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Preface

Octave was originally intended to be companion software for an undergraduate-level textbook
on chemical reactor design being written by James B. Rawlings of the University of Wisconsin-
Madison and John G. Ekerdt of the University of Texas.

Clearly, Octave is now much more than just another ‘courseware’ package with limited utility
beyond the classroom. Although our initial goals were somewhat vague, we knew that we wanted
to create something that would enable students to solve realistic problems, and that they could
use for many things other than chemical reactor design problems.

There are those who would say that we should be teaching the students Fortran instead,
because that is the computer language of engineering, but every time we have tried that, the
students have spent far too much time trying to figure out why their Fortran code crashes and
not enough time learning about chemical engineering. With Octave, most students pick up the
basics quickly, and are using it confidently in just a few hours.

Although it was originally intended to be used to teach reactor design, it has been used in
several other undergraduate and graduate courses in the Chemical Engineering Department at
the University of Texas, and the math department at the University of Texas has been using it
for teaching differential equations and linear algebra as well. If you find it useful, please let us
know. We are always interested to find out how Octave is being used in other places.

Virtually everyone thinks that the name Octave has something to do with music, but it is
actually the name of a former professor of mine who wrote a famous textbook on chemical
reaction engineering, and who was also well known for his ability to do quick ‘back of the
envelope’ calculations. We hope that this software will make it possible for many people to do
more ambitious computations just as easily.

Everyone is encouraged to share this software with others under the terms of the GNU
General Public License (see Appendix G [Copying], page 517) as described at the beginning
of this manual. You are also encouraged to help make Octave more useful by writing and
contributing additional functions for it, and by reporting any problems you may have.
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How You Can Contribute to Octave

There are a number of ways that you can contribute to help make Octave a better system.
Perhaps the most important way to contribute is to write high-quality code for solving new
problems, and to make your code freely available for others to use.

If you find Octave useful, consider providing additional funding to continue its development.
Even a modest amount of additional funding could make a significant difference in the amount
of time that is available for development and support.

If you cannot provide funding or contribute code, you can still help make Octave better and
more reliable by reporting any bugs you find and by offering suggestions for ways to improve
Octave. See Appendix D [Trouble], page 501, for tips on how to write useful bug reports.

Distribution

Octave is free software. This means that everyone is free to use it and free to redistribute it
on certain conditions. Octave is not in the public domain. It is copyrighted and there are
restrictions on its distribution, but the restrictions are designed to ensure that others will have
the same freedom to use and redistribute Octave that you have. The precise conditions can
be found in the GNU General Public License that comes with Octave and that also appears in
Appendix G [Copying], page 517.

Octave is available on CD-ROM with various collections of other free software, and from the
Free Software Foundation. Ordering a copy of Octave from the Free Software Foundation helps
to fund the development of more free software. For more information, write to


http://www.che.utexas.edu/twmcc
octave.org
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Free Software Foundation

51 Franklin Street, Fifth Floor
Boston, MA 02110-1301-1307
USA

Octave is also available on the Internet from ftp://ftp.octave.org/pub/octave, and ad-
ditional information is available from http://www.octave.org.


ftp://ftp.octave.org/pub/octave
http://www.octave.org

Chapter 1: A Brief Introduction to Octave 5

1 A Brief Introduction to Octave

This manual documents how to install, run, and use GNU Octave, and how to report bugs.

GNU Octave is a high-level language, primarily intended for numerical computations. It
provides a convenient command line interface for solving linear and nonlinear problems numeri-
cally, and for performing other numerical experiments. It may also be used as a batch-oriented
language.

GNU Octave is also freely redistributable software. You may redistribute it and/or mod-
ify it under the terms of the GNU General Public License as published by the Free Software
Foundation. The GPL is included in this manual in Appendix G [Copying|, page 517.

This document corresponds to Octave version 2.9.15.

1.1 Running Octave

On most systems, the way to invoke Octave is with the shell command ‘octave’. Octave displays
an initial message and then a prompt indicating it is ready to accept input. You can begin typing
Octave commands immediately afterward.

If you get into trouble, you can usually interrupt Octave by typing Control-C (usually written
C-c for short). C-c gets its name from the fact that you type it by holding down and
then pressing (o). Doing this will normally return you to Octave’s prompt.

To exit Octave, type quit, or exit at the Octave prompt.

On systems that support job control, you can suspend Octave by sending it a SIGTSTP signal,
usually by typing C-z.

1.2 Simple Examples

The following chapters describe all of Octave’s features in detail, but before doing that, it might
be helpful to give a sampling of some of its capabilities.

If you are new to Octave, I recommend that you try these examples to begin learning Octave
by using it. Lines marked with ‘octave:13>’ are lines you type, ending each with a carriage
return. Octave will respond with an answer, or by displaying a graph.

1.2.1 Creating a Matrix

To create a new matrix and store it in a variable so that it you can refer to it later, type the
command

octave:1> A = [ 1, 1, 2; 3, 5, 8; 13, 21, 34 ]

Octave will respond by printing the matrix in neatly aligned columns. Ending a command with
a semicolon tells Octave to not print the result of a command. For example

octave:2> B = rand (3, 2);

will create a 3 row, 2 column matrix with each element set to a random value between zero and
one.

To display the value of any variable, simply type the name of the variable. For example, to
display the value stored in the matrix B, type the command

octave:3> B

1.2.2 Matrix Arithmetic

Octave has a convenient operator notation for performing matrix arithmetic. For example, to
multiply the matrix a by a scalar value, type the command



6 GNU Octave

octave:4> 2 x A

To multiply the two matrices a and b, type the command
octave:5> A x B

and to form the matrix product ATA, type the command

octave:6> A’ * A

1.2.3 Solving Linear Equations
To solve the set of linear equations Ax = b, use the left division operator, ‘\’:
octave:7> A \ b
This is conceptually equivalent to A~'b, but avoids computing the inverse of a matrix directly.

If the coefficient matrix is singular, Octave will print a warning message and compute a
minimum norm solution.

1.2.4 Integrating Differential Equations

Octave has built-in functions for solving nonlinear differential equations of the form

%:f(x,t), x(t=tg) = xo

For Octave to integrate equations of this form, you must first provide a definition of the function
f(z,t). This is straightforward, and may be accomplished by entering the function body directly
on the command line. For example, the following commands define the right hand side function
for an interesting pair of nonlinear differential equations. Note that while you are entering a
function, Octave responds with a different prompt, to indicate that it is waiting for you to
complete your input.

octave:8> function xdot = f (x, t)

00 o KR
O O O = = O
=
[0)}

xdot (1)
xdot (2)

r*x(1)*(1 - x(1)/k) - axx(1)*x(2)/(1 + b*x(1));
cxa*xx (1) *x(2) /(1 + b*xx(1)) - d*x(2);

V VV V V V V V V.V

>
> endfunction

Given the initial condition
x0 = [1; 2];
and the set of output times as a column vector (note that the first output time corresponds to
the initial condition given above)
t = linspace (0, 50, 200)’;
it is easy to integrate the set of differential equations:
x = 1lsode ("f", x0, t);
The function lsode uses the Livermore Solver for Ordinary Differential Equations, described

in A. C. Hindmarsh, ODEPACK, a Systematized Collection of ODE Solvers, in: Scientific
Computing, R. S. Stepleman et al. (Eds.), North-Holland, Amsterdam, 1983, pages 55-64.
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1.2.5 Producing Graphical Output
To display the solution of the previous example graphically, use the command
plot (t, x)

If you are using a graphical user interface, Octave will automatically create a separate window
to display the plot.

To save a plot once it has been displayed on the screen, use the print command. For example,
print -deps foo.eps
will create a file called ‘foo.eps’ that contains a rendering of the current plot. The command
help print

explains more options for the print command and provides a list of additional output file
formats.

1.2.6 Editing What You Have Typed

At the Octave prompt, you can recall, edit, and reissue previous commands using Emacs- or
vi-style editing commands. The default keybindings use Emacs-style commands. For example,
to recall the previous command, press Control-p (usually written C-p for short). Doing this
will normally bring back the previous line of input. C-n will bring up the next line of input, C-b
will move the cursor backward on the line, C-f will move the cursor forward on the line, etc.

A complete description of the command line editing capability is given in this manual in
Section 2.4 [Command Line Editing], page 16.

1.2.7 Help and Documentation

Octave has an extensive help facility. The same documentation that is available in printed form
is also available from the Octave prompt, because both forms of the documentation are created
from the same input file.

In order to get good help you first need to know the name of the command that you want to
use. This name of the function may not always be obvious, but a good place to start is to just
type help. This will show you all the operators, reserved words, functions, built-in variables,
and function files. An alternative is to search the documentation using the lookfor function.
This function is described in Section 2.3 [Getting Help|, page 14.

Once you know the name of the function you wish to use, you can get more help on the
function by simply including the name as an argument to help. For example,

help plot
will display the help text for the plot function.

Octave sends output that is too long to fit on one screen through a pager like less or more.
Type a to advance one line, a to advance one page, and (g) to exit the pager.

The part of Octave’s help facility that allows you to read the complete text of the printed
manual from within Octave normally uses a separate program called Info. When you invoke
Info you will be put into a menu driven program that contains the entire Octave manual. Help
for using Info is provided in this manual in Section 2.3 [Getting Help|, page 14.

1.3 Conventions

This section explains the notational conventions that are used in this manual. You may want
to skip this section and refer back to it later.
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1.3.1 Fonts

Examples of Octave code appear in this font or form: svd (a). Names that represent arguments
or metasyntactic variables appear in this font or form: first-number. Commands that you type at
the shell prompt sometimes appear in this font or form: ‘octave —-no-init-file’. Commands
that you type at the Octave prompt sometimes appear in this font or form: foo --bar --baz.
Specific keys on your keyboard appear in this font or form: (ANY).

1.3.2 Evaluation Notation
In the examples in this manual, results from expressions that you evaluate are indicated with
‘=". For example,
sqrt (2)
= 1.4142
You can read this as “sqrt (2) evaluates to 1.4142”.
In some cases, matrix values that are returned by expressions are displayed like this
(1, 2; 3, 4] == [1, 3; 2, 4]
= [1, 0; 0, 1]
and in other cases, they are displayed like this
eye (3)

in order to clearly show the structure of the result.
Sometimes to help describe one expression, another expression is shown that produces iden-
tical results. The exact equivalence of expressions is indicated with ‘=’. For example,
rot90 ([1, 2; 3, 4], -1)

rot90 ([1, 2; 3, 4], 3)

rot90 ([1, 2; 3, 41, 7)

1.3.3 Printing Notation

Many of the examples in this manual print text when they are evaluated. Examples in this
manual indicate printed text with ¢ -’. The value that is returned by evaluating the expression
(here 1) is displayed with ‘= and follows on a separate line.
printf ("foo %s\n", "bar")
- foo bar
=1

1.3.4 Error Messages

Some examples signal errors. This normally displays an error message on your terminal. Error
messages are shown on a line starting with error:.

struct_elements ([1, 2; 3, 4])
error: struct_elements: wrong type argument ‘matrix’

1.3.5 Format of Descriptions

Functions, commands, and variables are described in this manual in a uniform format. The
first line of a description contains the name of the item followed by its arguments, if any. The
category—function, variable, or whatever—is printed next to the right margin. The description
follows on succeeding lines, sometimes with examples.
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1.3.5.1 A Sample Function Description

In a function description, the name of the function being described appears first. It is followed
on the same line by a list of parameters. The names used for the parameters are also used in
the body of the description.

Here is a description of an imaginary function foo:

foo (x,y,...) [Function]
The function foo subtracts x from y, then adds the remaining arguments to the result. If y
is not supplied, then the number 19 is used by default.
foo (1, [3, 5], 3, 9)
= [ 14, 16 1]
foo (5)
= 14
More generally,

foo (w, x, y, ...)

X -w+y+ ...

Any parameter whose name contains the name of a type (e.g., integer, integerl or matrix)
is expected to be of that type. Parameters named object may be of any type. Parameters
with other sorts of names (e.g., new_file) are discussed specifically in the description of the
function. In some sections, features common to parameters of several functions are described at
the beginning.

Functions in Octave may be defined in several different ways. The category name for functions
may include another name that indicates the way that the function is defined. These additional
tags include

Function File
The function described is defined using Octave commands stored in a text file. See
Section 11.7 [Function Files], page 115.

Built-in Function
The function described is written in a language like C++, C, or Fortran, and is part
of the compiled Octave binary.

Loadable Function
The function described is written in a language like C++, C, or Fortran. On systems
that support dynamic linking of user-supplied functions, it may be automatically
linked while Octave is running, but only if it is needed. See Appendix A [Dynami-
cally Linked Functions], page 439.

Mapping Function
The function described works element-by-element for matrix and vector arguments.

1.3.5.2 A Sample Command Description

Command descriptions have a format similar to function descriptions, except that the word
‘Function’ is replaced by ‘Command. Commands are functions that may be called without
surrounding their arguments in parentheses. For example, here is the description for Octave’s
cd command:

cd dir [Command|

chdir dir [Command|
Change the current working directory to dir. For example, cd ~/octave changes the current
working directory to ‘~/octave’. If the directory does not exist, an error message is printed
and the working directory is not changed.
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1.3.5.3 A Sample Variable Description

A variable is a name that can hold a value. Although any variable can be set by the user,
built-in variables typically exist specifically so that users can change them to alter the way
Octave behaves (built-in variables are also sometimes called user options). Ordinary variables
and built-in variables are described using a format like that for functions except that there are
no arguments.

Here is a description of the imaginary variable do_what_i_mean_not_what_i_say.

do_what_i_mean_not_what_i_say [Built-in Variable]
If the value of this variable is nonzero, Octave will do what you actually wanted, even if you
have typed a completely different and meaningless list of commands.

Other variable descriptions have the same format, but ‘Built-in Variable’ is replaced by
‘Variable’, for ordinary variables, or ‘Constant’ for symbolic constants whose values cannot be
changed.
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2 Getting Started

This chapter explains some of Octave’s basic features, including how to start an Octave session,
get help at the command prompt, edit the command line, and write Octave programs that can
be executed as commands from your shell.

2.1 Invoking Octave from the Command Line

Normally, Octave is used interactively by running the program ‘octave’ without any arguments.
Once started, Octave reads commands from the terminal until you tell it to exit.

You can also specify the name of a file on the command line, and Octave will read and execute
the commands from the named file and then exit when it is finished.

You can further control how Octave starts by using the command-line options described
in the next section, and Octave itself can remind you of the options available. Type ‘octave
--help’ to display all available options and briefly describe their use (‘octave -h’ is a shorter
equivalent).

2.1.1 Command Line Options

Here is a complete list of all the command line options that Octave accepts.

--debug

-d Enter parser debugging mode. Using this option will cause Octave’s parser to print
a lot of information about the commands it reads, and is probably only useful if you
are actually trying to debug the parser.

—-—echo-commands
-X Echo commands as they are executed.

--eval code
Evaluate code and exit when done unless ——persist is also specified.

--exec-path path
Specify the path to search for programs to run. The value of path specified on the
command line will override any value of OCTAVE_EXEC_PATH found in the environ-
ment, but not any commands in the system or user startup files that set the built-in
variable EXEC_PATH.

--help
-h
-7 Print short help message and exit.

--image-path path
Specify the path to search for images. The value of path specified on the command
line will set the value of IMAGE_PATH found in the environment.

-—info-file filename
Specify the name of the info file to use. The value of filename specified on the com-
mand line will override any value of OCTAVE_INFO_FILE found in the environment,
but not any commands in the system or user startup files that use the info_file
function.

--info-program program
Specify the name of the info program to use. The value of program specified on
the command line will override any value of OCTAVE_INFO_PROGRAM found in the
environment, but not any commands in the system or user startup files that use the
info_program function.
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-—interactive

-i Force interactive behavior. This can be useful for running Octave via a remote shell
command or inside an Emacs shell buffer. For another way to run Octave within
Emacs, see Appendix F [Emacs], page 511.

--no-history
-H Disable command-line history.
--no-init-file
Don’t read the ‘~/.octaverc’ or ‘.octaverc’ files.
--no-line-editing
Disable command-line editing.
--no-site-file
Don’t read the site-wide ‘octaverc’ file.

—--norc

-f Don’t read any of the system or user initialization files at startup. This is equivalent
to using both of the options ——no-init-file and --no-site-file

--path path

-p path Specify the path to search for function files. The value of path specified on the
command line will override any value of OCTAVE_PATH found in the environment,
but not any commands in the system or user startup files that set the internal load
path through one of the path functions.

--persist
Go to interactive mode after --eval or reading from a file named on the command
line.
--silent
--quiet
-q Don’t print the usual greeting and version message at startup.
--traditional
--braindead
For compatibility with MATLAB, set initial values for user-preferences to the follow-
ing values
PS1 = Ny> "
PS2 - un
beep_on_error = true
crash_dumps_octave_core = false
default_save_options = "-mat-binary"
fixed_point_format = true
history_timestamp_format_string = "%%-— %D %I:%M %p —--%%"
page_screen_output = false
print_empty_dimensions = false
and disable the following warnings
Octave:fopen-file-in-path
Octave:function-name-clash
Octave:load-file-in-path
—--verbose
-V Turn on verbose output.
--version

-v Print the program version number and exit.
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file Execute commands from file. Exit when done unless —-persist is also specified.

Octave also includes several built-in variables that contain information about the command
line, including the number of arguments and all of the options.

argv () [Built-in Function]
Return the command line arguments passed to Octave. For example, if you invoked Octave
using the command

octave —--no-line-editing --silent

argv would return a cell array of strings with the elements --no-line-editing and --
silent.

If you write an executable Octave script, argv will return the list of arguments passed to
the script. See Section 2.6 [Executable Octave Programs]|, page 23, for an example of how to
create an executable Octave script.

program_name () [Built-in Function]
Return the last component of of the value returned by program_invocation_name.

See also: program_invocation_name.

program_invocation_name () [Built-in Function)]
Return the name that was typed at the shell prompt to run Octave.

If executing a script from the command line (e.g., octave foo.m) or using an executable
Octave script, the program name is set to the name of the script. See Section 2.6 [Executable
Octave Programs], page 23, for an example of how to create an executable Octave script.

See also: program_name.

Here is an example of using these functions to reproduce Octave’s command line.

printf ("%s", program_name ());

arg_list = argv ();

for i = l:nargin

printf (" %s", arg_list{il});

endfor

printf ("\n");
See Section 8.1 [Index Expressions|, page 83, for an explanation of how to properly index arrays
of strings and substrings in Octave, and See Section 11.1 [Defining Functions], page 109, for
information about the variable nargin.

2.1.2 Startup Files

When Octave starts, it looks for commands to execute from the files in the following list. These
files may contain any valid Octave commands, including function definitions.

octave-home/share/octave/site/m/startup/octaverc
Where octave-home is the directory in which all of Octave is installed (the default
is ‘/usr/local’). This file is provided so that changes to the default Octave envi-
ronment can be made globally for all users at your site for all versions of Octave you
have installed. Some care should be taken when making changes to this file, since
all users of Octave at your site will be affected.

octave-home /share/octave/version/m/startup/octaverc
Where octave-home is the directory in which all of Octave is installed (the default is
‘/usr/local’), and version is the version number of Octave. This file is provided so
that changes to the default Octave environment can be made globally for all users
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for a particular version of Octave. Some care should be taken when making changes
to this file, since all users of Octave at your site will be affected.

~/.octaverc
This file is normally used to make personal changes to the default Octave environ-
ment.

.octaverc
This file can be used to make changes to the default Octave environment for a
particular project. Octave searches for this file in the current directory after it
reads ‘~/.octaverc’. Any use of the cd command in the ‘~/.octaverc’ file will
affect the directory that Octave searches for the file ‘. octaverc’.

If you start Octave in your home directory, commands from from the file
‘~/.octaverc’ will only be executed once.

A message will be displayed as each of the startup files is read if you invoke Octave with the
--verbose option but without the --silent option.

2.2 Quitting Octave

exit (status) [Built-in Function]

quit (status) [Built-in Function]
Exit the current Octave session. If the optional integer value status is supplied, pass that
value to the operating system as the Octave’s exit status. The default value is zero.

atexit (fcn) [Built-in Function]
Register a function to be called when Octave exits. For example,

function bye_bye (O
disp ("Bye bye");

endfunction

atexit ("bye_bye");

will print the message "Bye bye" when Octave exits.

atexit (fcn, flag) [Built-in Function]
Register or unregister a function to be called when Octave exits, depending on flag. If flag is
true, the function is registered, if flag is false, it is unregistered. For example, after registering
the function bye_bye as above,

atexit ("bye_bye", false);

will remove the function from the list and Octave will not call the function bye_by when it
exits.

Note that atexit only removes the first occurrence of a function from the list, so if a function
was placed in the list multiple times with atexit, it must also be removed from the list
multiple times.

2.3 Commands for Getting Help

The entire text of this manual is available from the Octave prompt via the command doc. In
addition, the documentation for individual user-written functions and variables is also available
via the help command. This section describes the commands used for reading the manual and
the documentation strings for user-supplied functions and variables. See Section 11.7 [Function
Files], page 115, for more information about how to document the functions you write.
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help name [Command]
Display the help text for name. If invoked without any arguments, help prints a list of all
the available operators and functions.
For example, the command help help prints a short message describing the help command.
The help command can give you information about operators, but not the comma and semi-
colons that are used as command separators. To get help for those, you must type help
comma or help semicolon.

See also: doc, which, lookfor.

doc function_name [Command|
Display documentation for the function function_name directly from an on-line version of the
printed manual, using the GNU Info browser. If invoked without any arguments, the manual
is shown from the beginning.

For example, the command doc rand starts the GNU Info browser at this node in the on-line
version of the manual.

Once the GNU Info browser is running, help for using it is available using the command C-h.

See also: help.

lookfor str [Command|
lookfor -all str [Command]
[fun, helpstring] = lookfor (str) [Function]

[fun, helpstring] lookfor (*-all’, str) [Function]
Search for the string str in all of the functions found in the function search path. By default
lookfor searches for str in the first sentence of the help string of each function found. The
entire help string of each function found in the path can be searched if the ’-all’ argument is
supplied. All searches are case insensitive.

Called with no output arguments, lookfor prints the list of matching functions to the termi-
nal. Otherwise the output arguments fun and helpstring define the matching functions and
the first sentence of each of their help strings.

Note that the ability of lookfor to correctly identify the first sentence of the help of the
functions is dependent on the format of the functions help. All of the functions in Octave itself
will correctly find the first sentence, but the same can not be guaranteed for other functions.
Therefore the use of the ’-all’ argument might be necessary to find related functions that are
not part of Octave.

See also: help, which.

The following function can be used to change which programs are used for displaying the
documentation, and where the documentation can be found.

val = info_file () [Built-in Function]

old_val = info_file (new_val) [Built-in Function]
Query or set the internal variable that specifies the name of the Octave info file. The default
value is "octave-home/info/octave.info", in which octave-home is the directory where
all of Octave is installed.

See also: info_program, doc, help, makeinfo_program.

val = info_program () [Built-in Function]
old_val = info_program (new_val) [Built-in Function]
Query or set the internal variable that specifies the name of the info program to run. The de-
fault initial value is "octave-home/libexec/octave/version/exec/arch/info" in which
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octave-home is the directory where all of Octave is installed, version is the Octave version
number, and arch is the system type (for example, 1686-pc-1linux-gnu). The default initial
value may be overridden by the environment variable OCTAVE_INFO_PROGRAM, or the com-
mand line argument --info-program NAME.

See also: info_file, doc, help, makeinfo_program.

val = makeinfo_program () [Built-in Function]

old_val = makeinfo_program (new_val) [Built-in Function]
Query or set the internal variable that specifies the name of the makeinfo program that
Octave runs to format help text containing Texinfo markup commands. The default initial
value is "makeinfo".

See also: info_file, info_program, doc, help.

val = suppress_verbose_help_message () [Built-in Function]

old_val = suppress_verbose_help_message (new_val) [Built-in Function]
Query or set the internal variable that controls whether Octave will add additional help
information to the end of the output from the help command and usage messages for built-
in commands.

2.4 Command Line Editing

Octave uses the GNU readline library to provide an extensive set of command-line editing and
history features. Only the most common features are described in this manual. Please see The
GNU Readline Library manual for more information.

To insert printing characters (letters, digits, symbols, etc.), simply type the character. Octave
will insert the character at the cursor and advance the cursor forward.

Many of the command-line editing functions operate using control characters. For example,
the character Control-a moves the cursor to the beginning of the line. To type C-a, hold down
and then press (z). In the following sections, control characters such as Control-a are
written as C-a.

Another set of command-line editing functions use Meta characters. On some terminals, you
type M-u by holding down and pressing (. If your terminal does not have a key,
you can still type Meta characters using two-character sequences starting with ESC. Thus, to
enter M-u, you could type (ESC)(w. The ESC character sequences are also allowed on terminals
with real Meta keys. In the following sections, Meta characters such as Meta-u are written as
M-u.

2.4.1 Cursor Motion

The following commands allow you to position the cursor.

C-b Move back one character.

C-f Move forward one character.

DEL Delete the character to the left of the cursor.
c-d Delete the character underneath the cursor.
M-f Move forward a word.

M-b Move backward a word.

C-a Move to the start of the line.

C-e Move to the end of the line.
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C-1 Clear the screen, reprinting the current line at the top.

C-_

c-/ Undo the last thing that you did. You can undo all the way back to an empty line.
M-r Undo all changes made to this line. This is like typing the ‘undo’ command enough

times to get back to the beginning.

The above table describes the most basic possible keystrokes that you need in order to do
editing of the input line. On most terminals, you can also use the arrow keys in place of C-f
and C-b to move forward and backward.

Notice how C-f moves forward a character, while M-f moves forward a word. It is a loose
convention that control keystrokes operate on characters while meta keystrokes operate on words.

The function clc will allow you to clear the screen from within Octave programs.

2.4.2 Killing and Yanking

Killing text means to delete the text from the line, but to save it away for later use, usually by
yanking it back into the line. If the description for a command says that it ‘kills’ text, then you
can be sure that you can get the text back in a different (or the same) place later.

Here is the list of commands for killing text.
C-k Kill the text from the current cursor position to the end of the line.

M-d Kill from the cursor to the end of the current word, or if between words, to the end
of the next word.

M-(DEL) Kill from the cursor to the start of the previous word, or if between words, to the
start of the previous word.

C-w Kill from the cursor to the previous whitespace. This is different than M-(DEL)
because the word boundaries differ.

And, here is how to yank the text back into the line. Yanking means to copy the most-
recently-killed text from the kill buffer.

C-y Yank the most recently killed text back into the buffer at the cursor.

M-y Rotate the kill-ring, and yank the new top. You can only do this if the prior
command is C-y or M-y.

When you use a kill command, the text is saved in a kill-ring. Any number of consecutive
kills save all of the killed text together, so that when you yank it back, you get it in one clean
sweep. The kill ring is not line specific; the text that you killed on a previously typed line is
available to be yanked back later, when you are typing another line.

2.4.3 Commands For Changing Text

The following commands can be used for entering characters that would otherwise have a special

meaning (e.g., TAB, C-q, etc.), or for quickly correcting typing mistakes.

C—q

C-v Add the next character that you type to the line verbatim. This is how to insert
things like C-q for example.

M-(TAB) Insert a tab character.

C-t Drag the character before the cursor forward over the character at the cursor, also
moving the cursor forward. If the cursor is at the end of the line, then transpose
the two characters before it.
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M-t Drag the word behind the cursor past the word in front of the cursor moving the
cursor over that word as well.

M-u Uppercase the characters following the cursor to the end of the current (or following)
word, moving the cursor to the end of the word.

M-1 Lowercase the characters following the cursor to the end of the current (or following)
word, moving the cursor to the end of the word.

M-c Uppercase the character following the cursor (or the beginning of the next word if
the cursor is between words), moving the cursor to the end of the word.

2.4.4 Letting Readline Type For You
The following commands allow Octave to complete command and variable names for you.

TAB Attempt to do completion on the text before the cursor. Octave can complete the
names of commands and variables.

M-7 List the possible completions of the text before the cursor.

val = completion_append_char () [Built-in Function]

old_val = completion_append_char (new_val) [Built-in Function]
Query or set the internal character variable that is appended to successful command-line
completion attempts. The default value is " " (a single space).

completion_matches (hint) [Built-in Function]

Generate possible completions given hint.

This function is provided for the benefit of programs like Emacs which might be controlling
Octave and handling user input. The current command number is not incremented when this
function is called. This is a feature, not a bug.

2.4.5 Commands For Manipulating The History

Octave normally keeps track of the commands you type so that you can recall previous commands
to edit or execute them again. When you exit Octave, the most recent commands you have typed,
up to the number specified by the variable history_size, are saved in a file. When Octave
starts, it loads an initial list of commands from the file named by the variable history_file.

Here are the commands for simple browsing and searching the history list.

LFD

RET Accept the line regardless of where the cursor is. If this line is non-empty, add it
to the history list. If this line was a history line, then restore the history line to its
original state.

C-p Move ‘up’ through the history list.

C-n Move ‘down’ through the history list.

M—< Move to the first line in the history.

M-> Move to the end of the input history, i.e., the line you are entering!

C-r Search backward starting at the current line and moving ‘up’ through the history
as necessary. This is an incremental search.

C-s Search forward starting at the current line and moving ‘down’ through the history

as necessary.
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On most terminals, you can also use the arrow keys in place of C-p and C-n to move through
the history list.

In addition to the keyboard commands for moving through the history list, Octave provides
three functions for viewing, editing, and re-running chunks of commands from the history list.

history options [Command]|
If invoked with no arguments, history displays a list of commands that you have executed.
Valid options are:

-w file Write the current history to the file file. If the name is omitted, use the default
history file (normally ‘~/.octave_hist’).

-r file Read the file file, replacing the current history list with its contents. If the name
is omitted, use the default history file (normally ‘*/.octave_hist’).

n Only display the most recent n lines of history.

-q Don’t number the displayed lines of history. This is useful for cutting and pasting
commands if you are using the X Window System.

For example, to display the five most recent commands that you have typed without display-
ing line numbers, use the command history -q 5.

edit_history options [Command]
If invoked with no arguments, edit_history allows you to edit the history list using the
editor named by the variable EDITOR. The commands to be edited are first copied to a
temporary file. When you exit the editor, Octave executes the commands that remain in
the file. It is often more convenient to use edit_history to define functions rather than
attempting to enter them directly on the command line. By default, the block of commands
is executed as soon as you exit the editor. To avoid executing any commands, simply delete
all the lines from the buffer before exiting the editor.

The edit_history command takes two optional arguments specifying the history numbers
of first and last commands to edit. For example, the command

edit_history 13
extracts all the commands from the 13th through the last in the history list. The command
edit_history 13 169

only extracts commands 13 through 169. Specifying a larger number for the first command
than the last command reverses the list of commands before placing them in the buffer to be
edited. If both arguments are omitted, the previous command in the history list is used.

run_history [first] [last] [Command]
Similar to edit_history, except that the editor is not invoked, and the commands are simply
executed as they appear in the history list.

Octave also allows you customize the details of how and where the history is saved.

val = history_file () [Built-in Function]

old_val = history_file (new_val) [Built-in Function]
Query or set the internal variable that specifies the name of the file used to store command
history. The default value is "~/.octave_hist", but may be overridden by the environment
variable OCTAVE_HISTFILE.

See also: history_size, saving_history, history_timestamp_format_string.
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val = history_size () [Built-in Function]

old_val = history_size (new_val) [Built-in Function]
Query or set the internal variable that specifies how many entries to store in the history
file. The default value is 1024, but may be overridden by the environment variable OCTAVE_
HISTSIZE.

See also: history_file, history_timestamp_format, saving_history.

val = saving_history () [Built-in Function]

old_val = saving_history (new_val) [Built-in Function]
Query or set the internal variable that controls whether commands entered on the command
line are saved in the history file.

See also: history_file, history_size, history_timestamp_format.

val = history_timestamp_format_string () [Built-in Function]

old_val = history_timestamp_format_string (new_val) [Built-in Function]
Query or set the internal variable that specifies the format string for the comment line that
is written to the history file when Octave exits. The format string is passed to strftime.
The default value is

"# Octave VERSION, %a %b %d %H:%M:%S %Y %Z <USERGHOST>"

See also: strftime, history_file, history_size, saving_history.

val = EDITOR () [Built-in Function]

old_val = EDITOR (new_val) [Built-in Function]
Query or set the internal variable that specifies the editor to use with the edit_history
command. If the environment variable EDITOR is set when Octave starts, its value is used as
the default. Otherwise, EDITOR is set to "emacs".

See also: edit_history.

2.4.6 Customizing readline

As mentioned earlier Octave uses the GNU readline library for command-line editing and history
features. It is possible to customize how readline works through a configuration file.

read_readline_init_file (file) [Built-in Function]
Read the readline library initialization file file. If file is omitted, read the default initialization
file (normally ‘~/.inputrc’).

See section “Readline Init File” in GNU Readline Library, for details.

2.4.7 Customizing the Prompt

The following variables are available for customizing the appearance of the command-line
prompts. Octave allows the prompt to be customized by inserting a number of backslash-escaped
special characters that are decoded as follows:

At’ The time.

‘\d’ The date.

‘\n’ Begins a new line by printing the equivalent of a carriage return followed by a line
feed.

‘\s’ The name of the program (usually just ‘octave’).

Aw’ The current working directory.
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AW The basename of the current working directory.

\u’ The username of the current user.

‘\h’ The hostname, up to the first ©.’.

‘\H’ The hostname.

A# The command number of this command, counting from when Octave starts.

AL The history number of this command. This differs from ‘\#’ by the number of
commands in the history list when Octave starts.

¢’ If the effective UID is 0, a ‘#’, otherwise a ‘$’.

‘\nnn’ The character whose character code in octal is nnn.

AN A backslash.

val = PS1 () [Built-in Function]

old_val = PS1 (new_val) [Built-in Function]

Query or set the primary prompt string. When executing interactively, Octave displays the
primary prompt when it is ready to read a command.

The default value of the primary prompt string is "\s:\#> ". To change it, use a command
like

octave:13> PS1 = "\\u@\\H> "
which will result in the prompt ‘boris@kremvax> ’ for the user ‘boris’ logged in on the

host ‘kremvax.kgb.su’. Note that two backslashes are required to enter a backslash into a
double-quoted character string. See Chapter 5 [Strings], page 43.

See also: PS2, PS4.

val = PS2 () [Built-in Function]

old_val = PS2 (new_val) [Built-in Function]
Query or set the secondary prompt string. The secondary prompt is printed when Octave is
expecting additional input to complete a command. For example, if you are typing a for loop
that spans several lines, Octave will print the secondary prompt at the beginning of each line
after the first. The default value of the secondary prompt string is "> ".

See also: PS1, PS4.

val = PS4 () [Built-in Function]
old_val = PS4 (new_val) [Built-in Function]
Query or set the character string used to prefix output produced when echoing commands
when echo_executing_commands is enabled. The default value is "+ ". See Section 2.1

[Invoking Octave from the Command Line|, page 11, for a description of -~—echo-commands.

See also: echo_executing_commands, PS1, PS2.

2.4.8 Diary and Echo Commands

Octave’s diary feature allows you to keep a log of all or part of an interactive session by recording
the input you type and the output that Octave produces in a separate file.

diary options [Command]|
Create a list of all commands and the output they produce, mixed together just as you see
them on your terminal. Valid options are:

on Start recording your session in a file called ‘diary’ in your current working di-
rectory.
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off Stop recording your session in the diary file.
file Record your session in the file named file.

Without any arguments, diary toggles the current diary state.

Sometimes it is useful to see the commands in a function or script as they are being evaluated.
This can be especially helpful for debugging some kinds of problems.

echo options [Command]|
Control whether commands are displayed as they are executed. Valid options are:

on Enable echoing of commands as they are executed in script files.
off Disable echoing of commands as they are executed in script files.
on all Enable echoing of commands as they are executed in script files and functions.

off all Disable echoing of commands as they are executed in script files and functions.

If invoked without any arguments, echo toggles the current echo state.

val = echo_executing_commands () [Built-in Function]

old_val = echo_executing_commands (new_val) [Built-in Function]
Query or set the internal variable that controls the echo state. It may be the sum of the
following values:

1 Echo commands read from script files.
2 Echo commands from functions.
4 Echo commands read from command line.

More than one state can be active at once. For example, a value of 3 is equivalent to the
command echo on all.

The value of echo_executing_commands is set by the echo command and the command line
option —--echo-input.

2.5 How Octave Reports Errors

Octave reports two kinds of errors for invalid programs.

A parse error occurs if Octave cannot understand something you have typed. For example,
if you misspell a keyword,

octave:13> functon y = £ (x) y = x72; endfunction
Octave will respond immediately with a message like this:

parse error:

functon y = £ (x) y = x72; endfunction
For most parse errors, Octave uses a caret (‘*’) to mark the point on the line where it was
unable to make sense of your input. In this case, Octave generated an error message because the
keyword function was misspelled. Instead of seeing ‘function f’, Octave saw two consecutive
variable names, which is invalid in this context. It marked the error at y because the first name
by itself was accepted as valid input.

Another class of error message occurs at evaluation time. These errors are called run-time
errors, or sometimes evaluation errors because they occur when your program is being run, or
evaluated. For example, if after correcting the mistake in the previous function definition, you
type
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octave:13> £ ()
Octave will respond with

error: ‘x’ undefined near line 1 column 24

error: evaluating expression near line 1, column 24

error: evaluating assignment expression near line 1, column 22
error: called from ‘f’

This error message has several parts, and gives you quite a bit of information to help you locate
the source of the error. The messages are generated from the point of the innermost error, and
provide a traceback of enclosing expressions and function calls.

In the example above, the first line indicates that a variable named ‘x’ was found to be
undefined near line 1 and column 24 of some function or expression. For errors occurring within
functions, lines are counted from the beginning of the file containing the function definition.
For errors occurring at the top level, the line number indicates the input line number, which is
usually displayed in the prompt string.

The second and third lines in the example indicate that the error occurred within an assign-
ment expression, and the last line of the error message indicates that the error occurred within
the function f. If the function £ had been called from another function, for example, g, the list
of errors would have ended with one more line:

error: called from ‘g’

These lists of function calls usually make it fairly easy to trace the path your program took
before the error occurred, and to correct the error before trying again.

2.6 Executable Octave Programs

Once you have learned Octave, you may want to write self-contained Octave scripts, using the
‘417 script mechanism. You can do this on GNU systems and on many Unix systems?.

Self-contained Octave scripts are useful when you want to write a program which users can
invoke without knowing that the program is written in the Octave language.

For example, you could create a text file named ‘hello’, containing the following lines:

#! octave-interpreter—-name -qf
# a sample Octave program
printf ("Hello, world!\n");

(where octave-interpreter-name should be replaced with the full file name for your Octave bi-
nary). Note that this will only work if ‘#!” appears at the very beginning of the file. After
making this file executable (with the chmod command), you can simply type:

hello
at the shell, and the system will arrange to run Octave as if you had typed:
octave hello

The line beginning with ‘#!’ lists the full file name of an interpreter to be run, and an optional
initial command line argument to pass to that interpreter. The operating system then runs the
interpreter with the given argument and the full argument list of the executed program. The
first argument in the list is the full file name of the Octave program. The rest of the argument
list will either be options to Octave, or data files, or both. The ‘-qf’ option is usually specified
in stand-alone Octave programs to prevent them from printing the normal startup message,
and to keep them from behaving differently depending on the contents of a particular user’s
‘~/.octaverc’ file. See Section 2.1 [Invoking Octave from the Command Line|, page 11.

1 The ‘#!" mechanism works on Unix systems derived from Berkeley Unix, System V Release 4, and some
System V Release 3 systems.
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Note that some operating systems may place a limit on the number of characters that are
recognized after ‘#!’. Also, the various shells/systems parse differently the arguments appearing
in a ‘#!” line. The majority of them group together all the arguments in a string and pass it to
the interpreter as a single argument. In this case, the following script:

#! octave-interpreter-name -q -f # comment
is equivalent to type at the command line:
octave "-q -f # comment"

which would obviously produce an error message. Unfortunately, it is impossible for Octave to
know whether it has been called from the command line or from a ‘#!’ script, so some care is
needed when using the ‘#!” mechanism.

Note that when Octave is started from an executable script, the built-in function argv returns
a cell array containing the command line arguments passed to an executable Octave script, not
the arguments passed to the Octave interpreter on the ‘#!’ line of the script. For example, the
following program will reproduce the command line that is used to execute script, not ‘-qf’.

#! /bin/octave -qf
printf ("Ys", program_name ());
arg_list = argv O;
for i = l:nargin

printf (" %s", arg_list{il});
endfor
printf ("\n");

2.7 Comments in Octave Programs

A comment is some text that is included in a program for the sake of human readers, and that
is not really part of the program. Comments can explain what the program does, and how it
works. Nearly all programming languages have provisions for comments, because programs are
typically hard to understand without them.

In the Octave language, a comment starts with either the sharp sign character, ‘#’, or the
percent symbol ‘%’ and continues to the end of the line. The Octave interpreter ignores the rest
of a line following a sharp sign or percent symbol. For example, we could have put the following
into the function f:

function xdot = f (x, t)

# usage: f (x, t)

#

# This function defines the right hand
# side functions for a set of nonlinear
# differential equations.

r = 0.25;

endfunction
The help command (see Section 2.3 [Getting Help], page 14) is able to find the first block
of comments in a function (even those that are composed directly on the command line). This
means that users of Octave can use the same commands to get help for built-in functions, and for

functions that you have defined. For example, after defining the function £ above, the command
help f produces the output
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usage: f (x, t)

This function defines the right hand
side functions for a set of nonlinear
differential equations.

Although it is possible to put comment lines into keyboard-composed throw-away Octave
programs, it usually isn’t very useful, because the purpose of a comment is to help you or
another person understand the program at a later time.
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3 Data Types

All versions of Octave include a number of built-in data types, including real and complex scalars
and matrices, character strings, a data structure type, and an array that can contain all data
types.

It is also possible to define new specialized data types by writing a small amount of C++ code.
On some systems, new data types can be loaded dynamically while Octave is running, so it is
not necessary to recompile all of Octave just to add a new type. See Appendix A [Dynamically
Linked Functions|, page 439, for more information about Octave’s dynamic linking capabilities.
Section 3.2 [User-defined Data Types|, page 28 describes what you must do to define a new data
type for Octave.

typeinfo (expr) [Built-in Function]
Return the type of the expression expr, as a string. If EXPR is omitted, return an array of
strings containing all the currently installed data types.

3.1 Built-in Data Types

The standard built-in data types are real and complex scalars and matrices, ranges, character
strings, a data structure type, and cell arrays. Additional built-in data types may be added in
future versions. If you need a specialized data type that is not currently provided as a built-
in type, you are encouraged to write your own user-defined data type and contribute it for
distribution in a future release of Octave.

The data type of a variable can be determined and changed through the use of the following
functions.

class (expr) [Built-in Function]
Return the class of the expression expr, as a string.

isa (x, class) [Function File]
Return true if x is a value from the class class.

cast (val, type) [Function File]
Convert val to data type type.

See also: int8, uint&, int16, uint16, int32, uint32, int64, uint64, double.

typecast (x, type) [Loadable Function)]

Converts from one datatype to another without changing the underlying data. The argument
type defines the type of the return argument and must be one of 'uint8’, 'uint16’, 'uint32’,
‘uint64’, ’int8’; 'int16’, ’int32’, ’int64’, 'single’ or ’double’.
An example of the use of typecast on a little-endian machine is

x = uint16 ([1, 65535]);

typecast (x, ’uint8’)

= [ 0, 1, 255, 255]

See also: cast, swapbytes.

swapbytes (x) [Function File]
Swaps the byte order on values, converting from little endian to big endian and visa-versa.
For example
swapbytes (uint16 (1:4))
= [ 256 512 768 1024]

See also: typecast, cast.
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3.1.1 Numeric Objects

Octave’s built-in numeric objects include real, complex, and integer scalars and matrices. All
built-in floating point numeric data is currently stored as double precision numbers. On systems
that use the IEEE floating point format, values in the range of approximately 2.2251 x 1073%
to 1.7977 x 103% can be stored, and the relative precision is approximately 2.2204 x 107!¢. The
exact values are given by the variables realmin, realmax, and eps, respectively.

Matrix objects can be of any size, and can be dynamically reshaped and resized. It is easy to
extract individual rows, columns, or submatrices using a variety of powerful indexing features.
See Section 8.1 [Index Expressions|, page 83.

See Chapter 4 [Numeric Data Types]|, page 31, for more information.

3.1.2 Missing Data

It is possible to represent missing data explicitly in Octave using NA (short for “Not Available”).
Missing data can only be represented when data is represented as floating point numbers. In
this case missing data is represented as a special case of the representation of NaN.

NA (x) [Built-in Function]
NA (n, m) [Built-in Function]
NA (n,m k, ...) [Built-in Function]
NA (..., class) [Built-in Function]

Return a matrix or N-dimensional array whose elements are all equal to the special constant
used to designate missing values.

isna (x) [Mapping Function]
Return 1 for elements of x that are NA (missing) values and zero otherwise. For example,

isna ([13, Inf, NA, NaN])
j [O’ O’ 1, o]

3.1.3 String Objects

A character string in Octave consists of a sequence of characters enclosed in either double-quote
or single-quote marks. Internally, Octave currently stores strings as matrices of characters. All
the indexing operations that work for matrix objects also work for strings.

See Chapter 5 [Strings|, page 43, for more information.

3.1.4 Data Structure Objects

Octave’s data structure type can help you to organize related objects of different types. The
current implementation uses an associative array with indices limited to strings, but the syntax
is more like C-style structures.

See Section 6.1 [Data Structures|, page 57, for more information.

3.1.5 Cell Array Objects
A Cell Array in Octave is general array that can hold any number of different data types.

See Section 6.2 [Cell Arrays|, page 64, for more information.

3.2 User-defined Data Types

Someday I hope to expand this to include a complete description of Octave’s mechanism for
managing user-defined data types. Until this feature is documented here, you will have to make
do by reading the code in the ‘ov.h’, ‘ops.h’; and related files from Octave’s ‘src’ directory.
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3.3 Object Sizes

The following functions allow you to determine the size of a variable or expression. These
functions are defined for all objects. They return —1 when the operation doesn’t make sense.
For example, Octave’s data structure type doesn’t have rows or columns, so the rows and
columns functions return —1 for structure arguments.

ndims (a) [Built-in Function]
Returns the number of dimensions of array a. For any array, the result will always be larger
than or equal to 2. Trailing singleton dimensions are not counted.

columns (a) [Built-in Function]
Return the number of columns of a.

See also: size, numel, rows, length, isscalar, isvector, and ismatrix.

rows (a) [Built-in Function]
Return the number of rows of a.

See also: size, numel, columns, length, isscalar, isvector, ismatrix.

numel (a) [Built-in Function]
Returns the number of elements in the object a.

See also: size.

length (a) [Built-in Function]
Return the ‘length’ of the object a. For matrix objects, the length is the number of rows or
columns, whichever is greater (this odd definition is used for compatibility with MATLAB).

size (a, n) [Built-in Function]
Return the number rows and columns of a.
With one input argument and one output argument, the result is returned in a row vector.
If there are multiple output arguments, the number of rows is assigned to the first, and the
number of columns to the second, etc. For example,
size ([1, 2; 3, 4; 5, 6])
= [3, 2]

[nr, nc] = size ([1, 2; 3, 4; 5, 6])
= nr = 3
= nc = 2
If given a second argument, size will return the size of the corresponding dimension. For
example
size ([1, 2; 3, 4; 5, 6], 2)
= 2

returns the number of columns in the given matrix.

See also: numel.

isempty (a) [Built-in Function]
Return 1 if a is an empty matrix (either the number of rows, or the number of columns, or
both are zero). Otherwise, return 0.
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sizeof (val) [Built-in Function]
Return the size of val in bytes

size_equal (a, b, ...) [Built-in Function]
Return true if the dimensions of all arguments agree. Trailing singleton dimensions are
ignored.

See also: size, numel.

squeeze (x) [Built-in Function]
Remove singleton dimensions from x and return the result. Note that for compatibility with
MATLAB, all objects have a minimum of two dimensions and row vectors are left unchanged.



Chapter 4: Numeric Data Types 31

4 Numeric Data Types

A numeric constant may be a scalar, a vector, or a matrix, and it may contain complex values.

The simplest form of a numeric constant, a scalar, is a single number that can be an integer,
a decimal fraction, a number in scientific (exponential) notation, or a complex number. Note
that by default numeric constants are represented within Octave in double-precision floating
point format (complex constants are stored as pairs of double-precision floating point values).
It is however possible to represent real integers as described in Section 4.3 [Integer Data Types],
page 35. Here are some examples of real-valued numeric constants, which all have the same
value:

105
1.05e+2
1050e-1

To specify complex constants, you can write an expression of the form

3 + 4i
3.0 + 4.0
0.3el + 40e-11i

all of which are equivalent. The letter ‘i’ in the previous example stands for the pure imaginary
constant, defined as /—1.

For Octave to recognize a value as the imaginary part of a complex constant, a space must
not appear between the number and the ‘i’. If it does, Octave will print an error message, like
this:

octave:13> 3 + 4 i
parse error:

3+41i

You may also use ‘j’, ‘I’, or ‘J” in place of the ‘i’ above. All four forms are equivalent.

double (x) [Built-in Function]
Convert x to double precision type.

single (val) [Function File]
Convert the numeric value val to single precision.

Note: this function currently returns its argument converted to double precision because
Octave does not yet have a single-precision numeric data type.

complex (val) [Built-in Function]
complex (re, im) [Built-in Function]
Convert x to a complex value.

4.1 Matrices

It is easy to define a matrix of values in Octave. The size of the matrix is determined automat-
ically, so it is not necessary to explicitly state the dimensions. The expression

a=[1, 2; 3, 4]
1 2
3 4

results in the matrix

S
I
—
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Elements of a matrix may be arbitrary expressions, provided that the dimensions all make
sense when combining the various pieces. For example, given the above matrix, the expression

[ a, a]

produces the matrix

ans =
1 2 1 2
3 4 3 4
but the expression
[a, 1]

produces the error
error: number of rows must match near line 13, column 6
(assuming that this expression was entered as the first thing on line 13, of course).

Inside the square brackets that delimit a matrix expression, Octave looks at the surrounding
context to determine whether spaces and newline characters should be converted into element
and row separators, or simply ignored, so an expression like

a=[12
34 ]
will work. However, some possible sources of confusion remain. For example, in the expression
[1-11]
the ‘=’ is treated as a binary operator and the result is the scalar 0, but in the expression
[1-1]
the ‘=’ is treated as a unary operator and the result is the vector [ 1, -1 ]. Similarly, the
expression
[ sin (pi) 1]

will be parsed as
[ sin, (pi) ]
and will result in an error since the sin function will be called with no arguments. To get

around this, you must omit the space between sin and the opening parenthesis, or enclose the
expression in a set of parentheses:

[ (sin (pi)) 1

Whitespace surrounding the single quote character (‘’’, used as a transpose operator and for
delimiting character strings) can also cause confusion. Given a = 1, the expression

[1a]
results in the single quote character being treated as a transpose operator and the result is the
vector [ 1, 171, but the expression

[1a’]
produces the error message

error: unterminated string constant
because not doing so would cause trouble when parsing the valid expression

[ a ’foo’ 1]

For clarity, it is probably best to always use commas and semicolons to separate matrix

elements and rows.

When you type a matrix or the name of a variable whose value is a matrix, Octave responds
by printing the matrix in with neatly aligned rows and columns. If the rows of the matrix are
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too large to fit on the screen, Octave splits the matrix and displays a header before each section
to indicate which columns are being displayed. You can use the following variables to control
the format of the output.

val = output_max_field_width () [Built-in Function]

old_val = output_max_field_width (new_val) [Built-in Function]
Query or set the internal variable that specifies the maximum width of a numeric output
field.

See also: format, output_precision.

val = output_precision () [Built-in Function]

old_val = output_precision (new_val) [Built-in Function]
Query or set the internal variable that specifies the minimum number of significant figures
to display for numeric output.

See also: format, output_max_field_width.

It is possible to achieve a wide range of output styles by using different values of output_
precision and output_max_field_width. Reasonable combinations can be set using the
format function. See Section 14.1 [Basic Input and Output], page 139.

val = split_long_rows () [Built-in Function]

old_val = split_long_rows (new_val) [Built-in Function]
Query or set the internal variable that controls whether rows of a matrix may be split when
displayed to a terminal window. If the rows are split, Octave will display the matrix in a
series of smaller pieces, each of which can fit within the limits of your terminal width and each
set of rows is labeled so that you can easily see which columns are currently being displayed.
For example:

octave:13> rand (2,10)
ans =

Columns 1 through 6:

0.75883 0.93290 0.40064 0.43818 0.94958 0.16467
0.75697 0.51942 0.40031 0.61784 0.92309 0.40201

Columns 7 through 10:

0.90174 0.11854 0.72313 0.73326
0.44672 0.94303 0.56564 0.82150

Octave automatically switches to scientific notation when values become very large or very
small. This guarantees that you will see several significant figures for every value in a matrix.
If you would prefer to see all values in a matrix printed in a fixed point format, you can set the
built-in variable fixed_point_format to a nonzero value. But doing so is not recommended,
because it can produce output that can easily be misinterpreted.

val = fixed_point_format () [Built-in Function]

old_val = fixed_point_format (new_val) [Built-in Function]
Query or set the internal variable that controls whether Octave will use a scaled format to
print matrix values such that the largest element may be written with a single leading digit
with the scaling factor is printed on the first line of output. For example,
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octave:1> logspace (1, 7, 5)’
ans =

1.0e+07 x*

.00000
.00003
.00100
.03162
1.00000

Notice that first value appears to be zero when it is actually 1. For this reason, you should
be careful when setting fixed_point_format to a nonzero value.

O O O O

4.1.1 Empty Matrices

A matrix may have one or both dimensions zero, and operations on empty matrices are handled
as described by Carl de Boor in An Empty Exercise, SIGNUM, Volume 25, pages 2-6, 1990 and
C. N. Nett and W. M. Haddad, in A System-Theoretic Appropriate Realization of the Empty
Matrix Concept, IEEE Transactions on Automatic Control, Volume 38, Number 5, May 1993.
Briefly, given a scalar s, an m X n matrix M,,,, and an m X n empty matrix [],,x, (with either
one or both dimensions equal to zero), the following are true:

$ [Jmxn = [Imxn = 5 = [Jmxn
mxn + [Jmxn = [mxn
[Joxm * Minxn = [Joxn
Mm><n . ano - meo

[Jmnxo - [loxn = Omxn

By default, dimensions of the empty matrix are printed along with the empty matrix symbol,
‘[1°. The built-in variable print_empty_dimensions controls this behavior.

val = print_empty_dimensions () [Built-in Function]

old_val = print_empty_dimensions (new_val) [Built-in Function]
Query or set the internal variable that controls whether the dimensions of empty matrices
are printed along with the empty matrix symbol, ‘[1’. For example, the expression

zeros (3, 0)
will print
ans = [](3x0)

Empty matrices may also be used in assignment statements as a convenient way to delete
rows or columns of matrices. See Section 8.6 [Assignment Expressions|, page 90.

When Octave parses a matrix expression, it examines the elements of the list to determine
whether they are all constants. If they are, it replaces the list with a single matrix constant.

4.2 Ranges

A range is a convenient way to write a row vector with evenly spaced elements. A range
expression is defined by the value of the first element in the range, an optional value for the
increment between elements, and a maximum value which the elements of the range will not
exceed. The base, increment, and limit are separated by colons (the ‘:’ character) and may
contain any arithmetic expressions and function calls. If the increment is omitted, it is assumed
to be 1. For example, the range
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1:5
defines the set of values ‘[ 1, 2, 3, 4, 51]’, and the range
1 :3:5

defines the set of values ‘[ 1, 4 1.

Although a range constant specifies a row vector, Octave does not convert range constants
to vectors unless it is necessary to do so. This allows you to write a constant like ‘1 : 10000’
without using 80,000 bytes of storage on a typical 32-bit workstation.

Note that the upper (or lower, if the increment is negative) bound on the range is not always
included in the set of values, and that ranges defined by floating point values can produce
surprising results because Octave uses floating point arithmetic to compute the values in the
range. If it is important to include the endpoints of a range and the number of elements is
known, you should use the linspace function instead (see Section 16.4 [Special Utility Matrices],
page 199).

When Octave parses a range expression, it examines the elements of the expression to deter-
mine whether they are all constants. If they are, it replaces the range expression with a single
range constant.

4.3 Integer Data Types

Octave supports integer matrices as an alternative to using double precision. It is possible to
use both signed and unsigned integers represented by 8, 16, 32, or 64 bits. It should be noted
that most computations require floating point data, meaning that integers will often change type
when involved in numeric computations. For this reason integers are most often used to store
data, and not for calculations.
In general most integer matrices are created by casting existing matrices to integers. The
following example shows how to cast a matrix into 32 bit integers.
float = rand (2, 2)
= float = 0.37569 0.92982
0.11962 0.50876
integer = int32 (float)
= integer = 0 1
0 1

As can be seen, floating point values are rounded to the nearest integer when converted.

isinteger (x) [Built-in Function]
Return true if x is an integer object (int8, uint8, int16, etc.). Note that isinteger (14) is
false because numeric constants in are double precision floating point values.

See also: isreal, isnumeric, class, isa.

int8 (x) [Built-in Function]
Convert x to 8-bit integer type.

uint8 (x) [Built-in Function]
Convert x to unsigned 8-bit integer type.

int16 (x) [Built-in Function]
Convert x to 16-bit integer type.

uint16 (x) [Built-in Function]
Convert x to unsigned 16-bit integer type.
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int32 (x) [Built-in Function]
Convert x to 32-bit integer type.

uint32 (x) [Built-in Function]
Convert x to unsigned 32-bit integer type.

int64 (x) [Built-in Function]
Convert x to 64-bit integer type.

uint64 (x) [Built-in Function]
Convert x to unsigned 64-bit integer type.

intmax (type) [Built-in Function]
Return the largest integer that can be represented in an integer type. The variable type can
be

int8 signed 8-bit integer.
int16 signed 16-bit integer.
int32 signed 32-bit integer.
int64 signed 64-bit integer.
uint8 unsigned 8-bit integer.

uinti16 unsigned 16-bit integer.
uint32 unsigned 32-bit integer.
uint64 unsigned 64-bit integer.
The default for type is uint32.

See also: intmin, bitmax.

intmin (type) [Built-in Function]
Return the smallest integer that can be represented in an integer type. The variable type
can be

int8 signed 8-bit integer.
int16 signed 16-bit integer.
int32 signed 32-bit integer.
int64 signed 64-bit integer.
uint8 unsigned 8-bit integer.

uint16 unsigned 16-bit integer.
uint32 unsigned 32-bit integer.
uint64 unsigned 64-bit integer.
The default for type is uint32.

See also: intmax, bitmax.
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4.3.1 Integer Arithmetic

While many numerical computations can’t be carried out in integers, Octave does support basic
operations like addition and multiplication on integers. The operators +, -, .*, and ./ works
on integers of the same type. So, it is possible to add two 32 bit integers, but not to add a 32
bit integer and a 16 bit integer.

The arithmetic operations on integers are performed by casting the integer values to double
precision values, performing the operation, and then re-casting the values back to the original
integer type. As the double precision type of Octave is only capable of representing integers with
up to 53 bits of precision, it is not possible to perform arithmetic of the 64 bit integer types.

When doing integer arithmetic one should consider the possibility of underflow and overflow.
This happens when the result of the computation can’t be represented using the chosen integer
type. As an example it is not possible to represent the result of 10 — 20 when using unsigned
integers. Octave makes sure that the result of integer computations is the integer that is closest
to the true result. So, the result of 10 — 20 when using unsigned integers is zero.

When doing integer division Octave will round the result to the nearest integer. This is
different from most programming languages, where the result is often floored to the nearest
integer. So, the result of int32(5)./int32(8) is 1.

4.4 Bit Manipulations

Octave provides a number of functions for the manipulation of numeric values on a bit by bit
basis. The basic functions to set and obtain the values of individual bits are bitset and bitget.

x = bitset (a, n) [Function File]
x = bitset (a, n, v) [Function File]
Set or reset bit(s) n of unsigned integers in a. v = 0 resets and v = 1 sets the bits. The
lowest significant bit is: n = 1
dec2bin (bitset (10, 1))
= 1011
See also: bitand, bitor, bitxor, bitget, bitcmp, bitshift, bitmax.
X = bitget (a,n) [Function File]

Return the status of bit(s) n of unsigned integers in a the lowest significant bit is n = 1.

bitget (100, 8:-1:1)
=0 1 1 0 0 1 0 O

See also: bitand, bitor, bitxor, bitset, bitcmp, bitshift, bitmax.

The arguments to all of Octave’s bitwise operations can be scalar or arrays, except for bitcmp,
whose k argument must a scalar. In the case where more than one argument is an array, then
all arguments must have the same shape, and the bitwise operator is applied to each of the
elements of the argument individually. If at least one argument is a scalar and one an array,
then the scalar argument is duplicated. Therefore

bitget (100, 8:-1:1)
is the same as
bitget (100 * ones (1, 8), 8:-1:1)

It should be noted that all values passed to the bit manipulation functions of Octave are

treated as integers. Therefore, even though the example for bitset above passes the floating

point value 10, it is treated as the bits [1, 0, 1, 0] rather than the bits of the native floating
point format representation of 10.

As the maximum number that can be represented by a number is important for bit manipu-
lation, particularly when forming masks, Octave supplies the function bitmax.
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bitmax () [Built-in Function]
Return the largest integer that can be represented as a floating point value. On IEEE-754
compatiable systems, bitmax is 2753 - 1.

This is the double precision version of the functions intmax, previously discussed.

Octave also include the basic bitwise ’and’, or’ and ’exclusive or’ operators.

bitand (x, y) [Built-in Function]
Return the bitwise AND of nonnegative integers. x, y must be in range [0..bitmax]

See also: bitor, bitxor, bitset, bitget, bitcmp, bitshift, bitmax.

bitor (x, y) [Built-in Function]
Return the bitwise OR of nonnegative integers. x, y must be in range [0..bitmax]

See also: bitor, bitxor, bitset, bitget, bitcmp, bitshift, bitmax.

bitxor (x, y) [Built-in Function]
Return the bitwise XOR of nonnegative integers. x, y must be in range [0..bitmax]

See also: bitand, bitor, bitset, bitget, bitcmp, bitshift, bitmax.

The bitwise 'not’ operator is unary operator that performs a logial negation of each of the
bits of the value. For this to make sense, the mask against which the value is negated must be
defined. Octave’s bitwise 'not’ operator is bitcmp.

bitcmp (a, k) [Function File]
Return the k-bit complement of integers in a. If k is omitted k = log2 (bitmax) + 1 is
assumed.

bitcmp(7,4)

= 8

dec2bin(11)

= 1011
dec2bin(bitcmp (11, 6))
= 110100

See also: bitand, bitor, bitxor, bitset, bitget, bitcmp, bitshift, bitmax.
Octave also includes the ability to left and right values bitwise.

bitshift (a, k) [Built-in Function]

bitshift (a, k, n) [Built-in Function]
Return a k bit shift of n- digit unsigned integers in a. A positive k leads to a left shift. A
negative value to a right shift. If n is omitted it defaults to log2(bitmax)+1. n must be in
range [1,log2(bitmax)+1] usually [1,33]

bitshift (eye (3), 1))

OO[\)U
O N O
N O O

bitshift (10, [-2, -1, O, 1, 2])
= 2 5 10 20 40

See also: bitand, bitor, bitxor, bitset, bitget, bitcmp, bitmax.
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Bits that are shifted out of either end of the value are lost. Octave also uses arithmetic shifts,
where the sign bit of the value is keep during a right shift. For example

bitshift (-10, -1)

= -5
bitshift (int8 (-1), -1)
= -1

Note that bitshift (int8 (-1), -1) is -1 since the bit representation of -1 in the int8
data typeis [1, 1, 1, 1, 1, 1, 1, 1].

4.5 Logical Values

Octave has built-in support for logical values, i.e. variables that are either true or false. When
comparing two variables, the result will be a logical value whose value depends on whether or
not the comparison is true.

The basic logical operations are &, |, and !, that corresponds to “Logical And”, “Logical
Or”, and “Logical Negation”. These operations all follow the rules of logic.
It is also possible to use logical values as part of standard numerical calculations. In this case

true is converted to 1, and false to 0, both represented using double precision floating point
numbers. So, the result of true*22 - false/6 is 22.

Logical values can also be used to index matrices and cell arrays. When indexing with a
logical array the result will be a vector containing the values corresponding to true parts of the
logical array. The following example illustrates this.

data = [ 1, 2; 3, 4 1;
idx = (data <= 2);
data(idx)
= ans = [ 1; 4]
Instead of creating the idx array it is possible to replace data(idx) with data( data <=2 ) in
the above code.

Besides when doing comparisons, logical values can be constructed by casting numeric objects
to logical values, or by using the true or false functions.

logical (arg) [Function File]
Convert arg to a logical value. For example,

logical ([-1, 0, 11)
is equivalent to

[-1, 0, 1] =0

true (x) [Built-in Function]
true (n, m) [Built-in Function]
true (n, m k, ...) [Built-in Function]

Return a matrix or N-dimensional array whose elements are all logical 1. The arguments are
handled the same as the arguments for eye.

false (x) [Built-in Function]
false (n, m) [Built-in Function]
false (n, m k, ...) [Built-in Function]

Return a matrix or N-dimensional array whose elements are all logical 0. The arguments are
handled the same as the arguments for eye.
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4.6 Predicates for Numeric Objects

Since the type of a variable may change during the execution of a program, it can be necessary
to type checking at run-time. Doing this also allows you to change the behaviour of a function
depending on the type of the input. As an example, this naive implementation of abs returns
the absolute value of the input if it is a real number, and the length of the input if it is a complex
number.
function a = abs (x)
if (isreal (x))
a = sign (x) .* x;
elseif (iscomplex (x))
a = sqrt (real(x)."2 + imag(x)."2);
endif
endfunction

The following functions are available for determining the type of a variable.

isnumeric (x) [Built-in Function]
Return nonzero if x is a numeric object.

isreal (x) [Built-in Function]
Return true if x is a real-valued numeric object.

iscomplex (x) [Built-in Function]
Return true if x is a complex-valued numeric object.

ismatrix (a) [Built-in Function]
Return 1 if a is a matrix. Otherwise, return 0.

isvector (a) [Function File]
Return 1 if a is a vector. Otherwise, return 0.

See also: size, rows, columns, length, isscalar, ismatrix.

isscalar (a) [Function File]
Return 1 if a is a scalar. Otherwise, return 0.

See also: size, rows, columns, length, isscalar, ismatrix.

issquare (x) [Function File]
If x is a square matrix, then return the dimension of x. Otherwise, return 0.

See also: size, rows, columns, length, ismatrix, isscalar, isvector.

issymmetric (x, tol) [Function File]
If x is symmetric within the tolerance specified by tol, then return the dimension of x.
Otherwise, return 0. If tol is omitted, use a tolerance equal to the machine precision.

See also: size, rows, columns, length, ismatrix, isscalar, issquare, isvector.

isdefinite (x, tol) [Function File]
Return 1 if x is symmetric positive definite within the tolerance specified by tol or 0 if x is
symmetric positive semidefinite. Otherwise, return -1. If tol is omitted, use a tolerance equal
to 100 times the machine precision.

See also: issymmetric.
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islogical (x) [Built-in Functio]
Return true if x is a logical object.

isprime (n) [Function File]
Return true if n is a prime number, false otherwise.
Something like the following is much faster if you need to test a lot of small numbers:
t = ismember (n, primes (max (n (:))));

If max(n) is very large, then you should be using special purpose factorization code.

See also: primes, factor, ged, lem.
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5 Strings

A string constant consists of a sequence of characters enclosed in either double-quote or single-
quote marks. For example, both of the following expressions

"parrot"
’parrot’

represent the string whose contents are ‘parrot’. Strings in Octave can be of any length.

Since the single-quote mark is also used for the transpose operator (see Section 8.3 [Arithmetic
Ops|, page 87) but double-quote marks have no other purpose in Octave, it is best to use double-
quote marks to denote strings.

In double-quoted strings, the backslash character is used to introduce escape sequences that
represent other characters. For example, ‘\n’ embeds a newline character in a double-quoted
string and ‘\"’ embeds a double quote character.

In single-quoted strings, backslash is not a special character.
Here is an example showing the difference

toascii ("\n")
= 10
toascii (’\n’)
= [ 92 110 ]
You may also insert a single quote character in a single-quoted string by using two single
quote characters in succession. For example,

’I can’’t escape’
= I can’t escape

Here is a table of all the escape sequences used in Octave. They are the same as those used
in the C programming language.

\\ Represents a literal backslash, ‘\’.

\" Represents a literal double-quote character, ‘"’.

\’ Represents a literal single-quote character, <*’

\O Represents the “nul” character, control-@, ASCII code 0.
\a Represents the “alert” character, control-g, ASCII code 7.
\b Represents a backspace, control-h, ASCII code 8.

\f Represents a formfeed, control-1, ASCII code 12.

\n Represents a newline, control-j, ASCII code 10.

\r Represents a carriage return, control-m, ASCII code 13.
\t Represents a horizontal tab, control-i, ASCII code 9.

\v Represents a vertical tab, control-k, ASCII code 11.

Strings may be concatenated using the notation for defining matrices. For example, the
expression

[ "fOO" S Ilbarll s "baz" ]

produces the string whose contents are ‘foobarbaz’. See Chapter 4 [Numeric Data Types],
page 31, for more information about creating matrices.
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5.1 Creating Strings

The easiest way to create a string is, as illustrated in the introduction, to enclose a text in
double-quotes or single-quotes. It is however possible to create a string without actually writing
a text. The function blanks creates a string of a given length consisting only of blank characters

(ASCII code 32).

blanks (n) [Function File]
Return a string of n blanks.

See also: repmat.

The string representation used by Octave is an array of characters, so the result of blanks (10)
is actually a row vector of length 10 containing the value 32 in all places. This lends itself to
the obvious generalisation to character matrices. Using a matrix of characters, it is possible to
represent a collection of same-length strings in one variable. The convention used in Octave is
that each row in a character matrix is a separate string, but letting each column represent a
string is equally possible.

The easiest way to create a character matrix is to put several strings together into a matrix.
collection = [ "String #1"; "String #2" ];
This creates a 2-by-9 character matrix.

One relevant question is, what happens when character matrix is created from strings of
different length. The answer is that Octave puts blank characters at the end of strings shorter
than the longest string. While it is possible to use a different character than the blank character
using the string fill_char function, it shows a problem with character matrices. It simply
isn’t possible to represent strings of different lengths. The solution is to use a cell array of
strings, which is described in Section 6.2.3 [Cell Arrays of Strings|, page 68.

char (x) [Built-in Function]
char (cell_array) [Built-in Function]
char (s1,s2,...) [Built-in Function]

Create a string array from a numeric matrix, cell array, or list of

If the argument is a numeric matrix, each element of the matrix is converted to the corre-
sponding ASCII character. For example,

char ([97, 98, 99])
= "abc"

If the argument is a cell array of strings, the result is a string array with each element
corresponding to one element of the cell array.

For multiple string arguments, the result is a string array with each element corresponding
to the arguments.

The returned values are padded with blanks as needed to make each row of the string array
have the same length.

strcat (s1, s2,...) [Function File]
Return a string containing all the arguments concatenated. For example,
s = [ "ab"; "cde" 1;
strcat (s, s, s)
= "ab ab ab "
"cdecdecde"
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strvcat (s_1, ..., s_n) [Function File]
Return a matrix containing the strings (and cell-strings) s_1, . .., s_n as its rows. Each string
is padded with blanks in order to form a valid matrix. Unlike str2mat, empty strings are
ignored.

See also: strcat, str2mat.

strtrunc (s, n) [Function File]
Truncate the character string s to length n. If s is a char matrix, then the number of columns
are adjusted.

If s is a cell array of strings, then the operation is performed on its members and the new
cell array is returned.

val = string_fill_char () [Built-in Function]
old_val = string_fill_char (new_val) [Built-in Function]
Query or set the internal variable used to pad all rows of a character matrix to the same
length. It must be a single character. The default value is " " (a single space). For example,
string_fill_char ("X");
[ "these"; "are"; "strings" 1]
= "theseXX"
"areXXXX"
"strings"
str2mat (s_1, ..., s_n) [Function File]
Return a matrix containing the strings s_1, ..., s_n as its rows. Each string is padded with

blanks in order to form a valid matrix.

This function is modelled after MATLAB. In Octave, you can create a matrix of strings by
[s_1; ...; s_n] even if the strings are not all the same length.

ischar (a) [Built-in Function]
Return 1 if a is a string. Otherwise, return 0.

s = mat2str (x, n) [Function File]

s = mat2str (..., 'class’) [Function File]
Format real/complex numerical matrices as strings. This function returns values that are
suitable for the use of the eval function.

The precision of the values is given by n. If n is a scalar then both real and imaginary parts
of the matrix are printed to the same precision. Otherwise n (1) defines the precision of the
real part and n (2) defines the precision of the imaginary part. The default for n is 17.

If the argument ’class’ is given, then the class of x is included in the string in such a way
that the eval will result in the construction of a matrix of the same class.

mat2str( [ -1/3 + i/7; 1/3 - i/7 1, [4 2] )
= ’[-0.3333+0.14i;0.3333-0.141i]"’

mat2str( [ -1/3 +i/7; 1/3 -i/7 1, [4 2] )
= ’[-0.3333+01,0+0.14i;0.3333+0i,-0-0.14i]°

mat2str( int16([1 -1]), ’class’)
= ’int16([1,-1]1)’

See also: sprintf, int2str.
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num2str (n) [Function File]
num2str (x, precision) [Function File]
num2str (x, format) [Function File]

Convert a number to a string. This function is not very flexible. For better control over the
results, use sprintf (see Section 14.2.4 [Formatted Output], page 151).

See also: sprintf, int2str.

int2str (n) [Function File]
Convert an integer to a string. This function is not very flexible. For better control over the
results, use sprintf (see Section 14.2.4 [Formatted Output], page 151).

See also: sprintf, num2str.

5.2 Comparing Strings

Since a string is a character array comparison between strings work element by element as the
following example shows.

GNU = "GNU’s Not UNIX";
spaces = (GNU == " ")
= spaces =
0o o0 o0 © 0 1 0O o0 O 1 0O o o0 ©O

To determine if two functions are identical it is therefore necessary to use the strcmp or strncpm
functions. Similar functions exist for doing case-insensitive comparisons.

strcmp (s1, s2) [Built-in Function]
Return 1 if the character strings s1 and s2 are the same, and 0 otherwise.

If either s1 or s2 is a cell array of strings, then an array of the same size is returned, containing
the values described above for every member of the cell array. The other argument may also
be a cell array of strings (of the same size or with only one element), char matrix or character
string.

Caution: For compatibility with MATLAB, Octave’s strcmp function returns 1 if the character

strings are equal, and 0 otherwise. This is just the opposite of the corresponding C library
function.

See also: strcmpi, strncmp, strncmpi.

strcmpi (si, s2) [Function File]
Ignoring case, return 1 if the character strings sI and s2 are the same, and 0 otherwise.

If either s1 or s2 is a cell array of strings, then an array of the same size is returned, containing
the values described above for every member of the cell array. The other argument may also
be a cell array of strings (of the same size or with only one element), char matrix or character
string.

Caution: For compatibility with MATLAB, Octave’s strempi function returns 1 if the character
strings are equal, and 0 otherwise. This is just the opposite of the corresponding C library
function.

See also: strcmp, strncmp, strncmpi.

strncmp (s1, s2, n) [Built-in Function]
Return 1 if the first n characters of strings s1 and s2 are the same, and 0 otherwise.
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strncmp ("abce", "abcd", 3)
= 1

If either s1 or s2 is a cell array of strings, then an array of the same size is returned, containing
the values described above for every member of the cell array. The other argument may also
be a cell array of strings (of the same size or with only one element), char matrix or character
string.
strncmp ("abce", {"abcd", "bca", "abc"}, 3)
= [1, 0, 1]

Caution: For compatibility with MATLAB, Octave’s strncmp function returns 1 if the char-
acter strings are equal, and 0 otherwise. This is just the opposite of the corresponding C
library function.

See also: strncmpi, stremp, strempi.

strncmpi (si, s2, n) [Function File]
Ignoring case, return 1 if the first n characters of character strings s1 and s2 are the same,
and 0 otherwise.

If either s1 or s2 is a cell array of strings, then an array of the same size is returned, containing
the values described above for every member of the cell array. The other argument may also
be a cell array of strings (of the same size or with only one element), char matrix or character
string.

Caution: For compatibility with MATLAB, Octave’s strncmpi function returns 1 if the char-
acter strings are equal, and 0 otherwise. This is just the opposite of the corresponding C
library function.

See also: strcmp, strempi, strncmp.

5.3 Manipulating Strings

Octave supports a wide range of functions for manipulating strings. Since a string is just a
matrix, simple manipulations can be accomplished using standard operators. The following
example shows how to replace all blank characters with underscores.

quote = "First things first, but not necessarily in that order";
quote( quote == " " ) = "_"
- quote = First_things_first,_but_not_necessarily_in_that_order

For more complex manipulations, such as searching, replacing, and general regular expres-
sions, the following functions come with Octave.

deblank (s) [Function File]
Remove trailing blanks and nulls from s. If s is a matrix, deblank trims each row to the
length of longest string. If s is a cell array, operate recursively on each element of the cell
array.

findstr (s, t, overlap) [Function File]
Return the vector of all positions in the longer of the two strings s and t where an occurrence
of the shorter of the two starts. If the optional argument overlap is nonzero, the returned
vector can include overlapping positions (this is the default). For example,

findstr ("ababab", "a")

= [1, 3, 5]

findstr ("abababa", "aba", 0)
= [1, 5]
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index (s, t) [Function File]

index (s, t, direction) [Function File]
Return the position of the first occurrence of the string ¢ in the string s, or 0 if no occurrence
is found. For example,

index ("Teststring", "t")
= 4

If direction is ‘"first"’, return the first element found. If direction is ‘"last"’, return the
last element found. The rindex function is equivalent to index with direction set to ‘"last"’.

Caution: This function does not work for arrays of character strings.

See also: find, rindex.

rindex (s, t) [Function File]
Return the position of the last occurrence of the character string t in the character string s,
or 0 if no occurrence is found. For example,

rindex ("Teststring", "t")
= 6

Caution: This function does not work for arrays of character strings.

See also: find, index.

idx = strfind (str, pattern) [Function File]

idx = strfind (cellstr, pattern) [Function File]
Search for pattern in the string str and return the starting index of every such occurrence in
the vector idx. If there is no such occurrence, or if pattern is longer than str, then idx is the
empty array [].

If the cell array of strings cellstr is specified instead of the string str, then idx is a cell array
of vectors, as specified above.

See also: findstr, strmatch, strcmp, strncmp, strempi, strncmpi.

strmatch (s, a, "exact") [Function File]
Return indices of entries of a that match the string s. The second argument a may be a string
matrix or a cell array of strings. If the third argument "exact" is not given, then s only
needs to match a up to the length of s. Nul characters match blanks. Results are returned
as a column vector.

[tok, rem] = strtok (str, delim) [Function File]
Find all characters up to but not including the first character which is in the string delim.
If rem is requested, it contains the remainder of the string, starting at the first deliminator.
Leading delimiters are ignored. If delim is not specified, space is assumed.

split (s, t, n) [Function File]
Divides the string s into pieces separated by t, returning the result in a string array (padded
with blanks to form a valid matrix). If the optional input n is supplied, split s into at most
n different pieces.

For example,
split ("Test string", "t")
= "Tes "
n s n
llringll
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split ("Test string", "t", 2)
= "Tes !
" string"

strrep (s, x, y) [Function File]

Replaces all occurrences of the substring x of the string s with the string y. For example,
strrep ("This is a test string", "is", "&%$")
= "Th&%$ &%$ a test string"

substr (s, offset, len) [Function File]

Return the substring of s which starts at character number offset and is len characters long.

If offset is negative, extraction starts that far from the end of the string. If len is omitted,
the substring extends to the end of S.

For example,

substr ("This is a test string", 6, 9)

= "is a test"
This function is patterned after AWK. You can get the same result by s (offset : (offset
+ len - 1)).

[s, e, te, m, t, nm] = regexp (str, pat) [Loadable Function)]

[...

1 = regexp (str, pat, opts, ...) [Loadable Function)]
Regular expression string matching. Matches pat in str and returns the position and matching
substrings or empty values if there are none.

The matched pattern pat can include any of the standard regex operators, including:
Match any character

* + 7 {}  Repetition operators, representing

* Match zero or more times

+ Match one or more times

? Match zero or one times

{3 Match range operator, which is of the form {n} to match exactly n

times, {m,} to match m or more times, {m,n} to match between m
and n times.

...1[...]

List operators, where for example [ab] c matches ac and bc
O Grouping operator

| Alternation operator. Match one of a choice of regular expressions. The alterna-
tives must be delimited by the grouping operator () above

-~

" $ Anchoring operator. ~ matches the start of the string str and $ the end

In addition the following escaped characters have special meaning. It should be noted that it
is recommended to quote pat in single quotes rather than double quotes, to avoid the escape
sequences being interpreted by octave before being passed to regexp.

\b Match a word boundary
\B Match within a word

\w Matches any word character



50

GNU Octave
\W Matches any non word character
\< Matches the beginning of a word
\> Matches the end of a word
\s Matches any whitespace character
\S Matches any non whitespace character
\d Matches any digit
\D Matches any non-digit

The outputs of regexp by default are in the order as given below

S The start indices of each of the matching substrings

e The end indices of each matching substring

te The extents of each of the matched token surrounded by (...) in pat.

m A cell array of the text of each match.

t A cell array of the text of each token matched.

nm A structure containing the text of each matched named token, with the name

being used as the fieldname. A named token is denoted as (?<name>. . .)

Particular output arguments or the order of the output arguments can be selected by ad-
ditional opts arguments. These are strings and the correspondence between the output
arguments and the optional argument are

‘start’

‘end’

‘tokenExtents’ te
‘'match’ m
‘tokens’ t
‘names’ nm

A further optional argument is ’once’, that limits the number of returned matches to the first
match. Additional arguments are

matchcase Make the matching case sensitive.
ignorecase Make the matching case insensitive.

stringanchors
Match the anchor characters at the beginning and end of the string.

lineanchors
Match the anchor characters at the beginning and end of the line.

dotall The character . matches the newline character.

dotexceptnewline
The character . matches all but the newline character.

freespacing
The pattern can include arbitrary whitespace and comments starting with #.

literalspacing
The pattern is taken literally.
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[s, e, te, m, t, nm] = regexpi (str, pat) [Loadable Function]
[...] = regexpi (str, pat, opts, ...) [Loadable Function)]
Case insensitive regular expression string matching. Matches pat in str and returns the

position and matching substrings or empty values if there are none. See regexp for more
details

string = regexprep (string, pat, repstr, options) [Loadable Function]
Replace matches of pat in string with repstr.

The replacement can contain $i, which substitutes for the ith set of parentheses in the match
string. E.g.,

regexprep("Bill Dunn",’ (\w+) (\w+)’,’$2, $1°)

returns "Dunn, Bill"

options may be zero or more of

‘once’ Replace only the first occurrence of pat in the result.

‘warnings’
This option is present for compatibility but is ignored.

‘ignorecase or matchcase’
Ignore case for the pattern matching (see regexpi). Alternatively, use (?7i) or
(7-1) in the pattern.

‘lineanchors and stringanchors’
Whether characters ~ and $ match the beginning and ending of lines. Alterna-
tively, use (?m) or (?-m) in the pattern.

‘dotexceptnewline and dotall’

Whether . matches newlines in the string. Alternatively, use (7s) or (7-s) in the
pattern.

‘freespacing or literalspacing’

Whether whitespace and # comments can be used to make the regular expression
more readable. Alternatively, use (7x) or (7-x) in the pattern.

See also: regexp,regexpi.

5.4 String Conversions

Octave supports various kinds of conversions between strings and numbers. As an example, it
is possible to convert a string containing a hexadecimal number to a floating point number.
hex2dec ("FF")
= ans = 255

bin2dec (s) [Function File]
Return the decimal number corresponding to the binary number stored in the string s. For
example,
bin2dec ("1110")
= 14

If s is a string matrix, returns a column vector of converted numbers, one per row of s. Invalid
rows evaluate to NaN.

See also: dec2hex, base2dec, dec2base, hex2dec, dec2bin.
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dec2bin (n, len) [Function File]
Return a binary number corresponding the nonnegative decimal number n, as a string of ones
and zeros. For example,

dec2bin (14)
= "1110"

If n is a vector, returns a string matrix, one row per value, padded with leading zeros to the
width of the largest value.

The optional second argument, len, specifies the minimum number of digits in the result.

See also: bin2dec, dec2base, base2dec, hex2dec, dec2hex.

dec2hex (n, len) [Function File]
Return the hexadecimal string corresponding to the nonnegative integer n. For example,

dec2hex (2748)
= "ABC"

If n is a vector, returns a string matrix, one row per value, padded with leading zeros to the
width of the largest value.

The optional second argument, len, specifies the minimum number of digits in the result.

See also: hex2dec, dec2base, base2dec, bin2dec, dec2bin.

hex2dec (s) [Function File]
Return the integer corresponding to the hexadecimal number stored in the string s. For
example,

hex2dec ("12B")
= 299
hex2dec ("12b")
= 299

If s is a string matrix, returns a column vector of converted numbers, one per row of s. Invalid
rows evaluate to NaN.

See also: dec2hex, base2dec, dec2base, bin2dec, dec2bin.

dec2base (n, b, len) [Function File]
Return a string of symbols in base b corresponding to the nonnegative integer n.

dec2base (123, 3)
= "11120"

If n is a vector, return a string matrix with one row per value, padded with leading zeros to
the width of the largest value.

If b is a string then the characters of b are used as the symbols for the digits of n. Space (’
’) may not be used as a symbol.

dec2base (123, "aei")
= "eeeia"

The optional third argument, len, specifies the minimum number of digits in the result.

See also: base2dec, dec2bin, bin2dec, hex2dec, dec2hex.

base2dec (s, b) [Function File]
Convert s from a string of digits of base b into an integer.
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base2dec ("11120", 3)
= 123

If s is a matrix, returns a column vector with one value per row of s. If a row contains invalid
symbols then the corresponding value will be NaN. Rows are right-justified before converting
so that trailing spaces are ignored.

If b is a string, the characters of b are used as the symbols for the digits of s. Space (*’) may
not be used as a symbol.

base2dec ("yyyzx", "xyz")
= 123

See also: dec2base, dec2bin, bin2dec, hex2dec, dec2hex.

[num, status, strarray] = str2double (str, cdelim, rdelim, [Function File]
ddelim)
Convert strings into numeric values.

str2double can replace str2num, but avoids the use of eval on unknown data.

str can be the form ‘[+-]1d[.]dd[[eE] [+-1ddd]’ in which ‘d’ can be any of digit from 0 to
9, and ‘[]’ indicate optional elements.

num is the corresponding numeric value. If the conversion fails, status is -1 and num is NaN.
status is 0 if the conversion was successful and -1 otherwise.

strarray is a cell array of strings.

Elements which are not defined or not valid return NaN and the status becomes -1.

If str is a character array or a cell array of strings, then num and status return matrices of
appropriate size.

str can also contain multiple elements separated by row and column delimiters (cdelim and
rdelim).

The parameters cdelim, rdelim, and ddelim are optional column, row, and decimal delimiters.
The default row-delimiters are newline, carriage return and semicolon (ASCII 10, 13 and 59).

The default column-delimiters are tab, space and comma (ASCII 9, 32, and 44). The default
decimal delimiter is ‘.” (ASCII 46).

cdelim, rdelim, and ddelim must contain only nul, newline, carriage return, semicolon, colon,
slash, tab, space, comma, or ‘() [1{}’ (ASCII 0, 9, 10, 11, 12, 13, 14, 32, 33, 34, 40, 41, 44,
47, 58, 59, 91, 93, 123, 124, 125).

Examples:

str2double ("-.1le-5")
= -1.0000e-006

str2double (".314el, 44.44e-1, .7; -le+1")
=

3.1400  4.4440  0.7000
-10.0000 NaN NaN

line = "200,300,400,NaN,-inf,cd,yes,no,999,maybe,NaN";
[x, status] = str2double (line)
X:
200 300 400 NaN -Inf NaN NaN NaN 999 NaN NaN
status =
0 0 0 0 0 -1 -1 -1 0 -1 0
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strjust (s, ["left" | "right" | "center"]) [Function File]
Shift the non-blank text of s to the left, right or center of the string. If s is a string array,
justify each string in the array. Null characters are replaced by blanks. If no justification is
specified, then all rows are right-justified.

str2num (s) [Function File]
Convert the string s to a number.

toascii (s) [Mapping Function]
Return ASCII representation of s in a matrix. For example,

toascii ("ASCII")
= [ 65, 83, 67, 73, 73 1]

tolower (s) [Mapping Function]
Return a copy of the string s, with each upper-case character replaced by the corresponding
lower-case one; nonalphabetic characters are left unchanged. For example,

tolower ("MiXeD cAsE 123")
= "mixed case 123"

toupper (s) [Built-in Function]
Return a copy of the string s, with each lower-case character replaced by the corresponding
upper-case one; nonalphabetic characters are left unchanged. For example,

toupper ("MiXeD cAsE 123")
= "MIXED CASE 123"

do_string_escapes (string) [Built-in Function]
Convert special characters in string to their escaped forms.

undo_string_escapes (s) [Built-in Function]
Converts special characters in strings back to their escaped forms. For example, the expression
bell = "\a";

assigns the value of the alert character (control-g, ASCII code 7) to the string variable
bell. If this string is printed, the system will ring the terminal bell (if it is possible). This is
normally the desired outcome. However, sometimes it is useful to be able to print the original
representation of the string, with the special characters replaced by their escape sequences.
For example,

octave:13> undo_string_escapes (bell)
ans = \a

replaces the unprintable alert character with its printable representation.

5.5 Character Class Functions

Octave also provides the following character class test functions patterned after the functions in
the standard C library. They all operate on string arrays and return matrices of zeros and ones.
Elements that are nonzero indicate that the condition was true for the corresponding character
in the string array. For example,
isalpha ("!Q@WERT"Y&")
= [0,1,0,1,1, 1,1, 0, 1, 0]
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isalnum (s) [Mapping Function]
Return 1 for characters that are letters or digits (isalpha (s) or isdigit (s) is true).

isalpha (s) [Mapping Function]
isletter (s) [Mapping Function]
Return true for characters that are letters (isupper (s) or islower (s) is true).

isascii (s) [Mapping Function]
Return 1 for characters that are ASCII (in the range 0 to 127 decimal).

iscntrl (s) [Mapping Function]
Return 1 for control characters.

isdigit (s) [Mapping Function]
Return 1 for characters that are decimal digits.

isgraph (s) [Mapping Function]
Return 1 for printable characters (but not the space character).

isletter (s) [Function File]
Returns true if s is a letter false otherwise.

See also: isalpha.

islower (s) [Mapping Function]
Return 1 for characters that are lower case letters.

isprint (s) [Mapping Function]
Return 1 for printable characters (including the space character).

ispunct (s) [Mapping Function]
Return 1 for punctuation characters.

isspace (s) [Mapping Function]
Return 1 for whitespace characters (space, formfeed, newline, carriage return, tab, and ver-
tical tab).

isupper (s) [Mapping Function]
Return 1 for upper case letters.

isxdigit (s) [Mapping Function]
Return 1 for characters that are hexadecimal digits.
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6 Data Containers

Octave includes support for two different mechanisms to contain arbitrary data types in the
same variable. Structures, which are C-like, and are indexed with named fields, and cell arrays,
where each element of the array can have a different data type and or shape.

6.1 Data Structures

Octave includes support for organizing data in structures. The current implementation uses an
associative array with indices limited to strings, but the syntax is more like C-style structures.
Here are some examples of using data structures in Octave.

Elements of structures can be of any value type. For example, the three expressions

x.a =1
x.b = [1, 2; 3, 4]
x.c = "string"

create a structure with three elements. To print the value of the structure, you can type its
name, just as for any other variable:

octave:2> x

(¢}
]

string

}
Note that Octave may print the elements in any order.
Structures may be copied.

octave:1> y = x
y:
{

a=1

b=

O
I

string

¥

Since structures are themselves values, structure elements may reference other structures.
The following statements change the value of the element b of the structure x to be a data
structure containing the single element d, which has a value of 3.



28 GNU Octave

octave:1> x.b.d = 3

x.b.d = 3
octave:2> x.b
ans =
{

d =3
}
octave:3> x
X =
{

a=1

b =

{

d =3

}

c = string
}

Note that when Octave prints the value of a structure that contains other structures, only a
few levels are displayed. For example,

octave:1> a.b.c.d.e = 1;
octave:2> a
a:

{

d: 1x1 struct

}
+

This prevents long and confusing output from large deeply nested structures.

val = struct_levels_to_print () [Built-in Function]
old_val = struct_levels_to_print (new_val) [Built-in Function]
Query or set the internal variable that specifies the number of structure levels to display.

Functions can return structures. For example, the following function separates the real and
complex parts of a matrix and stores them in two elements of the same structure variable.

octave:1> function y = £ (x)
> y.re = real (x);

> y.im = imag (x);

> endfunction

When called with a complex-valued argument, £ returns the data structure containing the
real and imaginary parts of the original function argument.
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octave:2> f (rand (2) + rand (2) * I)
ans =

{

im

0.26475 0.14828
0.18436 0.83669

0.040239 0.242160
0.238081 0.402523

Function return lists can include structure elements, and they may be indexed like any other
variable. For example,

octave:1> [ x.u, x.s8(2:3,2:3), x.v ] = svd ([1, 2; 3, 4])
x.u =

-0.40455 -0.91451
-0.91451  0.40455

0.00000 0.00000 0.00000
0.00000 5.46499 0.00000
0.00000 0.00000 0.36597

-0.57605 0.81742
-0.81742 -0.57605

It is also possible to cycle through all the elements of a structure in a loop, using a special
form of the for statement (see Section 10.5 [The for Statement|, page 103)

6.1.1 Structure Arrays

A structure array is a particular instance of a structure, where each of the fields of the structure
is represented by a cell array. Each of these cell arrays has the same dimensions. An example
of the creation of a structure array is

x(1).a = "stringl"
x(2).a = "string2"
x(1).b =1
x(2).b = 2

which creates a 2-by-1 structure array with two fields. As previously, to print the value of the
structure array, you can type its name:
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octave:2> x

X =
{
a =
G
[1] = stringl
[2] = string2
))
b =
G
(11 = 1
[2] = 2
»)
+

Individual elements of the structure array can be returned by indexing the variable like x
(1), which returns a structure with the two fields like

octave:2> x(1)

ans =
{
a = stringl
b= 1
¥

Furthermore, the structure array can return a comma separated list (see Section 6.3 [Comma
Separated Lists|, page 70), if indexed by one of itself field names. For example

octave:3> x.a

ans =
G
[1] = stringl
[2] = string2
»)

The function size with return the size of the structure. For the example above

octave:4> size(x)
ans =

Elements can be deleted from a structure array in a similar manner to a numerical array, by
assigning the elements to an empty matrix. For example
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in = struct (’calll’, {x, Inf, ’last’}, ’call2’, {x, Inf, ’first’});

in (1, :) =[]
= in =
{
calll =
G
[1] = Inf
[2] = last
,)
call2 =
G
[1] = Inf
[2] = first
,)
}

6.1.2 Creating Structures

As well as indexing a structure with ".", Octave can create a structure with the struct com-
mand. struct takes pairs of arguments, where the first argument in the pair is the fieldname
to include in the structure and the second is a scalar or cell array, representing the values to
include in the structure or structure array. For example
struct (’fieldl’, 1, ’field2’, 2)
= ans =
{
fieldl
field2
}

If the values passed to struct are a mix of scalar and cell arrays, then the scalar arguments
are expanded to create a structure array with a consistent dimension. For example

nn
N =
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struct (’field1’, {1, ’omne’}, ’field2’, {2, ’two’}, ’field3’, 3);

= ans =
{
fieldl =
G
(1] = 1
[2] = one
)
field2 =
G
[1] = 2
[2] = two
)
field3d =
G
(11 = 3
2] = 3
)
}
struct ("field", value, "field", value, ...) [Built-in Function]

Create a structure and initialize its value.

If the values are cell arrays, create a structure array and initialize its values. The dimensions
of each cell array of values must match. Singleton cells and non-cell values are repeated so
that they fill the entire array. If the cells are empty, create an empty structure array with
the specified field names.

isstruct (expr) [Built-in Function]
Return 1 if the value of the expression expr is a structure.

Additional functions that can manipulate the fields of a structure are listed below.

rmfield (s, f) [Built-in Function]
Remove field f from the structure s. If f is a cell array of character strings or a character
array, remove the named fields.

See also: cellstr, iscellstr, setfield.

[k1, ..., v1] = setfield (s, k1, v1,...) [Function File]
Set field members in a structure.
oo(1,1).f0= 1;
oo = setfield(oo,{1,2},’fd’,{3},’b’, 6);
00(1,2).fd(3).b ==
= ans = 1

Note that this function could be written
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i1l= {1,2}; i2= ’fd’; i3= {3}; id= ’b’;
oo( i1{:} ). i2 )( i3{:} ).( i4 ) == 6;

See also: getfield, rmfield, isfield, isstruct, fieldnames, struct.

[t, p]l] = orderfields (s1, s2) [Function File]
Return a struct with fields arranged alphabetically or as specified by s2 and a corresponding
permutation vector.

Given one struct, arrange field names in sl alphabetically.

Given two structs, arrange field names in s1 as they appear in s2. The second argument may
also specify the order in a permutation vector or a cell array of strings.

See also: getfield, rmfield, isfield, isstruct, fieldnames, struct.

6.1.3 Manipulating Structures

Other functions that can manipulate the fields of a structure are given below.

fieldnames (struct) [Built-in Function]
Return a cell array of strings naming the elements of the structure struct. It is an error to
call fieldnames with an argument that is not a structure.

isfield (expr, name) [Built-in Function]
Return true if the expression expr is a structure and it includes an element named name.
The first argument must be a structure and the second must be a string.

[vi, ...] = getfield (s, key, ...) [Function File]
Extract fields from a structure. For example
ss(1,2).fd(3) .b=5;
getfield (ss, {1,2}, "fd", {3}, "b")
= ans = 5

Note that the function call in the previous example is equivalent to the expression
il= {1,2}; i2= "fd"; i3= {3}; id4= "b";
ss(i1{:}).(12) (13{:}). (14

See also: setfield, rmfield, isfield, isstruct, fieldnames, struct.

substruct (type, subs, ...) [Function File]
Create a subscript structure for use with subsref or subsasgn.

See also: subsref, subsasgn.

6.1.4 Processing Data in Structures

The simplest way to process data in a structure is within a for loop or othe means of iterating
over the fields. A similar effect can be achieved with the structfun function, where a user
defined function is applied to each field of the structure.

structfun (func, s) [Function File]

[a, b] = structfun (...) [Function File]

structfun (..., 'ErrorHandler’, errfunc) [Function File]

structfun (..., 'UniformOutput’, val) [Function File]
Evaluate the function named name on the fields of the structure s. The fields of s are passed
to the function func individually.
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structfun accepts an arbitrary function func in the form of an inline function, function
handle, or the name of a function (in a character string). In the case of a character string
argument, the function must accept a single argument named x, and it must return a string
value. If the function returns more than one argument, they are returned as separate output
variables.

If the param ’UniformOutput’ is set to true (the default), then the function must return
either a single element which will be concatenated into the return value. If "UniformOutput
is false, the outputs placed in a structure with the same fieldnames as the input structure.

s.namel "John Smith";

s.name2 = "Jill Jones";

structfun ({x} regexp (x, ’>(\w+)$’, ’matches’){1}, s,
>UniformOutput’, false)

Given the parameter 'ErrorHandler’, then errfunc defines a function to call in case func
generates an error. The form of the function is

function [...] = errfunc (se, ...)

where there is an additional input argument to errfunc relative to func, given by se. This is
a structure with the elements ’identifier’, 'message’ and ’index’, giving respectively the error
identifier, the error message, and the index into the input arguments of the element that
caused the error.

See also: cellfun, arrayfun.

Alternatively, to process the data in a structure, the structure might be converted to another
type of container before being treated.

struct2cell (S) [Built-in Function]
Create a new cell array from the objects stored in the struct object. If f is the number of
fields in the structure, the resulting cell array will have a dimension vector corresponding to
[F size(S)].

See also: cell2struct, fieldnames.

6.2 Cell Arrays

It can be both necessary and convenient to store several variables of different size or type in one
variable. A cell array is a container class able to do just that. In general cell arrays work just
like N-dimensional arrays, with the exception of the use of ‘{’ and ‘}’ as allocation and indexing
operators.

As an example, the following code creates a cell array containing a string and a 2-by-2 random
matrix

c = {"a string", rand(2, 2)};

And a cell array can be indexed with the { and } operators, so the variable created in the
previous example can be indexed like this

c{1}

= ans = a string

As with numerical arrays several elements of a cell array can be extracted by indexing with a
vector of indexes
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c{1:2}
= ans =
G
[1] = a string
(2] =
0.593993 0.627732
0.377037 0.033643
»)

The indexing operators can also be used to insert or overwrite elements of a cell array. The
following code inserts the scalar 3 on the third place of the previously created cell array

c{3} =3
C =
{
[1,1] = a string
[1,2] =
0.593993 0.627732
0.377037 0.033643
[1,3] = 3
}

In general nested cell arrays are displayed hierarchically as above. In some circumstances
it makes sense to reference them by their index, and this can be performed by the celldisp
function.

celldisp (c, name) [Function File]
Recursively display the contents of a cell array. By default the values are displayed with the
name of the variable c. However, this name can be replaced with the variable name.

See also: disp.

6.2.1 Creating Cell Array

The introductory example showed how to create a cell array containing currently available
variables. In many situations, however, it is useful to create a cell array and then fill it with
data.

The cell function returns a cell array of a given size, containing empty matrices. This
function works very similar to the zeros function for creating new numerical arrays. The
following example creates a 2-by-2 cell array containing empty matrices

c = cell(2,2)

= Cc =
{
(1,11 = [1(0x0)
[2,1] = [1(0x0)
[1,2] = [1(0x0)
[2,2] = [1(0x0)
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Just like numerical arrays, cell arrays can be multidimensional. The cell function accepts
any number of positive integers to describe the size of the returned cell array. It is also possible
to set the size of the cell array through a vector of positive integers. In the following example
two cell arrays of equal size is created, and the size of the first one is displayed

cl = cell(3, 4, 5);
c2 = cell( [3, 4, 5] );
size(cl)
= ans =
3 4 5

As can be seen, the size function also works for cell arrays. As do the other functions describing
the size of an object, such as length, numel, rows, and columns.

An alternative to creating empty cell arrays, and then filling them, it is possible to convert
numerical arrays into cell arrays using the num2cell and mat2cell functions.

cell (x) [Built-in Function]

cell (n, m) [Built-in Function]
Create a new cell array object. If invoked with a single scalar argument, cell returns a
square cell array with the dimension specified. If you supply two scalar arguments, cell
takes them to be the number of rows and columns. If given a vector with two elements, cell
uses the values of the elements as the number of rows and columns, respectively.

iscell (x) [Built-in Function]
Return true if x is a cell array object. Otherwise, return false.

¢ = num2cell (m) [Loadable Function]
¢ = num2cell (m, d) [Loadable Function]
Convert to matrix m into a cell array. If d is defined the value c is of dimension 1 in this
dimension and the elements of m are placed in slices in c.
See also: mat2cell.
b = mat2cell (a, m, n) [Loadable Function]
b = mat2cell (a, d1,d2, ...) [Loadable Function]
b = mat2cell (a, r) [Loadable Function]
Converts the matrix a to a cell array If a is 2-D, then it is required that sum (m) == size
(a, 1) and sum (n) == size (a, 2). Similarly, if a is a multi-dimensional and the number

of dimensional arguments is equal to the dimensions of a, then it is required that sum (di)
== gize (a, 1i).

Given a single dimensional argument r, the other dimensional arguments are assumed to
equal size (a,i).

An example of the use of mat2cell is
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mat2cell (reshape(1:16,4,4),[3,1],[3,1])
= A
[1,1] =

[1,2]
13
14
15

[2,2]

16

See also: num2cell, cell2mat.

6.2.2 Indexing Cell Arrays

As shown in the introductory example elements can be inserted from cell arrays using the
‘{” and ‘}’ operators. Besides the change of operators, indexing works for cell arrays like for
multidimensional arrays. As an example, all the rows of the first and third column of a cell
array can be set to 0 with the following code

c{:, [1, 31} = O;

Accessing values in a cell array is, however, different from the same operation for numerical
arrays. Accessing a single element of a cell array is very similar to numerical arrays, for example

element = c{1, 2};

This will, however, not work when accessing multiple elements of a cell array, because it might
not be possible to represent all elements with a single variable as is the case with numerical
arrays.

Accessing multiple elements of a cell array with the ‘{’ and ‘} operators will result in a
comma-separated list (see Section 6.3 [Comma Separated Lists], page 70) of all the requested
elements as discussed later.

One distinction between ‘{” and ‘(’ to index cell arrays is in the deletion of elements from
the cell array. In a similar manner to a numerical array the ‘()’ operator can be used to delete
elements from the cell array. The ‘{}’ operator however will remove the elements of the cell
array, but not delete the space for them. For example
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X = {;1>’ 127; ;31’ ;4)};

x{1, :} =[]
= X =
{
(1,11 = [1(0x0)
(2,11 = 3
[1,2] = [1(0x0)
[2,2] = 4
}
x(1, ) =[]
= X =
{
[1,1] = 3
[1,2] = 4
}

6.2.3 Cell Arrays of Strings

One common use of cell arrays is to store multiple strings in the same variable. It is possible
to store multiple strings in a character matrix by letting each row be a string. This, however,
introduces the problem that all strings must be of equal length. Therefore it is recommended
to use cell arrays to store multiple strings. If, however, the character matrix representation
is required for an operation, it can be converted to a cell array of strings using the cellstr
function

a = ["hello"; "world"];
c = cellstr (a)
= Cc =
{
[1,1] = hello
[2,1] = world
}

One further advantage of using cell arrays to store multiple strings, is that most functions
for string manipulations included with Octave support this representation. As an example, it
is possible to compare one string with many others using the strcmp function. If one of the
arguments to this function is a string and the other is a cell array of strings, each element of the
cell array will be compared the string argument,

¢ = {"hello", "world"};
strcmp ("hello", c)
= ans =
1 0

The following functions for string manipulation support cell arrays of strings, strcmp, strcmpi,
strncmp, strncmpi, str2double, str2mat, strappend, strtrunc, strvcat, strfind, and
strmatch.

cellstr (string) [Built-in Function]
Create a new cell array object from the elements of the string array string.

iscellstr (cell) [Built-in Function]
Return true if every element of the cell array cell is a character string
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[idxvec, errmsg] = cellidx (listvar, strlist)

Return indices of string entries in listvar that match strings in strlist.

69

[Function File]

Both listvar and strlist may be passed as strings or string matrices. If they are passed as
string matrices, each entry is processed by deblank prior to searching for the entries.

The first output is the vector of indices in listvar.

If strlist contains a string not in listvar, then an error message is returned in errmsg. If only
one output argument is requested, then cellidx prints errmsg to the screen and exits with an

error.

6.2.4 Processing Data in Cell Arrays

Data that is stored in a cell array can be processed in several ways depending on the actual
data. The most simple way to process that data is to iterate through it using one or more for
loops. The same idea can be implemented easier through the use of the cellfun function that

calls a user specified function on all elements of a cell array.

cellfun (name, c)

cellfun ("size", c, k)

cellfun ("isclass", c, class)

cellfun (func, c)

cellfun (func, c, d)

[a, b] = cellfun (...)

cellfun (..., 'ErrorHandler’, errfunc)

cellfun (..., 'UniformOutput’, val)

[Loadable Function]
[Loadable Function]
[Loadable Function)]
[Loadable Function]
[Loadable Function]
[Loadable Function]
[Loadable Function]
[Loadable Function)]

Evaluate the function named name on the elements of the cell array c¢. Elements in ¢ are
passed on to the named function individually. The function name can be one of the functions

isempty  Return 1 for empty elements.

islogical
Return 1 for logical elements.

isreal Return 1 for real elements.

length Return a vector of the lengths of cell elements.
ndims Return the number of dimensions of each element.
prodofsize

Return the product of dimensions of each element.

size Return the size along the k-th dimension.

isclass Return 1 for elements of class.

Additionally, cellfun accepts an arbitrary function func in the form of an inline function,
function handle, or the name of a function (in a character string). In the case of a character
string argument, the function must accept a single argument named x, and it must return a
string value. The function can take one or more arguments, with the inputs args given by c,
d, etc. Equally the function can return one or more output arguments. For example

cellfun (@atan2, {1, 0}, {0, 1})
=ans = [1.57080 0.00000]
Note that the default output argument is an array of the same size as the input arguments.

If the param 'UniformOutput’ is set to true (the default), then the function must return
either a single element which will be concatenated into the return value. If "UniformOutput
is false, the outputs are concatenated in a cell array. For example
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cellfun ("tolower(x)", {"Foo", "Bar", "FooBar"},
"UniformOutput",false)
= ans = {"foo", "bar", "foobar"}

Given the parameter 'ErrorHandler’, then errfunc defines a function to call in case func
generates an error. The form of the function is

function [...] = errfunc (s, ...)

where there is an additional input argument to errfunc relative to func, given by s. This is
a structure with the elements ’identifier’, 'message’ and ’index’, giving respectively the error
identifier, the error message, and the index into the input arguments of the element that
caused the error. For example

function y = foo (s, x), y = NaN; endfunction

cellfun (@factorial, {-1,2},’ErrorHandler’,@foo)

= ans = [NaN 2]

See also: isempty, islogical, isreal, length, ndims, numel, size, isclass.
An alternative is to convert the data to a different container, such as a matrix or a data

structure. Depending on the data this is possible using the cell2mat and cell2struct func-
tions.

m = cell2mat (c) [Function File]
Convert the cell array ¢ into a matrix by concatenating all elements of ¢ into a hyperrectangle.
Elements of ¢ must be numeric, logical or char, and cat must be able to concatenate them
together.

See also: mat2cell, num2cell.

cell2struct (cell, fields, dim) [Built-in Function]
Convert cell to a structure. The number of fields in fields must match the number of elements
in cell along dimension dim, that is numel (fields) == size (cell, dim).

A = cell2struct ({’Peter’, ’Hannah’, ’Robert’; 185, 170, 168},
{’Name’, ’Height’}, 1);
ACD)
= ans =
{
Height
Name

185
Peter

6.3 Comma Separated Lists

Comma separated lists are the basic argument type to all Octave functions. In the example
max (a, b)

a, b is a comma separated list. Comma separated lists can appear on both the right and left
hand side of an equation. For example
[i, j] = ceil (find (x, [1, ’last’));

where i, j is equally a comma separated list. Comma separated lists can not be directly
manipulated by the user. However, both structures are cell arrays can be converted into comma
separated lists, which makes them useful to keep the input arguments and return values of
functions organized. Another example of where a comma separated list can be used is in the
creation of a new array. If all the accessed elements of a cell array are scalars or column vectors,
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they can be concatenated into a new column vector containing the elements, by surrounding the
list with [ and ] as in the following example

a = {1, [2, 3], 4};
b = [a{:}]
= b =

1 2 3 4

It is also possible to pass the accessed elements directly to a function. The list of elements
from the cell array will be passed as an argument list to a given function as if it is called with
the elements as arguments. The two calls to printf in the following example are identical but
the latter is simpler and handles more situations

c = {"GNU", "Octave", "is", "Free", "Software"};
printf ("%s ", c{1}, c{2}, c{3}, c{4}, c{5});

- GNU Octave is Free Software
printf ("%s ", c{:});

- GNU Octave is Free Software

Just like it is possible to create a numerical array from selected elements of a cell array, it
is possible to create a new cell array containing the selected elements. By surrounding the list
with ‘{” and ‘}’ a new cell array will be created, like the following example illustrates

a = {1, rand(2, 2), "three"};

b={af{ 1, 31 } }
= b =
{
(1,11 = 1
[1,2] = three
}

This syntax is however a bit cumbersome, and since this is a common operation, it is possible to
achieve the same using the ‘(" and ‘)’ operators for indexing. When a cell array is indexed using
the ‘C and ‘)’ operators a new cell array containing the selected elements. Using this syntax,
the previous example can be simplified into the following

a = {1, rand(2, 2), "three"};
b =a( [1, 3] )
= b =
{

[1,1]
[1,2]

1
three

}

A comma separated list can equally appear on the left-hand side of an assignment. An
example is

in {1} = ceil (rand (10, 1));

in {2} = [1;

in {3} = ’last’;

in {4} = ’first’;

out = cell (4, 1);

[out{1:2}] = find (in{1 : 3});
[out{3:4}] = find (in{[1, 2, 41});

Structure arrays can equally be used to create comma separated lists. This is done by
addresses one of the fields of a structure array. For example
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x = ceil (randn (10, 1));

in = struct (’calll’, {x, Inf, ’last’},
out = struct (’calll’, cell (2, 1),
[out.call1ll] find (in.calll);

[out.call?2] find (in.call2);

’call2’, {x, Inf, ’first’});
’call2’, cell (2, 1));
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7 Variables

Variables let you give names to values and refer to them later. You have already seen variables
in many of the examples. The name of a variable must be a sequence of letters, digits and
underscores, but it may not begin with a digit. Octave does not enforce a limit on the length
of variable names, but it is seldom useful to have variables with names longer than about 30
characters. The following are all valid variable names

X
x15

__foo_bar_baz_
fucnrdthsucngtagdjb

However, names like __foo_bar_baz__ that begin and end with two underscores are understood
to be reserved for internal use by Octave. You should not use them in code you write, except
to access Octave’s documented internal variables and built-in symbolic constants.

Case is significant in variable names. The symbols a and A are distinct variables.

A variable name is a valid expression by itself. It represents the variable’s current value. Vari-
ables are given new values with assignment operators and increment operators. See Section 8.6
[Assignment Expressions|, page 90.

A number of variables have special built-in meanings. For example, ans holds the current
working directory, and pi names the ratio of the circumference of a circle to its diameter. See
Section 7.4 [Summary of Built-in Variables|, page 79, for a list of all the predefined variables.
Some of these built-in symbols are constants and may not be changed. Others can be used and
assigned just like all other variables, but their values are also used or changed automatically by
Octave.

Variables in Octave do not have fixed types, so it is possible to first store a numeric value
in a variable and then to later use the same name to hold a string value in the same program.
Variables may not be used before they have been given a value. Doing so results in an error.

isvarname (name) [Built-in Function]
Return true if name is a valid variable name

7.1 Global Variables
A variable that has been declared global may be accessed from within a function body without
having to pass it as a formal parameter.

A variable may be declared global using a global declaration statement. The following
statements are all global declarations.

global a

global a b

global c = 2

global d = 3 e £ =5

A global variable may only be initialized once in a global statement. For example, after
executing the following code
global gvar = 1
global gvar = 2
the value of the global variable gvar is 1, not 2. Issuing a ‘clear gvar’ command does not
change the above behavior, but ‘clear all’ does.

It is necessary declare a variable as global within a function body in order to access it. For
example,
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global x

function f ()
x =1;

endfunction

f 0O

does not set the value of the global variable x to 1. In order to change the value of the global
variable x, you must also declare it to be global within the function body, like this

function £ (O
global x;
x =1;
endfunction
Passing a global variable in a function parameter list will make a local copy and not modify
the global value. For example, given the function
function f (%)
x=0
endfunction

and the definition of x as a global variable at the top level,
global x = 13

the expression
f (x)

will display the value of x from inside the function as 0, but the value of x at the top level
remains unchanged, because the function works with a copy of its argument.

isglobal (name) [Built-in Function]
Return 1 if name is globally visible. Otherwise, return 0. For example,
global x
isglobal ("x")
=1

7.2 Persistent Variables

A variable that has been declared persistent within a function will retain its contents in memory
between subsequent calls to the same function. The difference between persistent variables and
global variables is that persistent variables are local in scope to a particular function and are
not visible elsewhere.

The following example uses a persistent variable to create a function that prints the number
of times it has been called.

function count_calls ()

persistent calls = O;

printf ("’count_calls’ has been called ’%d times\n", ++calls);
endfunction

for i = 1:3
count_calls ();
endfor

- ’count_calls’ has been called 1 times
- ’count_calls’ has been called 2 times
- ’count_calls’ has been called 3 times
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As the example shows, a variable may be declared persistent using a persistent declaration
statement. The following statements are all persistent declarations.

persistent a
persistent a b
persistent c
persistent d

2
3ef=5

The behavior of persistent variables is equivalent to the behavior of static variables in C. The
command static in octave is also recognized and is equivalent to persistent.

Like global variables, a persistent variable may only be initialized once. For example, after
executing the following code

persistent pvar = 1
persistent pvar = 2

the value of the persistent variable pvar is 1, not 2.

If a persistent variable is declared but not initialized to a specific value, it will contain an
empty matrix. So, it is also possible to initialize a persistent variable by checking whether it is
empty, as the following example illustrates.

function count_calls ()
persistent calls;
if (isempty (calls))

calls = 0;
endif
printf ("’count_calls’ has been called %d times\n", ++calls);
endfunction

This implementation behaves in exactly the same way as the previous implementation of count_
calls.

The value of a persistent variable is kept in memory until it is explicitly cleared. Assuming
that the implementation of count_calls is saved on disc, we get the following behaviour.
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for i = 1:2
count_calls ();
endfor

- ’count_calls’ has been called 1 times
- ’count_calls’ has been called 2 times

clear

for i = 1:2
count_calls();

endfor

- ’count_calls’ has been called 3 times
- ’count_calls’ has been called 4 times

clear all
for i = 1:2
count_calls();
endfor
- ’count_calls’ has been called 1 times
-4 ’count_calls’ has been called 2 times

clear count_calls

for i = 1:2
count_calls();
endfor

- ’count_calls’ has been called 1 times
- ’count_calls’ has been called 2 times

That is, the persistent variable is only removed from memory when the function containing
the variable is removed. Note that if the function definition is typed directly into the Octave
prompt, the persistent variable will be cleared by a simple clear command as the entire function
definition will be removed from memory. If you do not want a persistent variable to be removed
from memory even if the function is cleared, you should use the mlock function as described in
See Section 11.7.4 [Function Locking], page 119.

7.3 Status of Variables

When creating simple one-shot programs it can be very convenient to see which variables are
available at the prompt. The function who and its siblings whos and whos_line_format will
show different information about what is in memory, as the following shows.
str = "A random string";
who -variables
- *%% local user variables:

_{

-+ __nargin__ str
who options pattern . . . [Command|
whos options pattern . .. [Command]

List currently defined symbols matching the given patterns. The following are valid options.
They may be shortened to one character but may not be combined.

-all List all currently defined symbols.

-builtins
List built-in functions. This includes all currently compiled function files, but
does not include all function files that are in the search path.
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—-functions
List user-defined functions.

-long Print a long listing including the type and dimensions of any symbols. The
symbols in the first column of output indicate whether it is possible to redefine
the symbol, and whether it is possible for it to be cleared.

-variables
List user-defined variables.

Valid patterns are the same as described for the clear command above. If no patterns
are supplied, all symbols from the given category are listed. By default, only user defined
functions and variables visible in the local scope are displayed.

The command whos is equivalent to who -Iong.

whos options pattern . . . [Command|
See who.

val = whos_line_format () [Built-in Function]

old_val = whos_line_format (new_val) [Built-in Function)]

Query or set the format string used by the whos.
The following escape sequences may be used in the format:

yAS) Prints number of bytes occupied by variables.
he Prints class names of variables.

he Prints elements held by variables.

%in Prints variable names.

yAS) Prints protection attributes of variables.

s Prints dimensions of variables.

ht Prints type names of variables.

Every command may also have a modifier:

1 Left alignment.
r Right alignment (this is the default).
c Centered (may only be applied to command %s).

A command is composed like this: %[modifier|<command>[:size_of_parameter|:center-
specific[:print_dims|:balance]]]];

Command and modifier is already explained. Size_of_parameter tells how many columns the
parameter will need for printing. print_dims tells how many dimensions to print. If number
of dimensions exceeds print_dims, dimensions will be printed like x-D. center-specific and
print_dims may only be applied to command %s. A negative value for print_dims will cause
Octave to print all dimensions whatsoever. balance specifies the offset for printing of the
dimensions string.

The default format is " %p:4; %In:6; %cs:16:6:8:1; %rb:12; %lc:-1;:\n".

Instead of displaying which variables are in memory, it is possible to determine if a given
variable is available. That way it is possible to alter the behaviour of a program depending on
the existence of a variable. The following example illustrates this.

if (! exist ("meaning", "var"))
disp ("The program has no ’meaning’");
endif
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exist (name, type) [Built-in Function]
Return 1 if the name exists as a variable, 2 if the name (after appending ‘.m’) is a function
file in Octave’s path, 3 if the name is a ‘.oct’ or ‘.mex’ file in Octave’s path, 5 if the name is
a built-in function, 7 if the name is a directory, or 103 if the name is a function not associated
with a file (entered on the command line).

Otherwise, return 0.

This function also returns 2 if a regular file called name exists in Octave’s search path. If
you want information about other types of files, you should use some combination of the
functions file_in_path and stat instead.

If the optional argument type is supplied, check only for symbols of the specified type. Valid
types are

‘"yar"’ Check only for variables.

“"builtin"’
Check only for built-in functions.

‘"file"’  Check only for files.

‘dir"’ Check only for directories.

Usually Octave will manage the memory, but sometimes it can be practical to remove vari-
ables from memory manually. This is usually needed when working with large variables that fill
a substantial part of the memory. On a computer that uses the IEEE floating point format, the
following program allocates a matrix that requires around 128 MB memory.

large_matrix = zeros (4000, 4000);

Since having this variable in memory might slow down other computations, it can be necessary
to remove it manually from memory. The clear function allows this.

clear [-x] pattern ... [Command|
Delete the names matching the given patterns from the symbol table. The pattern may
contain the following special characters:

? Match any single character.
* Match zero or more characters.

[ 1ist ] Match the list of characters specified by list. If the first character is ! or =, match
all characters except those specified by list. For example, the pattern ‘[a-zA-Z]’
will match all lower and upper case alphabetic characters.

For example, the command
clear foo b*r
clears the name foo and all names that begin with the letter b and end with the letter r.

If clear is called without any arguments, all user-defined variables (local and global) are
cleared from the symbol table. If clear is called with at least one argument, only the
visible names matching the arguments are cleared. For example, suppose you have defined
a function foo, and then hidden it by performing the assignment foo = 2. Executing the
command clear foo once will clear the variable definition and restore the definition of foo
as a function. Executing clear foo a second time will clear the function definition.

With -x, clear the variables that don’t match the patterns.

Information about a function or variable such as it’s location in the file system can also be
acquired from within Octave. This is usually only useful during development of programs, and
not within a program.
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document (symbol, text) [Built-in Function]
Set the documentation string for symbol to text.

type options name . .. [Command|
Display the definition of each name that refers to a function.

Normally also displays whether each name is user-defined or built-in; the -q option suppresses
this behaviour.

which name ... [Command]|
Display the type of each name. If name is defined from a function file, the full name of the
file is also displayed.

See also: help, lookfor.

7.4 Summary of Built-in Variables

Here is a summary of all of Octave’s built-in variables along with cross references to additional
information and their default values. In the following table octave-home stands for the root
directory where all of Octave is installed (the default is ‘/usr/local’, version stands for the
Octave version number (for example, 2.9.15) and arch stands for the type of system for which
Octave was compiled (for example, x86_64-unknown-linux-gnu).
EDITOR See Section 2.4.5 [Commands For History|, page 18.

Default value: "emacs".
EXEC_PATH

See Section 35.5 [Controlling Subprocesses|, page 423.

Default value: ":$PATH".
OCTAVE_HOME

Default value: "/usr/local".
PAGER See Chapter 14 [Input and Output|, page 139.

Default value: "less", or "more".

PS1 See Section 2.4.7 [Customizing the Prompt], page 20.
Default value: "\s:\#> ".

PS2 See Section 2.4.7 [Customizing the Prompt], page 20.

Default value: "> ".

PS4 See Section 2.4.7 [Customizing the Prompt], page 20.
Default value: "+ ".

beep_on_error
See Chapter 12 [Errors and Warnings|, page 127.
Default value: 0.

completion_append_char
See Section 2.4.4 [Commands For Completion], page 18.
Default value: " ".

default_save_options
See Section 14.1.3 [Simple File I/0], page 143.

Default value: "ascii".
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crash_dumps_octave_core
See Section 14.1.3 [Simple File I/0], page 143.

Default value: 1.
fixed_point_format
See Section 4.1 [Matrices|, page 31.
Default value: 0.
gnuplot_binary
See Section 15.1.2 [Three-Dimensional Plotting], page 174.
Default value: "gnuplot".
history_file
See Section 2.4.5 [Commands For History|, page 18.
Default value: "~/.octave_hist".
history_size
See Section 2.4.5 [Commands For History], page 18.
Default value: 1024.
ignore_function_time_stamp
See Section 11.7 [Function Files|, page 115.
Default value: "system".
max_recursion_depth
See Section 8.2.2 [Recursion], page 86.
Default value: 256.
output_max_field_width
See Section 4.1 [Matrices|, page 31.
Default value: 10.
output_precision
See Section 4.1 [Matrices|, page 31.
Default value: 5.
page_screen_output
See Chapter 14 [Input and Output|, page 139.
Default value: 1.
print_answer_id_name
See Section 14.1.1 [Terminal Output], page 139.
Default value: 1.
print_empty_dimensions
See Section 4.1.1 [Empty Matrices|, page 34.
Default value: 1.
return_last_computed_value
See Section 11.5 [Returning From a Function], page 114.
Default value: 0.
save_precision
See Section 14.1.3 [Simple File I/0], page 143.
Default value: 17.



Chapter 7: Variables 81

saving_history
See Section 2.4.5 [Commands For History], page 18.

Default value: 1.
sighup_dumps_octave_core
See Section 14.1.3 [Simple File I/0], page 143.
Default value: 1.
sigterm_dumps_octave_core
See Section 14.1.3 [Simple File I/0], page 143.
Default value: 1.
silent_functions
See Section 11.1 [Defining Functions], page 109.
Default value: 0.
split_long_rows
See Section 4.1 [Matrices|, page 31.
Default value: 1.
struct_levels_to_print
See Section 6.1 [Data Structures|, page 57.
Default value: 2.
suppress_verbose_help_message
See Section 2.3 [Getting Help|, page 14.

Default value: 1.

7.5 Defaults from the Environment

Octave uses the values of the following environment variables to set the default values for the
corresponding built-in or internal variables. In addition, the values from the environment may
be overridden by command-line arguments. See Section 2.1.1 [Command Line Options], page 11.
EDITOR See Section 2.4.5 [Commands For History], page 18.

Built-in variable: EDITOR.
OCTAVE_EXEC_PATH

See Section 35.5 [Controlling Subprocesses|, page 423.

Built-in variable: EXEC_PATH. Command-line argument: --exec-path.
OCTAVE_PATH

See Section 11.7 [Function Files|, page 115.

Internal variable changed by function path. Command-line argument: --path.
OCTAVE_INFO_FILE

See Section 2.3 [Getting Help|, page 14.

Internal variable changed by function info_file. Command-line argument: --

info-file.
OCTAVE_INFO_PROGRAM

See Section 2.3 [Getting Help|, page 14.

Internal variable changed by function info_program. Command-line argument: —-
info-program.
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OCTAVE_HISTSIZE
See Section 2.4.5 [Commands For History], page 18.

Built-in variable: history_size.
OCTAVE_HISTFILE
See Section 2.4.5 [Commands For History], page 18.

Built-in variable: history_file.
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8 Expressions

Expressions are the basic building block of statements in Octave. An expression evaluates to a
value, which you can print, test, store in a variable, pass to a function, or assign a new value to
a variable with an assignment operator.

An expression can serve as a statement on its own. Most other kinds of statements contain one
or more expressions which specify data to be operated on. As in other languages, expressions in
Octave include variables, array references, constants, and function calls, as well as combinations
of these with various operators.

8.1 Index Expressions

An index expression allows you to reference or extract selected elements of a matrix or vector.

]

Indices may be scalars, vectors, ranges, or the special operator ‘:’, which may be used to

select entire rows or columns.

Vectors are indexed using a single index expression. Matrices may be indexed using one
or two indices. When using a single index expression, the elements of the matrix are taken
in column-first order; the dimensions of the output match those of the index expression. For
example,

a (2) # a scalar
a (1:2) # a row vector
a ([1; 2]) # a column vector

As a special case, when a colon is used as a single index, the output is a column vector

containing all the elements of the vector or matrix. For example

a (:) # a column vector
Given the matrix
a=[1, 2; 3, 4]
all of the following expressions are equivalent
a (1, [1, 21D
a (1, 1:2)
a (1, @)
and select the first row of the matrix.

Indexing a scalar with a vector of ones can be used to create a vector the same size as the
index vector, with each element equal to the value of the original scalar. For example, the
following statements

a = 13;
a ([1, 1, 1, 1D
produce a vector whose four elements are all equal to 13.
Similarly, indexing a scalar with two vectors of ones can be used to create a matrix. For
example the following statements
a = 13;
a ([1, 11, [1, 1, 1D
create a 2 by 3 matrix with all elements equal to 13.

This is an obscure notation and should be avoided. It is better to use the function ones to
generate a matrix of the appropriate size whose elements are all one, and then to scale it to
produce the desired result. See Section 16.4 [Special Utility Matrices], page 199.

It is also possible to create a matrix with different values. The following example creates a
10 dimensional row vector a containing the values a; = V/i.
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for i = 1:10
a(i) = sqrt (1);
endfor

Note that it is quite inefficient to create a vector using a loop like the one shown in the example
above. In this particular case, it would have been much more efficient to use the expression
a = sqrt (1:10);
thus avoiding the loop entirely. In cases where a loop is still required, or a number of values
must be combined to form a larger matrix, it is generally much faster to set the size of the
matrix first, and then insert elements using indexing commands. For example, given a matrix
a,
[nr, nc] = size (a);
x = zeros (nr, n * nc);
for i = 1:n
x(:,(i-1)*nc+1:i*nc) = a;
endfor
is considerably faster than
X = a;
for i = 1:n-1
x = [x, al;
endfor
particularly for large matrices because Octave does not have to repeatedly resize the result.

subsref (val, idx) [Built-in Function]
Perform the subscripted element selection operation according to the subscript specified by
idx.
The subscript idx is expected to be a structure array with fields ‘type’ and ‘subs’. Valid
values for ‘type’ are ‘" O"’, “"{}"’, and ‘"."". The ‘subs’ field may be either ‘":"’ or a cell
array of index values.
The following example shows how to extract the two first columns of a matrix

val = magic(3)
= val = [

N N O

8
3
4 9
idx.type = "O";
idx.subs = {":", 1:2};
subsref(val, idx)

=[8 1
3 5
4 9]

Note that this is the same as writing val(:,1:2).

See also: subsasgn, substruct.

ind = sub2ind (dims, i, j) [Function File]
ind = sub2ind (dims, si, s2, ..., sN) [Function File]
Convert subscripts into a linear index.

The following example shows how to convert the two-dimensional index (2,3) of a 3-by-3
matrix to a linear index.

linear_index = sub2ind ([3, 3], 2, 3)

= 8

See also: ind2sub.
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[s1, s2, ..., sN] = ind2sub (dims, ind) [Function File]
Convert a linear index into subscripts.
The following example shows how to convert the linear index 8 in a 3-by-3 matrix into a
subscript.
[r, c] = ind2sub ([3, 3], 8)
= r = 2
c= 3

See also: sub2ind.

8.2 Calling Functions

A function is a name for a particular calculation. Because it has a name, you can ask for it by
name at any point in the program. For example, the function sqrt computes the square root
of a number.

A fixed set of functions are built-in, which means they are available in every Octave program.
The sqrt function is one of these. In addition, you can define your own functions. See Chapter 11
[Functions and Scripts|, page 109, for information about how to do this.

The way to use a function is with a function call expression, which consists of the function
name followed by a list of arguments in parentheses. The arguments are expressions which
give the raw materials for the calculation that the function will do. When there is more than
one argument, they are separated by commas. If there are no arguments, you can omit the
parentheses, but it is a good idea to include them anyway, to clearly indicate that a function
call was intended. Here are some examples:

sqrt (x"2 + y~2) # One argument
ones (n, m) # Two arguments
rand () # No arguments

Each function expects a particular number of arguments. For example, the sqrt function
must be called with a single argument, the number to take the square root of:

sqrt (argument)

Some of the built-in functions take a variable number of arguments, depending on the par-
ticular usage, and their behavior is different depending on the number of arguments supplied.

Like every other expression, the function call has a value, which is computed by the function
based on the arguments you give it. In this example, the value of sqrt (argument) is the
square root of the argument. A function can also have side effects, such as assigning the values
of certain variables or doing input or output operations.

Unlike most languages, functions in Octave may return multiple values. For example, the
following statement
[u, s, v] = svd (a)
computes the singular value decomposition of the matrix a and assigns the three result matrices
tou, s, and v.

The left side of a multiple assignment expression is itself a list of expressions, and is allowed
to be a list of variable names or index expressions. See also Section 8.1 [Index Expressions],
page 83, and Section 8.6 [Assignment Ops], page 90.

8.2.1 Call by Value

In Octave, unlike Fortran, function arguments are passed by value, which means that each
argument in a function call is evaluated and assigned to a temporary location in memory before
being passed to the function. There is currently no way to specify that a function parameter
should be passed by reference instead of by value. This means that it is impossible to directly
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alter the value of function parameter in the calling function. It can only change the local copy
within the function body. For example, the function

function f (x, n)
while (n-- > 0)
disp (x);
endwhile
endfunction

displays the value of the first argument n times. In this function, the variable n is used as
a temporary variable without having to worry that its value might also change in the calling
function. Call by value is also useful because it is always possible to pass constants for any
function parameter without first having to determine that the function will not attempt to
modify the parameter.

The caller may use a variable as the expression for the argument, but the called function
does not know this: it only knows what value the argument had. For example, given a function
called as

foo = "bar";
fcn (foo)

you should not think of the argument as being “the variable foo.” Instead, think of the argument
as the string value, "bar".

Even though Octave uses pass-by-value semantics for function arguments, values are not
copied unnecessarily. For example,

x = rand (1000);

f x);
does not actually force two 1000 by 1000 element matrices to exist unless the function £ modifies
the value of its argument. Then Octave must create a copy to avoid changing the value outside
the scope of the function f, or attempting (and probably failing!) to modify the value of a
constant or the value of a temporary result.

8.2.2 Recursion

With some restrictions!, recursive function calls are allowed. A recursive function is one which
calls itself, either directly or indirectly. For example, here is an inefficient? way to compute the
factorial of a given integer:

function retval = fact (n)
if (n > 0)
retval = n * fact (n-1);
else
retval = 1;
endif
endfunction
This function is recursive because it calls itself directly. It eventually terminates because
each time it calls itself, it uses an argument that is one less than was used for the previous call.
Once the argument is no longer greater than zero, it does not call itself, and the recursion ends.
The built-in variable max_recursion_depth specifies a limit to the recursion depth and
prevents Octave from recursing infinitely.

! Some of Octave’s functions are implemented in terms of functions that cannot be called recursively. For
example, the ODE solver 1lsode is ultimately implemented in a Fortran subroutine that cannot be called
recursively, so 1lsode should not be called either directly or indirectly from within the user-supplied function
that 1sode requires. Doing so will result in an error.

2 Tt would be much better to use prod (1:n), or gamma (n+1) instead, after first checking to ensure that the
value n is actually a positive integer.
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val = max_recursion_depth () [Built-in Function]

old_val = max_recursion_depth (new_val) [Built-in Function]
Query or set the internal limit on the number of times a function may be called recursively.
If the limit is exceeded, an error message is printed and control returns to the top level.

8.3 Arithmetic Operators
The following arithmetic operators are available, and work on scalars and matrices.

x+y Addition. If both operands are matrices, the number of rows and columns must
both agree. If one operand is a scalar, its value is added to all the elements of the
other operand.

X .ty Element by element addition. This operator is equivalent to +.

X -y Subtraction. If both operands are matrices, the number of rows and columns of
both must agree.

X .-y Element by element subtraction. This operator is equivalent to -.

X *xy Matrix multiplication. The number of columns of x must agree with the number of
rows of y.

X .xy Element by element multiplication. If both operands are matrices, the number of

rows and columns must both agree.

x/y Right division. This is conceptually equivalent to the expression
(inverse (y’) * x’)’
but it is computed without forming the inverse of y’.
If the system is not square, or if the coefficient matrix is singular, a minimum norm
solution is computed.

x./y Element by element right division.

x\y Left division. This is conceptually equivalent to the expression
inverse (x) * y
but it is computed without forming the inverse of x.
If the system is not square, or if the coefficient matrix is singular, a minimum norm

solution is computed.

x \y Element by element left division. Each element of y is divided by each corresponding
element of x.

Xy

X k* y Power operator. If x and y are both scalars, this operator returns x raised to the
power y. If x is a scalar and y is a square matrix, the result is computed using an
eigenvalue expansion. If x is a square matrix, the result is computed by repeated
multiplication if y is an integer, and by an eigenvalue expansion if y is not an integer.
An error results if both x and y are matrices.
The implementation of this operator needs to be improved.

x."y

X kky Element by element power operator. If both operands are matrices, the number of
rows and columns must both agree.

-x Negation.

+x Unary plus. This operator has no effect on the operand.
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x’ Complex conjugate transpose. For real arguments, this operator is the same as
the transpose operator. For complex arguments, this operator is equivalent to the
expression

conj (x.7)
x.’ Transpose.

Note that because Octave’s element by element operators begin with a ‘.’, there is a possible
ambiguity for statements like
1./m
because the period could be interpreted either as part of the constant or as part of the operator.
To resolve this conflict, Octave treats the expression as if you had typed

1) ./ m
and not
(1.) / m

Although this is inconsistent with the normal behavior of Octave’s lexer, which usually prefers
to break the input into tokens by preferring the longest possible match at any given point, it is
more useful in this case.

8.4 Comparison Operators

Comparison operators compare numeric values for relationships such as equality. They are
written using relational operators.
All of Octave’s comparison operators return a value of 1 if the comparison is true, or 0 if it
is false. For matrix values, they all work on an element-by-element basis. For example,
(1, 2; 3, 4] == [1, 3; 2, 4]
= 1 0
0 1

If one operand is a scalar and the other is a matrix, the scalar is compared to each element
of the matrix in turn, and the result is the same size as the matrix.

x<y True if x is less than y.

x <=y True if x is less than or equal to y.

x == True if x is equal to y.

x>=y True if x is greater than or equal to y.
x>y True if x is greater than y.

x!l=y

x "=y

x <>y True if x is not equal to y.

String comparisons may also be performed with the strcmp function, not with the comparison
operators listed above. See Chapter 5 [Strings|, page 43.

isequal (x1,x2,...) [Function File]
Return true if all of x1, x2, ... are equal.

See also: isequalwithequalnans.

isequalwithequalnans (x1, x2, ...) [Function File]
Assuming NaN == NaN, return true if all of x1, x2, ... are equal.

See also: isequal.
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8.5 Boolean Expressions

8.5.1 Element-by-element Boolean Operators

An element-by-element boolean expression is a combination of comparison expressions using
the boolean operators “or” (‘|’), “and” (‘&’), and “not” (‘!’), along with parentheses to control
nesting. The truth of the boolean expression is computed by combining the truth values of the
corresponding elements of the component expressions. A value is considered to be false if it is
zero, and true otherwise.

Element-by-element boolean expressions can be used wherever comparison expressions can
be used. They can be used in if and while statements. However, if a matrix value used as the
condition in an if or while statement is only true if all of its elements are nonzero.

Like comparison operations, each element of an element-by-element boolean expression also
has a numeric value (1 if true, 0 if false) that comes into play if the result of the boolean
expression is stored in a variable, or used in arithmetic.

Here are descriptions of the three element-by-element boolean operators.

booleanl & boolean2
Elements of the result are true if both corresponding elements of booleanl and
boolean2 are true.

booleanl | boolean2
Elements of the result are true if either of the corresponding elements of booleanl
or boolean?2 is true.

! boolean
~ boolean
Each element of the result is true if the corresponding element of boolean is false.

For matrix operands, these operators work on an element-by-element basis. For example, the

expression
[1, 0; 0, 11 & [1, 0; 2, 3]
returns a two by two identity matrix.

For the binary operators, the dimensions of the operands must conform if both are matrices.
If one of the operands is a scalar and the other a matrix, the operator is applied to the scalar
and each element of the matrix.

For the binary element-by-element boolean operators, both subexpressions booleanl and
boolean2 are evaluated before computing the result. This can make a difference when the
expressions have side effects. For example, in the expression

a & b++
the value of the variable b is incremented even if the variable a is zero.

This behavior is necessary for the boolean operators to work as described for matrix-valued
operands.

8.5.2 Short-circuit Boolean Operators

Combined with the implicit conversion to scalar values in if and while conditions, Octave’s
element-by-element boolean operators are often sufficient for performing most logical operations.
However, it is sometimes desirable to stop evaluating a boolean expression as soon as the overall
truth value can be determined. Octave’s short-circuit boolean operators work this way.

booleanl && booleanZ2
The expression booleanl is evaluated and converted to a scalar using the equivalent
of the operation all (booleani (:)). Ifit is false, the result of the overall expression
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is 0. If it is true, the expression boolean? is evaluated and converted to a scalar
using the equivalent of the operation all (boolean1 (:)). If it is true, the result of
the overall expression is 1. Otherwise, the result of the overall expression is 0.
Warning: there is one exception to the rule of evaluating all (booleani (:)), which
is when booleanl is the empty matrix. The truth value of an empty matrix is always
false so [] && true evaluates to false even though all ([]) is true.

booleanl || boolean2
The expression booleanl is evaluated and converted to a scalar using the equivalent
of the operation all (booleani (:)). If it is true, the result of the overall expression
is 1. If it is false, the expression boolean2 is evaluated and converted to a scalar
using the equivalent of the operation all (booleani (:)). If it is true, the result of
the overall expression is 1. Otherwise, the result of the overall expression is 0.

Warning: the truth value of an empty matrix is always false, see the previous list
item for details.
The fact that both operands may not be evaluated before determining the overall truth value
of the expression can be important. For example, in the expression
a && b++
the value of the variable b is only incremented if the variable a is nonzero.
This can be used to write somewhat more concise code. For example, it is possible write

function f (a, b, ¢)
if (nargin > 2 &% isstr (c))

instead of having to use two if statements to avoid attempting to evaluate an argument that
doesn’t exist. For example, without the short-circuit feature, it would be necessary to write

function f (a, b, c)
if (nargin > 2)
if (isstr (c))

Writing
function f (a, b, c)
if (nargin > 2 & isstr (c))

would result in an error if £ were called with one or two arguments because Octave would be
forced to try to evaluate both of the operands for the operator ‘&’.

8.6 Assignment Expressions
An assignment is an expression that stores a new value into a variable. For example, the following
expression assigns the value 1 to the variable z:

z =1
After this expression is executed, the variable z has the value 1. Whatever old value z had
before the assignment is forgotten. The ‘=" sign is called an assignment operator.

Assignments can store string values also. For example, the following expression would store
the value "this food is good" in the variable message:
thing = "food"
predicate = "good"
message = [ "this " , thing , " is " , predicate ]

(This also illustrates concatenation of strings.)



Chapter 8: Expressions 91

Most operators (addition, concatenation, and so on) have no effect except to compute a
value. If you ignore the value, you might as well not use the operator. An assignment operator
is different. It does produce a value, but even if you ignore the value, the assignment still makes
itself felt through the alteration of the variable. We call this a side effect.

The left-hand operand of an assignment need not be a variable (see Chapter 7 [Variables],
page 73). It can also be an element of a matrix (see Section 8.1 [Index Expressions|, page 83) or
a list of return values (see Section 8.2 [Calling Functions], page 85). These are all called Ivalues,
which means they can appear on the left-hand side of an assignment operator. The right-hand
operand may be any expression. It produces the new value which the assignment stores in the
specified variable, matrix element, or list of return values.

It is important to note that variables do not have permanent types. The type of a variable is
simply the type of whatever value it happens to hold at the moment. In the following program
fragment, the variable foo has a numeric value at first, and a string value later on:

octave:13> foo = 1

foo =1
octave:13> foo = "bar"
foo = bar

When the second assignment gives foo a string value, the fact that it previously had a numeric
value is forgotten.

Assignment of a scalar to an indexed matrix sets all of the elements that are referenced by
the indices to the scalar value. For example, if a is a matrix with at least two columns,

a(:, 2) =5
sets all the elements in the second column of a to 5.

Assigning an empty matrix ‘[1’ works in most cases to allow you to delete rows or columns
of matrices and vectors. See Section 4.1.1 [Empty Matrices], page 34. For example, given a 4
by 5 matrix A, the assignment

A (3, ) =1]

deletes the third row of A, and the assignment
A (:, 1:2:5) =[]

deletes the first, third, and fifth columns.

An assignment is an expression, so it has a value. Thus, z = 1 as an expression has the value
1. One consequence of this is that you can write multiple assignments together:

x=y=2=0

stores the value 0 in all three variables. It does this because the value of z = 0, which is 0, is
stored into y, and then the value of y = z = 0, which is 0, is stored into x.

This is also true of assignments to lists of values, so the following is a valid expression
[a, b, c] = [u, s, v] = svd (a)
that is exactly equivalent to

[u, s, v] = svd (a)

a=u
b=s
c=v

In expressions like this, the number of values in each part of the expression need not match.
For example, the expression

[a, b] = [u, s, v] = svd (a)

is equivalent to
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[u, s, v] = svd (a)
a=u
b =s

The number of values on the left side of the expression can, however, not exceed the number of
values on the right side. For example, the following will produce an error.

[a, b, ¢, d] = [u, s, v] = svd (a)
- error: element number 4 undefined in return list
error: evaluating assignment expression near line 8, column 15

A very common programming pattern is to increment an existing variable with a given value,

like this
a=a+ 2;

This can be written in a clearer and more condensed form using the += operator
a += 2;

Similar operators also exist for subtraction (-=), multiplication (*=), and division (/=). An
expression of the form

exprl op= expr2
is evaluated as
exprl = (exprl) op (expr2)
where op can be either +, -, *, or /. So, the expression
a *= b+l
is evaluated as
a=a * (b+l)
and not
a=ax*xb+1

You can use an assignment anywhere an expression is called for. For example, it is valid to
write x !'= (y = 1) to set y to 1 and then test whether x equals 1. But this style tends to make
programs hard to read. Except in a one-shot program, you should rewrite it to get rid of such
nesting of assignments. This is never very hard.

subsasgn (val, idx, rhs) [Built-in Function]
Perform the subscripted assignment operation according to the subscript specified by idx.

The subscript idx is expected to be a structure array with fields ‘type’ and ‘subs’. Valid
values for ‘type’ are ‘“"O"’, ‘“"{}"’, and ‘"."’. The ‘subs’ field may be either ‘":"’ or a cell
array of index values.
The following example shows how to set the two first columns of a 3-by-3 matrix to zero.
val = magic(3);
idx.type = "O";
idx.subs = {":", 1:2};
subsasgn (val, idx, 0)
= [0 0 6
0 0 7
0 0 2]

Note that this is the same as writing val(:,1:2) = 0.

See also: subsref, substruct.
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8.7 Increment Operators

Increment operators increase or decrease the value of a variable by 1. The operator to increment
a variable is written as ‘++’. It may be used to increment a variable either before or after taking
its value.

For example, to pre-increment the variable x, you would write ++x. This would add one to
x and then return the new value of x as the result of the expression. It is exactly the same as
the expression x = x + 1.

To post-increment a variable x, you would write x++. This adds one to the variable x, but
returns the value that x had prior to incrementing it. For example, if x is equal to 2, the result
of the expression x++ is 2, and the new value of x is 3.

For matrix and vector arguments, the increment and decrement operators work on each
element of the operand.

Here is a list of all the increment and decrement expressions.

++x This expression increments the variable x. The value of the expression is the new
value of x. It is equivalent to the expression x = x + 1.

--X This expression decrements the variable x. The value of the expression is the new
value of x. It is equivalent to the expression x = x - 1.

X++ This expression causes the variable x to be incremented. The value of the expression
is the old value of x.

x-= This expression causes the variable x to be decremented. The value of the expression
is the old value of x.

8.8 Operator Precedence

Operator precedence determines how operators are grouped, when different operators appear
close by in one expression. For example, ‘*’ has higher precedence than ‘+’. Thus, the expression
a + b * ¢ means to multiply b and c, and then add a to the product (i.e., a + (b * ¢)).

You can overrule the precedence of the operators by using parentheses. You can think of the
precedence rules as saying where the parentheses are assumed if you do not write parentheses
yourself. In fact, it is wise to use parentheses whenever you have an unusual combination of
operators, because other people who read the program may not remember what the precedence
is in this case. You might forget as well, and then you too could make a mistake. Explicit
parentheses will help prevent any such mistake.

When operators of equal precedence are used together, the leftmost operator groups first,
except for the assignment and exponentiation operators, which group in the opposite order.
Thus, the expression a - b + ¢ groups as (a = b) + c, but the expression a = b = ¢ groups as a
= (b =c¢).

The precedence of prefix unary operators is important when another operator follows the
operand. For example, -x"2 means -(x"2), because ‘-’ has lower precedence than

(~
Here is a table of the operators in Octave, in order of increasing precedence.

statement separators

[ R
PRI

assignment
(=7 ¢

, =70 == x=" /=" This operator groups right to left.

logical "or" and "and"
4| |7’ c&&7.
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element-wise "or" and "and"
1Y cp,?
|7, ‘&’.

relational

colon

add, subtract

multiply, divide
4*7 (/7 4\7 4 \’ 4 *7 3 /7

transpose

unary plus, minus, increment, decrement, and ¢ ‘not’’
g ) ¢ 7 LY
+7_7++7__7 !) .
exponentiation

(~) [4 7 C o~ ¢ )
, kT e,
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9 Evaluation

Normally, you evaluate expressions simply by typing them at the Octave prompt, or by asking
Octave to interpret commands that you have saved in a file.

Sometimes, you may find it necessary to evaluate an expression that has been computed and
stored in a string, which is exactly what the eval lets you do.

eval (try, catch) [Built-in Function]
Parse the string try and evaluate it as if it were an Octave program. If that fails, evaluate
the optional string catch. The string try is evaluated in the current context, so any results
remain available after eval returns.

The following example makes the variable a with the approximate value 3.1416 available.
eval("a = acos(-1);");
If an error occurs during the evaluation of try the catch string is evaluated, as the following
example shows.
eval (Cerror ("This is a bad example");’,
’printf ("This error occurred:\n%s", lasterr ());’);

< This error occurred:
error: This is a bad example

9.1 Calling a Function by its Name

The feval function allows you to call a function from a string containing its name. This is
useful when writing a function that need to call user-supplied functions. The feval function
takes the name of the function to call as its first argument, and the remaining arguments are
given to the function.

The following example is a simple-minded function using feval that finds the root of a
user-supplied function of one variable using Newton’s method.
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function result = newtroot (fname, x)

# usage: newtroot (fname, x)
#
# fname : a string naming a function f(x).
# x : initial guess
delta = tol = sqrt (eps);
maxit = 200;
fx = feval (fname, x);
for i = 1l:maxit
if (abs (fx) < tol)
result = x;
return;
else
fx_new = feval (fname, x + delta);
deriv = (fx_new - fx) / delta;
x = x - fx / deriv;
fx = fx_new;
endif
endfor
result = x;
endfunction

Note that this is only meant to be an example of calling user-supplied functions and should
not be taken too seriously. In addition to using a more robust algorithm, any serious code would
check the number and type of all the arguments, ensure that the supplied function really was
a function, etc. See Section 4.6 [Predicates for Numeric Objects|, page 40, for example, for a
list of predicates for numeric objects, and see Section 7.3 [Status of Variables|, page 76, for a
description of the exist function.

feval (name, ...) [Built-in Function]
Evaluate the function named name. Any arguments after the first are passed on to the named
function. For example,

feval ("acos", -1)
= 3.1416

calls the function acos with the argument ‘-1’

The function feval is necessary in order to be able to write functions that call user-supplied
functions, because Octave does not have a way to declare a pointer to a function (like C) or
to declare a special kind of variable that can be used to hold the name of a function (like
EXTERNAL in Fortran). Instead, you must refer to functions by name, and use feval to call
them.

A similar function run exists for calling user script files, that are not necessarily on the user
path

run (f) [Function File]

run f [Command|
Run scripts in the current workspace that are not necessarily on the path. If f is the script
to run, including its path, then run change the directory to the directory where f is found.
run then executes the script, and returns to the original directory.
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See also: system.

9.2 Evaluation in a Different Context

Before you evaluate an expression you need to substitute the values of the variables used in
the expression. These are stored in the symbol table. Whenever the interpreter starts a new
function it saves the current symbol table and creates a new one, initializing it with the list of
function parameters and a couple of predefined variables such as nargin. Expressions inside the
function use the new symbol table.

Sometimes you want to write a function so that when you call it, it modifies variables in your
own context. This allows you to use a pass-by-name style of function, which is similar to using
a pointer in programming languages such as C.

Consider how you might write save and load as m-files. For example,

function create_data
x = linspace (0, 10, 10);
y = sin (x);
save mydata x y
endfunction

With evalin, you could write save as follows:

function save (file, namel, name2)
f = open_save_file (file);
save_var(f, namel, evalin ("caller", namel));
save_var(f, name2, evalin ("caller", name2));
endfunction

Here, ‘caller’ is the create_data function and name1l is the string "x", which evaluates simply
as the value of x.

You later want to load the values back from mydata in a different context:

function process_data
load mydata
. do work ...
endfunction

With assignin, you could write load as follows:

function load (file)
f = open_load_file (file);
[name, val] = load_var (f);
assignin ("caller", name, val);
[name, val] = load_var (f);
assignin ("caller", name, val);
endfunction

Here, ‘caller’ is the process_data function.

You can set and use variables at the command prompt using the context ‘base’ rather than
‘caller’.

These functions are rarely used in practice. One example is the fail (‘code’, ‘pattern’)
function which evaluates ‘code’ in the caller’s context and checks that the error message it
produces matches the given pattern. Other examples such as save and load are written in C++
where all octave variables are in the ‘caller’ context and evalin is not needed.

evalin (context, try, catch) [Built-in Function]
Like eval, except that the expressions are evaluated in the context context, which may be
either "caller" or "base".
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assignin (context, varname, value) [Built-in Function]
Assign value to varname in context context, which may be either "base" or "caller".



Chapter 10: Statements 99

10 Statements

Statements may be a simple constant expression or a complicated list of nested loops and
conditional statements.

Control statements such as if, while, and so on control the flow of execution in Octave
programs. All the control statements start with special keywords such as if and while, to
distinguish them from simple expressions. Many control statements contain other statements;
for example, the if statement contains another statement which may or may not be executed.

Each control statement has a corresponding end statement that marks the end of the end of
the control statement. For example, the keyword endif marks the end of an if statement, and
endwhile marks the end of a while statement. You can use the keyword end anywhere a more
specific end keyword is expected, but using the more specific keywords is preferred because if
you use them, Octave is able to provide better diagnostics for mismatched or missing end tokens.

The list of statements contained between keywords like if or while and the corresponding
end statement is called the body of a control statement.

10.1 The if Statement

The if statement is Octave’s decision-making statement. There are three basic forms of an if
statement. In its simplest form, it looks like this:

if (condition)
then-body
endif

condition is an expression that controls what the rest of the statement will do. The then-body
is executed only if condition is true.

The condition in an if statement is considered true if its value is non-zero, and false if its
value is zero. If the value of the conditional expression in an if statement is a vector or a
matrix, it is considered true only if it is non-empty and all of the elements are non-zero.

The second form of an if statement looks like this:

if (condition)
then-body
else
else-body
endif

If condition is true, then-body is executed; otherwise, else-body is executed.
Here is an example:
if (rem (x, 2) == 0)
printf ("x is even\n");
else

printf ("x is odd\n");
endif

In this example, if the expression rem (x, 2) == 0 is true (that is, the value of x is divisible
by 2), then the first printf statement is evaluated, otherwise the second printf statement is
evaluated.

The third and most general form of the if statement allows multiple decisions to be combined
in a single statement. It looks like this:
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if (condition)
then-body

elseif (condition)
elseif-body

else
else-body

endif

Any number of elseif clauses may appear. Each condition is tested in turn, and if one is found
to be true, its corresponding body is executed. If none of the conditions are true and the else
clause is present, its body is executed. Only one else clause may appear, and it must be the
last part of the statement.

In the following example, if the first condition is true (that is, the value of x is divisible by
2), then the first printf statement is executed. If it is false, then the second condition is tested,
and if it is true (that is, the value of x is divisible by 3), then the second printf statement is
executed. Otherwise, the third printf statement is performed.

if (rem (x, 2) == 0)
printf ("x is even\n");
elseif (rem (x, 3) == 0)
printf ("x is odd and divisible by 3\n");
else
printf ("x is odd\n");
endif
Note that the elseif keyword must not be spelled else if, as is allowed in Fortran. If it is,
the space between the else and if will tell Octave to treat this as a new if statement within
another if statement’s else clause. For example, if you write
if (c1)
body-1
else if (c2)
body-2
endif
Octave will expect additional input to complete the first if statement. If you are using Octave
interactively, it will continue to prompt you for additional input. If Octave is reading this input
from a file, it may complain about missing or mismatched end statements, or, if you have not
used the more specific end statements (endif, endfor, etc.), it may simply produce incorrect
results, without producing any warning messages.
It is much easier to see the error if we rewrite the statements above like this,
if (c1)
body-1
else
if (c2)
body-2
endif
using the indentation to show how Octave groups the statements. See Chapter 11 [Functions
and Scripts], page 109.

10.2 The switch Statement

It is very common to take different actions depending on the value of one variable. This is
possible using the if statement in the following way

if (X == 1)
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do_something ();
elseif (X == 2)
do_something_else ();
else
do_something_completely_different ();
endif
This kind of code can however be very cumbersome to both write and maintain. To overcome
this problem Octave supports the switch statement. Using this statement, the above example
becomes

switch (X)
case 1
do_something ();
case 2
do_something_else ();
otherwise
do_something_completely_different ();
endswitch
This code makes the repetitive structure of the problem more explicit, making the code easier to
read, and hence maintain. Also, if the variable X should change it’s name, only one line would
need changing compared to one line per case when if statements are used.

The general form of the switch statement is

switch expression
case label

command_list
case label

command_1list

otherwise
command_1list
endswitch
where label can be any expression. However, duplicate label values are not detected, and only
the command_list corresponding to the first match will be executed. For the switch statement
to be meaningful at least one case label command_list clause must be present, while the
otherwise command_list clause is optional.

If label is a cell array the corresponding command_list is executed if any of the elements of
the cell array match expression. As an example, the following program will print ‘Variable is
either 6 or 7.

A=T7;
switch A

case { 6, 7 }
printf ("variable is either 6 or 7\n");

otherwise
printf ("variable is neither 6 nor 7\n");

endswitch
As with all other specific end keywords, endswitch may be replaced by end, but you can get
better diagnostics if you use the specific forms.
One advantage of using the switch statement compared to using if statements is that the
labels can be strings. If an if statement is used it is not possible to write
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if (X == "a string") # This is NOT valid
since a character-to-character comparison between X and the string will be made instead of
evaluating if the strings are equal. This special-case is handled by the switch statement, and it
is possible to write programs that look like this
switch (X)
case "a string"
do_something

enéé%itch
10.2.1 Notes for the C programmer

The switch statement is also available in the widely used C programming language. There are,
however, some differences between the statement in Octave and C
e (Cases are exclusive, so they don’t ‘fall through’ as do the cases in the switch statement of
the C language.
e The command_list elements are not optional. Making the list optional would have meant
requiring a separator between the label and the command list. Otherwise, things like
switch (foo)
case (1) -2

would produce surprising results, as would

switch (foo)
case (1)
case (2)

doit )

particularly for C programmers. If doit() should be executed if foo is either 1 or 2, the
above code should be written with a cell array like this

switch (foo)
case {1, 2}
doit )

10.3 The while Statement

In programming, a loop means a part of a program that is (or at least can be) executed two or
more times in succession.

The while statement is the simplest looping statement in Octave. It repeatedly executes a
statement as long as a condition is true. As with the condition in an if statement, the condition
in a while statement is considered true if its value is non-zero, and false if its value is zero. If the
value of the conditional expression in a while statement is a vector or a matrix, it is considered
true only if it is non-empty and all of the elements are non-zero.

Octave’s while statement looks like this:

while (condition)
body
endwhile
Here body is a statement or list of statements that we call the body of the loop, and condition
is an expression that controls how long the loop keeps running.

The first thing the while statement does is test condition. If condition is true, it executes

the statement body. After body has been executed, condition is tested again, and if it is still
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true, body is executed again. This process repeats until condition is no longer true. If condition
is initially false, the body of the loop is never executed.

This example creates a variable £ib that contains the first ten elements of the Fibonacci
sequence.
fib = ones (1, 10);
i= 3;
while (i <= 10)
fib (i) = fib (i-1) + fib (i-2);
i++;

endwhile
Here the body of the loop contains two statements.

The loop works like this: first, the value of i is set to 3. Then, the while tests whether i is
less than or equal to 10. This is the case when i equals 3, so the value of the i-th element of
fib is set to the sum of the previous two values in the sequence. Then the i++ increments the
value of i and the loop repeats. The loop terminates when i reaches 11.

A newline is not required between the condition and the body; but using one makes the
program clearer unless the body is very simple.

10.4 The do-until Statement

The do-until statement is similar to the while statement, except that it repeatedly executes
a statement until a condition becomes true, and the test of the condition is at the end of the
loop, so the body of the loop is always executed at least once. As with the condition in an if
statement, the condition in a do-until statement is considered true if its value is non-zero, and
false if its value is zero. If the value of the conditional expression in a do-until statement is
a vector or a matrix, it is considered true only if it is non-empty and all of the elements are
non-zero.

Octave’s do—until statement looks like this:

do
body
until (condition)

Here body is a statement or list of statements that we call the body of the loop, and condition
is an expression that controls how long the loop keeps running.

This example creates a variable fib that contains the first ten elements of the Fibonacci
sequence.
fib
i =
do
i++;
fib (i) = fib (i-1) + fib (i-2);
until (1 == 10)
A newline is not required between the do keyword and the body; but using one makes the
program clearer unless the body is very simple.

= ones (1, 10);
2;

10.5 The for Statement

The for statement makes it more convenient to count iterations of a loop. The general form of
the for statement looks like this:

for var = expression

body
endfor
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where body stands for any statement or list of statements, expression is any valid expression, and
var may take several forms. Usually it is a simple variable name or an indexed variable. If the
value of expression is a structure, var may also be a vector with two elements. See Section 10.5.1
[Looping Over Structure Elements|, page 104, below.

The assignment expression in the for statement works a bit differently than Octave’s normal
assignment statement. Instead of assigning the complete result of the expression, it assigns each
column of the expression to var in turn. If expression is a range, a row vector, or a scalar, the
value of var will be a scalar each time the loop body is executed. If var is a column vector or a
matrix, var will be a column vector each time the loop body is executed.

The following example shows another way to create a vector containing the first ten elements
of the Fibonacci sequence, this time using the for statement:

fib = ones (1, 10);
for i = 3:10

fib (i) = fib (i-1) + fib (i-2);
endfor

This code works by first evaluating the expression 3:10, to produce a range of values from 3 to
10 inclusive. Then the variable i is assigned the first element of the range and the body of the
loop is executed once. When the end of the loop body is reached, the next value in the range
is assigned to the variable i, and the loop body is executed again. This process continues until
there are no more elements to assign.

Within Octave is it also possible to iterate over matrices or cell arrays using the for statement.
For example consider

disp("Loop over a matrix")
for i = [1,3;2,4]
i
endfor
disp("Loop over a cell array")
for i = {1,"two";"three",4}
i
endfor
In this case the variable i takes on the value of the columns of the matrix or cell matrix. So the
first loop iterates twice, producing two column vectors [1;2], followed by [3;4], and likewise
for the loop over the cell array. This can be extended to loops over multidimensional arrays.
For example

a = [1,3;2,4]; b = cat(3, a, 2*a);
for i = ¢

i
endfor

In the above case, the multidimensional matrix c¢ is reshaped to a two dimensional matrix as
reshape (c, rows(c), prod(size(c)(2:end))) and then the same behavior as a loop over a
two dimensional matrix is produced.

Although it is possible to rewrite all for loops as while loops, the Octave language has both
statements because often a for loop is both less work to type and more natural to think of.
Counting the number of iterations is very common in loops and it can be easier to think of this
counting as part of looping rather than as something to do inside the loop.

10.5.1 Looping Over Structure Elements

A special form of the for statement allows you to loop over all the elements of a structure:
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for [ val, key ] = expression
body
endfor

In this form of the for statement, the value of expression must be a structure. If it is, key and
val are set to the name of the element and the corresponding value in turn, until there are no
more elements. For example,

x.a=1
x.b = [1, 2; 3, 4]
x.c = "string"
for [val, key] = x
key
val
endfor
- key = a
- val =1
- key =D
- val =
_{
o 1 2
- 3 4
_|
- key = ¢
- val = string

The elements are not accessed in any particular order. If you need to cycle through the list
in a particular way, you will have to use the function fieldnames and sort the list yourself.

The key variable may also be omitted. If it is, the brackets are also optional. This is useful
for cycling through the values of all the structure elements when the names of the elements do
not need to be known.

10.6 The break Statement

The break statement jumps out of the innermost for or while loop that encloses it. The break
statement may only be used within the body of a loop. The following example finds the smallest
divisor of a given integer, and also identifies prime numbers:

num = 103;
div = 2;
while (div*div <= num)
if (rem (num, div) == 0)
break;
endif
div++;
endwhile
if (rem (num, div) == 0)
printf ("Smallest divisor of Jd is %d\n", num, div)
else
printf ("%d is prime\n", num);
endif

When the remainder is zero in the first while statement, Octave immediately breaks out of
the loop. This means that Octave proceeds immediately to the statement following the loop
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and continues processing. (This is very different from the exit statement which stops the entire
Octave program.)

Here is another program equivalent to the previous one. It illustrates how the condition of a
while statement could just as well be replaced with a break inside an if:

num = 103;
div = 2;
while (1)
if (rem (num, div) == 0)
printf ("Smallest divisor of %d is %d\n", num, div);
break;
endif
div++;
if (div*div > num)
printf ("%d is prime\n", num);
break;
endif
endwhile

10.7 The continue Statement

The continue statement, like break, is used only inside for or while loops. It skips over the
rest of the loop body, causing the next cycle around the loop to begin immediately. Contrast
this with break, which jumps out of the loop altogether. Here is an example:

# print elements of a vector of random
# integers that are even.

# first, create a row vector of 10 random
# integers with values between O and 100:

vec = round (rand (1, 10) * 100);
# print what we’re interested in:

for x = vec
if (rem (x, 2) !'= 0)
continue;
endif
printf ("%d\n", x);
endfor

If one of the elements of vec is an odd number, this example skips the print statement for
that element, and continues back to the first statement in the loop.

This is not a practical example of the continue statement, but it should give you a clear
understanding of how it works. Normally, one would probably write the loop like this:

for x = vec
if (rem (x, 2) == 0)
printf ("%d\n", x);
endif
endfor
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10.8 The unwind_protect Statement

Octave supports a limited form of exception handling modelled after the unwind-protect form
of Lisp.
The general form of an unwind_protect block looks like this:

unwind_protect
body
unwind_protect_cleanup
cleanup
end_unwind_protect

where body and cleanup are both optional and may contain any Octave expressions or com-
mands. The statements in cleanup are guaranteed to be executed regardless of how control exits
body.

This is useful to protect temporary changes to global variables from possible errors. For exam-
ple, the following code will always restore the original value of the global variable frobnositcate
even if an error occurs while performing the indexing operation.

save_frobnosticate = frobnosticate;
unwind_protect
frobnosticate = true;

unwind_protect_cleanup
frobnosticate = save_frobnosticate;
end_unwind_protect

Without unwind_protect, the value of frobnosticate would not be restored if an error occurs
while performing the indexing operation because evaluation would stop at the point of the error
and the statement to restore the value would not be executed.

10.9 The try Statement

In addition to unwind_protect, Octave supports another limited form of exception handling.
The general form of a try block looks like this:

try

body
catch

cleanup
end_try_catch

where body and cleanup are both optional and may contain any Octave expressions or com-
mands. The statements in cleanup are only executed if an error occurs in body.

No warnings or error messages are printed while body is executing. If an error does occur
during the execution of body, cleanup can use the function lasterr to access the text of the
message that would have been printed. This is the same as eval (try, catch) but it is more
efficient since the commands do not need to be parsed each time the try and catch statements
are evaluated. See Chapter 12 [Errors and Warnings|, page 127, for more information about the
lasterr function.

10.10 Continuation Lines

In the Octave language, most statements end with a newline character and you must tell Octave
to ignore the newline character in order to continue a statement from one line to the next. Lines
that end with the characters ... or \ are joined with the following line before they are divided
into tokens by Octave’s parser. For example, the lines
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x = long_variable_name
+ longer_variable_name \
- 42
form a single statement. The backslash character on the second line above is interpreted as a
continuation character, not as a division operator.

For continuation lines that do not occur inside string constants, whitespace and comments
may appear between the continuation marker and the newline character. For example, the
statement

X = long_variable_name ... # comment one
+ longer_variable_name \ # comment two
- 42 # last comment

is equivalent to the one shown above. Inside string constants, the continuation marker must
appear at the end of the line just before the newline character.

Input that occurs inside parentheses can be continued to the next line without having to use
a continuation marker. For example, it is possible to write statements like

if (fine_dining_destination == on_a_boat
|| fine_dining destination == on_a_train)
seuss (i, will, not, eat, them, sam, i, am, i,
will, not, eat, green, eggs, and, ham);
endif

without having to add to the clutter with continuation markers.
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11 Functions and Script Files

Complicated Octave programs can often be simplified by defining functions. Functions can be
defined directly on the command line during interactive Octave sessions, or in external files, and
can be called just like built-in functions.

11.1 Defining Functions

In its simplest form, the definition of a function named name looks like this:

function name
body
endfunction

A valid function name is like a valid variable name: a sequence of letters, digits and underscores,
not starting with a digit. Functions share the same pool of names as variables.

The function body consists of Octave statements. It is the most important part of the
definition, because it says what the function should actually do.

For example, here is a function that, when executed, will ring the bell on your terminal
(assuming that it is possible to do so):

function wakeup
printf ("\a");
endfunction
The printf statement (see Chapter 14 [Input and Output], page 139) simply tells Octave to
print the string "\a". The special character ‘\a’ stands for the alert character (ASCII 7). See
Chapter 5 [Strings|, page 43.

Once this function is defined, you can ask Octave to evaluate it by typing the name of the
function.

Normally, you will want to pass some information to the functions you define. The syntax
for passing parameters to a function in Octave is

function name (arg-list)
body
endfunction

where arg-list is a comma-separated list of the function’s arguments. When the function is
called, the argument names are used to hold the argument values given in the call. The list of
arguments may be empty, in which case this form is equivalent to the one shown above.

To print a message along with ringing the bell, you might modify the wakeup to look like
this:

function wakeup (message)
printf ("\aJs\n", message);
endfunction

Calling this function using a statement like this
wakeup ("Rise and shine!");

will cause Octave to ring your terminal’s bell and print the message ‘Rise and shine!’; followed
by a newline character (the ‘\n’ in the first argument to the printf statement).

In most cases, you will also want to get some information back from the functions you define.
Here is the syntax for writing a function that returns a single value:

function ret-var = name (arg-list)
body
endfunction
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The symbol ret-var is the name of the variable that will hold the value to be returned by the
function. This variable must be defined before the end of the function body in order for the
function to return a value.

Variables used in the body of a function are local to the function. Variables named in arg-
list and ret-var are also local to the function. See Section 7.1 [Global Variables|, page 73, for
information about how to access global variables inside a function.

For example, here is a function that computes the average of the elements of a vector:

function retval = avg (v)
retval = sum (v) / length (v);
endfunction

If we had written avg like this instead,

function retval = avg (v)
if (isvector (v))
retval = sum (v) / length (v);
endif
endfunction

and then called the function with a matrix instead of a vector as the argument, Octave would
have printed an error message like this:

error: ‘retval’ undefined near line 1 column 10
error: evaluating index expression near line 7, column 1

because the body of the if statement was never executed, and retval was never defined. To
prevent obscure errors like this, it is a good idea to always make sure that the return variables will
always have values, and to produce meaningful error messages when problems are encountered.
For example, avg could have been written like this:

function retval = avg (v)
retval = 0;
if (isvector (v))
retval = sum (v) / length (v);
else
error ("avg: expecting vector argument");
endif
endfunction

There is still one additional problem with this function. What if it is called without an
argument? Without additional error checking, Octave will probably print an error message that
won’t really help you track down the source of the error. To allow you to catch errors like this,
Octave provides each function with an automatic variable called nargin. Each time a function
is called, nargin is automatically initialized to the number of arguments that have actually been
passed to the function. For example, we might rewrite the avg function like this:

function retval = avg (v)
retval = 0;
if (nargin != 1)
usage ("avg (vector)");
endif
if (isvector (v))
retval = sum (v) / length (v);
else
error ("avg: expecting vector argument");
endif
endfunction
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Although Octave does not automatically report an error if you call a function with more
arguments than expected, doing so probably indicates that something is wrong. Octave also
does not automatically report an error if a function is called with too few arguments, but any
attempt to use a variable that has not been given a value will result in an error. To avoid such
problems and to provide useful messages, we check for both possibilities and issue our own error
message.

nargin () [Built-in Function]

nargin (fcn_name) [Built-in Function]
Within a function, return the number of arguments passed to the function. At the top level,
return the number of command line arguments passed to Octave. If called with the optional
argument fcn_name, return the maximum number of arguments the named function can
accept, or -1 if the function accepts a variable number of arguments.

See also: nargout, varargin, varargout.

inputname (n) [Function File]
Return the text defining n-th input to the function.

val = silent_functions () [Built-in Function]

old_val = silent_functions (new_val) [Built-in Function]
Query or set the internal variable that controls whether internal output from a function is
suppressed. If this option is disabled, Octave will display the results produced by evaluating
expressions within a function body that are not terminated with a semicolon.

11.2 Multiple Return Values

Unlike many other computer languages, Octave allows you to define functions that return more
than one value. The syntax for defining functions that return multiple values is

function [ret-list] = name (arg-list)
body
endfunction

where name, arg-list, and body have the same meaning as before, and ret-list is a comma-
separated list of variable names that will hold the values returned from the function. The list of
return values must have at least one element. If ret-list has only one element, this form of the
function statement is equivalent to the form described in the previous section.

Here is an example of a function that returns two values, the maximum element of a vector
and the index of its first occurrence in the vector.

function [max, idx] = vmax (v)

idx = 1;
max = v (idx);
for i = 2:length (v)

if (v (i) > max)
max = v (i);
idx = i;
endif
endfor
endfunction

In this particular case, the two values could have been returned as elements of a single array,
but that is not always possible or convenient. The values to be returned may not have compatible
dimensions, and it is often desirable to give the individual return values distinct names.
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In addition to setting nargin each time a function is called, Octave also automatically ini-
tializes nargout to the number of values that are expected to be returned. This allows you to
write functions that behave differently depending on the number of values that the user of the
function has requested. The implicit assignment to the built-in variable ans does not figure in
the count of output arguments, so the value of nargout may be zero.

The svd and 1u functions are examples of built-in functions that behave differently depending
on the value of nargout.

It is possible to write functions that only set some return values. For example, calling the
function

function [x, y, z] = £ ()
x =1;
z = 2;
endfunction
as
[a, b, c] = O
produces:

a=1

b = [1(0x0)

c =2

along with a warning.

nargout () [Built-in Function]

nargout (fcn_name) [Built-in Function]
Within a function, return the number of values the caller expects to receive. If called with
the optional argument fcn_name, return the maximum number of values the named function
can produce, or -1 if the function can produce a variable number of values.

For example,

f 0O
will cause nargout to return O inside the function f and
[s, t] = O

will cause nargout to return 2 inside the function f.
At the top level, nargout is undefined.

See also: nargin, varargin, varargout.

nargchk (nargin_min, nargin_max, n) [Function File]
If n is in the range nargin_min through nargin_max inclusive, return the empty matrix.
Otherwise, return a message indicating whether n is too large or too small.

This is useful for checking to see that the number of arguments supplied to a function is
within an acceptable range.

11.3 Variable-length Argument Lists

Sometimes the number of input arguments is not known when the function is defined. As an
example think of a function that returns the smallest of all its input arguments. For example,

a = smallest (1, 2, 3);
b = smallest (1, 2, 3, 4);

In this example both a and b would be 1. One way to write the smallest function is
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function val = smallest (argl, arg2, arg3, arg4, argb)
body

endfunction
and then use the value of nargin to determine which of the input arguments should be con-
sidered. The problem with this approach is that it can only handle a limited number of input
arguments.

Octave supports the varargin keyword for handling a variable number of input arguments.

Using varargin the function looks like this

function val = smallest (varargin)
body
endfunction
In the function body the input arguments can be accessed through the variable varargin. This
variable is a cell array containing all the input arguments. See Section 6.2 [Cell Arrays]|, page 64,
for details on working with cell arrays. The smallest function can now be defined like this

function val = smallest (varargin)
val = min ([varargin{:}]);
endfunction
This implementation handles any number of input arguments, but it’s also a very simple solution
to the problem.
A slightly more complex example of varargin is a function print_arguments that prints all
input arguments. Such a function can be defined like this
function print_arguments (varargin)
for i = 1:length (varargin)
printf ("Input argument %d: ", i);
disp (varargin{il});
endfor
endfunction
This function produces output like this
print_arguments (1, "two", 3);
- Input argument 1: 1
- Input argument 2: two
- Input argument 3: 3

[reg, prop] = parseparams (params) [Function File]
Return in reg the cell elements of param up to the first string element and in prop all
remaining elements beginning with the first string element. For example

[reg, prop] = parseparams ({1, 2, "linewidth", 10})

reg =
{
(1,11 =1
[1,2] =2
b
prop =
{

[1,1] = linewidth
[1,2] 10

}

The parseparams function may be used to separate 'regular’ arguments and additional argu-
ments given as property/value pairs of the varargin cell array.

See also: varargin.
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11.4 Variable-length Return Lists

It is possible to return a variable number of output arguments from a function using a syntax
that’s similar to the one used with the varargin keyword. To let a function return a variable
number of output arguments the varargout keyword is used. As with varargin varargout is
a cell array that will contain the requested output arguments.

As an example the following function sets the first output argument to 1, the second to 2,
and so on.

function varargout = one_to_n ()
for i = l:nargout
varargout{i} = i;
endfor
endfunction

When called this function returns values like this

[a, b, c] = one_to_n ()

a= 1

= b= 2

= c 3
[r1, r2, ..., rn] = deal (a) [Function File]
[r1, r2, ..., rn] = deal (ail, a2, ..., an) [Function File]

Copy the input parameters into the corresponding output parameters. If only one input
parameter is supplied, its value is copied to each of the outputs.

For example,

[a, b, c] deal (%, y, 2z);

is equivalent to

a = x;
= y;
c = z;
and
[a, b, c] = deal (x);

is equivalent to

a=b=c=zx;

11.5 Returning From a Function

The body of a user-defined function can contain a return statement. This statement returns
control to the rest of the Octave program. It looks like this:

return

Unlike the return statement in C, Octave’s return statement cannot be used to return a
value from a function. Instead, you must assign values to the list of return variables that are
part of the function statement. The return statement simply makes it easier to exit a function
from a deeply nested loop or conditional statement.

Here is an example of a function that checks to see if any elements of a vector are nonzero.
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function retval = any_nonzero (v)
retval = 0;
for i = 1l:length (v)
if (v (1) '= 0)
retval = 1;
return;
endif
endfor
printf ("no nonzero elements found\n");
endfunction
Note that this function could not have been written using the break statement to exit the
loop once a nonzero value is found without adding extra logic to avoid printing the message if
the vector does contain a nonzero element.

return [Keyword]
When Octave encounters the keyword return inside a function or script, it returns control to
the caller immediately. At the top level, the return statement is ignored. A return statement
is assumed at the end of every function definition.

11.6 Default Arguments

Since Octave supports variable number of input arguments, it is very useful to assign default
values to some input arguments. When an input argument is declared in the argument list it is
possible to assign a default value to the argument like this
function name (argl = vall, ...)
body
endfunction
If no value is assigned to argl by the user, it will have the value vall.
As an example, the following function implements a variant of the classic “Hello, World”
program.
function hello (who = "World")
printf ("Hello, %s'\n", who);
endfunction
When called without an input argument the function prints the following

hello O;
- Hello, World!
and when it’s called with an input argument it prints the following
hello ("Beautiful World of Free Software");
< Hello, Beautiful World of Free Software!
Sometimes it is useful to explicitly tell Octave to use the default value of an input argument.
This can be done writing a ‘:’ as the value of the input argument when calling the function.
hello (:);
- Hello, World!

11.7 Function Files

FExcept for simple one-shot programes, it is not practical to have to define all the functions you
need each time you need them. Instead, you will normally want to save them in a file so that
you can easily edit them, and save them for use at a later time.

Octave does not require you to load function definitions from files before using them. You
simply need to put the function definitions in a place where Octave can find them.
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When Octave encounters an identifier that is undefined, it first looks for variables or functions
that are already compiled and currently listed in its symbol table. If it fails to find a definition
there, it searches a list of directories (the path) for files ending in ‘.m’ that have the same base
name as the undefined identifier.! Omnce Octave finds a file with a name that matches, the
contents of the file are read. If it defines a single function, it is compiled and executed. See
Section 11.8 [Script Files|, page 120, for more information about how you can define more than
one function in a single file.

When Octave defines a function from a function file, it saves the full name of the file it read
and the time stamp on the file. If the time stamp on the file changes, Octave may reload the
file. When Octave is running interactively, time stamp checking normally happens at most once
each time Octave prints the prompt. Searching for new function definitions also occurs if the
current working directory changes.

Checking the time stamp allows you to edit the definition of a function while Octave is
running, and automatically use the new function definition without having to restart your Octave
session.

To avoid degrading performance unnecessarily by checking the time stamps on functions
that are not likely to change, Octave assumes that function files in the directory tree ‘octave-
home /share/octave/version/m’ will not change, so it doesn’t have to check their time stamps
every time the functions defined in those files are used. This is normally a very good assumption
and provides a significant improvement in performance for the function files that are distributed
with Octave.

If you know that your own function files will not change while you are running Octave, you
can improve performance by calling ignore_function_time_stamp ("all"), so that Octave
will ignore the time stamps for all function files. Passing "system" to this function resets the
default behavior.

mfilename () [Built-in Function]
mfilename ("fullpath") [Built-in Function]
mfilename ("fullpathext") [Built-in Function]

Return the name of the currently executing file. At the top-level, return the empty string.
Given the argument "fullpath", include the directory part of the file name, but not the
extension. Given the argument "fullpathext", include the directory part of the file name
and the extension.

val = ignore_function_time_stamp () [Built-in Function]

old_val = ignore_function_time_stamp (new_val) [Built-in Function]
Query or set the internal variable that controls whether Octave checks the time stamp on
files each time it looks up functions defined in function files. If the internal variable is
set to "system", Octave will not automatically recompile function files in subdirectories of
‘octave-home/lib/version’ if they have changed since they were last compiled, but will
recompile other function files in the search path if they change. If set to "all", Octave will
not recompile any function files unless their definitions are removed with clear. If set to
"none", Octave will always check time stamps on files to determine whether functions defined
in function files need to be recompiled.

11.7.1 Manipulating the load path

When a function is called Octave searches a list of directories for a file that contains the function
declaration. This list of directories is known as the load path. By default the load path contains
a list of directories distributed with Octave plus the current working directory. To see your
current load path call the path function without any input or output arguments.

1 The .m’ suffix was chosen for compatibility with MATLAB.
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It is possible to add or remove directories to or from the load path using the addpath and
rmpath. As an example, the following code adds ‘~/0Octave’ to the load path.

addpath("~/0ctave")

After this the directory ‘~/0ctave’ will be searched for functions.

addpath (diri, ...) [Built-in Function]
addpath (dirli, ..., option) [Built-in Function]
Add dirl, ... to the current function search path. If option is ‘"-begin"’ or 0 (the default),

prepend the directory name to the current path. If option is ‘"-end"’ or 1, append the
directory name to the current path. Directories added to the path must exist.

See also: path, rmpath, genpath, pathdef, savepath, pathsep.

genpath (dir) [Built-in Function]
Return a path constructed from dir and all its subdiretories.

rmpath (diri, ...) [Built-in Function]
Remove dirl, ... from the current function search path.

See also: path, addpath, genpath, pathdef, savepath, pathsep.

savepath (file) [Function File]
Save the current function search path to file. If file is omitted, ‘”/.octaverc’ is used. If
successful, savepath returns 0.

See also: path, addpath, rmpath, genpath, pathdef, pathsep.

path (...) [Built-in Function]
Modify or display Octave’s load path.

If nargin and nargout are zero, display the elements of Octave’s load path in an easy to read
format.

If nargin is zero and nargout is greater than zero, return the current load path.

If nargin is greater than zero, concatenate the arguments, separating them with pathsep().
Set the internal search path to the result and return it.

No checks are made for duplicate elements.

See also: addpath, rmpath, genpath, pathdef, savepath, pathsep.

val = pathdef () [Built-in Function]
Return the default list of directories in which to search for function files.

See also: path, addpath, rmpath, genpath, savepath, pathsep.

pathsep () [Built-in Function]
Return the system-dependent character used to separate directories in a path.

See also: filesep, dir, Is.

rehash () [Built-in Function]
Reinitialize Octave’s load path directory cache.
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file_in_loadpath (file) [Built-in Function]

file_in_loadpath (file, "all") [Built-in Function]
Return the absolute name of file if it can be found in the list of directories specified by path.
If no file is found, return an empty matrix.

If the first argument is a cell array of strings, search each directory of the loadpath for element
of the cell array and return the first that matches.

If the second optional argument "all" is supplied, return a cell array containing the list of
all files that have the same name in the path. If no files are found, return an empty cell array.

See also: file_in_path, path.
11.7.2 Subfunctions

A function file may contain secondary functions called subfunctions. These secondary functions
are only visible to the other functions in the same function file. For example, a file ‘f.m’
containing

function £ ()
printf ("in f, calling g\n");
g O
endfunction
function g ()
printf ("in g, calling h\n");
h O
endfunction
function h O
printf ("in h\n")
endfunction
defines a main function £ and two subfunctions. The subfunctions g and h may only be called
from the main function f or from the other subfunctions, but not from outside the file ‘f.m’.

11.7.3 Overloading and Autoloading

The dispatch function can be used to alias one function name to another. It can be used to
alias all calls to a particular function name to another function, or the alias can be limited to
only a particular variable type. Consider the example
function y = spsin (x)
printf ("Calling spsin\n");
fflush(stdout);
y = spfun ("sin", x);
endfunction

dispatch ("sin", "spsin", "sparse matrix");

yO = sin(eye(3));

y1l = sin(speye(3));
Which aliases the spsin to sin, but only for real sparse matrices. Note that the builtin sin
already correctly treats sparse matrices and so this example is only illustrative.

dispatch (f, r, type) [Loadable Function]
Replace the function f with a dispatch so that function r is called when f is called with the
first argument of the named type. If the type is any then call r if no other type matches.
The original function f is accessible using builtin (£, ...).

If r is omitted, clear dispatch function associated with type.

If both r and type are omitted, list dispatch functions for f.
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See also: builtin.

[...] builtin (f,...) [Loadable Function]
Call the base function f even if f is overloaded to some other function for the given type
signature.

See also: dispatch.

A single dynamically linked file might define several functions. However, as Octave searches
for functions based on the functions filename, Octave needs a manner in which to find each of the
functions in the dynamically linked file. On operating systems that support symbolic links, it is
possible to create a symbolic link to the original file for each of the functions which it contains.

However, there is at least one well known operating system that doesn’t support symbolic
links. Making copies of the original file for each of the functions is also possible, but is undesirable
as it multiples the amount of disk space used by Octave. Instead Octave supplies the autoload
function, that permits the user to define in which file a certain function will be found.

autoload (function, file) [Built-in Function]
Define function to autoload from file.

The second argument, file, should be an absolute file name or a file name in the same directory
as the function or script from which the autoload command was run. file should not depend
on the Octave load path.

Normally, calls to autoload appear in PKG_ADD script files that are evaluated when a
directory is added to the Octave’s load path. To avoid having to hardcode directory names
in file, if file is in the same directory as the PKG_ADD script then

autoload ("foo", "bar.oct");

will load the function foo from the file bar.oct. The above when bar.oct is not in the same
directory or uses like

autoload ("foo", file_in_loadpath ("bar.oct"))
are strongly discouraged, as their behavior might be unpredictable.

With no arguments, return a structure containing the current autoload map.
See also: PKG_ADD.

11.7.4 Function Locking

It is sometime desirable to lock a function into memory with the mlock function. This is typically
used for dynamically linked functions in Oct-files or mex-files that contain some initialization,
and it is desirable that calling clear does not remove this initialization.

As an example,
mlock ("my_function");

prevents my_function from being removed from memory, even if clear is called. It is possible
to determine if a function is locked into memory with the mislocked, and to unlock a function
with munlock, which the following illustrates.

mlock ("my_function");

mislocked ("my_function")

= ans =1

munlock ("my_function");

mislocked ("my_function")

= ans =0

A common use of mlock is to prevent persistent variables from being removed from memory,

as the following example shows.
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function count_calls()

persistent calls = O;

printf ("’count_calls’ has been called ’%d times\n", ++calls);
endfunction
mlock ("count_calls");

count_calls ();
< ’count_calls’ has been called 1 times

clear count_calls
count_calls ();
< ’count_calls’ has been called 2 times

It is, however, often inconvenient to lock a function from the prompt, so it is also possible to lock
a function from within its body. This is simply done by calling mlock from within the function.

function count_calls ()

mlock (Q);

persistent calls = O;

printf ("’count_calls’ has been called %d times\n", ++calls);
endfunction

mlock might equally be used to prevent changes to a function from having effect in Octave,
though a similar effect can be had with the ignore_function_time_stamp function.

mlock (name) [Built-in Function]
Lock the named function into memory. If no function is named then lock in the current
function.

See also: munlock, mislocked, persistent.

munlock (fcn) [Built-in Function]
Unlock the named function. If no function is named then unlock the current function.

See also: mlock, mislocked, persistent.

mislocked (fcn) [Built-in Function]
Return true if the named function is locked. If no function is named then return true if the
current function is locked.

See also: mlock, munlock, persistent.

11.8 Script Files

A script file is a file containing (almost) any sequence of Octave commands. It is read and eval-
uated just as if you had typed each command at the Octave prompt, and provides a convenient
way to perform a sequence of commands that do not logically belong inside a function.

Unlike a function file, a script file must not begin with the keyword function. If it does,
Octave will assume that it is a function file, and that it defines a single function that should be
evaluated as soon as it is defined.

A script file also differs from a function file in that the variables named in a script file are not
local variables, but are in the same scope as the other variables that are visible on the command
line.

Even though a script file may not begin with the function keyword, it is possible to define
more than one function in a single script file and load (but not execute) all of them at once. To
do this, the first token in the file (ignoring comments and other white space) must be something
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other than function. If you have no other statements to evaluate, you can use a statement that
has no effect, like this:

# Prevent Octave from thinking that this
# is a function file:

1;
# Define function one:

function one ()

To have Octave read and compile these functions into an internal form, you need to make
sure that the file is in Octave’s load path (accessible through the path function), then simply
type the base name of the file that contains the commands. (Octave uses the same rules to
search for script files as it does to search for function files.)

If the first token in a file (ignoring comments) is function, Octave will compile the function
and try to execute it, printing a message warning about any non-whitespace characters that
appear after the function definition.

Note that Octave does not try to look up the definition of any identifier until it needs to
evaluate it. This means that Octave will compile the following statements if they appear in a
script file, or are typed at the command line,

# not a function file:

1

function foo ()
do_something ();

endfunction

function do_something ()
do_something_else ();

endfunction

even though the function do_something is not defined before it is referenced in the function foo.
This is not an error because Octave does not need to resolve all symbols that are referenced by
a function until the function is actually evaluated.

Since Octave doesn’t look for definitions until they are needed, the following code will always
print ‘bar = 3’ whether it is typed directly on the command line, read from a script file, or is
part of a function body, even if there is a function or script file called ‘bar.m’ in Octave’s path.

eval ("bar = 3");
bar

Code like this appearing within a function body could fool Octave if definitions were resolved
as the function was being compiled. It would be virtually impossible to make Octave clever
enough to evaluate this code in a consistent fashion. The parser would have to be able to
perform the call to eval at compile time, and that would be impossible unless all the references
in the string to be evaluated could also be resolved, and requiring that would be too restrictive
(the string might come from user input, or depend on things that are not known until the
function is evaluated).

Although Octave normally executes commands from script files that have the name ‘file.m’,
you can use the function source to execute commands from any file.

source (file) [Built-in Function]
Parse and execute the contents of file. This is equivalent to executing commands from a
script file, but without requiring the file to be named ‘file.m’.
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11.9 Function Handles, Inline Functions, and Anonymous
Functions
It can be very convenient store a function in a variable so that it can be passed to a different

function. For example, a function that performs numerical minimisation needs access to the
function that should be minimised.

11.9.1 Function Handles

A function handle is a pointer to another function and is defined with the syntax
Q@function-name

For example
f = @sin;

Creates a function handle called f that refers to the function sin.

Function handles are used to call other functions indirectly, or to pass a function as an
argument to another function like quad or fsolve. For example

f = @sin;
quad (f, 0, pi)
= 2

You may use feval to call a function using function handle, or simply write the name of the
function handle followed by an argument list. If there are no arguments, you must use an empty
argument list ‘()’. For example

f = @sin;
feval (f, pi/4)
= 0.70711
f (pi/4)
= 0.70711

functions (fcn_handle) [Built-in Function]
Return a struct containing information about the function handle fen_handle.

func2str (fcn_handle) [Built-in Function]
Return a string containing the name of the function referenced by the function handle
fen_handle.

str2func (fcn_name) [Built-in Function]
Return a function handle constructed from the string fen_name.

11.9.2 Anonymous Functions
Anonymous functions are defined using the syntax

@(argument-list) expression
Any variables that are not found in the argument list are inherited from the enclosing scope.
Anonymous functions are useful for creating simple unnamed functions from expressions or for
wrapping calls to other functions to adapt them for use by functions like quad. For example,

f =0(x) x.72;

quad (f, 0, 10)

= 333.33

creates a simple unnamed function from the expression x.~2 and passes it to quad,

quad (@(x) sin (x), 0, pi)
= 2

wraps another function, and
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a=1;

b = 2;

quad (@(x) betainc (x, a, b), 0, 0.4)
= 0.13867

adapts a function with several parameters to the form required by quad. In this example, the
values of a and b that are passed to betainc are inherited from the current environment.

11.9.3 Inline Functions

An inline function is created from a string containing the function body using the inline
function. The following code defines the function f(x) = z? + 2.

f = inline("x"2 + 2");

After this it is possible to evaluate f at any x by writing £ (x).

inline (str) [Built-in Function]
inline (str, argi, ...) [Built-in Function]
inline (str, n) [Built-in Function]

Create an inline function from the character string str. If called with a single argument, the
arguments of the generated function are extracted from the function itself. The generated
function arguments will then be in alphabetical order. It should be noted that i, and j are
ignored as arguments due to the ambiguity between their use as a variable or their use as an
inbuilt constant. All arguments followed by a parenthesis are considered to be functions.

If the second and subsequent arguments are character strings, they are the names of the
arguments of the function.

If the second argument is an integer n, the arguments are "x", "P1" ... "PN".

See also: argnames, formula, vectorize.

argnames (fun) [Built-in Function]
Return a cell array of character strings containing the names of the arguments of the inline
function fun.

See also: inline, formula, vectorize.

formula (fun) [Built-in Function]
Return a character string representing the inline function fun. Note that char (fun) is
equivalent to formula (fun).

See also: argnames, inline, vectorize.

vectorize (fun) [Built-in Function]
Create a vectorized version of the inline function fun by replacing all occurrences of *, /, etc.,
with .*, ./, etc.

11.10 Commands

Commands are a special class of functions that only accept string input arguments. A command
can be called as an ordinary function, but it can also be called without the parentheses like the
following example shows

my_command hello world
which is the same as
my_command ("hello", "world")

The general form of a command call is
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name argl arg2
which translates directly to
name ("argl", "arg2", ...)

A function can be used as a command if it accepts string input arguments. To do this,
the function must be marked as a command, which can be done with the mark_as_command
command like this

mark_as_command name
where name is the function to be marked as a command.

One difficulty of commands occurs when one of the string input arguments are stored in a
variable. Since Octave can’t tell the difference between a variable name, and an ordinary string,
it is not possible to pass a variable as input to a command. In such a situation a command must
be called as a function.

mark_as_command (name) [Built-in Function]
Enter name into the list of commands.

See also: unmark_command, iscommand.

unmark_command (name) [Built-in Function]
Remove name from the list of commands.

See also: mark_as_command, iscommand.

iscommand (name) [Built-in Function]
Return true if name is a command style function. If name is omitted, return a list of identifiers
which are marked as commands with mark_as_command.

See also: mark_as_command, unmark_command.

mark_as_rawcommand (name) [Built-in Function)]
Enter name into the list of raw input commands and to the list of command style functions.
Raw input commands are like normal command style functions, but they receive their input
unprocessed (ie. strings still contain the quotes and escapes they had when input). However,
comments and continuations are handled as usual, you cannot pass a token starting with a
comment character ("#’ or '%’) to your function, and the last token cannot be a continuation
token ("\" or "...7).

See also: unmark_rawcommand, israwcommand, iscommand, mark_as_command.

unmark_rawcommand (name) [Built-in Function]
Remove name from the list of raw input commands. Note that this does not remove name
from the list of command style functions.

See also: mark_as_rawcommand, israwcommand, iscommand, unmark_command.

israwcommand (name) [Built-in Function]
Return true if name is a raw input command function. If name is omitted, return a list of
identifiers which are marked as raw input commands with mark_as_rawcommand.

See also: mark_as_rawcommand, unmark_rawcommand.
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11.11 Organization of Functions Distributed with Octave

Many of Octave’s standard functions are distributed as function files. They are loosely organized
by topic, in subdirectories of ‘octave-home/lib/octave/version/m’, to make it easier to find

them.

The following is a list of all the function file subdirectories, and the types of functions you
will find there.

‘audio’
‘control’
¢ )
elfun
‘finance’

‘general’

‘image’

4io7

Functions for playing and recording sounds.

Functions for design and simulation of automatic control systems.

Elementary functions.

Functions for computing interest payments, investment values, and rates of return.

Miscellaneous matrix manipulations, like f1ipud, rot90, and triu, as well as other
basic functions, like ismatrix, nargchk, etc.

Image processing tools. These functions require the X Window System.

Input-ouput functions.

‘linear-algebra’

Functions for linear algebra.

‘miscellaneous’

Functions that don’t really belong anywhere else.

‘optimization’

Minimization of functions.

‘path’ Functions to manage the directory path Octave uses to find functions.
‘pkg’ Install external packages of functions in Octave.
‘plot’ Functions for displaying and printing two- and three-dimensional graphs.
‘polynomial’
Functions for manipulating polynomials.
‘set’ Functions for creating and manipulating sets of unique values.
‘signal’  Functions for signal processing applications.
‘sparse’  Functions for handling sparse matrices.
‘specfun’ Special functions.

‘special-matrix’

Functions that create special matrix forms.

‘startup’ Octave’s system-wide startup file.
‘statistics’

Statistical functions.
‘strings’ Miscellaneous string-handling functions.
‘testfun’ Perform unit tests on other functions.
‘time’ Functions related to time keeping.
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12 Errors and Warnings

Octave includes several functions for printing error and warning messages. When you write
functions that need to take special action when they encounter abnormal conditions, you should
print the error messages using the functions described in this chapter.

Since many of Octave’s functions use these functions, it is also useful to understand them,
so that errors and warnings can be handled.

12.1 Handling Errors

An error is something that occurs when a program is in a state where it doesn’t make sense
to continue. An example is when a function is called with too few input arguments. In this
situation the function should abort with an error message informing the user of the lacking input
arguments.

Since an error can occur during the evaluation of a program, it is very convenient to be able
to detect that an error occurred, so that the error can be fixed. This is possible with the try
statement described in Section 10.9 [The try Statement], page 107.

12.1.1 Raising Errors

The most common use of errors is for checking input arguments to functions. The following
example calls the error function if the function f is called without any input arguments.

function f (argl)
if (nargin == 0)
error("not enough input arguments");
endif
endfunction

When the error function is called, it prints the given message and returns to the Octave
prompt. This means that no code following a call to error will be executed.

error (template, ...) [Built-in Function]
Format the optional arguments under the control of the template string template using
the same rules as the printf family of functions (see Section 14.2.4 [Formatted Output],
page 151) and print the resulting message on the stderr stream. The message is prefixed by
the character string ‘error: ’.

Calling error also sets Octave’s internal error state such that control will return to the top
level without evaluating any more commands. This is useful for aborting from functions or
scripts.

If the error message does not end with a new line character, Octave will print a traceback of all
the function calls leading to the error. For example, given the following function definitions:

function £ () g (); end
function g () h (); end
function h () nargin == 1 || error ("nargin != 1"); end

calling the function £ will result in a list of messages that can help you to quickly locate the
exact location of the error:

£ 0

error: nargin !=1

error: evaluating index expression near line 1, column 30
error: evaluating binary operator ‘||’ near line 1, column 27

error: called from ‘h’
error: called from ‘g’
error: called from ‘f’
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If the error message ends in a new line character, Octave will print the message but will not
display any traceback messages as it returns control to the top level. For example, modifying
the error message in the previous example to end in a new line causes Octave to only print
a single message:

function h () nargin == 1 || error ("nargin != 1\n"); end
£ 0
error: nargin !=1

Since it is common to use errors when there is something wrong with the input to a function,
Octave supports functions to simplify such code. When the print_usage function is called,
it reads the help text of the function calling print_usage, and presents a useful error. If the
help text is written in Texinfo it is possible to present an error message that only contains the
function prototypes as described by the @deftypefn parts of the help text. When the help text
isn’t written in Texinfo, the error message contains the entire help message.

Consider the following function.

## —-x- texinfo —*-
## Q@deftypefn {Function File} f (@var{argl})
## Function help text goes here...
## Qend deftypefn
function f (argl)

if (nargin == 0)

print_usage O);

endif

endfunction

When it is called with no input arguments it produces the following error.

£ 0
- Invalid call to f. Correct usage is:
_{
4 -- Function File: f (ARG1)
_|
_|
_|
-1 error: evaluating if command near line 6, column 3
- error: called from ‘f’ in file ‘/home/jwe/octave/f.m’
print_usage () [Loadable Function)]

Print the usage message for the currently executing function. The print_usage function is
only intended to work inside a user-defined function.

See also: help.

usage (msg) [Built-in Function]
Print the message msg, prefixed by the string ‘usage: ’, and set Octave’s internal error state
such that control will return to the top level without evaluating any more commands. This
is useful for aborting from functions.

After usage is evaluated, Octave will print a traceback of all the function calls leading to the
usage message.

You should use this function for reporting problems errors that result from an improper call
to a function, such as calling a function with an incorrect number of arguments, or with
arguments of the wrong type. For example, most functions distributed with Octave begin
with code like this
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if (nargin != 2)
usage ("foo (a, B)");
endif

to check for the proper number of arguments.

beep () [Function File]
Produce a beep from the speaker (or visual bell).

See also: puts, fputs, printf, fprintf.

val = beep_on_error () [Built-in Function]

old_val = beep_on_error (new_val) [Built-in Function]
Query or set the internal variable that controls whether Octave will try to ring the terminal
bell before printing an error message.

12.1.2 Catching Errors

When an error occurs, it can be detected and handled using the try statement as described in
Section 10.9 [The try Statement], page 107. As an example, the following piece of code counts
the number of errors that occurs during a for loop.

number_of_errors = 0;
for n = 1:100
try
catch
number_of_errors++;

end_try_catch
endfor

The above example treats all errors the same. In many situations it can however be necessary
to discriminate between errors, and take different actions depending on the error. The lasterror
function returns a structure containing information about the last error that occurred. As an
example, the code above could be changed to count the number of errors related to the ¥’
operator.

number_of_errors = 0;
for n = 1:100
try
catch
msg = lasterror.message;

if (strfind (msg, "operator *"))
number_of_errors++;

endif
end_try_catch
endfor
err = lasterror (err) [Built-in Function]
lasterror (’reset’) [Built-in Function]

Returns or sets the last error message. Called without any arguments returns a structure
containing the last error message, as well as other information related to this error. The
elements of this structure are:

‘message’  The text of the last error message

"identifier’ The message identifier of this error message
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"stack’ A structure containing information on where the message occurred. This might
be an empty structure if this in the case where this information can not be
obtained. The fields of this structure are:

file’ The name of the file where the error occurred
‘name’ The name of function in which the error occurred
’line’ The line number at which the error occurred

‘column’  An optional field with the column number at which the error occurred

The err structure may also be passed to lasterror to set the information about the last
error. The only constraint on err in that case is that it is a scalar structure. Any fields of
err that match the above are set to the value passed in err, while other fields are set to their
default values.

If lasterror is called with the argument 'reset’, all values take their default values.

[msg, msgid] = lasterr (msg, msgid) [Built-in Function]
Without any arguments, return the last error message. With one argument, set the last error
message to msg. With two arguments, also set the last message identifier.

When an error has been handled it is possible to raise it again. This can be useful when
an error needs to be detected, but the program should still abort. This is possible using the
rethrow function. The previous example can now be changed to count the number of errors
related to the ‘*’ operator, but still abort of another kind of error occurs.

number_of_errors = 0;
for n = 1:100
try
catch
msg = lasterror.message;
if (strfind (msg, "operator *"))
number_of_errors++;
else
rethrow (lasterror);
endif
end_try_catch
endfor

rethrow (err) [Built-in Function]
Reissues a previous error as defined by err. err is a structure that must contain at least the
‘message’ and ’identifier’ fields. err can also contain a field ’stack’ that gives information on
the assumed location of the error. Typically err is returned from lasterror.

See also: lasterror, lasterr, error.

err = errno () [Built-in Function]
err = errno (val) [Built-in Function]
err = errno (name) [Built-in Function]

Return the current value of the system-dependent variable errno, set its value to val and
return the previous value, or return the named error code given name as a character string,
or -1 if name is not found.

errno_list () [Built-in Function]
Return a structure containing the system-dependent errno values.
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12.2 Handling Warnings

Like an error, a warning is issued when something unexpected happens. Unlike an error, a
warning doesn’t abort the currently running program. A simple example of a warning is when
a number is divided by zero. In this case Octave will issue a warning and assign the value Inf
to the result.

a=1/0
- warning: division by zero
= a = Inf

12.2.1 Issuing Warnings

It is possible to issue warnings from any code using the warning function. In its most simple
form, the warning function takes a string describing the warning as its input argument. As
an example, the following code controls if the variable ‘a’ is non-negative, and if not issues a
warning and sets ‘a’ to zero.

a = -1;
if (a < 0)
warning ("’a’ must be non-negative number. Setting ’a’ to zero.");
a = 0;
endif
- ’a’ must be non-negative number. Setting ’a’ to zero.

Since warnings aren’t fatal to a running program, it is not possible to catch a warning using
the try statement or something similar. It is however possible to access the last warning as a
string using the lastwarn function.

It is also possible to assign an identification string a a warning. If a warning has such an
ID the user can enable and disable this warning as will be described in the next section. To
assign an ID to a warning, simply call warning with two string arguments, where the first is the
identification string, and the second is the actual warning.

warning (template, ...) [Built-in Function]

warning (id, template) [Built-in Function]
Format the optional arguments under the control of the template string template using
the same rules as the printf family of functions (see Section 14.2.4 [Formatted Output],
page 151) and print the resulting message on the stderr stream. The message is prefixed by
the character string ‘warning: ’. You should use this function when you want to notify the
user of an unusual condition, but only when it makes sense for your program to go on.

The optional message identifier allows users to enable or disable warnings tagged by id. The
special identifier ‘"all"’ may be used to set the state of all warnings.
warning ("on", id) [Built-in Function]
warning ("off", id) [Built-in Function]
warning ("error", id) [Built-in Function]
warning ("query", id) [Built-in Function]
Set or query the state of a particular warning using the identifier id. If the identifier is
omitted, a value of ‘"all"’ is assumed. If you set the state of a warning to ‘"error"’, the
warning named by id is handled as if it were an error instead.

See also: warning_ids.

[msg, msgid] = lastwarn (msg, msgid) [Built-in Function]
Without any arguments, return the last warning message. With one argument, set the last
warning message to msg. With two arguments, also set the last message identifier.
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12.2.2 Enabling and Disabling Warnings

The warning function also allows you to control which warnings are actually printed to the
screen. If the warning function is called with a string argument that is either "on" or "off" all
warnings will be enabled or disabled.
It is also possible to enable and disable individual warnings through their string identifica-
tions. The following code will issue a warning
warning ("non-negative-variable",
"’a’ must be non-negative number. Setting ’a’ to zero.");
while the following won’t issue a warning
warning ("off", "non-negative-variable");
warning ("non-negative-variable",
"’a’ must be non-negative number. Setting ’a’ to zero.");
The functions distributed with Octave can issue one of the following warnings.
Octave:array-to-scalar
If the Octave:array-to-scalar warning is enabled, Octave will warn when an
implicit conversion from an array to a scalar value is attempted. By default, the
Octave:array-to-scalar warning is disabled.

Octave:array-to-vector
If the Octave:array-to-vector warning is enabled, Octave will warn when an
implicit conversion from an array to a vector value is attempted. By default, the
Octave:array-to-vector warning is disabled.

Octave:assign-as—-truth-value
If the Octave:assign-as-truth-value warning is enabled, a warning is issued for
statements like

if (s = t)

since such statements are not common, and it is likely that the intent was to write
if (s == t)

instead.

There are times when it is useful to write code that contains assignments within the
condition of a while or if statement. For example, statements like

while (c = getc())

are common in C programming.

It is possible to avoid all warnings about such statements by disabling the
Octave:assign-as-truth-value warning, but that may also let real errors like

if (x = 1) # intended to test (x == 1)!

slip by.
In such cases, it is possible suppress errors for specific statements by writing them
with an extra set of parentheses. For example, writing the previous example as

while ((c = getc()))

will prevent the warning from being printed for this statement, while allowing Octave
to warn about other assignments used in conditional contexts.

By default, the Octave:assign-as-truth-value warning is enabled.
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associativity-change
If the Octave:associativity-change warning is enabled, Octave will warn about
possible changes in the meaning of some code due to changes in associativity for
some operators. Associativity changes have typically been made for MATLAB com-
patibility. By default, the Octave:associativity-change warning is enabled.

divide-by-zero
If the Octave:divide-by-zero warning is enabled, a warning is issued when Octave
encounters a division by zero. By default, the Octave:divide-by-zero warning is
enabled.

empty-list-elements
If the Octave:empty-list-elements warning is enabled, a warning is issued when
an empty matrix is found in a matrix list. For example,

a=1[1, 00, 3, [I, 5]
By default, the Octave:empty-list-elements warning is enabled.

fortran-indexing
If the Octave:fortran-indexing warning is enabled, a warning is printed for ex-
pressions which select elements of a two-dimensional matrix using a single index.
By default, the Octave:fortran-indexing warning is disabled.

function-name-clash
If the Octave:function-name-clash warning is enabled, a warning is issued when
Octave finds that the name of a function defined in a function file differs from the
name of the file. (If the names disagree, the name declared inside the file is ignored.)
By default, the Octave:function-name-clash warning is enabled.

future-time-stamp
If the Octave:future-time-stamp warning is enabled, Octave will print a warning
if it finds a function file with a time stamp that is in the future. By default, the
Octave:future-time-stamp warning is enabled.

imag-to-real
If the Octave:imag-to-real warning is enabled, a warning is printed for implicit
conversions of complex numbers to real numbers. By default, the Octave:imag-to-
real warning is disabled.

matlab-incompatible
Print warnings for Octave language features that may cause compatibility problems
with MATLAB.

missing-semicolon
If the Octave:missing-semicolon warning is enabled, Octave will warn when
statements in function definitions don’t end in semicolons. By default the
Octave:missing-semicolon warning is disabled.

neg-dim-as-zero
If the Octave:neg-dim-as-zero warning is enabled, print a warning for expressions
like
eye (-1)
By default, the Octave:neg-dim-as-zero warning is disabled.

num-to-str
If the Octave :num-to-str warning is enable, a warning is printed for implicit con-
versions of numbers to their ASCII character equivalents when strings are con-
structed using a mixture of strings and numbers in matrix notation. For example,
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[ £, 111, 111 ]
= "foo"

elicits a warning if the Octave:num-to-str warning is enabled. By default, the
Octave:num-to-str warning is enabled.

Octave:precedence-change
If the Octave:precedence-change warning is enabled, Octave will warn about pos-
sible changes in the meaning of some code due to changes in precedence for some
operators. Precedence changes have typically been made for MATLAB compatibility.
By default, the Octave:precedence-change warning is enabled.

Octave:reload-forces-clear
If several functions have been loaded from the same file, Octave must clear all the
functions before any one of them can be reloaded. If the Octave:reload-forces-
clear warning is enabled, Octave will warn you when this happens, and print a list
of the additional functions that it is forced to clear. By default, the Octave:reload-
forces-clear warning is enabled.

Octave:resize-on-range-error
If the Octave:resize-on-range-error warning is enabled, print a warning when a
matrix is resized by an indexed assignment with indices outside the current bounds.
By default, the Octave:resize-on-range-error warning is disabled.

Octave:separator-insert
Print warning if commas or semicolons might be inserted automatically in literal
matrices.

Octave:single-quote-string
Print warning if a signle quote character is used to introduce a string constant.

Octave:str-to-num
If the Octave:str-to-num warning is enabled, a warning is printed for implicit
conversions of strings to their numeric ASCII equivalents. For example,

"abc" + 0
= 97 98 99

elicits a warning if the Octave:str-to-num warning is enabled. By default, the
Octave:str-to-num warning is disabled.

Octave:string-concat
If the Octave:string-concat warning is enabled, print a warning when concatenat-
ing a mixture of double and single quoted strings. By default, the Octave:string-
concat warning is disabled.

Octave:undefined-return-values
If the Octave:undefined-return-values warning is disabled, print a warning if
a function does not define all the values in the return list which are expected. By
default, the Octave:undefined-return-values warning is enabled.

Octave:variable-switch-label
If the Octave:variable-switch-label warning is enabled, Octave will print a
warning if a switch label is not a constant or constant expression. By default,
the Octave:variable-switch-label warning is disabled.
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13 Debugging

Octave includes a built-in debugger to aid in the development of scripts. This can be used to
interrupt the execution of an Octave script at a certain point, or when certain conditions are
met. Once execution has stopped, and debug mode is entered, the symbol table at the point
where execution has stopped can be examined and modified to check for errors.

The normal commandline editing and history functions are available in debug mode. How-
ever, one limitation on the debug mode is that commands entered at the debug prompt are
evaluated as strings, rather than being handled by the Octave parser. This means that all
commands in debug mode must be contained on a single line. That is, it is alright to write

debug> for i = 1:n, foo(i); endfor

in debug mode. However, writing the above in three lines will not be correctly evaluated. To
leave the debug mode, you should simply type either quit, exit, return or dbcont.

13.1 Entering Debug Mode

There are two basic means of interrupting the execution of an Octave script. These are break-
points Section 13.2 [Breakpoints], page 135, discussed in the next section and interruption based
on some condition.

Octave supports three means to stop execution based on the values set in the functions
debug_on_interrupt, debug_on_warning and debug_on_error.

val = debug_on_interrupt () [Built-in Function]

old_val = debug_on_interrupt (new_val) [Built-in Function]
Query or set the internal variable that controls whether Octave will try to enter debugging
mode when it receives an interrupt signal (typically generated with C-c). If a second interrupt
signal is received before reaching the debugging mode, a normal interrupt will occur.

val = debug_on_warning () [Built-in Function]

old_val = debug_on_warning (new_val) [Built-in Function]
Query or set the internal variable that controls whether Octave will try to enter the debugger
when a warning is encountered.

val = debug_on_error () [Built-in Function]

old_val = debug_on_error (new_val) [Built-in Function]
Query or set the internal variable that controls whether Octave will try to enter the debugger
when an error is encountered. This will also inhibit printing of the normal traceback message
(you will only see the top-level error message).

13.2 Breakpoints

Breakpoints can be set in any Octave function, using the dbstop function.

rline = dbstop (func, line, ...) [Loadable Function)]
Set a breakpoint in a function

func String representing the function name. When already in debug mode this should
be left out and only the line should be given.

line Line you would like the breakpoint to be set on. Multiple lines might be given
as separate arguments or as a vector.

The rline returned is the real line that the breakpoint was set at.

See also: dbclear, dbstatus, dbnext.
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Note that breakpoints can not be set in built-in functions (eg. sin, etc) or dynamically loaded
function (ie. oct-files). To set a breakpoint immediately on entering a function, the breakpoint
should be set to line 1. The leading comment block will be ignored and the breakpoint will be
set to the first executable statement in the function. For example

dbstop ("asind", 1)
= 27

Note that the return value of 27 means that the breakpoint was effectively set to line 27. The
status of breakpoints in a function can be queried with the dbstatus function.

1st = dbstatus ([func]) [Loadable Function]
Return a vector containing the lines on which a function has breakpoints set.

func String representing the function name. When already in debug mode this should
be left out.

See also: dbclear, dbwhere.

Taking the above as an example, dbstatus ("asind") should return 27. The breakpoints can
then be cleared with the dbclear function

dbclear (func, line, ...) [Loadable Function]
Delete a breakpoint in a function

func String representing the function name. When already in debug mode this should
be left out and only the line should be given.

line Line where you would like to remove the breakpoint. Multiple lines might be
given as separate arguments or as a vector.

No checking is done to make sure that the line you requested is really a breakpoint. If you
get the wrong line nothing will happen.

See also: dbstop, dbstatus, dbwhere.

To clear all of the breakpoints in a function the recommended means, following the above
example, is then

dbclear ("asind", dbstatus ("asind"));

Another simple means of setting a breakpoint in an Octave script is the use of the keyboard
function.

keyboard (prompt) [Built-in Function]
This function is normally used for simple debugging. When the keyboard function is exe-
cuted, Octave prints a prompt and waits for user input. The input strings are then evaluated
and the results are printed. This makes it possible to examine the values of variables within
a function, and to assign new values to variables. No value is returned from the keyboard
function, and it continues to prompt for input until the user types ‘quit’, or ‘exit’.

If keyboard is invoked without any arguments, a default prompt of ‘debug> ’ is used.

The keyboard function is typically placed in a script at the point where the user desires that
the execution is stopped. It automatically sets the running script into the debug mode.
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13.3 Debug Mode

There are two additional support functions that allow the user to interrogate where in the exe-
cution of a script Octave entered the debug mode and to print the code in the script surrounding
the point where Octave entered debug mode.

dbwhere () [Loadable Function]
Show where we are in the code

See also: dbclear, dbstatus, dbstop.

dbtype () [Loadable Function]
List script file with line numbers.

See also: dbclear, dbstatus, dbstop.

Debug mode equally allows single line stepping through a function using the commands
dbstep and dbnext. These differ slightly in the way they treat the next executable line if the
next line itself is a function defined in an m-file. The dbnext command will execute the next
line, while staying in the existing function being debugged. The dbstep command will step in
to the new function.
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14 Input and Output

Octave supports several ways of reading and writing data to or from the prompt or a file. The
most simple functions for data Input and Output (I/O) are easy to use, but only provides a
limited control of how data is processed. For more control, a set of functions modelled after the
C standard library are also provided by Octave.

14.1 Basic Input and Output

14.1.1 Terminal Output

Since Octave normally prints the value of an expression as soon as it has been evaluated, the
simplest of all I/O functions is a simple expression. For example, the following expression will
display the value of ‘pi’
pi
-4 pi = 3.1416

This works well as long as it is acceptable to have the name of the variable (or ‘ans’) printed
along with the value. To print the value of a variable without printing its name, use the function
disp.

The format command offers some control over the way Octave prints values with disp and
through the normal echoing mechanism.

ans [Automatic Variable]
The most recently computed result that was not explicitly assigned to a variable. For example,
after the expression

372 + 472

is evaluated, the value returned by ans is 25.

disp (x) [Built-in Function]
Display the value of x. For example,

disp ("The value of pi is:"), disp (pi)

- the value of pi is:
- 3.1416

Note that the output from disp always ends with a newline.

If an output value is requested, disp prints nothing and returns the formatted output in a
string.

See also: fdisp.

format options [Command]|
Control the format of the output produced by disp and Octave’s normal echoing mechanism.
Valid options are listed in the following table.

short Octave will try to print numbers with at least 5 significant figures within a field
that is a maximum of 10 characters wide (not counting additional spacing that
is added between columns of a matrix).

If Octave is unable to format a matrix so that columns line up on the decimal
point and all the numbers fit within the maximum field width, it switches to an
‘e’ format.
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long

long e
short e

long E
short E

long g
short g

long G
short G

free
none

bank

+
+ chars
plus

plus chars
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Octave will try to print numbers with at least 15 significant figures within a field
that is a maximum of 20 characters wide (not counting additional spacing that
is added between columns of a matrix).

As will the ‘short’ format, Octave will switch to an ‘e’ format if it is unable to
format a matrix so that columns line up on the decimal point and all the numbers
fit within the maximum field width.

The same as ‘format long’ or ‘format short’ but always display output with an
‘e’ format. For example, with the ‘short e’ format, pi is displayed as 3.14e+00.

The same as ‘format long e’ or ‘format short e’ but always display output with
an uppercase ‘E’ format. For example, with the ‘long E’ format, pi is displayed
as 3.14159265358979E+00.

Choose between normal ‘long’ (or ‘short’) and ‘long e’ (or ‘short e’) formats
based on the magnitude of the number. For example, with the ‘short g’ format,
pi .~ [2; 4; 8; 16; 32] is displayed as

ans =
3.1416
9.8696
97.409
9488.5
9.0032e+07
8.1058e+15

The same as ‘format long g’ or ‘format short g’ but use an uppercase ‘E’ for-
mat. For example, with the ‘short G’ format, pi .~ [2; 4; 8; 16; 32] is dis-
played as

ans =
3.1416
9.8696
97.409
9488.5
9.0032E+07
8.1058E+15

Print output in free format, without trying to line up columns of matrices on
the decimal point. This also causes complex numbers to be formatted like this
*(0.604194, 0.607088)’ instead of like this ‘0.60419 + 0.60709i’.

Print in a fixed format with two places to the right of the decimal point.

Print a ‘+’ symbol for nonzero matrix elements and a space for zero matrix
elements. This format can be very useful for examining the structure of a large
matrix.
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The optional argument chars specifies a list of 3 characters to use for printing
values greater than zero, less than zero and equal to zero. For example, with the
“+ "+-_" format, [1, 0, -1; -1, 0, 1] is displayed as

native-hex
Print the hexadecimal representation numbers as they are stored in memory. For
example, on a workstation which stores 8 byte real values in IEEE format with
the least significant byte first, the value of pi when printed in hex format is
400921fb544424d18. This format only works for numeric values.

hex The same as native-hex, but always print the most significant byte first.

native-bit
Print the bit representation of numbers as stored in memory. For example, the
value of pi is
01000000000010010010000111111011
01010100010001000010110100011000

(shown here in two 32 bit sections for typesetting purposes) when printed in bit
format on a workstation which stores 8 byte real values in IEEE format with the
least significant byte first. This format only works for numeric types.

bit The same as native-bit, but always print the most significant bits first.
compact  Remove extra blank space around column number labels.
loose Insert blank lines above and below column number labels (this is the default).

rat Print a rational approximation. That is the values are approximated by one small
integer divided by another.

By default, Octave will try to print numbers with at least 5 significant figures within a field
that is a maximum of 10 characters wide.

If Octave is unable to format a matrix so that columns line up on the decimal point and all
the numbers fit within the maximum field width, it switches to an ‘e’ format.

If format is invoked without any options, the default format state is restored.

val = print_answer_id_name () [Built-in Function]

old_val = print_answer_id_name (new_val) [Built-in Function]
Query or set the internal variable that controls whether variable names are printed along
with results produced by evaluating an expression.

14.1.1.1 Paging Screen Output

When running interactively, Octave normally sends any output intended for your terminal that
is more than one screen long to a paging program, such as less or more. This avoids the problem
of having a large volume of output stream by before you can read it. With less (and some
versions of more) you can also scan forward and backward, and search for specific items.

Normally, no output is displayed by the pager until just before Octave is ready to print
the top level prompt, or read from the standard input (for example, by using the fscanf or
scanf functions). This means that there may be some delay before any output appears on your
screen if you have asked Octave to perform a significant amount of work with a single command
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statement. The function £flush may be used to force output to be sent to the pager (or any
other stream) immediately.

You can select the program to run as the pager using the PAGER function, and you can turn
paging off by using the function more.

more [Command|
more on [Command|
more off [Command]

Turn output pagination on or off. Without an argument, more toggles the current state.

val = PAGER () [Built-in Function]

old_val = PAGER (new_val) [Built-in Function]
Query or set the internal variable that specifies the program to use to display terminal output
on your system. The default value is normally "less", "more", or "pg", depending on what
programs are installed on your system. See Appendix E [Installation], page 505.

See also: more, page_screen_output, page_output_immediately, PAGER_FLAGS.

val = PAGER_FLAGS () [Built-in Function]
old_val = PAGER_FLAGS (new_val) [Built-in Function]
Query or set the internal variable that specifies the options to pass to the pager.

See also: PAGER.

val = page_screen_output () [Built-in Function]

old_val = page_screen_output (new_val) [Built-in Function]
Query or set the internal variable that controls whether output intended for the terminal
window that is longer than one page is sent through a pager. This allows you to view one
screenful at a time. Some pagers (such as less—see Appendix E [Installation], page 505) are
also capable of moving backward on the output.

val = page_output_immediately () [Built-in Function]

val = page_output_immediately (new_val) [Built-in Function]
Query or set the internal variable that controls whether Octave sends output to the pager as
soon as it is available. Otherwise, Octave buffers its output and waits until just before the
prompt is printed to flush it to the pager.

fflush (fid) [Built-in Function]
Flush output to fid. This is useful for ensuring that all pending output makes it to the screen
before some other event occurs. For example, it is always a good idea to flush the standard
output stream before calling input.

fflush returns 0 on success and an OS dependent error value (—1 on unix) on error.

See also: fopen, fclose.

14.1.2 Terminal Input

Octave has three functions that make it easy to prompt users for input. The input and menu
functions are normally used for managing an interactive dialog with a user, and the keyboard
function is normally used for doing simple debugging.

input (prompt) [Built-in Function]
input (prompt, "s") [Built-in Function]
Print a prompt and wait for user input. For example,
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input ("Pick a number, any number! ")
prints the prompt

Pick a number, any number!
and waits for the user to enter a value. The string entered by the user is evaluated as an
expression, so it may be a literal constant, a variable name, or any other valid expression.
Currently, input only returns one value, regardless of the number of values produced by the
evaluation of the expression.

If you are only interested in getting a literal string value, you can call input with the character
string "s" as the second argument. This tells Octave to return the string entered by the user
directly, without evaluating it first.

Because there may be output waiting to be displayed by the pager, it is a good idea to
always call £flush (stdout) before calling input. This will ensure that all pending output
is written to the screen before your prompt. See Chapter 14 [Input and Output|, page 139.

menu (title, optl, ...) [Function File]
Print a title string followed by a series of options. Each option will be printed along with a
number. The return value is the number of the option selected by the user. This function
is useful for interactive programs. There is no limit to the number of options that may be
passed in, but it may be confusing to present more than will fit easily on one screen.

See also: disp, printf, input.

For input, the normal command line history and editing functions are available at the
prompt.

Octave also has a function that makes it possible to get a single character from the keyboard
without requiring the user to type a carriage return.

kbhit () [Built-in Function]
Read a single keystroke from the keyboard. If called with one argument, don’t wait for a
keypress. For example,
x = kbhit ();
will set x to the next character typed at the keyboard as soon as it is typed.
x = kbhit (1);

identical to the above example, but don’t wait for a keypress, returning the empty string if
no key is available.

14.1.3 Simple File I/O

The save and load commands allow data to be written to and read from disk files in various
formats. The default format of files written by the save command can be controlled using the
functions default_save_options and save_precision.

As an example the following code creates a 3-by-3 matrix and saves it to the file ‘myfile.mat’.
A=1[1:3; 4:6; 7:9 1;
save myfile.mat A

Once one or more variables have been saved to a file, they can be read into memory using
the load command.

load myfile.mat
A

4 A=
4
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save options file vl v2 ... [Command]
Save the named variables v1, v2, ... in the file file. The special filename ‘-’ can be used
to write the output to your terminal. If no variable names are listed, Octave saves all
the variables in the current scope. Valid options for the save command are listed in the
following table. Options that modify the output format override the format specified by
default_save_options.

If save is invoked using the functional form
save ("-text", "file.txt", "a")

then the options, file, and variable name arguments (vnamel, ...) must be specified as
character strings.

-ascii Save a single matrix in a text file.
-binary  Save the data in Octave’s binary data format.

-float-binary
Save the data in Octave’s binary data format but only using single precision.
You should use this format only if you know that all the values to be saved can
be represented in single precision.

=V7
-v7
-7
-mat7-binary
Save the data in MATLAB’s v7 binary data format.

-Vé
-v6
-6
-mat
-mat-binary
Save the data in MATLAB’s v6 binary data format.

-V4
-véd
-4
-mat4-binary
Save the data in the binary format written by MATLAB version 4.

-hdf5 Save the data in HDF5 format. (HDF5 is a free, portable binary format developed
by the National Center for Supercomputing Applications at the University of
linois.)

-float-hdfb

Save the data in HDF5 format but only using single precision. You should use
this format only if you know that all the values to be saved can be represented
in single precision.

-zip

-z Use the gzip algorithm to compress the file. This works equally on files that are
compressed with gzip outside of octave, and gzip can equally be used to convert
the files for backward compatibility.



Chapter 14: Input and Output 145

The list of variables to save may include wildcard patterns containing the following special
characters:

? Match any single character.
* Match zero or more characters.

[ 1ist ] Match the list of characters specified by list. If the first character is ! or =, match
all characters except those specified by list. For example, the pattern ‘[a-zA-Z]’
will match all lower and upper case alphabetic characters.

-text Save the data in Octave’s text data format.

Except when using the MATLAB binary data file format, saving global variables also saves
the global status of the variable, so that if it is restored at a later time using ‘load’, it will
be restored as a global variable.

The command
save —-binary data a b*

saves the variable ‘a’ and all variables beginning with ‘b’ to the file ‘data’ in Octave’s binary
format.

load options file v1 v2 ... [Command]|
Load the named variables from the file file. As with save, you may specify a list of variables
and load will only extract those variables with names that match. For example, to restore
the variables saved in the file ‘data’, use the command

load data
If load is invoked using the functional form
load ("-text", "file.txt", "a")

then the options, file, and variable name arguments (vI, . ..) must be specified as character
strings.

If a variable that is not marked as global is loaded from a file when a global symbol with
the same name already exists, it is loaded in the global symbol table. Also, if a variable is
marked as global in a file and a local symbol exists, the local symbol is moved to the global
symbol table and given the value from the file. Since it seems that both of these cases are
likely to be the result of some sort of error, they will generate warnings.

If invoked with a single output argument, Octave returns data instead of inserting variables in
the symbol table. If the data file contains only numbers (TAB- or space-delimited columns), a
matrix of values is returned. Otherwise, load returns a structure with members corresponding
to the names of the variables in the file.

The load command can read data stored in Octave’s text and binary formats, and MATLAB’s
binary format. It will automatically detect the type of file and do conversion from different
floating point formats (currently only IEEE big and little endian, though other formats may
added in the future).

Valid options for load are listed in the following table.

-force The ‘-force’ option is accepted but ignored for backward compatibility. Octave
now overwrites variables currently in memory with the same name as those found
in the file.

-ascii Force Octave to assume the file contains columns of numbers in text format

without any header or other information. Data in the file will be loaded as a
single numeric matrix with the name of the variable derived from the name of
the file.
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-binary  Force Octave to assume the file is in Octave’s binary format.

-mat

-mat-binary

-6

-v6

-7

-v7 Force Octave to assume the file is in MATLAB’s version 6 or 7 binary format.

-mat4-binary
Force Octave to assume the file is in the binary format written by MATLAB
version 4.

-hdf5 Force Octave to assume the file is in HDF5 format. (HDF5 is a free, portable
binary format developed by the National Center for Supercomputing Applications
at the University of Illinois.) Note that Octave can read HDF5 files not created
by itself, but may skip some datasets in formats that it cannot support.

-import  The ‘~import’ is accepted but ignored for backward compatibility. Octave can
now support multi-dimensional HDF data and automatically modifies variable
names if they are invalid Octave identifiers.

-text Force Octave to assume the file is in Octave’s text format.

There are three functions that modify the behavior of save.

val = default_save_options () [Built-in Function]
old_val = default_save_options (new_val) [Built-in Function]
Query or set the internal variable that specifies the default options for the save command, and
defines the default format. Typical values include "-ascii", "-ascii -zip". The default

value is —ascii.

See also: save.

val = save_precision () [Built-in Function]

old_val = save_precision (new_val) [Built-in Function]
Query or set the internal variable that specifies the number of digits to keep when saving
data in text format.

val = save_header_format_string () [Built-in Function]

old_val = save_header_format_string (new_val) [Built-in Function]
Query or set the internal variable that specifies the format string used for the comment line
written at the beginning of text-format data files saved by Octave. The format string is passed
to strftime and should begin with the character ‘#” and contain no newline characters. If the
value of save_header_format_string is the empty string, the header comment is omitted
from text-format data files. The default value is

"# Created by Octave VERSION, %a %b %d %H:%M:%S %Y %Z <USERQHOST>"

See also: strftime.

native_float_format () [Built-in Function]
Return the native floating point format as a string
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It is possible to write data to a file in a way much similar to the disp function for writing
data to the screen. The fdisp works just like disp except its first argument is a file pointer as
created by fopen. As an example, the following code writes to data ‘myfile.txt’.

fid = fopen ("myfile.txt", "w");
fdisp (fid, "3/8 is ");

fdisp (fid, 3/8);

fclose (fid);

See Section 14.2.1 [Opening and Closing Files], page 149, for details on how to use fopen and
fclose.

fdisp (fid, x) [Built-in Function]
Display the value of x on the stream fid. For example,

fdisp (stdout, "The value of pi is:"), fdisp (stdout, pi)

- the value of pi is:
- 3.1416

Note that the output from fdisp always ends with a newline.

See also: disp.

14.1.3.1 Saving Data on Unexpected Exits

If Octave for some reason exits unexpected it will by default save the variables available in the
workspace to a file in the current directory. By default this file is named ‘octave-core’ and
can be loaded into memory with the load command. While the default behaviour most often is
reasonable it can be changed through the following functions.

val = crash_dumps_octave_core () [Built-in Function]

old_val = crash_dumps_octave_core (new_val) [Built-in Function]
Query or set the internal variable that controls whether Octave tries to save all current
variables to the file "octave-core" if it crashes or receives a hangup, terminate or similar
signal.

See also: octave_core_file_limit, octave_core_file_name, octave_core_file_options.

val = sighup_dumps_octave_core () [Built-in Function]

old_val = sighup_dumps_octave_core (new_val) [Built-in Function]
Query or set the internal variable that controls whether Octave tries to save all current
variables to the file "octave-core" if it receives a hangup signal.

val = sigterm_dumps_octave_core () [Built-in Function]

old_val = sigterm_dumps_octave_core (new_val) [Built-in Function]
Query or set the internal variable that controls whether Octave tries to save all current
variables to the file "octave-core" if it receives a terminate signal.

val = octave_core_file_options () [Built-in Function]

old_val = octave_core_file_options (new_val) [Built-in Function]
Query or set the internal variable that specifies the options used for saving the workspace
data if Octave aborts. The value of octave_core_file_options should follow the same
format as the options for the save function. The default value is Octave’s binary format.

See also: crash_dumps_octave_core, octave_core_file_name, octave_core_file_limit.
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val = octave_core_file_limit () [Built-in Function]

old_val = octave_core_file_limit (new_val) [Built-in Function]
Query or set the internal variable that specifies the maximum amount of memory (in kilo-
bytes) of the top-level workspace that Octave will attempt to save when writing data to
the crash dump file (the name of the file is specified by octave_core_file_name). If oc-
tave_core_file_options flags specify a binary format, then octave_core_file_limit will be ap-
proximately the maximum size of the file. If a text file format is used, then the file could be
much larger than the limit. The default value is -1 (unlimited)

See also: crash_dumps_octave_core, octave_core_file_name, octave_core_file_options.

val = octave_core_file_name () [Built-in Function]

old_val = octave_core_file_name (new_val) [Built-in Function]
Query or set the internal variable that specifies the name of the file used for saving data from
the top-level workspace if Octave aborts. The default value is "octave-core"

See also: crash_dumps_octave_core, octave_core_file_name, octave_core_file_options.
14.1.4 Rational Approximations

s = rat (x, tol) [Function File]
[n, d] = rat (x, tol) [Function File]
Find a rational approximation to x within tolerance defined by tol using a continued fraction
expansion. E.g,
rat(pi) = 3 + 1/(7 + 1/16) = 355/113
rat(e) = 3 + 1/(-4 + 1/(2 + 1/(6 + 1/(-2 + 1/(-7))))) = 1457/536
Called with two arguments returns the numerator and denominator separately as two matri-
ces.

See also: rats.

rats (x, len) [Built-in Function]
Convert x into a rational approximation represented as a string. You can convert the string
back into a matrix as follows:
eval([’[’,rats(hilb(4)),’]1;°]1)
The optional second argument defines the maximum length of the string representing the
elements of x. By default len is 9.

See also: format, rat.

14.2 C-Style I/O Functions

Octave’s C-style input and output functions provide most of the functionality of the C program-
ming language’s standard I/O library. The argument lists for some of the input functions are
slightly different, however, because Octave has no way of passing arguments by reference.

In the following, file refers to a file name and fid refers to an integer file number, as returned
by fopen.

There are three files that are always available. Although these files can be accessed using
their corresponding numeric file ids, you should always use the symbolic names given in the
table below, since it will make your programs easier to understand.

stdin () [Built-in Function]
Return the numeric value corresponding to the standard input stream. When Octave is used
interactively, this is filtered through the command line editing functions.

See also: stdout, stderr.
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stdout () [Built-in Function]
Return the numeric value corresponding to the standard output stream. Data written to the
standard output is normally filtered through the pager.

See also: stdin, stderr.

stderr () [Built-in Function]
Return the numeric value corresponding to the standard error stream. Even if paging is
turned on, the standard error is not sent to the pager. It is useful for error messages and
prompts.

See also: stdin, stdout.

14.2.1 Opening and Closing Files

When reading data from a file it must be opened for reading first, and likewise when writing to
a file. The fopen function returns a pointer to an open file that is ready to be read or written.
Once all data has been read from or written to the opened file it should be closed. The fclose
function does this. The following code illustrates the basic pattern for writing to a file, but a
very similar pattern is used when reading a file.

filename = "myfile.txt";

fid = fopen (filename, "w");
# Do the actual I/0 here...
fclose (fid);

[fid, msg] = fopen (name, mode, arch) [Built-in Function]
fid_list = fopen ("all") [Built-in Function]
[file, mode, arch] = fopen (fid) [Built-in Function]

The first form of the fopen function opens the named file with the specified mode (read-write,
read-only, etc.) and architecture interpretation (IEEE big endian, IEEE little endian, etc.),
and returns an integer value that may be used to refer to the file later. If an error occurs, fid
is set to —1 and msg contains the corresponding system error message. The mode is a one
or two character string that specifies whether the file is to be opened for reading, writing, or
both.

The second form of the fopen function returns a vector of file ids corresponding to all the
currently open files, excluding the stdin, stdout, and stderr streams.

The third form of the fopen function returns information about the open file given its file id.
For example,

myfile = fopen ("splat.dat", "r", "ieee-le");
opens the file ‘splat.dat’ for reading. If necessary, binary numeric values will be read

assuming they are stored in IEEE format with the least significant bit first, and then converted
to the native representation.

Opening a file that is already open simply opens it again and returns a separate file id. It
is not an error to open a file several times, though writing to the same file through several
different file ids may produce unexpected results.

The possible values ‘mode’ may have are

‘r’ Open a file for reading.
‘W’ Open a file for writing. The previous contents are discarded.
‘a’ Open or create a file for writing at the end of the file.

‘r+’ Open an existing file for reading and writing.
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4 i

w+ Open a file for reading or writing. The previous contents are discarded.

‘at’ Open or create a file for reading or writing at the end of the file.

Append a "t" to the mode string to open the file in text mode or a "b" to open in binary mode.
On Windows and Macintosh systems, text mode reading and writing automatically converts
linefeeds to the appropriate line end character for the system (carriage-return linefeed on
Windows, carriage-return on Macintosh). The default if no mode is specified is binary mode.

Additionally, you may append a "z" to the mode string to open a gzipped file for reading or
writing. For this to be successful, you must also open the file in binary mode.

The parameter arch is a string specifying the default data format for the file. Valid values
for arch are:

‘native’ The format of the current machine (this is the default).

‘ieee-be’ IEEE big endian format.

‘ieee-1le’ IEEE little endian format.

‘vaxd’ VAX D floating format.

‘vaxg’ VAX G floating format.

‘cray’ Cray floating format.

however, conversions are currently only supported for ‘native’ ‘ieee-be’, and ‘ieee-le’
formats.

See also: fclose, fread, fseek.

fclose (fid) [Built-in Function]
Closes the specified file. If successful, fclose returns 0, otherwise, it returns -1.

See also: fopen, fseek, ftell.

14.2.2 Simple Output

Once a file has been opened for writing a string can be written to the file using the fputs
function. The following example shows how to write the string ‘Free Software is needed for
Free Science’ to the file ‘free.txt’.

filename = "free.txt";

fid = fopen (filename, "w");

fputs (fid, "Free Software is needed for Free Science");
fclose (fid);

fputs (fid, string) [Built-in Function]
Write a string to a file with no formatting.

Return a non-negative number on success and EOF on error.

A function much similar to fputs is available for writing data to the screen. The puts
function works just like fputs except it doesn’t take a file pointer as its input.

puts (string) [Built-in Function]
Write a string to the standard output with no formatting.

Return a non-negative number on success and EOF on error.
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14.2.3 Line-Oriented Input

To read from a file it must be opened for reading using fopen. Then a line can be read from
the file using fgetl as the following code illustrates

fid = fopen ("free.txt");
txt = fgetl (fid)

- Free Software is needed for Free Science
fclose (fid);

This of course assumes that the file ‘free.txt’ exists and contains the line ‘Free Software is
needed for Free Science’.

fgetl (fid, len) [Built-in Function]
Read characters from a file, stopping after a newline, or EOF, or len characters have been
read. The characters read, excluding the possible trailing newline, are returned as a string.

If len is omitted, fgetl reads until the next newline character.

If there are no more characters to read, fgetl returns —1.

See also: fread, fscanf.

fgets (fid, len) [Built-in Function]
Read characters from a file, stopping after a newline, or EOF, or len characters have been
read. The characters read, including the possible trailing newline, are returned as a string.

If len is omitted, fgets reads until the next newline character.

If there are no more characters to read, fgets returns —1.

See also: fread, fscanf.

14.2.4 Formatted Output
This section describes how to call printf and related functions.

The following functions are available for formatted output. They are modelled after the C
language functions of the same name, but they interpret the format template differently in order
to improve the performance of printing vector and matrix values.

printf (template, ...) [Built-in Function]
Print optional arguments under the control of the template string template to the stream
stdout and return the number of characters printed.

See also: fprintf, sprintf, scanf.

fprintf (fid, template, ...) [Built-in Function]
This function is just like printf, except that the output is written to the stream fid instead
of stdout.

See also: printf, sprintf, fread, fscanf, fopen, fclose.

sprintf (template, ...) [Built-in Function]
This is like printf, except that the output is returned as a string. Unlike the C library
function, which requires you to provide a suitably sized string as an argument, Octave’s
sprintf function returns the string, automatically sized to hold all of the items converted.

See also: printf, fprintf, sscanf.
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The printf function can be used to print any number of arguments. The template string
argument you supply in a call provides information not only about the number of additional
arguments, but also about their types and what style should be used for printing them.

Ordinary characters in the template string are simply written to the output stream as-is,
while conversion specifications introduced by a ‘%’ character in the template cause subsequent
arguments to be formatted and written to the output stream. For example,

pct = 37;

filename = "foo.txt";

printf ("Processing of ‘%s’ is %dk% finished.\nPlease be patient.\n",
filename, pct);

produces output like

Processing of ‘foo.txt’ is 37} finished.
Please be patient.

This example shows the use of the ‘%d’ conversion to specify that a scalar argument should
be printed in decimal notation, the ‘%s’ conversion to specify printing of a string argument, and
the ‘%% conversion to print a literal ‘)4’ character.

There are also conversions for printing an integer argument as an unsigned value in octal,
decimal, or hexadecimal radix (‘%0’, ‘%u’, or ‘%x’, respectively); or as a character value (‘%c’).

Floating-point numbers can be printed in normal, fixed-point notation using the ‘%f’ conver-
sion or in exponential notation using the ‘%e’ conversion. The ‘%g’ conversion uses either ‘%e’ or
‘%%’ format, depending on what is more appropriate for the magnitude of the particular number.

You can control formatting more precisely by writing modifiers between the ‘%’ and the
character that indicates which conversion to apply. These slightly alter the ordinary behavior of
the conversion. For example, most conversion specifications permit you to specify a minimum
field width and a flag indicating whether you want the result left- or right-justified within the
field.

The specific flags and modifiers that are permitted and their interpretation vary depending
on the particular conversion. They’re all described in more detail in the following sections.

14.2.5 Output Conversion for Matrices

When given a matrix value, Octave’s formatted output functions cycle through the format
template until all the values in the matrix have been printed. For example,

printf ("%4.2f %10.2e ¥8.4g\n", hilb (3));

-+ 1.00 5.00e-01 0.3333
-4+ 0.50 3.33e-01 0.25
-4 0.33 2.50e-01 0.2

If more than one value is to be printed in a single call, the output functions do not return
to the beginning of the format template when moving on from one value to the next. This can
lead to confusing output if the number of elements in the matrices are not exact multiples of
the number of conversions in the format template. For example,

printf ("%4.2f %10.2e %8.4g\n", [1, 21, [3, 41);

-4 1.00 2.00e+00 3
- 4.00

If this is not what you want, use a series of calls instead of just one.
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14.2.6 Output Conversion Syntax

This section provides details about the precise syntax of conversion specifications that can appear
in a printf template string.

Characters in the template string that are not part of a conversion specification are printed
as-is to the output stream.

The conversion specifications in a printf template string have the general form:
% flags width [ . precision | type conversion

For example, in the conversion specifier ‘%-10.81d’, the ‘-’ is a flag, ‘10’ specifies the field
width, the precision is ‘8’, the letter ‘1’ is a type modifier, and ‘d’ specifies the conversion style.
(This particular type specifier says to print a numeric argument in decimal notation, with a
minimum of 8 digits left-justified in a field at least 10 characters wide.)

In more detail, output conversion specifications consist of an initial ‘%’ character followed in
sequence by:

e Zero or more flag characters that modify the normal behavior of the conversion specification.

e An optional decimal integer specifying the minimum field width. If the normal conversion
produces fewer characters than this, the field is padded with spaces to the specified width.
This is a minimum value; if the normal conversion produces more characters than this, the
field is not truncated. Normally, the output is right-justified within the field.

You can also specify a field width of ‘*’. This means that the next argument in the argument
list (before the actual value to be printed) is used as the field width. The value is rounded
to the nearest integer. If the value is negative, this means to set the ‘-’ flag (see below) and
to use the absolute value as the field width.

e An optional precision to specify the number of digits to be written for the numeric con-
versions. If the precision is specified, it consists of a period (‘.”) followed optionally by a
decimal integer (which defaults to zero if omitted).

You can also specify a precision of ‘*’. This means that the next argument in the argument
list (before the actual value to be printed) is used as the precision. The value must be an
integer, and is ignored if it is negative.

e An optional type modifier character. This character is ignored by Octave’s printf function,
but is recognized to provide compatibility with the C language printf.

e A character that specifies the conversion to be applied.
The exact options that are permitted and how they are interpreted vary between the different

conversion specifiers. See the descriptions of the individual conversions for information about
the particular options that they use.

14.2.7 Table of Output Conversions

Here is a table summarizing what all the different conversions do:

‘%d’, ‘%i’  Print an integer as a signed decimal number. See Section 14.2.8 [Integer Con-
versions|, page 154, for details. ‘%d’ and ‘%i’ are synonymous for output, but are
different when used with scanf for input (see Section 14.2.13 [Table of Input Con-
versions|, page 157).

‘%o’ Print an integer as an unsigned octal number. See Section 14.2.8 [Integer Conver-
sions], page 154, for details.

ALK Print an integer as an unsigned decimal number. See Section 14.2.8 [Integer Con-
versions|, page 154, for details.
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“%x’, ‘%X’ Print an integer as an unsigned hexadecimal number. ‘%x’ uses lower-case letters
and ‘%X’ uses upper-case. See Section 14.2.8 [Integer Conversions|, page 154, for
details.

%t Print a floating-point number in normal (fixed-point) notation. See Section 14.2.9
[Floating-Point Conversions], page 155, for details.

‘%he’, ‘hE>  Print a floating-point number in exponential notation. ‘%e’ uses lower-case letters
and ‘%E’ uses upper-case. See Section 14.2.9 [Floating-Point Conversions|, page 155,
for details.

‘“%g’, “hG’  Print a floating-point number in either normal (fixed-point) or exponential notation,
whichever is more appropriate for its magnitude. ‘%g’ uses lower-case letters and
‘%G’ uses upper-case. See Section 14.2.9 [Floating-Point Conversions]|, page 155, for

details.
“he’ Print a single character. See Section 14.2.10 [Other Output Conversions|, page 155.
“hs’ Print a string. See Section 14.2.10 [Other Output Conversions|, page 155.
yA Print a literal ‘%’ character. See Section 14.2.10 [Other Output Conversions],
page 155.

If the syntax of a conversion specification is invalid, unpredictable things will happen, so
don’t do this. If there aren’t enough function arguments provided to supply values for all the
conversion specifications in the template string, or if the arguments are not of the correct types,
the results are unpredictable. If you supply more arguments than conversion specifications, the
extra argument values are simply ignored; this is sometimes useful.

14.2.8 Integer Conversions

This section describes the options for the ‘%d’, ‘“%i’, ‘%ho’, ‘%u’, ‘%x’, and ‘%X’ conversion specifi-
cations. These conversions print integers in various formats.

The ‘%d” and ‘%i’ conversion specifications both print an numeric argument as a signed
decimal number; while ‘%0’, ‘%u’, and ‘%x’ print the argument as an unsigned octal, decimal,
or hexadecimal number (respectively). The ‘%X’ conversion specification is just like ‘%x’ except
that it uses the characters ‘ABCDEF’ as digits instead of ‘abcdef’.

The following flags are meaningful:
Left-justify the result in the field (instead of the normal right-justification).
4 For the signed ‘%d’ and ‘%1’ conversions, print a plus sign if the value is positive.

For the signed ‘%d’ and ‘%i’ conversions, if the result doesn’t start with a plus or
minus sign, prefix it with a space character instead. Since the ‘+’ flag ensures that
the result includes a sign, this flag is ignored if you supply both of them.

‘4 For the ‘%o’ conversion, this forces the leading digit to be ‘0’, as if by increasing the
precision. For ‘%x’ or ‘/X’, this prefixes a leading ‘0x’ or ‘0X’ (respectively) to the
result. This doesn’t do anything useful for the ‘%d’, ‘%1i’, or ‘%u’ conversions.

‘0’ Pad the field with zeros instead of spaces. The zeros are placed after any indication
of sign or base. This flag is ignored if the ‘-’ flag is also specified, or if a precision
is specified.

If a precision is supplied, it specifies the minimum number of digits to appear; leading zeros
are produced if necessary. If you don’t specify a precision, the number is printed with as many
digits as it needs. If you convert a value of zero with an explicit precision of zero, then no
characters at all are produced.
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14.2.9 Floating-Point Conversions

This section discusses the conversion specifications for floating-point numbers: the ‘%f’, ‘%e’,
“BE’, ‘%hg’, and ‘%G’ conversions.

The ‘%f’ conversion prints its argument in fixed-point notation, producing output of the form
[-]ddd . ddd, where the number of digits following the decimal point is controlled by the precision
you specify.

The ‘%e’ conversion prints its argument in exponential notation, producing output of the
form [-]d.ddde[+|-]dd. Again, the number of digits following the decimal point is controlled by
the precision. The exponent always contains at least two digits. The ‘/E’ conversion is similar
but the exponent is marked with the letter ‘E’ instead of ‘e’.

The ‘%g’ and ‘%G’ conversions print the argument in the style of ‘%e’ or ‘4E’ (respectively)
if the exponent would be less than -4 or greater than or equal to the precision; otherwise they
use the ‘%f’ style. Trailing zeros are removed from the fractional portion of the result and a
decimal-point character appears only if it is followed by a digit.

The following flags can be used to modify the behavior:
=’ Left-justify the result in the field. Normally the result is right-justified.
+ Always include a plus or minus sign in the result.

If the result doesn’t start with a plus or minus sign, prefix it with a space instead.
Since the ‘+’ flag ensures that the result includes a sign, this flag is ignored if you
supply both of them.

‘# Specifies that the result should always include a decimal point, even if no digits
follow it. For the ‘%g’ and ‘%G’ conversions, this also forces trailing zeros after the
decimal point to be left in place where they would otherwise be removed.

‘0’ Pad the field with zeros instead of spaces; the zeros are placed after any sign. This
flag is ignored if the ‘=’ flag is also specified.

The precision specifies how many digits follow the decimal-point character for the ‘%f’, ‘%e’,
and ‘%E’ conversions. For these conversions, the default precision is 6. If the precision is explicitly
0, this suppresses the decimal point character entirely. For the ‘/%g’ and ‘%G’ conversions, the
precision specifies how many significant digits to print. Significant digits are the first digit before
the decimal point, and all the digits after it. If the precision is 0 or not specified for ‘%g’ or ‘%G,
it is treated like a value of 1. If the value being printed cannot be expressed precisely in the
specified number of digits, the value is rounded to the nearest number that fits.

14.2.10 Other Output Conversions

This section describes miscellaneous conversions for printf.

The ‘%c’ conversion prints a single character. The ‘-’ flag can be used to specify left-
justification in the field, but no other flags are defined, and no precision or type modifier can be
given. For example:

printf ("%C%C%C%C%C", llh"’ ||ell, "1"’ lll", ||0ll) ;
prints ‘hello’.

The ‘%s’ conversion prints a string. The corresponding argument must be a string. A precision
can be specified to indicate the maximum number of characters to write; otherwise characters
in the string up to but not including the terminating null character are written to the output
stream. The ‘-’ flag can be used to specify left-justification in the field, but no other flags or
type modifiers are defined for this conversion. For example:

printf ("%3s%-6s", "no", "where");

prints ‘ nowhere ’ (note the leading and trailing spaces).
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14.2.11 Formatted Input

Octave provides the scanf, fscanf, and sscanf functions to read formatted input. There are
two forms of each of these functions. One can be used to extract vectors of data from a file, and
the other is more ‘C-like’.

[val, count] = fscanf (fid, template, size) [Built-in Function)]
[vli, v2, ..., count] = fscanf (fid, template, "C") [Built-in Function]
In the first form, read from fid according to template, returning the result in the matrix val.

The optional argument size specifies the amount of data to read and may be one of
Inf Read as much as possible, returning a column vector.
nr Read up to nr elements, returning a column vector.

[nr, Inf] Read as much as possible, returning a matrix with nr rows. If the number of
elements read is not an exact multiple of nr, the last column is padded with zeros.

[nr, nc] Read up to nr * nc elements, returning a matrix with nr rows. If the number
of elements read is not an exact multiple of nr, the last column is padded with
ZETros.

If size is omitted, a value of Inf is assumed.
A string is returned if template specifies only character conversions.
The number of items successfully read is returned in count.

In the second form, read from fid according to template, with each conversion specifier in
template corresponding to a single scalar return value. This form is more ‘C-like’, and also
compatible with previous versions of Octave. The number of successful conversions is returned
in count

See also: scanf, sscanf, fread, fprintf.

[val, count] = sscanf (string, template, size) [Built-in Function]

[vi, v2, ..., count] = sscanf (string, template, "C") [Built-in Function)]
This is like fscanf, except that the characters are taken from the string string instead of
from a stream. Reaching the end of the string is treated as an end-of-file condition.

See also: fscanf, scanf, sprintf.

Calls to scanf are superficially similar to calls to printf in that arbitrary arguments are
read under the control of a template string. While the syntax of the conversion specifications
in the template is very similar to that for printf, the interpretation of the template is oriented
more towards free-format input and simple pattern matching, rather than fixed-field formatting.
For example, most scanf conversions skip over any amount of “white space” (including spaces,
tabs, and newlines) in the input file, and there is no concept of precision for the numeric input
conversions as there is for the corresponding output conversions. Ordinarily, non-whitespace
characters in the template are expected to match characters in the input stream exactly.

When a matching failure occurs, scanf returns immediately, leaving the first non-matching
character as the next character to be read from the stream, and scanf returns all the items that
were successfully converted.

The formatted input functions are not used as frequently as the formatted output functions.
Partly, this is because it takes some care to use them properly. Another reason is that it is
difficult to recover from a matching error.
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14.2.12 Input Conversion Syntax

A scanf template string is a string that contains ordinary multibyte characters interspersed
with conversion specifications that start with ‘%’.

Any whitespace character in the template causes any number of whitespace characters in the
input stream to be read and discarded. The whitespace characters that are matched need not
be exactly the same whitespace characters that appear in the template string. For example,
write ¢ , 7 in the template to recognize a comma with optional whitespace before and after.

Other characters in the template string that are not part of conversion specifications must
match characters in the input stream exactly; if this is not the case, a matching failure occurs.

The conversion specifications in a scanf template string have the general form:
% flags width type conversion

In more detail, an input conversion specification consists of an initial ‘%’ character followed
in sequence by:

e An optional flag character ‘*’, which says to ignore the text read for this specification.
When scanf finds a conversion specification that uses this flag, it reads input as directed
by the rest of the conversion specification, but it discards this input, does not return any
value, and does not increment the count of successful assignments.

e An optional decimal integer that specifies the maximum field width. Reading of characters
from the input stream stops either when this maximum is reached or when a non-matching
character is found, whichever happens first. Most conversions discard initial whitespace
characters, and these discarded characters don’t count towards the maximum field width.
Conversions that do not discard initial whitespace are explicitly documented.

e An optional type modifier character. This character is ignored by Octave’s scanf function,
but is recognized to provide compatibility with the C language scanf.

e A character that specifies the conversion to be applied.
The exact options that are permitted and how they are interpreted vary between the different

conversion specifiers. See the descriptions of the individual conversions for information about
the particular options that they allow.

14.2.13 Table of Input Conversions

Here is a table that summarizes the various conversion specifications:

“hd’ Matches an optionally signed integer written in decimal. See Section 14.2.14 [Nu-
meric Input Conversions|, page 158.

AR Matches an optionally signed integer in any of the formats that the C language
defines for specifying an integer constant. See Section 14.2.14 [Numeric Input Con-
versions|, page 158.

‘%o’ Matches an unsigned integer written in octal radix. See Section 14.2.14 [Numeric
Input Conversions|, page 158.

AN Matches an unsigned integer written in decimal radix. See Section 14.2.14 [Numeric
Input Conversions|, page 158.

%x’, KX’ Matches an unsigned integer written in hexadecimal radix. See Section 14.2.14
[Numeric Input Conversions|, page 158.

4%67’ 4%f77 C‘Zg” ‘%E77 4%G7
Matches an optionally signed floating-point number. See Section 14.2.14 [Numeric
Input Conversions|, page 158.
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“hs’ Matches a string containing only non-whitespace characters. See Section 14.2.15
[String Input Conversions], page 158.

“he’ Matches a string of one or more characters; the number of characters read is con-
trolled by the maximum field width given for the conversion. See Section 14.2.15
[String Input Conversions], page 158.

ot This matches a literal ‘%) character in the input stream. No corresponding argument
is used.

If the syntax of a conversion specification is invalid, the behavior is undefined. If there aren’t
enough function arguments provided to supply addresses for all the conversion specifications in
the template strings that perform assignments, or if the arguments are not of the correct types,
the behavior is also undefined. On the other hand, extra arguments are simply ignored.

14.2.14 Numeric Input Conversions

This section describes the scanf conversions for reading numeric values.
The ‘%d’ conversion matches an optionally signed integer in decimal radix.

The ‘%1’ conversion matches an optionally signed integer in any of the formats that the C
language defines for specifying an integer constant.

For example, any of the strings ‘10’, ‘Oxa’, or ‘012’ could be read in as integers under the
‘%1’ conversion. Each of these specifies a number with decimal value 10.

The ‘%o’, ‘%u’, and ‘%x’ conversions match unsigned integers in octal, decimal, and hexadeci-
b) b ) b
mal radices, respectively.

The ‘%X’ conversion is identical to the ‘%x’ conversion. They both permit either uppercase or
lowercase letters to be used as digits.

Unlike the C language scanf, Octave ignores the ‘h’; ‘1’, and ‘L’ modifiers.

14.2.15 String Input Conversions
This section describes the scanf input conversions for reading string and character values: ‘%s’
and ‘%c’.

The ‘%c’ conversion is the simplest: it matches a fixed number of characters, always. The
maximum field with says how many characters to read; if you don’t specify the maximum, the
default is 1. This conversion does not skip over initial whitespace characters. It reads precisely
the next n characters, and fails if it cannot get that many.

The ‘%s’ conversion matches a string of non-whitespace characters. It skips and discards
initial whitespace, but stops when it encounters more whitespace after having read something.

For example, reading the input:
hello, world

with the conversion ‘%10c’ produces " hello, wo", but reading the same input with the conver-
sion ‘%4108’ produces "hello,".

14.2.16 Binary I/0

Octave can read and write binary data using the functions fread and fwrite, which are pat-
terned after the standard C functions with the same names. They are able to automatically
swap the byte order of integer data and convert among the supported floating point formats as
the data are read.

[val, count] = fread (fid, size, precision, skip, arch) [Built-in Function]
Read binary data of type precision from the specified file ID fid.

The optional argument size specifies the amount of data to read and may be one of
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Inf Read as much as possible, returning a column vector.
nr Read up to nr elements, returning a column vector.

[nr, Inf] Read as much as possible, returning a matrix with nr rows. If the number of
elements read is not an exact multiple of nr, the last column is padded with zeros.

[nr, nc] Read up to nr * nc elements, returning a matrix with nr rows. If the number
of elements read is not an exact multiple of nr, the last column is padded with
ZEros.

If size is omitted, a value of Inf is assumed.

The optional argument precision is a string specifying the type of data to read and may be
one of

"schar"
"signed char"
Signed character.

"uchar"
"unsigned char"
Unsigned character.

n int8 n
"integerx1"

8-bit signed integer.
"intl6"
"integerx*2"

16-bit signed integer.
"int32"
"integerx4"

32-bit signed integer.
"int64"
"integer*8"

64-bit signed integer.
"uint8"  8-bit unsigned integer.

"uint16" 16-bit unsigned integer.
"uint32" 32-bit unsigned integer.
"uint64" 64-bit unsigned integer.

"single"
"float32"
"real*4" 32-bit floating point number.

"double"
"float64"
"realx8" 64-bit floating point number.

"Char“
"char*1" Single character.

"short"  Short integer (size is platform dependent).
"int" Integer (size is platform dependent).

"long" Long integer (size is platform dependent).
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"ushort"
"unsigned short"
Unsigned short integer (size is platform dependent).

"uint"
"unsigned int"
Unsigned integer (size is platform dependent).

llulong"
"unsigned long"
Unsigned long integer (size is platform dependent).

"float"  Single precision floating point number (size is platform dependent).

The default precision is "uchar".

The precision argument may also specify an optional repeat count. For example, ‘32*single’
causes fread to read a block of 32 single precision floating point numbers. Reading in blocks
is useful in combination with the skip argument.

The precision argument may also specify a type conversion. For example, ‘int16=>int32’
causes fread to read 16-bit integer values and return an array of 32-bit integer values. By
default, fread returns a double precision array. The special form ‘*TYPE’ is shorthand for
‘TYPE=>TYPE’.

The conversion and repeat counts may be combined. For example, ‘32*single=>single’
causes fread to read blocks of single precision floating point values and return an array of
single precision values instead of the default array of double precision values.

The optional argument skip specifies the number of bytes to skip after each element (or block
of elements) is read. If it is not specified, a value of 0 is assumed. If the final block read is
not complete, the final skip is omitted. For example,

fread (£, 10, "3*single=>single", 8)
will omit the final 8-byte skip because the last read will not be a complete block of 3 values.
The optional argument arch is a string specifying the data format for the file. Valid values

are

"native" The format of the current machine.

"ieee-be"

IEEE big endian.
"ieee-le"

IEEE little endian.
"vaxd" VAX D floating format.

"vaxg" VAX G floating format.
"cray" Cray floating format.

Conversions are currently only supported for "ieee-be" and "ieee-le" formats.
The data read from the file is returned in val, and the number of values read is returned in
count

See also: fwrite, fopen, fclose.

count = fwrite (fid, data, precision, skip, arch) [Built-in Function]
Write data in binary form of type precision to the specified file ID fid, returning the number
of values successfully written to the file.
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The argument data is a matrix of values that are to be written to the file. The values are
extracted in column-major order.

The remaining arguments precision, skip, and arch are optional, and are interpreted as de-
scribed for fread.

The behavior of fwrite is undefined if the values in data are too large to fit in the specified
precision.

See also: fread, fopen, fclose.

14.2.17 Temporary Files

Sometimes one needs to write data to a file that is only temporary. This is most commonly used
when an external program launched from within Octave needs to access data. When Octave
exits all temporary files will be deleted, so this step need not be executed manually.

[fid, name, msg] = mkstemp (template, delete) [Built-in Function]
Return the file ID corresponding to a new temporary file with a unique name created from
template. The last six characters of template must be XXXXXX and these are replaced with
a string that makes the filename unique. The file is then created with mode read/write and
permissions that are system dependent (on GNU/Linux systems, the permissions will be 0600
for versions of glibc 2.0.7 and later). The file is opened with the 0_EXCL flag.

If the optional argument delete is supplied and is true, the file will be deleted automatically
when Octave exits, or when the function purge_tmp_files is called.

If successful, fid is a valid file ID, name is the name of the file, and msg is an empty string.
Otherwise, fid is -1, name is empty, and msg contains a system-dependent error message.

See also: tmpfile, tmpnam, P_tmpdir.

[fid, msg] = tmpfile () [Built-in Function]
Return the file ID corresponding to a new temporary file with a unique name. The file is
opened in binary read/write ("w+b") mode. The file will be deleted automatically when it is
closed or when Octave exits.

If successful, fid is a valid file ID and msg is an empty string. Otherwise, fid is -1 and msg
contains a system-dependent error message.

See also: tmpnam, mkstemp, P_tmpdir.

tmpnam (dir, prefix) [Built-in Function]
Return a unique temporary file name as a string.

If prefix is omitted, a value of "oct-" is used. If dir is also omitted, the default directory for
temporary files is used. If dir is provided, it must exist, otherwise the default directory for
temporary files is used. Since the named file is not opened, by tmpnam, it is possible (though
relatively unlikely) that it will not be available by the time your program attempts to open
it.

See also: tmpfile, mkstemp, P_tmpdir.

14.2.18 End of File and Errors

Once a file has been opened its status can be acquired. As an example the feof functions
determines if the end of the file has been reached. This can be very useful when reading small
parts of a file at a time. The following example shows how to read one line at a time from a file
until the end has been reached.
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filename = "myfile.txt";

fid = fopen (filename, "r");

while (! feof (fid) )

text_line = fgetl (fid);

endwhile

fclose (fid);
Note that in some situations it is more efficient to read the entire contents of a file and then
process it, than it is to read it line by line. This has the potential advantage of removing the
loop in the above code.

feof (fid) [Built-in Function]
Return 1 if an end-of-file condition has been encountered for a given file and 0 otherwise.
Note that it will only return 1 if the end of the file has already been encountered, not if the
next read operation will result in an end-of-file condition.

See also: fread, fopen, fclose.

ferror (fid) [Built-in Function]
Return 1 if an error condition has been encountered for a given file and 0 otherwise. Note
that it will only return 1 if an error has already been encountered, not if the next operation
will result in an error condition.

freport () [Built-in Function]
Print a list of which files have been opened, and whether they are open for reading, writing,
or both. For example,

freport ()
- number mode name
_|
o 0 r stdin
o 1 w stdout
o 2 w stderr
— 3 r myfile

14.2.19 File Positioning

Three functions are available for setting and determining the position of the file pointer for a
given file.

ftell (fid) [Built-in Function]
Return the position of the file pointer as the number of characters from the beginning of the
file fid.

See also: fseek, fopen, fclose.

fseek (fid, offset, origin) [Built-in Function]
Set the file pointer to any location within the file fid.
The pointer is positioned offset characters from the origin, which may be one of the predefined
variables SEEK_CUR (current position), SEEK_SET (beginning), or SEEK_END (end of file) or
strings "cof", "bof" or "eof". If origin is omitted, SEEK_SET is assumed. The offset must be
zero, or a value returned by ftell (in which case origin must be SEEK_SET).

Return 0 on success and -1 on error.

See also: ftell, fopen, fclose.
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SEEK_SET () [Built-in Function]
SEEK_CUR () [Built-in Function)]
SEEK_END () [Built-in Function]

Return the value required to request that £seek perform one of the following actions:
SEEK_SET Position file relative to the beginning.

SEEK_CUR Position file relative to the current position.

SEEK_END Position file relative to the end.

frewind (fid) [Built-in Function]
Move the file pointer to the beginning of the file fid, returning 0 for success, and -1 if an error
was encountered. It is equivalent to fseek (£fid, 0, SEEK_SET).

The following example stores the current file position in the variable marker, moves the
pointer to the beginning of the file, reads four characters, and then returns to the original
position.

marker = ftell (myfile);

frewind (myfile);

fourch = fgets (myfile, 4);

fseek (myfile, marker, SEEK_SET);
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15 Plotting

15.1 Plotting Basics

Octave makes it easy to create many different types of two- and three-dimensional plots using a
few high-level functions.

If you need finer control over graphics, see Section 15.2 [Advanced Plotting], page 181.
15.1.1 Two-Dimensional Plots

The plot function allows you to create simple x-y plots with linear axes. For example,

x = -10:0.1:10;

plot (x, sin (x));
displays a sine wave shown in Figure 15.1. On most systems, this command will open a separate
plot window to display the graph.

Figure 15.1: Simple Two-Dimensional Plot.

The function fplot also generates two-dimensional plots with linear axes using a function
name and limits for the range of the x-coordinate instead of the x and y data. For example,
fplot (@sin, [-10, 10], 201);

produces a plot that is equivalent to the one above, but also includes a legend displaying the
name of the plotted function.

plot (y) [Function File]

plot (x, y) [Function File]

plot (x, y, property, value, ...) [Function File]

plot (x, y, fmt) [Function File]

plot (h, ...) [Function File]
Produces two-dimensional plots. Many different combinations of arguments are possible. The
simplest form is

plot (y)

where the argument is taken as the set of y coordinates and the x coordinates are taken to
be the indices of the elements, starting with 1.

To save a plot, in one of several image formats such as PostScript or PNG, use the print
command.

If more than one argument is given, they are interpreted as
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plot (y, property, value, ...)
or

plot (x, y, property, value, ...)
or

plot (x, y, fmt, ...)

and so on. Any number of argument sets may appear. The x and y values are interpreted
as follows:

e If a single data argument is supplied, it is taken as the set of y coordinates and the x
coordinates are taken to be the indices of the elements, starting with 1.

e If the x is a vector and y is a matrix, then the columns (or rows) of y are plotted versus
x. (using whichever combination matches, with columns tried first.)

e If the x is a matrix and y is a vector, y is plotted versus the columns (or rows) of x.
(using whichever combination matches, with columns tried first.)

e If both arguments are vectors, the elements of y are plotted versus the elements of x.

e If both arguments are matrices, the columns of y are plotted versus the columns of x.
In this case, both matrices must have the same number of rows and columns and no
attempt is made to transpose the arguments to make the number of rows match.

If both arguments are scalars, a single point is plotted.

Multiple property-value pairs may be specified, but they must appear in pairs. These argu-
ments are applied to the lines drawn by plot.

If the fmt argument is supplied, it is interpreted as follows. If fmt is missing, the default
gnuplot line style is assumed.

= Set lines plot style (default).
© Set dots plot style.
Set impulses plot style.

‘v Set steps plot style.

‘n’ Interpreted as the plot color if n is an integer in the range 1 to 6.

‘nm’ If nm is a two digit integer and m is an integer in the range 1 to 6, m is interpreted
as the point style. This is only valid in combination with the @ or -@ specifiers.

‘¢’ If ¢ is one of "k" (black), "r" (red), "g" (green), "b" (blue), "m" (magenta), "c"
(cyan), or "w" (white), it is interpreted as the line plot color.

‘ititle;™
Here "title" is the label for the key.

C+?

(*7

407

‘x’ Used in combination with the points or linespoints styles, set the point style.

The fmt argument may also be used to assign key titles. To do so, include the desired title
between semi-colons after the formatting sequence described above, e.g. "+3;Key Title;" Note
that the last semi-colon is required and will generate an error if it is left out.

Here are some plot examples:
plOt (X’ Y "©12"’ X, y2’ X, Y3, "4", X, Y4, "+")

This command will plot y with points of type 2 (displayed as ‘+’) and color 1 (red), y2 with
lines, y3 with lines of color 4 (magenta) and y4 with points displayed as ‘+’.
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plot (b, "x", "markersize", 3)

This command will plot the data in the variable b, with points displayed as ‘*’ with a marker
size of 3.

t =0:0.1:6.3;
plot (t, cos(t), "—-;cos(t);", t, sin(t), "+3;sin(t);");

This will plot the cosine and sine functions and label them accordingly in the key.

If the first argument is an axis handle, then plot into these axes, rather than the current axis
handle returned by gca.

See also: semilogx, semilogy, loglog, polar, mesh, contour, bar, stairs, errorbar, xlabel, ylabel,
title, print.

fplot (fn, limits) [Function File]
fplot (fn, limits, tol) [Function File]
fplot (fn, 1imits, n) [Function File]
fplot (..., fmt) [Function File]

Plot a function fn, within the defined limits. fn an be either a string, a function handle or an
inline function. The limits of the plot are given by limits of the form [xlo, xhi] or [xlo,
xhi, ylo, yhi]. tol is the default tolerance to use for the plot, and if tol is an integer it is
assumed that it defines the number points to use in the plot. The fmt argument is passed to
the plot command.

fplot ("cos", [0, 2*pi])
fplot ("[cos(x), sin(x)]", [0, 2x*pil)

See also: plot.

The functions semilogx, semilogy, and loglog are similar to the plot function, but produce
plots in which one or both of the axes use log scales.

semilogx (args) [Function File]
Produce a two-dimensional plot using a log scale for the x axis. See the description of plot
for a description of the arguments that semilogx will accept.

See also: plot, semilogy, loglog.

semilogy (args) [Function File]
Produce a two-dimensional plot using a log scale for the y axis. See the description of plot
for a description of the arguments that semilogy will accept.

See also: plot, semilogx, loglog.

loglog (args) [Function File]
Produce a two-dimensional plot using log scales for both axes. See the description of plot
for a description of the arguments that loglog will accept.

See also: plot, semilogx, semilogy.

The functions bar, barh, stairs, and stem are useful for displaying discrete data. For
example,

hist (randn (10000, 1), 30);

produces the histogram of 10,000 normally distributed random numbers shown in Figure 15.2.
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Figure 15.2: Histogram.

h = bar (x, y, style) [Function File]
[xb, yb] = bar (...) [Function File]
Given two vectors of x-y data, bar produce a bar graph.

If only one argument is given, it is taken as a vector of y-values and the x coordinates are
taken to be the indices of the elements.

If y is a matrix, then each column of y is taken to be a separate bar graph plotted on the
same graph. By default the columns are plotted side-by-side. This behavior can be changed
by the style argument, which can take the values 'group’ (the default), or ’stack’.

If two output arguments are specified, the data are generated but not plotted. For example,
bar (x, y);
and

[xb, yb] = bar (x, y);
plot (xb, yb);

are equivalent.

See also: hbar, plot.

h = barh (x, y, style) [Function File]
[xb, yb] = barh (...) [Function File]
Given two vectors of x-y data, bar produce a horizontal bar graph.

If only one argument is given, it is taken as a vector of y-values and the x coordinates are
taken to be the indices of the elements.

If y is a matrix, then each column of y is taken to be a separate bar graph plotted on the
same graph. By default the columns are plotted side-by-side. This behavior can be changed
by the style argument, which can take the values 'group’ (the default), or ’stack’.

If two output arguments are specified, the data are generated but not plotted. For example,
barh (x, y);
and

[xb, yb] = barh (%, y);
plot (xb, yb);

are equivalent.

See also: bar, plot.
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hist (y, x, norm) [Function File]
Produce histogram counts or plots.

With one vector input argument, plot a histogram of the values with 10 bins. The range of
the histogram bins is determined by the range of the data.

Given a second scalar argument, use that as the number of bins.

Given a second vector argument, use that as the centers of the bins, with the width of the
bins determined from the adjacent values in the vector.

If third argument is provided, the histogram is normalised such that the sum of the bars is
equal to norm.

Extreme values are lumped in the first and last bins.

With two output arguments, produce the values nn and xx such that bar (xx, nn) will plot
the histogram.

See also: bar.

stairs (x, y) [Function File]
Produce a stairstep plot. The arguments may be vectors or matrices.

If only one argument is given, it is taken as a vector of y-values and the x coordinates are
taken to be the indices of the elements.

If two output arguments are specified, the data are generated but not plotted. For example,
stairs (x, y);
and

[xs, ys] = stairs (x, y);
plot (xs, ys);

are equivalent.

See also: plot, semilogx, semilogy, loglog, polar, mesh, contour, bar, xlabel, ylabel, title.

h = stem (x, y, 1inespec) [Function File]
Plot a stem graph and return the handles of the line and marker objects used to draw the
stems. The default color is "r" (red). The default line style is "-" and the default marker is
lloll.

For example,
x = 1:10;
stem (x);
plots 10 stems with heights from 1 to 10;
x = 1:10;
y = ones (1, length (x))*2.%x;
stem (x, y);
plots 10 stems with heights from 2 to 20;
x = 1:10;
y = ones (size (x))*2.*x;
h = stem (x, y, "b");
plots 10 bars with heights from 2 to 20 (the color is blue, and h is a 2-by-10 array of handles
in which the first row holds the line handles and the second row holds the marker handles);

x = 1:10;
y = ones (size (x))*2.%*x;
h = stem (%, y, "-.k");
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plots 10 stems with heights from 2 to 20 (the color is black, line style is "-.", and h is a
2-by-10 array of handles in which the first row holds the line handles and the second row
holds the marker handles);

x = 1:10;
y = ones (size (x))*2.*x;

h = stem (%, y, "-.k.");
plots 10 stems with heights from 2 to 20 (the color is black, line style is "=." and the marker
style is ".", and h is a 2-by-10 array of handles in which the first row holds the line handles

and the second row holds the marker handles);

x = 1:10;
y = ones (size (x))*2.%x;
h = stem (x, y, "fill");

plots 10 stems with heights from 2 to 20 (the color is rgb-triple defined, the line style is "-",
the marker style is "o", and h is a 2-by-10 array of handles in which the first row holds the
line handles and the second row holds the marker handles).

Color definitions with rgb-triples are not valid!

See also: bar, barh, plot.

The contour and contourc functions produce two-dimensional contour plots from three

dimensional data.

O o0 oo

= contour (z) [Function File]
= contour (z, vn) [Function File]
= contour (x,y, z) [Function File]
= contour (x, y, z, vn) [Function File]

Plot level curves (contour lines) of the matrix z, using the contour matrix ¢ computed by
contourc from the same arguments; see the latter for their interpretation. The set of contour
levels, ¢, is only returned if requested. For example:

x = 0:2;

y = x5

z =x" *xy;

contour (%, y, z, 2:3)

See also: contourc, line, plot.

[c, lev] = contourc (x,y, z, vn) [Function File]

Compute isolines (countour lines) of the matrix z. Parameters x, y and vn are optional.

The return value lev is a vector of the contour levels. The return value c¢ is a 2 by n matrix
containing the contour lines in the following format

¢ = [levl, x1, x2, ..., levn, x1, x2, ...
lenl, y1, y2, ..., lenn, y1, y2, ...]

in which contour line n has a level (height) of levn and length of lenn.

If x and y are omitted they are taken as the row/column index of z. vn is either a scalar
denoting the number of lines to compute or a vector containing the values of the lines. If
only one value is wanted, set vn = [val, vall; If vn is omitted it defaults to 10.

For example,
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x = 0:2;

y = %5

z =x’ % y;

contourc (x, y, z, 2:3)

= 2.0000 2.0000 1.0000 3.0000 1.5000 2.0000
2.0000 1.0000 2.0000 2.0000 2.0000 1.5000

See also: contour.

The errorbar, semilogxerr, semilogyerr, and loglogerr functions produces plots with
error bar markers. For example,

x = 0:0.1:10;
y = sin (x);
yp = 0.1 .* randn (size (x));
ym = -0.1 .* randn (size (x));
errorbar (x, sin (x), ym, yp);

produces the figure shown in Figure 15.3.
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Figure 15.3: Errorbar plot.

errorbar (args) [Function File]
This function produces two-dimensional plots with errorbars. Many different combinations
of arguments are possible. The simplest form is

errorbar (y, ey)

where the first argument is taken as the set of y coordinates and the second argument ey is
taken as the errors of the y values. x coordinates are taken to be the indices of the elements,
starting with 1.

If more than two arguments are given, they are interpreted as
errorbar (x, y, ..., fmt, ...)

where after x and y there can be up to four error parameters such as ey, ex, ly, uy etc.,
depending on the plot type. Any number of argument sets may appear, as long as they are
separated with a format string fmt.

If y is a matrix, x and error parameters must also be matrices having same dimensions. The
columns of y are plotted versus the corresponding columns of x and errorbars are drawn from
the corresponding columns of error parameters.
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If fmt is missing, yerrorbars ("~") plot style is assumed.

If the fint argument is supplied, it is interpreted as in normal plots. In addition the following
plot styles are supported by errorbar:

Set yerrorbars plot style (default).

&> Set xerrorbars plot style.

> Set xyerrorbars plot style.

‘# Set boxes plot style.

H# Set boxerrorbars plot style.
#> Set boxxyerrorbars plot style.
Examples:

errorbar (x, y, ex, ">")
produces an xerrorbar plot of y versus x with x errorbars drawn from x-ex to x+ex.
errorbar (x, y1, ey, "™",
X, y2, ly, uy)
produces yerrorbar plots with y1 and y2 versus x. Errorbars for y1 are drawn from yI-ey to
yl+ey, errorbars for y2 from y2-ly to y2+uy.
errorbar (x, y, 1x, ux,
ly, uy, n~>n)
produces an xyerrorbar plot of y versus x in which x errorbars are drawn from x-Ix to x+ux
and y errorbars from y-ly to y+uy.

See also: semilogxerr, semilogyerr, loglogerr.

semilogxerr (args) [Function File]
Produce two-dimensional plots on a semilogarithm axis with errorbars. Many different com-
binations of arguments are possible. The most used form is

semilogxerr (x, y, ey, fmt)

which produces a semi-logarithm plot of y versus x with errors in the y-scale defined by
ey and the plot format defined by fmt. See errorbar for available formats and additional
information.

See also: errorbar, loglogerr semilogyerr.

semilogyerr (args) [Function File]
Produce two-dimensional plots on a semilogarithm axis with errorbars. Many different com-
binations of arguments are possible. The most used form is

semilogyerr (x, y, ey, fmt)

which produces a semi-logarithm plot of y versus x with errors in the y-scale defined by
ey and the plot format defined by fmt. See errorbar for available formats and additional
information.

See also: errorbar, loglogerr semilogxerr.

loglogerr (args) [Function File]
Produce two-dimensional plots on double logarithm axis with errorbars. Many different
combinations of arguments are possible. The most used form is
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loglogerr (x, y, ey, fmt)

which produces a double logarithm plot of y versus x with errors in the y-scale defined by
ey and the plot format defined by fmt. See errorbar for available formats and additional
information.

See also: errorbar, semilogxerr, semilogyerr.

Finally, the polar function allows you to easily plot data in polar coordinates. However, the
display coordinates remain rectangular and linear. For example,

polar (0:0.1:10%pi, 0:0.1:10%pi);
produces the spiral plot shown in Figure 15.4.
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Figure 15.4: Polar plot.

polar (theta, rho, fmt) [Function File]
Make a two-dimensional plot given polar the coordinates theta and rho.

The optional third argument specifies the line type.

See also: plot.
The axis function may be used to change the axis limits of an existing plot.

axis (limits) [Function File]
Set axis limits for plots.

The argument limits should be a 2, 4, or 6 element vector. The first and second elements
specify the lower and upper limits for the x axis. The third and fourth specify the limits for
the y axis, and the fifth and sixth specify the limits for the z axis.

Without any arguments, axis turns autoscaling on.

With one output argument, x=axis returns the current axes (this is not yet implemented for
automatic axes).

The vector argument specifying limits is optional, and additional string arguments may be
used to specify various axis properties. For example,

axis ([1, 2, 3, 4], "square");
forces a square aspect ratio, and
axis ("labely", "tic");
turns tic marks on for all axes and tic mark labels on for the y-axis only.

The following options control the aspect ratio of the axes.
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"square" Force a square aspect ratio.
"equal"  Force x distance to equal y-distance.

"normal" Restore the balance.
The following options control the way axis limits are interpreted.

"auto" Set the specified axes to have nice limits around the data or all if no axes are
specified.

"manual" Fix the current axes limits.
"tight"  Fix axes to the limits of the data (not implemented).

The option "image" is equivalent to "tight" and "equal".

The following options affect the appearance of tic marks.

"on" Turn tic marks and labels on for all axes.
"off" Turn tic marks off for all axes.
"tic[xyz]"

Turn tic marks on for all axes, or turn them on for the specified axes and off for
the remainder.

"label [xyz]"
Turn tic labels on for all axes, or turn them on for the specified axes and off for
the remainder.

"nolabel"
Turn tic labels off for all axes.

Note, if there are no tic marks for an axis, there can be no labels.

The following options affect the direction of increasing values on the axes.

"ij" Reverse y-axis, so lower values are nearer the top.

"xy" Restore y-axis, so higher values are nearer the top.

15.1.2 Three-Dimensional Plotting

The function mesh produces mesh surface plots. For example,

tx = ty = linspace (-8, 8, 41)’;
[xx, yy] = meshgrid (tx, ty);

r =sqrt (xx .~ 2 + yy .~ 2) + eps;
tz = sin (r) ./ r;

mesh (tx, ty, tz);

produces the familiar “sombrero” plot shown in Figure 15.5. Note the use of the function
meshgrid to create matrices of X and Y coordinates to use for plotting the Z data. The ndgrid
function is similar to meshgrid, but works for N-dimensional matrices.
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The meshc function is similar to mesh, but also produces a plot of contours for the surface.

The plot3 function displays arbitrary three-dimensional data, without requiring it to form

a surface. For example

t = 0:0.1:10%pi;
r = linspace (0, 1, numel (t));
z = linspace (0, 1, numel (t));

plot3 (r.*sin(t), r.*cos(t), z);

displays the spiral in three dimensions shown in Figure 15.6.

Figure 15.6: Three dimensional spiral.

Finally, the view function changes the viewpoint for three-dimensional plots.

mesh (x, y, z)

[Function File]

Plot a mesh given matrices x, and y from meshgrid and a matrix z corresponding to the x
and y coordinates of the mesh. If x and y are vectors, then a typical vertex is (x(j), y(i),
z(1,j)). Thus, columns of z correspond to different x values and rows of z correspond to

different y values.

See also: meshgrid, contour.
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meshc (x, y, z) [Function File]
Plot a mesh and contour given matrices x, and y from meshgrid and a matrix z corresponding
to the x and y coordinates of the mesh. If x and y are vectors, then a typical vertex is (x(j),
yv(i), z(i,j)). Thus, columns of z correspond to different x values and rows of z correspond to
different y values.

See also: meshgrid, mesh, contour.

[xx, yy, zz] = meshgrid (x,y, z) [Function File]
[xx, yy] = meshgrid (x, y) [Function File]
[xx, yy] = meshgrid (x) [Function File]

Given vectors of x and y and z coordinates, and returning 3 arguments, return three dimen-
sional arrays corresponding to the x, y, and z coordinates of a mesh. When returning only 2
arguments, return matrices corresponding to the x and y coordinates of a mesh. The rows of
xx are copies of x, and the columns of yy are copies of y. If y is omitted, then it is assumed
to be the same as x, and z is assumed the same as y.

See also: mesh, contour.

[yl, y2, ..., yn] = ndgrid (x1, x2, ..., xn) [Function File]
[yl, y2, ..., yn] = ndgrid (x) [Function File]
Given n vectors x1, ... xn, ndgrid returns n arrays of dimension n. The elements of the ith

output argument contains the elements of the vector xi repeated over all dimensions different
from the ith dimension. Calling ndgrid with only one input argument x is equivalent of
calling ndgrid with all n input arguments equal to x:

[v1, v2, ..., yn] = ndgrid (x, ..., x)

See also: meshgrid.

plot3 (args) [Function File]

Produce three-dimensional plots. Many different combinations of arguments are possible.
The simplest form is

plot3 (x, y, z)
in which the arguments are taken to be the vertices of the points to be plotted in three
dimensions. If all arguments are vectors of the same length, then a single continuous line
is drawn. If all arguments are matrices, then each column of the matrices is treated as a
separate line. No attempt is made to transpose the arguments to make the number of rows
match.
If only two arguments are given, as

plot3 (x, c¢)
the real and imaginary parts of the second argument are used as the y and z coordinates,
respectively.
If only one argument is given, as

plot3 (c¢)
the real and imaginary parts of the argument are used as the y and z values, and they are
plotted versus their index.
Arguments may also be given in groups of three as

plot3 (x1, y1, z1, x2, y2, z2, ...)
in which each set of three arguments is treated as a separate line or set of lines in three
dimensions.

To plot multiple one- or two-argument groups, separate each group with an empty format
string, as
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plot3 (x1, c1, "", c2, "", ...)
An example of the use of plot3 is
z = [0:0.05:5];
plot3 (cos(2xpi*z), sin(2xpixz), z, ";helix;");
plot3 (z, exp(2i*pi*z), ";complex sinusoid;");

See also: plot.

view (azimuth, elevation) [Function File]
view (dims) [Function File]
lazimuth, elevation] = view () [Function File]

Set or get the viewpoint for the current axes.

15.1.3 Plot Annotations

You can add titles, axis labels, legends, and arbitrary text to an existing plot. For example,

x = -10:0.1:10;

plot (x, sin (x));

title ("sin(x) for x = -10:0.1:10");

xlabel ("x");

ylabel ("sin (x)");

text (pi, 0.7, "arbitrary text");

legend ("sin (x)");

The functions grid and box may also be used to add grid and border lines to the plot. By

default, the grid is off and the border lines are on.

title (title) [Function File]
Create a title object and return a handle to it.

legend (st1, st2,...) [Function File]
legend (st1, st2, ..., "location", pos) [Function File]
legend (matstr) [Function File]
legend (matstr, "location", pos) [Function File]
legend (cell) [Function File]
legend (cell, "location", pos) [Function File]
legend (’func’) [Function File]

Display a legend for the current axes using the specified strings as labels. Legend entries
may be specified as individual character string arguments, a character array, or a cell array
of character strings. Legend works on line graphs, bar graphs, etc. A plot must exist before
legend is called.

The optional parameter pos specifies the location of the legend as follows:

north center top
south center bottom
east right center
west left center

northeast  right top (default)

northwest  left top

southeast  right bottom

southwest  left bottom

outside can be appended to any location string

Some specific functions are directly available using func:

"show" Show legends from the plot
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"hide"
off Hide legends from the plot
"boxon"  Draw a box around legends

"boxoff" Withdraw the box around legends
"left" Text is to the left of the keys
"right"  Text is to the right of the keys

h = text (x, y, label) [Function File]
h = text (x,y, z, label) [Function File]
h = text (x, y, label, p1, vi, ...) [Function File]
h = text (x,y, z, label, p1, vi, ...) [Function File]

Create a text object with text label at position x, y, z on the current axes. Property-value
pairs following label may be used to specify the appearance of the text.

xlabel (string) [Function File]
ylabel (string) [Function File]
zlabel (string) [Function File]

Specify x, y, and z axis labels for the current figure.

See also: plot, semilogx, semilogy, loglog, polar, mesh, contour, bar, stairs, ylabel, title.

box (arg) [Function File]

box (h, ...) [Function File]
Control the display of a border around the plot. The argument may be either "on" or "off".
If it is omitted, the current box state is toggled.

See also: grid.

grid (arg) [Function File]

grid ("minor", arg2) [Function File]
Force the display of a grid on the plot. The argument may be either "on" or "off". If it is
omitted, the current grid state is toggled.

If arg is "minor" then the minor grid is toggled. When using a minor grid a second argument
arg?2 is allowed, which can be either "on" or "off" to explicitly set the state of the minor
grid.

See also: plot.

15.1.4 Multiple Plots on One Page

Octave can display more than one plot in a single figure. The simplest way to do this is to use
the subplot function to divide the plot area into a series of subplot windows that are indexed
by an integer. For example,

subplot (2, 1, 1)
fplot (@sin, [-10, 101);
subplot (2, 1, 2)
fplot (@cos, [-10, 10]);

creates a figure with two separate axes, one displaying a sine wave and the other a cosine wave.
The first call to subplot divides the figure into two plotting areas (two rows and one column)
and makes the first plot area active. The grid of plot areas created by subplot is numbered in
column-major order (top to bottom, left to right).
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subplot (rows, cols, index) [Function File]
subplot (rcn) [Function File]
Set up a plot grid with cols by rows subwindows and plot in location given by index.

If only one argument is supplied, then it must be a three digit value specifying the location
in digits 1 (rows) and 2 (columns) and the plot index in digit 3.

The plot index runs row-wise. First all the columns in a row are filled and then the next row
is filled.

For example, a plot with 2 by 3 grid will have plot indices running as follows:

See also: plot.

15.1.5 Multiple Plot Windows

You can open multiple plot windows using the figure function. For example

figure (1);
fplot (@sin, [-10, 10]);
figure (2);
fplot (@cos, [-10, 10]);

creates two figures, with the first displaying a sine wave and the second a cosine wave. Figure
numbers must be positive integers.

figure (n) [Function File]

figure (n, property, value, ...) [Function File]
Set the current plot window to plot window n. If no arguments are specified, the next
available window number is chosen.

Multiple property-value pairs may be specified for the figure, but they must appear in pairs.

15.1.6 Printing Plots

The print command allows you to save plots in a variety of formats. For example,
print -deps foo.eps

writes the current figure to an encapsulated PostScript file called ‘foo.eps’.

print (filename, options) [Function File]
Print a graph, or save it to a file

filename defines the file name of the output file. If no filename is specified, output is sent to
the printer.

options:
-Pprinter
Set the printer name to which the graph is sent if no filename is specified.
-color
-mono Monochrome or colour lines.
-solid

-dashed Solid or dashed lines.
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-portrait
—-landscape
Plot orientation, as returned by "orient".
-ddevice Output device, where device is one of:
ps
ps2
psc
psc2 Postscript (level 1 and 2, mono and color)
eps
eps2
epsc
epsc2 Encapsulated postscript (level 1 and 2, mono and color)
tex
epslatex
epslatexstandalone
pstex
pslatex  Generate a LaTeX (or TeX) file for labels, and eps/ps for graphics.
The file produced by epslatexstandalone can be processed directly
by LaTeX. The other formats are intended to be included in a LaTeX
(or TeX) document. The tex device is the same as the epslatex
device.
i1l
aifm Adobe Ilustrator
cdr
corel CorelDraw
dxf AutoCAD
emf Microsoft Enhanced Metafile
fig XFig
hpgl HP plotter language
mf Metafont
png Portable network graphics
pbm PBMplus
svg Scalable vector graphics
Other devices are supported by "convert" from ImageMagick. Type sys-
tem("convert") to see what formats are available.
If the device is omitted, it is inferred from the file extension, or if there is no
filename it is sent to the printer as postscript.
-Sxsize,ysize
Plot size in pixels for PNG and SVG. If using the command form of the print
function, you must quote the xsize,ysize option. For example, by writing "-
S640,480".
-Ffontname

-Ffontname : size

-F:size

fontname set the postscript font (for use with postscript, aifm, corel and fig). By
default, 'Helvetica’ is set for PS/Aifm, and ’SwitzerlandLight’ for Corel. It can
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also be "Times-Roman’. size is given in points. fontname is ignored for the fig
device.

The filename and options can be given in any order.

orient (orientation) [Function File]
Set the default print orientation. Valid values for orientation include "landscape" and
"portrait". If called with no arguments, return the default print orientation.

15.1.7 Test Plotting Functions

The functions sombrero and peaks provide a way to check that plotting is working. Typing
either sombrero or peaks at the Octave prompt should display a three dimensional plot.

sombrero (n) [Function File]
Produce the familiar three-dimensional sombrero plot using n grid lines. If n is omitted, a
value of 41 is assumed.

The function plotted is
z = sin (sqrt (x"2 + y°2)) / (sqrt (x"2 + y~2))

See also: mesh, meshgrid.

peaks () [Function File]
peaks (n) [Function File]
peaks (x, y) [Function File]
z = peaks (...) [Function File]
[x, y, z] = peaks (...) [Function File]

Generate a function with lots of local maxima and minima. The function has the form
Fla,y) = 3(1 — )27 W) 0 (2 — g3 — ) — Le(-@r0*=v7)
Called without a return argument, peaks plots the surface of the above function using mesh.

If n is a scalar, the peaks returns the values of the above function on a n-by-n mesh over the
range [-3,3]. The default value for n is 49.

If n is a vector, then it represents the x and y values of the grid on which to calculate the
above function. The x and y values can be specified separately.

See also: mesh.
15.2 Advanced Plotting

15.2.1 Graphics Objects

Plots in Octave are constructed from the following graphics objects. Each graphics object has a
set of properties that define its appearance and may also contain links to other graphics objects.
Graphics objects are only referenced by a numeric index, or handle.

root figure The parent of all figure objects. The index for the root figure is defined to be 0.
figure A figure window.

axes An set of axes. This object is a child of a figure object and may be a parent of line,
text, image, patch, or surface objects.

line A line in two or three dimensions.
text Text annotations.

image A bitmap image.
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patch A filled polygon, currently limited to two dimensions.
surface A three-dimensional surface.

To determine whether an object is a graphics object index or a figure index, use the functions
ishandle and isfigure.

ishandle (h) [Built-in Function]
Return true if h is a graphics handle and false otherwise.

isfigure (h) [Function File]
Return true if h is a graphics handle that contains a figure object and false otherwise.

The function gcf returns an index to the current figure object, or creates one if none exists.
Similarly, gca returns the current axes object, or creates one (and its parent figure object) if
none exists.

gct () [Function File]
Return the current figure handle. If a figure does not exist, create one and return its handle.
The handle may then be used to examine or set properties of the figure. For example,

fplot (@sin, [-10, 10]);

fig = gcf O;

set (fig, "visible", "off");
plots a sine wave, finds the handle of the current figure, and then makes that figure invisible.
Setting the visible property of the figure to "on" will cause it to be displayed again.

See also: get, set.

gca () [Function File]
Return a handle to the current axis object. If no axis object exists, create one and return its
handle. The handle may then be used to examine or set properties of the axes. For example,

ax = gca ();
set (ax, "position", [0.5, 0.5, 0.5, 0.5]);

creates an empty axes object, then changes its location and size in the figure window.

See also: get, set.

The get and set functions may be used to examine and set properties for graphics objects.
For example,

get (0)
= ans =
{
type = root figure
currentfigure = [](0x0)
children = [](0x0)
visible = on

¥

returns a structure containing all the properties of the root figure. As with all functions in
Octave, the structure is returned by value, so modifying it will not modify the internal root
figure plot object. To do that, you must use the set function. Also, note that in this case, the
currentfigure property is empty, which indicates that there is no current figure window.

The get function may also be used to find the value of a single property. For example,
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get (gca (), "xlim")
= [01]

returns the range of the x-axis for the current axes object in the current figure.
To set graphics object properties, use the set function. For example,
set (gca O, "xlim", [-10, 10]);

sets the range of the x-axis for the current axes object in the current figure to ‘[-10, 10]".
Additionally, calling set with a graphics object index as the only argument returns a structure
containing the default values for all the properties for the given object type. For example,

set (gca ())
returns a structure containing the default property values for axes objects.

get (h, p) [Built-in Function]
Return the named property p from the graphics handle h. If p is omitted, return the complete
property list for h. If h is a vector, return a cell array including the property values or lists
respectively.

set (h,p, v, ...) [Built-in Function]
Set the named property value or vector p to the value v for the graphics handle h.

parent = ancestor (h, type) [Function File]

parent = ancestor (h, type, 'toplevel’) [Function File]
Return the first ancestor of handle object h whose type matches type, where type is a char-
acter string. If type is a cell array of strings, return the first parent whose type matches any
of the given type strings.

If the handle object h is of type type, return h.

If "toplevel™" is given as a 3rd argument, return the highest parent in the object hierarchy
that matches the condition, instead of the first (nearest) one.

See also: get, set.

You can create axes, line, and patch objects directly using the axes, line, and patch func-
tions. These objects become children of the current axes object.

axes () [Function File]
axes (property, value, ...) [Function File]
axes (h) [Function File]

Create an axes object and return a handle to it.

line () [Function File]
line (x, y) [Function File]
line (x, y, z) [Function File]
line (x, y, z, property, value, ...) [Function File]

Create line object from x and y and insert in current axes object. Return a handle (or vector
of handles) to the line objects created.

Multiple property-value pairs may be specified for the line, but they must appear in pairs.

patch () [Function File]
patch (x, y, c) [Function File]
patch (x, y, c, opts) [Function File]
patch (’Faces f, 'Vertices’, v, . ..) [Function File]
patch (..., prop, val) [Function File]
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patch (b, ...) [Function File]

h = patch (...) [Function File]
Create patch object from x and y with color ¢ and insert in the current axes object. Return
handle to patch object.

For a uniform colored patch, ¢ can be given as an RGB vector, scalar value referring to the
current colormap, or string value (for example, "r" or "red").

By default, Octave refreshes the plot window when a prompt is printed, or when waiting for
input. To force an update at other times, call the drawnow function.

drawnow () [Function File]
Update and display the current graphics.

Octave automatically calls drawnow just before printing a prompt, when sleep or pause is
called, or while waiting for command-line input.

Normally, high-level plot functions like plot or mesh call newplot to initialize the state of
the current axes so that the next plot is drawn in a blank window with default property settings.
To have two plots superimposed over one another, call the hold function. For example,

hold ("on");

x = -10:0.1:10;
plot (x, sin (x));
plot (x, cos (x));
hold ("off");

displays sine and cosine waves on the same axes. If the hold state is off, consecutive plotting
commands like this will only display the last plot.

newplot () [Function File]
Prepare graphics engine to produce a new plot. This function should be called at the begin-
ning of all high-level plotting functions.

hold args [Function File]
Tell Octave to ‘hold’ the current data on the plot when executing subsequent plotting com-
mands. This allows you to execute a series of plot commands and have all the lines end up
on the same figure. The default is for each new plot command to clear the plot device first.
For example, the command

hold on

turns the hold state on. An argument of "off" turns the hold state off, and hold with no
arguments toggles the current hold state.

ishold [Function File]
Return true if the next line will be added to the current plot, or false if the plot device will
be cleared before drawing the next line.

To clear the current figure, call the c1f function. To bring it to the top of the window stack,
call the shg function. To delete a graphics object, call delete on its index. To close the figure
window, call the close function.

clf () [Function File]
Clear the current figure.

See also: close, delete.
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shg [Function File]
Show the graph window. Currently, this is the same as executing drawnow.

See also: drawnow, figure.

delete (file) [Function File]
delete (h) [Function File]
Delete the named file or figure handle.

close [Command]|
close (n) [Command|
close all [Command|
close all hidden [Command]

Close figure window(s) by calling the function specified by the "closerequestfcn" property
for each figure. By default, the function closereq is used.

See also: closereq.

closereq () [Function File]
Close the current figure and delete all graphics objects associated with it.

See also: close, delete.

15.2.2 Graphics Object Properties
15.2.2.1 Root Figure Properties

currentfigure
Index to graphics object for the current figure.

15.2.2.2 Figure Properties

nextplot May be one of
"neW"
lladdll

"replace"
"replacechildren"
closerequestfcn
Handle of function to call when a figure is closed.

currentaxes
Index to graphics object of current axes.

colormap An N-by-3 matrix containing the color map for the current axes.
visible  Either "on" or "off" to toggle display of the figure.

paperorientation
Indicates the orientation for printing. Either "landscape" or "portrait".

15.2.2.3 Axes Properties

position A four-element vector specifying the coordinates of the lower left corner and width
and height of the plot, in normalized units. For example, [0.2, 0.3, 0.4, 0.5]
sets the lower left corner of the axes at (0.2,0.3) and the width and height to be 0.4
and 0.5 respectively.
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title
box

key

keybox

keypos

dataaspect

dataaspect

x1im
ylim
zlim
clim

x1limmode
ylimmode
zlimmode
climmode

xlabel
ylabel
zlabel

xgrid
ygrid
zgrid
xminorgrid
yminorgrid
zminorgrid

xtick
ytick
ztick

xtickmode
ytickmode
ztickmode

GNU Octave

Index of text object for the axes title.
Either "on" or "off" to toggle display of the box around the axes.

Either "on" or "off" to toggle display of the legend. Note that this property is not
compatible with MATLAB and may be removed in a future version of Octave.

FEither "on" or "off" to toggle display of a box around the legend. Note that this
property is not compatible with MATLAB and may be removed in a future version
of Octave.

An integer from 1 to 4 specifying the position of the legend. 1 indicates upper right
corner, 2 indicates upper left, 3 indicates lower left, and 4 indicates lower right.
Note that this property is not compatible with MATLAB and may be removed in a
future version of Octave.

ratio

A two-element vector specifying the relative height and width of the data displayed
in the axes. Setting dataaspectratio to ‘1, 2]’ causes the length of one unit
as displayed on the y axis to be the same as the length of 2 units on the x axis.
Setting dataaspectratio also forces the dataaspectratiomode property to be set
to "manual".

ratiomode
Either "manual" or "auto".

Two-element vectors defining the limits for the x, y, and z axes and the Setting
one of these properties also forces the corresponding mode property to be set to
"manual".

Either "manual" or "auto".

Indices to text objects for the axes labels.

Either "on" or "off" to toggle display of grid lines.

Either "on" or "off" to toggle display of minor grid lines.

Setting one of these properties also forces the corresponding mode property to be

set to "manual".

Either "manual" or "auto".
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xticklabel

yticklabel

zticklabel
Setting one of these properties also forces the corresponding mode property to be
set to "manual".

xticklabelmode
yticklabelmode
zticklabelmode
Either "manual" or "auto".

xscale
yscale
zscale FEither "linear" or "log".
xdir
ydir
zdir Fither "forward" or "reverse".
xaxislocation
yaxislocation
Fither "top" or "bottom" for the x axis and "left" or "right" for the y axis.
view A three element vector specifying the view point for three-dimensional plots.

visible  Either "on" or "off" to toggle display of the axes.
nextplot May be one of

"IleW"

lladdll

"replace"
"replacechildren"

outerposition
A four-element vector specifying the coordinates of the lower left corner and width
and height of the plot, in normalized units. For example, [0.2, 0.3, 0.4, 0.5]
sets the lower left corner of the axes at (0.2,0.3) and the width and height to be 0.4
and 0.5 respectively.

15.2.2.4 Line Properties

xdata

ydata

zdata

ldata

udata

xldata

xudata The data to be plotted. The ldata and udata elements are for errobars in the y
direction, and the xldata and xudata elements are for errorbars in the x direction.

color The RGB color of the line, or a color name. See Section 15.2.4 [Colors|, page 190.

linestyle
linewidth
See Section 15.2.5 [Line Styles|, page 190.

marker
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markeredgecolor
markerfacecolor

markersize
See Section 15.2.6 [Marker Styles], page 190.

keylabel The text of the legend entry corresponding to this line. Note that this property is
not compatible with MATLAB and may be removed in a future version of Octave.

15.2.2.5 Text Properties

string The character string contained by the text object.

units May be "normalized" or "graph".

position The coordinates of the text object.

rotation The angle of rotation for the displayed text, measured in degrees.

horizontalalignment
May be "left", "center", or "right".

color The color of the text. See Section 15.2.4 [Colors|, page 190.

15.2.2.6 Image Properties

cdata The data for the image. Each pixel of the image corresponds to an element of cdata.
The value of an element of cdata specifies the row-index into the colormap of the
axes object containing the image. The color value found in the color map for the
given index determines the color of the pixel.

xdata
ydata Two-element vectors specifying the range of the x- and y- coordinates for the image.

15.2.2.7 Patch Properties

cdata
xdata
ydata
zdata Data defining the patch object.

facecolor
The fill color of the patch. See Section 15.2.4 [Colors|, page 190.

facealpha
A number in the range [0, 1] indicating the transparency of the patch.

edgecolor
The color of the line defining the patch. See Section 15.2.4 [Colors], page 190.

linestyle
linewidth
See Section 15.2.5 [Line Styles|, page 190.

marker
markeredgecolor
markerfacecolor
markersize
See Section 15.2.6 [Marker Styles], page 190.
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15.2.2.8 Surface Properties

xdata

ydata

zdata The data determining the surface. The xdata and ydata elements are vectors and
zdata must be a matrix.

keylabel The text of the legend entry corresponding to this surface. Note that this property
is not compatible with MATLAB and may be removed in a future version of Octave.

15.2.3 Managing Default Properties

Object properties have two classes of default values, factory defaults (the initial values) and
user-defined defaults, which may override the factory defaults.

Although default values may be set for any object, they are set in parent objects and apply
to child objects. For example,

set (0, "defaultlinecolor", "green");

sets the default line color for all objects. The rule for constructing the property name to set a
default value is

default + object-type + property-name

This rule can lead to some strange looking names, for example defaultlinelinewidth"
specifies the default 1inewidth property for 1line objects.

The example above used the root figure object, 0, so the default property value will apply
to all line objects. However, default values are hierarchical, so defaults set in a figure objects
override those set in the root figure object. Likewise, defaults set in axes objects override those
set in figure or root figure objects. For example,

subplot (2, 1, 1);

set (0, "defaultlinecolor", "red");

set (1, "defaultlinecolor", "green");

set (gca (), "defaultlinecolor", "blue");

line (1:10, rand (1, 10));

subplot (2, 1, 2);

line (1:10, rand (1, 10));

figure (2)

line (1:10, rand (1, 10));
produces two figures. The line in first subplot window of the first figure is blue because it inherits
its color from its parent axes object. The line in the second subplot window of the first figure
is green because it inherits its color from its parent figure object. The line in the second figure
window is red because it inherits its color from the global root figure parent object.

To remove a user-defined default setting, set the default property to the value "remove". For
example,

set (gca (), "defaultlinecolor", "remove");
removes the user-defined default line color setting from the current axes object.

Getting the "default" property of an object returns a list of user-defined defaults set for
the object. For example,

get (gca (), "default");
returns a list of user-defined default values for the current axes object.
Factory default values are stored in the root figure object. The command
get (0, "factory");

returns a list of factory defaults.
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15.2.4 Colors

Colors may be specified as RGB triplets with values ranging from zero to one, or by name. Rec-
ognized color names include "blue", "black", "cyan", "green", "magenta", "red", "white",
and "yellow".

15.2.5 Line Styles
Line styles are specified by the following properties:

linestyle
May be one of

n_n S()hd lines.
——n Dashed lines.
nem Points.

oo A dash-dot line.

linewidth
A number specifying the width of the line. The default is 1. A value of 2 is twice
as wide as the default, etc.

15.2.6 Marker Styles
Marker styles are specified by the following properties:

marker A character indicating a plot marker to be place at each data point, or "none",
meaning no markers should be displayed.
markeredgecolor

The color of the edge around the marker, or "auto", meaning that the edge color
is the same as the face color. See Section 15.2.4 [Colors]|, page 190.

markerfacecolor
The color of the marker, or "none" to indicate that the marker should not be filled.
See Section 15.2.4 [Colors|, page 190.

markersize
A number specifying the size of the marker. The default is 1. A value of 2 is twice
as large as the default, etc.

15.2.7 Interaction with gnuplot

val = gnuplot_binary () [Loadable Function)]

old_val = gnuplot_binary (new_val) [Loadable Function]
Query or set the name of the program invoked by the plot command. The default value
"gnuplot". See Appendix E [Installation], page 505.

val = gnuplot_use_title_option () [Loadable Function)]

old_val = gnuplot_use_title_option (new_val) [Loadable Function)]
If enabled, append ‘-title "Figure NN"’ to the gnuplot command. By default, this feature
is enabled if the DISPLAY environment variable is set when Octave starts.
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16 Matrix Manipulation

There are a number of functions available for checking to see if the elements of a matrix meet
some condition, and for rearranging the elements of a matrix. For example, Octave can easily
tell you if all the elements of a matrix are finite, or are less than some specified value. Octave
can also rotate the elements, extract the upper- or lower-triangular parts, or sort the columns
of a matrix.

16.1 Finding Elements and Checking Conditions

The functions any and all are useful for determining whether any or all of the elements of a
matrix satisfy some condition. The find function is also useful in determining which elements
of a matrix meet a specified condition.

any (x, dim) [Built-in Function]
For a vector argument, return 1 if any element of the vector is nonzero.
For a matrix argument, return a row vector of ones and zeros with each element indicating
whether any of the elements of the corresponding column of the matrix are nonzero. For
example,
any (eye (2, 4))
j [ 1 b 1 b o s O ]
If the optional argument dim is supplied, work along dimension dim. For example,
any (eye (2, 4), 2)
= [1; 1]

all (x, dim) [Built-in Function]
The function all behaves like the function any, except that it returns true only if all the
elements of a vector, or all the elements along dimension dim of a matrix, are nonzero.

Since the comparison operators (see Section 8.4 [Comparison Ops|, page 88) return matrices
of ones and zeros, it is easy to test a matrix for many things, not just whether the elements are
nonzero. For example,

all (all (rand (5) < 0.9))
= 0

tests a random 5 by 5 matrix to see if all of its elements are less than 0.9.

Note that in conditional contexts (like the test clause of if and while statements) Octave
treats the test as if you had typed all (all (condition)).

xor (x,y) [Mapping Function]
Return the ‘exclusive or’ of the entries of x and y. For boolean expressions x and y, xor (x,
y) is true if and only if x or y is true, but not if both x and y are true.

is_duplicate_entry (x) [Function File]
Return non-zero if any entries in x are duplicates of one another.

diff (x, k, dim) [Function File]
If x is a vector of length n, diff (x) is the vector of first differences 2y — x1,..., 2, — T, _1.

If x is a matrix, diff (x) is the matrix of column differences along the first non-singleton
dimension.

The second argument is optional. If supplied, diff (x, k), where k is a nonnegative integer,
returns the k-th differences. It is possible that k is larger than then first non-singleton
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dimension of the matrix. In this case, diff continues to take the differences along the next
non-singleton dimension.

The dimension along which to take the difference can be explicitly stated with the optional
variable dim. In this case the k-th order differences are calculated along this dimension. In
the case where k exceeds size (x, dim) then an empty matrix is returned.

isinf (x) [Mapping Function]
Return 1 for elements of x that are infinite and zero otherwise. For example,
isinf ([13, Inf, NA, NaN])
= [0, 1, 0, 0]

isnan (x) [Mapping Function]
Return 1 for elements of x that are NalN values and zero otherwise. NA values are also
considered NaN values. For example,

isnan ([13, Inf, NA, NaNJ])
= [0, 0, 1, 1]

finite (x) [Mapping Function]
Return 1 for elements of x that are finite values and zero otherwise. For example,
finite ([13, Inf, NA, NaN])
= [1, 0, 0, 0]

find (x) [Loadable Function]
find (x, n) [Loadable Function)]
find (x, n, direction) [Loadable Function]

Return a vector of indices of nonzero elements of a matrix, as a row if x is a row or as a
column otherwise. To obtain a single index for each matrix element, Octave pretends that
the columns of a matrix form one long vector (like Fortran arrays are stored). For example,
find (eye (2))
= [1; 4]
If two outputs are requested, find returns the row and column indices of nonzero elements
of a matrix. For example,
[i, j] = find (2 * eye (2))
= i=1[1; 2]
= j=101;2]
If three outputs are requested, find also returns a vector containing the nonzero values. For
example,

[i, j, v] = find (3 * eye (2))
=i=10[1; 2]
= j=101; 2]

= v=1[3; 3]

If two inputs are given, n indicates the number of elements to find from the beginning of the
matrix or vector.

If three inputs are given, direction should be one of "first" or "last" indicating that it should
start counting found elements from the first or last element.

lerr, y1, ...] = common_size (x1,...) [Function File]
Determine if all input arguments are either scalar or of common size. If so, err is zero, and yi
is a matrix of the common size with all entries equal to xi if this is a scalar or xi otherwise.
If the inputs cannot be brought to a common size, errorcode is 1, and yi is xi. For example,
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[errorcode, a, b] common_size ([1 2; 3 4], 5)

= errorcode = 0

= a=1[1, 2; 3, 4]

= b=1[65,5; 5, 5]
This is useful for implementing functions where arguments can either be scalars or of common
size.

16.2 Rearranging Matrices

fliplr (x) [Function File]
Return a copy of x with the order of the columns reversed. For example,
fliplr ([1, 2; 3, 4]1)
= 2 1
4 3

Note that fliplr only work with 2-D arrays. To flip N-d arrays use flipdim instead.
See also: flipud, flipdim, rot90, rotdim.

flipud (x) [Function File]
Return a copy of x with the order of the rows reversed. For example,
flipud ([1, 2; 3, 4]1)
= 3 4
1 2

Due to the difficulty of defining which axis about which to flip the matrix f1ipud only work
with 2-d arrays. To flip N-d arrays use flipdim instead.

See also: fliplr, flipdim, rot90, rotdim.

flipdim (x, dim) [Function File]
Return a copy of x flipped about the dimension dim. For example
flipdim ([1, 2; 3, 4], 2)
= 2 1
4 3

See also: fliplr, flipud, rot90, rotdim.

rot90 (x, n) [Function File]

Return a copy of x with the elements rotated counterclockwise in 90-degree increments. The
second argument is optional, and specifies how many 90-degree rotations are to be applied
(the default value is 1). Negative values of n rotate the matrix in a clockwise direction. For
example,

rot90 ([1, 2; 3, 4], -1)

= 3 1

4 2

rotates the given matrix clockwise by 90 degrees. The following are all equivalent statements:
rot90 ([1, 2; 3, 4], -1)
rot90 ([1, 2; 3, 4], 3)
rot90 ([1, 2; 3, 4], 7)
Due to the difficulty of defining an axis about which to rotate the matrix rot90 only work
with 2-D arrays. To rotate N-d arrays use rotdim instead.

See also: rotdim, flipud, fliplr, flipdim.
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rotdim (x, n, plane) [Function File]
Return a copy of x with the elements rotated counterclockwise in 90-degree increments. The
second argument is optional, and specifies how many 90-degree rotations are to be applied
(the default value is 1). The third argument is also optional and defines the plane of the
rotation. As such plane is a two element vector containing two different valid dimensions of
the matrix. If plane is not given Then the first two non-singleton dimensions are used.

Negative values of n rotate the matrix in a clockwise direction. For example,
rotdim ([1, 2; 3, 41, -1, [1, 21)
= 3 1
4 2
rotates the given matrix clockwise by 90 degrees. The following are all equivalent statements:

rotdim ([1, 2; 3, 4], -1, [1, 21)
rotdim ([1, 2; 3, 4], 3, [1, 2])
rotdim ([1, 2; 3, 41, 7, [1, 21)

See also: rot90, flipud, fliplr, flipdim.

cat (dim, arrayl, array2, ..., arrayN) [Built-in Function]
Return the concatenation of N-d array objects, arrayl, array2, ..., arrayN along dimension
dim.
A = ones (2, 2);
B = zeros (2, 2);
cat (2, A, B)
= ans =
1100
1100

Alternatively, we can concatenate A and B along the second dimension the following way:
[A, B].

dim can be larger than the dimensions of the N-d array objects and the result will thus have
dim dimensions as the following example shows:

cat (4, ones(2, 2), zeros (2, 2))

= ans =
ans(:,:,1,1) =
11
11
ans(:,:,1,2) =
00
00

See also: horzcat, vertcat.

horzcat (arrayl, array2, ..., arrayN) [Built-in Function]
Return the horizontal concatenation of N-d array objects, arrayl, array2, ..., arrayN along
dimension 2.

See also: cat, vertcat.
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vertcat (arrayl, array2, ..., arrayN) [Built-in Function]
Return the vertical concatenation of N-d array objects, arrayl, array?2, ..., arrayN along
dimension 1.

See also: cat, horzcat.

permute (a, perm) [Built-in Function]
Return the generalized transpose for an N-d array object a. The permutation vector perm
must contain the elements 1:ndims(a) (in any order, but each element must appear just
once).

See also: ipermute.

ipermute (a, iperm) [Built-in Function]
The inverse of the permute function. The expression
ipermute (permute (a, perm), perm)

returns the original array a.

See also: permute.

reshape (a, m, n, ...) [Built-in Function]
reshape (a, siz) [Built-in Function]
Return a matrix with the given dimensions whose elements are taken from the matrix a. The
elements of the matrix are accessed in column-major order (like Fortran arrays are stored).

For example,
reshape ([1, 2, 3, 4], 2, 2)
= 1 3
2 4

Note that the total number of elements in the original matrix must match the total number
of elements in the new matrix.

A single dimension of the return matrix can be unknown and is flagged by an empty argument.

y = circshift (x, n) [Function File]
Circularly shifts the values of the array x. n must be a vector of integers no longer than
the number of dimensions in x. The values of n can be either positive or negative, which
determines the direction in which the values or x are shifted. If an element of n is zero, then
the corresponding dimension of x will not be shifted. For example

x=1[1, 2, 3; 4, 5, 6; 7, 8, 9];
circshift (x, 1)

= 7,8, 9

1, 2, 3

4, 5, 6
circshift (x, -2)
= 7, 8, 9

1, 2, 3

4, 5, 6
circshift (x, [0,1])
= 3,1, 2

6, 4, 5

9, 7, 8

See also: permute, ipermute, shiftdim.
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y = shiftdim (x, n) [Function File]

[y, ns] = shiftdim (x) [Function File]
Shifts the dimension of x by n, where n must be an integer scalar. When n is positive, the
dimensions of x are shifted to the left, with the leading dimensions circulated to the end.
If n is negative, then the dimensions of x are shifted to the right, with n leading singleton
dimensions added.

Called with a single argument, shiftdim, removes the leading singleton dimensions, returning
the number of dimensions removed in the second output argument ns.

For example

x = ones (1, 2, 3);

size (shiftdim (x, -1))
= [1, 1, 2, 3]

size (shiftdim (x, 1))

= [2, 3]

[b, ns] = shiftdim (x);

= b= [1, 1, 1; 1, 1, 1]
= ns =1

See also: reshape, permute, ipermute, circshift, squeeze.

shift (x, b) [Function File]
shift (x, b, dim) [Function File]
If x is a vector, perform a circular shift of length b of the elements of x.

If x is a matrix, do the same for each column of x. If the optional dim argument is given,
operate along this dimension

[s, 1] = sort (x) [Loadable Function]
[s, i] = sort (x, dim) [Loadable Function]
[s, i] = sort (x, mode) [Loadable Function]
[s, i] = sort (x, dim, mode) [Loadable Function)]

Return a copy of x with the elements arranged in increasing order. For matrices, sort orders
the elements in each column.

For example,
sort ([1, 2; 2, 3; 3, 11)
= 1 1
2 2
3 3
The sort function may also be used to produce a matrix containing the original row indices
of the elements in the sorted matrix. For example,
s, i] = sort ([1, 2; 2, 3; 3, 11)
= s=1 1

'_I

]
wWN - WN
N =, W wN

If the optional argument dim is given, then the matrix is sorted along the dimension defined
by dim. The optional argument mode defines the order in which the values will be sorted.
Valid values of mode are ‘ascend’ or ‘descend’.
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For equal elements, the indices are such that the equal elements are listed in the order that
appeared in the original list.

The sort function may also be used to sort strings and cell arrays of strings, in which case
the dictionary order of the strings is used.

The algorithm used in sort is optimized for the sorting of partially ordered lists.

sortrows (a, ¢) [Function File]
Sort the rows of the matrix a according to the order of the columns specified in c. If ¢ is
omitted, a lexicographical sort is used.

Since the sort function does not allow sort keys to be specified, it can’t be used to order
the rows of a matrix according to the values of the elements in various columns' in a single call.
Using the second output, however, it is possible to sort all rows based on the values in a given
column. Here’s an example that sorts the rows of a matrix based on the values in the second
column.

a=1[1, 2; 2, 3; 3, 1];
[s, i] = sort (a (:, 2));

a (i, :)
= 3 1
1 2
2 3
swap (inputs) [Function File]

[al,bl] = swap(a,b)
interchange a and b

swapcols (inputs) [Function File]
function B = swapcols(A)
permute columns of A into reverse order

swaprows (inputs) [Function File]
function B = swaprows(A)
permute rows of A into reverse order

tril (e, k) [Function File]

triu (e, k) [Function File]
Return a new matrix formed by extracting the lower (tril) or upper (triu) triangular part
of the matrix a, and setting all other elements to zero. The second argument is optional, and
specifies how many diagonals above or below the main diagonal should also be set to zero.

The default value of k is zero, so that triu and tril normally include the main diagonal as
part of the result matrix.

If the value of k is negative, additional elements above (for tril) or below (for triu) the
main diagonal are also selected.

The absolute value of k must not be greater than the number of sub- or super-diagonals.

For example,

For example, to first sort based on the values in column 1, and then, for any values that are repeated in
column 1, sort based on the values found in column 2, etc.
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tril (ones (3), -1)
= 0 0 O
1 0 O
1 1 0
and
tril (ones (3), 1)
= 1 1 O

See also: triu, diag.

vec (x) [Function File]
Return the vector obtained by stacking the columns of the matrix x one above the other.

vech (x) [Function File]
Return the vector obtained by eliminating all supradiagonal elements of the square matrix x
and stacking the result one column above the other.

prepad (x, 1, ¢) [Function File]

postpad (x, 1, c) [Function File]

postpad (x, 1, ¢, dim) [Function File]
Prepends (appends) the scalar value ¢ to the vector x until it is of length I If the third
argument is not supplied, a value of 0 is used.

If length (x) > 1, elements from the beginning (end) of x are removed until a vector of
length I is obtained.

If x is a matrix, elements are prepended or removed from each row.

If the optional dim argument is given, then operate along this dimension.

blkdiag (a, b, c, ...) [Function File]
Build a block diagonal matrix from a, b, ¢, . ... All the arguments must be numeric and are
two-dimensional matrices or scalars.

See also: diag, horzcat, vertcat.

16.3 Applying a Function to an Array

a = arrayfun (name, c) [Function File]
a = arrayfun (func, c) [Function File]
a = arrayfun (func, c, d) [Function File]
a = arrayfun (func, c, options) [Function File]
la, b, ...] = arrayfun (func,c, ...) [Function File]

Execute a function on each element of an array. This is useful for functions that do not
accept array arguments. If the function does accept array arguments it is better to call the
function directly.

See cellfun for complete usage instructions.

See also: cellfun.
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bsxfun (f, a, b) [Loadable Function]
Applies a binary function f element-wise to two matrix arguments a and b. The function f
must be capable of accepting two column vector arguments of equal length, or one column
vector argument and a scalar.

The dimensions of a and b must be equal or singleton. The singleton dimensions of the
matrices will be expanded to the same dimensionality as the other matrix.

See also: arrayfun, cellfun.

16.4 Special Utility Matrices

eye (x) [Built-in Function]
eye (n, m) [Built-in Function]
eye (..., class) [Built-in Function]

Return an identity matrix. If invoked with a single scalar argument, eye returns a square
matrix with the dimension specified. If you supply two scalar arguments, eye takes them to
be the number of rows and columns. If given a vector with two elements, eye uses the values
of the elements as the number of rows and columns, respectively. For example,

eye (3)
= 1 0 O
0 1 0
0 0 1
The following expressions all produce the same result:
eye (2)
eye (2, 2)

eye (size ([1, 2; 3, 41)
The optional argument class, allows eye to return an array of the specified type, like
val = zeros (n,m, "uint8")

Calling eye with no arguments is equivalent to calling it with an argument of 1. This odd
definition is for compatibility with MATLAB.

ones (x) [Built-in Function]
ones (n, m) [Built-in Function]
ones (n, m k, ...) [Built-in Function]
ones (..., class) [Built-in Function]

Return a matrix or N-dimensional array whose elements are all 1. The arguments are handled
the same as the arguments for eye.

If you need to create a matrix whose values are all the same, you should use an expression
like

val_matrix = val * ones (n, m)
The optional argument class, allows ones to return an array of the specified type, for example

val = ones (n,m, "uint8")

zeros (x) [Built-in Function]
zeros (n, m) [Built-in Function]
zeros (n, m, k, ...) [Built-in Function]
zeros (..., class) [Built-in Function]

Return a matrix or N-dimensional array whose elements are all 0. The arguments are handled
the same as the arguments for eye.
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The optional argument class, allows zeros to return an array of the specified type, for example

val = zeros (n,m, "uint8")

repmat (4, m, n) [Function File]
repmat (4, [m n]) [Function File]
repmat (4, [m n p ..]) [Function File]

Form a block matrix of size m by n, with a copy of matrix A as each element. If n is not
specified, form an m by m block matrix.

rand (x) [Loadable Function)]
rand (n, m) [Loadable Function]
rand ("state", x) [Loadable Function]
rand ("seed", x) [Loadable Function]

Return a matrix with random elements uniformly distributed on the interval (0, 1). The
arguments are handled the same as the arguments for eye.

You can query the state of the random number generator using the form
v = rand ("state")

This returns a column vector v of length 625. Later, you can restore the random number
generator to the state v using the form

rand ("state", v)

You may also initialize the state vector from an arbitrary vector of length <= 625 for v. This
new state will be a hash based on the value of v, not v itself.

By default, the generator is initialized from /dev/urandom if it is available, otherwise from
cpu time, wall clock time and the current fraction of a second.

rand uses the Mersenne Twister with a period of 2°19937-1 (See M. Matsumoto and T.
Nishimura, “Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom
number generator”, ACM Trans. on Modeling and Computer Simulation Vol. 8, No. 1,
January pp.3-30 1998, http://www.math.keio.ac.jp/ matumoto/emt.html). Do not use
for cryptography without securely hashing several returned values together, otherwise the
generator state can be learned after reading 624 consecutive values.

rand includes a second random number generator, that was the previous generator used
in Octave. The new generator is used by default as it is significantly faster than the old
generator, and produces random numbers with a significantly longer cycle time. However, in
some circumstances it might be desirable to obtain the same random sequences as used by
the old generators. To do this the keyword "seed" is used to specify that the old generators
should be use, as in

rand ("seed", val)
which sets the seed of the generator to val. The seed of the generator can be queried with
s = rand ("seed")

However, it should be noted that querying the seed will not cause rand to use the old
generators, only setting the seed will. To cause rand to once again use the new generators,
the keyword "state" should be used to reset the state of the rand.

See also: randn, rande, randg, randp.

randn (x) [Loadable Function]
randn (n, m) [Loadable Function]
randn ("state", x) [Loadable Function)]
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randn ("seed", x) [Loadable Function]
Return a matrix with normally distributed random elements. The arguments are handled
the same as the arguments for rand.

By default, randn uses a Marsaglia and Tsang Ziggurat technique to transform
from a uniform to a normal distribution. (G. Marsaglia and W.W. Tsang, ’'Ziggu-
rat method for generating random variables’, J. Statistical Software, vol 5, 2000,
http://www.jstatsoft.org/v05/i08/)

See also: rand, rande, randg, randp.

rande (x) [Loadable Function)]
rande (n, m) [Loadable Function]
rande ("state", x) [Loadable Function)]
rande ("seed", x) [Loadable Function]

Return a matrix with exponentially distributed random elements. The arguments are handled
the same as the arguments for rand.

By default, randn uses a Marsaglia and Tsang Ziggurat technique to transform
from a uniform to a exponential distribution. (G. Marsaglia and W.W. Tsang,
"Ziggurat method for generating random variables’, J. Statistical Software, vol 5, 2000,
http://www.jstatsoft.org/v05/i08/)

See also: rand, randn, randg, randp.

randp (1, x) [Loadable Function]
randp (1, n, m) [Loadable Function]
randp ("state", x) [Loadable Function]
randp ("seed", x) [Loadable Function)]

Return a matrix with Poisson distributed random elements. The arguments are handled the
same as the arguments for rand, except for the argument I.

Five different algorithms are used depending on the range of I and whether or not I is a scalar
or a matrix.

For scalar | <= 12, use direct method.
Press, et al., 'Numerical Recipes in C’, Cambridge University Press, 1992.

For scalar 1 > 12, use rejection method.[1]
Press, et al., 'Numerical Recipes in C’, Cambridge University Press, 1992.

For matrix I <= 10, use inversion method.[2]
Stadlober E., et al., WinRand source code, available via FTP.

For matrix I > 10, use patchwork rejection method.
Stadlober E., et al., WinRand source code, available via FTP, or H. Zechner, "Ef-
ficient sampling from continuous and discrete unimodal distributions’, Doctoral
Dissertaion, 156pp., Technical University Graz, Austria, 1994.

For I > 1e8, use normal approximation.
L. Montanet, et al., 'Review of Particle Properties’, Physical Review D 50 p1284,
1994

See also: rand, randn, rande, randg.
randg (a, x) [Loadable Function)]

randg (a, n, m) [Loadable Function)]
randg ("state", x) [Loadable Function]
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randg ("seed", x) [Loadable Function]
Return a matrix with gamma(a,1) distributed random elements. The arguments are handled
the same as the arguments for rand, except for the argument a.

This can be used to generate many distributions:

gamma (a, b) fora>-1,b>0
r = b * randg (a)

beta (a, b) fora>-1,b > -1
rl = randg (a, 1)
r =1l / (rl + randg (b, 1))

Erlang (a, n)
r = a * randg (n)

chisq (df) for df >0
r = 2 % randg (df / 2)

t(df) for 0 < df < inf (use randn if df is infinite)
r = randn () / sqrt (2 * randg (df / 2) / d4f)

F (n1, n2) for 0 < ni1, 0 < n2
rl = 2 % randg (n1 / 2) / nl or 1 if nl1 is infinite
r2 = 2 * randg (n2 / 2) / n2 or 1 if n2 is infinite
r=rl/r2

negative binomial (n, p) forn>0,0<p<=1
r = randp ((1 - p) / p * randg (n))
non-central chisq (df, L), for df >= 0 and L >0
(use chisq if L = 0)
r = randp (L / 2)
r(r > 0) = 2 * randg (r(r > 0))
r(df > 0) += 2 * randg (df(df > 0)/2)

Dirichlet (al, ..., ak)
r = (randg (al), ..., randg (ak))
r=r1r / sum (r)

See also: rand, randn, rande, randp.

The new random generators all use a common Mersenne Twister generator, and so the state of
only one of the generators needs to be reset. The old generator function use separate generators.
This ensures that

rand ("seed", 13);

randn ("seed", 13);

u = rand (100, 1);

n = randn (100, 1);
and

rand ("seed", 13);
randn ("seed", 13);
u = zeros (100, 1);
n = zeros (100, 1);
for i = 1:100

u(i) = rand ();

n(i) = randn ();
end
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produce equivalent results.

Normally, rand and randn obtain their initial seeds from the system clock, so that the
sequence of random numbers is not the same each time you run Octave. If you really do need
for to reproduce a sequence of numbers exactly, you can set the seed to a specific value.

If it is invoked without arguments, rand and randn return a single element of a random
sequence.

The rand and randn functions use Fortran code from RANLIB, a library of fortran routines for
random number generation, compiled by Barry W. Brown and James Lovato of the Department
of Biomathematics at The University of Texas, M.D. Anderson Cancer Center, Houston, TX
77030.

randperm (n) [Function File]
Return a row vector containing a random permutation of the integers from 1 to n.

diag (v, k) [Built-in Function]
Return a diagonal matrix with vector v on diagonal k. The second argument is optional. If
it is positive, the vector is placed on the k-th super-diagonal. If it is negative, it is placed
on the -k-th sub-diagonal. The default value of k is 0, and the vector is placed on the main
diagonal. For example,

diag ([1, 2, 3], 1)

= 0
0
3
0

O O O O
O O O+
O O N O~

Given a matrix argument, instead of a vector, diag extracts the k-th diagonal of the matrix.

The functions linspace and logspace make it very easy to create vectors with evenly or
logarithmically spaced elements. See Section 4.2 [Ranges|, page 34.

linspace (base, limit, n) [Built-in Function]
Return a row vector with n linearly spaced elements between base and limit. If the number
of elements is greater than one, then the base and limit are always included in the range.
If base is greater than limit, the elements are stored in decreasing order. If the number of
points is not specified, a value of 100 is used.

The linspace function always returns a row vector.

For compatibility with MATLAB, return the second argument if fewer than two values are
requested.

logspace (base, limit, n) [Function File]
Similar to linspace except that the values are logarithmically spaced from 10°*¢ to 10"™,

If limit is equal to 7, the points are between 10°2*¢ and 7, not 10°**¢ and 107, in order to be
compatible with the corresponding MATLAB function.

Also for compatibility, return the second argument if fewer than two values are requested.

See also: linspace.
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16.5 Famous Matrices

The following functions return famous matrix forms.

hadamard (n) [Function File]

Construct a Hadamard matrix Hn of size n-by-n. The size n must be of the form 2 ~ k * p
in which p is one of 1, 12, 20 or 28. The returned matrix is normalized, meaning Hn(:,1) ==
1 and H(1,:) == 1.
Some of the properties of Hadamard matrices are:

e kron (Hm, Hn) is a Hadamard matrix of size m-by-n.

e Hn * Hn’ == n * eye (n).

e The rows of Hn are orthogonal.

e det (4) <=det (Hn) for all A with abs (4 (i, j)) <= 1.

e Multiply any row or column by -1 and still have a Hadamard matrix.

hankel (c, r) [Function File]
Return the Hankel matrix constructed given the first column ¢, and (optionally) the last row
r. If the last element of ¢ is not the same as the first element of r, the last element of c¢ is
used. If the second argument is omitted, it is assumed to be a vector of zeros with the same
size as c.

A Hankel matrix formed from an m-vector ¢, and an n-vector r, has the elements

LN Citj—1, 7;+]._1§m;
H(i,j) = {riﬂ.m’ otherwise.

See also: vander, sylvester_matrix, hilb, invhilb, toeplitz.

hilb (n) [Function File]
Return the Hilbert matrix of order n. The i, j element of a Hilbert matrix is defined as
1
H ', )= ———

See also: hankel, vander, sylvester_matrix, invhilb, toeplitz.

invhilb (n) [Function File]
Return the inverse of a Hilbert matrix of order n. This can be computed exactly using

Ay =gy ("N (T (150
_p(@)p(j)
(i+j-1)

where

The validity of this formula can easily be checked by expanding the binomial coefficients in
both formulas as factorials. It can be derived more directly via the theory of Cauchy matrices:
see J. W. Demmel, Applied Numerical Linear Algebra, page 92.

Compare this with the numerical calculation of inverse (hilb (n)), which suffers from the
ill-conditioning of the Hilbert matrix, and the finite precision of your computer’s floating
point arithmetic.

See also: hankel, vander, sylvester_matrix, hilb, toeplitz.
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magic (n) [Function File]
Create an n-by-n magic square. Note that magic (2) is undefined since there is no 2-by-2
magic square.

pascal (n, t) [Function File]
Return the Pascal matrix of order nif ¢ = 0. t defaults to 0. Return lower triangular Cholesky
factor of the Pascal matrix if t = 1. This matrix is its own inverse, that is pascal (n, 1) ~
2 == eye (n). If t = 2, return a transposed and permuted version of pascal (a, 1), which
is the cube-root of the identity matrix. That is pascal (n, 2) ~ 3 == eye (n).

See also: hankel, vander, sylvester_matrix, hilb, invhilb, toeplitz hadamard, wilkinson, com-
pan, rosser.

rosser () [Function File]
Returns the Rosser matrix. This is a difficult test case used to test eigenvalue algorithms.

See also: hankel, vander, sylvester_matrix, hilb, invhilb, toeplitz hadamard, wilkinson, com-
pan, pascal.

sylvester_matrix (k) [Function File]
Return the Sylvester matrix of order n = 2*.

See also: hankel, vander, hilb, invhilb, toeplitz.

toeplitz (c, r) [Function File]
Return the Toeplitz matrix constructed given the first column ¢, and (optionally) the first
row r. If the first element of ¢ is not the same as the first element of r, the first element of ¢
is used. If the second argument is omitted, the first row is taken to be the same as the first
column.

A square Toeplitz matrix has the form:

Co (it ) e T'n
C1 Co 1 o Tp—
C2 G Co o T2
Ch, Ch—_1 Cp—2 ... Co

See also: hankel, vander, sylvester_matrix, hilb, invhilb.

vander (c) [Function File]
Return the Vandermonde matrix whose next to last column is c.

A Vandermonde matrix has the form:

n—1 2
C e oo 1
R R
n—1 2
cn ceeochocp 1

See also: hankel, sylvester_matrix, hilb, invhilb, toeplitz.

wilkinson (n) [Function File]
Return the Wilkinson matrix of order n.

See also: hankel, vander, sylvester_matrix, hilb, invhilb, toeplitz hadamard, rosser, compan,
pascal.
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17 Arithmetic

Unless otherwise noted, all of the functions described in this chapter will work for real and
complex scalar or matrix arguments.

17.1 Utility Functions

The following functions are available for working with complex numbers. Each expects a single
argument. They are called mapping functions because when given a matrix argument, they
apply the given function to each element of the matrix.

ceil (x) [Mapping Function]
Return the smallest integer not less than x. If x is complex, return ceil (real (x)) + ceil
(imag (x)) * I.

cplxpair (z, tol, dim) [Function File]
Sort the numbers z into complex conjugate pairs ordered by increasing real part. With
identical real parts, order by increasing imaginary magnitude. Place the negative imaginary
complex number first within each pair. Place all the real numbers after all the complex pairs
(those with abs (imag (z) / z) < tol), where the default value of tol is 100 * eps.
By default the complex pairs are sorted along the first non-singleton dimension of z. If dim
is specified, then the complex pairs are sorted along this dimension.
Signal an error if some complex numbers could not be paired. Requires all complex numbers
to be exact conjugates within tol, or signals an error. Note that there are no guarantees on
the order of the returned pairs with identical real parts but differing imaginary parts.

cplxpair (exp(2i*pi*[0:4]°/5)) == exp(2i*pix*[3; 2; 4; 1; 0]1/5)

d = del2 (m) [Function File]
d = del2 (m, h) [Function File]
d = del2 (m, dx, dy, ...) [Function File]

Calculates the discrete Laplace operator. If m is a matrix this is defined as

d=1 (EM@,y) + 5M@,y))

The above to continued to N-dimensional arrays calculating the second derivative over the
higher dimensions.

The spacing between evaluation points may be defined by h, which is a scalar defining the
spacing in all dimensions. Or alternative, the spacing in each dimension may be defined
separately by dx, dy, etc. Scalar spacing values give equidistant spacing, whereas vector
spacing values can be used to specify variable spacing. The length of the vectors must match
the respective dimension of m. The default spacing value is 1.

You need at least 3 data points for each dimension. Boundary points are calculated as the
linear extrapolation of the interior points.

See also: gradient, diff.

exp (x) [Mapping Function]
Compute the exponential of x. To compute the matrix exponential, see Chapter 18 [Linear
Algebra|, page 223.

p = factor (q) [Function File]
[p, n] = factor (q) [Function File]
Return prime factorization of q. That is prod (p) == q. If g == 1, returns 1.
With two output arguments, returns the unique primes p and their multiplicities. That is
prod (p .” n) ==gq.
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factorial (n) [Function File]
Return the factorial of n. If n is scalar, this is equivalent to prod (1:n). If n is an array, the
factorial of the elements of the array are returned.

fix (x) [Mapping Function]
Truncate x toward zero. If x is complex, return fix (real (x)) + fix (imag (x)) * I.

floor (x) [Mapping Function]
Return the largest integer not greater than x. If x is complex, return floor (real (x)) +
floor (imag (x)) * I.

fmod (x, y) [Mapping Function]
Compute the floating point remainder of dividing x by y using the C library function fmod.
The result has the same sign as x. If y is zero, the result implementation-defined.

g = gcd (a1, ...) [Loadable Function]

g, v1, ...] = gcd (a1, ...) [Loadable Function]
If a single argument is given then compute the greatest common divisor of the elements of
this argument. Otherwise if more than one argument is given all arguments must be the same
size or scalar. In this case the greatest common divisor is calculated for element individually.
All elements must be integers. For example,

ged ([15, 20])
= b5

and
ged ([15, 91, [20 181)
= 5 9
Optional return arguments v1, etc, contain integer vectors such that,
g = v1a; + vaag + - -
For backward compatibility with previous versions of this function, when all arguments are
scalar, a single return argument v1 containing all of the values of vI, ... is acceptable.

See also: lcm, min, max, ceil, floor.

x = gradient (M) [Function File

[x, y, ...] = gradient (M) [Function File

[...] = gradient (M, s) [Function File

[...] = gradient (M, dx, dy, ...) [Function File
Calculates the gradient. x = gradient (M) calculates the one dimensional gradient if M is a
vector. If M is a matrix the gradient is calculated for each row.

]
]
]
]

[x, y] = gradient (M) calculates the one dimensional gradient for each direction if M if M
is a matrix. Additional return arguments can be use for multi-dimensional matrices.

Spacing values between two points can be provided by the dx, dy or h parameters. If h
is supplied it is assumed to be the spacing in all directions. Otherwise, separate values of
the spacing can be supplied by the dx, etc variables. A scalar value specifies an equidistant
spacing, while a vector value can be used to specify a variable spacing. The length must
match their respective dimension of M.

At boundary points a linear extrapolation is applied. Interior points are calculated with the
first approximation of the numerical gradient

y? (1) = 1/xGE+D)-x(G-1)) *(y@E-1D)-y@E+1)).
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lem (x, ...) [Mapping Function]
Compute the least common multiple of the elements of x, or the list of all the arguments.
For example,

lcm (al, ..., ak)
is the same as
lem ([al, ..., ak]).

All elements must be the same size or scalar.

See also: gcd, min, max, ceil, floor.

log (x) [Mapping Function]
Compute the natural logarithm for each element of x. To compute the matrix logarithm, see
Chapter 18 [Linear Algebral, page 223.

See also: log2, log10, logspace, exp.

logl0 (x) [Mapping Function]
Compute the base-10 logarithm for each element of x.

See also: log, log2, logspace, exp.

log2 (x) [Mapping Function]

[f, e] = log2 (x) [Mapping Function]
Compute the base-2 logarithm of x. With two outputs, returns f and e such that 1/2 <=
|fl<land xz=f-2°

See also: log, logl0, logspace, exp.

max (x, y, dim) [Mapping Function]
[w, iw] = max (x) [Mapping Function]
For a vector argument, return the maximum value. For a matrix argument, return the
maximum value from each column, as a row vector, or over the dimension dim if defined. For
two matrices (or a matrix and scalar), return the pair-wise maximum. Thus,
max (max (x))
returns the largest element of x, and
max (2:5, pi)
= 3.1416 3.1416 4.0000 5.0000
compares each element of the range 2:5 with pi, and returns a row vector of the maximum
values.
For complex arguments, the magnitude of the elements are used for comparison.

If called with one input and two output arguments, max also returns the first index of the
maximum value(s). Thus,

[x, ix] = max ([1, 3, 5, 2, 5])

= x =5

ix = 3
min (x, y, dim) [Mapping Function]
[w, iw] = min (x) [Mapping Function]

For a vector argument, return the minimum value. For a matrix argument, return the
minimum value from each column, as a row vector, or over the dimension dim if defined. For
two matrices (or a matrix and scalar), return the pair-wise minimum. Thus,
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min (min (x))
returns the smallest element of x, and
min (2:5, pi)
= 2.0000 3.0000 3.1416 3.1416

compares each element of the range 2:5 with pi, and returns a row vector of the minimum
values.

For complex arguments, the magnitude of the elements are used for comparison.

If called with one input and two output arguments, min also returns the first index of the
minimum value(s). Thus,

[x, ix] = min ([1, 3, 0, 2, 5])
= x =0
ix = 3

mod (x, y) [Mapping Function]
Compute modulo function, using

x -y .x floor (x ./ y)

Note that this handles negative numbers correctly: mod (-1, 3) is 2, not -1 as rem (-1, 3)
returns. Also, mod (x, 0) returns x.

An error message is printed if the dimensions of the arguments do not agree, or if either of
the arguments is complex.

See also: rem, round.

nextpow2 (x) [Function File]
If x is a scalar, returns the first integer n such that 2" > |z|.

If x is a vector, return nextpow2 (length (x)).

See also: pow?2.

nthroot (x, n) [Function File]
Compute the nth root of x, returning real results for real components of x. For example

nthroot (-1, 3)

= -1

-1~ @/ 3

= 0.50000 - 0.866031
pow2 (x) [Mapping Function]
pow2 (f, e) [Mapping Function]

With one argument, computes 2% for each element of x. With two arguments, returns f - 2¢.

See also: nextpow?2.

primes (n) [Function File]
Return all primes up to n.

Note that if you need a specific number of primes, you can use the fact the distance from one
prime to the next is on average proportional to the logarithm of the prime. Integrating, you
find that there are about k primes less than klog(5k).

The algorithm used is called the Sieve of Erastothenes.
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rem (x, y) [Mapping Function]
Return the remainder of x / y, computed using the expression
x -y .x fix (x ./ y)
An error message is printed if the dimensions of the arguments do not agree, or if either of
the arguments is complex.

See also: mod, round.

round (x) [Mapping Function]
Return the integer nearest to x. If x is complex, return round (real (x)) + round (imag
(x)) * 1.

See also: rem.

sign (x) [Mapping Function]
Compute the signum function, which is defined as

1, x> 0;
sign(x) =40, =0
-1, = <O0.

For complex arguments, sign returns x ./ abs (x).

sqrt (x) [Mapping Function]
Compute the square root of x. If x is negative, a complex result is returned. To compute the
matrix square root, see Chapter 18 [Linear Algebral, page 223.

17.2 Complex Arithmetic

The following functions are available for working with complex numbers. Each expects a single
argument. Given a matrix they work on an element by element basis. In the descriptions of the
following functions, z is the complex number = + ¢y, where ¢ is defined as v/—1.

abs (z) [Mapping Function]
Compute the magnitude of z, defined as |z| = /22 + y2.
For example,

abs (3 + 4i)
= 5

arg (z) [Mapping Function]
angle (z) [Mapping Function]
Compute the argument of z, defined as 6§ = tan™'(y/z). in radians.
For example,

arg (3 + 4i)
= 0.92730

conj (z2) [Mapping Function]
Return the complex conjugate of z, defined as z = = — 7y.
See also: real, imag.

imag (z) [Mapping Function]
Return the imaginary part of z as a real number.

See also: real, conj.
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real (z) [Mapping Function]
Return the real part of z.

See also: imag, conj.

17.3 Trigonometry

Octave provides the following trigonometric functions. Angles are specified in radians. To
convert from degrees to radians multiply by 7/180 (e.g. sin (30 * pi/180) returns the sine of
30 degrees).

sin (x) [Mapping Function]
Compute the sine of each element of x.

cos (x) [Mapping Function]
Compute the cosine of each element of x.

tan (z) [Mapping Function]
Compute tangent of each element of x.

sec (x) [Mapping Function]
Compute the secant of each element of x.

csc (x) [Mapping Function]
Compute the cosecant of each element of x.

cot (x) [Mapping Function]
Compute the cotangent of each element of x.

asin (x) [Mapping Function]
Compute the inverse sine of each element of x.

acos (x) [Mapping Function]
Compute the inverse cosine of each element of x.

atan (x) [Mapping Function]
Compute the inverse tangent of each element of x.

asec (x) [Mapping Function]
Compute the inverse secant of each element of x.

acsc (x) [Mapping Function]
Compute the inverse cosecant of each element of x.

acot (x) [Mapping Function]
Compute the inverse cotangent of each element of x.

sinh (x) [Mapping Function]
Compute the hyperbolic sine of each element of x.

cosh (x) [Mapping Function]
Compute the hyperbolic cosine of each element of x.
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tanh (x) [Mapping Function]
Compute hyperbolic tangent of each element of x.

sech (x) [Mapping Function]
Compute the hyperbolic secant of each element of x.

csch (x) [Mapping Function]
Compute the hyperbolic cosecant of each element of x.

coth (x) [Mapping Function]
Compute the hyperbolic cotangent of each element of x.

asinh (x) [Mapping Function]
Compute the inverse hyperbolic sine of each element of x.

acosh (x) [Mapping Function]
Compute the inverse hyperbolic cosine of each element of x.

atanh (x) [Mapping Function]
Compute the inverse hyperbolic tangent of each element of x.

asech (x) [Mapping Function]
Compute the inverse hyperbolic secant of each element of x.

acsch (x) [Mapping Function]
Compute the inverse hyperbolic cosecant of each element of x.

acoth (x) [Mapping Function]
Compute the inverse hyperbolic cotangent of each element of x.

Each of these functions expects a single argument. For matrix arguments, they work on an
element by element basis. For example,
sin ([1, 2; 3, 41)
= 0.84147 0.90930
0.14112 -0.75680

atan2 (y, x) [Mapping Function]
Compute atan (y / x) for corresponding elements of y and x. The result is in range -pi to pi.

In addition to the trigonometric functions that work with radians, Octave also provides the
following functions which work with degrees.

sind (x) [Function File]
Compute the sine of each element of x. Returns zero in elements for which x/180 is an
integer.

See also: sin, cosd, tand, acosd, asind, atand.

cosd (x) [Function File]
Compute the cosine of an angle in degrees. Returns zero in elements for which (x-90) /180
is an integer.

See also: cos, sind, tand, acosd, asind, atand.
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tand (x)

GNU Octave

[Function File]

Compute the tangent of an angle in degrees. Returns zero for elements of for which x/180

is an integer and Inf for elements where (x-90)/180 is an integer.

See also: tan, cosd, sind, acosd, asind, atand.

secd (x)
Compute the secant of an angle in degrees.

See also: sec, cscd, sind, cosd.

cscd (x)
Compute the cosecant of an angle in degrees.

See also: csc, secd, sind, cosd.

cotd (x)
Compute the cotangent of an angle in degrees.

See also: cot, tand.

asind (x)
Compute the inverse sine of an angle in degrees.

See also: asin, sind, acosd.

acosd (x)
Compute the inverse cosine of an angle in degrees.

See also: acos, cosd, asecd.

atand (x)
Compute the inverse tangent of an angle in degrees.

See also: acot, tand.

asecd (x)
Compute inverse secant in degrees.

See also: asec, secd, acscd.

acscd (x)
Compute the inverse cosecant of an angle in degrees.

See also: acsc, cscd, asecd.

acotd (x)
Compute the inverse cotangent of an angle in degrees.

See also: atan, tand.

[Function File]

[Function File]

[Function File]

[Function File]

[Function File]

[Function File]

[Function File]

[Function File]

[Function File]
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17.4 Sums and Products

sum (x, dim) [Built-in Function]
Sum of elements along dimension dim. If dim is omitted, it defaults to 1 (column-wise sum).

As a special case, if x is a vector and dim is omitted, return the sum of the elements.

prod (x, dim) [Built-in Function]
Product of elements along dimension dim. If dim is omitted, it defaults to 1 (column-wise
products).

As a special case, if x is a vector and dim is omitted, return the product of the elements.

cumsum (x, dim) [Built-in Function]
Cumulative sum of elements along dimension dim. If dim is omitted, it defaults to 1 (column-
wise cumulative sums).

As a special case, if x is a vector and dim is omitted, return the cumulative sum of the
elements as a vector with the same orientation as x.

cumprod (x, dim) [Built-in Function]
Cumulative product of elements along dimension dim. If dim is omitted, it defaults to 1
(column-wise cumulative products).

As a special case, if x is a vector and dim is omitted, return the cumulative product of the
elements as a vector with the same orientation as x.

sumsq (x, dim) [Built-in Function]
Sum of squares of elements along dimension dim. If dim is omitted, it defaults to 1 (column-
wise sum of squares).

As a special case, if x is a vector and dim is omitted, return the sum of squares of the
elements.

This function is conceptually equivalent to computing
sum (x .* conj (x), dim)

but it uses less memory and avoids calling conj if x is real.

accumarray (subs, vals, sz, fun, fillval, issparse) [Function File]

accumarray (csubs, vals, ...) [Function File]
Creates an array by accumulating the elements of a vector into the positions of defined by
their subscripts. The subscripts are defined by the rows of the matrix subs and the values
by vals. Each row of subs corresponds to one of the values in vals.

The size of the matrix will be determined by the subscripts themselves. However, if sz is
defined it determines the matrix size. The length of sz must correspond to the number of
columns in subs.

The default action of accumarray is to sum the elements with the same subscripts. This
behavior can be modified by defining the fun function. This should be a function or function
handle that accepts a column vector and returns a scalar. The result of the function should
not depend on the order of the subscripts.

The elements of the returned array that have no subscripts assoicated with them are set to
zero. Defining fillval to some other value allows these values to be defined.

By default accumarray returns a full matrix. If issparse is logically true, then a sparse matrix
is returned instead.

An example of the use of accumarray is:
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1,1;2,1,2;2,3,2;2,1,2;2,3,2],101:105)
(101, 0, 0; 0, 0, 0]
(0, 0, 0; 206, 0, 208]

accumarray ([1
= ans(:,:,1)
ans(:,:,2)

[

17.5 Special Functions

[j, ierr] = besselj (alpha, x, opt) [Loadable Function]
[y, ierr] = bessely (alpha, x, opt) [Loadable Function]
[i, ierr] = besseli (alpha, x, opt) [Loadable Function]
[k, ierr] = besselk (alpha, x, opt) [Loadable Function)]
[h, ierr] = besselh (alpha, k, x, opt) [Loadable Function]

Compute Bessel or Hankel functions of various kinds:

besselj  Bessel functions of the first kind.

bessely  Bessel functions of the second kind.

besseli  Modified Bessel functions of the first kind.

besselk  Modified Bessel functions of the second kind.

besselh  Compute Hankel functions of the first (k = 1) or second (k = 2) kind.

If the argument opt is supplied, the result is scaled by the exp (-I*x) for k = 1 or exp
(I*x) for k = 2.

If alpha is a scalar, the result is the same size as x. If x is a scalar, the result is the same
size as alpha. If alpha is a row vector and x is a column vector, the result is a matrix with
length (x) rows and length (alpha) columns. Otherwise, alpha and x must conform and
the result will be the same size.

The value of alpha must be real. The value of x may be complex.

If requested, ierr contains the following status information and is the same size as the result.
Normal return.

Input error, return NaN.

Overflow, return Inf.

Loss of significance by argument reduction results in less than half of machine accuracy.

Complete loss of significance by argument reduction, return NaN.

AN T S

Error—mo computation, algorithm termination condition not met, return NaN.

la, ierr] = airy (k, z, opt) [Loadable Function)]
Compute Airy functions of the first and second kind, and their derivatives.

K  Function Scale factor (if a third argument is supplied)

0 Ai (2) exp ((2/3) * Z * sqrt (Z))
1 dAi(Z)/dZ exp ((2/3) * Z * sqrt (Z))
2 Bi (2) exp (-abs (real ((2/3) * Z *sqrt (Z))))

3 dBi(Z)/dZ exp (-abs (real ((2/3) * Z *sqrt (Z))))
The function call airy (z) is equivalent to airy (0, z).
The result is the same size as z.
If requested, ierr contains the following status information and is the same size as the result.
0. Normal return.
1. Input error, return NaN.

2. Overflow, return Inf.
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3. Loss of significance by argument reduction results in less than half of machine accuracy.
4. Complete loss of significance by argument reduction, return NaN.

5. Error—mno computation, algorithm termination condition not met, return NaN.

beta (a, b) [Mapping Function]
Return the Beta function,
[(a)L'(b)
B(a,b) =
betainc (x, a, b) [Mapping Function]

Return the incomplete Beta function,

IB(xa 0/7 b) - B(a/, b)_l / t(a—Z)(l _ t)(b_l)dt

0

If x has more than one component, both a and b must be scalars. If x is a scalar, a and b
must be of compatible dimensions.

betaln (a, b) [Mapping Function]
Return the log of the Beta function,
['(a)I'(b)
B(a,b) = log ——.
(a,6) =los 775
See also: beta, betai, gammaln.
bincoeff (n, k) [Mapping Function]

Return the binomial coefficient of n and k, defined as

(n) _nn=1)(n-2)---(n—k+1)

k k!

For example,

bincoeff (5, 2)
= 10

erf (z) [Mapping Function]
Computes the error function,

2 ST
erf(z) = ﬁ/o €_t dt

See also: erfc, erfinv.

erfc (z) [Mapping Function]
Computes the complementary error function, 1 — erf(z).

See also: erf, erfinv.

erfinv (z) [Mapping Function]
Computes the inverse of the error function.

See also: erf, erfc.



218 GNU Octave

gamma (z) [Mapping Function]
Computes the Gamma function,

See also: gammai, lgamma.

gammainc (x, a) [Mapping Function]
Compute the normalized incomplete gamma function,

/ et tdt
0

’Y(xaa) = F(a)

with the limiting value of 1 as x approaches infinity. The standard notation is P(a,z), e.g.
Abramowitz and Stegun (6.5.1).

If a is scalar, then gammainc (x, a) is returned for each element of x and vice versa.

If neither x nor a is scalar, the sizes of x and a must agree, and gammainc is applied element-
by-element.

See also: gamma, lgamma.

L = legendre (n, X) [Function File]
Legendre Function of degree n and order m where all values for m = 0..n are returned. n
must be a scalar in the range [0..255]. The return value has one dimension more than x.

The Legendre Function of degree n and order m

m m 2 m/2 d™m

P(x) = (-1) * (1-x ) * ———— P (%)
n dx"m n
with:

Legendre polynomial of degree n
1 d°n 2 n
P (x) = —————- [—-G -1 ]

n 2°n n! dx"n

legendre(3,[-1.0 -0.9 -0.8]) returns the matrix

x | -1.0 I -0.9 | -0.8
m=0 | -1.00000 | -0.47250 | -0.08000
=1 0.00000 | -1.99420 | -1.98000

I I
I I

m=2 | 0.00000 | -2.56500 | -4.32000
I I

m=3 0.00000 | -1.24229 -3.24000
lgamma (x) [Mapping Function]
gammaln (x) [Mapping Function]

Return the natural logarithm of the absolute value of the gamma function of x.

See also: gamma, gammai.
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cross (x, y, dim) [Function File]
Computes the vector cross product of the two 3-dimensional vectors x and y.

cross ([1,1,0], [0,1,1])
= [1; -1; 1]

If x and y are matrices, the cross product is applied along the first dimension with 3 elements.
The optional argument dim is used to force the cross product to be calculated along the
dimension defined by dim.

commutation_matrix (m, n) [Function File]
Return the commutation matrix K,, , which is the unique mn x mn matrix such that K,, , -
vec(A) = vec(AT) for all m X n matrices A.

If only one argument m is given, K,, ,, is returned.

See Magnus and Neudecker (1988), Matrix differential calculus with applications in statistics
and econometrics.

duplication_matrix (n) [Function File]
Return the duplication matrix D,, which is the unique n? x n(n 4+ 1)/2 matrix such that
D,, * vech(A) = vec(A) for all symmetric n x n matrices A.

See Magnus and Neudecker (1988), Matrix differential calculus with applications in statistics
and econometrics.

17.6 Coordinate Transformations

[theta, r] = cart2pol (x, y) [Function File]

[theta, r, z] = cart2pol (x,y, 2) [Function File]
Transform cartesian to polar or cylindrical coordinates. x, y (and z) must be of same shape.
theta describes the angle relative to the x - axis. r is the distance to the z - axis (0, 0, z).

See also: pol2cart, cart2sph, sph2cart.

[x, y] = pol2cart (theta, r) [Function File]

[x, y, z] = pol2cart (theta, r, z) [Function File]
Transform polar or cylindrical to cartesian coordinates. theta, r (and z) must be of same
shape. theta describes the angle relative to the x - axis. r is the distance to the z - axis (0,
0, z).

See also: cart2pol, cart2sph, sph2cart.

[theta, phi, r] = cart2sph (x,y, z) [Function File]
Transform cartesian to spherical coordinates. x, y and z must be of same shape. theta
describes the angle relative to the x - axis. phi is the angle relative to the xy - plane. r is
the distance to the origin (0, 0, 0).

See also: pol2cart, cart2pol, sph2cart.

[x, y, z] = sph2cart (theta, phi, r) [Function File]
Transform spherical to cartesian coordinates. x, y and z must be of same shape. theta
describes the angle relative to the x-axis. phi is the angle relative to the xy-plane. r is the
distance to the origin (0, 0, 0).

See also: pol2cart, cart2pol, cart2sph.
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17.7 Mathematical Constants
x)

Built-in Function

I [ |
I (n, m) [Built-in Function]
I(nmk,...) [Built-in Function]
I(...,class) [Built-in Function]

Return a matrix or N-dimensional array whose elements are all equal to the pure imaginary
unit, defined as /—1. Since I (also i, J, and j) is a function, you can use the name(s) for
other purposes.

Inf (x) [Built-in Function]
Inf (n, m) [Built-in Function]
Inf (n,mk, ...) [Built-in Function]
Inf (..., class) [Built-in Function]

Return a matrix or N-dimensional array whose elements are all Infinity. The arguments are
handled the same as the arguments for eye. The optional argument class may be either
‘"single"’ or ‘"double"’. The default is ‘"double"’.

NaN (x) [Built-in Function]
NaN (n, m) [Built-in Function]
NaN (n, m, k, ...) [Built-in Function]
NaN (..., class) [Built-in Function]

Return a matrix or N-dimensional array whose elements are all NaN (Not a Number). The
value NaN is the result of an operation like 0/0, or co — 00, or any operation with a NaN.

Note that NaN always compares not equal to NaN. This behavior is specified by the IEEE
standard for floating point arithmetic. To find NaN values, you must use the isnan function.

The arguments are handled the same as the arguments for eye. The optional argument class
may be either ‘"single"’ or ‘"double"’. The default is ‘"double"’.

pi (x) [Built-in Function]
pi (n, m) [Built-in Function]
pi (o, mk, ...) [Built-in Function]
pi (..., class) [Built-in Function]

Return a matrix or N-dimensional array whose elements are all equal to the ratio of the
circumference of a circle to its diameter. Internally, pi is computed as ‘4.0 * atan (1.0)".

e (x) [Built-in Function]
e (n, m) [Built-in Function]
e (n,mk, ...) [Built-in Function]
e (..., class) [Built-in Function]

Return a matrix or N-dimensional array whose elements are all equal to the base of natural

logarithms. The constant e satisfies the equation log(e) = 1.

eps (x) [Built-in Function]
eps (n, m) [Built-in Function]
eps (n,mk, ...) [Built-in Function]
eps (..., class) [Built-in Function]

Return a matrix or N-dimensional array whose elements are all eps, the machine precision.
More precisely, eps is the largest relative spacing between any two adjacent numbers in the
machine’s floating point system. This number is obviously system-dependent. On machines
that support 64 bit IEEE floating point arithmetic, eps is approximately 2.2204 x 10~1¢.
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realmax (x) [Built-in Function]
realmax (n, m) [Built-in Function)]
realmax (n, m k, ...) [Built-in Function]
realmax (..., class) [Built-in Function]

Return a matrix or N-dimensional array whose elements are all equal to the largest floating
point number that is representable. The actual value is system-dependent. On machines that
support 64-bit IEEE floating point arithmetic, realmax is approximately 1.7977 x 103%8.

See also: realmin.

realmin (x) [Built-in Function]
realmin (n, m) [Built-in Function]
realmin (n, m, k, ...) [Built-in Function]
realmin (..., class) [Built-in Function]

Return a matrix or N-dimensional array whose elements are all equal to the smallest nor-
malized floating point number that is representable. The actual value is system-dependent.
On machines that support 64-bit IEEE floating point arithmetic, realmin is approximately
2.2251 x 107308,

See also: realmax.
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18 Linear Algebra

This chapter documents the linear algebra functions of Octave. Reference material for many of
these functions may be found in Golub and Van Loan, Matrix Computations, 2nd Ed., Johns
Hopkins, 1989, and in LAapAack Users’ Guide, SIAM, 1992.

18.1 Techniques used for Linear Algebra

Octave includes a poly-morphic solver, that selects an appropriate matrix factorization depend-
ing on the properties of the matrix itself. Generally, the cost of determining the matrix type
is small relative to the cost of factorizing the matrix itself, but in any case the matrix type
is cached once it is calculated, so that it is not re-determined each time it is used in a linear
equation.

The selection tree for how the linear equation is solve or a matrix inverse is form is given by

1. If the matrix is upper or lower triangular sparse a forward or backward substitution using
the LAarack xTRTRS function, and goto 4.

2. If the matrix is square, hermitian with a real positive diagonal, attempt Cholesky factor-
ization using the LAPACK xPOTRF function.

3. If the Cholesky factorization failed or the matrix is not hermitian with a real positive
diagonal, and the matrix is square, factorize using the LAPACK xGETRF function.

4. If the matrix is not square, or any of the previous solvers flags a singular or near singular
matrix, find a least squares solution using the LAPACK xGELSY function.

The user can force the type of the matrix with the matrix_type function. This overcomes the
cost of discovering the type of the matrix. However, it should be noted incorrectly identifying
the type of the matrix will lead to unpredictable results, and so matrix_type should be used
with care.

It should be noted that the test for whether a matrix is a candidate for Cholesky factorization,
performed above and by the matrix_type function, does not give a certainty that the matrix
is Hermitian. However, the attempt to factorize the matrix will quickly flag a non-Hermitian
matrix.

18.2 Basic Matrix Functions

aa = balance (a, opt) [Loadable Function)]
[dd, aal = balance (a, opt) [Loadable Function]
[cc, dd, aa, bb] = balance (a, b, opt) [Loadable Function)]

[dd, aal = balance (a) returns aa =dd \ a * dd. aa is a matrix whose row and column
norms are roughly equal in magnitude, and dd = p * d, where p is a permutation matrix
and d is a diagonal matrix of powers of two. This allows the equilibration to be computed
without roundoff. Results of eigenvalue calculation are typically improved by balancing first.

[cc, dd, aa, bb] = balance (a, b) returns aa = ccxa*dd and bb = cc*b*dd), where aa and
bb have non-zero elements of approximately the same magnitude and cc and dd are permuted
diagonal matrices as in dd for the algebraic eigenvalue problem.

The eigenvalue balancing option opt is selected as follows:

"N", "n"  No balancing; arguments copied, transformation(s) set to identity.

"P" "p"  Permute argument(s) to isolate eigenvalues where possible.

"S", "s"  Scale to improve accuracy of computed eigenvalues.

"B", "b"  Permute and scale, in that order. Rows/columns of a (and b) that are isolated

by permutation are not scaled. This is the default behavior.
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Algebraic eigenvalue balancing uses standard LAPACK routines.

Generalized eigenvalue problem balancing uses Ward’s algorithm (SIAM Journal on Scientific
and Statistical Computing, 1981).

cond (a) [Function File]
Compute the (two-norm) condition number of a matrix. cond (a) is defined as norm (a) *
norm (inv (a)), and is computed via a singular value decomposition.

See also: norm, svd, rank.

[d, rcond] = det (a) [Loadable Function]
Compute the determinant of a using LAPACK. Return an estimate of the reciprocal condition
number if requested.

dmult (a, b) [Function File]
If ais a vector of length rows (b), return diag (a) * b (but computed much more efficiently).

dot (x, y, dim) [Function File]
Computes the dot product of two vectors. If x and y are matrices, calculate the dot-product
along the first non-singleton dimension. If the optional argument dim is given, calculate the
dot-product along this dimension.

lambda = eig (a) [Loadable Function]

[v, lambda] = eig (a) [Loadable Function]
The eigenvalues (and eigenvectors) of a matrix are computed in a several step process which
begins with a Hessenberg decomposition, followed by a Schur decomposition, from which
the eigenvalues are apparent. The eigenvectors, when desired, are computed by further
manipulations of the Schur decomposition.

The eigenvalues returned by eig are not ordered.

g = givens (x,y) [Loadable Function)]
[c, s] = givens (x, y) [Loadable Function)]
Return a 2 x 2 orthogonal matrix

such that

with z and y scalars.
For example,

givens (1, 1)
= 0.70711 0.70711
-0.70711 0.70711

[x, rcond] = inv (a) [Loadable Function)]

[x, rcond] inverse (a) [Loadable Function)]
Compute the inverse of the square matrix a. Return an estimate of the reciprocal condition
number if requested, otherwise warn of an ill-conditioned matrix if the reciprocal condition
number is small.
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type = matrix_type (a)

Loadable Function

[ |
a = matrix_type (a, type) [Loadable Function)]
a = matrix_type (a, 'upper’, perm) [Loadable Function)]
a = matrix_type (a, 'lower’, perm) [Loadable Function)]
a = matrix_type (a, ’handed’, nl, nu) [Loadable Function]

Identify the matrix type or mark a matrix as a particular type. This allows rapid for solutions

of linear equations involving a to be performed. Called with a single argument, matrix_type

returns the type of the matrix and caches it for future use. Called with more than one
argument, matrix_type allows the type of the matrix to be defined.

The possible matrix types depend on whether the matrix is full or sparse, and can be one of

the following

‘unknown’ Remove any previously cached matrix type, and mark type as unknown

full’ Mark the matrix as full.

'positive definite’

Full positive definite matrix.

'diagonal’ Diagonal Matrix. (Sparse matrices only)

‘permuted diagonal’

Permuted Diagonal matrix. The permutation does not need to be specifically
indicated, as the structure of the matrix explicitly gives this. (Sparse matrices
only)

‘upper’ Upper triangular. If the optional third argument perm is given, the matrix is
assumed to be a permuted upper triangular with the permutations defined by
the vector perm.

"lower’ Lower triangular. If the optional third argument perm is given, the matrix is
assumed to be a permuted lower triangular with the permutations defined by the
vector perm.

"banded’

'banded positive definite’

Banded matrix with the band size of nl below the diagonal and nu above it. If
nl and nu are 1, then the matrix is tridiagonal and treated with specialized code.
In addition the matrix can be marked as positive definite (Sparse matrices only)

'singular’  The matrix is assumed to be singular and will be treated with a minimum norm
solution

Note that the matrix type will be discovered automatically on the first attempt to solve a

linear equation involving a. Therefore matrix_type is only useful to give Octave hints of

the matrix type. Incorrectly defining the matrix type will result in incorrect results from
solutions of linear equations, and so it is entirely the responsibility of the user to correctly
identify the matrix type.

norm (a, p) [Function File]

Compute the p-norm of the matrix a. If the second argument is missing, p = 2 is assumed.

If a is a matrix:

p=1 1-norm, the largest column sum of the absolute values of a.

p=2 Largest singular value of a.

p = Inf Infinity norm, the largest row sum of the absolute values of a.
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p — ||fro"
Frobenius norm of a, sqrt (sum (diag (a’ * a))).

If a is a vector or a scalar:
p=Inf max (abs (a)).
p = -Inf min (abs (a)).

other p-norm of a, (sum (abs (a) .~ p)) ~ (1/p).

See also: cond, svd.

null (a, tol) [Function File]
Return an orthonormal basis of the null space of a.

The dimension of the null space is taken as the number of singular values of a not greater
than tol. If the argument tol is missing, it is computed as

max (size (a)) * max (svd (a)) * eps

orth (a, tol) [Function File]
Return an orthonormal basis of the range space of a.

The dimension of the range space is taken as the number of singular values of a greater than
tol. If the argument tol is missing, it is computed as

max (size (a)) * max (svd (a)) * eps

pinv (x, tol) [Loadable Function)]
Return the pseudoinverse of x. Singular values less than tol are ignored.

If the second argument is omitted, it is assumed that
tol = max (size (x)) * sigma_max (x) * eps,

where sigma_max (x) is the maximal singular value of x.

rank (a, tol) [Function File]
Compute the rank of a, using the singular value decomposition. The rank is taken to be the
number of singular values of a that are greater than the specified tolerance tol. If the second
argument is omitted, it is taken to be

tol = max (size (a)) * sigma(l) * eps;

where eps is machine precision and sigma(1) is the largest singular value of a.

trace (a) [Function File]
Compute the trace of a, sum (diag (a)).

[r, k] = rref (a, tol) [Function File]
Returns the reduced row echelon form of a. tol defaults to eps * max (size (a)) * norm
(a, inf).

Called with two return arguments, k returns the vector of "bound variables", which are those
columns on which elimination has been performed.



Chapter 18: Linear Algebra 227

18.3 Matrix Factorizations

chol (a) [Loadable Function)]
Compute the Cholesky factor, r, of the symmetric positive definite matrix a, where RT R = A.

See also: cholinv, chol2inv.

cholinv (a) [Loadable Function]
Use the Cholesky factorization to compute the inverse of the symmetric positive definite
matrix a.

See also: chol, chol2inv.

chol2inv (u) [Loadable Function]
Invert a symmetric, positive definite square matrix from its Cholesky decomposition, u. Note
that u should be an upper-triangular matrix with positive diagonal elements. chol2inv (u)
provides inv (u’*u) but it is much faster than using inv.

See also: chol, cholinv.

h = hess (a) [Loadable Function]
[p, h] = hess (a) [Loadable Function]
Compute the Hessenberg decomposition of the matrix a.

The Hessenberg decomposition is usually used as the first step in an eigenvalue computation,
but has other applications as well (see Golub, Nash, and Van Loan, IEEE Transactions on
Automatic Control, 1979). The Hessenberg decomposition is

A= PHP”

where P is a square unitary matrix (P?P = I), and H is upper Hessenberg (H,;; = 0,Vi >
Jj+1).

[1, u, pl = 1lu (a) [Loadable Function)]
Compute the LU decomposition of a, using subroutines from LAPACK. The result is returned
in a permuted form, according to the optional return value p. For example, given the matrix
a=[1, 2; 3, 4],

(1, u, p]l = 1lu (a)

returns
l =
1.00000 0.00000
0.33333 1.00000
u =
3.00000 4.00000
0.00000 0.66667
p =
0 1
1 0

The matrix is not required to be square.
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g, r, pl = qr (a) [Loadable Function]
Compute the QR factorization of a, using standard LAPACK subroutines. For example, given
the matrix a = [1, 2; 3, 4],

[q, r] = qr (a)

returns
q =
-0.31623 -0.94868
-0.94868 0.31623
r -

-3.16228 -4.42719
0.00000 -0.63246

The gr factorization has applications in the solution of least squares problems
min | Az b,

for overdetermined systems of equations (i.e., A is a tall, thin matrix). The QR factorization
is QR = A where @ is an orthogonal matrix and R is upper triangular.

The permuted QR factorization [q, r, p] = qr (a) forms the QR factorization such that
the diagonal entries of r are decreasing in magnitude order. For example, given the matrix a

= [1; 2, 3: 4])
[q, r, p] = qr(a)
returns
q =
-0.44721 -0.89443
-0.89443 0.44721
r =
-4.47214 -3.13050
0.00000 0.44721
p =
0 1
1 0

The permuted qr factorization [q, r, p] = qr (a) factorization allows the construction of
an orthogonal basis of span (a).

lambda = qz (a, b) [Loadable Function]
Generalized eigenvalue problem Ax = sBx, QZ decomposition. There are three ways to call
this function:

1. lambda = qz(A,B)

Computes the generalized eigenvalues A of (A — sB).
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2. [AA, BB, Q, Z, V, W, lambdal] = gz (A, B)

Computes qz decomposition, generalized eigenvectors, and generalized eigenvalues of
(A—sB)
AV = BVdiag(\)

WTA = diag \)W'B
AA=Q"AZ BB =Q"BZ
with Q and Z orthogonal (unitary)= I
3. [AA,BB,Z{, lambda}] = qz(A,B,opt)

As in form [2], but allows ordering of generalized eigenpairs for (e.g.) solution of discrete
time algebraic Riccati equations. Form 3 is not available for complex matrices, and does
not compute the generalized eigenvectors V, W, nor the orthogonal matrix Q.

opt for ordering eigenvalues of the GEP pencil. The leading block of the revised
pencil contains all eigenvalues that satisfy:

"Nt = unordered (default)
" = small: leading block has all |lambda| <=1
"B" = big: leading block has all |lambdal >=1

" = negative real part: leading block has all eigenvalues in the
open left half-plane

i = nonnegative real part: leading block has all eigenvalues in the
closed right half-plane

Note: qz performs permutation balancing, but not scaling (see balance). Order of output
arguments was selected for compatibility with MATLAB

See also: balance, dare, eig, schur.

laa, bb, g, z] = qzhess (a, b) [Function File]

S

[u

Compute the Hessenberg-triangular decomposition of the matrix pencil (a, b), returning aa
=q*a*z, bb=gq*b *z, with q and z orthogonal. For example,

[aa, bb, q, z] = gzhess ([1, 2; 3, 4], [5, 6; 7, 81)

= aa = [ -3.02244, -4.41741; 0.92998, 0.69749 ]

= bb = [ -8.60233, -9.99730; 0.00000, -0.23250 ]
= q = [ -0.58124, -0.81373; -0.81373, 0.58124 ]
= z=1[1,0;0, 1]

The Hessenberg-triangular decomposition is the first step in Moler and Stewart’s QZ decom-
position algorithm.

Algorithm taken from Golub and Van Loan, Matrix Computations, 2nd edition.

= schur (a) [Loadable Function)]
, S] = schur (a, opt) [Loadable Function]
The Schur decomposition is used to compute eigenvalues of a square matrix, and has appli-
cations in the solution of algebraic Riccati equations in control (see are and dare). schur
always returns S = U7 AU where U is a unitary matrix (U?TU is identity) and S is upper
triangular. The eigenvalues of A (and S) are the diagonal elements of S. If the matrix A
is real, then the real Schur decomposition is computed, in which the matrix U is orthogonal
and S is block upper triangular with blocks of size at most 2 x 2 along the diagonal. The
diagonal elements of S (or the eigenvalues of the 2 x 2 blocks, when appropriate) are the
eigenvalues of A and S.
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The eigenvalues are optionally ordered along the diagonal according to the value of opt. opt
= "a" indicates that all eigenvalues with negative real parts should be moved to the leading
block of S (used in are), opt = "d" indicates that all eigenvalues with magnitude less than
one should be moved to the leading block of S (used in dare), and opt = "u", the default,
indicates that no ordering of eigenvalues should occur. The leading k£ columns of U always
span the A-invariant subspace corresponding to the k leading eigenvalues of S.

s = svd (a) [Loadable Function]
[u, s, v] = svd (a) [Loadable Function]
Compute the singular value decomposition of a

A=USVH

The function svd normally returns the vector of singular values. If asked for three return
values, it computes U, S, and V. For example,

svd (hilb (3))

returns
ans =
1.4083189
0.1223271
0.0026873
and

[u, s, vl = svd (hilb (3))

returns

u

-0.82704 0.54745 0.12766
-0.45986 -0.52829 -0.71375
-0.32330 -0.64901  0.68867

[y

.40832 0.00000 0.00000
.00000 0.12233 0.00000
.00000 0.00000 0.00269

o O

-0.82704 0.54745 0.12766
-0.45986 -0.52829 -0.71375
-0.32330 -0.64901  0.68867

If given a second argument, svd returns an economy-sized decomposition, eliminating the
unnecessary rows or columns of u or v.

[housv, beta, zer] = housh (x, j, 2) [Function File]
Computes householder reflection vector housv to reflect x to be jth column of identity, i.e.,
(I - beta*housv*housv’)x =e(j) inputs x: vector j: index into vector z: threshold for zero
(usually should be the number 0) outputs: (see Golub and Van Loan) beta: If beta = 0, then
no reflection need be applied (zer set to 0) housv: householder vector
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[u, h, nul] = krylov (a, v, k, epsi, pflg) [Function File]
Construct an orthogonal basis u of block Krylov subspace
[v axv a™2*v ... a”~(k+1)*v]
Using Householder reflections to guard against loss of orthogonality.
If v is a vector, then h contains the Hessenberg matrix such that a*u == uxh. Otherwise, h
is meaningless.
The value of nu is the dimension of the span of the krylov subspace (based on epsl).
If b is a vector and k is greater than m-1, then h contains the Hessenberg decomposition of
a.
The optional parameter epsl is the threshold for zero. The default value is le-12.
If the optional parameter pflg is nonzero, row pivoting is used to improve numerical behavior.
The default value is 0.

Reference: Hodel and Misra, "Partial Pivoting in the Computation of Krylov Subspaces", to
be submitted to Linear Algebra and its Applications

18.4 Functions of a Matrix

expm (a) [Loadable Function)]
Return the exponential of a matrix, defined as the infinite Taylor series
A% A3
exp(A):I—l—A%—i—l-?—i---'

The Taylor series is not the way to compute the matrix exponential; see Moler and Van Loan,
Nineteen Dubious Ways to Compute the Exponential of a Matrix, SIAM Review, 1978. This
routine uses Ward’s diagonal Padé approximation method with three step preconditioning
(STAM Journal on Numerical Analysis, 1977). Diagonal Padé approximations are rational
polynomials of matrices D,(a) ' N,(a) whose Taylor series matches the first 2¢ + 1 terms of
the Taylor series above; direct evaluation of the Taylor series (with the same preconditioning
steps) may be desirable in lieu of the Padé approximation when D,(a) is ill-conditioned.

logm (a) [Function File]
Compute the matrix logarithm of the square matrix a. Note that this is currently implemented
in terms of an eigenvalue expansion and needs to be improved to be more robust.

[result, error_estimate] = sqrtm (a) [Loadable Function)]
Compute the matrix square root of the square matrix a.

Ref: Nicholas J. Higham. A new sqrtm for MATLAB. Numerical Analysis Report No. 336,
Manchester Centre for Computational Mathematics, Manchester, England, January 1999.

See also: expm, logm, funm.

kron (a, b) [Loadable Function]
Form the kronecker product of two matrices, defined block by block as

x = [a(i, j) Db]
For example,

kron (1:4, ones (3, 1))
= 1 2 3 4
1 2 3 4
1 2 3 4
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x = syl (a, b, ¢) [Loadable Function]
Solve the Sylvester equation
AX+XB+C=0

using standard LAPACK subroutines. For example,

syl ([1, 2; 3, 4], [5, 6; 7, 8], [9, 10; 11, 12])
= [ -0.50000, -0.66667; -0.66667, -0.50000 1]
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19 Nonlinear Equations

Octave can solve sets of nonlinear equations of the form
flx) =0

using the function fsolve, which is based on the MINPACK subroutine hybrd. This is an
iterative technique so a starting point will have to be provided. This also has the consequence
that convergence is not guarantied even if a solution exists.

[x, info, msg] = fsolve (fcn, x0) [Loadable Function)]
Given fcn, the name of a function of the form £ (x) and an initial starting point x0, fsolve
solves the set of equations such that f(x) ==

If fen is a two-element string array, or a two element cell array containing either the function
name or inline or function handle. The first element names the function f described above,
and the second element names a function of the form j (x) to compute the Jacobian matrix
with elements

_0fi

N a.flfj

You can use the function fsolve_options to set optional parameters for fsolve.

J

fsolve_options (opt, val) [Loadable Function]
When called with two arguments, this function allows you set options parameters for the
function fsolve. Given one argument, fsolve_options returns the value of the correspond-
ing option. If no arguments are supplied, the names of all the available options and their
current values are displayed.

Options include

"tolerance"
Nonnegative relative tolerance.

Here is a complete example. To solve the set of equations
—22% + 3wy + 4sin(y) —6=0
32° — 22y* + 3cos(z) +4 =0

you first need to write a function to compute the value of the given function. For example:

function y = £ (x)
y(1) = -2xx(1)72 + 3*xx(1)*x(2) + 4*xsin(x(2)) - 6;
y(2) = 3*xx(1)72 - 2xx(1)*x(2)°2 + 3*cos(x(1)) + 4;
endfunction

Then, call fsolve with a specified initial condition to find the roots of the system of equations.
For example, given the function £ defined above,

[x, info] = fsolve (@f, [1; 2])
results in the solution

X =

0.57983
2.54621

info =1
A value of info = 1 indicates that the solution has converged.

The function perror may be used to print English messages corresponding to the numeric
error codes. For example,
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perror ("fsolve", 1)
-1 solution converged to requested tolerance

When no Jacobian is supplied (as in the example above) it is approximated numerically. This
requires more function evaluations, and hence is less efficient. In the example above we could
compute the Jacobian analytically as

STQ STJ; B 31y — 41, 4 cos(zq) + 311
9L oL | [ 23 — 3sin(z,) + 6z, —4x 7y

which is computed with the following Octave function
function J = jacobian(x)
J(1,1) = 3xx(2) - 4xx(1);
J(1,2) = 4xcos(x(2)) + 3*x(1);

J(2,1) = -2%x(2)"2 - 3*sin(x(1)) + 6*x(1);
J(2,2) = -4*xx(1)*x(2);
endfunction

Using this Jacobian is done with the following code
[x, info] = fsolve ({@f, @jacobian}, [1; 2]);

which gives the same solution as before.
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20 Sparse Matrices

20.1 The Creation and Manipulation of Sparse Matrices

The size of mathematical problems that can be treated at any particular time is generally limited
by the available computing resources. Both, the speed of the computer and its available memory
place limitation on the problem size.

There are many classes of mathematical problems which give rise to matrices, where a large
number of the elements are zero. In this case it makes sense to have a special matrix type
to handle this class of problems where only the non-zero elements of the matrix are stored.
Not only does this reduce the amount of memory to store the matrix, but it also means that
operations on this type of matrix can take advantage of the a-priori knowledge of the positions
of the non-zero elements to accelerate their calculations.

A matrix type that stores only the non-zero elements is generally called sparse. It is the
purpose of this document to discuss the basics of the storage and creation of sparse matrices
and the fundamental operations on them.

20.1.1 Storage of Sparse Matrices

It is not strictly speaking necessary for the user to understand how sparse matrices are stored.
However, such an understanding will help to get an understanding of the size of sparse matrices.
Understanding the storage technique is also necessary for those users wishing to create their
own oct-files.

There are many different means of storing sparse matrix data. What all of the methods have
in common is that they attempt to reduce the complexity and storage given a-priori knowledge of
the particular class of problems that will be solved. A good summary of the available techniques
for storing sparse matrix is given by Saad!. With full matrices, knowledge of the point of an
element of the matrix within the matrix is implied by its position in the computers memory.
However, this is not the case for sparse matrices, and so the positions of the non-zero elements
of the matrix must equally be stored.

An obvious way to do this is by storing the elements of the matrix as triplets, with two
elements being their position in the array (rows and column) and the third being the data itself.
This is conceptually easy to grasp, but requires more storage than is strictly needed.

The storage technique used within Octave is the compressed column format. In this format
the position of each element in a row and the data are stored as previously. However, if we
assume that all elements in the same column are stored adjacent in the computers memory,
then we only need to store information on the number of non-zero elements in each column,
rather than their positions. Thus assuming that the matrix has more non-zero elements than
there are columns in the matrix, we win in terms of the amount of memory used.

In fact, the column index contains one more element than the number of columns, with the
first element always being zero. The advantage of this is a simplification in the code, in that
there is no special case for the first or last columns. A short example, demonstrating this in C
is.

for (j = 0; j < nc; j++)
for (i = cidx (j); i < cidx(j+1); i++)
printf ("non-zero element (%i,%i) is %d\n",
ridx(i), j, data(i));

A clear understanding might be had by considering an example of how the above applies to

an example matrix. Consider the matrix

! Youcef Saad "SPARSKIT: A  basic toolkit for sparse  matrix  computation", 1994,
http://www-users.cs.umn.edu/ saad/software/SPARSKIT/paper.ps


http://www-users.cs.umn.edu/~saad/software/SPARSKIT/paper.ps
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1 2 0 0
0O o0 0 3
0O 0 0 4

The non-zero elements of this matrix are

1, 1) =1
1, 2 =2
(2, 4) =3
3, 4) =4

This will be stored as three vectors cidx, ridx and data, representing the column indexing,
row indexing and data respectively. The contents of these three vectors for the above matrix
will be

cidx = [0, 1, 2, 2, 4]
ridx [0, o, 1, 2]
data [1, 2, 3, 4]

Note that this is the representation of these elements with the first row and column assumed
to start at zero, while in Octave itself the row and column indexing starts at one. Thus the
number of elements in the i-th column is given by cidx (i + 1) - cidx (1).

Although Octave uses a compressed column format, it should be noted that compressed row
formats are equally possible. However, in the context of mixed operations between mixed sparse
and dense matrices, it makes sense that the elements of the sparse matrices are in the same
order as the dense matrices. Octave stores dense matrices in column major ordering, and so
sparse matrices are equally stored in this manner.

A further constraint on the sparse matrix storage used by Octave is that all elements in the
rows are stored in increasing order of their row index, which makes certain operations faster.
However, it imposes the need to sort the elements on the creation of sparse matrices. Having
disordered elements is potentially an advantage in that it makes operations such as concatenating
two sparse matrices together easier and faster, however it adds complexity and speed problems
elsewhere.

20.1.2 Creating Sparse Matrices

There are several means to create sparse matrix.

Returned from a function
There are many functions that directly return sparse matrices. These include speye,
sprand, spdiag, etc.

Constructed from matrices or vectors
The function sparse allows a sparse matrix to be constructed from three vectors
representing the row, column and data. Alternatively, the function spconvert uses
a three column matrix format to allow easy importation of data from elsewhere.

Created and then filled
The function sparse or spalloc can be used to create an empty matrix that is then
filled by the user

From a user binary program
The user can directly create the sparse matrix within an oct-file.

There are several basic functions to return specific sparse matrices. For example the sparse
identity matrix, is a matrix that is often needed. It therefore has its own function to create it
as speye (n) or speye (r, c), which creates an n-by-n or r-by-c sparse identity matrix.
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Another typical sparse matrix that is often needed is a random distribution of random ele-
ments. The functions sprand and sprandn perform this for uniform and normal random distri-
butions of elements. They have exactly the same calling convention, where sprand (r, c, d),
creates an 1-by-c sparse matrix with a density of filled elements of d.

Other functions of interest that directly create sparse matrices, are spdiag or its generalization
spdiags, that can take the definition of the diagonals of the matrix and create the sparse matrix
that corresponds to this. For example

s = spdiag (sparse(randn(l,n)), -1);

creates a sparse (n+1)-by-(n+1) sparse matrix with a single diagonal defined.

spatan2 (y, x) [Loadable Function]
Compute atan (Y / X) for corresponding sparse matrix elements of Y and X. The result is
in range -pi to pi.

y = spcumprod (x,dim) [Loadable Function)]
Cumulative product of elements along dimension dim. If dim is omitted, it defaults to 1
(column-wise cumulative products).

See also: spcumsum.

y = spcumsum (x,dim) [Loadable Function)]
Cumulative sum of elements along dimension dim. If dim is omitted, it defaults to 1 (column-
wise cumulative sums).

See also: spcumprod.

spdiag (v, k) [Loadable Function)]
Return a diagonal matrix with the sparse vector v on diagonal k. The second argument is
optional. If it is positive, the vector is placed on the k-th super-diagonal. If it is negative, it
is placed on the -k-th sub-diagonal. The default value of k is 0, and the vector is placed on
the main diagonal. For example,
spdiag ([1, 2, 3], 1)
ans =

Compressed Column Sparse (rows=4, cols=4, nnz=3)

1, 2 >1
2,3 ->2
(3 ’4) —>3

Given a matrix argument, instead of a vector, spdiag extracts the k-th diagonal of the sparse
matrix.

See also: diag.

[b, c] = spdiags (a) [function File]

b = spdiags (a, c¢) [function File]

b = spdiags (v, c, a) [function File]

b = spdiags (v, ¢, m, n) [function File]
A generalization of the function spdiag. Called with a single input argument, the non-zero
diagonals ¢ of A are extracted. With two arguments the diagonals to extract are given by
the vector c.

The other two forms of spdiags modify the input matrix by replacing the diagonals. They
use the columns of v to replace the columns represented by the vector c. If the sparse matrix
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a is defined then the diagonals of this matrix are replaced. Otherwise a matrix of m by n is
created with the diagonals given by v.

Negative values of ¢ representive diagonals below the main diagonal, and positive values of ¢
diagonals above the main diagonal.

For example
spdiags (reshape (1:12, 4, 3), [-1 0 1], 5, 4)

= 510 0 O
1 611 0
0 2 712
0O 0 3 8
0O 0 0 4

y = speye (m) [Function File]

y = speye (m, n) [Function File]

y = speye (sz) [Function File]
Returns a sparse identity matrix. This is significantly more efficient than sparse (eye (m))
as the full matrix is not constructed.

Called with a single argument a square matrix of size m by m is created. Otherwise a matrix
of m by n is created. If called with a single vector argument, this argument is taken to be
the size of the matrix to create.

y = spfun (f,x) [Function File]
Compute f(x) for the non-zero values of x. This results in a sparse matrix with the same
structure as x. The function f can be passed as a string, a function handle or an inline
function.

spmax (x, y, dim) [Mapping Function]

[w, iw] = spmax (x) [Mapping Function]
For a vector argument, return the maximum value. For a matrix argument, return the
maximum value from each column, as a row vector, or over the dimension dim if defined. For
two matrices (or a matrix and scalar), return the pair-wise maximum. Thus,

max (max (x))
returns the largest element of x, and
max (2:5, pi)
= 3.1416 3.1416 4.0000 5.0000
compares each element of the range 2:5 with pi, and returns a row vector of the maximum
values.
For complex arguments, the magnitude of the elements are used for comparison.
If called with one input and two output arguments, max also returns the first index of the
maximum value(s). Thus,
[x, ix] = max ([1, 3, 5, 2, 5])
= x =25
ix = 3
spmin (x, y, dim) [Mapping Function]
[w, iw] = spmin (x) [Mapping Function]

For a vector argument, return the minimum value. For a matrix argument, return the
minimum value from each column, as a row vector, or over the dimension dim if defined. For
two matrices (or a matrix and scalar), return the pair-wise minimum. Thus,
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min (min (x))
returns the smallest element of x, and
min (2:5, pi)
= 2.0000 3.0000 3.1416 3.1416

compares each element of the range 2:5 with pi, and returns a row vector of the minimum
values.

For complex arguments, the magnitude of the elements are used for comparison.

If called with one input and two output arguments, min also returns the first index of the
minimum value(s). Thus,
[x, ix] = min ([1, 3, 0, 2, 5])
= x =0
ix = 3

y = spones (x) [Function File]
Replace the non-zero entries of x with ones. This creates a sparse matrix with the same
structure as x.

y = spprod (x,dim) [Loadable Function]
Product of elements along dimension dim. If dim is omitted, it defaults to 1 (column-wise
products).

See also: spsum, spsumsq.

sprand (m, n, d) [Function File]

sprand (s) [Function File]
Generate a random sparse matrix. The size of the matrix will be m by n, with a density of
values given by d. d should be between 0 and 1. Values will be uniformly distributed between
0 and 1.

Note: sometimes the actual density may be a bit smaller than d. This is unlikely to happen
for large really sparse matrices.

If called with a single matrix argument, a random sparse matrix is generated wherever the
matrix S is non-zero.

See also: sprandn.

sprandn (m, n, d) [Function File]

sprandn (s) [Function File]
Generate a random sparse matrix. The size of the matrix will be m by n, with a density of
values given by d. d should be between 0 and 1. Values will be normally distributed with
mean of zero and variance 1.

Note: sometimes the actual density may be a bit smaller than d. This is unlikely to happen
for large really sparse matrices.

If called with a single matrix argument, a random sparse matrix is generated wherever the
matrix S is non-zero.

See also: sprand.

sprandsym (n, d) [Function File]

sprandsym (s) [Function File]
Generate a symmetric random sparse matrix. The size of the matrix will be n by n, with a
density of values given by d. d should be between 0 and 1. Values will be normally distributed
with mean of zero and variance 1.
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Note: sometimes the actual density may be a bit smaller than d. This is unlikely to happen
for large really sparse matrices.

If called with a single matrix argument, a random sparse matrix is generated wherever the
matrix S is non-zero in its lower triangular part.

See also: sprand, sprandn.

y = spsum (x,dim) [Loadable Function)]
Sum of elements along dimension dim. If dim is omitted, it defaults to 1 (column-wise sum).

See also: spprod, spsumsq.

y = spsumsq (x,dim) [Loadable Function]
Sum of squares of elements along dimension dim. If dim is omitted, it defaults to 1 (column-
wise sum of squares). This function is equivalent to computing

spsum (x .* spconj (x), dim)
but it uses less memory and avoids calling spconj if x is real.

See also: spprod, spsum.

The recommended way for the user to create a sparse matrix, is to create two vectors con-
taining the row and column index of the data and a third vector of the same size containing the
data to be stored. For example

ri=ci=4-=1[];

for j = 1:c
ri = [ri; randperm(r)(1:n)’];
ci = [ci; j*ones(n,1)];
d = [d; rand(n,1)];

endfor

s = sparse (ri, ci, d, r, c);

creates an r-by-c sparse matrix with a random distribution of n (<r) elements per column.
The elements of the vectors do not need to be sorted in any particular order as Octave will
sort them prior to storing the data. However, pre-sorting the data will make the creation of the
sparse matrix faster.

The function spconvert takes a three or four column real matrix. The first two columns
represent the row and column index respectively and the third and four columns, the real and
imaginary parts of the sparse matrix. The matrix can contain zero elements and the elements
can be sorted in any order. Adding zero elements is a convenient way to define the size of the
sparse matrix. For example

s = spconvert ([1 2 3 4; 1344; 1230]%)
= Compressed Column Sparse (rows=4, cols=4, nnz=3)

1, 1) —>1
(2,3 —>2
(3, 4) >3
An example of creating and filling a matrix might be
k = b;

nz =r *x k;
s = spalloc (r, c, nz)
for j = 1:c
idx = randperm (r);
s (:, j) = [zeros(r - k, 1);
rand(k, 1)] (idx);
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endfor

It should be noted, that due to the way that the Octave assignment functions are written
that the assignment will reallocate the memory used by the sparse matrix at each iteration of
the above loop. Therefore the spalloc function ignores the nz argument and does not preassign
the memory for the matrix. Therefore, it is vitally important that code using to above structure
should be vectorized as much as possible to minimize the number of assignments and reduce the
number of memory allocations.

FM = full (SM) [Loadable Function]
returns a full storage matrix from a sparse one

See also: sparse.

s = spalloc (r, ¢, nz) [Function File]
Returns an empty sparse matrix of size r-by-c. As Octave resizes sparse matrices at the first
opportunity, so that no additional space is needed, the argument nz is ignored. This function
is provided only for compatibility reasons.

It should be noted that this means that code like
k = 5;
nz =r x k;
s = spalloc (r, c, nz)
for j = 1:c
idx = randperm (r);
s (:, j) = [zeros(r - k, 1); rand(k, 1)] (idx);
endfor

will reallocate memory at each step. It is therefore vitally important that code like this is
vectorized as much as possible.

See also: sparse, nzmax.

s = sparse (a) [Loadable Function]
Create a sparse matrix from the full matrix a. is forced back to a full matrix is resulting
matrix is sparse

s = sparse (a, 1) [Loadable Function]
Create a sparse matrix and convert it back to a full matrix. is forced back to a full matrix is
resulting matrix is sparse

s = sparse (i, j, sv, m, n, nzmax) [Loadable Function)]
Create a sparse matrix given integer index vectors i and j, a 1-by-nnz vector of real of complex
values sv, overall dimensions m and n of the sparse matrix. The argument nzmax is ignored
but accepted for compatibility with MATLAB.

Note: if multiple values are specified with the same i, j indices, the corresponding values in
s will be added.

The following are all equivalent:

s = sparse (i, j, s, m, n)

s = sparse (i, j, s, m, n, "summation")
s = sparse (i, j, s, m, n, "sum")
s = sparse (i, j, s, m, n, "unique") [Loadable Function]

Same as above, except that if more than two values are specified for the same i, j indices, the
last specified value will be used.

s = sparse (i, j, sv) [Loadable Function)]
Uses m =max (i), n =max (j)
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s = sparse (m, n) [Loadable Function]
Equivalent to sparse ([1, [1, [1, m, n, 0)

If any of sv, i or j are scalars, they are expanded to have a common size.

See also: full.

X = spconvert (m) [Function File]
This function converts for a simple sparse matrix format easily produced by other programs
into Octave’s internal sparse format. The input x is either a 3 or 4 column real matrix,
containing the row, column, real and imaginary parts of the elements of the sparse matrix.
An element with a zero real and imaginary part can be used to force a particular matrix size.

spfind (x) [Loadable Function)]

spfind (x, n) [Loadable Function)]

spfind (x, n, direction) [Loadable Function]

(i, j, v spfind (...) [Loadable Function)]
A sparse version of the find function. Please see the find for details of its use.

Note that this function is particularly useful for sparse matrices, as it extracts the non-zero
elements as vectors, which can then be used to create the original matrix. For example,

sz = size(a);
[i, j, v] = spfind (a);
b = sparse(i, j, v, sz(1), sz(2));

See also: sparse.

The above problem can be avoided in oct-files. However, the construction of a sparse matrix
from an oct-file is more complex than can be discussed in this brief introduction, and you
are referred to chapter Appendix A [Dynamically Linked Functions|, page 439, to have a full
description of the techniques involved.

20.1.3 Finding out Information about Sparse Matrices

There are a number of functions that allow information concerning sparse matrices to be ob-
tained. The most basic of these is issparse that identifies whether a particular Octave object is
in fact a sparse matrix.

Another very basic function is nnz that returns the number of non-zero entries there are
in a sparse matrix, while the function nzmax returns the amount of storage allocated to the
sparse matrix. Note that Octave tends to crop unused memory at the first opportunity for
sparse objects. There are some cases of user created sparse objects where the value returned by
nzmaz will not be the same as nnz, but in general they will give the same result. The function
spstats returns some basic statistics on the columns of a sparse matrix including the number of
elements, the mean and the variance of each column.

issparse (expr) [Loadable Function]
Return 1 if the value of the expression expr is a sparse matrix.

scalar = nnz (a) [Built-in Function]
Returns the number of non zero elements in a.

See also: sparse.

nonzeros (s) [Function File]
Returns a vector of the non-zero values of the sparse matrix s.
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scalar = nzmax (SM) [Built-in Function]
Return the amount of storage allocated to the sparse matrix SM. Note that Octave tends to
crop unused memory at the first opportunity for sparse objects. There are some cases of user
created sparse objects where the value returned by nzmaz will not be the same as nnz, but
in general they will give the same result.

See also: sparse, spalloc.

[count, mean, var] = spstats (s) [Function File]

[count, mean, var] = spstats (s, j) [Function File]
Return the stats for the non-zero elements of the sparse matrix s. count is the number of
non-zeros in each column, mean is the mean of the non-zeros in each column, and var is the
variance of the non-zeros in each column.

Called with two input arguments, if s is the data and j is the bin number for the data,
compute the stats for each bin. In this case, bins can contain data values of zero, whereas
with spstats (s) the zeros may disappear.

When solving linear equations involving sparse matrices Octave determines the means to
solve the equation based on the type of the matrix as discussed in Section 20.2 [Sparse Linear
Algebra|, page 253. Octave probes the matrix type when the div (/) or 1div (\) operator is first
used with the matrix and then caches the type. However the matrix_type function can be used
to determine the type of the sparse matrix prior to use of the div or ldiv operators. For example

a = tril (sprandn(1024, 1024, 0.02), -1)
+ speye(1024);

matrix_type (a);

ans = Lower

show that Octave correctly determines the matrix type for lower triangular matrices. ma-
trix_type can also be used to force the type of a matrix to be a particular type. For example

a = matrix_type (tril (sprandn (1024,
1024, 0.02), -1) + speye(1024), ’Lower’);

This allows the cost of determining the matrix type to be avoided. However, incorrectly
defining the matrix type will result in incorrect results from solutions of linear equations, and
so it is entirely the responsibility of the user to correctly identify the matrix type

There are several graphical means of finding out information about sparse matrices. The
first is the spy command, which displays the structure of the non-zero elements of the matrix.
See Figure 20.1, for an example of the use of spy. More advanced graphical information can be
obtained with the treeplot, etreeplot and gplot commands.
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Figure 20.1: Structure of simple sparse matrix.

One use of sparse matrices is in graph theory, where the interconnections between nodes are
represented as an adjacency matrix. That is, if the i-th node in a graph is connected to the j-th
node. Then the ij-th node (and in the case of undirected graphs the ji-th node) of the sparse
adjacency matrix is non-zero. If each node is then associated with a set of co-ordinates, then
the gplot command can be used to graphically display the interconnections between nodes.

As a trivial example of the use of gplot, consider the example
A = sparse([2,6,1,3,2,4,3,5,4,6,1,5],
[1’1,2’2’3’3’4’4’5’5’6’6]’1’6’6);
xy = [0,4,8,6,4,2;5,0,5,7,5,7]";
gplot (A,xy)
which creates an adjacency matrix A where node 1 is connected to nodes 2 and 6, node 2

with nodes 1 and 3, etc. The co-ordinates of the nodes are given in the n-by-2 matrix xy. See
Figure 20.2.

Figure 20.2: Simple use of the gplot command.

The dependencies between the nodes of a Cholesky factorization can be calculated in linear
time without explicitly needing to calculate the Cholesky factorization by the etree command.
This command returns the elimination tree of the matrix and can be displayed graphically by
the command treeplot(etree(A)) if A is symmetric or treeplot (etree(A+A’)) otherwise.
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spy (x) [Function File]
spy (..., markersize) [Function File]
spy (..., LineSpec) [Function File]

Plot the sparsity pattern of the sparse matrix x. If the argument markersize is given as an
scalar value, it is used to determine the point size in the plot. If the string LineSpec is given
it is passed to plot and determines the appearance of the plot.

See also: plot.

p = etree (s) [Loadable Function)]
p = etree (s, typ) [Loadable Function)]
[p, q] = etree (s, typ) [Loadable Function]

Returns the elimination tree for the matrix s. By default s is assumed to be symmetric and
the symmetric elimination tree is returned. The argument typ controls whether a symmetric
or column elimination tree is returned. Valid values of typ are ’sym’ or ’col’; for symmetric
or column elimination tree respectively

Called with a second argument, etree also returns the postorder permutations on the tree.

etreeplot (tree) [Function File]

etreeplot (tree, node_style, edge_style) [Function File]
Plot the elimination tree of the matrix s or s+s’ if s in non-symmetric. The optional
parameters line_style and edge_style define the output style.

See also: treeplot, gplot.

gplot (a, xy) [Function File]
gplot (a, xy, line_style) [Function File]
[x, y] = gplot (a, xy) [Function File]

Plot a graph defined by A and xy in the graph theory sense. A is the adjacency matrix of
the array to be plotted and xy is an n-by-2 matrix containing the coordinates of the nodes
of the graph.

The optional parameter line_style defines the output style for the plot. Called with no output
arguments the graph is plotted directly. Otherwise, return the coordinates of the plot in x
and y.

See also: treeplot, etreeplot, spy.

treeplot (Tree) [Function File]

treeplot (Tree, LineStyle, EdgeStyle) [Function File]
Produces a graph of tree or forest. The first argument is vector of predecessors, optional
parameters LineStyle and EdgeStyle define the output style. The complexity of the algorithm
is O(n) in terms of is time and memory requirements.

See also: etreeplot, gplot.

20.1.4 Basic Operators and Functions on Sparse Matrices

20.1.4.1 Sparse Functions

An important consideration in the use of the sparse functions of Octave is that many of the
internal functions of Octave, such as diag, can not accept sparse matrices as an input. The
sparse implementation in Octave therefore uses the dispatch function to overload the normal
Octave functions with equivalent functions that work with sparse matrices. However, at any time
the sparse matrix specific version of the function can be used by explicitly calling its function
name.
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The table below lists all of the sparse functions of Octave. Note that the names of the specific
sparse forms of the functions are typically the same as the general versions with a sp prefix. In
the table below, and the rest of this article the specific sparse versions of the functions are used.

Generate sparse matrices:
spalloc, spdiags, speye, sprand, sprandn, sprandsym

Sparse matrix conversion:
full, sparse, spconvert, spfind

Manipulate sparse matrices
issparse, nnz, nonzeros, nzmax, spfun, spones, spy

Graph Theory:
etree, etreeplot, gplot, treeplot

Sparse matrix reordering:
ccolamd, colamd, colperm, csymamd, dmperm, symamd, randperm, symrcm

Linear algebra:
matrix_type, spchol, cpcholinv, spchol2inv, spdet, spinv, spkron, splchol, splu, spqr,
normest, sprank

Iterative techniques:
luinc, pcg, pcr

Miscellaneous:
spparms, symbfact, spstats, spprod, spcumsum, spsum, Spsumsq, spmin, Spmax,
spatan2, spdiag

In addition all of the standard Octave mapper functions (ie. basic math functions that take
a single argument) such as abs, etc can accept sparse matrices. The reader is referred to the
documentation supplied with these functions within Octave itself for further details.

20.1.4.2 The Return Types of Operators and Functions

The two basic reasons to use sparse matrices are to reduce the memory usage and to not have
to do calculations on zero elements. The two are closely related in that the computation time
on a sparse matrix operator or function is roughly linear with the number of non-zero elements.

Therefore, there is a certain density of non-zero elements of a matrix where it no longer
makes sense to store it as a sparse matrix, but rather as a full matrix. For this reason operators
and functions that have a high probability of returning a full matrix will always return one. For
example adding a scalar constant to a sparse matrix will almost always make it a full matrix,
and so the example

speye(3) + 0

= 1 0 O
0 1 0
0 0 1

returns a full matrix as can be seen. Additionally all sparse functions test the amount of
memory occupied by the sparse matrix to see if the amount of storage used is larger than the
amount used by the full equivalent. Therefore speye (2) * 1 will return a full matrix as the
memory used is smaller for the full version than the sparse version.

As all of the mixed operators and functions between full and sparse matrices exist, in general
this does not cause any problems. However, one area where it does cause a problem is where
a sparse matrix is promoted to a full matrix, where subsequent operations would resparsify the
matrix. Such cases are rare, but can be artificially created, for example (£1iplr(speye(3)) +
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speye(3)) - speye(3) gives a full matrix when it should give a sparse one. In general, where
such cases occur, they impose only a small memory penalty.

There is however one known case where this behavior of Octave’s sparse matrices will cause
a problem. That is in the handling of the diag function. Whether diag returns a sparse or full
matrix depending on the type of its input arguments. So
a = diag (sparse([1,2,3]), -1);
should return a sparse matrix. To ensure this actually happens, the sparse function, and
other functions based on it like speye, always returns a sparse matrix, even if the memory used
will be larger than its full representation.

20.1.4.3 Mathematical Considerations

The attempt has been made to make sparse matrices behave in exactly the same manner as
there full counterparts. However, there are certain differences and especially differences with
other products sparse implementations.

Firstly, the "./" and ".”" operators must be used with care. Consider what the examples
s = speye (4);
al = s .7 2;
a2 = s ." s;
a3 = s .7 -2;
ad = s ./ 2;
ab =2 ./ s;
a6 = s ./ s;

will give. The first example of s raised to the power of 2 causes no problems. However s
raised element-wise to itself involves a large number of terms 0 .~ 0 which is 1. There s .~ s
is a full matrix.

Likewise s .~ -2 involves terms terms like O .~ -2 which is infinity, and so s .~ -2 is equally
a full matrix.

For the "./" operator s ./ 2 has no problems, but 2 ./ s involves a large number of infinity
terms as well and is equally a full matrix. The case of s ./ s involves terms like 0 ./ 0 which
is a NaN and so this is equally a full matrix with the zero elements of s filled with NaN values.

The above behavior is consistent with full matrices, but is not consistent with sparse imple-
mentations in other products.

A particular problem of sparse matrices comes about due to the fact that as the zeros are
not stored, the sign-bit of these zeros is equally not stored. In certain cases the sign-bit of zero
is important. For example

a=0./[-1, 1; 1, -11;

b=1./a

= -Inf Inf
Inf -Inf

c =1 ./ sparse (a)

= Inf Inf
Inf Inf

To correct this behavior would mean that zero elements with a negative sign-bit would need
to be stored in the matrix to ensure that their sign-bit was respected. This is not done at this
time, for reasons of efficiency, and so the user is warned that calculations where the sign-bit of
zero is important must not be done using sparse matrices.

In general any function or operator used on a sparse matrix will result in a sparse matrix with
the same or a larger number of non-zero elements than the original matrix. This is particularly
true for the important case of sparse matrix factorizations. The usual way to address this
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is to reorder the matrix, such that its factorization is sparser than the factorization of the
original matrix. That is the factorization of L * U =P * S * Q has sparser terms L and U than
the equivalent factorization L * U = S.

Several functions are available to reorder depending on the type of the matrix to be factorized.
If the matrix is symmetric positive-definite, then symamd or csymamd should be used. Other-
wise colamd or ccolamd should be used. For completeness the reordering functions colperm and
randperm are also available.

See Figure 20.3, for an example of the structure of a simple positive definite matrix.

50 |- —

100

150 q

200 L L
0 50 100 150 200

Figure 20.3: Structure of simple sparse matrix.

The standard Cholesky factorization of this matrix can be obtained by the same command
that would be used for a full matrix. This can be visualized with the command r = chol(A) ;
spy(x);. See Figure 20.4. The original matrix had 598 non-zero terms, while this Cholesky
factorization has 10200, with only half of the symmetric matrix being stored. This is a significant
level of fill in, and although not an issue for such a small test case, can represents a large overhead
in working with other sparse matrices.

The appropriate sparsity preserving permutation of the original matrix is given by symamd
and the factorization using this reordering can be visualized using the command q = symamd (A) ;
r = chol(A(q,q)); spy(r). This gives 399 non-zero terms which is a significant improvement.

The Cholesky factorization itself can be used to determine the appropriate sparsity preserving
reordering of the matrix during the factorization, In that case this might be obtained with three
return arguments as r[r, p, ql = chol(A); spy(xr).
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Figure 20.4: Structure of the un-permuted Cholesky factorization of the above matrix.
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Figure 20.5: Structure of the permuted Cholesky factorization of the above matrix.

In the case of an asymmetric matrix, the appropriate sparsity preserving permutation is
colamd and the factorization using this reordering can be visualized using the command q =
colamd(A); [1, u, p] = 1u(A(:,q)); spy(1+u).

Finally, Octave implicitly reorders the matrix when using the div (/) and 1div (\) operators,
and so no the user does not need to explicitly reorder the matrix to maximize performance.

Loadable Function

p = ccolamd (s) [ ]
p = ccolamd (s, knobs) [Loadable Function]
p = ccolamd (s, knobs, cmember) [Loadable Function]
[ }

, stats] = ccolamd (...) [Loadable Function
Constrained column approximate minimum degree permutation. p = ccolamd (s) returns
the column approximate minimum degree permutation vector for the sparse matrix s.
For a non-symmetric matrix s, s(:,p) tends to have sparser LU factors than s. chol
(s(:,p)?*s(:,p)) also tends to be sparser than chol (s’*s). p = ccolamd (s,1) op-
timizes the ordering for 1u (s (:,p)). The ordering is followed by a column elimination tree
post-ordering.

knobs is an optional one- to five-element input vector, with a default value of [0 10 10 1 0]
if not present or empty. Entries not present are set to their defaults.
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P
P

[p, stats] = colamd (s)

knobs (1) if nonzero, the ordering is optimized for 1u(S(:,p)). It will be a poor ordering
for chol(s(:,p)’*s(:,p)). This is the most important knob for ccolamd.

knob (2) if s is m-by-n, rows with more than max(16,knobs (2)* sqrt(n)) entries are
ignored.

knob(3)  columns with more than max(16,knobs (3)*sqrt(min(m,n))) entries are ig-
nored and ordered last in the output permutation (subject to the cmember con-
straints).

knob (4)  if nonzero, aggressive absorption is performed.
knob (5)  if nonzero, statistics and knobs are printed.

cmember is an optional vector of length n. It defines the constraints on the column ordering.
If cmember (j) = c, then column j is in constraint set ¢ (¢ must be in the range 1 to n). In
the output permutation p, all columns in set 1 appear first, followed by all columns in set 2,
and so on. cmember = ones(1,n) if not present or empty. ccolamd (s, [],1:n) returns 1:n

p = ccolamd(s) is about the same as p = colamd(s). knobs and its default values dif-
fer. colamd always does aggressive absorption, and it finds an ordering suitable for both
lu(s (:,p)) and chol(S(:,p)’* s(:,p)); it cannot optimize its ordering for 1u(s (:,p))
to the extent that ccolamd(s,1) can.

stats is an optional 20-element output vector that provides data about the ordering and the
validity of the input matrix s. Ordering statistics are in stats (1:3). stats (1) and stats
(2) are the number of dense or empty rows and columns ignored by CCOLAMD and stats
(3) is the number of garbage collections performed on the internal data structure used by
CCOLAMD (roughly of size 2.2 * nnz(s) + 4 * m + 7 * n integers).

stats (4:7) provide information if CCOLAMD was able to continue. The matrix is OK if
stats (4) is zero, or 1 if invalid. stats (5) is the rightmost column index that is unsorted
or contains duplicate entries, or zero if no such column exists. stats (6) is the last seen
duplicate or out-of-order row index in the column index given by stats (5), or zero if no
such row index exists. stats (7) is the number of duplicate or out-of-order row indices.
stats (8:20) is always zero in the current version of CCOLAMD (reserved for future use).

The authors of the code itself are S. Larimore, T. Davis (Uni of Florida) and S. Raja-
manickam in collaboration with J. Bilbert and E. Ng. Supported by the National Science
Foundation (DMS-9504974, DMS-9803599, CCR-0203270), and a grant from Sandia Na-
tional Lab. See http://www.cise.ufl.edu/research/sparse for ccolamd, csymamd, amd,
colamd, symamd, and other related orderings.

See also: colamd, csymamd.

= colamd (s) [Loadable Function]
= colamd (s, knobs) [Loadable Function]
[Loadable Function]

]

[p, stats] = colamd (s, knobs) [Loadable Function

Column approximate minimum degree permutation. p = colamd (s) returns the column ap-
proximate minimum degree permutation vector for the sparse matrix s. For a non-symmetric
matrix s, s (:,p) tends to have sparser LU factors than s. The Cholesky factorization of s
(:,p)’ * s (:,p) also tends to be sparser than that of s’ * s.

knobs is an optional one- to three-element input vector. If s is m-by-n, then rows with
more than max(16,knobs (1)*sqrt(n)) entries are ignored. Columns with more than
max (16,knobs (2) *sqrt (min(m,n))) entries are removed prior to ordering, and ordered last
in the output permutation p. Only completely dense rows or columns are removed if knobs
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(1) and knobs (2) are <0, respectively. If knobs (3) is nonzero, stats and knobs are printed.
The default is knobs = [10 10 0]. Note that knobs differs from earlier versions of colamd

stats is an optional 20-element output vector that provides data about the ordering and the
validity of the input matrix s. Ordering statistics are in stats (1:3). stats (1) and stats
(2) are the number of dense or empty rows and columns ignored by COLAMD and stats
(3) is the number of garbage collections performed on the internal data structure used by
COLAMD (roughly of size 2.2 * nnz(s) + 4 * m + 7 * n integers).

Octave built-in functions are intended to generate valid sparse matrices, with no duplicate
entries, with ascending row indices of the nonzeros in each column, with a non-negative
number of entries in each column (!) and so on. If a matrix is invalid, then COLAMD may
or may not be able to continue. If there are duplicate entries (a row index appears two or
more times in the same column) or if the row indices in a column are out of order, then
COLAMD can correct these errors by ignoring the duplicate entries and sorting each column
of its internal copy of the matrix s (the input matrix s is not repaired, however). If a matrix
is invalid in other ways then COLAMD cannot continue, an error message is printed, and
no output arguments (p or stats) are returned. COLAMD is thus a simple way to check a
sparse matrix to see if it’s valid.

stats (4:7) provide information if COLAMD was able to continue. The matrix is OK if
stats (4) is zero, or 1 if invalid. stats (5) is the rightmost column index that is unsorted
or contains duplicate entries, or zero if no such column exists. stats (6) is the last seen
duplicate or out-of-order row index in the column index given by stats (5), or zero if no
such row index exists. stats (7) is the number of duplicate or out-of-order row indices.
stats (8:20) is always zero in the current version of COLAMD (reserved for future use).

The ordering is followed by a column elimination tree post-ordering.

The authors of the code itself are Stefan 1. Larimore and Timothy A. Davis
(davis@cise.ufl.edu), University of Florida. The algorithm was developed in collaboration
with John Gilbert, Xerox PARC, and Esmond Ng, Oak Ridge National Laboratory. (see
http://wuw.cise.ufl.edu/research/sparse/colamd)

See also: colperm, symamd.

p = colperm (s) [Function File]
Returns the column permutations such that the columns of s (:, p) are ordered in terms
of increase number of non-zero elements. If s is symmetric, then p is chosen such that s (p,
p) orders the rows and columns with increasing number of non zeros elements.

p = csymamd (s) [Loadable Function)]

p = csymand (s, knobs) [Loadable Function)]

p = csymand (s, knobs, cmember) [Loadable Function)]

[p, stats] = csymamd (...) [Loadable Function]
For a symmetric positive definite matrix s, returns the permutation vector p such that s (p,p)
tends to have a sparser Cholesky factor than s. Sometimes csymamd works well for symmetric
indefinite matrices too. The matrix s is assumed to be symmetric; only the strictly lower
triangular part is referenced. s must be square. The ordering is followed by an elimination
tree post-ordering.

knobs is an optional one- to three-element input vector, with a default value of [10 1 0] if
present or empty. Entries not present are set to their defaults.

knobs(1) If s is n-byn, then rows and columns with more than
max (16,knobs (1) *sqrt(n)) entries are ignored, and ordered last in
the output permutation (subject to the cmember constraints).
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p

knobs (2) If nonzero, aggressive absorption is performed.
knobs (3) If nonzero, statistics and knobs are printed.

cmember is an optional vector of length n. It defines the constraints on the ordering. If
cmember (j) = s, then row/column j is in constraint set ¢ (¢ must be in the range 1 ton). In
the output permutation p, rows/columns in set 1 appear first, followed by all rows/columns
in set 2, and so on. cmember = ones(1,n) if not present or empty. csymamd(s,[],1:n)
returns 1:n.

p = csymamd (s) is about the same as p = symamd(s). knobs and its default values differ.

stats (4:7) provide information if CCOLAMD was able to continue. The matrix is OK if
stats (4) is zero, or 1 if invalid. stats (5) is the rightmost column index that is unsorted
or contains duplicate entries, or zero if no such column exists. stats (6) is the last seen
duplicate or out-of-order row index in the column index given by stats (5), or zero if no
such row index exists. stats (7) is the number of duplicate or out-of-order row indices.
stats (8:20) is always zero in the current version of CCOLAMD (reserved for future use).

The authors of the code itself are S. Larimore, T. Davis (Uni of Florida) and S. Raja-
manickam in collaboration with J. Bilbert and E. Ng. Supported by the National Science
Foundation (DMS-9504974, DMS-9803599, CCR-0203270), and a grant from Sandia Na-
tional Lab. See http://www.cise.ufl.edu/research/sparse for ccolamd, csymamd, amd,
colamd, symamd, and other related orderings.

See also: symamd, ccolamd.

= dmperm (s) [Loadable Function]

[p, g, r, s] = dmpernm (s) [Loadable Function]

P
P

[p, stats] = symamd (s)

Perform a Dulmage-Mendelsohn permutation on the sparse matrix s. With a single output
argument dmperm performs the row permutations p such that s (p,:) has no zero elements
on the diagonal.

Called with two or more output arguments, returns the row and column permutations, such
that s (p, q) is in block triangular form. The values of r and s define the boundaries of the
blocks. If s is square then r == s.

The method used is described in: A. Pothen & C.-J. Fan. Computing the block triangular
form of a sparse matrix. ACM Trans. Math. Software, 16(4):303-324, 1990.

See also: colamd, ccolamd.

= symamd (s) [Loadable Function)]
= symamd (s, knobs) [Loadable Function)]
[Loadable Function]

[p, stats] = symamd (s, knobs) [Loadable Function]

For a symmetric positive definite matrix s, returns the permutation vector p such that s
(p, p) tends to have a sparser Cholesky factor than s. Sometimes SYMAMD works well
for symmetric indefinite matrices too. The matrix s is assumed to be symmetric; only the
strictly lower triangular part is referenced. s must be square.

knobs is an optional one- to two-element input vector. If s is n-by-n, then rows and columns
with more than max(16,knobs (1) *sqrt(n)) entries are removed prior to ordering, and or-
dered last in the output permutation p. No rows/columns are removed if knobs (1) < 0. If
knobs (2) is nonzero, stats and knobs are printed. The default is knobs = [10 0]. Note
that knobs differs from earlier versions of symamd.

stats is an optional 20-element output vector that provides data about the ordering and the
validity of the input matrix s. Ordering statistics are in stats (1:3). stats (1) = stats
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(2) is the number of dense or empty rows and columns ignored by SYMAMD and stats
(3) is the number of garbage collections performed on the internal data structure used by
SYMAMD (roughly of size 8.4 * nnz (tril (s, -1)) + 9 * n integers).

Octave built-in functions are intended to generate valid sparse matrices, with no duplicate
entries, with ascending row indices of the nonzeros in each column, with a non-negative
number of entries in each column (!) and so on. If a matrix is invalid, then SYMAMD may
or may not be able to continue. If there are duplicate entries (a row index appears two or
more times in the same column) or if the row indices in a column are out of order, then
SYMAMD can correct these errors by ignoring the duplicate entries and sorting each column
of its internal copy of the matrix S (the input matrix S is not repaired, however). If a matrix
is invalid in other ways then SYMAMD cannot continue, an error message is printed, and
no output arguments (p or stats) are returned. SYMAMD is thus a simple way to check a
sparse matrix to see if it’s valid.

stats (4:7) provide information if SYMAMD was able to continue. The matrix is OK if
stats (4) is zero, or 1 if invalid. stats (5) is the rightmost column index that is unsorted
or contains duplicate entries, or zero if no such column exists. stats (6) is the last seen
duplicate or out-of-order row index in the column index given by stats (5), or zero if no
such row index exists. stats (7) is the number of duplicate or out-of-order row indices.
stats (8:20) is always zero in the current version of SYMAMD (reserved for future use).
The ordering is followed by a column elimination tree post-ordering.

The authors of the code itself are Stefan 1. Larimore and Timothy A. Davis
(davis@cise.ufl.edu), University of Florida. The algorithm was developed in collaboration
with John Gilbert, Xerox PARC, and Esmond Ng, Oak Ridge National Laboratory. (see
http://www.cise.ufl.edu/research/sparse/colamd)

See also: colperm, colamd.

p = symrcnm (S) [Loadable Function)]
Symmetric reverse Cuthill-McKee permutation of S. Return a permutation vector p such
that S (p, p) tends to have its diagonal elements closer to the diagonal than S. This is a
good preordering for LU or Cholesky factorization of matrices that come from ’long, skinny’
problems. It works for both symmetric and asymmetric S.

The algorithm represents a heuristic approach to the NP-complete bandwidth minimization
problem. The implementation is based in the descriptions found in

E. Cuthill, J. McKee: Reducing the Bandwidth of Sparse Symmetric Matrices. Proceedings
of the 24th ACM National Conference, 157-172 1969, Brandon Press, New Jersey.

Alan George, Joseph W. H. Liu: Computer Solution of Large Sparse Positive Definite Sys-
tems, Prentice Hall Series in Computational Mathematics, ISBN 0-13-165274-5, 1981.

See also: colperm, colamd, symamd.

20.2 Linear Algebra on Sparse Matrices

Octave includes a poly-morphic solver for sparse matrices, where the exact solver used to fac-
torize the matrix, depends on the properties of the sparse matrix itself. Generally, the cost of
determining the matrix type is small relative to the cost of factorizing the matrix itself, but in
any case the matrix type is cached once it is calculated, so that it is not re-determined each
time it is used in a linear equation.
The selection tree for how the linear equation is solve is
1. If the matrix is diagonal, solve directly and goto 8

2. If the matrix is a permuted diagonal, solve directly taking into account the permutations.
Goto 8
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3. If the matrix is square, banded and if the band density is less than that given by spparms
("bandden") continue, else goto 4.

a. If the matrix is tridiagonal and the right-hand side is not sparse continue, else goto 3b.

1. If the matrix is hermitian, with a positive real diagonal, attempt Cholesky factor-
ization using LAPACK xPTSV.

2. If the above failed or the matrix is not hermitian with a positive real diagonal use
Gaussian elimination with pivoting using LAPACK xGTSV, and goto 8.

b. If the matrix is hermitian with a positive real diagonal, attempt Cholesky factorization
using LAPACK xPBTRF.

c. if the above failed or the matrix is not hermitian with a positive real diagonal use
Gaussian elimination with pivoting using LAPACK xGBTRF, and goto 8.

4. If the matrix is upper or lower triangular perform a sparse forward or backward substitution,
and goto 8

5. If the matrix is a upper triangular matrix with column permutations or lower triangular
matrix with row permutations, perform a sparse forward or backward substitution, and
goto 8

6. If the matrix is square, hermitian with a real positive diagonal, attempt sparse Cholesky
factorization using CHOLMOD.

7. If the sparse Cholesky factorization failed or the matrix is not hermitian with a real positive
diagonal, and the matrix is square, factorize using UMFPACK.

8. If the matrix is not square, or any of the previous solvers flags a singular or near singular
matrix, find a minimum norm solution using CXSPARSE?.

The band density is defined as the number of non-zero values in the matrix divided by the
number of non-zero values in the matrix. The banded matrix solvers can be entirely disabled
by using spparms to set bandden to 1 (i.e. spparms ("bandden", 1)).

The QR solver factorizes the problem with a Dulmage-Mendhelsohn, to separate the problem
into blocks that can be treated as over-determined, multiple well determined blocks, and a final
over-determined block. For matrices with blocks of strongly connected nodes this is a big win
as LU decomposition can be used for many blocks. It also significantly improves the chance of
finding a solution to over-determined problems rather than just returning a vector of NaN’s.

All of the solvers above, can calculate an estimate of the condition number. This can be used
to detect numerical stability problems in the solution and force a minimum norm solution to
be used. However, for narrow banded, triangular or diagonal matrices, the cost of calculating
the condition number is significant, and can in fact exceed the cost of factoring the matrix.
Therefore the condition number is not calculated in these cases, and Octave relies on simpler
techniques to detect singular matrices or the underlying LAPACK code in the case of banded
matrices.

The user can force the type of the matrix with the matrix_type function. This overcomes the
cost of discovering the type of the matrix. However, it should be noted incorrectly identifying
the type of the matrix will lead to unpredictable results, and so matrix_type should be used
with care.

[n, c] = normest (a, tol) [Function File]
Estimate the 2-norm of the matrix a using a power series analysis. This is typically used for
large matrices, where the cost of calculating the norm (a) is prohibitive and an approximation
to the 2-norm is acceptable.

2 CHOLMOD, UMFPACK and CXSPARSE are written by Tim Davis and are available at
http://www.cise.ufl.edu/research/sparse/
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tol is the tolerance to which the 2-norm is calculated. By default tol is le-6. ¢ returns the
number of iterations needed for normest to converge.

r = spchol (a) [Loadable Function)]
[r, p] = spchol (a) [Loadable Function]
[r, p, q] = spchol (a) [Loadable Function)]

Compute the Cholesky factor, r, of the symmetric positive definite sparse matrix a, where
RTR = A.

If called with 2 or more outputs p is the 0 when r is positive definite and p is a positive
integer otherwise.

If called with 3 outputs then a sparsity preserving row/column permutation is applied to a
prior to the factorization. That is r is the factorization of a (g, q) such that RTR = QAQT.

Note that splchol factorization is faster and uses less memory.

See also: spcholinv, spchol2inv, splchol.

spcholinv (a) [Loadable Function]
Use the Cholesky factorization to compute the inverse of the sparse symmetric positive definite
matrix a.

See also: spchol, spchol2inv.

spchol2inv (u) [Loadable Function]
Invert a sparse symmetric, positive definite square matrix from its Cholesky decomposition, u.
Note that u should be an upper-triangular matrix with positive diagonal elements. chol2inv
(u) provides inv (u’*u) but it is much faster than using inv.

See also: spchol, spcholinv.

[d, rcond] = spdet (a) [Loadable Function]
Compute the determinant of sparse matrix a using UMFPACK. Return an estimate of the
reciprocal condition number if requested.

[x, rcond] = spinv (a, §) [Loadable Function]
Compute the inverse of the sparse square matrix a. Return an estimate of the reciprocal
condition number if requested, otherwise warn of an ill-conditioned matrix if the reciprocal
condition number is small. This function takes advantage of the sparsity of the matrix to
accelerate the calculation of the inverse.

In general x will be a full matrix, and so if possible forming the inverse of a sparse matrix
should be avoided. It is significantly more accurate and faster to do y = a \ b, rather than
y = spinv (a) * b.

spkron (a, b) [Loadable Function]
Form the kronecker product of two sparse matrices. This is defined block by block as

x = [a(i, j) b]

For example,
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kron(speye(3),spdiag([1,2,3]1))
=
Compressed Column Sparse (rows = 9, cols = 9, nnz = 9)

1, 1) > 1

(2, 2) > 2

(3, 3 > 3

(4, 4) > 1

(5, 5) -> 2

(6, 6) > 3

7, 7 > 1

(8, 8 —> 2

(9, 9 > 3
1 = splchol (a) [Loadable Function)]
[1, p] = splchol (a) [Loadable Function]
(1, p, q] = splchol (a) [Loadable Function]

Compute the Cholesky factor, I, of the symmetric positive definite sparse matrix a, where
LLT = A.

If called with 2 or more outputs p is the 0 when [ is positive definite and I is a positive integer
otherwise.

If called with 3 outputs that a sparsity preserving row/column permutation is applied to a
prior to the factorization. That is I is the factorization of a (q,q) such that LRT = A(Q, Q).
Note that splchol factorization is faster and uses less memory than spchol. splchol(a) is
equivalent to spchol(a)’.

See also: spcholinv, spchol2inv, splchol.

[1, ul] = splu (a) [Loadable Function]
[1, u, P] = splu (a) [Loadable Function]
[1, u, P, Q] = splu (a) [Loadable Function]
[ ]
[ ]

[1, u, P, Q] splu (..., thres) Loadable Function
(1, u, P] = splu (..., Q) Loadable Function
Compute the LU decomposition of the sparse matrix a, using subroutines from UMFPACK.
The result is returned in a permuted form, according to the optional return values P and Q.

Called with two or three output arguments and a single input argument, splu is a replacement
for lu, and therefore the sparsity preserving column permutations @ are not performed. Called
with a fourth output argument, the sparsity preserving column transformation @ is returned,
such that P *x a * Q =1 * u.

An additional input argument thres, that defines the pivoting threshold can be given. Alter-
natively, the desired sparsity preserving column permutations ) can be passed. Note that Q
is assumed to be fixed if there are fewer than four output arguments. Otherwise, the updated
column permutations are returned as the fourth argument.

With two output arguments, returns the permuted forms of the upper and lower triangular
matrices, such that a = 1 * u. With two or three output arguments, if a user-defined Q is
given, then u * @’ is returned. The matrix is not required to be square.

See also: sparse, spinv, colamd, symamd.

spparms () [Loadable Function]
vals = spparms () [Loadable Function]
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[keys, vals] = spparms () [Loadable Function]

val = spparms (key) [Loadable Function)]
spparms (vals) [Loadable Function]
spparms (’defaults’) [Loadable Function)]
spparms (’tight’) [Loadable Function]
spparms (key, val) [Loadable Function]
Sets or displays the parameters used by the sparse solvers and factorization functions. The
first four calls above get information about the current settings, while the others change the
current settings. The parameters are stored as pairs of keys and values, where the values are
all floats and the keys are one of the strings

e spumoni Printing level of debugging information of the solvers (default 0)
e ths_rel Included for compatibility. Not used. (default 1)

e ths_abs Included for compatibility. Not used. (default 1)

e exact_d Included for compatibility. Not used. (default 0)

e supernd Included for compatibility. Not used. (default 3)

e rreduce Included for compatibility. Not used. (default 3)

e wh_frac Included for compatibility. Not used. (default 0.5)

e autommd Flag whether the LU/QR and the "\’ and ’/” operators will automatically use
the sparsity preserving mmd functions (default 1)

e autoamd Flag whether the LU and the '\’ and ’/’ operators will automatically use the
sparsity preserving amd functions (default 1)

e piv_tol The pivot tolerance of the UMFPACK solvers (default 0.1)
e bandden 7?7 (default 0.5)

e umfpack Flag whether the UMFPACK or mmd solvers are used for the LU, \” and ’/’
operations (default 1)

The value of individual keys can be set with spparms (key, val). The default values can
be restored with the special keyword ’defaults’. The special keyword ’tight’ can be used to
set the mmd solvers to attempt for a sparser solution at the potential cost of longer running
time.

r = spqr (a) [Loadable Function]
r = spqr (a,0) [Loadable Function]
[c, r] = spqr (a,b) [Loadable Function]
[c, r] = spqr (a,b,0) [Loadable Function)]

Compute the sparse QR factorization of a, using CSPARSE. As the matrix @ is in general
a full matrix, this function returns the Q-less factorization r of a, such that r = chol (a’ *
a.

If the final argument is the scalar 0 and the number of rows is larger than the number of
columns, then an economy factorization is returned. That is r will have only size (a,1)
TOWS.

If an additional matrix b is supplied, then spqr returns ¢, where ¢ = q’ * b. This allows the
least squares approximation of a \ b to be calculated as

[c,r] = spgr (a,b)
x=1r \c

See also: spchol, qr.
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p = sprank (s) [Loadable Function]
Calculates the structural rank of a sparse matrix s. Note that only the structure of the matrix
is used in this calculation based on a Dulmage-Mendelsohn to block triangular form. As such
the numerical rank of the matrix s is bounded by sprank (s) >= rank (s). Ignoring floating
point errors sprank (s) == rank (s).

See also: dmperm.

[count, h, parent, post, r] = symbfact (s, typ, mode) [Loadable Function)]
Performs a symbolic factorization analysis on the sparse matrix s. Where
S s is a complex or real sparse matrix.
typ Is the type of the factorization and can be one of
sym Factorize s. This is the default.
col Factorize s’ * s.
Tow Factorize s * s’.
lo Factorize s’
mode The default is to return the Cholesky factorization for r, and if mode is ’L’, the

conjugate transpose of the Cholesky factorization is returned. The conjugate
transpose version is faster and uses less memory, but returns the same values for
count, h, parent and post outputs.

The output variables are

count The row counts of the Cholesky factorization as determined by typ.

h The height of the elimination tree.

parent The elimination tree itself.

post A sparse boolean matrix whose structure is that of the Cholesky factorization as

determined by typ.

20.3 Iterative Techniques applied to sparse matrices

The left division \ and right division / operators, discussed in the previous section, use direct
solvers to resolve a linear equation of the form x = A \ b or x = b / A. Octave equally includes
a number of functions to solve sparse linear equations using iterative techniques.

x = pcg (a, b, tol, maxit, m1, m2, x0, ...) [Function File]

[x, flag, relres, iter, resvec, eigest] = pcg (...) [Function File]
Solves the linear system of equations a * x = b by means of the Preconditioned Conjugate
Gradient iterative method. The input arguments are

e a can be either a square (preferably sparse) matrix or a function handle, inline function
or string containing the name of a function which computes a * x. In principle a should
be symmetric and positive definite; if pcg finds a to not be positive definite, you will get
a warning message and the flag output parameter will be set.

e b is the right hand side vector.

e tol is the required relative tolerance for the residual error, b - a * x. The iteration
stops if norm (b - a * x) <= tol * norm (b - a * x0). If tol is empty or is omitted,
the function sets tol = 1e-6 by default.

e maxit is the maximum allowable number of iterations; if [] is supplied for maxit, or pcg
has less arguments, a default value equal to 20 is used.
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e m = ml * m2 is the (left) preconditioning matrix, so that the iteration is (theoretically)
equivalent to solving by pcg P * x =m \ b, with P =m \ a. Note that a proper choice
of the preconditioner may dramatically improve the overall performance of the method.
Instead of matrices m1 and m2, the user may pass two functions which return the results
of applying the inverse of m1 and m2 to a vector (usually this is the preferred way of
using the preconditioner). If [] is supplied for m1, or m1 is omitted, no preconditioning
is applied. If m2 is omitted, m = m1 will be used as preconditioner.

e x( is the initial guess. If x0 is empty or omitted, the function sets x0 to a zero vector
by default.

The arguments which follow x0 are treated as parameters, and passed in a proper way to
any of the functions (a or m) which are passed to pcg. See the examples below for further
details. The output arguments are

e x is the computed approximation to the solution of a * x = b.

e flag reports on the convergence. flag = 0 means the solution converged and the tolerance
criterion given by tol is satisfied. flag = 1 means that the maxit limit for the iteration
count was reached. flag = 3 reports that the (preconditioned) matrix was found not
positive definite.

e relres is the ratio of the final residual to its initial value, measured in the Euclidean
norm.

e iter is the actual number of iterations performed.

e resvec describes the convergence history of the method. resvec (i,1) is the Euclidean
norm of the residual, and resvec (i,2) is the preconditioned residual norm, after the
(i-1)-th iteration, i =1, 2, ..., iter+1. The preconditioned residual norm is defined
asnorm (r) ~2=r’* (m \ r) where r = b - a * x, see also the description of m. If
eigest is not required, only resvec (:,1) is returned.

e cigest returns the estimate for the smallest eigest (1) and largest eigest (2) eigenval-
ues of the preconditioned matrix P = m \ a. In particular, if no preconditioning is used,
the estimates for the extreme eigenvalues of a are returned. eigest (1) is an overesti-
mate and eigest (2) is an underestimate, so that eigest (2) / eigest (1) is a lower
bound for cond (P, 2), which nevertheless in the limit should theoretically be equal to
the actual value of the condition number. The method which computes eigest works
only for symmetric positive definite a and m, and the user is responsible for verifying
this assumption.

Let us consider a trivial problem with a diagonal matrix (we exploit the sparsity of A)

N = 10;
A = spdiag ([1:N]);
b = rand (N, 1);

[L, U, P, Q] = luinc (A,1.e-3);
ExXAMPLE 1: Simplest use of pcg
pcg(A,b)
EXAMPLE 2: pcg with a function which computes a * x

X

function y = applyA (%)
y = [1:N]’.*x;
endfunction

x = pcg ("applyA", b)
EXAMPLE 3: pcg with a preconditioner: I * u
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x=pcg(A,b,1.e-6,500,L*U) ;

EXAMPLE 4: pcg with a preconditioner: I * u. Faster than EXAMPLE 3 since lower and
upper triangular matrices are easier to invert

x=pcg(A,b,1.e-6,500,L,U);

EXAMPLE 5: Preconditioned iteration, with full diagnostics. The preconditioner (quite
strange, because even the original matrix a is trivial) is defined as a function

function y = applyM(x)
K = floor (length (x) - 2);
y = %5
y(1:K) = x(1:K)./[1:K]’;
endfunction

[x, flag, relres, iter, resvec, eigest] = pcg (A, b, [1, [1, "applyM");
semilogy (l:iter+1, resvec);

ExAMPLE 6: Finally, a preconditioner which depends on a parameter k.

function y = applyM (x, varargin)
K = varargin{1};

y =%

y(1:K) = x(1:K)./[1:K]’;
endfunction

[x, flag, relres, iter, resvec, eigest] = ...
pcg (A, b, [1, 01, "applyM", [1, [1, 3)

REFERENCES

[1] C.T Kelley, 'Tterative methods for linear and nonlinear equations’, STAM, 1995 (the base
PCG algorithm)

[2] Y.Saad, 'Iterative methods for sparse linear systems’, PWS 1996 (condition num-
ber estimate from PCG) Revised version of this book is available online at http://www-
users.cs.umn.edu/“saad/books.html

See also: sparse, pcr.

x = pcr (a, b, tol, maxit, m, x0, ...) [Function File]

[x, flag, relres, iter, resvec] = pcr (...) [Function File]
Solves the linear system of equations a * x = b by means of the Preconditioned Conjugate
Residuals iterative method. The input arguments are

e a can be either a square (preferably sparse) matrix or a function handle, inline function

or string containing the name of a function which computes a * x. In principle a should
be symmetric and non-singular; if pcr finds a to be numerically singular, you will get a
warning message and the flag output parameter will be set.

b is the right hand side vector.

tol is the required relative tolerance for the residual error, b - a * x. The iteration
stops if norm (b - a * x) <= tol * norm (b - a * x0). If tol is empty or is omitted,
the function sets tol = 1e-6 by default.

maxit is the maximum allowable number of iterations; if [] is supplied for maxit, or pcr
has less arguments, a default value equal to 20 is used.

m is the (left) preconditioning matrix, so that the iteration is (theoretically) equivalent
to solving by pcr P * x =m \ b, with P =m \ a. Note that a proper choice of the
preconditioner may dramatically improve the overall performance of the method. Instead
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of matrix m, the user may pass a function which returns the results of applying the inverse
of m to a vector (usually this is the preferred way of using the preconditioner). If [J is
supplied for m, or m is omitted, no preconditioning is applied.

x0 is the initial guess. If x0 is empty or omitted, the function sets x0 to a zero vector
by default.

The arguments which follow x0 are treated as parameters, and passed in a proper way to
any of the functions (a or m) which are passed to pcr. See the examples below for further
details. The output arguments are

x is the computed approximation to the solution of a * x = b.

flag reports on the convergence. flag = 0 means the solution converged and the tolerance
criterion given by tol is satisfied. flag = 1 means that the maxit limit for the iteration
count was reached. flag = 3 reports t pcr breakdown, see [1] for details.

relres is the ratio of the final residual to its initial value, measured in the Euclidean
norm.

iter is the actual number of iterations performed.

resvec describes the convergence history of the method, so that resvec (i) contains the
Euclidean norms of the residual after the (i-1)-th iteration, i = 1,2, ..., iter+1.

Let us consider a trivial problem with a diagonal matrix (we exploit the sparsity of A)

N = 10;
A = diag([1:N]); A = sparse(A);
b = rand(N,1);

ExXAMPLE 1: Simplest use of pcr

x = pcr(A, b)

EXAMPLE 2: pcr with a function which computes a * x.

function y = applyA(x)
y = [1:10]° .*x;
endfunction

x = pcr(’applyA’,b)

ExXAMPLE 3: Preconditioned iteration, with full diagnostics. The preconditioner (quite
strange, because even the original matrix a is trivial) is defined as a function

function y = applyM(x)
K = floor(length(x)-2);
y = %5
y(1:K) = x(1:K)./[1:K]’;
endfunction

[x, flag, relres, iter, resvec] = pcr(4,b,[],[], applyM’)
semilogy([1:iter+1], resvec);

EXAMPLE 4: Finally, a preconditioner which depends on a parameter k.

function y = applyM(x, varargin)
K = varargin{1};
y = x; y(1:K) = x(1:K)./[1:K]’;
endfunction

[x, flag, relres, iter, resvec] = pcr(A,b,[],[], applyM’,[]1,3)

REFERENCES
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[1] W. Hackbusch, "Tterative Solution of Large Sparse Systems of Equations", section 9.5.4;
Springer, 1994

See also: sparse, pcg.

The speed with which an iterative solver converges to a solution can be accelerated with
the use of a pre-conditioning matrix M. In this case the linear equation M"-1 * x = M™-1 * A \
b is solved instead. Typical pre-conditioning matrices are partial factorizations of the original
matrix.

[1, u, p, q] = luinc (a, 0) [Loadable Function]
[1, u, p, q] = luinc (a, droptol) [Loadable Function]
[1, u, p, q] = luinc (a, opts) [Loadable Function]

Produce the incomplete LU factorization of the sparse matrix a. Two types of incomplete
factorization are possible, and the type is determined by the second argument to luinc.

Called with a second argument of ’0’, the zero-level incomplete LU factorization is produced.
This creates a factorization of a where the position of the non-zero arguments correspond to
the same positions as in the matrix a.

Alternatively, the fill-in of the incomplete LU factorization can be controlled through
the variable droptol or the structure opts. The UMFPACK multifrontal factorization
code by Tim A. Davis is used for the incomplete LU factorization, (availability
http://www.cise.ufl.edu/research/sparse/umfpack/)

droptol determines the values below which the values in the LU factorization are dropped
and replaced by zero. It must be a positive scalar, and any values in the factorization whose
absolute value are less than this value are dropped, expect if leaving them increase the sparsity
of the matrix. Setting droptol to zero results in a complete LU factorization which is the
default.

opts is a structure containing one or more of the fields

droptol  The drop tolerance as above. If opts only contains droptol then this is equivalent
to using the variable droptol.

milu A logical variable flagging whether to use the modified incomplete LU factoriza-
tion. In the case that milu is true, the dropped values are subtracted from the
diagonal of the matrix U of the factorization. The default is false.

udiag A logical variable that flags whether zero elements on the diagonal of U should
be replaced with droptol to attempt to avoid singular factors. The default is
false.

thresh Defines the pivot threshold in the interval [0,1]. Values outside that range are
ignored.

All other fields in opts are ignored. The outputs from luinc are the same as for Iu.

See also: sparse, lu, cholinc.

20.4 Real Life Example of the use of Sparse Matrices

A common application for sparse matrices is in the solution of Finite Element Models. Finite
element models allow numerical solution of partial differential equations that do not have closed
form solutions, typically because of the complex shape of the domain.

In order to motivate this application, we consider the boundary value Laplace equation. This
system can model scalar potential fields, such as heat or electrical potential. Given a medium
Q) with boundary 02 . At all points on the 9f) the boundary conditions are known, and we
wish to calculate the potential in © . Boundary conditions may specify the potential (Dirichlet
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boundary condition), its normal derivative across the boundary (Neumann boundary condition),
or a weighted sum of the potential and its derivative (Cauchy boundary condition).

In a thermal model, we want to calculate the temperature in 2 and know the boundary tem-
perature (Dirichlet condition) or heat flux (from which we can calculate the Neumann condition
by dividing by the thermal conductivity at the boundary). Similarly, in an electrical model, we
want to calculate the voltage in Q and know the boundary voltage (Dirichlet) or current (Neu-
mann condition after diving by the electrical conductivity). In an electrical model, it is common
for much of the boundary to be electrically isolated; this is a Neumann boundary condition with
the current equal to zero.

The simplest finite element models will divide € into simplexes (triangles in 2D, pyramids
in 3D). We take as an 3D example a cylindrical liquid filled tank with a small non-conductive
ball from the EIDORS project®. This is model is designed to reflect an application of electrical
impedance tomography, where current patterns are applied to such a tank in order to image the
internal conductivity distribution. In order to describe the FEM geometry, we have a matrix of
vertices nodes and simplices elems.

The following example creates a simple rectangular 2D electrically conductive medium with
10 V and 20 V imposed on opposite sides (Dirichlet boundary conditions). All other edges are
electrically isolated.
node_y= [1;1.2;1.5;1.8;2]*ones(1,11);
node_x= ones(5,1)*[1,1.05,1.1,1.2,
1.3,1.5,1.7,1.8,1.9,1.95,2];
nodes= [node_x(:), node_y(:)];

[h,w]= size(node_x);
elems= [];
for idx= 1:w-1
widx= (idx-1)*h;
elems= [elems;
widx+[(1:h-1);(2:h);h+(1:h-1)]17;
widx+[(2:h);h+(2:h) ;h+(1:h-1)]° 1;

endfor

E= size(elems,1); # No. of simplices
N= size(nodes,1); # No. of vertices
D= size(elems,2); # dimensions+1

This creates a N-by-2 matrix nodes and a E-by-3 matrix elems with values, which define
finite element triangles:
nodes(1:7,:)’
1.00 1.00 1.00 1.00 1.00 1.05 1.05 ...
1.00 1.20 1.50 1.80 2.00 1.00 1.20 ...

elems(1:7,:)’
1 2 3 4 2 3 4 ...
2 3 4 5 7 8 9 ...
6 7 8 9 6 7 8 ...

Using a first order FEM, we approximate the electrical conductivity distribution in € as
constant on each simplex (represented by the vector conductivity). Based on the finite element
geometry, we first calculate a system (or stiffness) matrix for each simplex (represented as 3-by-3

3 EIDORS - Electrical Impedance Tomography and Diffuse optical Tomography Reconstruction Software
http://eidors3d.sourceforge.net
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elements on the diagonal of the element-wise system matrix SE. Based on SE and a N-by-DE
connectivity matrix C, representing the connections between simplices and vertices, the global
connectivity matrix S is calculated.

# Element conductivity
conductivity= [1*ones(1,16),
2%ones(1,48), 1xones(1,16)];

# Connectivity matrix
C = sparse ((1:D*E), reshape (elems’,
D+E, 1), 1, D*E, N);

# Calculate system matrix
Siidx = floor ([0:D*E-1]°/D) * D *
ones(1,D) + ones(D*E,1)*(1:D) ;

Sjidx = [1:D*E]’*ones(1,D);
Sdata = zeros(D*E,D);

dfact = factorial(D-1);

for j=1:E

a = inv([ones(D,1),
nodes(elems(j,:), :)1);
const = conductivity(j) * 2 / ...
dfact / abs(det(a));
Sdata(D*(j-1)+(1:D),:) = const *
a(2:D,:)’ *x a(2:D,:);
endfor
# Element-wise system matrix
SE= sparse(Siidx,Sjidx,Sdata);
# Global system matrix
S= C’*x SE *C;

The system matrix acts like the conductivity .S in Ohm’s law SV = I. Based on the Dirichlet
and Neumann boundary conditions, we are able to solve for the voltages at each vertex V.

# Dirichlet boundary conditions
D_nodes=[1:5, 51:55];
D_value=[10%*ones(1,5), 20%ones(1,5)];

V= zeros(N,1);

V(D_nodes) = D_value;

idx = 1:N; # vertices without Dirichlet
# boundary condns

idx(D_nodes) = [];

# Neumann boundary conditions. Note that

# N_value must be normalized by the

# boundary length and element conductivity
N_nodes=[];

N_value=[];

Q = zeros(N,1);
Q(N_nodes) = N_value;

V(idx) = S(idx,idx) \ ( Q(idx) - ...
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S(idx,D_nodes) * V(D_nodes));

Finally, in order to display the solution, we show each solved voltage value in the z-axis for
each simplex vertex. See Figure 20.6.

elemx = elems(:,[1,2,3,1]1)7;

xelems = reshape (nodes(elemx, 1), 4, E);
yelems = reshape (nodes(elemx, 2), 4, E);
velems = reshape (V(elemx), 4, E);

plot3 (xelems,yelems,velems,’k’);
print (’grid.eps’);

Figure 20.6: Example finite element model the showing triangular elements. The height of
each vertex corresponds to the solution value.
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21 Numerical Integration

Octave comes with several built-in functions for computing the integral of a function numerically.
These functions all solve 1-dimensional integration problems.

21.1 Functions of One Variable

Octave supports three different algorithms for computing the integral

/ab f(x)dx

of a function f over the interval from a to b. These are

quad Numerical integration based on Gaussian quadrature.
quadl Numerical integration using an adaptive Lobatto rule.
trapz Numerical integration using the trapezoidal method.

Besides these functions Octave also allows you to perform cumulative numerical integration
using the trapezoidal method through the cumtrapz function.

[v, ier, nfun, err] = quad (f, a, b, tol, sing) [Loadable Function)]
Integrate a nonlinear function of one variable using Quadpack. The first argument is the
name of the function, the function handle or the inline function to call to compute the value
of the integrand. It must have the form

y =1 (x)
where y and x are scalars.
The second and third arguments are limits of integration. Either or both may be infinite.
The optional argument tol is a vector that specifies the desired accuracy of the result. The
first element of the vector is the desired absolute tolerance, and the second element is the
desired relative tolerance. To choose a relative test only, set the absolute tolerance to zero.
To choose an absolute test only, set the relative tolerance to zero.
The optional argument sing is a vector of values at which the integrand is known to be
singular.
The result of the integration is returned in v and ier contains an integer error code (0 indicates
a successful integration). The value of nfun indicates how many function evaluations were
required, and err contains an estimate of the error in the solution.
You can use the function quad_options to set optional parameters for quad.

It should be noted that since quad is written in Fortran it cannot be called recursively.

quad_options (opt, val) [Loadable Function]
When called with two arguments, this function allows you set options parameters for the
function quad. Given one argument, quad_options returns the value of the corresponding
option. If no arguments are supplied, the names of all the available options and their current
values are displayed.

Options include

"absolute tolerance"
Absolute tolerance; may be zero for pure relative error test.

"relative tolerance"
Nonnegative relative tolerance. If the absolute tolerance is zero, the relative
tolerance must be greater than or equal to max (50*eps, 0.5e-28).
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Here is an example of using quad to integrate the function

f(z) = xsin(1/x)\/|1 — x|

from x =0 to x = 3.

This is a fairly difficult integration (plot the function over the range of integration to see

why).

The first step is to define the function:

function y = £ (x)
y =x .* sin (1 ./ x) .* sqrt (abs (1 - x));
endfunction

Note the use of the ‘dot’ forms of the operators. This is not necessary for the call to quad,

but it makes it much easier to generate a set of points for plotting (because it makes it possible
to call the function with a vector argument to produce a vector result).

Then we simply call quad:

[v, ier, nfun, err] = quad ("f", 0, 3)
= 1.9819
= 1
= 5061
= 1.1522e-07

Although quad returns a nonzero value for ier, the result is reasonably accurate (to see why,

examine what happens to the result if you move the lower bound to 0.1, then 0.01, then 0.001,

etc.).

q = quadl (£, a, b) [Function File]
q = quadl (f, a, b, tol) [Function File]
q = quadl (f, a, b, tol, trace) [Function File]
q = quadl (f, a, b, tol, trace, p1, p2, ...) [Function File]

Numerically evaluate integral using adaptive Lobatto rule. quadl (f, a, b) approximates
the integral of £ (x) to machine precision. f is either a function handle, inline function or
string containing the name of the function to evaluate. The function f must return a vector
of output values if given a vector of input values.

If defined, tol defines the relative tolerance to which to which to integrate f (x). While if
trace is defined, displays the left end point of the current interval, the interval length, and
the partial integral.

Additional arguments p1, etc, are passed directly to f. To use default values for tol and trace,
one may pass empty matrices.

Reference: W. Gander and W. Gautschi, ’Adaptive Quadrature - Revisited’, BIT Vol. 40,
No. 1, March 2000, pp. 84-101. http://www.inf.ethz.ch/personal/gander/

= trapz (y) [Function File]
= trapz (x,y) [Function File]
= trapz (..., dim) [Function File]

Numerical integration using trapezoidal method. trapz (y) computes the integral of the y
along the first non singleton dimension. If the argument x is omitted a equally spaced vector
is assumed. trapz (x, y) evaluates the integral with respect to x.

See also: cumtrapz.
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z = cumtrapz (y) [Function File]
z = cumtrapz (x, y) [Function File]
z = cumtrapz (..., dim) [Function File]

Cumulative numerical integration using trapezoidal method. cumtrapz (y) computes the
cumulative integral of the y along the first non singleton dimension. If the argument x
is omitted a equally spaced vector is assumed. cumtrapz (x, y) evaluates the cumulative
integral with respect to x.

See also: trapz,cumsum.

21.2 Orthogonal Collocation

[r, amat, bmat, ql] = colloc (n, "left", "right") [Loadable Function)]
Compute derivative and integral weight matrices for orthogonal collocation using the sub-
routines given in J. Villadsen and M. L. Michelsen, Solution of Differential Equation Models
by Polynomial Approximation.

Here is an example of using colloc to generate weight matrices for solving the second order
differential equation v’ — au” = 0 with the boundary conditions u(0) = 0 and u(1) = 1.

First, we can generate the weight matrices for n points (including the endpoints of the
interval), and incorporate the boundary conditions in the right hand side (for a specific value of
Q).

n==7r;

alpha = 0.1;

[r, a, bl = colloc (n-2, "left", "right");
at = a(2:n-1,2:n-1);

bt b(2:n-1,2:n-1);
rhs = alpha * b(2:n-1,n) - a(2:n-1,n);

Then the solution at the roots r is

u= [ 0; (at - alpha * bt) \ rhs; 1]
= [ 0.00; 0.004; 0.01 0.00; 0.12; 0.62; 1.00 ]

21.3 Functions of Multiple Variables

Octave does not have built-in functions for computing the integral of functions of multiple
variables. It is however possible to compute the integral of a function of multiple variables using
the functions for one-dimensional integrals.

To illustrate how the integration can be performed, we will integrate the function

f(z,y) = sin(mzy)/zy

for  and y between 0 and 1.

The first approach creates a function that integrates f with respect to z, and then integrates
that function with respect to y. Since quad is written in Fortran it cannot be called recursively.
This means that quad cannot integrate a function that calls quad, and hence cannot be used to
perform the double integration. It is however possible with quadl, which is what the following
code does.

function I = g(y)
I = ones(1, length(y));
for i = 1:length(y)
f = @(x) sin(pi.*x.*xy(i)).*sqrt(x.*y(i));
I(i) = quadl(f, 0, 1);
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endfor
endfunction

I = quadl("g", 0, 1)
= 0.30022

The above mentioned approach works but is fairly slow, and that problem increases expo-
nentially with the dimensionality the problem. Another possible solution is to use Orthogonal
Collocation as described in the previous section. The integral of a function f(x,y) for z and y
between 0 and 1 can be approximated using n points by

/0 /0 f(,y)dzdy ~ Zz%qu(rbrj),

i=1 j=1

where ¢ and r is as returned by colloc(n). The generalisation to more than two variables is
straight forward. The following code computes the studied integral using n = 7 points.

f = @(x,y) sin(pi*xxy’).*sqrt(x*y’);

n==7r;

[t, A, B, q] = colloc(n);

I = qg’*f(t,t)*q;

= 0.30022

It should be noted that the number of points determines the quality of the approximation. If

the integration needs to be performed between a and b instead of 0 and 1, a change of variables
is needed.
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22 Differential Equations

Octave has built-in functions for solving ordinary differential equations, and differential-algebraic
equations. All solvers are based on reliable ODE solvers written in Fortran.

22.1 Ordinary Differential Equations

The function 1sode can be used to solve ODEs of the form

using Hindmarsh’s ODE solver LSODE.

[x, istate, msg] = lsode (fcn, x_0, t, t_crit) [Loadable Function]
Solve the set of differential equations

dr

- t

= f1)
with

x(to) = X

The solution is returned in the matrix x, with each row corresponding to an element of the
vector t. The first element of t should be t; and should correspond to the initial state of the
system x_0, so that the first row of the output is x_0.

The first argument, fcn, is a string, or cell array of strings, inline or function handles, that
names the function to call to compute the vector of right hand sides for the set of equations.
The function must have the form

xdot = f (x, t)
in which xdot and x are vectors and ¢t is a scalar.

If fen is a two-element string array, the first element names the function f described above,
and the second element names a function to compute the Jacobian of f. The Jacobian
function must have the form

jac = j (x, t)
in which jac is the matrix of partial derivatives

9h 9Hh ... 0N

oh  oF h

Ofs  Of2 | 2
Ozj | o1

ofs  Ofs .. Ofs

oz Oz oxr N

The second and third arguments specify the initial state of the system, xy, and the initial
value of the independent variable .

The fourth argument is optional, and may be used to specify a set of times that the ODE
solver should not integrate past. It is useful for avoiding difficulties with singularities and
points where there is a discontinuity in the derivative.

After a successful computation, the value of istate will be 2 (consistent with the Fortran
version of LSODE).

If the computation is not successful, istate will be something other than 2 and msg will
contain additional information.

You can use the function 1sode_options to set optional parameters for 1sode.

See also: daspk, dassl, dasrt.
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lsode_options (opt, val) [Loadable Function]
When called with two arguments, this function allows you set options parameters for the
function 1sode. Given one argument, 1sode_options returns the value of the corresponding

option. If no arguments are supplied, the names of all the available options and their current
values are displayed.

Options include

"absolute tolerance"

Absolute tolerance. May be either vector or scalar. If a vector, it must match
the dimension of the state vector.

"relative tolerance"

Relative tolerance parameter. Unlike the absolute tolerance, this parameter may
only be a scalar.

The local error test applied at each integration step is
abs (local error in x(i)) <= rtol * abs (y(i)) + atol(i)

"integration method"

A string specifying the method of integration to use to solve the ODE system.
Valid values are

"adams"
"non-stiff"
No Jacobian used (even if it is available).
llbdfll
"stiff" Use stiff backward differentiation formula (BDF) method. If a func-

tion to compute the Jacobian is not supplied, 1sode will compute a
finite difference approximation of the Jacobian matrix.

"initial step size"
The step size to be attempted on the first step (default is determined automati-
cally).

"maximum order"

Restrict the maximum order of the solution method. If using the Adams method,

this option must be between 1 and 12. Otherwise, it must be between 1 and 5,
inclusive.

"maximum step size"

Setting the maximum stepsize will avoid passing over very large regions (default
is not specified).

"minimum step size"
The minimum absolute step size allowed (default is 0).

"step limit"
Maximum number of steps allowed (default is 100000).

Here is an example of solving a set of three differential equations using 1sode. Given the
function
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function xdot = f (x, t)

xdot = zeros (3,1);

xdot (1) = 77.27 * (x(2) - x(1)*x(2) + x(1) \
- 8.375e-06*x(1)"2);
xdot(2) = (x(8) - x(1)*x(2) - x(2)) / 77.27;
xdot(3) = 0.161%(x(1) - x(3));
endfunction

and the initial condition x0 = [ 4; 1.1; 4 ], the set of equations can be integrated using the
command

t

linspace (0, 500, 1000);

y = lsode ("f", %0, t);

If you try this, you will see that the value of the result changes dramatically between t = 0
and 5, and again around t = 305. A more efficient set of output points might be

t = [0, logspace (-1, 1logl0(303), 150), \
logspace (log10(304), logl0(500), 150)];
See Alan C. Hindmarsh, ODEPACK, A Systematized Collection of ODE Solvers, in Scientific

Computing, R. S. Stepleman, editor, (1983) for more information about the inner workings of
1lsode.

22.2 Differential-Algebraic Equations
The function daspk can be used to solve DAEs of the form
0= f(z,z,1), z(t=0) =0, 2(t =0) = &

where © = % is the derivative of z. The equation is solved using Petzold’s DAE solver DASPK.
[x, xdot, istate, msg] = daspk (fcn, x_0, xdot_0, t, [Loadable Function]
t_crit)
Solve the set of differential-algebraic equations

0= f(x,a,t)
with
x(tg) = mo, Z(ty) = &g
The solution is returned in the matrices x and xdot, with each row in the result matrices
corresponding to one of the elements in the vector t. The first element of ¢ should be #, and

correspond to the initial state of the system x_0 and its derivative xdot_0, so that the first
row of the output x is x_0 and the first row of the output xdot is xdot_0.

The first argument, fcn, is a string or a two element cell array of strings, inline or function
handle, that names the function, to call to compute the vector of residuals for the set of
equations. It must have the form

res = f (x, xdot, t)
in which x, xdot, and res are vectors, and t is a scalar.

If fen is a two-element string array, the first element names the function f described above,
and the second element names a function to compute the modified Jacobian

_of  of

The modified Jacobian function must have the form
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jac = j (x, xdot, t, c)

The second and third arguments to daspk specify the initial condition of the states and their
derivatives, and the fourth argument specifies a vector of output times at which the solution
is desired, including the time corresponding to the initial condition.

The set of initial states and derivatives are not strictly required to be consistent. If they are
not consistent, you must use the daspk_options function to provide additional information
so that daspk can compute a consistent starting point.

The fifth argument is optional, and may be used to specify a set of times that the DAE solver
should not integrate past. It is useful for avoiding difficulties with singularities and points
where there is a discontinuity in the derivative.

After a successful computation, the value of istate will be greater than zero (consistent with
the Fortran version of DASPK).

If the computation is not successful, the value of istate will be less than zero and msg will
contain additional information.

You can use the function daspk_options to set optional parameters for daspk.

See also: dassl.

daspk_options (opt, val) [Loadable Function]
When called with two arguments, this function allows you set options parameters for the
function daspk. Given one argument, daspk_options returns the value of the corresponding
option. If no arguments are supplied, the names of all the available options and their current
values are displayed.

Options include

"absolute tolerance"
Absolute tolerance. May be either vector or scalar. If a vector, it must match the
dimension of the state vector, and the relative tolerance must also be a vector of
the same length.

"relative tolerance"
Relative tolerance. May be either vector or scalar. If a vector, it must match the
dimension of the state vector, and the absolute tolerance must also be a vector
of the same length.

The local error test applied at each integration step is

abs (local error in x(i))
<= rtol(i) * abs (Y(i)) + atol(di)

"compute consistent initial condition"
Denoting the differential variables in the state vector by ‘Y_d’ and the algebraic
variables by ‘Y_a’, ddaspk can solve one of two initialization problems:

1. Given Y_d, calculate Y_a and Y’_d
2. Given Y, calculate Y.

In either case, initial values for the given components are input, and initial guesses
for the unknown components must also be provided as input. Set this option to
1 to solve the first problem, or 2 to solve the second (the default default is 0, so
you must provide a set of initial conditions that are consistent).

If this option is set to a nonzero value, you must also set the "algebraic
variables" option to declare which variables in the problem are algebraic.
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"use initial condition heuristics"
Set to a nonzero value to use the initial condition heuristics options described
below.

"initial condition heuristics"
A vector of the following parameters that can be used to control the initial
condition calculation.

MXNIT Maximum number of Newton iterations (default is 5).
MXNJ Maximum number of Jacobian evaluations (default is 6).
MXNH Maximum number of values of the artificial stepsize parameter to be

tried if the "compute consistent initial condition" option has
been set to 1 (default is 5).

Note that the maximum number of Newton iterations allowed
in all is MXNIT*MXNJ*MXNH if the "compute consistent initial
condition" option has been set to 1 and MXNIT*MXNJ if it is set to
2.

LSOFF Set to a nonzero value to disable the linesearch algorithm (default is
0).

STPTOL Minimum scaled step in linesearch algorithm (default is eps~(2/3)).

EPINIT Swing factor in the Newton iteration convergence test. The test
is applied to the residual vector, premultiplied by the approximate
Jacobian. For convergence, the weighted RMS norm of this vector
(scaled by the error weights) must be less than EPINIT*EPCON, where
EPCON = (.33 is the analogous test constant used in the time steps.
The default is EPINIT = (.01.

"print initial condition info"
Set this option to a nonzero value to display detailed information about the initial
condition calculation (default is 0).

"exclude algebraic variables from error test"
Set to a nonzero value to exclude algebraic variables from the error test. You
must also set the "algebraic variables" option to declare which variables in
the problem are algebraic (default is 0).

"algebraic variables"
A vector of the same length as the state vector. A nonzero element indicates
that the corresponding element of the state vector is an algebraic variable (i.e.,
its derivative does not appear explicitly in the equation set.
This option is required by the compute consistent initial condition" and
"exclude algebraic variables from error test" options.

"enforce inequality constraints"
Set to one of the following values to enforce the inequality constraints specified
by the "inequality constraint types" option (default is 0).
1. To have constraint checking only in the initial condition calculation.
2. To enforce constraint checking during the integration.
3. To enforce both options 1 and 2.

"inequality constraint types"
A vector of the same length as the state specifying the type of inequality con-
straint. Each element of the vector corresponds to an element of the state and
should be assigned one of the following codes
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-2 Less than zero.

-1 Less than or equal to zero.

0 Not constrained.

1 Greater than or equal to zero.
2 Greater than zero.

This option only has an effect if the "enforce inequality constraints" option
is nonzero.

"initial step size"
Differential-algebraic problems may occasionally suffer from severe scaling dif-
ficulties on the first step. If you know a great deal about the scaling of your
problem, you can help to alleviate this problem by specifying an initial stepsize
(default is computed automatically).

"maximum order"
Restrict the maximum order of the solution method. This option must be between
1 and 5, inclusive (default is 5).

"maximum step size"
Setting the maximum stepsize will avoid passing over very large regions (default
is not specified).

Octave also includes DASSL, an earlier version of Daspk, and dasrt, which can be used to
solve DAEs with constraints (stopping conditions).

[x, xdot, t_out, istat, msg] = dasrt (fcn [, g], x_0, [Loadable Function]
xdot_0, t [, t_crit])
Solve the set of differential-algebraic equations

0= f(x,a,t)

with
.’.E(to) = .Io,.i?(to) = .i'o
with functional stopping criteria (root solving).

The solution is returned in the matrices x and xdot, with each row in the result matrices
corresponding to one of the elements in the vector t_out. The first element of ¢t should be ¢
and correspond to the initial state of the system x_0 and its derivative xdot_0, so that the
first row of the output x is x_0 and the first row of the output xdot is xdot_0.

The vector t provides an upper limit on the length of the integration. If the stopping condition
is met, the vector t_out will be shorter than t, and the final element of t_out will be the point
at which the stopping condition was met, and may not correspond to any element of the
vector t.

The first argument, fcn, is a string, or cell array of strings or inline or function handles, that
names the function to call to compute the vector of residuals for the set of equations. It must
have the form

res = f (x, xdot, t)
in which x, xdot, and res are vectors, and t is a scalar.
If fen is a two-element string array, or two element cell array, the first element names the

function f described above, and the second element names a function to compute the modified
Jacobian
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_of  of
= 9:

The modified Jacobian function must have the form

J

jac = j (x, xdot, t, c)

The optional second argument names a function that defines the constraint functions whose
roots are desired during the integration. This function must have the form

g_out =g (x, t)
and return a vector of the constraint function values. If the value of any of the constraint

functions changes sign, DASRT will attempt to stop the integration at the point of the sign
change.

If the name of the constraint function is omitted, dasrt solves the same problem as daspk
or dassl.

Note that because of numerical errors in the constraint functions due to roundoff and inte-
gration error, DASRT may return false roots, or return the same root at two or more nearly
equal values of T. If such false roots are suspected, the user should consider smaller error
tolerances or higher precision in the evaluation of the constraint functions.

If a root of some constraint function defines the end of the problem, the input to DASRT
should nevertheless allow integration to a point slightly past that root, so that DASRT can
locate the root by interpolation.

The third and fourth arguments to dasrt specify the initial condition of the states and their
derivatives, and the fourth argument specifies a vector of output times at which the solution
is desired, including the time corresponding to the initial condition.

The set of initial states and derivatives are not strictly required to be consistent. In practice,
however, DASSL is not very good at determining a consistent set for you, so it is best if you
ensure that the initial values result in the function evaluating to zero.

The sixth argument is optional, and may be used to specify a set of times that the DAE
solver should not integrate past. It is useful for avoiding difficulties with singularities and
points where there is a discontinuity in the derivative.

After a successful computation, the value of istate will be greater than zero (consistent with
the Fortran version of DASSL).

If the computation is not successful, the value of istate will be less than zero and msg will
contain additional information.

You can use the function dasrt_options to set optional parameters for dasrt.

See also: daspk, dasrt, Isode.

dasrt_options (opt, val) [Loadable Function]
When called with two arguments, this function allows you set options parameters for the
function dasrt. Given one argument, dasrt_options returns the value of the corresponding
option. If no arguments are supplied, the names of all the available options and their current
values are displayed.

Options include

"absolute tolerance"
Absolute tolerance. May be either vector or scalar. If a vector, it must match the
dimension of the state vector, and the relative tolerance must also be a vector of
the same length.
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"relative tolerance"
Relative tolerance. May be either vector or scalar. If a vector, it must match the
dimension of the state vector, and the absolute tolerance must also be a vector
of the same length.

The local error test applied at each integration step is
abs (local error in x(i)) <= rtol(i) * abs (Y(i)) + atol(i)

"initial step size"
Differential-algebraic problems may occasionally suffer from severe scaling dif-
ficulties on the first step. If you know a great deal about the scaling of your
problem, you can help to alleviate this problem by specifying an initial stepsize.

"maximum order"
Restrict the maximum order of the solution method. This option must be between
1 and 5, inclusive.

"maximum step size"
Setting the maximum stepsize will avoid passing over very large regions.

"step limit"
Maximum number of integration steps to attempt on a single call to the under-
lying Fortran code.

See K. E. Brenan, et al., Numerical Solution of Initial-Value Problems in Differential-
Algebraic Equations, North-Holland (1989) for more information about the implementation
of DASSL.
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23 Optimization

Octave comes with support for solving various kinds of optimization problems. Specifically
Octave can solve problems in Linear Programming, Quadratic Programming, Nonlinear Pro-
gramming, and Linear Least Squares Minimization.

23.1 Linear Programming

Octave can solve Linear Programming problems using the glpk function. That is, Octave can
solve

min ¢’ x

subject to the linear constraints Az = b where x > 0.

The glpk function also supports variations of this problem.

[xopt, fmin, status, extra] = glpk (c, a, b, 1b, ub, ctype, [Function File]
vartype, sense, param)
Solve a linear program using the GNU GLPK library. Given three arguments, glpk solves
the following standard LP:

min C7 x
subject to
Axr =10 x>0
but may also solve problems of the form

[min | max]C” x
x x

subject to

Input arguments:

c A column array containing the objective function coefficients.
a A matrix containing the constraints coefficients.
b A column array containing the right-hand side value for each constraint in the

constraint matrix.

Ib An array containing the lower bound on each of the variables. If Ib is not supplied,
the default lower bound for the variables is zero.

ub An array containing the upper bound on each of the variables. If ub is not
supplied, the default upper bound is assumed to be infinite.

ctype An array of characters containing the sense of each constraint in the constraint
matrix. Each element of the array may be one of the following values

"F" Free (unbounded) variable (the constraint is ignored).

"y Variable with upper bound (A(i,:)*x <=b(1)).
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vartype

sense

param
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ng" Fixed Variable (A(i,:)*x = b(i)).

"L" Variable with lower bound (A(i, :)*x >= b(i)).

"D" Double-bounded variable (A(i,:)*x >=-b(i) and (A(i,:)*x <=
b(i)).

A column array containing the types of the variables.
" "C" Continuous variable. "I" Integer variable

If sense is 1, the problem is a minimization. If sense is -1, the problem is a
maximization. The default value is 1.

A structure containing the following parameters used to define the behavior of
solver. Missing elements in the structure take on default values, so you only need
to set the elements that you wish to change from the default.

Integer parameters:

msglev (LPX_K_MSGLEV, default: 1)
Level of messages output by solver routines:

0 No output.

1 Error messages only.

2 Normal output .

3 Full output (includes informational messages).

scale (LPX_K_SCALE, default: 1)
Scaling option:

0 No scaling.
1 Equilibration scaling.
2 Geometric mean scaling, then equilibration scaling.

dual (LPX_K_DUAL, default: 0)
Dual simplex option:

0 Do not use the dual simplex.
1 If initial basic solution is dual feasible, use the dual sim-
plex.

price (LPX_K_PRICE, default: 1)
Pricing option (for both primal and dual simplex):

0 Textbook pricing.
1 Steepest edge pricing.

round (LPX_K_ROUND, default: 0)
Solution rounding option:

0 Report all primal and dual values "as is".
1 Replace tiny primal and dual values by exact zero.

itlim (LPX_K_ITLIM, default: -1)
Simplex iterations limit. If this value is positive, it is decreased by
one each time when one simplex iteration has been performed, and
reaching zero value signals the solver to stop the search. Negative
value means no iterations limit.
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itcnt (LPX_K_OUTFRQ, default: 200)
Output frequency, in iterations. This parameter specifies how fre-
quently the solver sends information about the solution to the stan-
dard output.

branch (LPX_K_BRANCH, default: 2)
Branching heuristic option (for MIP only):

0 Branch on the first variable.
1 Branch on the last variable.
2 Branch using a heuristic by Driebeck and Tomlin.

btrack (LPX_K_BTRACK, default: 2)
Backtracking heuristic option (for MIP only):

0 Depth first search.
1 Breadth first search.
2 Backtrack using the best projection heuristic.

presol (LPX_K_PRESQOL, default: 1)
If this flag is set, the routine Ipx_simplex solves the problem using
the built-in LP presolver. Otherwise the LP presolver is not used.

lpsolver (default: 1)
Select which solver to use. If the problem is a MIP problem this flag
will be ignored.

1 Revised simplex method.
2 Interior point method.

save (default: 0)
If this parameter is nonzero, save a copy of the problem in CPLEX
LP format to the file ‘"outpb.1lp"’. There is currently no way to
change the name of the output file.

Real parameters:

relax (LPX_K_RELAX, default: 0.07)
Relaxation parameter used in the ratio test. If it is zero, the textbook
ratio test is used. If it is non-zero (should be positive), Harris’ two-
pass ratio test is used. In the latter case on the first pass of the ratio
test basic variables (in the case of primal simplex) or reduced costs
of non-basic variables (in the case of dual simplex) are allowed to
slightly violate their bounds, but not more than relax*tolbnd or
relax*toldj (thus, relax is a percentage of tolbnd or toldj.

tolbnd (LPX_K_TOLBND, default: 10e-7)
Relative tolerance used to check if the current basic solution is primal
feasible. It is not recommended that you change this parameter
unless you have a detailed understanding of its purpose.

toldj (LPX_K_TOLDJ, default: 10e-7)
Absolute tolerance used to check if the current basic solution is dual
feasible. It is not recommended that you change this parameter
unless you have a detailed understanding of its purpose.
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tolpiv (LPX_K_TOLPIV, default: 10e-9)
Relative tolerance used to choose eligible pivotal elements of the sim-
plex table. It is not recommended that you change this parameter
unless you have a detailed understanding of its purpose.

objll (LPX_K_O0BJLL, default: -DBL_MAX)
Lower limit of the objective function. If on the phase II the objective
function reaches this limit and continues decreasing, the solver stops
the search. This parameter is used in the dual simplex method only.

objul (LPX_K_0BJUL, default: +DBL_MAX)
Upper limit of the objective function. If on the phase II the objective
function reaches this limit and continues increasing, the solver stops
the search. This parameter is used in the dual simplex only.

tmlim (LPX_K_TMLIM, default: -1.0)
Searching time limit, in seconds. If this value is positive, it is de-
creased each time when one simplex iteration has been performed by
the amount of time spent for the iteration, and reaching zero value
signals the solver to stop the search. Negative value means no time
limit.

outdly (LPX_K_OUTDLY, default: 0.0)
Output delay, in seconds. This parameter specifies how long the
solver should delay sending information about the solution to the
standard output. Non-positive value means no delay.

tolint (LPX_K_TOLINT, default: 10e-5)
Relative tolerance used to check if the current basic solution is integer
feasible. It is not recommended that you change this parameter
unless you have a detailed understanding of its purpose.

tolobj (LPX_K_TOLOBJ, default: 10e-7)
Relative tolerance used to check if the value of the objective function
is not better than in the best known integer feasible solution. It is
not recommended that you change this parameter unless you have a
detailed understanding of its purpose.

Output values:

xopt
fopt

status

The optimizer (the value of the decision variables at the optimum).
The optimum value of the objective function.

Status of the optimization.

Simplex Method:

180 (LPX_OPT)
Solution is optimal.

181 (LPX_FEAS)
Solution is feasible.

182 (LPX_INFEAS)
Solution is infeasible.

183 (LPX_NOFEAS)
Problem has no feasible solution.

184 (LPX_UNBND)
Problem has no unbounded solution.
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extra

185 (LPX_UNDEF)
Solution status is undefined.

Interior Point Method:

150 (LPX_T_UNDEF)
The interior point method is undefined.

151 (LPX_T_OPT)
The interior point method is optimal.

Mixed Integer Method:

170 (LPX_I_UNDEF)
The status is undefined.

171 (LPX_I_OPT)
The solution is integer optimal.

172 (LPX_I_FEAS)
Solution integer feasible but its optimality has not been proven

173 (LPX_I_NOFEAS)
No integer feasible solution.

If an error occurs, status will contain one of the following codes:

204 (LPX_E_FAULT)
Unable to start the search.

205 (LPX_E_OBJLL)
Objective function lower limit reached.

206 (LPX_E_OBJUL)
Objective function upper limit reached.

207 (LPX_E_ITLIM)
Iterations limit exhausted.

208 (LPX_E_TMLIM)
Time limit exhausted.

209 (LPX_E_NOFEAS)
No feasible solution.

210 (LPX_E_INSTAB)
Numerical instability.

211 (LPX_E_SING)
Problems with basis matrix.

212 (LPX_E_NOCONV)
No convergence (interior).

213 (LPX_E_NOPFS)
No primal feasible solution (LP presolver).

214 (LPX_E_NODFS)
No dual feasible solution (LP presolver).

A data structure containing the following fields:
lambda Dual variables.

redcosts Reduced Costs.
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time Time (in seconds) used for solving LP/MIP problem.
mem Memory (in bytes) used for solving LP/MIP problem (this is not
available if the version of GLPK is 4.15 or later).
Example:
c = [10, 6, 4]’;
a=1[1,1, 1;
10, 4, 5;
2, 2, 6];
b = [100, 600, 300]’;
1b = [0, 0, 0]’;
ub = [];
ctype = "UUU";
vartype = "CCC";
s = -1;
param.msglev = 1;
param.itlim = 100;

[xmin, fmin, status, extral] = ...
glpk (c, a, b, 1lb, ub, ctype, vartype, s, param);

23.2 Quadratic Programming

Octave can also solve Quadratic Programming problems, this is
1
min ixTHx +27q

subject to

[x, obj, info, lambdal] = qp (x0, H, q, 4, b, 1b, ub, A_1b, A_in,
A_ub)

Solve the quadratic program
1
min ixTH:U +27q
subject to

using a null-space active-set method.

[Function File]

Any bound (A, b, Ib, ub, A_Ib, A_ub) may be set to the empty matrix ([1) if not present. If

the initial guess is feasible the algorithm is faster.
The value info is a structure with the following fields:

solveiter
The number of iterations required to find the solution.

info An integer indicating the status of the solution, as follows:
0 The problem is feasible and convex. Global solution found.
1 The problem is not convex. Local solution found.
2 The problem is not convex and unbounded.
3 Maximum number of iterations reached.
6 The problem is infeasible.
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23.3 Nonlinear Programming

Octave can also perform general nonlinear minimization using a successive quadratic program-
ming solver.

[x, obj, info, iter, nf, lambdal = sqp (x, phi, g, h) [Function File]
Solve the nonlinear program
min ¢(x)

subject to

using a successive quadratic programming method.
The first argument is the initial guess for the vector x.

The second argument is a function handle pointing to the objective function. The objective
function must be of the form

y = phi (x)
in which x is a vector and y is a scalar.

The second argument may also be a 2- or 3-element cell array of function handles. The first
element should point to the objective function, the second should point to a function that
computes the gradient of the objective function, and the third should point to a function to
compute the hessian of the objective function. If the gradient function is not supplied, the
gradient is computed by finite differences. If the hessian function is not supplied, a BFGS
update formula is used to approximate the hessian.

If supplied, the gradient function must be of the form
g = gradient (x)

in which x is a vector and g is a vector.

If supplied, the hessian function must be of the form
h = hessian (x)

in which x is a vector and h is a matrix.

The third and fourth arguments are function handles pointing to functions that compute the
equality constraints and the inequality constraints, respectively.

If your problem does not have equality (or inequality) constraints, you may pass an empty
matrix for cef (or cif).

If supplied, the equality and inequality constraint functions must be of the form
r=1f (x)
in which x is a vector and r is a vector.

The third and fourth arguments may also be 2-element cell arrays of function handles. The
first element should point to the constraint function and the second should point to a function
that computes the gradient of the constraint function:

<8f(w) of(x) af<x>>T

Oxy = Oxs ' Oxn

Here is an example of calling sqp:

function r = g (x)
r = [ sumsq(x)-10; x(2)*x(3)-5*x(4)*x(5); x(1)"3+x(2)"3+1];
endfunction
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function obj = phi (x)
obj = exp(prod(x)) - 0.5*%(x(1) 3+x(2)"3+1)"2;
endfunction

x0 = [-1.8; 1.7; 1.9; -0.8; -0.8];
[x, obj, info, iter, nf, lambdal] = sqp (x0, @phi, Q@g, []1)
X =

-1.71714
1.59571
1.82725

-0.76364

-0.76364

obj = 0.053950
info = 101
iter = 8

nf = 10

lambda =

-0.0401627
0.0379578
-0.0052227

The value returned in info may be one of the following:
101 The algorithm terminated because the norm of the last step was less than tol

* norm (x)) (the value of tol is currently fixed at sqrt (eps)—edit ‘sqp.m’ to
modify this value.

102 The BFGS update failed.

103 The maximum number of iterations was reached (the maximum number of al-
lowed iterations is currently fixed at 100—edit ‘sqp.m’ to increase this value).

See also: qp.

23.4 Linear Least Squares

Octave also supports linear least squares minimization. That is, Octave can find the parameter
b such that the model y = xb fits data (x,y) as good as possible, assuming zero-mean Gaussian
noise. If the noise is assumed to be isotropic the problem can be solved using the ‘\’ or </’
operators, or the ols function. In the general case where the noise is assumed to be anisotropic
the gls is needed.

[beta, sigma, r] = ols (y, x) [Function File]
Ordinary least squares estimation for the multivariate model y = xb + e with e = 0, and
cov(vec(e)) = kron (s,I) where y is a t X p matrix, = is a t X k matrix, b is a k X p matrix,
and e is a t X p matrix.

Each row of y and x is an observation and each column a variable.

The return values beta, sigma, and r are defined as follows.

beta The OLS estimator for b, beta = pinv (x) * y, where pinv (x) denotes the
pseudoinverse of x.
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sigma The OLS estimator for the matrix s,

sigma = (y-x*beta)’
* (y-x*beta)
/ (t-rank(x))

r The matrix of OLS residuals, r = y - x * beta.

[beta, v, r] = gls (y, x, 0) [Function File]
Generalized least squares estimation for the multivariate model y = zb 4+ e with ¢ = 0 and
cov(vec(e)) = (s%)o, where y is a t X p matrix, z is a t X k matrix, b is a k x p matrix, e is a
t X p matrix, and o is a tp X tp matrix.

Each row of y and x is an observation and each column a variable. The return values beta,
v, and r are defined as follows.

beta The GLS estimator for b.
v The GLS estimator for s.

r The matrix of GLS residuals, r = y — xbeta.
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24 Statistics

Octave has support for various statistical methods. This includes basic descriptive statistics,
statistical tests, random number generation, and much more.

The functions that analyze data all assume that multidimensional data is arranged in a
matrix where each row is an observation, and each column is a variable. So, the matrix defined
by

a=1[0.9, 0.7;
0.1, 0.1;
0.5, 0.4 1;
contains three observations from a two-dimensional distribution. While this is the default data
arrangement, most functions support different arrangements.

It should be noted that the statistics functions don’t handle data containing NaN, NA, or
Inf. Such values need to be handled explicitly.

24.1 Descriptive Statistics

Octave can compute various statistics such as the moments of a data set.

mean (x, dim, opt) [Function File]
If x is a vector, compute the mean of the elements of x

| X
mean(zr) = = NZ

If x is a matrix, compute the mean for each column and return them in a row vector.

With the optional argument opt, the kind of mean computed can be selected. The following
options are recognized:

"a" Compute the (ordinary) arithmetic mean. This is the default.
"g" Compute the geometric mean.
"h" Compute the harmonic mean.

If the optional argument dim is supplied, work along dimension dim.

Both dim and opt are optional. If both are supplied, either may appear first.

median (x, dim) [Function File]
If x is a vector, compute the median value of the elements of x. If the elements of x are
sorted, the median is defined as

median(z) = { z([N/21), N odd;
(x(N/2) +x(N/2+1))/2, N even.

If x is a matrix, compute the median value for each column and return them in a row vector.
If the optional dim argument is given, operate along this dimension.

See also: std, mean.

meansq (x) [Function File]

meansq (x, dim) [Function File]
For vector arguments, return the mean square of the values. For matrix arguments, return
a row vector containing the mean square of each column. With the optional dim argument,
returns the mean squared of the values along this dimension.
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std (x) [Function File]
std (x, opt) [Function File]
std (x, opt, dim) [Function File]

If x is a vector, compute the standard deviation of the elements of x.

std(z) = o(z) =

where Z is the mean value of x. If x is a matrix, compute the standard deviation for each
column and return them in a row vector.

The argument opt determines the type of normalization to use. Valid values are

0: normalizes with N — 1, provides the square root of best unbiased estimator of
the variance [default]

1: normalizes with N, this provides the square root of the second moment around
the mean

The third argument dim determines the dimension along which the standard deviation is
calculated.

See also: mean, median.

var (x) [Function File]
For vector arguments, return the (real) variance of the values. For matrix arguments, return
a row vector containing the variance for each column.

The argument opt determines the type of normalization to use. Valid values are

0: Normalizes with N — 1, provides the best unbiased estimator of the variance
[default].
1: Normalizes with N, this provides the second moment around the mean.

The third argument dim determines the dimension along which the variance is calculated.

[m, £, c] = mode (x, dim) [Function File]
Count the most frequently appearing value. mode counts the frequency along the first non-
singleton dimension and if two or more values have te same frequency returns the smallest of
the two in m. The dimension along which to count can be specified by the dim parameter.

The variable f counts the frequency of each of the most frequently occurring elements. The
cell array ¢ contains all of the elements with the maximum frequency .

cov (x,y) [Function File]
Compute covariance.

If each row of x and y is an observation and each column is a variable, the (i, j)-th entry of
cov (x, y) is the covariance between the i-th variable in x and the j-th variable in y.

where Z and y are the mean values of x and y. If called with one argument, compute cov
(x, x).
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cor (x,y) [Function File]
Compute correlation.

The (i, j)-th entry of cor (x, y) is the correlation between the i-th variable in x and the j-th
variable in y.

cov(zx,y)

corrcoef(z,y) = std(z)std(y)

For matrices, each row is an observation and each column a variable; vectors are always
observations and may be row or column vectors.

cor (x) is equivalent to cor (x, x).

Note that the corrcoef function does the same as cor.

corrcoef (x,y) [Function File]
Compute correlation.

If each row of x and y is an observation and each column is a variable, the (i, j)-th entry of
corrcoef (x, y) is the correlation between the i-th variable in x and the j-th variable in y.

cov(z,y)

corrcoef (z,y) = std(x)std(y)

If called with one argument, compute corrcoef (x, x).

kurtosis (x, dim) [Function File]
If x is a vector of length N, return the kurtosis

kurtosis(z) = ———

where Z is the mean value of z.

of x. If x is a matrix, return the kurtosis over the first non-singleton dimension. The optional
argument dim can be given to force the kurtosis to be given over that dimension.

skewness (x, dim) [Function File]
If x is a vector of length n, return the skewness

skewness(r) = ———— Z(xz - z)°

where Z is the mean value of z.

of x. If x is a matrix, return the skewness along the first non-singleton dimension of the
matrix. If the optional dim argument is given, operate along this dimension.

statistics (x) [Function File]
If x is a matrix, return a matrix with the minimum, first quartile, median, third quartile,
maximum, mean, standard deviation, skewness and kurtosis of the columns of x as its rows.

If x is a vector, treat it as a column vector.
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moment (x, p, opt, dim) [Function File]
If x is a vector, compute the p-th moment of x.

If x is a matrix, return the row vector containing the p-th moment of each column.
With the optional string opt, the kind of moment to be computed can be specified. If opt
contains "c" or "a", central and/or absolute moments are returned. For example,
moment (x, 3, "ac")
computes the third central absolute moment of x.

If the optional argument dim is supplied, work along dimension dim.

24.2 Basic Statistical Functions

Octave also supports various helpful statistical functions.

mahalanobis (x, y) [Function File]
Return the Mahalanobis’ D-square distance between the multivariate samples x and y, which
must have the same number of components (columns), but may have a different number of
observations (rows).

center (x) [Function File]

center (x, dim) [Function File]
If x is a vector, subtract its mean. If x is a matrix, do the above for each column. If the
optional argument dim is given, perform the above operation along this dimension

studentize (x, dim) [Function File]
If x is a vector, subtract its mean and divide by its standard deviation.

If x is a matrix, do the above along the first non-singleton dimension. If the optional argument
dim is given then operate along this dimension.

¢ = nchoosek (n, k) [Function File]
Compute the binomial coefficient or all combinations of n. If n is a scalar then, calculate the
binomial coefficient of n and k, defined as

kil kl(n — k)]

ny nn-1)n-2)---(n—k+1) n!
k

If n is a vector generate all combinations of the elements of n, taken k at a time, one row per
combination. The resulting ¢ has size [nchoosek (length (n), k), kJ.

See also: bincoeff.

perms (V) [Function File]
Generate all permutations of v, one row per permutation. The result has size factorial (n)
* n, where n is the length of v.

As an example, perms ([1, 2, 3]) returns the matrix
1 2 3

W wNN - N
N =, W W
=N - N W
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values (x) [Function File]
Return the different values in a column vector, arranged in ascending order.

As an example, values([1, 2, 3, 1]) returns the vector [1, 2, 3].

[t, 1_x] = table (x) [Function File]

[t, 1_x, 1_y] = table (x, y) [Function File]
Create a contingency table t from data vectors. The I vectors are the corresponding levels.
Currently, only 1- and 2-dimensional tables are supported.

spearman (X, y) [Function File]
Compute Spearman’s rank correlation coefficient rho for each of the variables specified by
the input arguments.

For matrices, each row is an observation and each column a variable; vectors are always
observations and may be row or column vectors.

spearman (x) is equivalent to spearman (x, x).

For two data vectors x and y, Spearman’s rho is the correlation of the ranks of x and y.

If x and y are drawn from independent distributions, rho has zero mean and variance 1 / (n
- 1), and is asymptotically normally distributed.

run_count (x, n) [Function File]
Count the upward runs along the first non-singleton dimension of x of length 1, 2, ..., n-1
and greater than or equal to n. If the optional argument dim is given operate along this
dimension

ranks (x, dim) [Function File]
If x is a vector, return the (column) vector of ranks of x adjusted for ties.
If x is a matrix, do the above for along the first non-singleton dimension. If the optional
argument dim is given, operate along this dimension.

range (x) [Function File]

range (x, dim) [Function File]
If x is a vector, return the range, i.e., the difference between the maximum and the minimum,
of the input data.

If x is a matrix, do the above for each column of x.

If the optional argument dim is supplied, work along dimension dim.

probit (p) [Function File]
For each component of p, return the probit (the quantile of the standard normal distribution)
of p.

logit (p) [Function File]
For each component of p, return the logit of p defined as
. _ p
logit(p) = log <71 — p)
cloglog (x) [Function File]

Return the complementary log-log function of x, defined as

cloglog(z) = — log(—log(z))
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kendall (x, y) [Function File]
Compute Kendall’s tau for each of the variables specified by the input arguments.

For matrices, each row is an observation and each column a variable; vectors are always
observations and may be row or column vectors.
kendall (x) is equivalent to kendall (x, x).

For two data vectors x, y of common length n, Kendall’s tau is the correlation of the signs
of all rank differences of x and y; i.e., if both x and y have distinct entries, then

1 . .
T= ZSlgn(qi — q;)sign(r; — ;)
2,7

n(n —1) 4
in which the ¢; and r; are the ranks of x and y, respectively.

If x and y are drawn from independent distributions, Kendall’s tau is asymptotically normal

. . 2(2n+5
with mean 0 and variance (2n+5) .
In(n—1)

iqr (x, dim) [Function File]
If x is a vector, return the interquartile range, i.e., the difference between the upper and
lower quartile, of the input data.
If x is a matrix, do the above for first non singleton dimension of x. If the option dim
argument is given, then operate along this dimension.

cut (x, breaks) [Function File]
Create categorical data out of numerical or continuous data by cutting into intervals.

If breaks is a scalar, the data is cut into that many equal-width intervals. If breaks is a vector
of break points, the category has length (breaks) - 1 groups.

The returned value is a vector of the same size as x telling which group each point in x
belongs to. Groups are labelled from 1 to the number of groups; points outside the range of
breaks are labelled by NaN.

24.3 Statistical Plots

Octave can create Quantile Plots (QQ-Plots), and Probability Plots (PP-Plots). These are
simple graphical tests for determining if a data set comes from a certain distribution.

It is worth noticing that Octave can also show histograms of data using the hist function as
described in Section 15.1.1 [Two-Dimensional Plots|, page 165.

[g, s] = qgplot (x, dist, params) [Function File]
Perform a QQ-plot (quantile plot).
If F is the CDF of the distribution dist with parameters params and G its inverse, and x a
sample vector of length n, the QQ-plot graphs ordinate s(i) = i-th largest element of x versus
abscissa q(if) = G((i - 0.5)/n).
If the sample comes from F except for a transformation of location and scale, the pairs will
approximately follow a straight line.
The default for dist is the standard normal distribution. The optional argument params con-
tains a list of parameters of dist. For example, for a quantile plot of the uniform distribution
on [2,4] and x, use

qgplot (x, "uniform", 2, 4)

dist can be any string for which a function dist_inv that calculates the inverse CDF of
distribution dist exists.

If no output arguments are given, the data are plotted directly.
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[p, y] = ppplot (x, dist, params) [Function File]
Perform a PP-plot (probability plot).
If F is the CDF of the distribution dist with parameters params and x a sample vector of
length n, the PP-plot graphs ordinate y(i) = F (i-th largest element of x) versus abscissa
p(i) = (i - 0.5)/n. If the sample comes from F, the pairs will approximately follow a straight
line.
The default for dist is the standard normal distribution. The optional argument params
contains a list of parameters of dist. For example, for a probability plot of the uniform
distribution on [2,4] and x, use

ppplot (x, "uniform", 2, 4)

dist can be any string for which a function dist_cdf that calculates the CDF of distribution
dist exists.

If no output arguments are given, the data are plotted directly.

24.4 Tests

Octave can perform several different statistical tests. The following table summarizes the avail-
able tests.

Hypothesis Test Functions

Equal mean values anova, hotelling_test2, t_test_2, welch_
test, wilcoxon_test, z_test_2

Equal medians kruskal_wallis_test, sign_test

Equal variances bartlett_test, manova, var_test

Equal distributions chisquare_test_homogeneity,
kolmogorov_smirnov_test_2, u_test

Equal marginal frequencies mcnemar_test

Equal success probabilities prop_test_2

Independent observations chisquare_test_independence, run_test

Uncorrelated observations cor_test

Given mean value hotelling_test, t_test, z_test

Observations from given distribution kolmogorov_smirnov_test

Regression f_test_regression, t_test_regression

The tests return a p-value that describes the outcome of the test. Assuming that the test
hypothesis is true, the p-value is the probability of obtaining a worse result than the observed
one. So large p-values corresponds to a successful test. Usually a test hypothesis is accepted if
the p-value exceeds 0.05.

[pval, f, df_b, df_w] = anova (y, g) [Function File]
Perform a one-way analysis of variance (ANOVA). The goal is to test whether the population
means of data taken from k different groups are all equal.

Data may be given in a single vector y with groups specified by a corresponding vector of
group labels g (e.g., numbers from 1 to k). This is the general form which does not impose
any restriction on the number of data in each group or the group labels.

If y is a matrix and g is omitted, each column of y is treated as a group. This form is only
appropriate for balanced ANOVA in which the numbers of samples from each group are all
equal.

Under the null of constant means, the statistic f follows an F distribution with df-b and df-w
degrees of freedom.

The p-value (1 minus the CDF of this distribution at f) is returned in pval.
If no output argument is given, the standard one-way ANOVA table is printed.
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[pval, chisq, df] = bartlett_test (x1,...) [Function File]
Perform a Bartlett test for the homogeneity of variances in the data vectors x1, x2, ..., xk,
where k > 1.

Under the null of equal variances, the test statistic chisq approximately follows a chi-square
distribution with df degrees of freedom.

The p-value (1 minus the CDF of this distribution at chisq) is returned in pval.

If no output argument is given, the p-value is displayed.

[pval, chisq, df] = chisquare_test_homogeneity (x, y, c) [Function File]
Given two samples x and y, perform a chisquare test for homogeneity of the null hypothesis
that x and y come from the same distribution, based on the partition induced by the (strictly
increasing) entries of c.

For large samples, the test statistic chisq approximately follows a chisquare distribution with
df = length (c) degrees of freedom.

The p-value (1 minus the CDF of this distribution at chisq) is returned in pval.

If no output argument is given, the p-value is displayed.

[pval, chisq, df] = chisquare_test_independence (x) [Function File]
Perform a chi-square test for independence based on the contingency table x. Under the
null hypothesis of independence, chisq approximately has a chi-square distribution with df
degrees of freedom.

The p-value (1 minus the CDF of this distribution at chisq) of the test is returned in pval.

If no output argument is given, the p-value is displayed.

cor_test (x, y, alt, method) [Function File]
Test whether two samples x and y come from uncorrelated populations.

The optional argument string alt describes the alternative hypothesis, and can be "!=" or
"<>" (non-zero), ">" (greater than 0), or "<" (less than 0). The default is the two-sided case.

The optional argument string method specifies on which correlation coefficient the test should
be based. If method is "pearson" (default), the (usual) Pearson’s product moment corre-
lation coefficient is used. In this case, the data should come from a bivariate normal dis-
tribution. Otherwise, the other two methods offer nonparametric alternatives. If method
is "kendall", then Kendall’s rank correlation tau is used. If method is "spearman", then
Spearman’s rank correlation rho is used. Only the first character is necessary.

The output is a structure with the following elements:

pval The p-value of the test.

stat The value of the test statistic.

dist The distribution of the test statistic.

params The parameters of the null distribution of the test statistic.
alternative

The alternative hypothesis.
method The method used for testing.

If no output argument is given, the p-value is displayed.
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[pval, f, df_num, df_den] = f_test_regression (y, x, rr, r) [Function File]
Perform an F test for the null hypothesis rr * b = r in a classical normal regression model y
=X*b+e.

Under the null, the test statistic f follows an F distribution with df_-num and df_den degrees
of freedom.

The p-value (1 minus the CDF of this distribution at f) is returned in pval.
If not given explicitly, r = 0.

If no output argument is given, the p-value is displayed.

[pval, tsq] = hotelling_test (x, m) [Function File]
For a sample x from a multivariate normal distribution with unknown mean and covariance
matrix, test the null hypothesis that mean (x) == m.

Hotelling’s 7% is returned in tsq. Under the null, (n — p)T?/(p(n — 1)) has an F distribution
with p and n — p degrees of freedom, where n and p are the numbers of samples and variables,
respectively.

The p-value of the test is returned in pval.

If no output argument is given, the p-value of the test is displayed.

[pval, tsq] = hotelling test_2 (x, y) [Function File]
For two samples x from multivariate normal distributions with the same number of variables
(columns), unknown means and unknown equal covariance matrices, test the null hypothesis
mean (x) == mean (y).

Hotelling’s two-sample T? is returned in tsq. Under the null,

ng +mn, —p—1)T?
p(ng +ny — 2)

has an F distribution with p and n, +n, —p —1 degrees of freedom, where n, and n, are the
sample sizes and p is the number of variables.

The p-value of the test is returned in pval.

If no output argument is given, the p-value of the test is displayed.

[pval, ks] = kolmogorov_smirnov_test (x, dist, params, alt) [Function File]
Perform a Kolmogorov-Smirnov test of the null hypothesis that the sample x comes from the
(continuous) distribution dist. I.e., if F and G are the CDF's corresponding to the sample
and dist, respectively, then the null is that F == G.

The optional argument params contains a list of parameters of dist. For example, to test
whether a sample x comes from a uniform distribution on [2,4], use
kolmogorov_smirnov_test(x, "uniform", 2, 4)

dist can be any string for which a function dist_cdf that calculates the CDF of distribution
dist exists.

With the optional argument string alt, the alternative of interest can be selected. If alt
is "1=" or "<>", the null is tested against the two-sided alternative F != G. In this case,
the test statistic ks follows a two-sided Kolmogorov-Smirnov distribution. If alt is ">", the
one-sided alternative F > G is considered. Similarly for "<", the one-sided alternative F
> G is considered. In this case, the test statistic ks has a one-sided Kolmogorov-Smirnov
distribution. The default is the two-sided case.

The p-value of the test is returned in pval.

If no output argument is given, the p-value is displayed.
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[pval, ks, d] = kolmogorov_smirnov_test_2 (x, y, alt) [Function File]
Perform a 2-sample Kolmogorov-Smirnov test of the null hypothesis that the samples x and
y come from the same (continuous) distribution. ILe., if F and G are the CDFs corresponding
to the x and y samples, respectively, then the null is that F == G.

With the optional argument string alt, the alternative of interest can be selected. If alt
is "1=" or "<>" the null is tested against the two-sided alternative F != G. In this case,
the test statistic ks follows a two-sided Kolmogorov-Smirnov distribution. If alt is ">", the
one-sided alternative F > G is considered. Similarly for "<", the one-sided alternative F
< G is considered. In this case, the test statistic ks has a one-sided Kolmogorov-Smirnov
distribution. The default is the two-sided case.

The p-value of the test is returned in pval.

The third returned value, d, is the test statistic, the maximum vertical distance between the
two cumulative distribution functions.

If no output argument is given, the p-value is displayed.

[pval, k, df] = kruskal_wallis_test (x1,...) [Function File]
Perform a Kruskal-Wallis one-factor "analysis of variance".

Suppose a variable is observed for k > 1 different groups, and let x1, ..., xk be the corre-
sponding data vectors.

Under the null hypothesis that the ranks in the pooled sample are not affected by the group
memberships, the test statistic k is approximately chi-square with df = k - 1 degrees of
freedom.

The p-value (1 minus the CDF of this distribution at k) is returned in pval.

If no output argument is given, the p-value is displayed.

manova (y, g) [Function File]
Perform a one-way multivariate analysis of variance (MANOVA). The goal is to test whether
the p-dimensional population means of data taken from k different groups are all equal. All
data are assumed drawn independently from p-dimensional normal distributions with the
same covariance matrix.

The data matrix is given by y. As usual, rows are observations and columns are variables.
The vector g specifies the corresponding group labels (e.g., numbers from 1 to k).

The LR test statistic (Wilks’ Lambda) and approximate p-values are computed and displayed.

[pval, chisq, df] = mcnemar_test (x) [Function File]
For a square contingency table x of data cross-classified on the row and column variables,
McNemar’s test can be used for testing the null hypothesis of symmetry of the classification
probabilities.

Under the null, chisq is approximately distributed as chisquare with df degrees of freedom.
The p-value (1 minus the CDF of this distribution at chisq) is returned in pval.

If no output argument is given, the p-value of the test is displayed.

[pval, z] = prop_test_2 (x1, n1, x2, n2, alt) [Function File]
If xI and nl are the counts of successes and trials in one sample, and x2 and n2 those in a
second one, test the null hypothesis that the success probabilities pI and p2 are the same.
Under the null, the test statistic z approximately follows a standard normal distribution.

With the optional argument string alt, the alternative of interest can be selected. If alt is
"1=" or "<>" the null is tested against the two-sided alternative pl != p2. If alt is ">", the
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one-sided alternative pl > p2 is used. Similarly for "<", the one-sided alternative p1 < p2 is
used. The default is the two-sided case.

The p-value of the test is returned in pval.

If no output argument is given, the p-value of the test is displayed.

[pval, chisq] = run_test (x) [Function File]
Perform a chi-square test with 6 degrees of freedom based on the upward runs in the columns
of x. Can be used to test whether x contains independent data.

The p-value of the test is returned in pval.

If no output argument is given, the p-value is displayed.

[pval, b, n] = sign_test (x, y, alt) [Function File]
For two matched-pair samples x and y, perform a sign test of the null hypothesis PROB (x >
y) == PROB (x < y) == 1/2. Under the null, the test statistic b roughly follows a binomial
distribution with parameters n = sum (x !=y) and p = 1/2.

With the optional argument alt, the alternative of interest can be selected. If alt is "!=" or
"<>" the null hypothesis is tested against the two-sided alternative PROB (x < y) != 1/2.
If alt is ">", the one-sided alternative PROB (x > y) > 1/2 ("x is stochastically greater than
y") is considered. Similarly for "<", the one-sided alternative PROB (x > y) < 1/2 ("x is
stochastically less than y") is considered. The default is the two-sided case.

The p-value of the test is returned in pval.

If no output argument is given, the p-value of the test is displayed.

[pval, t, df] = t_test (x, m, alt) [Function File]
For a sample x from a normal distribution with unknown mean and variance, perform a t-test
of the null hypothesis mean (x) == m. Under the null, the test statistic t follows a Student
distribution with df = length (x) - 1 degrees of freedom.

With the optional argument string alt, the alternative of interest can be selected. If alt is
"1=" or "<>" the null is tested against the two-sided alternative mean (x) '=m. If alt is
">" the one-sided alternative mean (x) > m is considered. Similarly for "<", the one-sided
alternative mean (x) < m is considered. The default is the two-sided case.

The p-value of the test is returned in pval.

If no output argument is given, the p-value of the test is displayed.

[pval, t, df] = t_test_2 (x, y, alt) [Function File]
For two samples x and y from normal distributions with unknown means and unknown equal
variances, perform a two-sample t-test of the null hypothesis of equal means. Under the null,
the test statistic t follows a Student distribution with df degrees of freedom.

With the optional argument string alt, the alternative of interest can be selected. If alt is
"1=" or "<>" the null is tested against the two-sided alternative mean (x) !=mean (y). If
alt is ">", the one-sided alternative mean (x) > mean (y) is used. Similarly for "<", the
one-sided alternative mean (x) < mean (y) is used. The default is the two-sided case.

The p-value of the test is returned in pval.

If no output argument is given, the p-value of the test is displayed.
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[pval, t, df] = t_test_regression (y, x, rr, r, alt) [Function File]
Perform an t test for the null hypothesis rr * b = r in a classical normal regression model
y = x * b + e. Under the null, the test statistic ¢ follows a t distribution with df degrees of
freedom.

If r is omitted, a value of 0 is assumed.

With the optional argument string alt, the alternative of interest can be selected. If alt is
"I=" or "<>" the null is tested against the two-sided alternative rr * b '= r. If alt is ">",
the one-sided alternative rr * b > r is used. Similarly for "<", the one-sided alternative rr
* b < r is used. The default is the two-sided case.

The p-value of the test is returned in pval.

If no output argument is given, the p-value of the test is displayed.

[pval, z] = u_test (x,y, alt) [Function File]
For two samples x and y, perform a Mann-Whitney U-test of the null hypothesis PROB (x
>y) == 1/2 == PROB (x < y). Under the null, the test statistic z approximately follows
a standard normal distribution. Note that this test is equivalent to the Wilcoxon rank-sum
test.

With the optional argument string alt, the alternative of interest can be selected. If alt is
"1=" or "<>" the null is tested against the two-sided alternative PROB (x > y) != 1/2. If
alt is ">", the one-sided alternative PROB (x > y) > 1/2 is considered. Similarly for "<", the
one-sided alternative PROB (x > y) < 1/2 is considered. The default is the two-sided case.

The p-value of the test is returned in pval.

If no output argument is given, the p-value of the test is displayed.

[pval, f, df_num, df_den] = var_test (x, y, alt) [Function File]
For two samples x and y from normal distributions with unknown means and unknown
variances, perform an F-test of the null hypothesis of equal variances. Under the null, the
test statistic f follows an F-distribution with df-num and df-den degrees of freedom.

With the optional argument string alt, the alternative of interest can be selected. If alt is
"1="or "<>" the null is tested against the two-sided alternative var (x) != var (y). If alt
is ">" the one-sided alternative var (x) > var (y) is used. Similarly for "<", the one-sided
alternative var (x) > var (y) is used. The default is the two-sided case.

The p-value of the test is returned in pval.

If no output argument is given, the p-value of the test is displayed.

[pval, t, df] = welch_test (x, y, alt) [Function File]
For two samples x and y from normal distributions with unknown means and unknown and
not necessarily equal variances, perform a Welch test of the null hypothesis of equal means.
Under the null, the test statistic t approximately follows a Student distribution with df
degrees of freedom.

With the optional argument string alt, the alternative of interest can be selected. If alt is
"I=" or "<>" the null is tested against the two-sided alternative mean (x) !'=m. If alt is
">" the one-sided alternative mean(x) > m is considered. Similarly for "<", the one-sided
alternative mean(x) < m is considered. The default is the two-sided case.

The p-value of the test is returned in pval.

If no output argument is given, the p-value of the test is displayed.
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[pval, z] = wilcoxon_test (x, y, alt) [Function File]
For two matched-pair sample vectors x and y, perform a Wilcoxon signed-rank test of the
null hypothesis PROB (x > y) == 1/2. Under the null, the test statistic z approximately
follows a standard normal distribution when n > 25.

Warning: This function assumes a normal distribution for z and thus is invalid for n <= 25.

With the optional argument string alt, the alternative of interest can be selected. If alt is
"1=" or "<>" the null is tested against the two-sided alternative PROB (x > y) !=1/2. If
alt is ">", the one-sided alternative PROB (x > y) > 1/2 is considered. Similarly for "<", the
one-sided alternative PROB (x > y) < 1/2 is considered. The default is the two-sided case.

The p-value of the test is returned in pval.

If no output argument is given, the p-value of the test is displayed.

[pval, z] = z_test (x, m, v, alt) [Function File]
Perform a Z-test of the null hypothesis mean (x) == m for a sample x from a normal distri-
bution with unknown mean and known variance v. Under the null, the test statistic z follows
a standard normal distribution.

With the optional argument string alt, the alternative of interest can be selected. If alt is
"1=" or "<>" the null is tested against the two-sided alternative mean (x) '=m. If alt is
">" the one-sided alternative mean (x) > m is considered. Similarly for "<", the one-sided
alternative mean (x) < m is considered. The default is the two-sided case.

The p-value of the test is returned in pval.

If no output argument is given, the p-value of the test is displayed along with some informa-
tion.

[pval, z] = z_test_2 (x,y, v_x, v_y, alt) [Function File]
For two samples x and y from normal distributions with unknown means and known variances
v_x and v_y, perform a Z-test of the hypothesis of equal means. Under the null, the test
statistic z follows a standard normal distribution.

With the optional argument string alt, the alternative of interest can be selected. If alt is
"1=" or "<>" the null is tested against the two-sided alternative mean (x) !=mean (y). If
alt is ">", the one-sided alternative mean (x) > mean (y) is used. Similarly for "<", the
one-sided alternative mean (x) <mean (y) is used. The default is the two-sided case.

The p-value of the test is returned in pval.

If no output argument is given, the p-value of the test is displayed along with some informa-
tion.

24.5 Models

[theta, beta, dev, dl, d21, p] = logistic_regression (y, x, [Function File]
print, theta, beta)
Perform ordinal logistic regression.
Suppose y takes values in k ordered categories, and let gamma_i (x) be the cumulative
probability that y falls in one of the first i categories given the covariate x. Then
[theta, betal] = logistic_regression (y, x)
fits the model
logit (gamma_i (x)) = theta_i - beta’ * x, i=1, ..., k-1
The number of ordinal categories, k, is taken to be the number of distinct values of round

(7). If k equals 2, y is binary and the model is ordinary logistic regression. The matrix x is
assumed to have full column rank.
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Given y only, theta = logistic_regression (y) fits the model with baseline logit odds
only.
The full form is
[theta, beta, dev, dl, d21, gamma]
= logistic_regression (y, x, print, theta, beta)
in which all output arguments and all input arguments except y are optional.

Setting print to 1 requests summary information about the fitted model to be displayed.
Setting print to 2 requests information about convergence at each iteration. Other values
request no information to be displayed. The input arguments theta and beta give initial

estimates for theta and beta.

The returned value dev holds minus twice the log-likelihood.

The returned values dI and d2I are the vector of first and the matrix of second derivatives of
the log-likelihood with respect to theta and beta.

p holds estimates for the conditional distribution of y given x.

24.6 Distributions

Octave has functions for computing the Probability Density Function (PDF), the Cumulative
Distribution function (CDF), and the quantile (the inverse of the CDF) of a large number of

distributions.

The following table summarizes the supported distributions (in alphabetical order).

Distribution PDF CDF Quantile
Beta Distribution betapdf betacdf betainv
Binomial Distribution binopdf binocdf binoinv
Cauchy Distribution cauchy_pdf cauchy_cdf cauchy_inv
Chi-Square Distribution chi2pdf chi2cdf chi2inv

Univariate Discrete Distribution
Empirical Distribution

discrete_pdf
empirical_pdf

discrete_cdf
empirical_cdf

discrete_inv
empirical_inv

Exponential Distribution exppdf expcdf expinv

F Distribution fpdf fcdf finv

Gamma Distribution gampdf gamcdf gaminv
Geometric Distribution geopdf geocdf geoinv
Hypergeometric Distribution hygepdf hygecdf hygeinv
Kolmogorov Smirnov Distribution Not Available kolmogorov_ Not Available

Laplace Distribution
Logistic Distribution

laplace_pdf
logistic_pdf

smirnov_cdf
laplace_cdf
logistic_cdf

laplace_inv
logistic_inv

Log-Normal Distribution lognpdf logncdf logninv
Pascal Distribution nbinpdf nbincdf nbininv
Univariate Normal Distribution normpdf normcdf norminv
Poisson Distribution poisspdf poisscdf poissinv
t (Student) Distribution tpdf tcdf tinv
Univariate Discrete Distribution unidpdf unidcdf unidinv
Uniform Distribution unifpdf unifcdf unifinv
Weibull Distribution wblpdf wblcdf wblinv

betacdf (x, a, b)

[Function File]

For each element of x, returns the CDF at x of the beta distribution with parameters a and

b, i.e., PROB (beta (a, b) <= x
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betainv (x, a, b) [Function File]
For each component of x, compute the quantile (the inverse of the CDF) at x of the Beta
distribution with parameters a and b.

betapdf (x, a, b) [Function File]
For each element of x, returns the PDF at x of the beta distribution with parameters a and
b.

binocdf (x, n, p) [Function File]
For each element of x, compute the CDF at x of the binomial distribution with parameters
n and p.

binoinv (x, n, p) [Function File]
For each element of x, compute the quantile at x of the binomial distribution with parameters
n and p.

binopdf (x, n, p) [Function File]
For each element of x, compute the probability density function (PDF) at x of the binomial
distribution with parameters n and p.

cauchy_cdf (x, lambda, sigma) [Function File]
For each element of x, compute the cumulative distribution function (CDF) at x of the Cauchy
distribution with location parameter lambda and scale parameter sigma. Default values are
lambda = 0, sigma = 1.

cauchy_inv (x, lambda, sigma) [Function File]
For each element of x, compute the quantile (the inverse of the CDF) at x of the Cauchy
distribution with location parameter lambda and scale parameter sigma. Default values are
lambda = 0, sigma = 1.

cauchy_pdf (x, lambda, sigma) [Function File]
For each element of x, compute the probability density function (PDF) at x of the Cauchy
distribution with location parameter lambda and scale parameter sigma > 0. Default values
are lambda = 0, sigma = 1.

chi2cdf (x, n) [Function File]
For each element of x, compute the cumulative distribution function (CDF) at x of the
chisquare distribution with n degrees of freedom.

chi2inv (x, n) [Function File]
For each element of x, compute the quantile (the inverse of the CDF) at x of the chisquare
distribution with n degrees of freedom.

chisquare_pdf (x, n) [Function File]
For each element of x, compute the probability density function (PDF) at x of the chisquare
distribution with n degrees of freedom.

discrete_cdf (x, v, p) [Function File]
For each element of x, compute the cumulative distribution function (CDF) at x of a uni-
variate discrete distribution which assumes the values in v with probabilities p.
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discrete_inv (x, v, p) [Function File]
For each component of x, compute the quantile (the inverse of the CDF') at x of the univariate
distribution which assumes the values in v with probabilities p.

discrete_pdf (x, v, p) [Function File]
For each element of x, compute the probability density function (PDF) at x of a univariate
discrete distribution which assumes the values in v with probabilities p.

empirical_cdf (x, data) [Function File]
For each element of x, compute the cumulative distribution function (CDF) at x of the
empirical distribution obtained from the univariate sample data.

empirical_inv (x, data) [Function File]
For each element of x, compute the quantile (the inverse of the CDF) at x of the empirical
distribution obtained from the univariate sample data.

empirical_pdf (x, data) [Function File]
For each element of x, compute the probability density function (PDF) at x of the empirical
distribution obtained from the univariate sample data.

expcdf (x, lambda) [Function File]
For each element of x, compute the cumulative distribution function (CDF) at x of the
exponential distribution with parameter lambda.

The arguments can be of common size or scalar.

expinv (x, lambda) [Function File]
For each element of x, compute the quantile (the inverse of the CDF) at x of the exponential
distribution with parameter lambda.

exppdf (x, lambda) [Function File]
For each element of x, compute the probability density function (PDF) of the exponential
distribution with parameter lambda.

fcdf (x, m n) [Function File]
For each element of x, compute the CDF at x of the F distribution with m and n degrees of
freedom, i.e., PROB (F (m, n) <= x).

finv (x, m, n) [Function File]
For each component of x, compute the quantile (the inverse of the CDF) at x of the F
distribution with parameters m and n.

fpdf (x, m, n) [Function File]
For each element of x, compute the probability density function (PDF) at x of the F distri-
bution with m and n degrees of freedom.

gamcdf (x, a, b) [Function File]
For each element of x, compute the cumulative distribution function (CDF) at x of the
Gamma distribution with parameters a and b.

See also: gamma, gammaln, gammainc, gampdf, gaminv, gamrnd.
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gaminv (x, a, b) [Function File]
For each component of x, compute the quantile (the inverse of the CDF) at x of the Gamma
distribution with parameters a and b.

See also: gamma, gammaln, gammainc, gampdf, gamcdf, gamrnd.

gampdf (x, a, b) [Function File]
For each element of x, return the probability density function (PDF) at x of the Gamma
distribution with parameters a and b.

See also: gamma, gammaln, gammainc, gamcdf, gaminv, gamrnd.

geocdf (x, p) [Function File]
For each element of x, compute the CDF at x of the geometric distribution with parameter

D-

geoinv (x, p) [Function File]
For each element of x, compute the quantile at x of the geometric distribution with parameter

D-

geopdf (x, p) [Function File]
For each element of x, compute the probability density function (PDF) at x of the geometric
distribution with parameter p.

hygecdf (x, t, m, n) [Function File]
Compute the cumulative distribution function (CDF) at x of the hypergeometric distribution
with parameters t, m, and n. This is the probability of obtaining not more than x marked
items when randomly drawing a sample of size n without replacement from a population of
total size t containing m marked items.

The parameters t, m, and n must positive integers with m and n not greater than t.

hygeinv (x, t, m, n) [Function File]
For each element of x, compute the quantile at x of the hypergeometric distribution with
parameters t, m, and n.

The parameters t, m, and n must positive integers with m and n not greater than t.

hygepdf (x, t, m, n) [Function File]
Compute the probability density function (PDF) at x of the hypergeometric distribution with
parameters t, m, and n. This is the probability of obtaining x marked items when randomly
drawing a sample of size n without replacement from a population of total size t containing
m marked items.

The arguments must be of common size or scalar.

kolmogorov_smirnov_cdf (x, tol) [Function File]
Return the CDF at x of the Kolmogorov-Smirnov distribution,

Qx) = Y (—1)*exp(—2k>z?)
k=—o00
for x > 0.

The optional parameter tol specifies the precision up to which the series should be evaluated;
the default is tol = eps.
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laplace_cdf (x) [Function File]
For each element of x, compute the cumulative distribution function (CDF) at x of the
Laplace distribution.

laplace_inv (x) [Function File]
For each element of x, compute the quantile (the inverse of the CDF) at x of the Laplace
distribution.

laplace_pdf (x) [Function File]
For each element of x, compute the probability density function (PDF) at x of the Laplace
distribution.

logistic_cdf (x) [Function File]
For each component of x, compute the CDF at x of the logistic distribution.

logistic_inv (x) [Function File]
For each component of x, compute the quantile (the inverse of the CDF) at x of the logistic
distribution.

logistic_pdf (x) [Function File]
For each component of x, compute the PDF at x of the logistic distribution.

logncdf (x, mu, sigma) [Function File]
For each element of x, compute the cumulative distribution function (CDF) at x of the
lognormal distribution with parameters mu and sigma. If a random variable follows this
distribution, its logarithm is normally distributed with mean mu and standard deviation
sigma.

Default values are mu = 1, sigma = 1.

logninv (x, mu, sigma) [Function File]
For each element of x, compute the quantile (the inverse of the CDF) at x of the lognormal
distribution with parameters mu and sigma. If a random variable follows this distribution,
its logarithm is normally distributed with mean log (mu) and variance sigma.

Default values are mu = 1, sigma = 1.

lognpdf (x, mu, sigma) [Function File]
For each element of x, compute the probability density function (PDF) at x of the lognormal
distribution with parameters mu and sigma. If a random variable follows this distribution,
its logarithm is normally distributed with mean mu and standard deviation sigma.

Default values are mu = 1, sigma = 1.

nbincdf (x, n, p) [Function File]
For each element of x, compute the CDF at x of the Pascal (negative binomial) distribution
with parameters n and p.

The number of failures in a Bernoulli experiment with success probability p before the n-th
success follows this distribution.

nbininv (x, n, p) [Function File]
For each element of x, compute the quantile at x of the Pascal (negative binomial) distribution
with parameters n and p.

The number of failures in a Bernoulli experiment with success probability p before the n-th
success follows this distribution.
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nbinpdf (x, n, p) [Function File]
For each element of x, compute the probability density function (PDF) at x of the Pascal
(negative binomial) distribution with parameters n and p.

The number of failures in a Bernoulli experiment with success probability p before the n-th
success follows this distribution.

normcdf (x, m, s) [Function File]
For each element of x, compute the cumulative distribution function (CDF) at x of the normal
distribution with mean m and standard deviation s.

Default values are m = 0, s = 1.

norminv (x, m, s) [Function File]
For each element of x, compute the quantile (the inverse of the CDF) at x of the normal
distribution with mean m and standard deviation s.

Default values are m = 0, s = 1.

normpdf (x, m, s) [Function File]
For each element of x, compute the probability density function (PDF) at x of the normal
distribution with mean m and standard deviation s.

Default values are m = 0, s = 1.

poisscdf (x, lambda) [Function File]
For each element of x, compute the cumulative distribution function (CDF) at x of the
Poisson distribution with parameter lambda.

poissinv (x, lambda) [Function File]
For each component of x, compute the quantile (the inverse of the CDF) at x of the Poisson
distribution with parameter lambda.

poisspdf (x, lambda) [Function File]
For each element of x, compute the probability density function (PDF) at x of the poisson
distribution with parameter lambda.

tcdf (x, n) [Function File]
For each element of x, compute the CDF at x of the t (Student) distribution with n degrees
of freedom, i.e., PROB (t(n) <= x).

tinv (x, n) [Function File]
For each component of x, compute the quantile (the inverse of the CDF) at x of the t (Student)
distribution with parameter n.

tpdf (x, n) [Function File]
For each element of x, compute the probability density function (PDF) at x of the ¢t (Student)
distribution with n degrees of freedom.

unidcdf (x, v) [Function File]
For each element of x, compute the cumulative distribution function (CDF) at x of a uni-
variate discrete distribution which assumes the values in v with equal probability.
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unidinv (x, v) [Function File]
For each component of x, compute the quantile (the inverse of the CDF') at x of the univariate
discrete distribution which assumes the values in v with equal probability

unidpdf (x, v) [Function File]
For each element of x, compute the probability density function (PDF) at x of a univariate
discrete distribution which assumes the values in v with equal probability.

unifcdf (x, a, b) [Function File]
Return the CDF at x of the uniform distribution on [a, b], i.e., PROB (uniform (a, b) <= x).

Default values are a =0, b = 1.

unifinv (x, a, b) [Function File]
For each element of x, compute the quantile (the inverse of the CDF) at x of the uniform
distribution on [a, b].

Default values are a = 0, b = 1.

unifpdf (x, a, b) [Function File]
For each element of x, compute the PDF at x of the uniform distribution on [a, b].

Default values are a =0, b = 1.

wblcdf (x, scale, shape) [Function File]
Compute the cumulative distribution function (CDF) at x of the Weibull distribution with
shape parameter scale and scale parameter shape, which is
1 — exp(—(x/shape)*“*'*)
for x > 0.
wblinv (x, scale, shape) [Function File]

Compute the quantile (the inverse of the CDF) at x of the Weibull distribution with shape
parameter scale and scale parameter shape.

wblpdf (x, scale, shape) [Function File]
Compute the probability density function (PDF) at x of the Weibull distribution with shape
parameter scale and scale parameter shape which is given by

scale - shapefscalexscalefl exp(—(x/shape)smle)

for x > 0.
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24.7 Random Number Generation

Octave can generate random numbers from a large number of distributions. The random number
generators are based on the random number generators described in Section 16.4 [Special Utility
Matrices], page 199.

The following table summarizes the available random number generators (in alphabetical
order).

Distribution Function

Beta Distribution betarnd
Binomial Distribution binornd
Cauchy Distribution cauchy_rnd
Chi-Square Distribution chi2rnd
Univariate Discrete Distribution discrete_rnd
FEmpirical Distribution empirical_rnd
Exponential Distribution exprnd

F Distribution frnd

Gamma Distribution gamrnd
Geometric Distribution geornd
Hypergeometric Distribution hygernd
Laplace Distribution laplace_rnd
Logistic Distribution logistic_rnd
Log-Normal Distribution lognrnd

Pascal Distribution nbinrnd
Univariate Normal Distribution normrnd
Poisson Distribution poissrnd

t (Student) Distribution trnd
Univariate Discrete Distribution unidrnd
Uniform Distribution unifrnd
Weibull Distribution wblrnd

Wiener Process wienrnd
betarnd (a, b, r, ¢) [Function File]
betarnd (a, b, sz) [Function File]

Return an r by ¢ or size (sz) matrix of random samples from the Beta distribution with
parameters a and b. Both a and b must be scalar or of size r by c.

If r and ¢ are omitted, the size of the result matrix is the common size of a and b.

binornd (n, p, r, c) [Function File]

binornd (n, p, sz) [Function File]
Return an r by ¢ or a size (sz) matrix of random samples from the binomial distribution
with parameters n and p. Both n and p must be scalar or of size r by c.

If r and ¢ are omitted, the size of the result matrix is the common size of n and p.

cauchy_rnd (lambda, sigma, r, c) [Function File]

cauchy_rnd (lambda, sigma, sz) [Function File]
Return an r by ¢ or a size (sz) matrix of random samples from the Cauchy distribution
with parameters lambda and sigma which must both be scalar or of size r by c.

If r and ¢ are omitted, the size of the result matrix is the common size of lambda and sigma.

chi2rnd (n, r, c) [Function File]
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chi2rnd (n, sz) [Function File]
Return an r by ¢ or a size (sz) matrix of random samples from the chisquare distribution
with n degrees of freedom. n must be a scalar or of size r by c.

If r and ¢ are omitted, the size of the result matrix is the size of n.

discrete_rnd (n, v, p) [Function File]
discrete_rnd (v, p, r, C) [Function File]
discrete_rnd (v, p, sz) [Function File]

Generate a row vector containing a random sample of size n from the univariate distribution
which assumes the values in v with probabilities p. n must be a scalar.

If r and c are given create a matrix with r rows and ¢ columns. Or if sz is a vector, create a
matrix of size sz.

empirical_rnd (n, data) [Function File]
empirical_rnd (data, r, c) [Function File]
empirical_rnd (data, sz) [Function File]

Generate a bootstrap sample of size n from the empirical distribution obtained from the
univariate sample data.

If r and c are given create a matrix with r rows and ¢ columns. Or if sz is a vector, create a
matrix of size sz.

exprnd (lambda, r, c) [Function File]

exprnd (lambda, sz) [Function File]
Return an r by ¢ matrix of random samples from the exponential distribution with parameter
lambda, which must be a scalar or of size r by c. Or if sz is a vector, create a matrix of size
SZ.

If r and ¢ are omitted, the size of the result matrix is the size of lambda.

frnd (m, n, r, ¢) [Function File]

frnd (m, n, sz) [Function File]
Return an r by ¢ matrix of random samples from the F distribution with m and n degrees of
freedom. Both m and n must be scalar or of size r by c. If sz is a vector the random samples
are in a matrix of size sz.

If r and ¢ are omitted, the size of the result matrix is the common size of m and n.

gamrnd (a, b, r, c) [Function File]

gamrnd (a, b, sz) [Function File]
Return an r by ¢ or a size (sz) matrix of random samples from the Gamma distribution
with parameters a and b. Both a and b must be scalar or of size r by c.

If r and ¢ are omitted, the size of the result matrix is the common size of a and b.

See also: gamma, gammaln, gammainc, gampdf, gamcdf, gaminv.

geornd (p, r, ¢) [Function File]

geornd (p, sz) [Function File]
Return an r by ¢ matrix of random samples from the geometric distribution with parameter
p, which must be a scalar or of size r by c.

If r and ¢ are given create a matrix with r rows and ¢ columns. Or if sz is a vector, create a
matrix of size sz.
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hygernd (t, m, n, r, c) [Function File]
hygernd (t, m, n, sz) [Function File]
hygernd (t, m, n) [Function File]

Return an r by ¢ matrix of random samples from the hypergeometric distribution with
parameters t, m, and n.

The parameters t, m, and n must positive integers with m and n not greater than ¢t.

The parameter sz must be scalar or a vector of matrix dimensions. If sz is scalar, then a sz
by sz matrix of random samples is generated.

laplace_rnd (r, c) [Function File]

laplace_rnd (sz); [Function File]
Return an r by ¢ matrix of random numbers from the Laplace distribution. Or if sz is a
vector, create a matrix of sz.

logistic_rnd (r, c) [Function File]

logistic_rnd (sz) [Function File]
Return an r by ¢ matrix of random numbers from the logistic distribution. Or if sz is a
vector, create a matrix of sz.

lognrnd (mu, sigma, r, c) [Function File]

lognrnd (mu, sigma, sz) [Function File]
Return an r by ¢ matrix of random samples from the lognormal distribution with parameters
mu and sigma. Both mu and sigma must be scalar or of size r by c¢. Or if sz is a vector,
create a matrix of size sz.

If r and ¢ are omitted, the size of the result matrix is the common size of mu and sigma.

nbinrnd (n, p, r, ¢) [Function File]

nbinrnd (n, p, sz) [Function File]
Return an r by ¢ matrix of random samples from the Pascal (negative binomial) distribution
with parameters n and p. Both n and p must be scalar or of size r by c.

If r and ¢ are omitted, the size of the result matrix is the common size of n and p. Or if sz
is a vector, create a matrix of size sz.

normrnd (m, s, I, C) [Function File]
normrnd (m, s, sz) [Function File]
Return an r by c or size (sz) matrix of random samples from the normal distribution with
parameters mean m and standard deviation s. Both m and s must be scalar or of size r by c.

If r and ¢ are omitted, the size of the result matrix is the common size of m and s.

poissrnd (lambda, r, c) [Function File]
Return an r by ¢ matrix of random samples from the Poisson distribution with parameter
lambda, which must be a scalar or of size r by c.

If r and ¢ are omitted, the size of the result matrix is the size of lambda.

trnd (n, r, c) [Function File]
trnd (n, sz) [Function File]
Return an r by ¢ matrix of random samples from the t (Student) distribution with n degrees
of freedom. n must be a scalar or of size r by c¢. Or if sz is a vector create a matrix of size sz.

If r and ¢ are omitted, the size of the result matrix is the size of n.
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unidrnd (mx); [Function File]
unidrnd (mx, v); [Function File]
unidrnd (mx, m, n, ...); [Function File]

Return random values from discrete uniform distribution, with maximum value(s) given by
the integer mx, which may be a scalar or multidimensional array.

If mx is a scalar, the size of the result is specified by the vector v, or by the optional arguments

m, n, . ... Otherwise, the size of the result is the same as the size of mx.
unifrnd (e, b, r, c) [Function File]
unifrnd (a, b, sz) [Function File]

Return an r by ¢ or a size (sz) matrix of random samples from the uniform distribution
on [a, b]. Both a and b must be scalar or of size r by c.

If r and ¢ are omitted, the size of the result matrix is the common size of a and b.

wblrnd (scale, shape, r, c) [Function File]

wblrnd (scale, shape, sz) [Function File]
Return an r by ¢ matrix of random samples from the Weibull distribution with parameters
scale and shape which must be scalar or of size r by c. Or if sz is a vector return a matrix
of size sz.

If r and ¢ are omitted, the size of the result matrix is the common size of alpha and sigma.

wienrnd (t, d, n) [Function File]
Return a simulated realization of the d-dimensional Wiener Process on the interval [0, t]. If d
is omitted, d = 1 is used. The first column of the return matrix contains time, the remaining
columns contain the Wiener process.

The optional parameter n gives the number of summands used for simulating the process
over an interval of length 1. If n is omitted, n = 1000 is used.
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25 Financial Functions

fv (r, n, p, 1, method) [Function File]
Return the future value at the end of period n of an investment which consists of n payments
of p in each period, assuming an interest rate r.

The optional argument I may be used to specify an additional lump-sum payment.

The optional argument method may be used to specify whether the payments are made at
the end ("e", default) or at the beginning ("b") of each period.

Note that the rate r is specified as a fraction (i.e., 0.05, not 5 percent).

fvl (r,n, 1) [Function File]
Return the future value at the end of n periods of an initial lump sum investment I, given a
per-period interest rate r.

Note that the rate r is specified as a fraction (i.e., 0.05, not 5 percent).

irr (p, 1) [Function File]
Return the internal rate of return of a series of payments p from an initial investment i (i.e.,
the solution of npv (r, p) = i. If the second argument is omitted, a value of 0 is used.

See also: npv, pv, rate.

nper (r, p, a, 1, method) [Function File]
Return the number of regular payments of p necessary to amortize a loan of amount a and
interest r.

The optional argument I may be used to specify an additional lump-sum payment of I made
at the end of the amortization time.

The optional argument method may be used to specify whether payments are made at the
end ("e", default) or at the beginning ("b") of each period.

Note that the rate r is specified as a fraction (i.e., 0.05, not 5 percent).

See also: pv, pmt, rate, npv.

npv (r, p, 1) [Function File]
Returns the net present value of a series of irregular (i.e., not necessarily identical) payments
p which occur at the ends of n consecutive periods. r specifies the one-period interest rates
and can either be a scalar (constant rates) or a vector of the same length as p.

The optional argument i may be used to specify an initial investment.

Note that the rate r is specified as a fraction (i.e., 0.05, not 5 percent).

See also: irr, pv.

pmt (r, n, a, 1, method) [Function File]
Return the amount of periodic payment necessary to amortize a loan of amount a with interest
rate r in n periods.

The optional argument | may be used to specify a terminal lump-sum payment.

The optional argument method may be used to specify whether payments are made at the
end ("e", default) or at the beginning ("b") of each period.

See also: pv, nper, rate.
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pv (zr, n, p, 1, method) [Function File]
Returns the present value of an investment that will pay off p for n consecutive periods,
assuming an interest r.

The optional argument I may be used to specify an additional lump-sum payment made at
the end of n periods.

The optional argument method may be used to specify whether payments are made at the
end ("e", default) or at the beginning ("b") of each period.

Note that the rate r is specified as a fraction (i.e., 0.05, not 5 percent).

See also: pmt, nper, rate, npv.

pvl (r, n, p) [Function File]
Return the present value of an investment that will pay off p in one lump sum at the end of
n periods, given the interest rate r.

Note that the rate r is specified as a fraction (i.e., 0.05, not 5 percent).

rate (n, p, v, 1, method) [Function File]
Return the rate of return on an investment of present value v which pays p in n consecutive
periods.

The optional argument | may be used to specify an additional lump-sum payment made at
the end of n periods.

The optional string argument method may be used to specify whether payments are made
at the end ("e", default) or at the beginning ("b") of each period.

See also: pv, pmt, nper, npv.

vol (x, m, n) [Function File]
Return the volatility of each column of the input matrix x. The number of data sets per
period is given by m (e.g. the number of data per year if you want to compute the volatility
per year). The optional parameter n gives the number of past periods used for computation,
if it is omitted, a value of 1 is used. If ¢ is the number of rows of x, vol returns the volatility
from n*m to t.
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26 Sets

Octave has a limited set of functions for managing sets of data, where a set is defined as a
collection of unique elements. In Octave a set is represented as a vector of numbers.

create_set (x) [Function File]
Return a row vector containing the unique values in x, sorted in ascending order. For example,
create_set ([ 1, 2; 3, 4; 4, 2 1)
= [1, 2, 3, 4]

See also: union, intersection, complement.

unique (x) [Function File]
Return the unique elements of x, sorted in ascending order. If x is a row vector, return a row
vector, but if x is a column vector or a matrix return a column vector.

unique (4, rows’) [Function File]
Return the unique rows of A, sorted in ascending order.

ly, i, jl = unique (x) [Function File]
Return index vectors i and j such that x(i)==y and y(j)==x.

See also: union, intersect, setdiff, setxor, ismember.

26.1 Set Operations

Octave supports the basic set operations. That is, Octave can compute the union, intersection,
complement, and difference of two sets. Octave can also supports the Fzclusive Or set operation,
and membership determination. The functions for set operations all work in pretty much the
same way. As an example, assume that x and y contains two sets, then

union(x, y)

computes the union of the two sets.

ismember (4, S) [Function File]
Return a matrix the same shape as A which has 1 if A(i,j) isin S or 0 if it isn’t.

See also: unique, union, intersection, setxor, setdiff.

union (x, y) [Function File]
Return the set of elements that are in either of the sets x and y. For example,
union ([ 1, 2, 41, [ 2, 3, 51)
= [1, 2, 3, 4, 51

See also: create_set, intersection, complement.

intersect (a, b) [Function File]

[c, ia, ib] = intersect (a, b) [Function File]
Return the elements in both a and b, sorted in ascending order. If a and b are both column
vectors return a column vector, otherwise return a row vector.

Return index vectors ia and ib such that a(ia)==c and b(ib)==c.

See also: unique, union, setxor, setdiff, ismember.

complement (x, y) [Function File]
Return the elements of set y that are not in set x. For example,
complement ([ 1, 2, 31, [ 2, 3, 51)
= b

See also: create_set, union, intersection.
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setdiff (a, b) [Function File]
setdiff (a, b, "rows") [Function File]
Return the elements in a that are not in b, sorted in ascending order. If a and b are both
column vectors return a column vector, otherwise return a row vector.
Given the optional third argument ‘"rows"’, return the rows in a that are not in b, sorted in
ascending order by rows.

See also: unique, union, intersect, setxor, ismember.

setxor (a, b) [Function File]
Return the elements exclusive to a or b, sorted in ascending order. If a and b are both column
vectors return a column vector, otherwise return a row vector.

See also: unique, union, intersect, setdiff, ismember.
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27 Polynomial Manipulations

In Octave, a polynomial is represented by its coefficients (arranged in descending order). For
example, a vector ¢ of length N + 1 corresponds to the following polynomial of order N

p(z) =z + ...+ enT + ey

27.1 Evaluating Polynomials
The value of a polynomial represented by the vector ¢ can be evaluated at the point x very
easily, as the following example shows.
N = length(c)-1;
val = dot( x."(N:-1:0), c );
While the above example shows how easy it is to compute the value of a polynomial, it isn’t the

most stable algorithm. With larger polynomials you should use more elegant algorithms, such
as Horner’s Method, which is exactly what the Octave function polyval does.

In the case where x is a square matrix, the polynomial given by c is still well-defined. As
when x is a scalar the obvious implementation is easily expressed in Octave, but also in this case
more elegant algorithms perform better. The polyvalm function provides such an algorithm.

polyval (c, x) [Function File]
Evaluate a polynomial.
polyval (c, x) will evaluate the polynomial at the specified value of x.

If x is a vector or matrix, the polynomial is evaluated at each of the elements of x.

See also: polyvalm, poly, roots, conv, deconv, residue, filter, polyderiv, polyinteg.

polyvalm (c, x) [Function File]
Evaluate a polynomial in the matrix sense.

polyvalm (c, x) will evaluate the polynomial in the matrix sense, i.e. matrix multiplication
is used instead of element by element multiplication as is used in polyval.

The argument x must be a square matrix.

See also: polyval, poly, roots, conv, deconv, residue, filter, polyderiv, and polyinteg.

27.2 Finding Roots

Octave can find the roots of a given polynomial. This is done by computing the companion
matrix of the polynomial (see the compan function for a definition), and then finding its eigen-
values.

roots (v) [Function File]
For a vector v with N components, return the roots of the polynomial

N-1
V12 + - +un_12+ UN.

As an example, the following code finds the roots of the quadratic polynomial

p(z) = 2* — 5.
c = [13 O: _5];
roots(c)
= 2.2361
= -2.2361

Note that the true result is £+/5 which is roughly 42.2361.

See also: compan.
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compan (c) [Function File]
Compute the companion matrix corresponding to polynomial coefficient vector c.

The companion matrix is

—cyfer —czfer oo —en/er —enqi/al
1 0 0 0
A= 0 1 0 0
0 0 1 0

The eigenvalues of the companion matrix are equal to the roots of the polynomial.

See also: poly, roots, residue, conv, deconv, polyval, polyderiv, polyinteg.

27.3 Products of Polynomials

conv (a, b) [Function File]
Convolve two vectors.
y = conv (a, b) returns a vector of length equal to length (a) + length (b) - 1. If a and
b are polynomial coefficient vectors, conv returns the coefficients of the product polynomial.

See also: deconv, poly, roots, residue, polyval, polyderiv, polyinteg.

deconv (y, a) [Function File]
Deconvolve two vectors.

[b, r] = deconv (y, a) solves for b and r such that y = conv (a, b) + r.
If y and a are polynomial coefficient vectors, b will contain the coefficients of the polynomial
quotient and r will be a remainder polynomial of lowest order.

See also: conv, poly, roots, residue, polyval, polyderiv, polyinteg.

y = conv2 (a, b, shape) [Loadable Function)]
y = conv2 (v1, v2, M, shape) [Loadable Function]
Returns 2D convolution of a and b where the size of ¢ is given by
shape= "full’
returns full 2-D convolution
shape= ’same’
same size as a. ‘central’ part of convolution
shape= "valid’
only parts which do not include zero-padded edges
By default shape is ’full’. When the third argument is a matrix returns the convolution of
the matrix M by the vector vl in the column direction and by vector v2 in the row direction
q = polygcd (b, a, tol) [Function File]

Find greatest common divisor of two polynomials. This is equivalent to the polynomial found
by multiplying together all the common roots. Together with deconv, you can reduce a ratio
of two polynomials. Tolerance defaults to

sqrt(eps) .
Note that this is an unstable algorithm, so don’t try it on large polynomials.

Example
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polygecd (poly(1:8), poly(3:12)) - poly(3:8)

= [0, 0,0, 0,0,0,0]1

deconv (poly(1:8), polygcd (poly(1:8), poly(3:12))) - poly(1:2)
= [0, 0,01

See also: poly, polyinteg, polyderiv, polyreduce, roots, conv, deconv, residue, filter, polyval,
and polyvalm.

[r, p, k, e] = residue (b, a) [Function File]
Compute the partial fraction expansion for the quotient of the polynomials, b and a.

N
_ T'm N—i
Als) = Z +;kts )

m=1 (S - pm)fn

where M is the number of poles (the length of the r, p, and e), the k vector is a polynomial

of order N — 1 representing the direct contribution, and the e vector specifies the multiplicity
of the mth residue’s pole.

For example,

b=1[1, 1, 1]1;
a = [1: -5, 8, _4];

[r, p, k, el residue (b, a);
= r = [-2; 7; 3]

= p=[2; 2; 1]

= k = []1(0x0)

= e = [1; 2; 1]

which represents the following partial fraction expansion

s°+s+1 _ -2 7T 3
s3—5s2+8s—4 s—2 (s—2)2 s-—1

[b, a] = residue (r, p, k) [Function File]

[b, al] = residue (r, p, k, e) [Function File]
Compute the reconstituted quotient of polynomials, b(s)/a(s), from the partial fraction ex-
pansion represented by the residues, poles, and a direct polynomial specified by r, p and k,
and the pole multiplicity e.

If the multiplicity, e, is not explicitly specified the multiplicity is determined by the script
mpoles.m.

For example,

r = [-2; 7; 3];
p = [2; 2; 1];
k = [1, 0];

[b, a] = residue (r, p, k);
= b= [1, -5, 9, -3, 1]
= a = [19 _5’ 8, _4]

where mpoles.m is used to determine e = [1; 2; 1]

Alternatively the multiplicity may be defined explicitly, for example,
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r = [7; 3; -2];
p = [2; 1; 2];
k = [1, 0];

e = [2; 1; 1];

[b, a] = residue (r, p, k, e);
= b=1[1, -5, 9, -3, 1]
= a = [1, -5, 8, -4]

which represents the following partial fraction expansion

-2 7 3 s* —5s®+9s2 —3s+1

s—2+(3—2)2+s—1+8: 53 — 552485 — 4

See also: poly, roots, conv, deconv, mpoles, polyval, polyderiv, polyinteg.

27.4 Derivatives and Integrals

Octave comes with functions for computing the derivative and the integral of a polynomial. The
functions polyderiv and polyint both return new polynomials describing the result. As an
example we’ll compute the definite integral of p(z) = 2* 4+ 1 from 0 to 3.

c = [1, 0, 1];

integral = polyint(c);

area = polyval(integral, 3) - polyval(integral, 0)

= 12
polyderiv (c) [Function File]
[q] = polyderiv (b, a) [Function File]
[g, r] = polyderiv (b, a) [Function File]

Return the coefficients of the derivative of the polynomial whose coefficients are given by
vector c¢. If a pair of polynomials is given b and a, the derivative of the product is returned
in ¢, or the quotient numerator in g and the quotient denominator in r.

See also: poly, polyinteg, polyreduce, roots, conv, deconv, residue, filter, polyged, polyval,
polyvalm.

polyder (c) [Function File]
[g] = polyder (b, a) [Function File]
[g, r] = polyder (b, a) [Function File]

See polyderiv.

polyint (c, k) [Function File]
Return the coefficients of the integral of the polynomial whose coefficients are represented by
the vector ¢. The variable k is the constant of integration, which by default is set to zero.

See also: poly, polyderiv, polyreduce, roots, conv, deconv, residue, filter, polyval, and poly-
valm.

27.5 Polynomial Interpolation

Octave comes with good support for various kinds of interpolation, most of which are described
in Chapter 28 [Interpolation], page 323. One simple alternative to the functions described in
the aforementioned chapter, is to fit a single polynomial to some given data points. To avoid a
highly fluctuating polynomial, one most often wants to fit a low-order polynomial to data. This
usually means that it is necessary to fit the polynomial in a least-squares sense, which is what
the polyfit function does.



Chapter 27: Polynomial Manipulations 321

[p, s] = polyfit (x, y, n) [Function File]
Return the coefficients of a polynomial p(x) of degree n that minimizes

N
Z(p(wz) - yi)2
i=1
to best fit the data in the least squares sense.
The polynomial coefficients are returned in a row vector.

If two output arguments are requested, the second is a structure containing the following
fields:

R The Cholesky factor of the Vandermonde matrix used to compute the polynomial
coefficients.

X The Vandermonde matrix used to compute the polynomial coefficients.

df The degrees of freedom.

normr The norm of the residuals.

yf The values of the polynomial for each value of x.

In situations where a single polynomial isn’t good enough, a solution is to use several poly-
nomials pieced together. The function mkpp creates a piece-wise polynomial, ppval evaluates
the function created by mkpp, and unmkpp returns detailed information about the function.

The following example shows how to combine two linear functions and a quadratic into one
function. Each of these functions is expressed on adjoined intervals.
X = [_2, -1, 1, 2] 5
p=1[00, 1, 0;

1, -2, 1;
O, _1: 1 ];
pp = mkpp(x, p);

xi = linspace(-2, 2, 50);
yi = ppval(pp, xi);
plot(xi, yi);

yi = ppval (pp, xi) [Function File]
Evaluate piece-wise polynomial pp at the points xi. If pp.d is a scalar greater than 1, or an
array, then the returned value yi will be an array that is d1, d1, ..., dk, length (xi)].

See also: mkpp, unmkpp, spline.

pp = mkpp (%, p) [Function File]

pp mkpp (x, p, d) [Function File]
Construct a piece-wise polynomial structure from sample points x and coefficients p. The ith
row of p, p (i,:), contains the coefficients for the polynomial over the i-th interval, ordered
from highest to lowest. There must be one row for each interval in x, so rows (p) == length
(x) - 1.

You can concatenate multiple polynomials of the same order over the same set of intervals
using p = [ p1; p2; ...; pd ]. In this case, rows (p) == d * (length (x) - 1).

d specifies the shape of the matrix p for all except the last dimension. If d is not specified it
will be computed as round (rows (p) / (length (x) - 1)) instead.

See also: unmkpp, ppval, spline.



322 GNU Octave

[x, p, n, k, d] = unmkpp (pp) [Function File]
Extract the components of a piece-wise polynomial structure pp. These are as follows:
b's Samples points.
p Polynomial coefficients for points in sample interval. p (i, :) contains the co-

efficients for the polynomial over interval i ordered from highest to lowest. If
d>1, p (r, i, :) contains the coefficients for the r-th polynomial defined on
interval i. However, this is stored as a 2-D array such that ¢ = reshape (p (:,
j), n, d) gives ¢ (i, r) is the j-th coefficient of the r-th polynomial over the
i-th interval.

n Number of polynomial pieces.
k Order of the polynomial plus 1.
d Number of polynomials defined for each interval.

See also: mkpp, ppval, spline.

27.6 Miscellaneous Functions

poly (a) [Function File]
If a is a square N-by-N matrix, poly (a) is the row vector of the coefficients of det (z *
eye (N) - a), the characteristic polynomial of a. As an example we can use this to find the
eigenvalues of a as the roots of poly (a).

roots (poly(eye(3)))
= 1.00000 + 0.00000i
= 1.00000 - 0.000001
= 1.00000 + 0.00000i
In real-life examples you should, however, use the eig function for computing eigenvalues.

If x is a vector, poly (x) is a vector of coefficients of the polynomial whose roots are the
elements of x. That is, of ¢ is a polynomial, then the elements of d = roots (poly (c)) are
contained in c¢. The vectors ¢ and d are, however, not equal due to sorting and numerical
erTors.

See also: eig, roots.

polyout (c, x) [Function File]
Write formatted polynomial

c(z) ="+ ...+ cpr+ e
and return it as a string or write it to the screen (if nargout is zero). x defaults to the string
n s n .

See also: polyval, polyvalm, poly, roots, conv, deconv, residue, filter, polyderiv, and polyinteg.

polyreduce (c) [Function File]
Reduces a polynomial coefficient vector to a minimum number of terms by stripping off any
leading zeros.

See also: poly, roots, conv, deconv, residue, filter, polyval, polyvalm, polyderiv, polyinteg.
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28 Interpolation

28.1 One-dimensional Interpolation

Octave supports several methods for one-dimensional interpolation, most of which are described
in this section. Section 27.5 [Polynomial Interpolation|, page 320 and Section 29.4 [Interpolation

on

yi
yi
yi
pp

Scattered Datal, page 338 describes further methods.

= interpl (x, y, xi) [Function File]
= interpl (..., method) [Function File]
= interpl (..., extrap) [Function File]
= interpl (..., 'pp) [Function File]

One-dimensional interpolation. Interpolate y, defined at the points x, at the points xi. The
sample points x must be strictly monotonic. If y is an array, treat the columns of y separately.

Method is one of:

‘nearest”  Return the nearest neighbour.

"linear’ Linear interpolation from nearest neighbours

"pchip’ Piece-wise cubic hermite interpolating polynomial

"cubic’ Cubic interpolation from four nearest neighbours

‘spline’ Cubic spline interpolation—smooth first and second derivatives throughout the
curve

Appending "*’ to the start of the above method forces interpl to assume that x is uniformly
spaced, and only x (1) and x (2) are referenced. This is usually faster, and is never slower.
The default method is ’linear’.

If extrap is the string ’extrap’, then extrapolate values beyond the endpoints. If extrap is a
number, replace values beyond the endpoints with that number. If extrap is missing, assume
NA.

If the string argument pp’ is specified, then xi should not be supplied and interpl returns
the piece-wise polynomial that can later be used with ppval to evaluate the interpolation.
There is an equivalence, such that ppval (interpl (x, y, method, ’pp’), xi) == interpl
(x, y, xi, method, ’extrap’).

An example of the use of interp1 is

xf=[0:0.05:10]; yf = sin(2*pi*xf/5);

xp=[0:10]; yp = sin(2*pi*xxp/5);

lin=interpl(xp,yp,xf);

spl=interpl(xp,yp,xf,’spline’);

cub=interpl(xp,yp,xf,’cubic’);

near=interpl(xp,yp,xf, ’nearest’);

plot(xf,yf,"r",xf,lin,"g",xf,spl,"b",
xf,cub,"c",xf,near,"n" ,xp,yp,"r*");

legend ("original","linear","spline","cubic","nearest")

See also: interpft.

There are some important differences between the various interpolation methods. The ’spline’

method enforces that both the first and second derivatives of the interpolated values have a
continuous derivative, whereas the other methods do not. This means that the results of the
‘spline’ method are generally smoother. If the function to be interpolated is in fact smooth, then
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‘spline’ will give excellent results. However, if the function to be evaluated is in some manner
discontinuous, then ’pchip’ interpolation might give better results.

This can be demonstrated by the code

t = -2:2;

dt = 1;

ti =-2:0.025:2;
dti = 0.025;

y = sign(t);

ys = interpl(t,y,ti,’spline’);
yp = interpl(t,y,ti,’pchip’);

ddys = diff(diff(ys)./dti)./dti;
ddyp = diff(diff(yp)./dti)./dti;
figure(1);

plot (ti, ys,’r-’, ti, yp,’g-");
legend(’spline’,’pchip’,4);
figure(2);

plot (ti, ddys,’r+’, ti, ddyp,’g*’);
legend (’spline’, ’pchip’);

The result of which can be seen in Figure 28.1 and Figure 28.2.

spline
pcr‘up —————

15 2

Figure 28.1: Comparison of 'phcip’ and ’spline’ interpolation methods for a step function
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spll‘ne *
pchip  +

Figure 28.2: Comparison of the second derivate of the ’phcip’ and ’spline’ interpolation
methods for a step function

Fourier interpolation, is a resampling technique where a signal is converted to the frequency
domain, padded with zeros and then reconverted to the time domain.

interpft (x, n) [Function File]

interpft (x, n, dim) [Function File]
Fourier interpolation. If x is a vector, then x is resampled with n points. The data in x
is assumed to be equispaced. If x is an array, then operate along each column of the array
separately. If dim is specified, then interpolate along the dimension dim.

interpft assumes that the interpolated function is periodic, and so assumptions are made
about the end points of the interpolation.

See also: interpl.

There are two significant limitations on Fourier interpolation. Firstly, the function signal
is assumed to be periodic, and so non periodic signals will be poorly represented at the edges.
Secondly, both the signal and its interpolation are required to be sampled at equispaced points.
An example of the use of interpft is

t =0:0.3: pi; dt = t(2)-t(1);
n = length (t); k = 100;
ti = t(1) + [0 : k-1]*dt*n/k;
y = sin (4%t + 0.3) .* cos (3xt - 0.1);
yp = sin (4%ti + 0.3) .* cos (3*ti - 0.1);
plot (ti, yp, ’g’, ti, interpi(t, y, ti, ’spline’), ’b’,
ti, interpft (y, k), ’c’, t, y, ’r+’);
legend (’sin(4t+0.3)cos(3t-0.1’,’spline’,’interpft’,’data’);

which demonstrates the poor behavior of Fourier interpolation for non periodic functions, as
can be seen in Figure 28.3.
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Figure 28.3: Comparison of interpl and interpft for non periodic data

In additional the support function spline and lookup that underlie the interpl function
can be called directly.

pp = spline (x,y) [Function File]

yi = spline (x, y, xi) [Function File]
Returns the cubic spline interpolation of y at the point x. Called with two arguments the
piece-wise polynomial pp that may later be used with ppval to evaluate the polynomial at
specific points.
The variable x must be a vector of length n, and y can be either a vector or array. In the
case where y is a vector, it can have a length of either n or n + 2. If the length of y is n,
then the 'not-a-knot’ end condition is used. If the length of y is n + 2, then the first and last
values of the vector y are the first derivative of the cubic spline at the end-points.

If y is an array, then the size of y must have the form

[817827'” 78167”]
or
[817827"',8]@,77,—’—2}

. The array is then reshaped internally to a matrix where to leading dimension is given by
S189 -+ Sk

and each row this matrix is then treated separately. Note that this is exactly the opposite
treatment than interpl and is done for compatibility.

Called with a third input argument, spline evaluates the piece-wise spline at the points xi.
There is an equivalence between ppval (spline (x, y), xi) and spline (x, y, xi).

See also: ppval, mkpp, unmkpp.

The lookup is used by other interpolation function to identify the points of the original data
that are closest to the current point of interest.

idx = lookup (table, y) [Function File]
Lookup values in a sorted table. Usually used as a prelude to interpolation.
If table is strictly increasing and idx = lookup (table, y), then table(idx(i)) <=y(i) <
table(idx(i+1)) for all y(i) within the table. If y(i) is before the table, then idx (i) is
0. If y(1) is after the table then idx(i) is table(n).
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If the table is strictly decreasing, then the tests are reversed. There are no guarantees for
tables which are non-monotonic or are not strictly monotonic.

To get an index value which lies within an interval of the table, use:
idx = lookup (table(2:length(table)-1), y) + 1

This expression puts values before the table into the first interval, and values after the table
into the last interval.

28.2 Multi-dimensional Interpolation

There are three multi-dimensional interpolation functions in Octave, with similar capabilities.
Methods using Delaunay tessellation are described in Section 29.4 [Interpolation on Scattered
Data|, page 338.

z1i
zi
zi
zi
zi

vi
vi
vi
vi

= interp2 (x, y, z, xi, yi) [Function File]
= interp2 (Z, xi, yi) [Function File]
= interp2 (Z, n) [Function File]
= interp2 (..., method) [Function File]
= interp2 (..., method, extrapval) [Function File]

Two-dimensional interpolation. x, y and z describe a surface function. If x and y are vectors
their length must correspondent to the size of z. x and Yy must be monotonic. If they are
matrices they must have the meshgrid format.

interp2 (%, y, Z, xi, yi, ...)
Returns a matrix corresponding to the points described by the matrices XI, YI.
If the last argument is a string, the interpolation method can be specified. The
method can be ’linear’, 'nearest’ or ’cubic’. If it is omitted ’linear’ interpolation
is assumed.

interp2 (z, xi, yi)
Assumes x = 1:rows (z) and y = 1:columns (z)

interp2 (z, n)
Interleaves the Matrix z n-times. If n is omitted a value of n = 1 is assumed.

The variable method defines the method to use for the interpolation. It can take one of the
values

'nearest”  Return the nearest neighbor.

"linear’ Linear interpolation from nearest neighbors.

"pchip’ Piece-wise cubic hermite interpolating polynomial (not implemented yet).

"cubic’ Cubic interpolation from four nearest neighbors.

"spline’ Cubic spline interpolation—smooth first and second derivatives throughout the
curve.

If a scalar value extrapval is defined as the final value, then values outside the mesh as set to
this value. Note that in this case method must be defined as well. If extrapval is not defined
then NA is assumed.

See also: interpl.

= interp3 (x, y,z, v, xi, yi, zi) [Function File]
= interp3 (v, xi, yi, z:L) [Function File]
= interp3 (v, m) [Function File]
= interp3 (v) [Function File]
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vi
vi

vi
vi
vi
vi
vi
vi

= interp3 (..., method) [Function File]
interp3 (..., method, extrapval) [Function File]
Perform 3-dimensional interpolation. Each element of then 3-dimensional array v represents
a value at a location given by the parameters x, y, and z. The parameters x, x, and z are
either 3-dimensional arrays of the same size as the array v in the 'meshgrid’ format or vectors.
The parameters xi, etc respect a similar format to x, etc, and they represent the points at
which the array vi is interpolated.

If x, y, z are omitted, they are assumed to be x =1 : size (v, 2),y =1 : size (v, 1) and
z =1 : size (v, 3). If m is specified, then the interpolation adds a point half way between
each of the interpolation points. This process is performed m times. If only v is specified,
then m is assumed to be 1.

Method is one of:

‘nearest’”  Return the nearest neighbour.

"linear’ Linear interpolation from nearest neighbours.

‘cubic’ Cubic interpolation from four nearest neighbours (not implemented yet).

"spline’ Cubic spline interpolation—smooth first and second derivatives throughout the
curve.

The default method is ’linear’.

If extrap is the string ’extrap’, then extrapolate values beyond the endpoints. If extrap is a
number, replace values beyond the endpoints with that number. If extrap is missing, assume
NA.

See also: interpl, interp2, spline, meshgrid.

= interpn (x1,x2, ..., v, y1,y2, ...) [Function File]
= interpn (v, y1,y2, ...) [Function File]
= interpn (v, m) [Function File]
= interpn (v) [Function File]
= interpn (..., method) [Function File]
= interpn (..., method, extrapval) [Function File]
Perform n-dimensional interpolation, where n is at least two. Fach element of then n-
dimensional array v represents a value at a location given by the parameters x1, x2, ..., xn.
The parameters x1, x2, ..., xn are either n-dimensional arrays of the same size as the array

v in the 'ndgrid’ format or vectors. The parameters yI, etc respect a similar format to xI,
etc, and they represent the points at which the array vi is interpolated.
If x1, . .., xn are omitted, they are assumed to be x1 = 1 : size (v, 1), etc. If mis specified,

then the interpolation adds a point half way between each of the interpolation points. This
process is performed m times. If only v is specified, then m is assumed to be 1.

Method is one of:

‘nearest”  Return the nearest neighbour.

"linear’ Linear interpolation from nearest neighbours.

"cubic’ Cubic interpolation from four nearest neighbours (not implemented yet).

‘spline’ Cubic spline interpolation—smooth first and second derivatives throughout the
curve.

The default method is ’linear’.



Chapter 28: Interpolation 329

If extrap is the string ’extrap’, then extrapolate values beyond the endpoints. If extrap is a
number, replace values beyond the endpoints with that number. If extrap is missing, assume
NA.

See also: interpl, interp2, spline, ndgrid.

A significant difference between interpn and the other two multidimensional interpolation
functions is the fashion in which the dimensions are treated. For interp2 and interp3, the
'y’ axis is considered to be the columns of the matrix, whereas the 'x’ axis corresponds to the
rows of the array. As Octave indexes arrays in column major order, the first dimension of any
array is the columns, and so interpn effectively reverses the 'x’ and 'y’ dimensions. Consider
the example

x=y=z=-1:1;

f=0(kx,y,z) x.72 -y - z.72;

[xx, yy, 2zz] = meshgrid (x, y, z);

v = f (xx,yy,22);

xi =yi=2zi=-1:0.1:1;

[xxi, yyi, zzi] = meshgrid (xi, yi, zi);

vi = interp3(x, y, z, v, xxi, yyi, zzi, ’spline’);

[xxi, yyi, zzi] = ndgrid (xi, yi, zi);

vi2 = interpn(x, y, z, v, xxi, yyi, zzi, ’spline’);

mesh (zi, yi, squeeze (vi2(1,:,:)));
where vi and vi2 are identical. The reversal of the dimensions is treated in the meshgrid and
ndgrid functions respectively. The result of this code can be seen in Figure 28.4.

Figure 28.4: Demonstration of the use of interpn

In additional the support function bicubic that underlies the cubic interpolation of interp2
function can be called directly.

zi= bicubic (x, y, z, xi, yi, extrapval) [Function File]
Return a matrix zi corresponding to the bicubic interpolations at xi and yi of the data
supplied as x, y and z. Points outside the grid are set to extrapval

See http://wiki.woodpecker.org.cn/moin/Octave/Bicubic for further information.

See also: interp?2.


http://wiki.woodpecker.org.cn/moin/Octave/Bicubic
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29 Geometry

Much of geometry code in Octave is based on the QHull'. Some of the documentation for Qhull,
particularly for the options that can be passed to delaunay, voronoi and convhull, etc, is
relevant to Octave users.

29.1 Delaunay Triangulation

The Delaunay triangulation is constructed from a set of circum-circles. These circum-circles
are chosen so that there are at least three of the points in the set to triangulation on the
circumference of the circum-circle. None of the points in the set of points falls within any of the
circum-circles.

In general there are only three points on the circumference of any circum-circle. However,
in the some cases, and in particular for the case of a regular grid, 4 or more points can be on a
single circum-circle. In this case the Delaunay triangulation is not unique.

tri= delaunay (x, y) [Function File]

tri= delaunay (x, y, opt) [Function File]
The return matrix of size [n, 3| contains a set triangles which are described by the indices to
the data point x and y vector. The triangulation satisfies the Delaunay circumcircle criterion.
No other data point is in the circumcircle of the defining triangle.

A third optional argument, which must be a string, contains extra options passed to the
underlying ghull command. See the documentation for the Qhull library for details.

x = rand (1, 10);

rand (size (x));

delaunay (x, y);

[x(T(C:,1)); x(T(:,2)); x(T(:,3)); x(T(:,1))];
[y(TC:,1)); y(T(:,2)); y(T(:,3)); y(TC:,1))];
axis ([0,1,0,1]1);

plot (X, Y, "b", x, y, "r*x");

< X A<
Il

See also: voronoi, delaunay3, delaunayn.

The 3- and N-dimensional extension of the Delaunay triangulation are given by delaunay3
and delaunayn respectively. delaunay3 returns a set of tetrahedra that satisfy the Delaunay
circum-circle criteria. Similarly, delaunayn returns the N-dimensional simplex satisfying the
Delaunay circum-circle criteria. The N-dimensional extension of a triangulation is called a
tessellation.

T = delaunay3 (x, y, z) [Function File]

T = delaunay3 (x, y, z, opt) [Function File]
A matrix of size [n, 4] is returned. Each row contains a set of tetrahedron which are described
by the indices to the data point vectors (x,y,z).

A fourth optional argument, which must be a string or cell array of strings, contains extra
options passed to the underlying ghull command. See the documentation for the Qhull library
for details.

See also: delaunay,delaunayn.

1 Barber, C.B., Dobkin, D.P., and Huhdanpaa, H.T., "The Quickhull algorithm for convex hulls," ACM Trans.
on Mathematical Software, 22(4):469-483, Dec 1996, http://www.qghull.org
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T = delaunayn (P) [Function File]
T = delaunayn (P, opt) [Function File]
Form the Delaunay triangulation for a set of points. The Delaunay triangulation is a tessella-
tion of the convex hull of the points such that no n-sphere defined by the n-triangles contains
any other points from the set. The input matrix P of size [n, dim] contains n points in a
space of dimension dim. The return matrix T has the size [m, dim+1]. It contains for each
row a set of indices to the points, which describes a simplex of dimension dim. For example,
a 2d simplex is a triangle and 3d simplex is a tetrahedron.
Extra options for the underlying Qhull command can be specified by the second argument.
This argument is a cell array of strings. The default options depend on the dimension of the
input:
° 2D and 3D Opt — {IIQtII, nbeu’ ||an}
° 4D and higher: Opt — {thu’ ||ben, "QC", ||an}

If opt is [], then the default arguments are used. If opt is {""}, then none of the default
arguments are used by Qhull. See the Qhull documentation for the available options.

All options can also be specified as single string, for example "Qt Qbb Qc Qz".

An example of a Delaunay triangulation of a set of points is

rand ("state", 2);

= rand (10, 1);

rand (10, 1);

delaunay (x, y);

[ x(TC:,1)); x(T(:,2)); x(T(:,3)); x(T(:,1)) 1;
[ y(TC:,1)); y(T(:,2)); y(T(:,3)); y(T(C:,1)) 1;
axis ([0, 1, O, 11);

plOt(X, Y, "b", X, y’ llr*ll);

The result of which can be seen in Figure 29.1.

<o A< XK
I

Figure 29.1: Delaunay triangulation of a random set of points

29.1.1 Plotting the Triangulation

Octave has the functions triplot and trimesh to plot the Delaunay triangulation of a 2-
dimensional set of points.

triplot (tri, x, y) [Function File]
triplot (tri, x, y, linespec) [Function File]
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h = triplot (...) [Function File]
Plot a triangular mesh in 2D. The variable tri is the triangular meshing of the points (x, y)
which is returned from delaunay. If given, the linespec determines the properties to use for
the lines. The output argument h is the graphic handle to the plot.

See also: plot, trimesh, delaunay.

trimesh (tri, x, y, z) [Function File]

h = trimesh (...) [Function File]
Plot a triangular mesh in 3D. The variable tri is the triangular meshing of the points (x, y)
which is returned from delaunay. The variable z is value at the point (x, y). The output
argument h is the graphic handle to the plot.

See also: triplot, delaunay3.

The difference between triplot and trimesh is that the former only plots the 2-dimensional
triangulation itself, whereas the second plots the value of some function £ (x, y). An example
of the use of the triplot function is

rand ("state", 2)

x = rand (20, 1);

y = rand (20, 1);

tri = delaunay (x, y);
triplot (tri, x, y);

that plot the Delaunay triangulation of a set of random points in 2-dimensions. The output
of the above can be seen in Figure 29.2.

Figure 29.2: Delaunay triangulation of a random set of points

29.1.2 Identifying points in Triangulation

It is often necessary to identify whether a particular point in the N-dimensional space is within
the Delaunay tessellation of a set of points in this N-dimensional space, and if so which N-
Simplex contains the point and which point in the tessellation is closest to the desired point.
The functions tsearch and dsearch perform this function in a triangulation, and tsearchn and
dsearchn in an N-dimensional tessellation.

To identify whether a particular point represented by a vector p falls within one of the
simplices of an N-Simplex, we can write the Cartesian coordinates of the point in a parametric
form with respect to the N-Simplex. This parametric form is called the Barycentric Coordinates
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of the point. If the points defining the N-Simplex are given by N + 1 vectors t(i,:), then the
Barycentric coordinates defining the point p is given by

p = sum (beta(1l:N+1) * t(1:N+1),:)
where there are N + 1 values beta (i) that together as a vector represent the Barycentric co-
ordinates of the point p. To ensure a unique solution for the values of beta (i) an additional
criteria of

sum (beta(1:N+1)) ==
is imposed, and we can therefore write the above as

p - t(end, :) = beta(l:end-1) * (t(l:end-1, :)

- ones(N, 1) * t(end, :)

Solving for beta we can then write

beta(l:end-1) = (p - t(end, :)) / (t(1:end-1, :)

- ones(N, 1) * t(end, :))

beta (end) = sum(beta(l:end-1))
which gives the formula for the conversion of the Cartesian coordinates of the point p to the
Barycentric coordinates beta. An important property of the Barycentric coordinates is that for
all points in the N-Simplex

0 <= beta(i) <=1
Therefore, the test in tsearch and tsearchn essentially only needs to express each point in
terms of the Barycentric coordinates of each of the simplices of the N-Simplex and test the
values of beta. This is exactly the implementation used in tsearchn. tsearch is optimized for
2-dimensions and the Barycentric coordinates are not explicitly formed.

idx = tsearch (x,y, t, xi, yi) [Loadable Function)]
Searches for the enclosing Delaunay convex hull. For t = delaunay (x, y), finds the index
in t containing the points (xi, yi). For points outside the convex hull, idx is NaN.

See also: delaunay, delaunayn.

[idx, p] = tsearchn (x, t, xi) [Function File]
Searches for the enclosing Delaunay convex hull. For t = delaunayn (x), finds the index
in t containing the points xi. For points outside the convex hull, idx is NaN. If requested
tsearchn also returns the barycentric coordinates p of the enclosing triangles.

See also: delaunay, delaunayn.

An example of the use of tsearch can be seen with the simple triangulation
x = [-1; -1; 1; 1];
y = [-15 1; -1; 115
tri = [1, 2, 3; 2, 3, 1];
consisting of two triangles defined by tri. We can then identify which triangle a point falls in
like
tsearch (x, y, tri, -0.5, -0.5)
=1
tsearch (x, y, tri, 0.5, 0.5)
= 2
and we can confirm that a point doesn’t lie within one of the triangles like
tsearch (x, y, tri, 2, 2)
= NaN
The dsearch and dsearchn find the closest point in a tessellation to the desired point. The
desired point does not necessarily have to be in the tessellation, and even if it the returned point
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of the tessellation does not have to be one of the vertexes of the N-simplex within which the
desired point is found.

idx = dsearch (x, y, tri, xi, yi) [Function File]

idx = dsearch (x, y, tri, xi, yi, s) [Function File]
Returns the index idx or the closest point in x, y) to the elements [xi(:), yi(:)]. The
variable s is accepted but ignored for compatibility.

See also: dsearchn, tsearch.

idx = dsearchn (x, tri, xi) Function File

[ ]
idx = dsearchn (x, tri, xi, outval) [Function File]
idx = dsearchn (x, xi) [Function File]
[idx, d] = dsearchn (...) [Function File]

Returns the index idx or the closest point in x to the elements xi. If outval is supplied,
then the values of xi that are not contained within one of the simplicies tri are set to outval.
Generally, tri is returned from delaunayn (x).

See also: dsearch, tsearch.

An example of the use of dsearch, using the above values of x, y and tri is
dsearch (x, y, tri, -2, -2)
=1
If you wish the points that are outside the tessellation to be flagged, then dsearchn can be
used as
dsearchn ([x, y], tri, [-2, -2], NaN)
= NaN
dsearchn ([x, y], tri, [-0.5, -0.5], NaN)
=1

where the point outside the tessellation are then flagged with NaN.

29.2 Voronoi Diagrams

A Voronoi diagram or Voronoi tessellation of a set of points s in an N-dimensional space, is
the tessellation of the N-dimensional space such that all points in v(p), a partitions of the
tessellation where p is a member of s, are closer to p than any other point in s. The Voronoi
diagram is related to the Delaunay triangulation of a set of points, in that the vertexes of
the Voronoi tessellation are the center’s of the circum-circles of the simplicies of the Delaunay
tessellation.

voronoi (x, y) [Function File]
voronoi (x, y, "plotstyle") [Function File]
voronoi (x, y, "plotstyle", options) [Function File]
[vx, vy] = voronoi (...) [Function File]
plots voronoi diagram of points (x, y). The voronoi facets with points at infinity are not
drawn. [vx, vy| = voronoi(...) returns the vertices instead plotting the diagram. plot (vx,
vy) shows the voronoi diagram.
A fourth optional argument, which must be a string, contains extra options passed to the
underlying ghull command. See the documentation for the Qhull library for details.
x = rand (10, 1);
y = rand (size (x));
h = convhull (x, y);
[vx, vyl = voromnoi (x, y);
plot (vx, vy, "-b", x, y, "o", x(h), y(), "-g")
legend ("", "points", "hull");



336 GNU Octave

See also: voronoin, delaunay, convhull.

[C, F] = voronoin (pts) [Function File]

[C, F] = voronoin (pts, options) [Function File]
computes n- dimensional voronoi facets. The input matrix pts of size [n, dim] contains n
points of dimension dim. C contains the points of the voronoi facets. The list F' contains for
each facet the indices of the voronoi points.

A second optional argument, which must be a string, contains extra options passed to the
underlying ghull command. See the documentation for the Qhull library for details.

See also: voronoin, delaunay, convhull.

An example of the use of voronoi is

rand("state",9);

x = rand(10,1);

y = rand(10,1);

tri = delaunay (x, y);

[vx, vyl = voromnoi (x, y, tri);
triplot (tri, x, y, "b");

hold on;

plot (vx, vy, "r");

The result of which can be seen in Figure 29.3. Note that the circum-circle of one of the triangles
has been added to this figure, to make the relationship between the Delaunay tessellation and
the Voronoi diagram clearer.

T
Delaunay Triangulation
Voronoi Diagram -------

Figure 29.3: Delaunay triangulation and Voronoi diagram of a random set of points

Additional information about the size of the facets of a Voronoi diagram, and which points
of a set of points is in a polygon can be had with the polyarea and inpolygon functions
respectively.

polyarea (x, y) [Function File]
polyarea (x, y, dim) [Function File]
Determines area of a polygon by triangle method. The variables x and y define the vertex
pairs, and must therefore have the same shape. They can be either vectors or arrays. If they
are arrays then the columns of x and y are treated separately and an area returned for each.

If the optional dim argument is given, then polyarea works along this dimension of the
arrays x and y.
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An example of the use of polyarea might be

rand ("state", 2);
x = rand (10, 1);
y = rand (10, 1);
[c, £f] = voronoin ([x, y1);
af = zeros (size(f));
for i = 1 : length (f)
af (i) = polyarea (¢ (f {i, :}, 1), c (£ {1, :}, 2));
endfor

Facets of the Voronoi diagram with a vertex at infinity have infinity area.

[in, on] = inpolygon (x, y, xv, Xy) [Function File]
For a polygon defined by (xv, yv) points, determine if the points (x, y) are inside or outside
the polygon. The variables x, y, must have the same dimension. The optional output on
gives the points that are on the polygon.

An example of the use of inpolygon might be

randn ("state", 2);

x = randn (100, 1);

y = randn (100, 1);

vk = cos (pi * [-1 : 0.1: 1]);

vy = sin (pi * [-1 : 0.1 : 11);

in = inpolygon (x, y, vx, Vvy);

plot(vx, vy, x(in), y(in), "r+", x(!'in), y(!'in), "bo");
axis ([-2, 2, -2, 21);

The result of which can be seen in Figure 29.4.

Figure 29.4: Demonstration of the inpolygon function to determine the points inside a
polygon

29.3 Convex Hull

The convex hull of a set of points is the minimum convex envelope containing all of the points.
Octave has the functions convhull and convhulln to calculate the convex hull of 2-dimensional
and N-dimensional sets of points.

H = convhull (x,y) [Function File]
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H = convhull (x, y, opt) [Function File]
Returns the index vector to the points of the enclosing convex hull. The data points are
defined by the x and y vectors.

A third optional argument, which must be a string, contains extra options passed to the
underlying ghull command. See the documentation for the Qhull library for details.

See also: delaunay, convhulln.

fu ]
]

convhulln (p) [Loadable Function]
convhulln (p, opt) [Loadable Function)]
Returns an index vector to the points of the enclosing convex hull. The input matrix of size
[n, dim] contains n points of dimension dim.

]
I

If a second optional argument is given, it must be a string or cell array of strings containing
options for the underlying qhull command. (See the Qhull documentation for the available
options.) The default options are "s Qci Tev".

See also: convhull, delaunayn.

An example of the use of convhull is
x = -3:0.05:3;
y = abs (sin (x));
k = convhull (x, y);
plot (x(k), y(k), "r-", x, y, "b+");
axis ([-3.05, 3.05, -0.05, 1.05]);

The output of the above can be seen in Figure 29.5.

0.8

06 | 7

R
R

04| R

.

02 P g
— + + ——

Figure 29.5: The convex hull of a simple set of points

29.4 Interpolation on Scattered Data

An important use of the Delaunay tessellation is that it can be used to interpolate from scattered
data to an arbitrary set of points. To do this the N-simplex of the known set of points is
calculated with delaunay, delaunay3 or delaunayn. Then the simplicies in to which the desired
points are found are identified. Finally the vertices of the simplicies are used to interpolate to
the desired points. The functions that perform this interpolation are griddata, griddata3 and
griddatan.

zi = griddata (x, y, z, xi, yi, method) [Function File]
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[xi, yi, zi] = griddata (%, y, z, xi, yi, method) [Function File]
Generate a regular mesh from irregular data using interpolation. The function is defined by
z =1 (x, y). The interpolation points are all (xi, yi). If xi, yi are vectors then they are
made into a 2D mesh.

The interpolation method can be "nearest", "cubic" or "linear". If method is omitted it
defaults to "linear".

See also: delaunay.

vi = griddata3 (x,y, z, v xi, yi, zi, method, options) [Function File]
Generate a regular mesh from irregular data using interpolation. The function is defined by
y =1f (x,y,z). The interpolation points are all xi.

The interpolation method can be "nearest" or "linear". If method is omitted it defaults
to "linear".

See also: griddata, delaunayn.

yi = griddatan (x, y, xi, method, options) [Function File]
Generate a regular mesh from irregular data using interpolation. The function is defined by
y =f (x). The interpolation points are all xi.

The interpolation method can be "nearest" or "linear". If method is omitted it defaults
to "linear".

See also: griddata, delaunayn.

An example of the use of the griddata function is

rand("state",1);

x=2*rand (1000,1)-1;

y=2x*rand(size(x))-1;

z=sin(2*(x. 2+y."2));

[xx,yyl=meshgrid(linspace(-1,1,32));

griddata(x,y,z,xx,yy);
that interpolates from a random scattering of points, to a uniform grid. The output of the above
can be seen in Figure 29.6.

Figure 29.6: Interpolation from a scattered data to a regular grid
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30 Control Theory

The Octave Control Systems Toolbox (OCST) was initially developed by Dr. A. Scottedward
Hodel a.s.hodel@eng.auburn.edu with the assistance of his students

e R. Bruce Tenison btenison@dibbs.net,
e David C. Clem,

e John E. Ingram John.Ingram@sea.siemans.com, and

e Kristi McGowan.

This development was supported in part by NASA’s Marshall Space Flight Center as part of
an in-house CACSD environment. Additional important contributions were made by Dr. Kai
Mueller mueller@ifr.ing.tu-bs.de and Jose Daniel Munoz Frias (place.m).

An on-line menu-driven tutorial is available via DEMOcontrol; beginning OCST users should
start with this program.

DEMOcontrol [Function File]
Octave Control Systems Toolbox demo/tutorial program. The demo allows the user to select
among several categories of OCST function:

octave:1> DEMOcontrol
0OCTAVE CONTROL SYSTEMS TOOLBOX
Octave Controls System Toolbox Demo

1] System representation

2] Block diagram manipulations

3] Frequency response functions
4] State space analysis functions
5] Root locus functions

6] LQG/H2/Hinfinity functions

[ 7] End

L B e B e N e I e B |

Command examples are interactively run for users to observe the use of OCST functions.

See also: Demo Programs: bddemo.m, frdemo.m, analdemo.m, moddmeo.m, rldemo.m.

30.1 System Data Structure

The OCST stores all dynamic systems in a single data structure format that can represent
continuous systems, discrete-systems, and mixed (hybrid) systems in state-space form, and can
also represent purely continuous/discrete systems in either transfer function or pole-zero form.
In order to provide more flexibility in treatment of discrete/hybrid systems, the OCST also keeps
a record of which system outputs are sampled.

Octave structures are accessed with a syntax much like that used by the C programming
language. For consistency in use of the data structure used in the OCST, it is recommended
that the system structure access m-files be used (see Section 30.2 [sysinterface], page 343). Some
elements of the data structure are absent depending on the internal system representation(s)
used. More than one system representation can be used for SISO systems; the OCST m-files
ensure that all representations used are consistent with one another.

sysrepdemo [Function File]
Tutorial for the use of the system data structure functions.
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30.1.1 Variables common to all OCST system formats

The data structure elements (and variable types) common to all system representations are
listed below; examples of the initialization and use of the system data structures are given in
subsequent sections and in the online demo DEMOcontrol.

n

nz The respective number of continuous and discrete states in the system (scalar)
inname

outname  list of name(s) of the system input, output signal(s). (list of strings)

sys System status vector. (vector)

This vector indicates both what representation was used to initialize the system
data structure (called the primary system type) and which other representations are
currently up-to-date with the primary system type (see Section 30.2.5 [structaccess],

page 351).

The value of the first element of the vector indicates the primary system type.
0 for tf form (initialized with tf2sys or fir2sys)

1 for zp form (initialized with zp2sys)

2 for ss form (initialized with ss2sys)

The next three elements are boolean flags that indicate whether tf, zp, or ss, respec-
tively, are “up to date" (whether it is safe to use the variables associated with these
representations). These flags are changed when calls are made to the sysupdate
command.

tsam Discrete time sampling period (nonnegative scalar). tsam is set to 0 for continuous
time systems.

yd Discrete-time output list (vector)

indicates which outputs are discrete time (i.e., produced by D/A converters) and
which are continuous time. yd(ii) = 0 if output ii is continuous, = 1 if discrete.

The remaining variables of the system data structure are only present if the corresponding
entry of the sys vector is true (=1).

30.1.2 tf format variables

num numerator coefficients (vector)

den denominator coefficients (vector)

30.1.3 zp format variables

zer system zeros (vector)
pol system poles (vector)
k leading coefficient (scalar)

30.1.4 ss format variables

QO T

The usual state-space matrices. If a system has both continuous and discrete states,
they are sorted so that continuous states come first, then discrete states

Note some functions (e.g., bode, hinfsyn) will not accept systems with both discrete
and continuous states/outputs
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stname names of system states (list of strings)

30.2 System Construction and Interface Functions

Construction and manipulations of the OCST system data structure (see Section 30.1 [sysstruct],
page 341) requires attention to many details in order to ensure that data structure contents
remain consistent. Users are strongly encouraged to use the system interface functions in this
section. Functions for the formatted display in of system data structures are given in Section 30.3
[sysdisp], page 355.

30.2.1 Finite impulse response system interface functions

fir2sys (num, tsam, inname, outname) [Function File]
construct a system data structure from FIR description
Inputs
num vector of coefficients [cg, ¢, . .., ¢,] of the SISO FIR transfer function
C(z)=co+crz 7t +ez 4 ...+ ez ™"
tsam sampling time (default: 1)
inname name of input signal; may be a string or a list with a single entry.

outname  name of output signal; may be a string or a list with a single entry.
Output
Sys system data structure

Example
octave:1> sys = fir2sys([1 -1 2 4],0.342,\
> "A/D input","filter output");
octave:2> sysout(sys)
Input(s)
1: A/D input

Output(s):
1: filter output (discrete)

Sampling interval: 0.342
transfer function form:
1%z"3 - 1*xz"2 + 2%z71 + 4

1xz"3 + 0xz"2 + 0*xz"1 + O

[c, tsam, input, output] = sys2fir (sys) [Function File]
Extract FIR data from system data structure; see fir2sys for parameter descriptions.

See also: fir2sys.
30.2.2 State space system interface functions

outsys = ss (a, b, ¢, d, tsam, n, nz, stname, inname, outname, [Function File]
outlist)
Create system structure from state-space data. May be continuous, discrete, or mixed (sam-
pled data)

Inputs
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a
b
c
d usual state space matrices.
default: d = zero matrix
tsam sampling rate. Default: tsam = 0 (continuous system)
n
nz number of continuous, discrete states in the system
If tsam is 0, n = rows(a), nz = 0.
If tsam is greater than zero, n = 0, nz = rows(a)
see below for system partitioning
stname cell array of strings of state signal names
default (stname=|| on input): x_n for continuous states, xd_n for discrete states
inname cell array of strings of input signal names

default (inname = [] on input): u_n

outname  cell array of strings of output signal names

default (outname = [] on input): y_n

outlist
list of indices of outputs y that are sampled
If tsam is 0, outlist = [].
If tsam is greater than 0, outlist = 1 : rows(c).
Unlike states, discrete/continuous outputs may appear in any order.
sys2ss returns a vector yd where yd(outlist) = 1; all other entries of yd are 0.
Output
outsys system data structure
System partitioning

Suppose for simplicity that outlist specified that the first several outputs were continuous
and the remaining outputs were discrete. Then the system is partitioned as

x=[x] (@x1)

[ xd] (nz x 1 discrete states)
a=[accacd] b=1[ bc]

[ adc add ] [ bd ]
c=[ceccced] d=1[dc]

[ cdc cdd ] [ dd ]

(cdc = c(outlist,1:n), etc.)

with dynamic equations:

d
p (

= AacTe(klsam) + agaa(ktsam) + bau(ktsam)
ce®e(t) + Ceata(ktsam) + deu(t)
dcZe(ktsam) + caata(ktsam) + dau(ktsam)

Signal partitions
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| continuous | discrete |

states | stname(l:n,:) | stname((n+1):(n+nz),:) |

where cout is the list of in 1:rows(p) that are not contained in outlist. (Discrete/continuous
outputs may be entered in any order desired by the user.)

Example

octave:1> a [123; 456; 78 10];

octave:2> b [0O0O; 01 ; 10];

octave:3> ¢ = eye (3);

octave:4> sys = ss (a, b, ¢, [, 0, 3, 0, {"volts", "amps", "joules"});

octave:5> sysout(sys);

Input (s)
1: u_1
u_2
Output(s):
1: y_1
2: y_2
3: y_3

state-space form:
3 continuous states, 0 discrete states
State(s):

1: volts

2: amps

3: joules

A matrix: 3 x 3
1 2 3
4 5 6
7 8 10
B matrix: 3 x 2
0O O
0 1
1 0
C matrix: 3 x 3
1 0 O
0 1 0
0O 0 1
D matrix: 3 x 3
0O O
0O O
0O O

Notice that the D matrix is constructed by default to the correct dimensions. Default input
and output signals names were assigned since none were given.
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ss (a, b, ¢, d, tsam, n, nz, stname, inname, outname, outlist) [Function File]
Create system structure from state-space data. May be continuous, discrete, or mixed (sam-
pled data)

Inputs
a
b
c
d usual state space matrices.
default: d = zero matrix
tsam sampling rate. Default: tsam = 0 (continuous system)
n
nz number of continuous, discrete states in the system
If tsam is 0, n = rows(a), nz = 0.
If tsam is greater than zero, n = 0, nz = rows(a)
see below for system partitioning
stname cell array of strings of state signal names
default (stname=][] on input): x_n for continuous states, xd_n for discrete states
inname cell array of strings of input signal names

default (inname = [| on input): u_n
outname  cell array of strings of input signal names
default (outname = [] on input): y_n

outlist
list of indices of outputs y that are sampled
If tsam is 0, outlist = [].
If tsam is greater than 0, outlist =1 : rows(c).

Unlike states, discrete/continuous outputs may appear in any order.

sys2ss returns a vector yd where yd(outlist) = 1; all other entries of yd are 0.

Outputs outsys = system data structure

System partitioning

Suppose for simplicity that outlist specified that the first several outputs were continuous
and the remaining outputs were discrete. Then the system is partitioned as

x=[x] (x1)

[ xd ] (nz x 1 discrete states)
a=[accacd] b=1[hbc]

[ adc add ] [ bd ]
c=[cccced] d=1[dc]

[ cdc cdd ] [ dd 1]

(cdc = c(outlist,1:n), etc.)
with dynamic equations:
d
23 %e(®) (
Ta((k + 1) * team) = agee(Ktsam) + aaata(ktsam) + bau(ktsam)
Ye(t) = Ceee(t) + Ceava(ktsam) + deu(t)
) = Cac®e(ktsam) + Caaa(ktsam) + dau(ktsam)
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Signal partitions

| continuous | discrete |

states | stname(l:n,:) | stname((n+1):(n+nz),:) |

where cout is the list of in 1:rows(p) that are not contained in outlist. (Discrete/continuous
outputs may be entered in any order desired by the user.)

Example

octave:1> a [123; 456; 7 8 10];

octave:2> b =[00 ; 01 ; 1 0];

octave:3> c = eye (3);

octave:4> sys = ss (a, b, ¢, [1, 0, 3, 0, {"volts", "amps", "joules"});
octave:5> sysout(sys);

Input(s)

u_1
2: u_2

W N =

y_
2: y_
y_

state-space form:
3 continuous states, 0 discrete states

State(s):
1: volts
2: amps
3: joules

A matrix: 3 x 3
1 2 3
4 5 6
7 8 10
B matrix: 3 x 2
0O O
0 1
1 0
C matrix: 3 x 3
1 0 O
0O 1 O
0O 0 1
D matrix: 3 x 3
0O O
0O O
0O O

Notice that the D matrix is constructed by default to the correct dimensions. Default input
and output signals names were assigned since none were given.
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la, b, ¢, d, tsam, n, nz, stname, inname, outname, yd] = [Function File]
sys2ss (sys)
Extract state space representation from system data structure.

Input

Sys System data structure.

Outputs

a

b

c

d State space matrices for sys.

tsam Sampling time of sys (0 if continuous).

n

nz Number of continuous, discrete states (discrete states come last in state vector
X).

Stname

inname

outname  Signal names (lists of strings); names of states, inputs, and outputs, respectively.

yd Binary vector; yd(ii) is 1 if output y(ii) is discrete (sampled); otherwise yd(ii) is
0.

A warning massage is printed if the system is a mixed continuous and discrete system.

Example

octave:1> sys=tf2sys([1 2],[3 4 5]);
octave:2> [a,b,c,d] = sys2ss(sys)

a =
0.00000 1.00000
-1.66667 -1.33333
b =
0
1
c = 0.66667 0.33333
d=20

30.2.3 Transfer function system interface functions

tf (num, den, tsam, inname, outname) [Function File]
build system data structure from transfer function format data
Inputs
num
den coefficients of numerator/denominator polynomials
tsam sampling interval. default: 0 (continuous time)
inname
outname  input/output signal names; may be a string or cell array with a single string

entry.

Outputs sys = system data structure

Example
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octave:1> sys=tf([2 1],[1 2 1],0.1);
octave:2> sysout(sys)
Input (s)
1: u1
Output(s):
1: y_1 (discrete)
Sampling interval: 0.1
transfer function form:
2xz71 + 1

1xz"2 + 2xz"1 + 1

tf2sys (num, den, tsam, inname, outname) [Function File]
Build system data structure from transfer function format data.
Inputs
num
den Coefficients of numerator/denominator polynomials.
tsam Sampling interval; default: 0 (continuous time).
inname
outname  Input/output signal names; may be a string or cell array with a single string
entry.
Output
Sys System data structure.
Example

octave:1> sys=tf2sys([2 1],[1 2 1],0.1);
octave:2> sysout(sys)
Input(s)
1: u_l
Output(s):
1: y_1 (discrete)
Sampling interval: 0.1
transfer function form:
2xz"1 + 1

1xz"2 + 2%z71 + 1

[num, den, tsam, inname, outname] = sys2tf (sys) [Function File]
Extract transfer function data from a system data structure.

See tf for parameter descriptions.
Example

octave:1> sys=ss([1 -2; -1.1,-2.1],[0;1],[1 11);
octave:2> [num,den] = sys2tf(sys)

num = 1.0000 -3.0000

den = 1.0000 1.1000 -4.3000
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30.2.4 Zero-pole system interface functions

zp (zer, pol, k, tsam, inname, outname)
Create system data structure from zero-pole data.

Inputs
zer
pol

k
tsam

inname
outname

vector of system zeros
vector of system poles
scalar leading coefficient

sampling period. default: 0 (continuous system)

input/output signal names (lists of strings)

Outputs sys: system data structure

Example

octave:1> sys=zp([1 -1],[-2 -2 0],1);
octave:2> sysout(sys)

Input(s)

1: u_1
Output(s):

1: y_1

zero-pole form:
1 (s -1) (s +1)

zp2sys (zer, pol, k, tsam, inname, outname)
Create system data structure from zero-pole data.

Inputs
zer
pol

k

tsam

inname
outname

Output
Sys

Example

Vector of system zeros.
Vector of system poles.

Scalar leading coefficient.

Sampling period; default: 0 (continuous system).

Input/output signal names (lists of strings).

System data structure.

octave:1> sys=zp2sys([1 -1],[-2 -2 0],1);
octave:2> sysout(sys)

Input (s)

1: u_1
Output(s):

1: y_1

zero-pole form:
1 (s-1) (s+1)

GNU Octave

[Function File]

[Function File]
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[zer, pol, k, tsam, inname, outname] = sys2zp (sys) [Function File]
Extract zero/pole/leading coefficient information from a system data structure.
See zp for parameter descriptions.

Example

octave:1> sys=ss([1 -2; -1.1,-2.1],[0;1],[1 11);
octave:2> [zer,pol,k] = sys2zp(sys)
zer = 3.0000
pol =

-2.6953

1.5953

k=1

30.2.5 Data structure access functions

syschnames (sys, opt, 1ist, names) [Function File]
Superseded by syssetsignals.

syschtsam (sys, tsam) [Function File]
This function changes the sampling time (tsam) of the system. Exits with an error if sys is
purely continuous time.

[n, nz, m, p, yd] = sysdimensions (sys, opt) [Function File]

return the number of states, inputs, and/or outputs in the system sys.

Inputs

Sys system data structure

opt String indicating which dimensions are desired. Values:
"all" (default) return all parameters as specified under Outputs below.
"cst" return n= number of continuous states
"dst" return n= number of discrete states
"in" return n= number of inputs
"out" return n= number of outputs

Outputs

n number of continuous states (or individual requested dimension as specified by
opt).

nz number of discrete states

m number of system inputs

p number of system outputs

vd binary vector; yd(ii) is nonzero if output ii is discrete. yd(ii) = 0 if output ii is
continuous

See also: sysgetsignals, sysgettsam.

[stname, inname, outname, yd] = sysgetsignals (sys) [Function File]
siglist = sysgetsignals (sys, sigid) [Function File]
signame = sysgetsignals (sys, sigid, signum, strflg) [Function File]

Get signal names from a system

Inputs
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Sys system data structure for the state space system
sigid signal id. String. Must be one of
"in" input signals
"out" output signals
"st" stage signals
"yd" value of logical vector yd
signum index(indices) or name(s) or signals; see sysidx
strflg flag to return a string instead of a cell array; Values:
0 (default) return a cell array (even if signum specifies an individual
signal)
1 return a string. Exits with an error if signum does not specify an

individual signal.

Outputs

olf sigid is not specified:
Sstname
inname

outname  signal names (cell array of strings); names of states, inputs, and
outputs, respectively.

yd binary vector; yd(ii) is nonzero if output ii is discrete.

olf sigid is specified but signum is not specified:
sigid="in"
siglist is set to the cell array of input names.

sigid="out"
siglist is set to the cell array of output names.

sigid="st"
siglist is set to the cell array of state names.

stage signals

sigid="yd"
siglist is set to logical vector indicating discrete outputs; siglist(ii) =
0 indicates that output ii is continuous (unsampled), otherwise it is
discrete.

olf the first three input arguments are specified:
signame is a cell array of the specified signal names (sigid is "in", "out", or
"st"), or else the logical flag indicating whether output(s) signum is(are) discrete
(sigval=1) or continuous (sigval=0).

Examples (From sysrepdemo)

octave> sys=ss(rand(4),rand(4,2),rand(3,4));
octave># get all signal names
octave> [Ast,Ain,Aout,Ayd] = sysgetsignals(sys)
Ast =
(
[1]
[2] -

1]
Lol e
N =
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[3] = x_3
[4] = x_4
)
Ain =
(
[1] = u_1
[2] = u_2
)
Aout =
(
(1] = y_1
[2] = y_2
[3] = y_3
)
Ayd =
0O 0 O

octave> # get only input signal names:
octave> Ain = sysgetsignals(sys,"in"
Ain =
(
[1]
(2]
)
octave> # get name of output 2 (in cell array):
octave> Aout = sysgetsignals(sys,"out",2)
Aout =
(
[1] = y_2
)
octave> # get name of output 2 (as string):
octave> Aout = sysgetsignals(sys,"out",2,1)
Aout = y_2

u_1
u_2

sysgettype (sys) [Function File]
return the initial system type of the system

Input
Sys System data structure.
Output

systype String indicating how the structure was initially constructed. Values: "ss", "zp",
or "tf".

FIR initialized systems return systype="tf".

syssetsignals (sys, opt, names, sig_idx) [Function File]
change the names of selected inputs, outputs and states.

Inputs
Sys System data structure.

opt Change default name (output).
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"out" Change selected output names.
"in" Change selected input names.
"st" Change selected state names.
"yd" Change selected outputs from discrete to continuous or from contin-
uous to discrete.
names
opt = lloutll , n inll s Hstll
string or string array containing desired signal names or values.
Opt = "yd"
To desired output continuous/discrete flag. Set name to 0 for con-
tinuous, or 1 for discrete.
sig_idx indices or names of outputs, yd, inputs, or states whose respective names/values
should be changed.
Default: replace entire cell array of names/entire yd vector.
Outputs
retsys sys with appropriate signal names changed (or yd values, where appropriate).
Example
octave:1> sys=ss([1 2; 3 41,[5;6],[7 81);
octave:2> sys = syssetsignals(sys,"st",str2mat("Posx","Velx"));
octave:3> sysout(sys)
Input(s)
1: u_1
Output(s):
1: y_1
state-space form:
2 continuous states, 0 discrete states
State(s):
1: Posx
2: Velx
A matrix: 2 x 2
2
3 4
B matrix: 2 x 1
5
6
C matrix: 1 x 2
7 8
D matrix: 1 x 1
0
sysupdate (sys, opt) [Function File]
Update the internal representation of a system.
Inputs
sys: system data structure

opt

string:



Chapter 30: Control Theory 355

"L update transfer function form
"zp" update zero-pole form
"ss" update state space form
"all" all of the above
Outputs
retsys Contains union of data in sys and requested data. If requested data in sys is

already up to date then retsys=sys.
Conversion to tf or zp exits with an error if the system is mixed continuous/digital.

See also: tf, ss, zp, sysout, sys2ss, sys2tf, sys2zp.

[systype, nout, nin, ncstates, ndstates] = minfo (inmat) [Function File]
Determines the type of system matrix. inmat can be a varying, a system, a constant, and an
empty matrix.

Outputs

systype Can be one of: varying, system, constant, and empty.
nout The number of outputs of the system.

nin The number of inputs of the system.

nestates  The number of continuous states of the system.

ndstates ~ The number of discrete states of the system.

sysgettsam (sys) [Function File]
Return the sampling time of the system sys.

30.3 System display functions

sysout (sys, opt) [Function File]
print out a system data structure in desired format
Sys system data structure
opt Display option
(] primary system form (default)
"ss" state space form
"Ef" transfer function form
"zp" zero-pole form
"all" all of the above
tfout (num, denom, x) [Function File]

Print formatted transfer function n(s)/d(s) to the screen. x defaults to the string "s"

See also: polyval, polyvalm, poly, roots, conv, deconv, residue, filter, polyderiv, polyinteg,
polyout.

zpout (zer, pol, k, x) [Function File]
print formatted zero-pole form to the screen. x defaults to the string "s"

See also: polyval, polyvalm, poly, roots, conv, deconv, residue, filter, polyderiv, polyinteg,
polyout.
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30.4 Block Diagram Manipulations

See Section 30.7 [systime], page 371.

Unless otherwise noted, all parameters (input,output) are system data structures.

bddemo (inputs) [Function File]
Octave Controls toolbox demo: Block Diagram Manipulations demo.

buildssic (clst, ulst, olst, ilst, s1, s2, 83, s4, s5, s6, s7, s8) [Function File]
Form an arbitrary complex (open or closed loop) system in state-space form from several
systems. buildssic can easily (despite its cryptic syntax) integrate transfer functions from
a complex block diagram into a single system with one call. This function is especially useful
for building open loop interconnections for H., and H, designs or for closing loops with these

controllers.

Although this function is general purpose, the use of sysgroup sysmult, sysconnect and
the like is recommended for standard operations since they can handle mixed discrete and
continuous systems and also the names of inputs, outputs, and states.

The parameters consist of 4 lists that describe the connections outputs and inputs and up to
8 systems sI-s8. Format of the lists:

clst

ulst

olst

ilst

connection list, describes the input signal of each system. The maximum number
of rows of Clst is equal to the sum of all inputs of s1-s8.

Example: [1 2 -1; 2 1 0] means that: new input 1 is old input 1 + output 2
- output 1, and new input 2 is old input 2 + output 1. The order of rows is
arbitrary.

if not empty the old inputs in vector ulst will be appended to the outputs. You
need this if you want to “pull out” the input of a system. Elements are input
numbers of s1-s8.

output list, specifies the outputs of the resulting systems. Elements are output
numbers of sI-s8. The numbers are allowed to be negative and may appear in
any order. An empty matrix means all outputs.

input list, specifies the inputs of the resulting systems. Elements are input num-
bers of s1-s8. The numbers are allowed to be negative and may appear in any
order. An empty matrix means all inputs.

Example: Very simple closed loop system.

e +————- + u - +
——=>0——%-->| K |-=*-->| G |-—*%-—-->y
S +———— + | +-——— +
I I I
[ Fommmm >u
| |
| o |---> e
I I
et +

The closed loop system GW can be obtained by

clst

ulst

GW = buildssic([1 2; 2 -1], 2, [1 2 3], 2, G, K);

Ist row: connect input 1 (G) with output 2 (K).
2nd row: connect input 2 (K) with negative output 1 (G).

Append input of 2 (K) to the number of outputs.
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olst Outputs are output of 1 (G), 2 (K) and appended output 3 (from ulst).
ilst The only input is 2 (K).
Here is a real example:
+o———t
———————————————————— > Wl |---> v1
z | +-———+
o e +
| |
| +-——+ v +-———t
k===>| G |-=->0-—*-->| W2 |---> v2
| +———+ | +————+
| |
| v
u y
min||GW,. ||«

The closed loop system GW from [z, u|” to [v1,v2,y]” can be obtained by (all SISO systems):

GW = buildssic([1, 4; 2, 4; 3, 11, 3, [2, 3, 5],
[3, 4], G, Wi, W2, One);

where “One” is a unity gain (auxiliary) function with order 0. (e.g. One = ugain(1) ;)

sys = jet707 () [Function File]
Creates a linearized state-space model of a Boeing 707-321 aircraft at v=80 m/s (M = 0.26,
Gao = —3°, ag = 4°, kK = 50°).
System inputs: (1) thrust and (2) elevator angle.
System outputs: (1) airspeed and (2) pitch angle.
Reference: R. Brockhaus: Flugregelung (Flight Control), Springer, 1994.

See also: ord2.

ord2 (nfreq, damp, gain) [Function File]
Creates a continuous 2nd order system with parameters:
Inputs
nfreq natural frequency [Hz|. (not in rad/s)
damp damping coefficient
gain dc-gain This is steady state value only for damp > 0. gain is assumed to be 1.0
if omitted.
Output
outsys system data structure has representation with w = 27 f:
/ \
| / —2wxdamp -w \ / w \ |
G=11 I, | |, [0 gain ], O |
I\ w 0/ \NO0o/ |
\ /

See also jet707 (MIMO example, Boeing 707-321 aircraft model)
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sysadd (gsys, hsys) [Function File]
returns sys = gsys + hsys.
e Exits with an error if gsys and hsys are not compatibly dimensioned.

e Prints a warning message is system states have identical names; duplicate names are
given a suffix to make them unique.

e sys input/output names are taken from gsys.

-———| gsys |-—-
uw | +|
----- (D)-—-—>y
| +]
-——-| hsys |---
sys = sysappend (syst, b, ¢, d, outname, inname, yd) [Function File]
appends new inputs and/or outputs to a system
Inputs
syst system data structure
b matrix to be appended to sys "B" matrix (empty if none)
c matrix to be appended to sys "C" matrix (empty if none)
d revised sys d matrix (can be passed as || if the revised d is all zeros)

outname  list of names for new outputs
inname list of names for new inputs

vd binary vector; yd(ii) = 0 indicates a continuous output; yd(ii) = 1 indicates a
discrete output.

Outputs

Sys
sys.b := [syst.b , bl
sys.c := [syst.c ]
[c ]
[syst.d | D12 ]
[ D21 | D22 ]
where D12, D21, and D22 are the appropriate dimensioned blocks of the input
parameter d.

e The leading block D11 of d is ignored.

e If inname and outname are not given as arguments, the new inputs and
outputs are be assigned default names.

sys.d :

e yd is a binary vector of length rows(c) that indicates continuous/sampled
outputs. Default value for yd is:

— sys is continuous or mixed yd = zeros(1,rows(c))

— sys is discrete yd = ones(1,rows(c))

clsys = sysconnect (sys, out_idx, in_idx, order, tol) [Function File]
Close the loop from specified outputs to respective specified inputs

Inputs
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Sys
out_idx

in_idx

order

tol
Outputs
clsys
Method

System data structure.

Names or indices of signals to connect (see sysidx). The output specified by
out;dz(i7) is connected to the input specified by in;dx(ii).

logical flag (default = 0)
0 Leave inputs and outputs in their original order.
1 Permute inputs and outputs to the order shown in the diagram below.

Tolerance for singularities in algebraic loops, default: 200eps.

Resulting closed loop system.

sysconnect internally permutes selected inputs, outputs as shown below, closes the loop,
and then permutes inputs and outputs back to their original order

ul  -——-- > |----> y_1
| sys I
0old u_2 | I
u_2% —===>(+)--->| |-=—-- >y_2
(in_idx) ~ = -—=—m—mmmmmmmmm—o—o— | (out_idx)

The input that has the summing junction added to it has an * added to the end of the input

name.

[csys, acd,

ccd] = syscont (sys) [Function File]

Extract the purely continuous subsystem of an input system.

Input
Sys
Outputs
csys

acd
ced

[dsys, adc,
Input

Sys
Outputs
dsys

adc
cdc

system data structure.

is the purely continuous input/output connections of sys

connections from discrete states to continuous states, discrete states to continuous
outputs, respectively.

If no continuous path exists, csys will be empty.

cdc] = sysdisc (sys) [Function File]

System data structure.

Purely discrete portion of sys (returned empty if there is no purely discrete path
from inputs to outputs).

Connections from continuous states to discrete states and discrete outputs, re-
spectively.
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retsys = sysdup (asys, out_idx, in_idx) [Function File]

Duplicate specified input/output connections of a system

Inputs

asys system data structure

out_idx

in_idx indices or names of desired signals (see sigidx). duplicates are made of y(out_
idx(ii)) and u(in_idx(ii)).

Output

retsys Resulting closed loop system: duplicated i/o names are appended with a "+"
suffix.

Method

sysdup creates copies of selected inputs and outputs as shown below. ul, yI is the set
of original inputs/outputs, and u2, y2 is the set of duplicated inputs/outputs in the order
specified in in_idx, out_idx, respectively

ul  ----- > [-———> y1
| asys [
u2 -—----- >| [ ————- >y2
(in_idx) —-——————————————————- (out_idx)
sys = sysgroup (asys, bsys) [Function File]
Combines two systems into a single system.
Inputs
asys
bsys System data structures.
Output
Sys sys = blockdiag(asys, bsys)
| __ |
ul -———- >|--> | asys |-——>|----> y1
[ it |
| __ |
u2 ----- >|==> | bsys |--—>|----> y2

Ksys
The function also rearranges the internal state-space realization of sys so that the continuous

states come first and the discrete states come last. If there are duplicate names, the second
name has a unique suffix appended on to the end of the name.

sys = sysmult (Asys, Bsys) [Function File]
Compute sys = Asys x Bsys (series connection):

--->| Bsys |---->| Asys [--—>
A warning occurs if there is direct feed-through from an input or a continuous state of Bsys,
through a discrete output of Bsys, to a continuous state or output in Asys (system data
structure does not recognize discrete inputs).
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retsys = sysprune (asys, out_idx, in_idx) [Function File]

Extract specified inputs/outputs from a system

Inputs

asys system data structure

out_idx

in_idx Indices or signal names of the outputs and inputs to be kept in the returned

system; remaining connections are “pruned” off. May select as [] (empty matrix)
to specify all outputs/inputs.
retsys = sysprune (Asys, [1:3,4], "u_1");
retsys = sysprune (Asys, {"tx", "ty", "tz"}, 4);
Output
retsys Resulting system.
ul ----——-- >| [-——=> y1
(in_idx) | Asys | (out_idx)
u2 ------- > |-——-1 y2
(deleted) ———-—-———-—-———-—-—- (deleted)

pv = sysreorder (vlen, list) [Function File]

Inputs

vlen Vector length.

list A subset of [1:vlen].

Output

pv A permutation vector to order elements of [1:vlen] in list to the end of a

vector.

Used internally by sysconnect to permute vector elements to their desired locations.

retsys = sysscale (sys, outscale, inscale, outname, inname) [Function File]
scale inputs/outputs of a system.
Inputs
Sys Structured system.
outscale
inscale Constant matrices of appropriate dimension.
outname
inname Lists of strings with the names of respectively outputs and inputs.
Output
retsys resulting open loop system:

If the input names and output names (each a list of strings) are not given and the scaling
matrices are not square, then default names will be given to the inputs and/or outputs.

A warning message is printed if outscale attempts to add continuous system outputs to
discrete system outputs; otherwise yd is set appropriately in the returned value of sys.
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sys = syssub (Gsys, Hsys) [Function File]
Return sys = G'sys — Hsys.
Method

Gsys and Hsys are connected in parallel. The input vector is connected to both systems; the
outputs are subtracted. Returned system names are those of Gsys.

o +
+--=>| Gsys |--——+
I o
| +
u ——+ (D-—>y
| -|
| - o
+--->| Hsys |-—-+
+o—— +
ugain (n) [Function File]

Creates a system with unity gain, no states. This trivial system is sometimes needed to
create arbitrary complex systems from simple systems with buildssic. Watch out if you are
forming sampled systems since ugain does not contain a sampling period.

See also: hinfdemo, jet707.

W = wgtlo (v1, vh, fc) [Function File]
State space description of a first order weighting function.

Weighting function are needed by the Hy/H., design procedure. These functions are part of
the augmented plant P (see hinfdemo for an application example).

Inputs
vl Gain at low frequencies.
vh Gain at high frequencies.
fc Corner frequency (in Hz, not in rad/sec)
Output
\14 Weighting function, given in form of a system data structure.
ksys = parallel (asys, bsys) [Function File]

Forms the parallel connection of two systems.

u - >|-===> | asys |--=>|----> y1
| i |
| it |
|-==>|-===> | bsys |--->|---=> y2
it |
ksys
[retsys, nc, no] = sysmin (sys, flg) [Function File]

Returns a minimal (or reduced order) system

Inputs
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Sys System data structure

flg When equal to 0 (default value), returns minimal system, in which state names
are lost; when equal to 1, returns system with physical states removed that are
either uncontrollable or unobservable (cannot reduce further without discarding
physical meaning of states).

Outputs

retsys Returned system.

nc Number of controllable states in the returned system.
no Number of observable states in the returned system.
cflg is_controllable(retsys).

oflg is_observable(retsys).

30.5 Numerical Functions

x = are (a, b, c, opt) [Function File]
Solve the Algebraic Riccati Equation

ATX+XA-XBX+C=0

Inputs for identically dimensioned square matrices

a n by n matrix;

b n by n matrix or n by m matrix; in the latter case b is replaced by b :=b* ¥';

c n by n matrix or p by m matrix; in the latter case c is replaced by ¢ := ¢ * ¢;
opt (optional argument; default = "B"): String option passed to balance prior to

ordered Schur decomposition.
Output
X solution of the ARE.

Method Laub’s Schur method (IEEE Transactions on Automatic Control, 1979) is applied to
the appropriate Hamiltonian matrix.

See also: balance, dare.

x = dare (a, b, q, r, opt) [Function File]
Return the solution, x of the discrete-time algebraic Riccati equation

ATXA—-X+A"XB(R+B"XB)'B"XA+Q =0

Inputs
n by n matrix;

b n by m matrix;

q n by n matrix, symmetric positive semidefinite, or a p by n matrix, In the latter
case q := ¢ * q is used;

r m by m, symmetric positive definite (invertible);

opt (optional argument; default = "B"): String option passed to balance prior to

ordered QQZ decomposition.
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Output
X solution of DARE.

Method Generalized eigenvalue approach (Van Dooren; SIAM J. Sci. Stat. Comput., Vol 2)
applied to the appropriate symplectic pencil.

See also: Ran and Rodman, Stable Hermitian Solutions of Discrete Algebraic Riccati Equa-
tions, Mathematics of Control, Signals and Systems, Vol 5, no 2 (1992), pp 165-194.

See also: balance, are.

[tvals, plist] = dre (sys, q, r, qf, tO, tf, ptol, maxits) [Function File]
Solve the differential Riccati equation
ar T —1pT
— =A"P+PA—-PBR 'B'P+Q

P(ty) = Qy
for the LTI system sys. Solution of standard LTT state feedback optimization
ty
min/ 2" Qx + u" Rudt + x(t;)" Qsx(ty)
to

optimal input is
u=—-R'BT"P(t)z

Inputs

Sys continuous time system data structure

q state integral penalty

r input integral penalty

qf state terminal penalty

t0

tf limits on the integral

ptol tolerance (used to select time samples; see below); default = 0.1
maxits number of refinement iterations (default=10)
Outputs

tvals time values at which p(t) is computed

plist list values of p(t); plist { i } is p(tvals(i))

tvals is selected so that:
lplist; — plist;_1|| < ptol

for every i between 2 and length(tvals).

dgram (a, b) [Function File]
Return controllability gramian of discrete time system

Tyl = axy + buy

Inputs

a n by n matrix
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b n by m matrix
Output
m n by n matrix, satisfies
ama® —m +bb" =0
dlyap (a, b) [Function File]
Solve the discrete-time Lyapunov equation
Inputs
a n by n matrix;
b Matrix: n by n, n by m, or p by n.
Output
b'e matrix satisfying appropriate discrete time Lyapunov equation.
Options:

e b is square: solve
ara’ —x+b=0

e b is not square: x satisfies either
ara’ —x +bb"T =0
or
a’za — x4+ b"b =0,
whichever is appropriate.
Method Uses Schur decomposition method as in Kitagawa, An Algorithm for Solving the

Matrix Equation X = FXF’' + S, International Journal of Control, Volume 25, Number 5,
pages 745-753 (1977).
Column-by-column solution method as suggested in Hammarling, Numerical Solution of the

Stable, Non-Negative Definite Lyapunov Equation, IMA Journal of Numerical Analysis, Vol-
ume 2, pages 303-323 (1982).

gram (a, b) [Function File]
Return controllability gramian m of the continuous time system dx/dt = ax + bu.
m satisfies am + ma’ 4 bb" = 0.

lyap (a, b, c) [Function File]

lyap (a, b) [Function File]
Solve the Lyapunov (or Sylvester) equation via the Bartels-Stewart algorithm (Communica-
tions of the ACM, 1972).

If a, b, and ¢ are specified, then lyap returns the solution of the Sylvester equation
AX+XB+C=0
If only (a, b) are specified, then lyap returns the solution of the Lyapunov equation
ATX+ XA+B=0
If b is not square, then lyap returns the solution of either
ATX +XA+B"B=0
or
AX+XA"+BB" =0
whichever is appropriate.
Solves by using the Bartels-Stewart algorithm (1972).
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qzval (a, b) [Function File]
Compute generalized eigenvalues of the matrix pencil (A — AB).

a and b must be real matrices.

gzval is obsolete; use qz instead.

y = zgfmul (a, b, ¢, d, x) [Function File]
Compute product of zgep incidence matrix F' with vector x. Used by zgepbal (in zgscal)
as part of generalized conjugate gradient iteration.

zgfslv (n, m, p, b) [Function File]
Solve system of equations for dense zgep problem.

zz = zginit (a, b, ¢, d) [Function File]
Construct right hand side vector zz for the zero-computation generalized eigenvalue problem
balancing procedure. Called by zgepbal.

zgreduce (sys, meps) [Function File]
Implementation of procedure REDUCE in (Emami-Naeini and Van Dooren, Automatica, #
1982).

[nonz, zer] = zgrownorm (mat, meps) [Function File]
Return nonz = number of rows of mat whose two norm exceeds meps, and zer = number of
rows of mat whose two norm is less than meps.

x = zgscal (f, z, n, m, p) [Function File]
Generalized conjugate gradient iteration to solve zero-computation generalized eigenvalue
problem balancing equation fx = z; called by zgepbal.

[a, b] = zgsgiv (c, s, a, b) [Function File]
Apply givens rotation c¢,s to row vectors a, b. No longer used in zero-balancing (__zgpbal__);
kept for backward compatibility.

x = zgshsr (y) [Function File]
Apply householder vector based on €™ to column vector y. Called by zgfslv.

References

ZGEP Hodel, Computation of Zeros with Balancing, 1992, Linear Algebra and its Appli-
cations

Generalized CG
Golub and Van Loan, Matrix Computations, 2nd ed 1989.
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30.6 System Analysis-Properties

analdemo () [Function File]
Octave Controls toolbox demo: State Space analysis demo

[n, m, p] = abcddim (a, b, c, d) [Function File]
Check for compatibility of the dimensions of the matrices defining the linear system
[A, B, C, D] corresponding to

d
d—f = Ax + Bu

y=Cx+ Du

or a similar discrete-time system.

If the matrices are compatibly dimensioned, then abcddim returns

n The number of system states.

m The number of system inputs.

p The number of system outputs.
Otherwise abcddim returns n = m = p = —1.

Note: n = 0 (pure gain block) is returned without warning.

See also: is_abcd.

ctrb (sys, b) [Function File]
ctrb (a, b) [Function File]
Build controllability matrix:

Q. = [BABA’B... A" B|

of a system data structure or the pair (a, b).

ctrb forms the controllability matrix. The numerical properties of is_controllable are
much better for controllability tests.

h2norm (sys) [Function File]
Computes the H, norm of a system data structure (continuous time only).
Reference: Doyle, Glover, Khargonekar, Francis, State-Space Solutions to Standard H, and
‘H., Control Problems, IEEE TAC August 1989.

g, gmin, gmax] = hinfnorm (sys, tol, gmin, gmax, ptol) [Function File]
Computes the H,, norm of a system data structure.
Inputs
Sys system data structure
tol H., norm search tolerance (default: 0.001)
gmin minimum value for norm search (default: 1e-9)
gmax maximum value for norm search (default: 1le+9)
ptol pole tolerance:

e if sys is continuous, poles with |real(pole)| < ptol|H|| (H is appropriate
Hamiltonian) are considered to be on the imaginary axis.
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e if sys is discrete, poles with |pole — 1| < ptol||[s1s2]|| (appropriate symplectic
pencil) are considered to be on the unit circle.

e Default value: 1e-9

Outputs

g Computed gain, within tol of actual gain. g is returned as Inf if the system is
unstable.

gmin

gmax Actual system gain lies in the interval [gmin, gmax].

References: Doyle, Glover, Khargonekar, Francis, State-space solutions to standard H, and
‘H., control problems, IEEE TAC August 1989; Iglesias and Glover, State-Space approach to
discrete-time H,, control, Int. J. Control, vol 54, no. 5, 1991; Zhou, Doyle, Glover, Robust
and Optimal Control, Prentice-Hall, 1996.

obsv (sys, ¢) [Function File]
obsv (a, ¢) [Function File]
Build observability matrix:
C
CA
Q= | cA®
CA!

of a system data structure or the pair (a, c).

The numerical properties of is_observable are much better for observability tests.

[zer, pol] = pzmap (sys) [Function File]
Plots the zeros and poles of a system in the complex plane.
Input
Sys System data structure.
Outputs
pol
zer if omitted, the poles and zeros are plotted on the screen. otherwise, pol and zer
are returned as the system poles and zeros (see sys2zp for a preferable function
call).
retval = is_abcd (a, b, ¢, d) [Function File]

Returns retval = 1 if the dimensions of a, b, ¢, d are compatible, otherwise retval = 0 with
an appropriate diagnostic message printed to the screen. The matrices b, ¢, or d may be
omitted.

See also: abcddim.

[retval, ul] = is_controllable (sys, tol) [Function File]
[retval, ul] = is_controllable (a, b, tol) [Function File]
Logical check for system controllability.

Inputs

Sys system data structure
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Z n by n, n by m matrices, respectively

tol optional roundoff parameter. Default value: 10*eps

Outputs

retval Logical flag; returns true (1) if the system sys or the pair (a, b) is controllable,
whichever was passed as input arguments.

u u is an orthogonal basis of the controllable subspace.

Method Controllability is determined by applying Arnoldi iteration with complete re-
orthogonalization to obtain an orthogonal basis of the Krylov subspace

span ([b,a*b,...,a"{n-1}*b]).

The Arnoldi iteration is executed with krylov if the system has a single input; otherwise a
block Arnoldi iteration is performed with krylovb.

See also: size, rows, columns, length, ismatrix, isscalar, isvector is_observable, is_stabilizable,
is_detectable, krylov, krylovb.

retval = is_detectable (a, c, tol, dflg) [Function File]
retval = is_detectable (sys, tol) [Function File]
Test for detectability (observability of unstable modes) of (a, ¢).

Returns 1 if the system a or the pair (a, ¢) is detectable, 0 if not, and -1 if the system has
unobservable modes at the imaginary axis (unit circle for discrete-time systems).

See is_stabilizable for detailed description of arguments and computational method.

See also: is_stabilizable, size, rows, columns, length, ismatrix, isscalar, isvector.

[retval, dgkf_struct ] = is_dgkf (asys, nu, ny, tol ) [Function File]
Determine whether a continuous time state space system meets assumptions of DGKF algo-
rithm. Partitions system into:

[dx/dt] [A | Bw Bu ]I[w]

Lz 1= [Cz | Dzw Dzu ] [u]

Ly | [Cy | Dyw Dyu ]
or similar discrete-time system. If necessary, orthogonal transformations qw, qz and nonsin-
gular transformations ru, ry are applied to respective vectors w, z, u, y in order to satisfy
DGKF assumptions. Loop shifting is used if dyu block is nonzero.

Inputs

asys system data structure

nu number of controlled inputs

ny number of measured outputs

tol threshold for 0; default: 200*eps.

Outputs

retval true(1) if system passes check, false(0) otherwise
dgkf_struct

data structure of is_dgkf results. Entries:

nw
nz dimensions of w, z
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a system A matrix
bw (n x nw) gw-transformed disturbance input matrix
bu (n x nu) ru-transformed controlled input matrix;
B = [BwBu]
cz (nz x n) Qz-transformed error output matrix
cy (ny x n) ry-transformed measured output matrix
C=[CzCyl
dzu
dyw off-diagonal blocks of transformed system D matrix that enter z, y

from u, w respectively

ru controlled input transformation matrix
ry observed output transformation matrix
dyu_nz nonzero if the dyu block is nonzero.
dyu untransformed dyu block

dfig nonzero if the system is discrete-time

is_dgkf exits with an error if the system is mixed discrete/continuous.

References

[1] Doyle, Glover, Khargonekar, Francis, State Space Solutions to Standard H, and
‘H.. Control Problems, IEEE TAC August 1989.

2] Maciejowksi, J.M., Multivariable Feedback Design, Addison-Wesley, 1989.

digital = is_digital (sys, eflg) [Function File]

Return nonzero if system is digital.

Inputs

Sys System data structure.

eflg When equal to 0 (default value), exits with an error if the system is mixed
(continuous and discrete components); when equal to 1, print a warning if the
system is mixed (continuous and discrete); when equal to 2, operate silently.

Output

digital When equal to 0, the system is purely continuous; when equal to 1, the system is

purely discrete; when equal to -1, the system is mixed continuous and discrete.

Exits with an error if sys is a mixed (continuous and discrete) system.

[retval, ul] = is_observable (a, c, tol) [Function File]
[retval, u] = is_observable (sys, tol) [Function File]
Logical check for system observability.

Default: tol = tol = 10*norm(a,’fro’)*eps
Returns 1 if the system sys or the pair (a, c¢) is observable, 0 if not.

See is_controllable for detailed description of arguments and default values.

See also: size, rows, columns, length, ismatrix, isscalar, isvector.
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is_sample (ts) [Function File]
Return true if ts is a valid sampling time (real, scalar, > 0).

is_siso (sys) [Function File]
Returns nonzero if the system data structure sys is single-input, single-output.

retval = is_stabilizable (sys, tol) [Function File]
retval = is_stabilizable (a, b, tol, dflg) [Function File]
Logical check for system stabilizability (i.e., all unstable modes are controllable). Returns
1 if the system is stabilizable, 0 if the system is not stabilizable, -1 if the system has non
stabilizable modes at the imaginary axis (unit circle for discrete-time systems.
Test for stabilizability is performed via Hautus Lemma. If dflg#£0 assume that discrete-time
matrices (a,b) are supplied.

See also: size, rows, columns, length, ismatrix, isscalar, isvector is_observable, is_stabilizable,
is_detectable.

is_signal_list (mylist) [Function File]
Return true if mylist is a list of individual strings.

is_stable (a, tol, dflg) [Function File]
is_stable (sys, tol) [Function File]
Returns 1 if the matrix a or the system sys is stable, or 0 if not.
Inputs
tol is a roundoff parameter, set to 200*eps if omitted.
dflg Digital system flag (not required for system data structure):

dflg '= 0 stable if eig(a) is in the unit circle
dflg == 0 stable if eig(a) is in the open LHP (default)

See also: size, rows, columns, length, ismatrix, isscalar, isvector is_observable, is_stabilizable,
is_detectable, krylov, krylovb.

30.7 System Analysis-Time Domain
c2d (sys, opt, t) [Function File]
c2d (sys, t) [Function File]
Converts the system data structure describing:
T =A.x+ B.u
into a discrete time equivalent model:

Tpt+1 = Adxn + Bdun

via the matrix exponential or bilinear transform.

Inputs

Sys system data structure (may have both continuous time and discrete time subsys-
tems)

opt string argument; conversion option (optional argument; may be omitted as shown

above)
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"ex" use the matrix exponential (default)
"bi" use the bilinear transformation
2(z—1)
CT(z+1)

FIXME: This option exits with an error if sys is not purely continu-
ous. (The ex option can handle mixed systems.)

"matched"
Use the matched pole/zero equivalent transformation (currently only
works for purely continuous SISO systems).
t sampling time; required if sys is purely continuous.

Note that if the second argument is not a string, c2d() assumes that the second
argument is t and performs appropriate argument checks.

Output
dsys Discrete time equivalent via zero-order hold, sample each t sec.

This function adds the suffix _d to the names of the new discrete states.

d2c (sys, tol) [Function File]

d2c (sys, opt) [Function File]
Convert a discrete (sub)system into a purely continuous one. The sampling time used is
sysgettsam(sys).

Inputs

Sys system data structure with discrete components

tol Scalar value. Tolerance for convergence of default "log" option (see below)
opt conversion option. Choose from:

"log" (default) Conversion is performed via a matrix logarithm. Due to
some problems with this computation, it is followed by a steepest
descent algorithm to identify continuous time a, b, to get a better fit
to the original data.

If called as d2c (sys, tol), with tol positive scalar, the "log" op-
tion is used. The default value for tol is 1e-8.

"bi" Conversion is performed via bilinear transform z = (14 s7'/2)/(1 —
sT/2) where T is the system sampling time (see sysgettsam).
FIXME: bilinear option exits with an error if sys is not purely discrete

Output
cSys continuous time system (same dimensions and signal names as in sys).
[dsys, fidx] = dmr2d (sys, idx, sprefix, ts2, cuflg) [Function File]

convert a multirate digital system to a single rate digital system states specified by idx, sprefix
are sampled at ts2, all others are assumed sampled at ts] = sysgettsam (sys).

Inputs
Sys discrete time system; dmr2d exits with an error if sys is not discrete
idx indices or names of states with sampling time sysgettsam(sys) (may be empty);

see cellidx
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sprefix

ts2

cuflg

Outputs
dsys

fidx
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list of string prefixes of states with sampling time sysgettsam(sys) (may be
empty)

sampling time of states not specified by idx, sprefix must be an integer multiple
of sysgettsam(sys)

"constant u flag" if cuflg is nonzero then the system inputs are assumed to be
constant over the revised sampling interval ts2. Otherwise, since the inputs can
change during the interval t in [kts2, (k + 1)ts2], an additional set of inputs is
included in the revised B matrix so that these intersample inputs may be included
in the single-rate system. default cuflg = 1.

equivalent discrete time system with sampling time ts2.
The sampling time of sys is updated to ts2.

if cuflg=0 then a set of additional inputs is added to the system with suffixes
_dl1, ..., _dn to indicate their delay from the starting time k ts2, i.e. u = [u_1;
u-1.dl; ..., u_1_dn] where u_1_dk is the input k*tsl units of time after u_1 is
sampled. (tsI is the original sampling time of the discrete time system and ts2
= (n+1)*tsl)

indices of "formerly fast" states specified by idx and sprefix; these states are
updated to the new (slower) sampling interval ts2.

WARNING Not thoroughly tested yet; especially when cuflg == 0.

damp (p, tsam) [Function File]
Displays eigenvalues, natural frequencies and damping ratios of the eigenvalues of a matrix
p or the A matrix of a system p, respectively. If p is a system, tsam must not be specified.
If p is a matrix and tsam is specified, eigenvalues of p are assumed to be in z-domain.

See also: eig.

dcgain (sys, tol) [Function File]
Returns dc-gain matrix. If de-gain is infinite an empty matrix is returned. The argument
tol is an optional tolerance for the condition number of the A Matrix in sys (default tol =

1.0e-10)

[y, t] =

impulse (sys, inp, tstop, n) [Function File]

Impulse response for a linear system. The system can be discrete or multivariable (or both).
If no output arguments are specified, impulse produces a plot or the impulse response data
for system sys.

Inputs
Sys
inp
tstop

Outputs

System data structure.
Index of input being excited

The argument tstop (scalar value) denotes the time when the simulation should
end.
the number of data values.

Both parameters tstop and n can be omitted and will be computed from the
eigenvalues of the A Matrix.
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Values of the impulse response.

Times of the impulse response.

See also: step.

[y, t] =

step (sys, inp, tstop, n) [Function File]

Step response for a linear system. The system can be discrete or multivariable (or both). If
no output arguments are specified, step produces a plot or the step response data for system

SYS.
Inputs
Sys
inp
tstop

Outputs

Y
t

System data structure.
Index of input being excited

The argument tstop (scalar value) denotes the time when the simulation should
end.

the number of data values.

Both parameters tstop and n can be omitted and will be computed from the
eigenvalues of the A Matrix.

Values of the step response.

Times of the step response.

When invoked with the output parameter y the plot is not displayed.

See also: impulse.

30.8 System Analysis-Frequency Domain

Demonstration/tutorial script

frdemo ()

[Function File]

Octave Control Toolbox demo: Frequency Response demo.

[mag, phase, w] = bode (sys, w, out_idx, in_idx) [Function File]
If no output arguments are given: produce Bode plots of a system; otherwise, compute the
frequency response of a system data structure

Inputs

Sys

a system data structure (must be either purely continuous or discrete; see
is_digital)
frequency values for evaluation.

if sys is continuous, then bode evaluates G(jw) where G(s) is the system transfer
function.

if sys is discrete, then bode evaluates G(exp(jwT)), where
e T is the system sampling time
e ((z) is the system transfer function.

Default the default frequency range is selected as follows: (These steps are not
performed if w is specified)
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1. via routine __bodquist__, isolate all poles and zeros away from w=0 (jw=0
or exp(jwT)=1) and select the frequency range based on the breakpoint
locations of the frequencies.

2. if sys is discrete time, the frequency range is limited to jw7 in [0, 27 /T]
3. A "smoothing" routine is used to ensure that the plot phase does not change

excessively from point to point and that singular points (e.g., crossovers from
+/- 180) are accurately shown.

out_idx
in_idx
The names or indices of outputs and inputs to be used in the frequency response.
See sysprune.
Example
bode(sys, [] ’lly-3ll’ {llu-lll’||u—4ll});
Outputs
mag
phase the magnitude and phase of the frequency response G(jw) or G(exp(jwT')) at
the selected frequency values.
w the vector of frequency values used

1. If no output arguments are given, e.g.,
bode (sys) ;
bode plots the results to the screen. Descriptive labels are automatically placed.

Failure to include a concluding semicolon will yield some garbage being printed to the
screen (ans = [1).

2. 1If the requested plot is for an MIMO system, mag is set to ||G(jw)|| or ||G(exp(jwT))||
and phase information is not computed.

[wmin, wmax] = bode_bounds (zer, pol, dflg, tsam) [Function File]
Get default range of frequencies based on cutoff frequencies of system poles and zeros. Fre-
quency range is the interval [10%*min 10%mas]

Used internally in __freqresp__ (bode, nyquist)

freqchkw (w) [Function File]
Used by __freqresp__ to check that input frequency vector w is valid. Returns boolean
value.

out = 1ltifr (a, b, w) [Function File]
out = 1tifr (sys, w) [Function File]

Linear time invariant frequency response of single-input systems.

Inputs

a

b coefficient matrices of dx/dt = Ax + Bu

Sys system data structure

W vector of frequencies

Output

out frequency response, that is:
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Gjw) = (jwl — A)'B
for complex frequencies s = jw.
[realp, imagp, w] = nyquist (sys, w, out_idx, in_idx, atol) [Function File]
nyquist (sys, w, out_idx, in_idx, atol) [Function File]

Produce Nyquist plots of a system; if no output arguments are given, Nyquist plot is printed
to the screen.

Compute the frequency response of a system.

Inputs (pass as empty to get default values)

Sys

default

atol

Outputs

realp
imagp

w

system data structure (must be either purely continuous or discrete; see is_
digital)

frequency values for evaluation. If sys is continuous, then bode evaluates G (jw); if
sys is discrete, then bode evaluates G(exp(jwT)), where T is the system sampling
time.

the default frequency range is selected as follows: (These steps are not performed
if w is specified)
1. via routine __bodquist__, isolate all poles and zeros away from w=0 (jw=0
or exp(jwT) = 1) and select the frequency range based on the breakpoint
locations of the frequencies.

2. if sys is discrete time, the frequency range is limited to jwT in [0, 2p7]
3. A “smoothing” routine is used to ensure that the plot phase does not change

excessively from point to point and that singular points (e.g., crossovers from
+/- 180) are accurately shown.

for interactive nyquist plots: atol is a change-in-slope tolerance for the of asymp-
totes (default = 0; le-2 is a good choice). This allows the user to “zoom in” on
portions of the Nyquist plot too small to be seen with large asymptotes.

the real and imaginary parts of the frequency response G(jw) or G(exp(jwT))
at the selected frequency values.

the vector of frequency values used

If no output arguments are given, nyquist plots the results to the screen. If atol != 0 and
asymptotes are detected then the user is asked interactively if they wish to zoom in (remove
asymptotes) Descriptive labels are automatically placed.

Note: if the requested plot is for an MIMO system, a warning message is presented; the
returned information is of the magnitude ||G(jw)|| or ||G(exp(jwT)| only; phase information
is not computed.

[mag, phase, w] = nichols (sys, w, outputs, inputs) [Function File]
Produce Nichols plot of a system.

Inputs

Sys

System data structure (must be either purely continuous or discrete; see is_
digital).

Frequency values for evaluation.
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e if sys is continuous, then nichols evaluates G(jw).

e if sys is discrete, then nichols evaluates G(exp(jwT')), where T=sys. tsam
is the system sampling time.

e the default frequency range is selected as follows (These steps are not per-
formed if w is specified):

__, isolate all poles and zeros away from w=0

(jw = 0 or exp(jwT) = 1) and select the frequency range based on the

breakpoint locations of the frequencies.

1. via routine __bodquist

2. if sys is discrete time, the frequency range is limited to jwT in [0, 2p7].

3. A “smoothing” routine is used to ensure that the plot phase does not
change excessively from point to point and that singular points (e.g.,
crossovers from +/- 180) are accurately shown.

outputs

inputs the names or indices of the output(s) and input(s) to be used in the frequency
response; see sysprune.

Outputs

mag

phase The magnitude and phase of the frequency response G(jw) or G(exp(jwT)) at
the selected frequency values.

w The vector of frequency values used.

If no output arguments are given, nichols plots the results to the screen. Descriptive labels
are automatically placed. See xlabel, ylabel, and title.

Note: if the requested plot is for an MIMO system, mag is set to ||G(jw)|| or ||G(exp(jwT)||
and phase information is not computed.

[zer, gain] = tzero (a, b, c, d, opt) [Function File]
[zer, gain] = tzero (sys, opt) [Function File]
Compute transmission zeros of a continuous system:

= Az + Bu
y=Cx+ Du

or of a discrete one:
T = Axy + Buy,

yr = Cxy + Duy,

Outputs

zer transmission zeros of the system

gain leading coefficient (pole-zero form) of SISO transfer function returns gain=0 if
system is multivariable

References

1. Emami-Naeini and Van Dooren, Automatica, 1982.
2. Hodel, Computation of Zeros with Balancing, 1992 Lin. Alg. Appl.

zr = tzero2 (a, b, c, d, bal) [Function File]
Compute the transmission zeros of a, b, ¢, d.
bal = balancing option (see balance); default is "B".
Needs to incorporate mvzero algorithm to isolate finite zeros; use tzero instead.
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30.9 Controller Design

dgkfdemo () [Function File]
Octave Controls toolbox demo: Hy/H., options demos.

hinfdemo () [Function File]
H, design demos for continuous SISO and MIMO systems and a discrete system. The SISO
system is difficult to control because it is non-minimum-phase and unstable. The second
design example controls the jet707 plant, the linearized state space model of a Boeing 707-
321 aircraft at v=80 m/s (M = 0.26, G, = —3°, ap = 4°, k = 50°). Inputs: (1) thrust and
(2) elevator angle Outputs: (1) airspeed and (2) pitch angle. The discrete system is a stable
and second order.

SISO plant:
(s)::( §—2
s+2)(s—1)
-t
———————————————————— > Wi |-——> v1
z | +-———t
e +
| |
| +-——t v y -+
U k===>| G [-==>0-—*-->| W2 |---> v2
| +———+ | +————+

min|| T, || s

W1 und W2 are the robustness and performance weighting functions.

MIMO plant:
The optimal controller minimizes the H,, norm of the augmented plant P (mixed-
sensitivity problem):

W
1 ————— +
| +————+
oo > Wl |-—--> z1
W | -t
2 ————m +
(. I
| v +————+ v +————+
+==x==>0-->| G |-=Do——*—->| W2 |---> z2
| +-———+ | +-———t
I I
- v
u y (to K)

(from controller K)
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21
.
Y
Discrete system:
This is not a true discrete design. The design is carried out in continuous time
while the effect of sampling is described by a bilinear transformation of the sam-
pled system. This method works quite well if the sampling period is “small”
compared to the plant time constants.

wq

=P Wa

The continuous plant:

1

S P A

is discretised with a ZOH (Sampling period = Ts = 1 second):
0.199788z + 0.073498

¢(2) = = 0.36788)( — 0.13534)
o=t
———————————————————— >l Wl |--—> vi
z | +-———t
-— | +
| |
| +-——t v +-———+
k===>| G |--->0-—*-->| W2 |---> v2
| +———+ | +————+

min|T,. |

W1 and W2 are the robustness and performance weighting functions.

[1, m, p, e] = dlqge (a, g, ¢, sigw, sigv, z) [Function File]
Construct the linear quadratic estimator (Kalman filter) for the discrete time system

Tpy1 = Az, + Buy, + Guy,

Yk :C'xk—l-Duk—l—vk

where w, v are zero-mean gaussian noise processes with respective intensities sigw = cov (w,
w) and sigv = cov (v, v).

If specified, z is cov (w, v). Otherwise cov (w, v) = 0.

The observer structure is
2eik = Zejk—1 + U(ye — Czp—1 — Duy,)
Zig1lk = Az + Buy,

The following values are returned:
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1 The observer gain, (A — ALC). is stable.
m The Riccati equation solution.
p The estimate error covariance after the measurement update.
e The closed loop poles of (A — ALC).
[k, p, el = dlqr (a, b, q, I, 2) [Function File]

Construct the linear quadratic regulator for the discrete time system
Tit1 = Awk + Buk
to minimize the cost functional

J=> 2"Qx+u"Ru

z omitted or

J = Z 27 Qx + v Ru + 22" Zu

z included.

The following values are returned:

k The state feedback gain, (A — BK) is stable.
p The solution of algebraic Riccati equation.
e The closed loop poles of (A — BK).
[(Lp, Lf, P, Z] = dkalman (4, G, C, Qw, Rv, S) [Function File]

Construct the linear quadratic estimator (Kalman predictor) for the discrete time system
Tpy1 = ALUk -+ Buk + ka

yr = Cxy + Duy, + vy,
where w, v are zero-mean gaussian noise processes with respective intensities Qw = cov (w,
w) and Rv = cov (v, v).
If specified, S is cov (w, v). Otherwise cov (w, v) = 0.

The observer structure is i1 = Azpp—1 + Bup + Ly(yp — CTppp—1 — Dug) Ty = T +
Lf(yk - C»”Uk\k—l — Duy,)

The following values are returned:

Lp The predictor gain, (A — L,C). is stable.
Lf The filter gain.
P The Riccati solution. P = E{(z — Zpnjn-1)(% — Znjn-1)"}
Z The updated error covariance matrix. Z = E{(z — &pjn) (2 — Zppn)'}
[K, gain, kc, kf, pc, pf] = h2syn (asys, nu, ny, tol) [Function File]

Design H, optimal controller per procedure in Doyle, Glover, Khargonekar, Francis, State-
Space Solutions to Standard H, and H., Control Problems, IEEE TAC August 1989.

Discrete-time control per Zhou, Doyle, and Glover, Robust and optimal control, Prentice-
Hall, 1996.

Inputs
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asys system data structure (see ss, sys2ss)
e controller is implemented for continuous time systems

e controller is not implemented for discrete time systems

nu number of controlled inputs
ny number of measured outputs
tol threshold for 0. Default: 200*eps
Outputs
k system controller
gain optimal closed loop gain
ke full information control (packed)
kf state estimator (packed)
pc ARE solution matrix for regulator subproblem
pf ARE solution matrix for filter subproblem
K = hinf_ctr (dgs, £, h, z, g) [Function File]
Called by hinfsyn to compute the H., optimal controller.
Inputs
dgs data structure returned by is_dgkf
f
h feedback and filter gain (not partitioned)
g final gamma value
Outputs
K controller (system data structure)

Do not attempt to use this at home; no argument checking performed.

[k, g, gw, xinf, yinf] = hinfsyn (asys, nu, ny, gmin, gmax, [Function File]
gtol, ptol, tol)
Inputs input system is passed as either
asys system data structure (see ss, sys2ss)
e controller is implemented for continuous time systems

e controller is not implemented for discrete time systems (see bilinear trans-
forms in c2d, d2c)

nu number of controlled inputs

ny number of measured outputs

gmin initial lower bound on H,, optimal gain

gmax initial upper bound on H,, Optimal gain.

gtol Gain threshold. Routine quits when gmax/gmin < 1+tol.

ptol poles with abs(real(pole)) < ptol|H| (H is appropriate Hamiltonian) are

considered to be on the imaginary axis. Default: 1e-9.
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tol threshold for 0. Default: 200*eps.

gmax, min, tol, and tol must all be positive scalars.
Outputs
k System controller.
g Designed gain value.
gw Closed loop system.
xinf ARE solution matrix for regulator subproblem.
yinf ARE solution matrix for filter subproblem.
References:

1. Doyle, Glover, Khargonekar, Francis, State-Space Solutions to Standard H, and H
Control Problems, IEEE TAC August 1989.

2. Maciejowksi, J.M., Multivariable feedback design, Addison-Wesley, 1989, ISBN 0-201-
18243-2.

3. Keith Glover and John C. Doyle, State-space formulae for all stabilizing controllers that
satisfy an Hs.norm bound and relations to risk sensitivity, Systems & Control Letters
11, Oct. 1988, pp 167-172.

[retval, pc, pf] = hinfsyn_chk (a, b1, b2, c1, c2, d12, d21, g, [Function File]
ptol)
Called by hinfsyn to see if gain g satisfies conditions in Theorem 3 of Doyle, Glover, Khar-
gonekar, Francis, State Space Solutions to Standard H, and H., Control Problems, TEEE
TAC August 1989.

Warning: do not attempt to use this at home; no argument checking performed.

Inputs

As returned by is_dgkf, except for:

g candidate gain level

ptol as in hinfsyn

Outputs

retval 1 if g exceeds optimal Hinf closed loop gain, else 0
pc solution of “regulator” H., ARE

pf solution of “filter” H., ARE

Do not attempt to use this at home; no argument checking performed.

[xinf, x_ha_err] = hinfsyn_ric (a, bb, c1, didot, r, ptol) [Function File]
Forms
xx = ([bb; -ci1’*dldot]/r) * [dldot’*cl bb’];
Ha [a O%a; -cl’*cl - a’] - xx;
and solves associated Riccati equation. The error code x_ha_err indicates one of the following
conditions:

0 successful
1 xinf has imaginary eigenvalues

2 hx not Hamiltonian
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3
4
5
6

[k, p, el =

xinf has infinite eigenvalues (numerical overflow)
xinf not symmetric
xinf not positive definite

r is singular

lqge (a, g, ¢, sigw, sigv, z) [Function File]
Construct the linear quadratic estimator (Kalman filter) for the continuous time system
dx
— = Az 4+ Gu
dt N
y=Cx+v

where w and v are zero-mean gaussian noise processes with respective intensities

sigw
sigv

= cov (w, w)
= cov (v, v)

The optional argument z is the cross-covariance cov (w, v). If it is omitted, cov (w, v) =
0 is assumed.

Observer structure is dz/dt =Az+Bu+k (y-Cz -Du)

The following values are returned:

k The observer gain, (A — KC) is stable.
p The solution of algebraic Riccati equation.
e The vector of closed loop poles of (A — KC).
[k, q1, pl, ee, er] = lqg (sys, sigw, sigv, q, r, in_idx) [Function File]
Design a linear-quadratic-gaussian optimal controller for the system
dx/dt =Ax +Bu+Gw [w]=N(O, [Sigw O D
y=Cx+v vl ( 0 Sigv 1)
or
x(k+1) = A x(k) + B u(k) + G w(k) [w]=N(0, [Sigw O D
y(k) = C x(k) + v(k) vl ( 0 Sigv 1)

Inputs
Sys system data structure
Sigw
sigv intensities of independent Gaussian noise processes (as above)
q
r state, control weighting respectively. Control ARE is
in_idx names or indices of controlled inputs (see sysidx, cellidx)

default: last dim(R) inputs are assumed to be controlled inputs, all others are

assumed to be noise inputs.
Outputs
k system data structure format LQG optimal controller (Obtain A, B, C matrices

with sys2ss, sys2tf, or sys2zp as appropriate).
pl Solution of control (state feedback) algebraic Riccati equation.
ql Solution of estimation algebraic Riccati equation.
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ee Estimator poles.

es Controller poles.

See also: h2syn, lqe, Iqr.

[k, p, el = 1qr (a, b, q, I, z) [Function File]
construct the linear quadratic regulator for the continuous time system

d
d—f:Aw—i—Bu

to minimize the cost functional
J :/ 27 Qz +u' Ru
0
z omitted or
J = / 2T Qx +u" Ru+ 22" Zu
0

z included.

The following values are returned:

k The state feedback gain, (A — BK) is stable and minimizes the cost functional
p The stabilizing solution of appropriate algebraic Riccati equation.
e The vector of the closed loop poles of (A — BK).

Reference Anderson and Moore, Optimal control: linear quadratic methods, Prentice-Hall,
1990, pp. 56-58.

[y, x] = 1sim (sys, u, t, x0) [Function File]
Produce output for a linear simulation of a system; produces a plot for the output of the
system, sys.

u is an array that contains the system’s inputs. Each row in u corresponds to a different time
step. Each column in u corresponds to a different input. t is an array that contains the time
index of the system; t should be regularly spaced. If initial conditions are required on the
system, the x0 vector should be added to the argument list.

When the Isim function is invoked a plot is not displayed; however, the data is returned in y
(system output) and x (system states).

K = place (sys, p) [Function File]
Computes the matrix K such that if the state is feedback with gain K, then the eigenvalues
of the closed loop system (i.e. A — BK) are those specified in the vector p.

Version: Beta (May-1997): If you have any comments, please let me know. (see the file
place.m for my address)
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30.10 Miscellaneous Functions (Not yet properly
filed/documented)

axis2dlim (axdata) [Function File]
Determine axis limits for 2-D data (column vectors); leaves a 10% margin around the plots.
Inserts margins of +/- 0.1 if data is one-dimensional (or a single point).

Input
axdata n by 2 matrix of data [x, y].
Output
axvec Vector of axis limits appropriate for call to axis function.
moddemo (inputs) [Function File]

Octave Control toolbox demo: Model Manipulations demo.

prompt (str) [Function File]
Prompt user to continue
Input
str Input string. Its default value is:
\n ---- Press a key to continue ---
rldemo (inputs) [Function File]

Octave Control toolbox demo: Root Locus demo.

[rldata, k] = rlocus (sys[, increment, min_k, max_k|) [Function File]
Display root locus plot of the specified SISO system.

--=>| + |---]k|---->| SISO |----------- >
_____ _— e |
_____________________________ I
Inputs
Sys system data structure
min_k Minimum value of k
max_k Maximum value of k

increment The increment used in computing gain values

Outputs
Plots the root locus to the screen.
rldata Data points plotted: in column 1 real values, in column 2 the imaginary values.
k Gains for real axis break points.
[yy, idx] = sortcom (xx[, opt]) [Function File]
Sort a complex vector.
Inputs
XX Complex vector

opt sorting option:



386 GNU Octave

"re" Real part (default);
"mag" By magnitude;
"im" By imaginary part.

if opt is not chosen as "im", then complex conjugate pairs are grouped together,
a — jb followed by a + jb.

Outputs
vy Sorted values
idx Permutation vector: yy = xx(idx)
[num, den] = ss2tf (a, b, ¢, d) [Function File]
Conversion from transfer function to state-space. The state space system:
i = Ax + Bu
y=Cx+ Du
is converted to a transfer function:
num(s)
G(s) =
() den(s)

used internally in system data structure format manipulations.

[pol, zer, k] = ss2zp (a, b, c, d) [Function File]
Converts a state space representation to a set of poles and zeros; k is a gain associated with
the zeros.

Used internally in system data structure format manipulations.

starp (P, K, ny, nu) [Function File]
Redheffer star product or upper/lower LFT, respectively.

- +
————————— > | | ————————>
[ P |

+———>| |---+ ny
| - +
o +
[
Fmm + |
I I
| - + ]
+-—=> | —————- + nu
[ K |
--------- > | | ———m———>
Fm—————— +

If ny and nu “consume” all inputs and outputs of K then the result is a lower fractional
transformation. If ny and nu “consume” all inputs and outputs of P then the result is an
upper fractional transformation.

ny and/or nu may be negative (i.e. negative feedback).
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la, b, ¢, d] = tf2ss (num, den) [Function File]
Conversion from transfer function to state-space. The state space system:

= Ax + Bu
y=Cx+ Du
is obtained from a transfer function:
_ num(s)
Gls) = den(s)

The vector den must contain only one row, whereas the vector num may contain as many
rows as there are outputs y of the system. The state space system matrices obtained from
this function will be in controllable canonical form as described in Modern Control Theory,
(Brogan, 1991).

[zer, pol, k] = tf2zp (num, den) [Function File]
Converts transfer functions to poles-and-zero representations.

Returns the zeros and poles of the SISO system defined by num/den. k is a gain associated
with the system zeros.

la, b, ¢, d] = zp2ss (zer, pol, k) [Function File]
Conversion from zero / pole to state space.
Inputs
zer
pol Vectors of (possibly) complex poles and zeros of a transfer function. Complex
values must come in conjugate pairs (i.e., x + jy in zer means that x — jy is also
in zer). The number of zeros must not exceed the number of poles.
k Real scalar (leading coefficient).
Outputs
a
b
c
d The state space system, in the form:
& = Ax + Bu
y=Cx+ Du
[num, den] = zp2tf (zer, pol, k) [Function File]
Converts zeros / poles to a transfer function.
Inputs
zer
pol Vectors of (possibly complex) poles and zeros of a transfer function. Complex

values must appear in conjugate pairs.

k Real scalar (leading coefficient).
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31 Signal Processing

detrend (x, p) [Function File]
If x is a vector, detrend (x, p) removes the best fit of a polynomial of order p from the
data x.

If x is a matrix, detrend (x, p) does the same for each column in x.

The second argument is optional. If it is not specified, a value of 1 is assumed. This corre-
sponds to removing a linear trend.

fft (a, n, dim) [Loadable Function]
Compute the FFT of a using subroutines from FrTw. The FFT is calculated along the first
non-singleton dimension of the array. Thus if a is a matrix, £ft (a) computes the FFT for
each column of a.

If called with two arguments, n is expected to be an integer specifying the number of elements
of a to use, or an empty matrix to specify that its value should be ignored. If n is larger than
the dimension along which the FFT is calculated, then a is resized and padded with zeros.
Otherwise, if n is smaller than the dimension along which the FFT is calculated, then a is
truncated.

If called with three arguments, dim is an integer specifying the dimension of the matrix along
which the FFT is performed

See also: ifft, fft2, fftn, fftw.

method = fftw (’planner’) [Loadable Function

fftw (’planner’, method) [Loadable Function

wisdom = fftw ('dwisdom’) [Loadable Function

wisdom = fftw (’dwisdom’, wisdom) [Loadable Function
Manage FFTW wisdom data. Wisdom data can be used to significantly accelerate the calcu-
lation of the FFTs but implies an initial cost in its calculation. The wisdom used by Octave
can be imported directly, usually from a file /etc/fftw /wisdom, or fftw can be used to import
wisdom. For example

]
]
]
]

wisdom = fftw (’dwisdom’)

will save the existing wisdom used by Octave to the string wisdom. This string can then be
saved in the usual manner. This existing wisdom can be reimported as follows

fftw (’dwisdom’, wisdom)
If wisdom is an empty matrix, then the wisdom used is cleared.

During the calculation of fourier transforms further wisdom is generated. The fashion in
which this wisdom is generated is equally controlled by the fftw function. There are five
different manners in which the wisdom can be treated, these being

‘estimate’ This specifies that no run-time measurement of the optimal means of calculating
a particular is performed, and a simple heuristic is used to pick a (probably sub-
optimal) plan. The advantage of this method is that there is little or no overhead
in the generation of the plan, which is appropriate for a fourier transform that
will be calculated once.

‘measure’ In this case a range of algorithms to perform the transform is considered and the
best is selected based on their execution time.

‘patient”  This is like 'measure’, but a wider range of algorithms is considered.
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‘exhaustive’
This is like 'measure’, but all possible algorithms that may be used to treat the
transform are considered.

"hybrid’ As run-time measurement of the algorithm can be expensive, this is a compromise
where 'measure’ is used for transforms up to the size of 8192 and beyond that
the ’estimate’ method is used.

The default method is ’estimate’, and the method currently being used can be probed with
method = fftw (’planner’)

and the method used can be set using
fftw (’planner’, method)

Note that calculated wisdom will be lost when restarting Octave. However, the wisdom data
can be reloaded if it is saved to a file as described above. Also, any system-wide wisdom file
that has been found will also be used. Saved wisdom files should not be used on different
platforms since they will not be efficient and the point of calculating the wisdom is lost.

See also: fft, ifft, fft2, ifft2, fftn, ifftn.

ifft (a, n, dim) [Loadable Function]
Compute the inverse FFT of a using subroutines from FrTw. The inverse FFT is calculated
along the first non-singleton dimension of the array. Thus if a is a matrix, £ft (a) computes
the inverse FFT for each column of a.
If called with two arguments, n is expected to be an integer specifying the number of elements
of a to use, or an empty matrix to specify that its value should be ignored. If n is larger than
the dimension along which the inverse FF'T is calculated, then a is resized and padded with
zeros. Otherwise, ifn is smaller than the dimension along which the inverse FF'T is calculated,
then a is truncated.
If called with three arguments, dim is an integer specifying the dimension of the matrix along
which the inverse FFT is performed

See also: fIt, ifft2, ifftn, fftw.

fft2 (a, n, m) [Loadable Function]
Compute the two dimensional FFT of a using subroutines from FrTw. The optional argu-
ments n and m may be used specify the number of rows and columns of a to use. If either of
these is larger than the size of a, a is resized and padded with zeros.

If a is a multi-dimensional matrix, each two-dimensional sub-matrix of a is treated separately

See also: ifft2, fft, fftn, fftw.

fft2 (a, n, m) [Loadable Function]
Compute the inverse two dimensional FFT of a using subroutines from FrFTw. The optional
arguments n and m may be used specify the number of rows and columns of a to use. If
either of these is larger than the size of a, a is resized and padded with zeros.

If a is a multi-dimensional matrix, each two-dimensional sub-matrix of a is treated separately

See also: fft2, ifft, ifftn, fftw.

fftn (a, size) [Loadable Function]
Compute the N dimensional FFT of a using subroutines from FrTw. The optional vector
argument size may be used specify the dimensions of the array to be used. If an element
of size is smaller than the corresponding dimension, then the dimension is truncated prior
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to performing the FFT. Otherwise if an element of size is larger than the corresponding
dimension a is resized and padded with zeros.

See also: ifftn, fft, fft2, fftw.

ifftn (a, size) [Loadable Function)]

Compute the inverse N dimensional FFT of a using subroutines from Frrw. The optional
vector argument size may be used specify the dimensions of the array to be used. If an element
of size is smaller than the corresponding dimension, then the dimension is truncated prior to
performing the inverse FFT. Otherwise if an element of size is larger than the corresponding
dimension a is resized and padded with zeros.

See also: fftn, ifft, ifft2, fftw.

fftconv (a, b, n) [Function File]

Return the convolution of the vectors a and b, as a vector with length equal to the length
(a) + length (b) - 1. If a and b are the coefficient vectors of two polynomials, the returned
value is the coefficient vector of the product polynomial.

The computation uses the FFT by calling the function fftfilt. If th