

The TCL Architecture of Objects (TAO)

Presented at the 13th Annual Tcl/Tk Conference, October 9-15, 2006,

Naperville, IL

Sean Deely Woods

Senior Network Engineer

The Franklin Institute Science Museum

222 N. 20th Street
Philadelphia, PA 19147
Email: yoda@etoyoc.com
Website: http://www.etoyoc.com/

Abstract
Technical design is only half of a successful product. User interface is an important,

but oft overlooked component of design. This lack of design is particularly acute in
products that are geared for developers. TAO is an attempt by Sean Woods, to develop an
architecture that is more than a rapid prototyping system. It is a rapid developer
immersion system as well. TAO is an programming architecture that is designed by
developers for developers. It is primarily designed for ever-changing systems like web
content. This paper will address both the technical and the psychological strategies
employed by TAO to deliver web content to staff at the Franklin Institute Science
Museum.

 Page 2 of 15

1. Introduction
In response to a complex project, meager to devote to it, and my own personal demons

I have developed a programming strategy that I believe will help all programmers of
TCL. I call this strategy TAO, the TCL Architecture of Objects. It’s a little OOP, a lot of
organization, and a bit of a wizard’s touch in places.

TAO employs a strategy that I call “Naturalistic Programming.” It shamelessly steals
principles from Taoist philosophy. It exploits natural processes, manages action through
inaction, and de-emphasizes ridged structure. TAO harnesses the power of the computer
to chase details, and leaves the human free to be creative.

1.1 The Diamond Problem

If TAO had to overcome one problem and nothing
else, it was the Diamond problem1. All object systems
run into it eventually. And my code ran into it
immediately.

Figure one illustrates the problem. We are trying to
create class A from class B and C. The difficulty lies
in that both B and C are decedents of a common
ancestor, D. Our brains grasp the solution intuitively,
“It’s both”. But a hierarchy of doesn’t like ambiguity.

Many OOP systems only have a workaround for the
Diamond Problem. C++ and Java punt the issue by
making one go through and Interface2 or virtual class.
[Incr Tcl] simply curls up and dies. Many other
systems mumble about it, and then proceed to act in
their own way.3

One day I had an epiphany. The problem was not
that my objects failed to fit into a simple hierarchy.
The problem was that a simple hierarchy did not fit my
objects.

1.2 Yggdrasil
Developers routinely throw around tree structures as simple constructs of recursion.

They have a single root that bifurcates into a myriad of trunks and branches. And it
would work except for the fact the no structure like that exists in nature.

Things with a definite beginning and ending in nature don’t branch. A worm has a
beginning and an end. Life has a beginning and an end. A string has a beginning and an
end. The two ends balance one another.

A tree structure in nature never branches in a single direction. What developers call
the “root” is actually the dividing line between the branches above and the real roots

Figure 1 - The Diamond Problem

 Page 3 of 15

beneath. The roots themselves bifurcate into a myriad branches. Trees have a balance
between what is above and below the ground.

The idea of organizing the world around a tree
structure is not a creation of modern computer
science. The Norse believed that the entire world is
built on a giant tree, the Yggdrasil4. Its branches are
so tall, and roots so deep, that they meet one
another. Yggdrasil joined together the underworld
with our world and the heavens above. Our world
was a disk wrapped around the trunk. Similar
“World Tree” myths exist in Hindu5, Siberian6, and
even Mayan7 culture.

The computer science notion of a tree is
primitive even by ancient standards. But the
ancients were on to something. The human mind is
very good at picking a start point, any point, and
working its way out.

If I was to have any hope of mapping reality in code, I had to devise a way to pick an
arbitrary starting point and work my way out in multiple directions at once.

One approach used by other systems to solve this problem is to implement the
structure as a network stored in a relational database8. With a relational database, I could
start with the class I intended to create, and let my search radiate out to all of the
branches and roots of the class network. There is no structure inherent in a database. That
is part of its charm. I only have to make up the parts of the “tree” that I would actually be
using.

Figure 2 – Yggdrasil

 Page 4 of 15

2 Overview of TAO
Building code from snippets stored in a relational database sounds cool. Except that

developers need some frame of reference to be able to make sense of it all. We don’t like
free for alls. We want a cozy set of rules to work with.

Most of my class libraries were written in [Incr Tcl], and I rather liked the way itcl
code looks. So I used itcl’s style as the basis for TAO’s programmer interface. Incr Tcl
code will port over to TAO, but developers need to be aware of some important
differences.

Firstly, TAO does not respect data hiding. I find that it makes problems hard to track
down on large systems, so I don’t use it. And I don’t code what I don’t use. This, or any
other feature, can be added a later time if there is sufficient demand9. For now the public
and private keywords are used by the TAO interchangeably.

Instead of data hiding, TAO has two types of non-volatile variables for use in object
code. A symbol is a map between a local variable name to a globally stored variable. A
static is a copy of a global value as a local variable. Because it is a copy, changes to that
local variable are not reflected in the global value. See the developer’s manual section of
the paper for an in-depth example of how symbol and static work.

2.1 SQL Backend
TAO source code is never run directly. It goes through a decompile stage where it is

torn apart, and the pieces stored in several sqlite tables. Because this digestion process
takes a not-insignificant amount of time, TAO provides a shortcut. Instead of sourcing a
file directly, TAO checks the time stamp on the file and compares it to a time stamp on
record. If the two match, the system assumes that the information already in SQL is good
and TAO moves on to the next file. This is essential on large systems with hundreds of
class files.

Class meta-data is retained between runs of a program. And if that were not good
enough, unused classes to not consume any memory in the active process, and multiple
processes can all share the same database. Conversely, applications making changes to
the class structure that are incompatible with one another can be given their own separate
databases.

The exact file location for TAO’s meta cache is presently hard coded for each
platform TAO operates under. The location selected is one that is universally readable
and writeable. If the global location is unavailable, TAO falls back to hard coded
directory in the users’s home path.

TAO creates two sqlite databases. One holds class metadata, the other hold object and
environment metadata. Where collisions are expected between applications, temporary
tables are specified in the definition. This keeps them in memory within the running
application and not on the disk-based store.

 Page 5 of 15

2.2 Classes and Objects
Classes are not called into being until they are used by an object. Once “compiled”

each class is given a unique namespaces populated with procedures that implement its
methods.

The exact namespace for a class can be obtained with the ::tao::class_namespace
command.

The secret ingredient that makes TAO work is the insertion of one line at the top of
every method: ::tao::peek The function grabs the top item on the TAO object stack. It
then runs a script that will map local variables to global ones.

TAO uses a stack so it can handle objects recursively calling other objects, even if
multiple objects are of the same class.

Objects exist in three parts:

1. A global array that stores the
non-volatile variables.
Hashes are stored as separate
global arrays.

2. A state script that is indexed
and stored internally by the
TAO system

3. A procedure that
manipulates the stack and
routes code to the proper
class namespace.

“Singletons,” classes that exist as only one object, are handled through a special
construct called a clobject. clobjects get their own namespace (the same name as their
object) and instead of referring to the stack their methods know to load only data for
them. The neat part about singletons is that you can access them either through their
interface procedure, or by making a direct call to their methods in their namespace.

2.3 TAOisms
Now that we have the basic operations of TAO under out belt, I would like to explain

some of the tools that are unique to TAO.

2.3.1 Stacked Inheritance

Hierarchies are not static in TAO, they are built on the fly from a database search. Up
until a class is called for by an object, it can be made and reshaped. The same class can
mean different things in different applications, yet retain the same look and feel to you,
the programmer. You can take any two classes, throw them in the blender, and get out a
new class that is a mix of both.

::tao::clobject networkSql {
 inherit ::sqlcon::mysqltcl
} –db_user user –db_pass pass –database network

networkSql query “select now()”
> 2006-10-01 18:36:44
networkSql::query “select now()”
> 2006-10-01 18:36:45

Example 1 - clobject usage

 Page 6 of 15

How does TAO do it? It waits until the absolute last minute to implement a class.
When it finally builds a class, it does not try to sort through ambiguity until all the cards
are on the table.

Each competing definition for a method or variable is stacked on top of the another.
The most distant ancestor on the bottom of the stack, and any code defined by the
classes’ own definition on top. When selecting building the body of a procedure, only the
top level is used. The same goes for defining a variable.

2.3.2 consecution and mesh

What good is having your code in a stack if you can’t do nifty tricks with it?

You have a new class that wants to add an extra behavior to an existing method of the
parent class. In classic [Incr Tcl] you would have to copy and paste the old method
definition and append your new code. Or call chain command. While chain is
implemented in TAO, it was very expensive to call in early versions of the system.

I developed the mesh method type to eliminate the need to call chain for incremental
changes to the body of the parent. Mesh is like a method, but instead of replacing the
code on the top of the stack, it appends to it. The developer can control whether the new
code is inserted at the beginning or the end of the parent method. In Example 2 - mesh
usage and resulting body I demonstrate the process of creating a mesh as well as the
resulting body of the final method. Example 3 – [Incr Tcl] equivelent to mesh usage
shows the same code as Example 2 using [Incr Tcl] notation.

 Page 7 of 15

tao::class ::foo {
 method validate {a b} {
 if { $a > 100 } {
 error “$a is out of bounds”
 }
 if { $b < 10 } {
 error “$b is out of bounds”
 }
 }
}

tao::class ::bar {
 inherit ::foo
 mesh validate {a b} {
 if { $a > 10 and $b < 30 } {
 error “Invalid combo of $a and $b”
 }
 }
}

>::tao::compile_class ::bar
>info body [::tao::class_nspace
::bar]::validate
{
::tao::peek
if { $a > 100 } {
 error “$a is out of bounds”
}
if { $b < 10 } {
 error “$b is out of bounds”
}
}
if { $a > 10 and $b < 30 } {
 error “Invalid combo of $a and $b”
}
}

itcl::class ::foo {
public method validate {a b} {

if { $a > 100 } {
error “$a is out of bounds”

 }
if { $b < 10 } {

error “$b is out of bounds”
}

}
}

itcl::class ::bar {
 inherit ::foo
 public method validate {a b} {
 chain
 if { $a > 10 and $b < 30 } {
 error “Invalid combo of $a and $b”

}
 }
}

Example 2 - mesh usage and resulting body Example 3 – [Incr Tcl] equivelent to mesh usage

mesh isn’t perfect for every situation. If a parent class returns a value the child’s code
will never be called. mesh is good for methods that don’t return a value, or simply error
check.

To return a value from a mesh, I created the consecution method type. consecution is
a stylized form of mesh where the results of the child class are appended to the end of
common variable, result. Note that a return statement or uncaught error in the parent
method will prevent the child’s code from ever running, just like the mesh. But, you can
at least build on the value that the parent created.

Like a mesh, a chain definition can take two bodies. If a second body is given, the first
is knitted in before the ancestor main bodies. This is particularly helpful to map new
arguments to old names should they change.

Example 4 – consecution usage and resulting body demonstrates a sample consecution
construct, as well as the body of the method that results. Example 5 – [Incr Tcl]
equivalent to chain usage shows the equivalent code to Example 4 in [Incr Tcl] notation.

 Page 8 of 15

tao::class ::foo {
method bard {} {

set result “It was the best of times”
}

}

tao::class ::bar {
 inherit ::foo
 consecution bard {} {

append result \n \
 “It was the worst of times”

 }
}

>::tao::compile_class ::bar
> info body [::tao::class_nspace
::bar]::bard
{
 tao::peek
 set result {}
 set result “It was the best of times”
 aooend result \n \
 “It was the worst of times”
 return $result
}

itcl::class ::foo {
public method bard {} {

return “It was the best of times”
}

}

itcl::class ::bar {
 inherit ::foo

public method method bard {} {
 set result [chain]

 append result \n \
 “It was the best of times”
 return $result

}
}

Example 4 – consecution usage and resulting
body

Example 5 – [Incr Tcl] equivalent to chain usage

 Page 9 of 15

3 Programming Practices for TAO
All of this technology is for naught if we don’t practice a few sensible strategies for

optimal code. These guidelines have been collected from my own experience, and have
no doubt been published elsewhere10. I list them here because TAO is designed
specifically to exploit them.

These tips are not specific to TAO. They are a good idea in any environment. They
make your code easier to read, easier to debug, and easier to maintain in the future.

1. Keep the details fuzzy

Unless you have a specific performance reason for doing so, never use a hard coded
value where a variable will do. Every one of those values, even physical constants,
should be changeable from the developer interface. If practical, provide a mechanism to
input changes to the assumed values with a configuration file.

2. Start general, add specifics

Make as few design assumptions as possible. Start with a general case, and build onto
it the specifics. You don’t need to implement every possibility of the general case, only
what you are using. Unimplemented cases should be documented and throw a polite error
to the developer if he or she tries to access something that hasn’t been defined yet.

3. All code is a singular project

All of your code must have a common protocol for data exchange, especially for
conversations between modules. The best case is the most general. Calls that are expected
to converse with outside code takes one and only one argument: a key/value list. This key
value list can then be sanity checked. Any missing detail can filled in. Extra information
can be discarded. The calling function does not need to bother itself with having to
remember which argument goes in what sequence.

4. Differentiate between interface and process

To properly handle the big picture, all code in a library should be segregated into two
types: Interface code and Process code. Interface code should do one and only one thing:
translate outside protocols to your internal protocol. Process code should speak only in
your internal protocol. If process code is returning data to the outside it should produce
its output in your internal protocol and then pass the result to an Interface.

5. Write once, Use everywhere

If you find yourself copying the same routine in multiple places, stop. Code the
sequence as a subroutine and replace all the copies with a subroutine. This reduces
mistakes. It reduces line count. It has a negligible impact on TCL performance. But most
of all, it allows later developers to follow your code easier if they aren’t having to glance
through pages and pages of similar looking code. As a practice I regularly patrol my
library for code snippets that can be consolidated.

 Page 10 of 15

6. Be the Programmer, not the Computer

Computers are good at repeating things. If you find yourself tapping out repetitive
sounding code, stop. One of the supreme powers of TCL over any other code paradigm is
the ability to machine to write its own code on the fly. If there is a pattern, teach the
computer the pattern and let the machine do your work.

I have written many a system that uses a foreach loop with code snippets to assemble
procedures on the fly. This has a twofold impact on your productivity. First: you don’t
have to sit down and write out 10 different iterations of the same procedure. Second:
when you inevitably have to modify this subroutine you only have to alter one snippet.

Having the computer code it’s own procedures has no impact on TCL performance.
The result is code that is just the same as if you had written it yourself.

Remember: proc is a command like any other in TCL.

 Page 11 of 15

4 Applications
TAO is a pretty useful general purpose tool. Being able to just sit down an tap out

object code without having to learn to tapdance around limitations opens TAO up to
many potential applications.

4.1 Present Uses

4.1.1 Taohttpd

Taohttpd is a dynamic web content engine used for several websites, including several
Intranet sites at the Franklin Institute and the Camping Committee for the Philadelphia
Folk Festival. Taohttpd extends the Tclhttpd to intelligently wrap a web server around
TAO objects.

4.1.2 Preen

Preen is a Unix cluster management suite I use to manage our servers and
workstations at the Franklin Institute. Preen exists as a library of standalone scripts that
use TAO as a common library and interface toolkit.

4.1.3 TFINET

TFINET is in the early stages of development. It is intended to deliver a dashboard
interface to Intranet content, RSS, Instant Messaging, and directory information to staff at
the Franklin Institute. It will provide a Tk gui interface to many of the same resources
that are accessed through the Taohttpd.

TFINET will also push updates to workstations and track the movement of users and
machines around the network.

4.2 Future Uses

4.2.1 Toy Languages

TAO code is simple to write, almost to a fault. The fact that its notation is written from
a human perspective with the computer playing autopilot makes it ideal for teaching.
Instructors can provide ready-made classes for students to manipulate, and the details of
operation can be obscured. As a student becomes more advanced, the instructor can lift
the veil and expose him or her to different levels of the inner working of the system.

4.2.2 Game Scripting

Like Toy Languages, game developers often want to provide a simple way for uses to
customize a system, while not overwhelming the modder with detail. If a user wants to
code a game AI, they often have a specific behavior they want to modify. Most modern
API’s require the developer to begin with a copy and pasted template that includes detail
he or she is not interested in dealing with.

 Page 12 of 15

Under TAO a user can say “start here, and build up.” At the core changes the user
code is less likely to break. They aren’t copying and pasting a lot or code that will
become outdated in the next release.

Finally, other hackers can use the original mod as a springboard for their own work.

4.2.3 Artificial Intelligence

Because TAO code is built form database searches, it is ideal for open-ended
development projects, particularly where the “Developer” is in fact a machine. TAO
provides a consistent framework on which to combine ideas together into a meaningful
way without imposing structure. Because the “code” is stored in a database, the computer
can easily add to it’s programming based on experience, or manipulate its data store to
produce novel solutions.

Suppose we want to have an expert system that reads a paragraph of data, and then
answers questions about what it has learned. Each noun in the paragraph can be an object.
As the object is described, it inherits attributes from a host of concept classes. In addition
to data, host concepts can include rules for answering specific questions.

 Page 13 of 15

5 Limitations
TAO is a leap forward in software development. But it may not be for everyone. There

are a few wrinkles inherent in the design that may not work for your situation.

5.1 TAO requires sqlite3
TAO requires sqlite311 to operate. All of it’s indexing is built around the search

features of sqlite. It makes extensive use of sqlite’s “INSERT OR REPLACE” function to
keep line count low. The TAO class system makes extensive use of direct calls to the
sqlite engine, and sqlite3 in particular.

If your application environment does not have access the most recent sqlite, TAO will
not work for you. While I find the package to be ubiquitous, I can understand situations
where having to load sqlite is either operationally impossible or a logistical nightmare.

5.2 TAO uses disk-based storage
TAO’s sqlite database is written to disk. It is a simple matter to switch to memory

based tables, but in my experience the RAM usage is prohibitively high.

5.3 TAO does not support data hiding
The present version of TAO does not support data hiding. While it will accept the

“public” and “private” keywords from Itcl, it does not honor them. It could be added, but
it does not do it today.

5.4 Compatibility with Itcl is superficial
While TAO code is made to look like [Incr Tcl], and it implements generic design

patterns quite easily, if your code makes a lot of calls to the Itcl internals TAO is not
going to work without a substantial rewrite. While I found that TAO is much simpler to
write than the equivilent code in Incr Tcl, if you have a pile of existing Incr Tcl code you
may find it challenging to port.

TAO uses a different database backend, so it is not possible at the present time to have
Incr Tcl code inherit TAO classes or vice verse. That said, there is nothing that would
keep you from running TAO and [Incr Tcl], or SNIT and XOTcl for that matter, inside
the same application.

5.5 TAO was written for Tcl 8.4
TAO was written to utilize features and methodologies present in the Tcl 8.4 core. It

uses the file normalize and string map commands that were not present in earlier versions
of 8.x. It uses namespaces which were not present before Tcl 8.0. I am aware of several
operating environments that bundle 8.3 with the base distribution. For TAO to operate in
them they must be upgraded to Tcl8.4, or I have to sit down and backport TAO.

 Page 14 of 15

6 Future Directions
The [Incr Tcl] model is just one of the many syntactic systems in use to bring objects

to TCL. I chose Incr Tcl based on personal preference, but there is nothing that would
prevent a developer from writing a class parser that digested code written in the style of
other OOP languages.

7 Acknowledgments
If I can see far, it is because I stand on the backs of giants. There were many

influences in the creation of TAO. I owe a huge debt of gratitude to the developers of
[Incr Tcl]. While I may not have used their code, the interface and feel of TAO is taken
right from Itcl.

I would also like to thank Pete Stein. He was a volunteer and later intern at the
Franklin Institute who was patient enough to learn TAO and use it in his own code. Pete
was also an excellent foil to evaluate ideas throughout the development of TAO. I learned
a lot by watching how he used the system.

I would like to also than Swapna Saireddy, my former assistant at the Franklin
Institute. Like Pete, she too developed applications for TAO. She got things to work
without the benefit of a manual, and had to listen to me explain a lot of “insanely
GREAT!” explanations as to why the system had suddenly and unexpectedly been
redesigned.

I would also like to thank my employer, The Franklin Institute for giving me the
freedom to develop TAO and use it for our in-house applications. I would also like to
thank all of the users of my system, both that the Franklin Institute and the Philadelphia
Folk Festival. There was a lot of trial, error, and transition during the development
process of TAO. Without their patience as I worked problems out, along with their
expectation that the system actually work, TAO would be just an idea.

I would also like to thank Brent Welch. His book Practical Programming in Tcl/Tk
was an excellent reference for both me and my development team. Having a printed
manual and tutorial that I could plop down in front of new staff and say “learn this” was
invaluable.

Finally, I would like to thank my wife, Sara for putting up with me disappearing into
the basement for days at a time putting this paper together, as well as proofreading the
early versions of this text.

8 Availability
TAO and its supporting documentation are available for download from:

 http://www.etoyoc.com/

 Page 15 of 15

References

1 The Diamond Problem, Wikipedia, http://en.wikipedia.org/wiki/Diamond_problem
2 Designing with Interfaces, Bill Venners, http://www.javaworld.com/jw-12-1998/jw-12-techniques.html
3 The Diamond Problem, Answers.com, http://www.answers.com/topic/diamond-problem
4 Yggdrassil: The World Tree, Encyclopedia Mythica, http://www.cauldronfarm.com/nine/yggdrasil.html
5 Parallels Between Norse and Indic Creation Myths, Michèle P. Rousseau, http://www.rousseau-
writer.com/myths.htm
6 Parts of the true story of a world picture, http://www.nbi.dk/~natphil/Siberian.html
7 Raising The Sky: The Maya Creation Myth And The Milky Way,
http://members.shaw.ca/mjfinley/creation.html
8 A similar approach was described by Tony Martson in his essay “A flexible Tree Structure”
http://www.tonymarston.net/php-mysql/tree-structure.html
9 Sufficient Demand: (n) the desire of a user to have a feature coupled with a patch submitted by said user
to implement it.
10 Further tips to enhance Tcl can be found at, http://wiki.tcl.tk/348
11 Sqlite, and embeddable SQL engine, can be found at: http://www.sqlite.org/

