The TCL Architecture of Objects (TAO)

Presented at the 13t Annual Tcl/Tk Conference, October 9-15, 2006,
Naperville IL

Sean Deely Woods

Senior Network Engineer

The Franklin Institute Science Museum
222 N. 20™ Street

Philadelphia, PA 19147

Email: yoda@etoyoc.com
Website: http://www.etoyoc.com/

Abstract

Technical design is only half of a successful patduser interface is an important,
but oft overlooked component of design. This latKesign is particularly acute in
products that are geared for developers. TAO igteampt by Sean Woods, to develop an
architecture that is more than a rapid prototy@ystem. It is a rapid developer
immersion system as well. TAO is an programmindniéecture that is designed by
developers for developers. It is primarily desigf@dever-changing systems like web
content. This paper will address both the techraaal the psychological strategies
employed by TAO to deliver web content to staffteg Franklin Institute Science
Museum.

1. Introduction

In response to a complex project, meager to daedateand my own personal demons
| have developed a programming strategy that elelwill help all programmers of
TCL. | call this strategy TAO, the TCL Architectuoé Objects. It's a little OOP, a lot of
organization, and a bit of a wizard’s touch in pisc

TAO employs a strategy that | call “NaturalistioBramming.” It shamelessly steals
principles from Taoist philosophy. It exploits natlprocesses, manages action through
inaction, and de-emphasizes ridged structure. TAdsses the power of the computer
to chase details, and leaves the human free toelagive.

1.1 The Diamond Problem

If TAO had to overcome one problem and nothing
else, it was the Diamond problénAll object systems
run into it eventually. And my code ran into it
immediately.

Figure one illustrates the problem. We are trymg |
create class A from class B and C. The difficulig |
in that both B and C are decedents of a common
ancestor, D. Our brains grasp the solution intaiiy
“It's both”. But a hierarchy of doesn’t like ambiigy

Many OOP systems only have a workaround for th
Diamond Problem. C++ and Java punt the issue by
making one go through and Interface virtual class.
[Incr Tcl] simply curls up and dies. Many other
systems mumble about it, and then proceed to act in
their own way’®

One day | had an epiphany. The problem was not
that my objects failed to fit into a simple hiertayc Figure 1 - The Diamond Problem
The problem was that a simple hierarchy did nanfjt
objects.

1.2 Yggdrasil

Developers routinely throw around tree structusesiaple constructs of recursion.
They have a single root that bifurcates into a adyof trunks and branches. And it
would work except for the fact the no structurelikat exists in nature.

Things with a definite beginning and ending in matdon’t branch. A worm has a
beginning and an end. Life has a beginning anchdn @& string has a beginning and an
end. The two ends balance one another.

A tree structure in nature never branches in deidigection. What developers call
the “root” is actually the dividing line betweeretbranches above and the real roots

Page 2 of 15

beneath. The roots themselves bifurcate into aadysranches. Trees have a balance

between what is above and below the ground.

The idea of organizing the world around a tree
structure is not a creation of modern computer

science. The Norse believed that the entire werld|i

built on a giant tree, the Yggdrdsilts branches are
so tall, and roots so deep, that they meet one
another. Yggdrasil joined together the underworld
with our world and the heavens above. Our world
was a disk wrapped around the trunk. Similar
“World Tree” myths exist in Hindy Siberiafi, and
even Mayahculture.

The computer science notion of a tree is
primitive even by ancient standards. But the

ancients were on to something. The human mind |i

very good at picking a start point, any point, and

Figure 2 — Yggdrasil

working its way out.

If I was to have any hope of mapping reality ineplchad to devise a way to pick an
arbitrary starting point and work my way out in tile directions at once.

One approach used by other systems to solve thidgm is to implement the
structure as a network stored in a relational detdbWith a relational database, | could
start with the class | intended to create, andhigsearch radiate out to all of the

branches and roots of the class network. There &nucture inherent in a database. That

is part of its charm. | only have to make up thegaf the “tree” that | would actually be

using.

Page 3 of 15

2 Overview of TAO

Building code from snippets stored in a relatiat@iabase sounds cool. Except that
developers need some frame of reference to ba@bhake sense of it all. We don't like
free for alls. We want a cozy set of rules to werth.

Most of my class libraries were written in [Incrl[T@and | rather liked the way itcl
code looks. So | used itcl's style as the basigF#D’s programmer interface. Incr Tcl
code will port over to TAO, but developers neetbécaware of some important
differences.

Firstly, TAO does not respect data hiding. | fihdttit makes problems hard to track
down on large systems, so | don’t use it. And I'loode what | don’t use. This, or any
other feature, can be added a later time if treseifficient demarid For now thepublic
andprivate keywords are used by the TAO interchangeably.

Instead of data hiding, TAO has two types of nofatile variables for use in object
code. Asymbolis a map between a local variable name to a dipobtired variable. A
static is a copy of a global value as a local variablecd&ise it is a copy, changes to that
local variable are not reflected in the global ealS8ee the developer's manual section of
the paper for an in-depth example of heymbol andstatic work.

2.1 SQL Backend

TAO source code is never run directly. It goestigioa decompile stage where it is
torn apart, and the pieces stored in several dqliies. Because this digestion process
takes a not-insignificant amount of time, TAO pans a shortcut. Instead of sourcing a
file directly, TAO checks the time stamp on the find compares it to a time stamp on
record. If the two match, the system assumes ligainformation already in SQL is good
and TAO moves on to the next file. This is esséptdarge systems with hundreds of
class files.

Class meta-data is retained between runs of agmogknd if that were not good
enough, unused classes to not consume any memthry active process, and multiple
processes can all share the same database. Copvapgpdications making changes to
the class structure that are incompatible with amather can be given their own separate
databases.

The exact file location for TAO’s meta cache isgenetly hard coded for each
platform TAO operates under. The location seledemhe that is universally readable
and writeable. If the global location is unavaigblAO falls back to hard coded
directory in the users’s home path.

TAO creates two sqglite databases. One holds classdata, the other hold object and
environment metadata. Where collisions are expdmégdeen applications, temporary
tables are specified in the definition. This ketfesn in memory within the running
application and not on the disk-based store.

Page 4 of 15

2.2 Classes and Objects

Classes are not called into being until they aszlls/ an object. Once “compiled”
each class is given a uniqgue namespaces populétegrnacedures that implement its
methods.

The exact namespace for a class can be obtainkdheit:tao::class_namespace
command.

The secret ingredient that makes TAO work is tiseition of one line at the top of
every method: ::tao::peek The function grabs tipeitem on the TAO object stack. It
then runs a script that will map local variableglabal ones.

TAO uses a stack so it can handle objects recuystedling other objects, even if

multiple objects are of the same class| o ciobject networksar{
. .. inherit ::sglcon::mysqltcl
ObjeCtS exist in three parts: } —db_user user —db_pass pass —database network

1. A global array that stores the networksql query “select now()”
. . > 2006-10-01 18:36:44
non-volatile variables. networkSql::query “select now()”
Hashes are stored as separate2006-10-01 18:36:45

global arrays.

2. A state script that is indexed
and stored internally by the
TAO system

3. A procedure that
manipulates the stack and
routes code to the proper
class namespace.

Example 1 - clobject usage

“Singletons,” classes that exist as only one obgae handled through a special
construct called a clobject. clobjects get theinovamespace (the same name as their
object) and instead of referring to the stack thethods know to load only data for
them. The neat part about singletons is that youacaess them either through their
interface procedure, or by making a direct cathir methods in their namespace.

2.3 TAOisms

Now that we have the basic operations of TAO umdébelt, | would like to explain
some of the tools that are unique to TAO.

2.3.1 Stacked Inheritance

Hierarchies are not static in TAO, they are builttbe fly from a database search. Up
until a class is called for by an object, it camimde and reshaped. The same class can
mean different things in different applicationst setain the same look and feel to you,
the programmer. You can take any two classes, tkinem in the blender, and get out a
new class that is a mix of both.

Page 5 of 15

How does TAO do it? It waits until the absolute lasnute to implement a class.
When it finally builds a class, it does not trystart through ambiguity until all the cards
are on the table.

Each competing definition for a method or variablstacked on top of the another.
The most distant ancestor on the bottom of thekstatd any code defined by the
classes’ own definition on top. When selecting dint) the body of a procedure, only the
top level is used. The same goes for defining akike.

2.3.2 consecution and mesh
What good is having your code in a stack if you'tcdo nifty tricks with it?

You have a new class that wants to add an extraviomtto an existing method of the
parent class. In classic [Incr Tcl] you would haveopy and paste the old method
definition and append your new code. Or cakhin command. Whilehain is
implemented in TAO, it was very expensive to calearly versions of the system.

| developed theneshmethod type to eliminate the need to cakin for incremental
changes to the body of the parent. Mesh is likeethod, but instead of replacing the
code on the top of the stack, it appends to it. ddweloper can control whether the new
code is inserted at the beginning or the end op#rent method. IExample 2 - mesh
usage and resulting bodydemonstrate the process of creatingeshas well as the
resulting body of the final methoixample 3 — [Incr Tcl] equivelent to mesh usage
shows the same code as Example 2 using [Incr Btdtion.

Page 6 of 15

tao::class ::foo {
method validate {a b} {
if { $a > 100 }{
error “$a is out of bounds”

}
if {$b<10}{
error “$b is out of bounds”
}
}
}

tao::class ::bar {

inherit ::foo

mesh validate {a b} {

if {$a> 10 and $b <30 }{
error “Invalid combo of $a and $b”
}

}

}

>::tao::compile_class ::bar
>info body [::tao::class_nspace
::bar]::validate

'tao::peek
if { $a > 100 }{
error “$a is out of bounds”

}
if{$b<10}{
error “$b is out of bounds”

}

}
if {$a>10 and $b <30 }{
error “Invalid combo of $a and $b”
}
}

itcl::class ::foo {
public method validate {a b} {
if { $a > 100 } {
error “$a is out of bounds”

}
if{$b<10}{
error “$b is out of bounds”
}

}
}

itcl::class ::bar {
inherit ::foo
public method validate {a b} {
chain
if {$a>10and $b <30 } {
error “Invalid combo of $a and $b”

}

Example 2 - mesh usage and resulting body

Example-3[Incr Tcl] equivelent to mesh usage

meshisn’t perfect for every situation. If a parent dasturns a value the child’s code
will never be calledmeshis good for methods that don't return a valuesiorply error

check.

To return a value from mesh | created theonsecutionmethod typeconsecutionis
a stylized form omeshwhere the results of the child class are appetaét end of
common variable, result. Note that a return statéraeuncaught error in the parent
method will prevent the child’s code from ever rinm; just like the mesh. But, you can
at least build on the value that the parent created

Like a mesh, a chain definition can take two badies second body is given, the first
is knitted in before the ancestor main bodies. Thgarticularly helpful to map new
arguments to old names should they change.

Example 4 — consecution usage and resulting logayonstrates a sample consecution
construct, as well as the body of the method #silts.Example 5 — [Incr Tcl]
equivalent to chain usagahows the equivalent codeEaample 4n [Incr Tcl] notation.

Page 7 of 15

tao::class ::foo {
method bard {} {

set result “It was the best of times”

}
}
tao::class ::bar {
inherit ::foo

consecution bard {} {
append result\n \
“It was the worst of times”

>::tao::compile_class ::bar
> info body [::tao::class_nspace
::bar]::bard
{
tao::peek
set result {}
set result “It was the best of times”
aooend result \n \
“It was the worst of times”
return $result

}

itcl::class ::foo {
public method bard {} {

return “It was the best of times”

}
}
itcl::class ::bar {
inherit ::foo

public method method bard {} {
set result [chain]
append result \n \
“It was the best of times”
return $result

}

Example 4 — consecution usage and resulting

body

Example 5 — [Incr Tcl] equivalent to chain usage

Page 8 of 15

3 Programming Practices for TAO

All of this technology is for naught if we don’tgmtice a few sensible strategies for
optimal code. These guidelines have been colldobed my own experience, and have
no doubt been published elsewH8rélist them here because TAO is designed
specifically to exploit them.

These tips are not specific to TAO. They are adgdea in any environment. They
make your code easier to read, easier to debugeasidr to maintain in the future.

1. Keep the details fuzzy

Unless you have a specific performance reasondimgdso, never use a hard coded
value where a variable will do. Every one of thoakies, even physical constants,
should be changeable from the developer interfapeactical, provide a mechanism to
input changes to the assumed values with a cormtiigur file.

2. Start general, add specifics

Make as few design assumptions as possible. Sitéwravgeneral case, and build onto
it the specifics. You don’t need to implement eveogsibility of the general case, only
what you are using. Unimplemented cases shoulabendented and throw a polite error
to the developer if he or she tries to access duntethat hasn’t been defined yet.

3. All code is a singular project

All of your code must have a common protocol foradexchange, especially for
conversations between modules. The best case isdbegeneral. Calls that are expected
to converse with outside code takes one and ordyapgument: a key/value list. This key
value list can then be sanity checked. Any missietgil can filled in. Extra information
can be discarded. The calling function does notl tedother itself with having to
remember which argument goes in what sequence.

4. Differentiate between interface and process

To properly handle the big picture, all code irbadry should be segregated into two
types: Interface code and Process code. Interfade should do one and only one thing:
translate outside protocols to your internal protoProcess code should speak only in
your internal protocol. If process code is retugnitata to the outside it should produce
its output in your internal protocol and then pémesresult to an Interface.

5. Write once, Use everywhere

If you find yourself copying the same routine inltiple placesstop Code the
sequence as a subroutine and replace all the ooftea subroutine. This reduces
mistakes. It reduces line count. It has a negkgitipact on TCL performance. But most
of all, it allows later developers to follow younde easier if they aren’t having to glance
through pages and pages of similar looking codea pgactice | regularly patrol my
library for code snippets that can be consolidated.

Page 9 of 15

6. Be the Programmer, not the Computer

Computers are good at repeating things. If you fiowrself tapping out repetitive
sounding codestop One of the supreme powers of TCL over any otbdegaradigm is
the ability to machine to write its own code on tlyelf there is a pattern, teach the
computer the pattern and let the machine do youkwo

| have written many a system that uses a foreamh ith code snippets to assemble
procedures on the fly. This has a twofold impacyouar productivity. First: you don’t
have to sit down and write out 10 different itesas of the same procedure. Second:
when you inevitably have to modify this subroutym@ only have to alter one snippet.

Having the computer code it's own procedures haisnpact on TCL performance.
The result is code that is just the same as ifhamiwritten it yourself.

Rememberproc is a command like any other in TCL.

Page 10 of 15

4 Applications

TAO is a pretty useful general purpose tool. Beibtg to just sit down an tap out
object code without having to learn to tapdanceaddimitations opens TAO up to
many potential applications.

4.1 Present Uses

4.1.1 Taohttpd

Taohttpd is a dynamic web content engine useddeeral websites, including several
Intranet sites at the Franklin Institute and thenBemg Committee for the Philadelphia
Folk Festival. Taohttpd extends the Tclhttpd teligently wrap a web server around
TAO objects.

4.1.2 Preen

Preen is a Unix cluster management suite | useaitage our servers and
workstations at the Franklin Institute. Preen exas a library of standalone scripts that
use TAO as a common library and interface toolkit.

4.1.3 TFINET

TFINET is in the early stages of development. Ihtended to deliver a dashboard
interface to Intranet content, RSS, Instant Mesgpgnd directory information to staff at
the Franklin Institute. It will provide a Tk guiterface to many of the same resources
that are accessed through the Taohttpd.

TFINET will also push updates to workstations aradk the movement of users and
machines around the network.

4.2 Future Uses

4.2.1 Toy Languages

TAO code is simple to write, almost to a fault. Thet that its notation is written from
a human perspective with the computer playing alaiomakes it ideal for teaching.
Instructors can provide ready-made classes foestisdo manipulate, and the details of
operation can be obscured. As a student becomesadganced, the instructor can lift
the veil and expose him or her to different lexalthe inner working of the system.

4.2.2 Game Scripting

Like Toy Languages, game developers often wantduige a simple way for uses to
customize a system, while not overwhelming the neoadth detail. If a user wants to
code a game Al, they often have a specific behdkiey want to modify. Most modern
API's require the developer to begin with a copyg pasted template that includes detail
he or she is not interested in dealing with.

Page 11 of 15

Under TAO a user can say “start here, and builtd Apthe core changes the user
code is less likely to break. They aren’t copying @asting a lot or code that will
become outdated in the next release.

Finally, other hackers can use the original mod sgringboard for their own work.

4.2.3 Artificial Intelligence

Because TAO code is built form database searchissdieal for open-ended
development projects, particularly where the “Depel” is in fact a machine. TAO
provides a consistent framework on which to comimieas together into a meaningful
way without imposing structure. Because the “cadestored in a database, the computer
can easily add to it's programming based on expeégor manipulate its data store to
produce novel solutions.

Suppose we want to have an expert system that egpasagraph of data, and then
answers questions about what it has learned. E@af in the paragraph can be an object.
As the object is described, it inherits attributesn a host of concept classes. In addition
to data, host concepts can include rules for ansgepecific questions.

Page 12 of 15

5 Limitations

TAO is a leap forward in software development. Batay not be for everyone. There
are a few wrinkles inherent in the design that matywork for your situation.

5.1 TAO requires sqlite3

TAO requires sqlite’ to operate. All of it’s indexing is built arounklet search
features of sqlite. It makes extensive use of&gliiNSERT OR REPLACE” function to
keep line count low. The TAO class system makesreskte use of direct calls to the
sqglite engine, and sqlite3 in particular.

If your application environment does not have as¢ke most recent sqlite, TAO will
not work for you. While I find the package to bequbtous, | can understand situations
where having to load sqlite is either operationatipossible or a logistical nightmare.

5.2 TAO uses disk-based storage

TAOQO's sqglite database is written to disk. It isi@gle matter to switch to memory
based tables, but in my experience the RAM usagsoisibitively high.

5.3 TAO does not support data hiding

The present version of TAO does not support datedpi While it will accept the
“public” and “private” keywords from ltcl, it doesot honor them. It could be added, but
it does not do it today.

5.4 Compatibility with Itcl is superficial

While TAO code is made to look like [Incr Tcl], atdmplements generic design
patterns quite easily, if your code makes a latadis to the Itcl internals TAO is not
going to work without a substantial rewrite. Whil®und that TAO is much simpler to
write than the equivilent code in Incr Tcl, if ybave a pile of existing Incr Tcl code you
may find it challenging to port.

TAO uses a different database backend, so it iposdible at the present time to have
Incr Tcl code inherit TAO classes wce verseThat said, there is nothing that would
keep you from running TAO and [Incr Tcl], or SNIMcaXOTcl for that matter, inside
the same application.

5.5 TAO was written for Tcl 8.4

TAO was written to utilize features and methododsgpresent in the Tcl 8.4 core. It
uses thdile normalizeandstring mapcommands that were not present in earlier versions
of 8.x. It uses namespaces which were not presfatéTcl 8.0. | am aware of several
operating environments that bundle 8.3 with theslghstribution. For TAO to operate in
them they must be upgraded to Tcl8.4, or | haw@ttdown and backport TAO.

Page 13 of 15

6 Future Directions

The [Incr Tcl] model is just one of the many sytiasystems in use to bring objects
to TCL. I chose Incr Tcl based on personal prefegebut there is nothing that would
prevent a developer from writing a class parserdigested code written in the style of
other OOP languages.

7 Acknowledgments

If | can see far, it is because | stand on the ®aclgiants. There were many
influences in the creation of TAO. | owe a hugetd#lgratitude to the developers of
[Incr Tcl]. While I may not have used their codeg interface and feel of TAO is taken
right from lItcl.

| would also like to thank Pete Stein. He was aintder and later intern at the
Franklin Institute who was patient enough to IEBAD and use it in his own code. Pete
was also an excellent foil to evaluate ideas thinougjthe development of TAO. | learned
a lot by watching how he used the system.

| would like to also than Swapna Saireddy, my farasistant at the Franklin
Institute. Like Pete, she too developed applicatiimn TAO. She got things to work
without the benefit of a manual, and had to ligteme explain a lot of “insanely
GREAT!” explanations as to why the system had sobjdend unexpectedly been
redesigned.

| would also like to thank my employer, The FranHKhstitute for giving me the
freedom to develop TAO and use it for our in-hoagplications. | would also like to
thank all of the users of my system, both thatRtanklin Institute and the Philadelphia
Folk Festival. There was a lot of trial, error, darahsition during the development
process of TAO. Without their patience as | workeoblems out, along with their
expectation that the system actually work, TAO widog just an idea.

| would also like to thank Brent Welch. His boBkactical Programming in Tcl/Tk
was an excellent reference for both me and my deweént team. Having a printed
manual and tutorial that | could plop down in frofinew staff and say “learn this” was
invaluable.

Finally, I would like to thank my wife, Sara for ftng up with me disappearing into
the basement for days at a time putting this paqgather, as well as proofreading the
early versions of this text.

8 Availability

TAO and its supporting documentation are availédmeownload from:
http://www.etoyoc.com/

Page 14 of 15

References

! The Diamond Problem, Wikipedia, http://en.wikip@dirg/wiki/Diamond_problem

2 Designing with Interfaces, Bill Venners, http://wyjavaworld.com/jw-12-1998/jw-12-techniques.html
% The Diamond Problem, Answers.com, http://www.answeem/topic/diamond-problem

* Yggdrassil: The World Tree, Encyclopedia Mythibgp://www.cauldronfarm.com/nine/yggdrasil.html
® Parallels Between Norse and Indic Creation Mytfighéle P. Rousseahttp://www.rousseau-
writer.com/myths.htm

® Parts of the true story of a world picture, Htganw.nbi.dk/~natphil/Siberian.htmi

" Raising The Sky: The Maya Creation Myth And Thekyl\Way,
http://members.shaw.ca/mjfinley/creation.html

8 A similar approach was described by Tony Martsohis essay “A flexible Tree Structure”
http://mww.tonymarston.net/php-mysql/tree-structhel

® Sufficient Demand: (n) the desire of a user toechaeature coupled with a patch submitted by sséat
to implement it.

1 Further tips to enhance Tcl can be found at, Matjki.tcl.tk/348

1 gglite, and embeddable SQL engine, can be fourtdtpt//www.sglite.org/

Page 15 of 15

