
AcroTEX.Net

AcroFLeX

The AcroTEX and FLEX/Flash
Connection

Applications to Graphing

D. P. Story

End of Life of Software: As of December 2020, Adobe no
longer supports Flash Player (SWF, FLV files). This package
uses a custom SWF file (acroflex.swf); as a result this
package will no longer function in Adobe Acrobat Reader
DC (dated Dec. 2020 or later). The package will continue to
produce PDFs as designed, but only if built using Acrobat
XI (or a version Acrobat DC prior to December 2020) and
viewed in Adobe Acrobat Reader XI (or a version of Reader
DC prior to December 2020). DPS

Copyright © 2020 dpstory@acrotex.net www.acrotex.net
Prepared: August 7, 2020 Version 1.7

mailto:dpstory@acrotex.net
www.acrotex.net

Table of Contents

1 Introduction 3
1.1 Background . 3
1.2 What is AcroFLeX? . 3

2 Requirements 4
2.1 LATEX Package Requirements . 4
2.2 PDF Creator Requirements . 5
2.3 Installation . 5

3 The AcroFLeXGraphing System 6
3.1 Setting up the Graphing Screen . 7
3.2 Graphing Screen Controls . 8

• Required Controls . 8
• Optional Controls . 10

3.3 Populate and Silent Linking . 12
3.4 Graphing with \sgraphLink . 12
3.5 Graphing with \defineGraphJS . 14

4 Customizations 15

3

1. Introduction

The AcroFLeX Graphing Bundle is used to create a graphing screen that can be incor-
porated into a PDF document and viewed within Adobe Acrobat Reader, version 9.0 or
later. The graphing screen can be interactive or non-interactive.

For the interactive graphing screen, the user can enter an expression representing
a function of a single variable x, a polar function of t, or a set of parametric equations
that are functions of t. Various controls are provided to change the viewing window,
for shifting horizontally and vertically, and for zooming in or out.

For the non-interactive graphing screen, the screen is populated when the user clicks
a link created by \sgraphLink. \sgraphLink passes such information as the function,
domain, and range to the graphing routines of AcroFLeX.

In this version of AcroFLeX, up to four functions can be graphed and four sets of
plotted points can be displayed, on one graphing screen.

The graph screen itself is actually a SWF file, named acroflex.swf. This SWF file is
part of the AcroFLeX distribution. This package uses the rmannot package, also written
by this author, to create rich media annotations, to embed acroflex.swf in the PDF
document, and to display the SWF through the rich media annotation.

1.1. Background

Version 9 of Acrobat/Adobe Reader introduces the rich media annotation which plays
FLV movies, and SWF animations, and MP3 files.1 Acrobat/Adobe Reader also provides
a scripting bridge between JavaScript for Acrobat, and ActionScript, the scripting lan-
guage of Flash player. This bridge enables the PDF and the Flash widget, embedded in
the rich media annotation, to communicate. The scripting bridge opens up wonderful
opportunities for applications to the education sector. The AcroFLeX Graphing Bundle
is one such application of the new PDF-Flash connection to education.

AcroFLeX uses the commercial product Adobe FLEX Builder 3 and FLEX 3 SDK to pro-
duce Flash widgets, and the AeB to create PDF documents with appropriate JavaScript
to communicate with the Flash widget. FLEX Builder 3 is currently free for students
and educators, the FLEX 3 SDK is free to all.

1.2. What is AcroFLeX?

The word AcroFLeX is meant to convey a merging of two computer technologies:

• Acro: connotes both Adobe Acrobat (Adobe Reader) and AcroTEX (as in the
AcroTEX eDucation Bundle or, just AeB).

• FLeX: connotes Adobe FLEX 3. FLEX 3 is used to create SWF files to interact with
the user. In the case of graphing, plotting information is passed from Acrobat, via
JavaScript, to the Flash widget. ActionScript takes the data, and plots the points
provided, and connects them with a smooth curve.

1The rich media annotation is introduced in Adobe Supplement to the ISO 32000, which documents
BaseLevel 1.7, ExtensionLevel 3, the Adobe’s extensions to PDF 1.7.

4

2. Requirements

In this section we list the requirements for this package.

2.1. LATEX Package Requirements

The preamble of the demo file afgraph.tex lists:

1 \usepackage[%
2 driver=dvips,
3 web={nodirectory,pro,tight,usesf},
4 eforms,exerquiz,dljslib={ImplMulti},
5 graphicxsp={showembeds}
6]{aeb_pro}
7 \usepackage{acroflex}

Let me comment on each of these lines.

• Line (7): Of course, we use the acroflex package. The acroflex package requires
the rmannot package. The latter package is the one that creates the rich media
annotation, embeds the graphing Flash widget, acroflex.swf, and displays it. The
rmannot package is the only one listed in acroflex.dtx as required, however,
more packages are really required, as discussed in the next items.

• Lines (1)–(6): The aeb_pro package is strongly recommended. The AcroFLeX Graph-
ing Bundle uses the willClose environment to assure the document will behave
properly when the user closes the document.

The options use the so-called AeB Control Central that represent a convenient
way to input the other required packages (in optimal order) needed by the acroflex
package.

If aeb_pro is not used, then the individual required packages must be input using
the \usepackage mechanism.

We input the aeb_pro package before the acroflex package.

We now comment on each of the options used in the aeb_pro package:

Line (2), the driver option: This system uses Acrobat Distiller, which distills a
PostScript file. The driver values this package uses are dvips and dvipsone.
Setting the driver is important because the dvi-to-ps application (dvips and
dvipsone) consumes the dvi file produced by the TEX compiler and writes a
PostScript file that Acrobat Distiller consumes.

Line (3), the web option: The web package is not really required. It is used to cre-
ate a PDF page size convenient to view on a computer monitor. This package
has many options and features for the document author to design a docu-
ment for screen—or for paper—viewing.

The web package brings in the hyperref package, which is a required package.
If web is not used, hyperref needs to be input.

Requirements 5

Line (4), the eforms option: A required package. This package provides form
field and link support for the AcroFLeX Graphing Bundle. The eforms, in
turn, inputs the insdljs package, which provides support for document-
level JavaScript. It is the document-level JavaScript where much of the work
is done: parsing input, calculating graphing data, and sending this data off
to the acroflex.swf widget for display.

Line (4), the exerquiz option: A required package. The exerquiz package has
several function parsing methods defined in its document-level JavaScript.
AcroFLeX uses these parsing routines. One of these days, I’ll separate out the
parsing routines from exerquiz, but not now.

Line (4), the dljslib option: An optional, but recommended package. We use
this package for its ImplMulti option. This option simplifies the prob-
lem of entering functional expressions. Without the ImplMulti, to enter
2x sin2(2x), the user must type explicit multiplications, 2*x*(sin(2*x))ˆ2,
with the ImplMulti option, the user needs only enter 2xsinˆ2(2x).

Line (5), the graphicxsp option: The graphicxsp is a required package of rman-
not, but we input it earlier so we can set its options through the AeB Control
Central (part of AeB Pro). The graphicxsp package, part of the AeB Pro Bun-
dle, provides embedding of poster graphics for a rich media annotation. A
poster graphic is the appearance you see when the annotation is not acti-
vated.

2.2. PDF Creator Requirements

This package requires Acrobat Distiller 9.0 (or later) to convert PostScript files to PDF.
Because this package uses rmannot to create rich media annotations, there is also a
requirement that the Distiller must be opened using the -F command line flag. See the
documentation of the rmannot package for more details.

2.3. Installation

The installation of the acroflex package is straightforward. Place acroflex.zip in the
search path of your TEX system and unzip. Unzipping creates a folder named acroflex.
Refresh your filename database, if your system requires it.

Accompanying the distribution is a file named acroflex.cfg. Open this file in your
favorite text editor and you see the following lines.

%
% AcroFleX Graphing Bundle Configuration File
% D. P. Story, dpstory@acrotex.net
%
\pathToAcroFlex{C:/acrotex/aebpro/acroflex/swf}

Edit the argument of \pathToAcroFlex (defined in the acroflex package) to the path
of the folder that contains the acroflex.swf Flash file. Save and close acroflex.cfg.

Of course, you need to install the latest versions of AeB (the AcroTEX eDucation
Bundle), AeB Pro, graphicxsp, and rmannot. Follow the package documentation closely
for installation, some of the packages require that certain JavaScript file be installed.

6

3. The AcroFLeX Graphing System

This package defines several document scripts, the two primary ones are Graph_xy()
and Graph_xyt(), the others support these two. Graph_xy() and Graph_xyt() take
the data passed to it, parse it, create plot data, and send it off to the AcroFLeX graphing
widget to graph the data by way of the infamous scripting bridge. Details of these
functions can be found in the documentation in the acroflex.dtx file.

In the AcroFLeX graphing system there are three modes of operation: interactive,
populate, and silent.

• Interactive: This occurs when the user enters a function through the UI.

The following controls are required :

\funcInputField, \graphBtn, \numPoints
\domMin, \domMax, \rngMin, \rngMax,

If parametric or polar graphs are to be used, then \domMinP and \domMaxP are
also required. The other controls are optional :

\graphClrBtn
\amtShift (\hShiftL, \hShiftR, \vShiftD, \vShiftU)
\zoomInOut, \savedelSelBtn, \functionSelect

The \graphClrBtn button is recommended, though not required. All these com-
mands will be discussed in detail in the pages that follow.

• Populate: The populate mode occurs when the graphing parameters are passed
to Graph_xy (or Graph_xyt) by \sgraphLink (or some other command). All the
essential information is passed as arguments. The target graphing screen has
all the required controls, as listed above. The command initiating the graphing
must set the graph_props.populate property to true. In this case the graphing
data populate the required fields and the graph will be drawn. It is the document
author’s responsibility to only use populate on graphing screens that have all the
required control fields.

Populate behaves exactly like interactive, but the graphing data is passed to the
graphing routines in pre-packaged form, prepared by the document author; the
user, however, can manipulate the curve once it appears.

The required controls are the same as the interactive mode.

• Silent: In the silent or non-interactive mode, there must be no controls other
than \graphClrBtn. Basically, the document author prepares some pre-packaged
graphs to be displayed to the user, without interaction. These may go along with
a tutorial discussion symmetry, periodicity, tangent lines, etc.

If the document author wants the user to interact with the graph, the required
controls need to be supplied and the graph_props.populate property needs to
be set to true. That is, use the populate mode.

The AcroFLeX Graphing System 7

3.1. Setting up the Graphing Screen

It should be a hard and fast rule that all content concerning a graphing screen should
occur on the same page as the rich media annotation that displays the graphing screen.
Should discussion cross page boundaries, create another graphing screen for that page.
Never fear, the AcroFLeX graphing widget is only embedded once, so adding more screens
does not bloat the size of the file.

There are three commands to set up an AcroFLeX graph screen: \dimScreenGraph,
\graphName and \graphScreen. The use of the command \dimScreenGraph is not
required, but recommended.

\dimScreenGraph{〈width〉}{〈height〉}
\graphName{〈unique_name〉}
\graphScreen[〈rma_options〉]{〈width〉}{〈height〉}

Command Description: We describe each of these three, and their parameters.

• \dimScreenGraph: This command is a convenient way of setting the dimensions
of the graphing screen. You specify the width of the screen using the 〈width〉 pa-
rameter and the height of the screen using the 〈height〉 parameter. These values
are passed through a \setlength, so simple calculations on the dimension can
be performed on the parameters. (The calc package is used by the web package.)
This command then defines macros \hScreenGraph and \vScreenGraph to hold
these two dimensions, respectively. \hScreenGraph and \vScreenGraph can be
used in \graphScreen, or in setting up minipages based on these lengths, for
example.

If the aspect ratio of all your graphing screens is going to be the same, then it
suffices to use \dimScreenGraph only once in the document.

• \graphName: Use this command to define a unique name for this graphing screen.
Each screen must have a different name. This command defines the text macro
\afgraphName, which expands to the given name.

• \graphScreen: This is the main command of this package, it’s the one that creates
a rich media annotation and associates it with the AcroFLeX Graphing widget. It
has three parameters:

〈rma_options〉 is optional and just passes to the underlying command \rmAnnot
(defined in the rmannot package) that actually creates the rich media anno-
tation. The most “important” key-value pair, for this package, is the poster
key, through this key, a poster can be associated with the annotation.

〈width〉 is the width of the graph screen, if \dimScreenGraph was used, just use
\hScreenGraph as this value.

〈height〉 is height the screen of the graph screen, if \dimScreenGraph was used,
just use \vScreenGraph as this value.

The AcroFLeX Graphing System 8

The \graphScreen can be resized using \resizebox or \scalebox (from the graphicx
package) to obtain a larger or smaller graph screen with the same aspect ratio.

The following is an example of the usage of each of these three commands. Note
that the height is three-fourths that of the width.

\dimScreenGraph{186bp}{186bp*3/4}
\graphName{graph1}
\graphScreen[poster=aflogo]{\hScreenGraph}{\vScreenGraph}

Graphing Screen in a Floating Window. The graphing window can appear in a float-
ing window as well. The \iconFloatGraphScreen command is used to create such a
screen.

\iconFloatGraphScreen[〈key_values〉]{〈width〉}{〈height〉}

Parameter Description: The command has three parameters. The first optional one is
passed as the first optional parameter of the underlying \graphScreen command. The
\graphScreen command uses \hScreenGraph and \vScreenGraph, defined through
the \dimScreenGraph command, to set the dimensions of the graph screen. The graph
screen is then resized using \resizebox from the graphicx package. The other two
parameters, 〈width〉 and 〈height〉, are simply passed to \resizebox. See the docu-
mentation on \resizebox for details on these parameters.

For example,

\iconFloatGraphScreen[poster=aflogo]{40bp}{!}

The first parameter is used to define a poster of the icon, the second parameter is
40bp which means to resize the graphic to a width of 40bp, the third parameter of
exclamation point (!) signals \resizebox to maintain the aspect ratio of the graphic.

The \iconFloatGraphScreen command is implemented by creating a rich media
annotation for the AcroFLeX Graphing widget, with a form field button on top of it that is
transparent. Pressing on the icon is actually pressing on the button. The button action
activates the graphing screen if it is not activated, and deactivates it if it is activated.
The graphing screen might be the target of graphing data sent to it by the \sgraphLink
command, see Section 3.4, page 12, or through the graphing screen controls, these are
explained next.

3.2. Graphing Screen Controls

The controls described in this section are used for interactive and populate modes.

• Required Controls

For interactive or populate mode, in addition to \graphScreen, several controls are
required so the user can manipulate the graph.

\funcInputField[〈key_values〉]{〈width〉}{〈height〉}

The AcroFLeX Graphing System 9

Command Description: The field created by \funcInputField2 is used to enter a
function or a set of points to be graphed. The function is parsed by the exerquiz
routines, so the same syntax that is used for exerquiz quizzes and short quizzes is
used. The 〈key_values〉 are passed to the underlining text field and can be used to
change the appearance of the field, see the eformman.pdf for more information. The
〈width〉 and 〈height〉 are the width and height, respectively, of the text field.

\graphBtn[〈key_values〉]{〈width〉}{〈height〉}

Command Description: The graph button. Once the user has entered a required data
into the required fields, the user press this button and the graph appears in the graph
screen. The parameters are the same as for \funcInputField, the descriptions are the
same.

\numPoints[〈key_values〉]{〈width〉}{〈height〉}

Command Description: This text field displays the number of points to be plotted.
It is editable, the user can change this value. The parameters are the same as for
\funcInputField, the descriptions are the same.

\domMin[〈key_values〉]{〈width〉}{〈height〉}
\domMax[〈key_values〉]{〈width〉}{〈height〉}
\rngMin[〈key_values〉]{〈width〉}{〈height〉}
\rngMax[〈key_values〉]{〈width〉}{〈height〉}

Command Description: The graphing window is set by these four text fields. When the
curve is graphed, only the rectangular window,

[\domMin,\domMax]× [\rngMin,\rngMax]
is displayed.3 The parameters are the same as for \funcInputField, the descriptions
are the same.

If parametric and polar graphing is required of the user, \domMinP and \domMaxP
are required as well.

\domMinP[〈key_values〉]{〈width〉}{〈height〉}
\domMaxP[〈key_values〉]{〈width〉}{〈height〉}

Command Description: The interval [\domMinP,\domMaxP] is the interval over which
a set of parametric equations is traced; in the case of polar functions, this interval
is used for the domain of the polar function. The parameters are the same as for
\funcInputField, the descriptions are the same.

2The command was originally misnamed \fileInputField and is still recognized by the AcroFLeX pack-
age; however, document authors should use the command \funcInputField.

3By this notation, I mean the intervals determined by the values of these intervals.

The AcroFLeX Graphing System 10

Setting the default values. Whereas it is possible to set the default values of the fields
just described, a more convenient method is used.

\defaultFunction{〈function|points〉}
\defaultNumPoints{〈postive_integer〉}
\defaultDomRng{〈x_min〉}{〈x_max〉}{〈y_min〉}{〈y_max〉}
\defaultDomP{〈t_min〉}{〈t_max〉}

These can be executed, along with \graphName, just before the \graphScreen com-
mand. The values of their parameters will then populate the corresponding fields as
default values.

The following are the default values of all the required fields, as defined by the
acroflex package. Note that all of these are parsed (with the exception of the number
of points) using exerquiz’s parsing routines; consequently, a value such as 2*PI is
perfectly legal.

\defaultFunction{xˆ2}
\defaultNumPoints{40}
\defaultDomRng{-2}{2}{0}{4}
\defaultDomP{0}{2*PI}

• Optional Controls

There are several other optional controls that may be useful in manipulating a graph.

\graphClrBtn[〈key_values〉]{〈width〉}{〈height〉}

On clicking this button, the current graphing screen is cleared of all graphs and
plotted points. Shift-clicking this button deactivates the graphing screen, and the an-
notation’s poster appears.

Multiple Plots. By using the \functionSelect combo box, the user can graph multiple
curves.

\savedelSelBtn[〈key_values〉]{〈width〉}{〈height〉}
\functionSelect[〈key_values〉]{〈width〉}{〈height〉}

The \functionSelect combo box serves several purposes. It consists of eight
items that appear as Curve 1, Curve 2, Curve 3, Curve 4, Plot 1, Plot 2, Plot 3, Plot 4.
When this combo box is present, the user is able to graph multiple curves and plots.
Changing the combo box to Curve 2, for example, and pressing the \graphBtn button,
the function will be graphed on Curve 2. There are four curves possible, and four sets
of plotted points. The different curves and plots are color coded.

When the \savedelSelBtn is also present, the user can click on it and save the
function definition under that curve or plot. These expressions will only be saved
during the current viewing session in Acrobat Reader, but if the user is on Acrobat, the
PDF can be saved and the values added to the combo list will be saved as well.

The parameters are the same as for \funcInputField, the descriptions are the
same.

The AcroFLeX Graphing System 11

Horizontal and Vertical Shifting. There are several controls that shift the graphing
window vertically or horizontally.

\amtShift[〈key_values〉]{〈width〉}{〈height〉}
\hShiftL{〈text〉}
\hShiftR{〈text〉}
\vShiftU{〈text〉}
\vShiftD{〈text〉}

The \amtShift is a text field, its value is a positive number that will be used to shift
the graphing window horizontally or vertically. The user can change this value. The
parameters are the same as for \funcInputField, the descriptions are the same.

The other four commands are implemented as links, then clicked, the graphing win-
dow moves the amount specified in \amtShift field left (\hShiftL), right (\hShiftR),
up (\vShiftU) or down (\vShiftD). The argument 〈text〉 is the text to be used to
identify the link.

Zoom, zoom, zoom. The user can be allowed to optionally zoom the graph out or in by
providing the control \zoomInOut.

\zoomInOut[〈key_values〉]{〈width〉}{〈height〉}

Click the \zoomInOut button zooms out by an amount shown in the \amtShift
field; shift-clicking will zoom in by the amount shown in the \amtShift field. The
parameters are the same as for \funcInputField, the descriptions are the same.

Setting the default values. As with the required controls, the optional ones can be
given default values through convenience macros.

\defaultShiftAmt{〈positive_number〉}
\defaultShiftAmt{1}

The \defaultShiftAmt is used to set the default value of the \amtShift field; the
default value is \defaultShiftAmt{1}.

The \functionSelect lists four curves and four plots. The text can be changed by
through the following text macros. Each command is followed by its default definition.

\afCurve{〈name_for_curve〉}
\afCurve{Curve}
\afPoint{〈name_for_point〉}
\afPoint{Point}
\afUnused{〈unused〉}
\afUnused{--unused}

The definitions values of \afCurve and \afPoint are the target of several search
using regular expressions. If the values of \afCurve and \afPoint are too complex,
the regular expression search may fail. Try to keep these definitions to ASCII characters.

The AcroFLeX Graphing System 12

3.3. Populate and Silent Linking

The previous section details the interactive mode, where the \graphScreen is present
with all its required controls, and possibly some optional controls. Curves are generated
purely through the user interface, that is, the user enters data into the various form
fields, clicks the \graphBtn, and voilà, the graph is drawn!

In this section, the populate mode is discussed as well as silent mode.

3.4. Graphing with \sgraphLink

The document author can prepare function/points to be graphed, along with all the
essential data needed to view the graph. For populate, the graphing data populate the
required text field, and is available for the user then to manipulate. The population of
an interactive graphing screen is done though a special link, the \sgraphLink. (The
“s” in \sgraphLink stands for “silent,” but that was before I made the design decision
to have a populate mode.)

The syntax for \sgraphLink is

\sgraphLink[〈appr〉]{〈graph_key_vals〉}{〈func|points〉}{〈text〉}

Parameter Description: The command takes four parameters, the first is the usual
optional parameter that can be used to change the appearance of the link. The others
we present in detail.

[〈appr〉]: Key-value pairs that are used to change the appearance of the link.

〈graph_key_vals〉: Key-value pairs, some of which are used on the LATEX side, some
on the PDF side, while others on SWF side.

graph=〈value〉: The value of this key determines which chart series (FLEX ter-
minology) the data will appear on. The values of this key are:

c1, c2, c3, and c4: Use one of these values to graph a function, a polar func-
tion, or a set of parametric functions. Up to four curves can be displayed
on the graphing screen at once. These values are displayed using the
LinearSeries (FLEX terminology).

a1, a2, a3, and a4: Same as above, but the region between the horizontal
axis, and the graph is shaded in. These values are displayed using the
AreaSeries (FLEX terminology).

p1, p2, p3, and p4: Use one of these values to plot points. These values are
displayed using the PlotSeries (FLEX terminology).

Thus, graph=c2 tells the graphing routines of AcroFLeX and the AcroFLeX
Graphing widget to display this data on series c2.

If two curves or plots have the same value for graph, then the one graphed
last will overwrite the earlier one. If you want both curves or plots to appear
on the graph together, give them different graph values.

When this key is not given a value, the default is c1.

The AcroFLeX Graphing System 13

type=〈cart|para|polar〉: This key declares the type of curve, possible values
are cart, para, and polar. This key is used mostly internally, and is nor-
mally not used. There is one situation that it is used. When defining a polar
function, use type=polar. Thus, to define a polar function, type something
like this:

\sgraphLink{type=polar,xInterval={[-1.5,1.5]},yInterval={[-1,2]},
tInterval={[0,2*PI]},points=40,populate}
{1+sin(t)}{$r = 1 + \sin(\theta)$ }

Note the explicit use of type=polar; the parsing can identify a function of x
and a set of parametric equations that are function of t, but help is needed
for polar.

populate=〈true|false〉: Possible values are true or false, typing populate
is the same as populate=true. This switch signals the graphing routines
on the PDF side to populate the required fields with the graphing data. The
default is populate=false, do not populate, use silent mode.

Populate versus Silent Modes: The populate key is how populate mode is
distinguished from silent mode: populate=true is populate mode, while
populate=false (or the populate parameter not listed) is silent mode. In
populate mode, the target graphing screen must have all required control
fields; in silent mode, the only control should be the \graphClrBtn button.

connectwith=〈curve|segment〉: The key determines the method used to con-
nect consecutive points on the graph, possible values are curve and segment.
This value is passed to the AcroFLeX graphing widget. For function of x, the
default is curve; otherwise, the default is segment. This value is ignored
when the graph property signals plotting (p1–p4).

points=〈num〉: The number of points to generate for plotting the current func-
tion. When the graph property signals plotting (p1–p4), the points property
is ignored. If the graph property signals graphing (c1–c4; a1–a4), and argu-
ment #3 is a set of rectangular points, the points property must either not
be present, or set to zero (points=0).

xInterval={[a,b]}: (Required) An interval on the x-axis, the interval must be
in the form {[a,b]}, for example, xInterval={[0,1]}. For functions of x,
this interval represents the domain over which the function is graphed. It
also represents the left and right boundaries of the graphing window.

Important: The xkeyval package parses these parameters. Because the in-
terval notation contains a comma (,), the whole interval must be enclosed in
braces so the parsing will be correct, as illustrated above.

yInterval={[a,b]}: (Required) An interval on the y-axis, the interval must be
in the form {[a,b]}, for example, yInterval={[0,1]}. It represents the
upper and lower boundaries of the graphing window.

As with xInterval, the interval needs to be enclosed in braces.

tInterval={[a,b]}: When plotting a set of parametric equations, or a polar
function, this interval is required as a parameter. The interval is of the form

The AcroFLeX Graphing System 14

{[a,b]}, including the braces, and represents the domain of the parameter.
The tInterval must not be included otherwise, that is, for graphing a func-
tion of x. Some early LATEX parsing tests whether the value of tInterval is
empty (the default) or not. If nonempty, we assume the graphing is para-
metric or polar. For point plotting, tInterval must not be included in the
parameter list.

xPlot={[a,b]}: The parameter xInterval determines the left and right bound-
aries of the graphing window; it also determines the interval over which the
function is to be plotted. The xPlot separates these two functionalities; the
value of xPlot is an interval [a,b], over which the function will be plot-
ted. Thus, xInterval={[-2,2]} specifies the scaling of the x-axis; while
xPlot={[0,1]} defines the interval to plot the given function. If xPlot is
not specified, then xInterval will be used.

noquotes=〈true|false〉: When argument #3 is parsed, it is, by default, placed in
double quotes, for example, "xˆ2"; however, there are some situations where
the double quotes should not be used. (See the afgraph.tex file for one
such example.) Possible values for noquotes are true and false. Including
noquotes in the option list is equivalent to noquotes=true. The default is
noquotes=false.

wait=〈true|false〉: Including wait in the option list is equivalent to wait=true.
The default is wait=false. When using \defineGraphJS to create a Java-
Script action that will execute multiple calls to Graph_xy or Graph_xyt, list
wait in the option list. This will cause a slight delay that allows the graph-
ing screen to become activated, (if not already activated) before the graphing
data is created and sent to the AcroFLeX graphing widget. See the example
below in Section 3.5, page 14.

〈func|points〉: This argument can be a function or a set of points.

〈func〉: A function can be three types: (1) a function of x; (2) a function of t;
and a pair of function of t. If there is a single function of t, case (2), that is
interpreted as a polar function, and graphed accordingly. The pair of func-
tions must be functions of t and separated by a semi-colon (;); these are
then interpreted as a set of parametric equations. For example, xˆ2 would
be graphed as a parabola; 1+sin(t) would be graphed as a Cardioid in the
polar coordinate system; and cos(t);sin(t) would be graphed as a circle.

〈points〉: Points can be input as a semi-colon-delimited list of rectangular coor-
dinates. For example, (1,2);(2,3);(5,6). Points can be plotted discretely,
or plotted and connected with either a smooth curve, or line segments.

〈text〉: The text that the link is attached to, when this text is clicked, the defined action
of populating the graph occurs.

3.5. Graphing with \defineGraphJS

The \defineGraphJS command expands to either Graph_xy() or Graph_xyt(), and
is essentially the code used by \sgraphLink. Use \defineGraphJS to create a custom

15

link action or form field action to graph pre-packaged functions.

\defineGraphJS{〈graph_key_vals〉}{〈func|points〉}{〈command〉}

Command Description: \defineGraphJS defines a new command \〈command〉 what
will expand to Graph_xy() or Graph_xyt() fully populated by its arguments. This
command can be used to create new actions that involve multiple calls to the AcroFLeX
graphing routines.

Parameter Description: There are three required parameters.

〈graph_key_vals〉: The same key-value pairs as described for \sgraphLink.

〈func|points〉: An expression representing a function of x, a polar function of t, a
set of parametric equations, or a set of points.

〈command〉: A command that this JavaScript code will be saved under.

An example of usage can be found in afgraph.tex, we present another example
here, also included in afgraph.tex, that might suggest the value of this command. We
construct a link that graphs a function and plots discrete points.

\def\DomX{[0,2PI]}\def\DomY{[-1,1]}
\defineGraphJS{graph=c1,wait,xInterval={\DomX},yInterval={\DomY},

points=40}{sin(x)}{\mySineCurve}
\defineGraphJS{graph=p1,wait,xInterval={\DomX},yInterval={\DomY}}

{(0,sin(0));(PI/2,sin(PI/2));(PI,sin(PI));(3PI/2,sin(3PI/2));
(2PI,sin(2PI))}{\mySinePoints}

\setLinkText[\A{\JS{%
\clearGraphJS\r
\mySineCurve\r
\mySinePoints

}}]{Consider the sine function and indicated points}%

Note the use of the wait key in both the definitions to give the graphing screen time
to be activated and ready to receive data. Observe also the list of points is given in
symbolic form, we let JavaScript calculate the values for us.

The command \clearGraphJS is used to clear the graphing screen before new
curves are written to the screen. \clearGraphJS expands to the document JavaScript
function that clears the graphing screen.

4. Customizations

There are a number of English phrases that appear as tooltips or as messages in alert
dialog boxes, as a result, the acroflex package has a language option.

\usepackage[lang=english|german]{acroflex}

Specifying english as the value of lang inputs the file afcustom_us.def, which
normally does nothing; the definitions made in this file are the hard-wired defaults of
the package. As an English speaker, you can edit this file, and improve the phrasing,

Customizations 16

if you wish. Specifying german as the value of lang inputs the file afcustom_de.def;
you can, of course, edit this file to get a preferred phrasing. If not lang key-value pair
is specified, the acroflex package inputs the file afcustom.def (found in the examples
folder). This file is intended for local use. Place it in the folder where the source file
resides, modify it as desired to get custom messages. The file afcustom.def contains
some instructions and guidelines for editing.

� If the file afcustom.def is placed on the latex search path, it will be found and input
for each source file; if afcustom.def is in the source file folder, it is this version that
is found first and input. Should the phrases entered in afcustom.def require special
accents, use the unicode option of web (which just passes the unicode option on to
hyperref), and enter any special characters using LATEX notation. For example, to address
my formerly favorite friend, Jürgen, we can write,

\ttgraphBtn{J\"{u}rgen, press to graph the function}

For the alert box messages, use JavaScript unicode notation, for example

\flJSStr{\af@badNumberMsg}{%
J\u00FCrgen, the value input does not appear to be a number,
please enter a number, or an expression that evaluates to a
number. \dps}

This latter example does not require the unicode option.

Note that \flJSStr is a new command (defined in insdljs) that enables you to enter
unicode, for example, \u00FC is the u-umlaut (\"{u} or ü). Also, within the argument
string, you can use \r (carriage return) and �(tab) to format your lines as needed. Double
backslash \\ is converted into single backslash \, so for example, \\AcroTeX appears
in the dialog box as \AcroTeX. The string argument is immediately expanded, so a
command like \dps (in the above definition) gets expanded at definition time. Use
\protect to delay the expansion until the tex compiler finally expands the JS command
string (useful here, if \dps gets redefined).

That’s all for now, I simply must get back to my retirement. DPS

	Table of Contents
	1 Introduction
	1.1 Background
	1.2 What is AcroFLeX?

	2 Requirements
	2.1 LaTeX Package Requirements
	2.2 PDF Creator Requirements
	2.3 Installation

	3 The AcroFLeX Graphing System
	3.1 Setting up the Graphing Screen
	3.2 Graphing Screen Controls
	• Required Controls
	• Optional Controls

	3.3 Populate and Silent Linking
	3.4 Graphing with \sgraphLink
	3.5 Graphing with \defineGraphJS

	4 Customizations

