:: FIB_FUSC semantic presentation
Lemma16:
6 + 1 = (6 * ([\(log 2,1)/] + 1)) + 1
Lemma17:
for nn' being Element of NAT st nn' > 0 holds
( [\(log 2,nn')/] is Element of NAT & (6 * ([\(log 2,nn')/] + 1)) + 1 > 0 )
Lemma20:
for nn, nn' being Element of NAT st nn = (2 * nn') + 1 & nn' > 0 holds
6 + ((6 * ([\(log 2,nn')/] + 1)) + 1) = (6 * ([\(log 2,nn)/] + 1)) + 1
Lemma24:
for n being Element of NAT st n > 0 holds
( log 2,(2 * n) = 1 + (log 2,n) & log 2,(2 * n) = (log 2,n) + 1 )
Lemma26:
for nn, nn' being Element of NAT st nn = 2 * nn' & nn' > 0 holds
6 + ((6 * ([\(log 2,nn')/] + 1)) + 1) = (6 * ([\(log 2,nn)/] + 1)) + 1
Lemma27:
for N being Element of NAT st N <> 0 holds
(6 * N) - 4 > 0
Lemma30:
( dl. 0 <> dl. 1 & dl. 0 <> dl. 2 & dl. 0 <> dl. 3 & dl. 1 <> dl. 2 & dl. 1 <> dl. 3 & dl. 2 <> dl. 3 )
by AMI_3:52;
Lemma31:
( dl. 0 <> dl. 4 & dl. 1 <> dl. 4 & dl. 2 <> dl. 4 & dl. 3 <> dl. 4 )
by AMI_3:52;
:: deftheorem Def1 defines Fib_Program FIB_FUSC:def 1 :
theorem Th1: :: FIB_FUSC:1
:: deftheorem Def2 defines Fusc' FIB_FUSC:def 2 :
:: deftheorem Def3 defines Fusc_Program FIB_FUSC:def 3 :
theorem Th2: :: FIB_FUSC:2
theorem Th3: :: FIB_FUSC:3
theorem Th4: :: FIB_FUSC:4
canceled;
theorem Th5: :: FIB_FUSC:5
theorem Th6: :: FIB_FUSC:6