Default Title Page 1

libtclsh. a: A linkable library for embedding Tcl

CIif Flynt
Noumena Corporation
9300 Fleming Rd
Dexter, MI 48130
clif@noucorp.com
WWW . noucorp . com

Introduction

One of Tcl's strengths is that it can be embedded into another application to provide that application with new features. The
problem with this is that an application with Tcl embedded into it will also need a complete Tcl distribution in order to use these
features. Functionality like that offered by like http package, some Tk widgets and the tools implemented in the Tcllib are only
available if they can be loaded at run time.

There are several wrapping solutions for creating a single- file executable from a Tcl script. FreeWrap, ProWrap, Tobe, and
StarKits are the best known of these. These solutions use the Tcl Virtual File System (VFS) to include the ancilliary files with the
executable.

This paper introduces a technique for making a single library file that can be linked to a compiled application creating a single
file executable that includes the ancilliary libraries.

Problem

The immediate problem that needed to be solved was that our group was presented with a FORTR AN program that needed IP
Socket support, and might also need graphics support. The developers of the FORTRAN application were not familiar with Tcl
and were resistant to adding another learning curve to their development schedule.

By providing them with a single file to link with their application, the Fortran to Tcl library developed by Arjen Markus, and a Tcl
script that we provided, we were able to create an application very quickly that had the mathematical models they had
developed and the interactive capabilities that we developed.

Solution
This solution is composed of 5 parts, each of which extends the functionality of the previous parts.

The bzip2 library (bzip2-1.0.3).

An Tcl extension that compresses and decompresses bzipped data (bzTc1l).

A VFS Extension that can access a memory resident bzipped filesystem (memFile).

A modified main.c and Tcl Interp creation procedure (memTclsh).

The FTCL package from Arjen Markus with hooks to the new library (FORTRAN Tclsh).

MRS

bzip2

The bzip2 library is taken from the net and not modified. For this iteration, [used the 1.0.3 release, downloaded from
http://www.bzip.org.

bzTcl

The bz Tcl extension provides an interface to the bz ip2 library. This extension was originally developed to read compressed
file data from Project Gutenberg. It was extended to include pure memory compression and decom pression.

The functions supported are:

e compress in memory data.
e decompress in memory data.

file://home/clif/ BOOKS/Tc12006/outline.htm1 Wed 11 Oct 2006 01:40:22 PM EDT

Default Title Page 2

o read compressed data from a file and decompress it.
o write compressed data to a file from plaintext memory.

memFile

The memFile extension creates a memory based Virtual File System and provides the hooks for the Tcl interpreter to access
this. This set of code includes functionality for reading and searching a VFS, but does not implement writing new code to in-
memory VFS.

memTclsh

The memTc1sh section of this package is derived from D. Richard Hipp's TOBE (Tcl as One Big Executable) main and
CreateInterp functions, which are derived from the normal Tcl main and CreateInterp functions. The main function is provided to
build a single- file tclsh (or wish) interpreter that needs no ancilliary files. This is similar to a standalone TOBE or Starkit. The
memCreateInterp function duplicates the behavior of the normal Tcl_Main, creating the new interpreter, setting the initial
global variables, initializing the filesystem , setting up the package library paths and loading init.tcl, etc.

FORTRAN_Tclsh
The FORTRAN Tclsh library is Arjen Markus's FTCL package modified slightly to create a mem Tcl interpreter instead of a
standard Tcl_CreateInterp interpreter.

Details
The bulk of the code that implements this system is the VFS support functions.

The memory file system is constructed as an array of memFileData structs:

typedef struct memFileData {
char *name; // Path to file, rooted at the "filesystem" root.
int datalen; // Number of bytes in data.
unsigned char *data; // BZ2 Compressed file data.

} memFileData;

The filesystem itself is an array of these structures. Since the filesystem will be relatively small (about 1000 entries), I decided
to opt for simplicity rather than any sort of optimized access.

The Tcl Virtual File System is created by filling in the fields of a Tc1 Filesystem structure and registering the filesystem
with the Tc1 FSRegister command.

The Tcl Filesystem structure is implemented as a structure containing a set of pointers to procedures which implement file
system functions. It is defined in the tc1 . h and looks like this:

~
*

struct Tcl Filesystem:

One such structure exists for each type (kind) of filesystem. It collects
together in one place all the functions that are part of the specific
filesystem. Tcl always accesses the filesystem through one of these
structures.

Not all entries need be non-NULL; any which are NULL are simply ignored.
However, a complete filesystem should provide all of these functions. The
explanations in the structure show the importance of each function.

/

L I I T I

typedef struct Tcl Filesystem {
CONST char *typeName; /* The name of the filesystem. */
int structurelength; /* Length of this structure, so future binary
* compatibility can be assured. */

file://home/clif/ BOOKS/Tc12006/outline.htm1 Wed 11 Oct 2006 01:40:22 PM EDT

Default Title Page 3

Tcl FSVersion version; /* Version of the filesystem type. */
Tcl FSPathInFilesystemProc *pathInFilesystemProc;
N /* Function to check whether a path is in this
* filesystem. This is the most important
* filesystem function. */
Tcl FSDupInternalRepProc *dupInternalRepProc;
/* Function to duplicate internal fs rep. May
* be NULL (but then fs is less efficient) . */
Tcl_FSFreelInternalRepProc * freelInternalRepProc;
/* Function to free internal fs rep. Must be
* implemented if internal representations
* need freeing, otherwise it can be NULL. */
Tcl FSInternalToNormalizedProc *internalToNormalizedProc;
/* Function to convert internal representation
* to a normalized path. Only required if the
* fs creates pure path objects with no
* string/path representation. */
Tcl_FSCreatelInternalRepProc *createlnternalRepProc;

/* Function to create a filesystem-specific
internal representation. May be NULL if
paths have no internal representation, or
if the Tcl FSPathInFilesystemProc for this
filesystem_élways immediately creates an
internal representation for paths it
accepts. */

Tcl FSNormalizePathProc *normalizePathProc;
/* Function to normalize a path. Should be
* implemented for all filesystems which can
have multiple string representations for
* the same path object. */
Tcl FSFilesystemPathTypeProc *filesystemPathTypeProc;
/* Function to determine the type of a path in
* this filesystem. May be NULL. */
Tcl FSFilesystemSeparatorProc * filesystemSeparatorProc;
/* Function to return the separator
* character(s) for this filesystem. Must be
* implemented. */
Tcl_FSStatProc *statProc; /* Function to process a 'Tcl FSStat()' call.
* Must be implemented for any reasonable
* filesystem. */
Tcl_FSAccessProc *accessProc;
/* Function to process a 'Tcl FSAccess()'
* call. Must be implemented for any
* reasonable filesystem. */
Tcl FSOpenFileChannelProc * openFileChannelProc;
/* Function to process a
* 'Tcl FSOpenFileChannel()' call. Must be
* implemented for any reasonable
* filesystem. */
Tcl FSMatchInDirectoryProc *matchInDirectoryProc;
/* Function to process a
* 'Tcl FSMatchInDirectory()'. If not
* implemented, then glob and recursive copy
* functionality will be lacking in the
*x filesystem. */
Tcl FSUtimeProc *utimeProc; /* Function to process a 'Tcl FSUtime ()' call.
* Required to allow setting (not reading) of
* times with 'file mtime', 'file atime' and
* the open-r/open-w/fcopy implementation of
*x 'file copy'. */
Tcl FSLinkProc *linkProc; /* Function to process a 'Tcl FSLink()' call.
* Should be implemented only if the
* filesystem supports links (reading or
* creating). */
Tcl FSListVolumesProc * listVolumesProc;
/* Function to list any filesystem volumes

L R

file://home/clif/BOOKS/Tc12006/outline.htm1 Wed 11 Oct 2006 01:40:22 PM EDT

Default Title

added by this filesystem. Should be
implemented only if the filesystem adds
volumes at the head of the filesystem. */
fileAttrStringsProc;
Function to list all attributes strings
which are valid for this filesystem. If not
implemented the filesystem will not support
the 'file attributes' command. This allows
arbitrary additional information to be
* attached to files in the filesystem. */
Tcl FSFileAttrsGetProc *fileAttrsGetProc;
/* Function to process a
* 'Tcl FSFileAttrsGet()' call, used by 'file
* attributes'. */
Tcl FSFileAttrsSetProc *fileAttrsSetProc;
/* Function to process a
* 'Tcl FSFileAttrsSet()' call, used by 'file
* attributes'. */
Tcl FSCreateDirectoryProc * createDirectoryProc;
/* Function to process a
* 'Tcl FSCreateDirectory()' call. Should be
* implemented unless the FS is read-only. */
Tcl FSRemoveDirectoryProc * removeDirectoryProc;
/* Function to process a
* 'Tcl FSRemoveDirectory()' call. Should be
* implemented unless the FS is read-only. */
Tcl FSDeleteFileProc *deleteFileProc;
/* Function to process a 'Tcl FSDeleteFile()'
* call. Should be implemented unless the FS
* is read-only. */
Tcl FSCopyFileProc *copyFileProc;

/* Function to process a 'Tcl FSCopyFile()'
call. If not implemented Tcl will fall back
on open-r, open-w and fcopy as a copying
mechanism, for copying actions initiated in
Tcl (not C). */

Tcl FSRenameFileProc *renameFileProc;
N /* Function to process a 'Tcl FSRenameFile()'
* call. If not implemented, Tcl will fall
* back on a copy and delete mechanism, for
* rename actions initiated in Tcl (not C). */
Tcl FSCopyDirectoryProc *copyDirectoryProc;
n /* Function to process a
* 'Tcl FSCopyDirectory()' call. If not
implemented, Tcl will fall back on a
recursive create-dir, file copy mechanism,
for copying actions initiated in Tcl (not
c). */
Tcl FSLstatProc *1lstatProc; /* Function to process a 'Tcl FSLstat()' call.
* If not implemented, Tcl will attempt to use
* the 'statProc' defined above instead. */
Tcl FSLoadFileProc *loadFileProc;
N /* Function to process a 'Tcl FSLoadFile()'
* call. If not implemented, Tcl will fall
* back on a copy to native-temp followed by a
* Tcl FSLoadFile on that temporary copy. */
Tcl_ FSGetCwdProc *getCwdProc;
/* Function to process a 'Tcl FSGetCwd()'
* call. Most filesystems need not implement
* this. It will usually only be called once,
* if 'getcwd' is called before 'chdir'. May
* be NULL. */
Tcl FSChdirProc *chdirProc; /* Function to process a 'Tcl _FSChdir ()' call.
* If filesystems do not implement this, it
* will be emulated by a series of directory
* access checks. Otherwise, virtual

* ok ok

Tcl FSFileAttrStringsProc
/

*

* Ok kX

L

L

file://home/clif/BOOKS/Tc12006/outline.htm1 Wed 11 Oct 2006 01:40:22 PM EDT

Default Title Page 5

filesystems which do implement it need only
respond with a positive return result if
the dirName is a valid directory in their
filesystem. They need not remember the
result, since that will be automatically
remembered for use by GetCwd. Real
filesystems should carry out the correct
action (i.e. call the correct system
'chdir' api). If not implemented, then 'cd'
and 'pwd' will fail inside the

filesystem. * /

L T R

} Tcl Filesystem;

As the comments note, sections of this structure may be blank if that functionality is not present. For example, you don't need
write procedures on a read only file system. Other procedures will improve efficiency, but are not required for base functionality.

The Tcl Filesystem structure defined for this extension resembles this:

Tcl Filesystem memFileSystem = {
"memFile",
sizeof (Tcl_Filesystem),
TCL FILESYSTEM VERS IONil ’
&memFile PathInFilesystem,
gmemFile DupInternalRep,
&émemFile FreeInternalRep,
NULL,
NULL,
NULL,
gmemFile FilesystemPathType,
gmemFile FileSystemSeparator,
&memFile Stat,
&memFile Access,
gmemFile OpenFileChannel,
&memFile MatchInDirectory,
gmemFile Utime,
NULL,
émemFile ListVolumes,
&gmemFile FileAttrStrings,
gmemFile FileAttrGet,
gmemFile FileAttrSet,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL} ;

These are the critical functions for a read only file system, and how they were implemented.
Tcl FSPathInFilesystemProc *pathInFilesystemProc;
/* Function to check whether a path is in this filesystem.

This is the most important filesystem function. */

The memory file system is the structure defined above. The memory filesystem keeps a Tcl hash table for to define the mounted
memory file systems. The key for these is teh mount point, and the associated value is the address of the memory structure.

To simplify life, the memory file system can only be mounted at the toplevel. Thus to determine whether a path is on the file

system, the code can strip the path to the parent directory, then check to see if thatis a key for a mounted file system with Tc1
FindHashEntry

file://home/clif/ BOOKS/Tc12006/outline.htm1 Wed 11 Oct 2006 01:40:22 PM EDT

Default Title Page 6

Tcl FSFilesystemPathTypeProc *filesystemPathTypeProc;
/* Function to determine the type of a path in this filesystem. May be
NULL. */

The only type of entity in this file system is a file. There is no distinction between directories and files because there are no
directory names, just file names that have many foo/bar type strings in them.

The body of this function looks like this:

retObj = Tcl NewStringObj ("memFile", -1);
Tcl IncrRefCount (retObj);
return retObj;

Tcl FSFilesystemSeparatorProc * filesystemSeparatorProc;
/* Function to return the separator character(s) for this filesystem.
Must be implemented. */

This can also be implemented as a hardcoded value.

retObj = Tcl NewStringObj("/", -1);
Tcl IncrRefCount (retObj);
return retObj;

Tcl FSStatProc *statProc;
/* Function to process a 'Tcl FSStat()' call. Must be implemented for
any reasonable filesystem. */

If this procedure simply returns TCL_ OK, everything seems to work.

It should fill the Tcl StatBuf structure that's passed to the function. Many of these fields are irrelevant to a read- only file system.

Tcl FSAccessProc *accessProc;
/* Function to process a 'Tcl _FSAccess()' call. Must be implemented for
any reasonable filesystem. */

This function will return TCL_OK if the path is in the file system and can be accessed and -1 if the file does not exist. Since
there are no permission bits on this filesystem, any file that exists can be accessed. The implementation is that the HashEntry for
the mount point is first acquired. The data value associated with this is the address of the array of memory File structurs. This
array is searched to sce if there is a file with the requested name in the array.

Note that - 1 is not TCL_ERROR, however, Tcl FSAccess intclIOUtil.c returnsa -1 and the code that invokes it will
also expect - 1 for failure.

Tcl FSOpenFileChannelProc * openFileChannelProc;
/* Function to process a 'Tcl FSOpenFileChannel()' call. Must be
implemented for any reasonable filesystem. */

Opening a new channel is well described in the Tcl man pages and Welch's Practical Programming in Tcl/Tk.
When a file is opened, a new Tcl_Channel structure must be created using the Tcl CreateChannel function.

One of the arguments to Tc1l _CreateChannel is a pointer Instance structure that this file system uses to hold information
about the open file.

On a normal file system this will include a read buffer, a start pointer, length, etc.

file://home/clif/ BOOKS/Tc12006/outline.htm1 Wed 11 Oct 2006 01:40:22 PM EDT

Default Title Page 7

For this memory filesystem , the instance data includes a buffer that will hold the uncompressed file data, length and offset
fields. The functions listed inthe Tc1 ChannelType structure use these values to copy data from the memory file buffer to
the Tcl memory area.

Tcl FSMatchInDirectoryProc *matchInDirectoryProc;
/* Function to process a 'Tcl_FSMatchInDirectory() '. If not
implemented, then glob and recursive copy functionality will be lacking
in the filesystem. */

This function is the trickiest of the required functions. While this is not required for a VFS, it is required by the initialization scripts
that use various flavors of glob to find the runtime loaded files and packages.

There are many permutations used by the g1lob command, thus this function might be invoked with a Tcl_GlobTypeData pointer
which contains data or may be NULL, a pattern which may also be NULL and path which may or may not be rooted.

This function includes too much code to turn the path and pattern into a generic format. After the string is generalized, the Tc1
StringCaseMatch command can be used to determine if the pattern matches the names of the files in the memFile
structure.

Using Tcl_StringCaseMatch saved writing a great deal of pattern matching code.

Tcl FSListVolumesProc * listVolumesProc;
/* Function to list any filesystem volumes added by this filesystem.
Should be implemented only if the filesystem adds volumes at the head
of the filesystem. */

The code associated with this function uses the Tc1l_NextHashEntry to step through the hash table of mounted file systems
and returns the keys that are in use.

The filesystem array is constructed as a ¢ code source file by a Tcl script. The script recursively descends from a root directory,
compresses the appropriate files and outputs an ascii equivalent of the binary codes.

The C code resembles this:

// /usr/local/lib/tcl8.5/msgs/zh hk.msg

static unsigned char mem dataO[] = {66,90,1...};

memFileData fileO = {"/tcl8.5/msgs/zh hk.msg", 347, mem dataO } ;
// /usr/local/lib/tcl8.5/msgs/zh_sg.msg N

static unsigned char mem datall[] = {66,90,1...};

memFileData filel = {"/tcl8.5/msgs/zh sg.msg", 255, mem datal };

memFileData *tclTkInitDatal] = {
&fileO,

&filel,

&file2,

S

This technique of embedding Tclcode ina C memory structure was borrowed with some modifications from the SafeTcl
extension developed by Marshall Rose and Nathaniel Borenstein.

This method of building large data structures in 3 steps is supported by both newer and older GCC compilers.

The C code that's generated by this application Tcl initialization library is about 4000 lines long (5,628,135 bytes, compiling
downto 1,781,828 bytes), and the Tk initialization library is about 3555 lines lon (compiling down to 1,278,272).

Once the 1ibtclsh.a or libwish. a has been created, it can be linked with a C application.

A trivial test looks like this:

file://home/clif/ BOOKS/Tc12006/outline.htm1 Wed 11 Oct 2006 01:40:22 PM EDT

Default Title Page 8

#ifdef USE_TK
#include <tk.h>
felse

#include <tcl.h>
#endif

#include <ctype.h>
#include <errno.h>
#include <string.h>
#include <sys/stat.h>
#include <unistd.h>
#include <stdlib.h>

#include "memFile.h"

int main(int argc, char **argv){
Tcl Interp *interp;
interp = memCreatelnterp (argc, argv):;
Tcl Eval(interp, "puts OK");
return 0;

}
It can be compiled with:

(reverse-i-search) "gc': gcc testl.c libtclsh.a -1m -1d1l

Lessons Learned

1. Use the Source, Luke! The documentation for the VFS system is not as complete as it might be. In places, it isn't quite
intuitive (such as the Access function that returns - 1 instead of a TCL_ERROR when it fails).

2. The Tcland Tk initialization code provides a fairly complete suite to exercise a VFS file system.

3. There are an amazing number of permutations to handling file globbing.

Future Work

There are many FS functions that are dummied out which could be included to improve efficiency or add functionality.

One goal for this method of embedding Tcl in applications is to be able to use C code to easily invoke Tk widgets and map
callbacks from a Tk Widget back into C code. This has the potential for making Tk a useful tool for prototyping new Widgets
that a C developer might use.

The current version of this package is working and in use under Linux using gcc 3.3 and gcc 4.0. Porting the make environment
to Windows and Macintosh has been considered and might happen.

The code is available at www.dedasys.com/~clif.

file://home/clif/ BOOKS/Tc12006/outline.htm1 Wed 11 Oct 2006 01:40:22 PM EDT

