_SetObjResult is called to
set the result to an object, thenTcl_GetStringResult is called, it will return the object’s string value.

Tcl_SetObjResultarranges forobjPtr to be the result forinterp, replacing any existing result. The result is
left pointing to the object referenced byobjPtr. objPtr’s reference count is incremented since there is now
a new reference to it frominterp. The reference count for any old result object is decremented and the old
result object is freed if no references to it remain.

Tcl_GetObjResult returns the result forinterp as an object. The object’s reference count is not incre-
mented; if the caller needs to retain a long-term pointer to the object they should useTcl_IncrRefCount to
increment its reference count in order to keep it from being freed too early or accidently changed.

Tcl Last change: 7.5 1

Tcl Library Procedures Tcl_SetResult (3)

Tcl_SetResultarranges forstring to be the result for the current Tcl command ininterp, replacing any
existing result. ThefreeProcargument specifies how to manage the storage for thestring argument; it is
discussed in the sectionTHE TCL_FREEPROC ARGUMENT TO TCL_SETRESULT below. If string
is NULL , then freeProc is ignored andTcl_SetResult re-initializes interp’s result to point to an empty
string.

Tcl_GetStringResult returns the result forinterp as an string. If the result was set to an object by a
Tcl_SetObjResult call, the object form will be converted to a string and returned. If the object’s string
representation contains null bytes, this conversion will lose information. For this reason, programmers are
encouraged to write their code to use the new object API procedures and to callTcl_GetObjResult instead.

Tcl_ResetResultclears the result forinterp and leaves the result in its normal empty initialized state. If the
result is an object, its reference count is decremented and the result is left pointing to an unshared object
representing an empty string. If the result is a dynamically allocated string, its memory is free∗d and the
result is left as a empty string.Tcl_ResetResultalso clears the error state managed byTcl_AddError-
Info , Tcl_AddObjErrorInfo , andTcl_SetErrorCode.

OLD STRING PROCEDURES
Use of the following procedures is deprecated since they manipulate the Tcl result as a string. Procedures
such asTcl_SetObjResultthat manipulate the result as an object can be significantly more efficient.

Tcl_AppendResultmakes it easy to build up Tcl results in pieces. It takes each of itsstring arguments and
appends them in order to the current result associated withinterp. If the result is in its initialized empty
state (e.g. a command procedure was just invoked orTcl_ResetResultwas just called), thenTcl_Appen-
dResult sets the result to the concatenation of itsstring arguments.Tcl_AppendResult may be called
repeatedly as additional pieces of the result are produced.Tcl_AppendResult takes care of all the storage
management issues associated with managinginterp’s result, such as allocating a larger result area if neces-
sary. It also converts the current interpreter result from an object to a string, if necessary, before appending
the argument strings. Any number ofstring arguments may be passed in a single call; the last argument in
the list must be a NULL pointer.

Tcl_AppendElement is similar toTcl_AppendResult in that it allows results to be built up in pieces.
However,Tcl_AppendElement takes only a singlestring argument and it appends that argument to the
current result as a proper Tcl list element.Tcl_AppendElementadds backslashes or braces if necessary to
ensure thatinterp’s result can be parsed as a list and thatstring will be extracted as a single element. Under
normal conditions,Tcl_AppendElementwill add a space character tointerp’s result just before adding the
new list element, so that the list elements in the result are properly separated. However if the new list ele-
ment is the first in a list or sub-list (i.e.interp’s current result is empty, or consists of the single character
‘‘{’’, or ends in the characters ‘‘ {’’) then no space is added.

Tcl_FreeResult performs part of the work ofTcl_ResetResult. It frees up the memory associated with
interp’s result. It also setsinterp->freeProcto zero, but doesn’t changeinterp->resultor clear error state.
Tcl_FreeResultis most commonly used when a procedure is about to replace one result value with another.

DIRECT ACCESS TO INTERP->RESULT IS DEPRECATED
It used to be legal for programs to directly read and writeinterp->resultto manipulate the interpreter result.
Direct access tointerp->result is now strongly deprecated because it can make the result’s string and object
forms inconsistent. Programs should always read the result using the proceduresTcl_GetObjResult or
Tcl_GetStringResult, and write the result usingTcl_SetObjResultor Tcl_SetResult.

THE TCL_FREEPROC ARGUMENT TO TCL_SETRESULT
Tcl_SetResult’s freeProcargument specifies how the Tcl system is to manage the storage for thestring
argument. IfTcl_SetResultor Tcl_SetObjResult are called at a time wheninterp holds a string result,

Tcl Last change: 7.5 2

Tcl Library Procedures Tcl_SetResult (3)

they do whatever is necessary to dispose of the old string result (see theTcl_Interp manual entry for
details on this).

If freeProcis TCL_STATIC it means thatstring refers to an area of static storage that is guaranteed not to
be modified until at least the next call toTcl_Eval. If freeProcis TCL_DYNAMIC it means thatstring
was allocated with a call toTcl_Alloc and is now the property of the Tcl system.Tcl_SetResultwill
arrange for the string’s storage to be released by callingTcl_Free when it is no longer needed. IffreeProc
is TCL_VOLATILE it means thatstring points to an area of memory that is likely to be overwritten when
Tcl_SetResultreturns (e.g. it points to something in a stack frame). In this caseTcl_SetResultwill make
a copy of the string in dynamically allocated storage and arrange for the copy to be the result for the current
Tcl command.

If freeProcisn’t one of the valuesTCL_STATIC , TCL_DYNAMIC , andTCL_VOLATILE , then it is the
address of a procedure that Tcl should call to free the string. This allows applications to use non-standard
storage allocators. When Tcl no longer needs the storage for the string, it will callfreeProc. Fr eeProc
should have arguments and result that match the typeTcl_FreeProc:

typedef void Tcl_FreeProc(char∗blockPtr);
WhenfreeProcis called, itsblockPtrwill be set to the value ofstringpassed toTcl_SetResult.

SEE ALSO
Tcl_AddErrorInfo, Tcl_CreateObjCommand, Tcl_SetErrorCode, Tcl_Interp

KEYWORDS
append, command, element, list, object, result, return value, interpreter

Tcl Last change: 7.5 3

Tcl Library Procedures Tcl_SetVar (3)

NAME
Tcl_SetVar, Tcl_SetVar2, Tcl_GetVar, Tcl_GetVar2, Tcl_UnsetVar, Tcl_UnsetVar2 − manipulate Tcl vari-
ables

SYNOPSIS
#include <tcl.h>

char∗
Tcl_SetVar(interp, varName, newValue, flags)

char∗
Tcl_SetVar2(interp, name1, name2, newValue, flags)

char∗
Tcl_GetVar(interp, varName, flags)

char∗
Tcl_GetVar2(interp, name1, name2, flags)

int
Tcl_UnsetVar(interp, varName, flags)

int
Tcl_UnsetVar2(interp, name1, name2, flags)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter containing variable.

char ∗varName (in) Name of variable. May include a series of:: namespace qualifiers to
specify a variable in a particular namespace. May refer to a scalar
variable or an element of an array variable. If the name references
an element of an array, then it must be in writable memory: Tcl will
make temporary modifications to it while looking up the name.

char ∗newValue (in) New value for variable.

int flags (in) OR-ed combination of bits providing additional information for
operation. See below for valid values.

char ∗name1 (in) Name of scalar variable, or name of array variable ifname2is non-
NULL. May include a series of:: namespace qualifiers to specify a
variable in a particular namespace.

char ∗name2 (in) If non-NULL, gives name of element within array andname1must
refer to an array variable.

DESCRIPTION
These procedures may be used to create, modify, read, and delete Tcl variables from C code.

Note that Tcl_GetVar and Tcl_SetVar have been largely replaced by the object-based procedures
Tcl_ObjGetVar2 and Tcl_ObjSetVar2. Those object-based procedures read, modify, and create a vari-
able whose name is held in a Tcl object instead of a string. They also return a pointer to the object which is
the variable’s value instead of returning a string. Operations on objects can be faster since objects hold an
internal representation that can be manipulated more efficiently.

Tcl Last change: 7.4 1

Tcl Library Procedures Tcl_SetVar (3)

Tcl_SetVar andTcl_SetVar2 will create a new variable or modify an existing one. Both of these proce-
dures set the given variable to the value given bynewValue, and they return a pointer to a copy of the vari-
able’s new value, which is stored in Tcl’s variable structure. Tcl keeps a private copy of the variable’s
value, so the caller may changenewValueafter these procedures return without affecting the value of the
variable. If an error occurs in setting the variable (e.g. an array variable is referenced without giving an
index into the array), they return NULL.

The name of the variable may be specified toTcl_SetVar and Tcl_SetVar2 in either of two ways. If
Tcl_SetVar is called, the variable name is given as a single string,varName. If varNamecontains an open
parenthesis and ends with a close parenthesis, then the value between the parentheses is treated as an index
(which can have any string value) and the characters before the first open parenthesis are treated as the
name of an array variable. IfvarNamedoesn’t hav e parentheses as described above, then the entire string is
treated as the name of a scalar variable. IfTcl_SetVar2 is called, then the array name and index hav e been
separated by the caller into two separate strings,name1andname2respectively; ifname2is zero it means
that a scalar variable is being referenced.

Theflagsargument may be used to specify any of sev eral options to the procedures. It consists of an OR-
ed combination of the following bits. Note that the flag bit TCL_PARSE_PART1 is only meaningful for
the procedures Tcl_SetVar2 and Tcl_GetVar2.

TCL_GLOBAL_ONLY
Under normal circumstances the procedures look up variables as follows: If a procedure call is
active ininterp, a variable is looked up at the current level of procedure call. Otherwise, a variable
is looked up first in the current namespace, then in the global namespace. However, if this bit is
set inflagsthen the variable is looked up only in the global namespace even if there is a procedure
call active. If both TCL_GLOBAL_ONLY and TCL_NAMESPACE_ONLY are given,
TCL_GLOBAL_ONLY is ignored.

TCL_NAMESPACE_ONLY
Under normal circumstances the procedures look up variables as follows: If a procedure call is
active ininterp, a variable is looked up at the current level of procedure call. Otherwise, a variable
is looked up first in the current namespace, then in the global namespace. However, if this bit is
set inflags then the variable is looked up only in the current namespace even if there is a proce-
dure call active.

TCL_LEAVE_ERR_MSG
If an error is returned and this bit is set inflags, then an error message will be left in the inter-
preter’s result, where it can be retrieved withTcl_GetObjResult or Tcl_GetStringResult. If this
flag bit isn’t set then no error message is left and the interpreter’s result will not be modified.

TCL_APPEND_VALUE
If this bit is set thennewValueis appended to the current value, instead of replacing it. If the vari-
able is currently undefined, then this bit is ignored.

TCL_LIST_ELEMENT
If this bit is set, thennewValueis converted to a valid Tcl list element before setting (or appending
to) the variable. A separator space is appended before the new list element unless the list element
is going to be the first element in a list or sublist (i.e. the variable’s current value is empty, or con-
tains the single character ‘‘{’’, or ends in ‘‘ }’’).

TCL_PARSE_PART1
If this bit is set when callingTcl_SetVar2andTcl_GetVar2, name1may contain both an array and
an element name: if the name contains an open parenthesis and ends with a close parenthesis, then
the value between the parentheses is treated as an element name (which can have any string value)
and the characters before the first open parenthesis are treated as the name of an array variable. If
the flag TCL_PARSE_PART1 is given,name2should be NULL since the array and element names

Tcl Last change: 7.4 2

Tcl Library Procedures Tcl_SetVar (3)

are taken fromname1.

Tcl_GetVar andTcl_GetVar2 return the current value of a variable. The arguments to these procedures
are treated in the same way as the arguments toTcl_SetVar and Tcl_SetVar2. Under normal circum-
stances, the return value is a pointer to the variable’s value (which is stored in Tcl’s variable structure and
will not change before the next call toTcl_SetVar or Tcl_SetVar2). Tcl_GetVar andTcl_GetVar2 use
the flag bits TCL_GLOBAL_ONLY and TCL_LEAVE_ERR_MSG, both of which have the same meaning
as for Tcl_SetVar. In addition, Tcl_GetVar2 uses the bit TCL_PARSE_PART1, which has the same
meaning as forTcl_SetVar2. If an error occurs in reading the variable (e.g. the variable doesn’t exist or an
array element is specified for a scalar variable), then NULL is returned.

Tcl_UnsetVar andTcl_UnsetVar2 may be used to remove a variable, so that future calls toTcl_GetVar or
Tcl_GetVar2 for the variable will return an error. The arguments to these procedures are treated in the
same way as the arguments toTcl_GetVar andTcl_GetVar2. If the variable is successfully removed then
TCL_OK is returned. If the variable cannot be removed because it doesn’t exist then TCL_ERROR is
returned. If an array element is specified, the given element is removed but the array remains. If an array
name is specified without an index, then the entire array is removed.

SEE ALSO
Tcl_GetObjResult, Tcl_GetStringResult, Tcl_ObjGetVar2, Tcl_ObjSetVar2, Tcl_TraceVar

KEYWORDS
array, interpreter, object, scalar, set, unset, variable

Tcl Last change: 7.4 3

Tcl Library Procedures Tcl_Sleep (3)

NAME
Tcl_Sleep − delay execution for a given number of milliseconds

SYNOPSIS
#include <tcl.h>

Tcl_Sleep(ms)

ARGUMENTS
int ms (in) Number of milliseconds to sleep.

DESCRIPTION
This procedure delays the calling process by the number of milliseconds given by thems parameter and
returns after that time has elapsed. It is typically used for things like flashing a button, where the delay is
short and the application needn’t do anything while it waits. For longer delays where the application needs
to respond to other events during the delay, the procedureTcl_CreateTimerHandler should be used
instead ofTcl_Sleep.

KEYWORDS
sleep, time, wait

Tcl Last change: 7.5 1

Tcl Library Procedures Tcl_SplitList (3)

NAME
Tcl_SplitList, Tcl_Merge, Tcl_ScanElement, Tcl_ConvertElement − manipulate Tcl lists

SYNOPSIS
#include <tcl.h>

int
Tcl_SplitList (interp, list, argcPtr, argvPtr)

char∗
Tcl_Merge(argc, argv)

int
Tcl_ScanElement(src, flagsPtr)

int
Tcl_ScanCountedElement(src, length, flagsPtr)

int
Tcl_ConvertElement(src, dst, flags)

int
Tcl_ConvertCountedElement(src, length, dst, flags)

ARGUMENTS
Tcl_Interp ∗interp (out) Interpreter to use for error reporting. If NULL, then no error mes-

sage is left.

char ∗list (in) Pointer to a string with proper list structure.

int ∗argcPtr (out) Filled in with number of elements inlist.

char ∗∗∗argvPtr (out) ∗argvPtr will be filled in with the address of an array of pointers to
the strings that are the extracted elements oflist. There will be
∗argcPtrvalid entries in the array, followed by a NULL entry.

int argc (in) Number of elements inargv.

char ∗∗argv (in) Array of strings to merge together into a single list. Each string will
become a separate element of the list.

char ∗src (in) String that is to become an element of a list.

int ∗flagsPtr (in) Pointer to word to fill in with information aboutsrc. The value of
∗flagsPtrmust be passed toTcl_ConvertElement.

int length (in) Number of bytes in stringsrc.

char ∗dst (in) Place to copy converted list element. Must contain enough charac-
ters to hold converted string.

int flags (in) Information aboutsrc. Must be value returned by previous call to
Tcl_ScanElement, possibly OR-ed with
TCL_DONT_USE_BRACES.

DESCRIPTION

Tcl Last change: 7.5 1

Tcl Library Procedures Tcl_SplitList (3)

These procedures may be used to disassemble and reassemble Tcl lists.Tcl_SplitList breaks a list up into
its constituent elements, returning an array of pointers to the elements usingargcPtr andargvPtr. While
extracting the arguments,Tcl_SplitList obeys the usual rules for backslash substitutions and braces. The
area of memory pointed to by∗argvPtr is dynamically allocated; in addition to the array of pointers, it also
holds copies of all the list elements. It is the caller’s responsibility to free up all of this storage. For exam-
ple, suppose that you have calledTcl_SplitList with the following code:

int argc, code;
char∗string;
char∗∗argv;
...
code = Tcl_SplitList(interp, string, &argc, &argv);

Then you should eventually free the storage with a call like the following:
Tcl_Free((char∗) argv);

Tcl_SplitList normally returnsTCL_OK , which means the list was successfully parsed. If there was a
syntax error inlist, then TCL_ERROR is returned andinterp->result will point to an error message
describing the problem (ifinterp was not NULL). If TCL_ERROR is returned then no memory is allo-
cated and∗argvPtr is not modified.

Tcl_Merge is the inverse ofTcl_SplitList : it takes a collection of strings given byargc andargv and gen-
erates a result string that has proper list structure. This means that commands likeindex may be used to
extract the original elements again. In addition, if the result ofTcl_Merge is passed toTcl_Eval, it will be
parsed intoargc words whose values will be the same as theargv strings passed toTcl_Merge.
Tcl_Merge will modify the list elements with braces and/or backslashes in order to produce proper Tcl list
structure. The result string is dynamically allocated usingTcl_Alloc; the caller must eventually release the
space usingTcl_Free.

If the result ofTcl_Merge is passed toTcl_SplitList , the elements returned byTcl_SplitList will be iden-
tical to those passed intoTcl_Merge. Howev er, the converse is not true: ifTcl_SplitList is passed a given
string, and the resultingargc andargv are passed toTcl_Merge, the resulting string may not be the same as
the original string passed toTcl_SplitList . This is becauseTcl_Merge may use backslashes and braces
differently than the original string.

Tcl_ScanElementandTcl_ConvertElement are the procedures that do all of the real work ofTcl_Merge.
Tcl_ScanElementscans itssrc argument and determines how to use backslashes and braces when convert-
ing it to a list element. It returns an overestimate of the number of characters required to representsrc as a
list element, and it stores information in∗flagsPtrthat is needed byTcl_ConvertElement.

Tcl_ConvertElement is a companion procedure toTcl_ScanElement. It does the actual work of convert-
ing a string to a list element. Itsflagsargument must be the same as the value returned byTcl_ScanEle-
ment. Tcl_ConvertElement writes a proper list element to memory starting at∗dstand returns a count of
the total number of characters written, which will be no more than the result returned byTcl_ScanEle-
ment. Tcl_ConvertElement writes out only the actual list element without any leading or trailing spaces:
it is up to the caller to include spaces between adjacent list elements.

Tcl_ConvertElement uses one of two different approaches to handle the special characters insrc. Wher-
ev er possible, it handles special characters by surrounding the string with braces. This produces clean-
looking output, but can’t be used in some situations, such as whensrc contains unmatched braces. In these
situations,Tcl_ConvertElement handles special characters by generating backslash sequences for them.
The caller may insist on the second approach by OR-ing the flag value returned byTcl_ScanElementwith
TCL_DONT_USE_BRACES. Although this will produce an uglier result, it is useful in some special sit-
uations, such as whenTcl_ConvertElement is being used to generate a portion of an argument for a Tcl
command. In this case, surroundingsrc with curly braces would cause the command not to be parsed cor-
rectly.

Tcl Last change: 7.5 2

Tcl Library Procedures Tcl_SplitList (3)

Tcl_ScanCountedElementand Tcl_ConvertCountedElement are the same asTcl_ScanElementand
Tcl_ConvertElement, except the length of stringsrc is specified by thelength argument, and the string
may contain embedded nulls.

KEYWORDS
backslash, convert, element, list, merge, split, strings

Tcl Last change: 7.5 3

Tcl Library Procedures Tcl_SplitPath (3)

NAME
Tcl_SplitPath, Tcl_JoinPath, Tcl_GetPathType − manipulate platform-dependent file paths

SYNOPSIS
#include <tcl.h>

Tcl_SplitPath(path, argcPtr, argvPtr)

char∗
Tcl_JoinPath(argc, argv, resultPtr)

Tcl_PathType
Tcl_GetPathType(path)

ARGUMENTS
char ∗path (in) File path in a form appropriate for the current platform (see the

filenamemanual entry for acceptable forms for path names).

int ∗argcPtr (out) Filled in with number of path elements inpath.

char ∗∗∗argvPtr (out) ∗argvPtr will be filled in with the address of an array of pointers
to the strings that are the extracted elements ofpath. There will be
∗argcPtrvalid entries in the array, followed by a NULL entry.

int argc (in) Number of elements inargv.

char ∗∗argv (in) Array of path elements to merge together into a single path.

Tcl_DString ∗resultPtr (in/out) A pointer to an initializedTcl_DString to which the result of
Tcl_JoinPath will be appended.

DESCRIPTION
These procedures may be used to disassemble and reassemble file paths in a platform independent manner:
they provide C-level access to the same functionality as thefile split, file join, and file pathtype com-
mands.

Tcl_SplitPath breaks a path into its constituent elements, returning an array of pointers to the elements
usingargcPtr andargvPtr. The area of memory pointed to by∗argvPtr is dynamically allocated; in addi-
tion to the array of pointers, it also holds copies of all the path elements. It is the caller’s responsibility to
free all of this storage. For example, suppose that you have calledTcl_SplitPath with the following code:

int argc;
char∗path;
char∗∗argv;
...
Tcl_SplitPath(string, &argc, &argv);

Then you should eventually free the storage with a call like the following:
Tcl_Free((char∗) argv);

Tcl_JoinPath is the inverse ofTcl_SplitPath: it takes a collection of path elements given byargc andargv
and generates a result string that is a properly constructed path. The result string is appended toresultPtr.
ResultPtrmust refer to an initializedTcl_DString.

If the result ofTcl_SplitPath is passed toTcl_JoinPath, the result will refer to the same location, but may
not be in the same form. This is becauseTcl_SplitPath andTcl_JoinPath eliminate duplicate path separa-
tors and return a normalized form for each platform.

Tcl Last change: 7.5 1

Tcl Library Procedures Tcl_SplitPath (3)

Tcl_GetPathType returns the type of the specifiedpath, where Tcl_PathType is one of
TCL_PATH_ABSOLUTE , TCL_PATH_RELATIVE , or TCL_PATH_VOLUME_RELATIVE . See
thefilenamemanual entry for a description of the path types for each platform.

KEYWORDS
file, filename, join, path, split, type

Tcl Last change: 7.5 2

Tcl Library Procedures Tcl_StaticPackage (3)

NAME
Tcl_StaticPackage − make a statically linked package available via theload command

SYNOPSIS
#include <tcl.h>

Tcl_StaticPackage(interp, pkgName, initProc, safeInitProc)

ARGUMENTS
Tcl_Interp ∗interp (in) If not NULL, points to an interpreter into which the

package has already been loaded (i.e., the caller has
already invoked the appropriate initialization proce-
dure). NULL means the package hasn’t yet been incor-
porated into any interpreter.

char ∗pkgName (in) Name of the package; should be properly capitalized
(first letter upper-case, all others lower-case).

Tcl_PackageInitProc ∗initProc (in) Procedure to invoke to incorporate this package into a
trusted interpreter.

Tcl_PackageInitProc ∗safeInitProc (in) Procedure to call to incorporate this package into a safe
interpreter (one that will execute untrusted scripts).
NULL means the package can’t be used in safe inter-
preters.

DESCRIPTION
This procedure may be invoked to announce that a package has been linked statically with a Tcl application
and, optionally, that it has already been loaded into an interpreter. OnceTcl_StaticPackagehas been
invoked for a package, it may be loaded into interpreters using theload command.Tcl_StaticPackageis
normally invoked only by theTcl_AppInit procedure for the application, not by packages for themselves
(Tcl_StaticPackageshould only be invoked for statically loaded packages, and code in the package itself
should not need to know whether the package is dynamically or statically loaded).

When theload command is used later to load the package into an interpreter, one ofinitProc andsafeInit-
Proc will be invoked, depending on whether the target interpreter is safe or not.initProc andsafeInitProc
must both match the following prototype:

typedef int Tcl_PackageInitProc(Tcl_Interp∗interp);
The interpargument identifies the interpreter in which the package is to be loaded. The initialization proce-
dure must returnTCL_OK or TCL_ERROR to indicate whether or not it completed successfully; in the
ev ent of an error it should setinterp->result to point to an error message. The result or error from the ini-
tialization procedure will be returned as the result of theload command that caused the initialization proce-
dure to be invoked.

KEYWORDS
initialization procedure, package, static linking

Tcl Last change: 7.5 1

Tcl Library Procedures Tcl_StringMatch (3)

NAME
Tcl_StringMatch − test whether a string matches a pattern

SYNOPSIS
#include <tcl.h>

int
Tcl_StringMatch (string, pattern)

ARGUMENTS
char ∗string (in) String to test.

char ∗pattern (in) Pattern to match against string. May contain special charac-
ters from the set∗?\[].

DESCRIPTION
This utility procedure determines whether a string matches a given pattern. If it does, thenTcl_String-
Match returns 1. OtherwiseTcl_StringMatch returns 0. The algorithm used for matching is the same
algorithm used in the ‘‘string match’’ Tcl command and is similar to the algorithm used by the C-shell for
file name matching; see the Tcl manual entry for details.

KEYWORDS
match, pattern, string

Tcl Last change: 1

Tcl Library Procedures Tcl_StringObj (3)

NAME
Tcl_NewStringObj, Tcl_SetStringObj, Tcl_GetStringFromObj, Tcl_AppendToObj, Tcl_Append-
StringsToObj, Tcl_SetObjLength, TclConcatObj − manipulate Tcl objects as strings

SYNOPSIS
#include <tcl.h>

Tcl_Obj ∗
Tcl_NewStringObj(bytes, length)

Tcl_SetStringObj(objPtr, bytes, length)

char∗
Tcl_GetStringFromObj (objPtr, lengthPtr)

Tcl_AppendToObj(objPtr, bytes, length)

Tcl_AppendStringsToObj(objPtr, string, string, ...(char ∗) NULL)

Tcl_SetObjLength(objPtr, newLength)

Tcl_Obj ∗
Tcl_ConcatObj(objc, objv)

ARGUMENTS
char ∗bytes (in) Points to the first byte of an array of bytes used to set or append to a

string object. This byte array may contain embedded null bytes
unlesslengthis negative.

int length (in) The number of bytes to copy frombyteswhen initializing, setting, or
appending to a string object. If negative, all bytes up to the first null
are used.

Tcl_Obj ∗objPtr (in/out) Points to an object to manipulate.

int ∗lengthPtr (out) If non-NULL, the location whereTcl_GetStringFromObj will store
the the length of an object’s string representation.

char ∗string (in) Null-terminated string value to append toobjPtr.

int newLength (in) New length for the string value ofobjPtr, not including the final
NULL character.

int objc (in) The number of elements to concatenate.

Tcl_Obj ∗objv[] (in) The array of objects to concatenate.

DESCRIPTION
The procedures described in this manual entry allow Tcl objects to be manipulated as string values. They
use the internal representation of the object to store additional information to make the string manipulations
more efficient. In particular, they make a series of append operations efficient by allocating extra storage
space for the string so that it doesn’t hav e to be copied for each append.

Tcl_NewStringObj andTcl_SetStringObj create a new object or modify an existing object to hold a copy
of the string given bybytesandlength. Tcl_NewStringObj returns a pointer to a newly created object with
reference count zero. Both procedures set the object to hold a copy of the specified string.

Tcl Last change: 8.0 1

Tcl Library Procedures Tcl_StringObj (3)

Tcl_SetStringObj frees any old string representation as well as any old internal representation of the
object.

Tcl_GetStringFromObj returns an object’s string representation. This is given by the returned byte
pointer and length, which is stored inlengthPtr if it is non-NULL. If the object’s string representation is
invalid (its byte pointer is NULL), the string representation is regenerated from the object’s internal repre-
sentation. The storage referenced by the returned byte pointer is owned by the object manager and should
not be modified by the caller.

Tcl_AppendToObj appends the data given bybytesand length to the object specified byobjPtr. It does
this in a way that handles repeated calls relatively efficiently (it overallocates the string space to avoid
repeated reallocations and copies of object’s string value).

Tcl_AppendStringsToObj is similar toTcl_AppendToObj except that it can be passed more than one
value to append and each value must be a null-terminated string (i.e. none of the values may contain inter-
nal null characters). Any number ofstring arguments may be provided, but the last argument must be a
NULL pointer to indicate the end of the list.

The Tcl_SetObjLength procedure changes the length of the string value of itsobjPtr argument. If the
newLengthargument is greater than the space allocated for the object’s string, then the string space is real-
located and the old value is copied to the new space; the bytes between the old length of the string and the
new length may have arbitrary values. If thenewLengthargument is less than the current length of the
object’s string, withobjPtr->length is reduced without reallocating the string space; the original allocated
size for the string is recorded in the object, so that the string length can be enlarged in a subsequent call to
Tcl_SetObjLength without reallocating storage. In all casesTcl_SetObjLength leaves a null character at
objPtr->bytes[newLength].

TheTcl_ConcatObj function returns a new string object whose value is the space-separated concatenation
of the string representations of all of the objects in theobjv array.Tcl_ConcatObj eliminates leading and
trailing white space as it copies the string representations of theobjv array to the result. If an element of the
objv array consists of nothing but white space, then that object is ignored entirely. This white-space
removal was added to make the output of theconcatcommand cleaner-looking.Tcl_ConcatObj returns a
pointer to a newly-created object whose ref count is zero.

SEE ALSO
Tcl_NewObj, Tcl_IncrRefCount, Tcl_DecrRefCount

KEYWORDS
append, internal representation, object, object type, string object, string type, string representation, concat,
concatenate

Tcl Last change: 8.0 2

Tcl Library Procedures Tcl_Main (3)

NAME
Tcl_Main − main program for Tcl-based applications

SYNOPSIS
#include <tcl.h>

Tcl_Main (argc, argv, appInitProc)

ARGUMENTS
int argc (in) Number of elements inargv.

char ∗argv[] (in) Array of strings containing command-line arguments.

Tcl_AppInitProc ∗appInitProc (in) Address of an application-specific initialization procedure.
The value for this argument is usuallyTcl_AppInit .

DESCRIPTION
Tcl_Main acts as the main program for most Tcl-based applications. Starting with Tcl 7.4 it is not called
main anymore because it is part of the Tcl library and having a functionmain in a library (particularly a
shared library) causes problems on many systems. Havingmain in the Tcl library would also make it hard
to use Tcl in C++ programs, since C++ programs must have special C++main functions.

Normally each application contains a smallmain function that does nothing but invokeTcl_Main .
Tcl_Main then does all the work of creating and running atclsh-like application.

When it is has finished its own initialization, but before it processes commands,Tcl_Main calls the proce-
dure given by theappInitProcargument. This procedure provides a ‘‘hook’’ for the application to perform
its own initialization, such as defining application-specific commands. The procedure must have an inter-
face that matches the typeTcl_AppInitProc :

typedef int Tcl_AppInitProc(Tcl_Interp∗interp);
AppInitProc is almost always a pointer toTcl_AppInit ; for more details on this procedure, see the docu-
mentation forTcl_AppInit .

KEYWORDS
application-specific initialization, command-line arguments, main program

Tcl Last change: 7.4 1

Tcl Library Procedures Tcl_TraceVar (3)

NAME
Tcl_TraceVar, Tcl_TraceVar2, Tcl_UntraceVar, Tcl_UntraceVar2, Tcl_VarTraceInfo, Tcl_VarTraceInfo2 −
monitor accesses to a variable

SYNOPSIS
#include <tcl.h>

int
Tcl_TraceVar(interp, varName, flags, proc, clientData)

int
Tcl_TraceVar2(interp, name1, name2, flags, proc, clientData)

Tcl_UntraceVar(interp, varName, flags, proc, clientData)

Tcl_UntraceVar2(interp, name1, name2, flags, proc, clientData)

ClientData
Tcl_VarTraceInfo(interp, varName, flags, proc, prevClientData)

ClientData
Tcl_VarTraceInfo2(interp, name1, name2, flags, proc, prevClientData)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter containing variable.

char ∗varName (in) Name of variable. May refer to a scalar variable, to an
array variable with no index, or to an array variable with
a parenthesized index. If the name references an ele-
ment of an array, then it must be in writable memory:
Tcl will make temporary modifications to it while look-
ing up the name.

int flags (in) OR-ed combination of the values
TCL_TRACE_READS, TCL_TRACE_WRITES, and
TCL_TRACE_UNSETS, TCL_PARSE_PART1, and
TCL_GLOBAL_ONLY. Not all flags are used by all
procedures. See below for more information.

Tcl_VarTraceProc ∗proc (in) Procedure to invoke whenever one of the traced opera-
tions occurs.

ClientData clientData (in) Arbitrary one-word value to pass toproc.

char ∗name1 (in) Name of scalar or array variable (without array index).

char ∗name2 (in) For a trace on an element of an array, giv es the index of
the element. For traces on scalar variables or on whole
arrays, is NULL.

ClientData prevClientData (in) If non-NULL, gives last value returned byTcl_VarTra-
ceInfo or Tcl_VarTraceInfo2 , so this call will return
information about next trace. If NULL, this call will
return information about first trace.

Tcl Last change: 7.4 1

Tcl Library Procedures Tcl_TraceVar (3)

DESCRIPTION
Tcl_TraceVar allows a C procedure to monitor and control access to a Tcl variable, so that the C procedure
is invoked whenever the variable is read or written or unset. If the trace is created successfully then
Tcl_TraceVar returns TCL_OK. If an error occurred (e.g.varNamespecifies an element of an array, but
the actual variable isn’t an array) then TCL_ERROR is returned and an error message is left in
interp->result.

The flags argument toTcl_TraceVar indicates when the trace procedure is to be invoked and provides
information for setting up the trace. It consists of an OR-ed combination of any of the following values:

TCL_GLOBAL_ONLY
Normally, the variable will be looked up at the current level of procedure call; if this bit is set then
the variable will be looked up at global level, ignoring any active procedures.

TCL_TRACE_READS
Invokeprocwhenever an attempt is made to read the variable.

TCL_TRACE_WRITES
Invokeprocwhenever an attempt is made to modify the variable.

TCL_TRACE_UNSETS
Invokeproc whenever the variable is unset. A variable may be unset either explicitly by anunset
command, or implicitly when a procedure returns (its local variables are automatically unset) or
when the interpreter is deleted (all variables are automatically unset).

Whenever one of the specified operations occurs on the variable,proc will be invoked. It should have argu-
ments and result that match the typeTcl_VarTraceProc:

typedef char∗Tcl_VarTraceProc(
ClientDataclientData,
Tcl_Interp∗interp,
char∗name1,
char∗name2,
int flags);

TheclientDataandinterp parameters will have the same values as those passed toTcl_TraceVar when the
trace was created.ClientData typically points to an application-specific data structure that describes what
to do whenproc is invoked. Name1andname2give the name of the traced variable in the normal two-part
form (see the description ofTcl_TraceVar2 below for details).Flags is an OR-ed combination of bits pro-
viding several pieces of information. One of the bits TCL_TRACE_READS, TCL_TRACE_WRITES, or
TCL_TRACE_UNSETS will be set inflagsto indicate which operation is being performed on the variable.
The bit TCL_GLOBAL_ONLY will be set whenever the variable being accessed is a global one not acces-
sible from the current level of procedure call: the trace procedure will need to pass this flag back to vari-
able-related procedures likeTcl_GetVar if it attempts to access the variable. The bit
TCL_TRACE_DESTROYED will be set inflagsif the trace is about to be destroyed; this information may
be useful to proc so that it can clean up its own internal data structures (see the section
TCL_TRACE_DESTROYED below for more details). Lastly, the bit TCL_INTERP_DESTROYED will
be set if the entire interpreter is being destroyed. When this bit is set,proc must be especially careful in the
things it does (see the section TCL_INTERP_DESTROYED below). The trace procedure’s return value
should normally be NULL; see ERROR RETURNS below for information on other possibilities.

Tcl_UntraceVar may be used to remove a trace. If the variable specified byinterp, varName, andflagshas
a trace set withflags, proc, andclientData, then the corresponding trace is removed. If no such trace exists,
then the call toTcl_UntraceVar has no effect. The same bits are valid forflagsas for calls toTcl_Trace-
Var .

Tcl_VarTraceInfo may be used to retrieve information about traces set on a given variable. The return
value fromTcl_VarTraceInfo is theclientDataassociated with a particular trace. The trace must be on the

Tcl Last change: 7.4 2

Tcl Library Procedures Tcl_TraceVar (3)

variable specified by theinterp, varName, andflagsarguments (only the TCL_GLOBAL_ONLY bit from
flagsis used; other bits are ignored) and its trace procedure must the same as theprocargument. If thepre-
vClientDataargument is NULL then the return value corresponds to the first (most recently created) match-
ing trace, or NULL if there are no matching traces. If theprevClientDataargument isn’t NULL, then it
should be the return value from a previous call toTcl_VarTraceInfo . In this case, the new return value
will correspond to the next matching trace after the one whoseclientData matchesprevClientData, or
NULL if no trace matchesprevClientDataor if there are no more matching traces after it. This mechanism
makes it possible to step through all of the traces for a given variable that have the sameproc.

TWO-PART NAMES
The proceduresTcl_TraceVar2, Tcl_UntraceVar2, andTcl_VarTraceInfo2 are identical toTcl_Trace-
Var , Tcl_UntraceVar, andTcl_VarTraceInfo , respectively, except that the name of the variable consists
of two parts. Name1gives the name of a scalar variable or array, andname2gives the name of an element
within an array. Ifname2is NULL it means that either the variable is a scalar or the trace is to be set on the
entire array rather than an individual element (see WHOLE-ARRAY TRACES below for more informa-
tion). As a special case, if the flag TCL_PARSE_PART1 is specified,name1may contain both an array and
an element name: if the name contains an open parenthesis and ends with a close parenthesis, then the value
between the parentheses is treated as an element name (which can have any string value) and the characters
before the first open parenthesis are treated as the name of an array variable. If the flag
TCL_PARSE_PART1 is given,name2should be NULL since the array and element names are taken from
name1.

ACCESSING VARIABLES DURING TRACES
During read and write traces, the trace procedure can read, write, or unset the traced variable using
Tcl_GetVar2, Tcl_SetVar2, and other procedures. Whileproc is executing, traces are temporarily dis-
abled for the variable, so that calls toTcl_GetVar2 andTcl_SetVar2 will not causeproc or other trace pro-
cedures to be invoked again. Disabling only occurs for the variable whose trace procedure is active;
accesses to other variables will still be traced. However, if a variable is unset during a read or write trace
then unset traces will be invoked.

During unset traces the variable has already been completely expunged. It is possible for the trace proce-
dure to read or write the variable, but this will be a new version of the variable. Traces are not disabled dur-
ing unset traces as they are for read and write traces, but existing traces have been removed from the vari-
able before any trace procedures are invoked. If new traces are set by unset trace procedures, these traces
will be invoked on accesses to the variable by the trace procedures.

CALLBACK TIMING
When read tracing has been specified for a variable, the trace procedure will be invoked whenever the vari-
able’s value is read. This includessetTcl commands,$-notation in Tcl commands, and invocations of the
Tcl_GetVar andTcl_GetVar2 procedures.Proc is invoked just before the variable’s value is returned. It
may modify the value of the variable to affect what is returned by the traced access. If it unsets the variable
then the access will return an error just as if the variable never existed.

When write tracing has been specified for a variable, the trace procedure will be invoked whenever the vari-
able’s value is modified. This includesset commands, commands that modify variables as side effects
(such ascatch andscan), and calls to theTcl_SetVar andTcl_SetVar2 procedures).Proc will be invoked
after the variable’s value has been modified, but before the new value of the variable has been returned. It
may modify the value of the variable to override the change and to determine the value actually returned by
the traced access. If it deletes the variable then the traced access will return an empty string.

Tcl Last change: 7.4 3

Tcl Library Procedures Tcl_TraceVar (3)

When unset tracing has been specified, the trace procedure will be invoked whenever the variable is
destroyed. The traces will be called after the variable has been completely unset.

WHOLE-ARRAY TRACES
If a call toTcl_TraceVar or Tcl_TraceVar2 specifies the name of an array variable without an index into
the array, then the trace will be set on the array as a whole. This means thatproc will be invoked whenever
any element of the array is accessed in the ways specified byflags. When an array is unset, a whole-array
trace will be invoked just once, withname1equal to the name of the array andname2NULL; it will not be
invoked once for each element.

MULTIPLE TRACES
It is possible for multiple traces to exist on the same variable. When this happens, all of the trace proce-
dures will be invoked on each access, in order from most-recently-created to least-recently-created. When
there exist whole-array traces for an array as well as traces on individual elements, the whole-array traces
are invoked before the individual-element traces. If a read or write trace unsets the variable then all of the
unset traces will be invoked but the remainder of the read and write traces will be skipped.

ERROR RETURNS
Under normal conditions trace procedures should return NULL, indicating successful completion. Ifproc
returns a non-NULL value it signifies that an error occurred. The return value must be a pointer to a static
character string containing an error message. If a trace procedure returns an error, no further traces are
invoked for the access and the traced access aborts with the given message. Trace procedures can use this
facility to make variables read-only, for example (but note that the value of the variable will already have
been modified before the trace procedure is called, so the trace procedure will have to restore the correct
value).

The return value fromproc is only used during read and write tracing. During unset traces, the return value
is ignored and all relevant trace procedures will always be invoked.

RESTRICTIONS
A trace procedure can be called at any time, even when there is a partially-formed result in the interpreter’s
result area. If the trace procedure does anything that could damage this result (such as callingTcl_Eval)
then it must save the original values of the interpreter’sresult andfreeProcfields and restore them before it
returns.

UNDEFINED VARIABLES
It is legal to set a trace on an undefined variable. The variable will still appear to be undefined until the first
time its value is set. If an undefined variable is traced and then unset, the unset will fail with an error (‘‘no
such variable’’), but the trace procedure will still be invoked.

TCL_TRACE_DESTROYED FLAG
In an unset callback toproc, the TCL_TRACE_DESTROYED bit is set inflags if the trace is being
removed as part of the deletion. Traces on a variable are always removed whenever the variable is deleted;
the only time TCL_TRACE_DESTROYED isn’t set is for a whole-array trace invoked when only a single
element of an array is unset.

TCL_INTERP_DESTROYED
When an interpreter is destroyed, unset traces are called for all of its variables. The
TCL_INTERP_DESTROYED bit will be set in theflagsargument passed to the trace procedures. Trace

Tcl Last change: 7.4 4

Tcl Library Procedures Tcl_TraceVar (3)

procedures must be extremely careful in what they do if the TCL_INTERP_DESTROYED bit is set. It is
not safe for the procedures to invoke any Tcl procedures on the interpreter, since its state is partially
deleted. All that trace procedures should do under these circumstances is to clean up and free their own
internal data structures.

BUGS
Tcl doesn’t do any error checking to prevent trace procedures from misusing the interpreter during traces
with TCL_INTERP_DESTROYED set.

KEYWORDS
clientData, trace, variable

Tcl Last change: 7.4 5

Tcl Library Procedures Tcl_TranslateFileName (3)

NAME
Tcl_TranslateFileName − convert file name to native form and replace tilde with home directory

SYNOPSIS
#include <tcl.h>

char∗
Tcl_TranslateFileName(interp, name, bufferPtr)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter in which to report an error, if any.

char ∗name (in) File name, which may start with a ‘‘˜’’.

Tcl_DString ∗bufferPtr (in/out) If needed, this dynamic string is used to store the new file name.
At the time of the call it should be uninitialized or empty. The
caller must eventually callTcl_DStringFree to free up anything
stored here.

DESCRIPTION
This utility procedure translates a file name to a form suitable for passing to the local operating system. It
converts network names into native form and does tilde substitution.

If Tcl_TranslateFileNamehas to do tilde substitution or translate the name then it uses the dynamic string
at ∗bufferPtr to hold the new string it generates. AfterTcl_TranslateFileName returns a non-NULL
result, the caller must eventually invokeTcl_DStringFree to free any information placed in∗bufferPtr.
The caller need not know whether or notTcl_TranslateFileNameactually used the string;Tcl_Translate-
FileName initializes ∗bufferPtr ev en if it doesn’t use it, so the call toTcl_DStringFree will be safe in
either case.

If an error occurs (e.g. because there was no user by the given name) then NULL is returned and an error
message will be left atinterp->result. When an error occurs,Tcl_TranslateFileName frees the dynamic
string itself so that the caller need not callTcl_DStringFree.

The caller is responsible for making sure thatinterp->resulthas its default empty value whenTcl_Trans-
lateFileNameis invoked.

SEE ALSO
filename

KEYWORDS
file name, home directory, tilde, translate, user

Tcl Last change: 7.5 1

Tcl Library Procedures Tcl_UpVar (3)

NAME
Tcl_UpVar, Tcl_UpVar2 − link one variable to another

SYNOPSIS
#include <tcl.h>

int
Tcl_UpVar(interp, frameName, sourceName, destName, flags)

int
Tcl_UpVar2(interp, frameName, name1, name2, destName, flags)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter containing variables; also used for error

reporting.

char ∗frameName (in) Identifies the stack frame containing source variable.
May have any of the forms accepted by theupvar com-
mand, such as#0or 1.

char ∗sourceName (in) Name of source variable, in the frame given byframe-
Name. May refer to a scalar variable or to an array vari-
able with a parenthesized index.

char ∗destName (in) Name of destination variable, which is to be linked to
source variable so that references todestNamerefer to
the other variable. Must not currently exist except as an
upvar-ed variable.

int flags (in) Either TCL_GLOBAL_ONLY or 0; if non-zero, then
destNameis a global variable; otherwise it is a local to
the current procedure (or global if no procedure is
active).

char ∗name1 (in) First part of source variable’s name (scalar name, or
name of array without array index).

char ∗name2 (in) If source variable is an element of an array, giv es the
index of the element. For scalar source variables, is
NULL.

DESCRIPTION
Tcl_UpVar and Tcl_UpVar2 provide the same functionality as theupvar command: they make a link
from a source variable to a destination variable, so that references to the destination are passed transpar-
ently through to the source. The name of the source variable may be specified either as a single string such
asxyx or a(24) (by callingTcl_UpVar) or in two parts where the array name has been separated from the
element name (by callingTcl_UpVar2). The destination variable name is specified in a single string; it
may not be an array element.

Both procedures return either TCL_OK or TCL_ERROR, and they leave an error message ininterp->result
if an error occurs.

As with theupvar command, the source variable need not exist; if it does exist, unsetting it later does not
destroy the link. The destination variable may exist at the time of the call, but if so it must exist as a linked
variable.

Tcl Last change: 7.4 1

Tcl Library Procedures Tcl_UpVar (3)

KEYWORDS
linked variable, upvar, variable

Tcl Last change: 7.4 2

Tcl Library Procedures Tcl_WrongNumArgs (3)

NAME
Tcl_WrongNumArgs − generate standard error message for wrong number of arguments

SYNOPSIS
#include <tcl.h>

Tcl_WrongNumArgs(interp, objc, objv, message)

ARGUMENTS
Tcl_Interp interp (in) Interpreter in which error will be reported: error message gets

stored in its result object.

int objc (in) Number of leading arguments fromobjv to include in error
message.

Tcl_Obj ∗CONSTobjv[] (in) Arguments to command that had the wrong number of argu-
ments.

char ∗message (in) Additional error information to print after leading arguments
from objv. This typically gives the acceptable syntax of the
command. This argument may be NULL.

DESCRIPTION
Tcl_WrongNumArgs is a utility procedure that is invoked by command procedures when they discover
that they hav e received the wrong number of arguments.Tcl_WrongNumArgs generates a standard error
message and stores it in the result object ofinterp. The message includes theobjc initial elements ofobjv
plusmessage. For example, ifobjv consists of the valuesfoo andbar, objc is 1, andmessageis ‘‘fileName
count’’ then interp’s result object will be set to the following string:

wrong # args: should be "foo fileName count"
If objc is 2, the result will be set to the following string:

wrong # args: should be "foo bar fileName count"
Objc is usually 1, but may be 2 or more for commands likestring and the Tk widget commands, which use
the first argument as a subcommand.

Some of the objects in theobjv array may be abbreviations for a subcommand. The command
Tcl_GetIndexFromObj will convert the abbreviated string object into anindexObject. If an error occurs
in the parsing of the subcommand we would like to use the full subcommand name rather than the abbrevi-
ation. If theTcl_WrongNumArgs command finds anyindexObjectsin the objv array it will use the full
subcommand name in the error message instead of the abbreviated name that was origionally passed in.
Using the above example, lets assume thatbar is actually an abbreviation forbarfly and the object is now
an indexObject becasue it was passed toTcl_GetIndexFromObj . In this case the error message would be:

wrong # args: should be "foo barfly fileName count"

SEE ALSO
Tcl_GetIndexFromObj

KEYWORDS
command, error message, wrong number of arguments

Tcl Last change: 8.0 1

Tk Library Procedures Tk_Get3DBorder (3)

NAME
Tk_Get3DBorder, Tk_Draw3DRectangle, Tk_Fill3DRectangle, Tk_Draw3DPolygon, Tk_Fill3DPolygon,
Tk_3DVerticalBevel, Tk_3DHorizontalBevel, Tk_SetBackgroundFromBorder, Tk_NameOf3DBorder,
Tk_3DBorderColor, Tk_3DBorderGC, Tk_Free3DBorder − draw borders with three-dimensional appear-
ance

SYNOPSIS
#include <tk.h>

Tk_3DBorder
Tk_Get3DBorder(interp, tkwin, colorName)

void
Tk_Draw3DRectangle(tkwin, drawable, border, x, y, width, height, borderWidth, relief)

void
Tk_Fill3DRectangle(tkwin, drawable, border, x, y, width, height, borderWidth, relief)

void
Tk_Draw3DPolygon(tkwin, drawable, border, pointPtr, numPoints, polyBorderWidth, leftRelief)

void
Tk_Fill3DPolygon(tkwin, drawable, border, pointPtr, numPoints, polyBorderWidth, leftRelief)

void
Tk_3DVerticalBevel(tkwin, drawable, border, x, y, width, height, leftBevel, relief)

void
Tk_3DHorizontalBevel(tkwin, drawable, border, x, y, width, height, leftIn, rightIn, topBevel, relief)

void
Tk_SetBackgroundFromBorder(tkwin, border)

char∗
Tk_NameOf3DBorder(border)

XColor ∗
Tk_3DBorderColor(border)

GC ∗
Tk_3DBorderGC(tkwin, border, which)

Tk_Free3DBorder(border)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter to use for error reporting.

Tk_Window tkwin (in) Token for window (for all procedures exceptTk_Get3DBor-
der, must be the window for which the border was allocated).

Tk_Uid colorName (in) Textual description of color corresponding to background (flat
areas). Illuminated edges will be brighter than this and shad-
owed edges will be darker than this.

Drawable drawable (in) X token for window or pixmap; indicates where graphics are

Tk Last change: 4.0 1

Tk Library Procedures Tk_Get3DBorder (3)

to be drawn. Must either be the X window fortkwin or a
pixmap with the same screen and depth astkwin.

Tk_3DBorder border (in) Token for border previously allocated in call toTk_Get3DBor-
der.

int x (in) X-coordinate of upper-left corner of rectangle describing bor-
der or bevel, in pixels.

int y (in) Y-coordinate of upper-left corner of rectangle describing border
or bevel, in pixels.

int width (in) Width of rectangle describing border or bevel, in pixels.

int height (in) Height of rectangle describing border or bevel, in pixels.

int borderWidth (in) Width of border in pixels. Positive means border is inside rect-
angle given byx, y, width, height, neg ative means border is out-
side rectangle.

int relief (in) Indicates 3-D position of interior of object relative to exterior;
should be TK_RELIEF_RAISED, TK_RELIEF_SUNKEN,
TK_RELIEF_GROOVE, TK_RELIEF_SOLID, or
TK_RELIEF_RIDGE (may also be TK_RELIEF_FLAT for
Tk_Fill3DRectangle).

XPoint ∗pointPtr (in) Pointer to array of points describing the set of vertices in a
polygon. The polygon need not be closed (it will be closed
automatically if it isn’t).

int numPoints (in) Number of points at∗pointPtr.

int polyBorderWidth(in) Width of border in pixels. If positive, border is drawn to left of
trajectory given bypointPtr; if neg ative, border is drawn to
right of trajectory. If leftRelief is TK_RELIEF_GROOVE or
TK_RELIEF_RIDGE then the border is centered on the trajec-
tory.

int leftRelief (in) Height of left side of polygon’s path relative to right.
TK_RELIEF_RAISED means left side should appear higher
and TK_RELIEF_SUNKEN means right side should appear
higher; TK_RELIEF_GROOVE and TK_RELIEF_RIDGE
mean the obvious things. ForTk_Fill3DPolygon,
TK_RELIEF_FLAT may also be specified to indicate no differ-
ence in height.

int leftBevel (in) Non-zero means this bevel forms the left side of the object;
zero means it forms the right side.

int leftIn (in) Non-zero means that the left edge of the horizontal bevel
angles in, so that the bottom of the edge is farther to the right
than the top. Zero means the edge angles out, so that the bot-
tom is farther to the left than the top.

int rightIn (in) Non-zero means that the right edge of the horizontal bevel
angles in, so that the bottom of the edge is farther to the left
than the top. Zero means the edge angles out, so that the bot-
tom is farther to the right than the top.

int topBevel (in) Non-zero means this bevel forms the top side of the object;
zero means it forms the bottom side.

Tk Last change: 4.0 2

Tk Library Procedures Tk_Get3DBorder (3)

int which (in) Specifies which of the border’s graphics contexts is desired.
Must be TK_3D_FLAT_GC, TK_3D_LIGHT_GC, or
TK_3D_DARK_GC.

DESCRIPTION
These procedures provide facilities for drawing window borders in a way that produces a three-dimensional
appearance.Tk_Get3DBorder allocates colors and Pixmaps needed to draw a border in the window giv en
by thetkwin argument. ThecolorNameargument indicates what colors should be used in the border.Col-
orNamemay be any value acceptable toTk_GetColor. The color indicated bycolorNamewill not actually
be used in the border; it indicates the background color for the window (i.e. a color for flat surfaces). The
illuminated portions of the border will appear brighter than indicated bycolorName, and the shadowed por-
tions of the border will appear darker thancolorName.

Tk_Get3DBorder returns a token that may be used in later calls toTk_Draw3DRectangle. If an error
occurs in allocating information for the border (e.g.colorNameisn’t a leg al color specifier), then NULL is
returned and an error message is left ininterp->result.

Once a border structure has been created,Tk_Draw3DRectanglemay be invoked to draw the border. The
tkwin argument specifies the window for which the border was allocated, anddrawablespecifies a window
or pixmap in which the border is to be drawn.Drawableneed not refer to the same window astkwin, but it
must refer to a compatible pixmap or window: one associated with the same screen and with the same
depth astkwin. Thex, y, width, andheightarguments define the bounding box of the border region within
drawable(usuallyx andy are zero andwidth andheightare the dimensions of the window), andborder-
Widthspecifies the number of pixels actually occupied by the border. Therelief argument indicates which
of several three-dimensional effects is desired: TK_RELIEF_RAISED means that the interior of the rectan-
gle should appear raised relative to the exterior of the rectangle, and TK_RELIEF_SUNKEN means that
the interior should appear depressed. TK_RELIEF_GROOVE and TK_RELIEF_RIDGE mean that there
should appear to be a groove orridge around the exterior of the rectangle.

Tk_Fill3DRectangle is somewhat likeTk_Draw3DRectangleexcept that it first fills the rectangular area
with the background color (one corresponding to thecolorNameused to createborder). Then it calls
Tk_Draw3DRectangle to draw a border just inside the outer edge of the rectangular area. The argument
relief indicates the desired effect (TK_RELIEF_FLAT means no border should be drawn; all that happens is
to fill the rectangle with the background color).

The procedureTk_Draw3DPolygon may be used to draw more complex shapes with a three-dimensional
appearance. ThepointPtr and numPointsarguments define a trajectory,polyBorderWidthindicates how
wide the border should be (and on which side of the trajectory to draw it), andleftReliefindicates which
side of the trajectory should appear raised.Tk_Draw3DPolygon draws a border around the given trajec-
tory using the colors fromborder to produce a three-dimensional appearance. If the trajectory is non-self-
intersecting, the appearance will be a raised or sunken polygon shape. The trajectory may be self-intersect-
ing, although it’s not clear how useful this is.

Tk_Fill3DPolygon is to Tk_Draw3DPolygon whatTk_Fill3DRectangle is to Tk_Draw3DRectangle: it
fills the polygonal area with the background color fromborder, then callsTk_Draw3DPolygon to draw a
border around the area (unlessleftReliefis TK_RELIEF_FLAT; in this case no border is drawn).

The proceduresTk_3DVerticalBevel andTk_3DHorizontalBevel provide lower-level drawing primitives
that are used by procedures such asTk_Draw3DRectangle. These procedures are also useful in their own
right for drawing rectilinear border shapes.Tk_3DVerticalBevel draws a vertical beveled edge, such as the
left or right side of a rectangle, andTk_3DHorizontalBevel draws a horizontal beveled edge, such as the
top or bottom of a rectangle. Each procedure takesx, y, width, andheightarguments that describe the rect-
angular area of the beveled edge (e.g.,width is the border width forTk_3DVerticalBevel). TheleftBorder
andtopBorderarguments indicate the position of the border relative to the ‘‘inside’’ of the object, andrelief

Tk Last change: 4.0 3

Tk Library Procedures Tk_Get3DBorder (3)

indicates the relief of the inside of the object relative to the outside.Tk_3DVerticalBevel just draws a rect-
angular region.Tk_3DHorizontalBevel draws a trapezoidal region to generate mitered corners; it should
be called afterTk_3DVerticalBevel (otherwiseTk_3DVerticalBevel will overwrite the mitering in the cor-
ner). TheleftIn and rightIn arguments toTk_3DHorizontalBevel describe the mitering at the corners; a
value of 1 means that the bottom edge of the trapezoid will be shorter than the top, 0 means it will be
longer. For example, to draw a rectangular border the top bevel should be drawn with 1 for bothleftIn and
rightIn, and the bottom bevel should be drawn with 0 for both arguments.

The procedureTk_SetBackgroundFromBorder will modify the background pixel and/or pixmap oftkwin
to produce a result compatible withborder. For color displays, the resulting background will just be the
color given by thecolorNameargument passed toTk_Get3DBorder when border was created; for
monochrome displays, the resulting background will be a light stipple pattern, in order to distinguish the
background from the illuminated portion of the border.

Given a token for a border, the procedureTk_NameOf3DBorder will return thecolorNamestring that was
passed toTk_Get3DBorder to create the border.

The procedureTk_3DBorderColor returns the XColor structure that will be used for flat surfaces drawn
for its borderargument by procedures likeTk_Fill3DRectangle. The return value corresponds to thecol-
orNamepassed toTk_Get3DBorder. The XColor, and its associated pixel value, will remain allocated as
long asborderexists.

The procedureTk_3DBorderGC returns one of the X graphics contexts that are used to draw the border.
The argumentwhich selects which one of the three possible GC’s: TK_3D_FLAT_GC returns the context
used for flat surfaces, TK_3D_LIGHT_GC returns the context for light shadows, and TK_3D_DARK_GC
returns the context for dark shadows.

When a border is no longer needed,Tk_Free3DBorder should be called to release the resources associated
with the border. There should be exactly one call toTk_Free3DBorder for each call toTk_Get3DBor-
der.

KEYWORDS
3D, background, border, color, depressed, illumination, polygon, raised, shadow, three-dimensional effect

Tk Last change: 4.0 4

Tk Library Procedures Tk_CreateBindingTable (3)

NAME
Tk_CreateBindingTable, Tk_DeleteBindingTable, Tk_CreateBinding, Tk_DeleteBinding, Tk_GetBinding,
Tk_GetAllBindings, Tk_DeleteAllBindings, Tk_BindEvent − invoke scripts in response to X events

SYNOPSIS
#include <tk.h>

Tk_BindingTable
Tk_CreateBindingTable(interp)

Tk_DeleteBindingTable(bindingTable)

unsigned long
Tk_CreateBinding(interp, bindingTable, object, eventString, script, append)

int
Tk_DeleteBinding(interp, bindingTable, object, eventString)

char∗
Tk_GetBinding(interp, bindingTable, object, eventString)

Tk_GetAllBindings(interp, bindingTable, object)

Tk_DeleteAllBindings(bindingTable, object)

Tk_BindEvent(bindingTable, eventPtr, tkwin, numObjects, objectPtr)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter to use when invoking bindings in binding table.

Also used for returning results and errors from binding pro-
cedures.

Tk_BindingTable bindingTable (in) Token for binding table; must have been returned by some
previous call toTk_CreateBindingTable.

ClientData object (in) Identifies object with which binding is associated.

char ∗eventString (in) String describing event sequence.

char ∗script (in) Tcl script to invoke when binding triggers.

int append (in) Non-zero means appendscript to existing script for bind-
ing, if any; zero means replace existing script with new
one.

XEvent ∗eventPtr (in) X ev ent to match against bindings inbindingTable.

Tk_Window tkwin (in) Identifier for any window on the display where the event
occurred. Used to find display-related information such as
key maps.

int numObjects (in) Number of object identifiers pointed to byobjectPtr.

ClientData ∗objectPtr (in) Points to an array of object identifiers: bindings will be
considered for each of these objects in order from first to
last.

Tk Last change: 4.0 1

Tk Library Procedures Tk_CreateBindingTable (3)

DESCRIPTION
These procedures provide a general-purpose mechanism for creating and invoking bindings. Bindings are
organized in terms ofbinding tables. A binding table consists of a collection of bindings plus a history of
recent events. Within a binding table, bindings are associated withobjects. The meaning of an object is
defined by clients of the binding package. For example, Tk keeps uses one binding table to hold all of the
bindings created by thebind command. For this table, objects are pointers to strings such as window
names, class names, or other binding tags such asall. Tk also keeps a separate binding table for each can-
vas widget, which manages bindings created by the canvas’sbind widget command; within this table, an
object is either a pointer to the internal structure for a canvas item or a Tk_Uid identifying a tag.

The procedureTk_CreateBindingTable creates a new binding table and associatesinterp with it (when
bindings in the table are invoked, the scripts will be evaluated ininterp). Tk_CreateBindingTable returns
a token for the table, which must be used in calls to other procedures such asTk_CreateBinding or
Tk_BindEvent.

Tk_DeleteBindingTable frees all of the state associated with a binding table. Once it returns the caller
should not use thebindingTabletoken again.

Tk_CreateBinding adds a new binding to an existing table. Theobjectargument identifies the object with
which the binding is to be associated, and it may be any one-word value. Typically it is a pointer to a string
or data structure. TheeventStringargument identifies the event or sequence of events for the binding; see
the documentation for thebind command for a description of its format.script is the Tcl script to be evalu-
ated when the binding triggers.appendindicates what to do if there already exists a binding forobjectand
eventString: if appendis zero thenscript replaces the old script; ifappendis non-zero then the new script
is appended to the old one.Tk_CreateBinding returns an X event mask for all the events associated with
the bindings. This information may be useful to invokeXSelectInput to select relevant events, or to disal-
low the use of certain events in bindings. If an error occurred while creating the binding (e.g.,eventString
refers to a non-existent event), then 0 is returned and an error message is left ininterp->result.

Tk_DeleteBinding removes frombindingTablethe binding given byobjectandeventString, if such a bind-
ing exists. Tk_DeleteBinding always returns TCL_OK. In some cases it may resetinterp->result to the
default empty value.

Tk_GetBinding returns a pointer to the script associated witheventStringandobjectin bindingTable. If no
such binding exists then NULL is returned and an error message is left ininterp->result.

Tk_GetAllBindings returns ininterp->resulta list of all the event strings for which there are bindings in
bindingTableassociated withobject. If there are no bindings forobjectthen an empty string is returned in
interp->result.

Tk_DeleteAllBindings deletes all of the bindings inbindingTablethat are associated withobject.

Tk_BindEvent is called to process an event. It makes a copy of the event in an internal history list associ-
ated with the binding table, then it checks for bindings that match the event.Tk_BindEvent processes
each of the objects pointed to byobjectPtr in turn. For each object, it finds all the bindings that match the
current event history, selects the most specific binding using the priority mechanism described in the docu-
mentation forbind, and invokes the script for that binding. If there are no matching bindings for a particu-
lar object, then the object is skipped.Tk_BindEvent continues through all of the objects, handling excep-
tions such as errors,break, andcontinueas described in the documentation forbind.

KEYWORDS
binding, event, object, script

Tk Last change: 4.0 2

Tk Library Procedures Tk_CanvasPsY (3)

NAME
Tk_CanvasPsY, Tk_CanvasPsBitmap, Tk_CanvasPsColor, Tk_CanvasPsFont, Tk_CanvasPsPath, Tk_Can-
vasPsStipple − utility procedures for generating Postscript for canvases

SYNOPSIS
#include <tk.h>

double
Tk_CanvasPsY(canvas, canvasY)

int
Tk_CanvasPsBitmap(interp, canvas, bitmap, x, y, width, height)

int
Tk_CanvasPsColor(interp, canvas, colorPtr)

int
Tk_CanvasPsFont(interp, canvas, fontStructPtr)

Tk_CanvasPsPath(interp, canvas, coordPtr, numPoints)

int
Tk_CanvasPsStipple(interp, canvas, bitmap)

ARGUMENTS
Tk_Canvas canvas (in) A token that identifies a canvas widget for which Postscript is

being generated.

double canvasY (in) Y-coordinate in the space of the canvas.

Tcl_Interp ∗interp (in/out) A Tcl interpreter; Postscript is appended to its result, or the
result may be replaced with an error message.

Pixmap bitmap (in) Bitmap to use for generating Postscript.

int x (in) X-coordinate withinbitmapof left edge of region to output.

int y (in) Y-coordinate withinbitmapof top edge of region to output.

int width (in) Width of region of bitmap to output, in pixels.

int height (in) Height of region of bitmap to output, in pixels.

XColor ∗colorPtr (in) Information about color value to set in Postscript.

XFontStruct ∗fontStructPtr (in) Font for which Postscript is to be generated.

double ∗coordPtr (in) Pointer to an array of coordinates for one or more points speci-
fied in canvas coordinates. The order of values incoordPtr is
x1, y1, x2, y2, x3, y3, and so on.

int numPoints (in) Number of points atcoordPtr.

DESCRIPTION
These procedures are called by canvas type managers to carry out common functions related to generating
Postscript. Most of the procedures take acanvasargument, which refers to a canvas widget for which
Postscript is being generated.

Tk Last change: 4.0 1

Tk Library Procedures Tk_CanvasPsY (3)

Tk_CanvasY takes as argument a y-coordinate in the space of a canvas and returns the value that should be
used for that point in the Postscript currently being generated forcanvas. Y coordinates require transfor-
mation because Postscript uses an origin at the lower-left corner whereas X uses an origin at the upper-left
corner. Canvas x coordinates can be used directly in Postscript without transformation.

Tk_CanvasPsBitmapgenerates Postscript to describe a region of a bitmap. The Postscript is generated in
proper image data format for Postscript, i.e., as data between angle brackets, one bit per pixel. The
Postscript is appended tointerp->result and TCL_OK is returned unless an error occurs, in which case
TCL_ERROR is returned andinterp->resultis overwritten with an error message.

Tk_CanvasPsColorgenerates Postscript to set the current color to correspond to itscolorPtr argument,
taking into account any color map specified in thepostscript command. It appends the Postscript to
interp->result and returns TCL_OK unless an error occurs, in which case TCL_ERROR is returned and
interp->resultis overwritten with an error message.

Tk_CanvasPsFontgenerates Postscript that sets the current font to matchfontStructPtras closely as possi-
ble. Tk_CanvasPsFonttakes into account any font map specified in thepostscript command, and it does
the best it can at mapping X fonts to Postscript fonts. It appends the Postscript tointerp->resultand returns
TCL_OK unless an error occurs, in which case TCL_ERROR is returned andinterp->result is overwritten
with an error message.

Tk_CanvasPsPathgenerates Postscript to set the current path to the set of points given bycoordPtr and
numPoints. It appends the resulting Postscript tointerp->result.

Tk_CanvasPsStipplegenerates Postscript that will fill the current path in stippled fashion. It usesbitmap
as the stipple pattern and the current Postscript color; ones in the stipple bitmap are drawn in the current
color, and zeroes are not drawn at all. The Postscript is appended tointerp->result and TCL_OK is
returned, unless an error occurs, in which case TCL_ERROR is returned andinterp->result is overwritten
with an error message.

KEYWORDS
bitmap, canvas, color, font, path, Postscript, stipple

Tk Last change: 4.0 2

Tk Library Procedures Tk_CanvasTkwin (3)

NAME
Tk_CanvasTkwin, Tk_CanvasGetCoord, Tk_CanvasDrawableCoords, Tk_CanvasSetStippleOrigin,
Tk_CanvasWindowCoords, Tk_CanvasEventuallyRedraw, Tk_CanvasTagsOption − utility procedures for
canvas type managers

SYNOPSIS
#include <tk.h>

Tk_Window
Tk_CanvasTkwin(canvas)

int
Tk_CanvasGetCoord(interp, canvas, string, doublePtr)

Tk_CanvasDrawableCoords(canvas, x, y, drawableXPtr, drawableYPtr)

Tk_CanvasSetStippleOrigin(canvas, gc)

Tk_CanvasWindowCoords(canvas, x, y, screenXPtr, screenYPtr)

Tk_CanvasEventuallyRedraw(canvas, x1, y1, x2, y2)

Tk_OptionParseProc∗Tk_CanvasTagsParseProc;

Tk_OptionPrintProc∗Tk_CanvasTagsPrintProc;

ARGUMENTS
Tk_Canvas canvas (in) A token that identifies a canvas widget.

Tcl_Interp ∗interp (in/out) Interpreter to use for error reporting.

char ∗string (in) Textual description of a canvas coordinate.

double ∗doublePtr (out) Points to place to store a converted coordinate.

double x (in) An x coordinate in the space of the canvas.

double y (in) A y coordinate in the space of the canvas.

short ∗drawableXPtr (out) Pointer to a location in which to store an x coordinate in the
space of the drawable currently being used to redisplay the
canvas.

short ∗drawableYPtr (out) Pointer to a location in which to store a y coordinate in the
space of the drawable currently being used to redisplay the
canvas.

GC gc (out) Graphics context to modify.

short ∗screenXPtr (out) Points to a location in which to store the screen coordinate in
the canvas window that corresponds tox.

short ∗screenYPtr (out) Points to a location in which to store the screen coordinate in
the canvas window that corresponds toy.

int x1 (in) Left edge of the region that needs redisplay. Only pixels at or
to the right of this coordinate need to be redisplayed.

int y1 (in) Top edge of the region that needs redisplay. Only pixels at or
below this coordinate need to be redisplayed.

Tk Last change: 4.1 1

Tk Library Procedures Tk_CanvasTkwin (3)

int x2 (in) Right edge of the region that needs redisplay. Only pixels to
the left of this coordinate need to be redisplayed.

int y2 (in) Bottom edge of the region that needs redisplay. Only pixels
above this coordinate need to be redisplayed.

DESCRIPTION
These procedures are called by canvas type managers to perform various utility functions.

Tk_CanvasTkwin returns the Tk_Window associated with a particular canvas.

Tk_CanvasGetCoord translates a string specification of a coordinate (such as2p or 1.6c) into a double-
precision canvas coordinate. Ifstring is a valid coordinate description thenTk_CanvasGetCoordstores
the corresponding canvas coordinate at∗doublePtrand returns TCL_OK. Otherwise it stores an error mes-
sage ininterp->resultand returns TCL_ERROR.

Tk_CanvasDrawableCoords is called by type managers during redisplay to compute where to draw
things. Givenx andy coordinates in the space of the canvas,Tk_CanvasDrawableCoordscomputes the
corresponding pixel in the drawable that is currently being used for redisplay; it returns those coordinates in
∗drawableXPtrand∗drawableYPtr. This procedure should not be invoked except during redisplay.

Tk_CanvasSetStippleOrigin is also used during redisplay. It sets the stipple origin ingc so that stipples
drawn withgc in the current offscreen pixmap will line up with stipples drawn with origin (0,0) in the can-
vas’s actual window.Tk_CanvasSetStippleOriginis needed in order to guarantee that stipple patterns line
up properly when the canvas is redisplayed in small pieces. Redisplays are carried out in double-buffered
fashion where a piece of the canvas is redrawn in an offscreen pixmap and then copied back onto the
screen. In this approach the stipple origins in graphics contexts need to be adjusted during each redisplay
to compensate for the position of the off-screen pixmap relative to the window. If an item is being drawn
with stipples, its type manager typically callsTk_CanvasSetStippleOrigin just before usinggc to draw
something; after it is finished drawing, the type manager callsXSetTSOrigin to restore the origin ingc
back to (0,0) (the restore is needed because graphics contexts are shared, so they cannot be modified perma-
nently).

Tk_CanvasWindowCoordsis similar toTk_CanvasDrawableCoordsexcept that it returns coordinates in
the canvas’s window on the screen, instead of coordinates in an off-screen pixmap.

Tk_CanvasEventuallyRedrawmay be invoked by a type manager to inform Tk that a portion of a canvas
needs to be redrawn. Thex1, y1, x2, andy2 arguments specify the region that needs to be redrawn, in can-
vas coordinates. Type managers rarely need to invokeTk_CanvasEventuallyRedraw, since Tk can nor-
mally figure out when an item has changed and make the redisplay request on its behalf (this happens, for
example whenever Tk calls aconfigureProcor scaleProc). The only time that a type manager needs to call
Tk_CanvasEventuallyRedrawis if an item has changed on its own without being invoked through one of
the procedures in its Tk_ItemType; this could happen, for example, in an image item if the image is modi-
fied using image commands.

Tk_CanvasTagsParseProcandTk_CanvasTagsPrintProcare procedures that handle the−tagsoption for
canvas items. The code of a canvas type manager won’t call these procedures directly, but will use their
addresses to create aTk_CustomOption structure for the−tagsoption. The code typically looks like this:

static Tk_CustomOption tagsOption = {Tk_CanvasTagsParseProc,
Tk_CanvasTagsPrintProc, (ClientData) NULL

};

static Tk_ConfigSpec configSpecs[] = {
...
{TK_CONFIG_CUSTOM, "−tags", (char∗) NULL, (char∗) NULL,

Tk Last change: 4.1 2

Tk Library Procedures Tk_CanvasTkwin (3)

(char∗) NULL, 0, TK_CONFIG_NULL_OK, &tagsOption},
...

};

KEYWORDS
canvas, focus, item type, redisplay, selection, type manager

Tk Last change: 4.1 3

Tk Library Procedures Tk_CanvasTextInfo (3)

NAME
Tk_CanvasTextInfo − additional information for managing text items in canvases

SYNOPSIS
#include <tk.h>

Tk_CanvasTextInfo∗
Tk_CanvasGetTextInfo(canvas)

ARGUMENTS
Tk_Canvas canvas (in) A token that identifies a particular canvas widget.

DESCRIPTION
Te xtual canvas items are somewhat more complicated to manage than other items, due to things like the
selection and the input focus.Tk_CanvasGetTextInfo may be invoked by a type manager to obtain addi-
tional information needed for items that display text. The return value fromTk_CanvasGetTextInfo is a
pointer to a structure that is shared between Tk and all the items that display text. The structure has the fol-
lowing form:

typedef struct Tk_CanvasTextInfo {
Tk_3DBorderselBorder;
int selBorderWidth;
XColor ∗selFgColorPtr;
Tk_Item∗selItemPtr;
int selectFirst;
int selectLast;
Tk_Item∗anchorItemPtr;
int selectAnchor;
Tk_3DBorderinsertBorder;
int insertWidth;
int insertBorderWidth;
Tk_Item∗focusItemPtr;
int gotFocus;
int cursorOn;

} Tk_CanvasTextInfo;
The selBorder field identifies a Tk_3DBorder that should be used for drawing the background under
selected text.selBorderWidthgives the width of the raised border around selected text, in pixels.selFg-
ColorPtr points to an XColor that describes the foreground color to be used when drawing selected text.
selItemPtrpoints to the item that is currently selected, or NULL if there is no item selected or if the canvas
doesn’t hav e the selection.selectFirstandselectLastgive the indices of the first and last selected characters
in selItemPtr, as returned by theindexProcfor that item. anchorItemPtrpoints to the item that currently
has the selection anchor; this is not necessarily the same asselItemPtr. selectAnchoris an index that iden-
tifies the anchor position withinanchorItemPtr. insertBordercontains a Tk_3DBorder to use when draw-
ing the insertion cursor;insertWidthgives the total width of the insertion cursor in pixels, andinsertBor-
derWidthgives the width of the raised border around the insertion cursor.focusItemPtridentifies the item
that currently has the input focus, or NULL if there is no such item.gotFocusis 1 if the canvas widget has
the input focus and 0 otherwise.cursorOnis 1 if the insertion cursor should be drawn infocusItemPtrand
0 if it should not be drawn; this field is toggled on and off by Tk to make the cursor blink.

The structure returned byTk_CanvasGetTextInfo is shared between Tk and the type managers; typically
the type manager callsTk_CanvasGetTextInfo once when an item is created and then saves the pointer in
the item’s record. Tk will update information in the Tk_CanvasTextInfo; for example, aconfigure widget
command might change theselBorderfield, or aselectwidget command might change theselectFirstfield,

Tk Last change: 4.0 1

Tk Library Procedures Tk_CanvasTextInfo (3)

or Tk might changecursorOnin order to make the insertion cursor flash on and off during successive redis-
plays.

Type managers should treat all of the fields of the Tk_CanvasTextInfo structure as read-only, except for
selItemPtr, selectFirst, selectLast, and selectAnchor. Type managers may changeselectFirst, selectLast,
andselectAnchorto adjust for insertions and deletions in the item (but only if the item is the current owner
of the selection or anchor, as determined byselItemPtror anchorItemPtr). If all of the selected text in the
item is deleted, the item should setselItemPtrto NULL to indicate that there is no longer a selection.

KEYWORDS
canvas, focus, insertion cursor, selection, selection anchor, text

Tk Last change: 4.0 2

Tk Library Procedures Tk_ClipboardClear (3)

NAME
Tk_ClipboardClear, Tk_ClipboardAppend − Manage the clipboard

SYNOPSIS
#include <tk.h>

int
Tk_ClipboardClear (interp, tkwin)

int
Tk_ClipboardAppend (interp, tkwin, target, format, buffer)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter to use for reporting errors.

Tk_Window tkwin (in) Window that determines which display’s clipboard to manipu-
late.

Atom target (in) Conversion type for this clipboard item; has same meaning as
targetargument toTk_CreateSelHandler.

Atom format (in) Representation to use when data is retrieved; has same meaning
asformatargument toTk_CreateSelHandler.

char ∗buffer (in) Null terminated string containing the data to be appended to the
clipboard.

DESCRIPTION
These two procedures manage the clipboard for Tk. The clipboard is typically managed by calling
Tk_ClipboardClear once, then callingTk_ClipboardAppend to add data for any number of targets.

Tk_ClipboardClear claims the CLIPBOARD selection and frees any data items previously stored on the
clipboard in this application. It normally returns TCL_OK, but if an error occurs it returns TCL_ERROR
and leaves an error message ininterp->result. Tk_ClipboardClear must be called before a sequence of
Tk_ClipboardAppend calls can be issued.

Tk_ClipboardAppend appends a buffer of data to the clipboard. The first buffer for a giventargetdeter-
mines theformat for that target. Any successive appends for thattarget must have the same format or an
error will be returned.Tk_ClipboardAppend returns TCL_OK if the buffer is successfully copied onto
the clipboard. If the clipboard is not currently owned by the application, either becauseTk_Clipboard-
Clear has not been called or because ownership of the clipboard has changed since the last call toTk_Clip-
boardClear, Tk_ClipboardAppend returns TCL_ERROR and leaves an error message ininterp->result.

In order to guarantee atomicity, no event handling should occur betweenTk_ClipboardClear and the fol-
lowing Tk_ClipboardAppend calls (otherwise someone could retrieve a partially completed clipboard or
claim ownership away from this application).

Tk_ClipboardClear may invoke callbacks, including arbitrary Tcl scripts, as a result of losing the CLIP-
BOARD selection, so any calling function should take care to be reentrant at the pointTk_ClipboardClear
is invoked.

KEYWORDS
append, clipboard, clear, format, type

Tk Last change: 4.0 1

Tk Library Procedures Tk_ClearSelection (3)

NAME
Tk_ClearSelection − Deselect a selection

SYNOPSIS
#include <tk.h>

Tk_ClearSelection(tkwin, selection)

ARGUMENTS
Tk_Window tkwin (in) The selection will be cleared from the display containing this window.

Atom selection(in) The name of selection to be cleared.

DESCRIPTION
Tk_ClearSelectioncancels the selection specified by the atomselectionfor the display containingtkwin.
The selection need not be intkwin itself or even intkwin’s application. If there is a window anywhere on
tkwin’s display that ownsselection, the window will be notified and the selection will be cleared. If there is
no owner forselectionon the display, then the procedure has no effect.

KEYWORDS
clear, selection

Tk Last change: 4.0 1

Tk Library Procedures Tk_ConfigureWidget (3)

NAME
Tk_ConfigureWidget, Tk_Offset, Tk_ConfigureInfo, Tk_ConfigureValue, Tk_FreeOptions − process con-
figuration options for widgets

SYNOPSIS
#include <tk.h>

int
Tk_ConfigureWidget(interp, tkwin, specs, argc, argv, widgRec, flags)

int
Tk_Offset(type, field)

int
Tk_ConfigureInfo(interp, tkwin, specs, widgRec, argvName, flags)

int

Tk_FreeOptions(specs, widgRec, display, flags)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter to use for returning error messages.

Tk_Window tkwin (in) Window used to represent widget (needed to set up X
resources).

Tk_ConfigSpec ∗specs (in) Pointer to table specifying legal configuration options for this
widget.

int argc (in) Number of arguments inargv.

char ∗∗argv (in) Command-line options for configuring widget.

char ∗widgRec (in/out) Points to widget record structure. Fields in this structure get
modified byTk_ConfigureWidget to hold configuration infor-
mation.

int flags (in) If non-zero, then it specifies an OR-ed combination of flags that
control the processing of configuration information. TK_CON-
FIG_ARGV_ONLY causes the option database and defaults to
be ignored, and flag bits TK_CONFIG_USER_BIT and higher
are used to selectively disable entries inspecs.

type name type (in) The name of the type of a widget record.

field name field (in) The name of a field in records of typetype.

char ∗argvName (in) The name used on Tcl command lines to refer to a particular
option (e.g. when creating a widget or invoking theconfigure
widget command). If non-NULL, then information is returned
only for this option. If NULL, then information is returned for
all available options.

Display ∗display (in) Display containing widget whose record is being freed; needed
in order to free up resources.

DESCRIPTION

Tk Last change: 4.1 1

Tk Library Procedures Tk_ConfigureWidget (3)

Tk_ConfigureWidget is called to configure various aspects of a widget, such as colors, fonts, border
width, etc. It is intended as a convenience procedure to reduce the amount of code that must be written in
individual widget managers to handle configuration information. It is typically invoked when widgets are
created, and again when theconfigure command is invoked for a widget. Although intended primarily for
widgets,Tk_ConfigureWidget can be used in other situations whereargc-argvinformation is to be used to
fill in a record structure, such as configuring graphical elements for a canvas widget or entries of a menu.

Tk_ConfigureWidget processes a table specifying the configuration options that are supported (specs) and
a collection of command-line arguments (argc andargv) to fill in fields of a record (widgRec). It uses the
option database and defaults specified inspecsto fill in fields of widgRecthat are not specified inargv.
Tk_ConfigureWidget normally returns the value TCL_OK; in this case it does not modifyinterp. If an
error occurs then TCL_ERROR is returned andTk_ConfigureWidget will leave an error message in
interp->result in the standard Tcl fashion. In the event of an error return, some of the fields ofwidgRec
could already have been set, if configuration information for them was successfully processed before the
error occurred. The other fields will be set to reasonable initial values so thatTk_FreeOptions can be
called for cleanup.

The specsarray specifies the kinds of configuration options expected by the widget. Each of its entries
specifies one configuration option and has the following structure:

typedef struct {
int type;
char∗argvName;
char∗dbName;
char∗dbClass;
char∗defValue;
int offset;
int specFlags;
Tk_CustomOption∗customPtr;

} Tk_ConfigSpec;
The typefield indicates what type of configuration option this is (e.g. TK_CONFIG_COLOR for a color
value, or TK_CONFIG_INT for an integer value). Thetype field indicates how to use the value of the
option (more on this below). TheargvNamefield is a string such as ‘‘−font’’ or ‘‘−bg’’, which is compared
with the values inargv (if argvNameis NULL it means this is a grouped entry; see GROUPED ENTRIES
below). ThedbNameanddbClassfields are used to look up a value for this option in the option database.
The defValuefield specifies a default value for this configuration option if no value is specified in either
argv or the option database.Offsetindicates where inwidgRecto store information about this option, and
specFlagscontains additional information to control the processing of this configuration option (see
FLAGS below). The last field,customPtr, is only used iftype is TK_CONFIG_CUSTOM; see CUSTOM
OPTION TYPES below.

Tk_ConfigureWidget first processesargv to see which (if any) configuration options are specified there.
Argv must contain an even number of fields; the first of each pair of fields must match theargvNameof
some entry inspecs(unique abbreviations are acceptable), and the second field of the pair contains the
value for that configuration option. If there are entries inspecfor which there were no matching entries in
argv, Tk_ConfigureWidget uses thedbNameand dbClassfields of thespecsentry to probe the option
database; if a value is found, then it is used as the value for the option. Finally, if no entry is found in the
option database, thedefValuefield of thespecsentry is used as the value for the configuration option. If the
defValueis NULL, or if the TK_CONFIG_DONT_SET_DEFAULT bit is set inflags, then there is no
default value and thisspecsentry will be ignored if no value is specified inargvor the option database.

Once a string value has been determined for a configuration option,Tk_ConfigureWidget translates the
string value into a more useful form, such as a color iftypeis TK_CONFIG_COLOR or an integer iftypeis
TK_CONFIG_INT. This value is then stored in the record pointed to bywidgRec. This record is assumed
to contain information relevant to the manager of the widget; its exact type is unknown to

Tk Last change: 4.1 2

Tk Library Procedures Tk_ConfigureWidget (3)

Tk_ConfigureWidget. Theoffsetfield of eachspecsentry indicates where inwidgRecto store the infor-
mation about this configuration option. You should use theTk_Offset macro to generateoffsetvalues (see
below for a description ofTk_Offset). The location indicated bywidgRecandoffsetwill be referred to as
the ‘‘target’’ in the descriptions below.

The type field of each entry inspecsdetermines what to do with the string value of that configuration
option. The legal values fortype, and the corresponding actions, are:

TK_CONFIG_ACTIVE_CURSOR
The value must be an ASCII string identifying a cursor in a form suitable for passing to
Tk_GetCursor. The value is converted to aTk_Cursor by callingTk_GetCursor and the result
is stored in the target. In addition, the resulting cursor is made the active cursor fortkwin by call-
ing XDefineCursor. If TK_CONFIG_NULL_OK is specified inspecFlagsthen the value may be
an empty string, in which case the target andtkwin’s active cursor will be set toNone. If the pre-
vious value of the target wasn’tNone, then it is freed by passing it toTk_FreeCursor.

TK_CONFIG_ANCHOR
The value must be an ASCII string identifying an anchor point in one of the ways accepted by
Tk_GetAnchor. The string is converted to aTk_Anchor by calling Tk_GetAnchor and the
result is stored in the target.

TK_CONFIG_BITMAP
The value must be an ASCII string identifying a bitmap in a form suitable for passing toTk_Get-
Bitmap. The value is converted to aPixmap by callingTk_GetBitmap and the result is stored in
the target. If TK_CONFIG_NULL_OK is specified inspecFlagsthen the value may be an empty
string, in which case the target is set toNone. If the previous value of the target wasn’tNone, then
it is freed by passing it toTk_FreeBitmap.

TK_CONFIG_BOOLEAN
The value must be an ASCII string specifying a boolean value. Any of the values ‘‘true’’, ‘‘yes’’,
‘‘on’’, or ‘‘1’’, or an abbreviation of one of these values, means true; any of the values ‘‘false’’,
‘‘no’’, ‘‘off’’, or ‘‘0’’, or an abbreviation of one of these values, means false. The target is
expected to be an integer; for true values it will be set to 1 and for false values it will be set to 0.

TK_CONFIG_BORDER
The value must be an ASCII string identifying a border color in a form suitable for passing to
Tk_Get3DBorder. The value is converted to a (Tk_3DBorder ∗) by calling Tk_Get3DBorder
and the result is stored in the target. If TK_CONFIG_NULL_OK is specified inspecFlagsthen
the value may be an empty string, in which case the target will be set to NULL. If the previous
value of the target wasn’t NULL, then it is freed by passing it toTk_Free3DBorder.

TK_CONFIG_CAP_STYLE
The value must be an ASCII string identifying a cap style in one of the ways accepted byTk_Get-
CapStyle. The string is converted to an integer value corresponding to the cap style by calling
Tk_GetCapStyleand the result is stored in the target.

TK_CONFIG_COLOR
The value must be an ASCII string identifying a color in a form suitable for passing toTk_Get-
Color. The value is converted to an (XColor ∗) by callingTk_GetColor and the result is stored
in the target. If TK_CONFIG_NULL_OK is specified inspecFlagsthen the value may be an
empty string, in which case the target will be set toNone. If the previous value of the target
wasn’t NULL, then it is freed by passing it toTk_FreeColor.

TK_CONFIG_CURSOR
This option is identical toTK_CONFIG_ACTIVE_CURSOR except that the new cursor is not
made the active one fortkwin.

TK_CONFIG_CUSTOM

Tk Last change: 4.1 3

Tk Library Procedures Tk_ConfigureWidget (3)

This option allows applications to define new option types. ThecustomPtrfield of the entry points
to a structure defining the new option type. See the section CUSTOM OPTION TYPES below for
details.

TK_CONFIG_DOUBLE
The value must be an ASCII floating-point number in the format accepted bystrtol . The string is
converted to adoublevalue, and the value is stored in the target.

TK_CONFIG_END
Marks the end of the table. The last entry inspecsmust have this type; all of its other fields are
ignored and it will never match any arguments.

TK_CONFIG_FONT
The value must be an ASCII string identifying a font in a form suitable for passing toTk_Get-
FontStruct. The value is converted to an (XFontStruct ∗) by callingTk_GetFontStruct and the
result is stored in the target. If TK_CONFIG_NULL_OK is specified inspecFlagsthen the value
may be an empty string, in which case the target will be set to NULL. If the previous value of the
target wasn’t NULL, then it is freed by passing it toTk_FreeFontStruct.

TK_CONFIG_INT
The value must be an ASCII integer string in the format accepted bystrtol (e.g. ‘‘0’’ and ‘‘0x’’
prefixes may be used to specify octal or hexadecimal numbers, respectively). The string is con-
verted to an integer value and the integer is stored in the target.

TK_CONFIG_JOIN_STYLE
The value must be an ASCII string identifying a join style in one of the ways accepted by
Tk_GetJoinStyle. The string is converted to an integer value corresponding to the join style by
callingTk_GetJoinStyleand the result is stored in the target.

TK_CONFIG_JUSTIFY
The value must be an ASCII string identifying a justification method in one of the ways accepted
by Tk_GetJustify. The string is converted to aTk_Justify by calling Tk_GetJustify and the
result is stored in the target.

TK_CONFIG_MM
The value must specify a screen distance in one of the forms acceptable toTk_GetScreenMM.
The string is converted to double-precision floating-point distance in millimeters and the value is
stored in the target.

TK_CONFIG_PIXELS
The value must specify screen units in one of the forms acceptable toTk_GetPixels. The string is
converted to an integer distance in pixels and the value is stored in the target.

TK_CONFIG_RELIEF
The value must be an ASCII string identifying a relief in a form suitable for passing to
Tk_GetRelief. The value is converted to an integer relief value by callingTk_GetRelief and the
result is stored in the target.

TK_CONFIG_STRING
A copy of the value is made by allocating memory space withmalloc and copying the value into
the dynamically-allocated space. A pointer to the new string is stored in the target. If TK_CON-
FIG_NULL_OK is specified inspecFlagsthen the value may be an empty string, in which case
the target will be set to NULL. If the previous value of the target wasn’t NULL, then it is freed by
passing it tofree.

TK_CONFIG_SYNONYM
This typevalue identifies special entries inspecsthat are synonyms for other entries. If anargv
value matches theargvNameof a TK_CONFIG_SYNONYM entry, the entry isn’t used directly.

Tk Last change: 4.1 4

Tk Library Procedures Tk_ConfigureWidget (3)

Instead,Tk_ConfigureWidget searchesspecsfor another entry whoseargvNameis the same as
the dbNamefield in the TK_CONFIG_SYNONYM entry; this new entry is used just as if its
argvNamehad matched theargv value. The synonym mechanism allows multipleargv values to
be used for a single configuration option, such as ‘‘−background’’ and ‘‘−bg’’.

TK_CONFIG_UID
The value is translated to aTk_Uid (by passing it toTk_GetUid). The resulting value is stored in
the target. If TK_CONFIG_NULL_OK is specified inspecFlagsand the value is an empty string
then the target will be set to NULL.

TK_CONFIG_WINDOW
The value must be a window path name. It is translated to aTk_Window token and the token is
stored in the target.

GROUPED ENTRIES
In some cases it is useful to generate multiple resources from a single configuration value. For example, a
color name might be used both to generate the background color for a widget (using TK_CON-
FIG_COLOR) and to generate a 3-D border to draw around the widget (using TK_CONFIG_BORDER).
In cases like this it is possible to specify that several consecutive entries inspecsare to be treated as a
group. The first entry is used to determine a value (using itsargvName, dbName, dbClass, anddefValue
fields). The value will be processed several times (one for each entry in the group), generating multiple dif-
ferent resources and modifying multiple targets withinwidgRec. Each of the entries after the first must
have a NULL value in itsargvNamefield; this indicates that the entry is to be grouped with the entry that
precedes it. Only thetypeandoffsetfields are used from these follow-on entries.

FLAGS
Theflagsargument passed toTk_ConfigureWidget is used in conjunction with thespecFlagsfields in the
entries ofspecsto provide additional control over the processing of configuration options. These values are
used in three different ways as described below.

First, if theflagsargument toTk_ConfigureWidget has the TK_CONFIG_ARGV_ONLY bit set (i.e.,flags
| TK_CONFIG_ARGV_ONLY != 0), then the option database anddefValuefields are not used. In this
case, if an entry inspecsdoesn’t match a field inargv then nothing happens: the corresponding target isn’t
modified. This feature is useful when the goal is to modify certain configuration options while leaving oth-
ers in their current state, such as when aconfigurewidget command is being processed.

Second, thespecFlagsfield of an entry inspecsmay be used to control the processing of that entry. Each
specFlagsfield may consists of an OR-ed combination of the following values:

TK_CONFIG_COLOR_ONLY
If this bit is set then the entry will only be considered if the display fortkwin has more than one bit
plane. If the display is monochromatic then thisspecsentry will be ignored.

TK_CONFIG_MONO_ONLY
If this bit is set then the entry will only be considered if the display fortkwin has exactly one bit
plane. If the display is not monochromatic then thisspecsentry will be ignored.

TK_CONFIG_NULL_OK
This bit is only relevant for some types of entries (see the descriptions of the various entry types
above). If this bit is set, it indicates that an empty string value for the field is acceptable and if it
occurs then the target should be set to NULL orNone, depending on the type of the target. This
flag is typically used to allow a feature to be turned off entirely, e.g. set a cursor value toNoneso
that a window simply inherits its parent’s cursor. If this bit isn’t set then empty strings are pro-
cessed as strings, which generally results in an error.

TK_CONFIG_DONT_SET_DEFAULT

Tk Last change: 4.1 5

Tk Library Procedures Tk_ConfigureWidget (3)

If this bit is one, it means that thedefValuefield of the entry should only be used for returning the
default value inTk_ConfigureInfo . In calls toTk_ConfigureWidget no default will be supplied
for entries with this flag set; it is assumed that the caller has already supplied a default value in the
target location. This flag provides a performance optimization where it is expensive to process the
default string: the client can compute the default once, save the value, and provide it before call-
ing Tk_ConfigureWidget.

TK_CONFIG_OPTION_SPECIFIED
This bit is set and cleared byTk_ConfigureWidget. WheneverTk_ConfigureWidget returns,
this bit will be set in all the entries where a value was specified inargv. It will be zero in all other
entries. This bit provides a way for clients to determine which values actually changed in a call to
Tk_ConfigureWidget.

The TK_CONFIG_MONO_ONLY and TK_CONFIG_COLOR_ONLY flags are typically used to specify
different default values for monochrome and color displays. This is done by creating two entries inspecs
that are identical except for theirdefValue and specFlagsfields. One entry should have the value
TK_CONFIG_MONO_ONLY in itsspecFlagsand the default value for monochrome displays in itsdef-
Value; the other entry entry should have the value TK_CONFIG_COLOR_ONLY in itsspecFlagsand the
appropriatedefValuefor color displays.

Third, it is possible to useflagsandspecFlagstogether to selectively disable some entries. This feature is
not needed very often. It is useful in cases where several similar kinds of widgets are implemented in one
place. It allows a singlespecstable to be created with all the configuration options for all the widget types.
When processing a particular widget type, only entries relevant to that type will be used. This effect is
achieved by setting the high-order bits (those in positions equal to or greater than TK_CON-
FIG_USER_BIT) inspecFlagsvalues or inflags. In order for a particular entry inspecsto be used, its
high-order bits must match exactly the high-order bits of theflagsvalue passed toTk_ConfigureWidget.
If a specstable is being used for N different widget types, then N of the high-order bits will be used. Each
specsentry will have one of more of those bits set in itsspecFlagsfield to indicate the widget types for
which this entry is valid. When callingTk_ConfigureWidget, flagswill have a single one of these bits set
to select the entries for the desired widget type. For a working example of this feature, see the code in
tkButton.c.

TK_OFFSET
The Tk_Offset macro is provided as a safe way of generating theoffsetvalues for entries in Tk_Con-
figSpec structures. It takes two arguments: the name of a type of record, and the name of a field in that
record. It returns the byte offset of the named field in records of the given type.

TK_CONFIGUREINFO
The Tk_ConfigureInfo procedure may be used to obtain information about one or all of the options for a
given widget. Given a token for a window (tkwin), a table describing the configuration options for a class
of widgets (specs), a pointer to a widget record containing the current information for a widget (widgRec),
and a NULLargvNameargument,Tk_ConfigureInfo generates a string describing all of the configuration
options for the window. The string is placed ininterp->result. Under normal circumstances it returns
TCL_OK; if an error occurs then it returns TCL_ERROR andinterp->resultcontains an error message.

If argvNameis NULL, then the value left ininterp->resultby Tk_ConfigureInfo consists of a list of one
or more entries, each of which describes one configuration option (i.e. one entry inspecs). Each entry in
the list will contain either two or five values. If the corresponding entry inspecshas type TK_CON-
FIG_SYNONYM, then the list will contain two values: theargvNamefor the entry and thedbName(syn-
onym name). Otherwise the list will contain five values:argvName, dbName, dbClass, defValue, and cur-
rent value. The current value is computed from the appropriate field ofwidgRecby calling procedures like
Tk_NameOfColor.

Tk Last change: 4.1 6

Tk Library Procedures Tk_ConfigureWidget (3)

If the argvNameargument toTk_ConfigureInfo is non-NULL, then it indicates a single option, and infor-
mation is returned only for that option. The string placed ininterp->resultwill be a list containing two or
five values as described above; this will be identical to the corresponding sublist that would have been
returned ifargvNamehad been NULL.

The flags argument toTk_ConfigureInfo is used to restrict thespecsentries to consider, just as for
Tk_ConfigureWidget.

TK_CONFIGUREVALUE
Tk_ConfigureValue takes arguments similar toTk_ConfigureInfo ; instead of returning a list of values, it
just returns the current value of the option given byargvName(argvNamemust not be NULL). The value
is returned ininterp->resultand TCL_OK is normally returned as the procedure’s result. If an error occurs
in Tk_ConfigureValue (e.g.,argvNameis not a valid option name), TCL_ERROR is returned and an error
message is left ininterp->result. This procedure is typically called to implementcgetwidget commands.

TK_FREEOPTIONS
TheTk_FreeOptions procedure may be invoked during widget cleanup to release all of the resources asso-
ciated with configuration options. It scans throughspecsand for each entry corresponding to a resource
that must be explicitly freed (e.g. those with type TK_CONFIG_COLOR), it frees the resource in the wid-
get record. If the field in the widget record doesn’t refer to a resource (e.g. it contains a null pointer) then
no resource is freed for that entry. After freeing a resource,Tk_FreeOptions sets the corresponding field
of the widget record to null.

CUSTOM OPTION TYPES
Applications can extend the built-in configuration types with additional configuration types by writing pro-
cedures to parse and print options of the a type and creating a structure pointing to those procedures:

typedef struct Tk_CustomOption {
Tk_OptionParseProc∗parseProc;
Tk_OptionPrintProc∗printProc;
ClientDataclientData;

} Tk_CustomOption;

typedef int Tk_OptionParseProc(
ClientDataclientData,
Tcl_Interp∗interp,
Tk_Windowtkwin,
char∗value,
char∗widgRec,
int offset);

typedef char∗Tk_OptionPrintProc(
ClientDataclientData,
Tk_Windowtkwin,
char∗widgRec,
int offset,
Tcl_FreeProc∗∗freeProcPtr);

The Tk_CustomOption structure contains three fields, which are pointers to the two procedures and a
clientDatavalue to be passed to those procedures when they are invoked. TheclientDatavalue typically
points to a structure containing information that is needed by the procedures when they are parsing and
printing options.

Tk Last change: 4.1 7

Tk Library Procedures Tk_ConfigureWidget (3)

TheparseProcprocedure is invoked byTk_ConfigureWidget to parse a string and store the resulting value
in the widget record. TheclientDataargument is a copy of theclientDatafield in the Tk_CustomOption
structure. Theinterp argument points to a Tcl interpreter used for error reporting.Tkwin is a copy of the
tkwin argument toTk_ConfigureWidget. The value argument is a string describing the value for the
option; it could have been specified explicitly in the call toTk_ConfigureWidget or it could come from
the option database or a default.Value will never be a null pointer but it may point to an empty string.
RecordPtris the same as thewidgRecargument toTk_ConfigureWidget; it points to the start of the wid-
get record to modify. The last argument,offset, giv es the offset in bytes from the start of the widget record
to the location where the option value is to be placed. The procedure should translate the string to whatever
form is appropriate for the option and store the value in the widget record. It should normally return
TCL_OK, but if an error occurs in translating the string to a value then it should return TCL_ERROR and
store an error message ininterp->result.

The printProc procedure is called byTk_ConfigureInfo to produce a string value describing an existing
option. ItsclientData, tkwin, widgRec, andoffsetarguments all have the same meaning as for Tk_Option-
ParseProc procedures. TheprintProc procedure should examine the option whose value is stored atoffset
in widgRec, produce a string describing that option, and return a pointer to the string. If the string is stored
in dynamically-allocated memory, then the procedure must set∗freeProcPtrto the address of a procedure to
call to free the string’s memory;Tk_ConfigureInfo will call this procedure when it is finished with the
string. If the result string is stored in static memory thenprintProc need not do anything with thefreeP-
rocPtr argument.

OnceparseProcandprintProc have been defined and a Tk_CustomOption structure has been created for
them, options of this new type may be manipulated with Tk_ConfigSpec entries whosetype fields are
TK_CONFIG_CUSTOM and whosecustomPtrfields point to the Tk_CustomOption structure.

EXAMPLES
Although the explanation ofTk_ConfigureWidget is fairly complicated, its actual use is pretty straightfor-
ward. The easiest way to get started is to copy the code from an existing widget. The library implementa-
tion of frames (tkFrame.c) has a simple configuration table, and the library implementation of buttons
(tkButton.c) has a much more complex table that uses many of the fancyspecFlagsmechanisms.

KEYWORDS
anchor, bitmap, boolean, border, cap style, color, configuration options, cursor, custom, double, font, inte-
ger, join style, justify, millimeters, pixels, relief, synonym, uid

Tk Last change: 4.1 8

Tk Library Procedures Tk_ConfigureWindow (3)

NAME
Tk_ConfigureWindow, Tk_MoveWindow, Tk_ResizeWindow, Tk_MoveResizeWindow, Tk_SetWindow-
BorderWidth, Tk_ChangeWindowAttributes, Tk_SetWindowBackground, Tk_SetWindowBackground-
Pixmap, Tk_SetWindowBorder, Tk_SetWindowBorderPixmap, Tk_SetWindowColormap, Tk_DefineCur-
sor, Tk_UndefineCursor − change window configuration or attributes

SYNOPSIS
#include <tk.h>

Tk_ConfigureWindow(tkwin, valueMask, valuePtr)

Tk_MoveWindow(tkwin, x, y)

Tk_ResizeWindow(tkwin, width, height)

Tk_MoveResizeWindow(tkwin, x, y, width, height)

Tk_SetWindowBorderWidth (tkwin, borderWidth)

Tk_ChangeWindowAttributes(tkwin, valueMask, attsPtr)

Tk_SetWindowBackground(tkwin, pixel)

Tk_SetWindowBackgroundPixmap(tkwin, pixmap)

Tk_SetWindowBorder(tkwin, pixel)

Tk_SetWindowBorderPixmap(tkwin, pixmap)

Tk_SetWindowColormap(tkwin, colormap)

Tk_DefineCursor(tkwin, cursor)

Tk_UndefineCursor(tkwin)

ARGUMENTS
Tk_Window tkwin (in) Token for window.

unsigned int valueMask (in) OR-ed mask of values likeCWX or CWBorder-
Pixel, indicating which fields of∗valuePtror ∗attsPtr
to use.

XWindowChanges ∗valuePtr (in) Points to a structure containing new values for the
configuration parameters selected byvalueMask.
Fields not selected byvalueMaskare ignored.

int x (in) New x-coordinate fortkwin’s top left pixel (including
border, if any) within tkwin’s parent.

int y (in) New y-coordinate fortkwin’s top left pixel (including
border, if any) within tkwin’s parent.

int width (in) New width fortkwin (interior, not including border).

int height (in) New height fortkwin (interior, not including border).

int borderWidth (in) New width fortkwin’s border.

Tk Last change: 4.0 1

Tk Library Procedures Tk_ConfigureWindow (3)

XSetWindowAttributes ∗attsPtr (in) Points to a structure containing new values for the
attributes given by the valueMask argument.
Attributes not selected byvalueMaskare ignored.

unsigned long pixel (in) New background or border color for window.

Pixmap pixmap (in) New pixmap to use for background or border of
tkwin. WARNING: cannot necessarily be deleted
immediately, as for Xlib calls. See note below.

Colormap colormap (in) New colormap to use fortkwin.

Tk_Cursor cursor (in) New cursor to use fortkwin. If None is specified,
thentkwin will not have its own cursor; it will use the
cursor of its parent.

DESCRIPTION
These procedures are analogous to the X library procedures with similar names, such asXConfigureWin-
dow. Each one of the above procedures calls the corresponding X procedure and also saves the configura-
tion information in Tk’s local structure for the window. This allows the information to be retrieved quickly
by the application (using macros such asTk_X andTk_Height) without having to contact the X server. In
addition, if no X window has actually been created fortkwin yet, these procedures do not issue X opera-
tions or cause event handlers to be invoked; they sav e the information in Tk’s local structure for the win-
dow; when the window is created later, the saved information will be used to configure the window.

See the X library documentation for details on what these procedures do and how they use their arguments.

In the proceduresTk_ConfigureWindow, Tk_MoveWindow, Tk_ResizeWindow, Tk_MoveResizeWin-
dow, andTk_SetWindowBorderWidth , if tkwin is an internal window then event handlers interested in
configure events are invoked immediately, before the procedure returns. Iftkwin is a top-level window then
the event handlers will be invoked later, after X has seen the request and returned an event for it.

Applications using Tk should never call procedures likeXConfigureWindow directly; they should always
use the corresponding Tk procedures.

The size and location of a window should only be modified by the appropriate geometry manager for that
window and never by a window itself (but seeTk_MoveToplevelWindow for moving a top-level window).

You may not useTk_ConfigureWindow to change the stacking order of a window (valueMaskmay not
contain theCWSibling or CWStackMode bits). To change the stacking order, use the procedure
Tk_RestackWindow.

The procedureTk_SetWindowColormap will automatically addtkwin to theTK_COLORMAP_WIN-
DOWS property of its nearest top-level ancestor if the new colormap is different from that oftkwin’s parent
andtkwin isn’t already in theTK_COLORMAP_WINDOWS property.

BUGS
Tk_SetWindowBackgroundPixmap and Tk_SetWindowBorderPixmap differ slightly from their Xlib
counterparts in that thepixmapargument may not necessarily be deleted immediately after calling one of
these procedures. This is becausetkwin’s window may not exist yet at the time of the call, in which case
pixmap is merely saved and used later whentkwin’s window is actually created. If you wish to delete
pixmap, then callTk_MakeWindowExist first to be sure thattkwin’s window exists andpixmaphas been
passed to the X server.

A similar problem occurs for thecursorargument passed toTk_DefineCursor. The solution is the same as
for pixmaps above: callTk_MakeWindowExist before freeing the cursor.

Tk Last change: 4.0 2

Tk Library Procedures Tk_ConfigureWindow (3)

SEE ALSO
Tk_MoveToplevelWindow, Tk_RestackWindow

KEYWORDS
attributes, border, color, configure, height, pixel, pixmap, width, window, x, y

Tk Last change: 4.0 3

Tk Library Procedures Tk_CoordsToWindow (3)

NAME
Tk_CoordsToWindow − Find window containing a point

SYNOPSIS
#include <tk.h>

Tk_Window
Tk_CoordsToWindow(rootX, rootY, tkwin)

ARGUMENTS
int rootX (in) X-coordinate (in root window coordinates).

int rootY (in) Y-coordinate (in root window coordinates).

Tk_Window tkwin (in) Token for window that identifies application.

DESCRIPTION
Tk_CoordsToWindow locates the window that contains a given point. The point is specified in root coor-
dinates withrootX and rootY (if a virtual-root window manager is in use thenrootX and rootY are in the
coordinate system of the virtual root window). The return value from the procedure is a token for the win-
dow that contains the given point. If the point is not in any window, or if the containing window is not in
the same application astkwin, then NULL is returned.

The containing window is decided using the same rules that determine which window contains the mouse
cursor: if a parent and a child both contain the point then the child gets preference, and if two siblings both
contain the point then the highest one in the stacking order (i.e. the one that’s visible on the screen) gets
preference.

KEYWORDS
containing, coordinates, root window

Tk Last change: 1

Tk Library Procedures Tk_CreateErrorHandler (3)

NAME
Tk_CreateErrorHandler, Tk_DeleteErrorHandler − handle X protocol errors

SYNOPSIS
#include <tk.h>

Tk_ErrorHandler
Tk_CreateErrorHandler (display, error, request, minor, proc, clientData)

Tk_DeleteErrorHandler (handler)

ARGUMENTS
Display ∗display (in) Display whose errors are to be handled.

int error (in) Match only error events with this value in theerror_codefield.
If -1, then match anyerror_codevalue.

int request (in) Match only error events with this value in therequest_code
field. If -1, then match anyrequest_codevalue.

int minor (in) Match only error events with this value in theminor_code
field. If -1, then match anyminor_codevalue.

Tk_ErrorProc ∗proc (in) Procedure to invoke whenever an error event is received for
displayand matcheserror, request, andminor. NULL means
ignore any matching errors.

ClientData clientData (in) Arbitrary one-word value to pass toproc.

Tk_ErrorHandler handler (in) Token for error handler to delete (return value from a previous
call toTk_CreateErrorHandler).

DESCRIPTION
Tk_CreateErrorHandler arranges for a particular procedure (proc) to be called whenever certain protocol
errors occur on a particular display (display). Protocol errors occur when the X protocol is used incorrectly,
such as attempting to map a window that doesn’t exist. See the Xlib documentation forXSetErrorHan-
dler for more information on the kinds of errors that can occur. Forproc to be invoked to handle a particu-
lar error, five things must occur:

[1] The error must pertain todisplay.

[2] Either theerror argument toTk_CreateErrorHandler must have been -1, or theerror argument
must match theerror_codefield from the error event.

[3] Either therequestargument toTk_CreateErrorHandler must have been -1, or therequestargu-
ment must match therequest_codefield from the error event.

[4] Either theminor argument toTk_CreateErrorHandler must have been -1, or theminor argument
must match theminor_codefield from the error event.

[5] The protocol request to which the error pertains must have been made when the handler was active
(see below for more information).

Procshould have arguments and result that match the following type:
typedef int Tk_ErrorProc(

ClientDataclientData,
XErrorEvent∗errEventPtr);

TheclientDataparameter toproc is a copy of theclientDataargument given toTcl_CreateErrorHandler
when the callback was created. Typically,clientData points to a data structure containing application-

Tk Last change: 1

Tk Library Procedures Tk_CreateErrorHandler (3)

specific information that is needed to deal with the error.ErrEventPtris a pointer to the X error event. The
procedureproc should return an integer value. If it returns 0 it means thatproc handled the error com-
pletely and there is no need to take any other action for the error. If it returns non-zero it meansproc was
unable to handle the error.

If a value of NULL is specified forproc, all matching errors will be ignored: this will produce the same
result as if a procedure had been specified that always returns 0.

If more than more than one handler matches a particular error, then they are invoked in turn. The handlers
will be invoked in rev erse order of creation: most recently declared handler first. If any handler returns 0,
then subsequent (older) handlers will not be invoked. If no handler returns 0, then Tk invokes X’es default
error handler, which prints an error message and aborts the program. If you wish to have a default handler
that deals with errors that no other handler can deal with, then declare it first.

The X documentation states that ‘‘the error handler should not call any functions (directly or indirectly) on
the display that will generate protocol requests or that will look for input events.’’ This restriction applies
to handlers declared byTk_CreateErrorHandler ; disobey it at your own risk.

Tk_DeleteErrorHandler may be called to delete a previously-created error handler. Thehandler argu-
ment identifies the error handler, and should be a value returned by a previous call toTk_CreateEven-
tHandler .

A particular error handler applies to errors resulting from protocol requests generated between the call to
Tk_CreateErrorHandler and the call toTk_DeleteErrorHandler . Howev er, the actual callback toproc
may not occur until after theTk_DeleteErrorHandler call, due to buffering in the client and server. If an
error event pertains to a protocol request made just before callingTk_DeleteErrorHandler , then the error
ev ent may not have been processed before theTk_DeleteErrorHandler call. When this situation arises,
Tk will save information about the handler and invoke the handler’sproc later when the error event finally
arrives. If an application wishes to delete an error handler and know for certain that all relevant errors have
been processed, it should first callTk_DeleteErrorHandler and then callXSync; this will flush out any
buffered requests and errors, but will result in a performance penalty because it requires communication to
and from the X server. After theXSync call Tk is guaranteed not to call any error handlers deleted before
theXSynccall.

For the Tk error handling mechanism to work properly, it is essential that application code never calls
XSetErrorHandler directly; applications should use onlyTk_CreateErrorHandler .

KEYWORDS
callback, error, event, handler

Tk Last change: 2

Tk Library Procedures Tk_CreateGenericHandler (3)

NAME
Tk_CreateGenericHandler, Tk_DeleteGenericHandler − associate procedure callback with all X events

SYNOPSIS
#include <tk.h>

Tk_CreateGenericHandler(proc, clientData)

Tk_DeleteGenericHandler(proc, clientData)

ARGUMENTS
Tk_GenericProc ∗proc (in) Procedure to invoke whenever any X event occurs on any dis-

play.

ClientData clientData (in) Arbitrary one-word value to pass toproc.

DESCRIPTION
Tk_CreateGenericHandler arranges forproc to be invoked in the future whenever any X event occurs.
This mechanism isnot intended for dispatching X events on windows managed by Tk (you should use
Tk_CreateEventHandler for this purpose).Tk_CreateGenericHandler is intended for other purposes,
such as tracing X events, monitoring events on windows not owned by Tk, accessing X-related libraries that
were not originally designed for use with Tk, and so on.

The callback toproc will be made byTk_HandleEvent; this mechanism only works in programs that dis-
patch events throughTk_HandleEvent (or through other Tk procedures that callTk_HandleEvent, such
asTk_DoOneEventor Tk_MainLoop).

Procshould have arguments and result that match the typeTk_GenericProc:
typedef int Tk_GenericProc(

ClientDataclientData,
XEvent∗eventPtr);

The clientDataparameter toproc is a copy of theclientDataargument given toTk_CreateGenericHan-
dler when the callback was created. Typically,clientDatapoints to a data structure containing application-
specific information about how to handle events.EventPtris a pointer to the X event.

Whenever an X event is processed byTk_HandleEvent, proc is called. The return value fromproc is nor-
mally 0. A non-zero return value indicates that the event is not to be handled further; that is,proc has done
all processing that is to be allowed for the event.

If there are multiple generic event handlers, each one is called for each event, in the order in which they
were established.

Tk_DeleteGenericHandlermay be called to delete a previously-created generic event handler: it deletes
each handler it finds that matches theproc and clientData arguments. If no such handler exists, then
Tk_DeleteGenericHandler returns without doing anything. Although Tk supports it, it’s probably a bad
idea to have more than one callback with the sameprocandclientDataarguments.

Establishing a generic event handler does nothing to ensure that the process will actually receive the X
ev ents that the handler wants to process. For example, it is the caller’s responsibility to invokeXSelectIn-
put to select the desired events, if that is necessary.

KEYWORDS
bind, callback, event, handler

Tk Last change: 1

Tk Library Procedures Tk_CreateImageType (3)

NAME
Tk_CreateImageType, Tk_GetImageMasterData − define new kind of image

SYNOPSIS
#include <tk.h>

Tk_CreateImageType(typePtr)
ClientData

Tk_GetImageMasterData(interp, name, typePtrPtr)

ARGUMENTS
Tk_ImageType ∗typePtr (in) Structure that defines the new type of image. Must be static: a

pointer to this structure is retained by the image code.

Tcl_Interp ∗interp (in) Interpreter in which image was created.

char ∗name (in) Name of existing image.

Tk_ImageType ∗∗typePtrPtr (out) Points to word in which to store a pointer to type information
for the given image, if it exists.

DESCRIPTION
Tk_CreateImageTypeis invoked to define a new kind of image. An image type corresponds to a particu-
lar value of thetypeargument for theimage createcommand. There may exist any number of different
image types, and new types may be defined dynamically by callingTk_CreateImageType. For example,
there might be one type for 2-color bitmaps, another for multi-color images, another for dithered images,
another for video, and so on.

The code that implements a new image type is called animage manager. It consists of a collection of pro-
cedures plus three different kinds of data structures. The first data structure is a Tk_ImageType structure,
which contains the name of the image type and pointers to five procedures provided by the image manager
to deal with images of this type:

typedef struct Tk_ImageType {
char∗name;
Tk_ImageCreateProc∗createProc;
Tk_ImageGetProc∗getProc;
Tk_ImageDisplayProc∗displayProc;
Tk_ImageFreeProc∗freeProc;
Tk_ImageDeleteProc∗deleteProc;

} Tk_ImageType;
The fields of this structure will be described in later subsections of this entry.

The second major data structure manipulated by an image manager is called animage master; it contains
overall information about a particular image, such as the values of the configuration options specified in an
image createcommand. There will usually be one of these structures for each invocation of theimage cre-
atecommand.

The third data structure related to images is animage instance. There will usually be one of these struc-
tures for each usage of an image in a particular widget. It is possible for a single image to appear simulta-
neously in multiple widgets, or even multiple times in the same widget. Furthermore, different instances
may be on different screens or displays. The image instance data structure describes things that may vary
from instance to instance, such as colors and graphics contexts for redisplay. There is usually one instance
structure for each−imageoption specified for a widget or canvas item.

Tk Last change: 8.0 1

Tk Library Procedures Tk_CreateImageType (3)

The following subsections describe the fields of a Tk_ImageType in more detail.

NAME
typePtr->nameprovides a name for the image type. OnceTk_CreateImageTypereturns, this name may
be used inimage createcommands to create images of the new type. If there already existed an image
type by this name then the new image type replaces the old one.

CREATEPROC
typePtr->createProcprovides the address of a procedure for Tk to call wheneverimage createis invoked
to create an image of the new type.typePtr->createProcmust match the following prototype:

typedef int Tk_ImageCreateProc(
Tcl_Interp∗interp,
char∗name,
int argc,
char∗∗argv,
Tk_ImageType∗typePtr,
Tk_ImageMastermaster,
ClientData∗masterDataPtr);

The interp argument is the interpreter in which theimagecommand was invoked, andnameis the name for
the new image, which was either specified explicitly in theimagecommand or generated automatically by
the image command. Theargc and argv arguments describe all the configuration options for the new
image (everything after the name argument toimage). Themasterargument is a token that refers to Tk’s
information about this image; the image manager must return this token to Tk when invoking the
Tk_ImageChangedprocedure. TypicallycreateProcwill parseargc andargv and create an image master
data structure for the new image.createProcmay store an arbitrary one-word value at∗masterDataPtr,
which will be passed back to the image manager when other callbacks are invoked. Typically the value is a
pointer to the master data structure for the image.

If createProc encounters an error, it should leave an error message ininterp->result and return
TCL_ERROR ; otherwise it should returnTCL_OK .

createProcshould callTk_ImageChangedin order to set the size of the image and request an initial redis-
play.

GETPROC
typePtr->getProcis invoked by Tk whenever a widget callsTk_GetImage to use a particular image. This
procedure must match the following prototype:

typedef ClientData Tk_ImageGetProc(
Tk_Windowtkwin,
ClientDatamasterData);

The tkwin argument identifies the window in which the image will be used andmasterDatais the value
returned bycreateProcwhen the image master was created.getProcwill usually create a data structure for
the new instance, including such things as the resources needed to display the image in the given window.
getProcreturns a one-word token for the instance, which is typically the address of the instance data struc-
ture. Tk will pass this value back to the image manager when invoking itsdisplayProcandfreeProcproce-
dures.

DISPLAYPROC
typePtr->displayProcis invoked by Tk whenever an image needs to be displayed (i.e., whenever a widget
callsTk_RedrawImage). displayProcmust match the following prototype:

typedef void Tk_ImageDisplayProc(

Tk Last change: 8.0 2

Tk Library Procedures Tk_CreateImageType (3)

ClientDatainstanceData,
Display∗display,
Drawabledrawable,
int imageX,
int imageY,
int width,
int height,
int drawableX,
int drawableY);

The instanceDatawill be the same as the value returned bygetProcwhen the instance was created.display
and drawable indicate where to display the image;drawablemay be a pixmap rather than the window
specified togetProc (this is usually the case, since most widgets double-buffer their redisplay to get
smoother visual effects).imageX, imageY, width, andheight identify the region of the image that must be
redisplayed. This region will always be within the size of the image as specified in the most recent call to
Tk_ImageChanged. drawableXand drawableYindicate where indrawable the image should be dis-
played; displayProcshould display the given region of the image so that point (imageX, imageY) in the
image appears at (drawableX, drawableY) in drawable.

FREEPROC
typePtr->freeProccontains the address of a procedure that Tk will invoke when an image instance is
released (i.e., whenTk_FreeImage is invoked). This can happen, for example, when a widget is deleted or
a image item in a canvas is deleted, or when the image displayed in a widget or canvas item is changed.
freeProcmust match the following prototype:

typedef void Tk_ImageFreeProc(
ClientDatainstanceData,
Display∗display);

The instanceDatawill be the same as the value returned bygetProcwhen the instance was created, anddis-
play is the display containing the window for the instance.freeProcshould release any resources associ-
ated with the image instance, since the instance will never be used again.

DELETEPROC
typePtr->deleteProcis a procedure that Tk invokes when an image is being deleted (i.e. when theimage
deletecommand is invoked). Before invokingdeleteProcTk will invoke freeProcfor each of the image’s
instances.deleteProcmust match the following prototype:

typedef void Tk_ImageDeleteProc(
ClientDatamasterData);

ThemasterDataargument will be the same as the value stored in∗masterDataPtrby createProcwhen the
image was created.deleteProcshould release any resources associated with the image.

TK_GETIMAGEMASTERDAT A
The procedureTk_GetImageMasterData may be invoked to retrieve information about an image. For
example, an image manager can use this procedure to locate its image master data for an image. If there
exists an image namednamein the interpreter given byinterp, then∗typePtrPtris filled in with type infor-
mation for the image (thetypePtrvalue passed toTk_CreateImageTypewhen the image type was regis-
tered) and the return value is the ClientData value returned by thecreateProcwhen the image was created
(this is typically a pointer to the image master data structure). If no such image exists then NULL is
returned and NULL is stored at∗typePtrPtr.

Tk Last change: 8.0 3

Tk Library Procedures Tk_CreateImageType (3)

SEE ALSO
Tk_ImageChanged, Tk_GetImage, Tk_FreeImage, Tk_RedrawImage, Tk_SizeOfImage

KEYWORDS
image manager, image type, instance, master

Tk Last change: 8.0 4

Tk Library Procedures Tk_CreateItemType (3)

NAME
Tk_CreateItemType, Tk_GetItemTypes − define new kind of canvas item

SYNOPSIS
#include <tk.h>

Tk_CreateItemType(typePtr)

Tk_ItemType∗
Tk_GetItemTypes()

ARGUMENTS
Tk_ItemType ∗typePtr (in) Structure that defines the new type of canvas item.

INTRODUCTION
Tk_CreateItemType is invoked to define a new kind of canvas item described by thetypePtrargument.
An item type corresponds to a particular value of thetypeargument to thecreatewidget command for can-
vases, and the code that implements a canvas item type is called atype manager. Tk defines several built-in
item types, such asrectangleandtext andimage, butTk_CreateItemType allows additional item types to
be defined. OnceTk_CreateItemType returns, the new item type may be used in new or existing canvas
widgets just like the built-in item types.

Tk_GetItemTypes returns a pointer to the first in the list of all item types currently defined for canvases.
The entries in the list are linked together through theirnextPtrfields, with the end of the list marked by a
NULL nextPtr.

You may find it easier to understand the rest of this manual entry by looking at the code for an existing can-
vas item type such as bitmap (file tkCanvBmap.c) or text (tkCanvText.c). The easiest way to create a new
type manager is to copy the code for an existing type and modify it for the new type.

Tk provides a number of utility procedures for the use of canvas type managers, such asTk_CanvasCo-
ords andTk_CanvasPsColor; these are described in separate manual entries.

DATA STRUCTURES
A type manager consists of a collection of procedures that provide a standard set of operations on items of
that type. The type manager deals with three kinds of data structures. The first data structure is a Tk_Item-
Type; it contains information such as the name of the type and pointers to the standard procedures imple-
mented by the type manager:

typedef struct Tk_ItemType {
char∗name;
int itemSize;
Tk_ItemCreateProc∗createProc;
Tk_ConfigSpec∗configSpecs;
Tk_ItemConfigureProc∗configProc;
Tk_ItemCoordProc∗coordProc;
Tk_ItemDeleteProc∗deleteProc;
Tk_ItemDisplayProc∗displayProc;
int alwaysRedraw;
Tk_ItemPointProc∗pointProc;
Tk_ItemAreaProc∗areaProc;
Tk_ItemPostscriptProc∗postscriptProc;
Tk_ItemScaleProc∗scaleProc;
Tk_ItemTranslateProc∗translateProc;

Tk Last change: 4.0 1

Tk Library Procedures Tk_CreateItemType (3)

Tk_ItemIndexProc∗indexProc;
Tk_ItemCursorProc∗icursorProc;
Tk_ItemSelectionProc∗selectionProc;
Tk_ItemInsertProc∗insertProc;
Tk_ItemDCharsProc∗dCharsProc;
Tk_ItemType∗nextPtr;

} Tk_ItemType;

The fields of a Tk_ItemType structure are described in more detail later in this manual entry. When
Tk_CreateItemType is called, itstypePtrargument must point to a structure with all of the fields initial-
ized exceptnextPtr, which Tk sets to link all the types together into a list. The structure must be in perma-
nent memory (either statically allocated or dynamically allocated but never freed); Tk retains a pointer to
this structure.

The second data structure manipulated by a type manager is anitem record. For each item in a canvas there
exists one item record. All of the items of a given type generally have item records with the same structure,
but different types usually have different formats for their item records. The first part of each item record is
a header with a standard structure defined by Tk via the type Tk_Item; the rest of the item record is defined
by the type manager. A type manager must define its item records with a Tk_Item as the first field. For
example, the item record for bitmap items is defined as follows:

typedef struct BitmapItem {
Tk_Itemheader;
doublex, y;
Tk_Anchoranchor;
Pixmapbitmap;
XColor ∗fgColor;
XColor ∗bgColor;
GC gc;

} BitmapItem;
Theheadersubstructure contains information used by Tk to manage the item, such as its identifier, its tags,
its type, and its bounding box. The fields starting withx belong to the type manager: Tk will never read or
write them. The type manager should not need to read or write any of the fields in the header except for
four fields whose names arex1, y1, x2, andy2. These fields give a bounding box for the items using integer
canvas coordinates: the item should not cover any pixels with x-coordinate lower thanx1 or y-coordinate
lower thany1, nor should it cover any pixels with x-coordinate greater than or equal tox2 or y-coordinate
greater than or equal toy2. It is up to the type manager to keep the bounding box up to date as the item is
moved and reconfigured.

Whenever Tk calls a procedure in a type manager it passes in a pointer to an item record. The argument is
always passed as a pointer to a Tk_Item; the type manager will typically cast this into a pointer to its own
specific type, such as BitmapItem.

The third data structure used by type managers has type Tk_Canvas; it serves as an opaque handle for the
canvas widget as a whole. Type managers need not know anything about the contents of this structure. A
Tk_Canvas handle is typically passed in to the procedures of a type manager, and the type manager can
pass the handle back to library procedures such as Tk_CanvasTkwin to fetch information about the canvas.

NAME
This section and the ones that follow describe each of the fields in a Tk_ItemType structure in detail. The
namefield provides a string name for the item type. OnceTk_CreateImageTypereturns, this name may
be used increatewidget commands to create items of the new type. If there already existed an item type
by this name then the new item type replaces the old one.

Tk Last change: 4.0 2

Tk Library Procedures Tk_CreateItemType (3)

ITEMSIZE
typePtr->itemSizegives the size in bytes of item records of this type, including the Tk_Item header. Tk
uses this size to allocate memory space for items of the type. All of the item records for a given type must
have the same size. If variable length fields are needed for an item (such as a list of points for a polygon),
the type manager can allocate a separate object of variable length and keep a pointer to it in the item record.

CREATEPROC
typePtr->createProcpoints to a procedure for Tk to call whenever a new item of this type is created.
typePtr->createProcmust match the following prototype:

typedef int Tk_ItemCreateProc(
Tcl_Interp∗interp,
Tk_Canvascanvas,
Tk_Item∗itemPtr,
int argc,
char∗∗argv);

The interp argument is the interpreter in which the canvas’screatewidget command was invoked, andcan-
vasis a handle for the canvas widget.itemPtr is a pointer to a newly-allocated item of sizetypePtr->item-
Size. Tk has already initialized the item’s header (the firstsizeof(Tk_ItemType)bytes). Theargc andargv
arguments describe all of the arguments to thecreate command after thetypeargument. For example, in
the widget command

.c create rectangle 10 20 50 50 −fill black
argcwill be 6 andargv[0] will contain the string10.

createProcshould useargc andargv to initialize the type-specific parts of the item record and set an initial
value for the bounding box in the item’s header. It should return a standard Tcl completion code and leave
an error message ininterp->result if an error occurs. If an error occurs Tk will free the item record, socre-
ateProcmust be sure to leave the item record in a clean state if it returns an error (e.g., it must free any
additional memory that it allocated for the item).

CONFIGSPECS
Each type manager must provide a standard table describing its configuration options, in a form suitable for
use with Tk_ConfigureWidget. This table will normally be used bytypePtr->createProc and
typePtr->configProc, but Tk also uses it directly to retrieve option information in theitemcget and item-
configure widget commands.typePtr->configSpecsmust point to the configuration table for this type.
Note: Tk provides a custom option typetk_CanvasTagsOptionfor implementing the−tagsoption; see an
existing type manager for an example of how to use it inconfigSpecs.

CONFIGPROC
typePtr->configProcis called by Tk whenever theitemconfigurewidget command is invoked to change the
configuration options for a canvas item. This procedure must match the following prototype:

typedef int Tk_ItemConfigureProc(
Tcl_Interp∗interp,
Tk_Canvascanvas,
Tk_Item∗itemPtr,
int argc,
char∗∗argv,
int flags);

The interp argument identifies the interpreter in which the widget command was invoked,canvasis a han-
dle for the canvas widget, anditemPtr is a pointer to the item being configured.argc andargv contain the
configuration options. For example, if the following command is invoked:

.c itemconfigure 2 −fill red −outline black

Tk Last change: 4.0 3

Tk Library Procedures Tk_CreateItemType (3)

argc is 4 andargv contains the strings−fill throughblack. argc will always be an even value. Theflags
argument contains flags to pass toTk_ConfigureWidget; currently this value is always TK_CON-
FIG_ARGV_ONLY when Tk invokestypePtr->configProc, but the type manager’screateProcprocedure
will usually invokeconfigProcwith different flag values.

typePtr->configProcreturns a standard Tcl completion code and leaves an error message ininterp->result
if an error occurs. It must update the item’s bounding box to reflect the new configuration options.

COORDPROC
typePtr->coordProcis invoked by Tk to implement thecoords widget command for an item. It must
match the following prototype:

typedef int Tk_ItemCoordProc(
Tcl_Interp∗interp,
Tk_Canvascanvas,
Tk_Item∗itemPtr,
int argc,
char∗∗argv);

The argumentsinterp, canvas, anditemPtrall have the standard meanings, andargc andargv describe the
coordinate arguments. For example, if the following widget command is invoked:

.c coords 2 30 90
argcwill be 2 andargv will contain the string values30and90.

The coordProcprocedure should process the new coordinates, update the item appropriately (e.g., it must
reset the bounding box in the item’s header), and return a standard Tcl completion code. If an error occurs,
coordProcmust leave an error message ininterp->result.

DELETEPROC
typePtr->deleteProcis invoked by Tk to delete an item and free any resources allocated to it. It must match
the following prototype:

typedef void Tk_ItemDeleteProc(
Tk_Canvascanvas,
Tk_Item∗itemPtr,
Display∗display);

Thecanvasand itemPtrarguments have the usual interpretations, anddisplay identifies the X display con-
taining the canvas.deleteProcmust free up any resources allocated for the item, so that Tk can free the
item record.deleteProcshould not actually free the item record; this will be done by Tk whendeleteProc
returns.

DISPLAYPROC AND ALWA YSREDRAW
typePtr->displayProcis invoked by Tk to redraw an item on the screen. It must match the following proto-
type:

typedef void Tk_ItemDisplayProc(
Tk_Canvascanvas,
Tk_Item∗itemPtr,
Display∗display,
Drawabledst,
int x,
int y,
int width,
int height);

The canvasand itemPtr arguments have the usual meaning.display identifies the display containing the
canvas, anddst specifies a drawable in which the item should be rendered; typically this is an off-screen

Tk Last change: 4.0 4

Tk Library Procedures Tk_CreateItemType (3)

pixmap, which Tk will copy into the canvas’s window once all relevant items have been drawn.x, y, width,
andheightspecify a rectangular region in canvas coordinates, which is the area to be redrawn; only infor-
mation that overlaps this area needs to be redrawn. Tk will not calldisplayProcunless the item’s bounding
box overlaps the redraw area, but the type manager may wish to use the redraw area to optimize the redis-
play of the item.

Because of scrolling and the use of off-screen pixmaps for double-buffered redisplay, the item’s coordinates
in dst will not necessarily be the same as those in the canvas.displayProcshould callTk_CanvasDraw-
ableCoordsto transform coordinates from those of the canvas to those ofdst.

Normally an item’sdisplayProcis only invoked if the item overlaps the area being displayed. However, if
typePtr->alwaysRedrawhas a non-zero value, thendisplayProcis invoked during every redisplay opera-
tion, even if the item doesn’t overlap the area of redisplay.alwaysRedrawshould normally be set to 0; it is
only set to 1 in special cases such as window items that need to be unmapped when they are off-screen.

POINTPROC
typePtr->pointProcis invoked by Tk to find out how close a given point is to a canvas item. Tk uses this
procedure for purposes such as locating the item under the mouse or finding the closest item to a given
point. The procedure must match the following prototype:

typedef double Tk_ItemPointProc(
Tk_Canvascanvas,
Tk_Item∗itemPtr,
double∗pointPtr);

canvasanditemPtrhave the usual meaning.pointPtr points to an array of two numbers giving the x and y
coordinates of a point.pointProcmust return a real value giving the distance from the point to the item, or
0 if the point lies inside the item.

AREAPROC
typePtr->areaProcis invoked by Tk to find out the relationship between an item and a rectangular area. It
must match the following prototype:

typedef int Tk_ItemAreaProc(
Tk_Canvascanvas,
Tk_Item∗itemPtr,
double∗rectPtr);

canvasand itemPtr have the usual meaning.rectPtr points to an array of four real numbers; the first two
give the x and y coordinates of the upper left corner of a rectangle, and the second two giv e the x and y
coordinates of the lower right corner.areaProcmust return −1 if the item lies entirely outside the given
area, 0 if it lies partially inside and partially outside the area, and 1 if it lies entirely inside the area.

POSTSCRIPTPROC
typePtr->postscriptProcis invoked by Tk to generate Postcript for an item during thepostscript widget
command. If the type manager is not capable of generating Postscript thentypePtr->postscriptProcshould
be NULL. The procedure must match the following prototype:

typedef int Tk_ItemPostscriptProc(
Tcl_Interp∗interp,
Tk_Canvascanvas,
Tk_Item∗itemPtr,
int prepass);

The interp, canvas, anditemPtrarguments all have standard meanings;prepasswill be described below. If
postscriptProccompletes successfully, it should append Postscript for the item to the information in
interp->result (e.g. by callingTcl_AppendResult, not Tcl_SetResult) and return TCL_OK. If an error
occurs,postscriptProcshould clear the result and replace its contents with an error message; then it should

Tk Last change: 4.0 5

Tk Library Procedures Tk_CreateItemType (3)

return TCL_ERROR.

Tk provides a collection of utility procedures to simplifypostscriptProc. For example,Tk_CanvasPs-
Color will generate Postscript to set the current color to a given Tk color andTk_CanvasPsFontwill set
up font information. When generating Postscript, the type manager is free to change the graphics state of
the Postscript interpreter, since Tk placesgsaveandgrestorecommands around the Postscript for the item.
The type manager can use canvas x coordinates directly in its Postscript, but it must callTk_CanvasPsYto
convert y coordinates from the space of the canvas (where the origin is at the upper left) to the space of
Postscript (where the origin is at the lower left).

In order to generate Postscript that complies with the Adobe Document Structuring Conventions, Tk actu-
ally generates Postscript in two passes. It calls each item’spostscriptProcin each pass. The only purpose
of the first pass is to collect font information (which is done byTk_CanvPsFont); the actual Postscript is
discarded. Tk sets theprepassargument topostscriptProcto 1 during the first pass; the type manager can
useprepassto skip all Postscript generation except for calls toTk_CanvasPsFont. During the second pass
prepasswill be 0, so the type manager must generate complete Postscript.

SCALEPROC
typePtr->scaleProcis invoked by Tk to rescale a canvas item during thescalewidget command. The pro-
cedure must match the following prototype:

typedef void Tk_ItemScaleProc(
Tk_Canvascanvas,
Tk_Item∗itemPtr,
doubleoriginX,
doubleoriginY,
doublescaleX,
doublescaleY);

Thecanvasand itemPtrarguments have the usual meaning.originX andoriginY specify an origin relative
to which the item is to be scaled, andscaleXandscaleYgive the x and y scale factors. The item should
adjust its coordinates so that a point in the item that used to have coordinatesx andy will have new coordi-
natesx’ andy’, where

x’ = originX + scaleX∗(x-originX)
y’ = originY + scaleY∗(y-originY)

scaleProcmust also update the bounding box in the item’s header.

TRANSLATEPROC
typePtr->translateProcis invoked by Tk to translate a canvas item during themovewidget command. The
procedure must match the following prototype:

typedef void Tk_ItemTranslateProc(
Tk_Canvascanvas,
Tk_Item∗itemPtr,
doubledeltaX,
doubledeltaY);

The canvasand itemPtr arguments have the usual meaning, anddeltaXanddeltaYgive the amounts that
should be added to each x and y coordinate within the item. The type manager should adjust the item’s
coordinates and update the bounding box in the item’s header.

INDEXPROC
typePtr->indexProcis invoked by Tk to translate a string index specification into a numerical index, for
example during theindex widget command. It is only relevant for item types that support indexable text;
typePtr->indexProcmay be specified as NULL for non-textual item types. The procedure must match the
following prototype:

Tk Last change: 4.0 6

Tk Library Procedures Tk_CreateItemType (3)

typedef int Tk_ItemIndexProc(
Tcl_Interp∗interp,
Tk_Canvascanvas,
Tk_Item∗itemPtr,
charindexString,
int ∗indexPtr);

The interp, canvas, and itemPtr arguments all have the usual meaning.indexStringcontains a textual
description of an index, andindexPtrpoints to an integer value that should be filled in with a numerical
index. It is up to the type manager to decide what forms of index are supported (e.g., numbers,insert,
sel.first, end, etc.). indexProcshould return a Tcl completion code and setinterp->result in the event of an
error.

ICURSORPROC
typePtr->icursorProcis invoked by Tk during theicursor widget command to set the position of the inser-
tion cursor in a textual item. It is only relevant for item types that support an insertion cursor;
typePtr->icursorProcmay be specified as NULL for item types that don’t support an insertion cursor. The
procedure must match the following prototype:

typedef void Tk_ItemIndexProc(
Tk_Canvascanvas,
Tk_Item∗itemPtr,
int index);

canvasanditemPtrhave the usual meanings, andindexis an index into the item’s text, as returned by a pre-
vious call totypePtr->insertProc. The type manager should position the insertion cursor in the item just
before the character given byindex. Whether or not to actually display the insertion cursor is determined
by other information provided byTk_CanvasGetTextInfo.

SELECTIONPROC
typePtr->selectionProcis invoked by Tk during selection retrievals; it must return part or all of the
selected text in the item (if any). It is only relevant for item types that support text;typePtr->selectionProc
may be specified as NULL for non-textual item types. The procedure must match the following prototype:

typedef int Tk_ItemSelectionProc(
Tk_Canvascanvas,
Tk_Item∗itemPtr,
int offset,
char∗buffer,
int maxBytes);

canvasanditemPtrhave the usual meanings.offsetis an offset in bytes into the selection where 0 refers to
the first byte of the selection; it identifies the first character that is to be returned in this call.bufferpoints
to an area of memory in which to store the requested bytes, andmaxBytesspecifies the maximum number
of bytes to return.selectionProcshould extract up tomaxBytescharacters from the selection and copy them
to maxBytes; it should return a count of the number of bytes actually copied, which may be less than
maxBytesif there aren’toffset+maxBytesbytes in the selection.

INSERTPROC
typePtr->insertProcis invoked by Tk during theinsert widget command to insert new text into a canvas
item. It is only relevant for item types that support text;typePtr->insertProcmay be specified as NULL for
non-textual item types. The procedure must match the following prototype:

typedef void Tk_ItemInsertProc(
Tk_Canvascanvas,
Tk_Item∗itemPtr,

Tk Last change: 4.0 7

Tk Library Procedures Tk_CreateItemType (3)

int index,
char∗string);

canvasand itemPtrhave the usual meanings.index is an index into the item’s text, as returned by a previ-
ous call totypePtr->insertProc, andstring contains new text to insert just before the character given by
index. The type manager should insert the text and recompute the bounding box in the item’s header.

DCHARSPROC
typePtr->dCharsProcis invoked by Tk during thedchars widget command to delete a range of text from a
canvas item. It is only relevant for item types that support text;typePtr->dCharsProcmay be specified as
NULL for non-textual item types. The procedure must match the following prototype:

typedef void Tk_ItemDCharsProc(
Tk_Canvascanvas,
Tk_Item∗itemPtr,
int first,
int last);

canvasand itemPtrhave the usual meanings.first and last give the indices of the first and last bytes to be
deleted, as returned by previous calls totypePtr->indexProc. The type manager should delete the specified
characters and update the bounding box in the item’s header.

SEE ALSO
Tk_CanvasPsY, Tk_CanvasTextInfo, Tk_CanvasTkwin

KEYWORDS
canvas, focus, item type, selection, type manager

Tk Last change: 4.0 8

Tk Library Procedures Tk_CreatePhotoImageFormat (3)

NAME
Tk_CreatePhotoImageFormat − define new file format for photo images

SYNOPSIS
#include <tk.h>
#include <tkPhoto.h>

Tk_CreatePhotoImageFormat(formatPtr)

ARGUMENTS
Tk_PhotoImageFormat ∗formatPtr (in) Structure that defines the new file format.

DESCRIPTION
Tk_CreatePhotoImageFormat is invoked to define a new file format for image data for use with photo
images. The code that implements an image file format is called an image file format handler, or handler
for short. The photo image code maintains a list of handlers that can be used to read and write data to or
from a file. Some handlers may also support reading image data from a string or converting image data to a
string format. The user can specify which handler to use with the−format image configuration option or
the−format option to theread andwrite photo image subcommands.

An image file format handler consists of a collection of procedures plus a Tk_PhotoImageFormat structure,
which contains the name of the image file format and pointers to six procedures provided by the handler to
deal with files and strings in this format. The Tk_PhotoImageFormat structure contains the following
fields:

typedef struct Tk_PhotoImageFormat {
char∗name;
Tk_ImageFileMatchProc∗fileMatchProc;
Tk_ImageStringMatchProc∗stringMatchProc;
Tk_ImageFileReadProc∗fileReadProc;
Tk_ImageStringReadProc∗stringReadProc;
Tk_ImageFileWriteProc∗fileWriteProc;
Tk_ImageStringWriteProc∗stringWriteProc;

} Tk_PhotoImageFormat;

The handler need not provide implementations of all six procedures. For example, the procedures that han-
dle string data would not be provided for a format in which the image data are stored in binary, and could
therefore contain null characters. If any procedure is not implemented, the corresponding pointer in the
Tk_PhotoImageFormat structure should be set to NULL. The handler must provide thefileMatchProcpro-
cedure if it provides thefileReadProcprocedure, and thestringMatchProcprocedure if it provides the
stringReadProcprocedure.

NAME
formatPtr->nameprovides a name for the image type. OnceTk_CreatePhotoImageFormatreturns, this
name may be used in the−format photo image configuration and subcommand option. The manual page
for the photo image (photo(n)) describes how image file formats are chosen based on their names and the
value given to the−format option.

FILEMATCHPROC
formatPtr->fileMatchProcprovides the address of a procedure for Tk to call when it is searching for an
image file format handler suitable for reading data in a given file.formatPtr->fileMatchProcmust match
the following prototype:

typedef int Tk_ImageFileMatchProc(

Tk Last change: 4.0 1

Tk Library Procedures Tk_CreatePhotoImageFormat (3)

Tcl_Channelchan,
char∗fileName,
char∗formatString,
int ∗widthPtr,
int ∗heightPtr);

ThefileNameargument is the name of the file containing the image data, which is open for reading aschan.
The formatStringargument contains the value given for the−format option, or NULL if the option was not
specified. If the data in the file appears to be in the format supported by this handler, thefor-
matPtr->fileMatchProcprocedure should store the width and height of the image in∗widthPtr and
∗heightPtrrespectively, and return 1. Otherwise it should return 0.

STRINGMATCHPROC
formatPtr->stringMatchProcprovides the address of a procedure for Tk to call when it is searching for an
image file format handler for suitable for reading data from a given string.formatPtr->stringMatchProc
must match the following prototype:

typedef int Tk_ImageStringMatchProc(
char∗string,
char∗formatString,
int ∗widthPtr,
int ∗heightPtr);

Thestring argument points to the string containing the image data. TheformatStringargument contains the
value given for the−format option, or NULL if the option was not specified. If the data in the string
appears to be in the format supported by this handler, theformatPtr->stringMatchProcprocedure should
store the width and height of the image in∗widthPtr and∗heightPtrrespectively, and return 1. Otherwise it
should return 0.

FILEREADPROC
formatPtr->fileReadProcprovides the address of a procedure for Tk to call to read data from an image file
into a photo image.formatPtr->fileReadProcmust match the following prototype:

typedef int Tk_ImageFileReadProc(
Tcl_Interp∗interp,
Tcl_Channelchan,
char∗fileName,
char∗formatString,
PhotoHandleimageHandle,
int destX, int destY,
int width, int height,
int srcX, int srcY);

The interp argument is the interpreter in which the command was invoked to read the image; it should be
used for reporting errors. The image data is in the file namedfileName, which is open for reading aschan.
The formatStringargument contains the value given for the−format option, or NULL if the option was not
specified. The image data in the file, or a subimage of it, is to be read into the photo image identified by the
handleimageHandle. The subimage of the data in the file is of dimensionswidth x heightand has its top-
left corner at coordinates (srcX,srcY). It is to be stored in the photo image with its top-left corner at coordi-
nates (destX,destY) using theTk_PhotoPutBlock procedure. The return value is a standard Tcl return
value.

STRINGREADPROC
formatPtr->stringReadProcprovides the address of a procedure for Tk to call to read data from a string
into a photo image.formatPtr->stringReadProcmust match the following prototype:

Tk Last change: 4.0 2

Tk Library Procedures Tk_CreatePhotoImageFormat (3)

typedef int Tk_ImageStringReadProc(
Tcl_Interp∗interp,
char∗string,
char∗formatString,
PhotoHandleimageHandle,
int destX, int destY,
int width, int height,
int srcX, int srcY);

The interp argument is the interpreter in which the command was invoked to read the image; it should be
used for reporting errors. Thestring argument points to the image data in string form. TheformatString
argument contains the value given for the−format option, or NULL if the option was not specified. The
image data in the string, or a subimage of it, is to be read into the photo image identified by the handle
imageHandle. The subimage of the data in the string is of dimensionswidth x heightand has its top-left
corner at coordinates (srcX,srcY). It is to be stored in the photo image with its top-left corner at coordinates
(destX,destY) using theTk_PhotoPutBlock procedure. The return value is a standard Tcl return value.

FILEWRITEPROC
formatPtr->fileWriteProcprovides the address of a procedure for Tk to call to write data from a photo
image to a file.formatPtr->fileWriteProcmust match the following prototype:

typedef int Tk_ImageFileWriteProc(
Tcl_Interp∗interp,
char∗fileName,
char∗formatString,
Tk_PhotoImageBlock∗blockPtr);

The interp argument is the interpreter in which the command was invoked to write the image; it should be
used for reporting errors. The image data to be written are in memory and are described by the Tk_Pho-
toImageBlock structure pointed to byblockPtr; see the manual page FindPhoto(3) for details. ThefileName
argument points to the string giving the name of the file in which to write the image data. TheformatString
argument contains the value given for the−format option, or NULL if the option was not specified. The
format string can contain extra characters after the name of the format. If appropriate, thefor-
matPtr->fileWriteProcprocedure may interpret these characters to specify further details about the image
file. The return value is a standard Tcl return value.

STRINGWRITEPROC
formatPtr->stringWriteProcprovides the address of a procedure for Tk to call to translate image data from
a photo image into a string.formatPtr->stringWriteProcmust match the following prototype:

typedef int Tk_ImageStringWriteProc(
Tcl_Interp∗interp,
Tcl_DString∗dataPtr,
char∗formatString,
Tk_PhotoImageBlock∗blockPtr);

The interpargument is the interpreter in which the command was invoked to convert the image; it should be
used for reporting errors. The image data to be converted are in memory and are described by the Tk_Pho-
toImageBlock structure pointed to byblockPtr; see the manual page FindPhoto(3) for details. The data for
the string should be appended to the dynamic string given bydataPtr. TheformatStringargument contains
the value given for the−format option, or NULL if the option was not specified. The format string can
contain extra characters after the name of the format. If appropriate, theformatPtr->stringWriteProcpro-
cedure may interpret these characters to specify further details about the image file. The return value is a
standard Tcl return value.

Tk Last change: 4.0 3

Tk Library Procedures Tk_CreatePhotoImageFormat (3)

SEE ALSO
Tk_FindPhoto, Tk_PhotoPutBlock

KEYWORDS
photo image, image file

Tk Last change: 4.0 4

Tk Library Procedures Tk_CreateSelHandler (3)

NAME
Tk_CreateSelHandler, Tk_DeleteSelHandler − arrange to handle requests for a selection

SYNOPSIS
#include <tk.h>

Tk_CreateSelHandler(tkwin, selection, target, proc, clientData, format)

Tk_DeleteSelHandler(tkwin, selection, target)

ARGUMENTS
Tk_Window tkwin (in) Window for whichprocwill provide selection information.

Atom selection (in) The name of the selection for whichproc will provide selec-
tion information.

Atom target (in) Form in whichproc can provide the selection (e.g. STRING
or FILE_NAME). Corresponds totype arguments inselec-
tion commands.

Tk_SelectionProc ∗proc (in) Procedure to invoke whenever the selection is owned bytkwin
and the selection contents are requested in the format given
by target.

ClientData clientData (in) Arbitrary one-word value to pass toproc.

Atom format (in) If the selection requestor isn’t in this process,format deter-
mines the representation used to transmit the selection to its
requestor.

DESCRIPTION
Tk_CreateSelHandlerarranges for a particular procedure (proc) to be called wheneverselectionis owned
by tkwin and the selection contents are requested in the form given bytarget. Targ etshould be one of the
entries defined in the left column of Table 2 of the X Inter-Client Communication Conventions Manual
(ICCCM) or any other form in which an application is willing to present the selection. The most common
form is STRING.

Procshould have arguments and result that match the typeTk_SelectionProc:
typedef int Tk_SelectionProc(

ClientDataclientData,
int offset,
char∗buffer,
int maxBytes);

The clientData parameter toproc is a copy of theclientData argument given toTk_CreateSelHandler.
Typically, clientDatapoints to a data structure containing application-specific information that is needed to
retrieve the selection.Offsetspecifies an offset position into the selection,buffer specifies a location at
which to copy information about the selection, andmaxBytesspecifies the amount of space available at
buffer. Proc should place a NULL-terminated string atbuffercontainingmaxBytesor fewer characters (not
including the terminating NULL), and it should return a count of the number of non-NULL characters
stored atbuffer. If the selection no longer exists (e.g. it once existed but the user deleted the range of char-
acters containing it), thenprocshould return -1.

When transferring large selections, Tk will break them up into smaller pieces (typically a few thousand
bytes each) for more efficient transmission. It will do this by callingproc one or more times, using succes-
sively higher values ofoffsetto retrieve successive portions of the selection. Ifproc returns a count less
thanmaxBytesit means that the entire remainder of the selection has been returned. Ifproc’s return value is

Tk Last change: 4.0 1

Tk Library Procedures Tk_CreateSelHandler (3)

maxBytesit means there may be additional information in the selection, so Tk must make another call to
proc to retrieve the next portion.

Proc always returns selection information in the form of a character string. However, the ICCCM allows
for information to be transmitted from the selection owner to the selection requestor in any of sev eral for-
mats, such as a string, an array of atoms, an array of integers, etc. Theformatargument toTk_CreateSel-
Handler indicates what format should be used to transmit the selection to its requestor (see the middle col-
umn of Table 2 of the ICCCM for examples). Ifformat is not STRING, then Tk will take the value
returned byproc and divided it into fields separated by white space. Ifformat is ATOM, then Tk will return
the selection as an array of atoms, with each field inproc’s result treated as the name of one atom. For any
other value offormat, Tk will return the selection as an array of 32-bit values where each field ofproc’s
result is treated as a number and translated to a 32-bit value. In any event, theformat atom is returned to
the selection requestor along with the contents of the selection.

If Tk_CreateSelHandler is called when there already exists a handler forselectionand target on tkwin,
then the existing handler is replaced with a new one.

Tk_DeleteSelHandlerremoves the handler given bytkwin, selection, andtarget, if such a handler exists.
If there is no such handler then it has no effect.

KEYWORDS
format, handler, selection, target

Tk Last change: 4.0 2

Tk Library Procedures Tk_CreateWindow (3)

NAME
Tk_CreateWindow, Tk_CreateWindowFromPath, Tk_DestroyWindow, Tk_MakeWindowExist − create or
delete window

SYNOPSIS
#include <tk.h>

Tk_Window
Tk_CreateWindow(interp, parent, name, topLevScreen)

Tk_Window
Tk_CreateWindowFromPath(interp, tkwin, pathName, topLevScreen)

Tk_DestroyWindow(tkwin)

Tk_MakeWindowExist (tkwin)

ARGUMENTS
Tcl_Interp ∗interp (out) Tcl interpreter to use for error reporting. If no error occurs, then

∗interp isn’t modified.

Tk_Window parent (in) Token for the window that is to serve as the logical parent of the
new window.

char ∗name (in) Name to use for this window. Must be unique among all chil-
dren of the sameparent.

char ∗topLevScreen (in) Has same format asscreenName. If NULL, then new window is
created as an internal window. If non-NULL, new window is
created as a top-level window on screentopLevScreen. If
topLevScreenis an empty string (‘‘’’) then new window is cre-
ated as top-level window ofparent’s screen.

Tk_Window tkwin (in) Token for window.

char ∗pathName (in) Name of new window, specified as path name within application
(e.g..a.b.c).

DESCRIPTION
The proceduresTk_CreateWindow and Tk_CreateWindowFromPath are used to create new windows
for use in Tk-based applications. Each of the procedures returns a token that can be used to manipulate the
window in other calls to the Tk library. If the window couldn’t be created successfully, then NULL is
returned andinterp->resultis modified to hold an error message.

Tk supports two different kinds of windows: internal windows and top-level windows. An internal window
is an interior window of a Tk application, such as a scrollbar or menu bar or button. A top-level window is
one that is created as a child of a screen’s root window, rather than as an interior window, but which is logi-
cally part of some existing main window. Examples of top-level windows are pop-up menus and dialog
boxes.

New windows may be created by callingTk_CreateWindow. If the topLevScreenargument is NULL,
then the new window will be an internal window. IftopLevScreenis non-NULL, then the new window will
be a top-level window:topLevScreenindicates the name of a screen and the new window will be created as
a child of the root window oftopLevScreen. In either case Tk will consider the new window to be the logi-
cal child ofparent: the new window’s path name will reflect this fact, options may be specified for the new
window under this assumption, and so on. The only difference is that new X window for a top-level

Tk Last change: 4.2 1

Tk Library Procedures Tk_CreateWindow (3)

window will not be a child ofparent’s X window. For example, a pull-down menu’sparentwould be the
button-like window used to invoke it, which would in turn be a child of the menu bar window. A dialog
box might have the application’s main window as its parent.

Tk_CreateWindowFromPath offers an alternate way of specifying new windows. InTk_CreateWin-
dowFromPath the new window is specified with a token for any window in the target application (tkwin),
plus a path name for the new window. It produces the same effect asTk_CreateWindow and allows both
top-level and internal windows to be created, depending on the value oftopLevScreen. In calls toTk_Cre-
ateWindowFromPath, as in calls toTk_CreateWindow, the parent of the new window must exist at the
time of the call, but the new window must not already exist.

The window creation procedures don’t actually issue the command to X to create a window. Instead, they
create a local data structure associated with the window and defer the creation of the X window. The win-
dow will actually be created by the first call toTk_MapWindow . Deferred window creation allows vari-
ous aspects of the window (such as its size, background color, etc.) to be modified after its creation without
incurring any overhead in the X server. When the window is finally mapped all of the window attributes
can be set while creating the window.

The value returned by a window-creation procedure is not the X token for the window (it can’t be, since X
hasn’t been asked to create the window yet). Instead, it is a token for Tk’s local data structure for the win-
dow. Most of the Tk library procedures take Tk_Window tokens, rather than X identifiers. The actual X
window identifier can be retrieved from the local data structure using theTk_WindowId macro; see the
manual entry forTk_WindowId for details.

Tk_DestroyWindow deletes a window and all the data structures associated with it, including any event
handlers created withTk_CreateEventHandler. In addition,Tk_DestroyWindow will delete any chil-
dren oftkwin recursively (where children are defined in the Tk sense, consisting of all windows that were
created with the given window asparent). If tkwin was created byTk_CreateInternalWindow then event
handlers interested in destroy events are invoked immediately. Iftkwin is a top-level or main window, then
the event handlers will be invoked later, after X has seen the request and returned an event for it.

If a window has been created but hasn’t been mapped, so no X window exists, it is possible to force the cre-
ation of the X window by callingTk_MakeWindowExist . This procedure issues the X commands to
instantiate the window giv en bytkwin.

KEYWORDS
create, deferred creation, destroy, display, internal window, screen, top-level window, window

Tk Last change: 4.2 2

Tk Library Procedures Tk_DeleteImage (3)

NAME
Tk_DeleteImage − Destroy an image.

SYNOPSIS
#include <tk.h>

Tk_DeleteImage(interp, name)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter for which the image was created.

char ∗name (in) Name of the image.

DESCRIPTION
Tk_DeleteImagedeletes the image given byinterp andname, if there is one. All instances of that image
will redisplay as empty regions. If the given image does not exist then the procedure has no effect.

KEYWORDS
delete image, image manager

Tk Last change: 4.0 1

Tk Library Procedures Tk_DrawFocusHighlight (3)

NAME
Tk_DrawFocusHighlight − draw the traversal highlight ring for a widget

SYNOPSIS
#include <tk.h>

Tk_GetPixels(tkwin, gc, width, drawable)

ARGUMENTS
Tk_Window tkwin (in) Window for which the highlight is being drawn. Used to retrieve the

window’s dimensions, among other things.

GC gc (in) Graphics context to use for drawing the highlight.

int width (in) Width of the highlight ring, in pixels.

Drawable drawable (in) Drawable in which to draw the highlight; usually an offscreen pixmap
for double buffering.

DESCRIPTION
Tk_DrawFocusHighlight is a utility procedure that draws the traversal highlight ring for a widget. It is
typically invoked by widgets during redisplay.

KEYWORDS
focus, traversal highlight

Tk Last change: 4.0 1

Tk Library Procedures Tk_CreateEventHandler (3)

NAME
Tk_CreateEventHandler, Tk_DeleteEventHandler − associate procedure callback with an X event

SYNOPSIS
#include <tk.h>

Tk_CreateEventHandler(tkwin, mask, proc, clientData)

Tk_DeleteEventHandler(tkwin, mask, proc, clientData)

ARGUMENTS
Tk_Window tkwin (in) Token for window in which events may occur.

unsigned long mask (in) Bit-mask of events (such asButtonPressMask) for which proc
should be called.

Tk_EventProc ∗proc (in) Procedure to invoke whenever an event inmaskoccurs in the win-
dow giv en bytkwin.

ClientData clientData (in) Arbitrary one-word value to pass toproc.

DESCRIPTION
Tk_CreateEventHandler arranges forproc to be invoked in the future whenever one of the event types
specified bymaskoccurs in the window specified bytkwin. The callback toproc will be made byTk_Han-
dleEvent; this mechanism only works in programs that dispatch events throughTk_HandleEvent (or
through other Tk procedures that callTk_HandleEvent, such asTk_DoOneEventor Tk_MainLoop).

Procshould have arguments and result that match the typeTk_EventProc:
typedef void Tk_EventProc(

ClientDataclientData,
XEvent∗eventPtr);

TheclientDataparameter toproc is a copy of theclientDataargument given toTk_CreateEventHandler
when the callback was created. Typically,clientDatapoints to a data structure containing application-spe-
cific information about the window in which the event occurred.EventPtris a pointer to the X event, which
will be one of the ones specified in themaskargument toTk_CreateEventHandler.

Tk_DeleteEventHandler may be called to delete a previously-created event handler: it deletes the first
handler it finds that is associated withtkwin and matches themask, proc, andclientDataarguments. If no
such handler exists, thenTk_EventHandler returns without doing anything. Although Tk supports it, it’s
probably a bad idea to have more than one callback with the samemask, proc, andclientDataarguments.
When a window is deleted all of its handlers will be deleted automatically; in this case there is no need to
call Tk_DeleteEventHandler.

If multiple handlers are declared for the same type of X event on the same window, then the handlers will
be invoked in the order they were created.

KEYWORDS
bind, callback, event, handler

Tk Last change: 1

Tk Library Procedures Tk_FindPhoto (3)

NAME
Tk_FindPhoto, Tk_PhotoPutBlock, Tk_PhotoPutZoomedBlock, Tk_PhotoGetImage, Tk_PhotoBlank,
Tk_PhotoExpand, Tk_PhotoGetSize, Tk_PhotoSetSize − manipulate the image data stored in a photo
image.

SYNOPSIS
#include <tk.h>
#include <tkPhoto.h>

Tk_PhotoHandle
Tk_FindPhoto(interp, imageName)

void
Tk_PhotoPutBlock(handle, blockPtr, x, y, width, height)

void
Tk_PhotoPutZoomedBlock(handle, blockPtr, x, y, width, height,zoomX, zoomY, subsampleX, subsampleY)

int
Tk_PhotoGetImage(handle, blockPtr)

void
Tk_PhotoBlank(handle)

void
Tk_PhotoExpand(handle, width, height)

void
Tk_PhotoGetSize(handle, widthPtr, heightPtr)

void
Tk_PhotoSetSize(handle, width, height)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter in which image was created.

char ∗imageName (in) Name of the photo image.

Tk_PhotoHandle handle (in) Opaque handle identifying the photo image to be
affected.

Tk_PhotoImageBlock ∗blockPtr (in) Specifies the address and storage layout of image data.

int x (in) Specifies the X coordinate where the top-left corner of
the block is to be placed within the image.

int y (in) Specifies the Y coordinate where the top-left corner of
the block is to be placed within the image.

int width (in) Specifies the width of the image area to be affected
(for Tk_PhotoPutBlock) or the desired image width
(for Tk_PhotoExpandandTk_PhotoSetSize).

int height (in) Specifies the height of the image area to be affected
(for Tk_PhotoPutBlock) or the desired image height
(for Tk_PhotoExpandandTk_PhotoSetSize).

int ∗widthPtr (out) Pointer to location in which to store the image width.

Tk Last change: 8.0 1

Tk Library Procedures Tk_FindPhoto (3)

int ∗heightPtr (out) Pointer to location in which to store the image height.

int subsampleX (in) Specifies the subsampling factor in the X direction for
input image data.

int subsampleY (in) Specifies the subsampling factor in the Y direction for
input image data.

int zoomX (in) Specifies the zoom factor to be applied in the X direc-
tion to pixels being written to the photo image.

int zoomY (in) Specifies the zoom factor to be applied in the Y direc-
tion to pixels being written to the photo image.

DESCRIPTION
Tk_FindPhoto returns an opaque handle that is used to identify a particular photo image to the other pro-
cedures. The parameter is the name of the image, that is, the name specified to theimage create photo
command, or assigned by that command if no name was specified.

Tk_PhotoPutBlock is used to supply blocks of image data to be displayed. The call affects an area of the
image of sizewidth x heightpixels, with its top-left corner at coordinates (x,y). All of width, height, x, and
y must be non-negative. If part of this area lies outside the current bounds of the image, the image will be
expanded to include the area, unless the user has specified an explicit image size with the−width and/or
−height widget configuration options (see photo(n)); in that case the area is silently clipped to the image
boundaries.

Theblockparameter is a pointer to aTk_PhotoImageBlockstructure, defined as follows:
typedef struct {

unsigned char∗pixelPtr;
int width;
int height;
int pitch;
int pixelSize;
int offset[3];

} Tk_PhotoImageBlock;
ThepixelPtr field points to the first pixel, that is, the top-left pixel in the block. Thewidth andheightfields
specify the dimensions of the block of pixels. ThepixelSizefield specifies the address difference between
two horizontally adjacent pixels. Often it is 3 or 4, but it can have any value. Thepitch field specifies the
address difference between two vertically adjacent pixels. Theoffsetarray contains the offsets from the
address of a pixel to the addresses of the bytes containing the red, green and blue components. These are
normally 0, 1 and 2, but can have other values, e.g., for images that are stored as separate red, green and
blue planes.

The value given for thewidth andheightparameters toTk_PhotoPutBlock do not have to correspond to
the values specified inblock. If they are smaller,Tk_PhotoPutBlock extracts a sub-block from the image
data supplied. If they are larger, the data given are replicated (in a tiled fashion) to fill the specified area.
These rules operate independently in the horizontal and vertical directions.

Tk_PhotoPutZoomedBlock works like Tk_PhotoPutBlock except that the image can be reduced or
enlarged for display. ThesubsampleXand subsampleYparameters allow the size of the image to be
reduced by subsampling.Tk_PhotoPutZoomedBlockwill use only pixels from the input image whose X
coordinates are multiples ofsubsampleX, and whose Y coordinates are multiples ofsubsampleY. For
example, an image of 512x512 pixels can be reduced to 256x256 by settingsubsampleXandsubsampleYto
2.

Tk Last change: 8.0 2

Tk Library Procedures Tk_FindPhoto (3)

The zoomXandzoomYparameters allow the image to be enlarged by pixel replication. Each pixel of the
(possibly subsampled) input image will be written to a blockzoomXpixels wide andzoomYpixels high of
the displayed image. Subsampling and zooming can be used together for special effects.

Tk_PhotoGetImagecan be used to retrieve image data from a photo image.Tk_PhotoGetImagefills in
the structure pointed to by theblockPtr parameter with values that describe the address and layout of the
image data that the photo image has stored internally. The values are valid until the image is destroyed or
its size is changed.Tk_PhotoGetImage returns 1 for compatibility with the corresponding procedure in
the old photo widget.

Tk_PhotoBlank blanks the entire area of the photo image. Blank areas of a photo image are transparent.

Tk_PhotoExpand requests that the widget’s image be expanded to be at leastwidth x heightpixels in size.
The width and/or height are unchanged if the user has specified an explicit image width or height with the
−width and/or−height configuration options, respectively. If the image data are being supplied in many
small blocks, it is more efficient to useTk_PhotoExpand or Tk_PhotoSetSizeat the beginning rather than
allowing the image to expand in many small increments as image blocks are supplied.

Tk_PhotoSetSizespecifies the size of the image, as if the user had specified the givenwidth andheightval-
ues to the−width and−height configuration options. A value of zero forwidth or heightdoes not change
the image’s width or height, but allows the width or height to be changed by subsequent calls toTk_Pho-
toPutBlock, Tk_PhotoPutZoomedBlockor Tk_PhotoExpand.

Tk_PhotoGetSizereturns the dimensions of the image in∗widthPtrand∗heightPtr.

CREDITS
The code for the photo image type was developed by Paul Mackerras, based on his earlier photo widget
code.

KEYWORDS
photo, image

Tk Last change: 8.0 3

Tk Library Procedures Tk_FontId (3)

NAME
Tk_FontId, Tk_FontMetrics, Tk_PostscriptFontName − accessor functions for fonts

SYNOPSIS
#include <tk.h>

Font
Tk_FontId(tkfont)

void
Tk_GetFontMetrics(tkfont, fmPtr)

int
Tk_PostscriptFontName(tkfont, dsPtr)

ARGUMENTS
Tk_Font tkfont (in) Opaque font token being queried. Must have been returned by a

previous call toTk_GetFont.

Tk_FontMetrics ∗fmPtr (out) Pointer to structure in which the font metrics fortkfont will be
stored.

Tcl_DString ∗dsPtr (out) Pointer to an initializedTcl_DString to which the name of the
Postscript font that corresponds totkfontwill be appended.

DESCRIPTION
Given atkfont, Tk_FontId returns the token that should be selected into an XGCValues structure in order
to construct a graphics context that can be used to draw text in the specified font.

Tk_GetFontMetrics computes the ascent, descent, and linespace of thetkfont in pixels and stores those
values in the structure pointer to byfmPtr. These values can be used in computations such as to space mul-
tiple lines of text, to align the baselines of text in different fonts, and to vertically align text in a given
region. See the documentation for thefont command for definitions of the terms ascent, descent, and lines-
pace, used in font metrics.

Tk_PostscriptFontNamemaps atkfont to the corresponding Postcript font name that should be used when
printing. The return value is the size in points of thetkfont and the Postscript font name is appended to
dsPtr. DsPtr must refer to an initializedTcl_DString. Giv en a ‘‘reasonable’’ Postscript printer, the follow-
ing screen font families should print correctly:

Av ant Garde, Arial , Bookman, Courier , Courier New, Geneva, Helvetica, Monaco, New Cen-
tury Schoolbook, New York, Palatino, Symbol, Times, Times New Roman, Zapf Chancery,
andZapf Dingbats.

Any other font families may not print correctly because the computed Postscript font name may be incor-
rect or not exist on the printer.

DATA STRUCTURES
The Tk_FontMetrics data structure is used by Tk_GetFontMetrics to return information about a font and is
defined as follows:

typedef struct Tk_FontMetrics {
int ascent;
int descent;
int linespace;

} Tk_FontMetrics;

Tk Last change: 8.0 1

Tk Library Procedures Tk_FontId (3)

The linespacefield is the amount in pixels that the tallest letter sticks up above the baseline, plus any extra
blank space added by the designer of the font.

The descentis the largest amount in pixels that any letter sticks below the baseline, plus any extra blank
space added by the designer of the font.

The linespaceis the sum of the ascent and descent. How far apart two lines of text in the same font should
be placed so that none of the characters in one line overlap any of the characters in the other line.

KEYWORDS
font

Tk Last change: 8.0 2

Tk Library Procedures Tk_FreeXId (3)

NAME
Tk_FreeXId − make X resource identifier available for reuse

SYNOPSIS
#include <tk.h>

Tk_FreeXId(display, id)

ARGUMENTS
Display ∗display (in) Display for whichid was allocated.

XID id (in) Identifier of X resource (window, font, pixmap, cursor, graphics context,
or colormap) that is no longer in use.

DESCRIPTION
The default allocator for resource identifiers provided by Xlib is very simple-minded and does not allow
resource identifiers to be re-used. If a long-running application reaches the end of the resource id space, it
will generate an X protocol error and crash. Tk replaces the default id allocator with its own allocator,
which allows identifiers to be reused. In order for this to work,Tk_FreeXId must be called to tell the allo-
cator about resources that have been freed. Tk automatically callsTk_FreeXId whenever it frees a
resource, so if you use procedures likeTk_GetFontStruct, Tk_GetGC, and Tk_GetPixmap then you
need not callTk_FreeXId . Howev er, if you allocate resources directly from Xlib, for example by calling
XCreatePixmap, then you should callTk_FreeXId when you call the corresponding Xlib free procedure,
such asXFreePixmap. If you don’t callTk_FreeXId then the resource identifier will be lost, which could
cause problems if the application runs long enough to lose all of the available identifiers.

KEYWORDS
resource identifier

Tk Last change: 4.0 1

Tk Library Procedures Tk_GeometryRequest (3)

NAME
Tk_GeometryRequest, Tk_SetInternalBorder − specify desired geometry or internal border for a window

SYNOPSIS
#include <tk.h>

Tk_GeometryRequest(tkwin, reqWidth, reqHeight)

Tk_SetInternalBorder (tkwin, width)

ARGUMENTS
Tk_Window tkwin (in) Window for which geometry is being requested.

int reqWidth (in) Desired width fortkwin, in pixel units.

int reqHeight (in) Desired height fortkwin, in pixel units.

int width (in) Space to leave for internal border fortkwin, in pixel units.

DESCRIPTION
Tk_GeometryRequestis called by widget code to indicate its preference for the dimensions of a particular
window. The arguments toTk_GeometryRequestare made available to the geometry manager for the
window, which then decides on the actual geometry for the window. Although geometry managers gener-
ally try to satisfy requests made toTk_GeometryRequest, there is no guarantee that this will always be
possible. Widget code should not assume that a geometry request will be satisfied until it receives aCon-
figureNotify ev ent indicating that the geometry change has occurred. Widget code should never call proce-
dures likeTk_ResizeWindowdirectly. Instead, it should invokeTk_GeometryRequestand leave the final
geometry decisions to the geometry manager.

If tkwin is a top-level window, then the geometry information will be passed to the window manager using
the standard ICCCM protocol.

Tk_SetInternalBorder is called by widget code to indicate that the widget has an internal border. This
means that the widget draws a decorative border inside the window instead of using the standard X borders,
which are external to the window’s area. For example, internal borders are used to draw 3-D effects.Width
specifies the width of the border in pixels. Geometry managers will use this information to avoid placing
any children oftkwinoverlapping the outermostwidthpixels oftkwin’s area.

The information specified in calls toTk_GeometryRequestandTk_SetInternalBorder can be retrieved
using the macrosTk_ReqWidth , Tk_ReqHeight, and Tk_InternalBorderWidth . See theTk_Win-
dowId manual entry for details.

KEYWORDS
geometry, request

Tk Last change: 1

Tk Library Procedures Tk_GetAnchor (3)

NAME
Tk_GetAnchor, Tk_NameOfAnchor − translate between strings and anchor positions

SYNOPSIS
#include <tk.h>

int
Tk_GetAnchor(interp, string, anchorPtr)

char∗
Tk_NameOfAnchor(anchor)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter to use for error reporting.

char ∗string (in) String containing name of anchor point: one of ‘‘n’’, ‘‘ne’’, ‘‘e’’,
‘‘se’’, ‘‘s’’, ‘‘sw’’, ‘‘w’’, ‘‘nw’’, or ‘‘center’’.

int ∗anchorPtr (out) Pointer to location in which to store anchor position corresponding
to string.

Tk_Anchor anchor (in) Anchor position, e.g.TCL_ANCHOR_CENTER .

DESCRIPTION
Tk_GetAnchor places in∗anchorPtran anchor position (enumerated typeTk_Anchor) corresponding to
string, which will be one of TK_ANCHOR_N , TK_ANCHOR_NE , TK_ANCHOR_E ,
TK_ANCHOR_SE, TK_ANCHOR_S, TK_ANCHOR_SW , TK_ANCHOR_W , TK_ANCHOR_NW ,
or TK_ANCHOR_CENTER . Anchor positions are typically used for indicating a point on an object that
will be used to position that object, e.g.TK_ANCHOR_N means position the top center point of the object
at a particular place.

Under normal circumstances the return value isTCL_OK andinterp is unused. Ifstring doesn’t contain a
valid anchor position or an abbreviation of one of these names, then an error message is stored in
interp->result, TCL_ERROR is returned, and∗anchorPtris unmodified.

Tk_NameOfAnchor is the logical inverse ofTk_GetAnchor. Giv en an anchor position such as
TK_ANCHOR_N it returns a statically-allocated string corresponding toanchor. If anchor isn’t a leg al
anchor value, then ‘‘unknown anchor position’’ is returned.

KEYWORDS
anchor position

Tk Last change: 1

Tk Library Procedures Tk_GetBitmap (3)

NAME
Tk_GetBitmap, Tk_DefineBitmap, Tk_NameOfBitmap, Tk_SizeOfBitmap, Tk_FreeBitmap, Tk_Get-
BitmapFromData − maintain database of single-plane pixmaps

SYNOPSIS
#include <tk.h>

Pixmap
Tk_GetBitmap(interp, tkwin, id)

int
Tk_DefineBitmap(interp, nameId, source, width, height)

Tk_Uid
Tk_NameOfBitmap(display, bitmap)

Tk_SizeOfBitmap(display, bitmap, widthPtr, heightPtr)

Tk_FreeBitmap(display, bitmap)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter to use for error reporting.

Tk_Window tkwin (in) Token for window in which the bitmap will be used.

Tk_Uid id (in) Description of bitmap; see below for possible values.

Tk_Uid nameId (in) Name for new bitmap to be defined.

char ∗source (in) Data for bitmap, in standard bitmap format. Must be stored in
static memory whose value will never change.

int width (in) Width of bitmap.

int height (in) Height of bitmap.

int ∗widthPtr (out) Pointer to word to fill in withbitmap’s width.

int ∗heightPtr (out) Pointer to word to fill in withbitmap’s height.

Display ∗display (in) Display for whichbitmapwas allocated.

Pixmap bitmap (in) Identifier for a bitmap allocated byTk_GetBitmap.

DESCRIPTION
These procedures manage a collection of bitmaps (one-plane pixmaps) being used by an application. The
procedures allow bitmaps to be re-used efficiently, thereby avoiding server overhead, and also allow
bitmaps to be named with character strings.

Tk_GetBitmap takes as argument a Tk_Uid describing a bitmap. It returns a Pixmap identifier for a
bitmap corresponding to the description. It re-uses an existing bitmap, if possible, and creates a new one
otherwise. At present,id must have one of the following forms:

@fileName FileNamemust be the name of a file containing a bitmap description in the stan-
dard X11 or X10 format.

name Namemust be the name of a bitmap defined previously with a call to
Tk_DefineBitmap. The following names are pre-defined by Tk:

error The international "don’t" symbol: a circle with a diagonal line

Tk Last change: 8.0 1

Tk Library Procedures Tk_GetBitmap (3)

across it.

gray75 75% gray: a checkerboard pattern where three out of four bits are
on.

gray50 50% gray: a checkerboard pattern where every other bit is on.

gray25 25% gray: a checkerboard pattern where one out of every four bits
is on.

gray12 12.5% gray: a pattern where one-eighth of the bits are on, consist-
ing of every fourth pixel in every other row.

hourglass An hourglass symbol.

info A large letter ‘‘i’’.

questhead The silhouette of a human head, with a question mark in it.

question A large question-mark.

warning A large exclamation point.

In addition, the following pre-defined names are available only on theMacintosh
platform:

document A generic document.

stationery Document stationery.

edition Theeditionsymbol.

application Generic application icon.

accessory A desk accessory.

folder Generic folder icon.

pfolder A locked folder.

trash A trash can.

floppy A floppy disk.

ramdisk A floppy disk with chip.

cdrom A cd disk icon.

preferences A folder with prefs symbol.

querydoc A database document icon.

stop A stop sign.

note A face with ballon words.

caution A triangle with an exclamation point.

Under normal conditions,Tk_GetBitmap returns an identifier for the requested bitmap. If an error occurs
in creating the bitmap, such as whenid refers to a non-existent file, thenNone is returned and an error mes-
sage is left ininterp->result.

Tk_DefineBitmap associates a name with in-memory bitmap data so that the name can be used in later
calls toTk_GetBitmap. ThenameIdargument gives a name for the bitmap; it must not previously have
been used in a call toTk_DefineBitmap. The argumentssource, width, andheightdescribe the bitmap.
Tk_DefineBitmap normally returns TCL_OK; if an error occurs (e.g. a bitmap namednameIdhas already
been defined) then TCL_ERROR is returned and an error message is left ininterp->result. Note:
Tk_DefineBitmap expects the memory pointed to bysourceto be static:Tk_DefineBitmap doesn’t make

Tk Last change: 8.0 2

Tk Library Procedures Tk_GetBitmap (3)

a private copy of this memory, but uses the bytes pointed to bysourcelater in calls toTk_GetBitmap.

Typically Tk_DefineBitmap is used by#include-ing a bitmap file directly into a C program and then refer-
encing the variables defined by the file. For example, suppose there exists a filestip.bitmap, which was
created by thebitmap program and contains a stipple pattern. The following code usesTk_DefineBitmap
to define a new bitmap namedfoo:

Pixmap bitmap;
#include "stip.bitmap"
Tk_DefineBitmap(interp, Tk_GetUid("foo"), stip_bits,

stip_width, stip_height);
...
bitmap = Tk_GetBitmap(interp, tkwin, Tk_GetUid("foo"));

This code causes the bitmap file to be read at compile-time and incorporates the bitmap information into the
program’s executable image. The same bitmap file could be read at run-time usingTk_GetBitmap:

Pixmap bitmap;
bitmap = Tk_GetBitmap(interp, tkwin, Tk_GetUid("@stip.bitmap"));

The second form is a bit more flexible (the file could be modified after the program has been compiled, or a
different string could be provided to read a different file), but it is a little slower and requires the bitmap file
to exist separately from the program.

Tk_GetBitmap maintains a database of all the bitmaps that are currently in use. Whenever possible, it will
return an existing bitmap rather than creating a new one. This approach can substantially reduce server
overhead, soTk_GetBitmap should generally be used in preference to Xlib procedures likeXRead-
BitmapFile.

The bitmaps returned byTk_GetBitmap are shared, so callers should never modify them. If a bitmap must
be modified dynamically, then it should be created by calling Xlib procedures such asXReadBitmapFile
or XCreatePixmapdirectly.

The procedureTk_NameOfBitmap is roughly the inverse ofTk_GetBitmap. Giv en an X Pixmap argu-
ment, it returns theid that was passed toTk_GetBitmap when the bitmap was created.Bitmapmust have
been the return value from a previous call toTk_GetBitmap.

Tk_SizeOfBitmap returns the dimensions of itsbitmapargument in the words pointed to by thewidthPtr
and heightPtr arguments. As withTk_NameOfBitmap, bitmap must have been created byTk_Get-
Bitmap.

When a bitmap returned byTk_GetBitmap is no longer needed,Tk_FreeBitmap should be called to
release it. There should be exactly one call toTk_FreeBitmap for each call toTk_GetBitmap. When a
bitmap is no longer in use anywhere (i.e. it has been freed as many times as it has been gotten)
Tk_FreeBitmap will release it to the X server and delete it from the database.

BUGS
In determining whether an existing bitmap can be used to satisfy a new request,Tk_GetBitmap considers
only the immediate value of itsid argument. For example, when a file name is passed toTk_GetBitmap,
Tk_GetBitmap will assume it is safe to re-use an existing bitmap created from the same file name: it will
not check to see whether the file itself has changed, or whether the current directory has changed, thereby
causing the name to refer to a different file.

KEYWORDS
bitmap, pixmap

Tk Last change: 8.0 3

Tk Library Procedures Tk_GetCapStyle (3)

NAME
Tk_GetCapStyle, Tk_NameOfCapStyle − translate between strings and cap styles

SYNOPSIS
#include <tk.h>

int
Tk_GetCapStyle(interp, string, capPtr)

char∗
Tk_NameOfCapStyle(cap)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter to use for error reporting.

char ∗string (in) String containing name of cap style: one of ‘‘‘butt’’, ‘‘projecting’’, or
‘‘round’’.

int ∗capPtr (out) Pointer to location in which to store X cap style corresponding tostring.

int cap (in) Cap style: one ofCapButt, CapProjecting, or CapRound.

DESCRIPTION
Tk_GetCapStyleplaces in∗capPtr the X cap style corresponding tostring. This will be one of the values
CapButt, CapProjecting, or CapRound. Cap styles are typically used in X graphics contexts to indicate
how the end-points of lines should be capped. See the X documentation for information on what each style
implies.

Under normal circumstances the return value isTCL_OK andinterp is unused. Ifstring doesn’t contain a
valid cap style or an abbreviation of one of these names, then an error message is stored ininterp->result,
TCL_ERROR is returned, and∗capPtr is unmodified.

Tk_NameOfCapStyle is the logical inverse ofTk_GetCapStyle. Giv en a cap style such asCapButt it
returns a statically-allocated string corresponding tocap. If cap isn’t a leg al cap style, then ‘‘unknown cap
style’’ is returned.

KEYWORDS
butt, cap style, projecting, round

Tk Last change: 1

Tk Library Procedures Tk_GetColormap (3)

NAME
Tk_GetColormap, Tk_FreeColormap − allocate and free colormaps

SYNOPSIS
#include <tk.h>

Colormap
Tk_GetColormap(interp, tkwin, string)

Tk_FreeColormap(display, colormap)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter to use for error reporting.

Tk_Window tkwin (in) Token for window in which colormap will be used.

char ∗string (in) Selects a colormap: eithernew or the name of a window with the
same screen and visual astkwin.

Display ∗display (in) Display for whichcolormapwas allocated.

Colormap colormap (in) Colormap to free; must have been returned by a previous call to
Tk_GetColormap or Tk_GetVisual.

DESCRIPTION
These procedures are used to manage colormaps.Tk_GetColormap returns a colormap suitable for use in
tkwin. If its string argument isnew then a new colormap is created; otherwisestring must be the name of
another window with the same screen and visual astkwin, and the colormap from that window is returned.
If string doesn’t make sense, or if it refers to a window on a different screen fromtkwin or with a different
visual thantkwin, thenTk_GetColormap returnsNoneand leaves an error message ininterp->result.

Tk_FreeColormap should be called when a colormap returned byTk_GetColormap is no longer needed.
Tk maintains a reference count for each colormap returned byTk_GetColormap, so there should eventu-
ally be one call toTk_FreeColormap for each call toTk_GetColormap. When a colormap’s reference
count becomes zero, Tk releases the X colormap.

Tk_GetVisual and Tk_GetColormap work together, in that a new colormap created byTk_GetVisual
may later be returned byTk_GetColormap. The reference counting mechanism for colormaps includes
both procedures, so callers ofTk_GetVisual must also callTk_FreeColormap to release the colormap. If
Tk_GetColormap is called with astring value ofnew then the resulting colormap will never be returned
by Tk_GetVisual; howev er, it can be used in other windows by callingTk_GetColormap with the origi-
nal window’s name asstring.

KEYWORDS
colormap

Tk Last change: 4.0 1

Tk Library Procedures Tk_GetColor (3)

NAME
Tk_GetColor, Tk_GetColorByValue, Tk_NameOfColor, Tk_FreeColor − maintain database of colors

SYNOPSIS
#include <tk.h>

XColor ∗
Tk_GetColor(interp, tkwin, nameId)

XColor ∗
Tk_GetColorByValue(tkwin, prefPtr)

char∗
Tk_NameOfColor(colorPtr)

GC
Tk_GCForColor (colorPtr, drawable)

Tk_FreeColor(colorPtr)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter to use for error reporting.

Tk_Window tkwin (in) Token for window in which color will be used.

Tk_Uid nameId (in) Textual description of desired color.

XColor ∗prefPtr (in) Indicates red, green, and blue intensities of desired color.

XColor ∗colorPtr (in) Pointer to X color information. Must have been allocated by previous
call to Tk_GetColor or Tk_GetColorByValue, except when passed
to Tk_NameOfColor.

Drawable drawable (in) Drawable in which the result graphics context will be used. Must
have same screen and depth as the window for which the color was
allocated.

DESCRIPTION
The Tk_GetColor andTk_GetColorByValue procedures locate pixel values that may be used to render
particular colors in the window giv en bytkwin. In Tk_GetColor the desired color is specified with a
Tk_Uid (nameId), which may have any of the following forms:

colorname Any of the valid textual names for a color defined in the server’s color database
file, such asred or PeachPuff.

#RGB

#RRGGBB

#RRRGGGBBB

#RRRRGGGGBBBB A numeric specification of the red, green, and blue intensities to use to display the
color. EachR, G, or B represents a single hexadecimal digit. The four forms per-
mit colors to be specified with 4-bit, 8-bit, 12-bit or 16-bit values. When fewer
than 16 bits are provided for each color, they represent the most significant bits of
the color. For example, #3a7 is the same as #3000a0007000.

Tk Last change: 4.0 1

Tk Library Procedures Tk_GetColor (3)

In Tk_GetColorByValue, the desired color is indicated with thered, green, andbluefields of the structure
pointed to bycolorPtr.

If Tk_GetColor or Tk_GetColorByValue is successful in allocating the desired color, then it returns a
pointer to an XColor structure; the structure indicates the exact intensities of the allocated color (which
may differ slightly from those requested, depending on the limitations of the screen) and a pixel value that
may be used to draw in the color. If the colormap fortkwin is full, Tk_GetColor andTk_GetColorBy-
Value will use the closest existing color in the colormap. IfTk_GetColor encounters an error while allo-
cating the color (such as an unknown color name) then NULL is returned and an error message is stored in
interp->result; Tk_GetColorByValue never returns an error.

Tk_GetColor and Tk_GetColorByValue maintain a database of all the colors currently in use. If the
samenameIdis requested multiple times fromTk_GetColor (e.g. by different windows), or if the same
intensities are requested multiple times fromTk_GetColorByValue, then existing pixel values will be re-
used. Re-using an existing pixel avoids any interaction with the X server, which makes the allocation much
more efficient. For this reason, you should generally useTk_GetColor or Tk_GetColorByValue instead
of Xlib procedures likeXAllocColor , XAllocNamedColor, or XParseColor.

Since different calls toTk_GetColor or Tk_GetColorByValue may return the same shared pixel value,
callers should never change the color of a pixel returned by the procedures. If you need to change a color
value dynamically, you should useXAllocColorCells to allocate the pixel value for the color.

The procedureTk_NameOfColor is roughly the inverse ofTk_GetColor. If its colorPtr argument was
created byTk_GetColor, then the return value is thenameIdstring that was passed toTk_GetColor to
create the color. IfcolorPtr was created by a call toTk_GetColorByValue, or by any other mechanism,
then the return value is a string that could be passed toTk_GetColor to return the same color. Note: the
string returned byTk_NameOfColor is only guaranteed to persist until the next call toTk_NameOfColor.

Tk_GCForColor returns a graphics context whoseForeground field is the pixel allocated forcolorPtr and
whose other fields all have default values. This provides an easy way to do basic drawing with a color. The
graphics context is cached with the color and will exist only as long ascolorPtr exists; it is freed when the
last reference tocolorPtr is freed by callingTk_FreeColor.

When a pixel value returned byTk_GetColor or Tk_GetColorByValue is no longer needed,Tk_Free-
Color should be called to release the color. There should be exactly one call toTk_FreeColor for each
call to Tk_GetColor or Tk_GetColorByValue. When a pixel value is no longer in use anywhere (i.e. it
has been freed as many times as it has been gotten)Tk_FreeColor will release it to the X server and delete
it from the database.

KEYWORDS
color, intensity, pixel value

Tk Last change: 4.0 2

Tk Library Procedures Tk_GetCursor (3)

NAME
Tk_GetCursor, Tk_GetCursorFromData, Tk_NameOfCursor, Tk_FreeCursor − maintain database of cur-
sors

SYNOPSIS
#include <tk.h>

Tk_Cursor
Tk_GetCursor(interp, tkwin, nameId)

Tk_Cursor
Tk_GetCursorFromData(interp, tkwin, source, mask, width, height, xHot, yHot, fg, bg)

char∗
Tk_NameOfCursor(display, cursor)

Tk_FreeCursor(display, cursor)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter to use for error reporting.

Tk_Window tkwin (in) Token for window in which the cursor will be used.

Tk_Uid nameId (in) Description of cursor; see below for possible values.

char ∗source (in) Data for cursor bitmap, in standard bitmap format.

char ∗mask (in) Data for mask bitmap, in standard bitmap format.

int width (in) Width ofsourceandmask.

int height (in) Height ofsourceandmask.

int xHot (in) X-location of cursor hot-spot.

int yHot (in) Y-location of cursor hot-spot.

Tk_Uid fg (in) Textual description of foreground color for cursor.

Tk_Uid bg (in) Textual description of background color for cursor.

Display ∗display (in) Display for whichcursorwas allocated.

Tk_Cursor cursor (in) Opaque Tk identifier for cursor. If passed toTk_FreeCursor,
must have been returned by some previous call toTk_GetCursor
or Tk_GetCursorFromData.

DESCRIPTION
These procedures manage a collection of cursors being used by an application. The procedures allow cur-
sors to be re-used efficiently, thereby avoiding server overhead, and also allow cursors to be named with
character strings (actually Tk_Uids).

Tk_GetCursor takes as argument a Tk_Uid describing a cursor, and returns an opaque Tk identifier for a
cursor corresponding to the description. It re-uses an existing cursor if possible and creates a new one oth-
erwise. NameIdmust be a standard Tcl list with one of the following forms:

name [fgColor [bgColor]]
Nameis the name of a cursor in the standard X cursor font, i.e., any of the names defined incur-
sorfont.h, without theXC_. Some example values areX_cursor, hand2, or left_ptr . Appendix
B of ‘‘The X Window System’’ by Scheifler & Gettys has illustrations showing what each of these

Tk Last change: 4.1 1

Tk Library Procedures Tk_GetCursor (3)

cursors looks like. IffgColor andbgColorare both specified, they giv e the foreground and back-
ground colors to use for the cursor (any of the forms acceptable toTk_GetColor may be used). If
only fgColor is specified, then there will be no background color: the background will be trans-
parent. If no colors are specified, then the cursor will use black for its foreground color and white
for its background color.

The Macintosh version of Tk also supports all of the X cursors. Tk on the Mac will also accept
any of the standard Mac cursors includingibeam, crosshair, watch, plus, andarrow . In addition,
Tk will load Macintosh cursor resources of the typescrsr (color) andCURS (black and white) by
the name of the of the resource. The application and all its open dynamic library’s resource files
will be searched for the named cursor. If there are conflicts color cursors will always be loaded in
preference to black and white cursors.

@sourceName maskName fgColor bgColor
In this form,sourceNameandmaskNameare the names of files describing bitmaps for the cursor’s
source bits and mask. Each file must be in standard X11 or X10 bitmap format.FgColor and
bgColor indicate the colors to use for the cursor, in any of the forms acceptable toTk_GetColor.
This form of the command will not work on Macintosh or Windows computers.

@sourceName fgColor
This form is similar to the one above, except that the source is used as mask also. This means that
the cursor’s background is transparent. This form of the command will not work on Macintosh or
Windows computers.

Tk_GetCursorFromData allows cursors to be created from in-memory descriptions of their source and
mask bitmaps.Sourcepoints to standard bitmap data for the cursor’s source bits, andmaskpoints to stan-
dard bitmap data describing which pixels ofsourceare to be drawn and which are to be considered trans-
parent. Widthandheightgive the dimensions of the cursor,xHot andyHot indicate the location of the cur-
sor’s hot-spot (the point that is reported when an event occurs), andfg andbg describe the cursor’s fore-
ground and background colors textually (any of the forms suitable forTk_GetColor may be used). Typi-
cally, the arguments toTk_GetCursorFromData are created by including a cursor file directly into the
source code for a program, as in the following example:

Tk_Cursor cursor;
#include "source.cursor"
#include "mask.cursor"
cursor = Tk_GetCursorFromData(interp, tkwin, source_bits,

mask_bits, source_width, source_height, source_x_hot,
source_y_hot, Tk_GetUid("red"), Tk_GetUid("blue"));

Under normal conditions,Tk_GetCursor and Tk_GetCursorFromData will return an identifier for the
requested cursor. If an error occurs in creating the cursor, such as whennameIdrefers to a non-existent file,
thenNone is returned and an error message will be stored ininterp->result.

Tk_GetCursor and Tk_GetCursorFromData maintain a database of all the cursors they hav e created.
Whenever possible, a call toTk_GetCursor or Tk_GetCursorFromData will return an existing cursor
rather than creating a new one. This approach can substantially reduce server overhead, so the Tk proce-
dures should generally be used in preference to Xlib procedures likeXCreateFontCursor or XCre-
atePixmapCursor, which create a new cursor on each call.

The procedureTk_NameOfCursor is roughly the inverse ofTk_GetCursor. If its cursor argument was
created byTk_GetCursor, then the return value is thenameIdargument that was passed toTk_GetCursor
to create the cursor. Ifcursor was created by a call toTk_GetCursorFromData, or by any other mecha-
nism, then the return value is a hexadecimal string giving the X identifier for the cursor. Note: the string
returned byTk_NameOfCursor is only guaranteed to persist until the next call toTk_NameOfCursor.
Also, this call is not portable except for cursors returned byTk_GetCursor.

Tk Last change: 4.1 2

Tk Library Procedures Tk_GetCursor (3)

When a cursor returned byTk_GetCursor or Tk_GetCursorFromData is no longer needed,
Tk_FreeCursor should be called to release it. There should be exactly one call toTk_FreeCursor for
each call toTk_GetCursor or Tk_GetCursorFromData. When a cursor is no longer in use anywhere
(i.e. it has been freed as many times as it has been gotten)Tk_FreeCursor will release it to the X server
and remove it from the database.

BUGS
In determining whether an existing cursor can be used to satisfy a new request,Tk_GetCursor and
Tk_GetCursorFromData consider only the immediate values of their arguments. For example, when a
file name is passed toTk_GetCursor, Tk_GetCursor will assume it is safe to re-use an existing cursor
created from the same file name: it will not check to see whether the file itself has changed, or whether the
current directory has changed, thereby causing the name to refer to a different file. Similarly,Tk_GetCur-
sorFromData assumes that if the samesourcepointer is used in two different calls, then the pointers refer
to the same data; it does not check to see if the actual data values have changed.

KEYWORDS
cursor

Tk Last change: 4.1 3

Tk Library Procedures Tk_GetFont (3)

NAME
Tk_GetFont, Tk_NameOfFont, Tk_FreeFont − maintain database of fonts

SYNOPSIS
#include <tk.h>

Tk_Font
Tk_GetFont(interp, tkwin, string)

char∗
Tk_NameOfFont(tkfont)

void
Tk_FreeFont(tkfont)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter to use for error reporting.

Tk_Window tkwin (in) Token for window on the display in which font will be used.

const char ∗string (in) Name or description of desired font. See documentation for thefont
command for details on acceptable formats.

Tk_Font tkfont (in) Opaque font token.

DESCRIPTION
Tk_GetFont finds the font indicated bystring and returns a token that represents the font. The return value
can be used in subsequent calls to procedures such asTk_FontMetrics , Tk_MeasureChars, and
Tk_FreeFont. The token returned byTk_GetFont will remain valid until Tk_FreeFont is called to
release it.String can be either a symbolic name or a font description; see the documentation for thefont
command for a description of the valid formats. IfTk_GetFont is unsuccessful (because, for example,
string was not a valid font specification) then it returnsNULL and stores an error message in
interp->result.

Tk_GetFont maintains a database of all fonts it has allocated. If the samestring is requested multiple
times (e.g. by different windows or for different purposes), then additional calls for the samestring will be
handled without involving the platform-specific graphics server.

The procedureTk_NameOfFont is roughly the inverse ofTk_GetFont. Giv en atkfont that was created by
Tk_GetFont, the return value is thestring argument that was passed toTk_GetFont to create the font.
The string returned byTk_NameOfFont is only guaranteed to persist until thetkfont is deleted. The caller
must not modify this string.

When a font returned byTk_GetFont is no longer needed,Tk_FreeFont should be called to release it.
There should be exactly one call toTk_FreeFont for each call toTk_GetFont. When a font is no longer
in use anywhere (i.e. it has been freed as many times as it has been gotten)Tk_FreeFont will release any
platform-specific storage and delete it from the database.

KEYWORDS
font

Tk Last change: 1

Tk Library Procedures Tk_GetGC (3)

NAME
Tk_GetGC, Tk_FreeGC − maintain database of read-only graphics contexts

SYNOPSIS
#include <tk.h>

GC
Tk_GetGC(tkwin, valueMask, valuePtr)

Tk_FreeGC(display, gc)

ARGUMENTS
Tk_Window tkwin (in) Token for window in which the graphics context will be used.

unsigned long valueMask (in) Mask of bits (such asGCForeground or GCStipple) indicating
which fields of∗valuePtrare valid.

XGCValues ∗valuePtr (in) Pointer to structure describing the desired values for the graphics
context.

Display ∗display (in) Display for whichgcwas allocated.

GC gc (in) X identifier for graphics context that is no longer needed. Must
have been allocated byTk_GetGC.

DESCRIPTION
Tk_GetGC andTk_FreeGC manage a collection of graphics contexts being used by an application. The
procedures allow graphics contexts to be shared, thereby avoiding the server overhead that would be
incurred if a separate GC were created for each use.Tk_GetGC takes arguments describing the desired
graphics context and returns an X identifier for a GC that fits the description. The graphics context that is
returned will have default values in all of the fields not specified explicitly byvalueMaskandvaluePtr.

Tk_GetGC maintains a database of all the graphics contexts it has created. Whenever possible, a call to
Tk_GetGC will return an existing graphics context rather than creating a new one. This approach can sub-
stantially reduce server overhead, soTk_GetGC should generally be used in preference to the Xlib proce-
dureXCreateGC, which creates a new graphics context on each call.

Since the return values ofTk_GetGC are shared, callers should never modify the graphics contexts
returned byTk_GetGC. If a graphics context must be modified dynamically, then it should be created by
callingXCreateGC instead ofTk_GetGC.

When a graphics context is no longer needed,Tk_FreeGC should be called to release it. There should be
exactly one call toTk_FreeGC for each call toTk_GetGC. When a graphics context is no longer in use
anywhere (i.e. it has been freed as many times as it has been gotten)Tk_FreeGC will release it to the X
server and delete it from the database.

KEYWORDS
graphics context

Tk Last change: 1

Tk Library Procedures Tk_GetImage (3)

NAME
Tk_GetImage, Tk_RedrawImage, Tk_SizeOfImage, Tk_FreeImage − use an image in a widget

SYNOPSIS
#include <tk.h>

Tk_Image
Tk_GetImage(interp, tkwin, name, changeProc, clientData)

Tk_RedrawImage(image, imageX, imageY, width, height, drawable, drawableX, drawableY)

Tk_SizeOfImage(image, widthPtr, heightPtr)

Tk_FreeImage(image)

ARGUMENTS
Tcl_Interp ∗interp (in) Place to leave error message.

Tk_Window tkwin (in) Window in which image will be used.

char ∗name (in) Name of image.

Tk_ImageChangedProc ∗changeProc (in) Procedure for Tk to invoke whenever image content
or size changes.

ClientData clientData (in) One-word value for Tk to pass tochangeProc.

Tk_Image image (in) Token for image instance; must have been returned
by a previous call toTk_GetImage.

int imageX (in) X-coordinate of upper-left corner of region of image
to redisplay (measured in pixels from the image’s
upper-left corner).

int imageY (in) Y-coordinate of upper-left corner of region of image
to redisplay (measured in pixels from the image’s
upper-left corner).

int width ((in)) Width of region of image to redisplay.

int height ((in)) Height of region of image to redisplay.

Drawable drawable (in) Where to display image. Must either be window
specified toTk_GetImage or a pixmap compatible
with that window.

int drawableX (in) Where to display image indrawable: this is the x-
coordinate indrawable where x-coordinateimageX
of the image should be displayed.

int drawableY (in) Where to display image indrawable: this is the y-
coordinate indrawable where y-coordinateimageY
of the image should be displayed.

int widthPtr (out) Store width ofimage(in pixels) here.

int heightPtr (out) Store height ofimage(in pixels) here.

Tk Last change: 4.0 1

Tk Library Procedures Tk_GetImage (3)

DESCRIPTION
These procedures are invoked by widgets that wish to display images.Tk_GetImage is invoked by a wid-
get when it first decides to display an image.namegives the name of the desired image andtkwin identifies
the window where the image will be displayed.Tk_GetImage looks up the image in the table of existing
images and returns a token for a new instance of the image. If the image doesn’t exist thenTk_GetImage
returns NULL and leaves an error message ininterp->result.

When a widget wishes to actually display an image it must callTk_RedrawWidget, identifying the image
(image), a region within the image to redisplay (imageX, imageY, width, andheight), and a place to display
the image (drawable, drawableX, anddrawableY). Tk will then invoke the appropriate image manager,
which will display the requested portion of the image before returning.

A widget can find out the dimensions of an image by callingTk_SizeOfImage: the width and height will
be stored in the locations given bywidthPtrandheightPtr, respectively.

When a widget is finished with an image (e.g., the widget is being deleted or it is going to use a different
image instead of the current one), it must callTk_FreeImage to release the image instance. The widget
should never again use the image token after passing it toTk_FreeImage. There must be exactly one call
to Tk_FreeImagefor each call toTk_GetImage.

If the contents or size of an image changes, then any widgets using the image will need to find out about the
changes so that they can redisplay themselves. ThechangeProcandclientDataarguments toTk_GetIm-
ageare used for this purpose.changeProcwill be called by Tk whenever a change occurs in the image; it
must match the following prototype:

typedef void Tk_ImageChangedProc(
ClientDataclientData,
int x,
int y,
int width,
int height,
int imageWidth,
int imageHeight);

The clientData argument tochangeProcis the same as theclientData argument toTk_GetImage. It is
usually a pointer to the widget record for the widget or some other data structure managed by the widget.
The argumentsx, y, width, andheightidentify a region within the image that must be redisplayed; they are
specified in pixels measured from the upper-left corner of the image. The argumentsimageWidthand
imageHeightgive the image’s (new) size.

SEE ALSO
Tk_CreateImageType

KEYWORDS
images, redisplay

Tk Last change: 4.0 2

Tk Library Procedures Tk_GetJoinStyle (3)

NAME
Tk_GetJoinStyle, Tk_NameOfJoinStyle − translate between strings and join styles

SYNOPSIS
#include <tk.h>

int
Tk_GetJoinStyle(interp, string, joinPtr)

char∗
Tk_NameOfJoinStyle(join)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter to use for error reporting.

char ∗string (in) String containing name of join style: one of ‘‘bevel’’, ‘‘miter’’, or
‘‘round’’.

int ∗joinPtr (out) Pointer to location in which to store X join style corresponding to
string.

int join (in) Join style: one ofJoinBevel, JoinMiter , JoinRound.

DESCRIPTION
Tk_GetJoinStyle places in∗joinPtr the X join style corresponding tostring, which will be one ofJoin-
Bevel, JoinMiter , or JoinRound. Join styles are typically used in X graphics contexts to indicate how
adjacent line segments should be joined together. See the X documentation for information on what each
style implies.

Under normal circumstances the return value isTCL_OK andinterp is unused. Ifstring doesn’t contain a
valid join style or an abbreviation of one of these names, then an error message is stored ininterp->result,
TCL_ERROR is returned, and∗joinPtr is unmodified.

Tk_NameOfJoinStyle is the logical inverse ofTk_GetJoinStyle. Giv en a join style such asJoinBevel it
returns a statically-allocated string corresponding tojoin. If join isn’t a legal join style, then ‘‘unknown
join style’’ is returned.

KEYWORDS
bevel, join style, miter, round

Tk Last change: 1

Tk Library Procedures Tk_GetJustify (3)

NAME
Tk_GetJustify, Tk_NameOfJustify − translate between strings and justification styles

SYNOPSIS
#include <tk.h>

Tk_Justify
Tk_GetJustify(interp, string, justifyPtr)

char∗
Tk_NameOfJustify(justify)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter to use for error reporting.

char ∗string (in) String containing name of justification style (‘‘left’’, ‘‘right’’, or
‘‘center’’).

int ∗justifyPtr (out) Pointer to location in which to store justify value corresponding to
string.

Tk_Justify justify (in) Justification style (one of the values listed below).

DESCRIPTION
Tk_GetJustify places in∗justifyPtr the justify value corresponding tostring. This value will be one of the
following:

TK_JUSTIFY_LEFT
Means that the text on each line should start at the left edge of the line; as a result, the right edges
of lines may be ragged.

TK_JUSTIFY_RIGHT
Means that the text on each line should end at the right edge of the line; as a result, the left edges
of lines may be ragged.

TK_JUSTIFY_CENTER
Means that the text on each line should be centered; as a result, both the left and right edges of
lines may be ragged.

Under normal circumstances the return value isTCL_OK andinterp is unused. Ifstring doesn’t contain a
valid justification style or an abbreviation of one of these names, then an error message is stored in
interp->result, TCL_ERROR is returned, and∗justifyPtr is unmodified.

Tk_NameOfJustify is the logical inverse ofTk_GetJustify. Giv en a justify value it returns a statically-
allocated string corresponding tojustify. If justify isn’t a leg al justify value, then ‘‘unknown justification
style’’ is returned.

KEYWORDS
center, fill, justification, string

Tk Last change: 4.0 1

Tk Library Procedures Tk_GetOption (3)

NAME
Tk_GetOption − retrieve an option from the option database

SYNOPSIS
#include <tk.h>

Tk_Uid
Tk_GetOption(tkwin, name, class)

ARGUMENTS
Tk_Window tkwin (in) Token for window.

char ∗name (in) Name of desired option.

char ∗class (in) Class of desired option. Null means there is no class for this option;
do lookup based on name only.

DESCRIPTION
This procedure is invoked to retrieve an option from the database associated withtkwin’s main window. If
there is an option fortkwin that matches the givennameor class, then it is returned in the form of a
Tk_Uid. If multiple options matchnameandclass, then the highest-priority one is returned. If no option
matches, then NULL is returned.

Tk_GetOption caches options related totkwin so that successive calls for the sametkwin will execute
much more quickly than successive calls for different windows.

KEYWORDS
class, name, option, retrieve

Tk Last change: 1

Tk Library Procedures Tk_GetPixels (3)

NAME
Tk_GetPixels, Tk_GetScreenMM − translate between strings and screen units

SYNOPSIS
#include <tk.h>

int
Tk_GetPixels(interp, tkwin, string, intPtr)

int
Tk_GetScreenMM(interp, tkwin, string, doublePtr)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter to use for error reporting.

Tk_Window tkwin (in) Window whose screen geometry determines the conversion between
absolute units and pixels.

char ∗string (in) String that specifies a distance on the screen.

int ∗intPtr (out) Pointer to location in which to store converted distance in pixels.

double ∗doublePtr(out) Pointer to location in which to store converted distance in millimeters.

DESCRIPTION
These two procedures take as argument a specification of distance on the screen (string) and compute the
corresponding distance either in integer pixels or floating-point millimeters. In either case,string specifies
a screen distance as a floating-point number followed by one of the following characters that indicates
units:

<none> The number specifies a distance in pixels.

c The number specifies a distance in centimeters on the screen.

i The number specifies a distance in inches on the screen.

m The number specifies a distance in millimeters on the screen.

p The number specifies a distance in printer’s points (1/72 inch) on the screen.

Tk_GetPixels convertsstring to the nearest even number of pixels and stores that value at∗intPtr.
Tk_GetScreenMM convertsstring to millimeters and stores the double-precision floating-point result at
∗doublePtr.

Both procedures returnTCL_OK under normal circumstances. If an error occurs (e.g.string contains a
number followed by a character that isn’t one of the ones above) thenTCL_ERROR is returned and an
error message is left ininterp->result.

KEYWORDS
centimeters, convert, inches, millimeters, pixels, points, screen units

Tk Last change: 1

Tk Library Procedures Tk_GetPixmap (3)

NAME
Tk_GetPixmap, Tk_FreePixmap − allocate and free pixmaps

SYNOPSIS
#include <tk.h>

Pixmap
Tk_GetPixmap(display, d, width, height, depth)

Tk_FreePixmap(display, pixmap)

ARGUMENTS
Display ∗display (in) X display for the pixmap.

Drawable d (in) Pixmap or window where the new pixmap will be used for drawing.

int width (in) Width of pixmap.

int height (in) Height of pixmap.

int depth (in) Number of bits per pixel in pixmap.

Pixmap pixmap (in) Pixmap to destroy.

DESCRIPTION
These procedures are identical to the Xlib proceduresXCreatePixmapandXFreePixmap, except that they
have extra code to manage X resource identifiers so that identifiers for deleted pixmaps can be reused in the
future. It is important for Tk applications to use these procedures rather thanXCreatePixmap and
XFreePixmap; otherwise long-running applications may run out of resource identifiers.

Tk_GetPixmap creates a pixmap suitable for drawing ind, with dimensions given bywidth, height, and
depth, and returns its identifier.Tk_FreePixmap destroys the pixmap given bypixmap and makes its
resource identifier available for reuse.

KEYWORDS
pixmap, resource identifier

Tk Last change: 4.0 1

Tk Library Procedures Tk_GetRelief (3)

NAME
Tk_GetRelief, Tk_NameOfRelief − translate between strings and relief values

SYNOPSIS
#include <tk.h>

int
Tk_GetRelief(interp, name, reliefPtr)

char∗
Tk_NameOfRelief(relief)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter to use for error reporting.

char ∗name (in) String containing relief name (one of ‘‘flat’’, ‘‘groove’’, ‘‘raised’’,
‘‘ridge’’, ‘‘solid’’, or ‘‘sunken’’).

int ∗reliefPtr (out) Pointer to location in which to store relief value corresponding to
name.

int relief (in) Relief value (one of TK_RELIEF_FLAT, TK_RELIEF_RAISED,
TK_RELIEF_SUNKEN, TK_RELIEF_GROOVE,
TK_RELIEF_SOLID, or TK_RELIEF_RIDGE).

DESCRIPTION
Tk_GetRelief places in∗reliefPtr the relief value corresponding toname. This value will be one of
TK_RELIEF_FLAT, TK_RELIEF_RAISED, TK_RELIEF_SUNKEN, TK_RELIEF_GROOVE,
TK_RELIEF_SOLID, or TK_RELIEF_RIDGE. Under normal circumstances the return value is TCL_OK
and interp is unused. Ifnamedoesn’t contain one of the valid relief names or an abbreviation of one of
them, then an error message is stored ininterp->result, TCL_ERROR is returned, and∗reliefPtr is unmodi-
fied.

Tk_NameOfRelief is the logical inverse ofTk_GetRelief. Giv en a relief value it returns the correspond-
ing string (‘‘flat’’, ‘‘raised’’, ‘‘sunken’’, ‘‘groove’’, ‘‘solid’’, or ‘‘ridge’’). If relief isn’t a leg al relief value,
then ‘‘unknown relief’’ is returned.

KEYWORDS
name, relief, string

Tk Last change: 1

Tk Library Procedures Tk_GetRootCoords (3)

NAME
Tk_GetRootCoords − Compute root-window coordinates of window

SYNOPSIS
#include <tk.h>

Tk_GetRootCoords(tkwin, xPtr, yPtr)

ARGUMENTS
Tk_Window tkwin (in) Token for window.

int ∗xPtr (out) Pointer to location in which to store root-window x-coordinate corre-
sponding to left edge oftkwin’s border.

int ∗yPtr (out) Pointer to location in which to store root-window y-coordinate corre-
sponding to top edge oftkwin’s border.

DESCRIPTION
This procedure scans through the structural information maintained by Tk to compute the root-window
coordinates corresponding to the upper-left corner oftkwin’s border. Iftkwin has no border, thenTk_Get-
RootCoords returns the root-window coordinates corresponding to location (0,0) intkwin. Tk_GetRoot-
Coords is relatively efficient, since it doesn’t hav e to communicate with the X server.

KEYWORDS
coordinates, root window

Tk Last change: 1

Tk Library Procedures Tk_GetScrollInfo (3)

NAME
Tk_GetScrollInfo − parse arguments for scrolling commands

SYNOPSIS
#include <tk.h>

int
Tk_GetScrollInfo(interp, argc, argv, dblPtr, intPtr)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter to use for error reporting.

int argc (in) Number of strings inargvarray.

char ∗argv[] (in) Argument strings. These represent the entire widget command, of
which the first word is typically the widget name and the second word is
typically xview or yview. This procedure parses arguments starting
with argv[2].

double ∗dblPtr (out) Filled in with fraction frommovetooption, if any.

int ∗intPtr (out) Filled in with line or page count fromscroll option, if any. The value
may be negative.

DESCRIPTION
Tk_GetScrollInfo parses the arguments expected by widget scrolling commands such asxview andyview.
It receives the entire list of words that make up a widget command and parses the words starting with
argv[2]. The words starting withargv[2] must have one of the following forms:

movetofraction
scroll numberunits
scroll numberpages

Any of the moveto, scroll, units, andpageskeywords may be abbreviated. Ifargv has themoveto form,
TK_SCROLL_MOVETO is returned as result and∗dblPtr is filled in with thefraction argument to the
command, which must be a proper real value. Ifargv has thescroll form, TK_SCROLL_UNITS or
TK_SCROLL_PAGES is returned and∗intPtr is filled in with thenumbervalue, which must be a proper
integer. If an error occurs in parsing the arguments,TK_SCROLL_ERROR is returned and an error mes-
sage is left ininterp->result.

KEYWORDS
parse, scrollbar, scrolling command, xview, yview

Tk Last change: 4.0 1

Tk Library Procedures Tk_GetSelection (3)

NAME
Tk_GetSelection − retrieve the contents of a selection

SYNOPSIS
#include <tk.h>

int
Tk_GetSelection(interp, tkwin, selection, target, proc, clientData)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter to use for reporting errors.

Tk_Window tkwin (in) Window on whose behalf to retrieve the selection (determines
display from which to retrieve).

Atom selection (in) The name of the selection to be retrieved.

Atom target (in) Form in which to retrieve selection.

Tk_GetSelProc ∗proc (in) Procedure to invoke to process pieces of the selection as they are
retrieved.

ClientData clientData (in) Arbitrary one-word value to pass toproc.

DESCRIPTION
Tk_GetSelectionretrieves the selection specified by the atomselectionin the format specified bytarget.
The selection may actually be retrieved in sev eral pieces; as each piece is retrieved,proc is called to process
the piece.Procshould have arguments and result that match the typeTk_GetSelProc:

typedef int Tk_GetSelProc(
ClientDataclientData,
Tcl_Interp∗interp,
char∗portion);

TheclientDataandinterp parameters toproc will be copies of the corresponding arguments toTk_GetSe-
lection. Portion will be a pointer to a string containing part or all of the selection. For large selections,
proc will be called several times with successive portions of the selection. The X Inter-Client Communica-
tion Conventions Manual allows a selection to be returned in formats other than strings, e.g. as an array of
atoms or integers. If this happens, Tk converts the selection back into a string before callingproc. If a
selection is returned as an array of atoms, Tk converts it to a string containing the atom names separated by
white space. For any other format besides string, Tk converts a selection to a string containing hexadecimal
values separated by white space.

Tk_GetSelectionreturns to its caller when the selection has been completely retrieved and processed by
proc, or when a fatal error has occurred (e.g. the selection owner didn’t respond promptly).Tk_GetSelec-
tion normally returns TCL_OK; if an error occurs, it returns TCL_ERROR and leaves an error message in
interp->result. Proc should also return either TCL_OK or TCL_ERROR. Ifproc encounters an error in
dealing with the selection, it should leave an error message ininterp->resultand return TCL_ERROR; this
will abort the selection retrieval.

KEYWORDS
format, get, selection retrieval

Tk Last change: 4.0 1

Tk Library Procedures Tk_GetUid (3)

NAME
Tk_GetUid, Tk_Uid − convert from string to unique identifier

SYNOPSIS
#include <tk.h>

#typedef char∗Tk_Uid

Tk_Uid
Tk_GetUid(string)

ARGUMENTS
char ∗string (in) String for which the corresponding unique identifier is desired.

DESCRIPTION
Tk_GetUid returns the unique identifier corresponding tostring. Unique identifiers are similar to atoms in
Lisp, and are used in Tk to speed up comparisons and searches. A unique identifier (type Tk_Uid) is a
string pointer and may be used anywhere that a variable of type ‘‘char∗’’ could be used. However, there is
guaranteed to be exactly one unique identifier for any giv en string value. IfTk_GetUid is called twice,
once with stringa and once with stringb, and if a andb have the same string value (strcmp(a, b) == 0),
then Tk_GetUid will return exactly the same Tk_Uid value for each call (Tk_GetUid(a) ==
Tk_GetUid(b)). This means that variables of type Tk_Uid may be compared directly (x == y) without hav-
ing to callstrcmp. In addition, the return value fromTk_GetUid will have the same string value as its
argument (strcmp(Tk_GetUid(a), a) == 0).

KEYWORDS
atom, unique identifier

Tk Last change: 1

Tk Library Procedures Tk_GetVRootGeometry (3)

NAME
Tk_GetVRootGeometry − Get location and size of virtual root for window

SYNOPSIS
#include <tk.h>

Tk_GetVRootGeometry(tkwin, xPtr, yPtr, widthPtr, heightPtr)

ARGUMENTS
Tk_Window tkwin (in) Token for window whose virtual root is to be queried.

int xPtr (out) Points to word in which to store x-offset of virtual root.

int yPtr (out) Points to word in which to store y-offset of virtual root.

int widthPtr (out) Points to word in which to store width of virtual root.

int heightPtr (out) Points to word in which to store height of virtual root.

DESCRIPTION
TkGetVRootGeometry returns geometry information about the virtual root window associated withtkwin.
The ‘‘associated’’ virtual root is the one in whichtkwin’s nearest top-level ancestor (ortkwin itself if it is a
top-level window) has been reparented by the window manager. This window is identified by a
__SWM_ROOT or __WM_ROOT property placed on the top-level window by the window manager. If
tkwin is not associated with a virtual root (e.g. because the window manager doesn’t use virtual roots) then
∗xPtr and∗yPtr will be set to 0 and∗widthPtr and∗heightPtrwill be set to the dimensions of the screen
containingtkwin.

KEYWORDS
geometry, height, location, virtual root, width, window manager

Tk Last change: 4.0 1

Tk Library Procedures Tk_GetVisual (3)

NAME
Tk_GetVisual − translate from string to visual

SYNOPSIS
#include <tk.h>

Visual ∗
Tk_GetVisual(interp, tkwin, string, depthPtr, colormapPtr)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter to use for error reporting.

Tk_Window tkwin (in) Token for window in which the visual will be used.

char ∗string (in) String that identifies the desired visual. See below for valid for-
mats.

int ∗depthPtr (out) Depth of returned visual gets stored here.

Colormap ∗colormapPtr (out) If non-NULL then a suitable colormap for visual is found and its
identifier is stored here.

DESCRIPTION
Tk_GetVisual takes a string description of a visual and finds a suitable X Visual for use intkwin, if there is
one. It returns a pointer to the X Visual structure for the visual and stores the number of bits per pixel for it
at ∗depthPtr. If string is unrecognizable or if no suitable visual could be found, then NULL is returned and
Tk_GetVisual leaves an error message ininterp->result. If colormap is non-NULL thenTk_GetVisual
also locates an appropriate colormap for use with the result visual and stores its X identifier at∗col-
ormapPtr.

Thestringargument specifies the desired visual in one of the following ways:

class depth The string consists of a class name followed by an integer depth, with any amount of
white space (including none) in between.classselects what sort of visual is desired and
must be one ofdirectcolor, grayscale, greyscale, pseudocolor, staticcolor, staticgray,
staticgrey, or truecolor, or a unique abbreviation.depthspecifies how many bits per
pixel are needed for the visual. If possible,Tk_GetVisual will return a visual with this
depth; if there is no visual of the desired depth thenTk_GetVisual looks first for a
visual with greater depth, then one with less depth.

default Use the default visual fortkwin’s screen.

pathName Use the visual for the window giv en bypathName. pathNamemust be the name of a
window on the same screen astkwin.

number Use the visual whose X identifier isnumber.

best?depth? Choose the ‘‘best possible’’ visual, using the following rules, in decreasing order of pri-
ority: (a) a visual that has exactly the desired depth is best, followed by a visual with
greater depth than requested (but as little extra as possible), followed by a visual with
less depth than requested (but as great a depth as possible); (b) if nodepthis specified,
then the deepest available visual is chosen; (c)pseudocoloris better thantruecolor or
directcolor, which are better thanstaticcolor, which is better thanstaticgray or
grayscale; (d) the default visual for the screen is better than any other visual.

Tk Last change: 4.0 1

Tk Library Procedures Tk_GetVisual (3)

CREDITS
The idea forTk_GetVisual, and the first implementation, came from Paul Mackerras.

KEYWORDS
colormap, screen, visual

Tk Last change: 4.0 2

Tk Library Procedures Tk_HandleEvent (3)

NAME
Tk_HandleEvent − invoke event handlers for window system events

SYNOPSIS
#include <tk.h>

Tk_HandleEvent(eventPtr)

ARGUMENTS
XEvent ∗eventPtr (in) Pointer to X event to dispatch to relevant handler(s).

DESCRIPTION
Tk_HandleEvent is a lower-level procedure that deals with window events. It is called byTk_Ser-
viceEvent (and indirectly byTk_DoOneEvent), and in a few other cases within Tk. It makes callbacks to
any window event handlers (created by calls toTk_CreateEventHandler) that matcheventPtrand then
returns. In some cases it may be useful for an application to bypass the Tk event queue and callTk_Han-
dleEventdirectly instead of callingTk_QueueEventfollowed byTk_ServiceEvent.

This procedure may be invoked recursively. For example, it is possible to invokeTk_HandleEvent recur-
sively from a handler called byTk_HandleEvent. This sort of operation is useful in some modal situa-
tions, such as when a notifier has been popped up and an application wishes to wait for the user to click a
button in the notifier before doing anything else.

KEYWORDS
callback, event, handler, window

Tk Last change: 1

Tk Library Procedures Tk_IdToWindow (3)

NAME
Tk_IdToWindow − Find Tk’s window information for an X window

SYNOPSIS
#include <tk.h>

Tk_Window
Tk_IdToWindow (display, window)

ARGUMENTS
Display ∗display (in) X display containing the window.

Window window (in) X id for window.

DESCRIPTION
Given an X window identifier and the X display it corresponds to, this procedure returns the corresponding
Tk_Window handle. If there is no Tk_Window corresponding towindowthen NULL is returned.

KEYWORDS
X window id

Tk Last change: 4.0 1

Tk Library Procedures Tk_ImageChanged (3)

NAME
Tk_ImageChanged − notify widgets that image needs to be redrawn

SYNOPSIS
#include <tk.h>

Tk_ImageChanged(imageMaster, x, y, width, height, imageWidth, imageHeight)

ARGUMENTS
Tk_ImageMaster imageMaster (in) Token for image, which was passed to image’screateProc

when the image was created.

int x (in) X-coordinate of upper-left corner of region that needs redis-
play (measured from upper-left corner of image).

int y (in) Y-coordinate of upper-left corner of region that needs redis-
play (measured from upper-left corner of image).

int width (in) Width of region that needs to be redrawn, in pixels.

int height (in) Height of region that needs to be redrawn, in pixels.

int imageWidth (in) Current width of image, in pixels.

int imageHeight (in) Current height of image, in pixels.

DESCRIPTION
An image manager callsTk_ImageChanged for an image whenever anything happens that requires the
image to be redrawn. As a result of callingTk_ImageChanged, any widgets using the image are notified
so that they can redisplay themselves appropriately. TheimageMasterargument identifies the image, andx,
y, width, andheightspecify a rectangular region within the image that needs to be redrawn.imageWidth
andimageHeightspecify the image’s (new) size.

An image manager should callTk_ImageChangedduring itscreateProcto specify the image’s initial size
and to force redisplay if there are existing instances for the image. If any of the pixel values in the image
should change later on,Tk_ImageChangedshould be called again withx, y, width, andheightvalues that
cover all the pixels that changed. If the size of the image should change, thenTk_ImageChangedmust be
called to indicate the new size, even if no pixels need to be redisplayed.

SEE ALSO
Tk_CreateImageType

KEYWORDS
images, redisplay, image size changes

Tk Last change: 4.0 1

Tk Library Procedures Tk_InternAtom (3)

NAME
Tk_InternAtom, Tk_GetAtomName − manage cache of X atoms

SYNOPSIS
#include <tk.h>

Atom
Tk_InternAtom(tkwin, name)

char∗
Tk_GetAtomName(tkwin, atom)

ARGUMENTS
Tk_Window tkwin (in) Token for window. Used to map atom or name relative to a particular

display.

char ∗name (in) String name for which atom is desired.

Atom atom (in) Atom for which corresponding string name is desired.

DESCRIPTION
These procedures are similar to the Xlib proceduresXInternAtom and XGetAtomName. Tk_Inter-
nAtom returns the atom identifier associated with string given byname; the atom identifier is only valid
for the display associated withtkwin. Tk_GetAtomName returns the string associated withatom on
tkwin’s display. The string returned byTk_GetAtomName is in Tk’s storage: the caller need not free this
space when finished with the string, and the caller should not modify the contents of the returned string. If
there is no atomatomon tkwin’s display, thenTk_GetAtomName returns the string ‘‘?bad atom?’’.

Tk caches the information returned byTk_InternAtom andTk_GetAtomName so that future calls for the
same information can be serviced from the cache without contacting the server. ThusTk_InternAtom and
Tk_GetAtomName are generally much faster than their Xlib counterparts, and they should be used in
place of the Xlib procedures.

KEYWORDS
atom, cache, display

Tk Last change: 1

Tk Library Procedures Tk_MainLoop (3)

NAME
Tk_MainLoop − loop for events until all windows are deleted

SYNOPSIS
#include <tk.h>

Tk_MainLoop ()

DESCRIPTION
Tk_MainLoop is a procedure that loops repeatedly callingTcl_DoOneEvent. It returns only when there
are no applications left in this process (i.e. no main windows exist anymore). Most windowing applications
will call Tk_MainLoop after initialization; the main execution of the application will consist entirely of
callbacks invoked viaTcl_DoOneEvent.

KEYWORDS
application, event, main loop

Tk Last change: 1

Tk Library Procedures Tk_MainWindow (3)

NAME
Tk_MainWindow − find the main window for an application

SYNOPSIS
#include <tk.h>

Tk_Window
Tk_MainWindow (interp)

ARGUMENTS
Tcl_Interp ∗interp (in/out) Interpreter associated with the application.

DESCRIPTION
If interp is associated with a Tk application thenTk_MainWindow returns the application’s main window.
If there is no Tk application associated withinterp thenTk_MainWindow returns NULL and leaves an
error message ininterp->result.

KEYWORDS
application, main window

Tk Last change: 7.0 1

Tk Library Procedures Tk_MaintainGeometry (3)

NAME
Tk_MaintainGeometry, Tk_UnmaintainGeometry − maintain geometry of one window relative to another

SYNOPSIS
#include <tk.h>

Tk_MaintainGeometry (slave, master, x, y, width, height)

Tk_UnmaintainGeometry(slave, master)

ARGUMENTS
Tk_Window slave (in) Window whose geometry is to be controlled.

Tk_Window master (in) Window relative to whichslave’s geometry will be controlled.

int x (in) Desired x-coordinate ofslave in master, measured in pixels from the
inside ofmaster’s left border to the outside ofslave’s left border.

int y (in) Desired y-coordinate ofslave in master, measured in pixels from the
inside ofmaster’s top border to the outside ofslave’s top border.

int width (in) Desired width forslave, in pixels.

int height (in) Desired height forslave, in pixels.

DESCRIPTION
Tk_MaintainGeometry and Tk_UnmaintainGeometry make it easier for geometry managers to deal
with slaves whose masters are not their parents. Three problems arise if the master for a slave is not its par-
ent:

[1] The x- and y-position of the slave must be translated from the coordinate system of the master to
that of the parent before positioning the slave.

[2] If the master window, or any of its ancestors up to the slave’s parent, is moved, then the slave must
be repositioned within its parent in order to maintain the correct position relative to the master.

[3] If the master or one of its ancestors is mapped or unmapped, then the slave must be mapped or
unmapped to correspond.

None of these problems is an issue if the parent and master are the same. For example, if the master or one
of its ancestors is unmapped, the slave is automatically removed by the screen by X.

Tk_MaintainGeometry deals with these problems for slaves whose masters aren’t their parents.
Tk_MaintainGeometry is typically called by a window manager once it has decided where a slave should
be positioned relative to its master.Tk_MaintainGeometry translates the coordinates to the coordinate
system ofslave’s parent and then moves and resizes the slave appropriately. Furthermore, it remembers the
desired position and creates event handlers to monitor the master and all of its ancestors up to (but not
including) the slave’s parent. If any of these windows is moved, mapped, or unmapped, the slave will be
adjusted so that it is mapped only when the master is mapped and its geometry relative to the master
remains as specified byx, y, width, andheight.

When a window manager relinquishes control over a window, or if it decides that it does not want the win-
dow to appear on the screen under any conditions, it callsTk_UnmaintainGeometry. Tk_Unmaintain-
Geometry unmaps the window and cancels any previous calls toTk_MaintainGeometry for the mas-
ter−slave pair, so that the slave’s geometry and mapped state are no longer maintained automatically.
Tk_UnmaintainGeometry need not be called by a geometry manager if the slave, the master, or any of the
master’s ancestors is destroyed: Tk will call it automatically.

Tk Last change: 4.0 1

Tk Library Procedures Tk_MaintainGeometry (3)

If Tk_MaintainGeometry is called repeatedly for the samemaster−slavepair, the information from the
most recent call supersedes any older information. IfTk_UnmaintainGeometry is called for amas-
ter−slavepair that is isn’t currently managed, the call has no effect.

KEYWORDS
geometry manager, map, master, parent, position, slave, unmap

Tk Last change: 4.0 2

Tk Library Procedures Tk_ManageGeometry (3)

NAME
Tk_ManageGeometry − arrange to handle geometry requests for a window

SYNOPSIS
#include <tk.h>

Tk_ManageGeometry(tkwin, mgrPtr, clientData)

ARGUMENTS
Tk_Window tkwin (in) Token for window to be managed.

Tk_GeomMgr ∗mgrPtr (in) Pointer to data structure containing information about the
geometry manager, or NULL to indicate thattkwin’s geome-
try shouldn’t be managed anymore. The data structure
pointed to bymgrPtr must be static: Tk keeps a reference to
it as long as the window is managed.

ClientData clientData (in) Arbitrary one-word value to pass to geometry manager call-
backs.

DESCRIPTION
Tk_ManageGeometryarranges for a particular geometry manager, described by themgrPtr argument, to
control the geometry of a particular slave window, giv en bytkwin. If tkwin was previously managed by
some other geometry manager, the previous manager loses control in favor of the new one. IfmgrPtr is
NULL, geometry management is cancelled fortkwin.

The structure pointed to bymgrPtr contains information about the geometry manager:
typedef struct {

char∗name;
Tk_GeomRequestProc∗requestProc;
Tk_GeomLostSlaveProc∗lostSlaveProc;

} Tk_GeomMgr;
The namefield is the textual name for the geometry manager, such aspack or place; this value will be
returned by the commandwinfo manager.

requestProcis a procedure in the geometry manager that will be invoked wheneverTk_GeometryRequest
is called by the slave to change its desired geometry.requestProcshould have arguments and results that
match the typeTk_GeomRequestProc:

typedef void Tk_GeomRequestProc(
ClientDataclientData,
Tk_Windowtkwin);

The parameters torequestProcwill be identical to the corresponding parameters passed toTk_ManageGe-
ometry. clientDatausually points to a data structure containing application-specific information about how
to managetkwin’s geometry.

The lostSlaveProcfield of mgrPtr points to another procedure in the geometry manager. Tk will invoke
lostSlaveProcif some other manager callsTk_ManageGeometry to claim tkwin aw ay from the current
geometry manager.lostSlaveProcis not invoked ifTk_ManageGeometryis called with a NULL value for
mgrPtr (presumably the current geometry manager has made this call, so it already knows that the window
is no longer managed), nor is it called ifmgrPtr is the same as the window’s current geometry manager.
lostSlaveProcshould have arguments and results that match the following prototype:

typedef void Tk_GeomLostSlaveProc(
ClientDataclientData,
Tk_Windowtkwin);

Tk Last change: 4.0 1

Tk Library Procedures Tk_ManageGeometry (3)

The parameters tolostSlaveProcwill be identical to the corresponding parameters passed toTk_Manage-
Geometry.

KEYWORDS
callback, geometry, managed, request, unmanaged

Tk Last change: 4.0 2

Tk Library Procedures Tk_MapWindow (3)

NAME
Tk_MapWindow, Tk_UnmapWindow − map or unmap a window

SYNOPSIS
#include <tk.h>

Tk_Window
Tk_MapWindow (tkwin)

Tk_UnmapWindow(tkwin)

ARGUMENTS
Tk_Window tkwin (in) Token for window.

DESCRIPTION
These procedures may be used to map and unmap windows managed by Tk.Tk_MapWindow maps the
window giv en bytkwin, and also creates an X window corresponding totkwin if it doesn’t already exist.
See theTk_CreateWindow manual entry for information on deferred window creation.Tk_UnmapWin-
dow unmapstkwin’s window from the screen.

If tkwin is a child window (i.e.Tk_CreateChildWindow was used to create it), then event handlers inter-
ested in map and unmap events are invoked immediately. Iftkwin isn’t an internal window, then the event
handlers will be invoked later, after X has seen the request and returned an event for it.

These procedures should be used in place of the X proceduresXMapWindow and XUnmapWindow,
since they update Tk’s local data structure fortkwin. Applications using Tk should not invokeXMapWin-
dow andXUnmapWindow directly.

KEYWORDS
map, unmap, window

Tk Last change: 1

Tk Library Procedures Tk_MeasureChars (3)

NAME
Tk_MeasureChars, Tk_TextWidth, Tk_DrawChars, Tk_UnderlineChars − routines to measure and display
simple single-line strings.

SYNOPSIS
#include <tk.h>

int
Tk_MeasureChars(tkfont, string, maxChars, maxPixels, flags, lengthPtr)

int
Tk_TextWidth(tkfont, string, numChars)

void
Tk_DrawChars(display, drawable, gc, tkfont, string, numChars, x, y)

void
Tk_UnderlineChars(display, drawable, gc, tkfont, string, x, y, firstChar, lastChar)

ARGUMENTS
Tk_Font tkfont (in) Token for font in which text is to be drawn or measured. Must have

been returned by a previous call toTk_GetFont.

const char ∗string (in) Text to be measured or displayed. Need not be null terminated. Any
non-printing meta-characters in the string (such as tabs, newlines, and
other control characters) will be measured or displayed in a platform-
dependent manner.

int maxChars (in) The maximum number of characters to consider when measuring
string. Must be greater than or equal to 0.

int maxPixels (in) If maxPixelsis greater than 0, it specifies the longest permissible line
length in pixels. Characters fromstring are processed only until this
many pixels have been covered. IfmaxPixelsis <= 0, then the line
length is unbounded and theflagsargument is ignored.

int flags (in) Various flag bits OR-ed together: TK_PARTIAL_OK means include a
character as long as any part of it fits in the length given bymaxPixels;
otherwise, a character must fit completely to be considered.
TK_WHOLE_WORDS means stop on a word boundary, if possible. If
TK_AT_LEAST_ONE is set, it means return at least one character
ev en if no characters could fit in the length given bymaxPixels. If
TK_AT_LEAST_ONE is set and TK_WHOLE_WORDS is also set, it
means that if not even one word fits on the line, return the first few let-
ters of the word that did fit; if not even one letter of the word fit, then
the first letter will still be returned.

int ∗lengthPtr (out) Filled with the number of pixels occupied by the number of characters
returned as the result ofTk_MeasureChars.

int numChars (in) The total number of characters to measure or draw fromstring. Must
be greater than or equal to 0.

Display ∗display (in) Display on which to draw.

Drawable drawable (in) Window or pixmap in which to draw.

Tk Last change: 1

Tk Library Procedures Tk_MeasureChars (3)

GC gc (in) Graphics context for drawing characters. The font selected into this
GC must be the same as thetkfont.

int x, y (in) Coordinates at which to place the left edge of the baseline when dis-
playingstring.

int firstChar (in) The index of the first character to underline in thestring. Underlining
begins at the left edge of this character.

int lastChar (in) The index of the last character up to which the underline will be drawn.
The character specified bylastCharwill not itself be underlined.

DESCRIPTION
These routines are for measuring and displaying simple single-font, single-line, strings. To measure and
display single-font, multi-line, justified text, refer to the documentation forTk_ComputeTextLayout.
There is no programming interface in the core of Tk that supports multi-font, multi-line text; support for
that behavior must be built on top of simpler layers.

A glyph is the displayable picture of a letter, number, or some other symbol. Not all character codes in a
given font have a glyph. Characters such as tabs, newlines/returns, and control characters that have no
glyph are measured and displayed by these procedures in a platform-dependent manner; under X, they are
replaced with backslashed escape sequences, while under Windows and Macintosh hollow or solid boxes
may be substituted. Refer to the documentation forTk_ComputeTextLayout for a programming interface
that supports the platform-independent expansion of tab characters into columns and newlines/returns into
multi-line text.

Tk_MeasureChars is used both to compute the length of a given string and to compute how many charac-
ters from a string fit in a given amount of space. The return value is the number of characters fromstring
that fit in the space specified bymaxPixelssubject to the conditions described byflags. If all characters fit,
the return value will bemaxChars. ∗lengthPtris filled with the computed width, in pixels, of the portion of
the string that was measured. For example, if the return value is 5, then∗lengthPtr is filled with the dis-
tance between the left edge ofstring[0] and the right edge ofstring[4].

Tk_TextWidth is a wrapper function that provides a simpler interface to theTk_MeasureChars function.
The return value is how much space in pixels the givenstringneeds.

Tk_DrawChars draws thestringat the given location in the givendrawable.

Tk_UnderlineChars underlines the given range of characters in the givenstring. It doesn’t draw the char-
acters (which are assumed to have been displayed previously byTk_DrawChars); it just draws the under-
line. This procedure is used to underline a few characters without having to construct an underlined font.
To produce natively underlined text, the appropriate underlined font should be constructed and used.

KEYWORDS
font

Tk Last change: 2

Tk Library Procedures Tk_MoveToplevelWindow (3)

NAME
Tk_MoveToplevelWindow − Adjust the position of a top-level window

SYNOPSIS
#include <tk.h>

Tk_MoveToplevelWindow(tkwin, x, y)

ARGUMENTS
Tk_Window tkwin (in) Token for top-level window to move.

int x (in) New x-coordinate for the top-left pixel oftkwin’s border, or the top-left
pixel of the decorative border supplied fortkwin by the window man-
ager, if there is one.

int y (in) New y-coordinate for the top-left pixel oftkwin’s border, or the top-left
pixel of the decorative border supplied fortkwin by the window man-
ager, if there is one.

DESCRIPTION
In general, a window should never set its own position; this should be done only by the geometry manger
that is responsible for the window. For top-level windows the window manager is effectively the geometry
manager; Tk provides interface code between the application and the window manager to convey the appli-
cation’s desires to the geometry manager. The desired size for a top-level window is conveyed using the
usualTk_GeometryRequestmechanism. The procedureTk_MoveToplevelWindow may be used by an
application to request a particular position for a top-level window; this procedure is similar in function to
thewm geometryTcl command except that negative offsets cannot be specified. It is invoked by widgets
such as menus that want to appear at a particular place on the screen.

WhenTk_MoveToplevelWindow is called it doesn’t immediately pass on the new desired location to the
window manager; it defers this action until all other outstanding work has been completed, using the
Tk_DoWhenIdle mechanism.

KEYWORDS
position, top-level window, window manager

Tk Last change: 1

Tk Library Procedures Tk_Name (3)

NAME
Tk_Name, Tk_PathName, Tk_NameToWindow − convert between names and window tokens

SYNOPSIS
#include <tk.h>

Tk_Uid
Tk_Name(tkwin)

char∗
Tk_PathName(tkwin)

Tk_Window
Tk_NameToWindow(interp, pathName, tkwin)

ARGUMENTS
Tk_Window tkwin (in) Token for window.

Tcl_Interp ∗interp (out) Interpreter to use for error reporting.

char ∗pathName (in) Character string containing path name of window.

DESCRIPTION
Each window managed by Tk has two names, a short name that identifies a window among children of the
same parent, and a path name that identifies the window uniquely among all the windows belonging to the
same main window. The path name is used more often in Tk than the short name; many commands, like
bind, expect path names as arguments.

The Tk_Name macro returns a window’s short name, which is the same as thenameargument passed to
Tk_CreateWindow when the window was created. The value is returned as a Tk_Uid, which may be used
just like a string pointer but also has the properties of a unique identifier (see the manual entry for
Tk_GetUid for details).

TheTk_PathNamemacro returns a hierarchical name fortkwin. Path names have a structure similar to file
names in Unix but with dots between elements instead of slashes: the main window for an application has
the path name ‘‘.’’; its children have names like ‘‘.a’’ and ‘‘.b’’; their children have names like ‘‘.a.aa’’ and
‘‘.b.bb’’; and so on. A window is considered to be be a child of another window for naming purposes if the
second window was named as the first window’sparentwhen the first window was created. This is not
always the same as the X window hierarchy. For example, a pop-up is created as a child of the root win-
dow, but its logical parent will usually be a window within the application.

The procedureTk_NameToWindow returns the token for a window giv en its path name (thepathName
argument) and another window belonging to the same main window (tkwin). It normally returns a token for
the named window, but if no such window existsTk_NameToWindow leaves an error message in
interp->result and returns NULL. Thetkwin argument toTk_NameToWindow is needed because path
names are only unique within a single application hierarchy. If, for example, a single process has opened
two main windows, each will have a separate naming hierarchy and the same path name might appear in
each of the hierarchies. Normallytkwin is the main window of the desired hierarchy, but this need not be
the case: any window in the desired hierarchy may be used.

KEYWORDS
name, path name, token, window

Tk Last change: 1

Tk Library Procedures Tk_NameOfImage (3)

NAME
Tk_NameOfImage − Return name of image.

SYNOPSIS
#include <tk.h>

char∗
Tk_NameOfImage(typePtr)

ARGUMENTS
Tk_ImageMaster ∗masterPtr (in) Token for image, which was passed to image manager’scre-

ateProcwhen the image was created.

DESCRIPTION
This procedure is invoked by image managers to find out the name of an image. Given the token for the
image, it returns the string name for the image.

KEYWORDS
image manager, image name

Tk Last change: 4.0 1

Tk Library Procedures Tk_OwnSelection (3)

NAME
Tk_OwnSelection − make a window the owner of the primary selection

SYNOPSIS
#include <tk.h>

Tk_OwnSelection(tkwin, selection, proc, clientData)

ARGUMENTS
Tk_Window tkwin (in) Window that is to become new selection owner.

Atom selection (in) The name of the selection to be owned, such as XA_PRI-
MARY.

Tk_LostSelProc ∗proc (in) Procedure to invoke whentkwin loses selection ownership later.

ClientData clientData (in) Arbitrary one-word value to pass toproc.

DESCRIPTION
Tk_OwnSelection arranges fortkwin to become the new owner of the selection specified by the atom
selection. After this call completes, future requests for the selection will be directed to handlers created for
tkwin using Tk_CreateSelHandler. When tkwin ev entually loses the selection ownership,proc will be
invoked so that the window can clean itself up (e.g. by unhighlighting the selection).Proc should have
arguments and result that match the typeTk_LostSelProc:

typedef void Tk_LostSelProc(ClientDataclientData);
TheclientDataparameter toproc is a copy of theclientDataargument given toTk_OwnSelection, and is
usually a pointer to a data structure containing application-specific information abouttkwin.

KEYWORDS
own, selection owner

Tk Last change: 4.0 1

Tk Library Procedures Tk_ParseArgv (3)

NAME
Tk_ParseArgv − process command-line options

SYNOPSIS
#include <tk.h>

int
Tk_ParseArgv(interp, tkwin, argcPtr, argv, argTable, flags)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter to use for returning error messages.

Tk_Window tkwin (in) Window to use when arguments specify Tk options. If NULL,
then no Tk options will be processed.

int argcPtr (in/out) Pointer to number of arguments in argv; gets modified to hold
number of unprocessed arguments that remain after the call.

char ∗∗argv (in/out) Command line arguments passed to main program. Modified to
hold unprocessed arguments that remain after the call.

Tk_ArgvInfo ∗argTable (in) Array of argument descriptors, terminated by element with type
TK_ARGV_END.

int flags (in) If non-zero, then it specifies one or more flags that control the
parsing of arguments. Different flags may be OR’ed together. The
flags currently defined are
TK_ARGV_DONT_SKIP_FIRST_ARG,
TK_ARGV_NO_ABBREV, TK_ARGV_NO_LEFTOVERS, and
TK_ARGV_NO_DEFAULTS.

DESCRIPTION
Tk_ParseArgv processes an array of command-line arguments according to a table describing the kinds of
arguments that are expected. Each of the arguments inargv is processed in turn: if it matches one of the
entries inargTable, the argument is processed according to that entry and discarded. The arguments that do
not match anything inargTableare copied down to the beginning ofargv (retaining their original order) and
returned to the caller. At the end of the callTk_ParseArgv sets∗argcPtr to hold the number of arguments
that are left inargv, andargv[∗argcPtr] will hold the value NULL. Normally,Tk_ParseArgv assumes that
argv[0] is a command name, so it is treated like an argument that doesn’t matchargTableand returned to
the caller; however, if the TK_ARGV_DONT_SKIP_FIRST_ARG bit is set inflags thenargv[0] will be
processed just like the other elements ofargv.

Tk_ParseArgv normally returns the value TCL_OK. If an error occurs while parsing the arguments, then
TCL_ERROR is returned andTk_ParseArgv will leave an error message ininterp->result in the standard
Tcl fashion. In the event of an error return,∗argvPtr will not have been modified, butargv could have been
partially modified. The possible causes of errors are explained below.

TheargTablearray specifies the kinds of arguments that are expected; each of its entries has the following
structure:

typedef struct {
char∗key;
int type;
char∗src;
char∗dst;
char∗help;

} Tk_ArgvInfo;
The key field is a string such as ‘‘−display’’ or ‘‘−bg’’ that is compared with the values inargv. Type

Tk Last change: 1

Tk Library Procedures Tk_ParseArgv (3)

indicates how to process an argument that matcheskey(more on this below).Srcanddstare additional val-
ues used in processing the argument. Their exact usage depends ontype, but typicallysrc indicates a value
anddst indicates where to store the value. Thechar ∗ declarations forsrc anddst are placeholders: the
actual types may be different. Lastly,help is a string giving a brief description of this option; this string is
printed when users ask for help about command-line options.

When processing an argument inargv, Tk_ParseArgv compares the argument to each of thekey’s in
argTable. Tk_ParseArgv selects the first specifier whosekeymatches the argument exactly, if such a spec-
ifier exists. OtherwiseTk_ParseArgv selects a specifier for which the argument is a unique abbreviation.
If the argument is a unique abbreviation for more than one specifier, then an error is returned. If there is no
matching entry inargTable, then the argument is skipped and returned to the caller.

Once a matching argument specifier is found,Tk_ParseArgv processes the argument according to thetype
field of the specifier. The argument that matchedkeyis called ‘‘the matching argument’’ in the descriptions
below. As part of the processing,Tk_ParseArgv may also use the next argument inargv after the match-
ing argument, which is called ‘‘the following argument’’. The legal values fortype, and the processing that
they cause, are as follows:

TK_ARGV_END
Marks the end of the table. The last entry inargTablemust have this type; all of its other fields
are ignored and it will never match any arguments.

TK_ARGV_CONSTANT
Src is treated as an integer anddst is treated as a pointer to an integer.Src is stored at∗dst. The
matching argument is discarded.

TK_ARGV_INT
The following argument must contain an integer string in the format accepted bystrtol (e.g. ‘‘0’’
and ‘‘0x’’ prefixes may be used to specify octal or hexadecimal numbers, respectively).Dst is
treated as a pointer to an integer; the following argument is converted to an integer value and
stored at∗dst. Src is ignored. The matching and following arguments are discarded fromargv.

TK_ARGV_FLOAT
The following argument must contain a floating-point number in the format accepted bystrtol .
Dst is treated as the address of an double-precision floating point value; the following argument is
converted to a double-precision value and stored at∗dst. The matching and following arguments
are discarded fromargv.

TK_ARGV_STRING
In this form,dst is treated as a pointer to a (char∗); Tk_ParseArgv stores at∗dsta pointer to the
following argument, and discards the matching and following arguments fromargv. Src is
ignored.

TK_ARGV_UID
This form is similar to TK_ARGV_STRING, except that the argument is turned into a Tk_Uid by
calling Tk_GetUid. Dst is treated as a pointer to a Tk_Uid;Tk_ParseArgv stores at∗dst the
Tk_Uid corresponding to the following argument, and discards the matching and following argu-
ments fromargv. Src is ignored.

TK_ARGV_CONST_OPTION
This form causes a Tk option to be set (as if theoption command had been invoked). Thesrc field
is treated as a pointer to a string giving the value of an option, anddst is treated as a pointer to the
name of the option. The matching argument is discarded. Iftkwin is NULL, then argument speci-
fiers of this type are ignored (as if they did not exist).

TK_ARGV_OPTION_VALUE
This form is similar to TK_ARGV_CONST_OPTION, except that the value of the option is taken
from the following argument instead of fromsrc. Dst is used as the name of the option.Src is

Tk Last change: 2

Tk Library Procedures Tk_ParseArgv (3)

ignored. The matching and following arguments are discarded. Iftkwin is NULL, then argument
specifiers of this type are ignored (as if they did not exist).

TK_ARGV_OPTION_NAME_VALUE
In this case the following argument is taken as the name of a Tk option and the argument after that
is taken as the value for that option. Bothsrc anddst are ignored. All three arguments are dis-
carded fromargv. If tkwin is NULL, then argument specifiers of this type are ignored (as if they
did not exist).

TK_ARGV_HELP
When this kind of option is encountered,Tk_ParseArgv uses thehelpfields ofargTableto format
a message describing all the valid arguments. The message is placed ininterp->result and
Tk_ParseArgv returns TCL_ERROR. When this happens, the caller normally prints the help
message and aborts. If thekeyfield of a TK_ARGV_HELP specifier is NULL, then the specifier
will never match any arguments; in this case the specifier simply provides extra documentation,
which will be included when some other TK_ARGV_HELP entry causes help information to be
returned.

TK_ARGV_REST
This option is used by programs or commands that allow the last several of their options to be the
name and/or options for some other program. If aTK_ARGV_REST argument is found, then
Tk_ParseArgv doesn’t process any of the remaining arguments; it returns them all at the begin-
ning ofargv (along with any other unprocessed arguments). In addition,Tk_ParseArgv treatsdst
as the address of an integer value, and stores at∗dst the index of the first of the
TK_ARGV_REST options in the returnedargv. This allows the program to distinguish the
TK_ARGV_REST options from other unprocessed options that preceded the
TK_ARGV_REST .

TK_ARGV_FUNC
For this kind of argument,src is treated as the address of a procedure, which is invoked to process
the following argument. The procedure should have the following structure:

int
func(dst, key, nextArg)

char∗dst;
char∗key;
char∗nextArg;

{
}

Thedstandkeyparameters will contain the corresponding fields from theargTableentry, andnex-
tArg will point to the following argument fromargv (or NULL if there aren’t any more arguments
left in argv). If funcusesnextArg(so thatTk_ParseArgv should discard it), then it should return
1. Otherwise it should return 0 andTkParseArgv will process the following argument in the nor-
mal fashion. In either event the matching argument is discarded.

TK_ARGV_GENFUNC
This form provides a more general procedural escape. It treatssrc as the address of a procedure,
and passes that procedure all of the remaining arguments. The procedure should have the follow-
ing form:

int
genfunc(dst, interp, key, argc, argv)

char∗dst;
Tcl_Interp∗interp;
char∗key;
int argc;
char∗∗argv;

Tk Last change: 3

Tk Library Procedures Tk_ParseArgv (3)

{
}

The dst andkeyparameters will contain the corresponding fields from theargTableentry. Interp
will be the same as theinterp argument toTcl_ParseArgv. Argc and argv refer to all of the
options after the matching one.Genfuncshould behave in a fashion similar toTk_ParseArgv:
parse as many of the remaining arguments as it can, then return any that are left by compacting
them to the beginning ofargv (starting atargv[0]). Genfuncshould return a count of how many
arguments are left inargv; Tk_ParseArgv will process them. Ifgenfuncencounters an error then
it should leave an error message ininterp->result, in the usual Tcl fashion, and return -1; when
this happensTk_ParseArgv will abort its processing and return TCL_ERROR.

FLAGS
TK_ARGV_DONT_SKIP_FIRST_ARG

Tk_ParseArgv normally treatsargv[0] as a program or command name, and returns it to the
caller just as if it hadn’t matchedargTable. If this flag is given, thenargv[0] is not given special
treatment.

TK_ARGV_NO_ABBREV
Normally, Tk_ParseArgv accepts unique abbreviations forkeyvalues inargTable. If this flag is
given then only exact matches will be acceptable.

TK_ARGV_NO_LEFTOVERS
Normally, Tk_ParseArgv returns unrecognized arguments to the caller. If this bit is set inflags
then Tk_ParseArgv will return an error if it encounters any argument that doesn’t match
argTable. The only exception to this rule isargv[0], which will be returned to the caller with no
errors as long as TK_ARGV_DONT_SKIP_FIRST_ARG isn’t specified.

TK_ARGV_NO_DEFAULTS
Normally, Tk_ParseArgv searches an internal table of standard argument specifiers in addition to
argTable. If this bit is set inflags, thenTk_ParseArgv will use onlyargTableand not its default
table.

EXAMPLE
Here is an example definition of anargTableand some sample command lines that use the options. Note
the effect onargc andargv; arguments processed byTk_ParseArgv are eliminated fromargv, andargc is
updated to reflect reduced number of arguments.

/∗
∗ Define and set default values for globals.
∗/
int debugFlag = 0;
int numReps = 100;
char defaultFileName[] = "out";
char∗fileName = defaultFileName;
Boolean exec = FALSE;

/∗
∗ Define option descriptions.
∗/
Tk_ArgvInfo argTable[] = {

{"-X", TK_ARGV_CONSTANT, (char∗) 1, (char∗) &debugFlag,
"Turn on debugging printfs"},

{"-N", TK_ARGV_INT, (char ∗) NULL, (char∗) &numReps,
"Number of repetitions"},

Tk Last change: 4

Tk Library Procedures Tk_ParseArgv (3)

{"-of", TK_ARGV_STRING, (char∗) NULL, (char∗) &fileName,
"Name of file for output"},

{"x", TK_ARGV_REST, (char∗) NULL, (char∗) &exec,
"File to exec, followed by any arguments (must be last argument)."},

{(char ∗) NULL, TK_ARGV_END, (char∗) NULL, (char∗) NULL,
(char∗) NULL}

};

main(argc, argv)
int argc;
char∗argv[];

{
...

if (Tk_ParseArgv(interp, tkwin, &argc, argv, argTable, 0) != TCL_OK) {
fprintf(stderr, "%s\n", interp->result);
exit(1);

}

/∗
∗ Remainder of the program.
∗/

}

Note that default values can be assigned to variables named inargTable: the variables will only be over-
written if the particular arguments are present inargv. Here are some example command lines and their
effects.

prog -N 200 infile# just sets the numReps variable to 200
prog -of out200 infile # sets fileName to reference "out200"
prog -XN 10 infile# sets the debug flag, also sets numReps

In all of the above examples,argc will be set byTk_ParseArgv to 2,argv[0] will be ‘‘prog’’, argv[1] will
be ‘‘infile’’, and argv[2] will be NULL.

KEYWORDS
arguments, command line, options

Tk Last change: 5

Tk Library Procedures Tk_QueueWindowEvent (3)

NAME
Tk_QueueWindowEvent − Add a window event to the Tcl event queue

SYNOPSIS
#include <tk.h>

Tk_QueueWindowEvent(eventPtr, position)

ARGUMENTS
XEvent ∗eventPtr (in) An ev ent to add to the event queue.

Tcl_QueuePosition position (in) Where to add the new event in the queue:
TCL_QUEUE_TAIL , TCL_QUEUE_HEAD , or
TCL_QUEUE_MARK .

DESCRIPTION
This procedure places a window event on Tcl’s internal event queue for eventual servicing. It creates a
Tcl_Event structure, copies the event into that structure, and callsTcl_QueueEventto add the event to the
queue. When the event is eventually removed from the queue it is processed just like all window events.

The position argument toTk_QueueWindowEvent has the same significance as forTcl_QueueEvent;
see the documentation forTcl_QueueEventfor details.

KEYWORDS
callback, clock, handler, modal timeout

Tk Last change: 7.5 1

Tk Library Procedures Tk_RestackWindow (3)

NAME
Tk_RestackWindow − Change a window’s position in the stacking order

SYNOPSIS
#include <tk.h>

int
Tk_RestackWindow(tkwin, aboveBelow, other)

ARGUMENTS
Tk_Window tkwin (in) Token for window to restack.

int aboveBelow (in) Indicates new position oftkwin relative toother; must beAbove
or Below.

Tk_Window other (in) Tkwin will be repositioned just above or below this window.
Must be a sibling oftkwin or a descendant of a sibling. If NULL
thentkwin is restacked above orbelow all siblings.

DESCRIPTION
Tk_RestackWindow changes the stacking order ofwindowrelative to its siblings. Ifother is specified as
NULL thenwindowis repositioned at the top or bottom of its stacking order, depending on whetherabove-
Belowis Above or Below. If otherhas a non-NULL value thenwindowis repositioned just above orbelow
other.

TheaboveBelowargument must have one of the symbolic valuesAboveor Below. Both of these values are
defined by the include file <X11/Xlib.h>.

KEYWORDS
above, below, obscure, stacking order

Tk Last change: 1

Tk Library Procedures Tk_RestrictEvents (3)

NAME
Tk_RestrictEvents − filter and selectively delay X events

SYNOPSIS
#include <tk.h>

Tk_RestrictProc∗
Tk_RestrictEvents(proc, clientData, prevClientDataPtr)

ARGUMENTS
Tk_RestrictProc ∗proc (in) Predicate procedure to call to filter incoming X

ev ents. NULL means do not restrict events at all.

ClientData clientData (in) Arbitrary argument to pass toproc.

ClientData ∗prevClientDataPtr (out) Pointer to place to save argument to previous restrict
procedure.

DESCRIPTION
This procedure is useful in certain situations where applications are only prepared to receive certain X
ev ents. AfterTk_RestrictEvents is called,Tk_DoOneEvent (and henceTk_MainLoop) will filter X
input events throughproc. Proc indicates whether a given event is to be processed immediately, deferred
until some later time (e.g. when the event restriction is lifted), or discarded.Proc is a procedure with argu-
ments and result that match the typeTk_RestrictProc:

typedef Tk_RestrictAction Tk_RestrictProc(
ClientDataclientData,
XEvent∗eventPtr);

TheclientDataargument is a copy of theclientDatapassed toTk_RestrictEvents; it may be used to pro-
vide proc with information it needs to filter events. TheeventPtrpoints to an event under consideration.
Proc returns a restrict action (enumerated typeTk_RestrictAction) that indicates whatTk_DoOneEvent
should do with the event. If the return value isTK_PROCESS_EVENT, then the event will be handled
immediately. If the return value isTK_DEFER_EVENT , then the event will be left on the event queue for
later processing. If the return value isTK_DISCARD_EVENT , then the event will be removed from the
ev ent queue and discarded without being processed.

Tk_RestrictEvents uses its return value andprevClientDataPtrto return information about the current
ev ent restriction procedure (a NULL return value means there are currently no restrictions). These values
may be used to restore the previous restriction state when there is no longer any need for the current restric-
tion.

There are very few places whereTk_RestrictEvents is needed. In most cases, the best way to restrict
ev ents is by changing the bindings with thebind Tcl command or by callingTk_CreateEventHandler and
Tk_DeleteEventHandler from C. The main place whereTk_RestrictEvents must be used is when per-
forming synchronous actions (for example, if you need to wait for a particular event to occur on a particular
window but you don’t want to invoke any handlers for any other events). The ‘‘obvious’’ solution in these
situations is to callXNextEvent or XWindowEvent, but these procedures cannot be used because Tk
keeps its own event queue that is separate from the X event queue. Instead, callTk_RestrictEvents to set
up a filter, then callTk_DoOneEventto retrieve the desired event(s).

KEYWORDS
delay, event, filter, restriction

Tk Last change: 1

Tk Library Procedures Tk_SetAppName (3)

NAME
Tk_SetAppName − Set the name of an application for ‘‘send’’ commands

SYNOPSIS
#include <tk.h>

char∗
Tk_SetAppName(tkwin, name)

ARGUMENTS
Tk_Window tkwin (in) Token for window in application. Used only to select a particular

application.

char ∗name (in) Name under which to register the application.

DESCRIPTION
Tk_SetAppNameassociates a name with a given application and records that association on the display
containing with the application’s main window. After this procedure has been invoked, other applications
on the display will be able to use thesendcommand to invoke operations in the application. Ifnameis
already in use by some other application on the display, then a new name will be generated by appending ‘‘
#2’’ to name; if this name is also in use, the number will be incremented until an unused name is found.
The return value from the procedure is a pointer to the name actually used.

If the application already has a name whenTk_SetAppNameis called, then the new name replaces the old
name.

Tk_SetAppNamealso adds asendcommand to the application’s interpreter, which can be used to send
commands from this application to others on any of the displays where the application has windows.

The application’s name registration persists until the interpreter is deleted or thesendcommand is deleted
from interp, at which point the name is automatically unregistered and the application becomes inaccessible
via send. The application can be made accessible again by callingTk_SetAppName.

Tk_SetAppNameis called automatically byTk_Init , so applications don’t normally need to call it explic-
itly.

The commandtk appnameprovides Tcl-level access to the functionality ofTk_SetAppName.

KEYWORDS
application, name, register, send command

Tk Last change: 4.0 1

Tk Library Procedures Tk_SetClass (3)

NAME
Tk_SetClass, Tk_Class − set or retrieve a window’s class

SYNOPSIS
#include <tk.h>

Tk_SetClass(tkwin, class)

Tk_Uid
Tk_Class(tkwin)

ARGUMENTS
Tk_Window tkwin (in) Token for window.

char ∗class (in) New class name for window.

DESCRIPTION
Tk_SetClassis called to associate a class with a particular window. Theclassstring identifies the type of
the window; all windows with the same general class of behavior (button, menu, etc.) should have the same
class. By convention all class names start with a capital letter, and there exists a Tcl command with the
same name as each class (except all in lower-case) which can be used to create and manipulate windows of
that class. A window’s class string is initialized to NULL when the window is created.

For main windows, Tk automatically propagates the name and class to the WM_CLASS property used by
window managers. This happens either when a main window is actually created (e.g. inTk_MakeWin-
dowExist), or whenTk_SetClass is called, whichever occurs later. If a main window has not been
assigned a class then Tk will not set the WM_CLASS property for the window.

Tk_Class is a macro that returns the current value oftkwin’s class. The value is returned as a Tk_Uid,
which may be used just like a string pointer but also has the properties of a unique identifier (see the man-
ual entry forTk_GetUid for details). If tkwin has not yet been given a class, thenTk_Class will return
NULL.

KEYWORDS
class, unique identifier, window, window manager

Tk Last change: 1

Tk Library Procedures Tk_SetGrid (3)

NAME
Tk_SetGrid, Tk_UnsetGrid − control the grid for interactive resizing

SYNOPSIS
#include <tk.h>

Tk_SetGrid(tkwin, reqWidth, reqHeight, widthInc, heightInc)

Tk_UnsetGrid(tkwin)

ARGUMENTS
Tk_Window tkwin (in) Token for window.

int reqWidth (in) Width in grid units that corresponds to the pixel dimensiontkwin
has requested viaTk_GeometryRequest.

int reqHeight (in) Height in grid units that corresponds to the pixel dimensiontkwin
has requested viaTk_GeometryRequest.

int widthInc (in) Width of one grid unit, in pixels.

int heightInc (in) Height of one grid unit, in pixels.

DESCRIPTION
Tk_SetGrid turns on gridded geometry management fortkwin’s toplevel window and specifies the geome-
try of the grid. Tk_SetGrid is typically invoked by a widget when itssetGrid option is true. It restricts
interactive resizing oftkwin’s toplevel window so that the space allocated to the toplevel is equal to its
requested size plus or minus even multiples ofwidthInc and heightInc. Furthermore, thereqWidthand
reqHeightvalues are passed to the window manager so that it can report the window’s size in grid units dur-
ing interactive resizes. Iftkwin’s configuration changes (e.g., the size of a grid unit changes) then the wid-
get should invokeTk_SetGrid again with the new information.

Tk_UnsetGrid cancels gridded geometry management fortkwin’s toplevel window.

For each toplevel window there can be at most one internal window with gridding enabled. IfTk_SetGrid
or Tk_UnsetGrid is invoked when some other window is already controlling gridding fortkwin’s toplevel,
the calls for the new window hav e no effect.

See thewm manual entry for additional information on gridded geometry management.

KEYWORDS
grid, window, window manager

Tk Last change: 4.0 1

Tk Library Procedures Tk_SetWindowVisual (3)

NAME
Tk_SetWindowVisual − change visual characteristics of window

SYNOPSIS
#include <tk.h>

int
Tk_SetWindowVisual(tkwin, visual, depth, colormap)

ARGUMENTS
Tk_Window tkwin (in) Token for window.

Visual ∗visual (in) New visual type to use fortkwin.

int depth (in) Number of bits per pixel desired fortkwin.

Colormap colormap (in) New colormap fortkwin, which must be compatible withvisual
anddepth.

DESCRIPTION
When Tk creates a new window it assigns it the default visual characteristics (visual, depth, and colormap)
for its screen.Tk_SetWindowVisual may be called to change them.Tk_SetWindowVisual must be
called before the window has actually been created in X (e.g. beforeTk_MapWindow or Tk_MakeWin-
dowExist has been invoked for the window). The safest thing is to callTk_SetWindowVisual immedi-
ately after callingTk_CreateWindow. If tkwin has already been created beforeTk_SetWindowVisual is
called then it returns 0 and doesn’t make any changes; otherwise it returns 1 to signify that the operation
completed successfully.

Note: Tk_SetWindowVisual should not be called if you just want to change a window’s colormap without
changing its visual or depth; callTk_SetWindowColormap instead.

KEYWORDS
colormap, depth, visual

Tk Last change: 4.0 1

Tk Library Procedures Tk_StrictMotif (3)

NAME
Tk_StrictMotif − Return value of tk_strictMotif variable

SYNOPSIS
#include <tk.h>

int
Tk_StrictMotif (tkwin)

ARGUMENTS
Tk_Window tkwin (in) Token for window.

DESCRIPTION
This procedure returns the current value of thetk_strictMotif variable in the interpreter associated with
tkwin’s application. The value is returned as an integer that is either 0 or 1. 1 means that strict Motif com-
pliance has been requested, so anything that is not part of the Motif specification should be avoided. 0
means that ‘‘Motif-like’’ is good enough, and extra features are welcome.

This procedure uses a link to the Tcl variable to provide much faster access to the variable’s value than
could be had by callingTcl_GetVar.

KEYWORDS
Motif compliance, tk_strictMotif variable

Tk Last change: 4.0 1

Tk Library Procedures Tk_ComputeTextLayout (3)

NAME
Tk_ComputeTextLayout, Tk_FreeTextLayout, Tk_DrawTextLayout, Tk_UnderlineTextLayout, Tk_Point-
ToChar, Tk_CharBbox, Tk_DistanceToTextLayout, Tk_IntersectTextLayout, Tk_TextLayoutToPostscript −
routines to measure and display single-font, multi-line, justified text.

SYNOPSIS
#include <tk.h>

Tk_TextLayout
Tk_ComputeTextLayout(tkfont, string, numChars, wrapLength, justify, flags, widthPtr, heightPtr)

void
Tk_FreeTextLayout(layout)

void
Tk_DrawTextLayout(display, drawable, gc, layout, x, y, firstChar, lastChar)

void
Tk_UnderlineTextLayout(display, drawable, gc, layout, x, y, underline)

int
Tk_PointToChar(layout, x, y)

int
Tk_CharBbox(layout, index, xPtr, yPtr, widthPtr, heightPtr)

int
Tk_DistanceToTextLayout(layout, x, y)

int
Tk_IntersectTextLayout(layout, x, y, width, height)

void
Tk_TextLayoutToPostscript(interp, layout)

ARGUMENTS
Tk_Font tkfont (in) Font to use when constructing and displaying a text layout.

The tkfontmust remain valid for the lifetime of the text layout.
Must have been returned by a previous call toTk_GetFont.

const char ∗string (in) Potentially multi-line string whose dimensions are to be com-
puted and stored in the text layout. Thestring must remain
valid for the lifetime of the text layout.

int numChars (in) The number of characters to consider fromstring. If num-
Charsis less than 0, then assumesstring is null terminated and
usesstrlen(string).

int wrapLength (in) Longest permissible line length, in pixels. Lines instring will
automatically be broken at word boundaries and wrapped
when they reach this length. IfwrapLengthis too small for
ev en a single character to fit on a line, it will be expanded to
allow one character to fit on each line. IfwrapLengthis <= 0,
there is no automatic wrapping; lines will get as long as they

Tk Last change: 1

Tk Library Procedures Tk_ComputeTextLayout (3)

need to be and only wrap if a newline/return character is
encountered.

Tk_Justify justify (in) How to justify the lines in a multi-line text layout. Possible
values are TK_JUSTIFY_LEFT, TK_JUSTIFY_CENTER, or
TK_JUSTIFY_RIGHT. If the text layout only occupies a sin-
gle line, thenjustify is irrelevant.

int flags (in) Various flag bits OR-ed together. TK_IGNORE_TABS means
that tab characters should not be expanded to the next tab stop.
TK_IGNORE_NEWLINES means that newline/return charac-
ters should not cause a line break. If either tabs or new-
lines/returns are ignored, then they will be treated as regular
characters, being measured and displayed in a platform-depen-
dent manner as described inTk_MeasureChars, and will not
have any special behaviors.

int ∗widthPtr (out) If non-NULL, filled with either the width, in pixels, of the
widest line in the text layout, or the width, in pixels, of the
bounding box for the character specified byindex.

int ∗heightPtr (out) If non-NULL, filled with either the total height, in pixels, of
all the lines in the text layout, or the height, in pixels, of the
bounding box for the character specified byindex.

Tk_TextLayout layout (in) A token that represents the cached layout information about
the single-font, multi-line, justified piece of text. This token is
returned byTk_ComputeTextLayout.

Display ∗display (in) Display on which to draw.

Drawable drawable (in) Window or pixmap in which to draw.

GC gc (in) Graphics context to use for drawing text layout. The font
selected in this GC must correspond to thetkfont used when
constructing the text layout.

int x, y (in) Point, in pixels, at which to place the upper-left hand corner of
the text layout when it is being drawn, or the coordinates of a
point (with respect to the upper-left hand corner of the text
layout) to check against the text layout.

int firstChar (in) The index of the first character to draw from the given text lay-
out. The number 0 means to draw from the beginning.

int lastChar (in) The index of the last character up to which to draw. The char-
acter specified bylastCharitself will not be drawn. A number
less than 0 means to draw all characters in the text layout.

int underline (in) Index of the single character to underline in the text layout, or
a number less than 0 for no underline.

int index (in) The index of the character whose bounding box is desired.
The bounding box is computed with respect to the upper-left
hand corner of the text layout.

int ∗xPtr, ∗yPtr (out) Filled with the upper-left hand corner, in pixels, of the bound-
ing box for the character specified byindex. Either or both
xPtr andyPtr may be NULL, in which case the corresponding
value is not calculated.

Tk Last change: 2

Tk Library Procedures Tk_ComputeTextLayout (3)

int width, height (in) Specifies the width and height, in pixels, of the rectangular
area to compare for intersection against the text layout.

Tcl_Interp ∗interp (out) Postscript code that will print the text layout is appended to
interp->result.

DESCRIPTION
These routines are for measuring and displaying single-font, multi-line, justified text. To measure and dis-
play simple single-font, single-line strings, refer to the documentation forTk_MeasureChars. There is no
programming interface in the core of Tk that supports multi-font, multi-line text; support for that behavior
must be built on top of simpler layers.

The routines described here are built on top of the programming interface described in theTk_Mea-
sureCharsdocumentation. Tab characters and newline/return characters may be treated specially by these
procedures, but all other characters are passed through to the lower level.

Tk_ComputeTextLayout computes the layout information needed to display a single-font, multi-line, jus-
tified string of text and returns a Tk_TextLayout token that holds this information. This token is used in
subsequent calls to procedures such asTk_DrawTextLayout , Tk_DistanceToTextLayout, andTk_Free-
TextLayout. Thestring and tkfont used when computing the layout must remain valid for the lifetime of
this token.

Tk_FreeTextLayout is called to release the storage associated withlayoutwhen it is no longer needed. A
layoutshould not be used in any other text layout procedures once it has been released.

Tk_DrawTextLayout uses the information inlayout to display a single-font, multi-line, justified string of
text at the specified location.

Tk_UnderlineTextLayout uses the information inlayout to display an underline below an individual char-
acter. This procedure does not draw the text, just the underline. To produce natively underlined text, an
underlined font should be constructed and used. All characters, including tabs, newline/return characters,
and spaces at the ends of lines, can be underlined using this method. However, the underline will never be
drawn outside of the computed width oflayout; the underline will stop at the edge for any character that
would extend partially outside oflayout, and the underline will not be visible at all for any character that
would be located completely outside of the layout.

Tk_PointToChar uses the information inlayout to determine the character closest to the given point. The
point is specified with respect to the upper-left hand corner of thelayout, which is considered to be located
at (0, 0). Any point whosey-value is less that 0 will be considered closest to the first character in the text
layout; any point whosey-value is greater than the height of the text layout will be considered closest to the
last character in the text layout. Any point whosex-value is less than 0 will be considered closest to the
first character on that line; any point whosex-value is greater than the width of the text layout will be con-
sidered closest to the last character on that line. The return value is the index of the character that was clos-
est to the point. Given alayoutwith no characters, the value 0 will always be returned, referring to a hypo-
thetical zero-width placeholder character.

Tk_CharBBox uses the information inlayout to return the bounding box for the character specified by
index. The width of the bounding box is the advance width of the character, and does not include any left
or right bearing. Any character that extends partially outside oflayout is considered to be truncated at the
edge. Any character that would be located completely outside oflayout is considered to be zero-width and
pegged against the edge. The height of the bounding box is the line height for this font, extending from the
top of the ascent to the bottom of the descent; information about the actual height of individual letters is not
available. For measurement purposes, alayout that contains no characters is considered to contain a single
zero-width placeholder character at index 0. Ifindexwas not a valid character index, the return value is 0
and ∗xPtr, ∗yPtr, ∗widthPtr, and∗heightPtrare unmodified. Otherwise, ifindexdid specify a valid, the

Tk Last change: 3

Tk Library Procedures Tk_ComputeTextLayout (3)

return value is non-zero, and∗xPtr, ∗yPtr, ∗widthPtr, and∗heightPtrare filled with the bounding box infor-
mation for the character. If any ofxPtr, yPtr, widthPtr, or heightPtrare NULL, the corresponding value is
not calculated or stored.

Tk_DistanceToTextLayout computes the shortest distance in pixels from the given point (x, y) to the char-
acters inlayout. Newline/return characters and non-displaying space characters that occur at the end of
individual lines in the text layout are ignored for hit detection purposes, but tab characters are not. The
return value is 0 if the point actually hits thelayout. If the point didn’t hit thelayout then the return value is
the distance in pixels from the point to thelayout.

Tk_IntersectTextLayout determines whether alayout lies entirely inside, entirely outside, or overlaps a
given rectangle. Newline/return characters and non-displaying space characters that occur at the end of
individual lines in thelayoutare ignored for intersection calculations. The return value is −1 if thelayout is
entirely outside of the rectangle, 0 if it overlaps, and 1 if it is entirely inside of the rectangle.

Tk_TextLayoutToPostscript outputs code consisting of a Postscript array of strings that represent the indi-
vidual lines inlayout. It is the responsibility of the caller to take the Postscript array of strings and add
some Postscript function operate on the array to render each of the lines. The code that represents the
Postscript array of strings is appended tointerp->result.

DISPLAY MODEL
When measuring a text layout, space characters that occur at the end of a line are ignored. The space char-
acters still exist and the insertion point can be positioned amongst them, but their additional width is
ignored when justifying lines or returning the total width of a text layout. All end-of-line space characters
are considered to be attached to the right edge of the line; this behavior is logical for left-justified text and
reasonable for center-justified text, but not very useful when editing right-justified text. Spaces are consid-
ered variable width characters; the first space that extends past the edge of the text layout is clipped to the
edge, and any subsequent spaces on the line are considered zero width and pegged against the edge. Space
characters that occur in the middle of a line of text are not suppressed and occupy their normal space width.

Tab characters are not ignored for measurement calculations. If wrapping is turned on and there are enough
tabs on a line, the next tab will wrap to the beginning of the next line. There are some possible strange
interactions between tabs and justification; tab positions are calculated and the line length computed in a
left-justified world, and then the whole resulting line is shifted so it is centered or right-justified, causing
the tab columns not to align any more.

When wrapping is turned on, lines may wrap at word breaks (space or tab characters) or newline/returns. A
dash or hyphen character in the middle of a word is not considered a word break.Tk_ComputeTextLay-
out always attempts to place at least one word on each line. If it cannot because thewrapLengthis too
small, the word will be broken and as much as fits placed on the line and the rest on subsequent line(s). If
wrapLengthis so small that not even one character can fit on a given line, thewrapLengthis ignored for
that line and one character will be placed on the line anyhow. When wrapping is turned off, only new-
line/return characters may cause a line break.

When a text layout has been created using an underlinedtkfont, then any space characters that occur at the
end of individual lines, newlines/returns, and tabs will not be displayed underlined whenTk_DrawText-
Layout is called, because those characters are never actually drawn − they are merely placeholders main-
tained in thelayout.

KEYWORDS
font

Tk Last change: 4

Tk Library Procedures Tk_Init (3)

NAME
Tk_Init − add Tk to an interpreter and make a new Tk application.

SYNOPSIS
#include <tk.h>

int
Tk_Init (interp)

ARGUMENTS
Tcl_Interp ∗interp (in) Interpreter in which to load Tk. Tk should not already be loaded in this

interpreter.

DESCRIPTION
Tk_Init is the package initialization procedure for Tk. It is normally invoked by theTcl_AppInit proce-
dure for an application or by theload command.Tk_Init adds all of Tk’s commands tointerp and creates
a new Tk application, including its main window. If the initialization is successfulTk_Init returns
TCL_OK ; if there is an error it returnsTCL_ERROR . Tk_Init also leaves a result or error message in
interp->result.

If there is a variableargv in interp, Tk_Init treats the contents of this variable as a list of options for the
new Tk application. The options may have any of the forms documented for thewish application (in fact,
wish uses Tk_Init to process its command-line arguments).

KEYWORDS
application, initialization, load, main window

Tk Last change: 4.1 1

Tk Library Procedures Tk_Main (3)

NAME
Tk_Main − main program for Tk-based applications

SYNOPSIS
#include <tk.h>

Tk_Main (argc, argv, appInitProc)

ARGUMENTS
int argc (in) Number of elements inargv.

char ∗argv[] (in) Array of strings containing command-line arguments.

Tcl_AppInitProc ∗appInitProc (in) Address of an application-specific initialization procedure.
The value for this argument is usuallyTcl_AppInit .

DESCRIPTION
Tk_Main acts as the main program for most Tk-based applications. Starting with Tk 4.0 it is not called
main anymore because it is part of the Tk library and having a functionmain in a library (particularly a
shared library) causes problems on many systems. Havingmain in the Tk library would also make it hard
to use Tk in C++ programs, since C++ programs must have special C++main functions.

Normally each application contains a smallmain function that does nothing but invokeTk_Main .
Tk_Main then does all the work of creating and running awish-like application.

When it is has finished its own initialization, but before it processes commands,Tk_Main calls the proce-
dure given by theappInitProcargument. This procedure provides a ‘‘hook’’ for the application to perform
its own initialization, such as defining application-specific commands. The procedure must have an inter-
face that matches the typeTcl_AppInitProc :

typedef int Tcl_AppInitProc(Tcl_Interp∗interp);
AppInitProc is almost always a pointer toTcl_AppInit ; for more details on this procedure, see the docu-
mentation forTcl_AppInit .

KEYWORDS
application-specific initialization, command-line arguments, main program

Tk Last change: 4.0 1

Tk Library Procedures Tk_WindowId (3)

NAME
Tk_WindowId, Tk_Parent, Tk_Display, Tk_DisplayName, Tk_ScreenNumber, Tk_Screen, Tk_X, Tk_Y,
Tk_Width, Tk_Height, Tk_Changes, Tk_Attributes, Tk_IsMapped, Tk_IsTopLevel, Tk_ReqWidth,
Tk_ReqHeight, Tk_InternalBorderWidth, Tk_Visual, Tk_Depth, Tk_Colormap − retrieve information
from Tk’s local data structure

SYNOPSIS
#include <tk.h>

Window
Tk_WindowId (tkwin)

Tk_Window
Tk_Parent(tkwin)

Display∗
Tk_Display(tkwin)

char∗
Tk_DisplayName(tkwin)

int
Tk_ScreenNumber(tkwin)

Screen∗
Tk_Screen(tkwin)

int
Tk_X (tkwin)

int
Tk_Y (tkwin)

int
Tk_Width (tkwin)

int
Tk_Height(tkwin)

XWindowChanges∗
Tk_Changes(tkwin)

XSetWindowAttributes∗
Tk_Attributes (tkwin)

int
Tk_IsMapped(tkwin)

int
Tk_IsTopLevel(tkwin)

int

Tk Last change: 1

Tk Library Procedures Tk_WindowId (3)

Tk_ReqWidth (tkwin)

int
Tk_ReqHeight(tkwin)

int
Tk_InternalBorderWidth (tkwin)

Visual ∗
Tk_Visual(tkwin)

int
Tk_Depth(tkwin)

Colormap
Tk_Colormap(tkwin)

ARGUMENTS
Tk_Window tkwin (in) Token for window.

DESCRIPTION
Tk_WindowID and the other names listed above are all macros that return fields from Tk’s local data
structure fortkwin. None of these macros requires any interaction with the server; it is safe to assume that
all are fast.

Tk_WindowId returns the X identifier fortkwin, or NULL if no X window has been created fortkwin yet.

Tk_Parent returns Tk’s token for the logical parent oftkwin. The parent is the token that was specified
whentkwinwas created, or NULL for main windows.

Tk_Display returns a pointer to the Xlib display structure corresponding totkwin. Tk_DisplayName
returns an ASCII string identifyingtkwin’s display. Tk_ScreenNumberreturns the index oftkwin’s screen
among all the screens oftkwin’s display. Tk_Screenreturns a pointer to the Xlib structure corresponding
to tkwin’s screen.

Tk_X , Tk_Y , Tk_Width , andTk_Height return information abouttkwin’s location within its parent and
its size. The location information refers to the upper-left pixel in the window, or its border if there is one.
The width and height information refers to the interior size of the window, not including any border.
Tk_Changesreturns a pointer to a structure containing all of the above information plus a few other fields.
Tk_Attributes returns a pointer to an XSetWindowAttributes structure describing all of the attributes of
the tkwin’s window, such as background pixmap, event mask, and so on (Tk keeps track of all this informa-
tion as it is changed by the application). Note: it is essential that applications use Tk procedures like
Tk_ResizeWindow instead of X procedures likeXResizeWindow, so that Tk can keep its data structures
up-to-date.

Tk_IsMapped returns a non-zero value iftkwin is mapped and zero iftkwin isn’t mapped.

Tk_IsTopLevel returns a non-zero value iftkwin is a top-level window (its X parent is the root window of
the screen) and zero iftkwin isn’t a top-level window.

Tk_ReqWidth and Tk_ReqHeight return information about the window’s requested size. These values
correspond to the last call toTk_GeometryRequestfor tkwin.

Tk_InternalBorderWidth returns the width of internal border that has been requested fortkwin, or 0 if no
internal border was requested. The return value is simply the last value passed toTk_SetInternalBorder
for tkwin.

Tk Last change: 2

Tk Library Procedures Tk_WindowId (3)

Tk_Visual, Tk_Depth, andTk_Colormap return information about the visual characteristics of a window.
Tk_Visual returns the visual type for the window,Tk_Depth returns the number of bits per pixel, and
Tk_Colormap returns the current colormap for the window. The visual characteristics are normally set
from the defaults for the window’s screen, but they may be overridden by callingTk_SetWindowVisual.

KEYWORDS
attributes, colormap, depth, display, height, geometry manager, identifier, mapped, requested size, screen,
top-level, visual, width, window, x, y

Tk Last change: 3

Tcl Applications

Tcl Applications

Page 1

tclsh Simple shell containing Tcl interpreter

Tcl Built-In Commands

Tcl Built-In Commands

Page 1

Http Client-side implementation of the HTTP/1.0 protocol.
Safe Base A mechanism for creating and manipulating safe interpreters.
Tcl Summary of Tcl language syntax.
after Execute a command after a time delay
append Append to variable
array Manipulate array variables
bgerror Command invoked to process background errors
binary Insert and extract fields from binary strings
break Abort looping command
case Evaluate one of several scripts, depending on a given value
catch Evaluate script and trap exceptional returns
cd Change working directory
clock Obtain and manipulate time
close Close an open channel.
concat Join lists together
continue Skip to the next iteration of a loop
eof Check for end of file condition on channel
error Generate an error
eval Evaluate a Tcl script
exec Invoke subprocess(es)
exit End the application
expr Evaluate an expression
fblocked Test whether the last input operation exhausted all available input
fconfigure Set and get options on a channel
fcopy Copy data from one channel to another.
file Manipulate file names and attributes
fileevent Execute a script when a channel becomes readable or writable
filename File name conventions supported by Tcl commands
flush Flush buffered output for a channel
for ‘‘For’’ loop
foreach Iterate over all elements in one or more lists
format Format a string in the style of sprintf
gets Read a line from a channel
glob Return names of files that match patterns
global Access global variables
history Manipulate the history list
if Execute scripts conditionally
incr Increment the value of a variable

Tcl Built-In Commands

Tcl Built-In Commands

Page 2

info Return information about the state of the Tcl interpreter
interp Create and manipulate Tcl interpreters
join Create a string by joining together list elements
lappend Append list elements onto a variable
library standard library of Tcl procedures
lindex Retrieve an element from a list
linsert Insert elements into a list
list Create a list
llength Count the number of elements in a list
load Load machine code and initialize new commands.
lrange Return one or more adjacent elements from a list
lreplace Replace elements in a list with new elements
lsearch See if a list contains a particular element
lsort Sort the elements of a list
namespace create and manipulate contexts for commands and variables
open Open a file-based or command pipeline channel
package Facilities for package loading and version control
pid Retrieve process id(s)
pkg_mkIndex Build an index for automatic loading of packages
proc Create a Tcl procedure
puts Write to a channel
pwd Return the current working directory
read Read from a channel
regexp Match a regular expression against a string
registry Manipulate the Windows registry
regsub Perform substitutions based on regular expression pattern matching
rename Rename or delete a command
resource Manipulate Macintosh resources
return Return from a procedure
scan Parse string using conversion specifiers in the style of sscanf
seek Change the access position for an open channel
set Read and write variables
socket Open a TCP network connection
source Evaluate a file or resource as a Tcl script
split Split a string into a proper Tcl list
string Manipulate strings
subst Perform backslash, command, and variable substitutions
switch Evaluate one of several scripts, depending on a given value

Tcl Built-In Commands

Tcl Built-In Commands

Page 3

tclvars Variables used by Tcl
tell Return current access position for an open channel
time Time the execution of a script
trace Monitor variable accesses
unknown Handle attempts to use non-existent commands
unset Delete variables
update Process pending events and idle callbacks
uplevel Execute a script in a different stack frame
upvar Create link to variable in a different stack frame
variable create and initialize a namespace variable
vwait Process events until a variable is written
while Execute script repeatedly as long as a condition is met

Tcl Library Procedures

Tcl Library Procedures

Page 1

TclConcatObj manipulate Tcl objects as strings
Tcl_AddErrorInfo record information about errors
Tcl_AddObjErrorInfo record information about errors
Tcl_Alloc allocate or free heap memory
Tcl_AllowExceptions allow all exceptions in next script evaluation
Tcl_AppInit perform application-specific initialization
Tcl_AppendAllObjTypesmanipulate Tcl object types
Tcl_AppendElement manipulate Tcl result
Tcl_AppendResult manipulate Tcl result
Tcl_AppendStringsToObmanipulate Tcl objects as strings
Tcl_AppendToObj manipulate Tcl objects as strings
Tcl_AsyncCreate handle asynchronous events
Tcl_AsyncDelete handle asynchronous events
Tcl_AsyncInvoke handle asynchronous events
Tcl_AsyncMark handle asynchronous events
Tcl_BackgroundError report Tcl error that occurred in background processing
Tcl_Backslash parse a backslash sequence
Tcl_BadChannelOptionprocedures for creating and manipulating channels
Tcl_CallWhenDeleted Arrange for callback when interpreter is deleted
Tcl_CancelIdleCall invoke a procedure when there are no pending events
Tcl_Close buffered I/O facilities using channels
Tcl_CommandComplete Check for unmatched braces in a Tcl command
Tcl_Concat concatenate a collection of strings
Tcl_ConvertElement manipulate Tcl lists
Tcl_ConvertToType manipulate Tcl object types
Tcl_CreateAlias manage multiple Tcl interpreters, aliases and hidden commands.
Tcl_CreateAliasObj manage multiple Tcl interpreters, aliases and hidden commands.
Tcl_CreateChannel procedures for creating and manipulating channels
Tcl_CreateChannelHandcall a procedure when a channel becomes readable or writable
Tcl_CreateCloseHandlearrange for callbacks when channels are closed
Tcl_CreateCommand implement new commands in C
Tcl_CreateEventSourcethe event queue and notifier interfaces
Tcl_CreateExitHandlerend the application (and invoke exit handlers)
Tcl_CreateFileHandlerassociate procedure callbacks with files or devices (Unix only)
Tcl_CreateHashEntry procedures to manage hash tables
Tcl_CreateInterp create and delete Tcl command interpreters
Tcl_CreateMathFunc Define a new math function for expressions
Tcl_CreateObjCommandimplement new commands in C

Tcl Library Procedures

Tcl Library Procedures

Page 2

Tcl_CreateSlave manage multiple Tcl interpreters, aliases and hidden commands.
Tcl_CreateTimerHandlecall a procedure at a given time
Tcl_CreateTrace arrange for command execution to be traced
Tcl_DStringAppend manipulate dynamic strings
Tcl_DStringAppendElemmanipulate dynamic strings
Tcl_DStringEndSublistmanipulate dynamic strings
Tcl_DStringFree manipulate dynamic strings
Tcl_DStringGetResultmanipulate dynamic strings
Tcl_DStringInit manipulate dynamic strings
Tcl_DStringLength manipulate dynamic strings
Tcl_DStringResult manipulate dynamic strings
Tcl_DStringSetLengthmanipulate dynamic strings
Tcl_DStringStartSublmanipulate dynamic strings
Tcl_DStringValue manipulate dynamic strings
Tcl_DecrRefCount manipulate Tcl objects
Tcl_DeleteAssocData manage associations of string keys and user specified data with Tcl interp
Tcl_DeleteChannelHandcall a procedure when a channel becomes readable or writable
Tcl_DeleteCloseHandlearrange for callbacks when channels are closed
Tcl_DeleteCommand implement new commands in C
Tcl_DeleteCommandFromimplement new commands in C
Tcl_DeleteEventSourcethe event queue and notifier interfaces
Tcl_DeleteEvents the event queue and notifier interfaces
Tcl_DeleteExitHandlerend the application (and invoke exit handlers)
Tcl_DeleteFileHandlerassociate procedure callbacks with files or devices (Unix only)
Tcl_DeleteHashEntry procedures to manage hash tables
Tcl_DeleteHashTable procedures to manage hash tables
Tcl_DeleteInterp create and delete Tcl command interpreters
Tcl_DeleteTimerHandlecall a procedure at a given time
Tcl_DeleteTrace arrange for command execution to be traced
Tcl_DetachPids manage child processes in background
Tcl_DoOneEvent wait for events and invoke event handlers
Tcl_DoWhenIdle invoke a procedure when there are no pending events
Tcl_DontCallWhenDeletArrange for callback when interpreter is deleted
Tcl_DuplicateObj manipulate Tcl objects
Tcl_Eof buffered I/O facilities using channels
Tcl_Eval execute Tcl commands
Tcl_EvalFile execute Tcl commands
Tcl_EvalObj execute Tcl commands

Tcl Library Procedures

Tcl Library Procedures

Page 3

Tcl_EventuallyFree avoid freeing storage while it’s being used
Tcl_Exit end the application (and invoke exit handlers)
Tcl_ExposeCommand manage multiple Tcl interpreters, aliases and hidden commands.
Tcl_ExprBoolean evaluate an expression
Tcl_ExprBooleanObj evaluate an expression
Tcl_ExprDouble evaluate an expression
Tcl_ExprDoubleObj evaluate an expression
Tcl_ExprLong evaluate an expression
Tcl_ExprLongObj evaluate an expression
Tcl_ExprObj evaluate an expression
Tcl_ExprString evaluate an expression
Tcl_Finalize end the application (and invoke exit handlers)
Tcl_FindExecutable identify or return the name of the binary file containing the application
Tcl_FindHashEntry procedures to manage hash tables
Tcl_FirstHashEntry procedures to manage hash tables
Tcl_Flush buffered I/O facilities using channels
Tcl_Free allocate or free heap memory
Tcl_GetAlias manage multiple Tcl interpreters, aliases and hidden commands.
Tcl_GetAliasObj manage multiple Tcl interpreters, aliases and hidden commands.
Tcl_GetAssocData manage associations of string keys and user specified data with Tcl interp
Tcl_GetBoolean convert from string to integer, double, or boolean
Tcl_GetBooleanFromObjmanipulate Tcl objects as boolean values
Tcl_GetChannel buffered I/O facilities using channels
Tcl_GetChannelBufferSprocedures for creating and manipulating channels
Tcl_GetChannelHandleprocedures for creating and manipulating channels
Tcl_GetChannelInstancprocedures for creating and manipulating channels
Tcl_GetChannelMode procedures for creating and manipulating channels
Tcl_GetChannelName procedures for creating and manipulating channels
Tcl_GetChannelOptionbuffered I/O facilities using channels
Tcl_GetChannelType procedures for creating and manipulating channels
Tcl_GetCommandInfo implement new commands in C
Tcl_GetCommandName implement new commands in C
Tcl_GetDouble convert from string to integer, double, or boolean
Tcl_GetDoubleFromObjmanipulate Tcl objects as floating-point values
Tcl_GetErrno manipulate errno to store and retrieve error codes
Tcl_GetHashKey procedures to manage hash tables
Tcl_GetHashValue procedures to manage hash tables
Tcl_GetIndexFromObj lookup string in table of keywords

Tcl Library Procedures

Tcl Library Procedures

Page 4

Tcl_GetInt convert from string to integer, double, or boolean
Tcl_GetIntFromObj manipulate Tcl objects as integers
Tcl_GetInterpPath manage multiple Tcl interpreters, aliases and hidden commands.
Tcl_GetLongFromObj manipulate Tcl objects as integers
Tcl_GetMaster manage multiple Tcl interpreters, aliases and hidden commands.
Tcl_GetNameOfExecutabidentify or return the name of the binary file containing the application
Tcl_GetObjResult manipulate Tcl result
Tcl_GetObjType manipulate Tcl object types
Tcl_GetOpenFile Get a standard IO File * handle from a channel. (Unix only)
Tcl_GetPathType manipulate platform-dependent file paths
Tcl_GetServiceMode the event queue and notifier interfaces
Tcl_GetSlave manage multiple Tcl interpreters, aliases and hidden commands.
Tcl_GetStdChannel procedures for retrieving and replacing the standard channels
Tcl_GetStringFromObjmanipulate Tcl objects as strings
Tcl_GetStringResult manipulate Tcl result
Tcl_GetVar manipulate Tcl variables
Tcl_GetVar2 manipulate Tcl variables
Tcl_Gets buffered I/O facilities using channels
Tcl_GlobalEval execute Tcl commands
Tcl_GlobalEvalObj execute Tcl commands
Tcl_HashStats procedures to manage hash tables
Tcl_HideCommand manage multiple Tcl interpreters, aliases and hidden commands.
Tcl_IncrRefCount manipulate Tcl objects
Tcl_InitHashTable procedures to manage hash tables
Tcl_InputBlocked buffered I/O facilities using channels
Tcl_InputBuffered buffered I/O facilities using channels
Tcl_Interp client-visible fields of interpreter structures
Tcl_InterpDeleted create and delete Tcl command interpreters
Tcl_IsSafe manage multiple Tcl interpreters, aliases and hidden commands.
Tcl_IsShared manipulate Tcl objects
Tcl_JoinPath manipulate platform-dependent file paths
Tcl_LinkVar link Tcl variable to C variable
Tcl_ListObjAppendElemmanipulate Tcl objects as lists
Tcl_ListObjAppendListmanipulate Tcl objects as lists
Tcl_ListObjGetElementmanipulate Tcl objects as lists
Tcl_ListObjIndex manipulate Tcl objects as lists
Tcl_ListObjLength manipulate Tcl objects as lists
Tcl_ListObjReplace manipulate Tcl objects as lists

Tcl Library Procedures

Tcl Library Procedures

Page 5

Tcl_Main main program for Tcl-based applications
Tcl_MakeFileChannel buffered I/O facilities using channels
Tcl_MakeSafe manage multiple Tcl interpreters, aliases and hidden commands.
Tcl_MakeTcpClientChanprocedures to open channels using TCP sockets
Tcl_Merge manipulate Tcl lists
Tcl_NewBooleanObj manipulate Tcl objects as boolean values
Tcl_NewDoubleObj manipulate Tcl objects as floating-point values
Tcl_NewIntObj manipulate Tcl objects as integers
Tcl_NewListObj manipulate Tcl objects as lists
Tcl_NewLongObj manipulate Tcl objects as integers
Tcl_NewObj manipulate Tcl objects
Tcl_NewStringObj manipulate Tcl objects as strings
Tcl_NextHashEntry procedures to manage hash tables
Tcl_NotifyChannel procedures for creating and manipulating channels
Tcl_ObjGetVar2 manipulate Tcl variables
Tcl_ObjSetVar2 manipulate Tcl variables
Tcl_OpenCommandChannebuffered I/O facilities using channels
Tcl_OpenFileChannel buffered I/O facilities using channels
Tcl_OpenTcpClient procedures to open channels using TCP sockets
Tcl_OpenTcpServer procedures to open channels using TCP sockets
Tcl_PkgProvide package version control
Tcl_PkgRequire package version control
Tcl_PosixError record information about errors
Tcl_Preserve avoid freeing storage while it’s being used
Tcl_PrintDouble Convert floating value to string
Tcl_QueueEvent the event queue and notifier interfaces
Tcl_Read buffered I/O facilities using channels
Tcl_Realloc allocate or free heap memory
Tcl_ReapDetachedProcsmanage child processes in background
Tcl_RecordAndEval save command on history list before evaluating
Tcl_RecordAndEvalObjsave command on history list before evaluating
Tcl_RegExpCompile Pattern matching with regular expressions
Tcl_RegExpExec Pattern matching with regular expressions
Tcl_RegExpMatch Pattern matching with regular expressions
Tcl_RegExpRange Pattern matching with regular expressions
Tcl_RegisterChannel buffered I/O facilities using channels
Tcl_RegisterObjType manipulate Tcl object types
Tcl_Release avoid freeing storage while it’s being used

Tcl Library Procedures

Tcl Library Procedures

Page 6

Tcl_ResetResult manipulate Tcl result
Tcl_ScanElement manipulate Tcl lists
Tcl_Seek buffered I/O facilities using channels
Tcl_ServiceAll the event queue and notifier interfaces
Tcl_ServiceEvent the event queue and notifier interfaces
Tcl_SetAssocData manage associations of string keys and user specified data with Tcl interp
Tcl_SetBooleanObj manipulate Tcl objects as boolean values
Tcl_SetChannelBufferSprocedures for creating and manipulating channels
Tcl_SetChannelOptionbuffered I/O facilities using channels
Tcl_SetCommandInfo implement new commands in C
Tcl_SetDefaultTranslaprocedures for creating and manipulating channels
Tcl_SetDoubleObj manipulate Tcl objects as floating-point values
Tcl_SetErrno manipulate errno to store and retrieve error codes
Tcl_SetErrorCode record information about errors
Tcl_SetHashValue procedures to manage hash tables
Tcl_SetIntObj manipulate Tcl objects as integers
Tcl_SetListObj manipulate Tcl objects as lists
Tcl_SetLongObj manipulate Tcl objects as integers
Tcl_SetMaxBlockTime the event queue and notifier interfaces
Tcl_SetObjLength manipulate Tcl objects as strings
Tcl_SetObjResult manipulate Tcl result
Tcl_SetRecursionLimitset maximum allowable nesting depth in interpreter
Tcl_SetResult manipulate Tcl result
Tcl_SetServiceMode the event queue and notifier interfaces
Tcl_SetStdChannel procedures for retrieving and replacing the standard channels
Tcl_SetStringObj manipulate Tcl objects as strings
Tcl_SetTimer the event queue and notifier interfaces
Tcl_SetVar manipulate Tcl variables
Tcl_SetVar2 manipulate Tcl variables
Tcl_Sleep delay execution for a given number of milliseconds
Tcl_SplitList manipulate Tcl lists
Tcl_SplitPath manipulate platform-dependent file paths
Tcl_StaticPackage make a statically linked package available via the Bload R command
Tcl_StringMatch test whether a string matches a pattern
Tcl_Tell buffered I/O facilities using channels
Tcl_TraceVar monitor accesses to a variable
Tcl_TraceVar2 monitor accesses to a variable
Tcl_TranslateFileNameconvert file name to native form and replace tilde with home directory

Tcl Library Procedures

Tcl Library Procedures

Page 7

Tcl_UnlinkVar link Tcl variable to C variable
Tcl_UnregisterChannebuffered I/O facilities using channels
Tcl_UnsetVar manipulate Tcl variables
Tcl_UnsetVar2 manipulate Tcl variables
Tcl_UntraceVar monitor accesses to a variable
Tcl_UntraceVar2 monitor accesses to a variable
Tcl_UpVar link one variable to another
Tcl_UpVar2 link one variable to another
Tcl_UpdateLinkedVar link Tcl variable to C variable
Tcl_VarEval execute Tcl commands
Tcl_VarTraceInfo monitor accesses to a variable
Tcl_VarTraceInfo2 monitor accesses to a variable
Tcl_WaitForEvent the event queue and notifier interfaces
Tcl_Write buffered I/O facilities using channels
Tcl_WrongNumArgs generate standard error message for wrong number of arguments

Tk Applications

Tk Applications

Page 1

wish Simple windowing shell

Tk Built-In Commands

Tk Built-In Commands

Page 1

bell Ring a display’s bell
bind Arrange for X events to invoke Tcl scripts
bindtags Determine which bindings apply to a window, and order of evaluation
bitmap Images that display two colors
button Create and manipulate button widgets
canvas Create and manipulate canvas widgets
checkbutton Create and manipulate checkbutton widgets
clipboard Manipulate Tk clipboard
destroy Destroy one or more windows
entry Create and manipulate entry widgets
event Miscellaneous event facilities
focus Manage the input focus
font Create and inspect fonts.
frame Create and manipulate frame widgets
grab Confine pointer and keyboard events to a window sub-tree
grid Geometry manager that arranges widgets in a grid
image Create and manipulate images
label Create and manipulate label widgets
listbox Create and manipulate listbox widgets
loadTk Load Tk into a safe interpreter.
lower Change a window’s position in the stacking order
menu Create and manipulate menu widgets
menubutton Create and manipulate menubutton widgets
message Create and manipulate message widgets
option Add/retrieve window options to/from the option database
options Standard options supported by widgets
pack Obsolete syntax for packer geometry manager
pack Geometry manager that packs around edges of cavity
photo Full-color images
place Geometry manager for fixed or rubber-sheet placement
radiobutton Create and manipulate radiobutton widgets
raise Change a window’s position in the stacking order
scale Create and manipulate scale widgets
scrollbar Create and manipulate scrollbar widgets
selection Manipulate the X selection
send Execute a command in a different application
text Create and manipulate text widgets
tk Manipulate Tk internal state

Tk Built-In Commands

Tk Built-In Commands

Page 2

tk_bindForTraversal Obsolete support for menu bars
tk_bisque Modify the Tk color palette
tk_chooseColor pops up a dialog box for the user to select a color.
tk_dialog Create modal dialog and wait for response
tk_focusFollowsMouseUtility procedures for managing the input focus.
tk_focusNext Utility procedures for managing the input focus.
tk_focusPrev Utility procedures for managing the input focus.
tk_getOpenFile pop up a dialog box for the user to select a file to open or save.
tk_getSaveFile pop up a dialog box for the user to select a file to open or save.
tk_menuBar Obsolete support for menu bars
tk_messageBox pops up a message window and waits for user response.
tk_optionMenu Create an option menubutton and its menu
tk_popup Post a popup menu
tk_setPalette Modify the Tk color palette
tkerror Command invoked to process background errors
tkvars Variables used or set by Tk
tkwait Wait for variable to change or window to be destroyed
toplevel Create and manipulate toplevel widgets
winfo Return window-related information
wm Communicate with window manager

Tk Library Procedures

Tk Library Procedures

Page 1

Tk_3DBorderColor draw borders with three-dimensional appearance
Tk_3DBorderGC draw borders with three-dimensional appearance
Tk_3DHorizontalBeveldraw borders with three-dimensional appearance
Tk_3DVerticalBevel draw borders with three-dimensional appearance
Tk_Attributes retrieve information from Tk’s local data structure
Tk_BindEvent invoke scripts in response to X events
Tk_CanvasDrawableCoorutility procedures for canvas type managers
Tk_CanvasEventuallyReutility procedures for canvas type managers
Tk_CanvasGetCoord utility procedures for canvas type managers
Tk_CanvasPsBitmap utility procedures for generating Postscript for canvases
Tk_CanvasPsColor utility procedures for generating Postscript for canvases
Tk_CanvasPsFont utility procedures for generating Postscript for canvases
Tk_CanvasPsPath utility procedures for generating Postscript for canvases
Tk_CanvasPsStipple utility procedures for generating Postscript for canvases
Tk_CanvasPsY utility procedures for generating Postscript for canvases
Tk_CanvasSetStippleOrutility procedures for canvas type managers
Tk_CanvasTagsOption utility procedures for canvas type managers
Tk_CanvasTextInfo additional information for managing text items in canvases
Tk_CanvasTkwin utility procedures for canvas type managers
Tk_CanvasWindowCoordsutility procedures for canvas type managers
Tk_ChangeWindowAttribchange window configuration or attributes
Tk_Changes retrieve information from Tk’s local data structure
Tk_CharBbox routines to measure and display single-font, multi-line, justified text.
Tk_Class set or retrieve a window’s class
Tk_ClearSelection Deselect a selection
Tk_ClipboardAppend Manage the clipboard
Tk_ClipboardClear Manage the clipboard
Tk_Colormap retrieve information from Tk’s local data structure
Tk_ComputeTextLayoutroutines to measure and display single-font, multi-line, justified text.
Tk_ConfigureInfo process configuration options for widgets
Tk_ConfigureValue process configuration options for widgets
Tk_ConfigureWidget process configuration options for widgets
Tk_ConfigureWindow change window configuration or attributes
Tk_CoordsToWindow Find window containing a point
Tk_CreateBinding invoke scripts in response to X events
Tk_CreateBindingTableinvoke scripts in response to X events
Tk_CreateErrorHandlerhandle X protocol errors
Tk_CreateEventHandlerassociate procedure callback with an X event

Tk Library Procedures

Tk Library Procedures

Page 2

Tk_CreateGenericHandassociate procedure callback with all X events
Tk_CreateImageType define new kind of image
Tk_CreateItemType define new kind of canvas item
Tk_CreatePhotoImageFodefine new file format for photo images
Tk_CreateSelHandler arrange to handle requests for a selection
Tk_CreateWindow create or delete window
Tk_CreateWindowFromPacreate or delete window
Tk_DefineBitmap maintain database of single-plane pixmaps
Tk_DefineCursor change window configuration or attributes
Tk_DeleteAllBindingsinvoke scripts in response to X events
Tk_DeleteBinding invoke scripts in response to X events
Tk_DeleteBindingTableinvoke scripts in response to X events
Tk_DeleteErrorHandlerhandle X protocol errors
Tk_DeleteEventHandlerassociate procedure callback with an X event
Tk_DeleteGenericHandassociate procedure callback with all X events
Tk_DeleteImage Destroy an image.
Tk_DeleteSelHandler arrange to handle requests for a selection
Tk_Depth retrieve information from Tk’s local data structure
Tk_DestroyWindow create or delete window
Tk_Display retrieve information from Tk’s local data structure
Tk_DisplayName retrieve information from Tk’s local data structure
Tk_DistanceToTextLayoroutines to measure and display single-font, multi-line, justified text.
Tk_Draw3DPolygon draw borders with three-dimensional appearance
Tk_Draw3DRectangle draw borders with three-dimensional appearance
Tk_DrawChars routines to measure and display simple single-line strings.
Tk_DrawFocusHighlightdraw the traversal highlight ring for a widget
Tk_DrawTextLayout routines to measure and display single-font, multi-line, justified text.
Tk_Fill3DPolygon draw borders with three-dimensional appearance
Tk_Fill3DRectangle draw borders with three-dimensional appearance
Tk_FindPhoto manipulate the image data stored in a photo image.
Tk_FontId accessor functions for fonts
Tk_FontMetrics accessor functions for fonts
Tk_Free3DBorder draw borders with three-dimensional appearance
Tk_FreeBitmap maintain database of single-plane pixmaps
Tk_FreeColor maintain database of colors
Tk_FreeColormap allocate and free colormaps
Tk_FreeCursor maintain database of cursors
Tk_FreeFont maintain database of fonts

Tk Library Procedures

Tk Library Procedures

Page 3

Tk_FreeGC maintain database of read-only graphics contexts
Tk_FreeImage use an image in a widget
Tk_FreeOptions process configuration options for widgets
Tk_FreePixmap allocate and free pixmaps
Tk_FreeTextLayout routines to measure and display single-font, multi-line, justified text.
Tk_FreeXId make X resource identifier available for reuse
Tk_GeometryRequest specify desired geometry or internal border for a window
Tk_Get3DBorder draw borders with three-dimensional appearance
Tk_GetAllBindings invoke scripts in response to X events
Tk_GetAnchor translate between strings and anchor positions
Tk_GetAtomName manage cache of X atoms
Tk_GetBinding invoke scripts in response to X events
Tk_GetBitmap maintain database of single-plane pixmaps
Tk_GetBitmapFromDatamaintain database of single-plane pixmaps
Tk_GetCapStyle translate between strings and cap styles
Tk_GetColor maintain database of colors
Tk_GetColorByValue maintain database of colors
Tk_GetColormap allocate and free colormaps
Tk_GetCursor maintain database of cursors
Tk_GetCursorFromDatamaintain database of cursors
Tk_GetFont maintain database of fonts
Tk_GetGC maintain database of read-only graphics contexts
Tk_GetImage use an image in a widget
Tk_GetImageMasterDatadefine new kind of image
Tk_GetItemTypes define new kind of canvas item
Tk_GetJoinStyle translate between strings and join styles
Tk_GetJustify translate between strings and justification styles
Tk_GetOption retrieve an option from the option database
Tk_GetPixels translate between strings and screen units
Tk_GetPixmap allocate and free pixmaps
Tk_GetRelief translate between strings and relief values
Tk_GetRootCoords Compute root-window coordinates of window
Tk_GetScreenMM translate between strings and screen units
Tk_GetScrollInfo parse arguments for scrolling commands
Tk_GetSelection retrieve the contents of a selection
Tk_GetUid convert from string to unique identifier
Tk_GetVRootGeometry Get location and size of virtual root for window
Tk_GetVisual translate from string to visual

Tk Library Procedures

Tk Library Procedures

Page 4

Tk_HandleEvent invoke event handlers for window system events
Tk_Height retrieve information from Tk’s local data structure
Tk_IdToWindow Find Tk’s window information for an X window
Tk_ImageChanged notify widgets that image needs to be redrawn
Tk_Init add Tk to an interpreter and make a new Tk application.
Tk_InternAtom manage cache of X atoms
Tk_InternalBorderWidtretrieve information from Tk’s local data structure
Tk_IntersectTextLayouroutines to measure and display single-font, multi-line, justified text.
Tk_IsMapped retrieve information from Tk’s local data structure
Tk_IsTopLevel retrieve information from Tk’s local data structure
Tk_Main main program for Tk-based applications
Tk_MainLoop loop for events until all windows are deleted
Tk_MainWindow find the main window for an application
Tk_MaintainGeometry maintain geometry of one window relative to another
Tk_MakeWindowExist create or delete window
Tk_ManageGeometry arrange to handle geometry requests for a window
Tk_MapWindow map or unmap a window
Tk_MeasureChars routines to measure and display simple single-line strings.
Tk_MoveResizeWindow change window configuration or attributes
Tk_MoveToplevelWindowAdjust the position of a top-level window
Tk_MoveWindow change window configuration or attributes
Tk_Name convert between names and window tokens
Tk_NameOf3DBorder draw borders with three-dimensional appearance
Tk_NameOfAnchor translate between strings and anchor positions
Tk_NameOfBitmap maintain database of single-plane pixmaps
Tk_NameOfCapStyle translate between strings and cap styles
Tk_NameOfColor maintain database of colors
Tk_NameOfCursor maintain database of cursors
Tk_NameOfFont maintain database of fonts
Tk_NameOfImage Return name of image.
Tk_NameOfJoinStyle translate between strings and join styles
Tk_NameOfJustify translate between strings and justification styles
Tk_NameOfRelief translate between strings and relief values
Tk_NameToWindow convert between names and window tokens
Tk_Offset process configuration options for widgets
Tk_OwnSelection make a window the owner of the primary selection
Tk_Parent retrieve information from Tk’s local data structure
Tk_ParseArgv process command-line options

Tk Library Procedures

Tk Library Procedures

Page 5

Tk_PathName convert between names and window tokens
Tk_PhotoBlank manipulate the image data stored in a photo image.
Tk_PhotoExpand manipulate the image data stored in a photo image.
Tk_PhotoGetImage manipulate the image data stored in a photo image.
Tk_PhotoGetSize manipulate the image data stored in a photo image.
Tk_PhotoPutBlock manipulate the image data stored in a photo image.
Tk_PhotoPutZoomedBlocmanipulate the image data stored in a photo image.
Tk_PhotoSetSize manipulate the image data stored in a photo image.
Tk_PointToChar routines to measure and display single-font, multi-line, justified text.
Tk_PostscriptFontNameaccessor functions for fonts
Tk_QueueWindowEvent Add a window event to the Tcl event queue
Tk_RedrawImage use an image in a widget
Tk_ReqHeight retrieve information from Tk’s local data structure
Tk_ReqWidth retrieve information from Tk’s local data structure
Tk_ResizeWindow change window configuration or attributes
Tk_RestackWindow Change a window’s position in the stacking order
Tk_RestrictEvents filter and selectively delay X events
Tk_Screen retrieve information from Tk’s local data structure
Tk_ScreenNumber retrieve information from Tk’s local data structure
Tk_SetAppName Set the name of an application for ‘‘send’’ commands
Tk_SetBackgroundFromBdraw borders with three-dimensional appearance
Tk_SetClass set or retrieve a window’s class
Tk_SetGrid control the grid for interactive resizing
Tk_SetInternalBorderspecify desired geometry or internal border for a window
Tk_SetWindowBackgrounchange window configuration or attributes
Tk_SetWindowBackgrounchange window configuration or attributes
Tk_SetWindowBorder change window configuration or attributes
Tk_SetWindowBorderPixchange window configuration or attributes
Tk_SetWindowBorderWidchange window configuration or attributes
Tk_SetWindowColormapchange window configuration or attributes
Tk_SetWindowVisual change visual characteristics of window
Tk_SizeOfBitmap maintain database of single-plane pixmaps
Tk_SizeOfImage use an image in a widget
Tk_StrictMotif Return value of tk_strictMotif variable
Tk_TextLayoutToPostscroutines to measure and display single-font, multi-line, justified text.
Tk_TextWidth routines to measure and display simple single-line strings.
Tk_Uid convert from string to unique identifier
Tk_UndefineCursor change window configuration or attributes

Tk Library Procedures

Tk Library Procedures

Page 6

Tk_UnderlineChars routines to measure and display simple single-line strings.
Tk_UnderlineTextLayouroutines to measure and display single-font, multi-line, justified text.
Tk_UnmaintainGeometrymaintain geometry of one window relative to another
Tk_UnmapWindow map or unmap a window
Tk_UnsetGrid control the grid for interactive resizing
Tk_Visual retrieve information from Tk’s local data structure
Tk_Width retrieve information from Tk’s local data structure
Tk_WindowId retrieve information from Tk’s local data structure
Tk_X retrieve information from Tk’s local data structure
Tk_Y retrieve information from Tk’s local data structure

[incr Widgets]

[incr Widgets]

Page 1

buttonbox Create and manipulate a manager widget for buttons
calendar Create and manipulate a monthly calendar
canvasprintbox Create and manipulate a canvas print box widget
canvasprintdialog Create and manipulate a canvas print dialog widget
checkbox Create and manipulate a checkbox widget
combobox Create and manipulate combination box widgets
dateentry Create and manipulate a dateentry widget
datefield Create and manipulate a date field widget
dialog Create and manipulate a dialog widget
dialogshell Create and manipulate a dialog shell widget
disjointlistbox Create and manipulate a disjointlistbox widget
entryfield Create and manipulate a entry field widget
extfileselectionbox Create and manipulate a file selection box widget
extfileselectiondialoCreate and manipulate a file selection dialog widget
feedback Create and manipulate a feedback widget to display feedback on the curre
fileselectionbox Create and manipulate a file selection box widget
fileselectiondialog Create and manipulate a file selection dialog widget
finddialog Create and manipulate a find dialog widget
hierarchy Create and manipulate a hierarchy widget
hyperhelp Create and manipulate a hyperhelp widget
labeledframe Create and manipulate a labeled frame widget
labeledwidget Create and manipulate a labeled widget
mainwindow Create and manipulate a mainwindow widget
menubar Create and manipulate menubar menu widgets
messagebox Create and manipulate a messagebox text widget
messagedialog Create and manipulate a message dialog widget
notebook create and manipulate notebook widgets
optionmenu Create and manipulate a option menu widget
panedwindow Create and manipulate a paned window widget
promptdialog Create and manipulate a prompt dialog widget
pushbutton Create and manipulate a push button widget
radiobox Create and manipulate a radiobox widget
scopedobject Create and manipulate a scoped [incr Tcl] class object.
scrolledcanvas Create and manipulate scrolled canvas widgets
scrolledframe Create and manipulate scrolled frame widgets
scrolledhtml Create and manipulate a scrolled text widget with the capability of displa
scrolledlistbox Create and manipulate scrolled listbox widgets
scrolledtext Create and manipulate a scrolled text widget

[incr Widgets]

[incr Widgets]

Page 2

selectionbox Create and manipulate a selection box widget
selectiondialog Create and manipulate a selection dialog widget
shell Create and manipulate a shell widget
spindate Create and manipulate time spinner widgets
spinint Create and manipulate a integer spinner widget
spinner Create and manipulate a spinner widget
spintime Create and manipulate time spinner widgets
tabnotebook create and manipulate tabnotebook widgets
tabset create and manipulate tabs as as set
timeentry Create and manipulate a timeentry widget
timefield Create and manipulate a time field widget
toolbar Create and manipulate a tool bar
watch Create and manipulate time with a watch widgets

[incr Tcl]

[incr Tcl]

Page 1

body change the body for a class method/proc
class create a class of objects
code capture the namespace context for a code fragment
configbody change the "config" code for a public variable
delete delete things in the interpreter
ensemble create or modify a composite command
find search for classes and objects
itcl object-oriented extensions to Tcl
itcl_class create a class of objects (obsolete)
itcl_info query info regarding classes and objects (obsolete)
itclsh Simple shell for [incr Tcl]
itclvars variables used by [incr Tcl]
local create an object local to a procedure
scope capture the namespace context for a variable

[incr Tk]

[incr Tk]

Page 1

Archetype base class for all [incr Tk] mega-widgets
Toplevel base class for mega-widgets in a top-level window
Widget base class for mega-widgets within a frame
itk framework for building mega-widgets in Tcl/Tk
itkvars variables used by [incr Tk]
itkwish Simple windowing shell for [incr Tcl] / [incr Tk]
usual access default option-handling commands .br for a mega-widget compon

	Cover Page
	Tcl Applications
	tclsh

	Tcl Built-In Commands
	Http
	Safe Base
	Tcl
	after
	append
	array
	bgerror
	binary
	break
	case
	catch
	cd
	clock
	close
	concat
	continue
	eof
	error
	eval
	exec
	exit
	expr
	fblocked
	fconfigure
	fcopy
	file
	fileevent
	filename
	flush
	for
	foreach
	format
	gets
	glob
	global
	history
	if
	incr
	info
	interp
	join
	lappend
	library
	lindex
	linsert
	list
	llength
	load
	lrange
	lreplace
	lsearch
	lsort
	namespace
	open
	package
	pid
	pkg_mkIndex
	proc
	puts
	pwd
	read
	regexp
	registry
	regsub
	rename
	resource
	return
	scan
	seek
	set
	socket
	source
	split
	string
	subst
	switch
	tclvars
	tell
	time
	trace
	unknown
	unset
	update
	uplevel
	upvar
	variable
	vwait
	while

	Tcl Library Procedures
	TclConcatObj
	Tcl_AddErrorInfo
	Tcl_AddObjErrorInfo
	Tcl_Alloc
	Tcl_AllowExceptions
	Tcl_AppInit
	Tcl_AppendAllObjTypes
	Tcl_AppendElement
	Tcl_AppendResult
	Tcl_AppendStringsToObj
	Tcl_AppendToObj
	Tcl_AsyncCreate
	Tcl_AsyncDelete
	Tcl_AsyncInvoke
	Tcl_AsyncMark
	Tcl_BackgroundError
	Tcl_Backslash
	Tcl_BadChannelOption
	Tcl_CallWhenDeleted
	Tcl_CancelIdleCall
	Tcl_Close
	Tcl_CommandComplete
	Tcl_Concat
	Tcl_ConvertElement
	Tcl_ConvertToType
	Tcl_CreateAlias
	Tcl_CreateAliasObj
	Tcl_CreateChannel
	Tcl_CreateChannelHandler
	Tcl_CreateCloseHandler
	Tcl_CreateCommand
	Tcl_CreateEventSource
	Tcl_CreateExitHandler
	Tcl_CreateFileHandler
	Tcl_CreateHashEntry
	Tcl_CreateInterp
	Tcl_CreateMathFunc
	Tcl_CreateObjCommand
	Tcl_CreateSlave
	Tcl_CreateTimerHandler
	Tcl_CreateTrace
	Tcl_DStringAppend
	Tcl_DStringAppendElement
	Tcl_DStringEndSublist
	Tcl_DStringFree
	Tcl_DStringGetResult
	Tcl_DStringInit
	Tcl_DStringLength
	Tcl_DStringResult
	Tcl_DStringSetLength
	Tcl_DStringStartSublist
	Tcl_DStringValue
	Tcl_DecrRefCount
	Tcl_DeleteAssocData
	Tcl_DeleteChannelHandler
	Tcl_DeleteCloseHandler
	Tcl_DeleteCommand
	Tcl_DeleteCommandFromToken
	Tcl_DeleteEventSource
	Tcl_DeleteEvents
	Tcl_DeleteExitHandler
	Tcl_DeleteFileHandler
	Tcl_DeleteHashEntry
	Tcl_DeleteHashTable
	Tcl_DeleteInterp
	Tcl_DeleteTimerHandler
	Tcl_DeleteTrace
	Tcl_DetachPids
	Tcl_DoOneEvent
	Tcl_DoWhenIdle
	Tcl_DontCallWhenDeleted
	Tcl_DuplicateObj
	Tcl_Eof
	Tcl_Eval
	Tcl_EvalFile
	Tcl_EvalObj
	Tcl_EventuallyFree
	Tcl_Exit
	Tcl_ExposeCommand
	Tcl_ExprBoolean
	Tcl_ExprBooleanObj
	Tcl_ExprDouble
	Tcl_ExprDoubleObj
	Tcl_ExprLong
	Tcl_ExprLongObj
	Tcl_ExprObj
	Tcl_ExprString
	Tcl_Finalize
	Tcl_FindExecutable
	Tcl_FindHashEntry
	Tcl_FirstHashEntry
	Tcl_Flush
	Tcl_Free
	Tcl_GetAlias
	Tcl_GetAliasObj
	Tcl_GetAssocData
	Tcl_GetBoolean
	Tcl_GetBooleanFromObj
	Tcl_GetChannel
	Tcl_GetChannelBufferSize
	Tcl_GetChannelHandle
	Tcl_GetChannelInstanceData
	Tcl_GetChannelMode
	Tcl_GetChannelName
	Tcl_GetChannelOption
	Tcl_GetChannelType
	Tcl_GetCommandInfo
	Tcl_GetCommandName
	Tcl_GetDouble
	Tcl_GetDoubleFromObj
	Tcl_GetErrno
	Tcl_GetHashKey
	Tcl_GetHashValue
	Tcl_GetIndexFromObj
	Tcl_GetInt
	Tcl_GetIntFromObj
	Tcl_GetInterpPath
	Tcl_GetLongFromObj
	Tcl_GetMaster
	Tcl_GetNameOfExecutable
	Tcl_GetObjResult
	Tcl_GetObjType
	Tcl_GetOpenFile
	Tcl_GetPathType
	Tcl_GetServiceMode
	Tcl_GetSlave
	Tcl_GetStdChannel
	Tcl_GetStringFromObj
	Tcl_GetStringResult
	Tcl_GetVar
	Tcl_GetVar2
	Tcl_Gets
	Tcl_GlobalEval
	Tcl_GlobalEvalObj
	Tcl_HashStats
	Tcl_HideCommand
	Tcl_IncrRefCount
	Tcl_InitHashTable
	Tcl_InputBlocked
	Tcl_InputBuffered
	Tcl_Interp
	Tcl_InterpDeleted
	Tcl_IsSafe
	Tcl_IsShared
	Tcl_JoinPath
	Tcl_LinkVar
	Tcl_ListObjAppendElement
	Tcl_ListObjAppendList
	Tcl_ListObjGetElements
	Tcl_ListObjIndex
	Tcl_ListObjLength
	Tcl_ListObjReplace
	Tcl_Main
	Tcl_MakeFileChannel
	Tcl_MakeSafe
	Tcl_MakeTcpClientChannel
	Tcl_Merge
	Tcl_NewBooleanObj
	Tcl_NewDoubleObj
	Tcl_NewIntObj
	Tcl_NewListObj
	Tcl_NewLongObj
	Tcl_NewObj
	Tcl_NewStringObj
	Tcl_NextHashEntry
	Tcl_NotifyChannel
	Tcl_ObjGetVar2
	Tcl_ObjSetVar2
	Tcl_OpenCommandChannel
	Tcl_OpenFileChannel
	Tcl_OpenTcpClient
	Tcl_OpenTcpServer
	Tcl_PkgProvide
	Tcl_PkgRequire
	Tcl_PosixError
	Tcl_Preserve
	Tcl_PrintDouble
	Tcl_QueueEvent
	Tcl_Read
	Tcl_Realloc
	Tcl_ReapDetachedProcs
	Tcl_RecordAndEval
	Tcl_RecordAndEvalObj
	Tcl_RegExpCompile
	Tcl_RegExpExec
	Tcl_RegExpMatch
	Tcl_RegExpRange
	Tcl_RegisterChannel
	Tcl_RegisterObjType
	Tcl_Release
	Tcl_ResetResult
	Tcl_ScanElement
	Tcl_Seek
	Tcl_ServiceAll
	Tcl_ServiceEvent
	Tcl_SetAssocData
	Tcl_SetBooleanObj
	Tcl_SetChannelBufferSize
	Tcl_SetChannelOption
	Tcl_SetCommandInfo
	Tcl_SetDefaultTranslation
	Tcl_SetDoubleObj
	Tcl_SetErrno
	Tcl_SetErrorCode
	Tcl_SetHashValue
	Tcl_SetIntObj
	Tcl_SetListObj
	Tcl_SetLongObj
	Tcl_SetMaxBlockTime
	Tcl_SetObjLength
	Tcl_SetObjResult
	Tcl_SetRecursionLimit
	Tcl_SetResult
	Tcl_SetServiceMode
	Tcl_SetStdChannel
	Tcl_SetStringObj
	Tcl_SetTimer
	Tcl_SetVar
	Tcl_SetVar2
	Tcl_Sleep
	Tcl_SplitList
	Tcl_SplitPath
	Tcl_StaticPackage
	Tcl_StringMatch
	Tcl_Tell
	Tcl_TraceVar
	Tcl_TraceVar2
	Tcl_TranslateFileName
	Tcl_UnlinkVar
	Tcl_UnregisterChannel
	Tcl_UnsetVar
	Tcl_UnsetVar2
	Tcl_UntraceVar
	Tcl_UntraceVar2
	Tcl_UpVar
	Tcl_UpVar2
	Tcl_UpdateLinkedVar
	Tcl_VarEval
	Tcl_VarTraceInfo
	Tcl_VarTraceInfo2
	Tcl_WaitForEvent
	Tcl_Write
	Tcl_WrongNumArgs

	Tk Applications
	wish

	Tk Built-In Commands
	bell
	bind
	bindtags
	bitmap
	button
	canvas
	checkbutton
	clipboard
	destroy
	entry
	event
	focus
	font
	frame
	grab
	grid
	image
	label
	listbox
	loadTk
	lower
	menu
	menubutton
	message
	option
	options
	pack
	pack
	photo
	place
	radiobutton
	raise
	scale
	scrollbar
	selection
	send
	text
	tk
	tk_bindForTraversal
	tk_bisque
	tk_chooseColor
	tk_dialog
	tk_focusFollowsMouse
	tk_focusNext
	tk_focusPrev
	tk_getOpenFile
	tk_getSaveFile
	tk_menuBar
	tk_messageBox
	tk_optionMenu
	tk_popup
	tk_setPalette
	tkerror
	tkvars
	tkwait
	toplevel
	winfo
	wm

	Tk Library Procedures
	Tk_3DBorderColor
	Tk_3DBorderGC
	Tk_3DHorizontalBevel
	Tk_3DVerticalBevel
	Tk_Attributes
	Tk_BindEvent
	Tk_CanvasDrawableCoords
	Tk_CanvasEventuallyRedraw
	Tk_CanvasGetCoord
	Tk_CanvasPsBitmap
	Tk_CanvasPsColor
	Tk_CanvasPsFont
	Tk_CanvasPsPath
	Tk_CanvasPsStipple
	Tk_CanvasPsY
	Tk_CanvasSetStippleOrigin
	Tk_CanvasTagsOption
	Tk_CanvasTextInfo
	Tk_CanvasTkwin
	Tk_CanvasWindowCoords
	Tk_ChangeWindowAttributes
	Tk_Changes
	Tk_CharBbox
	Tk_Class
	Tk_ClearSelection
	Tk_ClipboardAppend
	Tk_ClipboardClear
	Tk_Colormap
	Tk_ComputeTextLayout
	Tk_ConfigureInfo
	Tk_ConfigureValue
	Tk_ConfigureWidget
	Tk_ConfigureWindow
	Tk_CoordsToWindow
	Tk_CreateBinding
	Tk_CreateBindingTable
	Tk_CreateErrorHandler
	Tk_CreateEventHandler
	Tk_CreateGenericHandler
	Tk_CreateImageType
	Tk_CreateItemType
	Tk_CreatePhotoImageFormat
	Tk_CreateSelHandler
	Tk_CreateWindow
	Tk_CreateWindowFromPath
	Tk_DefineBitmap
	Tk_DefineCursor
	Tk_DeleteAllBindings
	Tk_DeleteBinding
	Tk_DeleteBindingTable
	Tk_DeleteErrorHandler
	Tk_DeleteEventHandler
	Tk_DeleteGenericHandler
	Tk_DeleteImage
	Tk_DeleteSelHandler
	Tk_Depth
	Tk_DestroyWindow
	Tk_Display
	Tk_DisplayName
	Tk_DistanceToTextLayout
	Tk_Draw3DPolygon
	Tk_Draw3DRectangle
	Tk_DrawChars
	Tk_DrawFocusHighlight
	Tk_DrawTextLayout
	Tk_Fill3DPolygon
	Tk_Fill3DRectangle
	Tk_FindPhoto
	Tk_FontId
	Tk_FontMetrics
	Tk_Free3DBorder
	Tk_FreeBitmap
	Tk_FreeColor
	Tk_FreeColormap
	Tk_FreeCursor
	Tk_FreeFont
	Tk_FreeGC
	Tk_FreeImage
	Tk_FreeOptions
	Tk_FreePixmap
	Tk_FreeTextLayout
	Tk_FreeXId
	Tk_GeometryRequest
	Tk_Get3DBorder
	Tk_GetAllBindings
	Tk_GetAnchor
	Tk_GetAtomName
	Tk_GetBinding
	Tk_GetBitmap
	Tk_GetBitmapFromData
	Tk_GetCapStyle
	Tk_GetColor
	Tk_GetColorByValue
	Tk_GetColormap
	Tk_GetCursor
	Tk_GetCursorFromData
	Tk_GetFont
	Tk_GetGC
	Tk_GetImage
	Tk_GetImageMasterData
	Tk_GetItemTypes
	Tk_GetJoinStyle
	Tk_GetJustify
	Tk_GetOption
	Tk_GetPixels
	Tk_GetPixmap
	Tk_GetRelief
	Tk_GetRootCoords
	Tk_GetScreenMM
	Tk_GetScrollInfo
	Tk_GetSelection
	Tk_GetUid
	Tk_GetVRootGeometry
	Tk_GetVisual
	Tk_HandleEvent
	Tk_Height
	Tk_IdToWindow
	Tk_ImageChanged
	Tk_Init
	Tk_InternAtom
	Tk_InternalBorderWidth
	Tk_IntersectTextLayout
	Tk_IsMapped
	Tk_IsTopLevel
	Tk_Main
	Tk_MainLoop
	Tk_MainWindow
	Tk_MaintainGeometry
	Tk_MakeWindowExist
	Tk_ManageGeometry
	Tk_MapWindow
	Tk_MeasureChars
	Tk_MoveResizeWindow
	Tk_MoveToplevelWindow
	Tk_MoveWindow
	Tk_Name
	Tk_NameOf3DBorder
	Tk_NameOfAnchor
	Tk_NameOfBitmap
	Tk_NameOfCapStyle
	Tk_NameOfColor
	Tk_NameOfCursor
	Tk_NameOfFont
	Tk_NameOfImage
	Tk_NameOfJoinStyle
	Tk_NameOfJustify
	Tk_NameOfRelief
	Tk_NameToWindow
	Tk_Offset
	Tk_OwnSelection
	Tk_Parent
	Tk_ParseArgv
	Tk_PathName
	Tk_PhotoBlank
	Tk_PhotoExpand
	Tk_PhotoGetImage
	Tk_PhotoGetSize
	Tk_PhotoPutBlock
	Tk_PhotoPutZoomedBlock
	Tk_PhotoSetSize
	Tk_PointToChar
	Tk_PostscriptFontName
	Tk_QueueWindowEvent
	Tk_RedrawImage
	Tk_ReqHeight
	Tk_ReqWidth
	Tk_ResizeWindow
	Tk_RestackWindow
	Tk_RestrictEvents
	Tk_Screen
	Tk_ScreenNumber
	Tk_SetAppName
	Tk_SetBackgroundFromBorder
	Tk_SetClass
	Tk_SetGrid
	Tk_SetInternalBorder
	Tk_SetWindowBackground
	Tk_SetWindowBackgroundPixmap
	Tk_SetWindowBorder
	Tk_SetWindowBorderPixmap
	Tk_SetWindowBorderWidth
	Tk_SetWindowColormap
	Tk_SetWindowVisual
	Tk_SizeOfBitmap
	Tk_SizeOfImage
	Tk_StrictMotif
	Tk_TextLayoutToPostscript
	Tk_TextWidth
	Tk_Uid
	Tk_UndefineCursor
	Tk_UnderlineChars
	Tk_UnderlineTextLayout
	Tk_UnmaintainGeometry
	Tk_UnmapWindow
	Tk_UnsetGrid
	Tk_Visual
	Tk_Width
	Tk_WindowId
	Tk_X
	Tk_Y

	[incr Tcl]
	body
	class
	code
	configbody
	delete
	ensemble
	find
	itcl
	itcl_class
	itcl_info
	itclsh
	itclvars
	local
	scope

	[incr Tk]
	Archetype
	Toplevel
	Widget
	itk
	itkvars
	itkwish
	usual

	[incr Widgets]
	buttonbox
	calendar
	canvasprintbox
	canvasprintdialog
	checkbox
	combobox
	dateentry
	datefield
	dialog
	dialogshell
	disjointlistbox
	entryfield
	extfileselectionbox
	extfileselectiondialog
	feedback
	fileselectionbox
	fileselectiondialog
	finddialog
	hierarchy
	hyperhelp
	labeledframe
	labeledwidget
	mainwindow
	menubar
	messagebox
	messagedialog
	notebook
	optionmenu
	panedwindow
	promptdialog
	pushbutton
	radiobox
	scopedobject
	scrolledcanvas
	scrolledframe
	scrolledhtml
	scrolledlistbox
	scrolledtext
	selectionbox
	selectiondialog
	shell
	spindate
	spinint
	spinner
	spintime
	tabnotebook
	tabset
	timeentry
	timefield
	toolbar
	watch

