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Abstract

This paper describes an integrated set of tools for generating
application-tailored communication protocol machines. In
addition to simplifying the process of generating protocols by
automatingcertain development steps, these tools also facili-
tate the mapping of platform-independent protocol machines
onto several types of multi-processor end-system architec-
tures. An overview of the steps used to generate customized
protocol machines is presented and a set of criteria for char-
acterizing tool behavior are defined. Three distinct classes of
tools are examined: (1) configuration tools transform high-
level application specifications into platform-independent
protocol machine configurations by selecting and ordering
the requisite protocol functions, (2) synthesis tools compose
and statically interconnect platform-dependent object-code
and data to form executable protocol machine instantiations,
and (3) mapping tools place these executable instantiations
onto processing elements in the run-time environment of
shared-memory or message-passing target platforms.

1 Introduction

Developing high-performance communication subsystems is
becoming increasingly necessary to efficiently and flexibly
support the diversity of emerging multimedia applications
(such as scientific visualization and computer-supported col-
laborative work projects [1]) running on high-performance
local and wide-area networks (such as FDDI and ATM-based
B-ISDN). However, conventional communication models are
limited by static layering architectures that introduce redun-
dant functionality and limit the potential for parallel process-
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ing [2]. Likewise, many conventional protocols do not offer
a sufficiently diverse range of functionality(such as multicas-
ting [3], inter-stream synchronization [4], or adaptive error
handling [5, 6]). Moreover, it is difficult to modify the func-
tionality of existing protocol implementations since they are
typically developed in a monolithic and inflexible manner
[7].

One approach for overcoming the limitations of conven-
tional communication models and protocols is to develop
application-tailored protocols that execute efficiently on a
variety of hardware and operating system platforms [8]. This
paper describes an integrated framework of tool compo-
nents that are being developed to facilitate the generation
of application-tailored protocols. The components in this
framework automate many steps required to generate cus-
tomized protocols and to execute these protocols in parallel
on heterogeneous platforms (such as message passing trans-
puters [9] and shared memory multi-processors [10]).

The work described in this paper is based on the principles
of a function-based communication model that decomposes
protocols into de-layered protocol function and mechanism
components [2]. The primary objectives of this function-
based model are to (1) enhance service flexibility and (2)
increase the opportunities for processing protocol functions
in parallel [11]. For instance, applications may specify their
qualitative and quantitative requirements via a flexible com-
munication subsystem service interface that guides the selec-
tion and/or generation of application-tailored protocols [8].
Likewise, protocol functions form a convenient and flexi-
ble level of abstraction that is amenable to parallel execution
on various multi-processorplatforms. Performance measure-
ments indicate that the function-based communication model
is a promising approach for developing high-performance
transport systems [9].

The paper is organized as follows: Section 2 summarizes
the configuration and description languages and protocol re-
sources that are used by the tool components examined in
this paper; Section 3 discusses three classes of tools for map-
ping platform-independent descriptions of customized proto-
cols onto particular multi-processor platforms; and Section 4
presents concluding remarks.
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<protocol-resource-descriptor> ::=
<protocol-function-descriptor> |
<anchor-function-descriptor> |
<control-function-descriptor> |
<configuration-descriptor> |
<instantiation-descriptor>

<protocol-function-descriptor>
’(’FUNCTION <function-name>
{ ’(’ MECHANISM <mechanism-name>

’(’ INPUT <input-parameter-list> ’)’
’(’ OUTPUT <output-parameter-list> ’)’
’(’ CODE <code-for-mechanism> ’)’

[ ’(’ PREDECESSORS <predecessor-node-list> ’)’
’(’ SUCCESSORS <successor-node-list> ’)’
’(’ CONSTRAINTS <condition_list> ’)’ ]

’)’ }
’)’

<instantiation-descriptor>
’(’ INSTANTIATION <instantiation-name>

[ ’(’ CLASS <class-name> ’)’ ]
’(’ CODE <code-path-name> ’)’

’)’

Figure 1: EBNF Format for Protocol Resource Descriptors

2 Configuration Language and Proto-
col Resource Components

The application-tailored protocols discussed throughout
this paper are composed of reusable protocol function
building-blockssuch as connection establishment, segmenta-
tion, retransmission, segmentation, reassembly, sequencing,
and checksumming. These functions serve as building-block
resources that may be combined in a de-layered manner to
generate efficient application-tailored protocol machines [2].
A protocol machine consists of a set of mechanisms (drawn
from a protocol resource pool) that constitute the minimal
set of functionality required to perform a particular appli-
cation service (such as transferring voice, video, text, or
image). Certain characteristics of individual protocol mech-
anisms and composite protocol machines may be specified
via flowgraph-based and/or text-based protocol configura-
tion and description languages that manipulate descriptors in
the resource pool. For example, the protocol resource de-
scription language (defined in [8]) characterizes functions in
terms of attributes such as mechanisms, parameters, seman-
tic constraints, and object-code. An extended Backus/Naur
(EBNF) format that portrays the general structure of protocol
resource descriptors is shown in Figure 1.

The protocol resource pool also contains protocol machine
configurations and instantiations. Configurations are non-
executable, platform-independent descriptions that contain a
set of protocol resource descriptors, their predecessor and
successor relations, and an indication of the synchroniza-
tion information necessary to coordinate interactions between
the protocol resources at run-time. Instantiations, on the
other hand, are executable protocol machines consisting of
platform-dependent resources (such as protocol mechanism
object-code and related data) that may be optimized to run
efficiently on a particular target platform. Storing these com-
ponents in the resource pool helps reduce application start-up
overhead at run-time since some or all of the time-consuming
configuration and synthesis phases may be elided.

Figure 2 illustrates how various tools (such as configura-
tion and synthesis tools) and resources (such as protocol re-
source descriptors and pre-defined protocol machine config-
urations and instantiations)are described and manipulated by
various specification notations and configuration languages.
This figure also depicts the manner in which tools may be ac-
tivated to select or generate protocol machines. For example,
applications may describe their qualitative and quantitative
application service requirements using a service specification
notation, which is then submitted via the service interface of
the communication subsystem. If a pre-defined protocol ma-
chine instantiation exists that meets these requirements it is
directly selected. Otherwise, the configuration and synthesis
tools (described in Section 3) may be invoked dynamically to
generate a suitable protocol machine from resource descrip-
tors residing in the protocol resource pool.

Figure 3 illustrates a text-based configuration depicting
the sender-side of an audio protocol machine that utilizes
descriptors in the protocol resource pool. In this example,
Anchor Clauses (such as Upper Layer Interface and
Lower Layer Interface) characterize the entry or exit
access points of the protocol machine configuration, where
data and control will be passed into or out of the transport sys-
tem. Protocol processing is indicated via Function Clauses
such as Segment, Sequencing, and Routing. Ren-
dezvous Clauses (such as Complete Header) are used
to synchronize concurrent protocol processing. Moreover,
functions that operate asynchronously under timer control
(such as Retransmit) are specified as Timer Clauses.

Commonalities between these different types of clauses
may be expressed via object-oriented techniques such as in-
heritance [12] (which facilitates software reuse) and dynamic
binding (which both decouples mechanism interfaces from
the mechanism algorithms and defers certain implementa-
tion decisions until run-time). These techniques facilitate a
modular, extensible, and efficient object-oriented software
architecture [13] for the configuration, synthesis, and map-
ping tools described in the following section.

3 Tool Classes

This section describes several classes of tools that transform
high-level descriptions of qualitative and quantitative appli-
cation service requirements into lower-level protocol ma-
chines that may be directly executed on a particular target
platform. Figure 2 illustrates the relationships between the
resources and tools involved in this transformation process.2

The tool components access and manipulate the descriptors in
the protocol resource pool to transform platform-independent
descriptions of protocol functionality into executable proto-
col machine instantiations that may be optimized for a spe-
cific target platform.

2The transformation phases presented in this section are intended to clar-
ify the essential characteristics of the model. However, a given implemen-
tation may consolidate one or more of these phases to enhance performance.
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Figure 2: Selection and Generation of Protocol Machines

Three classes of tools, configuration, synthesis, and map-
ping, are involved in configuring, instantiating, and execut-
ing application-tailoredprotocol machines, respectively. The
synthesis and mapping tools perform the platform-dependent
transformations, whereas the configuration tools are intended
to be platform-independent. Each class of tools consults in-
formation residing in the protocol resource pool on the local
end-system. The remainder of this section outlines the func-
tionality offered by the tools in each class and describes the
types of information they utilize from the descriptors resid-
ing in the protocol resource pool. In addition to the tools
described below, various platform-specific operating system
utilities (such as compilers and assemblers for conventional
programming languages, as well as linkers and loaders) are
also necessary to generate and execute application-tailored
protocol machines.

3.1 Configuration Tools

Configuration tools transform high-level application service
specification requests (submitted via the service interface
shown at the top of Figure 2) into protocol machine config-
urations that are described via the flowgraph-based or text-
based protocol machine configuration languages defined in
[8]. Configuration tools perform operations involving the
selection and ordering of protocol resources [14]. The selec-
tion process determines which functions and mechanisms in

the protocol resource pool are necessary to fulfill a particular
application service request. The ordering process determines
the predecessors and successors of each function and mecha-
nism. Selection and ordering decisions are based on seman-
tic information associated with protocol resource descriptors
(such as input and output parameters and constraints), as well
as domain-specific knowledge of communication protocols
possessed by configuration tools (such as the minimal set
of protocol functions required to satisfy a particular class of
application service requests).

3.2 Synthesis Tools

Synthesis tools transform protocol machine configurations
produced by the configuration tools into protocol machine
instantiations. Synthesis tools perform operations involving
the composition and static interconnection of protocol re-
sources to form one or more clusters. A complete protocol
machine instantiationconsists of a set of interconnected clus-
ters (depicted in Figure 4 (1)). Each cluster contains a set
of platform-specific object-code extracted from the function
descriptors in the protocol resource pool that were selected
earlier by the configuration tools. The composition pro-
cess uses the protocol machine configuration to guide the
formation of one or more clusters. The static interconnec-
tion process determines efficient mechanisms for transferring
control between functions within a cluster, as well as between
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Figure 4: Clustering and Mapping Protocol Resources onto Multi-Processing Platforms

interconnected clusters at run-time.3

Several alternative mechanisms may be used to transfer
control between and within functions and clusters. For ex-
ample, within a cluster, control is typically transferred be-
tween functions as a consequence of the hardware updating
a program counter to reference the next executable protocol
function or instruction. Mechanisms for transferring control
between clusters, on the other hand, depend on the under-
lying process architecture, operating system, and hardware
platform. For instance, interprocess communication (IPC)
mechanisms may be necessary to transfer control between
functions in different clusters that are executing on sepa-
rate processing elements in a non-shared memory platform.
Conversely, if several clusters are executing concurrently on
separate threads in a shared address space, control may be
transferred between functions by simply traversing a pointer
link to the next cluster. Depending on the underlying process
architecture, synchronization primitives may be necessary
to protect resources shared between concurrently executing
threads of control. Pointer links between clusters may be

3Clusters may also be interconnected dynamically (cf. Section 3.3).

established either statically (by the synthesis tools during
protocol machine instantiation) or dynamically (by the map-
ping tools at run-time, as described in Section 3.3 below).

Protocol functions constitute the primary units of execu-
tion in a protocol machine, whereas clusters (which may
contain one or more protocol functions) are the primary units
of mapping and interconnection onto a particular target plat-
form. There are several motivations for clustering certain
protocol functions together in a protocol machine instantia-
tion. In general, clusters decouple the processing of protocol
functions from the interconnections that link the functions
together. This decoupling facilitates reuse, automation, and
flexibility. For example, fine-grain reuse of protocol func-
tions is encouraged by developing the functions indepen-
dently from how, when, or in what order they are eventually
composed. Likewise, the mapping tools described below
may be used to determine and perform the appropriate type of
interconnections between clusters without requiring explicit
intervention from developers or applications. In addition,
flexibility is enhanced by deferring certain interconnection
decisions until late in the protocol design process, potentially
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(anchor "Upper_Interface_Sender"
(mechanism "Receive_SDU_Sender"

(predecessor-node NULL)
(successor-node "Segment", "Synchronization")))

(anchor "Lower_Interface_Sender"
(mechanism "Send_SDU_Sender"

(predecessor-node "Complete_Header", "Checksum"")
(successor-node NULL)))

(rendezvous "Complete_Header"
(mechanism "Complete_Header_Audio_Data"
(predecessors

barrier ("Compose_Data_Request",
"Sequencing",
"Synchronization"))

(successors "Send_SDU")))

(rendezvous "Complete_Header"
(mechanism "Complete_Header_Audio_Connection"

(predecessors
barrier ("Connection_Establishment_Termination",

"Routing"))
(successors ("Checksum"))))

(function "Segment"
(mechanism "Segment"

(predecessors "Receive_SDU")
(successors "Sequencing", "Compose_Data_Request")))

(function "Compose_Data_Request"
(mechanism "Compose_Data_Request"

(predecessors "Compose_Data_Request", "Segment")
(successors "Complete_Header)))

(function "Sequencing"
(mechanism "Sequencing"

(predecessors "Segment")
(successors "Complete_Header)))

(function "Synchronization")
(mechanism "Stream_Synchronization"

(predecessors "Receive_SDU")
(successors "Complete_Header")))

(function "Connection_Establishment_Termination"
(mechanism "Explicit_Connection"

(predecessors "Receive_SDU")
(Successsors "Complete_Header")))

(function "Routing"
(mechanism "Transport_System_Routing"

(predecessors "Receive_SDU")
(successors "Complete_Header")))

(function "Checksum_Calculation"
(mechanism "32_Bit_Checksum"

(predecessors "Complete_Header")
(successors "Send_SDU")))

(timer "Retransmission"
(mechanism "Timerbased_and_Cumulative_Retransmit"

(predecessors "Connection_Establishment_Termination")
(successors "Send_SDU")))

Figure 3: Text-based Configuration of the Protocol Machine
for Sending Audio

during installation or run-time. By deferring these decisions,
communication subsystem may select more efficient mecha-
nisms for interconnecting functions and clusters. Selecting an
efficient interconnection mechanism depends both on static
factors (such as bus bandwidth or whether the underlying tar-
get platform hardware architecture supports IPC via message
passing and/or shared memory), as well as dynamic factors
(such as the current system load on a particular processing
element).

Determining the policies and mechanisms for clustering
protocol resources is a research challenge facing both de-
velopers and tools. Potential criteria for partitioning pro-
tocol machines into clusters include (1) grouping resources
to facilitate stage balancing within a multi-processor func-
tion “pipeline,” (2) localizing functions that reference com-
mon data in order to minimize memory contention, exploit

processor cache affinity, and/or reduce paging, (3) coalesc-
ing certain functions together to conveniently add or remove
clusters from protocol machines at run-time, and (4) enabling
more thorough static analysis of concurrent activity between
and within clusters [15]. Future work will utilize the synthe-
sis and mapping tool mechanisms to determine which cluster
partition policies are suitable under which circumstances.

3.3 Mapping Tools

Mapping tools transfer the clusters that comprise a protocol
machine instantiation into the run-time system of a particular
target platform. The primary operations performed by map-
ping tools involve local system resource allocation, dynamic
interconnection, and cluster placement. For instance, when
an application activates one or more protocol machines, the
mapping tools load the object-code associated with the clus-
ters of the selected protocol machine instantiation(s) into the
target platform’s run-time system. This task involves allocat-
ing resources (such as memory and processing elements) and
performing any necessary dynamic interconnections between
clusters in the protocol machine instantiation.

Permitting the dynamic interconnection of clusters enables
the reconfiguration of certain mechanisms in a pre-defined
protocol machine instantiation. For example, an application
may specify the maximum size of its data units when selecting
a pre-defined instantiation. If a path discovery mechanism
[16] determines that the maximum transmission unit of the
underlying network supports this size without requiring frag-
mentation, the segmentation function may be removed from
the instantiation at connection establishment time, before
any processing of application data units occurs. Likewise,
the capability to reconfigure protocol machines at run-time
enables the communication subsystem to dynamically adapt
to changes in network and application characteristics. For
example, adaptive protocol error handling mechanisms may
achieve a lower average transmission delay compared with
non-adaptive approaches [6].

Mapping tools are also responsible for placing clusters
onto the processing elements (PEs) available on the hard-
ware platform. Determining the placement of clusters onto
PEs is crucial for achieving high levels of application and
transport system performance. In order to determine a suit-
able mapping onto the PEs, the synthesis and mapping tools
must cooperate to determine which clusters to associate with
which PEs. In general, the synthesis tools described in Sec-
tion 3.2 identify protocol function clusters and the mapping
tools subsequently decide where to place these clusters within
the underlying PE topology. The cluster placement process
may be modeled via a graph description of the end-system’s
PE topology. This “placement graph” is labeled with the cur-
rent load statistics (calculated as the quotient of the PE pro-
cessing time versus the sum of idle and processing time) at the
nodes (i.e., PEs), and the current communication behavior of
inter-processor connections at the edges (i.e., communication
links between PEs).

Clusters must be mapped onto the placement graph without
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exceeding limits on PE-load or memory resources. There-
fore, the mapping tools must account for the anticipated PE
utilization and the related communication and synchroniza-
tion behavior. In addition, the mapping tools require detailed
knowledge of certain static and dynamic hardware features
(such as the number of available PEs, the mechanisms used to
interconnect and communicate between the PEs, and maxi-
mum and current load capacity of the PEs). After the mapping
operations are performed, the target platform’s operating sys-
tem is responsible for managing the scheduling and context
switching of the protocol machine clusters during run-time.

Although the target platforms supported by this frame-
work differ in terms of operating system and hardware as-
pects (such as the number of available PEs, the interprocess
communication and memory architecture, and the network
interface devices), many of the same resources, languages,
tools, and underlying architectural principles may be applied
on the different platforms. Using notation defined in [8],
Figure 4 illustrates the mapping of an identical set of clus-
ters (Figure 4 (1)) onto a shared memory multi-processor
platform (Figure 4 (2)), as well as onto a message-passing
multi-processor system (Figure 4 (3)). We are currently ex-
perimenting with protocol implementations to characterize
the advantages and disadvantages of each platform.

4 Concluding Remarks

This paper describes an integrated framework being devel-
oped to generate application-tailoredprotocol machines. The
protocol resources, configuration languages, and support-
ing tools in this framework facilitate the transformation of
platform-independent protocol machine configurations into
platform-dependent instantiations. The synthesis and map-
ping tools discussed throughout the paper utilize platform-
specific information that describes the static and dynamic
characteristics of the underlying OS and hardware. The tools
use this information to interconnect clusters of protocol func-
tions and to place them onto the run-time system of shared
memory and message passing multi-processors.
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