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ACE is an object-oriented (OO) framework that implements
core concurrency and distribution patterns [2] for communica-
1 Introduction tion software. ACE provides a rich set of reusable C++ wrap-
pers and framework components that are targeted for develop-
Communication software for next-generation distributed &S ©f high-performance, real-time services and applications
plications should possess the following qualities: across a wide range of OS platforms, including Win32, most
versions of UNIX, and many real-time operating systems. The
e Flexibility is needed to support a growing range of mugomponents in ACE provide reusable implementations of the
timedia datatypes, traffic patterns, and end-to-end quaf@lowing common communication software tasks:

of service (QoS) requirements.

- . , e Connection establishment and service initializaigh
o Efficiencyis needed to provide low latency to delay-

sensitive applications, high performance to bandwidth-* Event demultiplexing and event handler dispatctiuhg
intensive applications, and predictability to real-time ap- 5, 6];
plications. ¢ Interprocess communicatiofi’] and shared memory

« Reliability is needed to ensure that applications are ro- management

bust, fault tolerant, and highly available. e Static and dynamic configuration [8, 9] of communica-

¢ Portability is needed to reduce the effort required to sup- tion services

port applications on heterogeneous OS platforms ande Concurrency and synchronizati@s, 10];

compilers. e Distributed communication servicessuch as naming,

event routing [2], logging, time synchronization, and net-

This article describes the software architecture of ACE [1], work locking;

which is a freely available, open source C++ framework tar-

geted for developers of high-performance and real-time coms Higher-level distributed computing middleware compo-

munication services and applications. nents— such as Object Request Brokers (ORBs) [11],
The ACE framework provides an integrated set of compo- Web servers [12], and electronic medical imaging sys-

nents that help developers navigate between the “Scylla and tems [13].

Charybdis” limitations of (1) low-level native OS APIs, which

are inflexible and non-portable and (2) higher-level distributddiis section outlines the structure and functionality of the

object computing middleware, which are often inefficient artCE framework.

unreliable. This article describes the structure and function-

ality of ACE,.out_Iines several complex communigation mich_& The Structure and Functionality of ACE

dleware applications that have been developed with ACE, an

summarizes the key lessons learned developing and depldye ACE framework contains 150,000 lines of C++ code di-

ing reusable the OO communication software components arded into~450 classes. To separate concerns and to reduce

frameworks in ACE. the complexity of the framework, ACE is designed using a
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Figure 1: The Layering Structure of Components in the ACE Framework

layered architecture. Figure 1 illustrates the relationships lbemote IPC and shared memory.
tween the key components in ACE.

The lower layers of ACE contain @S adapteand C++
wrappersthat portably encapsulate core OS communicati
and concurrency services. The higher layers of ACE
tend the C++ wrappers to provide reusafslameworks self-
contained distributed service componen#md higher-level EXplicitdynamiclinking: ~ ACE's adaptation layer encapsu-
distributed computing middleware componentdogether, lates OS APIs for explicit dynamic linking, which allows ap-
these layers and components simplify the creation, comjpdication services to be configured at installation-time or run-
sition, and configuration of communication systemithout time.

incurring significant performance overhead. The role of eagfje system mechanisms: ACE’s adaptation layer encapsu-
layer is outlined below. lates OS file system APIs for manipulating files and directo-
ries.

Event demultiplexing mechanisms: ACE’s adaptation
layer encapsulates OS APIs for synchronous and asyn-
@Hronous demultiplexing I/O-based, timer-based, signal-
eﬁ%sed, and synchronization-based events.

2.1.1 The ACE OS Adaptation Layer The portability of ACE’s OS adaptation layer enables it to

The OS adaptation layeconstitutes approximately 13% offun on a wide range of operating systems. The OS platforms
ACE, i.e, ~20,000 lines of code. This layer resides directupported by ACE include Win32 (WinNT 3.5.x, 4.x, Win95,
atop the native OS APIs written in C. The OS adaptatiémd WinCE using MSVC++ and Borland C++), most versions
layer shields the other layers and components in ACE fr@hUNIX (SunOS 4.x and 5.x; SGI IRIX 5.x and 6.x; HP-UX
platform-specific dependencies associated with the followifigt, 10.x, and 11.x; DEC UNIX 3.x and 4.x, AIX 3.x and 4.x,
OS APIs: DG/UX, Linux, SCO, UnixWare, NetBSD, and FreeBSD),
real-time operating systems (VxWorks, Chorus, LynxOS, and
tE)_SOS), and MVS OpenEdition.

Because of the abstraction provided by ACE’s OS adapta-
tion layer, a single source tree is used for all these platforms.
Interprocess communication (IPC) and shared memory: This design greatly simplies the portability and maintainability
ACE's adaptation layer encapsulates OS APIs for local aofACE.

Concurrency and synchronization: ACE’s adaptation
layer encapsulates OS APIs for multi-threading, mul
processing, and synchronization.



2.1.2 The ACE C++ Wrapper Layer 2.1.3 The ACE Framework Components

It is possible to program highly portable C++ applications di-he remaining~40% of ACE consists of communication soft-
rectly atop ACE’s OS adaptation layer. However, most AGEare framework components that integrate and enhance the
developers use th€++ wrappers layer shown in Figure 1. C++ wrappers. These framework components support the flex-
The ACE C++ wrappers simplify application development bigle configuration of concurrent communication applications
providing typesafe C++ interfaces that encapsulate and ane services [8]. The framework layer in ACE contains the
hance the native OS concurrency, communication, memésjowing components:
management, event demultiplexing, dynamic linking, and file
system APIs. Event demultiplexing components: The ACE Reactor [4]
The C++ wrappers provided by ACE are quite comprehed Proactor [6] are extensible, object-oriented demultiplex-
sive, constituting~50% of its source code. Applications cag'rs that dispatch application-specific handlers in response to
combine and compose these wrappers by selectively inhéf@tious types of 1/0-based, timer-based, signal-based, and
ing, aggregating, and/or instantiating the following compgynchronization-based events.

nents:
Service initialization components: The ACE Connector

Concurrency and synchronization components: ACE ab- and Acceptor components [3] decouple the active and pas-
stracts native OS multi-threading and multi-processing mec@ie initialization roles, respectively, from application-specific
nisms like mutexes and semaphores to create higher-level @8ks that communication services perform once initialization
concurrency abstractions like Active Objects [10] and Polig complete.

morphic Futures [14]. ) . ) )
Service configuration components: The ACE Service Con-

IPC and filesystem components: The ACE C++ wrappers figurgtor [9] supports the configuratio'n of appllications' whqse
encapsulate local and/or remote IPC mechanisms [7] sucif@&/ices may be assembled dynamically at installation-time
sockets, TLI, UNIX FIFOs and STREAM pipes, and Win3@nd/or run-time.

Named Pipes. In addition, the ACE C++ wrappers encapsulate .
the OS filesystem APIs. Hierarchically-layered stream components: The ACE

Streams components [8, 1] simplify the development of com-
Memory management components: The ACE memory munication software applications, such as user-level protocol

management components provide a flexible and extensible SIBcks; that are composed of hierarchically-layered services.
straction for managing dynamic allocation and deallocation of

interprocess shared memory and intraprocess heap memofyXB adapter components: ACE can be integrated seam-
lessly with single-threaded and multi-threaded CORBA imple-

The C++ wrappers provide many of the same features asftntations via its ORB adapters [16].
OS adaptation layer in ACE. However, these features are struc-

tured in terms of C++ classes and objects, rather than standrne ACE framework components facilitate the development
alone C functions. This OO packaging helps to reduce $e;ommunication software that can be updated and extended
effort required to learn and use ACE correctly [15]. without the need to modify, recompile, relink, or often restart
For instance, the use of C++ improves application robugimning applications [8]. This flexibility is achieved in ACE
ness because the C++ wrappers are strongly typed. Therefgfesombining (1) C++ language features, such as templates,
compilers can detect type system violations at compile-tiferitance, and dynamic binding, (2) design patterns, such as
rather than at run-time. In contrast, it is not possible to dete®stract Factory, Strategy, and Service Configurator [17, 9],
typesystem violations for C-level OS APIs, such as socketsgjg (3) OS mechanisms, such as dynamic linking and multi-
filesystem 1/O, until run-time. threading.
ACE employs a number of techniques to minimize or elim-
inate the performance overhead. For instance, ACE uses C++
inlining extensively to eliminate method call overhead that1.4 Self-contained Distributed Service Components
would otherwise be incurred from the additional typesafety . .
and levels of abstraction provided by its OS adaptation layBr2ddition to its C++ wrappers and framework components,
and the C++ wrappers In addition, ACE avoids the use AEE provides a standard library of distributed services that

virtual methods for performance-critical wrappers, such &€ Packaged as self-contained components. Although these
send /recv  methods for socket and file 1/O. service components are not strictly part of the ACE framework

library, they play two important roles:
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Figure 2: Components in the TAO Real-time ORB Figure 3: Architectural Overview of the JAWS Framework

Factoring out reusable distributed application building level distributed computing middleware, such as CORBA [18],

blocks: These service components provide reusable implEOM [19], or Java RMI [20]. Higher-level distributed com-

mentations of common distributed application tasks suchP4ding middleware resides between clients and servers and au-
naming, event routing [2], logging, time synchronization, arlgmates many tedious and error-prone aspects of distributed

network locking. application development, including:

Demonstrating common use-cases of ACE components: e Authentication, authorization, and data security.

The dlstr!buted services also demo.nstrate how ACE comy garvice location and binding.

ponents like Reactors, Service Configurators, Acceptors and ) ] ] o

Connectors, Active Objects, and IPC wrappers can be usel S€rvice registration and activation.

effectively to develop flexible, efficient, and reliable commu- ¢ Demultiplexing and dispatching in response to events.

nication software. ¢ Implementing message framing atop bytestream-oriented
. o _ . communication protocols like TCP.

2.15 cl:—hgher-lev?l Distributed Computing Middleware b osontation conversion issues involving network byte-
omponents ordering and parameter marshaling.

Developing robust, extensible, and efficient communication_r ide devel ‘ L o ith

applications is challenging, even when using a communica- ° ?row e ehvefolrl)ers' 0 hflor:nmlunlclatlpdndlso are v;{|t

tion framework like ACE. In particular, developers must stiFPese eatures, the following higher-level middleware applica-

master a number of complex OS and communication concettﬂgs are bundled with the ACE release:

such as: The ACE ORB (TAO): TAO [21] is a real-time imple-
] o o mentation of CORBA built using the framework components
* Network addressing and service identification. and patterns provided by ACE. TAO contains the network in-

e Presentation conversions, such as encryption, comptesface, OS, communication protocol, and CORBA middle-
sion, and network byte-ordering conversions betwewmre components and features shown in Figure 2. TAO is
heterogeneous end-systems with alternative procedsased on the standard OMG CORBA reference model [18],
byte-orderings. with the enhancements designed to overcome the shortcom-

« Process and thread creation and synchronization. ~ IN9S of conventional ORBs [22] for high-performance and

. o real-time applications. TAO, like ACE, is freely available at

e System call and library routine interfaces to local and rgz, .\ ~< wustl.edu/ ~schmidt/TAO. html

mote interprocess communication (IPC) mechanisms. . ) )
JAWS: JAWS [23] is a high-performance, adaptive Web

It is possible to alleviate some of the complexity of deserver built using the framework components and patterns
veloping communication applications by employing higheprovided by ACE. Figure 3 illustrates the major structural



components and design patterns in JAWS. JAWS is striécgreat deal of effort must be expended initially to produce ef-
tured as aframework of frameworks The overall JAWS ficient, flexible, and well-documented reusable software arti-
framework contains the following components and framfacts. Thus, an organization must support an effective process
works: anEvent DispatcherConcurrency Strategy/O Strat- in order for reuse to flourish. For instance, developers must
egy, Protocol Pipeline Protocol Handlers and Cached Vir- be rewarded, not punished, for taking the time to build ro-
tual Filesystem Each framework is structured as a set dfust reusable components. Moreover, the reuse process must
collaborating objects implemented by combining and exterrdward production of concrete software artifacts, rather than
ing components in ACE. JAW is also freely available @ndless abstract meta-models or high-level design documents.

www.cs.wustl.edu/ ~jxh/research/ ) o L
In my experience, these prerequisites often do not exist in

] contemporary organizations. In such cases, I've observed that
3 Lessons Learned Developing and De-erganizations often fall victim to the “not-invented-here” syn-
: drome and redevelop most of their software components from
ploylng ACE scratch. Unfortunately, increasing deregulation and global
ﬁ%npetition make it hard to succeed with this type of devel-

This section summarizes the lessons I've learned during
BWe”t process.

past seven years developing the reusable OO communicall
software components in the ACE framework and deployin@ration and incremental growth is essential: It is cru-

ACE in a wide range of commercial applications in the avioRiy) for organizations to explicitly recognize that good com-
ics, telecommunications, and medical domains. ponents, frameworks, and software architectures require time
Software reuse fails largely to non-technical reasons: In to craft, hone, and apply. In general, developing, using, and
theory, organizations recognize the importance of reuser@gsing software requires a mature organization that can dis-
a means to reduce cycle-time and improve software quiitguish key sources of variability and commonality in its ap-
ity. In practice, many factors conspire to make it hard @ication domain. Identifying and separating these concerns
achieve systematic software reuse. Most of the impedimefgiguires multiple iterations.

are largely political, economical, organizational, and psycho-For reuse to succeed in-the-large, management must have
logical, rather than technical. For instance, teams that devetog vision and resolve to support the incremental evolution
reusable middleware platforms are often viewed with suspi-reusable software. Fred Brook's observation that “Plan to
cion by application development teams, who resent the fiwtow the first one away, you will anyway” [25] applies as
that they are no longer empowered to make key architecturaich today as it did 20 years ago. Moreover, in my experi-
decisions. ence, “the best is often the enemy of the good” when it comes
Successful reuse-in-the-large requires prerequisites:in 0 d€ploying reusable software frameworks and components.

my experience, large-scale reuse of software works best W%Wn' an 80.% solution that can -be deployed and evglved in-
the following conditions apply: crementally is preferable to waiting for a 100% solution that

o . never ships.
e The marketplace is highly competitive: In a compet-

itive environment, time-to-market is crucial. Therefore, it iEhere’'s no substitute for hands-on experience: Develop-
essential to leverage existing software to substantially redirog high quality communication software is hard; develop-
development effort and cycle time. When a market placeimg high quality reusable communication software is even
not competitive, however, there is often a tendency to reinvéatrder. The principles, methods, and skills required to develop
rather than reuse. reusable software simply cannot be learned by generalities.

« The application domain is challenging: Components Instead, developers must learn through hands-on experience

that are relatively easy to develop, such as generic linkag © deS|gn,b||mpIefr;nv\(/ant, optimize, vallda(ﬁ, malntallr:, andl
lists, stacks, or queues, are often rewritten from scratch, rathieyance reusabie software compopgnts and frameworks. Only
than reused. In contrast, developers are generally willing®% 2ctivately engaging in these activities will developers truly
reuse highly complex components, such as dynamic schediignalize good development practices and patterns.

ing frameworks [24] or real-ime ORBs [21], since bUiIdimi’ntegrate infrastructure developers with application devel-

complete solutions from scratch is too difficult, costly, arﬁipers: Most useful components and frameworks originate

time-consuming. from solving real problems in a particular application domain,
e The corporate culture is supportive: It is hard to de- such as telecommunications, medical imaging, avionics, and

velop high-quality reusable components and frameworks. Web programming. A time-honored way of producing ef-

particular, it is hard to reap the benefits of reuse immediatdictive reusable components, therefore, igéoeralizethem



from working systems and applications. This was how AGiood as the people who build and use them. Developing ro-
evolved. bust, efficient, and reusable middleware requires teams with
I've found that creating “component teams,” which build wide range of skills. We need expert analysts and design-
reusable frameworks in isolation from application teams, éss who have mastered design patterns, software architectures,
often counter-productive. Without intimate feedback from apnd communication protocols to alleviate the inherent and ac-
plication developers, the software artifacts produced by coedental complexities of communication software. Moreover,
ponent teams rarely solve real problems and are unlikely tovae need expert programmers who can implement these pat-
reused systematically. terns, architectures, and protocols in reusable frameworks and
, i . components.
Design to an architecture rather than program to a partic- In my experience, it is exceptionally hard to find high qual-

ular middleware technology “standard” It is very risky .y sofrware developers. Ironically, many companies treat their
to expect that emerging |ndustry_m|ddlewar_e standar_ds, I elopers as interchangeable, “unskilled labor,” who can be
CORBA, DCOM, or Java RMI, will automatically eliminate,o |5 ceq easily. Over time, companies who respect and reward

the complexity of developing communication software. N@oir high quality software developers are increasingly outper-
single solution is a panacea, nor are “standards” necess%hzning those who do not

ubiquitous or implemented consistently.

Therefore, for complex communication software systems it
is essential to design and uaeehitectureghat can transcend/4 Concluding Remarks
any specific middleware technology standard. I've found it

is much more effective to devise a common software archit@omputing power and network bandwidth has increased dra-

ture that can be instantiated on multiple middleware platforn,zﬁatica”y over the past decade. However, the design and im-
rather than programming directly to a particular middlewagementation of communication software remains expensive
API, which can rapidly become obsolete. and error-prone. Much of the cost and effort stems from
ACE's OS adap- the continual re-discovery and re-invention of fundamentgl

ARty patterns and framework components across the software in-

’ stry. However, the growing heterogeneity of hardware ar-
itectures, the diversity of OS and network platforms, and
gll_obal competition make it increasingly costly to build correct,

OS API “wars” are largely irrelevant:
tation layer makes the selection of the native OS
POSIX vs. WIin32 vs. real-time operating systems, Iargéitzl
an implementation detail. Using ACE, it is straightforward {©
develop highly portable communication software that runs - S
ficiently on a wide range of operating systems and C++ Conp_rtaple, an'd efficient a'\ppll|cat|ons from scratch.

pilers. Moreover, ACE provides this portability without in- Object-oriented application frameworks and patterns help to

curring the performance penalties associated with interprefgguce the costand improve the quality of software by leverag-
virtual machined. Thus, the portability provided by ACE al-I"d Proven software designs and implementations to produce

lows developers to select an OS platform based on featuf§§Sable components that can be customized to meet new ap-

price, performance, development tools, and ease of integraffJfi2tion requirements. The ACE framework described in this
with other applications. article illustrates how the development of communication soft-

ware like ORBs and Web servers, can be significantly simpli-

Beware of simple(-minded) solutions to complex software fied and unified.
problems: Trying to apply overly simple solutions to com- The widespread adoption of ACE is a testament to the power
plex problems is an exercise in frustration and a recipe fsfran open source software process and to the benefits of sys-
failure. For instance, attempting to translate the software itematic software reuse in complex communication systems.
plementations entirely from high-level SDL specifications @ne key to the success of ACE has been its ability to capture
“analysis rules” rarely succeed for complex communicati@@mmon communication software design patterns and con-
systems. Likewise, using trendy OO design methodologigslidate these patterns into flexible framework components.
modeling notations, and programming languages is no guaréhe framework components efficiently encapsulate and en-
tee of success. In my experience, there’s simply no substitbiégce low-level OS mechanisms for interprocess communi-
for employing skilled software developers, which leads to tlation, event demultiplexing, dynamic configuration, concur-
following final “lesson learned.” rency, synchronization, and file system access.

The ACE C++ wrappers, framework components, dis-
tributed services, and higher-level distributed computing mid-
Ydteware components described in this article are freely avail-

IHowever, a Java version [26] of many ACE components is also availaap!e at WWW-C§-WUStI-edU/ ~schmidt/ACE.html '
atwww.cs.wustl.edu/  ~schmidt/JACE.html . This URL contains complete source code, documentation, and

Respect and reward quality developers and architects:
Ultimately, reusable components and frameworks are onl




example applications, including JAWS and TAO.

[7]

D. C. Schmidt, T. H. Harrison, and E. Al-Shaer, “Object-

ACE has been used in research and development projects Oriented Components for High-speed Network Programming,”

at many universities and companies.

For instance, ACE

has been used to build real-time avionics systems at Boe-
ing [27]; telecommunication systems at Bellcore [4], Erics{8] D. C. Schmidt and T. Suda, “An Object-Oriented Framework
son [28], Motorola [2], and Lucent; medical imaging systems
at Siemens [9] and Kodak [16]; and distributed simulation
systems at SAIC/DARPA. It is also widely used for research
projects and classroom instruction.

A description of many of the projects using thel9]
ACE, TAO, and JAWS frameworks are available at

www.cs.wustl.edu/
In addition, comp.soft-sys.ace
group devoted to ACE-related topics.

~schmidt/ACE-users.html

is a USENET news-
[10]
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