
THE WHIM WINDOW MANAGER

Steve Redler IV, SCSE
SR Technology New Jersey U.S.A

George Peter Staplin

Abstract

Whim is a window manager written for the X11 graphical windowing
system that has its primary logic and functionality coded in Tcl/Tk. It uses
two newly developed c extensions to give Tcl/Tk the fine control needed to
properly implement a window manager, with Whim being not just a proof
of concept, but instead a full function, comfortable and intuitive interface
to X11 applications. The technical design goals of Whim include: being
deployed as a Starkit, and to optionally use the tile extension for enhanced
window titlebar theming. Most importantly, Whim enables full
customization at the scripting level, eliminating the need to work with the
X11 c api directly.

1 Introduction

One of the many enjoyable aspects of using a Linux/BSD Operating System is having the
ability to fully customize the look and feel of virtually every aspect of the OS. The window
manager is the most visible application running on a computer workstation, and is
also one of the more difficult pieces of software to write from scratch. Usually one would just
pick a window manager that has enough customizable features to satisfy ones requirements. All
window managers are compiled applications, typically written in the c language. No one has ever
written a full feature window manager in a scripting language because scripting languages lack
an interface to all the apis of the X Window System.

The idea to create a window manager where the core logic and functionality was coded in
a scripting language is not new, and several attempts were made at developing a wm around
Tcl/Tk. Unfortunately stock Tk only has a few interfaces into X Windows, so an extension
must be written to add the missing interfaces. Whim uses a small extension called “pwm”,
written by George Peter Staplin, that provides necessary Xlib and Tk C function access to the X
Windows System. The majority of the Tcl/Tk code that comprises the bulk of Whim was also
written by George Staplin. Steve Redler focused on external application integration, testing and
design goals, mainly trying to keep the Tcl code as simple as possible, so that virtually anyone
could understand how to make their own modifications.

2 Design Goals

There were many goals that were laid out for the design of Whim. All of them have been
reached. They include:

Rely on a simple and minimalistic c extension.
Utilize stock Tcl/Tk or Tclkit
Be deployable as a cross platform Starkit
Run on handheld Linux base computers

 Use Tcl for all the logic
Keep the logic as simple as possible
A cool name (how else would you pronounce wm?)

3 The pwm extension

The pwm extension contains around 100 functions that allow a Tcl/Tk script to interact
with the X Windows System. Many are just simple front ends to Xlib functions. For example,
pwm.destroy.window is a frontend to XdestroyWindow. Others include obvious functions like
following:

pwm.create.window pwm.move.window pwm.send.event.message
pwm.resize.window pwm.lower.window pwm.raise.window
pwm.destroy.window pwm.get.window.title pwm.event.handler

Detailed explanation of each function and corresponding Xlib functions are outside the
scope of this paper. Even though each function is relatively simple, the task of scripting them
into a properly functioning window manager took great insight into the inner workings of the X
Windows System. At version 494, Whim is a stable, functional and feature filled window manager.
At this point, any further modifications can be done at the Tcl/Tk level. Whims Tcl core was
designed specifically with global arrays to track state for simplicity instead of OO. Most of the
events are X related, others are stock Tk. It was designed to be easy to tweak and extend.

4 Current Feature Set

 Support for most ICCCM hints
 Support for the important MWM hints
 Support for shaped windows
 Transient support
 Scripting console
 Tile support
 Two focus models (click-to-focus and focus-follows-mouse)
 Optional "Position Transients over Masters" behavior
 Optional "Position Windows Under Pointer" behavior
 Desktop applets (per-desktop)
 Move window to another desktop via a titlebar menu
 Multilayer applets make it possible to run multiple applets per-desktop
 Auto start X if running from a console
 Focus follows mouse
 Click to focus
 Move window to another desktop via a titlebar menu
 Take screen shot command in titlebar menus
 Innovative SRIV window resizing
 Resize window via left click/drag on window border
 Window titlebars and frames
 Maximize/restore/roll-up buttons in titlebar
 Interaction behavior configurable via the desktop menu
 Each virtual desktop is a canvas
 Key binding support
 A configurable cascading right-click menu
 Several IPC methods to interact with applets and applications
 Each window container is a frame that can have other widgets embedded
 It's easily customizable via Tcl and the Behavior menu
 It's BSD licensed
 It doesn't require any patches to Tcl/Tk

4.1 Whims Canvas Desktop

Whim supports multiple desktops. Each desktop is a canvas, so you can draw many
different types of things, easily! You can extend your interface as you like! It is possible to create
widgets that are integrated into your desktop, for macros, or common tasks. Some examples of
desktop integration are in the external applets that have been created. They showcase how any
type of textual or graphical data can be programmatically placed onto a desktop.

 Whim uses a sorted list of window ids for each desktop. So if you create windows A B C, and
the focus order is A B C, and C is destroyed, then B gets focus, and so on. The list is resorted as
focus patterns change, so the focus order should be correct in all cases.

4.2 New Features

Whim has two new features: It will start X if you run it from a console. So now you can try
Whim without messing up your existing window manager configuration. Also, it will copy out
default configuration files into your home directory if they don't exist so you have something to
start with. Also, If you run Whim from inside X WITH another window manager running, it will re-
launch itself inside Xnest automatically, so you can try it from inside your existing X setup.

4.3 Interprocess Communication

 Whim includes two pure Tcl IPC systems, arraysync and netcall. Both were developed at the
same time, one by each author, with some similar and some different goals. Arraysync has been
use more extensively in a number of applets and applications to provide a method to pass data
and commands between themselves and Whim.

4.3.1 Arraysync Overview

Arraysync, as its name implies, allows multiple applications to share one or more Tcl
global arrays via tcp socket. It can be configured for a traditional client-server arrangement,
where one application, such as Whim, is the server, and all X Windows apps and Whim applets
are the clients. Arrays can be shared between a client and server only, or amongst all clients and
the server at once. A second mode, which operates in a peer to peer fashion can also be
configured. Basically, the first instance of arraysync becomes the server, the following instances
become clients. If the server is killed, the clients all race to become the new server, and since
only one can win due to opening a server socket first, all the rest of the clients connect to the
new server instead. In peer to peer mode, the server routes commands and replies between
multiple clients, so that each client does not have to explicitly connect to each other.

Within Whim, arraysync is loaded in server mode. Client apps can connect to Whim, pass it
commands, connect to shared arrays to receive notification of special events, like a theme
change, or that Whim was restarted. Many more events and data points could be exposed in the
future. A taskbar applet is an example of a client application that queries Whim for state
information about each window so that it can update its interface. That interface is sent to Whim
to be rendered, by sending the Tcl/Tk GUI code through a sequence of arraysync commands. The
taskbar also shares the main window status global array with whim. By setting traces on this
array, the taskbar applet can be alerted to any window event, such as a window being created or
destroyed, minimized or maximized, etc.

5 Configuration

Whim comes with the ability to configure its behavior on the fly without editing
configuration files. There is a Behavior desktop menu, and an interactive console.

 At the moment the configuration is stored in several scripts that are evaluated and stored in
::env(HOME). ~/.whim_config is for user overrides, and custom scripts. You don't have to add
anything to it to use Whim, but you might enjoy some of Whim more if you do customize it.
~/.whim_behavior is an automatically saved file that contains the current configuration.
Whenever you exit or restart Whim the current configuration is dumped into that file. Starting
with release 308.13 it now contains a version header for automatic upgrade compatibility.

5.1 Typical configurations

In order to start an applet on a particular desktop when Whim starts, you could add a line
to ~/.whim_config using a pattern like this:

 on startup start.applet taskbar .desktop0

To start an applet on every desktop you can use the for.every.desktop iterator in
~/.whim_config. For example:

 for.every.desktop desktop {
 on startup start.applet taskbar $desktop
 }

If you wanted to change the desktop mouse button bindings, in your ~/.whim_config or at
the Whim console you can use set.config desktop_bindings, like so:

 set.config desktop_bindings {<Double-ButtonPress-1> {nullexec xterm} \
 <ButtonPress-3> {display.desktop.menu %desktop %X %Y}

The command nullexec is a frontend to Tcl's exec that handles channels in a slightly
different way that tends to work better with applications like mplayer, and others. The %desktop
key is substituted with the $::current_desktop at the time that the set.config occurs. set.config
desktop_bindings iterates and applies this to every desktop automatically. %X and %Y are for the
mouse cursor position. This is a dynamic configuration option, so you can change it at runtime
and all desktop bindings will be updated.

If you run Whim with Tile, you may want to change the Tile theme. Press the Console
button on the desktop controls. Enter the command "set.config tile_theme step" (without
quotation marks). There are many other themes available including:

 * default
 * clam
 * blue
 * plastik
 * srivlg
 * classic
 * sriv

Note: the default theme is sriv (by Steve Redler IV).

Changing the menus is accomplished by editing ~/.whim_menus. It is a file that is sourced
to initialize the ::whim_menus list. A simple example from George's machine is:

 set ::whim_menus {
 xterm xterm
 Firefox ~/linux_runtime/firefox/firefox
 xmix xmix
 Plan plan
 }

A more advanced menu system is also available. It was created by Andrew Black and is
available on the Whim web site.

If you would like change the number of available desktops, then in your ~/.whim_config
you will need to use set.config desktops. For example:

 set.config desktops {Work WWW Games}

6 Conclusion

Whim, by virtue of its design, may be one of the most versatile window managers
available. Although it has configuration options like most window managers, it has unsurpassed
reconfigurability because its core logic can be easily modified on any computer that has a text
editor available. Whim wasn't made to be just a proof of concept. It is an easy to use window
manager thats comfortable to use all day.

