pyspark.pandas.
MultiIndex
pandas-on-Spark MultiIndex that corresponds to pandas MultiIndex logically. This might hold Spark Column internally.
The unique labels for each level.
Integers for each level designating which label at each location.
Level of sortedness (must be lexicographically sorted by that level).
Names for each of the index levels. (name is accepted for compat).
Copy the meta-data.
Check that the levels/codes are consistent and valid.
See also
MultiIndex.from_arrays
Convert list of arrays to MultiIndex.
MultiIndex.from_product
Create a MultiIndex from the cartesian product of iterables.
MultiIndex.from_tuples
Convert list of tuples to a MultiIndex.
MultiIndex.from_frame
Make a MultiIndex from a DataFrame.
Index
A single-level Index.
Examples
>>> ps.DataFrame({'a': ['a', 'b', 'c']}, index=[[1, 2, 3], [4, 5, 6]]).index MultiIndex([(1, 4), (2, 5), (3, 6)], )
>>> ps.DataFrame({'a': [1, 2, 3]}, index=[list('abc'), list('def')]).index MultiIndex([('a', 'd'), ('b', 'e'), ('c', 'f')], )
Methods
all(*args, **kwargs)
all
Return whether all elements are True.
any(*args, **kwargs)
any
Return whether any element is True.
append(other)
append
Append a collection of Index options together.
argmax()
argmax
Return a maximum argument indexer.
argmin()
argmin
Return a minimum argument indexer.
asof(label)
asof
Return the label from the index, or, if not present, the previous one.
astype(dtype)
astype
Cast a pandas-on-Spark object to a specified dtype dtype.
dtype
copy([deep])
copy
Make a copy of this object.
delete(loc)
delete
Make new Index with passed location(-s) deleted.
difference(other[, sort])
difference
Return a new Index with elements from the index that are not in other.
drop(codes[, level])
drop
Make new MultiIndex with passed list of labels deleted
drop_duplicates()
drop_duplicates
Return Index with duplicate values removed.
droplevel(level)
droplevel
Return index with requested level(s) removed.
dropna()
dropna
Return Index or MultiIndex without NA/NaN values
equal_levels(other)
equal_levels
Return True if the levels of both MultiIndex objects are the same
equals(other)
equals
Determine if two Index objects contain the same elements.
factorize([sort, na_sentinel])
factorize
Encode the object as an enumerated type or categorical variable.
fillna(value)
fillna
Fill NA/NaN values with the specified value.
from_arrays(arrays[, sortorder, names])
from_arrays
Convert arrays to MultiIndex.
from_frame(df[, names])
from_frame
from_product(iterables[, sortorder, names])
from_product
Make a MultiIndex from the cartesian product of multiple iterables.
from_tuples(tuples[, sortorder, names])
from_tuples
Convert list of tuples to MultiIndex.
get_level_values(level)
get_level_values
Return vector of label values for requested level, equal to the length of the index.
holds_integer()
holds_integer
Whether the type is an integer type.
identical(other)
identical
Similar to equals, but check that other comparable attributes are also equal.
insert(loc, item)
insert
Make new MultiIndex inserting new item at location.
intersection(other)
intersection
Form the intersection of two Index objects.
is_boolean()
is_boolean
Return if the current index type is a boolean type.
is_categorical()
is_categorical
Return if the current index type is a categorical type.
is_floating()
is_floating
Return if the current index type is a floating type.
is_integer()
is_integer
Return if the current index type is a integer type.
is_interval()
is_interval
Return if the current index type is an interval type.
is_numeric()
is_numeric
Return if the current index type is a numeric type.
is_object()
is_object
Return if the current index type is a object type.
is_type_compatible(kind)
is_type_compatible
Whether the index type is compatible with the provided type.
isin(values)
isin
Check whether values are contained in Series or Index.
isna()
isna
Detect existing (non-missing) values.
isnull()
isnull
item()
item
Return the first element of the underlying data as a python tuple.
map([mapper, na_action])
map
Map values using input correspondence (a dict, Series, or function).
max()
max
Return the maximum value of the Index.
min()
min
Return the minimum value of the Index.
notna()
notna
notnull()
notnull
nunique([dropna, approx, rsd])
nunique
Return number of unique elements in the object.
rename(name[, inplace])
rename
Alter Index or MultiIndex name.
repeat(repeats)
repeat
Repeat elements of a Index/MultiIndex.
set_names(names[, level, inplace])
set_names
Set Index or MultiIndex name.
shift([periods, fill_value])
shift
Shift Series/Index by desired number of periods.
sort(*args, **kwargs)
sort
Use sort_values instead.
sort_values([ascending])
sort_values
Return a sorted copy of the index.
swaplevel([i, j])
swaplevel
Swap level i with level j.
symmetric_difference(other[, result_name, sort])
symmetric_difference
Compute the symmetric difference of two MultiIndex objects.
take(indices)
take
Return the elements in the given positional indices along an axis.
to_frame([index, name])
to_frame
Create a DataFrame with the levels of the MultiIndex as columns.
to_list()
to_list
Return a list of the values.
to_numpy([dtype, copy])
to_numpy
A NumPy ndarray representing the values in this Index or MultiIndex.
to_pandas()
to_pandas
Return a pandas MultiIndex.
to_series([name])
to_series
Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index.
tolist()
tolist
transpose()
transpose
Return the transpose, For index, It will be index itself.
union(other[, sort])
union
Form the union of two Index objects.
unique([level])
unique
Return unique values in the index.
value_counts([normalize, sort, ascending, …])
value_counts
Return a Series containing counts of unique values.
view()
view
this is defined as a copy with the same identity
Attributes
T
asi8
Integer representation of the values.
Return the dtype object of the underlying data.
dtypes
Return the dtypes as a Series for the underlying MultiIndex.
empty
Returns true if the current object is empty.
has_duplicates
If index has duplicates, return True, otherwise False.
hasnans
Return True if it has any missing values.
inferred_type
Return a string of the type inferred from the values.
is_all_dates
is_all_dates always returns False for MultiIndex
is_monotonic
Return boolean if values in the object are monotonically increasing.
is_monotonic_decreasing
Return boolean if values in the object are monotonically decreasing.
is_monotonic_increasing
is_unique
Return if the index has unique values.
levshape
A tuple with the length of each level.
name
Return name of the Index.
names
Return names of the Index.
ndim
Return an int representing the number of array dimensions.
nlevels
Number of levels in Index & MultiIndex.
shape
Return a tuple of the shape of the underlying data.
size
Return an int representing the number of elements in this object.
values
Return an array representing the data in the Index.