Parallelization of John the Ripper (JtR)
using MPI

Ryan Lim
Computer Science and Engineering
University of Nebraska—Lincoln
Lincoln, NE 68588-0115

rlim@cse.unl.edu

January 22, 2004

Abstract

JtR is a utility used commonly used to detect weak passwords. It employs a dic-
tionary attack and brute-force cracking mechanisms to perform its purpose. While
JtR is probably not designed specifically to crack passwords of strength, it uses a
brute-force strategy. Brute-force is considered infallible, but is a time consuming and
computationally expensive approach, and thus, is an ideal program to parallelize.

1 Introduction

A password is an arbitrary string of characters chosen by a user and is used to authenticate
the user when he or she attempts to use a particular resource such as computing resources.

Once a password is chosen, it is usually encrypted using a one-way function, f(z) = y,
which is easy to compute. However, since it is a one-way function, there is no tractable
function f~!(y) = x that can reverse the encryption. The only way to crack the encrypted
string is by using brute-force, that is to exhaustively try all possible combinations and
permutations of characters.

Given that a password has the following properties:

e At least 8 characters.

e Has a good mix of upper and lowercase letters, numbers, punctuations and other
symbols.

there are 95 distinct choice of characters. With this assumption, a n-character password has
95" permutations (for a 8-character password, there about 6000 trillion)!

While cracking is not impossible, it would definitely take a lot of computational time.
The goal of this paper is to address these issues by parallelizing the popular password cracker,
John the Ripper (JtR) [Des03] .

This paper discusses related work in Section 2, my implementation in Section 3. Section 4
describes how I evaluated my code and presents the results. Section 5 presents my conclusions
and describes potential future work.

2 Related Work

The San Diego Supercomputer Center (SDSC) presented its results [PK03] from applying
High Performance Computing (HPC) resources such as a parallel supercomputer, abundant
disk and large tape archive systems to precompute and store crypt() based passwords.
SDSC’s project, Tablecrack is able to quickly determine easily guessed passwords for UNIX
accounts. Teracrack, another project, applies modern HPC capabilities.

A similar project, “dkbf” [BOr] is a distributed, keyboard, brute-force program for Linux
clusters using the message-passing interface (MPI). However, this program is specifically
tailored to crack only Windows N'T' Lanman and NT hashes.

JtR, on the other hand, supports various encryption formats such as standard and double-
length DES, BSDI’s extended DES, FreeBSD’s MD5, OpenBSD’s Blowfish, AFS and Win-
dows N'T Lanman formats.

3 Implementation

This section covers some of the details of the work involved in the strategy, planning and
implementation of the parallelization of the John the Ripper source code.

3.1 Strategy

I initially approached this problem using the bag-of-tasks approach where a single master
processor hands out sets of tasks (portions of keyspaces) to slave processors to conduct
brute-force search. Using this approach, a master may hand out a keyspace ranging from
0x000000 to 0x888888 to slave #1 and keyspace ranging from 0x888889 to OxFFFFFF to slave

#1 [#2 | #3 | #p-2 | #p-1 | #p |
0 f possibles(x)

Figure 1: Each processor p gets an equal chunk (possibles(z)/p) of the keyspace from 0 to
possibles(x), where possibles(x) is the number of possible permutations for .

#2. Once slaves #1 and #2 complete their task, they may return to the master processor
for more work.

However, after analyzing the JtR source code, I noticed that there would be no need
for using the bag-of-tasks approach as each processor could compute and work on separate
chunks of keyspaces simultaneously (Figure 1). This is because the keyspace range is always
constant, and thus, can be divided equally among all processors.

3.2 Planning

In order to find out possible code sections which can be parallelized, 1 profiled JtR’s code
using the GNU prof utility. Part of the profile output can be viewed in Appendix A.

Besides code profiling, I did some substantial analysis on the function calls listed in the
gprof output.

3.3 Implementation

In order to parallelize JtR, I chose to use the message-passing interface (MPI).The reason
for this is because MPI is relatively portable and it is installed on many of multi-computers
at the University of Nebraska - Lincoln such as rcf and prairiefire.

Once code profiling and analysis was done, I added auxiliary functions to enable JtR
to run in parallel. Most of the work was done in the file locking mechanisms, and the
do_incremental crack() function.

In order to handle file locking, each process will ‘own’ its files exclusively. These files
are the character set files (all.chr, alpha.chr, digits.chr), recovery files (john_rec)
and log files (john log). Each process’ files are denoted by the processor identifier suffix.
For example, processor 0’s files are all.chr.0, alpha.chr.0, digits.chr.0, john rec.0O
and john_log.0

Modifications to do_incremental crack() enable it to splits the keyspace into chunks.
Processors pick up interleaved chunks and leave the rest to the other processors.

4 FEvaluation

Since work is evenly split between processors, the total number of crypts per second should
increase linearly with the number of processors. As each processor gets different sets of
keyspaces, the total of crypt operations per second is approximately S°7 ; C; where C; is the
crypt operations per second for processor ¢ and P is the number of processors.

Using one processor on rcf:

Benchmarking: FreeBSD MD5 [32/64 X2]... DONE

Raw: 1124.00 c¢/s real, 1127.00 c/s virtual
Benchmarking: OpenBSD Blowfish (x32) [32/64]... DONE
Raw: 74.02 c/s real, 74.01 c/s virtual

Using two processors on rcf:

Benchmarking: FreeBSD MD5 [32/64 X2]... DONE

Raw: 2242.00 c/s real, 2248.00 c/s virtual
Benchmarking: OpenBSD Blowfish (x32) [32/64]... DONE
Raw: 148.02 c/s real, 148.06 c/s virtual

Using eight processors on rcf:

Benchmarking: FreeBSD MD5 [32/64 X2]... DONE

Raw: 8757.00 c/s real, 8990.00 c/s virtual
Benchmarking: OpenBSD Blowfish (x32) [32/64]... DONE
Raw: 571.31 c¢/s real, 592.25 c/s virtual

This shows impressive benchmark results. One of the reasons for this is that there is
rarely, if not, no communication between processors. Each processor calculates its own
keyspace ranges and then performs operations on it.

The complete set of results are in Appendix B.

5 Conclusions and Future Work

Currently, this JtR code is only parallelized for the incremental cracking mode. This is
because incremental cracking consumes the most time as it is searches the entire keyspace.

4

This parallelized JtR does not do parallel dictionary-attacks. Adding parallel dictionary-
attacks remains work to be done.

In addition to that, JtR could be further parallelized on shared memory architectures
using OpenMP or PThreads.

Acknowledgments

A big thanks to “Solar Designer” for writing the wonderful program, John the Ripper which
is already optimized for many platforms. Ironically, I required help from a person called
John, more specifically, John Lim Eng Hooi, to help me debug portions of my code. I would
also like to thank Dr. David Swanson for helping, advising and encouraging me thorough
the semester.

References

[BOr] D4 BOrg. dkbf. URL source: http://dkbf.sourceforge.net/.

[Des03] Solar Designer. John the ripper, 2003. URL source:
http://www.openwall.com/john/.

[PK03] Tom Perrine and Devin Kowatch. Teracrack: Password cracking using teraflop and
petabyte resources. 2003.

A gprof output

Only functions with more than 10 calls are listed.

Flat profile:

Each sample counts as 0.000999001 seconds.

% cumulative self
time seconds seconds
97 .56 31.03 31.03

1.18 31.40 0.37

0.99 31.72 0.32

0.12 31.76 0.04

0.05 31.77 0.02

0.02 31.78 0.00

0.02 31.78 0.00

0.01 31.79 0.00

0.01 31.79 0.00

0.01 31.79 0.00

0.01 31.79 0.00

0.01 31.80 0.00

0.01 31.80 0.00

0.01 31.80 0.00

0.00 31.80 0.00

0.00 31.80 0.00

0.00 31.80 0.00

0.00 31.80 0.00

0.00 31.80 0.00

0.00 31.80 0.00

0.00 31.80 0.00

0.00 31.80 0.00

0.00 31.80 0.00

0.00 31.80 0.00

0.00 31.80 0.00

0.00 31.80 0.00

0.00 31.80 0.00

0.00 31.80 0.00

0.00 31.80 0.00

calls

6983883
176497
261
170
882561
88247
88247
306
176498
176494
176494
176493
749
176493
88247
88246
745

1
176501
882561
88251
927
753
746
745
630
577
576

self

O O O O O OO OO OFH OO OO OOOOO OO OO oo oo

.00
.00
.15
.10
.00
.00
.00
.01
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

total
ms/call ms/call

O OO OO OO ODOH OO OO OO

77

\I

O O O O O O O o oo

.00
.00
.59
.10
.00
.00
.00
.12
.00
.00
.00
.00
.00
.00
.00
.00
.00
.19
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

name
MD5_body

expand

MD5_std_crypt
inc_new_count
inc_new_length
MD5_std_set_key
crk_salt_loop
fix_state
inc_key_loop
MD5_std_set_salt
crk_password_loop
idle_yield
status_update_crypts
status_get_time
add32to64
crk_process_key
fmt_default_clear_keys
log_time
do_incremental_crack
cmp_all

set_key

strnfcpy
mem_alloc_tiny
get_time

log_event
log_file_write

trim

fgetl
cfg_process_line

O O O OO O OO O OO OO o oo

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31

.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80

O O O OO O OO O OO OO o oo

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

463
402
44
34
24
24
21
20
15
14
14
13
12
12
10
10

O O O O O OO OO OO OO o oo

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

O O O O O O O OO OO OO o oo

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

str_alloc_copy
cfg_add_line
tty_getchar
strlwr
add32to64m
log_file_flush
init_line
cfg_add_param
mem_alloc
cfg_add_section
mem_free
write_loop
MD5_std_get_binary
mul32by32
ldr_get_field
path_expand

B John the Ripper (MPI) results

1 PROCESSOR

rlim@rcf ~/john-1.6.36/run) mpirun -np 1 ./john -test
Benchmarking: Traditional DES [64/64 BS]... DONE

Many salts: 172019.00 c/s real, 172019.00 c/s virtual
Only one salt: 155584.00 c/s real, 155895.00 c/s virtual

Benchmarking: BSDI DES (x725) [64/64 BS]... DONE
Many salts: 5620.00 c/s real, 5632.00 c/s virtual
Only one salt: 5544.00 c/s real, 5544.00 c/s virtual

Benchmarking: FreeBSD MD5 [32/64 X2]... DONE
Raw: 1024.00 c/s real, 1024.00 c/s virtual

Benchmarking: OpenBSD Blowfish (x32) [32/64]... DONE
Raw: 72.02 c/s real, 72.02 c/s virtual

Benchmarking: Kerberos AFS DES [48/64 4K]... DONE
Short: 57344.00 c/s real, 57344.00 c/s virtual
Long: 157235.00 c/s real, 157235.00 c/s virtual

Benchmarking: NT LM DES [64/64 BS]... DONE
Raw: 1333644.00 c/s real, 1333644.00 c/s virtual

2 PROCESSORS

rlim@rcf ~/john-1.6.36/runj mpirun -np 2 ./john -test
Benchmarking: Traditional DES [64/64 BS]... DONE

Many salts: 327909.00 c/s real, 344081.00 c/s virtual
Only one salt: 308774.00 c/s real, 311576.00 c/s virtual

Benchmarking: BSDI DES (x725) [64/64 BS]... DONE
Many salts: 11239.00 c¢/s real, 11262.00 c/s virtual
Only one salt: 11110.00 c/s real, 11110.00 c/s virtual

Benchmarking: FreeBSD MD5 [32/64 X2]... DONE
Raw: 2042.00 c/s real, 2042.00 c/s virtual

Benchmarking: OpenBSD Blowfish (x32) [32/64]... DONE
Raw: 144 .00 c/s real, 144.04 c/s virtual

Benchmarking: Kerberos AFS DES [48/64 4K]... DONE
Short: 114636.00 c/s real, 114750.00 c/s virtual
Long: 314368.00 c/s real, 314682.00 c/s virtual

Benchmarking: NT LM DES [64/64 BS]... DONE
Raw: 2666725.00 c/s real, 2664064.00 c/s virtual

8 PROCESSORS

rlim@rcf ~/john-1.6.36/run) mpirun -np 8 ./john -test
Benchmarking: Traditional DES [64/64 BS]... DONE

Many salts: 1319779.00 c/s real, 1377273.00 c/s virtual
Only one salt: 1222771.00 c/s real, 1245203.00 c/s virtual

Benchmarking: BSDI DES (x725) [64/64 BS]... DONE
Many salts: 44915.00 c/s real, 45084.00 c/s virtual
Only one salt: 43903.00 c/s real, 44412.00 c/s virtual

Benchmarking: FreeBSD MD5 [32/64 X2]... DONE
Raw: 8167.00 c/s real, 8182.00 c/s virtual

Benchmarking: OpenBSD Blowfish (x32) [32/64]... DONE
Raw: 570.12 c/s real, 576.07 c/s virtual

Benchmarking: Kerberos AFS DES [48/64 4K]... DONE
Short: 449816.00 c/s real, 458984.00 c/s virtual
Long: 1251683.00 c/s real, 1258618.00 c/s virtual

Benchmarking: NT LM DES [64/64 BS]... DONE
Raw: 10633686.00 c/s real, 10676429.00 c/s virtual

