
Document Object Model (DOM) Level 3 Abstract
Schemas and Load and Save Specification

Version 1.0

W3C Working Draft 25 October 2001
This version:

http://www.w3.org/TR/2001/WD-DOM-Level-3-ASLS-20011025
(PostScript file , PDF file , plain text , ZIP file , single HTML file)

Latest version:
http://www.w3.org/TR/DOM-Level-3-ASLS

Previous version:
http://www.w3.org/TR/2001/WD-DOM-Level-3-ASLS-20010607

Editors:
Ben Chang, Oracle
Jeroen van Rotterdam, X-Hive Corporation
Johnny Stenback, Netscape
Andy Heninger, IBM (until March 2001)
Joe Kesselman, IBM (until September 2001)
Rezaur Rahman, Intel Corporation (until July 2001)

Copyright ©2001 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability , trademark, document
use and software licensing rules apply.

Abstract
This specification defines the Document Object Model Abstract Schemas and Load and Save Level 3, a
platform- and language-neutral interface that allows programs and scripts to dynamically access and
update the content, structure and style of documents. The Document Object Model Abstract Schemas and
Load and Save Level 3 builds on the Document Object Model Core Level 3 [DOM Level 3 Core].

Status of this document
This section describes the status of this document at the time of its publication. Other documents may
supersede this document. The latest status of this document series is maintained at the W3C.

1

Document Object Model (DOM) Level 3 Abstract Schemas and Load and Save Specification

http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#W3C_Trademarks
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Legal_Disclaimer
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Copyright
http://www.w3.org/TR/2001/WD-DOM-Level-3-ASLS-20010607/
http://www.w3.org/TR/DOM-Level-3-ASLS
http://www.w3.org/TR/2001/WD-DOM-Level-3-ASLS-20011025/DOM3-ASLS.html
http://www.w3.org/TR/2001/WD-DOM-Level-3-ASLS-20011025/DOM3-ASLS.zip
http://www.w3.org/TR/2001/WD-DOM-Level-3-ASLS-20011025/DOM3-ASLS.txt
http://www.w3.org/TR/2001/WD-DOM-Level-3-ASLS-20011025/DOM3-ASLS.pdf
http://www.w3.org/TR/2001/WD-DOM-Level-3-ASLS-20011025/DOM3-ASLS.ps
http://www.w3.org/TR/2001/WD-DOM-Level-3-ASLS-20011025
http://www.w3.org/

This is a W3C Working Draft for review by W3C members and other interested parties.

It is a draft document and may be updated, replaced or obsoleted by other documents at any time. It is
inappropriate to use W3C Working Drafts as reference material or to cite them as other than "work in
progress". This is work in progress and does not imply endorsement by, or the consensus of, either W3C
or members of the DOM working group.

Comments on this document are invited and are to be sent to the public mailing list www-dom@w3.org.
An archive is available at http://lists.w3.org/Archives/Public/www-dom/.

This document has been produced as part of the W3C DOM Activity . The authors of this document are
the DOM WG members.

A list of current W3C Recommendations and other technical documents can be found at
http://www.w3.org/TR.

Table of contents
................ 3Expanded Table of Contents
................... 5Copyright Notice

............. 9Chapter 1: Abstract Schemas Object Model

........... 53Chapter 2: Document Object Model Load and Save

................ 91Appendix A: IDL Definitions

.............. 101Appendix B: Java Language Binding

............ 117Appendix C: ECMAScript Language Binding

............... 133Appendix D: Acknowledgements

.................... 135Glossary

.................... 137References

..................... 139Index

2

Table of contents

http://www.w3.org/TR/
http://www.w3.org/DOM/Activity.html
http://lists.w3.org/Archives/Public/www-dom/

Expanded Table of Contents
................ 3Expanded Table of Contents
................... 5Copyright Notice
........... 5W3C Document Copyright Notice and License
........... 6W3C Software Copyright Notice and License

............. 9Chapter 1: Abstract Schemas Object Model

.................. 91.1. Overview

.............. 91.1.1. General Characteristics

............ 101.1.2. Use Cases and Requirements

.......... 121.2. Abstract Schemas and AS-Editing Interfaces

............. 341.3. Validation and Other Interfaces

.............. 371.4. Document-Editing Interfaces

........... 461.5. Editing and Generating an Abstract Schema

......... 461.6. Abstract Schema-directed Document Manipulation

......... 471.7. Validating a Document Against an Abstract Schema

............... 481.8. Well-formedness Testing

............ 491.9. Load and Save for Abstract Schemas

........... 53Chapter 2: Document Object Model Load and Save

.............. 532.1. Load and Save Requirements

.............. 532.1.1. General Requirements

.............. 542.1.2. Load Requirements

............. 542.1.3. XML Writer Requirements

............ 552.1.4. Other Items Under Consideration

.................. 562.2. Issue List

................ 562.2.1. Open Issues

............... 562.2.2. Resolved Issues

.................. 642.3. Interfaces

................ 91Appendix A: IDL Definitions

.............. 101Appendix B: Java Language Binding

............ 117Appendix C: ECMAScript Language Binding

............... 133Appendix D: Acknowledgements

................ 133D.1. Production Systems

.................... 135Glossary

.................... 137References

................ 1371. Normative references

................ 1382. Informative references

..................... 139Index

3

Expanded Table of Contents

4

Expanded Table of Contents

Copyright Notice
Copyright © 2001 World Wide Web Consortium, (Massachusetts Institute of Technology, Institut
National de Recherche en Informatique et en Automatique, Keio University). All Rights Reserved.

This document is published under the W3C Document Copyright Notice and License [p.5] . The bindings
within this document are published under the W3C Software Copyright Notice and License [p.6] . The
software license requires "Notice of any changes or modifications to the W3C files, including the date
changes were made." Consequently, modified versions of the DOM bindings must document that they do
not conform to the W3C standard; in the case of the IDL definitions, the pragma prefix can no longer be
’w3c.org’; in the case of the Java language binding, the package names can no longer be in the ’org.w3c’
package.

W3C Document Copyright Notice and License
Note: This section is a copy of the W3C Document Notice and License and could be found at
http://www.w3.org/Consortium/Legal/copyright-documents-19990405.

Copyright © 1994-2001 World Wide Web Consortium, (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique et en Automatique, Keio University). All Rights
Reserved.

http://www.w3.org/Consortium/Legal/

Public documents on the W3C site are provided by the copyright holders under the following license. The
software or Document Type Definitions (DTDs) associated with W3C specifications are governed by the
Software Notice. By using and/or copying this document, or the W3C document from which this
statement is linked, you (the licensee) agree that you have read, understood, and will comply with the
following terms and conditions:

Permission to use, copy, and distribute the contents of this document, or the W3C document from which
this statement is linked, in any medium for any purpose and without fee or royalty is hereby granted,
provided that you include the following on ALL copies of the document, or portions thereof, that you use:

1. A link or URL to the original W3C document.
2. The pre-existing copyright notice of the original author, or if it doesn’t exist, a notice of the form:

"Copyright © [$date-of-document] World Wide Web Consortium, (Massachusetts Institute of
Technology, Institut National de Recherche en Informatique et en Automatique, Keio University).
All Rights Reserved. http://www.w3.org/Consortium/Legal/" (Hypertext is preferred, but a textual
representation is permitted.)

3. If it exists, the STATUS of the W3C document.

When space permits, inclusion of the full text of this NOTICE should be provided. We request that
authorship attribution be provided in any software, documents, or other items or products that you create
pursuant to the implementation of the contents of this document, or any portion thereof.

5

Copyright Notice

http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-software.html
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/

No right to create modifications or derivatives of W3C documents is granted pursuant to this license.
However, if additional requirements (documented in the Copyright FAQ) are satisfied, the right to create
modifications or derivatives is sometimes granted by the W3C to individuals complying with those
requirements.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
this document or its contents without specific, written prior permission. Title to copyright in this
document will at all times remain with copyright holders.

W3C Software Copyright Notice and License
Note: This section is a copy of the W3C Software Copyright Notice and License and could be found at
http://www.w3.org/Consortium/Legal/copyright-software-19980720

Copyright © 1994-2001 World Wide Web Consortium, (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique et en Automatique, Keio University). All Rights
Reserved.

http://www.w3.org/Consortium/Legal/

This W3C work (including software, documents, or other related items) is being provided by the copyright
holders under the following license. By obtaining, using and/or copying this work, you (the licensee)
agree that you have read, understood, and will comply with the following terms and conditions:

Permission to use, copy, and modify this software and its documentation, with or without modification,
for any purpose and without fee or royalty is hereby granted, provided that you include the following on
ALL copies of the software and documentation or portions thereof, including modifications, that you
make:

1. The full text of this NOTICE in a location viewable to users of the redistributed or derivative work.
2. Any pre-existing intellectual property disclaimers. If none exist, then a notice of the following form:

"Copyright © [$date-of-software] World Wide Web Consortium, (Massachusetts Institute of
Technology, Institut National de Recherche en Informatique et en Automatique, Keio University).
All Rights Reserved. http://www.w3.org/Consortium/Legal/."

6

W3C Software Copyright Notice and License

http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Legal/IPR-FAQ.html

3. Notice of any changes or modifications to the W3C files, including the date changes were made. (We
recommend you provide URIs to the location from which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT
HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR
DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
the software without specific, written prior permission. Title to copyright in this software and any
associated documentation will at all times remain with copyright holders.

7

W3C Software Copyright Notice and License

8

W3C Software Copyright Notice and License

1. Abstract Schemas Object Model
Editors:

Ben Chang, Oracle
Joe Kesselman, IBM (until September 2001)
Rezaur Rahman, Intel Corporation (until July 2001)

1.1. Overview
This chapter describes the optional DOM Level 3 Abstract Schemas (AS) module. This module provides a
representation for XML abstract schemas, e.g., DTDs [XML] and XML Schemas [XML Schema Part 0],
together with operations on the abstract schemas, and how such information within the abstract schemas
could be applied to XML [p.136] documents used in both the document-editing and AS-editing worlds. A
DOM application can use the hasFeature method of the DOMImplementation interface defined in
DOM Core to determine whether a given DOM supports these capabilities or not. One feature string for
the AS-editing interfaces listed in this section is "AS-EDIT" and another feature string for
document-editing interfaces is "AS-DOC".

This chapter interacts strongly with Document Object Model Load and Save [p.53] . Not only will that
code serialize/deserialize abstract schemas, but it may also wind up defining its well-formedness and
validity checks in terms of what is defined in this chapter. In addition, the AS and Load/Save functional
areas uses the error-reporting mechanism allowing user-registered error callbacks introduced in [DOM
Level 3 Core]. Note that this may not imply that the parser actually calls the DOM’s validation code -- it
may be able to achieve better performance via its own -- but the appearance to the user should probably be
"as if" the DOM has been asked to validate the document, and parsers should probably be able to validate
newly loaded documents in terms of a previously loaded DOM AS.

Finally, this chapter will have separate sections to address the needs of the document-editing and
AS-editing worlds, along with a section that details overlapping areas such as validation. In this manner,
the document-editing world’s focuses on editing aspects and usage of information in the AS are made
distinct from the AS-editing world’s focuses on defining and manipulating the information in the AS.

1.1.1. General Characteristics

In the October 9, 1997 DOM requirements document, the following appeared: "There will be a way to
determine the presence of a DTD. There will be a way to add, remove, and change declarations in the
underlying DTD (if available). There will be a way to test conformance of all or part of the given
document against a DTD (if available)." In later discussions, the following was added, "There will be a
way to query element/attribute (and maybe other) declarations in the underlying DTD (if available),"
supplementing the primitive support for these in Level 1.

That work was deferred past Level 2, in the hope that XML Schemas would be addressed as well. It is
anticipated that lowest common denominator general APIs generated in this chapter can support both
DTDs and XML Schemas, and other XML abstract schemas down the road.

9

1. Abstract Schemas Object Model

The kinds of information that an Abstract Schema must make available are mostly self-evident from the
definitions of Infoset, DTDs, and XML Schemas. Note that some kinds of information on which the DOM
already relies, e.g., default values for attributes, will finally be given a visible representation here.

1.1.2. Use Cases and Requirements

The abstract schema referenced in these use cases/requirements is an abstraction and does not refer solely
to DTDs or XML Schemas.

For the AS-editing and document-editing worlds, the following use cases and requirements are common to
both and could be labeled as the "Validation and Other Common Functionality" section:

Use Cases:

1. CU1. Associating an abstract schema with a document, or changing the current association.
2. CU2. Using the same abstract schema with several documents, without having to reload it.

Requirements:

1. CR1. Validate against the abstract schema.
2. CR2. Retrieve information from abstract schema.
3. CR3. Load an existing abstract schema, perhaps independently from a document.
4. CR4. Being able to determine if a document has an abstract schema associated with it.
5. CR5. Associate an AS with a document and make it the active AS.

Specific to the AS-editing world, the following are use cases and requirements and could be labeled as the
"AS-editing" section:

Use Cases:

1. ASU1. Clone/map all or parts of an existing abstract schema to a new or existing abstract schema.
2. ASU2. Save an abstract schema in a separate file. For example, if a DTD can be broken up into

reusable pieces, which are then brought in via entity references, these can then be saved in a separate
file. Note that a DTD, which may include both an internal and external subset, would be an example
of an abstract schema.

3. ASU3. Modify an existing abstract schema.
4. ASU4. Create a new abstract schema.

Requirements:

1. ASR1. View and modify all parts of the abstract schema.
2. ASR2. Validate the abstract schema itself.
3. ASR3. Serialize the abstract schema.
4. ASR4. Clone all or parts of an existing abstract schema.
5. ASR5. Create a new abstract schema object.
6. ASR6. Validate portions of the XML document against the abstract schema.

10

1.1.2. Use Cases and Requirements

Specific to the document-editing world, the following are use cases and requirements and could be labeled
as the "Document-editing" section:

Use Cases:

1. DU1. For editing documents with an associated abstract schema, provide the guidance necessary so
that valid documents can be modified and remain valid.

2. DU2. For editing documents with an associated abstract schema, provide the guidance necessary to
transform an invalid document into a valid one.

Requirements:

1. DR1. Be able to determine if the document is well-formed, and if not, be given enough guidance to
locate the error.

2. DR2. Be able to determine if the document is namespace well-formed, and if not, be given enough
guidance to locate the error.

3. DR3. Be able to determine if the document is valid with respect to its associated abstract schema.
4. DR4. Be able to determine if specific modifications to a document would make it become invalid.
5. DR5. Retrieve information from all abstract schemas. One example might be getting a list of all the

defined element names for document editing purposes.

General Issues:

1. I1. Some concerns exist regarding whether a single abstract Abstract Schema structure can
successfully represent both namespace-unaware, e.g., DTD, and namespace-aware, e.g., XML
Schema, models of document’s content. For example, when you ask what elements can be inserted in
a specific place, the former will report the element’s QName, e.g., foo:bar, whereas the latter will
report its namespace and local name, e.g., {http://my.namespace}bar. We have added the
isNamespaceAware attribute to the generic AS object to help applications determine which of
these fields are important, but we are still analyzing this challenge.

2. I2. RESOLVED: An XML document may be associated with multiple ASs. We have decided that
only one of these is "active" (for validation and guidance) at a time. DOM applications may switch
which AS is active, remove ASs that are no longer relevant, or add ASs to the list. If it becomes
necessary to simultaneously consult more than one AS, it should be possible to write a "union" AS
which provides that capability within this framework.

3. I3. WON’T DEAL W/THIS: Round-trippability for include/ignore statements and other constructs
such as parameter entities, e.g., "macro-like" constructs, will not be supported since no data
representation exists to support these constructs without having to re-parse them.

4. I4. RESOLVED: Basic interface for a common error handler for both AS and Load/Save. Agreement
has been to utilize user-registered callbacks but other details to be worked out. Moved to a separate
chapter by Load/Save team.

5. I5. RESOLVED: Add the ability to cache/edit an imported abstract schema instead of loading it
every time, i.e., don’t want to include the abstract schema every time. Implementations can do this
without having this formalized though.

6. I6. Add a read-only feature string AS-QUERY, along with query methods on the abstract schema. In
more detail, there are methods that let you *query* the schema as well as those that let you modify
the schema and these should be a feature, i.e., AS-QUERY: Abstract Schema objects with query

11

1.1.2. Use Cases and Requirements

interfaces.
7. I7. RESOLVED: Have the NodeEditAS.can*(), CharacterDataEditAS.can*() , and

ElementEditAS.can*() methods throw exceptions like the isNodeValid() method.
Resolution: no exceptions should be thrown; it should be allowed if it’s not forbidden. Better
descriptions are in order for the true/false returns.

8. I8. RESOLVED: Rename the document-editing interfaces so they should have uniform names such
as NodeEditAS, DocumentEditAS, ElementEditAS, etc.

9. I9. RESOLVED: Remove the ASDOMStringList interface; create a new interface for document
editing, which is a slimmed down version of ElementEditAS; add a slimmed down method to get an
ElementEditAS. Elena to examine.

10. I10. RESOLVED: If another ASModel [p.15] is activated, will there be cleanup done to remove the
previous ASModel’s default attributes and entity definitions, if any? AS ET members felt that
whatever is done implementation-wise, correct behavior should result.

11. I11. List of DOMASExceptions in the AS spec thus far: INVALID_CHARACTER_ERR,
DUPLICATE_NAME_ERR, VALIDATION_ERR.

12. I12. Should names/namespaces of the various declarations be mutable during AS editing? AS ET
agreed they should and are awaiting action by the XML CORE team.

13. I13. AS ET thinks the validate method and the error handler should be on Document, in CORE. If
this doesn’t happen, it needs to be on DocumentAS.

14. I14. RESOLVED: If entities are changed in the ASModel, the underlying model is unchanged until
normalization.

15. I15. RESOLVED: Add option to control whether DOM CM is built from this document - solution is
that the model is loaded (if there is one) and can be retrieved through the DocumentAS interface.

16. I16. RESOLVED: There is a way to add a new schema file to the existing active compound schema
via setASModel().

17. I17. RESOLVED: Altering the document during error reporting, or mutation during validation
terminates validation, and a warning will be produced if this happens.

18. I18. Proposal needed to rename the asHint, asLocation attributes and tie that into how to describe an
ASModel [p.15] container of other ASModels.

19. I19. Proposal to revise getElementDeclaration method and introduce other methods on the
DocumentAS interface.

20. I19. If implementation doesn’t support AS-editing, need to have each set method throw an
unsupported exception.

1.2. Abstract Schemas and AS-Editing Interfaces
A list of the proposed Abstract Schema data structures and functions follow, starting off with the data
structures and "AS-editing" methods. Note that operations on the ASModel [p.15] that could result in its
being invalid will be discovered during document validation and not during the AS editing operation, for
example, removeNode(). Finally, note that an example element declaration: for (A, (B* | C), D+)
can be described by the following:

ASElementDeclaration example = {
 strictMixedContent = false;
 elementType = STRING_DATATYPE;
 isPCDataOnly = false;

12

1.2. Abstract Schemas and AS-Editing Interfaces

 contentType = ELEMENTS_CONTENTTYPE;
 tagname = "example";
 ASContentModel = exE;
 ASAttributeDecls = null;
}

ASContentModel exE = {
 listOperator = AS_SEQUENCE;
 minOccurs = 1;
 maxOccurs = 1;
 subModels = {(ASElementDeclaration A),
 (ASContentModel exBC),
 (ASContentModel exD)};
}

ASElementDeclaration A = {
 strictMixedContent = false;
 elementType = STRING_DATATYPE;
 isPCDataOnly = false;
 contentType = ELEMENTS_CONTENTTYPE;
 tagname = "A";
 ASContentModel = null;
 ASAttributeDecls = null;
}

ASContentModel exBC = {
 listOperator = AS_CHOICE;
 minOccurs = 1;
 maxOccurs = 1;
 subModels = {(ASContentModel exB),
 (ASElementDeclaration C)};
}

ASContentModel exB = {
 listOperator = AS_NONE;
 minOccurs = 0;
 maxOccurs = AS_UNBOUNDED;
 subModels = {(ASElementDeclaration B)};
}
ASElementDeclaration B = {
 strictMixedContent = false;
 elementType = STRING_DATATYPE;
 isPCDataOnly = false;
 contentType = ELEMENTS_CONTENTTYPE;
 tagname = "B";
 ASContentModel = null;
 ASAttributeDecls = null;
}

ASElementDeclaration C = {
 strictMixedContent = false;
 elementType = STRING_DATATYPE;
 isPCDataOnly = false;
 contentType = ELEMENTS_CONTENTTYPE;
 tagname = "C";
 ASContentModel = null;
 ASAttributeDecls = null;

13

1.2. Abstract Schemas and AS-Editing Interfaces

}

ASContentModel exD = {
 listOperator = AS_NONE;
 minOccurs = 1;
 maxOccurs = AS_UNBOUNDED;
 subModels = {(ASElementDeclaration D)};
}
ASElementDeclaration D = {
 strictMixedContent = false;
 elementType = STRING_DATATYPE;
 isPCDataOnly = false;
 contentType = ELEMENTS_CONTENTTYPE;
 tagname = "D";
 ASContentModel = null;
 ASAttributeDecls = null;
}

Exception DOMASException

Abstract Schemas operations may throw a DOMSystemException as described in their
descriptions.

IDL Definition

exception DOMASException {
 unsigned short code;
};
// ASExceptionCode
const unsigned short DUPLICATE_NAME_ERR = 1;
const unsigned short TYPE_ERR = 2;
const unsigned short NO_AS_AVAILABLE = 3;
const unsigned short WRONG_MIME_TYPE_ERR = 4;

Definition group ASExceptionCode

An integer indicating the type of error generated.

Defined Constants
DUPLICATE_NAME_ERR

If an element declaration already exists with the same name within an AS_CHOICE
operator.

NO_AS_AVAILABLE
If the DocumentEditAS [p.37] related to the node does not have any active
ASModel [p.15] and wfValidityCheckLevel is set to PARTIAL or
STRICT_VALIDITY_CHECK.

TYPE_ERR
If the type of the ASObject [p.19] is neither an ASContentModel [p.30] nor an
ASElementDeclaration [p.28] .

WRONG_MIME_TYPE_ERR
When mimeTypeCheck is true and the input source has an incorrect MIME Type.
See the attribute mimeTypeCheck.

14

1.2. Abstract Schemas and AS-Editing Interfaces

Interface ASModel

To begin with, an abstract schema is a generic structure that could contain both internal and external
subsets. An ASModel is an abstract object that could map to a DTD [XML], an XML Schema [XML
Schema Part 0], a database schema, etc. An ASModel could represent either an internal or an
external subset; hence an abstract schema could be composed of an ASModel representing the
internal subset and an ASModel representing the external subset. Note that the ASModel
representing the external subset could consult the ASModel representing the internal subset.
Furthermore, the ASModel representing the internal subset could be set to null by the
setInternalAS method as a mechanism for "removal". In addition, only one ASModel
representing the external subset can be specified as "active" and it is possible that none are "active".
Finally, the ASModel contains the factory methods needed to create a various types of ASObjects
like ASElementDeclaration [p.28] , ASAttributeDeclaration [p.32] , etc.

IDL Definition

interface ASModel : ASObject {
 readonly attribute boolean isNamespaceAware;
 readonly attribute unsigned short usageLocation;
 attribute DOMString asLocation;
 attribute DOMString asHint;
 readonly attribute ASNamedObjectMap elementDeclarations;
 readonly attribute ASNamedObjectMap attributeDeclarations;
 readonly attribute ASNamedObjectMap notationDeclarations;
 readonly attribute ASNamedObjectMap entityDeclarations;
 readonly attribute ASNamedObjectMap contentModelDeclarations;
 void setASModel(in ASModel abstractSchema);
 ASObjectList getASModels();
 void removeAS(in ASModel as);
 boolean validate();
 ASElementDeclaration createASElementDeclaration(in DOMString namespaceURI,
 in DOMString name)
 raises(DOMException);
 ASAttributeDeclaration createASAttributeDeclaration(in DOMString namespaceURI,
 in DOMString name)
 raises(DOMException);
 ASNotationDeclaration createASNotationDeclaration(in DOMString namespaceURI,
 in DOMString name,
 in DOMString systemId,
 in DOMString publicId)
 raises(DOMException);
 ASEntityDeclaration createASEntityDeclaration(in DOMString name)
 raises(DOMException);
 ASContentModel createASContentModel(in unsigned long minOccurs,
 in unsigned long maxOccurs,
 in unsigned short operator)
 raises(DOMASException);
};

Attributes
asHint of type DOMString

The hint to locating an ASModel.

15

1.2. Abstract Schemas and AS-Editing Interfaces

asLocation of type DOMString
The URI reference.

attributeDeclarations of type ASNamedObjectMap [p.21] , readonly
Instead of returning an all-in-one ASObject [p.19] with ASModel methods, have
discernible top-level/"global" attribute declarations. If one attempts to add, set, or remove a
node type other than the intended one, a hierarchy exception (or equivalent is thrown).

contentModelDeclarations of type ASNamedObjectMap [p.21] , readonly
Instead of returning an all-in-one ASObject [p.19] with ASModel methods, have
discernible top-level/"global content model declarations. If one attempts to add, set, or
remove a node type other than the intended one, a hierarchy exception (or equivalent is
thrown).

elementDeclarations of type ASNamedObjectMap [p.21] , readonly
Instead of returning an all-in-one ASObject [p.19] with ASModel methods, have
discernible top-level/"global" element declarations. If one attempts to add, set, or remove a
node type other than the intended one, a hierarchy exception (or equivalent is thrown).

entityDeclarations of type ASNamedObjectMap [p.21] , readonly
Instead of returning an all-in-one ASObject [p.19] with ASModel methods, have
discernible top-level/"global" entity declarations. If one attempts to add, set, or remove a
node type other than the intended one, a hierarchy exception (or equivalent is thrown).

isNamespaceAware of type boolean, readonly
true if this ASModel defines the document structure in terms of namespaces and local
names [XML Namespaces]; false if the document structure is defined only in terms of
QNames.

notationDeclarations of type ASNamedObjectMap [p.21] , readonly
Instead of returning an all-in-one ASObject [p.19] with ASModel methods, have
discernible top-level/"global" notation declarations. If one attempts to add, set, or remove a
node type other than the intended one, a hierarchy exception (or equivalent is thrown).

usageLocation of type unsigned short, readonly
0 if used internally, 1 if used externally, 2 if not all. An exception will be raised if it is
incompatibly shared or in use as an internal subset.

Methods
createASAttributeDeclaration

Creates an attribute declaration.
Parameters
namespaceURI of type DOMString

The namespace URI [p.135] of the attribute being declared.
name of type DOMString

The name of the attribute. The format of the name could be an NCName as defined by
XML Namespaces or a Name as defined by XML 1.0; it’s ASModel-dependent.

Return Value

ASAttributeDeclaration
[p.32]

A new ASAttributeDeclaration object
with appropriate attributes set by input
parameters.

16

1.2. Abstract Schemas and AS-Editing Interfaces

Exceptions

DOMException INVALID_CHARACTER_ERR: Raised if the input name
parameter contains an illegal character.

createASContentModel
Creates an object which describes part of an ASElementDeclaration [p.28] ’s content
model.
Parameters
minOccurs of type unsigned long

The minimum occurrence for the subModels of this ASContentModel [p.30] .
maxOccurs of type unsigned long

The maximum occurrence for the subModels of this ASContentModel [p.30] .
operator of type unsigned short

operator of type AS_CHOICE, AS_SEQUENCE, AS_ALL or AS_NONE.
Return Value

ASContentModel [p.30] A new ASContentModel object.

Exceptions

DOMASException
[p.14]

A DOMASException, e.g., minOccurs >
maxOccurs.

createASElementDeclaration
Creates an element [p.135] declaration for the element type specified.
Parameters
namespaceURI of type DOMString

The namespace URI of the element type being declared.
name of type DOMString

The name of the element. The format of the name could be an NCName as defined by
XML Namespaces or a Name as defined by XML 1.0; it’s ASModel-dependent.

Return Value

ASElementDeclaration
[p.28]

A new ASElementDeclaration object with
name attribute set to tagname and
namespaceURI set to systemId. Other attributes
of the element declaration are set through
ASElementDeclaration interface methods.

Exceptions

17

1.2. Abstract Schemas and AS-Editing Interfaces

DOMException INVALID_CHARACTER_ERR: Raised if the specified name
contains an illegal character.

createASEntityDeclaration
Creates an ASEntityDeclaration.
Parameters
name of type DOMString

The name of the entity being declared.
Return Value

ASEntityDeclaration
[p.33]

A new ASEntityDeclaration object with
entityName attribute set to name.

Exceptions

DOMException INVALID_CHARACTER_ERR: Raised if the specified name
contains an illegal character.

createASNotationDeclaration
Creates a new notation declaration.
Parameters
namespaceURI of type DOMString

The namespace URI [p.135] of the notation being declared.
name of type DOMString

The name of the notation. The format of the name could be an NCName as defined by
XML Namespaces or a Name as defined by XML 1.0; it’s ASModel-dependent.

systemId of type DOMString
The system identifier for the notation declaration.

publicId of type DOMString
The public identifier for the notation declaration.

Return Value

ASNotationDeclaration
[p.34]

A new ASNotationDeclaration object with
notationName attribute set to name and
publicId and systemId set to the
corresponding fields.

Exceptions

DOMException INVALID_CHARACTER_ERR: Raised if the specified name
contains an illegal character.

18

1.2. Abstract Schemas and AS-Editing Interfaces

getASModels
To retrieve a list of nested ASModels without reference to names.
Return Value

ASObjectList [p.21] A list of ASModels.

No Parameters
No Exceptions

removeAS
Removes only the specified ASModel from the list of ASModels.
Parameters
as of type ASModel [p.15]

AS to be removed.
No Return Value
No Exceptions

setASModel
This method will allow the nesting or "importation" of ASModels.
Parameters
abstractSchema of type ASModel [p.15]

ASModel to be set. Subsequent calls will nest the ASModels within the specified
ownerASModel.

No Return Value
No Exceptions

validate
Determines if an ASModel itself is valid, i.e., confirming that it’s well-formed and valid
per its own formal grammar.
Return Value

boolean true if the ASModel is valid, false otherwise.

No Parameters
No Exceptions

Interface ASObject

The ASObject interface is analogous to a Node in [DOM Level 3 Core], e.g., an element
declaration.

Opaque.

IDL Definition

interface ASObject {

 // ASObjectType
 const unsigned short AS_ELEMENT_DECLARATION = 1;
 const unsigned short AS_ATTRIBUTE_DECLARATION = 2;
 const unsigned short AS_NOTATION_DECLARATION = 3;

19

1.2. Abstract Schemas and AS-Editing Interfaces

 const unsigned short AS_ENTITY_DECLARATION = 4;
 const unsigned short AS_CONTENTMODEL = 5;
 const unsigned short AS_MODEL = 6;

 readonly attribute unsigned short asNodeType;
 attribute ASModel ownerASModel;
 attribute DOMString nodeName;
 attribute DOMString prefix;
 attribute DOMString localName;
 attribute DOMString namespaceURI;
 ASObject cloneASObject(in boolean deep);
};

Definition group ASObjectType

An integer indicating which type of ASObject this is.

Defined Constants
AS_ATTRIBUTE_DECLARATION

The node is an ASAttributeDeclaration [p.32] .
AS_CONTENTMODEL

The node is a ASContentModel [p.30] .
AS_ELEMENT_DECLARATION

The node is an ASElementDeclaration [p.28] .
AS_ENTITY_DECLARATION

The node is an ASEntityDeclaration [p.33] .
AS_MODEL

The node is a ASModel [p.15] .
AS_NOTATION_DECLARATION

The node is a ASNotationDeclaration [p.34] .
Attributes

asNodeType of type unsigned short, readonly
A code representing the underlying object as defined above.

localName of type DOMString
Returns the local part of the qualified name [p.136] of this ASObject.

namespaceURI of type DOMString
The namespace URI [p.135] of this node, or null if it is unspecified. [XML Schema Part
1] defines how a namespace URI [p.135] is attached to schema components.

nodeName of type DOMString
The name of this ASObject depending on the ASObject type.

ownerASModel of type ASModel [p.15]
The ASModel [p.15] object associated with this ASObject. For a node of type
AS_MODEL, this is null.

prefix of type DOMString
The namespace prefix [p.135] of this node, or null if it is unspecified.

Methods
cloneASObject

Creates a copy of this ASObject. See text for cloneNode off of Node but substitute
AS functionality.

20

1.2. Abstract Schemas and AS-Editing Interfaces

Parameters
deep of type boolean

Setting the deep flag on, causes the whole subtree to be duplicated. Setting it to
false only duplicates its immediate child nodes.

Return Value

ASObject [p.19] Cloned ASObject.

No Exceptions
Interface ASObjectList

The ASObjectList interface provides the abstraction of an ordered collection of AS nodes,
without defining or constraining how this collection is implemented. ASObjectList objects in the
DOM AS are live [p.135] .

IDL Definition

interface ASObjectList {
 readonly attribute unsigned long length;
 ASObject item(in unsigned long index);
};

Attributes
length of type unsigned long, readonly

The number of ASObjects [p.19] in the list. The range of valid child [p.135] node
indices is 0 to length-1 inclusive.

Methods
item

Returns the indexth item in the collection. The index starts at 0. If index is greater than
or equal to the number of nodes in the list, this returns null.
Parameters
index of type unsigned long

index into the collection.
Return Value

ASObject
[p.19]

The ASObject at the indexth position in the ASObjectList,
or null if that is not a valid index.

No Exceptions
Interface ASNamedObjectMap

Objects implementing the ASNamedObjectMap interface are used to represent collections of
abstract schema nodes that can be accessed by name. Note that ASNamedObjectMap does not
inherit from ASObjectList [p.21] ; ASNamedObjectMaps are not maintained in any particular
order. Objects contained in an object implementing ASNamedObjectMap may also be accessed by
an ordinal index, but this is simply to allow convenient enumeration of the contents of a
ASNamedObjectMap, and does not imply that the DOM specifies an order to these ASObjects

21

1.2. Abstract Schemas and AS-Editing Interfaces

[p.19] .

ASNamedObjectMap object in the DOM are live [p.135] .

IDL Definition

interface ASNamedObjectMap {
 readonly attribute unsigned long length;
 ASObject getNamedItem(in DOMString name);
 ASObject getNamedItemNS(in DOMString namespaceURI,
 in DOMString localName);
 ASObject item(in unsigned long index);
 ASObject removeNamedItem(in DOMString name)
 raises(DOMException);
 ASObject removeNamedItemNS(in DOMString namespaceURI,
 in DOMString localName)
 raises(DOMException);
 ASObject setNamedItem(in ASObject newASObject)
 raises(DOMException);
 ASObject setNamedItemNS(in ASObject newASObject)
 raises(DOMException);
};

Attributes
length of type unsigned long, readonly

The number of ASObjects [p.19] in the ASObjectList [p.21] . The range of valid
child [p.135] node indices is 0 to length-1 inclusive.

Methods
getNamedItem

Retrieves an ASObject [p.19] specified by name.
Parameters
name of type DOMString

The nodeName of an ASObject [p.19] to retrieve.
Return Value

ASObject
[p.19]

An ASObject with specified node name and null if the map does
not contain an element [p.135] with the given name.

No Exceptions
getNamedItemNS

Retrieves an ASObject [p.19] specified by local name [p.135] and namespace URI
[p.135] .
Parameters
namespaceURI of type DOMString

The namespace URI [p.135] of the ASObject [p.19] to retrieve.
localName of type DOMString

The local name [p.135] of the ASObject [p.19] to retrieve.
Return Value

22

1.2. Abstract Schemas and AS-Editing Interfaces

ASObject
[p.19]

A ASObject (of any type) with the specified local name and
namespace URI, or null if they do not identify any ASObject in
this map.

No Exceptions
item

Returns the indexth item in the map. The index starts at 0. If index is greater than or
equal to the number of nodes in the list, this returns null.
Parameters
index of type unsigned long

The position in the map from which the item is to be retrieved.
Return Value

ASObject
[p.19]

The ASObject at the indexth position in the
ASNamedObjectMap, or null if that is not a valid index.

No Exceptions
removeNamedItem

Removes an ASObject [p.19] specified by a nodeName.
Parameters
name of type DOMString

The nodeName of the ASObject [p.19] to be removed.
Return Value

ASObject
[p.19]

The ASObject removed from this map if an ASObject with
such a name exists.

Exceptions

DOMException NOT_FOUND_ERR: Raised if there is no node named name in
this map.

NO_MODIFICATION_ALLOWED_ERR: Raised if this map is
readonly.

removeNamedItemNS
Removes an ASObject [p.19] specified by a namespace URI and a local name.
Parameters
namespaceURI of type DOMString

The namespace URI [p.135] of the ASObject [p.19] to be removed.
localName of type DOMString

The local name [p.135] of the ASObject [p.19] to remove.
Return Value

23

1.2. Abstract Schemas and AS-Editing Interfaces

ASObject
[p.19]

The ASObject removed from this map if an ASObject with such
a local name and namespace URI exists.

Exceptions

DOMException NOT_FOUND_ERR: Raised if there is no node with the specified
namespaceURI and localName in this map.

NO_MODIFICATION_ALLOWED_ERR: Raised if this map is
readonly.

setNamedItem
Adds an ASObject [p.19] using its nodeName attribute. If an ASObject with that
name is already present in this map, it is replaced by the new one.
Parameters
newASObject of type ASObject [p.19]

The ASObject to be inserted in the map with its nodeName as the key.
Return Value

ASObject
[p.19]

If the new node replaces an existing one, the replaced node is
returned, otherwise null.

Exceptions

DOMException WRONG_DOCUMENT_ERR: Raised if arg was created from a
different ASModel [p.15] than the one that created this map.

NO_MODIFICATION_ALLOWED_ERR: Raised if this map is
readonly.

HIERARCHY_REQUEST_ERR: Raised if an attempt is made to
add a node doesn’t belong in this ASNamedObjectMap.

setNamedItemNS
Adds an ASObject [p.19] using its namespaceURI and localName. If an
ASObject with the same namespaceURI and localName is already present in this
map, it is replaced by the new one.
Parameters
newASObject of type ASObject [p.19]

The ASObject to be inserted in the map.The ASObject will later be accessible
using the value of its namespaceURI and localName attributes.

Return Value

24

1.2. Abstract Schemas and AS-Editing Interfaces

ASObject
[p.19]

If the new node replaces an existing one, the replaced node is
returned, otherwise null.

Exceptions

DOMException WRONG_DOCUMENT_ERR: Raised if arg was created from a
different ASModel [p.15] than the one that created this map.

NO_MODIFICATION_ALLOWED_ERR: Raised if this map is
readonly.

HIERARCHY_REQUEST_ERR: Raised if an attempt is made to
add a node doesn’t belong in this ASNamedObjectMap.

Interface ASDataType

The datatypes supported by DOM AS implementations. Further datatypes may be added in the
Schema/PSVI spec.

IDL Definition

interface ASDataType {
 readonly attribute unsigned short dataType;

 // DATA_TYPES
 const unsigned short STRING_DATATYPE = 1;
 const unsigned short NOTATION_DATATYPE = 10;
 const unsigned short ID_DATATYPE = 11;
 const unsigned short IDREF_DATATYPE = 12;
 const unsigned short IDREFS_DATATYPE = 13;
 const unsigned short ENTITY_DATATYPE = 14;
 const unsigned short ENTITIES_DATATYPE = 15;
 const unsigned short NMTOKEN_DATATYPE = 16;
 const unsigned short NMTOKENS_DATATYPE = 17;
 const unsigned short BOOLEAN_DATATYPE = 100;
 const unsigned short FLOAT_DATATYPE = 101;
 const unsigned short DOUBLE_DATATYPE = 102;
 const unsigned short DECIMAL_DATATYPE = 103;
 const unsigned short HEXBINARY_DATATYPE = 104;
 const unsigned short BASE64BINARY_DATATYPE = 105;
 const unsigned short ANYURI_DATATYPE = 106;
 const unsigned short QNAME_DATATYPE = 107;
 const unsigned short DURATION_DATATYPE = 108;
 const unsigned short DATETIME_DATATYPE = 109;
 const unsigned short DATE_DATATYPE = 110;
 const unsigned short TIME_DATATYPE = 111;
 const unsigned short GYEARMONTH_DATATYPE = 112;
 const unsigned short GYEAR_DATATYPE = 113;
 const unsigned short GMONTHDAY_DATATYPE = 114;
 const unsigned short GDAY_DATATYPE = 115;
 const unsigned short GMONTH_DATATYPE = 116;
 const unsigned short INTEGER = 117;

25

1.2. Abstract Schemas and AS-Editing Interfaces

 const unsigned short NAME_DATATYPE = 200;
 const unsigned short NCNAME_DATATYPE = 201;
 const unsigned short NORMALIZEDSTRING_DATATYPE = 202;
 const unsigned short TOKEN_DATATYPE = 203;
 const unsigned short LANGUAGE_DATATYPE = 204;
 const unsigned short NONPOSITIVEINTEGER_DATATYPE = 205;
 const unsigned short NEGATIVEINTEGER_DATATYPE = 206;
 const unsigned short LONG_DATATYPE = 207;
 const unsigned short INT_DATATYPE = 208;
 const unsigned short SHORT_DATATYPE = 209;
 const unsigned short BYTE_DATATYPE = 210;
 const unsigned short NONNEGATIVEINTEGER_DATATYPE = 211;
 const unsigned short UNSIGNEDLONG_DATATYPE = 212;
 const unsigned short UNSIGNEDINT_DATATYPE = 213;
 const unsigned short UNSIGNEDSHORT_DATATYPE = 214;
 const unsigned short UNSIGNEDBYTE_DATATYPE = 215;
 const unsigned short POSITIVEINTEGER_DATATYPE = 216;
 const unsigned short OTHER_SIMPLE_DATATYPE = 1000;
 const unsigned short COMPLEX_DATATYPE = 1001;
};

Definition group DATA_TYPES

An integer indicating which datatype this is.

Defined Constants
ANYURI_DATATYPE

Then uri reference data type as defined in [XML Schema Part 2].
BASE64BINARY_DATATYPE

The base64binary data type as defined in [XML Schema Part 2].
BOOLEAN_DATATYPE

A code representing the boolean data type as defined in [XML Schema Part 2].
BYTE_DATATYPE

The byte data type as defined in [XML Schema Part 2].
COMPLEX_DATATYPE

The user-defined complex data type as defined in [XML Schema Part 2].
DATETIME_DATATYPE

The datetime data type as defined in [XML Schema Part 2].
DATE_DATATYPE

The date data type as defined in [XML Schema Part 2].
DECIMAL_DATATYPE

The decimal data type as defined in [XML Schema Part 2].
DOUBLE_DATATYPE

A code representing the double data type as defined in [XML Schema Part 2].
DURATION_DATATYPE

The duration data type as defined in [XML Schema Part 2].
ENTITIES_DATATYPE

The ENTITIES data type as defined in [XML Schema Part 2].
ENTITY_DATATYPE

The ENTITY data type as defined in [XML Schema Part 2].

26

1.2. Abstract Schemas and AS-Editing Interfaces

http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#double
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#decimal
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#boolean
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#base64Binary
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#anyURI

FLOAT_DATATYPE
A code representing the float data type as defined in [XML Schema Part 2].

GDAY_DATATYPE
The day data type as defined in [XML Schema Part 2].

GMONTHDAY_DATATYPE
The monthday data type as defined in [XML Schema Part 2].

GMONTH_DATATYPE
The month data type as defined in [XML Schema Part 2].

GYEARMONTH_DATATYPE
The yearmonth data type as defined in [XML Schema Part 2].

GYEAR_DATATYPE
The year data type as defined in [XML Schema Part 2].

HEXBINARY_DATATYPE
The hexbinary data type as defined in [XML Schema Part 2].

IDREFS_DATATYPE
The IDREFS data type as defined in [XML Schema Part 2].

IDREF_DATATYPE
The IDREF data type as defined in [XML Schema Part 2].

ID_DATATYPE
The ID data type as defined in [XML Schema Part 2].

INTEGER
The integer data type as defined in [XML Schema Part 2].

INT_DATATYPE
The integer data type as defined in [XML Schema Part 2].

LANGUAGE_DATATYPE
The Language data type as defined in [XML Schema Part 2].

LONG_DATATYPE
Then long data type as defined in [XML Schema Part 2].

NAME_DATATYPE
A code representing the Name data type as defined in [XML Schema Part 2].

NCNAME_DATATYPE
A code representing the NCName data type as defined in [XML Schema Part 2].

NEGATIVEINTEGER_DATATYPE
Then negative integer data type as defined in [XML Schema Part 2].

NMTOKENS_DATATYPE
The NMTOKENS data type as defined in [XML Schema Part 2].

NMTOKEN_DATATYPE
The NMTOKEN data type as defined in [XML Schema Part 2].

NONNEGATIVEINTEGER_DATATYPE
The non-negative integer data type as defined in [XML Schema Part 2].

NONPOSITIVEINTEGER_DATATYPE
The Non-positive integer data type as defined in [XML Schema Part 2].

NORMALIZEDSTRING_DATATYPE
A code representing the Normalized string data type as defined in [XML Schema Part
2].

27

1.2. Abstract Schemas and AS-Editing Interfaces

http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#double
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#base64Binary
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#anyURI
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#float
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#boolean
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#QName
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#hexBinary
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#hexBinary
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#float

NOTATION_DATATYPE
The NOTATION data type as defined in [XML Schema Part 2].

OTHER_SIMPLE_DATATYPE
The other simple data type as defined in [XML Schema Part 2].

POSITIVEINTEGER_DATATYPE
The positive integer data type as defined in [XML Schema Part 2].

QNAME_DATATYPE
Then XML qualified name data type as defined in [XML Schema Part 2].

SHORT_DATATYPE
The short data type as defined in [XML Schema Part 2].

STRING_DATATYPE
A code representing the string data type as defined in [XML Schema Part 2].

TIME_DATATYPE
The time data type as defined in [XML Schema Part 2].

TOKEN_DATATYPE
The token data type as defined in [XML Schema Part 2].

UNSIGNEDBYTE_DATATYPE
The unsigned byte data type as defined in [XML Schema Part 2].

UNSIGNEDINT_DATATYPE
The unsigned integer data type as defined in [XML Schema Part 2].

UNSIGNEDLONG_DATATYPE
The unsigned long data type as defined in [XML Schema Part 2].

UNSIGNEDSHORT_DATATYPE
The unsigned short data type as defined in [XML Schema Part 2].

Attributes
dataType of type unsigned short, readonly

One of the enumerated codes representing the data type.
Interface ASElementDeclaration

The element name along with the content specification in the context of an ASObject [p.19] .

IDL Definition

interface ASElementDeclaration : ASObject {

 // CONTENT_MODEL_TYPES
 const unsigned short EMPTY_CONTENTTYPE = 1;
 const unsigned short ANY_CONTENTTYPE = 2;
 const unsigned short MIXED_CONTENTTYPE = 3;
 const unsigned short ELEMENTS_CONTENTTYPE = 4;

 attribute boolean strictMixedContent;
 attribute ASDataType elementType;
 attribute boolean isPCDataOnly;
 attribute unsigned short contentType;
 attribute DOMString systemId;
 attribute ASContentModel asCM;
 attribute ASNamedObjectMap ASAttributeDecls;
 void addASAttributeDecl(in ASAttributeDeclaration attributeDecl);
 ASAttributeDeclaration removeASAttributeDecl(in ASAttributeDeclaration attributeDecl);
};

28

1.2. Abstract Schemas and AS-Editing Interfaces

http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#decimal
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#QName
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502

Definition group CONTENT_MODEL_TYPES
Defined Constants

ANY_CONTENTTYPE
Represents an ANY content type for an Element declaration.

ELEMENTS_CONTENTTYPE
Represents an ELEMENTS only content type for an Element declaration.

EMPTY_CONTENTTYPE
Represents an EMPTY content type for an Element declaration.

MIXED_CONTENTTYPE
Represents a MIXED content type for an Element declaration. Note that
isPCDataOnly would also need to checked, in addition to this, if an element’s
content model was simply text, as an example.

Attributes
ASAttributeDecls of type ASNamedObjectMap [p.21]

TheASNamedObjectMap [p.21] containing ASAttributeDeclarations [p.32] for
all the attributes that can appear on this type of element.

asCM of type ASContentModel [p.30]
The content model [p.135] of element.

contentType of type unsigned short
The content type of the element. One of EMPTY_CONTENTTYPE, ANY_CONTENTTYPE,
MIXED_CONTENTTYPE, ELEMENTS_CONTENTTYPE.

elementType of type ASDataType [p.25]
Datatype of the element.

isPCDataOnly of type boolean
Boolean defining whether the element type contains child elements and PCDATA or
PCDATA only for mixed element types. true if the element is of type PCDATA only.
Relevant only for mixed content type elements.

strictMixedContent of type boolean
A boolean defining whether the element order and number of the child [p.135] elements for
mixed content type has to be respected or not. For example XML Schema defined mixed
content types the order is important and needs to be respected whether for DTD based AS
the order and number of child [p.135] elements are not important.

systemId of type DOMString
the URI reference representing the system identifier for the notation declaration, if present,
null otherwise.

Methods
addASAttributeDecl

Adds an ASAttributeDeclaration [p.32] for the element being declared.
Parameters
attributeDecl of type ASAttributeDeclaration [p.32]

The new attribute to add. If the attribute declaration already exists for the element, the
call does not have any effect.

No Return Value
No Exceptions

removeASAttributeDecl
Removes an ASAttributeDeclaration [p.32] from the element being declared.

29

1.2. Abstract Schemas and AS-Editing Interfaces

Parameters
attributeDecl of type ASAttributeDeclaration [p.32]

The attribute declaraition to be removed. If the attribute declaration does not exist for
the element, the call does not have any effect.

Return Value

ASAttributeDeclaration
[p.32]

null if the attribute does not exist. Otherwise
returns the attribute being removed.

No Exceptions
Interface ASContentModel

The content model of a declared element.

IDL Definition

interface ASContentModel : ASObject {
 const unsigned long AS_UNBOUNDED = MAX_VALUE;

 // ASContentModelType
 const unsigned short AS_SEQUENCE = 0;
 const unsigned short AS_CHOICE = 1;
 const unsigned short AS_ALL = 2;
 const unsigned short AS_NONE = 3;

 attribute unsigned short listOperator;
 attribute unsigned long minOccurs;
 attribute unsigned long maxOccurs;
 attribute ASObjectList subModels;
 void removesubModel(in ASObject oldNode);
 void insertsubModel(in ASObject newNode)
 raises(DOMASException);
 unsigned long appendsubModel(in ASObject newNode)
 raises(DOMASException);
};

Constant AS_UNBOUNDED
Signifies unbounded upper limit. The MAX_VALUE value is 0xFFFFFFFF FFFFFFFF.
(ED: This needs to be better defined in the generated bindings.)

Definition group ASContentModelType

An integer indicating which type of ASContentModel this is.

Defined Constants
AS_ALL

All of the above.
AS_CHOICE

This constant value signifies a choice operator. For example, in a DTD, this would be
the ’|’ operator.

30

1.2. Abstract Schemas and AS-Editing Interfaces

AS_NONE
None of the above, i.e., neither a choice nor sequence operator.

AS_SEQUENCE
This constant value signifies a sequence operator. For example, in a DTD, this would
be the ’,’ operator.

Attributes
listOperator of type unsigned short

One of AS_CHOICE, AS_SEQUENCE, AS_ALL or AS_NONE. The operator is applied to
all the components(ASObjects) in the subModels. For example, if the list operator is
AS_CHOICE and the components in subModels are a, b and c then the abstract schema for
the element being declared is (a|b|c).

maxOccurs of type unsigned long
maximum occurrence for this content particle. Its value may be 0, a positive integer, or
AS_UNBOUNDED to indicate that no upper limit has been set.

minOccurs of type unsigned long
min occurrence for this content particle. Its value may be 0 or a positive integer.

subModels of type ASObjectList [p.21]
Pointers to ASObject [p.19] s such as ASElementDeclarations and further
ASContentModels.

Methods
appendsubModel

Appends a new node to the end of the list representing thesubModels.
Parameters
newNode of type ASObject [p.19]

The new node to be appended.
Return Value

unsigned long the length of the subModels.

Exceptions

DOMASException
[p.14]

DUPLICATE_NAME_ERR: Raised if a element declaration
already exists with the same name within an AS_CHOICE
operator.

TYPE_ERR: Raised if type is neither an
ASContentModel nor an ASElementDeclaration
[p.28] .

insertsubModel
Inserts a new node in the submodel. Nodes that already exist in the list are moved as
needed.
Parameters
newNode of type ASObject [p.19]

The new node to be inserted.
Exceptions

31

1.2. Abstract Schemas and AS-Editing Interfaces

DOMASException
[p.14]

DUPLICATE_NAME_ERR: Raised if a element declaration
already exists with the same name within an AS_CHOICE
operator.

No Return Value
removesubModel

Removes the ASObject [p.19] in the submodel. Nodes that already exist in the list are
moved as needed.
Parameters
oldNode of type ASObject [p.19]

The node to be removed.
No Return Value
No Exceptions

Interface ASAttributeDeclaration

An attribute declaration in the context of a ASObject [p.19] .

Issue ASAttributeDeclaration-1:
The constant ’REQUIRED’ is missing from this interface.

IDL Definition

interface ASAttributeDeclaration : ASObject {

 // VALUE_TYPES
 const unsigned short VALUE_NONE = 0;
 const unsigned short VALUE_DEFAULT = 1;
 const unsigned short VALUE_FIXED = 2;

 attribute ASDataType dataType;
 attribute DOMString dataValue;
 attribute DOMString enumAttr;
 attribute ASObjectList ownerElements;
 attribute unsigned short defaultType;
};

Definition group VALUE_TYPES
Defined Constants

VALUE_DEFAULT
Indicates that the there is a default value constraint.

VALUE_FIXED
Indicates that there is a fixed value constraint for this attribute.

VALUE_NONE
Describes that the attribute does not have any value constraint.

Attributes
dataType of type ASDataType [p.25]

Datatype of the attribute.
dataValue of type DOMString

Default or fixed value.

32

1.2. Abstract Schemas and AS-Editing Interfaces

defaultType of type unsigned short
Constraint type if any for this attribute.

enumAttr of type DOMString
Valid attribute values, separated by commas, in a string.

ownerElements of type ASObjectList [p.21]
Owner elements ASObject [p.19] of attribute, meaning that an attribute declaration can
be shared by multiple elements.

Interface ASEntityDeclaration

Models a general entity declaration in an abstract schema.

(ED: The abstract schema does not handle any parameter entity. It is assumed that the parameter
entities are expanded by the implementation as the abstract schema is built.)
IDL Definition

interface ASEntityDeclaration : ASObject {

 // EntityType
 const unsigned short INTERNAL_ENTITY = 1;
 const unsigned short EXTERNAL_ENTITY = 2;

 attribute unsigned short entityType;
 attribute DOMString entityValue;
 attribute DOMString systemId;
 attribute DOMString publicId;
};

Definition group EntityType

An integer indicating which type of entity this is.

Defined Constants
EXTERNAL_ENTITY

constant defining an external entity.
INTERNAL_ENTITY

constant defining an internal entity.
Attributes

entityType of type unsigned short
The type of the entity as defined above.

entityValue of type DOMString
The replacement text for the internal entity. The entity references within the replacement
text are kept intact. For an entity of type EXTERNAL_ENTITY, this is null.

publicId of type DOMString
The string representing the public identifier for this notation declaration, if present; null
otherwise.

systemId of type DOMString
the URI reference representing the system identifier for the notation declaration, if present,
null otherwise.

33

1.2. Abstract Schemas and AS-Editing Interfaces

Interface ASNotationDeclaration

This interface represents a notation declaration.

IDL Definition

interface ASNotationDeclaration : ASObject {
 attribute DOMString systemId;
 attribute DOMString publicId;
};

Attributes
publicId of type DOMString

The string representing the public identifier for this notation declaration, if present; null
otherwise.

systemId of type DOMString
the URI reference representing the system identifier for the notation declaration, if present,
null otherwise.

1.3. Validation and Other Interfaces
This section contains "Validation and Other" methods common to both the document-editing and
AS-editing worlds (includes DOMImplementation methods).

Interface DocumentAS

This interface extends the Document interface with additional methods for both document and AS
editing.

IDL Definition

interface DocumentAS {
 attribute ASModel activeASModel;
 attribute ASObjectList boundASModels;
 ASModel getInternalAS();
 void setInternalAS(in ASModel as);
 void addAS(in ASModel as);
 void removeAS(in ASModel as);
 ASElementDeclaration getElementDeclaration()
 raises(DOMException);
 void validate()
 raises(DOMASException);
};

Attributes
activeASModel of type ASModel [p.15]

The active external ASModel. Note that the active external ASModel [p.15] is responsible
for consulting the internal ASModel, so if an attribute is declared in the internal ASModel
and the corresponding ownerElements points to a ASElementDeclaration [p.28]
s defined in the active external ASModel, changing the active external ASModel will cause
the ownerElements to be recomputed. If the ownerElements is not defined in the

34

1.3. Validation and Other Interfaces

newly active external ASModel, the ownerElements will be an empty node list.
boundASModels of type ASObjectList [p.21]

A list of ASObject [p.19] s of type AS_MODELs associated with a document. The addAS
method associates a ASModel [p.15] with a document.

Methods
addAS

Associate a ASModel [p.15] with a document. Can be invoked multiple times to result in a
list of ASModels. Note that only one internal ASModel is associated with the document,
however, and that only one of the possible list of ASModels is active at any one time.
Parameters
as of type ASModel [p.15]

ASModel to be associated with the document.
No Return Value
No Exceptions

getElementDeclaration
Gets the AS editing object describing this element
Issue getElementDeclaration-1:

This method needs to be changed and others added.
Return Value

ASElementDeclaration
[p.28]

ASElementDeclaration object if the
implementation supports "AS-EDIT" feature.
Otherwise null.

Exceptions

DOMException NOT_FOUND_ERR: Raised if no ASModel [p.15] is present.

No Parameters
getInternalAS

Retrieve the internal ASModel [p.15] of a document.
Return Value

ASModel [p.15] ASModel.

No Parameters
No Exceptions

removeAS
Removes a ASModel [p.15] associated with a document. Can be invoked multiple times to
remove a number of these in the list of ASModels.
Parameters
as of type ASModel [p.15]

The ASModel to be removed.
No Return Value
No Exceptions

35

1.3. Validation and Other Interfaces

setInternalAS
Sets the internal subset ASModel [p.15] of a document. This could be null as a mechanism
for "removal".
Parameters
as of type ASModel [p.15]

ASModel to be the internal subset of the document.
No Return Value
No Exceptions

validate
Validates the document against the ASModel [p.15] .
Exceptions

DOMASException [p.14]

No Parameters
No Return Value

Interface DOMImplementationAS

This interface allows creation of an ASModel [p.15] . The expectation is that an instance of the
DOMImplementationAS interface can be obtained by using binding-specific casting methods on
an instance of the DOMImplementation interface when the DOM implementation supports the
feature "AS-EDIT".

IDL Definition

interface DOMImplementationAS {
 ASModel createAS(in boolean isNamespaceAware);
 DOMASBuilder createDOMASBuilder();
 DOMASWriter createDOMASWriter();
};

Methods
createAS

Creates an ASModel.
Parameters
isNamespaceAware of type boolean

Allow creation of ASModel [p.15] with this attribute set to a specific value.
Return Value

ASModel [p.15] A null return indicates failure.

Issue createAS-1:
what is a failure? Could be a system error.

No Exceptions

36

1.3. Validation and Other Interfaces

createDOMASBuilder
Creates an DOMASBuilder [p.49] .
Issue createDOMASBuilder-1:

Do we need the method since we already have
DOMImplementationLS.createDOMBuilder [p.65] ?

Return Value

DOMASBuilder [p.49]

No Parameters
No Exceptions

createDOMASWriter
Creates an DOMASWriter [p.51] .
Return Value

DOMASWriter [p.51]

No Parameters
No Exceptions

1.4. Document-Editing Interfaces
This section contains "Document-editing" methods (includes Node, Element, Text and Document
methods).

A DOM application may use the hasFeature(feature, version) method of the
DOMImplementation interface with parameter values "AS-DOC" and "3.0" (respectively) to
determine whether or not the Document-Editing interfaces of the Abstract Schemas module are supported
by the implementation.

Interface DocumentEditAS

This interface extends the NodeEditAS [p.38] interface with additional methods for both document
and AS editing.

IDL Definition

interface DocumentEditAS : NodeEditAS {
 attribute boolean continuousValidityChecking;
};

Attributes
continuousValidityChecking of type boolean

An attribute specifying whether continuous checking for the validity of the document is
enforced or not. Setting this to true will result in an exception being thrown, i.e.,
VALIDATION_ERR, for documents that are invalid at the time of the call. If the document
is invalid, then this attribute will remain false. This attribute is false by default.

37

1.4. Document-Editing Interfaces

(ED: Add VALIDATION_ERR code to the list of constants in DOMASException.)
Interface NodeEditAS

This interface extends a Node from [DOM Level 3 Core] with additional methods for guided
document editing. The expectation is that an instance of the DOMImplementationAS [p.36]
interface can be obtained by using binding-specific casting methods on an instance of the
DOMImplementation interface when the DOM implementation supports the feature "AS-DOC".

IDL Definition

interface NodeEditAS {

 // ASCheckType
 const unsigned short WF_CHECK = 1;
 const unsigned short NS_WF_CHECK = 2;
 const unsigned short PARTIAL_VALIDITY_CHECK = 3;
 const unsigned short STRICT_VALIDITY_CHECK = 4;

 boolean canInsertBefore(in Node newChild,
 in Node refChild);
 boolean canRemoveChild(in Node oldChild);
 boolean canReplaceChild(in Node newChild,
 in Node oldChild);
 boolean canAppendChild(in Node newChild);
 boolean isNodeValid(in boolean deep,
 in unsigned short wFValidityCheckLevel)
 raises(DOMASException);
};

Definition group ASCheckType

An integer indicating which type of validation this is.

Defined Constants
NS_WF_CHECK

Check for namespace well-formedness includes WF_CHECK.
PARTIAL_VALIDITY_CHECK

Checks for whether this node is partially valid [p.135] . It includes NS_WF_CHECK.
STRICT_VALIDITY_CHECK

Checks for strict validity of the node with respect to active AS which by definition
includes NS_WF_CHECK.

WF_CHECK
Check for well-formedness of this node.

Methods
canAppendChild

Has the same arguments as AppendChild.
Parameters
newChild of type Node

Node to be appended.
Return Value

38

1.4. Document-Editing Interfaces

boolean true if no reason it can’t be done; false if it can’t be done.

No Exceptions
canInsertBefore

Determines whether the insertBefore operation from the Node interface would make
this document invalid with respect to the currently active AS.
Issue canInsertBefore-1:

Describe "valid" when referring to partially completed documents.
Parameters
newChild of type Node

Node to be inserted.
refChild of type Node

Reference Node.
Return Value

boolean true if no reason it can’t be done; false if it can’t be done.

No Exceptions
canRemoveChild

Has the same arguments as RemoveChild.
Parameters
oldChild of type Node

Node to be removed.
Return Value

boolean true if no reason it can’t be done; false if it can’t be done.

No Exceptions
canReplaceChild

Has the same arguments as ReplaceChild.
Parameters
newChild of type Node

New Node.
oldChild of type Node

Node to be replaced.
Return Value

boolean true if no reason it can’t be done; false if it can’t be done.

No Exceptions
isNodeValid

Determines if the Node is valid relative to currently active AS. It doesn’t normalize before
checking if the document is valid. To do so, one would need to explicitly call a normalize
method.

39

1.4. Document-Editing Interfaces

Parameters
deep of type boolean

Setting the deep flag on causes the isNodeValid method to check for the whole
subtree of the current node for validity. Setting it to false only checks the current
node and its immediate child nodes. The validate method on the DocumentAS
[p.34] interface, however, checks to determine whether the entire document is valid.

wFValidityCheckLevel of type unsigned short
Flag to tell at what level validity and well-formedness checking is done.

Return Value

boolean true if the node is valid/well-formed in the current context and check
level defined by wfValidityCheckLevel, false if not.

Exceptions

DOMASException
[p.14]

NO_AS_AVAILABLE: Raised if the DocumentEditAS
[p.37] related to this node does not have any active ASModel
[p.15] and wfValidityCheckLevel is set to PARTIAL
or STRICT_VALIDITY_CHECK.

Interface ElementEditAS

This interface extends the Element interface with additional methods for guided document editing.
An object implementing this interface must also implement NodeEditAS interface.

IDL Definition

interface ElementEditAS : NodeEditAS {
 readonly attribute NodeList definedElementTypes;
 unsigned short contentType();
 boolean canSetAttribute(in DOMString attrname,
 in DOMString attrval);
 boolean canSetAttributeNode(in Attr attrNode);
 boolean canSetAttributeNS(in DOMString name,
 in DOMString attrval,
 in DOMString namespaceURI);
 boolean canRemoveAttribute(in DOMString attrname);
 boolean canRemoveAttributeNS(in DOMString attrname,
 in DOMString namespaceURI);
 boolean canRemoveAttributeNode(in Node attrNode);
 NodeList getChildElements();
 NodeList getParentElements();
 NodeList getAttributeList();
 boolean isElementDefined(in DOMString elemTypeName);
 boolean isElementDefinedNS(in DOMString elemTypeName,
 in DOMString namespaceURI,
 in DOMString name);
};

40

1.4. Document-Editing Interfaces

Attributes
definedElementTypes of type NodeList, readonly

The list of qualified element names defined in the abstract schema.
Methods

canRemoveAttribute
Verifies if an attribute by the given name can be removed.
Parameters
attrname of type DOMString

Name of attribute.
Return Value

boolean true if no reason it can’t be done; false if it can’t be done.

No Exceptions
canRemoveAttributeNS

Verifies if an attribute by the given local name and namespace can be removed.
Parameters
attrname of type DOMString

Local name of the attribute to be removed.
namespaceURI of type DOMString

The namespace URI of the attribute to remove.
Return Value

boolean true if no reason it can’t be done; false if it can’t be done.

No Exceptions
canRemoveAttributeNode

Determines if an attribute node can be removed.
Parameters
attrNode of type Node

The Attr node to remove from the attribute list.
Return Value

boolean true if no reason it can’t be done; false if it can’t be done.

No Exceptions
canSetAttribute

Determines if the value for specified attribute can be set.
Parameters
attrname of type DOMString

Name of attribute.
attrval of type DOMString

Value to be assigned to the attribute.
Return Value

41

1.4. Document-Editing Interfaces

boolean true if no reason it can’t be done; false if it can’t be done.

No Exceptions
canSetAttributeNS

Determines if the attribute with given namespace and qualified name can be created if not
already present in the attribute list of the element. If the attribute with same qualified name
and namespaceURI is already present in the elements attribute list it tests for the value of
the attribute and its prefix to the new value. See DOM core setAttributeNS.
Parameters
name of type DOMString

Qualified name of attribute.
attrval of type DOMString

Value to be assigned to the attribute.
namespaceURI of type DOMString

namespaceURI of namespace.
Return Value

boolean true if no reason it can’t be done; false if it can’t be done.

No Exceptions
canSetAttributeNode

Determines if an attribute node can be added with respect to the validity check level.
Issue canSetAttributeNode-1:

This is an attribute node, there is no need for canSetAttributreNodeNS!
Parameters
attrNode of type Attr

Node in which the attribute can possibly be set.
Return Value

boolean true if no reason it can’t be done; false if it can’t be done.

No Exceptions
contentType

Determines element content type.
Return Value

unsigned
short

Constant for one of EMPTY_CONTENTTYPE,
ANY_CONTENTTYPE, MIXED_CONTENTTYPE,
ELEMENTS_CONTENTTYPE.

No Parameters
No Exceptions

42

1.4. Document-Editing Interfaces

getAttributeList
Returns an NodeList containing all the possible Attrs that can appear with this type of
element.
Return Value

NodeList List of possible attributes of this element.

No Parameters
No Exceptions

getChildElements
Returns an NodeList containing the possible Element names that can appear as
children of this type of element.
Return Value

NodeList List of possible children element types of this element.

No Parameters
No Exceptions

getParentElements
Returns an NodeList containing the possible Element names that can appear as a
parent of this type of element.
Return Value

NodeList List of possible parent element types of this element.

No Parameters
No Exceptions

isElementDefined
Determines if this element is defined in the currently active AS.
Parameters
elemTypeName of type DOMString

Name of element.
Return Value

boolean A boolean that is true if the element is defined, false otherwise.

No Exceptions
isElementDefinedNS

Determines if this element in this namespace is defined in the currently active AS.
Parameters
elemTypeName of type DOMString

Name of element.

43

1.4. Document-Editing Interfaces

namespaceURI of type DOMString
namespaceURI of namespace.

name of type DOMString
Qualified name of namespace. This is for sub-elements.

Return Value

boolean A boolean that is true if the element is defined, false otherwise.

No Exceptions
Interface CharacterDataEditAS

This interface extends the NodeEditAS [p.38] interface with additional methods for document
editing. An object implementing this interface must also implement NodeEditAS interface.

IDL Definition

interface CharacterDataEditAS : NodeEditAS {
 readonly attribute boolean isWhitespaceOnly;
 boolean canSetData(in unsigned long offset,
 in unsigned long count);
 boolean canAppendData(in DOMString arg);
 boolean canReplaceData(in unsigned long offset,
 in unsigned long count,
 in DOMString arg);
 boolean canInsertData(in unsigned long offset,
 in DOMString arg);
 boolean canDeleteData(in unsigned long offset,
 in unsigned long count);
};

Attributes
isWhitespaceOnly of type boolean, readonly

true if content only whitespace; false for non-whitespace.
Methods

canAppendData
Determines if data can be appended.
Parameters
arg of type DOMString

Argument to be appended.
Return Value

boolean true if no reason it can’t be done; false if it can’t be done.

No Exceptions
canDeleteData

Determines if data can be deleted.
Parameters

44

1.4. Document-Editing Interfaces

offset of type unsigned long
Offset.

count of type unsigned long
Number of 16-bit units to delete.

Return Value

boolean true if no reason it can’t be done; false if it can’t be done.

No Exceptions
canInsertData

Determines if data can be inserted.
Parameters
offset of type unsigned long

Offset.
arg of type DOMString

Argument to be set.
Return Value

boolean true if no reason it can’t be done; false if it can’t be done.

No Exceptions
canReplaceData

Determines if data can be replaced.
Parameters
offset of type unsigned long

Offset.
count of type unsigned long

Replacement.
arg of type DOMString

Argument to be set.
Return Value

boolean true if no reason it can’t be done; false if it can’t be done.

No Exceptions
canSetData

Determines if data can be set.
Parameters
offset of type unsigned long

Offset.
count of type unsigned long

Argument to be set.
Return Value

45

1.4. Document-Editing Interfaces

boolean true if no reason it can’t be done; false if it can’t be done.

No Exceptions

1.5. Editing and Generating an Abstract Schema
Editing and generating an abstract schema falls in the AS-editing world. The most obvious requirement
for this set of requirements is for tools that author abstract schemas, either under user control, i.e.,
explicitly designed document types, or generated from other representations. The latter class includes
transcoding tools, e.g., synthesizing an XML representation to match a database schema.

It’s important to note here that a DTD’s "internal subset" is part of the Abstract Schema, yet is loaded,
stored, and maintained as part of the individual document instance. This implies that even tools which do
not want to let users change the definition of the Document Type may need to support editing operations
upon this portion of the AS. It also means that our representation of the AS must be aware of where each
portion of its content resides, so that when the serializer processes this document it can write out just the
internal subset. A similar issue may arise with external parsed entities, or if schemas introduce the ability
to reference other schemas. Finally, the internal-subset case suggests that we may want at least a two-level
representation of abstract schemas, so a single DOM representation of a DTD can be shared among
several documents, each potentially also having its own internal subset; it’s possible that entity layering
may be represented the same way.

The API [p.135] for altering the abstract schema may also be the AS’s official interface with parsers. One
of the ongoing problems in the DOM is that there is some information which must currently be created via
completely undocumented mechanisms, which limits the ability to mix and match DOMs and parsers.
Given that specialized DOMs are going to become more common (sub-classed, or wrappers around other
kinds of storage, or optimized for specific tasks), we must avoid that situation and provide a "builder"
API. Particular pairs of DOMs and parsers may bypass it, but it’s required as a portability mechanism.

Note that several of these applications require that an AS be able to be created, loaded, and manipulated
without/before being bound to a specific Document. A related issue is that we’d want to be able to share a
single representation of an AS among several documents, both for storage efficiency and so that changes
in the AS can quickly be tested by validating it against a set of known-good documents. Similarly, there is
a known problem in [DOM Level 3 Core] where we assume that the DocumentType will be created
before the Document, which is fine for newly-constructed documents but not a good match for the order
in which an XML parser encounters this data; being able to "rebind" a Document to a new AS, after it
has been created may be desirable.

As noted earlier, questions about whether one can alter the content of the AS via its syntax, via
higher-level abstractions, or both, exist. It’s also worth noting that many of the editing concepts from the
Document tree still apply; users should probably be able to clone part of an AS, remove and re-insert
parts, and so on.

46

1.5. Editing and Generating an Abstract Schema

1.6. Abstract Schema-directed Document Manipulation
In addition to using the abstract schema to validate a document instance, applications would like to be able
to use it to guide construction and editing of documents, which falls into the document-editing world.
Examples of this sort of guided editing already exist, and are becoming more common. The necessary
queries can be phrased in several ways, the most useful of which may be a combination of "what does the
DTD allow me to insert here" and "if I insert this here, will the document still be valid". The former is
better suited to presentation to humans via a user interface, and when taken together with sub-tree
validation may subsume the latter.

It has been proposed that in addition to asking questions about specific parts of the abstract schema, there
should be a reasonable way to obtain a list of all the defined symbols of a given type (element, attribute,
entity) independent of whether they’re valid in a given location; that might be useful in building a list in a
user-interface, which could then be updated to reflect which of these are relevant for the program’s current
state.

Remember that namespaces also weigh in on this issue, in the case of attributes, a "can-this-go-there" may
prompt a namespace-well-formedness check and warn you if you’re about to conflict with or overwrite
another attribute with the same namespaceURI/localName but different prefix, or same nodeName but
different namespaceURI.

We have to deal with the fact that "the shortest distance between two valid documents may be through an
invalid one". Users may want to know several levels of detail (all the possible children, those which would
be valid given what precedes this point, those which would be valid given both preceding and following
siblings). Also, once XML Schemas introduce context sensitive validity, we may have to consider the
effect of children as well as the individual node being inserted.

1.7. Validating a Document Against an Abstract Schema
The most obvious use for an abstract schema (DTD or XML Schema or any Abstract Schema) is to use it
to validate that a given XML document is in fact a properly constructed instance of the document type
described by this AS. This again falls into the document-editing world. The XML spec only discusses
performing this test at the time the document is loaded into the "processor", which most of us have taken
to mean that this check should be performed at parse time. But it is obviously desirable to be able to
validate again a document -- or selected subtrees -- at other times. One such case would be validating an
edited or newly constructed document before serializing it or otherwise passing it to other users. This
issue also arises if the "internal subset" is altered -- or if the whole Abstract Schema changes.

In the past, the DOM has allowed users to create invalid documents, and assumed the serializer would
accept the task of detecting problems and announcing/repairing them when the document was written out
in XML syntax... or that they would be checked for validity when read back in. We considered adding
validity checks to the DOM’s existing editing operations to prevent creation of invalid documents, but are
currently inclined against this for several reasons. First, it would impose a significant amount of
computational overhead to the DOM, which might be unnecessary in many situations, e.g., if the change is
occurring in a context where we know the result will be valid. Second, "the shortest distance between two
good documents may be through a bad document". Preventing a document from becoming temporarily

47

1.6. Abstract Schema-directed Document Manipulation

invalid may impose a considerable amount of additional work on higher-level code and users Hence our
current plan is to continue to permit editing to produce invalid DOMs, but provide operations which
permit a user to check the validity of a node on demand. If needed one can use
continuousValidityChecking flag to ensure that the DOM remains valid during the editing
process.

Note that validation includes checking that ID attributes are unique, and that IDREFs point to IDs which
actually exist.

1.8. Well-formedness Testing
XML defined the "well-formed" (WF) state for documents which are parsed without reference to their
DTDs. Knowing that a document is well-formed may be useful by itself even when a DTD is available.
For example, users may wish to deliberately save an invalid document, perhaps as a checkpoint before
further editing. Hence, the AS feature will permit both full validity checking (see previous section) and
"lightweight" WF checking, as requested by the caller, as well as processing entity declarations in the AS
even if validation is not turned on. This falls within the document-editing world.

While the DOM inherently enforces some of XML’s well-formedness conditions (proper nesting of
elements, constraints on which children may be placed within each node), there are some checks that are
not yet performed. These include:

Character restrictions for text content and attribute values. Some characters aren’t permitted even
when expressed as numeric character entities
The three-character sequence "]]>" in CDATASections.
The two-character sequence "--" in comments. (Which, be it noted, some XML validators don’t
currently remember to test...)

In addition, Namespaces introduce their own concepts of well-formedness. Specifically:

No two attributes on a single Element may have the same combination of namespaceURI and
localName, even if their prefixes are different and hence they don’t conflict under XML 1.0 rules.
NamespaceURIs must be legal URI syntax. (Note that once we have this code, it may be reusable for
the URI "datatype" in document content; see discussion of datatypes.)
The mapping of namespace prefixes to their URIs must be declared and consistent. That isn’t
required during normal DOM operation, since we perform "early binding" and thereafter refer to
nodes primarily via their namespaceURIs and localName. But it does become an issue when we want
to serialize the DOM to XML syntax, and may be an issue if an application is assuming that all the
declarations are present and correct. This may imply that we should provide a
namespaceNormalize operation, which would create the implied declarations and reconcile
conflicts in some reasonably standardized manner. This may be a major undertaking, since some
DOMs may be using the namespace to direct subclassing of the nodes or similar special treatment; as
with the existing normalize method, you may be left with a different-but-equivalent set of node
objects.

48

1.8. Well-formedness Testing

In the past, the DOM has allowed users to create documents which violate these rules, and assumed the
serializer would accept the task of detecting problems and announcing/repairing them when the document
was written out in XML syntax. We considered adding WF checks to the DOM’s existing editing
operations to prevent WF violations from arising, but are currently inclined against this for two reasons.
First, it would impose a significant amount of computational overhead to the DOM, which might be
unnecessary in many situations (for example, if the change is occurring in a context where we know the
illegal characters have already been prevented from arising). Second, "the shortest distance between two
good documents may be through a bad document" -- preventing a document from becoming temporarily
ill-formed may impose a considerable amount of additional work on higher-level code and users. (Note
possible issue for Serialization: In some applications, being able to save and reload marginally
poorly-formed DOMs might be useful -- editor checkpoint files, for example.) Hence our current plan is to
continue to permit editing to produce ill-formed DOMs, but provide operations which permit a user to
check the well-formedness of a node on demand, and possibly provide some of the primitive (e.g.,
string-checking) functions directly.

1.9. Load and Save for Abstract Schemas
The module extends the Document Object Model Load and Save [p.53] module to permit to load a
Document using a specific ASModel [p.15] and to load an ASModel from an URI or
DOMInputSource [p.81] .

A DOM application may use the hasFeature(feature, version) method of the
DOMImplementation interface with parameter values "AS-LS" and "3.0" (respectively) to determine
whether or not the Load and Save for Abstract Schemas module is supported by the implementation. In
order to fully support this module, an implementation must also support the "AS-EDIT" features defined
in this specification.

Interface DOMASBuilder

An Abstract Schema parser interface.

DOMASBuilder provides an API for parsing Abstract Schemas and building the corresponding
ASModel [p.15] tree.

IDL Definition

interface DOMASBuilder : ls::DOMBuilder {
 attribute ASModel abstractSchema;
 ASModel parseASURI(in DOMString uri)
 raises(DOMASException,
 DOMSystemException);
 ASModel parseASInputSource(in ls::DOMInputSource is)
 raises(DOMASException,
 DOMSystemException);
};

Attributes

49

1.9. Load and Save for Abstract Schemas

abstractSchema of type ASModel [p.15]
Associate an ASModel [p.15] with a DOMBuilder [p.66] . This ASModel will be used
by the "validate-if-schema" and "datatype-normalization" options during
the load of a new Document.

Methods
parseASInputSource

Parse a Abstract Schema from a location identified by an DOMInputSource [p.81] .
Parameters
is of type ls::DOMInputSource

The DOMInputSource [p.81] from which the source Abstract Schema is to be read.
Return Value

ASModel [p.15] The newly created ASModel.

Exceptions

DOMASException
[p.14]

Exceptions raised by parseASURI() originate with
the installed ErrorHandler, and thus depend on the
implementation of the DOMErrorHandler interfaces.
The default error handlers will raise a
DOMASException [p.14] if any form of Abstract
Schema inconsistencies or warning occurs during the
parse, but application defined errorHandlers are not
required to do so.

Raise a WRONG_MIME_TYPE_ERR when
mimeTypeCheck is true and the inputsource has an
incorrect MIME Type. See attribute mimeTypeCheck.

DOMSystemException Exceptions raised by parseURI() originate with the
installed ErrorHandler, and thus depend on the
implementation of the DOMErrorHandler interfaces.
The default error handlers will raise a
DOMSystemException if any form I/O or other system
error occurs during the parse, but application defined
error handlers are not required to do so.

parseASURI
Parse a Abstract Schema from a location identified by an URI reference.
Parameters
uri of type DOMString

The location of the Abstract Schema to be read.
Return Value

ASModel [p.15] The newly created Abstract Schema.

50

1.9. Load and Save for Abstract Schemas

Exceptions

DOMASException
[p.14]

Exceptions raised by parseASURI() originate with
the installed ErrorHandler, and thus depend on the
implementation of the DOMErrorHandler interfaces.
The default error handlers will raise a
DOMASException [p.14] if any form of Abstract
Schema inconsistencies or warning occurs during the
parse, but application defined errorHandlers are not
required to do so.

WRONG_MIME_TYPE_ERR: Raised when
mimeTypeCheck is true and the input source has an
incorrect MIME Type. See the attribute
mimeTypeCheck.

DOMSystemException Exceptions raised by parseURI() originate with the
installed ErrorHandler, and thus depend on the
implementation of the DOMErrorHandler interfaces.
The default error handlers will raise a
DOMSystemException if any form I/O or other system
error occurs during the parse, but application defined
error handlers are not required to do so.

Interface DOMASWriter

A Abstract Schema serialization interface.

DOMASWriters provides an API for serializing Abstract Schemas out in the form of a source
Abstract Schema. The Abstract Schema is written to an output stream, the type of which depends on
the specific language bindings in use.

DOMASWriter is a generic Abstract Schema serialization interface. It can be applied to both an
internal Abstract Schema and/or an external Abstract Schema. DOMASWriter is applied to serialize
a single Abstract Schema. Serializing a document with an active Internal Abstract Schema will
serialize this internal Abstract Schema with the document as it is part of the Document (see
DOMWriter [p.74]).

IDL Definition

interface DOMASWriter : ls::DOMWriter {
 void writeASModel(in DOMOutputStream destination,
 in ASModel model)
 raises(DOMSystemException);
};

Methods

51

1.9. Load and Save for Abstract Schemas

writeASModel
Write out the specified Abstract Schema to the specified destination.
Issue writeASModel-1:

Does it write a DTD or an XML Schema (or something else)? Is it possible to use this
method to convert a DTD to an XML Schema?

Parameters
destination of type DOMOutputStream

The destination for the data to be written.
model of type ASModel [p.15]

The Abstract Schema to serialize.
Exceptions

DOMSystemException This exception will be raised in response to any sort of
IO or system error that occurs while writing to the
destination. It may wrap an underlying system exception.

No Return Value

52

1.9. Load and Save for Abstract Schemas

2. Document Object Model Load and Save
Editors:

Jeroen van Rotterdam, X-Hive Corporation
Johnny Stenback, Netscape
Andy Heninger, IBM (until March 2001)

2.1. Load and Save Requirements
DOM Level 3 will provide an API [p.135] for loading XML documents into a DOM representation and for
saving a DOM representation as a XML document.

Some environments, such as the Java [Java] or COM [COM], have their own ways to persist objects to
streams and to restore them. There is no direct relationship between these mechanisms and the DOM
load/save mechanism. This specification defines how to serialize documents only to and from XML
format.

2.1.1. General Requirements

Requirements that apply to both loading and saving documents.

2.1.1.1. Document Sources

Documents must be able to be parsed from and saved to the following sources:

Input and Output Streams
URIs
Files

Note that Input and Output streams take care of the in memory case. One point of caution is that a stream
doesn’t allow a base URI to be defined against which all relative URIs in the document are resolved.

2.1.1.2. Abstract Schema Loading

While creating a new document using the DOM API, a mechanism must be provided to specify that the
new document uses a pre-existing Abstract Schema and to cause that Abstract Schema to be loaded.

Note that while DOM Level 2 creation can specify a Abstract Schema when creating a document (public
and system IDs for the external subset, and a string for the subset), DOM Level 2 implementations do not
process the Abstract Schema’s content. For DOM Level 3, the Abstract Schema’s content must be read.

2.1.1.3. Abstract Schema Reuse

When processing a series of documents, all of which use the same Abstract Schema, implementations
should be able to reuse the already parsed and loaded Abstract Schema rather than parsing it again for
each new document.

53

2. Document Object Model Load and Save

This feature may not have an explicit DOM API associated with it, but it does require that nothing in this
section, or the Abstract Schema section, of this specification block it or make it difficult to implement.

2.1.1.4. Entity Resolution

Some means is required to allow applications to map public and system IDs to the correct document. This
facility should provide sufficient capability to allow the implementation of catalogs, but providing
catalogs themselves is not a requirement. In addition XML Base needs to be addressed.

2.1.1.5. Error Reporting

Loading a document can cause the generation of errors including:

I/O Errors, such as the inability to find or open the specified document.
XML well formedness errors.
Validity errors

Saving a document can cause the generation of errors including:

I/O Errors, such as the inability to write to a specified stream, URI, or file.
Improper constructs, such as ’--’ in comments, in the DOM that cannot be represented as well formed
XML.

This section, as well as the DOM Level 3 Abstract Schema section should use a common error reporting
mechanism. Well-formedness and validity checking are in the domain of the Abstract Schema section,
even though they may be commonly generated in response to an application asking that a document be
loaded.

2.1.2. Load Requirements

The following requirements apply to loading documents.

2.1.2.1. Parser Properties and Options

Parsers may have properties or options that can be set by applications. Examples include:

Expansion of entity references.
Creation of entity ref nodes.
Handling of white space in element content.
Enabling of namespace handling.
Enabling of abstract schema validation.

A mechanism to set properties, query the state of properties, and to query the set of properties supported
by a particular DOM implementation is required.

54

2.1.2. Load Requirements

2.1.3. XML Writer Requirements

The fundamental requirement is to write a DOM document as XML source. All information to be
serialized should be available via the normal DOM API.

2.1.3.1. XML Writer Properties and Options

There are several options that can be defined when saving an XML document. Some of these are:

Saving to Canonical XML format.
Pretty Printing.
Specify the encoding in which a document is written.
How and when to use character entities.
Namespace prefix handling.
Saving of Abstract Schemas.
Handling of external entities.

2.1.3.2. Abstract Schema Saving

Requirement from the Abstract Schema group.

2.1.4. Other Items Under Consideration

The following items are not committed to, but are under consideration. Public feedback on these items is
especially requested.

2.1.4.1. Incremental and/or Concurrent Parsing

Note: This is done with the asynch loading.

Provide the ability for a thread that requested the loading of a document to continue execution without
blocking while the document is being loaded. This would require some sort of notification or completion
event when the loading process was done.

Provide the ability to examine the partial DOM representation before it has been fully loaded.

In one form, a document may be loaded asynchronously while a DOM based application is accessing the
document. In another form, the application may explicitly ask for the next incremental portion of a
document to be loaded.

2.1.4.2. Filtered Save

Provide the capability to write out only a part of a document. May be able to leverage TreeWalkers, or the
Filters associated with TreeWalkers, or Ranges as a means of specifying the portion of the document to be
written.

55

2.1.3. XML Writer Requirements

2.1.4.3. Document Fragments

Note: Won’t happen.

Document fragments, as specified by the XML Fragment specification, should be able to be loaded. This
is useful to applications that only need to process some part of a large document. Because the DOM is
typically implemented as an in-memory representation of a document, fully loading large documents can
require large amounts of memory.

XPath should also be considered as a way to identify XML Document fragments to load.

2.1.4.4. Document Fragments in Context of Existing DOM

Document fragments, as specified by the XML Fragment specification, should be able to be loaded into
the context of an existing document at a point specified by a node position, or perhaps a range. This is a
separate feature than simply loading document fragments as a new Node.

2.2. Issue List

2.2.1. Open Issues

Issue LS-Issue-53:
"format-canonical" needs a correct reference to the spec for canonical XML.

Issue LS-Issue-54:
How should default attributes be dealt with wrt DOMBuilderFilter?

Issue LS-Issue-55:
Should we make it possible to SKIP an element in DOMBuilderFilter::endNode?

Issue LS-Issue-56:
namespaceURI in core can be empty string, how should that be dealt with in DOM LS?

Issue LS-Issue-155:
This is not really an issue, it’s left in here as a reminder for now. The ’feature’ vs. ’option’ vs.
’property’ mess needs to be cleaned up.

2.2.2. Resolved Issues

Issue LS-Issue-1:
Should these methods be in a new interface, or should they be added to the existing
DOMImplementation Interface? I think that adding them to the existing interface is cleaner, because
it helps avoid an explosion of new interfaces.
The methods are in a separate interface in this description for convenience in preparing the doc, so
that I don’t need to edit Core to add the methods. (The same argument could perhaps be made for
implementations.)
Resolution: The methods are in a separate DOMImplementationLS interface. Because Load/Save is
an optional module, we don’t want to add its to the core DOMImplementation interface.

56

2.2. Issue List

Issue LS-Issue-2:
SAX handles the setting of parser attributes differently. Rather than having distinct getters and setters
for each attribute, it has a generic setter and getter of named properties, where properties are
specified by a URI. This has an advantage in that implementations do not need to extend the interface
when providing additional attributes.
If we choose to use strings, their syntax needs to be chosen. URIs would make sense, except for the
fact that these are just names that do not refer to any resources. Dereferencing them would be
meaningless. Yet the direction of the W3C is that all URIs must be dereferencable, and refer to
something on the web.
Resolution: Use strings for properties. Use Java package name syntax for the identifying names. The
question was revisited at the July f2f, with the same conclusion. But some discussion of using URIs
continues.
This issue was revisited once again at the 9/2000 meeting. Now all DOM properties or features will
be short, descriptive names, and we will recommend that all vendor-specific extensions be prefixed
to avoid collisions, but will not make specific recommendations for the syntax of the prefix.

Issue LS-Issue-3:
It’s not obvious what name to choose for the parser interface. Taking any of the names already in use
by parser implementations would create problems when trying to support both the new API and the
existing old API. That leaves out DocumentBuilder (Sun) and DOMParser (Xerces).
Resolution: This is issue really just a comment. The "resolution" is in the names appearing in the
API.

Issue LS-Issue-4:
Question: should ResolveEntity pass a baseURI string back to the application, in addition to the
publicId, systemId, and/or stream? Particularly in the case of an input stream.
Resolution: No. Sax2 explicitly says that the system ID URI must be fully resolved before passing it
out to the entity resolve. We will follow SAX’s lead on this unless some additional use case surfaces.
This is from the 9/2000 f2f, and reverses an earlier decision.

Issue LS-Issue-5:
When parsing a document that contains errors, should the whole document be decreed unusable, or
should we say that portions prior to the point where the error was detected are OK?
Resolution: In the case of errors in the XML source, what, if any, document is returned is
implementation dependent.

Issue LS-Issue-6:
The relationship between SAXExceptions and DOM exceptions seems confusing.
Resolution: This issue goes away because we are no longer using SAX. Any exceptions will be
DOM Exceptions.

Issue LS-Issue-7:
Question: In the original Java definition, are the strings returned from the methods
SAXException.toString and SAXException.getMessage always the same? If not, we
need to add another attribute.
Resolution: No longer an issue because we are no longer using SAX.

Issue LS-Issue-8:
JAXP defines a mechanism, based on Java system properties, by which the Document Builder
Factory locates the specific parser implementation to be used. This ability to redirect to different
parsers is a key feature of JAXP. How this redirection works in the context of this design may be
something that needs to be defined separately for each language binding.

57

2.2.2. Resolved Issues

This question was discussed at the July f2f, without resolution. Agreed that the feature is not critical
to the rest of the API, and can be postponed.
Resolution: The issue is moving to core, where it is part of the bigger question of where does the
DOM implementation come from, and how do multiple implementations coexist. Allowing separate,
or mix-and-match, specification of the parser and the rest of the DOM is not generally practical
because parsers generally have some degree of private knowledge about their DOMs.

Issue LS-Issue-9:
The use of interfaces from SAX2 raises some questions. The Java bindings for these interfaces need
to be exactly the SAX2 definitions, including the original org.xml.sax package name.
The IDL presented here for these interfaces is an attempt to map the Java into IDL, but it will
certainly not round-trip accurately - Java bindings generated from the IDL will not match the original
Java.
The reasons for using the SAX interfaces are that they are well designed, widely implemented and
used, and provide what is needed. Designing something new would create confusion for application
developers (which should be used?) and make extra work for implementers of the DOM, most of
whom probably already provide SAX, all for no real gain.
Resolution: Problem is gone. We are not using SAX2. The design will borrow features and concepts
from SAX2 when it makes sense to do so.

Issue LS-Issue-10:
Error Reporting. Loading will be reporting well-formedness and validation errors, just like AS. A
common error reporting mechanism needs to be developed.
Resolution: Resolved, see errors.html

Issue LS-Issue-11:
Another Error Reporting Question. We decided at the June f2f that validity errors should not be
exceptions. This means that a document load operation could encounter multiple errors. Should these
be collected and delivered as some sort of collection at the (otherwise) successful completion of the
load, or should there be some sort of callback? Callbacks are harder for applications to deal with.
Resolution: Provide a callback mechanism. Provide a default error handler that throws an exception
and stops further processing. From July f2f.

Issue LS-Issue-12:
Definition of "Non-validating". Exactly how much processing is done by "non-validating" parsers is
not fully defined by the XML specification. In particular, they are not required to read any external
entities, but are not prohibited from doing so.
Another common user request: a mode that completely ignores DTDs, both and external. Such a
parser would not conform to XML 1.0, however.
For the documents produced by a non-validating load to be the same, we need to tie down exactly
what processing must be done. The XML Core WG also has question as an open issue .
Some discussion is at http://lists.w3.org/Archives/Member/w3c-xml-core-wg/2000JanMar/0192.html
Here is proposal: Have three classes of parsers

Minimal. No external entities of any type are accessed. DTD subset is processes normally, as
required by XML 1.0, including all entity definitions it contains.
Non-Validating. All external entities are read. Does everything except validation.
Validating. As defined by XML 1.0 rec.

Resolution: Use the options from SAX2. These provide separate flags for validation, reading of
external general entities and reading of external parameter entities.

58

2.2.2. Resolved Issues

Issue LS-Issue-13:
Use of System or Language specific types for Input and Output
Loading and Saving requires that one of the possible sources or destinations of the XML data be
some sort of stream that can be used with io streams or memory buffers, or anything else that might
take or supply data. The type will vary, depending on the language binding.
The question is, what should be put into the IDL interfaces for these? Should we define an XML
stream to abstract out the dependency, or use system classes directly in the bindings?
Resolution: Define IDL types for use in the rest of the interface definitions. These types will be
mapped directly to system types for each language binding

Issue LS-Issue-14:
Should there be separate DOM modules for browser or scripting style loading
(document.load("whatever")) and server style parsers? It’s probably easy for the server style parsers
to implement the browser style interface, but the reverse may not be true.
Resolution: Yes. A client application style API will be provided.

Issue LS-Issue-15:
System Exceptions. Loading involves file opens and reads, and these can result in a variety of system
errors that may already have associated system exceptions. Should these system exceptions pass
through as is, or should they be some how wrapped in DOMExceptions, or should there be a parallel
set DOM Exceptions, or what?
Resolution: Introduce a new DOMSystemException to standardize the reporting of common I/O
errors across different DOM environments. Let it wrap an underlying system exception or error code
when appropriate. To be defined in the common ErrorReporting module, to be shared with Abstract
Schema.

Issue LS-Issue-16:
Loading and saving of abstract schema’s - DTDs or Schemas - outside of the context of a document
is not addressed.
Resolution: See the DOMASBuilder [p.49] interface in the AS spec

Issue LS-Issue-17:
Loading while validating using an already loaded abstract schema is not addressed. Applications
should be able to load a abstract schema (issue 16), and then repeatedly reuse it during the loading of
additional documents.
Resolution: See the DOMASBuilder [p.49] interface in the AS spec

Issue LS-Issue-18:
For the list of parser properties, which must all implementations recognize, which settings must all
implementations support, and which are optional?
Resolution: Done

Issue LS-Issue-19:
DOMOutputStream: should this be an interface with methods, or just an opaque type that maps onto
an appropriate binding-specific stream type?
If we specify an actual interface with methods, applications can implement it to wrap any arbitrary
destination that they may have. If we go with the system type it’s simpler to output to that type of
stream, but harder otherwise.
Resolution: Opaque.

Issue LS-Issue-20:
Action from September f2f to "add issues raised by schema discussion. What were these?
Resolution: nobody seems to remember this, no action taken

59

2.2.2. Resolved Issues

Issue LS-Issue-21:
Define exceptions. A DOMSystemException needs to be defined as part of the error handling
module that is to be shared with AS. Common I/O type errors need to be defined for it, so that they
can be reported in a uniform way. A way to embed errors or exceptions from the OS or language
environment is needed, to provide full information to applications that want it.
Resolution: Duplicate of issue #15

Issue LS-Issue-22:
What do the bindings for things like InputStream look like in ECMA Script? Tentative resolution -
InputStream will map to a binding dependent class or interface. For environments where nothing
appropriate exists, a new interface will be created. This question is still being discussed.
Resolution: will be left to the binding

Issue LS-Issue-23:
To Do: Add a method or methods to DOMBuilder that will provide information about a parser
feature - is the name recognized, which (boolean) values are supported - without throwing
exceptions.
Resolution: Done. Added canSetFeature.

Issue LS-Issue-24:
Clearly identify which of the parser properties must be recognized, and which of their settings must
be supported by all conforming implementations.
Resolution: Done. All must be recognized.

Issue LS-Issue-25:
How does the validation property work in SAX, and how should it work for us? The default value in
SAX2 is "true". Non-validating parsers only support a value of false. Does this mean that the
default depends on the parser, or that some sort of an error happens if a parse is attempted before
resetting the property, or what?
The same question applies to the External Entities properties too.
Resolution: Make the default value for the validation property be false.

Issue LS-Issue-26:
Do we want to rename the "auto-validation" property to "validate-if-cm"? Proposed at f2f. Resolution
unclear.
Resolution: Changed the name to "validate-if-cm".

Issue LS-Issue-27:
How is validation during document loading handled when there are multiple possible abstract
schemas associated with the document? How is one selected? The same question exists for
documents in general, outside of the context of loading. Resolving the question for loading probably
needs to wait until the more general question is understood.
Resolution: Always use the active external AS if any and the active internal AS if any. Whenever
you want to validate during parsing with a different Internal/External model you have to activate this
Abstract Schema first.

Issue LS-Issue-29:
Should all properties except namespaces default to false? Discussed at f2f. I’m not so sure now.
Some of the properties have somewhat non-standard behavior when false - leaving out ER nodes
or whitespace, for example - and support of false will probably not even be required.
Resolution: Not all properties should default to false. But validation should.

Issue LS-Issue-28:
To do: add new parser property "createEntityNodes". default is true. Illegal for it to be false and

60

2.2.2. Resolved Issues

createEntityReferenceNodes to be true.
(ED: Is this really what we want?)
Resolution: new feature added.

Issue LS-Issue-30:
Possible additional parser features - option to not create CDATA nodes, and to merge CDATA
contents with adjacent TEXT nodes if they exist. Otherwise just create a TEXT node.
Option to omit Comments.
Resolution: new feature added.

Issue LS-Issue-31:
We now have an option for fixing up namespace declarations and prefixes on serialization. Should
we specify how this is done, so that the documents from different implementations of serialization
will use the same declarations and prefixes, or should we leave the details up to the implementation?
Resolution: The exact form of the namespace fixup is implementation dependent. The only
requirement is that all elements and attributes end up with the correct namespace URI.

Issue LS-Issue-32:
Mimetypes. If the input being parsed is from http or something else that supplies types, and the type
is something other than text/xml, should we parse it anyhow, or should we complain. Should there be
an option?
Tentative resolution: always parse, never complain. Reasons: 1. This is what all parsers do now, and
no one has ever complained, at least not that I’m aware of. 2. Applications must have a pretty good
reason to suspect that they’re getting xml or they wouldn’t have invoked the parser. 3. All the test
would do is to take something that might have worked (xml that is not known to the server) and turn
it into an error. Non-xml is exceptionally unlikely to successfully parse (be well formed.)
Resolution: See the mimeTypeCheck attribute on DOMBuilder [p.66] .

Issue LS-Issue-33:
Unicode Character Normalization Problems. It turns out that for some code pages, normalizing a
Unicode representation, translating to the code page, then translating back to Unicode can result in
un-normalized Unicode. Mark Davis says that this can happen with Vietnamese and maybe with
Hebrew.
This means that the suggested W3C model of normalization on serialization (early normalization)
may not work, and that the receiver of the data may need to normalize it again, just in case.
Resolution: The scenario described is a quality-of-implementation issue. A transcoder converting
from the one of the troublesome code pages to a Unicode representation should be responsible for
re-normalizing the output.

Issue LS-Issue-34:
Features 2.1.4.1, 2 - XML Fragment Support. Should these be dropped?
Resolution: The DOM WG decided to drop support for XML fragment loading in the DOM Level 3
Load-Save module due to lack of time to define the behavior in all the edge cases, future versions of
this spec might address this issue.

Issue LS-Issue-35:
XPath based document load filter. It would be plausible to have a partial (filtered) document load
based on selecting the portion of the document to load with an XPath expression. This facility could
be in addition to the node-by-node filtering currently specified. Or we could drop the existing filter.
Implementing an XPath based selective load would require that there be an XPath processor present
in addition to the parser itself.
Resolution: The DOM Level 3 spec will not define an interface for doing XPath/XPointer type

61

2.2.2. Resolved Issues

filtering, implementations are free to implement XPath/XPointer based filters on top of a
DOMBuilderFilter.

Issue LS-Issue-36:
MIME Type checking for DOMASBuilder.
What MIME Type checking needs to be done for parsing schemas
Resolution: see DOMBuilder, DOMASBuilder is an extend of DOMBuilder, this issue is solved
within DOMBuilder

Issue LS-Issue-37:
Internal ASModel serialization for DOMWriter.
What if the internal ASModel is an XML Schema ASModel. Currently there is no ASModel type.
Adding an Internal ASModel can be any kind of schema. Should serialization somehow check the
internal ASModel ? What about the internal subset, is it discarded when the AS spec is implemented
?
Resolution: An internal ASModel can’t be a schema according to the AS spec. The internal subset is
discarded when an Abstract Schema is active and the AS spec is implemented

Issue LS-Issue-38:
Attribute Normalization.
Add a property to "attributeNormalization" to DOMWriter to support or discard Attribute
Normalization during serialization to. Setting attributeNormalization will serialize attributes with
unexpanded entity references (if any) regardless their childnode(s). This means that if a user is
changing the child nodes of an entity reference node within an attribute and attributeNormalization is
set to true during serialization that these changes are discarded during serialization.
Resolution: The normalization will be driven by the validation options on DOMBuilder, if a
document is validated it will also be normalized, if the document is not validated then no
normalization will occure.

Issue LS-Issue-39:
Validation at serialization time. Should we have an option for validating while serializing, what about
validation errors, should we allow serializing non-valid DOM’s?
Resolution: No. Validation at serialization time will not be supported by this specification.

Issue LS-Issue-40:
Is the description of the DOMWriter option expand-entity-references acceptable?
Resolution: Yes, the description is acceptable.

Issue LS-Issue-41:
Do we need filter support in DOMWriter too?
Resolution: Not until we have good usecases for needing filters when serializing a node.

Issue LS-Issue-42:
Should all attributes on DOMInputSource be readonly? The DOM implementation will be passed an
object that implements this interface and there’s no need for the DOM implementation to ever
modify any of those values.
Resolution: Yes, the application is responsible for implementing this interface, the DOM
implementation should never modify an input source.

Issue LS-Issue-43:
What’s a DOMReader in non-Java languages? Does this really belong in these language neutral
interfaces?
Resolution: The DOMReader type should be defined as "Object" in ECMAScript.

62

2.2.2. Resolved Issues

Issue LS-Issue-44:
What should the DOMWriter do if the doctype name doesn’t match the name of the document
element? This is a validity error, not a wellformedness error so should this just be a normal validity
error when serializing?
Resolution: This is only a validity error, and since this spec doesn’t support validation at
serialization time this will be ignored. If an implementation were to support validation at serialization
time the error handler should be called in this case.

Issue LS-Issue-45:
How should validation work if there’s a reference to both a schema and a DTD, should the parser
validate against both, or only one, if only one, how does one select which one?
Resolution: Add a validate-against-dtd option that forces validation against the DTD even if there
are other schemas referenced in the document.

Issue LS-Issue-46:
Should supporting async/sync loading be optional?
Resolution: Yes.

Issue LS-Issue-47:
Default attribute handling in DOMWriter needs to be defined for Level 1 elements.
Resolution: If specified is set to false then the attribute must be a level 1 node in which case this
information can safely be used.

Issue LS-Issue-48:
DOMWriter::writeNode takes a Node as an argument, shouldn’t this be a Document?
Resolution: It should also be possible to serialize elements, adding xmlns declarations on the
element that is serialized. Entities get serialized w/o binding element namespaces. Text nodes should
be serialized too, and document fragments, cdata section and attributes too and entity reference
(&foo;) and comments.

Issue LS-Issue-49:
Datatype normalization? I.e. stripping whitespace around integers n’ such.
Resolution: No, but add option to not normalize when validating, "datatype-normalization" added.

Issue LS-Issue-50:
Should ’external-parameter-entities’ be replaced by an "load-external-dtds-n’-stuff" option?
Resolution: yes, done, "external-parameter-entities" added.

Issue LS-Issue-51:
DOMBuilder::canSetFeature and ::supportsFeature are redundant, no?
Resolution: Yes, supportsFeature removed.

Issue LS-Issue-52:
Is the API dependencies on the Events spec acceptable?
Resolution: We’re only reusing events API’s, we’re not requiring people to implement the events
spec so this shouldn’t be a problem.

Issue LS-ISSUE-53:
Doesn’t the feature "external-dtd-subset" conflict with the XML 1.0 specifications
standalone="true"?
Resolution: No, the standalone "attribute" in XML 1.0 is only a hint, and thus implementations are
not required to do anything with it that matters for a DOM builder.

63

2.2.2. Resolved Issues

2.3. Interfaces
This section defines an API [p.135] for loading (parsing) XML documents [XML] into a DOM
representation [DOM Level 3 Core] and for saving (serializing) a DOM representation as an XML
document.

The proposal for loading is influenced by the Java APIs for XML Processing [JAXP] and by SAX2
[SAX].

The list of interfaces involved with the Loading and Saving XML documents is:

DOMImplementationLS [p.64] -- A new DOMImplementation interface that provides the
factory methods for creating the objects required for loading and saving.
DOMBuilder [p.66] -- A parser interface.
DOMInputSource [p.81] -- Encapsulate information about the XML document to be loaded.
DOMEntityResolver [p.83] -- During loading, provides a way for applications to redirect
references to external entities.
DOMBuilderFilter [p.85] -- Provide the ability to examine and optionally remove Element
nodes as they are being processed during the parsing of a document.
DOMWriter [p.74] -- An interface for writing out or serializing DOM documents.
DocumentLS [p.87] -- Provides a client or browser style interface for loading and saving.
ParseErrorEvent [p.89] -- ParseErrorEvent is the event that is fired if there’s an error in the
XML document being parsed using the methods of DocumentLS.

Interface DOMImplementationLS

DOMImplementationLS contains the factory methods for creating objects that implement the
DOMBuilder [p.66] (parser) and DOMWriter [p.74] (serializer) interfaces.

An object that implements DOMImplementationLS is obtained by doing a binding specific cast from
DOMImplementation to DOMImplementationLS. Implementations supporting the Load and Save
feature must implement the DOMImplementationLS interface on whatever object implements the
DOMImplementation interface.

IDL Definition

interface DOMImplementationLS {

 // DOMIMplementationLSMode
 const unsigned short MODE_SYNCHRONOUS = 1;
 const unsigned short MODE_ASYNCHRONOUS = 2;

 DOMBuilder createDOMBuilder(in unsigned short mode)
 raises(DOMException);
 DOMWriter createDOMWriter();
 DOMInputSource createDOMInputSource();
};

64

2.3. Interfaces

Definition group DOMIMplementationLSMode

An integer indicating which type of mode this is.

Defined Constants
MODE_ASYNCHRONOUS

Create an asynchronous DOMBuilder [p.66] .
MODE_SYNCHRONOUS

Create a synchronous DOMBuilder [p.66] .
Methods

createDOMBuilder
Create a new DOMBuilder [p.66] . The newly constructed parser may then be configured
by means of its setFeature method, and used to parse documents by means of its
parse method.
Parameters
mode of type unsigned short

The mode argument is either MODE_SYNCHRONOUS or MODE_ASYNCHRONOUS, if
mode is MODE_SYNCHRONOUS then the DOMBuilder [p.66] that is created will
operate in synchronous mode, if it’s MODE_ASYNCHRONOUS then the DOMBuilder
that is created will operate in asynchronous mode.

Return Value

DOMBuilder
[p.66]

The newly created DOMBuilder object, this DOMBuilder is
either synchronous or asynchronous depending on the value of the
type argument.

Exceptions

DOMException Raise a NOT_SUPPORTED_ERR exception if
MODE_ASYNCHRONOUS is not supported.

createDOMInputSource
Create a new "empty" DOMInputSource [p.81] .
Return Value

DOMInputSource
[p.81]

The newly created DOMBuilder [p.66] object, this
DOMBuilder is either synchronous or asynchronous
depending on the value of the type argument.

No Parameters
No Exceptions

createDOMWriter
Create a new DOMWriter [p.74] object. DOMWriters are used to serialize a DOM tree
back into an XML document.
Return Value

65

2.3. Interfaces

DOMWriter [p.74] The newly created DOMWriter object.

No Parameters
No Exceptions

Interface DOMBuilder

A interface to an object that is able to build a DOM tree from various input sources.

DOMBuilder provides an API for parsing XML documents and building the corresponding DOM
document tree. A DOMBuilder instance is obtained from the DOMImplementationLS [p.64]
interface by invoking its createDOMBuildermethod.

As specified in [DOM Level 3 Core], when a document is first made available via the DOMBuilder:

there is only one Text node for each block of text. The Text nodes are into "normal" form:
only structure (e.g., elements, comments, processing instructions, CDATA sections, and entity
references) separates Text nodes, i.e., there are neither adjacent Text nodes nor empty Text
nodes.
it is expected that the value and nodeValue attributes of an Attr node initially return the
XML 1.0 normalized value. However, if the features validate-if-schema and
datatype-normalization are set to true, depending on the attribute normalization
used, the attribute values may differ from the ones obtained by the XML 1.0 attribute
normalization. If the feature datatype-normalization is not set to true, the XML 1.0
attribute normalization is garantee to occur, and if attributes list does not contain namespace
declarations, the attributes attribute on Element node represents the property [attributes]
defined in [XML Information set] .
Issue Infoset:

XML Schemas does not modified the XML attribute normalization but represents their
normalized value in an other information item property: [schema normalized value]
Resolution: XML Schema normalization only occurs if datatype-normalization is
set to true.

The Document Object Model Level 3 Load and Save does not provide a way to disable the
namespace resolution: Namespaces are always taken into account during loading and saving
operations.

Asynchronous DOMBuilder objects are expected to also implement the
events::EventTarget interface so that event listeners can be registerd on asynchronous
DOMBuilder objects.

Events supported by asynchronous DOMBuilder are:

ls-load: The document that’s being loaded is completely parsed, see the definition of
LSLoadEvent [p.83]
ls-progress: Progress notification, see the definition of LSProgressEvent [p.83]

66

2.3. Interfaces

http://www.w3.org/TR/2000/REC-xml-20001006#AVNormalize

DOMBuilders have a number of named features that can be queried or set. The name of
DOMBuilder features must be valid XML names. Implementation specific features (extensions)
should choose a implementation specific prefix to avoid name collisions.

Even if all features must be recognized by all implementations, being able to set a state (true or
false) is not always required. The following list of recognized features indicates the definitions of
each feature state, if setting the state to true or false must be supported or is optional and, which
state is the default one:

"namespace-declarations"
true

[required] (default)
include the namespace declaration attributes, specified or defaulted from the schema or the
DTD, in the DOM document. See also the section Declaring Namespaces in [XML
Namespaces].

false
[optional]
discard all namespace declaration attributes. The Namespace prefixes will be retained even
if this feature is set to false.

"validation"
true

[optional]
report validation errors (setting true also will force the
external-general-entities and external-parameter-entities features
to be true.) Also note that the validate-if-schema feature will alter the validation
behavior when this feature is set true.

false
[required] (default)
do not report validation errors.

"external-parameter-entities"
true

[required] (default)
load external parameter entities.

false
[optional]
do not load external parameter entities.

default value
true

"external-general-entities"
true

[required] (default)
include all external general (text) entities.

false
[optional]
do not include external general entities.

67

2.3. Interfaces

http://www.w3.org/TR/1999/REC-xml-names-19990114/#ns-decl

"external-dtd-subset"
true

[required] (default)
load the external dtd and also all external parameter entities.

false
[optional]
do not load the dtd nor external parameter entities.

"validate-if-schema"
true

[optional]
when both this feature and validation are true, enable validation only if the document
being processed has a schema (i.e. XML schema, DTD, any other type of schema, note that
this is unrelated to the abstract schema specification). Documents without schemas are
parsed without validation.

false
[required] (default)
the validation feature alone controls whether the document is checked for validity.
Documents without a schemas are not valid.

"validate-against-dtd"
true

[optional]
Prefere validation against the DTD over any other schema referenced in the XML file.

false
[required] (default)
Let the parser decide what to validate against if there are references to multiple types of
schemas.

"datatype-normalization"
true

[required]
Let the (non-DTD) validation process do its datatype normalization that is defined in the
used schema language.
Issue normalization-1:

We should define "datatype normalization".
false

[required] (default)
Disable datatype normalization. The XML 1.0 attribute value normalization is garantee to
occur in that case.

"create-entity-ref-nodes"
true

[required] (default)
Create EntityReference nodes in the DOM document. It will also set
create-entity-nodes to be true.

false
[optional]
omit all EntityReference nodes from the DOM document, putting the entity
expansions directly in their place. Text nodes are into "normal" form.

68

2.3. Interfaces

EntityReference nodes to non-defined entities will still be created in the DOM
document.

"create-entity-nodes"
true

[required] (default)
Create Entity nodes in the DOM document.

false
[optional]
Omit all entity nodes from the DOM document. It will also set
create-entity-ref-nodes to false.

"whitespace-in-element-content"
true

[required] (default)
Include white space characters appearing within element content (see [XML] 2.10 "White
Space Handling").

false
[optional]
Omit white space characters appearing within element content. Note that white space
characters within element content will only be omitted if it can be identified as such, and
not all parsers may be able to do so (see [XML] 2.10 "White Space Handling").

"create-cdata-nodes"
true

[required] (default)
Create CDATASection nodes in response to the appearance of CDATA sections in the
XML document.

false
[optional]
Do not create CDATASection nodes in the DOM document.
The content of any CDATA sections in the XML document appears in the DOM as if it had
been normal (non-CDATA) content. If a CDATA section is adjacent to other content, the
combined content appears in a single Text node, i.e. the Text nodes are into "normal"
form.

"comments"
true

[required] (default)
Include XML comments in the DOM document.

false
[required]
Discard XML comments, do not create Comment nodes in the DOM Document resulting
from a parse.

"charset-overrides-xml-encoding"
true

[required] (default)
If a higher level protocol such as HTTP [RFC2616] provides an indication of the character
encoding of the input stream being processed, that will override any encoding specified in
the XML declaration or the Text declaration (see also [XML] 4.3.3 "Character Encoding in

69

2.3. Interfaces

Entities"). Explicitly setting an encoding in the DOMInputSource [p.81] overrides
encodings from the protocol.

false
[required]
Any character set encoding information from higher level protocols is ignored by the
parser.

"load-as-infoset"
true

[optional]
Load the document and store only the information defined in the XML Information Set
[XML Information set].
This will force the following features to false: namespace-declarations,
validate-if-schema, create-entity-ref-nodes,
create-entity-nodes, create-cdata-nodes.
This will force the following features to true: datatype-normalization,
whitespace-in-element-content, comments,
charset-overrides-xml-encoding.
Other features are not changed unless explicity specified in the description of the features.
Note that querying this feature with getFeature will return true only if the individual
features specified above are appropriately set.

false
Setting load-as-infoset to false has no effect.

"supported-mediatypes-only"
true

[optional]
Check that the media type of the parsed resource is a supported media type and call the
error handler if an unsupported media type is encountered. The media types defined in
[RFC3023] must be accepted.

false
[required] (default)
Don’t check the media type, accept any type of data.

IDL Definition

interface DOMBuilder {
 attribute DOMEntityResolver entityResolver;
 attribute DOMErrorHandler errorHandler;
 attribute DOMBuilderFilter filter;
 void setFeature(in DOMString name,
 in boolean state)
 raises(DOMException);
 boolean canSetFeature(in DOMString name,
 in boolean state);
 boolean getFeature(in DOMString name)
 raises(DOMException);
 Document parseURI(in DOMString uri)
 raises(DOMSystemException);
 Document parse(in DOMInputSource is)
 raises(DOMSystemException);

 // ACTION_TYPES

70

2.3. Interfaces

 const unsigned short ACTION_REPLACE = 1;
 const unsigned short ACTION_APPEND = 2;
 const unsigned short ACTION_INSERT_AFTER = 3;
 const unsigned short ACTION_INSERT_BEFORE = 4;

 void parseWithContext(in DOMInputSource is,
 in Node cnode,
 in unsigned short action)
 raises(DOMException);
};

Definition group ACTION_TYPES

A set of possible actions for the parseWithContext method.

Defined Constants
ACTION_APPEND

Append the result of parsing the input source to the context node. For this action to
work, the context node must be an Element.

ACTION_INSERT_AFTER
Insert the result of parsing the input source after the context node. For this action to
work the context nodes parent must be an Element.

ACTION_INSERT_BEFORE
Insert the result of parsing the input source before the context node. For this action to
work the context nodes parent must be an Element.

ACTION_REPLACE
Replace the context node with the result of parsing the input source. For this action to
work the context node must be an Element, Text, CDATASection, Comment,
ProcessingInstruction, or EntityReference node.

Attributes
entityResolver of type DOMEntityResolver [p.83]

If a DOMEntityResolver [p.83] has been specified, each time a reference to an
external entity is encountered the DOMBuilder will pass the public and system IDs to the
entity resolver, which can then specify the actual source of the entity.

errorHandler of type DOMErrorHandler
In the event that an error is encountered in the XML document being parsed, the
DOMDcoumentBuilder will call back to the errorHandler with the error
information. When the document loading process calls the error handler the node closest to
where the error occured is passed to the error handler if the implementation, if the
implementation is unable to pass the node where the error occures the document Node is
passed to the error handler. Mutations to the document from within an error handler will
result in implementation dependent behavour.

filter of type DOMBuilderFilter [p.85]
When the application provides a filter, the parser will call out to the filter at the completion
of the construction of each Element node. The filter implementation can choose to
remove the element from the document being constructed (unless the element is the
document element) or to terminate the parse early. If the document is being validated when
it’s loaded the validation happens before the filter is called.

71

2.3. Interfaces

Methods
canSetFeature

Query whether setting a feature to a specific value is supported.
The feature name has the same form as a DOM hasFeature string.
Parameters
name of type DOMString

The feature name, which is a DOM has-feature style string.
state of type boolean

The requested state of the feature (true or false).
Return Value

boolean true if the feature could be successfully set to the specified value, or
false if the feature is not recognized or the requested value is not
supported. The value of the feature itself is not changed.

No Exceptions
getFeature

Look up the value of a feature.
The feature name has the same form as a DOM hasFeature string
Parameters
name of type DOMString

The feature name, which is a string with DOM has-feature syntax.
Return Value

boolean The current state of the feature (true or false).

Exceptions

DOMException Raise a NOT_FOUND_ERR When the DOMBuilder does not
recognize the feature name.

parse
Parse an XML document from a resource identified by an DOMInputSource [p.81] .
Parameters
is of type DOMInputSource [p.81]

The DOMInputSource from which the source document is to be read.
Return Value

Document If the DOMBuilder is a synchronous DOMBuilder the newly created
and populated Document is returned. If the DOMBuilder is
asynchronous then null is returned since the document object is not
yet parsed when this method returns.

72

2.3. Interfaces

Exceptions

DOMSystemException Exceptions raised by parse originate with the installed
ErrorHandler, and thus depend on the implementation of
the DOMErrorHandler interfaces. The default
ErrorHandlers will raise a DOMSystemException if
any form I/O or other system error occurs during the
parse, but application defined ErrorHandlers are not
required to do so.

parseURI
Parse an XML document from a location identified by an URI reference [RFC2396]. If the
URI contains a fragment identifier (see section 4.1 in [RFC2396]), the behavior is not
defined by this specification.
Parameters
uri of type DOMString

The location of the XML document to be read.
Return Value

Document If the DOMBuilder is a synchronous DOMBuilder the newly created
and populated Document is returned. If the DOMBuilder is
asynchronous then null is returned since the document object is not
yet parsed when this method returns.

Exceptions

DOMSystemException Exceptions raised by parseURI originate with the
installed ErrorHandler, and thus depend on the
implementation of the DOMErrorHandler interfaces.
The default error handlers will raise a
DOMSystemException if any form I/O or other system
error occurs during the parse, but application defined
error handlers are not required to do so.

parseWithContext
Parse an XML document or fragment from a resource identified by an DOMInputSource
[p.81] and insert the content into an existing document at the position epcified with the
contextNode and action arguments. When parsing the input stream the context node
is used for resolving unbound namespace prefixes.
Parameters
is of type DOMInputSource [p.81]

The DOMInputSource from which the source document is to be read.
cnode of type Node

The Node that is used as the context for the data that is being parsed.

73

2.3. Interfaces

action of type unsigned short
This parameter describes which action should be taken between the new set of node
being inserted and the existing children of the context node. The set of possible
actions is defined above.

Exceptions

DOMException HIERARCHY_REQUEST_ERR: Thrown if this action results in
an invalid hierarchy (i.e. a Document with more than one
document element).

No Return Value
setFeature

Set the state of a feature.
The feature name has the same form as a DOM hasFeature string.
It is possible for a DOMBuilder to recognize a feature name but to be unable to set its
value.
Parameters
name of type DOMString

The feature name.
state of type boolean

The requested state of the feature (true or false).
Exceptions

DOMException Raise a NOT_SUPPORTED_ERR exception when the
DOMBuilder recognizes the feature name but cannot set the
requested value.

Raise a NOT_FOUND_ERR When the DOMBuilder does not
recognize the feature name.

No Return Value
Interface DOMWriter

DOMWriter provides an API for serializing (writing) a DOM document out in an XML document.
The XML data is written to an output stream, the type of which depends on the specific language
bindings in use. During serialization of XML data, namespace fixup is done when possible.

DOMWriter accepts any node type for serialization. For nodes of type Document or Entity,
well formed XML will be created if possible. The serialized output for these node types is either as a
Document or an External Entity, respectively, and is acceptable input for an XML parser. For all
other types of nodes the serialized form is not specified, but should be something useful to a human
for debugging or diagnostic purposes. Note: rigorously designing an external (source) form for
stand-alone node types that don’t already have one defined in [XML] seems a bit much to take on
here.

74

2.3. Interfaces

Within a Document or Entity being serialized, Nodes are processed as follows

Documents are written including an XML declaration and a DTD subset, if one exists in the
DOM. Writing a document node serializes the entire document.
Entity nodes, when written directly by writeNode defined in the DOMWriter interface,
output the entity expansion but no namespace fixup is done. The resulting output will be valid as
an external entity.
Entity References nodes are serializes as an entity reference of the form "&entityName;") in
the output. Child nodes (the expansion) of the entity reference are ignored.
CDATA sections containing content characters that can not be represented in the specified
output encoding are handled according to the "split-cdata-sections" feature.
If the feature is true, CDATA sections are split, and the unrepresentable characters are
serialized as numeric character references in ordinary content. The exact position and number of
splits is not specified.
If the feature is false, unrepresentable characters in a CDATA section are reported as errors.
The error is not recoverable - there is no mechanism for supplying alternative characters and
continuing with the serialization.
All other node types (Element, Text, etc.) are serialized to their corresponding XML source
form.

Within the character data of a document (outside of markup), any characters that cannot be
represented directly are replaced with character references. Occurrences of ’<’ and ’&’ are replaced
by the predefined entities < and &. The other predefined entities (>, &apos, etc.) are not
used; these characters can be included directly. Any character that can not be represented directly in
the output character encoding is serialized as a numeric character reference.

Attributes not containing quotes are serialized in quotes. Attributes containing quotes but no
apostrophes are serialized in apostrophes (single quotes). Attributes containing both forms of quotes
are serialized in quotes, with quotes within the value represented by the predefined entity ".
Any character that can not be represented directly in the output character encoding is serialized as a
numeric character reference.

Within markup, but outside of attributes, any occurrence of a character that cannot be represented in
the output character encoding is reported as an error. An example would be serializing the element
<LaCañada/> with the encoding="us-ascii".

When requested by setting the normalize-characters feature on DOMWriter, all data to be
serialized, both markup and character data, is W3C Text normalized according to the rules defined in
[CharModel]. The W3C Text normalization process affects only the data as it is being written; it does
not alter the DOM’s view of the document after serialization has completed.

Namespaces are fixed up during serialization, the serialization process will verify that namespace
declarations, namespace prefixes and the namespace URIs associated with Elements and Attributes
are consistent. If inconsistencies are found, the serialized form of the document will be altered to
remove them. The algorithm used for doing the namespace fixup while seralizing a document is a
combination of the algorithms used for lookupNamespaceURI and lookupNamespacePrefix .

75

2.3. Interfaces

(ED: previous paragraph to be defined closer here.)

Any changes made affect only the namespace prefixes and declarations appearing in the serialized
data. The DOM’s view of the document is not altered by the serialization operation, and does not
reflect any changes made to namespace declarations or prefixes in the serialized output.

While serializing a document the serializer will write out non-specified values (such as attributes
whose specified is false) if the output-default-values feature is set to true. If the
output-default-values flag is set to false and the use-abstract-schema feature is
set to true the abstract schema will be used to determine if a value is specified or not, if
use-abstract-schema is not set the specified flag on attribute nodes is used to determine if
attribute values should be written out.

Ref to Core spec (1.1.9, XML namespaces, 5th paragraph) entity ref description about warning about
unbound entity refs. Entity refs are always serialized as &foo;, also mention this in the load part of
this spec.

When serializing a document the DOMWriter checks to see if the document element in the document
is a DOM Level 1 element or a DOM Level 2 (or higher) element (this check is done by looking at
the localName of the root element). If the root element is a DOM Level 1 element then the
DOMWriter will issue an error if a DOM Level 2 (or higher) element is found while serializing.
Likewise if the document element is a DOM Level 2 (or higher) element and the DOMWriter sees a
DOM Level 1 element an error is issued. Mixing DOM Level 1 elements with DOM Level 2 (or
higher) is not supported.

DOMWriters have a number of named features that can be queried or set. The name of
DOMWriter features must be valid XML names. Implementation specific features (extensions)
should choose an implementation dependent prefix to avoid name collisions.

Here is a list of properties that must be recognized by all implementations.

"normalize-characters"
true

[optional] (default)
Perform the W3C Text Normalization of the characters [CharModel] in document as they
are written out. Only the characters being written are (potentially) altered. The DOM
document itself is unchanged.

false
[required]
do not perform character normalization.

"split-cdata-sections"
true

[required] (default)
Split CDATA sections containing the CDATA section termination marker ’]]>’ or
characters that can not be represented in the output encoding, and output the characters
using numeric character references. If a CDATA section is split a warning is issued.

76

2.3. Interfaces

false
[required]
Signal an error if a CDATASection contains an unrepresentable character.

"validation"
true

[optional]
Use the abstract schema to validate the document as it is being serialized. If validation
errors are found the error handler is notified about the error. Setting this state will also set
the feature use-abstract-schema to true.

false
[required] (default)
Don’t validate the document as it is being serialized.

"expand-entity-references"
true

[optional]
Expand EntityReference nodes when serializing.

false
[required] (default)
Serialize all EntityReference nodes as XML entity references.

"whitespace-in-element-content"
true

[required] (default)
Output all white spaces in the document.

false
[optional]
Only output white space that is not within element content. The implementation is expected
to use the isWhitespaceInElementContent flag on Text nodes to determine if a
text node should be written out or not.

"discard-default-content"
true

[required] (default)
Use whatever information available to the implementation (i.e. XML schema, DTD, the
specified flag on Attr nodes, and so on) to decide what attributes and content should
be serialized or not. Note that the specified flag on Attr nodes in itself is not always
reliable, it is only reliable when it is set to false since the only case where it can be set to
false is if the attribute was created by a Level 1 implementation.

false
[required]
Output all attributes and all content.

"format-canonical"
true

[optional]
This formatting writes the document according to the rules specified in [Canonical XML].
Setting this feature to true will set the feature "format-pretty-print" to false.

false
[required] (default)

77

2.3. Interfaces

Don’t canonicalize the output.
"format-pretty-print"

true
[optional]
Formatting the output by adding whitespace to produce a pretty-printed, indented,
human-readable form. The exact form of the transformations is not specified by this
specification. Setting this feature to true will set the feature "format-canonical" to false.

false
[required] (default)
Don’t pretty-print the result.

IDL Definition

interface DOMWriter {
 void setFeature(in DOMString name,
 in boolean state)
 raises(DOMException);
 boolean canSetFeature(in DOMString name,
 in boolean state);
 boolean getFeature(in DOMString name)
 raises(DOMException);
 attribute DOMString encoding;
 readonly attribute DOMString lastEncoding;
 attribute DOMString newLine;
 attribute DOMErrorHandler errorHandler;
 boolean writeNode(in DOMOutputStream destination,
 in Node wnode)
 raises(DOMSystemException);
 DOMString writeToString(in Node wnode)
 raises(DOMException);
};

Attributes
encoding of type DOMString

The character encoding in which the output will be written.
The encoding to use when writing is determined as follows:

If the encoding attribute has been set, that value will be used.
If the encoding attribute is null or empty, but the item to be written includes an
encoding declaration, that value will be used.
If neither of the above provides an encoding name, a default encoding of "UTF-8" will
be used.

The default value is null.
errorHandler of type DOMErrorHandler

The error handler that will receive error notifications during serialization. The node where
the error occured is passed to this error handler, any modification to nodes from within an
error callback should be avoided since this will result in undefined, implementation
dependent behavior.

lastEncoding of type DOMString, readonly
The actual character encoding that was last used by this formatter. This convenience
method allows the encoding that was used when serializing a document to be directly
obtained.

78

2.3. Interfaces

newLine of type DOMString
The end-of-line sequence of characters to be used in the XML being written out. The only
permitted values are these:
null

Use a default end-of-line sequence. DOM implementations should choose the default
to match the usual convention for text files in the environment being used.
Implementations must choose a default sequence that matches one of those allowed by
[XML] 2.11 "End-of-Line Handling".

CR
The carriage-return character (#xD).

CR-LF
The carriage-return and line-feed characters (#xD #xA).

LF
The line-feed character (#xA).

The default value for this attribute is null.
Methods

canSetFeature
Query whether setting a feature to a specific value is supported.
The feature name has the same form as a DOM hasFeature string.
Parameters
name of type DOMString

The feature name, which is a DOM has-feature style string.
state of type boolean

The requested state of the feature (true or false).
Return Value

boolean true if the feature could be successfully set to the specified value, or
false if the feature is not recognized or the requested value is not
supported. The value of the feature itself is not changed.

No Exceptions
getFeature

Look up the value of a feature.
The feature name has the same form as a DOM hasFeature string
Parameters
name of type DOMString

The feature name, which is a string with DOM has-feature syntax.
Return Value

boolean The current state of the feature (true or false).

Exceptions

DOMException Raise a NOT_FOUND_ERR When the DOMWriter does not
recognize the feature name.

79

2.3. Interfaces

setFeature
Set the state of a feature.
The feature name has the same form as a DOM hasFeature string.
It is possible for a DOMWriter to recognize a feature name but to be unable to set its
value.
Parameters
name of type DOMString

The feature name.
state of type boolean

The requested state of the feature (true or false).
Exceptions

DOMException Raise a NOT_SUPPORTED_ERR exception when the
DOMWriter recognizes the feature name but cannot set the
requested value.

Raise a NOT_FOUND_ERR When the DOMWriter does not
recognize the feature name.

No Return Value
writeNode

Write out the specified node as described above in the description of DOMWriter. Writing
a Document or Entity node produces a serialized form that is well formed XML. Writing
other node types produces a fragment of text in a form that is not fully defined by this
document, but that should be useful to a human for debugging or diagnostic purposes.
Parameters
destination of type DOMOutputStream

The destination for the data to be written.
wnode of type Node

The Document or Entity node to be written. For other node types, something
sensible should be written, but the exact serialized form is not specified.

Return Value

boolean Returns true if node was successfully serialized and false in case a
failure occured and the failure wasn’t canceled by the error handler.

Exceptions

DOMSystemException This exception will be raised in response to any sort of
IO or system error that occurs while writing to the
destination. It may wrap an underlying system exception.

writeToString
Serialize the specified node as described above in the description of DOMWriter. The
result of serializing the node is returned as a string. Writing a Document or Entity node

80

2.3. Interfaces

produces a serialized form that is well formed XML. Writing other node types produces a
fragment of text in a form that is not fully defined by this document, but that should be
useful to a human for debugging or diagnostic purposes.
Parameters
wnode of type Node

The node to be written.
Return Value

DOMString Returns the serialized data, or null in case a failure occured and the
failure wasn’t canceled by the error handler.

Exceptions

DOMException DOMSTRING_SIZE_ERR: The resulting string is too long to fit
in a DOMString.

Interface DOMInputSource

This interface represents a single input source for an XML entity.

This interface allows an application to encapsulate information about an input source in a single
object, which may include a public identifier, a system identifier, a byte stream (possibly with a
specified encoding), and/or a character stream.

The exact definitions of a byte stream and a character stream are binding dependent.

There are two places that the application will deliver this input source to the parser: as the argument
to the parse method, or as the return value of the DOMEntityResolver.resolveEntity
[p.84] method.

The DOMBuilder [p.66] will use the DOMInputSource object to determine how to read XML
input. If there is a character stream available, the parser will read that stream directly; if not, the
parser will use a byte stream, if available; if neither a character stream nor a byte stream is available,
the parser will attempt to open a URI connection to the resource identified by the system identifier.

An DOMInputSource object belongs to the application: the parser shall never modify it in any
way (it may modify a copy if necessary).

Note: Eventhough all attributes in this interface are writable the DOM implementation is expected to
never mutate a DOMInputSource.

IDL Definition

81

2.3. Interfaces

interface DOMInputSource {
 attribute DOMInputSource byteStream;
 attribute DOMReader characterStream;
 attribute DOMString stringData;
 attribute DOMString encoding;
 attribute DOMString publicId;
 attribute DOMString systemId;
 attribute DOMString baseURI;
};

Attributes
baseURI of type DOMString

The base URI to be used (see section 5.1.4 in [RFC2396]) for resolving relative URIs to
absolute URIs. If the baseURI is itself a relative URI, the behavior is implementation
dependent.

byteStream of type DOMInputSource [p.81]
An attribute of a language-binding dependent type that represents a stream of bytes.
The parser will ignore this if there is also a character stream specified, but it will use a byte
stream in preference to opening a URI connection itself.
If the application knows the character encoding of the byte stream, it should set the
encoding property. Setting the encoding in this way will override any encoding specified in
the XML declaration itself.

characterStream of type DOMReader
An attribute of a language-binding dependent type that represents a stream of 16-bit units.
[p.135] Application must encode the stream using UTF-16 (defined in [Unicode 3.0] and
Amendment 1 of [ISO/IEC 10646]).
If a character stream is specified, the parser will ignore any byte stream and will not
attempt to open a URI connection to the system identifier.

encoding of type DOMString
The character encoding, if known. The encoding must be a string acceptable for an XML
encoding declaration ([XML] section 4.3.3 "Character Encoding in Entities").
This attribute has no effect when the application provides a character stream. For other
sources of input, an encoding specified by means of this attribute will override any
encoding specified in the XML claration or the Text Declaration, or an encoding obtained
from a higher level protocol, such as HTTP [RFC2616].

publicId of type DOMString
The public identifier for this input source. The public identifier is always optional: if the
application writer includes one, it will be provided as part of the location information.

stringData of type DOMString
A string attribute that represents a sequence of 16 bit units (utf-16 encoded characters).
If string data is available in the input source, the parser will ignore the character stream and
the byte stream and will not attempt to open a URI connection to the system identifier.

systemId of type DOMString
The system identifier, a URI reference [RFC2396], for this input source. The system
identifier is optional if there is a byte stream or a character stream, but it is still useful to
provide one, since the application can use it to resolve relative URIs and can include it in
error messages and warnings (the parser will attempt to fetch the ressource identifier by the
URI reference only if there is no byte stream or character stream specified).

82

2.3. Interfaces

If the application knows the character encoding of the object pointed to by the system
identifier, it can register the encoding by setting the encoding attribute.
If the system ID is a relative URI reference (see section 5 in [RFC2396]), the behavior is
implementation dependent.

Interface LSLoadEvent

This interface represents a load event object that signals the completion of a document load.

IDL Definition

interface LSLoadEvent : events::Event {
 readonly attribute Document newDocument;
 readonly attribute DOMInputSource inputSource;
};

Attributes
inputSource of type DOMInputSource [p.81] , readonly

The input source that was parsed.
newDocument of type Document, readonly

The document that finished loading.
Interface LSProgressEvent

This interface represents a progress event object that notifies the application about progress as a
document is parsed. This event is optional and the rate at which this event is fired is implementation
dependent.

IDL Definition

interface LSProgressEvent : events::Event {
 readonly attribute DOMInputSource inputSource;
 readonly attribute unsigned long position;
 readonly attribute unsigned long totalSize;
};

Attributes
inputSource of type DOMInputSource [p.81] , readonly

The input source that is being parsed.
position of type unsigned long, readonly

The current position in the input source, including all external entities and other resources
that have been read.

totalSize of type unsigned long, readonly
The total size of the document including all external resources, this number might change
as a document is being parsed if references to more external resources are seen.

Interface DOMEntityResolver

DOMEntityResolver Provides a way for applications to redirect references to external entities.

Applications needing to implement customized handling for external entities must implement this
interface and register their implementation by setting the entityResolver property of the
DOMBuilder [p.66] .

83

2.3. Interfaces

The DOMBuilder [p.66] will then allow the application to intercept any external entities (including
the external DTD subset and external parameter entities) before including them.

Many DOM applications will not need to implement this interface, but it will be especially useful for
applications that build XML documents from databases or other specialized input sources, or for
applications that use URI types other than URIs.

Note: DOMEtityResolver is based on the SAX2 [SAX] EntityResolver interface.

IDL Definition

interface DOMEntityResolver {
 DOMInputSource resolveEntity(in DOMString publicId,
 in DOMString systemId,
 in DOMString baseURI)
 raises(DOMSystemException);
};

Methods
resolveEntity

Allow the application to resolve external entities.
The DOMBuilder [p.66] will call this method before opening any external entity except
the top-level document entity (including the external DTD subset, external entities
referenced within the DTD, and external entities referenced within the document element);
the application may request that the DOMBuilder resolve the entity itself, that it use an
alternative URI, or that it use an entirely different input source.
Application writers can use this method to redirect external system identifiers to secure
and/or local URIs, to look up public identifiers in a catalogue, or to read an entity from a
database or other input source (including, for example, a dialog box).
If the system identifier is a URI, the DOMBuilder [p.66] must resolve it fully before
reporting it to the application through this interface.
(ED: See issue #4. An alternative would be to pass the URI out without resolving it, and to
provide a base as an additional parameter. SAX resolves URIs first, and does not provide a
base.)
Parameters
publicId of type DOMString

The public identifier of the external entity being referenced, or null if none was
supplied.

systemId of type DOMString
The system identifier, a URI reference [RFC2396], of the external entity being
referenced exactly as written in the source (i.e. .

baseURI of type DOMString
The URI reference representing the base URI of the resource being parsed, or null if
there is no base URI.

Return Value

84

2.3. Interfaces

DOMInputSource
[p.81]

A DOMInputSource object describing the new input
source, or null to request that the parser open a regular
URI connection to the system identifier.

Exceptions

DOMSystemException Any DOMSystemException, possibly wrapping
another exception.

Interface DOMBuilderFilter

DOMBuilderFilters provide applications the ability to examine nodes as they are being
constructed during a parse. As each node is examined, it may be modified or removed, or the entire
parse may be terminated early.

At the time any of the filter methods are called by the parser, the owner Document and
DOMImplementation objects exist and are accessible. The document element is never passed to the
DOMBuilderFilter methods, i.e. it is not possible to filter out the document element.

All validity checking while reading a document occurs on the source document as it appears on the
input stream, not on the DOM document as it is built in memory. With filters, the document in
memory may be a subset of the document on the stream, and its validity may have been affected by
the filtering.

(ED: The description of these methods is not complete)
IDL Definition

interface DOMBuilderFilter {
 unsigned long startNode(in Node snode);
 unsigned long endNode(in Node enode);
 readonly attribute unsigned long whatToShow;
};

Attributes
whatToShow of type unsigned long, readonly

Tells the DOMBuilder [p.66] what types of nodes to show to the filter. See
NodeFilter for definition of the constants. The constant SHOW_ATTRIBUTE is
meaningless here, attribute nodes will never be passed to a DOMBuilderFilter.

Methods
endNode

This method will be called by the parser at the completion of the parse of each node. The
node will exist and be complete, as will all of its children, and their children, recursively.
The parent node will also exist, although that node may be incomplete, as it may have
additional children that have not yet been parsed. Attribute nodes are never passed to this
function.
From within this method, the new node may be freely modified - children may be added or
removed, text nodes modified, etc. This node may also be removed from its parent node,

85

2.3. Interfaces

which will prevent it from appearing in the final document at the completion of the parse.
Aside from this one operation on the node’s parent, the state of the rest of the document
outside of this node is not defined, and the affect of any attempt to navigate to or modify
any other part of the document is undefined.
For validating parsers, the checks are made on the original document, before any
modification by the filter. No validity checks are made on any document modifications
made by the filter.
Parameters
enode of type Node

The newly constructed element. At the time this method is called, the element is
complete - it has all of its children (and their children, recursively) and attributes, and
is attached as a child to its parent.

Return Value

unsigned
long

ACCEPT if this Node should be included in the DOM
document being built.
REJECT if the Node and all of its children should be
rejected.

No Exceptions
startNode

This method will be called by the parser after each Element start tag has been scanned,
but before the remainder of the Element is processed. The intent is to allow the element,
including any children, to be efficiently skipped. Note that only element nodes are passed
to the startNode function.
The element node passed to startNode for filtering will include all of the Element’s
attributes, but none of the children nodes. The Element may not yet be in place in the
document being constructed (it may not have a parent node.)
A startNode filter function may access or change the attributers for the Element.
Changing Namespace declarations will have no effect on namespace resolution by the
parser.
For efficiency, the Element node passed to the filter may not be the same one as is actually
placed in the tree if the node is accepted. And the actual node (node object identity) may be
reused during the process of reading in and filtering a document.
Parameters
snode of type Node

The newly encountered element. At the time this method is called, the element is
incomplete - it will have its attributes, but no children.
Issue startNode-1:

Should the parameter be an Element since we only passed elements to startNode?
Return Value

86

2.3. Interfaces

unsigned
long

ACCEPT if this Element should be included in the DOM
document being built.
REJECT if the Element and all of its children should be
rejected.
SKIP if the Element should be rejected. All of its children
are inserted in place of the rejected Element node.

No Exceptions
Interface DOMWriterFilter

DOMWriterFilters provide applications the ability to examine nodes as they are being serialized.
DOMWriterFilter lets the application decide what nodes should be serialized or not.

IDL Definition

interface DOMWriterFilter : traversal::NodeFilter {
 readonly attribute unsigned long whatToShow;
};

Attributes
whatToShow of type unsigned long, readonly

Tells the DOMWriter [p.74] what types of nodes to show to the filter. See NodeFilter
for definition of the constants. The constant SHOW_ATTRIBUTE is meaningless here,
attribute nodes will never be passed to a DOMWriterFilter.

Interface DocumentLS

The DocumentLS interface provides a mechanism by which the content of a document can be
replaced with the DOM tree produced when loading a URI, or parsing a string. The expectation is
that an instance of the DocumentLS interface can be obtained by using binding-specific casting
methods on an instance of the Document interface.

uses the default features.

IDL Definition

interface DocumentLS {
 attribute boolean async;
 void abort();
 boolean load(in DOMString uri);
 boolean loadXML(in DOMString source);
 DOMString saveXML(in Node snode)
 raises(DOMException);
};

Attributes
async of type boolean

Indicates whether the method load should be synchronous or asynchronous. When the
async attribute is set to true the load method returns control to the caller before the
document has completed loading. The default value of this property is false.
Setting the value of this attribute might throw NOT_SUPPORTED_ERR if the

87

2.3. Interfaces

implementation doesn’t support the mode the attribute is being set to.
Issue async-1:

Should the DOM spec define the default value of this property? What if implementing
both async and sync IO is impractical in some systems?
Resolution: 2001-09-14. default is false but we need to check with Mozilla and IE.

Methods
abort

If the document is currently being loaded as a result of the method load being invoked the
loading and parsing is immediately aborted. The possibly partial result of parsing the
document is discarded and the document is cleared.
No Parameters
No Return Value
No Exceptions

load
Replaces the content of the document with the result of parsing the given URI. Invoking
this method will either block the caller or return to the caller immediately depending on the
value of the async attribute. Once the document is fully loaded the document will fire a
"load" event that the caller can register as a listener for. If an error occurs the document
will fire an "error" event so that the caller knows that the load failed (see
ParseErrorEvent [p.89]).
Parameters
uri of type DOMString

The URI reference for the XML file to be loaded. If this is a relative URI...
Return Value

boolean If async is set to true load returns true if the document load was
successfully initiated. If an error occurred when initiating the document
load load returns false.
If async is set to false load returns true if the document was
successfully loaded and parsed. If an error occurred when either loading
or parsing the URI load returns false.

No Exceptions
loadXML

Replace the content of the document with the result of parsing the input string, this method
is always synchronous.
Parameters
source of type DOMString

A string containing an XML document.
Return Value

boolean true if parsing the input string succeeded without errors, otherwise
false.

88

2.3. Interfaces

No Exceptions
saveXML

Save the document or the given node to a string (i.e. serialize the document or node).
Parameters
snode of type Node

Specifies what to serialize, if this parameter is null the whole document is serialized,
if it’s non-null the given node is serialized.

Return Value

DOMString The serialized document or null.

Exceptions

DOMException WRONG_DOCUMENT_ERR: Raised if the node passed in as
the node parameter is from an other document.

Interface ParseErrorEvent

ParseErrorEvent is the event that is fired if there’s an error in the XML document being parsed.

IDL Definition

interface ParseErrorEvent : events::Event {
 readonly attribute DOMError error;
};

Attributes
error of type DOMError, readonly

An non-zero implementation dependent error code describing the error, or 0 if there is no
error.

89

2.3. Interfaces

90

2.3. Interfaces

Appendix A: IDL Definitions
This appendix contains the complete OMG IDL [OMGIDL] for the Level 3 Document Object Model
Abstract Schemas and Load and Save definitions.

The IDL files are also available as:
http://www.w3.org/TR/2001/WD-DOM-Level-3-ASLS-20011025/idl.zip

as.idl:
// File: as.idl

#ifndef _AS_IDL_
#define _AS_IDL_

#include "dom.idl"
#include "ls.idl"

#pragma prefix "dom.w3c.org"
module as
{

 typedef dom::DOMString DOMString;
 typedef dom::Node Node;
 typedef dom::NodeList NodeList;
 typedef dom::Attr Attr;
 typedef dom::DOMOutputStream DOMOutputStream;

 interface ASModel;
 interface ASContentModel;
 interface ASAttributeDeclaration;
 interface DOMASBuilder;
 interface DOMASWriter;

 exception DOMASException {
 unsigned short code;
 };
 // ASExceptionCode
 const unsigned short DUPLICATE_NAME_ERR = 1;
 const unsigned short TYPE_ERR = 2;
 const unsigned short NO_AS_AVAILABLE = 3;
 const unsigned short WRONG_MIME_TYPE_ERR = 4;

 interface ASObject {

 // ASObjectType
 const unsigned short AS_ELEMENT_DECLARATION = 1;
 const unsigned short AS_ATTRIBUTE_DECLARATION = 2;
 const unsigned short AS_NOTATION_DECLARATION = 3;
 const unsigned short AS_ENTITY_DECLARATION = 4;
 const unsigned short AS_CONTENTMODEL = 5;
 const unsigned short AS_MODEL = 6;

 readonly attribute unsigned short asNodeType;
 attribute ASModel ownerASModel;

91

Appendix A: IDL Definitions

 attribute DOMString nodeName;
 attribute DOMString prefix;
 attribute DOMString localName;
 attribute DOMString namespaceURI;
 ASObject cloneASObject(in boolean deep);
 };

 interface ASObjectList {
 readonly attribute unsigned long length;
 ASObject item(in unsigned long index);
 };

 interface ASNamedObjectMap {
 readonly attribute unsigned long length;
 ASObject getNamedItem(in DOMString name);
 ASObject getNamedItemNS(in DOMString namespaceURI,
 in DOMString localName);
 ASObject item(in unsigned long index);
 ASObject removeNamedItem(in DOMString name)
 raises(dom::DOMException);
 ASObject removeNamedItemNS(in DOMString namespaceURI,
 in DOMString localName)
 raises(dom::DOMException);
 ASObject setNamedItem(in ASObject newASObject)
 raises(dom::DOMException);
 ASObject setNamedItemNS(in ASObject newASObject)
 raises(dom::DOMException);
 };

 interface ASDataType {
 readonly attribute unsigned short dataType;

 // DATA_TYPES
 const unsigned short STRING_DATATYPE = 1;
 const unsigned short NOTATION_DATATYPE = 10;
 const unsigned short ID_DATATYPE = 11;
 const unsigned short IDREF_DATATYPE = 12;
 const unsigned short IDREFS_DATATYPE = 13;
 const unsigned short ENTITY_DATATYPE = 14;
 const unsigned short ENTITIES_DATATYPE = 15;
 const unsigned short NMTOKEN_DATATYPE = 16;
 const unsigned short NMTOKENS_DATATYPE = 17;
 const unsigned short BOOLEAN_DATATYPE = 100;
 const unsigned short FLOAT_DATATYPE = 101;
 const unsigned short DOUBLE_DATATYPE = 102;
 const unsigned short DECIMAL_DATATYPE = 103;
 const unsigned short HEXBINARY_DATATYPE = 104;
 const unsigned short BASE64BINARY_DATATYPE = 105;
 const unsigned short ANYURI_DATATYPE = 106;
 const unsigned short QNAME_DATATYPE = 107;
 const unsigned short DURATION_DATATYPE = 108;
 const unsigned short DATETIME_DATATYPE = 109;
 const unsigned short DATE_DATATYPE = 110;
 const unsigned short TIME_DATATYPE = 111;
 const unsigned short GYEARMONTH_DATATYPE = 112;
 const unsigned short GYEAR_DATATYPE = 113;
 const unsigned short GMONTHDAY_DATATYPE = 114;
 const unsigned short GDAY_DATATYPE = 115;
 const unsigned short GMONTH_DATATYPE = 116;

92

as.idl:

 const unsigned short INTEGER = 117;
 const unsigned short NAME_DATATYPE = 200;
 const unsigned short NCNAME_DATATYPE = 201;
 const unsigned short NORMALIZEDSTRING_DATATYPE = 202;
 const unsigned short TOKEN_DATATYPE = 203;
 const unsigned short LANGUAGE_DATATYPE = 204;
 const unsigned short NONPOSITIVEINTEGER_DATATYPE = 205;
 const unsigned short NEGATIVEINTEGER_DATATYPE = 206;
 const unsigned short LONG_DATATYPE = 207;
 const unsigned short INT_DATATYPE = 208;
 const unsigned short SHORT_DATATYPE = 209;
 const unsigned short BYTE_DATATYPE = 210;
 const unsigned short NONNEGATIVEINTEGER_DATATYPE = 211;
 const unsigned short UNSIGNEDLONG_DATATYPE = 212;
 const unsigned short UNSIGNEDINT_DATATYPE = 213;
 const unsigned short UNSIGNEDSHORT_DATATYPE = 214;
 const unsigned short UNSIGNEDBYTE_DATATYPE = 215;
 const unsigned short POSITIVEINTEGER_DATATYPE = 216;
 const unsigned short OTHER_SIMPLE_DATATYPE = 1000;
 const unsigned short COMPLEX_DATATYPE = 1001;
 };

 interface ASElementDeclaration : ASObject {

 // CONTENT_MODEL_TYPES
 const unsigned short EMPTY_CONTENTTYPE = 1;
 const unsigned short ANY_CONTENTTYPE = 2;
 const unsigned short MIXED_CONTENTTYPE = 3;
 const unsigned short ELEMENTS_CONTENTTYPE = 4;

 attribute boolean strictMixedContent;
 attribute ASDataType elementType;
 attribute boolean isPCDataOnly;
 attribute unsigned short contentType;
 attribute DOMString systemId;
 attribute ASContentModel asCM;
 attribute ASNamedObjectMap ASAttributeDecls;
 void addASAttributeDecl(in ASAttributeDeclaration attributeDecl);
 ASAttributeDeclaration removeASAttributeDecl(in ASAttributeDeclaration attributeDecl);
 };

 interface ASContentModel : ASObject {
 const unsigned long AS_UNBOUNDED = MAX_VALUE;

 // ASContentModelType
 const unsigned short AS_SEQUENCE = 0;
 const unsigned short AS_CHOICE = 1;
 const unsigned short AS_ALL = 2;
 const unsigned short AS_NONE = 3;

 attribute unsigned short listOperator;
 attribute unsigned long minOccurs;
 attribute unsigned long maxOccurs;
 attribute ASObjectList subModels;
 void removesubModel(in ASObject oldNode);
 void insertsubModel(in ASObject newNode)
 raises(DOMASException);
 unsigned long appendsubModel(in ASObject newNode)
 raises(DOMASException);

93

as.idl:

 };

 interface ASAttributeDeclaration : ASObject {

 // VALUE_TYPES
 const unsigned short VALUE_NONE = 0;
 const unsigned short VALUE_DEFAULT = 1;
 const unsigned short VALUE_FIXED = 2;

 attribute ASDataType dataType;
 attribute DOMString dataValue;
 attribute DOMString enumAttr;
 attribute ASObjectList ownerElements;
 attribute unsigned short defaultType;
 };

 interface ASEntityDeclaration : ASObject {

 // EntityType
 const unsigned short INTERNAL_ENTITY = 1;
 const unsigned short EXTERNAL_ENTITY = 2;

 attribute unsigned short entityType;
 attribute DOMString entityValue;
 attribute DOMString systemId;
 attribute DOMString publicId;
 };

 interface ASNotationDeclaration : ASObject {
 attribute DOMString systemId;
 attribute DOMString publicId;
 };

 interface DocumentAS {
 attribute ASModel activeASModel;
 attribute ASObjectList boundASModels;
 ASModel getInternalAS();
 void setInternalAS(in ASModel as);
 void addAS(in ASModel as);
 void removeAS(in ASModel as);
 ASElementDeclaration getElementDeclaration()
 raises(dom::DOMException);
 void validate()
 raises(DOMASException);
 };

 interface DOMImplementationAS {
 ASModel createAS(in boolean isNamespaceAware);
 DOMASBuilder createDOMASBuilder();
 DOMASWriter createDOMASWriter();
 };

 interface NodeEditAS {

 // ASCheckType
 const unsigned short WF_CHECK = 1;
 const unsigned short NS_WF_CHECK = 2;
 const unsigned short PARTIAL_VALIDITY_CHECK = 3;
 const unsigned short STRICT_VALIDITY_CHECK = 4;

94

as.idl:

 boolean canInsertBefore(in Node newChild,
 in Node refChild);
 boolean canRemoveChild(in Node oldChild);
 boolean canReplaceChild(in Node newChild,
 in Node oldChild);
 boolean canAppendChild(in Node newChild);
 boolean isNodeValid(in boolean deep,
 in unsigned short wFValidityCheckLevel)
 raises(DOMASException);
 };

 interface ElementEditAS : NodeEditAS {
 readonly attribute NodeList definedElementTypes;
 unsigned short contentType();
 boolean canSetAttribute(in DOMString attrname,
 in DOMString attrval);
 boolean canSetAttributeNode(in Attr attrNode);
 boolean canSetAttributeNS(in DOMString name,
 in DOMString attrval,
 in DOMString namespaceURI);
 boolean canRemoveAttribute(in DOMString attrname);
 boolean canRemoveAttributeNS(in DOMString attrname,
 in DOMString namespaceURI);
 boolean canRemoveAttributeNode(in Node attrNode);
 NodeList getChildElements();
 NodeList getParentElements();
 NodeList getAttributeList();
 boolean isElementDefined(in DOMString elemTypeName);
 boolean isElementDefinedNS(in DOMString elemTypeName,
 in DOMString namespaceURI,
 in DOMString name);
 };

 interface CharacterDataEditAS : NodeEditAS {
 readonly attribute boolean isWhitespaceOnly;
 boolean canSetData(in unsigned long offset,
 in unsigned long count);
 boolean canAppendData(in DOMString arg);
 boolean canReplaceData(in unsigned long offset,
 in unsigned long count,
 in DOMString arg);
 boolean canInsertData(in unsigned long offset,
 in DOMString arg);
 boolean canDeleteData(in unsigned long offset,
 in unsigned long count);
 };

 interface ASModel : ASObject {
 readonly attribute boolean isNamespaceAware;
 readonly attribute unsigned short usageLocation;
 attribute DOMString asLocation;
 attribute DOMString asHint;
 readonly attribute ASNamedObjectMap elementDeclarations;
 readonly attribute ASNamedObjectMap attributeDeclarations;
 readonly attribute ASNamedObjectMap notationDeclarations;
 readonly attribute ASNamedObjectMap entityDeclarations;
 readonly attribute ASNamedObjectMap contentModelDeclarations;
 void setASModel(in ASModel abstractSchema);

95

as.idl:

 ASObjectList getASModels();
 void removeAS(in ASModel as);
 boolean validate();
 ASElementDeclaration createASElementDeclaration(in DOMString namespaceURI,
 in DOMString name)
 raises(dom::DOMException);
 ASAttributeDeclaration createASAttributeDeclaration(in DOMString namespaceURI,
 in DOMString name)
 raises(dom::DOMException);
 ASNotationDeclaration createASNotationDeclaration(in DOMString namespaceURI,
 in DOMString name,
 in DOMString systemId,
 in DOMString publicId)
 raises(dom::DOMException);
 ASEntityDeclaration createASEntityDeclaration(in DOMString name)
 raises(dom::DOMException);
 ASContentModel createASContentModel(in unsigned long minOccurs,
 in unsigned long maxOccurs,
 in unsigned short operator)
 raises(DOMASException);
 };

 interface DocumentEditAS : NodeEditAS {
 attribute boolean continuousValidityChecking;
 };

 interface DOMASBuilder : ls::DOMBuilder {
 attribute ASModel abstractSchema;
 ASModel parseASURI(in DOMString uri)
 raises(DOMASException,
 dom::DOMSystemException);
 ASModel parseASInputSource(in ls::DOMInputSource is)
 raises(DOMASException,
 dom::DOMSystemException);
 };

 interface DOMASWriter : ls::DOMWriter {
 void writeASModel(in DOMOutputStream destination,
 in ASModel model)
 raises(dom::DOMSystemException);
 };
};

#endif // _AS_IDL_

ls.idl:
// File: ls.idl

#ifndef _LS_IDL_
#define _LS_IDL_

#include "dom.idl"
#include "events.idl"
#include "traversal.idl"

#pragma prefix "dom.w3c.org"
module ls

96

ls.idl:

{

 typedef dom::DOMErrorHandler DOMErrorHandler;
 typedef dom::DOMString DOMString;
 typedef dom::Node Node;
 typedef dom::Document Document;
 typedef dom::DOMOutputStream DOMOutputStream;
 typedef dom::DOMReader DOMReader;
 typedef dom::DOMError DOMError;

 interface DOMBuilder;
 interface DOMWriter;
 interface DOMInputSource;
 interface DOMEntityResolver;
 interface DOMBuilderFilter;

 interface DOMImplementationLS {

 // DOMIMplementationLSMode
 const unsigned short MODE_SYNCHRONOUS = 1;
 const unsigned short MODE_ASYNCHRONOUS = 2;

 DOMBuilder createDOMBuilder(in unsigned short mode)
 raises(dom::DOMException);
 DOMWriter createDOMWriter();
 DOMInputSource createDOMInputSource();
 };

 interface DOMBuilder {
 attribute DOMEntityResolver entityResolver;
 attribute DOMErrorHandler errorHandler;
 attribute DOMBuilderFilter filter;
 void setFeature(in DOMString name,
 in boolean state)
 raises(dom::DOMException);
 boolean canSetFeature(in DOMString name,
 in boolean state);
 boolean getFeature(in DOMString name)
 raises(dom::DOMException);
 Document parseURI(in DOMString uri)
 raises(dom::DOMSystemException);
 Document parse(in DOMInputSource is)
 raises(dom::DOMSystemException);

 // ACTION_TYPES
 const unsigned short ACTION_REPLACE = 1;
 const unsigned short ACTION_APPEND = 2;
 const unsigned short ACTION_INSERT_AFTER = 3;
 const unsigned short ACTION_INSERT_BEFORE = 4;

 void parseWithContext(in DOMInputSource is,
 in Node cnode,
 in unsigned short action)
 raises(dom::DOMException);
 };

 interface DOMWriter {

97

ls.idl:

 void setFeature(in DOMString name,
 in boolean state)
 raises(dom::DOMException);
 boolean canSetFeature(in DOMString name,
 in boolean state);
 boolean getFeature(in DOMString name)
 raises(dom::DOMException);
 attribute DOMString encoding;
 readonly attribute DOMString lastEncoding;
 attribute DOMString newLine;
 attribute DOMErrorHandler errorHandler;
 boolean writeNode(in DOMOutputStream destination,
 in Node wnode)
 raises(dom::DOMSystemException);
 DOMString writeToString(in Node wnode)
 raises(dom::DOMException);
 };

 interface DOMInputSource {
 attribute DOMInputSource byteStream;
 attribute DOMReader characterStream;
 attribute DOMString stringData;
 attribute DOMString encoding;
 attribute DOMString publicId;
 attribute DOMString systemId;
 attribute DOMString baseURI;
 };

 interface DOMEntityResolver {
 DOMInputSource resolveEntity(in DOMString publicId,
 in DOMString systemId,
 in DOMString baseURI)
 raises(dom::DOMSystemException);
 };

 interface DOMBuilderFilter {
 unsigned long startNode(in Node snode);
 unsigned long endNode(in Node enode);
 readonly attribute unsigned long whatToShow;
 };

 interface DocumentLS {
 attribute boolean async;
 void abort();
 boolean load(in DOMString uri);
 boolean loadXML(in DOMString source);
 DOMString saveXML(in Node snode)
 raises(dom::DOMException);
 };

 interface LSLoadEvent : events::Event {
 readonly attribute Document newDocument;
 readonly attribute DOMInputSource inputSource;
 };

 interface LSProgressEvent : events::Event {
 readonly attribute DOMInputSource inputSource;

98

ls.idl:

 readonly attribute unsigned long position;
 readonly attribute unsigned long totalSize;
 };

 interface DOMWriterFilter : traversal::NodeFilter {
 readonly attribute unsigned long whatToShow;
 };

 interface ParseErrorEvent : events::Event {
 readonly attribute DOMError error;
 };
};

#endif // _LS_IDL_

99

ls.idl:

100

ls.idl:

Appendix B: Java Language Binding
This appendix contains the complete Java [Java] bindings for the Level 3 Document Object Model
Abstract Schemas and Load and Save.

The Java files are also available as
http://www.w3.org/TR/2001/WD-DOM-Level-3-ASLS-20011025/java-binding.zip

org/w3c/dom/as/DOMASException.java:
package org.w3c.dom.as;

public class DOMASException extends RuntimeException {
 public DOMASException(short code, String message) {
 super(message);
 this.code = code;
 }
 public short code;
 // ASExceptionCode
 public static final short DUPLICATE_NAME_ERR = 1;
 public static final short TYPE_ERR = 2;
 public static final short NO_AS_AVAILABLE = 3;
 public static final short WRONG_MIME_TYPE_ERR = 4;

}

org/w3c/dom/as/ASModel.java:
package org.w3c.dom.as;

import org.w3c.dom.DOMException;

public interface ASModel extends ASObject {
 public boolean getIsNamespaceAware();

 public short getUsageLocation();

 public String getAsLocation();
 public void setAsLocation(String asLocation);

 public String getAsHint();
 public void setAsHint(String asHint);

 public ASNamedObjectMap getElementDeclarations();

 public ASNamedObjectMap getAttributeDeclarations();

 public ASNamedObjectMap getNotationDeclarations();

 public ASNamedObjectMap getEntityDeclarations();

 public ASNamedObjectMap getContentModelDeclarations();

 public void setASModel(ASModel abstractSchema);

101

Appendix B: Java Language Binding

 public ASObjectList getASModels();

 public void removeAS(ASModel as);

 public boolean validate();

 public ASElementDeclaration createASElementDeclaration(String namespaceURI,
 String name)
 throws DOMException;

 public ASAttributeDeclaration createASAttributeDeclaration(String namespaceURI,
 String name)
 throws DOMException;

 public ASNotationDeclaration createASNotationDeclaration(String namespaceURI,
 String name,
 String systemId,
 String publicId)
 throws DOMException;

 public ASEntityDeclaration createASEntityDeclaration(String name)
 throws DOMException;

 public ASContentModel createASContentModel(int minOccurs,
 int maxOccurs,
 short operator)
 throws DOMASException;

}

org/w3c/dom/as/ASObject.java:
package org.w3c.dom.as;

public interface ASObject {
 // ASObjectType
 public static final short AS_ELEMENT_DECLARATION = 1;
 public static final short AS_ATTRIBUTE_DECLARATION = 2;
 public static final short AS_NOTATION_DECLARATION = 3;
 public static final short AS_ENTITY_DECLARATION = 4;
 public static final short AS_CONTENTMODEL = 5;
 public static final short AS_MODEL = 6;

 public short getAsNodeType();

 public ASModel getOwnerASModel();
 public void setOwnerASModel(ASModel ownerASModel);

 public String getNodeName();
 public void setNodeName(String nodeName);

 public String getPrefix();
 public void setPrefix(String prefix);

 public String getLocalName();

102

org/w3c/dom/as/ASObject.java:

 public void setLocalName(String localName);

 public String getNamespaceURI();
 public void setNamespaceURI(String namespaceURI);

 public ASObject cloneASObject(boolean deep);

}

org/w3c/dom/as/ASObjectList.java:
package org.w3c.dom.as;

public interface ASObjectList {
 public int getLength();

 public ASObject item(int index);

}

org/w3c/dom/as/ASNamedObjectMap.java:
package org.w3c.dom.as;

import org.w3c.dom.DOMException;

public interface ASNamedObjectMap {
 public int getLength();

 public ASObject getNamedItem(String name);

 public ASObject getNamedItemNS(String namespaceURI,
 String localName);

 public ASObject item(int index);

 public ASObject removeNamedItem(String name)
 throws DOMException;

 public ASObject removeNamedItemNS(String namespaceURI,
 String localName)
 throws DOMException;

 public ASObject setNamedItem(ASObject newASObject)
 throws DOMException;

 public ASObject setNamedItemNS(ASObject newASObject)
 throws DOMException;

}

103

org/w3c/dom/as/ASObjectList.java:

org/w3c/dom/as/ASDataType.java:
package org.w3c.dom.as;

public interface ASDataType {
 public short getDataType();

 // DATA_TYPES
 public static final short STRING_DATATYPE = 1;
 public static final short NOTATION_DATATYPE = 10;
 public static final short ID_DATATYPE = 11;
 public static final short IDREF_DATATYPE = 12;
 public static final short IDREFS_DATATYPE = 13;
 public static final short ENTITY_DATATYPE = 14;
 public static final short ENTITIES_DATATYPE = 15;
 public static final short NMTOKEN_DATATYPE = 16;
 public static final short NMTOKENS_DATATYPE = 17;
 public static final short BOOLEAN_DATATYPE = 100;
 public static final short FLOAT_DATATYPE = 101;
 public static final short DOUBLE_DATATYPE = 102;
 public static final short DECIMAL_DATATYPE = 103;
 public static final short HEXBINARY_DATATYPE = 104;
 public static final short BASE64BINARY_DATATYPE = 105;
 public static final short ANYURI_DATATYPE = 106;
 public static final short QNAME_DATATYPE = 107;
 public static final short DURATION_DATATYPE = 108;
 public static final short DATETIME_DATATYPE = 109;
 public static final short DATE_DATATYPE = 110;
 public static final short TIME_DATATYPE = 111;
 public static final short GYEARMONTH_DATATYPE = 112;
 public static final short GYEAR_DATATYPE = 113;
 public static final short GMONTHDAY_DATATYPE = 114;
 public static final short GDAY_DATATYPE = 115;
 public static final short GMONTH_DATATYPE = 116;
 public static final short INTEGER = 117;
 public static final short NAME_DATATYPE = 200;
 public static final short NCNAME_DATATYPE = 201;
 public static final short NORMALIZEDSTRING_DATATYPE = 202;
 public static final short TOKEN_DATATYPE = 203;
 public static final short LANGUAGE_DATATYPE = 204;
 public static final short NONPOSITIVEINTEGER_DATATYPE = 205;
 public static final short NEGATIVEINTEGER_DATATYPE = 206;
 public static final short LONG_DATATYPE = 207;
 public static final short INT_DATATYPE = 208;
 public static final short SHORT_DATATYPE = 209;
 public static final short BYTE_DATATYPE = 210;
 public static final short NONNEGATIVEINTEGER_DATATYPE = 211;
 public static final short UNSIGNEDLONG_DATATYPE = 212;
 public static final short UNSIGNEDINT_DATATYPE = 213;
 public static final short UNSIGNEDSHORT_DATATYPE = 214;
 public static final short UNSIGNEDBYTE_DATATYPE = 215;
 public static final short POSITIVEINTEGER_DATATYPE = 216;
 public static final short OTHER_SIMPLE_DATATYPE = 1000;
 public static final short COMPLEX_DATATYPE = 1001;

}

104

org/w3c/dom/as/ASDataType.java:

org/w3c/dom/as/ASElementDeclaration.java:
package org.w3c.dom.as;

public interface ASElementDeclaration extends ASObject {
 // CONTENT_MODEL_TYPES
 public static final short EMPTY_CONTENTTYPE = 1;
 public static final short ANY_CONTENTTYPE = 2;
 public static final short MIXED_CONTENTTYPE = 3;
 public static final short ELEMENTS_CONTENTTYPE = 4;

 public boolean getStrictMixedContent();
 public void setStrictMixedContent(boolean strictMixedContent);

 public ASDataType getElementType();
 public void setElementType(ASDataType elementType);

 public boolean getIsPCDataOnly();
 public void setIsPCDataOnly(boolean isPCDataOnly);

 public short getContentType();
 public void setContentType(short contentType);

 public String getSystemId();
 public void setSystemId(String systemId);

 public ASContentModel getAsCM();
 public void setAsCM(ASContentModel asCM);

 public ASNamedObjectMap getASAttributeDecls();
 public void setASAttributeDecls(ASNamedObjectMap ASAttributeDecls);

 public void addASAttributeDecl(ASAttributeDeclaration attributeDecl);

 public ASAttributeDeclaration removeASAttributeDecl(ASAttributeDeclaration attributeDecl);

}

org/w3c/dom/as/ASContentModel.java:
package org.w3c.dom.as;

public interface ASContentModel extends ASObject {
 public static final int AS_UNBOUNDED = MAX_VALUE;
 // ASContentModelType
 public static final short AS_SEQUENCE = 0;
 public static final short AS_CHOICE = 1;
 public static final short AS_ALL = 2;
 public static final short AS_NONE = 3;

 public short getListOperator();
 public void setListOperator(short listOperator);

 public int getMinOccurs();
 public void setMinOccurs(int minOccurs);

 public int getMaxOccurs();
 public void setMaxOccurs(int maxOccurs);

105

org/w3c/dom/as/ASElementDeclaration.java:

 public ASObjectList getSubModels();
 public void setSubModels(ASObjectList subModels);

 public void removesubModel(ASObject oldNode);

 public void insertsubModel(ASObject newNode)
 throws DOMASException;

 public int appendsubModel(ASObject newNode)
 throws DOMASException;

}

org/w3c/dom/as/ASAttributeDeclaration.java:
package org.w3c.dom.as;

public interface ASAttributeDeclaration extends ASObject {
 // VALUE_TYPES
 public static final short VALUE_NONE = 0;
 public static final short VALUE_DEFAULT = 1;
 public static final short VALUE_FIXED = 2;

 public ASDataType getDataType();
 public void setDataType(ASDataType dataType);

 public String getDataValue();
 public void setDataValue(String dataValue);

 public String getEnumAttr();
 public void setEnumAttr(String enumAttr);

 public ASObjectList getOwnerElements();
 public void setOwnerElements(ASObjectList ownerElements);

 public short getDefaultType();
 public void setDefaultType(short defaultType);

}

org/w3c/dom/as/ASEntityDeclaration.java:
package org.w3c.dom.as;

public interface ASEntityDeclaration extends ASObject {
 // EntityType
 public static final short INTERNAL_ENTITY = 1;
 public static final short EXTERNAL_ENTITY = 2;

 public short getEntityType();
 public void setEntityType(short entityType);

 public String getEntityValue();
 public void setEntityValue(String entityValue);

106

org/w3c/dom/as/ASAttributeDeclaration.java:

 public String getSystemId();
 public void setSystemId(String systemId);

 public String getPublicId();
 public void setPublicId(String publicId);

}

org/w3c/dom/as/ASNotationDeclaration.java:
package org.w3c.dom.as;

public interface ASNotationDeclaration extends ASObject {
 public String getSystemId();
 public void setSystemId(String systemId);

 public String getPublicId();
 public void setPublicId(String publicId);

}

org/w3c/dom/as/DocumentAS.java:
package org.w3c.dom.as;

import org.w3c.dom.DOMException;

public interface DocumentAS {
 public ASModel getActiveASModel();
 public void setActiveASModel(ASModel activeASModel);

 public ASObjectList getBoundASModels();
 public void setBoundASModels(ASObjectList boundASModels);

 public ASModel getInternalAS();

 public void setInternalAS(ASModel as);

 public void addAS(ASModel as);

 public void removeAS(ASModel as);

 public ASElementDeclaration getElementDeclaration()
 throws DOMException;

 public void validate()
 throws DOMASException;

}

107

org/w3c/dom/as/ASNotationDeclaration.java:

org/w3c/dom/as/DOMImplementationAS.java:
package org.w3c.dom.as;

public interface DOMImplementationAS {
 public ASModel createAS(boolean isNamespaceAware);

 public DOMASBuilder createDOMASBuilder();

 public DOMASWriter createDOMASWriter();

}

org/w3c/dom/as/DocumentEditAS.java:
package org.w3c.dom.as;

public interface DocumentEditAS extends NodeEditAS {
 public boolean getContinuousValidityChecking();
 public void setContinuousValidityChecking(boolean continuousValidityChecking);

}

org/w3c/dom/as/NodeEditAS.java:
package org.w3c.dom.as;

import org.w3c.dom.Node;

public interface NodeEditAS {
 // ASCheckType
 public static final short WF_CHECK = 1;
 public static final short NS_WF_CHECK = 2;
 public static final short PARTIAL_VALIDITY_CHECK = 3;
 public static final short STRICT_VALIDITY_CHECK = 4;

 public boolean canInsertBefore(Node newChild,
 Node refChild);

 public boolean canRemoveChild(Node oldChild);

 public boolean canReplaceChild(Node newChild,
 Node oldChild);

 public boolean canAppendChild(Node newChild);

 public boolean isNodeValid(boolean deep,
 short wFValidityCheckLevel)
 throws DOMASException;

}

108

org/w3c/dom/as/DOMImplementationAS.java:

org/w3c/dom/as/ElementEditAS.java:
package org.w3c.dom.as;

import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
import org.w3c.dom.Attr;

public interface ElementEditAS extends NodeEditAS {
 public NodeList getDefinedElementTypes();

 public short contentType();

 public boolean canSetAttribute(String attrname,
 String attrval);

 public boolean canSetAttributeNode(Attr attrNode);

 public boolean canSetAttributeNS(String name,
 String attrval,
 String namespaceURI);

 public boolean canRemoveAttribute(String attrname);

 public boolean canRemoveAttributeNS(String attrname,
 String namespaceURI);

 public boolean canRemoveAttributeNode(Node attrNode);

 public NodeList getChildElements();

 public NodeList getParentElements();

 public NodeList getAttributeList();

 public boolean isElementDefined(String elemTypeName);

 public boolean isElementDefinedNS(String elemTypeName,
 String namespaceURI,
 String name);

}

org/w3c/dom/as/CharacterDataEditAS.java:
package org.w3c.dom.as;

public interface CharacterDataEditAS extends NodeEditAS {
 public boolean getIsWhitespaceOnly();

 public boolean canSetData(int offset,
 int count);

 public boolean canAppendData(String arg);

 public boolean canReplaceData(int offset,

109

org/w3c/dom/as/ElementEditAS.java:

 int count,
 String arg);

 public boolean canInsertData(int offset,
 String arg);

 public boolean canDeleteData(int offset,
 int count);

}

org/w3c/dom/as/DOMASBuilder.java:
package org.w3c.dom.as;

import org.w3c.dom.ls.DOMInputSource;
import org.w3c.dom.ls.DOMBuilder;

public interface DOMASBuilder extends DOMBuilder {
 public ASModel getAbstractSchema();
 public void setAbstractSchema(ASModel abstractSchema);

 public ASModel parseASURI(String uri)
 throws DOMASException, Exception;

 public ASModel parseASInputSource(DOMInputSource is)
 throws DOMASException, Exception;

}

org/w3c/dom/as/DOMASWriter.java:
package org.w3c.dom.as;

import org.w3c.dom.ls.DOMWriter;

public interface DOMASWriter extends DOMWriter {
 public void writeASModel(java.io.OutputStream destination,
 ASModel model)
 throws Exception;

}

org/w3c/dom/ls/DOMImplementationLS.java:
package org.w3c.dom.ls;

import org.w3c.dom.DOMException;

public interface DOMImplementationLS {
 // DOMIMplementationLSMode
 public static final short MODE_SYNCHRONOUS = 1;
 public static final short MODE_ASYNCHRONOUS = 2;

 public DOMBuilder createDOMBuilder(short mode)

110

org/w3c/dom/as/DOMASBuilder.java:

 throws DOMException;

 public DOMWriter createDOMWriter();

 public DOMInputSource createDOMInputSource();

}

org/w3c/dom/ls/DOMBuilder.java:
package org.w3c.dom.ls;

import org.w3c.dom.Document;
import org.w3c.dom.Node;
import org.w3c.dom.DOMException;
import org.w3c.dom.DOMErrorHandler;

public interface DOMBuilder {
 public DOMEntityResolver getEntityResolver();
 public void setEntityResolver(DOMEntityResolver entityResolver);

 public DOMErrorHandler getErrorHandler();
 public void setErrorHandler(DOMErrorHandler errorHandler);

 public DOMBuilderFilter getFilter();
 public void setFilter(DOMBuilderFilter filter);

 public void setFeature(String name,
 boolean state)
 throws DOMException;

 public boolean canSetFeature(String name,
 boolean state);

 public boolean getFeature(String name)
 throws DOMException;

 public Document parseURI(String uri)
 throws Exception;

 public Document parse(DOMInputSource is)
 throws Exception;

 // ACTION_TYPES
 public static final short ACTION_REPLACE = 1;
 public static final short ACTION_APPEND = 2;
 public static final short ACTION_INSERT_AFTER = 3;
 public static final short ACTION_INSERT_BEFORE = 4;

 public void parseWithContext(DOMInputSource is,
 Node cnode,
 short action)
 throws DOMException;

}

111

org/w3c/dom/ls/DOMBuilder.java:

org/w3c/dom/ls/DOMWriter.java:
package org.w3c.dom.ls;

import org.w3c.dom.Node;
import org.w3c.dom.DOMException;
import org.w3c.dom.DOMErrorHandler;

public interface DOMWriter {
 public void setFeature(String name,
 boolean state)
 throws DOMException;

 public boolean canSetFeature(String name,
 boolean state);

 public boolean getFeature(String name)
 throws DOMException;

 public String getEncoding();
 public void setEncoding(String encoding);

 public String getLastEncoding();

 public String getNewLine();
 public void setNewLine(String newLine);

 public DOMErrorHandler getErrorHandler();
 public void setErrorHandler(DOMErrorHandler errorHandler);

 public boolean writeNode(java.io.OutputStream destination,
 Node wnode)
 throws Exception;

 public String writeToString(Node wnode)
 throws DOMException;

}

org/w3c/dom/ls/DOMInputSource.java:
package org.w3c.dom.ls;

public interface DOMInputSource {
 public DOMInputSource getByteStream();
 public void setByteStream(DOMInputSource byteStream);

 public java.io.Reader getCharacterStream();
 public void setCharacterStream(java.io.Reader characterStream);

 public String getStringData();
 public void setStringData(String stringData);

 public String getEncoding();
 public void setEncoding(String encoding);

112

org/w3c/dom/ls/DOMWriter.java:

 public String getPublicId();
 public void setPublicId(String publicId);

 public String getSystemId();
 public void setSystemId(String systemId);

 public String getBaseURI();
 public void setBaseURI(String baseURI);

}

org/w3c/dom/ls/LSLoadEvent.java:
package org.w3c.dom.ls;

import org.w3c.dom.Document;
import org.w3c.dom.events.Event;

public interface LSLoadEvent extends Event {
 public Document getNewDocument();

 public DOMInputSource getInputSource();

}

org/w3c/dom/ls/LSProgressEvent.java:
package org.w3c.dom.ls;

import org.w3c.dom.events.Event;

public interface LSProgressEvent extends Event {
 public DOMInputSource getInputSource();

 public int getPosition();

 public int getTotalSize();

}

org/w3c/dom/ls/DOMEntityResolver.java:
package org.w3c.dom.ls;

public interface DOMEntityResolver {
 public DOMInputSource resolveEntity(String publicId,
 String systemId,
 String baseURI)
 throws Exception;

}

113

org/w3c/dom/ls/LSLoadEvent.java:

org/w3c/dom/ls/DOMBuilderFilter.java:
package org.w3c.dom.ls;

import org.w3c.dom.Node;

public interface DOMBuilderFilter {
 public int startNode(Node snode);

 public int endNode(Node enode);

 public int getWhatToShow();

}

org/w3c/dom/ls/DOMWriterFilter.java:
package org.w3c.dom.ls;

import org.w3c.dom.traversal.NodeFilter;

public interface DOMWriterFilter extends NodeFilter {
 public int getWhatToShow();

}

org/w3c/dom/ls/DocumentLS.java:
package org.w3c.dom.ls;

import org.w3c.dom.Node;
import org.w3c.dom.DOMException;

public interface DocumentLS {
 public boolean getAsync();
 public void setAsync(boolean async);

 public void abort();

 public boolean load(String uri);

 public boolean loadXML(String source);

 public String saveXML(Node snode)
 throws DOMException;

}

org/w3c/dom/ls/ParseErrorEvent.java:
package org.w3c.dom.ls;

import org.w3c.dom.events.Event;
import org.w3c.dom.DOMError;

114

org/w3c/dom/ls/DOMBuilderFilter.java:

public interface ParseErrorEvent extends Event {
 public DOMError getError();

}

115

org/w3c/dom/ls/ParseErrorEvent.java:

116

org/w3c/dom/ls/ParseErrorEvent.java:

Appendix C: ECMAScript Language Binding
This appendix contains the complete ECMAScript [ECMAScript] binding for the Level 3 Document
Object Model Abstract Schemas and Load and Save definitions.

Prototype Object DOMASException
The DOMASException class has the following constants:

DOMASException.DUPLICATE_NAME_ERR
This constant is of type Number and its value is 1.

DOMASException.TYPE_ERR
This constant is of type Number and its value is 2.

DOMASException.NO_AS_AVAILABLE
This constant is of type Number and its value is 3.

DOMASException.WRONG_MIME_TYPE_ERR
This constant is of type Number and its value is 4.

Object DOMASException
The DOMASException object has the following properties:

code
This property is of type Number.

Object ASModel
ASModel has the all the properties and methods of the ASObject object as well as the properties and
methods defined below.
The ASModel object has the following properties:

isNamespaceAware
This read-only property is of type Boolean.

usageLocation
This read-only property is of type Number.

asLocation
This property is of type String.

asHint
This property is of type String.

elementDeclarations
This read-only property is a ASNamedObjectMap object.

attributeDeclarations
This read-only property is a ASNamedObjectMap object.

notationDeclarations
This read-only property is a ASNamedObjectMap object.

entityDeclarations
This read-only property is a ASNamedObjectMap object.

contentModelDeclarations
This read-only property is a ASNamedObjectMap object.

The ASModel object has the following methods:
setASModel(abstractSchema)

This method has no return value.
The abstractSchema parameter is a ASModel object.

117

Appendix C: ECMAScript Language Binding

getASModels()
This method returns a ASObjectList object.

removeAS(as)
This method has no return value.
The as parameter is a ASModel object.

validate()
This method returns a Boolean.

createASElementDeclaration(namespaceURI, name)
This method returns a ASElementDeclaration object.
The namespaceURI parameter is of type String.
The name parameter is of type String.
This method can raise a DOMException object.

createASAttributeDeclaration(namespaceURI, name)
This method returns a ASAttributeDeclaration object.
The namespaceURI parameter is of type String.
The name parameter is of type String.
This method can raise a DOMException object.

createASNotationDeclaration(namespaceURI, name, systemId, publicId)
This method returns a ASNotationDeclaration object.
The namespaceURI parameter is of type String.
The name parameter is of type String.
The systemId parameter is of type String.
The publicId parameter is of type String.
This method can raise a DOMException object.

createASEntityDeclaration(name)
This method returns a ASEntityDeclaration object.
The name parameter is of type String.
This method can raise a DOMException object.

createASContentModel(minOccurs, maxOccurs, operator)
This method returns a ASContentModel object.
The minOccurs parameter is of type Number.
The maxOccurs parameter is of type Number.
The operator parameter is of type Number.
This method can raise a DOMASException object.

Prototype Object ASObject
The ASObject class has the following constants:

ASObject.AS_ELEMENT_DECLARATION
This constant is of type Number and its value is 1.

ASObject.AS_ATTRIBUTE_DECLARATION
This constant is of type Number and its value is 2.

ASObject.AS_NOTATION_DECLARATION
This constant is of type Number and its value is 3.

ASObject.AS_ENTITY_DECLARATION
This constant is of type Number and its value is 4.

ASObject.AS_CONTENTMODEL
This constant is of type Number and its value is 5.

118

Appendix C: ECMAScript Language Binding

ASObject.AS_MODEL
This constant is of type Number and its value is 6.

Object ASObject
The ASObject object has the following properties:

asNodeType
This read-only property is of type Number.

ownerASModel
This property is a ASModel object.

nodeName
This property is of type String.

prefix
This property is of type String.

localName
This property is of type String.

namespaceURI
This property is of type String.

The ASObject object has the following methods:
cloneASObject(deep)

This method returns a ASObject object.
The deep parameter is of type Boolean.

Object ASObjectList
The ASObjectList object has the following properties:

length
This read-only property is of type Number.

The ASObjectList object has the following methods:
item(index)

This method returns a ASObject object.
The index parameter is of type Number.
Note: This object can also be dereferenced using square bracket notation (e.g. obj[1]).
Dereferencing with an integer index is equivalent to invoking the item method with that
index.

Object ASNamedObjectMap
The ASNamedObjectMap object has the following properties:

length
This read-only property is of type Number.

The ASNamedObjectMap object has the following methods:
getNamedItem(name)

This method returns a ASObject object.
The name parameter is of type String.

getNamedItemNS(namespaceURI, localName)
This method returns a ASObject object.
The namespaceURI parameter is of type String.
The localName parameter is of type String.

item(index)
This method returns a ASObject object.
The index parameter is of type Number.

119

Appendix C: ECMAScript Language Binding

Note: This object can also be dereferenced using square bracket notation (e.g. obj[1]).
Dereferencing with an integer index is equivalent to invoking the item method with that
index.

removeNamedItem(name)
This method returns a ASObject object.
The name parameter is of type String.
This method can raise a DOMException object.

removeNamedItemNS(namespaceURI, localName)
This method returns a ASObject object.
The namespaceURI parameter is of type String.
The localName parameter is of type String.
This method can raise a DOMException object.

setNamedItem(newASObject)
This method returns a ASObject object.
The newASObject parameter is a ASObject object.
This method can raise a DOMException object.

setNamedItemNS(newASObject)
This method returns a ASObject object.
The newASObject parameter is a ASObject object.
This method can raise a DOMException object.

Prototype Object ASDataType
The ASDataType class has the following constants:

ASDataType.STRING_DATATYPE
This constant is of type Number and its value is 1.

ASDataType.NOTATION_DATATYPE
This constant is of type Number and its value is 10.

ASDataType.ID_DATATYPE
This constant is of type Number and its value is 11.

ASDataType.IDREF_DATATYPE
This constant is of type Number and its value is 12.

ASDataType.IDREFS_DATATYPE
This constant is of type Number and its value is 13.

ASDataType.ENTITY_DATATYPE
This constant is of type Number and its value is 14.

ASDataType.ENTITIES_DATATYPE
This constant is of type Number and its value is 15.

ASDataType.NMTOKEN_DATATYPE
This constant is of type Number and its value is 16.

ASDataType.NMTOKENS_DATATYPE
This constant is of type Number and its value is 17.

ASDataType.BOOLEAN_DATATYPE
This constant is of type Number and its value is 100.

ASDataType.FLOAT_DATATYPE
This constant is of type Number and its value is 101.

ASDataType.DOUBLE_DATATYPE
This constant is of type Number and its value is 102.

120

Appendix C: ECMAScript Language Binding

ASDataType.DECIMAL_DATATYPE
This constant is of type Number and its value is 103.

ASDataType.HEXBINARY_DATATYPE
This constant is of type Number and its value is 104.

ASDataType.BASE64BINARY_DATATYPE
This constant is of type Number and its value is 105.

ASDataType.ANYURI_DATATYPE
This constant is of type Number and its value is 106.

ASDataType.QNAME_DATATYPE
This constant is of type Number and its value is 107.

ASDataType.DURATION_DATATYPE
This constant is of type Number and its value is 108.

ASDataType.DATETIME_DATATYPE
This constant is of type Number and its value is 109.

ASDataType.DATE_DATATYPE
This constant is of type Number and its value is 110.

ASDataType.TIME_DATATYPE
This constant is of type Number and its value is 111.

ASDataType.GYEARMONTH_DATATYPE
This constant is of type Number and its value is 112.

ASDataType.GYEAR_DATATYPE
This constant is of type Number and its value is 113.

ASDataType.GMONTHDAY_DATATYPE
This constant is of type Number and its value is 114.

ASDataType.GDAY_DATATYPE
This constant is of type Number and its value is 115.

ASDataType.GMONTH_DATATYPE
This constant is of type Number and its value is 116.

ASDataType.INTEGER
This constant is of type Number and its value is 117.

ASDataType.NAME_DATATYPE
This constant is of type Number and its value is 200.

ASDataType.NCNAME_DATATYPE
This constant is of type Number and its value is 201.

ASDataType.NORMALIZEDSTRING_DATATYPE
This constant is of type Number and its value is 202.

ASDataType.TOKEN_DATATYPE
This constant is of type Number and its value is 203.

ASDataType.LANGUAGE_DATATYPE
This constant is of type Number and its value is 204.

ASDataType.NONPOSITIVEINTEGER_DATATYPE
This constant is of type Number and its value is 205.

ASDataType.NEGATIVEINTEGER_DATATYPE
This constant is of type Number and its value is 206.

ASDataType.LONG_DATATYPE
This constant is of type Number and its value is 207.

121

Appendix C: ECMAScript Language Binding

ASDataType.INT_DATATYPE
This constant is of type Number and its value is 208.

ASDataType.SHORT_DATATYPE
This constant is of type Number and its value is 209.

ASDataType.BYTE_DATATYPE
This constant is of type Number and its value is 210.

ASDataType.NONNEGATIVEINTEGER_DATATYPE
This constant is of type Number and its value is 211.

ASDataType.UNSIGNEDLONG_DATATYPE
This constant is of type Number and its value is 212.

ASDataType.UNSIGNEDINT_DATATYPE
This constant is of type Number and its value is 213.

ASDataType.UNSIGNEDSHORT_DATATYPE
This constant is of type Number and its value is 214.

ASDataType.UNSIGNEDBYTE_DATATYPE
This constant is of type Number and its value is 215.

ASDataType.POSITIVEINTEGER_DATATYPE
This constant is of type Number and its value is 216.

ASDataType.OTHER_SIMPLE_DATATYPE
This constant is of type Number and its value is 1000.

ASDataType.COMPLEX_DATATYPE
This constant is of type Number and its value is 1001.

Object ASDataType
The ASDataType object has the following properties:

dataType
This read-only property is of type Number.

Prototype Object ASElementDeclaration
The ASElementDeclaration class has the following constants:

ASElementDeclaration.EMPTY_CONTENTTYPE
This constant is of type Number and its value is 1.

ASElementDeclaration.ANY_CONTENTTYPE
This constant is of type Number and its value is 2.

ASElementDeclaration.MIXED_CONTENTTYPE
This constant is of type Number and its value is 3.

ASElementDeclaration.ELEMENTS_CONTENTTYPE
This constant is of type Number and its value is 4.

Object ASElementDeclaration
ASElementDeclaration has the all the properties and methods of the ASObject object as well as the
properties and methods defined below.
The ASElementDeclaration object has the following properties:

strictMixedContent
This property is of type Boolean.

elementType
This property is a ASDataType object.

isPCDataOnly
This property is of type Boolean.

122

Appendix C: ECMAScript Language Binding

contentType
This property is of type Number.

systemId
This property is of type String.

asCM
This property is a ASContentModel object.

ASAttributeDecls
This property is a ASNamedObjectMap object.

The ASElementDeclaration object has the following methods:
addASAttributeDecl(attributeDecl)

This method has no return value.
The attributeDecl parameter is a ASAttributeDeclaration object.

removeASAttributeDecl(attributeDecl)
This method returns a ASAttributeDeclaration object.
The attributeDecl parameter is a ASAttributeDeclaration object.

Prototype Object ASContentModel
The ASContentModel class has the following constants:

ASContentModel.AS_UNBOUNDED
This constant is of type Number and its value is MAX_VALUE .

ASContentModel.AS_SEQUENCE
This constant is of type Number and its value is 0.

ASContentModel.AS_CHOICE
This constant is of type Number and its value is 1.

ASContentModel.AS_ALL
This constant is of type Number and its value is 2.

ASContentModel.AS_NONE
This constant is of type Number and its value is 3.

Object ASContentModel
ASContentModel has the all the properties and methods of the ASObject object as well as the
properties and methods defined below.
The ASContentModel object has the following properties:

listOperator
This property is of type Number.

minOccurs
This property is of type Number.

maxOccurs
This property is of type Number.

subModels
This property is a ASObjectList object.

The ASContentModel object has the following methods:
removesubModel(oldNode)

This method has no return value.
The oldNode parameter is a ASObject object.

insertsubModel(newNode)
This method has no return value.
The newNode parameter is a ASObject object.

123

Appendix C: ECMAScript Language Binding

This method can raise a DOMASException object.
appendsubModel(newNode)

This method returns a Number.
The newNode parameter is a ASObject object.
This method can raise a DOMASException object.

Prototype Object ASAttributeDeclaration
The ASAttributeDeclaration class has the following constants:

ASAttributeDeclaration.VALUE_NONE
This constant is of type Number and its value is 0.

ASAttributeDeclaration.VALUE_DEFAULT
This constant is of type Number and its value is 1.

ASAttributeDeclaration.VALUE_FIXED
This constant is of type Number and its value is 2.

Object ASAttributeDeclaration
ASAttributeDeclaration has the all the properties and methods of the ASObject object as well as
the properties and methods defined below.
The ASAttributeDeclaration object has the following properties:

dataType
This property is a ASDataType object.

dataValue
This property is of type String.

enumAttr
This property is of type String.

ownerElements
This property is a ASObjectList object.

defaultType
This property is of type Number.

Prototype Object ASEntityDeclaration
The ASEntityDeclaration class has the following constants:

ASEntityDeclaration.INTERNAL_ENTITY
This constant is of type Number and its value is 1.

ASEntityDeclaration.EXTERNAL_ENTITY
This constant is of type Number and its value is 2.

Object ASEntityDeclaration
ASEntityDeclaration has the all the properties and methods of the ASObject object as well as the
properties and methods defined below.
The ASEntityDeclaration object has the following properties:

entityType
This property is of type Number.

entityValue
This property is of type String.

systemId
This property is of type String.

publicId
This property is of type String.

124

Appendix C: ECMAScript Language Binding

Object ASNotationDeclaration
ASNotationDeclaration has the all the properties and methods of the ASObject object as well as the
properties and methods defined below.
The ASNotationDeclaration object has the following properties:

systemId
This property is of type String.

publicId
This property is of type String.

Object DocumentAS
The DocumentAS object has the following properties:

activeASModel
This property is a ASModel object.

boundASModels
This property is a ASObjectList object.

The DocumentAS object has the following methods:
getInternalAS()

This method returns a ASModel object.
setInternalAS(as)

This method has no return value.
The as parameter is a ASModel object.

addAS(as)
This method has no return value.
The as parameter is a ASModel object.

removeAS(as)
This method has no return value.
The as parameter is a ASModel object.

getElementDeclaration()
This method returns a ASElementDeclaration object.
This method can raise a DOMException object.

validate()
This method has no return value.
This method can raise a DOMASException object.

Object DOMImplementationAS
The DOMImplementationAS object has the following methods:

createAS(isNamespaceAware)
This method returns a ASModel object.
The isNamespaceAware parameter is of type Boolean.

createDOMASBuilder()
This method returns a DOMASBuilder object.

createDOMASWriter()
This method returns a DOMASWriter object.

Object DocumentEditAS
DocumentEditAS has the all the properties and methods of the NodeEditAS object as well as the
properties and methods defined below.
The DocumentEditAS object has the following properties:

125

Appendix C: ECMAScript Language Binding

continuousValidityChecking
This property is of type Boolean.

Prototype Object NodeEditAS
The NodeEditAS class has the following constants:

NodeEditAS.WF_CHECK
This constant is of type Number and its value is 1.

NodeEditAS.NS_WF_CHECK
This constant is of type Number and its value is 2.

NodeEditAS.PARTIAL_VALIDITY_CHECK
This constant is of type Number and its value is 3.

NodeEditAS.STRICT_VALIDITY_CHECK
This constant is of type Number and its value is 4.

Object NodeEditAS
The NodeEditAS object has the following methods:

canInsertBefore(newChild, refChild)
This method returns a Boolean.
The newChild parameter is a Node object.
The refChild parameter is a Node object.

canRemoveChild(oldChild)
This method returns a Boolean.
The oldChild parameter is a Node object.

canReplaceChild(newChild, oldChild)
This method returns a Boolean.
The newChild parameter is a Node object.
The oldChild parameter is a Node object.

canAppendChild(newChild)
This method returns a Boolean.
The newChild parameter is a Node object.

isNodeValid(deep, wFValidityCheckLevel)
This method returns a Boolean.
The deep parameter is of type Boolean.
The wFValidityCheckLevel parameter is of type Number.
This method can raise a DOMASException object.

Object ElementEditAS
ElementEditAS has the all the properties and methods of the NodeEditAS object as well as the
properties and methods defined below.
The ElementEditAS object has the following properties:

definedElementTypes
This read-only property is a NodeList object.

The ElementEditAS object has the following methods:
contentType()

This method returns a Number.
canSetAttribute(attrname, attrval)

This method returns a Boolean.
The attrname parameter is of type String.
The attrval parameter is of type String.

126

Appendix C: ECMAScript Language Binding

canSetAttributeNode(attrNode)
This method returns a Boolean.
The attrNode parameter is a Attr object.

canSetAttributeNS(name, attrval, namespaceURI)
This method returns a Boolean.
The name parameter is of type String.
The attrval parameter is of type String.
The namespaceURI parameter is of type String.

canRemoveAttribute(attrname)
This method returns a Boolean.
The attrname parameter is of type String.

canRemoveAttributeNS(attrname, namespaceURI)
This method returns a Boolean.
The attrname parameter is of type String.
The namespaceURI parameter is of type String.

canRemoveAttributeNode(attrNode)
This method returns a Boolean.
The attrNode parameter is a Node object.

getChildElements()
This method returns a NodeList object.

getParentElements()
This method returns a NodeList object.

getAttributeList()
This method returns a NodeList object.

isElementDefined(elemTypeName)
This method returns a Boolean.
The elemTypeName parameter is of type String.

isElementDefinedNS(elemTypeName, namespaceURI, name)
This method returns a Boolean.
The elemTypeName parameter is of type String.
The namespaceURI parameter is of type String.
The name parameter is of type String.

Object CharacterDataEditAS
CharacterDataEditAS has the all the properties and methods of the NodeEditAS object as well as
the properties and methods defined below.
The CharacterDataEditAS object has the following properties:

isWhitespaceOnly
This read-only property is of type Boolean.

The CharacterDataEditAS object has the following methods:
canSetData(offset, count)

This method returns a Boolean.
The offset parameter is of type Number.
The count parameter is of type Number.

canAppendData(arg)
This method returns a Boolean.
The arg parameter is of type String.

127

Appendix C: ECMAScript Language Binding

canReplaceData(offset, count, arg)
This method returns a Boolean.
The offset parameter is of type Number.
The count parameter is of type Number.
The arg parameter is of type String.

canInsertData(offset, arg)
This method returns a Boolean.
The offset parameter is of type Number.
The arg parameter is of type String.

canDeleteData(offset, count)
This method returns a Boolean.
The offset parameter is of type Number.
The count parameter is of type Number.

Object DOMASBuilder
DOMASBuilder has the all the properties and methods of the DOMBuilder object as well as the
properties and methods defined below.
The DOMASBuilder object has the following properties:

abstractSchema
This property is a ASModel object.

The DOMASBuilder object has the following methods:
parseASURI(uri)

This method returns a ASModel object.
The uri parameter is of type String.
This method can raise a DOMASException object or a DOMSystemException object.

parseASInputSource(is)
This method returns a ASModel object.
The is parameter is a DOMInputSource object.
This method can raise a DOMASException object or a DOMSystemException object.

Object DOMASWriter
DOMASWriter has the all the properties and methods of the DOMWriter object as well as the
properties and methods defined below.
The DOMASWriter object has the following methods:

writeASModel(destination, model)
This method has no return value.
The destination parameter is a DOMOutputStream object.
The model parameter is a ASModel object.
This method can raise a DOMSystemException object.

Prototype Object DOMImplementationLS
The DOMImplementationLS class has the following constants:

DOMImplementationLS.MODE_SYNCHRONOUS
This constant is of type Number and its value is 1.

DOMImplementationLS.MODE_ASYNCHRONOUS
This constant is of type Number and its value is 2.

Object DOMImplementationLS

128

Appendix C: ECMAScript Language Binding

The DOMImplementationLS object has the following methods:
createDOMBuilder(mode)

This method returns a DOMBuilder object.
The mode parameter is of type Number.
This method can raise a DOMException object.

createDOMWriter()
This method returns a DOMWriter object.

createDOMInputSource()
This method returns a DOMInputSource object.

Prototype Object DOMBuilder
The DOMBuilder class has the following constants:

DOMBuilder.ACTION_REPLACE
This constant is of type Number and its value is 1.

DOMBuilder.ACTION_APPEND
This constant is of type Number and its value is 2.

DOMBuilder.ACTION_INSERT_AFTER
This constant is of type Number and its value is 3.

DOMBuilder.ACTION_INSERT_BEFORE
This constant is of type Number and its value is 4.

Object DOMBuilder
The DOMBuilder object has the following properties:

entityResolver
This property is a DOMEntityResolver object.

errorHandler
This property is a DOMErrorHandler object.

filter
This property is a DOMBuilderFilter object.

The DOMBuilder object has the following methods:
setFeature(name, state)

This method has no return value.
The name parameter is of type String.
The state parameter is of type Boolean.
This method can raise a DOMException object.

canSetFeature(name, state)
This method returns a Boolean.
The name parameter is of type String.
The state parameter is of type Boolean.

getFeature(name)
This method returns a Boolean.
The name parameter is of type String.
This method can raise a DOMException object.

parseURI(uri)
This method returns a Document object.
The uri parameter is of type String.
This method can raise a DOMSystemException object.

129

Appendix C: ECMAScript Language Binding

parse(is)
This method returns a Document object.
The is parameter is a DOMInputSource object.
This method can raise a DOMSystemException object.

parseWithContext(is, cnode, action)
This method has no return value.
The is parameter is a DOMInputSource object.
The cnode parameter is a Node object.
The action parameter is of type Number.
This method can raise a DOMException object.

Object DOMWriter
The DOMWriter object has the following properties:

encoding
This property is of type String.

lastEncoding
This read-only property is of type String.

newLine
This property is of type String.

errorHandler
This property is a DOMErrorHandler object.

The DOMWriter object has the following methods:
setFeature(name, state)

This method has no return value.
The name parameter is of type String.
The state parameter is of type Boolean.
This method can raise a DOMException object.

canSetFeature(name, state)
This method returns a Boolean.
The name parameter is of type String.
The state parameter is of type Boolean.

getFeature(name)
This method returns a Boolean.
The name parameter is of type String.
This method can raise a DOMException object.

writeNode(destination, wnode)
This method returns a Boolean.
The destination parameter is a DOMOutputStream object.
The wnode parameter is a Node object.
This method can raise a DOMSystemException object.

writeToString(wnode)
This method returns a String.
The wnode parameter is a Node object.
This method can raise a DOMException object.

Object DOMInputSource
The DOMInputSource object has the following properties:

130

Appendix C: ECMAScript Language Binding

byteStream
This property is a DOMInputSource object.

characterStream
This property is a DOMReader object.

stringData
This property is of type String.

encoding
This property is of type String.

publicId
This property is of type String.

systemId
This property is of type String.

baseURI
This property is of type String.

Object LSLoadEvent
LSLoadEvent has the all the properties and methods of the Event object as well as the properties
and methods defined below.
The LSLoadEvent object has the following properties:

newDocument
This read-only property is a Document object.

inputSource
This read-only property is a DOMInputSource object.

Object LSProgressEvent
LSProgressEvent has the all the properties and methods of the Event object as well as the properties
and methods defined below.
The LSProgressEvent object has the following properties:

inputSource
This read-only property is a DOMInputSource object.

position
This read-only property is of type Number.

totalSize
This read-only property is of type Number.

Object DOMEntityResolver
The DOMEntityResolver object has the following methods:

resolveEntity(publicId, systemId, baseURI)
This method returns a DOMInputSource object.
The publicId parameter is of type String.
The systemId parameter is of type String.
The baseURI parameter is of type String.
This method can raise a DOMSystemException object.

Object DOMBuilderFilter
The DOMBuilderFilter object has the following properties:

whatToShow
This read-only property is of type Number.

The DOMBuilderFilter object has the following methods:

131

Appendix C: ECMAScript Language Binding

startNode(snode)
This method returns a Number.
The snode parameter is a Node object.

endNode(enode)
This method returns a Number.
The enode parameter is a Node object.

Object DOMWriterFilter
DOMWriterFilter has the all the properties and methods of the NodeFilter object as well as the
properties and methods defined below.
The DOMWriterFilter object has the following properties:

whatToShow
This read-only property is of type Number.

Object DocumentLS
The DocumentLS object has the following properties:

async
This property is of type Boolean.

The DocumentLS object has the following methods:
abort()

This method has no return value.
load(uri)

This method returns a Boolean.
The uri parameter is of type String.

loadXML(source)
This method returns a Boolean.
The source parameter is of type String.

saveXML(snode)
This method returns a String.
The snode parameter is a Node object.
This method can raise a DOMException object.

Object ParseErrorEvent
ParseErrorEvent has the all the properties and methods of the Event object as well as the properties
and methods defined below.
The ParseErrorEvent object has the following properties:

error
This read-only property is a DOMError object.

132

Appendix C: ECMAScript Language Binding

Appendix D: Acknowledgements
Many people contributed to the DOM specifications (Level 1, 2 or 3), including members of the DOM
Working Group and the DOM Interest Group. We especially thank the following:

Andrew Watson (Object Management Group), Andy Heninger (IBM), Angel Diaz (IBM), Arnaud Le
Hors (W3C and IBM), Ashok Malhotra (IBM and Microsoft), Ben Chang (Oracle), Bill Smith (Sun), Bill
Shea (Merrill Lynch), Bob Sutor (IBM), Chris Lovett (Microsoft), Chris Wilson (Microsoft), David
Brownell (Sun), David Ezell (Hewlett Packard Company), David Singer (IBM), Dimitris Dimitriadis
(Improve AB), Don Park (invited), Elena Litani (IBM), Eric Vasilik (Microsoft), Gavin Nicol (INSO), Ian
Jacobs (W3C), James Clark (invited), James Davidson (Sun), Jared Sorensen (Novell), Jeroen van
Rotterdam (X-Hive Corporation), Joe Kesselman (IBM), Joe Lapp (webMethods), Joe Marini
(Macromedia), Johnny Stenback (Netscape/AOL), Jon Ferraiolo (Adobe), Jonathan Marsh (Microsoft),
Jonathan Robie (Texcel Research and Software AG), Kim Adamson-Sharpe (SoftQuad Software Inc.),
Lauren Wood (SoftQuad Software Inc., former chair), Laurence Cable (Sun), Mark Davis (IBM), Mark
Scardina (Oracle), Martin Dürst (W3C), Mary Brady (NIST), Mick Goulish (Software AG), Mike
Champion (Arbortext and Software AG), Miles Sabin (Cromwell Media), Patti Lutsky (Arbortext), Paul
Grosso (Arbortext), Peter Sharpe (SoftQuad Software Inc.), Phil Karlton (Netscape), Philippe Le Hégaret
(W3C, W3C team contact and Chair), Ramesh Lekshmynarayanan (Merrill Lynch), Ray Whitmer (iMall,
Excite@Home, and Netscape/AOL), Rezaur Rahman (Intel), Rich Rollman (Microsoft), Rick Gessner
(Netscape), Rick Jelliffe (invited), Rob Relyea (Microsoft), Scott Isaacs (Microsoft), Sharon Adler
(INSO), Steve Byrne (JavaSoft), Tim Bray (invited), Tim Yu (Oracle), Tom Pixley (Netscape/AOL),
Vidur Apparao (Netscape), Vinod Anupam (Lucent).

Thanks to all those who have helped to improve this specification by sending suggestions and corrections
(Please, keep bugging us with your issues!).

D.1: Production Systems
This specification was written in XML. The HTML, OMG IDL, Java and ECMAScript bindings were all
produced automatically.

Thanks to Joe English, author of cost, which was used as the basis for producing DOM Level 1. Thanks
also to Gavin Nicol, who wrote the scripts which run on top of cost. Arnaud Le Hors and Philippe Le
Hégaret maintained the scripts.

After DOM Level 1, we used Xerces as the basis DOM implementation and wish to thank the authors.
Philippe Le Hégaret and Arnaud Le Hors wrote the Java programs which are the DOM application.

Thanks also to Jan Kärrman, author of html2ps, which we use in creating the PostScript version of the
specification.

133

Appendix D: Acknowledgements

http://www.tdb.uu.se/~jan/html2ps.html
http://dev.w3.org/cvsweb/java/classes/org/w3c/tools/specgenerator/
http://xml.apache.org/xerces-j
http://www.flightlab.com/cost

134

D.1: Production Systems

Glossary
Editors:

Arnaud Le Hors, W3C
Robert S. Sutor, IBM Research (for DOM Level 1)

Several of the following term definitions have been borrowed or modified from similar definitions in other
W3C or standards documents. See the links within the definitions for more information.

16-bit unit
The base unit of a DOMString. This indicates that indexing on a DOMString occurs in units of 16
bits. This must not be misunderstood to mean that a DOMString can store arbitrary 16-bit units. A
DOMString is a character string encoded in UTF-16; this means that the restrictions of UTF-16 as
well as the other relevant restrictions on character strings must be maintained. A single character, for
example in the form of a numeric character reference, may correspond to one or two 16-bit units.

API
An API is an Application Programming Interface, a set of functions or methods used to access some
functionality.

child
A child is an immediate descendant node of a node.

content model
The content model is a simple grammar governing the allowed types of the child elements and the
order in which they appear. See Element Content in XML [XML].

document element
There is only one document element in a Document. This element node is a child of the Document
node. See Well-Formed XML Documents in XML [XML].

element
Each document contains one or more elements, the boundaries of which are either delimited by
start-tags and end-tags, or, for empty elements by an empty-element tag. Each element has a type,
identified by name, and may have a set of attributes. Each attribute has a name and a value. See
Logical Structures in XML [XML].

live
An object is live if any change to the underlying document structure is reflected in the object.

local name
A local name is the local part of a qualified name. This is called the local part in Namespaces in
XML [XML Namespaces].

namespace prefix
A namespace prefix is a string that associates an element or attribute name with a namespace URI in
XML. See namespace prefix in Namespaces in XML [XML Namespaces].

namespace URI
A namespace URI is a URI that identifies an XML namespace. This is called the namespace name in
Namespaces in XML [XML Namespaces].

partially valid
A node in a DOM tree is partially valid if it is well formed [p.136] (this part is for comments and
processing instructions) and its immediate children are those expected by the content model. The
node may be missing trailing required children yet still be considered partially valid.

135

Glossary

http://www.w3.org/TR/2000/REC-xml-20001006#sec-logical-struct
http://www.w3.org/TR/2000/REC-xml-20001006#dt-root
http://www.w3.org/TR/2000/REC-xml-20001006#sec-element-content

qualified name
A qualified name is the name of an element or attribute defined as the concatenation of a local name
(as defined in this specification), optionally preceded by a namespace prefix and colon character. See
Qualified Names in Namespaces in XML [XML Namespaces].

tokenized
The description given to various information items (for example, attribute values of various types,
but not including the StringType CDATA) after having been processed by the XML processor. The
process includes stripping leading and trailing white space, and replacing multiple space characters
by one. See the definition of tokenized type.

well-formed document
A document is well-formed if it is tag valid and entities are limited to single elements (i.e., single
sub-trees).

XML
Extensible Markup Language (XML) is an extremely simple dialect of SGML which is completely
described in this document. The goal is to enable generic SGML to be served, received, and
processed on the Web in the way that is now possible with HTML. XML has been designed for ease
of implementation and for interoperability with both SGML and HTML. [XML]

136

Glossary

http://www.w3.org/TR/1999/REC-xml-names-19990114/#ns-qualnames

References
For the latest version of any W3C specification please consult the list of W3C Technical Reports available
at http://www.w3.org/TR.

F.1: Normative references
CharModel

W3C (World Wide Web Consortium) Character Model for the World Wide Web, January 2001.
Available at http://www.w3.org/TR/2001/WD-charmod-20010126

DOM Level 3 Core
W3C (World Wide Web Consortium) Document Object Model Level 3 Core Specification,
September 2001. Available at http://www.w3.org/TR/DOM-Level-3-Core

ECMAScript
ISO (International Organization for Standardization). ISO/IEC 16262:1998. ECMAScript Language
Specification. Available from ECMA (European Computer Manufacturers Association) at
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM

ISO/IEC 10646
ISO (International Organization for Standardization). ISO/IEC 10646-1:2000 (E). Information
technology - Universal Multiple-Octet Coded Character Set (UCS) - Part 1: Architecture and Basic
Multilingual Plane. [Geneva]: International Organization for Standardization.

Java
Sun Microsystems Inc. The Java Language Specification, James Gosling, Bill Joy, and Guy Steele,
September 1996. Available at http://java.sun.com/docs/books/jls

OMGIDL
OMG (Object Management Group) IDL (Interface Definition Language) defined in The Common
Object Request Broker: Architecture and Specification, version 2.3.1, October 1999. Available from
http://www.omg.org

RFC2396
IETF (Internet Engineering Task Force) RFC 2396: Uniform Resource Identifiers (URI): Generic
Syntax, eds. T. Berners-Lee, R. Fielding, L. Masinter. August 1998. Available at
http://www.ietf.org/rfc/rfc2396.txt

RFC3023
IETF (Internet Engineering Task Force) RFC 3023: XML Media Types, eds. M. Murata, S.
St.Laurent, D. Kohn. Available at http://www.ietf.org/rfc/rfc3023.txt

SAX
Simple API for XML , David Megginson. Available at http://www.megginson.com/SAX

Unicode 3.0
The Unicode Consortium. The Unicode Standard, Version 3.0., 2000, Reading, Mass.:
Addison-Wesley Developers Press, 2000. ISBN 0-201-61633-5.

XML
W3C (World Wide Web Consortium) Extensible Markup Language (XML) 1.0, October 2000.
Available at http://www.w3.org/TR/2000/REC-xml-20001006

XML Information set
W3C (World Wide Web Consortium) XML Information Set, October 2001. Available at
http://www.w3.org/TR/2001/REC-xml-infoset-20011024

137

References

http://www.w3.org/TR/2001/REC-xml-infoset-20011024
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.unicode.org/unicode/standard/versions/Unicode3.0.html
http://www.megginson.com/SAX/
http://www.ietf.org/rfc/rfc3023.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.omg.org/
http://java.sun.com/docs/books/jls
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM
http://www.w3.org/TR/DOM-Level-3-Core
http://www.w3.org/TR/2001/WD-charmod-20010126
http://www.w3.org/TR

XML Namespaces
W3C (World Wide Web Consortium) Namespaces in XML , January 1999. Available at
http://www.w3.org/TR/1999/REC-xml-names-19990114

XML Schema Part 0
W3C (World Wide Web Consortium) XML Schema Part 0, May 2001. Available at
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502

XML Schema Part 1
W3C (World Wide Web Consortium) XML Schema 1: Structures, May 2001. Available at
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502

XML Schema Part 2
W3C (World Wide Web Consortium) XML Schema 2: Datatypes, May 2001. Available at
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502

F.2: Informative references
Canonical XML

W3C (World Wide Web Consortium) Canonical XML , March 2001. Available at
http://www.w3.org/TR/2001/REC-xml-c14n-20010315

COM
Microsoft Corporation The Component Object Model. Available at http://www.microsoft.com/com

JAXP
Sun Microsystems Inc. Java API for XML Processing. Available at
http://java.sun.com/xml/xml_jaxp.html

RFC2616
IETF (Internet Engineering Task Force) RFC 2616: Hypertext Transfer Protocol -- HTTP/1.1 , eds.
R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee. June 1999.
Available at http://www.ietf.org/rfc/rfc2616.txt

138

F.2: Informative references

http://www.ietf.org/rfc/rfc2616.txt
http://java.sun.com/xml/xml_jaxp.html
http://www.microsoft.com/com
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502
http://www.w3.org/TR/1999/REC-xml-names-19990114

Index
16-bit unit 82, 135

[attributes]

abort abstractSchema ACTION_APPEND

ACTION_INSERT_AFTER ACTION_INSERT_BEFORE ACTION_REPLACE

activeASModel addAS addASAttributeDecl

ANY_CONTENTTYPE ANYURI_DATATYPE API 46, 53, 64, 135

appendsubModel AS_ALL AS_ATTRIBUTE_DECLARATION

AS_CHOICE AS_CONTENTMODEL AS_ELEMENT_DECLARATION

AS_ENTITY_DECLARATION AS_MODEL AS_NONE

AS_NOTATION_DECLARATION AS_SEQUENCE AS_UNBOUNDED

ASAttributeDeclaration ASAttributeDecls asCM

ASContentModel ASDataType ASElementDeclaration

ASEntityDeclaration asHint asLocation

ASModel ASNamedObjectMap asNodeType

ASNotationDeclaration ASObject ASObjectList

async attributeDeclarations

BASE64BINARY_DATATYPE baseURI BOOLEAN_DATATYPE

boundASModels BYTE_DATATYPE byteStream

canAppendChild canAppendData canDeleteData

canInsertBefore canInsertData Canonical XML 74, 138

canRemoveAttribute canRemoveAttributeNode canRemoveAttributeNS

canRemoveChild canReplaceChild canReplaceData

canSetAttribute canSetAttributeNode canSetAttributeNS

canSetData canSetFeature 72, 79 CharacterDataEditAS

characterStream CharModel 74, 137 child 21, 22, 29, 135

cloneASObject COM 53, 138 COMPLEX_DATATYPE

content model 29, 135 contentModelDeclarations contentType 42, 29

continuousValidityChecking createAS createASAttributeDeclaration

createASContentModel createASElementDeclaration createASEntityDeclaration

createASNotationDeclaration createDOMASBuilder createDOMASWriter

139

Index

createDOMBuilder createDOMInputSource createDOMWriter

dataType 28, 32 dataValue DATE_DATATYPE

DATETIME_DATATYPE DECIMAL_DATATYPE defaultType

definedElementTypes document element DocumentAS

DocumentEditAS DocumentLS
DOM Level 3 Core 9, 19, 38, 46, 64, 66,
137

DOMASBuilder DOMASException DOMASWriter

DOMBuilder DOMBuilderFilter DOMEntityResolver

DOMImplementationAS DOMImplementationLS DOMInputSource

DOMWriter DOMWriterFilter DOUBLE_DATATYPE

DUPLICATE_NAME_ERR DURATION_DATATYPE

ECMAScript element 17, 22, 135 elementDeclarations

ElementEditAS ELEMENTS_CONTENTTYPE elementType

EMPTY_CONTENTTYPE encoding 78, 82 endNode

ENTITIES_DATATYPE ENTITY_DATATYPE entityDeclarations

entityResolver entityType entityValue

enumAttr error errorHandler 71, 78

EXTERNAL_ENTITY

filter FLOAT_DATATYPE

GDAY_DATATYPE getASModels getAttributeList

getChildElements getElementDeclaration getFeature 72, 79

getInternalAS getNamedItem getNamedItemNS

getParentElements GMONTH_DATATYPE GMONTHDAY_DATATYPE

GYEAR_DATATYPE GYEARMONTH_DATATYPE

HEXBINARY_DATATYPE

ID_DATATYPE IDREF_DATATYPE IDREFS_DATATYPE

inputSource 83, 83 insertsubModel INT_DATATYPE

INTEGER INTERNAL_ENTITY isElementDefined

isElementDefinedNS isNamespaceAware isNodeValid

ISO/IEC 10646 82, 137 isPCDataOnly isWhitespaceOnly

140

Index

item 21, 23

Java 53, 137 JAXP 64, 138

LANGUAGE_DATATYPE lastEncoding length 21, 22

listOperator live 21, 21, 135 load

loadXML local name 22, 23, 135 localName

LONG_DATATYPE LSLoadEvent LSProgressEvent

maxOccurs minOccurs MIXED_CONTENTTYPE

MODE_ASYNCHRONOUS MODE_SYNCHRONOUS

NAME_DATATYPE namespace prefix 20, 135 namespace URI 16, 18, 20, 22, 23, 135

namespaceURI NCNAME_DATATYPE NEGATIVEINTEGER_DATATYPE

newDocument newLine NMTOKEN_DATATYPE

NMTOKENS_DATATYPE NO_AS_AVAILABLE NodeEditAS

nodeName NONNEGATIVEINTEGER_DATATYPE NONPOSITIVEINTEGER_DATATYPE

NORMALIZEDSTRING_DATATYPE NOTATION_DATATYPE notationDeclarations

NS_WF_CHECK

OMGIDL OTHER_SIMPLE_DATATYPE ownerASModel

ownerElements

parse parseASInputSource parseASURI

ParseErrorEvent parseURI parseWithContext

PARTIAL_VALIDITY_CHECK partially valid 38, 135 position

POSITIVEINTEGER_DATATYPE prefix publicId 33, 34, 82

QNAME_DATATYPE qualified name 20, 136

removeAS 19, 35 removeASAttributeDecl removeNamedItem

removeNamedItemNS removesubModel resolveEntity

RFC2396 73, 82, 82, 84, 137 RFC2616 66, 82, 138 RFC3023 66, 137

saveXML SAX 64, 83, 137 setASModel

setFeature 74, 80 setInternalAS setNamedItem

141

Index

setNamedItemNS SHORT_DATATYPE startNode

STRICT_VALIDITY_CHECK strictMixedContent STRING_DATATYPE

stringData subModels systemId 29, 33, 34, 82

TIME_DATATYPE TOKEN_DATATYPE tokenized

totalSize TYPE_ERR

Unicode 3.0 82, 137 UNSIGNEDBYTE_DATATYPE UNSIGNEDINT_DATATYPE

UNSIGNEDLONG_DATATYPE UNSIGNEDSHORT_DATATYPE usageLocation

validate 19, 36 VALUE_DEFAULT VALUE_FIXED

VALUE_NONE

well-formed document WF_CHECK whatToShow 85, 87

writeASModel writeNode writeToString

WRONG_MIME_TYPE_ERR

XML 9, 15, 64, 66, 74, 79, 82, 136,
135, 135, 135, 137

XML Information set 66, 66, 137
XML Namespaces 16, 66, 135, 135, 135,
136, 138

XML Schema Part 0 9, 15, 138 XML Schema Part 1 20, 138

XML Schema Part 2 28, 28, 27, 27, 27,
26, 26, 27, 27, 26, 27, 26, 26, 27, 26, 26,
28, 26, 26, 26, 28, 27, 27, 27, 27, 27, 27,
27, 27, 27, 28, 27, 27, 27, 27, 27, 28, 26,
27, 28, 28, 28, 28, 28, 28, 26, 138

142

Index

	Document Object Model †DOM‡ Level 3 Abstract Schemas and Load and Save Specification
	Version 1.0
	W3C Working Draft 25 October 2001
	Abstract
	Status of this document
	Table of contents

	Expanded Table of Contents
	Copyright Notice
	W3C Document Copyright Notice and License
	W3C Software Copyright Notice and License

	1. Abstract Schemas Object Model
	1.1. Overview
	1.1.1. General Characteristics
	1.1.2. Use Cases and Requirements

	1.2. Abstract Schemas and AS-Editing Interfaces
	1.3. Validation and Other Interfaces
	1.4. Document-Editing Interfaces
	1.5. Editing and Generating an Abstract Schema
	1.6. Abstract Schema-directed Document Manipulation
	1.7. Validating a Document Against an Abstract Schema
	1.8. Well-formedness Testing
	1.9. Load and Save for Abstract Schemas

	2. Document Object Model Load and Save
	2.1. Load and Save Requirements
	2.1.1. General Requirements
	2.1.1.1. Document Sources
	2.1.1.2. Abstract Schema Loading
	2.1.1.3. Abstract Schema Reuse
	2.1.1.4. Entity Resolution
	2.1.1.5. Error Reporting

	2.1.2. Load Requirements
	2.1.2.1. Parser Properties and Options

	2.1.3. XML Writer Requirements
	2.1.3.1. XML Writer Properties and Options
	2.1.3.2. Abstract Schema Saving

	2.1.4. Other Items Under Consideration
	2.1.4.1. Incremental and/or Concurrent Parsing
	2.1.4.2. Filtered Save
	2.1.4.3. Document Fragments
	2.1.4.4. Document Fragments in Context of Existing DOM

	2.2. Issue List
	2.2.1. Open Issues
	2.2.2. Resolved Issues

	2.3. Interfaces

	Appendix A: IDL Definitions
	
	as.idl:
	ls.idl:

	Appendix B: Java Language Binding
	
	org/w3c/dom/as/DOMASException.java:
	org/w3c/dom/as/ASModel.java:
	org/w3c/dom/as/ASObject.java:
	org/w3c/dom/as/ASObjectList.java:
	org/w3c/dom/as/ASNamedObjectMap.java:
	org/w3c/dom/as/ASDataType.java:
	org/w3c/dom/as/ASElementDeclaration.java:
	org/w3c/dom/as/ASContentModel.java:
	org/w3c/dom/as/ASAttributeDeclaration.java:
	org/w3c/dom/as/ASEntityDeclaration.java:
	org/w3c/dom/as/ASNotationDeclaration.java:
	org/w3c/dom/as/DocumentAS.java:
	org/w3c/dom/as/DOMImplementationAS.java:
	org/w3c/dom/as/DocumentEditAS.java:
	org/w3c/dom/as/NodeEditAS.java:
	org/w3c/dom/as/ElementEditAS.java:
	org/w3c/dom/as/CharacterDataEditAS.java:
	org/w3c/dom/as/DOMASBuilder.java:
	org/w3c/dom/as/DOMASWriter.java:
	org/w3c/dom/ls/DOMImplementationLS.java:
	org/w3c/dom/ls/DOMBuilder.java:
	org/w3c/dom/ls/DOMWriter.java:
	org/w3c/dom/ls/DOMInputSource.java:
	org/w3c/dom/ls/LSLoadEvent.java:
	org/w3c/dom/ls/LSProgressEvent.java:
	org/w3c/dom/ls/DOMEntityResolver.java:
	org/w3c/dom/ls/DOMBuilderFilter.java:
	org/w3c/dom/ls/DOMWriterFilter.java:
	org/w3c/dom/ls/DocumentLS.java:
	org/w3c/dom/ls/ParseErrorEvent.java:

	Appendix C: ECMAScript Language Binding
	Appendix D: Acknowledgements
	D.1: Production Systems

	Glossary
	References
	F.1: Normative references
	F.2: Informative references

	Index

