
Synchronized Multimedia Integration Language
(SMIL) Boston Specification

W3C Working Draft 25 February 2000
This version:

http://www.w3.org/TR/2000/WD-smil-boston-20000225
(Other formats: single PostScript file, single PDF file, zip archive)

Latest version:
http://www.w3.org/TR/smil-boston

Previous version:
http://www.w3.org/TR/1999/WD-smil-boston-19991115

Editors:
Jeff Ayars (RealNetworks), Dick Bulterman (Oratrix), Aaron Cohen (Intel), Erik
Hodge (RealNetworks), Philipp Hoschka (W3C), Eric Hyche (RealNetworks),
Ken Day (Macromedia), Kenichi Kubota (Panasonic), Rob Lanphier
(RealNetworks), Nabil Layaïda (INRIA), Philippe Le Hégaret (W3C), Thierry
Michel (W3C), Jacco van Ossenbruggen (CWI), Lloyd Rutledge (CWI), Bridie
Saccocio (RealNetworks), Patrick Schmitz (Microsoft), Warner ten Kate
(Philips), Ted Wugofski (Gateway).

Copyright ©2000 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability,
trademark, document use and software licensing rules apply.

Abstract
This document specifies the "Boston" version of the Synchronized Multimedia
Integration Language (SMIL, pronounced "smile"). SMIL Boston has the following
two design goals:

Define a simple XML-based language that allows authors to write interactive
multimedia presentations. Using SMIL Boston, an author can describe the
temporal behavior of a multimedia presentation, associate hyperlinks with media
objects and describe the layout of the presentation on a screen.
Allow reusing of SMIL syntax and semantics in other XML-based languages, in
particular those who need to represent timing and synchronization. For
example, SMIL Boston components should be used for integrating timing into
XHTML [XHTML10].

24 Feb 2000 08:261

Synchronized Multimedia Integration Language (SMIL) Boston Specification

http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/TR/1999/WD-smil-boston-19991115
http://www.w3.org/TR/smil-boston
http://www.w3.org/TR/2000/WD-smil-boston-20000225
http://www.w3.org/

Status of this document
This section describes the status of this document at the time of its publication.
Other documents may supersede this document. The latest status of this document
series is maintained at the W3C.

This document is the third Working Draft of the specification for the next version of
SMIL code-named "Boston". It has been produced as part of the W3C Synchronized
Multimedia Activity. The document has been written by the SYMM Working Group
(members only). The goals of this group are discussed in the SYMM Working Group
charter (members only).

Many parts of the document are still preliminary, and do not constitute full
consensus within the Working Group. Also, some of the functionality planned for
SMIL Boston is not contained in this draft. Many parts are not yet detailed enough for
implementation, and other parts are only suitable for highly experimental
implementation work.

At this point, the W3C SYMM WG seeks input by the public on the concepts and
directions described in this specification. Please send your comments to
www-smil@w3.org. Since it is difficult to anticipate the number of comments that
come in, the WG cannot guarantee an individual response to all comments.
However, we will study each comment carefully, and try to be as responsive as time
permits.

This working draft may be updated, replaced or rendered obsolete by other W3C
documents at any time. It is inappropriate to use W3C Working Drafts as reference
material or to cite them as other than "work in progress". This document is work in
progress and does not imply endorsement by the W3C membership.

224 Feb 2000 08:26

Synchronized Multimedia Integration Language (SMIL) Boston Specification

http://www.w3.org/Consortium/Member/List.html
http://cgi.w3.org/MemberAccess/
http://www.w3.org/AudioVideo/Group/symm-wg-charter
http://www.w3.org/AudioVideo/Group/symm-wg-charter
http://cgi.w3.org/MemberAccess/
http://www.w3.org/AudioVideo/Group/
http://www.w3.org/AudioVideo/
http://www.w3.org/AudioVideo/

A list of current W3C Recommendations and other technical documents can be
found at http://www.w3.org/TR.

Quick Table of Contents
.............. 151. About SMIL Boston
... 192. Synchronized Multimedia Integration Language (SMIL) Modules
............ 313. The SMIL Animation Module
.............. 674. SMIL Content Control
.............. 815. SMIL Layout Module
............. 956. The SMIL Linking Module
........... 1097. The SMIL Media Object Module
............ 1238. The SMIL Metadata Module
............. 1299. SMIL Structure Module
....... 13510. The SMIL Timing and Synchronization Module
.... 23311. Integrating SMIL Timing into Other XML-Based Languages
.......... 25512. The SMIL Transition Effects Module
........ 27513. The SMIL Document Object Model Module
........... 27714. SMIL Boston Language Profile
........... 28715. HTML+SMIL Language Profile
......... 29916. Requirements for a SMIL Basic Profile
............. 30517. Baseline Media Formats
.............. 309Appendix A. References

24 Feb 2000 08:263

Synchronized Multimedia Integration Language (SMIL) Boston Specification

http://www.w3.org/TR

Full Table of Contents
.............. 151. About SMIL Boston
............... 151.1 Introduction
............. 161.2 Acknowledgements
... 192. Synchronized Multimedia Integration Language (SMIL) Modules
............... 192.1 Introduction
.............. 202.2 SMIL Modules
........... 212.2.1 Animation Module
.......... 212.2.2 Content Control Module
............ 222.2.3 Layout Module
............ 222.2.4 Linking Module
........... 232.2.5 Media Object Module
.......... 232.2.6 Metainformation Module
............ 232.2.7 Structure Module
....... 242.2.8 Timing and Synchronization Module
.......... 252.2.9 Transition Effects Module
.............. 252.3 Isomorphism
............. 272.4 Multimedia Profiles
........ 272.4.1 Lightweight Presentations Profile
........... 272.4.2 SMIL-Boston Profile
........... 282.4.3 SMIL-Basic Profile
........... 282.4.4 HTML+SMIL Profile
......... 282.4.5 Web Enhanced Media Profile
............ 313. The SMIL Animation Module
............... 313.1 Introduction
........... 323.2 Overview and terminology
........... 323.2.1 Basics of animation
.......... 333.2.2 Animation function values
..... 343.2.3 Symbols used in the semantic descriptions
............. 343.3 Animation model
........ 353.3.1 Specifying the animation target
........... 35The Target attribute
........... 36The Target element
....... 373.3.2 Specifying the animation function f(t)
..... 39Interpolation and indefinite simple durations
....... 40Animation function calculation modes
............. 42Examples
....... 443.3.3 Specifying the animation effect F(t)
........... 44Repeated animations
............. 44Examples

Controlling behavior of repeating animation - Cumulative
............. 45animation

424 Feb 2000 08:26

Synchronized Multimedia Integration Language (SMIL) Boston Specification

........... 46Freezing animations

............ 48Additive animation

.. 50How from, to and by attributes affect additive behavior.

....... 51Additive and Cumulative animation

........... 52Restarting animations

.......... 523.3.4 Handling syntax errors

........ 523.3.5 The animation sandwich model

...... 553.3.6 Implications of Timing Model for animation

........ 563.3.7 Animation function value details

............. 573.4 Animation elements

........ 573.4.1 Common syntax DTD definitions

........... 583.4.2 The animate element

............ 583.4.3 The set element

......... 593.4.4 The animateMotion element

......... 623.4.5 The animateColor element

...... 633.5 Integrating SMIL Animation into a host language

....... 633.5.1 Required host language definitions

.. 643.5.2 Required definitions and constraints on animation targets

......... 64Specifying the target element

........... 64Target attribute issues

....... 65Integrating animateMotion functionality

............. 65Example: SVG

.... 653.5.3 Constraints on manipulating animation elements

........... 663.5.4 Extending animation

.......... 663.5.5 Error handling semantics

......... 663.5.6 SMIL Animation namespace

.............. 674. SMIL Content Control

............... 674.1 Introduction

............. 674.2 Content Selection

.......... 684.2.1 The <switch> Element

.......... 684.2.2 Predefined Test Attributes

........ 734.2.3 System Test Attribute In-Line Use

............. 754.2.4 User Groups

....... 75The <user_attributes> element

.......... 75The <u_group> element

........... 75The u_group attribute

.......... 774.3 Presentation Priority/Grouping

........... 774.4 User-Centered Adaptation

........... 774.5 Presentation Optimization

......... 774.5.1 The <prefetch> element

.. 78The mediaSize , mediaTime , and bandwidth Attributes

.......... 79Attribute value syntax

.............. 79Examples

24 Feb 2000 08:265

Synchronized Multimedia Integration Language (SMIL) Boston Specification

.............. 804.6 Open Issues

.............. 815. SMIL Layout Module

............... 815.1 Introduction

......... 815.2 Brief overview of SMIL basic layout

........ 825.3 Extensions to SMIL 1.0 Basic Layout

....... 835.3.1 Multiple Top-Level Window Support

......... 845.3.2 Hierarchical Region Layout

........ 845.4 SMIL basic layout syntax and semantics

.......... 845.4.1 Elements and attributes

.......... 85The <layout> element

.......... 86The <region> element

......... 90The <root-layout> element

......... 91The <top-layout> element

........... 92The region attribute

....... 925.4.2 SMIL basic layout language details

........ 945.5 Differences from SMIL 1.0 basic layout

.............. 945.6 Open Issues

............. 956. The SMIL Linking Module

............... 956.1 Introduction

.......... 956.2 Linking into SMIL documents

............ 966.2.1 Error handling

.............. 966.3 Link Elements

..... 966.3.1 Handling of Links in Embedded Documents

........... 976.3.2 The <a> Element

........... 1026.3.3 The <area> Element

........... 1097. The SMIL Media Object Module

............... 1097.1 Introduction
7.2 The ref, animation, audio, img, video, text and

............. 109textstream elements

........... 1097.2.1 Element Attributes

.............. 110abstract

................ 110alt

............... 110author

............... 110begin

........... 110clipBegin (clip-begin)

............ 112clipEnd (clip-end)

.............. 112copyright

.............. 112longdesc

............... 112port

.............. 113readIndex

.............. 113rtpformat

............... 113src

............. 114stripRepeat

624 Feb 2000 08:26

Synchronized Multimedia Integration Language (SMIL) Boston Specification

............... 114title

.............. 114transport

............... 114type

.............. 115xml:lang

............ 1157.2.2 Element Content

..... 1157.2.3 Media object initialization: the param element

........... 115Attribute definitions

.............. 115name

.............. 115value

............. 115valuetype

.............. 116type

........... 116Element Description

........... 1177.2.4 The rtpmap element

.............. 117Attributes

............. 117payload

............. 117encoding

......... 1187.3 Support for media player extensions

.. 1187.3.1 Appendix A: Changes to SMIL 1.0 Media Object Attributes

....... 118clipBegin, clipEnd, clip-begin, clip-end

.119Handling of new clipBegin/clipEnd syntax in SMIL 1.0 software

............. 120SDP Attributes

............. 121stripRepeat

......... 1217.3.2 Appendix B: Element Content

......... 1217.3.3 Appendix C: New sections

........... 121The param element

........... 121The rtpmap element

....... 121Support for media player extensions

.......... 1217.3.4 Appendix D: Backburner

............ 1238. The SMIL Metadata Module

............... 1238.1 Introduction

..... 1238.2 Compatibility with SMIL 1.0 using the meta Element

........... 1238.2.1 Element Attributes

............ 1248.2.2 Element Content

......... 1258.3 Extensions to SMIL 1.0 Metadata.

........... 1258.3.1 Element Attributes

............ 1258.3.2 Element Content

... 1258.3.3 Using multiple description schemes simultaneously

.......... 1268.4 The SMIL Metadata Schema

............... 1268.5 An Example

............. 1299. SMIL Structure Module

............... 1299.1 Introduction

......... 1299.2 The smil, head and body elements

........ 1319.3 Integrating the SMIL Structure Module

24 Feb 2000 08:267

Synchronized Multimedia Integration Language (SMIL) Boston Specification

................ 1329.4 DTD

....... 13510. The SMIL Timing and Synchronization Module

.............. 13510.1 Introduction

........... 13510.2 Overview of SMIL timing

............ 13810.3 Language definition

.......... 13810.3.1 Shared timing support

........... 138Basics - begin and dur

.......... 140Begin value semantics

.......... 141Dur value semantics

........... 141Resolving times

............. 141Examples

........... 142Timing attribute values

............ 142Begin values

............ 142End values

............ 143Clock values

............ 144Offset values

....... 144SMIL 1.0 begin and end values

.......... 144ID-Reference values

........... 144Syncbase values

.......... 145Sync To Prev values

............ 146Event values

.......... 147Media marker values

.......... 147Wallclock-sync values

............. 148Examples

........... 14910.3.2 Time manipulations

............. 149Background

........... 150Overview of support

............. 151Examples

............ 151Attribute syntax

........... 151speed attribute

...... 152accelerate and decelerate attributes

............ 152Examples:

.......... 153autoReverse attribute

........... 153Repeating elements

...... 154repeatCount and repeatDur attributes

............. 155Examples

........ 156SMIL 1.0 repeat (deprecated)

.......... 156Controlling active duration

......... 160Computing the active duration

............ 167Freezing elements

........... 169Restarting elements

....... 171Using restart for toggle activation

............ 17210.3.3 Time containers

824 Feb 2000 08:26

Synchronized Multimedia Integration Language (SMIL) Boston Specification

........... 172The par time container

........... 172The seq time container

.......... 173The excl time container

........... 174Pause behavior

....... 175peers = " stop | pause | defer | never "

.......... 176higher = " stop | pause "

.......... 176lower = " defer | never "

....... 177excl and priorityClass Examples

......... 178Pause queue semantics

........... 178Queue invariants

........ 178Element insertion and removal

.... 179Time dependency and pause/defer semantics

...... 179Scheduled begin times and <excl>

......... 180Side effects of activation

.. 181Specifying the simple duration of par and excl with endSync

........ 181endSync = " first | last | all | id-ref "

.......... 184Time container duration

...... 184Implicit duration of <par> containers

...... 185Implicit duration of <seq> containers

...... 185Implicit duration of <excl> containers

... 185Implicit duration of media element time containers

..... 185Time container constraints on child durations

.... 186Time container constraints on sync-arcs and events

.......... 187Specifics for sync-arcs

....... 187Specifics for event-based timing

........... 187Negative begin delays

.......... 18810.3.4 State transition model

............ 189Initial state: Idle

......... 189Start transition: Idle to Active

............. 190Active state:

........ 190Freeze transition: Active to Frozen

............. 190Frozen state:

........ 190Stop transition: Active to Finished

............. 190Finished state:

........ 191Restart transition: Frozen to Active

........ 191Restart transition: Frozen to Idle

........ 191Restart transition: Active to Active

......... 191Restart transition: Active to Idle

....... 191Restart transition: Finished to Active

........ 191Restart transition: Finished to Idle

........... 19210.3.5 Timing model details

........ 192Timing and real-world clock times

............. 192Interval timing

24 Feb 2000 08:269

Synchronized Multimedia Integration Language (SMIL) Boston Specification

.......... 192Background rationale

........ 193Implications for the time model

...... 193Unifying scheduling and interactive timing

............ 194Background

... 194Modeling interactive, event-based content in SMIL

........... 195Event sensitivity

........ 196Details of the time manipulations

............ 196Speed control

... 198Issues with implicit duration and fallback speeds

........ 200Acceleration and Deceleration

............ 200Examples:

....... 201Play Forwards then Backwards

............ 201Examples:

............ 202Timing Model

............ 202Ideal model

.... 203Fallbacks for time filters on a media element

..... 205Fallbacks for time filters on time containers

........ 205More on the implementation

..... 207Converting between local and global times

....... 207Evaluation of begin and end time lists

........... 209Hyperlinks and timing
Implications of beginElement() and hyperlinking for seq and

.......... 212excl time containers

......... 213Propagating changes to times

.......... 214Handling negative offsets

........ 215Behavior of 0 duration elements

.......... 215Resetting element state

..... 21610.3.6 Controlling runtime synchronization behavior

.......... 217Sync behavior attributes

........... 218Sync master support

........ 21910.3.7 Common syntax DTD definitions

.22010.4 Integrating SMIL Timing and Synchronization into a host language

....... 22010.4.1 Required host language definitions

.. 22110.4.2 Required definitions and constraints on element timing

....... 221Supported events for event-base timing

......... 22110.4.3 Error handling semantics

.... 22110.4.4 SMIL Timing and Synchronization namespace

......... 22210.5 Document object model support

.22210.5.1 Element and attribute manipulation, mutation and constraints

............. 22210.5.2 Event model

........... 22210.5.3 Supported methods

............... 22310.6 Glossary

........... 22310.6.1 General concepts

1024 Feb 2000 08:26

Synchronized Multimedia Integration Language (SMIL) Boston Specification

............. 223Time graph

.......... 224Descriptive terms for times

............ 224Scheduled timing

......... 224Events and interactive timing

............. 224Syncbases

.............. 225Sync arcs

............... 225Clocks

.......... 225Hyperlinking and timing

.............. 225Activation

......... 225Discrete and continuous Media

............ 22510.6.2 Timing concepts

............ 226Time containers

.......... 226Content/Media elements

............. 226Basic markup

......... 226Simple and active durations

........... 227Time manipulations

...... 227Determinate and indeterminate schedules

............ 227Hard and soft sync

......... 22810.7 Appendix A: Annotated examples

.. 22810.7.1 Example 1: Simple timing within a Parallel time container

.22810.7.2 Example 2: Simple timing within a Sequence time container

.. 22910.7.3 Example 3: excl time container with child timing variants

.... 23010.7.4 Example 4: default duration of discrete media
10.7.5 Example 5: end specifies end of active dur, not end of simple

................. 230dur

...... 23110.7.6 Example 6: SMIL-DOM-initiated timing

...... 23110.8 Appendix B: Authoring guidelines (to be added)

........ 23110.9 Appendix C: Differences from SMIL 1.0

.... 23311. Integrating SMIL Timing into Other XML-Based Languages

............... 23311.1 Abstract

.............. 23311.2 Introduction

............. 23311.2.1 Background

............. 23411.2.2 Use cases

............ 23511.2.3 Assumptions

..... 236Assumptions that may need further refinement

............ 23611.2.4 Requirements

.............. 23611.3 Framework

......... 23711.3.1 Framework: In-line Timing

.. 24011.3.2 Framework: Future Frameworks Under Consideration

.... 240Future Framework: Cascading Style Sheet Timing

........ 240Future Framework: Timesheets

.............. 24011.4 Specification

......... 24011.4.1 Specification: In-line Timing

24 Feb 2000 08:2611

Synchronized Multimedia Integration Language (SMIL) Boston Specification

.......... 240Time Container elements:

......... 240The "timeContainer" attribute:
241Timing Attributes for Child Elements of Time Container Elements:

.......... 241The timeAction attribute:

.............. 242Examples:

.. 24211.4.2 Specification: Future Specifications Under Consideration

........ 242Future Specification: CSS Timing

........ 242Future Specification: Timesheets

............ 243Cascading Rules

.... 243Integrating SMIL Timing into a host XML language

....... 243Required host language definitions

......... 244Error handling semantics

......... 244SMIL Timing namespace

................ 24411.5 DTD

........ 24411.6 Appendix A. In-Line Method Examples

.. 24511.7 Appendix B. Future Framework: Cascading Style Sheet Timing

...... 24611.8 Appendix C. Future Framework: Timesheets

......... 24611.8.1 Three document sections

............. 24811.8.2 Principles

...... 25111.9 Appendix D. Future Specification: CSS Timing

............. 25111.9.1 Timing style

...... 25111.10 Appendix E. Future Specification: Timesheets

........... 25211.10.1 Structure copying

.......... 25211.10.2 Structure ownership

.......... 25211.10.3 Timesheet selectors
11.11 Appendix F. CSS Timing, Timesheet, and other non-In-Line
Examples 253

.......... 25512. The SMIL Transition Effects Module

.............. 25512.1 Introduction

............ 25812.2 Transition Taxonomy

............ 26012.3 Transition Parameters

........ 26112.3.1 The <transition> element

...... 263Examples of the <transition> element.

......... 26412.3.2 Handling Parameter Errors

....... 26512.4 Applying Transitions to Media Elements

.......... 26512.4.1 The "transition" attribute.

..... 265Examples of applying the "transition" attribute.

........... 26912.5 Multi-Element Transitions

.......... 27212.5.1 The <brush> element

........... 27312.6 Appendix A: Open Issues

........ 27513. The SMIL Document Object Model Module

............... 27513.1 Abstract

........... 27714. SMIL Boston Language Profile

1224 Feb 2000 08:26

Synchronized Multimedia Integration Language (SMIL) Boston Specification

.............. 27714.1 Open issues

............... 27714.2 Abstract

............ 27714.3 SMIL Boston Profile

........ 27814.4 Normative Definition of SMIL Boston

.......... 27814.4.1 Document Conformance

......... 27814.4.2 User Agent Conformance

........... 27814.4.3 SMIL-Boston Profile

........... 27914.4.4 Animation Module

.......... 27914.4.5 Content Control Module

............ 28014.4.6 Layout Module

............ 28114.4.7 Linking Module

.......... 28214.4.8 Media Object Module

.......... 283Changes from SMIL 1.0

.......... 28414.4.9 Metainformation Module

........... 28414.4.10 Structure Module

...... 28514.4.11 Timing and Synchronization Module

......... 28614.4.12 Transition Effects Module

........... 28614.5 Document Type Definition

.... 28614.6 Appendix A: Document Type Definition or XML Schema

........... 28715. HTML+SMIL Language Profile

............... 28715.1 Abstract

.............. 28715.2 Introduction

......... 28715.2.1 Motivation and applications

........... 28715.2.2 Design Rationale

............... 287Layout

.............. 288Structure

............ 288Meta information

........ 28815.3 Normative Definition of SMIL Boston

.......... 28815.3.1 Document Conformance

......... 28815.3.2 User Agent Conformance

........... 28815.3.3 HTML+SMIL Profile

........... 29015.3.4 Animation Module

...... 291Additional integration issues with animation

.......... 29115.3.5 Content Control Module

............ 29215.3.6 Linking Module

.......... 29215.3.7 Media Object Module

....... 29315.3.8 Timing and Synchronization Module

...... 297Additional integration issues with Timing

......... 29715.3.9 Transition Effects Module

........ 29815.4 Appendix A: Document Type Definition

......... 29916. Requirements for a SMIL Basic Profile

............... 29916.1 Abstract

.............. 29916.2 Introduction

24 Feb 2000 08:2613

Synchronized Multimedia Integration Language (SMIL) Boston Specification

......... 29916.2.1 SMIL and Modularization

........ 29916.2.2 Neeed for a SMIL Basic profile

........ 30016.3 Requirements for SMIL Basic Profile

............ 30016.3.1 Target Devices

.......... 30116.3.2 Generic requirements

............ 30116.3.3 User Interface

......... 30116.3.4 Timing and Synchronization

.............. 30216.3.5 Layout

............ 30216.3.6 Media Object

.............. 30316.3.7 Linking

............. 30316.3.8 Structure

........... 30316.4 Use of SMIL Basic Profile

............. 30517. Baseline Media Formats

.............. 30517.1 Introduction

.............. 30517.2 Audio Formats

............. 30617.3 Image Formats

.............. 30617.4 Video Formats

.............. 30717.5 Text Formats

.............. 309Appendix A. References

1424 Feb 2000 08:26

Synchronized Multimedia Integration Language (SMIL) Boston Specification

1. About SMIL Boston
Editors

Philipp Hoschka (ph@w3.org), W3C
Aaron Cohen (aaron.m.cohen@intel.com), Intel

1.1 Introduction
This document specifies the "Boston" version of the Synchronized Multimedia
Integration Language (SMIL, pronounced "smile"). SMIL Boston has the following
two design goals:

Define a simple XML-based language that allows authors to write interactive
multimedia presentations. Using SMIL Boston, an author can describe the
temporal behavior of a multimedia presentation, associate hyperlinks with media
objects and describe the layout of the presentation on a screen.
Allow reusing of SMIL syntax and semantics in other XML-based languages, in
particular those who need to represent timing and synchronization. For
example, SMIL Boston components should be used for integrating timing into
XHTML.

SMIL Boston is defined as a set of markup modules, which define the semantics
and an XML syntax for certain areas of SMIL functionality. All modules have an
associated Document Object Model (DOM).

SMIL Boston deprecates a small amount of SMIL 1.0 syntax in favor of more DOM
friendly syntax. Most notable is the change from hyphenated attribute names to
mixed case (camel case) attribute names, e.g., clipBegin is introduced in favor of
clip-begin. The SMIL Boston modules do not require support for these SMIL 1.0
attributes so that integration applications are not burdened with them. SMIL
document players, those applications that support playback of "application/smil"
documents (or however we denote SMIL documents vs. integration documents)
must support the deprecated SMIL 1.0 attribute names as well as the new SMIL
Boston names.

This specification is structured as a set of sections, defining module:

Section 2 presents an overview of the individual modules, and gives example
profiles.
Section 3 defines the declarative animation module.
Section 4 presents the content control module, such as the switch and preload
elements.
Section 5 describes the SMIL Boston basic layout module.
Section 6 defines the linking module.
Section 7 presents the media object module.
Section 8 defines the metadata module.
Section 9 defines the SMIL Boston structure module including the head, and

24 Feb 2000 08:2615

About SMIL Boston

body elements.
Section 10 defines the SMIL timing and synchronization module.
Section 11 describes the means of integrating SMIL timing into other
XML-based languages.
Section 12 presents the transition effects module.
Section 13 defines the SMIL DOM interfaces for all of the above modules.

This specification also defines three profiles that are built using the above SMIL
modules:

Section 14 defines the SMIL Boston Language Profile.
Section 15 defines the HTML + SMIL Language Profile.
Section 16 describes the SMIL Basic Language Profile requirements.

Finally, this specification defines a number of baseline media formats to be widely
supported by SMIL players:

Section 17 presents a list of baseline media formats.

1.2 Acknowledgements
This document has been prepared by the Synchronized Multimedia Working Group
(SYMM-WG) of the World Wide Web Consortium. The WG includes the following
individuals:

Jin Yu, Compaq
Pietro Marchisio, CSELT
Lynda Hardman, CWI
Jacco van Ossenbruggen, CWI
Lloyd Rutledge, CWI
Ted Wugofski, Gateway (Invited Expert)
Masayuki Hiyama, Glocomm
Keisuke Kamimura, Glocomm
Michelle Y. Kim, IBM
Steve Wood, IBM
Nabil Layaïda, INRIA
Muriel Jourdan, INRIA
Aaron Cohen, Intel
Wayne Carr, Intel
Ken Day, Macromedia
Daniel Weber, Matsushita
Patrick Schmitz, Microsoft
Debbie Newman, Microsoft
Pablo Fernicola, Microsoft
Wo Chang, NIST

1624 Feb 2000 08:26

About SMIL Boston

Didier Chanut, Nokia
Jack Jansen, Oratrix
Sjoerd Mullender, Oratrix
Dick Bulterman, Oratrix
Kenichi Kubota, Panasonic
Warner ten Kate, Philips
Ramon Clout, Philips
Jeff Ayars, RealNetworks
Erik Hodge, RealNetworks
Rob Lanphier, RealNetworks
Bridie Saccocio, RealNetworks
Eric Hyche, RealNetworks
Geoff Freed, WGBH
Philipp Hoschka, W3C
Philippe Le Hégaret, W3C
Thierry Michel, W3C.

24 Feb 2000 08:2617

About SMIL Boston

1824 Feb 2000 08:26

About SMIL Boston

2. Synchronized Multimedia Integration
Language (SMIL) Modules
Editors:

Warner ten Kate <warner.ten.kate@philips.com>,
Ted Wugofski <wugofted@gateway.com>,
Patrick Schmitz <pschmitz@microsoft.com>.

2.1 Introduction
Since the publication of SMIL 1.0 [SMIL10], interest in the integration of SMIL
concepts with the HTML, the Hypertext Markup Language [HTML40], and other XML
languages, has grown. Likewise, the W3C HTML Working Group is specifying how
XHTML, the Extensible Hypertext Markup Language [XHTML10], can be integrated
with other languages. The strategy considered for integrating respective functionality
with other XML languages is based on the concepts of modularization and profiling
[MODMOD], [SMIL-MOD], [XMOD], [XPROF].

Modularization is a solution in which a language’s functionality is partitioned into
sets of semantically-related elements. Profiling is the combination of these feature
sets to solve a particular problem. For the purposes of this specification we define:

element
An element is a representation of a semantic feature. An element has one
representation in any given syntax.

module
A module is a collection of semantically-related elements.

module family
A module family is a collection of semantically-related modules. Each element is
in one and only one module family. Modules in a module family are generally
ordered by increasing functionality (each module is generally inclusive of the
previous module in the module family).

profile
A profile is a collection of modules particular to an application domain or
language. For example, the SMIL profile corresponds to the collection of
modules that make up the SMIL language. Likewise, an enhanced television
profile would correspond to the collection of modules for media-enhancement of
broadcast television. In general, a profile would include only one module from a
particular module family.

profile family
A profile family is a collection of profiles which all share a common set of
modules. Those modules are defined as mandatory to a profile which wishes to
be part of that profile family. Examples are the XHTML family and the SMIL
family.

24 Feb 2000 08:2619

SMIL Modularization

SMIL functionality is partitioned into modules based on the following design
requirements:

1. Ensure that a profile may be defined that is completely backward compatibility
with SMIL 1.0.

2. Ensure that a module’s semantics maintain compatibility with SMIL semantics
(this includes content and timing).

3. Specify modules that are isomorphic with other modules based on W3C
recommendations.

4. Specify modules that can complement XHTML modules.
5. Adopt new W3C recommendations when appropriate and not in conflict with

other requirements.
6. Specify how the modules support the document object model.

The first requirement is that modules are specified such that a collection of
modules can be "recombined" in such a way as to be backward compatible with
SMIL (it will properly play SMIL conforming content).

The second requirement is that the semantics of SMIL must not change when they
are embodied in a module. Fundamentally, this ensures the integrity of the SMIL
content and timing models. This is particularly relevant when a different syntax is
required to integrate SMIL functionality with other languages.

The third requirement is that modules be isomorphic with other modules from
other W3C recommendations. This will assist designers when sharing modules
across profiles.

The fourth requirement is that specific attention be paid to providing multimedia
functionality to the XHTML language. XHTML is the reformulation of HTML in XML.

The fifth requirement is that the modules should adopt new W3C
recommendations when they are appropriate and when they do not conflict with
other requirements (such as complementing the XHTML language).

The sixth requirement is to ensure that modules have integrated support for the
document object model. This facilitates additional control through scripting and user
agents.

These requirements, and the ongoing work by the SYMM Working Group, led to a
partitioning of SMIL functionality into nine modules.

2.2 SMIL Modules
SMIL functionality is partitioned into nine (9) modules :

1. Animation Module
2. Content Control Module
3. Layout Module
4. Linking Module
5. Media Object Module

2024 Feb 2000 08:26

SMIL Modularization

6. Metainformation Module
7. Structure Module
8. Timing and Synchronization Module
9. Transition Effects Module

Each of these modules introduces a set of semantically-related elements,
properties, and attributes.

Further, there are the DOM modules [DOM1], [DOM2], [SMIL-DOM]. A profile may
include DOM support. The part of DOM being supported, corresponds to the
modules being selected in the profile.

2.2.1 Animation Module
The Animation Module provides a framework for incorporating animation onto a
timeline (a timing model) and a mechanism for composing the effects of multiple
animations (a composition model). The Animation Module defines semantics for the
animate, set, animateMotion, and animateColor elements:

Elements Attributes Minimal Content Model

animate TBD TBD

set TBD TBD

animateMotion TBD TBD

animateColor TBD TBD

When this module is used, it adds the animate, set, animateMotion, and
animateColor elements to the content model of the par, seq, and excl elements of
the Timing and Synchronization Module. It also adds these elements to the content
model of the body element of the Structure Module.

2.2.2 Content Control Module
The Content Control Module provides a framework for selecting content based on a
set of test attributes. The Content Control Module defines semantics for the switch
element.

Elements Attributes Minimal Content Model

switch TBD TBD

- test attributes N/A

24 Feb 2000 08:2621

SMIL Modularization

When this module is used, it adds the switch, element to the content model of the
par, seq, and excl elements of the Timing and Synchronization Module. It also adds
this element to the content model of the body element of the Structure Module. It
also adds this element to the content model of the a element of the Linking Module.
It also adds this element to the content model of the head element of the Structure
Module.

Further, when this module is used, the test attributes are added to the attribute
lists of all the elements in the Layout Module , the Media Object Module , the Timing
and Synchronization Module , and the Transition Effect Module .

Effectuation applies only when the mentioned Modules are part of the profile at
hand, of course.

2.2.3 Layout Module
The Layout Module provides a framework for spatial layout of visual components.
The Layout Module defines semantics for the layout, root-layout, and region
elements.

Elements Attributes Minimal Content Model

layout TBD TBD

root-layout TBD TBD

region TBD TBD

When this module is used, it adds the layout element to the content model of the
head element of the Structure Module. It also adds this element to the content model
of the switch element of the Content Control Module.

2.2.4 Linking Module
The Linking Module provides a framework for relating documents to content,
documents and document fragments. The Linking Module defines semantics for the
a and area elements.

Elements Attributes Minimal Content Model

a TBD TBD

area TBD TBD

When this module is used, it adds the area and a elements to the content model of
the par, seq, and excl elements of the Timing and Synchronization Module. It also
adds these elements to the content model of the body element of the Structure
Module.

2224 Feb 2000 08:26

SMIL Modularization

2.2.5 Media Object Module
The Media Object Module provides a framework for declaring media. The Media
Object Module defines semantics for the ref, animation, audio, img, video, text, and
textstream elements.

Elements Attributes Minimal Content Model

ref TBD TBD

img, text TBD TBD

audio, video, animation, textstream TBD TBD

When this module is used, it adds the ref, animation, audio, img, video, text, and
textstream elements to the content model of the par, seq, and excl elements of the
Timing and Synchronization Module. It also adds these elements to the content
model of the body element of the Structure Module. It also adds these elements to
the content model of the a element of the Linking Module.

2.2.6 Metainformation Module
The Metainformation Module provides a framework for describing a document, either
to inform the human user or to assist in automation. The Metainformation Module
defines semantics for the meta element.

Elements Attributes Minimal Content Model

meta TBD TBD

When this module is used, it adds the meta element to the content model of the
head element of the Structure Module.

2.2.7 Structure Module
The Structure Module provides a framework for structuring a SMIL document. The
Structure Module defines semantics for the smil, head, and body elements.

24 Feb 2000 08:2623

SMIL Modularization

Elements Attributes Minimal Content Model

smil
Core, Accessibility,
xmlns

head?, body?

head
Core, Accessibility,
profile

meta*, (switch | layout)?

body Core, Accessibility
(Schedule | MediaContent | MediaControl |
LinkAnchor)*

- skipContent N/A

This module is a mandatory part in any profile family labeled "SMIL".

When this module is used the id, title, and skipContent attributes are added to all
other modules used, including modules from other, non-SMIL, origine.

2.2.8 Timing and Synchronization Module
The Timing and Synchronization Module provides a framework for describing timing
structure, timing control properties, and temporal relationships between elements.
The Timing and Synchronization Module defines semantics for par, seq, and excl
elements. In addition, this module defines semantics for attributes including begin,
dur, end, repeatCount, repeatDur, and others.

@@ Make "and others" explicit.

@@ These enumerations need check on completeness and correctness.

Elements Attributes
Minimal Content

Model

par, seq,
excl

TBD TBD

begin, end, dur, repeatCount, repeatDur,
TBD

TBD

This module is mandatory in any profile incorporating SMIL modules. By that, it is
a mandatory module in any profile in the SMIL family. Note that upon building a
profile which integrates SMIL timing with other, non-SMIL, modules, that the
elements from this Timing and Synchronization module may appear as attributes to
the elements from the other XML language, rather than as these elements
themselves.

The timing attributes are used by all the elements in the Media Object Module , the
Linking Module , the Content Control Module , and the Timing and Synchronization
Module . Effectuation applies only when those Modules are part of the profile, of
course. As upon integration with non-SMIL modules, the elements from this module

2424 Feb 2000 08:26

SMIL Modularization

may appear as attributes instead of elements, the referenced timing attributes are
also used by those non-SMIL elements.

2.2.9 Transition Effects Module
The Transition Effects Module defines a taxonomy of transition effects as well as
semantics and syntax for integrating these effects into XML documents

Elements Attributes Minimal Content Model

TBD TBD TBD

When this module is used, it adds the TBD element to the content model of the
layout element of the Layout Module.

2.3 Isomorphism
A requirement for SMIL modularization is that the modules be isomorphic with other
modules from other W3C recommendations. Isomorphism will assist designers when
sharing modules across profiles. The Table below lists the isomorphism between
SMIL and XHTML modules.

24 Feb 2000 08:2625

SMIL Modularization

Table -- Isomorphism between SMIL modules and their corresponding XHTML
modules.

SMIL modules XHTML modules

Module Name Elements Module Name Elements

Animation
animate, set,
animateMotion,
animationColor

- -

Content Control switch - -

Layout
layout, region,
root-layout

Stylesheet style

Linking a, area

Hypertext a

Client-side Image
Map

map, area

Media Object
ref, audio, video, text,
img, animation,
textstream

Object object, param

Image img

Applet applet, param

Metainformation meta

Metainformation meta

Link link

Base base

Structure smil, head, body Structure
html, head,
body, title,
span, div

Timing and
Synchronization

par, seq, excl - -

Transition Effects transition - -

As can be seen in the table, the Metainformation module appears in both SMIL
and HTML. Work is underway to define a single module that can be shared by both
SMIL and HTML. In SMIL Boston the Linking Module has been adapted towards
isomorphism with the corresponding modules in XHTML.

2624 Feb 2000 08:26

SMIL Modularization

2.4 Multimedia Profiles
There are a range of possible profiles that may be built using SMIL modules. Four
profiles are defined to inform the reader of how profiles may be constructed to solve
particular problems:

Lightweight Presentations Profile
SMIL-Boston Profile
SMIL-Basic Profile
HTML+SMIL Profile
Web Enhanced Media Profile

These example profiles are non-normative.

2.4.1 Lightweight Presentations Profile
The Lightweight Presentations Profile handles simple presentations, supporting
timing of text content. The simplest version of this could be used to sequence stock
quotes or headlines on constrained devices such as a palmtop device or a smart
phone. This example profile might include the following SMIL modules:

Timing and Synchronization Module
Transition Effects Module
Animation Module

This profile may be based on XHTML modules [XMOD] with the addition of Timing
and Synchronization Module.

2.4.2 SMIL-Boston Profile
The SMIL-Boston Profile supports the timeline-centric multimedia features found in
language of the SMIL family. This profile is specified in the SMIL Boston Profile and
includes the following SMIL modules:

Structure Module
Metainformation Module
Timing and Synchronization Module
Transition Effects Module
Animation Module
Content Control Module
Media Object Module
Layout Module
Linking Module

24 Feb 2000 08:2627

SMIL Modularization

2.4.3 SMIL-Basic Profile
The SMIL-Basic Profile supports a leightweight version of the SMIL-Boston profile
and is intended for use with resource-constrained devices such as mobile phones.
This profile is part of the SMIL family and might include the following SMIL modules:

@@ Keep aligned with the requirements document.

Structure Module
Timing and Synchronization Module
Layout Module
Media Object Module
Linking Module

2.4.4 HTML+SMIL Profile
The HTML+SMIL Profile integrates SMIL timing into HTML. This profile is specified
in the HTML+SMIL Profile and includes the following SMIL modules:

Timing and Synchronization Module
Transition Effects Module
Animation Module
Content Control Module
Media Object Module
Linking Module

This profile uses XHTML modules for structure and layout and SMIL modules for
multimedia and timing. Since the Linking modules from the XHTML modules [XMOD]
and the SMIL modules are isomorphic, basically the Linking Module may come from
either module set. However, the SMIL Linking Module adds some additional
attributes and semantics.

@@ Aren’t these attributes and semantics already added through the Timing &
Synchronization Module?

2.4.5 Web Enhanced Media Profile
The Web Enhanced Media Profile supports the integration of multimedia
presentations with broadcast or on-demand streaming media. The primary media will
often define the main timeline. This profile might include the following SMIL modules:

Timing and Synchronization Module
Transition Effects Module
Media Object Module
Linking Module

2824 Feb 2000 08:26

SMIL Modularization

This profile is a lightweight version of the HTML+SMIL Profile in that it supports a
smaller subset of functionality taken from the XHTML and SMIL modules. It differs
from the SMIL-Basic Profile through its integration with XHTML.

24 Feb 2000 08:2629

SMIL Modularization

3024 Feb 2000 08:26

SMIL Modularization

3. The SMIL Animation Module
Editors

Patrick Schmitz (pschmitz@microsoft.com), (Microsoft)
Aaron Cohen (aaron.m.cohen@intel.com), (Intel)
Ken Day (kday@macromedia.com), (Macromedia)

3.1 Introduction
@@ "SMIL Boston" is used here for clarity -- need to distinguish SMIL 1.0, the
(standalone) SMIL Animation module now in "last call", and this module. This will be
corrected prior to going to Last Call.

This section defines the SMIL Boston Animation module. SMIL animation is a
framework for incorporating animation onto a time line and a mechanism for
composing the effects of multiple animations. It includes a set of basic animation
elements that can be applied to any XML-based language. Since these elements
and attributes are defined in a module, designers of other markup languages can
reuse the functionality in the SMIL animation module when they need to include
animation in their language.

This module is built upon the functionality of the first version of the SMIL
Animation [SMIL-ANIMATION] module, currently in last call. The timing model
included in the first version is in turn based upon SMIL 1.0 [SMIL10], with some
changes and extensions to support interactive (event-based) timing. The extensions
in that version of Antimation are compatible with a core subset of the functionality
expected to be included in the SMIL Timing module.

This two-version approach has been used in order to facilitate release of a first
version of SMIL Animation well before SMIL will be ready to go to Recommendation
status.

In this version, the SMIL animation module has been reworked to directly use the
SMIL timing module. It does not redefine timing markup specifically for the purpose
of animation. It has also been extended to include time containers like <par> and
<seq>, which were not supported in the first version.

The reader is presumed to have read and be familiar with the SMIL Timing
module, on which this module depends.

While this document defines a base set of animation capabilities, it is assumed
that host languages may build upon the support to define additional and/or more
specialized animation elements. Animation only manipulates attributes and
properties of the target elements, and so does not require any knowledge of the
target element semantics beyond basic type information.

The examples in this document that include syntax for a host language use SMIL,
SVG, XHTML and CSS. These are provided as an indication of possible integrations
with various host languages. @@May be changed to SMIL-only examples prior to
going to Recommendation.

24 Feb 2000 08:2631

Animation Module

Unresolved intra-SMIL references

@@@ Refs to other SMIL modules, to be fixed:

[wd-timing-repeatAttrs]
Definition of repeatCount & repeatDur attrs.

[wd-timing-TimingAndRealWorldClockTime]
This was a section in the "standalone" draft. Is there a counterpart in the Timing
module?

[wd-timing-Restart]
Definition of restart

[wd-timing-TimingAttrsEntity]
DTD for timing attributes

[wd-timing-PropagatingTimes]
This was a section in the "standalone" draft. Is there a counterpart in the Timing
module?

[wd-some-IDAttribute]
Definition of the ID attribute.

3.2 Overview and terminology

3.2.1 Basics of animation
Animation is inherently time-based. SMIL animation is defined in terms of the SMIL
timing model. The animation capabilities are described by new elements with
associated attributes and semantics, as well as the SMIL timing attributes. Animation
is modeled as a function that changes the presented value of a specific attribute over
time.

Animation is defined as a time-based manipulation of a target element (or more
specifically of some attribute of the target element, the target attribute). The
animation defines a mapping of time to values for the target attribute. This mapping
takes into account all aspects of timing, as well as animation-specific semantics. It is
based on an animation function that produces a value for the target attribute for any
time within the simple duration.

The target attribute is the name of a feature of a target element as defined in a
host language document. This may be (e.g.) an XML attribute contained in the
element or a CSS property that applies to the element. By default, the target
element of an animation will be the parent of the animation element (an animation
element is typically a child of the target element). However, the target may be any
element in the document, identified either by an ID reference or via an XLink [XLINK]
locator reference.

When an animation is running, it does not actually change the attribute values in
the DOM [DOM2]. The animation runtime must maintain a presentation value for
each animated attribute, separate from the DOM or CSS Object Model (OM). If an
implementation does not support an object model, it must maintain the original value

3224 Feb 2000 08:26

Animation Module

as defined by the document as well as the presentation value. The presentation
value is reflected in the display form of the document. Animations thus manipulate
the presentation value, and do not affect the base value exposed by DOM or CSS
OM.

The animation function is evaluated as needed over time by the implementation,
and the resulting values are applied to the presentation value for the target
attribute. Animation functions are continuous in time and can be sampled at
whatever frame rate is appropriate for the rendering system. The syntactic
representation of the animation function is independent of this model, and may be
described in a variety of ways. The animation elements in this specification support
syntax for a set of discrete or interpolated values, a path syntax for motion based
upon SVG paths, key-frame based timing, evenly paced interpolation, and variants
on these features. Animation functions could be defined that were purely or partially
algorithmic (e.g. a random value function or a motion animation that tracks the
mouse position) . In all cases, the animation exposes this as a function of time.

The presentation value reflects the effect of the animation upon the base value.
The effect is the change to the value of the target attribute at any given time. When
an animation completes, the effect of the animation is no longer applied, and the
presentation value reverts to the base value by default. The animation effect can
also be extended to freeze the last value for the length of time determined by the
semantics of the fill attribute.

Animations can be defined to either override or add to the base value of an
attribute. In this context, the base value may be the DOM value, or the result of other
animations that also target the same attribute. This more general concept of a base
value is termed the underlying value.Animations that add to the underlying value are
described as additive animations. Animations that override the underlying value are
referred to as non-additive animations.

As a simple example, the following defines an animation of an SVG rectangle
shape. The rectangle will change from being tall and thin to being short and wide.

<rect ...>
 <animate attributeName="width" from="10px" to="100px"
 begin="0s" dur="10s" />
 <animate attributeName="height" from="100px" to="10px"
 begin="0s" dur="10s" />
</rect>

The rectangle begins with a width of 10 pixels and increases to a width of 100
pixels over the course of 10 seconds. Over the same ten seconds, the height of the
rectangle changes from 100 pixels to 10 pixels.

3.2.2 Animation function values
Many animations specify the animation function f(t) as a sequence of values to be
applied over time. For some types of attributes (e.g. numbers), it is also possible to
describe an interpolation function between values.

24 Feb 2000 08:2633

Animation Module

As a simple form of describing the values, animation elements can specify a from
value and a to value. If the attribute takes values that support interpolation (e.g. a
number), the animation function can interpolate values in the range defined by from
and to, over the course of the simple duration. A variant on this uses a by value in
place of the to value, to indicate an additive change to the attribute.

More complex forms specify a list of values, or even a path description for motion.
Authors can also control the timing of the values, to describe "key-frame"
animations, and even more complex functions.

3.2.3 Symbols used in the semantic descriptions

f(t)
The simple animation function that maps times within the simple duration to
values for the target attribute (0 <= t <= simple duration). Note that while F(t)
defines the mapping for the entire animation, f(t) has a simplified model that
just handles the simple duration.

F(t)
The effect of an animation for any point in the animation. This maps any
non-negative time to a value for the target attribute. A time value of 0
corresponds to the time at which the animation begins. Note that F(t)
combines the animation function f(t) with all the other aspects of animation
and timing controls.

B
The begin of an animation.

d
The simple duration of an animation.

AD
The active duration of an animation. This is the period during which time is
actively advancing for the animation. This includes any effect of repeating the
simple duration, but does not include the time during which the animation may
be frozen.

AE
The active end. This is the end of the active duration of an animation.

3.3 Animation model
This section describes the attribute syntax and semantics for describing animations.
The specific elements are not described here, but rather the common concepts and
syntax that comprise the model for animation. Document issues are described, as
well as the means to target an element for animation. The animation model is then
defined by building up from the simplest to the most complex concepts: first the
simple duration and animation function f(t) , and then the overall behavior F(t) .
Finally, the model for combining animations is presented, and additional details of
implications of the timing model on animation are described.

3424 Feb 2000 08:26

Animation Module

3.3.1 Specifying the animation target
The animation target is defined as a specific attribute of a particular element. The
means of specifying the target attribute and the target element are detailed in this
section.

The Target attribute

The target attribute to be animated is specified with attributeName . The value of
this attribute is a string that specifies the name of the target attribute, as defined in
the host language.

The attributes of an element that can be animated are often defined by different
languages, and/or in different namespaces. For example, in many XML applications,
the position of an element (which is a typical target attribute) is defined as a CSS
property rather than as XML attributes. In some cases, the same attribute name is
associated with attributes or properties in more than one language, or namespace.
To allow the author to disambiguate the name mapping, an additional attribute
attributeType is provided that specifies the intended namespace.

The attributeType attribute is optional. By default, the animation runtime will
resolve the names according to the following rule: If there is a name conflict and
attributeType is not specified, the CSS namespace is matched first (if CSS is
supported in the host language), followed by the default namespace for the target
element.

If a target attribute is defined in an XML Namespace other than the default
namespace for the target element, the author must specify the namespace of the
target attribute using the associated namespace prefix as defined in the scope of the
target element. The prefix is prepended to the value for attributeName .

For more information on XML namespaces, see [XML-NS].

attributeName = <attributeName>
Specifies the name of the target attribute. An XMLNS prefix may be used to
indicate the XML namespace for the attribute. The prefix will be interpreted in
the scope of the target element.

attributeType = "CSS" | "XML" | "auto "

Specifies the namespace in which the target attribute and its associated values
are defined. The attribute value is one of the following (values are
case-sensitive):
"CSS"

This specifies that the value of "attributeName" is the name of a CSS
property, as defined for the host document. This argument value is only
meaningful in host language environments that support CSS.

"XML"
This specifies that the value of "attributeName" is the name of an XML
attribute defined in the default XML namespace for the target element. If the
value for attributeName has an XMLNS prefix, the implementation must

24 Feb 2000 08:2635

Animation Module

use the associated namespace as defined in the scope of the target
element.

"auto"
The implementation should match the attributeName to an attribute for the
target element. The implementation must first search through the CSS
namespace for a matching property name, and if none is found, search the
XML namespace.
This is the default.

The Target element

An animation element can define the target element of the animation either explicitly
or implicitly. An explicit definition uses an attribute to specify the target element. The
syntax for this is described below.

If no explicit target is specified, the implicit target element is the parent element of
the animation element in the document tree. It is expected that the common case will
be that an animation element is declared as a child of the element to be animated. In
this case, no explicit target need be specified.

If an explicit target element reference cannot be resolved (e.g. no such element
can be found), the animation has no effect. In addition, if the target element (either
implicit or explicit) does not support the specified target attribute, the animation has
no effect. See also Handling syntax errors .

The following two attributes can be used to identify the target element explicitly:

targetElement = "<IDREF>"
This attribute specifies the target element to be animated. The attribute value
must be the value of an XML identifier attribute of an element within the host
document. For a formal definition of "IDREF", refer to XML 1.0 [XML10].

href = uri-reference
This attribute specifies an XLink locator, referring to the target element to be
animated.

When integrating animation elements into the host language, the language
designer should avoid including both of these attributes. If however, both attributes
must be included in the host language, and they both occur in an animation element,
the XLink "href" attribute takes precedence over the "targetElement" attribute.

The advantage of using a "targetElement" attribute is the simpler syntax of the
attribute value compared to the "href" attribute. The advantage of using the XLink
"href" attribute is that it is extensible to a full linking mechanism in future versions of
SMIL Animation, and the animation element can be processed by generic XLink
processors. The XLink form is also provided for host languages that are designed to
use XLink for all such references. The following two examples illustrate the two
approaches.

3624 Feb 2000 08:26

Animation Module

This example uses the simpler targetElement syntax:

<animate targetElement="foo" attribute="bar" .../>

This example uses the more flexible XLink locater syntax, with the equivalent
target.

<animate href="#foo" attribute="bar" .../>

When using an XLink "href" attribute on an animation element, the following
additional XLink attributes need to be defined in the host language. These may be
defined in a DTD, or the host language may require these in the document syntax to
support generic XLink processors. For more information, refer to the "XML Linking
Language (XLink)" [XLINK].

The following XLink attributes are required by the XLink specification. The values
are fixed, and so may be specified as such in a DTD. All other XLink attributes are
optional, and do not affect SMIL Animation semantics.

type = ’simple’
Identifies the type of XLink being used. To link to the target element, a simple
link is used, and thus the attribute value is fixed to "simple".

actuate = ’onLoad’
Indicates that the link to the target element is followed automatically (i.e.,
without user action).
@@ This may be in conflict with the Linking module. OTOH, for our purposes it
means basically the same thing. Need to be consistent, of course.

show = ’embed’
Indicates that the reference does not include additional content in the file.

Additional details on the target element specification as relates to the host
document and language are described in Required definitions and constraints on
animation targets .

3.3.2 Specifying the animation function f(t)
Every animation function defines the value of the attribute at a particular moment in
time. The time range for which the animation function is defined is the simple
duration. The animation function does not produce defined results for times outside
the range of 0 to the simple duration.

The animation is described either as a list of values, or in a simplified form that
describes the from, to and by values.

from = "<value> "
Specifies the starting value of the animation.

to = "<value> "
Specifies the ending value of the animation.

24 Feb 2000 08:2637

Animation Module

by = "<value> "
Specifies a relative offset value for the animation.

values = "<list> "
A semicolon-separated list of one or more values. Vector-valued attributes are
supported using the vector syntax of the attributeType domain.

The animation values specified in the animation element must be legal values for
the specified attribute. See also Animation function value details .

Leading and trailing white space, and white space before and after semi-colon
separators, will be ignored.

If any values are not legal, the animation will have no effect (see also Handling
Syntax Errors).

If a list of values is used, the animation will apply the values in order over the
course of the animation (pacing and interpolation between these values is described
in "Animation function calculation modes ", below. If a list of values is specified, any
from, to and by attribute values are ignored.

The simpler from/to/by syntax provides for several variants. Note that from is
optional, but that one of by or to must be used (unless of course a list of values is
provided). It is not legal to specify both by and to attributes - if both are specified,
only the to attribute will be used (the by will be ignored). The combinations of
attributes yield the following classes of animation:

from-to animation
Specifying a from value and a to value defines a simple animation, equivalent
to a values list with 2 values. The animation function is defined to start with the
from value, and to finish with the to value.

from-by animation
Specifying a from value and a by value defines a simple animation in which the
animation function is defined to start with the from value, and to change this
over the course of the simple duration d by a delta specified with the by
attribute. This may only be used with attributes that support addition (e.g. most
numeric attributes).

by animation
Specifying only a by value defines a simple animation in which the animation
function is defined to offset the underlying value for the attribute, using a delta
that varies over the course of the simple duration d, starting from a delta of 0
and ending with the delta specified with the by attribute. This may only be used
with attributes that support addition.

to animation
This describes an animation in which the animation function is defined to start
with the underlying value for the attribute, and finish with the value specified with
the to attribute. Using this form, an author can describe an animation that will
start with whatever value the attribute has originally, and will end up at the
desired to value.

3824 Feb 2000 08:26

Animation Module

The last two forms "by animation" and "to animation" have additional semantic
constraints when combined with other animations. The details of this are described
below in the section How from, to and by attributes affect additive behavior .

Interpolation and indefinite simple durations

If the simple duration of an animation is indefinite (e.g. if no dur value is specified),
interpolation is not generally meaningful. While it is possible to define an animation
function that is not based upon a defined simple duration (e.g. some random number
algorithm), most animations define the function in terms of the simple duration. If an
animation function is defined in terms of the simple duration and the simple duration
is indefinite, the first value of the animation function (i.e. f(0)) should be used
(effectively as a constant) for the animation function.

Examples

The following example using the values syntax animates the width of an SVG
shape over the course of 10 seconds, interpolating from a width of 40 to a width of
100 and back to 40.

<rect ...>
 <animate attributeName="width" values="40;100;40" dur="10s"/>
</rect>

The following "from-to animation" example animates the width of an SVG shape
over the course of 10 seconds from a width of 50 to a width of 100.

<rect ...>
 <animate attributeName="width" from="50" to="100" dur="10s"/>
</rect>

The following "from-by animation" example animates the width of an SVG shape
over the course of 10 seconds from a width of 50 to a width of 75.

<rect ...>
 <animate attributeName="width" from="50" by="25" dur="10s"/>
</rect>

The following "by animation" example animates the width of an SVG shape over
the course of 10 seconds from the original width of 40 to a width of 70.

<rect width="40"...>
 <animate attributeName="width" by="30" dur="10s"/>
</rect>

The following "to animation" example animates the width of an SVG shape over
the course of 10 seconds from the original width of 40 to a width of 100.

<rect width="40"...>
 <animate attributeName="width" to="100" dur="10s"/>
</rect>

24 Feb 2000 08:2639

Animation Module

Animation function calculation modes

By default, a simple linear interpolation is performed over the values, evenly spaced
over the duration of the animation. Additional attributes can be used for finer control
over the interpolation and timing of the values. The calcMode attribute defines the
basic method of applying values to the attribute. The keyTimes attribute provides
additional control over the timing of the animation function, associating a time with
each value in the values list. Finally, the keySplines attribute provides a means
of controlling the pacing of interpolation between the values in the values list.

calcMode = "discrete" | "linear" | "paced" | "spline "
Specifies the interpolation mode for the animation. This can take any of the
following values. The default mode is "linear", however if the attribute does not
support linear interpolation (e.g. for strings), the calcMode attribute is ignored
and discrete interpolation is always used.
"discrete"

This specifies that the animation function will jump from one value to the
next without any interpolation.

"linear"
Simple linear interpolation between values is used to calculate the
animation function.
This is the default calcMode .

"paced"
Defines interpolation to produce an even pace of change across the
animation. This is only supported for values that define a linear numeric
range, and for which some notion of "distance" between points can be
calculated (e.g. position, width, height, etc.). If "paced " is specified, any
keyTimes or keySplines will be ignored.

"spline"
Interpolates from one value in the values list to the next according to a
time function defined by a cubic Bezier spline. The points of the spline are
defined in the keyTimes attribute, and the control points for each interval
are defined in the keySplines attribute.

keyTimes = "<list> "
A semicolon-separated list of time values used to control the pacing of the
animation. Each time in the list corresponds to a value in the values attribute
list, and defines when the value should be used in the animation function. Each
time value in the keyTimes list is specified as a floating point value between 0
and 1 (inclusive), representing a proportional offset into the simple duration of
the animation element.
If a list of keyTimes is specified, there must be exactly as many values in the
keyTimes list as in the values list.
Each successive time value must be greater than or equal to the preceding time
value.
The keyTimes list semantics depends upon the interpolation mode:

For linear and spline animation, the first time value in the list must be 0, and
the last time value in the list must be 1. The keyTime associated with each

4024 Feb 2000 08:26

Animation Module

value defines when the value is set; values are interpolated between the
keyTimes.
For discrete animation, the first time value in the list must be 0. The
keyTime associated with each value defines when the value is set; the
animation function uses each value until the next keyTime defined.

If there are any errors in the keyTimes specification (bad values, too many or
too few values), the animation will have no effect
If the simple duration is indefinite, any <code>keyTimes</code> specification
will be ignored.

keySplines = "<list> "
A set of Bezier control points associated with the keyTimes list, defining a
cubic Bezier function that controls interval pacing. The attribute value is a
semi-colon separated list of control point descriptions. Each control point
description is a set of four floating point values: x1 y1 x2 y2 , describing the
Bezier control points for one time segment. The keyTimes values that define
the associated segment are the Bezier "anchor points", and the keySplines
values are the control points.
Thus, there must be one fewer sets of control points than there are keyTimes .
The values must all be in the range 0 to 1.
This attribute is ignored unless the calcMode is set to "spline".
If there are any errors in the keySplines specification (bad values, too many
or too few values), the animation will have no effect.

If the keyTimes attribute is not specified, the values in the values attribute are
assumed to be equally spaced through the animation duration, according to the
calcMode :

For discrete animation, the duration is divided into equal time periods, one per
value. The animation function takes on the values in order, one value for each
time period.
For linear and spline animation, the duration is divided into n-1 even periods,
and the animation function is a linear interpolation between the values at the
associated times. Note that a linear animation will be a nicely closed loop if the
first value is repeated as the last.

Note that for the shorthand forms to animation and from-to animation, there are
only 1 and 2 values respectively. Thus a discrete to animation will simply set the "to"
value for the simple duration. A discrete from-to animation will set the "from" value
for the first half of the simple duration and the "to" value for the second half of the
simple duration.

Note that if the calcMode is set to "paced", the keyTimes attribute is ignored,
and the values in the values attribute are spaced to produce a constant rate of
change as the target attribute value is interpolated.

24 Feb 2000 08:2641

Animation Module

If the argument values for keyTimes or keySplines are not legal (including too
few or too many values for either attribute), the animation will have no effect (see
also Handling syntax errors).

In the calcMode , keyTimes and keySplines attribute values, leading and
trailing white space and white space before and after semi-colon separators will be
ignored.

Examples

This example describes a somewhat unusual usage: "from-to animation" with
discrete animation. The "stroke-linecap" attribute of SVG elements takes a string,
and so implies a calcMode of discrete. The animation will set the stroke-linecap
property to "round" for 5 seconds (half the simple duration) and then set the
stroke-linecap to "square" for 5 seconds.

<rect stroke-linecap="butt"...>
 <animate attributeName="stroke-linecap"
 from="round" to="square" dur="10s"/>
</rect>

This example illustrates the use of keyTimes :

<animate attributeName="x" dur="10s" values="0; 50; 100"
 keyTimes="0; .8; 1" calcMode="linear" />

The keyTimes values causes the "x" attribute to have a value of "0" at the start of
the animation, "50" after 8 seconds (at 80% into the simple duration) and "100" at
the end of the animation. The value will change more slowly in the first half of the
animation, and more quickly in the second half.

Extending this example to use keySplines :

<animate attributeName="x" dur="10s" values="0; 50; 100"
 keyTimes="0; .8; 1" calcMode="spline"
 keySplines =".5 0 .5 1; 0 0 1 1" />

The keyTimes still causes the "x" attribute to have a value of "0" at the start of the
animation, "50" after 8 seconds and "100" at the end of the animation. However, the
keySplines values define a curve for pacing the interpolation between values. In
the example above, the spline causes an ease-in and ease-out effect between time
0 and 8 seconds (i.e. between keyTimes 0 and .8, and values "0" and "50"), but a
strict linear interpolation between 8 seconds and the end (i.e. between keyTimes .8
and 1, and values "50" and "100"). See Figure 1 below for an illustration of the
curves that these keySplines values define.

For some attributes, the pace of change may not be easily discernable by viewers.
However for animations like motion, the ability to make the speed of the motion
change gradually, and not in abrupt steps, can be important. The keySplines
attribute provides this control.

4224 Feb 2000 08:26

Animation Module

The following figure illustrates the interpretation of the keySplines attribute.
Each diagram illustrates the effect of keySplines settings for a single interval (i.e.
between the associated pairs of values in the keyTimes and values lists.). The
horizontal axis can be thought of as the input value for the unit progress of
interpolation within the interval - i.e. the pace with which interpolation proceeds along
the given interval. The vertical axis is the resulting value for the unit progress,
yielded by the keySplines function. Another way of describing this is that the
horizontal axis is the input unit time for the interval, and the vertical axis is the output
unit time. See also the section Timing and real-world clock times .

keySplines="0 0 1 1" (the default)

keySplines=".5 0 .5 1"

keySplines="0 .75 .25 1"

keySplines="1 0 .25 .25"

Figure - Illustration of keySplines effect.

To illustrate the calculations, consider the simple example:

<animate dur="4s" values="10; 20" keyTimes="0; 1"
 calcMode="spline" keySplines ={as in table} />

Using the keySplines values for each of the four cases above, the approximate
interpolated values as the animation proceeds are:

24 Feb 2000 08:2643

Animation Module

keySplines values Initial value After 1s After 2s After 3s Final value

0 0 1 1 10.0 12.5 15.0 17.5 20.0

.5 0 .5 1 10.0 11.0 15.0 19.0 20.0

0 .75 .25 1 10.0 18.0 19.3 19.8 20.0

1 0 .25 .25 10.0 10.1 10.6 16.9 20.0

For a formal definition of Bezier spline calculation, see [Foley] pp. 488-491.

3.3.3 Specifying the animation effect F(t)
As described above, the animation function f(t) defines the animation for the
simple duration. However SMIL Animation allows the author to repeat this, and to
specify whether the animation should simply end when the active duration
completes, or whether it should be frozen at the last value. In addition, the author
can specify how each animation should be combined with other animations and the
underlying DOM value.

This section describes the syntax and associated semantics for the additional
functionality. A detailed model for combining animations is described, along with
additional details of implications of the timing model.

Repeated animations

Repeating an animation causes the animation function f(t) to be "played" several
times in sequence. The author can specify either how many times to repeat, using
the timing attribute repeatCount , or how longto repeat, using the timing attribute
repeatDur . Each repeat iteration is one instance of "playing" the animation function
f(t) . If the simple duration d is indefinite, the animation cannot repeat.

The repeatCount and repeatDur attributes are described in detail in
[wd-timing-repeatAttrs].

Examples

In the following example, the 2.5 second animation function will be repeated twice;
the active duration AD will be 5 seconds.

<animate attributeName="top" from="0" to="10" dur="2.5s"
 repeatCount="2" />

In the following example, the animation function will be repeated two full times and
then the first half is repeated once more; the active duration AD will be 7.5 seconds.

<animate attributeName="top" from="0" to="10" dur="3s"
 repeatCount="2.5" />

4424 Feb 2000 08:26

Animation Module

In the following example, the animation function will repeat for a total of 7 seconds.
It will play fully two times, followed by a fractional part of 2 seconds. This is
equivalent to a repeatCount of 2.8. The last (partial) iteration will apply values in the
range "0" to "8".

<animate attributeName="top" from="0" to="10" dur="2.5s"
 repeatDur="7s" />

In the following example, the simple duration is longer than the duration specified
by repeatDur , and so the active duration will effectively cut short the simple
duration. However, animation function still uses the specified simple duration. The
effect of the animation is to interpolate the value of "top" from 10 to 15, over the
course of 5 seconds.

<animate attributeName="top" from="10" to="20"
 dur="10s" repeatDur="5s" />

Controlling behavior of repeating animation - Cumulative animation

The author may also select whether a repeating animation should repeat the original
behavior for each iteration, or whether it should build upon the previous results,
accumulating with each iteration. For example, a motion path that describes an arc
can repeat by moving along the same arc over and over again, or it can begin each
repeat iteration where the last left off, making the animated element bounce across
the window. This is called cumulative animation.

Using the path notation for a simple arc, we describe this example as:

 <animateMotion path="c(3 5 8 5 10 0)" dur="10s"
 accumulate="sum" repeatCount="10" />

@@ Pictures would help here

The image moves from the original position along the arc over the course of 10
seconds. As the animation repeats, it builds upon the previous value and begins the
second arc where the first one ended. In this way, the image "bounces" across the
screen. This could be described as a complete path, but the path description would
get quite large, and would be more cumbersome to edit.

Note that cumulative animation only controls how a single animation accumulates
the results of the animation function as it repeats. It specifically does not control how
one animation interacts with other animations to produce a presentation value. This
latter behavior is described in the section Additive animation .

Any numeric attribute that supports addition can support cumulative animation. For
example, we can grow the "width" of an SVG "rect" element by 100 pixels in 100
seconds.

<rect width="20px"...>
 <animate attributeName="width" by="10px" dur="10s"
 accumulate="sum" repeatCount="10" />
</rect>

24 Feb 2000 08:2645

Animation Module

After 10 seconds, the rectangle is 30 pixels wide. The animation repeats, and
builds upon the previous values growing to 40 pixels after 20 pixels, and up to 120
pixels wide after all ten repeats.

The behavior of repeating animations is controlled with the accumulate attribute:

accumulate = "none" | "sum "
Controls whether or not the animation is cumulative.
"sum"

Each repeat iteration after the first builds upon the last value of the previous
iteration.

"none"
Repeat iterations are not cumulative, and simply repeat the animation
function f(t) . This is the default.

This attribute is ignored if the target attribute value does not support addition, or
if the animation element does not repeat.
Cumulative animation is not defined for "to animation". This attribute will be
ignored if the animation function is specified with only the to attribute. See also
Specifying function values .

To produce the cumulative animation behavior, the animation function f(t) must
be modified slightly. Each iteration after the first must add in the last value of the
previous iteration - this is expressed as a multiple of the last value specified for the
animation function. Note that cumulative animation is defined in terms of the values
specified for the animation behavior, and not in terms of sampled or rendered
animation values. The latter would vary from machine to machine, and could even
vary between document views on the same machine.

Let f i (t) represent the cumulative animation function for a given iteration i .

The first iteration f 0 (t) is unaffected by accumulate , and so is the same as
the original animation function definition.

f 0 (t) = f(t)

Let ve be the last value specified for the animation function (e.g. the "to" value or
the last value in a "values" list). Each iteration after the first (i.e. f i (t) where i >=
1) adds in the computed offset:

f i (t) = (ve * i) + f(t)

Freezing animations

@@ Rewrite to make reference to (and use) Timing module’s definition. (Say what it
means to freeze an animation, rather than define the fill attribute.)

By default when an animation element ends, its effect is no longer applied to the
presentation value for the target attribute. For example, if an animation moves an
image and the animation element ends, the image will "jump back" to its original
position.

4624 Feb 2000 08:26

Animation Module

 <animate begin="5s" dur="10s" attributeName="top" by="100"/>

The image will appear stationary at the top value of "3" for 5 seconds, then move
100 pixels down in 10 seconds. 15 seconds after the image begin, the animation
ends, the effect is no longer applied, and the image jumps back from 103 to 3 where
it started (i.e. to the underlying value of the top attribute).

The fill attribute can be used to maintain the value of the animation after the
active duration of the animation element ends:

 <animate begin= "5s" dur="10s" attributeName="top" by="100"
 fill="freeze" />

The animation ends 15 seconds after the image begin, but the image remains at
the top value of 103. The attribute "freezes" the last value of the animation @@ "for
the period of time defined by the fill attribute" will make sense here once this
section is rewritten.

The freeze behavior of an animation is controlled using the "fill "attribute:

fill = "freeze" | "remove "
This attribute can have the following values:
freeze

The animation effect F(t) is defined to freeze the effect value at the last
value of the active duration. The animation effect is "frozen" @@ "for the
period of time defined by the fill attribute", as above.

remove
The animation effect is removed (no longer applied) when the active
duration of the animation is over. After the active end AE of the animation,
the animation no longer affects the target (unless the animation is restarted
- see Restarting animations).
This is the default value.

@@ Need to deal with the other values for fill included in the timing module
’hold’ and maybe ’transition’

This functionality is also useful when a series of motions are defined that should
build upon one another, as in this example:

 <animateMotion begin="0" dur="5s" path=" [some path]"
 additive="sum" fill="freeze" />
 <animateMotion begin="5s" dur="5s" path=" [some path]"
 additive="sum" fill="freeze" />
 <animateMotion begin="10s" dur="5s" path=" [some path]"
 additive="sum" fill="freeze" />

24 Feb 2000 08:2647

Animation Module

The image moves along the first path, and then starts the second path from the
end of the first, then follows the third path from the end of the second, and stays at
the final point. The semantics of the additive attribute are defined in the next
section.

Note that if the active duration cuts short the simple duration (including the case of
partial repeats), then the freeze value is defined by the shortened simple duration. In
the following example, the animation function repeats two full times and then again
for one-half of the simple duration. In this case, the freeze value will be 15:

<animate from="10" to="20" dur="4s"
 repeatCount="2.5" fill="freeze" .../>

In the following example, the dur attribute is missing, and so the simple duration
is indefinite. The active duration is constrained by end to be 10 seconds. Since
interpolation is not defined, the freeze value will be 10:

<animate from="10" to="20" end="10s" fill="freeze" .../>

Additive animation

It is frequently useful to define animation using offsets or deltas from an attribute’s
value, rather than absolute values. A simple "grow" animation can increase the width
of an object by 10 pixels:

<rect width="20px" ...>
 <animate attributeName="width" from="0px" to="10px" dur="10s"
 additive="sum" />
</rect>

The width begins at 20 pixels, and increases to 30 pixels over the course of 10
seconds. If the animation were declared to be non-additive, the same from and to
values would make the width go from 0 to 10 pixels over 10 seconds.

In addition, many complex animations are best expressed as combinations of
simpler animations. A "vibrating" path, for example, can be described as a repeating
up and down motion added to any other motion:

 <animateMotion from="0,0" to="100,0" dur="10s" />
 <animateMotion values="0,0; 0,5; 0,0" dur="1s"
 repeatDur="10s" additive="sum" />

When there are multiple animations defined for a given attribute that overlap at
any moment, the two either add together or one overrides the other. Animations
overlap when they are both either active or frozen at the same moment. The
ordering of animations (e.g. which animation overrides which) is determined by a
priority associated with each animation. The animations are prioritized according to
when each begins. The animation first begun has lowest priority and the most
recently begun animation has highest priority.

4824 Feb 2000 08:26

Animation Module

Higher priority animations that are not additive will override all earlier animations,
and simply set the attribute value. Animations that are additive apply (i.e. add to) to
the result of the earlier-activated animations. For details on how animations are
combined, see The animation sandwich model .

The additive behavior of an animation is controlled by the additive attribute:

additive = "replace" | "sum "
Controls whether or not the animation is additive.
"sum"

Specifies that the animation will add to the underlying value of the attribute
and other lower priority animations.

"replace"
Specifies that the animation will override the underlying value of the
attribute and other lower priority animations. This is the default, however
the behavior is also affected by the animation value attributes by and to ,
as described in "How from, to and by attributes affect additive behavior ",
below.

This attribute is ignored if the target attribute does not support additive
animation.

The host language must specify which attributes support additive animation. It
may be defined for numeric attributes and other data types for which an addition
function is defined. This may include numeric attributes for concepts such as
position, widths and heights, sizes, etc. It also may include color (refer to The
animateColor element) and other data types as specified by the host language.
Some numeric attributes (e.g. a telephone number attribute) may not sensibly
support addition.

Attribute types such as strings and Booleans, for which addition is not defined,
cannot support additive animation.

While many animations of numerical attributes will be additive, this is not always
desired. As an example of an animation that is defined to be non-additive, consider a
hypothetical extension animation "mouseFollow" that causes an object to track the
mouse.

 <animateMotion dur=10s repeatDur="indefinite"
 path="[some nice path]" />
 <mouseFollow begin="mouseover" dur="5s"
 additive="replace" fill="remove" />

The mouse-tracking animation runs for 5 seconds every time the user mouses
over the image. It cannot be additive, or it will just offset the motion path in some odd
way. The mouseFollow needs to override the animateMotion while it is active.
When the mouseFollow completes, its effect is no longer applied and the
animateMotion again controls the presentation value for position.

24 Feb 2000 08:2649

Animation Module

How from, to and by attributes affect additive behavior.

The attribute values to and by , used to describe the animation function , can
override the additive attribute in certain cases:

If by is used without from , the animation is defined to be additive (i.e. the
equivalent of additive="sum").
If to is used without from (i.e. a "to animation"), and if the attribute supports
addition, the animation is defined to be a kind of mix of additive and
non-additive. The underlying value is used as a starting point as with additive
animation, however the ending value specified by the to attribute overrides the
underlying value as though the animation was non-additive.

For the hybrid case of a "to-animation", the animation function f(t) is defined in
terms of the underlying value, the specified to value, and the current value of t (i.e.
time) relative to the simple duration d.

v cur is the current base value (at time t)
v to is the defined "to" value

f(t) = v cur + ((v to - v cur) * (t/d))

Note that if no other (lower priority) animations are active or frozen, this defines
simple interpolation. However if another animation is manipulating the base value,
the "to-animation" will add to the effect of the lower priority, but will dominate it as it
nears the end of the simple duration, eventually overriding it completely. The value
for F(t) when a "to-animation" is frozen (at the end of the simple duration) is just
the to value. If a "to-animation" is frozen anywhere within the simple duration (e.g.
using a repeatCount of "2.5"), the value for F(t) when the animation is frozen is the
value computed for the end of the active duration. Even if other, lower priority
animations are active while a "to-animation" is frozen, the value for F(t) does not
change.

For an example of additive "to-animation", consider the following two additive
animations. The first, a "by-animation" applies a delta to attribute "x" from 0 to -10.
The second, a "to-animation" animates to a final value of 10.

 <foo x="0" .../>
 <animate id="A1" attributeName="x"
 by="-10" dur="10s" fill="freeze" />
 <animate id="A2" attributeName="x"
 to="10" dur="10s" fill="freeze" />
 </foo>

The presentation value for "x" in the example above, over the course of the 10
seconds is presented in Figure 2 below. These values are simply computed using
the formula described above. Note that the value for F(t) for A2 is the presentation
value for "x".

5024 Feb 2000 08:26

Animation Module

Time F(t) for A1 F(t) for A2

 0 0 0

 1 -1 0.1

 2 -2 0.4

 3 -3 0.9

 4 -4 1.6

 5 -5 2.5

 6 -6 3.6

 7 -7 4.9

 8 -8 6.4

 9 -9 8.1

10 -10 10

Figure 2 - Effect of Additive to-animation example

Additive and Cumulative animation

The "accumulate " attribute should not be confused with the "additive " attribute.
The "additive " attribute defines how an animation is combined with other
animations and the base value of the attribute. The "accumulate " attribute defines
only how the animation function interacts with itself, across repeat iterations.

Typically, authors expect cumulative animations to be additive (as in the examples
described for accumulate above), but this is not required. The following example
is not additive.

 <animate dur="10s" repeatDur="indefinite"
 attributeName="top" from="20" by="10"
 additive="replace" accumulate="sum" />

The animation overrides whatever original value was set for "top", and begins at
the value 20. It moves down by 10 pixels to 30, then repeats. It is cumulative, so the
second iteration starts at 30 and moves down by another 10 to 40. Etc.

When a cumulative animation is also defined to be additive, both features function
normally. The accumulated effect for F(t) is used as the value for the animation,
and is added to the underlying value for the target attribute. Refer also to The
animation sandwich model .

24 Feb 2000 08:2651

Animation Module

Restarting animations

Animation elements follow the definition of restart in the SMIL Timing module. This
section is descriptive.

When an animation restarts, the defining semantic is that it behaves as though this
were the first time the animation had begun, independent of any earlier behavior.
The animation effect F(t) is defined independent of the restart behavior. Any effect
of an animation playing earlier is no longer applied, and only the current animation
effect F(t) is applied.

If an additive animation is restarted while it is active or frozen, the previous effect
of the animation (i.e. before the restart) is no longer applied to the attribute. Note in
particular that cumulative animation is defined only within the active duration of an
animation. When an animation restarts, all accumulated context is discarded, and
the animation effect F(t) begins accumulating again from the first iteration of the
restarted active duration.

3.3.4 Handling syntax errors
The specific error handling mechanisms for each attribute are described with the
individual syntax descriptions. However, some of these specifications describe the
behavior of an animation with syntax errors as "having no effect". This means that
the animation will continue to behave normally with respect to timing, but will not
manipulate any presentation value, and so will have no visible impact upon the
presentation.

In particular, this means that if other animation elements are defined to begin or
end relative to an animation that "has no effect", the other animation elements will
begin and end as though there were no syntax errors. The presentation runtime may
indicate an error, but need not halt presentation or animation of the document. Some
host languages and/or runtimes may choose to impose stricter error handling (see
also Error handling semantics for a discussion of host language issues with error
handling). Authoring environments may also choose to be more intrusive when
errors are detected.

3.3.5 The animation sandwich model
When an animation is running, it does not actually change the attribute values in the
DOM. The animation runtime must maintain a presentation value for any target
attribute, separate from the DOM, CSS, or other object model (OM) in which the
target attribute is defined. The presentation value is reflected in the display form of
the document. The effect of animations is to manipulate this presentation value, and
not to affect the underlying DOM or CSS OM values.

The remainder of this discussion uses the generic term OM for both the XML DOM
[DOM2] as well as the CSS-OM. If an implementation does not support an object
model, it must maintain the original value as defined by the document as well as the
presentation value; for the purposes of this section, we will consider this original

5224 Feb 2000 08:26

Animation Module

value to be equivalent to the value in the OM.

The model accounting for the OM and concurrently active or frozen animations for
a given attribute is described as a "sandwich", an analogy to the layers of meat and
cheeses in a "submarine sandwich". On the bottom of the sandwich is the base
value taken from the OM. Each active (or frozen) animation is a layer above this.
The layers (i.e. the animations) are placed on the sandwich in order according to
priority, with higher priority animations placed above lower priority animations. Note
that animations manipulate the presentation value coming out of the OM in which the
attribute is defined, and pass the resulting value on to the next layer of document
processing. This does not replace or override any of the normal document OM
processing cascade.

Specifically, animating an attribute defined in XML will modify the presentation
value before it is passed through the style sheet cascade, using the XML DOM value
as its base. Animating an attribute defined in a style sheet language will modify the
presentation value passed through the remainder of the cascade.

In both the DOM 2 CSS-OM and in CSS2, the terms "specified", "computed" and
"actual" are used to describe the results of evaluating the syntax, the cascade and
the presentation rendering. When animation is applied to CSS properties of a
particular element, the base value to be animated is read using the (readonly)
getComputedStyle() method on that element. The values produced by the
animation are written into an override stylesheet for that element, which may be
obtained using it’s getOverrideStyle() method. These new values then affect
the cascade and are reflected in a new computed value (and thus, modified
presentation). This means that the effect of animation overrides all style sheet rules,
except for user rules with the !important property. This enables !important
user style settings to have priority over animations, an important requirement for
accessibility. Note that the animation may have side-effects upon the document
layout. See also the [CSS2] specification (the terms are defined in section 6.1).

Within an OM, animations are prioritized according to when each begins. The
animation first begun has lowest priority and the most recently begun animation has
highest priority. When two animations start at the same moment in time, the
activation order is resolved as follows:

If one animation is a time dependent of another (e.g. it is specified to begin
when another begins), then the time dependent is considered to activate after
the syncbase element, and so has higher priority. Time dependency is further
discussed in Propagating changes to times . This rule applies independent of
the timing described for the syncbase element - i.e. it does not matter whether
the syncbase element begins on an offset, relative to another syncbase, relative
to an event-base, or via hyperlinking. In all cases, the syncbase is begun before
any time dependents are begun, and so the syncbase has lower priority than the
time dependent.
If two animations share no time dependency relationship (e.g. neither is defined
relative to the other, even indirectly) the element that appears first in the
document has lower priority. This includes the cases in which two animation

24 Feb 2000 08:2653

Animation Module

elements are defined relative to the same syncbase or event-base.

Note that if an animation is restarted (see also Restarting animations), it will
always move to the top of the priority list, as it becomes the most recently activated
animation. That is, when an animation restarts, its layer is pulled out of the
sandwich, and added back on the very top. Note also that when an element repeats,
the priority is not affected (repeat behavior is not defined as restarting).

Each additive animation adds its effect to the result of all sandwich layers below. A
non-additive animation simply overrides the result of all lower sandwich layers. The
end result at the top of the sandwich is the presentation value that must be reflected
in the document view.

Some attributes that support additive animation have a defined legal range for
values (e.g. an opacity attribute may allow values between 0 and 1). In some cases,
an animation function may yield out of range values. It is up to the implementation to
clamp the results at the top of the animation stack to the legal range before applying
them to the presentation value. However, the effect of all the animations in the stack
should be combined, before any clamping is performed. Although individual
animation functions may yield out of range values, the combination of additive
animations in the animation stack may still be legal. Clamping only the final result
and not the effect of the individual animation functions provides support for these
cases. The host language must define the clamping semantics for each attribute that
can be animated. As an example, this is defined for The animateColor element .

Initially, before any animations for a given attribute are active, the presentation
value will be identical to the original value specified in the document (the OM value).

When all animations for a given attribute have completed and the associated
animation effects are no longer applied, the presentation value will again be equal to
the OM value. Note that if any animation is defined with fill="freeze" , the effect
of the animation will be applied as long as the document is displayed, and so the
presentation value will reflect the animation effect until the document end. Refer also
to the section "Freezing animations ".

Some animations (e.g. animateMotion) will implicitlytarget an attribute, or
possibly several attributes (e.g. the "posX" and "posY" attributes of some layout
model). These animations must be placed in the respective animation stack for each
attribute that is affected. Thus, e.g. an animateMotion animation may be in more
than one animation stack (depending upon the layout model of the host language).
For animation elements that implicitly target attributes, the host language designer
must specify what attributes are implicitly targeted, and the runtime must maintain
the animation stacks accordingly.

Note that any queries (via DOM interfaces) on the target attribute will reflect the
OM value, and will not reflect the effect of animations. Note also that the OM value
may still be changed via the OM interfaces (e.g. using script). While it may be useful
or desired to provide access to the final presentation value after all animation effects
have been applied, such an interface is not provided as part of SMIL Animation. A
future version may address this.

5424 Feb 2000 08:26

Animation Module

Although animation does not manipulate the OM values, the document display
must reflect changes to the OM values. Host languages can support script
languages that can manipulate attribute values directly in the OM. If an animation is
active or frozen while a change to the OM value is made, the behavior is dependent
upon whether the animation is defined to be additive or not, as follows: (see also the
section Additive animation).

If only additive animations are active or frozen (i.e. no non-additive animations
are active or frozen for the given attribute) when the OM value is changed, the
presentation value must reflect the changed OM value as well as the effect of
the additive animations. When the animations complete and the effect of each is
no longer applied, the presentation value will be equal to the changed OM
value.
If any non-additive animation is running when the OM value is changed, the
presentation value will not reflect the changed OM value, but will only reflect the
effect of the highest priority non-additive animation, and any still higher priority
additive animations. When all non-additive animations complete and the effect
of each is no longer applied, the presentation value will reflect the changed OM
value and the effect of any additive animations that are active or frozen.

3.3.6 Implications of Timing Model for animation
The model of timing defined in the Timing module has several important results for
animation: the definition of repeat, and the value sampled during the "frozen" state.

When repeating an animation, the arithmetic follows the end-point exclusive
model. Consider the example:

 <animation dur="4s" repeatCount="4" .../>

At time 0, the simple duration is sampled at 0, and the first value is applied. This
is the inclusive begin of the interval. The simple duration is sampled normally up to 4
seconds. However, the appropriate way to map time on the active duration to time
on the simple duration is to use the remainder of division by the simple duration:

 simpleTime = REMAINDER(activeTime, d)

or

 F(t) = f(REMAINDER(t, d)) where t is within the active duration

Note: REMAINDER(t, d) is defined as t - d*floor(t/d)

Using this, a time of 4 (or 8 or 12) maps to the time of 0 on the simple duration.
The endpoint of the simple duration is excluded from (i.e. not actually sampled on)
the simple duration.

This implies that the last value of an animation function f(t) may never actually
be applied (e.g. for a linear interpolation). In the case of an animation that does not
repeat and does not specify fill="freeze" , this may in fact be the case.
However, in the following example, the appropriate value for the frozen state is
clearly the "to" value:

24 Feb 2000 08:2655

Animation Module

 <animation from="0" to="5" dur="4s" fill=freeze .../>

This does not break the interval timing model, but does require an additional
qualification for the animation function F(t) while in the frozen state:

If the active duration is an even multiple of the simple duration, the value to
apply in the frozen state is the last value defined for the animation function
f(t) .

The definition of accumulate also aligns to this model. The arithmetic is effectively
inverted and values accumulate by adding in a multiple of the last value defined for
the animation function f(t) .

3.3.7 Animation function value details
Animation function values must be legal values for the specified attribute. Three
classes of values are described:

1. Unitless scalar values . These are simple scalar values that can be parsed and
set without semantic constraints. This class includes integers (base 10) and
floating point (format specified by the host language).

2. String values . These are simple strings.
3. Language abstract values . These are values like CSS-length and CSS-angle

values that have more complex parsing, but that can yield numbers that may be
interpolated.

The animate element can interpolate unitless scalar values, and both animate
and set elements can handle String values without any semantic knowledge of the
target element or attribute. The animate and set elements must support unitless
scalar values and string values. The host language must define which language
abstract values should handled by these elements. Note that the animateColor
element implicitly handles the abstract values for color values, and that the
animateMotion element implicitly handles position and path values.

In order to support interpolation on attributes that define numeric values with some
sort of units or qualifiers (e.g. "10px", "2.3feet", "$2.99"), some additional support is
required to parse and interpolate these values. One possibility is to require that the
animation framework have built-in knowledge of the unit-qualified value types.
However, this violates the principal of encapsulation and does not scale beyond CSS
to XML languages that define new attribute value types of this form.

The recommended approach is for the animation implementation for a given host
environment to support two interfaces that abstract the handling of the language
abstract values. These interfaces are not formally specified, but are simply described
as follows:

1. The first interface converts a string (the animation function value) to a unitless,
canonical number (either an integer or a floating point value). This allows
animation elements to interpolate between values without requiring specific

5624 Feb 2000 08:26

Animation Module

knowledge of data types like CSS-length. The interface will likely require a
reference to the target attribute, to determine the legal abstract values. If the
passed string cannot be converted to a unitless scalar, the animation element
will treat the animation function values as strings, and the calcMode will default
to "discrete".

2. The second interface converts a unitless canonical number to a legal string
value for the target attribute. This may, for example, simply convert the number
to a string and append a suffix for the canonical units. The animation element
uses the result of this to actually set the presentation value.

Support for these two interfaces ensures that an animation engine need not
replicate the parser and any additional semantic logic associated with language
abstract values.

This is not an attempt to specify how an implementation provides this support, but
rather a requirement for how values are interpreted. Animation behaviors should not
have to understand and be able to convert among all the CSS-length units, for
example. In addition, this mechanism allows for application of animation to new XML
languages, if the implementation for a language can provide parsing and conversion
support for attribute values.

3.4 Animation elements
This section defines the syntax and semantics of animation elements. @@ DTD
definitions are used in this working draft. The Working Group expects to replace
them with schema-based defintions prior to Recommendation.

3.4.1 Common syntax DTD definitions
Timing attributes are defined in the SMIL Timing module.

Animation attributes

<!ENTITY % animAttrs
 attributeName CDATA #REQUIRED
 attributeType CDATA #IMPLIED
 additive (replace | sum) "replace"
 accumulate (none | sum) "none"
>

<!ENTITY % animTargetAttr
 targetElement IDREF #IMPLIED
>

<!ENTITY % animLinkAttrs
 type (simple | extended | locator | arc) #FIXED "simple"
 show (new | embed | replace) #FIXED ’embed’
 actuate (user | auto) #FIXED ’auto’
 href CDATA #IMPLIED
>

24 Feb 2000 08:2657

Animation Module

3.4.2 The animate element
The <animate> element introduces a generic attribute animation that requires little
or no semantic understanding of the attribute being animated. It can animate
numeric scalars as well as numeric vectors. It can also animate discrete sets of
non-numeric attributes. The <animate> element is an empty element - it cannot
have child elements.

This element supports from/to/by and values descriptions for the animation
function, as well as all of the calculation modes. It supports all the described timing
attributes. These are all described in respective sections above.

<!ELEMENT animate EMPTY>
<!ATTLIST animate
 % timingAttrs
 % animAttrs
 id ID #IMPLIED
 calcMode (discrete | linear | paced | spline) "linear"
 values CDATA #IMPLIED
 keyTimes CDATA #IMPLIED
 keySplines CDATA #IMPLIED
 from CDATA #IMPLIED
 to CDATA #IMPLIED
 by CDATA #IMPLIED
>

Numerous examples are provided above.

3.4.3 The set element
The <set> element provides a simple means of just setting the value of an attribute
for a specified duration. As with all animation elements, this only manipulates the
presentation value, and when the animation completes, the effect is no longer
applied. That is, <set> does not permanently set the value of the attribute.

The <set> element supports all attribute types, including those that cannot
reasonably by interpolated and that more sensibly support semantics of simply
setting a value (e.g. strings and Boolean values). The set element is non-additive.
The additive and accumulate attributes are not allowed.

The <set> element supports all the timing attributes to specify the simple and
active durations. However, the repeatCount and repeatDur attributes will just
affect the active duration of the <set> , extending the effect of the <set> (since it is
not really meaningful to "repeat" a static operation). Note that using
fill="freeze" with <set> will have the same effect as defining the timing so that
the active duration is "indefinite".

The <set> element supports a more restricted set of attributes than the
<animate> element (in particular, only one value is specified, and no interpolation
control is supported):

5824 Feb 2000 08:26

Animation Module

<!ELEMENT set EMPTY>
<!ATTLIST set
 % timingAttrs
 id ID #IMPLIED
 attributeName CDATA #REQUIRED
 attributeType CDATA #IMPLIED
 to CDATA #IMPLIED
>

to = "<value> "
Specifies the value for the attribute during the duration of the <set> element.
The argument value must match the attribute type.

Examples

The following changes the stroke-width of an SVG rectangle from the original
value to 5 pixels wide. The effect begins at 5 seconds and lasts for 10 seconds, after
which the original value is again used.

<rect ...>
 <set attributeName="stroke-width" to="5px"
 begin="5s" dur="10s" fill="remove" />
</rect>

The following example sets class attribute of the text element to the string
"highlight" when the mouse moves over the element, and removes the effect when
the mouse moves off the element.

<text>This will highlight if you mouse over it...
 <set attributeName="class" to="highlight"
 begin="mouseover" end="mouseout" />
</text>

3.4.4 The animateMotion element
In order to abstract the notion of motion paths across a variety of layout
mechanisms, we introduce the <animateMotion> element. This describes motion
in the abstract - the host language defines the layout model and must specify the
precise semantics of motion.

All values must be x, y value pairs. Each x and y value may specify any units
supported for element positioning by the host language. The host language defines
the default units. In addition, the host language defines the reference point for
positioning an element. This is the point within the element that is aligned to the
position described by the motion animation. The reference point defaults in some
languages to the upper left corner of the element bounding box; in other languages
(such as SVG) the reference point may be specified for the element.

The attributeName and attributeType attributes are not used with
animateMotion , as the manipulated position attribute(s) are defined by the host
language. If the position is exposed as an attribute or attributes that can also be
animated (e.g. as "top" and "left", or "posX" and "posY"), implementations must
combine <animateMotion> animations into the respective stacks with other

24 Feb 2000 08:2659

Animation Module

animations that manipulate individual position attributes. See also the section The
animation sandwich model .

The <animateMotion> element adds an additional syntax alternative for
specifying the animation, the "path " attribute. This allows the description of a path
using a subset of the SVG path syntax. Note that if a path is specified, it will override
any specified values for values or from/to/by attributes.

The default calculation mode (calcMode) for animateMotion is "paced". This
will produce constant velocity motion along the specified path. Note that while
animateMotion elements can be additive, authors should note that the addition of
two or more "paced" (constant velocity) animations may not result in a combined
motion animation with constant velocity.

<!ELEMENT animateMotion EMPTY>
<!ATTLIST animateMotion
 % timingAttrs
 id ID #IMPLIED
 additive (replace | sum) "replace"
 accumulate (none | sum) "none"
 calcMode (discrete | linear | paced | spline) "paced"
 values CDATA #IMPLIED
 from CDATA #IMPLIED
 to CDATA #IMPLIED
 by CDATA #IMPLIED
 keyTimes CDATA #IMPLIED
 keySplines CDATA #IMPLIED
 path CDATA #IMPLIED
 origin (default) "default"
/>

path = "<path-description> "
Specifies the curve that describes the attribute value as a function of time. The
supported syntax is a subset of the SVG path syntax. Support includes
commands to describes lines ("MmLlHhVvZz") and Bezier curves ("Cc"). For
details refer to the path specification in SVG [SVG].
Note that SVG provides two forms of path commands - "absolute" and "relative".
These terms may appear to be related to the definition of additive animation and
the "origin" attribute, however they should not be confused. The terms
"absolute" and "relative" apply only to the definition of the path itself, and not to
the operation of the animation. The "relative" commands define a path point
relative to the previously specified point. The terms "absolute" and "relative" are
unrelated to the definitions of both "additive" animation or the specification of the
"origin".

For the "absolute" commands ("MLHVZC"), the host language must specify
the coordinate system of the path values.
If the "relative" commands ("mlhvzc") are used, they simply define the point
as an offset from the previous point on the path. This does not affect the
definition of "additive" or "origin" for the animateMotion element.

6024 Feb 2000 08:26

Animation Module

Move To commands - "M <x> <y>" or "m <dx> <dy>"
Start a new sub-path at the given (x,y) coordinate. If a moveto is followed
by multiple pairs of coordinates, the subsequent pairs are treated as implicit
lineto commands.

Line To commands - "L <x> <y>" or "l <dx> <dy>"
Draw a line from the current point to the given (x,y) coordinate which
becomes the new current point. A number of coordinate pairs may be
specified to draw a polyline.

Horizontal Line To commands - "H <x>" or "h <dx>"
Draws a horizontal line from the current point (cpx, cpy) to (x, cpy). Multiple
x values can be provided (although this generally only makes sense for the
relative form).

Vertical Line To commands - "V <y>" or "v <dy>"
Draws a vertical line from the current point (cpx, cpy) to (cpx, y). Multiple y
values can be provided (although generally only makes sense for the
relative form).

Closepath commands - "Z" or "z"
The "closepath" causes an automatic straight line to be drawn from the
current point to the initial point of the current subpath.

Cubic bezier Curve To commands -
 "C <x1> <y1> <x2> <y2> <x> <y>" or
 "c <dx1> <dy1> <dx2> <dy2> <dx> <dy>"

Draws a cubic Bezier curve from the current point to (x,y) using (x1,y1) as
the control point at the beginning of the curve and (x2,y2) as the control
point at the end of the curve. Multiple sets of coordinates may be specified
to draw a polybezier.

When a path is combined with "linear" or "spline" calcMode settings, the
number of values is defined to be the number of points defined by the path,
unless there are "move to" commands within the path. A "move to" command
does not count as an additional point for the purpose of keyTimes and
spline , and should not define an additional "segment" for the purposes of
timing or interpolation. When a path is combined with a "paced" calcMode
setting, all "move to" commands are considered to have 0 length (i.e. they
always happen instantaneously), and should not be considered in computing the
pacing.

calcMode
Defined as above in Animation function calculation modes , but note that the
default calcMode for animateMotion is "paced". This will produce constant
velocity motion across the path.
The use of "discrete" for the calcMode together with a "path " specification is
allowed, but is generally not useful (it will simply jump the target element from
point to point).
The use of "linear" for the calcMode with more than 2 points described in
"values ", "path " or "keyTimes " may result in motion with varying velocity.
The "linear" calcMode specifies that time is evenly divided among the
segments defined by the "values " or "path " (note: any "keyTimes " list

24 Feb 2000 08:2661

Animation Module

defines the same number of segments). The use of "linear" does not specify that
time is divided evenly according to the distance described by each segment.
For motion with constant velocity, calcMode should be set to "paced".
For complete velocity control, calcMode can be set to "spline" and the author
can specify a velocity control spline with "keyTimes " and "keySplines ".

origin = "default "
Specifies the origin of motion for the animation. The values and semantics of
this attribute are dependent upon the layout and positioning model of the host
language. In some languages, there may be only one option (i.e. "default").
However, in CSS positioning for example, it is possible to specify a motion path
relative to the container block, or to the layout position of the element. It is often
useful to describe motion relative to the position of the element as it is laid out
(e.g. from off screen left to the layout position, specified as from="(-100, 0)" and
to="(0, 0)". Authors must be able to describe motion both in this manner, as well
as relative to the container block. The origin attribute supports this distinction.
Nevertheless, because the host language defines the layout model, the host
language must also specify the "default" behavior, as well as any additional
attribute values that are supported.
Note that the definition of the layout model in the host language specifies
whether containers have bounds, and the behavior when an element is moved
outside the bounds of the layout container. In CSS2 [CSS2], for example, this
can be controlled with the "clip" property.
Note that for additive animation, the "origin" distinction is not meaningful. This
attribute only applies when additive is set to "replace".

@@Should add an example, although some are included above.

3.4.5 The animateColor element
The <animateColor> element specifies an animation of a color attribute. The host
language must specify those attributes that describe color values, and that can
support color animation.

All values must represent sRGB color values. Legal value syntax for attribute
values is defined by the host language.

Interpolation is defined on a per-color-channel basis.

<!ELEMENT animateColor EMPTY>
<!ATTLIST animateColor
 %animAttrs
 %timingAttrs
 id ID #IMPLIED
 calcMode (discrete | linear
 | paced | spline) "linear"
 values CDATA #IMPLIED
 from CDATA #IMPLIED
 to CDATA #IMPLIED

6224 Feb 2000 08:26

Animation Module

 by CDATA #IMPLIED
 keyTimes CDATA #IMPLIED
 keySplines CDATA #IMPLIED
>

The values in the from/to/by and values attributes may specify negative and
out of gamut values for colors. The function defined by an individual
animateColor may yield negative or out of gamut values. The implementation
must correct the resulting presentation value, to be legal for the destination (display)
colorspace. However, as described in The animation stack model , the
implementation should only correct the final result of all animations for a given
attribute, and should not correct the effect of individual animations.

Values are corrected by "clamping" the values to the correct range. Values less
than the minimum allowed value are clamped to the minimum value (commonly 0,
but not necessarily so for some color profiles). Values greater than the defined
maximum are clamped to the maximum value (defined by the attributeType
domain) .

Note that color values are corrected by clamping them to the gamut of the
destination (display) colorspace. Some implementations may be unable to process
values which are outside the source (sRGB) colorspace and must thus perform
clamping to the source colorspace, then convert to the destination colorspace and
clamp to its gamut. The point is to distinguish between the source and destination
gamuts; to clamp as late as possible, and to realize that some devices, such as
inkjet printers which appear to be RGB devices, have non-cubical gamuts.

Note to implementers: When animateColor is specified as a "to animation", the
animation function should assume Euclidean RGB-cube distance where deltas must
be computed. See also Specifying function values and How from, to and by
attributes affect additive behavior . Similarly, when the calcMode attribute for
animateColor is set to "paced", the animation function should assume Euclidean
RGB-cube distance to compute the distance and pacing.

3.5 Integrating SMIL Animation into a host language
This section describes what a language designer must actually do to specify the
integration of SMIL Animation into a host language. This includes basic definitions
and constraints upon animation.

3.5.1 Required host language definitions
The host language designer must provide the basis for animation semantics in the
context of the particular host language.

The host language designer must integrate the SMIL Timing module into the host
language.

24 Feb 2000 08:2663

Animation Module

3.5.2 Required definitions and constraints on animation
targets

Specifying the target element

The host language designer must choose whether to support the targetElement
attribute, or the XLink attributes for specifying the target element . Note that if the
XLink syntax is used, the host language designer must decide how to denote the
XLink namespace for the associated attributes. The namespace can be fixed in a
DTD, or the language designer can require colonized attribute names to denote the
XLink namespace for the attributes. The required XLink attributes have fixed values,
and so may also be specified in a DTD, or can be required on the animation
elements. Host language designers may require that the optional XLink attributes be
specified. These decisions are left to the host language designer - the syntax details
for XLink attributes do not affect the semantics of SMIL Animation.

In general, target elements may be any element in the document. Host language
designers must specify any exceptions to this. Host language designers are
discouraged from allowing animation elements to target elements outside of the
document in which the animation element is defined (the XLink syntax for the target
element could allow this, but the SMIL timing and animation semantics of this are not
defined in this version of SMIL Animation).

Target attribute issues

The definitions in this module can be used to animate any attribute of any element in
a host document. However, it is expected that host language designers integrating
SMIL Animation may choose to constrain which elements and attributes can support
animation. For example, a host language may not support animation of the
language attribute of a script element. A host language which included a
specification for DOM functionality might limit animation to the attributes which may
legally be modified through the DOM.

Any attribute of any element not specifically excluded from animation by the host
language may be animated, as long as the underlying data type (as defined by the
host language for the attribute) supports discrete values (for discrete animation)
and/or addition (for interpolated and additive animation).

Additive and cumulative animation is supported for any attribute for which
animation is supported and for which addition is defined by the host language for the
underlying data type, unless the attribute is specifically excluded from cumulative
and additive animation.

All constraints upon animation must be described in the host language
specification, as the DTD cannot reasonably express this.

The host language must define which language abstract values should be handled
for animated attributes. For example, a host language that incorporates CSS may
require that CSS length values be supported. This is further detailed in Animation
function value details .

6424 Feb 2000 08:26

Animation Module

The host language must specify the interpretation of relative values. For example,
if a value is specified as a percentage of the size of a container, the host language
must specify whether this value will be dynamically interpreted as the container size
is animated.

The host language must specify the semantics of clamping values for attributes.
The language must specify any defined ranges for values, and how out of range
values will be handled.

The host language must specify the formats supported for numeric attribute
values. This includes integer values and especially floating point values for attributes
such as keyTimes and keySplines . As a reasonable minimum, host language
designers are encouraged to support the format described in [CSS2]. The specific
reference within the CSS specification for these data types is section 4.3.1 Integers
and real numbers of [CSS2].

Integrating animateMotion functionality

The host language specification must define which elements, if any, can be the
target of animateMotion . In addition, the host language specification must
describe the positioning model for elements, and must describe the model for
animateMotion in this context (i.e. the semantics of the "default" value for the
origin attribute must be defined). If there are different ways to describe position,
additional attribute values for the origin attribute should be defined to allow
authors control over the positioning model.

Example: SVG

As an example, SVG [SVG] integrates SMIL Animation. It specifies which of the
elements, attributes and CSS properties may be animated. Some attributes (e.g.
"viewbox" and "fill-rule") support only discrete animation, and others (e.g. "width",
"opacity" and "stroke") support interpolated and additive animation. An example of
an attribute that does not support any animation is the "xlink:actuate" attribute on the
<use> element (the value of this attribute is fixed to "auto" in the DTD).

@@ The XLink syntax used here may be out of date (actuate=auto is now
actuate=onLoad?). Once SVG/XLink settles on values for actuate, this section must
be updated.

SVG details the format of numeric values, describing the legal ranges and allowing
"scientific" (exponential) notation for floating point values.

3.5.3 Constraints on manipulating animation elements
Language designers integrating SMIL Animation are encouraged to disallow
manipulation of attributes of the animation elements, after the document has begun.
This includes both the attributes specifying targets and values, as well as the timing
attributes. In particular, the id attribute (of type ID) on all animation elements must
not be mutable (i.e. should be read-only). Requiring animation runtimes to track
changes to id values introduces considerable complexity, for what is at best a

24 Feb 2000 08:2665

Animation Module

http://www.w3.org/TR/1998/REC-CSS2-19980512/syndata.html#q13

questionable feature.

It is recommended that language specifications disallow manipulation of animation
element attributes through DOM interfaces after the document has begun. It is also
recommended that language specifications disallow the use of animation elements
to target other animation elements.

Dynamically changing the attribute values of animation elements introduces
semantic complications to the model that are not yet sufficiently resolved. This
constraint may be lifted in a future version of SMIL Animation.

3.5.4 Extending animation
Language designers integrating SMIL Animation are encouraged to define new
animation elements where such additions will be of convenience to authors. The new
elements must be based on SMIL Animation and SMIL Timing , and must stay within
the framework provided by SMIL Timing and Animation.

Language designers are also encouraged to define support for additive and
cumulative animation for non-numeric data types where addition can sensibly be
defined.

3.5.5 Error handling semantics
The host language designer may impose stricter constraints upon the error handling
semantics. That is, in the case of syntax errors, the host language may specify
additional or stricter mechanisms to be used to indicate an error. An example would
be to stop all processing of the document, or to halt all animation.

Host language designers may not relax the error handling specifications, or the
error handling response (as described in Handling syntax errors). For example, host
language designers may not define error recovery semantics for missing or
erroneous values in the values or keyTimes attribute values.

3.5.6 SMIL Animation namespace
Language designers can choose to integrate SMIL Animation as an independent
namespace, or can integrate SMIL Animation names into a new namespace defined
as part of the host language. Language designers that wish to put the SMIL
Animation functionality in an isolated namespace should use the following
namespace:

@@ URI to be confirmed by W3C webmaster. Differs from [SMIL-ANIMATION].

6624 Feb 2000 08:26

Animation Module

4. SMIL Content Control
Editors

Jeffrey Ayars (jeffa@real.com), RealNetworks
Dick Bulterman, (Dick.Bulterman@oratrix.com), Oratrix

4.1 Introduction
This Section defines the SMIL content control module. This module contains
elements and attributes which provide for runtime content choices and optimized
content delivery. Since these elements and attributes are defined in a module,
designers of other markup languages can reuse the functionality in the SMIL content
control module when they need to include media content control in their language.
Conversely, language designers incorporating other SMIL modules do not need to
include the content module if other content control functionality is already present.

Proposed Extensions to SMIL 1.0 content control functionality include:

Allow definition of priorities for different media objects. This allows for example
dropping certain objects from the presentation or dropping layers in a layered
encoding when there are insufficient resources (e.g. bandwidth, CPU).
Allow additional test-attributes (e.g. CPU-type, ...).
Allow author-defined test-attributes.
Allow user to see media objects that are important to him/her even though
author excluded them at the current bitrate (accessibility requirement).
Allow display of time dependent links in a static list (accessibility requirement).
Allow declaration of media objects to be preloaded, as bandwidth allows, to
improve presentation quality.

4.2 Content Selection
SMIL 1.0 provides a "test-attribute" mechanism to process an element only when
certain conditions are true, e.g. when the client has a certain screen-size. SMIL 1.0
also provides the "switch" element for expressing that a set of document parts are
alternatives, and that the first one fulfilling certain conditions should be chosen. This
is useful to express that different language versions of an audio file are available,
and to have the client select one of them. SMIL Boston includes these features and
extends them by supporting new system test-attributes, as well as the ability to
customize a presentation to an individual viewer by providing author defined, user
selected test-attributes.

24 Feb 2000 08:2667

The SMIL Content Control Module

4.2.1 The <switch> Element
The switch element allows an author to specify a set of alternative elements from
which only one acceptable element should be chosen. In SMIL Boston, an element
is acceptable if the element is a SMIL Boston element, the media-type can be
decoded (if the element declares media), and all of the test-attributes of the element
evaluate to "true". When integrating content control into other languages, the
language designer must specify what constitutes an "acceptable element."

An element is selected as follows: the player evaluates the elements in the order
in which they occur in the switch element. The first acceptable element is selected at
the exclusion of all other elements within the switch.

Thus, authors should order the alternatives from the most desirable to the least
desirable. Furthermore, authors should place a relatively fail-safe alternative as the
last item in the <switch> so that at least one item within the switch is chosen (unless
this is explicitly not desired). Implementations should NOT arbitrarily pick an object
within a <switch> when test-attributes for all child elements fail.

Note that some network protocols, e.g. HTTP and RTSP, support
content-negotiation, which may be an alternative to using the "switch" element in
some cases.

Attributes

The switch element can have the following attributes:

id
An XML identifier

title
This attribute offers advisory information about the element for which it is set.
Values of the title attribute may be rendered by user agents in a variety of ways.
For instance, visual browsers frequently display the title as a "tool tip" (a short
message that appears when the pointing device pauses over an object).

4.2.2 Predefined Test Attributes
This specification defines a list of test attributes that can be added to language
elements, as allowed by the language designer. In SMIL 1.0, these elements are
synchronization and media elements. Conceptually, these attributes represent
Boolean tests. When one of the test attributes specified for an element evaluates to
"false", the element carrying this attribute is ignored.

Within the list below, the concept of "user preference" may show up. User
preferences are usually set by the playback engine using a preferences dialog box,
but this specification does not place any restrictions on how such preferences are
communicated from the user to the SMIL player.

This version of SMIL defines the following test attributes. Note that some
hyphenated test attribute names from SMIL 1.0 have been deprecated in favor of
names using the current SMIL camelCase convention. For these, the deprecated

6824 Feb 2000 08:26

The SMIL Content Control Module

SMIL 1.0 name is shown in parentheses after the preferred name.

systemBitrate (system-bitrate)
This attribute specifies the approximate bandwidth, in bits-per-second, available
to the system. The measurement of bandwidth is application specific, meaning
that applications may use sophisticated measurement of end-to-end
connectivity, or a simple static setting controlled by the user. In the latter case,
this could for instance be used to make a choice based on the users connection
to the network. Typical values for modem users would be 14400, 28800, 56000
bit/s etc. Evaluates to "true" if the available system bitrate is equal to or greater
than the given value. Evaluates to "false" if the available system bitrate is less
than the given value.
The attribute can assume any integer value greater than 0. If the value exceeds
an implementation-defined maximum bandwidth value, the attribute always
evaluates to "false".

systemCaptions (system-captions)
This attribute allows authors to distinguish between a redundant text equivalent
of the audio portion of the presentation (intended for audiences such as those
with hearing disabilities or those learning to read who want or need this
information) and text intended for a wide audience. The attribute can has the
value "on" if the user has indicated a desire to see closed-captioning
information, and it has the value "off" if the user has indicated that they don’t
wish to see such information. Evaluates to "true" if the value is "on", and
evaluates to "false" if the value is "off".

systemLanguage (system-language)
The attribute value is a comma-separated list of language names as defined in
[RFC1766].

Evaluates to "true" if one of the languages indicated by user preferences
exactly equals one of the languages given in the value of this parameter, or if
one of the languages indicated by user preferences exactly equals a prefix of
one of the languages given in the value of this parameter such that the first tag
character following the prefix is "-".

Evaluates to "false" otherwise.

Note: This use of a prefix matching rule does not imply that language tags are
assigned to languages in such a way that it is always true that if a user
understands a language with a certain tag, then this user will also understand all
languages with tags for which this tag is a prefix.

The prefix rule simply allows the use of prefix tags if this is the case.

Implementation note: When making the choice of linguistic preference
available to the user, implementers should take into account the fact that users
are not familiar with the details of language matching as described above, and
should provide appropriate guidance. As an example, users may assume that
on selecting "en-gb", they will be served any kind of English document if British
English is not available. The user interface for setting user preferences should
guide the user to add "en" to get the best matching behavior.

24 Feb 2000 08:2669

The SMIL Content Control Module

Multiple languages MAY be listed for content that is intended for multiple
audiences. For example, a rendition of the "Treaty of Waitangi", presented
simultaneously in the original Maori and English versions, would call for:

<audio src="foo.rm" systemLanguage="mi, en"/>

However, just because multiple languages are present within the object on
which the systemLanguage test attribute is placed, this does not mean that it is
intended for multiple linguistic audiences. An example would be a beginner’s
language primer, such as "A First Lesson in Latin," which is clearly intended to
be used by an English-literate audience. In this case, the systemLanguage test
attribute should only include "en".

Authoring note: Authors should realize that if several alternative language
objects are enclosed in a "switch", and none of them matches, this may lead to
situations such as a video being shown without any audio track. It is thus
recommended to include a "catch-all" choice at the end of such a switch which
is acceptable in all cases.

systemOverdubOrCaption (system-overdub-or-caption)
This attribute is a setting which determines if users prefer overdubbing or
captioning when the option is available. The attribute can have the values
"caption" and "overdub". Evaluates to "true" if the user preference matches this
attribute value. Evaluates to "false" if they do not match. This test attribute has
been deprecated in favor of using systemOverdubOrSubtitle and
systemCaptions .

systemRequired (system-required)
This attribute specifies the name of an extension. The extension may be a newly
adopted language element or attribute, or may be the namespace prefix or URI
for a namespace extension. Evaluates to "true" if the extension is supported by
the implementation, otherwise, this evaluates to "false". [NAMESPACES]

systemScreenSize (system-screen-size)
Attribute values have the following syntax:
screen-size-val ::= screen-height"X"screen-width
Each of these is a pixel value, and must be an integer value greater than 0.
Evaluates to "true" if the SMIL playback engine is capable of displaying a
presentation of the given size. Evaluates to "false" if the SMIL playback engine
is only capable of displaying smaller presentations.

systemScreenDepth (system-screen-depth)
This attribute specifies the depth of the screen color palette in bits required for
displaying the element. The value must be greater than 0. Typical values are 1,
8, 24, 32 Evaluates to "true" if the SMIL playback engine is capable of
displaying images or video with the given color depth. Evaluates to "false" if the
SMIL playback engine is only capable of displaying images or video with a
smaller color depth.

systemOverdubOrSubtitle
This attribute specifies whether subtitles or overdub is rendered for people who
are watching a presentation where the audio may be in a language in which
they are not fluent. This attribute can have two values: "overdub", which selects

7024 Feb 2000 08:26

The SMIL Content Control Module

for substitution of one voice track for another, and "subtitle", which means that
the user prefers the display of subtitles.

systemAudioDesc
This test attribute specifies whether or not closed audio descriptions should be
rendered. This is intended to provide authors with the ability to support audio
descriptions for blind users like systemCaptions provides text captions for deaf
users. The attribute has the value "on" if the user has indicated a desire to hear
audio descriptions, and it has the value "off" if the user has indicated that they
don’t wish to hear audio descriptions. Evaluates to "true" if the value is "on", and
evaluates to "false" if the value is "off".

systemOperatingSystem
TBD

systemCPU
TBD

systemContentLocation
TBD (i.e. Streaming/Stored)

system???
TBD (i.e. Selecting embedded information (element in aggregate))

system????
TBD (i.e. Costs of accessing a stream, free or Pay-Per-View)

systemComponent
CDATA that describes a component of the playback system, e.g. user-agent
component/feature, number of audio channels, codec, HW mpeg decoder, etc.

Examples

1) Choosing between content with different total bitrates

In a common scenario, implementations may wish to allow for selection via a
systemBitrate attribute on elements. The media player evaluates each of the
"choices" (elements within the switch) one at a time, looking for an acceptable bitrate
given the known characteristics of the link between the media player and media
server.

<par>
 <text .../>
 <switch>
 <par systemBitrate="40000">
 ...
 </par>
 <par systemBitrate="24000">
 ...
 </par>
 <par systemBitrate="10000">

 </par>
 </switch>
</par>
...

24 Feb 2000 08:2671

The SMIL Content Control Module

2) Choosing between audio resources with different bitrates

The elements within the switch may be any combination of elements. For instance,
one could merely be specifying an alternate audio track:

...
<switch>
 <audio src="joe-audio-better-quality" systemBitrate="16000" />
 <audio src="joe-audio" systemBitrate="8000" />
</switch>
...

3) Choosing between audio resources in different languages

In the following example, an audio resource is available both in French and in
English. Based on the user’s preferred language, the player can choose one of these
audio resources.

...
<switch>
 <audio src="joe-audio-french" systemLanguage="fr"/>
 <audio src="joe-audio-english" systemLanguage="en"/>
</switch>
...

4) Choosing between content written for different screens

In the following example, the presentation contains alternative parts designed for
screens with different resolutions and bit-depths. Depending on the particular
characteristics of the screen, the player can choose one of the alternatives.

...
<par>
 <text .../>
 <switch>
 <par systemScreenSize="1280X1024" systemScreenDepth="16">

 </par>
 <par systemScreenSize="640X480" systemScreenDepth="32">
 ...
 </par>
 <par systemScreenSize="640X480" systemScreenDepth="16">
 ...
 </par>
 </switch>
</par>
...

5) Distinguishing caption tracks from stock tickers

In the following example, captions are shown only if the user wants captions on.

7224 Feb 2000 08:26

The SMIL Content Control Module

...
<seq>
 <par>
 <audio src="audio.rm"/>
 <video src="video.rm"/>
 <textstream src="stockticker.rtx"/>
 <textstream src="closed-caps.rtx" systemCaptions="on"/>
 </par>
</seq>
...

6) Choosing the language of overdub and subtitle tracks

In the following example, a French-language movie is available with English,
German, and Dutch overdub and subtitle tracks. The following SMIL segment
expresses this, and switches on the alternatives that the user prefers.

...
<par>
 <switch>
 <audio src="movie-aud-en.rm" systemLanguage="en"
 systemOverdubOrSubtitle="overdub"/>
 <audio src="movie-aud-de.rm" systemLanguage="de"
 systemOverdubOrSubtitle="overdub"/>
 <audio src="movie-aud-nl.rm" systemLanguage="nl"
 systemOverdubOrSubtitle="overdub"/>
 <!-- French for everyone else -->
 <audio src="movie-aud-fr.rm"/>
 </switch>
 <video src="movie-vid.rm"/>
 <switch>
 <textstream src="movie-sub-en.rt" systemLanguage="en"
 systemOverdubOrSubtitle="subtitle"/>
 <textstream src="movie-sub-de.rt" systemLanguage="de"
 systemOverdubOrSubtitle="subtitle"/>
 <textstream src="movie-sub-nl.rt" systemLanguage="nl"
 systemOverdubOrSubtitle="subtitle"/>
 <!-- French captions for those that really want them -->
 <textstream src="movie-caps-fr.rt" systemCaptions="on"/>
 </switch>
</par>
...

4.2.3 System Test Attribute In-Line Use
During the development of the SMIL 1.0, the issue of content selectability within a
presentation received a great deal of attention. Early on, it was decided that a
<switch> construct would form the basic selection primitive in the language. A
<switch> allows a series of alternatives to be specified for a particular piece of
content, one of which is selected by the runtime environment for presentation. An
example of how a <switch> might be used to control the alternatives that could
accompany a piece of video in a presentation would be:

24 Feb 2000 08:2673

The SMIL Content Control Module

...
<par>
 <video src="anchor.mpg" ... />
 <switch>
 <audio src="dutch.aiff" systemLanguage="DU" systemCaptions="overdub" ... />
 <audio src="english.aiff" systemLanguage="EN" systemCaptions="overdub"... />
 <text src="dutch.html" systemLanguage="DU" systemCaptions="captions"... />
 <text src="english.html" systemLanguage="EN" systemCaptions="captions"... />
 </switch>
</par>
...

This fragment (which is pseudo-SMIL for clarity) says that a video is played in
parallel with one of: Dutch audio, English audio, Dutch text, or English text. SMIL
does not specify the selection mechanism, only a way of specifying the alternatives.
While <switch> -based content control is a powerful mechanism, it comes with two
problems.

First, it restricts the resolution of a <switch> to a single alternative. (If you want
Dutch audio and Dutch text, you need to specify a compound <switch> statement,
but in so doing, you always get the compound result.)

Second, and more restrictively, it requires the author to explicitly state all of the
possible combinations of input streams during authoring. If the user wanted Dutch
audio and English text, this possibility must have been considered at authoring time.

A solution to both problems is to allow in-line use of System Test Attributes, as
given in the following document fragment:

...
<par>
 <video src="anchor.mpg" ... />
 <switch>
 <audio src="dutch.aiff" systemLanguage="DU" systemCaptions="overdub" ... />
 <audio src="english.aiff" systemLanguage="EN" systemCaptions="overdub"... />
 <text src="dutch.html" systemLanguage="DU" systemCaptions="captions"... />
 <text src="english.html" systemLanguage="EN" systemCaptions="captions"... />
 </switch>
</par>
...

This example says: a video is accompanied by four other data objects, all of which
are (logically) shown in parallel. This is, of course, exactly what happens: all five do
run in parallel, but it could be that only the video and one audio stream are actually
selected by the user (or a user agent) to be rendered during the presentation. At
author time you know which logical streams are available, but it is only at runtime
that you know which combination of all potentially available stream actually meet the
user’s needs. Logically, the alternatives indicated by the in-line construct could be
represented as a set of <switch> statements, although the resulting <switch>
could become explosive in size. Use of an in-line test mechanism significantly
simplifies the specification of adaptive content in the case that many independent
alternatives exist.

7424 Feb 2000 08:26

The SMIL Content Control Module

4.2.4 User Groups
The provision of <switch> -based and in-line system test attributes provides a
selection mechanism based on general system attributes. This version of SMIL
extends this notion with the definition of user test attributes. User test attributes allow
presentation authors to define their own test attributes for use in a specific
document.

The elements used to provide user group functionality are:

The <user_attributes> element

A section within the SMIL head that contains definitions of each of the user groups.
The elements within the section define a collection of author-specified test attributes
that can be used in the document.

The <u_group> element

An author-defined grouping of related media objects. These are defined within the
section delineated by the <user_attributes> elements that make up part of the
document header, and they are referenced within a media object definition.

The <u_group> element supports the following attributes:

id : the internal name of the attribute.
title : a string that can be used by a user-interface to provides a selection
mechanism.
u_state : the evaluated state of the <u_group> . The initial state for the
<u_group> is given in the value of this attribute, if unspecified, it defaults to
RENDERED. The run-time state is defined by the user or the user agent via the
SMIL DOM. If a particular playback environment does not (or cannot) support
user selection, the u_state attribute controls the author-specified default
presentation.
override : the author is given the ability to block overrides to the initial state by
explicitly prohibiting this in the <u_group> definition. It is up to the runtime
environment to enforce this attribute. The attribute can also be used to influence
adaptive behavior at lower level in the transport hierarchy.

It would be good to have more explanation of this last use.

In addition to the <user_attribute> and <u_group> elements, this module
provides a u_group attribute that can be applied to content requiring selection.

The u_group attribute

The u_group attribute is evaluated as a test attribute, if the u_group attribute
evaluates to true, the associated element is evaluated, otherwise it and its
content is skipped.

24 Feb 2000 08:2675

The SMIL Content Control Module

The following example shows how user groups can be applied within a SMIL
document:

 1 <smil>
 2 <head>
 3 <layout>
 4 <!-- define projection regions -->
 5 </layout>
 6 <user_attributes>
 7 <u_group id="nl_aud" u_state="RENDERED" title="Dutch Audio Cap" override="allowed" />
 8 <u_group id="uk_aud" u_state="NOT_RENDERED" title="English Audio Cap" override="allowed" />
 9 <u_group id="nl_txt" u_state="NOT_RENDERED" title="Dutch Text Cap"override="allowed" />
 10 <u_group id="uk_txt" u_state="NOT_RENDERED" title="English Text Cap" override="allowed" />
 11 </user_attributes>
 12 </head>
 13 <body>
 14 ...
 15 <par>
 16 <video src="announcer.rm" region="a"/>
 17 <text src="news_headline.html" region="b"/>
 18 <audio src="story_1_nl.rm" u_group="nl_aud"/>
 19 <audio src="story_1_uk.rm" u_group="uk_aud-cam"/>
 20 <text src="story_1_nl.html" u_group="nl_txt" region="c"/>
 21 <text src="story_1_uk.html" u_group="uk_txt" region="d"/>
 22 </par>
 23 ...
 24 </body>
 25 </smil>

Lines 6 through 11 define the available groups. Each group contains an identifier
and a title (which can be used by the user interface agent to label the group), as well
as the (optional) initial state definition and override flag.

In line 7, a <u_group> named "nl_aud" is defined for Dutch audio captions that is
initially set to RENDERED. The other groups in this (very simple) example are set to
NOT_RENDERED.

In lines 15 through 22, a SMIL <par> construct is used to identify a portion of a
presentation. In this <par> , a single video (line 16) is accompanied by two audio
streams (18,19) and two text streams (20,21), one each for English and Dutch. The
<par> also contains a text title that contains a headline.

The interaction of the user interface and the initial state determine which objects
are rendered. Note that the same attributes are used across the entire document,
meaning that the user only needs to select his/her content preferences once to
control related groups of information. In the example, user is free to have the video
and headline text accompanied by any combination of English and Dutch captions.
(Note that if two audio captions are selected, the player will need to determine how
these are processed for delivery.)

While this example shows in-line use of user groups, the groups could also be
applied as test attributes in a <switch> . Similarly, the system test attributes
typically found in a <switch> could also be used in-line as a control attribute on an
element along with the u_group attribute.

A previous version of this specification used camelCase for the user group
elements and attributes instead of the underlined convention used here. We need to
standardize this across the SMIL modules.

7624 Feb 2000 08:26

The SMIL Content Control Module

4.3 Presentation Priority/Grouping
The following is still under development by the SYMM Working Group. The working
group is interested in considering this functionality but the syntax and semantics
described here are only preliminary thinking.

Define a means to group collections of objects that share a common policy. A
Channel defines a partitioning of elements into groups each group has a common
set of access policies control use of quasi-physical resources: - priority - common
server - common access rights / charging model - local resource use (layout,
devices, etc.)

4.4 User-Centered Adaptation
The following is still under development by the SYMM Working Group. The working
group is interested in considering this functionality but the syntax and semantics
described here are only preliminary thinking.

Focus on presentation as collection of content: each of the components may have
a different user-level representation, encoding:

(natural) language
level of semantic detail
ability / rights to access particular type of content

At author-time, you know alternatives; at use-time, you select

4.5 Presentation Optimization

4.5.1 The <prefetch> element
This element will give a suggestion or hint to a user-agent that a media resource will
be used in the future and the author would like part or all of the resource fetched
ahead of time to make to make the document playback more smoothly. User-agents
can ignore <prefetch> elements, though doing so may cause an interruption in the
document playback when the resource is needed. It gives authoring tools or savvy
authors the ability to schedule retrieval of resources when they think that there is
available bandwidth or time to do it. A <prefetch> element is contained within the
body of an XML document, and its scheduling is based on its lexical order unless
explicit timing is present.

The <prefetch> element, like media object elements, can have id and src . If
SMIL Boston Timing is integrated into the document, begin , end , dur , clipBegin ,
and clipEnd attributes are also available. The id and src elements are the same
as for other media objects id names the element for reference in the document and
src names the resource to be prefetched. When a media object with the same src
URL is encountered the user-agent can use any data it prefetched to begin playback
without rebuffering or other interruption. The timing attributes begin , end , dur

24 Feb 2000 08:2677

The SMIL Content Control Module

would constrain the presentation time period for prefetching the element. At the end
of the presentation time specified by end or dur , the prefetch operation should stop.
The clipBegin and clipEnd elements are used to identify the part of the src clip
to prefetch, if only the last 30s of the clip are being played, we don’t want to prefetch
it from the beginning. Likewise if only the middle 30 seconds of the clip are begin
played, we don’t want to prefetch more data than will be played.

The mediaSize, mediaTime, and bandwidth Attributes

In addition to the attributes allowed on Media Object Elements, the following
attributes are allowed:

mediaSize : bytes-value | percent-value
Defines how much of the resource to fetch as a function of the file size of the
resource. To fetch the entire resource without knowing its size, specify 100%.
The default is 100%.

mediaTime : clock-value | percent-value
Defines how much of the resource to fetch as a function of the duration of the
resource. To fetch the entire resource without knowing its duration, specify
100%. The default is 100%.

bandwidth : bitrate-value | percent-value
Defines how much network bandwidth the user-agent should use when doing
the prefetch. To use all that is available, specify 100%. The default is 100%

If both mediaSize and mediaTime are specified, mediaSize is used and
mediaTime is ignored.

For descrete media (non-time based media like text/html or image/png) using the
mediaTime attribute causes the entire resource to be fetched.

Documents must still playback even when the prefetch elements are ignored,
although rebuffering or pauses in presentation of the document may occur.

If a prefetch element is repeated, due to restart or repeat on a parent element
the prefetch operation should occur again. This insures appropriately "fresh" data is
displayed if, for example, the prefetch is for a banner ad to a URL whose content
changes with each request. Note that prefetching data from a URL that changes the
content dynamically is dangerous if the entire resource isn’t prefetched as the
subsequent request for the remaining data may yield data from a newer resource. A
user-agent should respect any appropriate caching directives applied to the content,
e.g. no-cache 822 headers in HTTP. More specifically, content marked as
non-cachable would have to be refetched each time it was played, where content
that is cachable could be prefetched once, with the results of the prefetch cached for
future use.

If the clipBegin or ClipEnd in the media object are different from the prefetch,
an implementation can use any data that was fetched and applies but the result may
not be optimal.

7824 Feb 2000 08:26

The SMIL Content Control Module

http://www.w3.org/AudioVideo/Group/Media/extended-media-object.html

Attribute value syntax

bytes-value

The bytes-value value has the following syntax:

bytes-value ::= Digit+; any positive number

percent-value

The percent-val value has the following syntax:

percent-value ::= Digit+ "%"; any positive number in the
range 0 to 100

clock-value

The clock-value value has the following syntax:

Clock-val ::= (Hms-val | Smpte-val)
Smpte-val ::= (Smpte-type)? Hours ":" Minutes ":" Seconds
 (":" Frames ("." Subframes)?)?
Smpte-type ::= "smpte" | "smpte-30-drop" | "smpte-25"
Hms-val ::= ("npt=")? (Full-clock-val | Partial-clock-val
 | Timecount-val)
Full-clock-val ::= Hours ":" Minutes ":" Seconds ("." Fraction)?
Partial-clock-val ::= Minutes ":" Seconds ("." Fraction)?
Timecount-val ::= Timecount ("." Fraction)? (Metric)?
Metric ::= "h" | "min" | "s" | "ms"
Hours ::= DIGIT+; any positive number
Minutes ::= 2DIGIT; range from 00 to 59
Seconds ::= 2DIGIT; range from 00 to 59
Frames ::= 2DIGIT; @@ range?
Subframes ::= 2DIGIT; @@ range?
Fraction ::= DIGIT+
Timecount ::= DIGIT+
2DIGIT ::= DIGIT DIGIT
DIGIT ::= [0-9]

For Timecount values, the default metric suffix is "s" (for seconds).

bitrate-value

The bitrate-value value specifies a number of bits per second. It has the following
syntax:

bitrate-value ::= Digit+; any positive number

Examples

1) Prefetch the image so it can be displayed immediately after the video ends:
<smil>
 <body>
 <seq>
 <par>
 <prefetch id="endimage"

24 Feb 2000 08:2679

The SMIL Content Control Module

src="http://www.w3c.org/logo.gif"/>
 <text id="interlude"
src="http://www.w3c.org/pleasewait.html" fill="freeze"/>
 </par>
 <video id="main-event"
src="rtsp://www.w3c.org/video.mpg"/>
 <image src="http://www.w3c.org/logo.gif"
fill="freeze"/>
 </seq>
 </body>
</smil>

No timing is specified so default timing applies in the above example. The text is
discrete media so it ends immediately, the prefetch is defaulted to prefetch the entire
image at full available bandwidth and the prefetch element ends when the image is
downloaded. That ends the <par> and the video begins playing. When the video
ends the image is shown.

2) Prefetch the images for a button so that rollover occurs quickly for the end user:
<html>
 <body>
 <prefetch id="upimage" src="http://www.w3c.org/up.gif"/>
 <prefetch id="downimage"
src="http://www.w3c.org/down.gif"/>

 <!-- script will change the graphic on rollover -->

 </body>
</html>

4.6 Open Issues
Can prefetch elements be used as timebases for sync? This could be an useful
capability to be supported. We should be able to start a prefetch and not play the
content until it completes. This means that prefetch has to have effective begin and
end, depending upon how long it actually takes to get the data. Of course, if
prefetching is optional, we need to decide when the begin and end events fire.
However this introduces the problem of how to handle errors. Even though the
prefetch may not be allowed or fail, there may be other things dependant upon the
timing of the prefetch element. In this case it is appropriate for the element’s timing
to continue and fire begin\end events as if the prefetch element ran to completion.
Since this is all very complicated, and prefetch is intended to be transparent, one
idea is that we explicitly prohibit prefetch from being a syncbase. This is not as
simple as it sounds, say that a prefetch element is in the middle of a <seq>. Maybe
the simplest solution is to allow prefetch as a syncbase, and to say that for sync
purposes, all prefetch elements always have duration zero, and fire begin\end
events event if the prefetch itself fails or is not allowed

8024 Feb 2000 08:26

The SMIL Content Control Module

5. SMIL Layout Module
Editors

Aaron Cohen (aaron.m.cohen@intel.com), Intel
Dick Bulterman (Dick.Bulterman@oratrix.com), Oratrix

5.1 Introduction
This Section defines the SMIL layout module. This module contains elements and
attributes allowing for positioning of media elements on the rendering surface (either
visual or acoustic). Since these elements and attributes are defined in a module,
designers of other markup languages can choose whether or not to include this
functionality in their languages. Therefore, language designers incorporating other
SMIL modules do not need to include the layout module if sufficient layout
functionality is already present.

The major changes with respect to the layout elements and attributes in SMIL 1.0
[SMIL10] is the addition of support for:

multiple top-level layout windows,
hierarchical region definition within a layout window

Other changes are minor. SMIL 1.0 already provides for using alternative layout
models, for example CSS [SMIL-CSS2], [CSS2], and these can provide much of the
additional functionality desired over SMIL basic layout.

It is the intention of this version of the Layout Module to align SMIL Boston Layout
with current CSS2 functionality. There are some conflicts in mapping CSS2 layout to
a language, such as SMIL, where the layout hierarchy is not reflected in the XML
structure of the SMIL document. This necessitated dropping desirable features that
could not be directly supported by mapping CSS to SMIL such as: multiple
z-ordering within hierarchical regions, the alignment of objects within regions, and
object-specific placement offsets within regions. It is desired that a future version of
W3C layout technology will add support for these features to the SMIL language. A
future version of the Layout module may include proof-of-concept support for these
features.

5.2 Brief overview of SMIL basic layout
SMIL 1.0 includes a basic layout model for organizing media elements into regions
on the visual rendering surface. The <layout> element is used in the document
<head> to declare a set of regions on which media elements are rendered. Media
elements declare which region they are to be rendered into with the region
attribute.

24 Feb 2000 08:2681

The SMIL Layout Module

Each region has a set of CSS2 compatible properties such as top , left ,
height , width , and background-color . These properties can be declared using
a syntax defined by the type attribute of the layout element. In this way, media
layout can be described using the SMIL 1.0 basic layout syntax, CSS2 syntax, or
some other syntax.

For example, to describe a region with the id "r" at location 15,20 that is 100 pixels
wide by 50 pixels tall using the SMIL basic layout model:

 <layout>

 <region id="r" top="15" left="20px" width="100px" height="50px"/>

 </layout>

To create the same region using CSS2 syntax:

 <layout type="text/css">

 [region="r"] { top: 15px; left: 20px; width: 100px; height:50px; }

 </layout>

To display a media element in the region declared above, specify the region’s id
as the region attribute of the media element:

 <ref region="r" src="http://..." />

Additionally, implementations may choose to allow using the CSS syntax to set the
media layout directly. This can be done by using the selector syntax to set layout
properties on the media elements. For example, to display all video and image
elements in a rectangle at the same size and position as the examples above:

 <layout type="text/css">

 video, img { top:15px; left:20px; width:100px; height=50px; }

 </layout>

Note that multiple layout models can be specified within a <switch> element,
each with a different type . The first layout with a type supported by the
implementation will be the one used.

5.3 Extensions to SMIL 1.0 Basic Layout
The extensions proposed for SMIL/Boston fall into two groups:

8224 Feb 2000 08:26

The SMIL Layout Module

multiple top-level layout windows,
hierarchical region definition within a layout window

The characteristics of each extension group will be presented in this section. The
full syntax will be described in later sections.

5.3.1 Multiple Top-Level Window Support
In SMIL 1.0, each presentation was rendered into a root window of a specific
size/shape. The root window contained regions to manage the rendering of specific
media objects.

This specification supports the concept of multiple top-level windows. Since there
is no longer a single root window, we use the term top-level instead. The assignment
of the regions to individual top level windows allows independent placement and
resizing of each top-level window.

A top level window is declared in a manner similar to the SMIL 1.0 root layout
window, except that multiple instances of the top level may occur:

 <layout>
 <top-layout id="WinV" title=" Video " width="320" height="240"/>
 <region id="pictures" title="pictures" height="100%" fit="meet"/>
 </top-layout>

 <top-layout id="WinC" title=" Captions " width="320" height="60">
 <region id="captions" top="WinC" title="caption text" top="90%" fit="meet"/>
 </top-layout>
 </layout>

In this example, two top-level windows are defined ("WinV" and "WinC"), and two
regions are defined with one region assigned to WinV and the other to WinC. The
definitions of the top-level windows and the contained regions use the new
hierarchical layout functionality, as discussed in the next section.

The top-level windows function as rendering containers only, that is, they do not
carry temporal significance. In other words, each window does not define a separate
timeline or any other time-container properties. There is still a single master timeline
for the SMIL presentation, no matter how many top-level windows have been
created. This is important to allow synchronization between media displayed in
separate top-level windows.

All top level windows are opened as soon as the presentation is started. If a
window is closed (by the user) while any of the elements displayed in that window
are active, there is no effect on the timeline of those elements. However, a player
may choose not to decode content as a performance improvement.

For SMIL 1.0 compatibility, the <root-layout> element will continue to support
SMIL 1.0 layout semantics. The new <top-layout> element will support the
extension semantics and an improved, nested syntax.

24 Feb 2000 08:2683

The SMIL Layout Module

Note also that any one region may belong to at most one top-level (or root-level)
window. Regions not declared as children of a <top-layout> element belong to the
<root-layout> window. If no <root-layout> element has been declared, the
region is assigned to a default window according to SMIL 1.0 layout semantics.

5.3.2 Hierarchical Region Layout
A new feature in this layout module is support for hierarchical layout. This allows for
the declaration of regions nested inside other regions, much like regions are laid out
inside the top level window declared by the <top-layout> element. For example,
the following declares a top level window of 640 by 480 pixels, regions "left" and
"right" which covers the left and right sides of the window respectively, and a
subregion "inset" that is centered within "right".

<layout>
 <top-layout width="640px" height="480px" />
 <region id="left" top="0px" left="0px" width="320px" height="480px" />
 <region id="right" top="0px" left="320px" width="320px" height="480px">
 <region id="inset" top="140px" left="80" width="160px" height="200px" />
 </region>
</layout>

The resulting layout looks like this:

5.4 SMIL basic layout syntax and semantics

5.4.1 Elements and attributes
This section defines the elements and attributes that make up the SMIL basic layout
module.

8424 Feb 2000 08:26

The SMIL Layout Module

The <layout> element

The <layout> element determines how the elements in the document’s body are
positioned on an abstract rendering surface (either visual or acoustic).

The <layout> element must appear before any of the declared layout is used in
the document. If present, the <layout> element must appear in the <head> section
of the document. If a document contains no <layout> element, the positioning of
the body elements is implementation-dependent.

It is recommended that profiles including the SMIL layout module also support the
SMIL Content Control module. A document can then support multiple alternative
layouts by enclosing several <layout> elements within the SMIL <switch>
element. This could also be used to describe the document’s layout using different
layout languages. Support for the system test attributes in the SMIL Content Control
module also enables greater author flexibility as well as user accessibility.

Default layout values can be assigned to all renderable elements by selecting the
empty layout element <layout></layout>. If the document does not include a
<layout> element, then the positioning of media elements is implementation
dependent.

Element attributes

id
This value uniquely identifies the layout element within a document. Its value is
an XML identifier.

type
This attribute specifies which layout language is used in the layout element. If
the player does not understand this language, it must skip the element and all of
its content up until the next </layout> tag. The default value of the type
attribute is "text/smil-basic-layout". This identifier value supports SMIL 1.0 layout
semantics. To enable the multiple top-level window and hierarchical layout
extensions in this specification, declare the value of this attribute to be
"text/smil-extended-layout".

Element content

If the type attribute of the layout element has the value "text/smil-basic-layout", it
can contain the following elements:

region
root-layout

If the type attribute of the layout element has the value "text/smil-extended-layout",
it can contain the following elements:

region
root-layout

24 Feb 2000 08:2685

The SMIL Layout Module

top-layout

If the type attribute of the <layout> element has another value, the element
contains character data.

The <region> element

The region element controls the position, size and scaling of media object elements.

In the following example fragment, the position of a text element is set to a 5 pixel
distance from the top border of the rendering window:

<smil>

 <head>

 <layout>

 <root-layout width="320" height="480" />

 <region id="a" top="5" />

 </layout>

 </head>

 <body>

 <text region="a" src="text.html" dur="10s" />

 </body>

</smil>

The position of a region, as specified by its "top" and "left" attributes, is always
relative to the parent geometry, which is defined by the parent element. For
<region> elements whose immediate parent is a layout element, the region
position is defined relative to the root window declared in the sibling
<root-layout> element. For <region> elements that are children of a
<top-layout> element the region position is defined relative to the top level
window declared in the parent <top-layout> element.

For <region> elements whose immediate parent is another <region> element,
the sub-region position is defined relative to the position of the region defined by the
parent element. Note that this is only allowed for regions that are descendants of a
<top-layout> element.

When region sizes, as specified by "width" and "height" attributes are declared
relative with the "%" notation, the size of a region is relative to the size of the parent
geometry. Sizes declared as absolute pixel values maintain those absolute values,
even when used on attributes in a sub-region.

8624 Feb 2000 08:26

The SMIL Layout Module

Note that a sub-region may be defined in such a way as to extend beyond the
limits of its parent. In this case the sub-region should be clipped to the parent
boundaries.

Element attributes

The <region> element can have the following visual attributes:

backgroundColor
The use and definition of this attribute are identical to the "background-color"
property in the CSS2 specification, except that SMIL basic layout does not
require support for "system colors".

background-color
Deprecated. Equivalent to "backgroundColor", which replaces this attribute. The
language profile must define whether or not the ’background-color" attribute is
supported. If both the "backgroundColor" and "background-color" attributes are
absent, then background is transparent.

bottom
The use and definition of this attribute are identical to the "bottom" property in
the CSS2 specification. Attribute values can be "percentage" values, and a
variation of the "length" values defined in CSS2. For "length" values, SMIL basic
layout only supports pixel units as defined in CSS2. It allows the author to leave
out the "px" unit qualifier in pixel values (the "px" qualifier is required in CSS2).
Conflicts between the region size attributes "bottom", "left", "right", "top", "width",
and "height" are resolved according to the rules for absolutely positioned,
replaced elements in [CSS2]. The default value of this attribute is ’auto’.

fit
This attribute specifies the behavior if the intrinsic height and width of a visual
media object differ from the values specified by the height and width attributes in
the <region> element. This attribute does not have a 1-1 mapping onto a
CSS2 property, but can be simulated in CSS2.
This attribute can have the following values:
fill

Scale the object’s height and width independently so that the content just
touches all edges of the box.

hidden
Has the following effect:

If the intrinsic height (width) of the media object element is smaller than
the height (width) defined in the "region" element, render the object
starting from the top (left) edge and fill up the remaining height (width)
with the background color.
If the intrinsic height (width) of the media object element is greater than
the height (width) defined in the "region" element, render the object
starting from the top (left) edge until the height (width) defined in the
"region" element is reached, and clip the parts of the object below
(right of) the height (width).

24 Feb 2000 08:2687

The SMIL Layout Module

meet
Scale the visual media object while preserving its aspect ratio until its
height or width is equal to the value specified by the height or width
attributes, while none of the content is clipped. The object’s left top corner
is positioned at the top-left coordinates of the box, and empty space at the
left or bottom is filled up with the background color.

scroll
A scrolling mechanism should be invoked when the element’s rendered
contents exceed its bounds.

slice
Scale the visual media object while preserving its aspect ratio so that its
height or width are equal to the value specified by the height and width
attributes while some of the content may get clipped. Depending on the
exact situation, either a horizontal or a vertical slice of the visual media
object is displayed. Overflow width is clipped from the right of the media
object. Overflow height is clipped from the bottom of the media object.

The default value of "fill" is "hidden".
height

The use and definition of this attribute are identical to the "height" property in the
CSS2 specification. Attribute values follow the same restrictions and rules as
the values of the "bottom" attribute.
The default value of this attribute is ’auto’.

id
A region element is applied to a position-able element by setting the region
attribute of the position-able element to the id value of the region. The value of
this attribute must be a valid XML identifier.
The "id" attribute is required for <region> elements.

left
The use and definition of this attribute are identical to the "left" property in the
CSS2 specification.
Attribute values follow the same restrictions and rules as the values of the
"bottom" attribute.
The default value of this attribute is ’auto’.

right
The use and definition of this attribute are identical to the "right" property in the
CSS2 specification.
Attribute values follow the same restrictions and rules as the values of the
"bottom" attribute.
The default value of this attribute is ’auto’.

title
This attribute offers advisory information about the element for which it is set.
Values of the title attribute may be rendered by user agents in a variety of ways.
For instance, visual browsers frequently display the title as a "tool tip" (a short
message that appears when the pointing device pauses over an object).
It is strongly recommended that all <region> elements have a "title" attribute
with a meaningful description. Authoring tools should ensure that no element

8824 Feb 2000 08:26

The SMIL Layout Module

can be introduced into a SMIL document without this attribute.
top

The use and definition of this attribute are identical to the "top" property in the
CSS2 specification.
Attribute values follow the same restrictions and rules as the values of the
"bottom" attribute.
The default value of this attribute is ’auto’.

volume
Specifies the relative volume of an audio media element assigned to play within
the given region. Valid values are any number between ’0’ and ’100’. ’0’
represents the minimum audible volume level and 100 corresponds to the
maximum comfortable level.

width
The use and definition of this attribute are identical to the "width" property in the
CSS2 specification.
Attribute values follow the same restrictions and rules as the values of the
"bottom" attribute.
The default value of this attribute is ’auto’.

z-index
This attribute defines the level of the region within the parent region stacking
context. Elements assigned to higher level regions are rendered in front of lower
level regions within the same parent region. Child regions are always placed in
front of their parent region. This results in a two stage sorting of region visibility:
first by parent-child containment, and then between regions within the same
parent by assigned z-order.

The use and definition of this attribute are identical to the "z-index" property in
the CSS2 specification, with the following exception:
If two boxes generated by elements A and B within the same parent region have
the same stack level, then:

If the display of an element A starts later than the display of an element B,
the box of A is stacked on top of the box of B (temporal order).
Else, if the display of the elements starts at the same time, and an element
A occurs later in the SMIL document text than an element B, the box of A is
stacked on top of the box of B (document tree order as defined in CSS2).

The default value of "z-index" is zero. To maintain compatibility with the CSS2
specification, the z-index attribute must always be zero for regions declared within a
<top-level> element. Regions declared as children of the <layout> element
may set the z-index to any CSS2 valid value.

The <region> element can have the following auditory attributes:

azimuth
Specifies the direction that the audio media element assigned to the region
appears to emanate from.
Position is described in terms of an angle within the range ’-360deg’ to ’360deg’.

24 Feb 2000 08:2689

The SMIL Layout Module

The value ’0deg’ means directly ahead in the center of the sound stage. ’90deg’
is to the right, ’180deg’ behind, and ’270deg’ (or, equivalently and more
conveniently, ’-90deg’) to the left. The following values are also supported:
left-side

Same as ’270deg’.
far-left

Same as ’300deg’.
left

Same as ’320deg’.
center-left

Same as ’340deg’.
center

Same as ’0deg’.
center-right

Same as ’20deg’.
right

Same as ’40deg’.
far-right

Same as ’60deg’.
right-side

Same as ’90deg’.

elevation
Specifies the elevation that the audio media element assigned to the region
appears to emanate from. Value is an angle, between ’-90deg’ and ’90deg’.
’0deg’ means on the forward horizon, which loosely means level with the
listener. ’90deg’ means directly overhead and ’-90deg’ means directly below.

Element content

If the <region> element is a descendant of a <top-level> element, it may contain
other <region> elements as children. Otherwise, the <region> element is an
empty element.

The <root-layout> element

The <root-layout> element determines the value of the layout properties of the
root element, which in turn determines the size of the window in which the SMIL
presentation is rendered.

If more than one <root-layout> element is parsed within a single <layout>
element, this is an error, and the document should not be displayed. This does not
include <root-layout> elements skipped by the player (e.g. because the
enclosing <layout> element was skipped due to an unrecognized "type" or a test
attribute evaluated to false).

Element attributes

9024 Feb 2000 08:26

The SMIL Layout Module

The <root-layout> element can have the following attributes:

backgroundColor
Defined in backgroundColor under the <region> element.

background-color
Defined in background-color under the <region> element.

height
Sets the height of the root element. Only length values are allowed.

id
Defined in id under the <region> element.

title
Defined in title under the <region> element.

width
Sets the width of the root element. Only length values are allowed.

Element content

The <root-layout> element is an empty element.

This element supports the SMIL 1.0 syntax where the <root-layout> element is
an empty sibling of the top level <region> elements. Hierarchical region layout is
not supported on windows declared with the <root-layout> element. That is,
<region> elements that are assigned to the window declared by
<root-layout> may not be nested.

The semantics of the <root-layout> element are as in SMIL 1.0: the attributes
of the <root-layout> element determine the size of the top-level presentation
window, and the declared sibling regions are arranged within this top level window.

The <top-layout> element

The <top-layout> element determines the size of the a window in which the SMIL
presentation is rendered, as well as serving as a top level window in which to place
child <region> elements.

Multiple <top-layout> elements may appear within a single <layout>
element, each declaring an independent top level window.

Element attributes

The <top-layout> element can have the following attributes:

backgroundColor
Defined in backgroundColor under the <region> element.

background-color
Defined in background-color under the <region> element.

height
Sets the height of the root element. Only length values are allowed.

id
Defined in id under the <region> element.

24 Feb 2000 08:2691

The SMIL Layout Module

title
Defined in title under the <region> element.

width
Sets the width of the root element. Only length values are allowed.

Element content

The <top-layout> element may contain <region> elements, or be empty.

The <top-layout> element supports the SMIL extended layout facilities.
Allowing multiple <top-layout> elements within a single <layout> element
supports multiple top level windows. Allowing the nesting of regions within a
<top-layout> element provides support for hierarchical layout.

Each instance of a <top-layout> element determine the size of a separate
top-level presentation window, and the descendant regions are arranged within this
top level window.

The region attribute

The "region" attribute is applied to an element in order to specify which rendering
region is assigned to the element. The attribute specifies the XML identifier of the
abstract rendering region (either visual or acoustic) defined within the layout section
of the document. If no rendering surface with the given identifier is defined in the
layout section, the values of the formatting properties of this element are defined by
the default layout .

The language integrating this module must specify which elements have a "region"
attribute and any inheritance of the attribute.

5.4.2 SMIL basic layout language details
SMIL basic layout is consistent with the visual rendering model defined in CSS2, it
reuses the formatting properties defined by the CSS2 specification, and newly
introduces the "fit" attribute [CSS2]. The reader is expected to be familiar with the
concepts and terms defined in CSS2.

Fixed property values

Editor: This should probably be moved to the language profile.

The following stylesheet defines the values of the CSS2 properties "display" and
"position" that are valid when using SMIL basic layout with the SMIL language.
These property values are fixed:

a {display:block}

anchor {display:block}

animate {display:none}

9224 Feb 2000 08:26

The SMIL Layout Module

animation {display: block;

 position: absolute}

area {display:block}

body {display: block}

head {display: none}

excl {display: block}

img {display: block;

 position: absolute}

layout {display: none}

meta {display: none}

par {display: block}

region {display: none}

ref {display: block;

 position: absolute}

root-layout {display: none}

seq {display: block}

smil {display: block}

switch {display:block}

text {display: block;

 position: absolute}

textstream {display: block;

 position: absolute}

video {display: block;

 position: absolute}

Any other XML language using SMIL basic layout will have to define similar fixed
attributes for its elements. Note that as a result of these definitions, all absolutely
positioned elements (<animation> , , <ref> , <text> , <textstream> and
<video>) are contained within a single containing block defined by the content edge
of the root element.

24 Feb 2000 08:2693

The SMIL Layout Module

Default values

A profile integrating the SMIL basic layout module must define default values for
all layout-related attributes of elements. These should be consistent with the initial
values of the corresponding properties in CSS2.

5.5 Differences from SMIL 1.0 basic layout
This section lists the differences between this layout module and SMIL 1.0 basic
layout.

Support for system and user test attributes on the <layout> element. In this
manner, an appropriate layout can be selected for users with different
accessibility requirements, or players with different capabilities.
Support for a hierarchical layout model; regions with parent/child relationships.
Support for additional CSS2 compatible properties including:

Alternative placement methods, e.g. bottom/right.
Provide for control of acoustic rendering: audio levels, mixing, and
placement in space.

5.6 Open Issues
The editors have had to make some compromises and limitations in order to
remain compatible with CSS2:

Cannot support sub-region placement, or layout position markers since
there is no direct way to represent both region and position attributes on the
same elements with CSS2.
Cannot support z-order on hierarchical regions because CSS2 has no way
to assign an element to a layout hierarchy that is distinct from the XML tree.

There is a strong dependency on the content control work to extend the use of
test attributes both for accessibility and platform support.

9424 Feb 2000 08:26

The SMIL Layout Module

6. The SMIL Linking Module
Editor

Lloyd Rutledge (Lloyd.Rutledge@cwi.nl), (CWI)

6.1 Introduction
The SMIL linking module defines the SMIL document elements for navigation
hyperlink. These are navigations through the SMIL presentation that can be
triggered by user interaction or other triggering events. SMIL provides only for in-line
link elements. Links are limited to uni-directional single-headed links (i.e. all links
have exactly one source and one destination resource).

XPointer [XPTR] allows components of XML documents to be addressed in terms
of their placement in the XML structure rather than on their unique identifiers. This
allows referencing of any portion of an XML document without having to modify that
document. Without XPointer, pointing within a document may require adding unique
identifiers to it, or inserting specific elements into the document, such as a named
anchor in HTML. XPointers are put within the fragment identifier part of a URI. The
SMIL specification does not require that browsers be able to process XPointers in
SMIL URI attributes.

XLink (XML Linking Language) [XLINK] defines a set of generic attributes that can
be used when defining linking elements in an XML-encoded language. SMIL borrows
some constructs and concepts from XLink, mostly to stay consistent with HTML.
SMIL does not conform to XLink.

Both XLink and XPointer are subject to change. At the time of this document’s
writing, neither is a full W3C recommendation. This document is based on the public
Working Drafts ([XLINK], [XPTR]). It may change as these two formats change.

6.2 Linking into SMIL documents
The SMIL Linking Module supports name fragment identifiers and the ’#’ connector.
The fragment part is an id value that identifies one of the elements within the
referenced SMIL document. With this construct, SMIL supports locators as currently
used in HTML (e.g. it uses locators of the form "http://foo.com/some/path#anchor1"),
with the difference that the values are of unique identifiers and not the values of
"name" attributes. Of course, this type of link can only target elements with an "id"
attribute. Links using fragments enable authors to encode links to a SMIL
presentation at the start time of a particular element rather than at the beginning of
its presentation. If a link containing a fragment part is followed, the presentation
should start as if the user had fast-forwarded the presentation represented by the
destination document to the effective begin of the element designated by the
fragment. See the discussion of linking to timing constructs in the SMIL Timing and
Synchronization Module for more information.

24 Feb 2000 08:2695

The SMIL Linking Module

There are special semantics defined for following a link containing a fragment part
into a document containing SMIL timing. These semantics are defined in the SMIL
Timing and Synchronization Module. In addition, the following rules apply for linking
into a document written in the SMIL language:

1. It is forbidden to link to elements that are the content of <switch> elements. If
the element addressed by the link is content of a <switch> element, then the
presentation should start with the <switch> element.

2. If the fragment part id is not defined within the target document, the SMIL
presentation should start from the beginning as if no fragment part were present
in the URI.

6.2.1 Error handling
When a link into a SMIL document contains an unresolvable fragment identifier
("dangling link") because it identifies an element that is not actually part of the
document, SMIL software should ignore the fragment identifier, and start playback
from the beginning of the document.

When a link into a SMIL document contains a fragment identifier which identifies
an element that is the content of a <switch> element, SMIL software should interpret
this link as going to the parent <switch> element instead. If the parent is also a
<switch>, then the link should be considered as accessing the first switch ancestor
element whose parent is not also a <switch>. The result of the link traversal is thus
to play the child of the located <switch> element that passes the usual switch child
selection process.

6.3 Link Elements
The link elements allows the description of navigational links between objects.

SMIL linking provides only for in-line link elements. Links are limited to
uni-directional single-headed links. That is, all links have exactly one source and one
destination resource.

6.3.1 Handling of Links in Embedded Documents
Due to its integrating nature, the presentation of a SMIL document may involve other
(non-SMIL) applications or plug-ins. For example, a SMIL browser may use an
HTML plug-in to display an embedded HTML page. Vice versa, an HTML browser
may use a SMIL plug-in to display a SMIL document embedded in an HTML page.
Note that this is only one of the supported methods of integrating SMIL and HTML.
Another alternative is to use the merged language approach. See the SMIL Timing
and Integration Module for further details.

In embedded presentations, links may be defined by documents at different levels
and conflicts may arise. In this case, the link defined by the containing document
should take precedence over the link defined by the embedded object. Note that

9624 Feb 2000 08:26

The SMIL Linking Module

since this might require communication between the browser and the plug-in, SMIL
implementations may choose not to comply with this recommendation.

If a link is defined in an embedded SMIL document, traversal of the link affects
only the embedded SMIL document.

If a link is defined in a non-SMIL document which is embedded in a SMIL
document, link traversal can only affect the presentation of the embedded document
and not the presentation of the containing SMIL document. This restriction may be
relaxed in future versions of SMIL.

6.3.2 The <a> Element
The functionality of the <a> element is very similar to the functionality of the <a>
element in HTML 4.0 [HTML40]. For synchronization purposes, the <a> element is
transparent. That is, it does not influence the synchronization of its child elements.
<a> elements may not be nested. An <a> element must have an href attribute.

An <a> element can specify several triggers for its traversal simultaneously. For
example, the element’s content visual media can be selected by the user or the key
specified by the accesskey attribute can be typed to trigger a traversal. In cases
where multiple triggers are specified, any of them can activate the link’s traversal.
That is, an "or" is applied to the list of triggering conditions to determine if traversal
occurs.

Traversal occurs if one of the conditions for traversal is met during the time that
the <A> element is active. The means for determining is an <A> element is active
are the same for determining if a media object is playing. This can be done through:

natural progression forward along the presentation timeline due to time passing,
possible by linking to a time before the <A> element and letting the presentation
progress to it
linking to the element’s beginning by linking to the <A> element itself
linking to an element playing in parallel with the <A> element, perhaps starting
the <A> element at a moment after it its scheduled start time but before its
scheduled end time.

Attributes

href
This attribute contains the URI of the link’s destination.
The "href" attribute is required for <a> elements.

sourceVolume
This attribute sets the volume of audio media objects in the presentation
containing the link when the link is followed. Ignored if the presentation does not
contain audio media objects. This attribute can have the same values as the
"volume" property in CSS2 [CSS2].

24 Feb 2000 08:2697

The SMIL Linking Module

destinationVolume
This attribute sets the volume of audio media contained in the remote resource.
Ignored if the remote resource does not contain audio media. This attribute can
have the same values as the "localVolume" attribute.

sourcePlaystate
This attribute controls the temporal behavior of the presentation containing the
link when the link is traversed. It can have the following values:

"play": When the link is traversed, the presentation containing the link
continues playing.
"pause": When the link is traversed, the presentation containing the link
pauses. When the display of the destination resource ends, the originating
presentation resumes playing.

What "end" means needs to be defined. For example, it could be when
the user closes the display window or when a continuous media object
ends. This may need to be left up to the profile or even the implementation
to define.

"stop": When the link is traversed, the presentation containing the link
stops. That is, it is reset to the beginning of the presentation. The
termination of the destination resource will not cause the originating
presentation to continue or restart.

The default value of the "sourcePlaystate" attribute depends on the value of
the "show" attribute. If the "show" attribute has the value "new", the default for
the "sourcePlaystate" attribute is "play". If the "show" attribute has the value
"replace" or the deprecated value "pause", then the default for the
"sourcePlaystate" attribute is "pause".

destinationPlaystate
This attribute controls the temporal behavior of the resource identified by the
href attribute when the link is followed. It only applies when this resource is a
continuous media object. It can have the same values as the "sourcePlaystate"
attribute.

show
This attribute specifies how to handle the current state of the presentation at the
time in which the link is activated. The following values are allowed:

"new": The presentation of the destination resource starts in a new context,
not affecting the source resource. If both the presentation containing the
link and the remote resource contain audio media, both are played in
parallel.
"pause": This value is deprecated in favor of setting the the "show" attribute
to "new" and the "sourcePlaystate" attribute to "pause".
"replace": The current presentation is paused at its current state and is
replaced by the destination resource. If the player offers a history
mechanism, the source presentation resumes from the state in which it was
paused when the user returns to it. The default value of "sourcePlaystate"
is "pause" when the "show" attribute has the value "replace".

9824 Feb 2000 08:26

The SMIL Linking Module

The default value of "show" is "replace".

accesskey
This attribute assigns a keyboard key whose activation by the user in turn
activates this link. It has the same meaning as the attribute of the same name in
HTML 4.0 [HTML40].

tabindex
This attribute provides the same functionality as the "tabindex" attribute in HTML
4.0 [HTML40]. It specifies the position of the element in the tabbing order for the
current document. The tabbing order defines the order in which elements will
receive focus when navigated by the user via the keyboard. At any particular
point in time, only elements with an active timeline are taken into account for the
tabbing order, and inactive elements that are are ignored for the tabbing order.

target
This attribute defines either the existing display environment in which the link
should be opened (e.g. a SMIL region, an HTML frame or another named
window), or triggers the creation of a new display environment with the given
name. Its value is the identifier of the display environment. If no currently active
display environment has this identifier, a new display environment is opened
and assigned the identifier of the target. When a presentation uses different
types of display environments (e.g. SMIL regions and HTML frames), the
namespace for identifiers is shared between these different types of display
environments. For example, one cannot use a "target" attribute with the value
"foo" twice in a document, and have it point once to an HTML frame, and then to
a SMIL region. If the element has both a "show" attribute and a "target" attribute,
the "show" attribute is ignored.

actuate
The actuate attribute determines whether or not the link is triggered by some
event or automatically traversed when its time span is active. It is the same as
the actuate attribute of XLink [XLINK]. Its default value is "onRequest", which
means something must trigger the link traversal. This trigger is defined by the
user interaction and event attributes of the <A> element. A value of "onLoad"
can also be assigned. This value indicates that the link is automatically
traversed when its time span is active.

title
Defined in the SMIL Metainformation Module.

id
Standard XML ID attribute, for referential use.

begin
Defined in SMIL Timing and Synchronization module.

dur
Defined in "SMIL Timing and Synchronization" module.

end
Defined in "SMIL Timing and Synchronization" module.

24 Feb 2000 08:2699

The SMIL Linking Module

The <a> element can also have the attributes listed below, with the same syntax
and semantics as in HTML 4.0 [HTML40]:

onclick
ondblclick
onmousedown
onmouseup
onmouseover
onmousemove
onmouseout
onkeypress
onkeydown
onkeyup
onfocus
onblur

Element Content

The <a> element can be empty or contain the following children:

animation
Defined in section on media object elements.

audio
Defined in section on media object elements.

img
Defined in section on media object elements.

par
Defined in section on par elements.

ref
Defined in section on media object elements.

seq
Defined in section on seq elements.

excl
Defined in section on excl elements.

switch
Defined in section on switch elements.

text
Defined in section on media object elements.

textstream
Defined in section on media object elements.

video
Defined in section on media object elements.

Examples

10024 Feb 2000 08:26

The SMIL Linking Module

Example 1

The link starts up the new presentation replacing the presentation that was
playing.

 <video src="rtsp://foo.com/graph.imf" region="l_window"/>

Example 2

The link starts up the new presentation in addition to the presentation that was
playing.

 <video src="rtsp://foo.com/graph.imf" region="l_window"/>

This could allow a SMIL player to spawn off an HTML browser:

 <video src="rtsp://foo.com/graph.imf" region="l_window"/>

Example 3

The link starts up the new presentation and pauses the presentation that was
playing.

 <video src="rtsp://foo.com/graph.imf" region="l_window"/>

Example 4

The following example contains a link from an element in one presentation A to
the middle of another presentation B. This would play presentation B starting from
the effective begin of the element with id "next".

Presentation A:

 <video src="rtsp://foo.com/graph.imf"/>

Presentation B (http://www.cwi.nl/presentation):

 ...
 <seq>
 <video src="rtsp://foo.com/graph.imf"/>
 <par>
 <video src="rtsp://foo.com/timbl.rm" region="l_window"/>
 <video id="next" src="rtsp://foo.com/v1.rm" region="r_window"/>
 ^^^^^^^^^
 <text src="rtsp://foo.com/caption1.html" region="l_2_title"/>

24 Feb 2000 08:26101

The SMIL Linking Module

 <text src="rtsp://foo.com/caption2.rtx" region="r_2_title"/>
 </par>
 </seq>
 ...

6.3.3 The <area> Element
The functionality of the <a> element is restricted in that it only allows associating a
link with a complete media object. The HTML 4.0 "area" element [HTML40] has
demonstrated that it is useful to associate links with spatial portions of an object’s
visual display.

The semantics of the <area> element in SMIL is the same as it is for HTML in
that:

1. The <area> element allows associating a link destination, specified by the ’href’
attribute, with spatial portions of a visual object. In contrast, the <a> element
only allows associating a link with complete media.

2. The <area> element allows making a subpart of the media object the
destination of a link, using the "id" attribute.

3. The <area> element allows breaking up an object into spatial subparts, using
the "coords" attribute.

It extends the syntax and semantics of the HTML <area> element by providing for
linking from non-spatial portions of the media object’s display. These extensions are:

1. The area element allows breaking up an object into temporal subparts, using the
"begin" and "end" attributes. The values of the begin and end attributes are
relative to the beginning of the media object.

2. The area element allows breaking up an XML-defined object into syntactic
components, using the "fragment" attribute. The spatial and temporal portion of
the display that activates the link is defined in terms of the syntactic structure of
that object. This allows portions of the display of XML code integrated in a SMIL
presentation to be starting areas for links in SMIL. An example is having an
HTML file format the text for a menu of items. These are displayed as part of a
SMIL presentation. Each item can be clicked upon to activate a link in the
containing SMIL presentation.

The <anchor> element is deprecated in favor of <area> .

Attributes

The <area> element can have the attributes listed below, with the same syntax
and semantics as in HTML 4.0 [HTML40]:

id
class
style
title

10224 Feb 2000 08:26

The SMIL Linking Module

lang
dir
onclick
ondblclick
onmousedown
onmouseup
onmouseover
onmousemove
onmouseout
onkeypress
onkeydown
onkeyup
shape
coords
href
nohref
alt
accesskey
onfocus
onblur

The following lists attributes that are newly introduced by this specification, and
attributes that are extended with respect to HTML 4.0 [HTML40]:

begin
Defined in SMIL Timing and Synchronization module.

sourcePlaystate
Defined in Section on the <a> element.

show
Defined in Section on the <a> element.

coords
This attribute is extended to be identical with the "coords" attribute in HTML 4.0.
That is, it can take the values needed when the "shape" attribute has the value
"circle" or "poly".

dur
Defined in "SMIL Timing and Synchronization" module.

end
Defined in "SMIL Timing and Synchronization" module.

sourceVolume
Defined in Section on the <a> element.

destinationVolume
Defined in Section on the <a> element.

destinationPlaystate
Defined in Section on the <a> element.

24 Feb 2000 08:26103

The SMIL Linking Module

fragment
This is a media-specific reference to a portion of the media referenced in the
"src" attribute of the parent media object. This attribute is used to place a
hotspot in a media file that refers back to the containing SMIL presentation. In
order for the "fragment" attribute to be used, the media object integrated with
the parent media object element must be addressable by the fragment. If the
referenced media object is an XML file, then the value of the "fragment" attribute
is a fragment identifier, the part that comes after a # in a URI

Editor Note: This functionality is preliminary. The intent of the fragment attribute is
to enable linking from an embedded document back into the main SMIL
presentation. Several open issues: What mechanism does the player use to insert
the link into the embedded document, and what semantics must be adhered to? How
does this affect the DOM event flow? What is the interaction with the "coords"
attribute?

show
Defined in Section on the <a> element.

tabindex
Defined in Section on the <a> element.

target
Defined in Section on the <a> element.

title
Defined in Section on the <a> element.

Element Content

The <area> element is empty.

Examples

1) Decomposing a video into temporal segments

In the following example, the temporal structure of an interview in a newscast
(camera shot on interviewer asking a question followed by shot on interviewed
person answering) is exposed by fragmentation:

<smil>
 <body>
 <video src="video" title="Tom Cruise interview 1995" >
 <seq>
 <area id="firstQ" dur="20s" title="first question" />
 <area id="firstA" dur="50s" title="first answer" />
 </seq>
 </video>
 </body>
</smil>

2) Associating links with spatial segments In the following example, the screen
space taken up by a video clip is split into two sections. A different link is associated
with each of these sections.

10424 Feb 2000 08:26

The SMIL Linking Module

<smil>
 <body>
 <video src="video" title="Tom Cruise interview 1995" >
 <area shape="rect" coords="5,5,50,50"
 title="Journalist" href="http://www.cnn.com"/>
 <area shape="rect" coords="5,60,50,50"
 title="Tom Cruise" href="http://www.brando.com" />
 </video>
 </body>
</smil>

3) Associating links with temporal segments

In the following example, the duration of a video clip is split into two sub-intervals.
A different link is associated with each of these sub-intervals.

<smil>
 <body>
 <video src="video" title="Tom Cruise interview 1995" >
 <seq>
 <area dur="20s" title="first question"
 href="http://www.cnn.com"/>
 <area dur="50s" title="first answer"
 href="http://www.brando.com"/>
 </seq>
 </video>
 </body>
</smil>

4) Associating links with spatial subparts

In the following example, the screen space taken up by a video clip is split into two
sections. A different link is associated with each of these sections.

<video src="http://www.w3.org/CoolStuff">
 <area href="http://www.w3.org/AudioVideo" coords="0%,0%,50%,50%"/>
 <area href="http://www.w3.org/Style" coords="50%,50%,100%,100%"/>
</video>

5) Associating links with temporal subparts

In the following example, the duration of a video clip is split into two subintervals.
A different link is associated with each of these subintervals.

<video src="http://www.w3.org/CoolStuff">
 <area href="http://www.w3.org/AudioVideo" begin="0s" end="5s"/>
 <area href="http://www.w3.org/Style" begin="5s" end="10s"/>
</video>

6) Jumping to a subpart of an object

The following example contains a link from an element in one presentation A to
the middle of a video object contained in another presentation B. This would play
presentation B starting from second 5 in the video. That is, the presentation would
start as if the user had fast-forwarded the whole presentation to the point at which
the designated fragment in the "CoolStuff" video begins.

24 Feb 2000 08:26105

The SMIL Linking Module

Presentation A:

 <video id="graph" src="rtsp://foo.com/graph.imf" region="l_window"/>

Presentation B:

<video src="http://www.w3.org/CoolStuff">
 <area id="joe" begin="0s" end="5s"/>
 <area id="tim" begin="5s" end="10s"/>
</video>

7) Combining different uses of links

The following example shows how the different uses of associated links can be
used in combination.

Presentation A:

 <video id="graph" src="rtsp://foo.com/graph.imf" region="l_window"/>

Presentation B:

<video src="http://www.w3.org/CoolStuff">
 <area id="joe" begin="0s" end="5s" coords="0%,0%,50%,50%"
 href="http://www.w3.org/"/>
 <area id="tim" begin="5s" end="10s" coords="0%,0%,50%,50%"
 href="http://www.w3.org/Tim"/>
</video>

8) Associating links with syntactic subparts

Below is an example with an integrated HTML file that displays a menu of

 link one
 link two

The user can click on one of the menu items, and the matching HTML file is
displayed. That is, if user clicks on "link one", the "Link1.html" file is displayed in the
"LinkText" region.

The menu HTML file contains the code:

 link one

 link two

The SMIL file is:

 <smil>
 <head>
 <layout>
 <region id="HTML" width="100" height="100"/>
 <region id="LinkText" width="100" top ="100"/>

10624 Feb 2000 08:26

The SMIL Linking Module

 </layout>
 </head>
 <body>
 <par>
 <text region="HTML" src="namedanchs.html" dur="indefinite">
 <area fragment="link1" href="#LinkOne"/>
 <area fragment="link2" href="#LinkTwo"/>
 </text>
 <excl -- or something like excl -- dur="indefinite" >
 <text id="LinkOne" region="LinkText" src="Link1.html" dur="indefinite"/>
 <text id="LinkTwo" region="LinkText" src="Link2.html" dur="indefinite"/>
 </excl>
 </par>
 </body>
 </smil>

24 Feb 2000 08:26107

The SMIL Linking Module

10824 Feb 2000 08:26

The SMIL Linking Module

7. The SMIL Media Object Module
Editors

Philipp Hoschka (ph@w3.org), W3C
Rob Lanphier (robla@real.com), RealNetworks

7.1 Introduction
This section defines the SMIL media object module. This module contains elements
and attributes used to describe media objects. Since these elements and attributes
are defined in a module, designers of other markup languages can reuse the SMIL
media module when they need to include media objects into their language.

Changes with respect to the media object elements in SMIL 1.0 provide additional
functionality that was brought up as Requirements of the Working Group, and those
differences are explained in Appendix A.

7.2 The ref, animation, audio, img, video,
text and textstream elements
The media object elements allow the inclusion of media objects into a SMIL
presentation. Media objects are included by reference (using a URI).

There are two types of media objects: media objects with an intrinsic duration (e.g.
video, audio) (also called "continuous media"), and media objects without intrinsic
duration (e.g. text, image) (also called "discrete media").

Anchors and links can be attached to visual media objects, i.e. media objects
rendered on a visual abstract rendering surface.

When playing back a media object, the player must not derive the exact type of
the media object from the name of the media object element. Instead, it must rely
solely on other sources about the type, such as type information contained in the
"type" attribute, or the type information communicated by a server or the operating
system.

Authors, however, should make sure that the group into which of the media object
falls (animation, audio, img, video, text or textstream) is reflected in the element
name. This is in order to increase the readability of the SMIL document. When in
doubt about the group of a media object, authors should use the generic "ref"
element.

7.2.1 Element Attributes
Languages implementing the SMIL Media Object Module must define which
attributes may be attached to media object elements. In all languages implementing
the SMIL Media Object Module, media object elements can have the following
attributes:

24 Feb 2000 08:26109

The SMIL Media Object Module

abstract

A brief description of the content contained in the element.

alt

For user agents that cannot display a particular media-object, this attribute specifies
alternate text. It is strongly recommended that all media object elements have an
"alt" attribute with a meaningful description. Authoring tools should ensure that no
element can be introduced into a SMIL document without this attribute.

If the content of these attributes is read by a screen-reader, the presentation
should be paused while the text is read out, and resumed afterwards.

author

The name of the author of the content contained in the element.

begin

Defined in SMIL Timing Module

clipBegin (clip-begin)

The clipBegin attribute specifies the beginning of a sub-clip of a continuous media
object as offset from the start of the media object.
Values in the clipBegin attribute have the following syntax:

Clip-value ::= [Metric] "=" (Clock-val | Smpte-val) |
 "marker" "=" name-val
Metric ::= Smpte-type | "npt"
Smpte-type ::= "smpte" | "smpte-30-drop" | "smpte-25"
Smpte-val ::= Hours ":" Minutes ":" Seconds
 [":" Frames ["." Subframes]]
Hours ::= Digit Digit
 /* see XML 1.0 for a definition of ´Digit´*/
Minutes ::= Digit Digit
Seconds ::= Digit Digit
Frames ::= Digit Digit
Subframes ::= Digit Digit
name-val ::= ([^<&"] | [^<&´])*
 /* Derived from BNF rule [10] in [XML10]
 Whether single or double quotes are
 allowed in a name value depends on which
 type of quotes is used to quote the
 clip attribute value */

The value of this attribute consists of a metric specifier, followed by a time value
whose syntax and semantics depend on the metric specifier. The following formats
are allowed:

SMPTE Timestamp
SMPTE time codes [SMPTE] can be used for frame-level access accuracy. The
metric specifier can have the following values:

11024 Feb 2000 08:26

The SMIL Media Object Module

smpte
smpte-30-drop

These values indicate the use of the "SMPTE 30 drop" format with 29.97
frames per second. The "frames" field in the time value can assume the
values 0 through 29. The difference between 30 and 29.97 frames per
second is handled by dropping the first two frame indices (values 00 and
01) of every minute, except every tenth minute.

smpte-25
The "frames" field in the time specification can assume the values 0
through 24.

The time value has the format hours:minutes:seconds:frames.subframes. If
the frame value is zero, it may be omitted. Subframes are measured in
one-hundredth of a frame.
Examples:
clipBegin="smpte=10:12:33:20"

Normal Play Time
Normal Play Time expresses time in terms of SMIL clock values. The metric
specifier is "npt", and the syntax of the time value is identical to the syntax of
SMIL clock values.
Examples:
clipBegin="npt=123.45s"
clipBegin="npt=12:05:35.3 "

Marker
Used to define a clip using named time points in a media object, rather than
using clock values or SMPTE values. The metric specifier is "marker", and the
marker value is a string.

Example: Assume that a recorded radio transmission consists of a sequence
of songs, which are separated by announcements by a disk jockey. The audio
format supports marked time points, and the begin of each song or
announcement with number X is marked as songX or djX respectively. To
extract the first song using the "marker" metric, the following audio media
element can be used:

<audio clipBegin="marker=song1" clipEnd="marker=dj1" />

"clipBegin" may also be expressed as "clip-begin" for compatibility with SMIL 1.0.
Software supporting the SMIL Boston Language Profile must be able to handle both
"clipBegin" and "clip-begin", whereas software supporting only the SMIL media
object module only needs to support "clipBegin". If an element contains both a
"clipBegin" and a "clip-begin" attribute, then "clipBegin" takes precedence over
"clip-begin". When used in conjunction with the timing attributes from the SMIL
Timing Module, this attribute is applied before any SMIL Timing Module attributes.

Example:

24 Feb 2000 08:26111

The SMIL Media Object Module

<audio src="radio.wav" clip-begin="5s" clipBegin="10s" />

The clip begins at second 10 of the audio, and not at second 5, since the
"clip-begin" attribute is ignored. A strict SMIL 1.0 implementation will start the clip at
second 5 of the audio, since the clipBegin attribute will not be recognized by that
implementation. See Changes to SMIL 1.0 Media Object Attributes for more
discussion on this topic.

clipEnd (clip-end)

The clipEnd attribute specifies the end of a sub-clip of a continuous media object
(such as audio, video or another presentation) that should be played. It uses the
same attribute value syntax as the clipBegin attribute.
If the value of the "clipEnd" attribute exceeds the duration of the media object, the
value is ignored, and the clip end is set equal to the effective end of the media
object. "clipEnd" may also be expressed as "clip-end" for compatibility with SMIL 1.0.
Software supporting the SMIL Boston Language Profile must be able to handle both
"clipEnd" and "clip-end", whereas software supporting only the SMIL media object
module only needs to support "clipEnd". If an element contains both a "clipEnd" and
a "clip-end" attribute, then "clipEnd" takes precedence over "clip-end". When used in
conjunction with the timing attributes from the SMIL Timing Module, this attribute is
applied before any SMIL Timing Module attributes.

See Changes to SMIL 1.0 Media Object Attributes for more discussion on this
topic.

copyright

The copyright notice of the content contained in the element.

longdesc

This attribute specifies a link (URI) to a long description of a media object. This
description should supplement the short description provided using the alt attribute.
When the media object has associated hyperlinked content, this attribute should
provide information about the hyperlinked content.

If the content of these attributes is read by a screen-reader, the presentation
should be paused while the text is read out, and resumed afterwards.

port

This provides the RTP/RTCP port for a media object transferred via multicast. It is
specified as a range, e.g., port="3456-3457" (this is different from "port" in SDP,
where the second port is derived by an algorithm). Note: For transports based on
UDP in IPv4, the value should be in the range 1024 to 65535 inclusive. For RTP
compliance it should start with an even number. For applications where
hierarchically encoded streams are being sent to a unicast address, this may be
necessary to specify multiple port pairs. Thus, the range of this request may contain
greater than two ports. This attribute is only interpreted if the media object is

11224 Feb 2000 08:26

The SMIL Media Object Module

transferred via RTP and without using RTSP.

readIndex

This attribute specifies the position of the current element in the order in which
longdesc and alt text are read out by a screen reader for the current document.
This value must be a number between 0 and 32767. User agents should ignore
leading zeros. The default value is 0.

Elements that contain alt or longdesc attributes are read by a screen reader
according to the following rules:

Those elements that assign a positive value to the readindex attribute are read
out first. Navigation proceeds from the element with the lowest readindex value
to the element with the highest value. Values need not be sequential nor must
they begin with any particular value. Elements that have identical readindex
values should be read out in the order they appear in the character stream of
the document.
Those elements that assign it a value of "0" are read out in the order they
appear in the character stream of the document.
Elements in a switch statement that have test-attributes which evaluate to
"false" are not read out.

rtpformat

This field has the same semantics as the "fmt list" sub-field in an SDP media
description. It contains a list of media format payload IDs. For audio and video, these
will normally be a media payload type as defined in the RTP Audio/Video Profile
(RFC 1890). When a list of payload formats is given, this implies that all of these
formats may be used in the session, but the first of these formats is the default
format for the session. For media payload types not explicitly defined as static types,
the rtpmap element may be used to provide a dynamic binding of media encoding to
RTP payload type. The encoding names in the RTP AV Profile do not specify a
complete set of parameters for decoding the audio encodings (in terms of clock rate
and number of audio channels), and so they are not used directly in this field.
Instead, the payload type number should be used to specify the format for static
payload types and the payload type number along with additional encoding
information should be used for dynamically allocated payload types. This attribute is
only interpreted if the media object is transferred via RTP.

src

The value of the src attribute is the URI of the media object.

24 Feb 2000 08:26113

The SMIL Media Object Module

stripRepeat

Strip the intrinsic repeat value of the underlying media object. For example, many
animated GIFs intrinsically repeat indefinitely. The stripRepeat attribute allows an
author to remove the intrinsic repeat behavior of an animated GIF on a per-reference
basis, causing the animation to display only once, regardless of the repeat value
embedded in the GIF. When stripRepeat is used in conjunction with SMIL Timing
Module attributes, this attribute is applied first, so that the repeat behavior can then
be controlled with the SMIL Timing Module attributes such as repeatCount and
repeatDur . Values: "true" or "false". Default: "false".

title

This attribute offers advisory information about the element for which it is set. Values
of the title attribute may be rendered by user agents in a variety of ways. For
instance, visual browsers frequently display the title as a "tool tip" (a short message
that appears when the pointing device pauses over an object). It is strongly
recommended that all media object elements have a "title" attribute with a
meaningful description. Authoring tools should ensure that no element can be
introduced into a SMIL document without this attribute.

transport

This attribute has the same syntax and semantics as the "transport" sub-field in a
SDP media description. It defines the transport protocol that is used to deliver the
media streams. Currently defined values for this are: "src-attr" and "RTP/AVP", but
alternate values may be defined by IANA. The default value for this is "src-attr",
which indicates that the transport is derived from the URL given in the src attribute.
The other defined value for this field is "RTP/AVP". RTP/AVP is the IETF’s Realtime
Transport Protocol using the Audio/Video profile carried over UDP. The complete
definition of RTP/AVP can be found in [RFC1890].

@@ this may be better to derive from the "src" parameter, which could optionally
be rtp://___. This would mean that an RTP URL format would need to be defined.

@@ what does it mean when an HTTP URL is coupled with
transport="RTP/AVP" ?

type

Content type of the media object referenced by the "src" attribute. This value takes
precedence over other possible sources of the media type (for instance, the
"Content-type" field in an HTTP or RTSP exchange, or the file extension). When the
content represented by a URL is available in many data formats, implementations
MAY use the type value to influence which of the multiple formats is used. For
instance, on a server implementing HTTP content negotiation, the client may use the
type attribute to order the preferences in the negotiation.

11424 Feb 2000 08:26

The SMIL Media Object Module

(@@ need to think through if this is what we really want to say; current SMIL
implementations probably do not implement this behavior, though it’s hard to
imagine current implementations rely on any other behavior.).

xml:lang

Used to identify the natural or formal language for the element. For a complete
description, see section 2.12 Language Identification of [XML10].

xml:lang differs from the system-language test attribute in one important
respect. xml:lang provides information about the content’s language independent
of what implementations do with the information, whereas system-language is a
test attribute with specific associated behavior (see system-language in SMIL
Content Control Module for details)

7.2.2 Element Content
Languages utilizing the SMIL Media Object Module must define the complete set of
elements which may act as children of media object elements. In all languages
implementing the SMIL Media Object Module, the following elements must be part of
the supported set of child elements:

param
rtpmap

7.2.3 Media object initialization: the param element
@@Links below incorrectly point to the HTML spec

Attribute definitions

name

(CDATA) This attribute defines the name of a run-time parameter, assumed to be
known by the inserted object. Whether the property name is case-sensitive depends
on the specific object implementation.

value

[cdata] This attribute specifies the value of a run-time parameter specified by name.
Property values have no meaning to SMIL; their meaning is determined by the object
in question.

valuetype

[data|ref|object This attribute specifies the type of the value attribute. Possible
values:

24 Feb 2000 08:26115

The SMIL Media Object Module

http://www.w3.org/TR/1998/REC-xml-19980210#sec-lang-tag

data: This is default value for the attribute. It means that the value specified by
value will be evaluated and passed to the object’s implementation as a string.
ref: The value specified by value is a URI that designates a resource where
run-time values are stored. This allows support tools to identify URIs given as
parameters. The URI must be passed to the object as is , i.e., unresolved.
object: The value specified by value is an identifier that refers to a media
object declaration in the same document. The identifier must be the value of the
id attribute set for the declared media object element.

type

This attribute specifies the content type of the resource designated by the value
attribute only in the case where valuetype is set to "ref". This attribute thus
specifies for the user agent, the type of values that will be found at the URI
designated by value . See 6.7 Content Type in [HTML40] for more information.

Element Description

param elements specify a set of values that may be required by a media object at
run-time. Any number of param elements may appear in the content of a media
object element, in any order, but must be placed at the start of the content of the
enclosing media object element.

The syntax of names and values is assumed to be understood by the object’s
implementation. This document does not specify how user agents should retrieve
name/value pairs nor how they should interpret parameter names that appear twice.

Example(s):

To illustrate the use of param : suppose that we have a facial animation plug-in that
is able to accept different moods and accessories associated with characters. These
could be defined in the following way:

<ref src="http://www.facethingy.com/herbert.face">
 <param name="mood" value="surly" valuetype="data">
 <param name="accessories" value="baseball-cap,nose-ring" valuetype="data">
</ref>

Example(s):

In the following example, run-time data for the object’s "Init_values" parameter is
specified as an external resource (a GIF file). The value of the valuetype attribute
is thus set to "ref" and the value is a URI designating the resource.

<ref classid="http://www.gifstuff.com/gifapplication">
 <param name="Init_values"
 value="./images/elvis.gif">
 valuetype="ref">
</ref>

11624 Feb 2000 08:26

The SMIL Media Object Module

http://www.w3.org/TR/html4/types#type-content-type

7.2.4 The rtpmap element
If the media object is transferred using the RTP protocol, and uses a dynamic
payload type, SDP requires the use of the "rtpmap" attribute field. In this
specification, this is mapped onto the "rtpmap" element, which is contained in the
content of the media object element. If the media object is not transferred using
RTP, this element is ignored.

Attributes

payload

The value of this attribute is a payload format type number listed in the parent
element’s "rtpformat" attribute. This is used to map dynamic payload types onto
definitions of specific encoding types and necessary parameters.

encoding

This attribute encodes parameters needed to decode the dynamic payload type. The
attribute values have the following syntax:

encoding-val ::= (short-encoding | long-encoding)
short-encoding ::= encoding-name "/" clock-rate
long-encoding ::= encoding-name "/" clock-rate "/" encoding-params
encoding-name ::= name-val
clock-rate ::= +Digit
encoding-params ::= ??

Legal values for "encoding-name" are payload names defined in [RFC1890], and
RTP payload names registered as MIME types [draft-ietf-avt-rtp-mime-00].

For audio streams, "encoding parameters" may specify the number of audio
channels. This parameter may be omitted if the number of channels is one provided
no additional parameters are needed. For video streams, no encoding parameters
are currently specified. Additional parameters may be defined in the future, but
codec specific parameters should not be added, but defined as separate rtpmap
attributes.

Element Content

"rtpmap" is an empty element

Example

<audio src="rtsp://www.w3.org/foo.rtp" port="49170"
 transport="RTP/AVP" rtpformat="96,97,98">
 <rtpmap payload="96" encoding="L8/8000" />
 <rtpmap payload="97" encoding="L16/8000" />
 <rtpmap payload="98" encoding="L16/11025/2" />
</audio>

24 Feb 2000 08:26117

The SMIL Media Object Module

7.3 Support for media player extensions
A media object referenced by a media object element is often rendered by software
modules referred to as media players that are separate from the software module
providing the synchronization between different media objects in a presentation
(referred to as synchronization engine).

Media players generally support varying levels of control, depending on the
constraints of the underlying renderer as well as media delivery, streaming etc. This
specification defines 4 levels of support, allowing for increasingly tight integration,
and broader functionality. The details of the interface will be presented in a separate
document.

Level 0
Must allow the synchronization engine to query for duration, and must support
cue, start and stop on the player. To support reasonable resynchronization, the
media player must provide pause/unpause controls with minimal latency. This is
the minimum level of support defined.

Level 1
In addition to all Level 0 support, the media player can detect when sync has
been broken, so that a resynchronization event can be fired. A media player that
cannot support Level 1 functionality is responsible to maintain proper
synchronization in all circumstances, and has no remedy if it cannot (Level 1
support is recommended).

Level 2
In addition to all Level 1 support, the media player supports a tick() method for
advancing the timeline in strict sync with the document timeline. This is
generally appropriate to animation renderers that are not tightly bound to media
delivery constraints.

Level 3
In addition to all Level 2 support, the media player also supports a query
interface to provide information about its time-related capabilities. Capabilities
include things like canRepeat, canPlayBackwards, canPlayVariable, canHold,
etc. This is mostly for future extension of the timing functionality and for
optimization of media playback/rendering.

7.3.1 Appendix A: Changes to SMIL 1.0 Media Object
Attributes

clipBegin, clipEnd, clip-begin, clip-end

With regards to the clipBegin/clip-begin and clipEnd/clip-end elements, SMIL Boston
defines the following changes to the syntax defined in SMIL 1.0:

Addition of the attribute names "clipBegin" and "clipEnd" as an equivalent
alternative to the SMIL 1.0 "clip-begin" and "clip-end" attributes. The attribute
names with hyphens are deprecated.

11824 Feb 2000 08:26

The SMIL Media Object Module

If the attribute consists only of a clock value without further specification, it is
assumed to be specified in normal play time, i.e. to have the metric "npt".
A new metric called "marker" can be used to define a clip using marked time
points in a media object, rather than using clock values or SMPTE values.

Handling of new clipBegin/clipEnd syntax in SMIL 1.0 software

Using attribute names with hyphens such as "clip-begin" and "clip-end" is
problematic when using a scripting language and the DOM to manipulate these
attributes. Therefore, this specification adds the attribute names "clipBegin" and
"clipEnd" as an equivalent alternative to the SMIL 1.0 "clip-begin" and "clip-end"
attributes. The attribute names with hyphens are deprecated.

Authors can use two approaches for writing SMIL Boston presentations that use
the new clipping syntax and functionality ("marker", default metric) defined in this
specification, but can still can be handled by SMIL 1.0 software. First, authors can
use non-hyphenated versions of the new attributes that use the new functionality,
and add SMIL 1.0 conformant clipping attributes later in the text.

Example:

<audio src="radio.wav" clipBegin="marker=song1" clipEnd="marker=moderator1"
 clip-begin="0s" clip-end="3:50" />

SMIL 1.0 players implementing the recommended extensibility rules of SMIL 1.0
[SMIL10] will ignore the clip attributes using the new functionality, since they are not
part of SMIL 1.0. SMIL Boston players, in contrast, will ignore the clip attributes
using SMIL 1.0 syntax, since they occur later in the text.

The second approach is to use the following steps:

1. Add a "system-required" test attribute to media object elements using the new
functionality. The value of the "system-required" attribute must be the URI of this
specification, i.e. @@
http://www.w3.org/AudioVideo/Group/Media/extended-media-object19990707

2. Add an alternative version of the media object element that conforms to SMIL
1.0

3. Include these two elements in a "switch" element

Example:

<switch>
 <audio src="radio.wav" clipBegin="marker=song1" clipEnd="marker=moderator1"
 system-required=
 "@@http://www.w3.org/AudioVideo/Group/Media/extended-media-object19990707" />
 <audio src="radio.wav" clip-begin="0s" clip-end="3:50" />
</switch>

alt, longdesc

24 Feb 2000 08:26119

The SMIL Media Object Module

Added the recommendation that if the content of these attributes is read by a
screen-reader, the presentation should be paused while the text is read out, and
resumed afterwards.

New Accessibility Attributes

readIndex

SDP Attributes

When using SMIL in conjunction with the Real Time Transport Protocol (RTP,
[RFC1889]), which is designed for real-time delivery of media streams, a media
client is required to have initialization parameters in order to interpret the RTP data.
In the typical RTP implementation, these initialization parameters are described in
the Session Description Protocol (SDP, [RFC2327]). The SDP description can be
delivered in the DESCRIBE portion of the Real Time Streaming Protocol (RTSP,
[RFC2326]), or can be delivered as a file via HTTP.

Since SMIL provides a media description language which often references SDP
via RTSP and can also reference SDP files via HTTP, a very useful optimization can
be realized by merging parameters typically delivered via SDP into the SMIL
document. Since retrieving a SMIL document constitutes one round trip, and
retrieving the SDP descriptions referenced in the SMIL document constitutes another
round trip, merging the media description into the SMIL document itself can save a
round trip in a typical media exchange. This round-trip savings can result in a
noticeably faster start-up over a slow network link.

This applies particularly well to two primary usage scenarios:

Pure multicast implementations. This is traditional IETF model where the SDP is
sent via some other transport protocol such as SAP, HTTP, or via email.
RTSP delivery. In this case, the primary value of the SDP description is in the
description of media headers delivered in the RTSP DESCRIBE phase, and not
in the transport specification. The transport information (such port number
negotiation and multicast addresses) is handled in RTSP separately in the
SETUP phase.

The following attributes were added to SMIL Boston:

port
rtpformat
transport

Example

<audio src="rtsp://www.w3.org/test.rtp" port="49170-49171"
 transport="RTP/AVP" rtpformat="96,97,98" />

12024 Feb 2000 08:26

The SMIL Media Object Module

In addition to these new attributes, the "rtpmap" element was added to complete
the SDP functionality.

stripRepeat

The stripRepeat attribute was added to provide better timing control over media
with intrinsic repeat behavior (such as animated GIFs).

7.3.2 Appendix B: Element Content
SMIL 1.0 only allowed "anchor" as a child element of a media element. In addition to
"anchor" (now defined in the Linking module), the param and rtpmap elements are
now allowed as children of a SMIL media object. Other new children may also be
defined by the host language.

7.3.3 Appendix C: New sections

The param element

A new section describing the "param" element provides a generalized mechanism to
attach media-specific attributes to media objects.

The rtpmap element

A new section describing the "rtpmap" element provides functionality needed to use
SMIL as a replacement for SDP.

Support for media player extensions

SMIL Boston introduces the concepts of levels of functionality, which are explained
in this section.

7.3.4 Appendix D: Backburner
Listed below are the features that haven’t been integrated yet, and may not make it
into the final version of SMIL Boston:

XLink-conformance
HTML OBJECT tag syntax

24 Feb 2000 08:26121

The SMIL Media Object Module

12224 Feb 2000 08:26

The SMIL Media Object Module

8. The SMIL Metadata Module
Editors:

Thierry Michel (tmichel@w3.org), W3C

8.1 Introduction
The World Wide Web was originally built for human consumption, and although
everything on it is machine-readable, this data is not machine-understandable. It is
very hard to automate anything on the Web, and because of the volume of
information the Web contains, it is not possible to manage it manually. Metadata is
"data about data" (for example, a library catalog is metadata, since it describes
publications) or specifically in the context of this specification "data describing Web
resources".
The solution proposed here is to use metadata to describe SMIL documents
published on the Web.

The earlier SMIL 1.0 specification allowed authors to describe documents with a
very basic vocabulary using the "meta" element.
The SMIL Metadata module defined in this specification fully supports the use this
"meta" element from SMIL 1.0 but it also introduces new capabilities for describing
metadata using the Resource Description Framework Model and Syntax
[RDFsyntax], a powerful metadata language for providing information about
resources.

8.2 Compatibility with SMIL 1.0 using the meta
Element
To insure backward compatibility with SMIL 1.0, the <meta> element as specified in
the SMIL 1.0 [SMIL10] Recommendation can be used to define properties of a
document (e.g., author/creator, expiration date, a list of key words, etc.) and assign
values to those properties.
Each <meta> element specifies a single property/value pair in the name and content
attributes, respectively.

8.2.1 Element Attributes
The "meta" element can have the following attributes:

content
This attribute specifies the value of the property defined in the meta element.
The "content" attribute is required for "meta" elements.

id
This attribute uniquely identifies an element within a document. Its value is an
XML identifier.

24 Feb 2000 08:26123

The SMIL Metadata Module

name
This attribute identifies the property defined in the meta element.
The "name" attribute is required for "meta" elements.

skip-content
This attribute is introduced for future extensibility of SMIL. It is interpreted in the
following two cases:

If a new element is introduced in a future version of SMIL, and this element
allows SMIL 1.0 elements as element content, the "skip-content" attribute
controls whether this content is processed by a SMIL 1.0 player.
If an empty element in SMIL version 1.0 becomes non-empty in a future
SMIL version, the "skip-content" attribute controls whether this content is
ignored by a SMIL 1.0 player, or results in a syntax error.

If the value of the "skip-content" attribute is "true", and one of the cases above
apply, the content of the element is ignored. If the value is "false", the content of
the element is processed.
The default value for "skip-content" is "true".

The list of properties is open-ended. This specification defines the following
properties:

base
The value of this property determines the base URI for all relative URIs used in
the document.

pics-label or PICS-Label
The value of this property specifies a valid rating label for the document as
defined by PICS [PICS].

title
The value of this property contains the title of the presentation.

This specification extends the SMIL 1.0 "meta" element with the following
attributes:

[I18N] xml:lang
This attribute specifies the language used.

http-equiv
This attribute may be used in place of the name attribute. HTTP servers use this
attribute to gather information for HTTP response message headers.

scheme
This attribute names a scheme to be used to interpret the property’s value.

8.2.2 Element Content
The "meta" element is an empty element.

12424 Feb 2000 08:26

The SMIL Metadata Module

8.3 Extensions to SMIL 1.0 Metadata.
RDF provides a more general treatment of metadata. RDF is a declarative language
and provides a standard way for using XML to represent metadata in the form of
statements about properties and relationships of items on the Web. Such items,
known as resources, can be almost anything, provided it has a Web address. This
means that you can associate metadata with a SMIL documents, but also a graphic,
an audio file, a movie clip, and so on.

RDF is the appropriate language for metadata. The specifications for RDF can be
found at:

Resource Description Framework (RDF) Model and Syntax [RDFsyntax], a W3C
Recommendation 22 February 1999
Resource Description Framework (RDF) Schema [RDFschema], a W3C
Proposed Recommendation 03 March 1999

Metadata within an SMIL document should be expressed in the appropriate RDF
namespaces [XML-NS] and should be placed within the <metadata> child element

..... 126to the document’s <smil> root element. (See example below.)

8.3.1 Element Attributes
The "metadata" element can have the following attributes:

id
This attribute uniquely identifies an element within a document. Its value is an
XML identifier.

8.3.2 Element Content
The "metadata" element can contain the following child elements:

<RDF> element and its sub-elements.

8.3.3 Using multiple description schemes simultaneously
RDF appears to be the ideal approach for supporting descriptors from multiple
description schemes simultaneously.

Here are some suggestions for content creators regarding metadata:

Content creators should refer to W3C Metadata Recommendations [RDFsyntax]
and [RDFschema] when deciding which metadata schema to use in their
documents.
Content creators should refer to the Dublin Core Metadata Initiative [DC], which
is a set of generally applicable core metadata properties (e.g., Title, Creator,
Subject, Description, etc.).
Content creators should refer to the Video Metadata Representation, in "A

24 Feb 2000 08:26125

The SMIL Metadata Module

http://archive.dstc.edu.au/RDU/staff/jane-hunter/mpeg7/contribution.html

Comparison of Schemas for Dublin Core-based Video Metadata
Representation", which extends Dublin Core properties to cope with video
content metadata requirements (e.g., Type, Relation, Format, Coverage, etc.).
Additionally, the SMIL Metadata Schema (below) contains a set of additional

.. 126metadata properties that are common across most uses of multimedia.

Individual industries or individual content creators are free to define their own
metadata schema, but everyone is encouraged to follow existing metadata
standards and use standard metadata schema wherever possible to promote
interchange and interoperability. If a particular standard metadata schema does not
meet your needs, then it is usually better to define an additional metadata schema in
RDF that is used in combination with the given standard metadata schema than to
totally avoid the standard schema.

8.4 The SMIL Metadata Schema
(This schema has not yet been defined. Here are some candidate attributes for the
schema: LevelAccessibilityGuidelines, ListOfImagesUsed, ListOfAudioUsed,
ListOfTextUsed, ListOfTextstreamUsed, ListOfRefUsed, ListOfCodecUsed, etc)

8.5 An Example
Here is an example of how metadata can be included in an SMIL document. The
example uses the Dublin Core version 1.0 Schema [DC] and the SMIL Metadata

.................. 126Schema:
<?xml version="1.0" ?>
<smil xmlns = "http://www.w3.org/TR/.../SMIL-Boston.dtd">
 <head>
 <meta id="meta-smil1.0-a" name="Publisher" content="W3C" />
 <meta id="meta-smil1.0-b" name="Date" content="1999-10-12" />
 <meta id="meta-smil1.0-c" name="Rights" content="Copyright 1999 John Smith" />

 <metadata id="meta-rdf">
 <rdf:RDF
 xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs = "http://www.w3.org/TR/1999/PR-rdf-schema-19990303#"
 xmlns:dc = "http://purl.org/metadata/dublin_core#"
 xmlns:smilmetadata = "http://www.w3.org/AudioVideo/.../smil-ns#" >

<!-- Metadata about the SMIL presentation -->
 <rdf:Description about="http://www.foo.com/meta.smi"
 dc:Title="An Introduction to the Resource Description Framework"
 dc:Description="The Resource Description Framework (RDF) enables the encoding, exchange and reuse of structured metadata"
 dc:Publisher="W3C"
 dc:Date="1999-10-12"
 dc:Rights="Copyright 1999 John Smith"
 dc:Format="text/smil" >
 <dc:Creator>
 <rdf:Seq ID="CreatorsAlphabeticalBySurname">
 <rdf:li>Mary Andrew</rdf:li>
 <rdf:li>Jacky Crystal</rdf:li>
 </rdf:Seq>
 </dc:Creator>
 <smilmetadata:ListOfVideoUsed>
 <rdf:Seq ID="VideoAlphabeticalByFormatname">
 <rdf:li Resource="http://www.foo.com/videos/meta-1999.mpg"/>
 <rdf:li Resource="http://www.foo.com/videos/meta2-1999.mpg"/>
 </rdf:Seq>
 </smilmetadata:ListOfVideoUsed>
 <smilmetadata:Access LevelAccessibilityGuidelines="AAA"/>
 </rdf:Description>

<!-- Metadata about the video -->
 <rdf:Description about="http://www.foo.com/videos/meta-1999.mpg"
 dc:Title="RDF part one"
 dc:Creator="John Smith"
 dc:Subject="Metadata,RDF"
 dc:Description="RDF basic fonctionalities"

12624 Feb 2000 08:26

The SMIL Metadata Module

http://archive.dstc.edu.au/RDU/staff/jane-hunter/mpeg7/contribution.html
http://archive.dstc.edu.au/RDU/staff/jane-hunter/mpeg7/contribution.html

 dc:Publisher="W3C Press Service"
 dc:Format="video/mpg"
 dc:Language="en"
 dc:Date="1999-10-12"
 smilmetadata:Duration="60 secs"
 smilmetadata:VideoCodec="MPEG2" >
 <smilmetadata:ContainsSequences>
 <rdf:Seq ID="ChronologicalSequences">
 <rdf:li Resource="http://www.foo.com/videos/meta-1999.mpg#scene1"/>
 <rdf:li Resource="http://www.foo.com/videos/meta-1999.mpg#scene2"/>
 </rdf:Seq>
 </smilmetadata:ContainsSequences>
 </rdf:Description>

<!-- Metadata about a scene of the video -->
 <rdf:Description about="#scene1"
 dc:Title="RDF intro"
 dc:Description="Introduction to RDF fonctionalities"
 dc:Language="en"
 smilmetadata:Duration="30 secs"
 smilmetadata:Presenter="David Jones" >
 <smilmetadata:ContainsShots>
 <rdf:Seq ID="ChronologicalShots">
 <rdf:li>Panorama-shot</rdf:li>
 <rdf:li>Closeup-shot</rdf:li>
 </rdf:Seq>
 </smilmetadata:ContainsShots>
 </rdf:Description>
 </rdf:RDF>
 </metadata>

<!-- SMIL presentation -->
 <layout>
 <region id="a" top="5" />
 </layout>
 </head>
 <body>
 <seq>
 <video region="a" src="/videos/meta-1999.mpg" >
 <area id="scene1" begin="0" end ="30"/>
 <area id="scene2" begin="30" end ="60"/>
 </video>
 <video region="a" src="/videos/meta2-1999.mpg"/>
 </seq>
 </body>
</smil>

Note:Validate the above RDF description with SiRPAC; a Simple RDF Parser and
Compiler, written by Janne Saarela (W3C).

24 Feb 2000 08:26127

The SMIL Metadata Module

http://www.w3.org/RDF/Implementations/SiRPAC/

12824 Feb 2000 08:26

The SMIL Metadata Module

9. SMIL Structure Module
Editors

Warner ten Kate (warner.ten.kate@philips.com), (Philips Electronics)

9.1 Introduction
This Section defines the SMIL structure module. The Structure Module provides the
base elements for structuring SMIL content. These elements act as the root in the
content model of SMIL-family document types. The Structure Module is a mandatory
module in a profile building a member of the SMIL profile family. The Structure
Module is isomorphic with the XHTML Structure Module [XMOD].

The SMIL Structure Module is composed out of the smil, head, and body element,
and is compatible with SMIL 1.0 [SMIL10]. The corresponding SMIL 1.0 elements
form a subset of the Structure Module, both in syntax and semantics, as their
attributes and content model is also exposed by the Structure Module. Thus, the
Structure Module is backwards compatible with SMIL 1.0.

9.2 The smil, head and body elements
This section is Informative.

The attributes and content model of the Structure Module elements is summarized
in the following table:

The Elements with their Attributes and Content Model for the SMIL Structure
Module.

Elements Attributes Minimal Content Model

smil
Core, Accessibility,
xmlns

head?, body?

head
Core, Accessibility,
profile

meta*, (switch | layout)?

body Core, Accessibility
(Schedule | MediaContent | MediaControl |
LinkAnchor)*

- skipContent N/A

The Attribute collections in this table are defined as follows

Core
id (ID), class (NMTOKEN)

24 Feb 2000 08:26129

SMIL Structure Module

Accessibility
xml:lang (NMTOKEN), title (CDATA)

The collections in the table from the Content Model of the body element are
defined as follows

Schedule
par, seq, excl [Timing and Synchronization Module]

MediaContent
ref, audio, video, img, animation, text, and textstream [Media Object Module]

MediaControl
switch [Content Control Module]

LinkAnchor
a, area [Linking Module]

@@ check on completeness and correctness in final version.

The smil element acts as the root element for all Document Types of the
SMIL-Family.

The head element contains information that is not related to the temporal behavior
of the presentation.

The body element contains information that is related to the temporal and linking
behavior of the document. It acts as the root element to span the timing tree.

The body element has the schedule semantics of a timecontainer equal to that of
the seq element [Timing and Synchronization Module]. Note, that in other profiles,
where a body element from another (Structure) Module is in use, that body element
may have different schedule semantics. For example, in the HTML+SMIL profile , the
body element takes the semantics of the par element.

The id attribute uniquely identifies an element within a document. Its value is an
XML identifier.

The class attribute assigns a class name or set of class names to an element. Any
number of elements may be assigned the same class name or names. Multiple class
names must be separated by white space characters.

The xml:lang attribute specifies the language of an element, and is specified in
XML 1.0 [XML10].

The title attribute offers advisory information about the element for which it is set.
Values of the title attribute may be rendered by user agents in a variety of ways. For
instance, visual browsers frequently display the title as a "tool tip" (a short message
that appears when the pointing device pauses over an object).

The xmlns attribute declares an XML namespace, and is defined in "Namespaces
in XML" [XML-NS].

13024 Feb 2000 08:26

SMIL Structure Module

The profile attribute specifies the profile to which the current document’s
Document Type conforms.

The skipContent attribute is specified in SMIL 1.0 [SMIL10]. The syntax notation
"skip-content" has been deprecated, in favor of "skipContent". skipContent is
interpreted in the following two cases:

If a new element is introduced in a future version of SMIL, and this element
allows SMIL 1.0 elements as element content, the skipContent attribute controls
whether this content is processed by a SMIL 1.0 player.
If an empty element in SMIL version 1.0 becomes non-empty in a future SMIL
version, the skipContent attribute controls whether this content is ignored by a
SMIL 1.0 player, or results in a syntax error.

If the value of the skipContent attribute is "true", and one of the cases above
apply, the content of the element is ignored. If the value is "false", the content of the
element is processed.
The default value for skipContent is "true".

9.3 Integrating the SMIL Structure Module
This section is Normative.

The SMIL Structure Module is the starting module when building any profile in the
SMIL-family. The Structure Module cannot be used for building other, non
SMIL-family, profiles. To be called a member of the SMIL-family the profile should at
least include the following modules

SMIL Structure Module
Timing and Synchronization Module
Media Object Module

@@ This should probably go elsewhere (Modules Module?).

This means that the SMIL Structure Module must at least be accompanied with
the above two other modules. (Those modules can still be used in other, non
SMIL-family, profiles.)

The integration of the SMIL Structure Module with other SMIL modules should
conform to the descriptions in the SMIL-Boston profile .

When non-SMIL modules are integrated in the profile, it must be specified how the
elements from those non-SMIL modules fit into the content model of the used SMIL
modules (and vice versa). With respect to the SMIL Structure module, the Profiling
Entities in the DTD need to be overridden. This realizes a so-called hybrid document
type [XMOD]. In case of a so-called compound document type, the rules of
XML-namespaces must be satisfied [XML-NS].

24 Feb 2000 08:26131

SMIL Structure Module

9.4 DTD
This section is Normative.

This section specifies the DTD of the SMIL Structure Module.

@@ Check for harmonizing with [XMOD] when that receives REC status.

@@ Update the events naming with XML-DOM and SMIL-DOM.

@@ The xml:base attribute needs to be added, awaiting XLink resolutions. This
also requires adaptation in the meta Module. Note, that XHTML knows a separate
Base Module.

@@ How to add "skipContent"?

<!-- === -->
<!-- SMIL Structure Module == -->
<!-- file: SMIL-struct.mod

 This is Smil-Boston.
 Copyright 1999 W3C (MIT, INRIA, Keio), All Rights Reserved.

 This DTD module is identified by the PUBLIC and SYSTEM identifiers:

 PUBLIC "-//W3C//ELEMENTS SMIL-Boston Document Structure//EN"
 SYSTEM "SMIL-struct.mod"

 === -->

<!-- ================== General entities ========================== -->

<!ENTITY % URI "CDATA" >
<!ENTITY % SMIL.ns "SMIL-Boston.dtd" >
<!ENTITY % SMIL.profile "SMIL-Boston.dtd" >

<!ENTITY % core
 "id ID #IMPLIED
 class NMTOKEN #IMPLIED"
>

<!ENTITY % accessibility
 "xml:lang NMTOKEN #IMPLIED
 title CDATA #IMPLIED"
>

<!ENTITY % xml-dom.events
 "onMouseover CDATA #IMPLIED
 onClick CDATA #IMPLIED
 onEtc CDATA #IMPLIED"
>
<!ENTITY % smil-dom.events
 "onBegin CDATA #IMPLIED
 onEnd CDATA #IMPLIED
 onEtc CDATA #IMPLIED"
>
<!ENTITY % dom.events
 "%smil-dom.events;
 %xml-dom.events;"
>

13224 Feb 2000 08:26

SMIL Structure Module

<!-- ================== Profiling Entities ======================== -->

<!ENTITY % XSmil.attr "" >

<!ENTITY % XBody.attr "" >
<!ENTITY % XBody.content "" >

<!ENTITY % XHead.attr "" >
<!ENTITY % XHead.content "" >

<!-- ================== SMIL Document Root ======================== -->

<!ELEMENT smil (head?,body?)>
<!ATTLIST smil
 %core;
 %accessibility;
 xmlns %URI; #FIXED "%SMIL.ns;"
 %XSmil.attr;
>

<!-- ================== The Document Head ========================= -->

<!ENTITY % layout-section "layout|switch">
<!ENTITY % Head.content "(meta*,(%layout-section;),meta*,(%XHead.content;),meta*)?">

<!ELEMENT head %Head.content;>
<!ATTLIST head
 %core;
 %accessibility;
 profile %URI; #FIXED "%SMIL.profile;"
 %XHead.attr;
>

<!--=================== The Document Body - Schedule Root ========= -->

<!ENTITY % schedule "par|seq|excl">
<!ENTITY % media-object "audio|video|text|img|animation|textstream|ref">
<!ENTITY % content-control "switch">
<!ENTITY % link "a|area">
<!ENTITY % Body.content "%schedule;|%media-object;|%content-control;|%link;">

<!ELEMENT body (%Body.content;|%XBody.content;)*>
<!ATTLIST body
 %core;
 %accessibility;
 %dom.events;
 %XBody.attr;
 dur CDATA #IMPLIED
 repeatCount CDATA #IMPLIED
 repeatDur CDATA #IMPLIED
 defaultSyncBehavior (locked | canSLip) "canSlip"
 defaultSyncTolerance CDATA #IMPLIED
>

<!-- end of SMIL-struct.mod -->

24 Feb 2000 08:26133

SMIL Structure Module

13424 Feb 2000 08:26

SMIL Structure Module

10. The SMIL Timing and Synchronization
Module
Editors:

Patrick Schmitz (pschmitz@microsoft.com), (Microsoft)
Jeff Ayars (jeffa@real.com), (RealNetworks)
Bridie Saccocio (bridie@real.com), (RealNetworks)

10.1 Introduction
SMIL 1.0 solved fundamental media synchronization problems and defined a
powerful way of choreographing multimedia content. SMIL Boston extends the timing
and synchronization support, adding capabilities to the timing model and associated
syntax. This section of the document specifies the Timing and Synchronization
module.

There are two intended audiences for this module: implementers of SMIL Boston
document viewers or authoring tools, and authors of other XML languages who wish
to integrate timing and synchronization support. A language with which this module
is integrated is referred to as a host language. A document containing SMIL Timing
and Synchronization elements and attributes is referred to as a host document.

As this module is used in different profiles (i.e. host languages), the associated
syntax requirements may vary. Differences in syntax should be minimized as much
as is practical. The semantics of the timing model and of the associated markup
must remain consistent across all profiles. Any host language that includes SMIL
Boston Timing and Synchronization markup (either via a hybrid DTD or schema, or
via namespace qualified extensions) must preserve the semantics of the model
defined in this specification.

Some SMIL 1.0 syntax has been changed or deprecated. Only SMIL document
players must support the deprecated SMIL 1.0 attribute names as well as the new
SMIL Boston names. A SMIL document player is an application that supports
playback of SMIL Language documents (i.e. documents with the associated MIME
type "application/smil").

10.2 Overview of SMIL timing
This section is informative.

SMIL Timing defines elements and attributes to coordinate and synchronize the
presentation of media over time. The term media covers a broad range, including
discrete media types such as still images, text, and vector graphics, as well as
continuous media types that are intrinsically time-based, such as video, audio and
animation.

24 Feb 2000 08:26135

SMIL Timing and Synchronization

Three synchronization elements support common timing use-cases:

The <seq> element plays the child elements one after another in a sequence.
The <excl> element plays one child at a time, but does not impose any order.
The <par> element plays child elements as a group (allowing "parallel"
playback).

These elements are referred to as time containers. They group their contained
children together into coordinated timelines.

SMIL Timing also provides attributes that can be used to specify an element’s
timing behavior. Elements have a begin, and a simple duration. The begin can be
specified in various ways - for example, an element can begin at a time, based upon
when another element begins, or when some event (such as a mouse click)
happens. The simple duration defines the basic presentation duration of an element.
Elements can be defined to repeat the simple duration, a number of times or for an
amount of time. The simple duration and any effects of repeat are combined to
define the active duration. When an element’s active duration has ended, the
element can either be removed from the presentation or frozen (held in its final
state), e.g. to fill any gaps in the presentation.

Figure 1 illustrates the basic support of a repeating element within a simple par
time container. The corresponding syntax is included with the diagram.

<par begin="0s" dur="33s">
 <video begin="1s" dur="10s" repeatCount="2.5" fill="freeze" .../>
</par>

Figure 1 - Strip diagram of basic timing support. The starred "Simple*"
duration indicates that the simple duration is partial (i.e. it is cut off early).

The attributes that control these aspects of timing can be applied not only to media
elements, but to the time containers as well. This allows, for example, an entire
sequence to be repeated, and to be coordinated as a unit with other media and time

13624 Feb 2000 08:26

SMIL Timing and Synchronization

containers. While authors can specify a particular simple duration for a time
container, it is often easier to leave the duration unspecified, in which case the
simple duration is defined by the contained child elements. When an element does
not specify a simple duration, the time model defines an implicit simple duration for
the element. For example, the implicit simple duration of a sequence is based upon
the sum of the active durations of all the children.

Each time container also imposes certain defaults and constraints upon the
contained children. For example in a <seq> , elements begin by default right after the
previous element ends, and in all time containers, the active duration of child
elements is constrained not to extend past the end of the time container’s simple
duration. Figure 2 illustrates the effects of a repeating <par> time container as it
constrains a <video> child element.

<par begin="0s" dur="12s" repeatDur="33s" fill="freeze" >
 <video begin="1s" dur="5s" repeatCount="1.8" fill="freeze" .../>
</par>

Figure 2 - Strip diagram of time container constraints upon child elements.
The starred "Simple*" durations indicate that the simple duration is partial (i.e.
it is cut off early).

The SMIL Timing Model defines how the time container elements and timing
attributes are interpreted to construct a time graph. The time graph is a model of the
presentation schedule and synchronization relationships. In an ideal environment,
the presentation would perform precisely as specified. However, various real-world
limitations (such as network delays) can influence the actual playback of media. How
the presentation application adapts and manages the presentation in response to
media playback problems is termed runtime synchronization behavior. SMIL includes
attributes that allow the author to control the runtime synchronization behavior for a
presentation.

24 Feb 2000 08:26137

SMIL Timing and Synchronization

The SMIL Timing and Synchronization syntax and precise semantics are
described in the following section. A set of symbols are used in the semantic
descriptions:

B
The time at which an element begins.

d
The simple duration of an element.

AD
The active duration of an element. This is the period during which time is
actively advancing for the element. This includes any effect of repeating the
simple duration, but does not include the time during which the element may be
frozen.

AE
The active end. This is the end of the active duration of an element.

10.3 Language definition
The timing model is defined by building up from the simplest to the most complex
concepts: first the basic timing and simple duration controls, followed by the
attributes that control repeating and constraining the active duration. Finally, the
elements that define time containers are presented.

The time model depends upon several definitions for the host document: A host
document is presented over a certain time interval. The start of the interval in which
the document is presented is referred to as the document begin. The end of the
interval in which the document is presented is referred to as the document end. The
difference between the end and the begin is referred to as the document duration.
The formal definitions of presentation and document begin and end are left to the
host language designer (see also "Required host language definitions").

10.3.1 Shared timing support
This section defines the set of timing attributes that are common to all of the SMIL
synchronization elements.

@@ Need to define "local time" or find a different term.

Basics - begin and dur

The basic timing for an element is described using the begin and dur attributes.
Authors can specify the begin time of an element in a variety of ways, ranging from
simple clock times to the time that an event (e.g. a mouse-click) happens. The
simple duration of an element is specified as a simple time value. The length of the
simple duration is specified using the dur attribute. The attribute syntax is described
below. The normative syntax rules for each attribute value variant are described
below (in Timing Attribute Values); a syntax summary is provided here as an aid to
the reader.

13824 Feb 2000 08:26

SMIL Timing and Synchronization

begin : smil-1.0-syncbase-value * | begin-value-list | "indefinite"
Defines when the element should begin (i.e. become active).
The attribute value is either a SMIL 1.0 syncbase declaration, a semi-colon
separated list of values, or the special value "indefinite".
smil-1.0-syncbase-value * : "id(" id-ref ")" ("(" ("begin" | "end" | clock-value) ")"
)?

Describes a syncbase and an offset from that syncbase. The element begin
is defined relative to the begin or active end of another element.
*Note: Only compliant SMIL document players are required to support the
SMIL 1.0 syncbase-value syntax. Language designers integrating SMIL
Boston Timing and Synchronization into other languages should not
support this syntax.

begin-value-list : begin-value (";" begin-value-list)?
A semi-colon separated list of begin values. The interpretation of a list of
begin times is detailed below.

"indefinite"
The begin of the element will be determined by a "beginElement()" method
call or a hyperlink targeted to the element.
The SMIL Timing and Synchronization DOM methods are described in the
Supported Methods section.
Hyperlink-based timing is described in the Hyperlinks and Timing section.

begin-value : (offset-value | syncbase-value | syncToPrev-value | event-value |
media-marker-value | wallclock-sync-value)

Describes the element begin.

offset-value : ("+" | "-")? clock-value

Describes the element begin as an offset from an implicit syncbase. The
definition of the implicit syncbase depends upon the element’s parent time
container. The offset is measured in local time on the parent time container.

syncbase-value : (id-ref "." ("begin" | "end")) (("+" | "-") clock-value)?
Describes a syncbase and an offset from that syncbase. The element begin
is defined relative to the begin or active end of another element.

syncToPrev-value : ("prev.begin" | "prev.end") (("+" | "-") clock-value)?
Describes a logical syncbase and an offset from that syncbase. The
syncbase element is the previous timed sibling element, as reflected in the
DOM (or the parent time container if there is no previous sibling). The
element begin is defined relative to the begin or active end of the syncbase
element. This is equivalent to the default syncbase for children of a <seq>
time container.

event-value : (id-ref ".")? (event-ref) (("+" | "-") clock-value)?
Describes an event and an optional offset that determine the element
begin. The element begin is defined relative to the time that the event is
raised. Events may be any event defined for the host language in
accordance with [DOM2Events]. These may include user-interface events,
event-triggers transmitted via a network, etc. Details of event-based timing

24 Feb 2000 08:26139

SMIL Timing and Synchronization

are described in the section below on Unifying Event-based and Scheduled
Timing .

media-marker-value : id-ref ".marker(" marker-name ")"
Describes the element begin as a named marker time defined by a media
element.

wallclock-sync-value : "wallclock(" wallclock-value ")"
Describes the element begin as a real-world clock time. The wallclock time
syntax is based upon syntax defined in [ISO8601].

dur
Specifies the simple duration.
The attribute value can be either of the following:
clock-value

Specifies the length of the simple duration, measured in local time.
Value must be greater than 0.

"indefinite"
Specifies the simple duration as indefinite.

Begin value semantics

If no begin is specified, the default timing is dependent upon the time container.
Children of a <par> begin by default when the <par> begins (equivalent to
begin="0"). Children of a <seq> begin by default when the previous child ends its
active duration (equivalent to begin="0"). Children of an <excl> default to a begin
value of "indefinite ".

The begin value can specify a list of times. This can be used to specify multiple
"ways" or "rules" to begin an element, e.g. if any one of several events is raised. A
list of times can also define multiple begin times, allowing the element to play more
than once (this behavior can be controlled, e.g. to only allow the earliest begin to
actually be used - see also Restarting elements).

In general, the earliest time in the list determines the begin time of the element. In
the case where an element can begin multiple times, the next begin time is the
earliest begin time after the current time. There are additional constraints upon the
evaluation of the begin time list, detailed in Evaluation of begin and end time lists .

If there is an error in any individual value in the list of begin values, only the
individual value will be ignored (as though it were not specified), but the rest of the
list will not be invalidated. If no legal value is specified in the list of begin values, the
default value for begin will be used.

When a begin time is specified as a syncbase variant, a marker value or a
wallclock value, the defined time must be converted by the implementation to a time
that is relative to the parent time container (i.e. to the equivalent of an offset value).
This is know as timespace conversion, and is detailed in the section Converting
between local and global times .

14024 Feb 2000 08:26

SMIL Timing and Synchronization

Dur value semantics

If there is any error in the argument value syntax for dur , the attribute will be
ignored (as though it were not specified).

If the element does not have a (valid) dur attribute, the simple duration for the
element is defined to be the implicit duration of the element. The implicit duration
depends upon the type of an element. The primary distinction is between different
types of media elements and time containers. Note that if a media element has time
children (e.g. animate or area elements), then it is also a <par> time container. If
the media element has no time children, it is described as a simple media element.

For simple media elements that specify continuous media (i.e. media with an
inherent notion of time), the implicit duration is typically a function of the media
itself - e.g. video and audio files have a defined duration. Note that clipBegin
and clipEnd attributes on a media element can override the intrinsic media
duration, and will define the implicit duration. See also the Media Object module.
For simple media elements that specify discrete media (some times referred to
as "static" media), the implicit duration is defined to be 0.
For <seq> , <par> and <excl> time containers, including media elements that
are also time containers, the implicit simple duration is a function of the children
of the time container. For details see the section Time container durations .

If the author specifies a simple duration that is longer than the "intrinsic" defined
duration for a continuous media element, the ending state of the media (e.g. the last
frame of video) will be shown for the remainder of the simple duration. This only
applies to visual media - aural media will simply stop playing.

Note that when the simple duration is "indefinite", some simple use cases can
yield surprising results. See the related example #4 .

Resolving times

Note that when the begin attribute refers to an event, or to the begin or active end
of another element, it may not be possible to calculate when the begin will happen.
For example, if an element is defined to begin on some event, the begin time will not
be known until the event happens. When such a time becomes known (i.e. when it
can be calculated as a presentation time), the time is said to be resolved (see also
the discussion of Unifying scheduled and interactive timing).

Examples

The following example shows simple offset begin timing. The <audio> element
begins 5 seconds after the <par> time container begins, and ends 4 seconds later.

<par>
 <audio src="song1.au" begin="5s" dur="4s" />
</par>

24 Feb 2000 08:26141

SMIL Timing and Synchronization

The following example shows syncbase begin timing. The element begins
2 seconds after the <audio> element begins.

<par>
 <audio id="song1" src="song1.au" />

</par>

Elements can also be specified to begin in response to an event. In this example,
the image element begins (appears) when the user clicks on element "show". The
image will end (disappear) 3 and a half seconds later.

<text id="show" ... />

Timing attribute values

In the syntax specifications that follow, allowed white space is indicated as "S",
defined as follows (taken from the [XML10] definition for "S"):

S ::= (#x20 | #x9 | #xD | #xA)*

Begin values

A begin-value-list is a semi-colon separated list of timing specifiers:

begin-value-list ::= begin-value (S ";" S begin-value-list)?
begin-value ::= (offset-value | syncbase-value
 | syncToPrev-value | event-value
 | media-marker-value | wallclock-sync-value)

End values

An end-value-list is a semi-colon separated list of timing specifiers:

end-value-list ::= end-value (S ";" S end-value-list)?
end-value ::= (clock-value | syncbase-value
 | syncToPrev-value | event-value
 | media-marker-value | wallclock-sync-value)

Parsing timing specifiers

Several of the timing specification values have a similar syntax. In addition, XML ID
attributes are allowed to contain the dot ’. ’ separator character. The backslash
character ’\’ can be used to escape the dot separator within identifier and
event-name references. To parse an individual item in a value-list, the following
approach defines the correct interpretation.

1. If the value begins with a number or numeric sign indicator (i.e. ’+’ or ’-’), the
value should be parsed as an offset value .

2. Else if the value begins with the token "prev", it should be parsed as a
syncToPrev-value .

3. Else if the value begins with the token "wallclock", it should be parsed as a
wallclock-sync-value .

14224 Feb 2000 08:26

SMIL Timing and Synchronization

4. Else: Build a token substring up to but not including any sign indicator (i.e. strip
off any offset). In the following, ignore any ’. ’ separator characters preceded by
a backslash ’\ ’ escape character.

1. If the token contains no ’. ’ separator character, then the value should be
parsed as an event-value with an unspecified (i.e. default)
eventbase-element.

2. Else if the token ends with the string ".begin " or ".end ", then the value
should be parsed as a syncbase-value .

3. Else if the token contains the string ".marker(", then the value should be
parsed as a media-marker-value .

4. Else, the value should be parsed as an event-value (with a specified
eventbase-element).

@@Note that this approach essentially reserves the following tokens: prev and
wallclock for element IDs, and begin , end and marker for event names.

Clock values

Clock values have the following syntax:

Clock-val ::= (Full-clock-val | Partial-clock-val | Timecount-val)
Full-clock-val ::= Hours ":" Minutes ":" Seconds ("." Fraction)?
Partial-clock-val ::= Minutes ":" Seconds ("." Fraction)?
Timecount-val ::= Timecount ("." Fraction)? (Metric)?
Metric ::= "h" | "min" | "s" | "ms"
Hours ::= DIGIT+; any positive number
Minutes ::= 2DIGIT; range from 00 to 59
Seconds ::= 2DIGIT; range from 00 to 59
Fraction ::= DIGIT+
Timecount ::= DIGIT+
2DIGIT ::= DIGIT DIGIT
DIGIT ::= [0-9]

For Timecount values, the default metric suffix is "s" (for seconds). No embedded
white space is allowed in clock values, although leading and trailing white space
characters will be ignored.

The following are examples of legal clock values:

Full clock values:
 02:30:03 = 2 hours, 30 minutes and 3 seconds
 50:00:10.25 = 50 hours, 10 seconds and 250 milliseconds
Partial clock value:
 02:33 = 2 minutes and 33 seconds
 00:10.5 = 10.5 seconds = 10 seconds and 500 milliseconds
Timecount values:
 3.2h = 3.2 hours = 3 hours and 12 minutes
 45min = 45 minutes
 30s = 30 seconds
 5ms = 5 milliseconds
 12.467 = 12 seconds and 467 milliseconds

24 Feb 2000 08:26143

SMIL Timing and Synchronization

Fractional values are just (base 10) floating point definitions of seconds. The
number of digits allowed is unlimited (although actual precision may vary among
implementations).
For example:

00.5s = 500 milliseconds
00:00.005 = 5 milliseconds

Offset values

An offset value has the following syntax:

offset-value ::= ("+" | "-")?(Clock-value)

An offset value allows an optional sign on a clock value, and is used to indicate a
positive or negative offset. The offset is measured in local time on the parent time
container.

The implicit syncbase for an offset value is dependent upon the time container:

For children of a <par> or an <excl> , the offset is relative to the begin of the
parent <par> or <excl> .
For children of a <seq> , the offset is relative to the active end of the previous
child. If there is no previous child, the offset is relative to the begin of the parent
<seq> . See also The seq time container .

SMIL 1.0 begin and end values

Note, only compliant SMIL document players are required to support the SMIL 1.0
syncbase-value syntax. Language designers integrating SMIL Boston Timing and
Synchronization into other languages should not support this syntax.

smil-1-syncbase-value ::= "id(" id-ref ")"
 ("(" ("begin" | "end" | clock-value) ")")?

ID-Reference values

ID reference values are references to the value of an "id" attribute of another
element in the document.

Id-value ::= IDREF

The IDREF is a legal XML identifier.

Syncbase values

A syncbase value has the following syntax:

 Syncbase-value ::= (Syncbase-element "." Time-symbol)
 (S ("+"|"-") S Clock-value)?
 Syncbase-element ::= Id-value
 Time-symbol ::= "begin" | "end"

14424 Feb 2000 08:26

SMIL Timing and Synchronization

A syncbase value starts with a Syncbase-element term defining the value of an
"id" attribute of another element referred to as the syncbase element. The syncbase
element must be another timed element contained in the host document. In addition,
the syncbase element may not be a descendent of the current element. If the
syncbase element specification refers to an illegal element, the syncbase-value
description is ignored (although the entire time value list is not invalidated - only the
particular syncbase value).

The syncbase element is qualified with one of the following time symbols:

begin
Specifies the begin time of the syncbase element.

end
Specifies the Active End of the syncbase element.

The time symbol can be followed by an offset value. The offset value specifies an
offset from the time (i.e. the begin or active end) specified by the syncbase and time
symbol. The offset is measured in local time on the parent time container. If the clock
value is omitted, it defaults to "0".

No embedded white space is allowed between a syncbase element and a
time-symbol. White space will be ignored before and after a "+" or "-" for a clock
value. Leading and trailing white space characters (i.e. before and after the entire
syncbase value) will be ignored.

Examples:

 begin="x.end-5s" : Begin 5 seconds before "x" ends
 begin=" x.begin " : Begin when "x" begins
 begin="x.begin + 1m" : End 1 minute after "x" begins

Sync To Prev values

A sync-to-prev value has the following syntax:

 SyncToPrev-value ::= ("prev." Time-symbol)
 (S ("+"|"-") S Clock-value)?

A sync-to-prev value is much like a syncbase value, except that the reserved
token "prev" is used in place of the Syncbase-element term. The Time-symbol and
optional Clock-value offset are as defined for syncbase values .

The previous element is the (timed) element that precedes this element within the
parent time container (as reflected in the DOM). Note that the parent time container
may not be the immediate parent of the current node, in some host documents.

If there is no previous element (i.e. if the current element is the first timed child of
the parent time container), then the begin of the parent time container is used as the
syncbase (note that the Time-symbol is ignored in this case). The Clock-value offset
is nevertheless added to the parent time container begin time, to yield the resulting
time value.

24 Feb 2000 08:26145

SMIL Timing and Synchronization

@@This requires more complete examples, or we need to include them above
somewhere. We need good examples of how this is used.

Examples:

 begin="prev.end-5s" : Begin 5 seconds before the previous
element ends
 begin=" prev.begin " : Begin when the previous element begins
 begin="prev.begin + 1m" : End 1 minute after the previous element
begins

Event values

An event value has the following syntax:

 Event-value ::= (Eventbase-element ".")?
Event-symbol
 (S ("+"|"-") S Clock-value)?
 Eventbase-element ::= Id-value

An Event value starts with an Eventbase-element term that specifies the
event-base element. The event-base element is the element on which the event is
observed. Given DOM event bubbling, the event-base element may be either the
element that raised the event, or it may be an ancestor element on which the
bubbled event can be observed. Refer to DOM-Level2-Events [DOM2Events] for
details.
The "Id-value" is the value of an attribute declared to be of type ID (per the XML
definition) in the host language, for the event-base element. This element must be
another element contained in the host document.

If the Eventbase-element term is missing, the event-base element defaults to the
element on which the attribute is specified (the current element). If this element has
no associated layout (e.g. a time container in a SMIL document), then some UI
events may not be defined (e.g. mouse events). Note that certain elements may
specify a different default eventbase. E.g. the SMIL Animation elements (animate ,
animateMotion , etc.) specify that the default eventbase is the target element of
the animation. See also [[SMIL Animation]].

The event value must specify an Event-symbol. This term specifies the name of
the event that is raised on the Event-base element. The host language designer
must specify which types of events can be used. If an integrating language specifies
no supported events, the event-base time value is effectively unsupported for that
language.

The last term specifies an optional offset-value that is an offset from the time of
the event. The offset is measured in local time on the parent time container. If this
term is omitted, the offset is 0.

No embedded white space is allowed between an eventbase element and an
event-symbol. White space will be ignored before and after a "+" or "-" for a clock
value. Leading and trailing white space characters (i.e. before and after the entire
eventbase value) will be ignored.

14624 Feb 2000 08:26

SMIL Timing and Synchronization

Note that it is not considered an error to specify an event that cannot be raised on
the Event-base element (such as click for audio or other non-visual elements). Since
the event will never be raised on the specified element, the event-base value is
effectively ignored. Similarly, if the host language allows dynamically created events
(as supported by DOM-Level2-Events [DOM2Events]), all possible Event-symbol
names cannot be specified, and so unrecognized names may not be considered
errors. Host language specifications must include a description of legal event names,
and/or allow any name to be used.

The semantics of event-based timing are detailed in the section Unifying
Scheduling and Interactive Timing .

Examples:

 begin=" x.load " : Begin when "load" is observed on "x"
 begin="x.focus+3s" : Begin 3 seconds after an "focus" event on "x"

Media marker values

Certain types of media can have associated marker values that associate a name
with a particular point (i.e. a time) in the media. The media marker value provides a
means of defining a begin or end time in terms of these marker values. Note that if
the referenced id is not associated with a media element that supports markers, or if
the specified marker name is not defined by the media element, the associated time
may never be resolved.

 Media-Marker-value ::= Id-value ".marker(" S
marker-symbol S ")")

The marker symbol is a string that must conform to the definition of marker names
for the media associated with the Id-value.

Wallclock-sync values

Wallclock-sync values have the following syntax. The values allowed are based
upon several of the "profiles" described in [DATETIME], which is based upon
[ISO8601]. Exactly the components shown here must be present, with exactly this
punctuation. Note that the "T" appears literally in the string, to indicate the beginning
of the time element, as specified in [ISO8601].

wallclock-val ::= "wallclock(" S (DateTime | WallTime) S ")"
DateTime ::= Date "T" WallTime
Date ::= Years "-" Months "-" Days
WallTime ::= (HHMM-Time | HHMMSS-Time)(TZD)?
HHMM-Time ::= Hours24 ":" Minutes
HHMMSS-Time ::= Hours24 ":" Minutes ":" Seconds ("." Fraction)?
Years ::= 4DIGIT;
Months ::= 2DIGIT; range from 01 to 12
Days ::= 2DIGIT; range from 01 to 31
Hours24 ::= 2DIGIT; range from 00 to 23
4DIGIT ::= DIGIT DIGIT DIGIT DIGIT
TZD ::= "Z" | (("+" | "-") Hours24 ":" Minutes)

24 Feb 2000 08:26147

SMIL Timing and Synchronization

Complete date plus hours and minutes:

 YYYY-MM-DDThh:mmTZD (e.g. 1997-07-16T19:20+01:00)

Complete date plus hours, minutes and seconds:

 YYYY-MM-DDThh:mm:ssTZD (e.g. 1997-07-16T19:20:30+01:00)

Complete date plus hours, minutes, seconds and a decimal fraction of a second

 YYYY-MM-DDThh:mm:ss.sTZD (e.g. 1997-07-16T19:20:30.45+01:00)

Note that the Minutes, Seconds, Fraction, 2DIGIT and DIGIT syntax is as defined
for Clock-values . Note that white space is not allowed within the date and time
specification.

There are three ways of handling time zone offsets:

1. Times are expressed in UTC (Coordinated Universal Time), with a special UTC
designator ("Z").

2. Times are expressed in local time, together with a time zone offset in hours and
minutes. A time zone offset of "+hh:mm" indicates that the date/time uses a
local time zone which is "hh" hours and "mm" minutes ahead of UTC. A time
zone offset of "-hh:mm" indicates that the date/time uses a local time zone
which is "hh" hours and "mm" minutes behind UTC.

3. Times are expressed in local time, as defined for the presentation location. The
local time zone of the end-user platform is used.

No embedded white space is allowed in wallclock values, although leading and
trailing white space characters will be ignored.

The presentation engine must be able to convert wallclock-values to a time within
the document. When the document begins, the current wallclock time must be noted
- this is the document wallclock begin. Wallclock values are then converted to a
document time by subtracting the document wallclock begin, and then converting the
time to the element’s parent time space as for any syncbase value, as though the
syncbase were the document body. Note that the resulting begin or end time may be
before the begin, or after end of the parent time container. This is not an error, but
the time container constraints still apply. In any case, the semantics of the begin
and end attribute govern the interpretation of the wallclock value.

Examples

The following examples all specify a begin at midnight on January 1st 2000, UTC

begin="wallclock(2000-01-01Z)"
begin="wallclock(2000-01-01T00:00Z)"
begin="wallclock(2000-01-01T00:00:00Z)"
begin="wallclock(2000-01-01T00:00:00.0Z)"
begin="wallclock(2000-01-01T00:00:00.0Z)"
begin="wallclock(2000-01-01T00:00:00.0-00:00)"

14824 Feb 2000 08:26

SMIL Timing and Synchronization

The following example specifies a begin at 3:30 in the afternoon on July 28th
1990, in the Pacific US time zone:

begin="wallclock(1990-07-28T15:30-08:00)"

The following example specifies a begin at 8 in the morning wherever the
document is presented:

begin="wallclock(08:00)"

10.3.2 Time manipulations
New element controls for element time behavior are under discussion. Note that an
Accessibility requirement for control of the playback speed is related to (but may end
up with different syntax different from) the speed control. In general, these time
manipulations are suited to animation and non-linear or discrete media, rather than
linear continuous media. Not all continuous media types will support time
manipulations, e.g. streaming MPEG 1 video playing backwards. A fallback
mechanism is described for these cases.

Three new attributes add support for timing manipulations to SMIL Timing,
including control over the speed of an element, and support for acceleration and
deceleration. The impact on overall timing and synchronization is described. A
definition is provided for reasonable fallback mechanisms for media players that
cannot support the time manipulations.

Background

A common general application of timing supports animation. The recent integration
of SMIL timing with SVG is a good example of the interest in this area. Animation in
the more general sense includes the time-based manipulation of basic transforms,
applied to a presentation. Some of the effects supported include motion, scaling,
rotation, color manipulation, as well as a host of presentation manipulations with a
style framework like CSS.

Animation is often used to model basic mechanics. Many animation use-cases are
difficult or nearly impossible to describe without a simple means to control pacing
and to apply simple effects that emulate common mechanical phenomena. While it is
possible to build these mechanisms into the animation behaviors themselves, this
requires that every animation duplicate this support. This makes the framework more
difficult to extend and customize. In addition, this model allows any animation
behavior to introduce individual syntax and semantics for these mechanisms. This
makes the authoring model much harder to learn, and complicates the job of any
authoring tool designer as well. Finally, this model precludes the use of these
mechanisms on structured animations (e.g. a time container with a series of
synchronized animation behaviors).

A much simpler model for providing the necessary support centralizes the needed
functionality in the timing framework. This allows all timed elements to support this
functionality, and provides a consistent model for authors and tools designers. The

24 Feb 2000 08:26149

SMIL Timing and Synchronization

most direct means to generalize pacing and related functionality is to transform the
pacing of time for a given element. This is an extension of the transform that is
implicitly performed to translate from the general document or presentation time
space to the adjusted time space for the element (accounting for the begin time of
the element, repeat functionality, etc.). Thus, to control the pacing of a motion
animation, a transform is applied that adjusts the pacing of local time for the motion
element. If time is scaled to advance faster than normal presentation time, the
motion will appear to run faster. Similarly, if the pacing of time is dynamically
adjusted, acceleration and deceleration effects are easily obtained. This model is
detailed in the sections below.

Overview of support

Three basic time manipulations are proposed:

speed
Controls the pacing (or speed) of time. This is the basic manipulation upon
which the others are built. The speed effectively scales the rate at which local
time plays. As such, speed can modify the effective simple duration.

accelerate and decelerate
Dynamic manipulation of speed to simulate common mechanical motion.
Acceleration and deceleration are crucial to motion, rotation, scaling and many
other standard transforms. A simple model is presented to allow acceleration
from rest at the beginning of the simple duration, and/or deceleration to rest at
the end of the simple duration. This model has the advantage that it preserves
the simple duration. The model is sometimes presented to authors as "Ease-In,
Ease-Out".

autoReverse
Another very common mechanical phenomenon is that of a process that
advances and reverses. Some examples include:

pendulum motion - a partial rotation that advances and reverses
pulsing effects - usually a scale transform, but sometimes an intensity or
color change that advances and reverses
simple bouncing - motion that advances and reverses

This support is often represented to authors as "Play Forwards, then
Backwards". Because so many common use-cases apply repeat to the modified
local time (as in the examples above), this function is modeled as modifying the
simple duration. As such, autoReverse effectively doubles the simple
duration.

When the three features are combined, there is an inherent ordering that can be
applied. The accelerate and decelerate features are applied locally on the simple
duration, and have no side effects upon the active duration of the element. The
autoReverse feature is applied to the simple duration, and doubles it. Thus,
autoReverse wraps the effect of accelerate and decelerate. Speed has the broadest
effect, scaling the progress of local time for the element. Taken from the perspective
of a conversion from the document time-space to the local time-space, speed is

15024 Feb 2000 08:26

SMIL Timing and Synchronization

applied earliest, autoReverse later and and then accelerate and decelerate are
applied latest. See also Details of the time manipulations .

Examples

The following motion animation will move the target twice as fast as normal:

<animateMotion dur="10s" repeatCount="2" speed="2.0" path= ... />

The target will move over the path in 5 seconds, and then repeat this motion. The
active duration is thus 10 seconds.

The following rotation (a theoretical extension to the animation platform) will
produce a simple pendulum swing on the target (assume that it is a pendulum shape
with the transform origin at the top):

<animateRotate from="20deg" to="-20deg" dur="1s" repeatCount="indefinite"
 accelerate=".5" decelerate=".5" autoReverse="true" ... />

The pendulum swings through an arc in one second, and then back again in a
second. It repeats indefinitely. The acceleration and deceleration are specified as a
proportion of the simple duration (before autoReverse). As specified, the effect is to
accelerate all the way through the downswing, and then decelerate all through the
upswing. This produces a very realistic looking animation of real-world pendulum
motion. The rotate element itself can be very simple, for example interpolating the
rotation value in a transform matrix.

Attribute syntax

The speed attribute is supported on all timed elements. The argument value
expresses a multiple of normal play speed that will be applied to the element and all
time descendents. Thus 1.0 is normal speed, and speed="1" is a no-op, and
speed="-1" means play backwards.

speed attribute

The speed attribute controls the local playback speed of an element, to speed up or
slow down the effective rate of play. Note that the speed does not specify an
absolute play speed, but rather is relative to the playback speed of the parent time
container. Thus if a <par> and one of its children both specify a speed of 50%, the
child will play at 25% of normal playback speed .

speed
Defines the playback speed of element time. The value is specified as a multiple
of normal (parent time container) play speed.

Legal values are signed floating point values. A value of 0 is not allowed.
The default is "1.0" (no modification of speed).

24 Feb 2000 08:26151

SMIL Timing and Synchronization

The details of the speed modification are described in Details of the time
manipulations .

accelerate and decelerate attributes

These attributes define a simple acceleration and deceleration of element time,
within the simple duration. This is useful for animation, motion paths, etc. The values
are expressed as a proportion of the simple duration (i.e. between 0 and 1), and are
defined such that the simple duration is not affected (although the normal play speed
is increased to compensate for the periods of acceleration and deceleration). Note
that these attributes apply to the simple duration; if these attributes are combined
with repeating behavior, the acceleration and/or deceleration occurs within each
repeat iteration.

The sum of accelerate and decelerate must not exceed 1. If it does, the
deceleration value will be reduced to make the sum legal (i.e. the value of
accelerate will be clamped to 1, and then the value of decelerate will be
clamped to 1-accelerate).

accelerate
Defines a simple acceleration of time for the element. Element time will
accelerate from a rate of 0 at the beginning up to a run rate, over the course of
the specified proportion of the simple duration.
The default value is 0 (no acceleration).
Legal values are floating point values between 0 and 1 (inclusive).

decelerate
Defines a simple deceleration of time for the element. Element time will
decelerate from a run rate down to 0 at the end of the simple duration, over the
course of the specified proportion of the simple duration.
The default value is 0 (no deceleration).
Legal values are floating point values between 0 and 1 (inclusive).

The details of the accelerate and decelerate modifications are described in Details
of the time manipulations .

Examples:

In this example, a motion path will accelerate up from a standstill over the first 2
seconds, run at a faster than normal rate for 4 seconds, and then decelerate
smoothly to a stop during the last 2 seconds. This makes an animation look more
realistic. The animateMotion element is defined in the Animation section of SMIL
Boston.

 <animateMotion dur="8s" accelerate=".25" decelerate=".25" .../>

In this example, the image will "fly in" from off-screen left , and then decelerate
quickly during the last second to "ease in" to place. This assumes a layout model
that supports positioning (a similar effect could be achieved by animation the

15224 Feb 2000 08:26

SMIL Timing and Synchronization

position of a region in SMIL layout). The animate element is defined in the
Animation section of SMIL Boston.

 <animate attributeName="left" dur="4s" decelerate=".25"
 from="-1000" to="0" additive="sum" />

autoReverse attribute

This defines "play forwards then backwards" functionality. The use of autoReverse
effectively doubles the simple duration. When combined with repeating behavior,
each repeat iteration will play once forwards, and once backwards. This is useful for
animation, especially for mechanical and pendulum motion.

autoReverse
Controls autoReverse playback mode.

Argument values are Booleans.
The default value is false (i.e. play normally).

The details of the autoReverse modification are described in Details of the time
manipulations .

In this example, a motion path will animate normally for 5 seconds moving the
element 20 pixels to the right, and then run backwards for 5 seconds (from 20 pixels
to the right back to the original position), then forwards again and then backwards
again, leaving the element at its original location. The active duration of the
animation is 20 seconds. The animateMotion element is defined in the Animation
section of SMIL Boston.

 <animateMotion by="20, 0" dur="5s" autoReverse="true" repeatCount="2"/>

Repeating elements

SMIL 1.0 introduced the repeat attribute, which is used to repeat a media element or
an entire time container. SMIL Boston introduces two new controls for repeat
functionality that supercede the SMIL 1.0 repeat attribute. The new attributes,
repeatCount and repeatDur , provide a semantic that more closely matches
typical use-cases, and the new attributes provide more control over the duration of
the repeating behavior. The SMIL 1.0 repeat attribute is deprecated in SMIL Boston
(it must be supported in SMIL document players for backwards compatibility).

Repeating an element causes the simple duration to be "played" several times in
sequence. This will effectively copy or loop the contents of the element media (or an
entire timeline in the case of a time container). The author can specify either how
many times to repeat, using repeatCount , or how long to repeat, using
repeatDur . Each repeat iteration is one instance of "playing" the simple duration.

24 Feb 2000 08:26153

SMIL Timing and Synchronization

If the simple duration is indefinite, the element cannot repeat. In this case, any
repeatCount attribute is ignored, although a repeatDur attribute value can still
constrain the active duration. See also Computing the Active Duration .

repeatCount and repeatDur attributes

repeatCount
Specifies the number of iterations of the simple duration. It can have the
following attribute values:
numeric value

This is a (base 10) "floating point" numeric value that specifies the number
of iterations. It can include partial iterations expressed as fraction values. A
fractional value describes a portion of the simple duration. Values must be
greater than 0.

"indefinite"
The element is defined to repeat indefinitely (subject to the constraints of
the parent time container).

repeatDur
Specifies the total duration for repeat. It can have the following attribute values:
clock-value

Specifies the duration in parent local time to repeat the simple duration.

"indefinite"
The element is defined to repeat indefinitely (subject to the constraints of
the parent time container).

At most one of repeatCount or repeatDur should be specified. If both are
specified (and the simple duration is not indefinite), the active duration is defined as
the minimum of the specified repeatDur , and the simple duration multiplied by
repeatCount . For the purposes of this comparison, a defined value is considered
to be "less than" a value of "indefinite".

If the simple duration is indefinite, any repeatCount attribute will be ignored. Any
repeatDur attribute value (other than "indefinite") will be used to constrain the
indefinite simple duration. See also the examples below describing repeatDur and
an indefinite simple duration.

If the simple duration is 0, any repeatCount attribute will be ignored. Any
repeatDur attribute value will be used to define the active duration by showing the
state of the element for the specified duration (this may be constrained by an end
value - see Controlling active duration). See also the examples below describing
repeatDur and a simple duration of 0).

@@ If simple duration is 0 and repeatCount is "indefinite" is the active duration 0
or indefinite?

If an element specifying audio media has a simple duration of 0 (e,g, because of
clipBegin and clipEnd values), nothing should played even if the repeatDur
specifies an active duration. The time model behaves according to the description,

15424 Feb 2000 08:26

SMIL Timing and Synchronization

but no audio should be played.

These rules are included in the section Computing the Active Duration .

Examples

Need to create normative examples that demonstrate the new controls, and the
interaction with implicit and explicit simple durations. Examples must also
demonstrate the interaction of repeating behavior and time container constraints.

@@ Need to add example of repeatCount < 1 and/or repeatDur < simple duration

In the following example, the 2.5 second simple duration will be repeated twice;
the active duration will be 5 seconds.

<audio src="background.au" dur="2.5s" repeatCount="2" />

In the following example, the 3 second (implicit) simple duration will be repeated
two full times and then the first half is repeated once more; the active duration will be
7.5 seconds.

<audio src="3second_sound.au" repeatCount="2.5" />

In the following example, the audio will repeat for a total of 7 seconds. It will play
fully two times, followed by a fractional part of 2 seconds. This is equivalent to a
repeatCount of 2.8.

<audio src="music.mp3" dur="2.5s" repeatDur="7s" />

Note that if the simple duration is zero (0) or indefinite, repeat behavior is not
defined (but repeatDur still contributes to the active duration). In the following
example the simple duration is 0 and indefinite respectively, and so the
repeatCount is effectively ignored. Nevertheless, this is not considered an error.
The active is equal to the simple duration: for the first element, the active duration is
0, and for the second element, the active duration is indefinite.

In the following example, the simple duration is 0, and so repeat behavior is not
meaningful. However, the repeatDur determines the active duration. The effect is
that the text is shown for 10 seconds.

<text src="intro.html" repeatDur="10s" />

In the following example, if the audio media is longer than the 5 second
repeatDur , then the active duration will effectively cut short the simple duration.

<audio src="8second_sound.au" repeatDur="5s" />

The repeatCount and repeatDur attributes can also be used to repeat an
entire timeline (i.e. a time container simple duration), as in the following example.
The sequence has an implicit simple duration of 13 seconds. It will begin to play
after 5 seconds, and then will repeat the sequence of three images 3 times. The

24 Feb 2000 08:26155

SMIL Timing and Synchronization

active duration is thus 39 seconds long.

<seq begin="5s" repeatCount="3" >

</seq>

SMIL 1.0 repeat (deprecated)

The SMIL 1.0 repeat attribute behaves in a manner similar to repeatCount, but it
defines the functionality in terms of a sequence that contains the specified number of
copies of the element without the repeat attribute. This definition has caused some
confusion among authors and implementers. See also the SMIL 1.0 specification
[SMIL10].

In particular, there has been confusion concerning the behavior of the SMIL 1.0
end attribute when used in conjunction with the repeat attribute. SMIL Boston
complies with the common practice of having the end attribute define the element’s
simple duration when the deprecated repeat attribute is used. Only SMIL document
players must support this semantic for the end attribute. Only a single SMIL 1.0
"end" value (i.e. an offset-value or a smil-1.0-syncbase-value , but none of the new
SMIL Boston timing) is permitted when used with the deprecated repeat attribute. If
repeat is used with repeatCount or repeatDur on an element, or if repeat is
used with an illegal end value, the repeat value is ignored.

repeat Attribute

repeat
This attribute has been deprecated in SMIL Boston in favor of the new
repeatCount and repeatDur attributes.
This causes the element to play repeatedly for the specified number of times. It
is equivalent to a <seq> element with the stated number of copies of the
element without the "repeat" attribute as children. All other attributes of the
element, including any begin delay, are included in the copies.
Legal values are integer iterations, greater than 0, and "indefinite".

Note that elements that use the SMIL 1 repeat attribute with a value of
"indefinite" are defined to end immediately after they begin. I.e. the active duration is
effectively defined to be 0. This semantic is specific to the SMIL 1 repeat attribute,
and does not apply to the new repeatCount and repeatDur attributes.

Controlling active duration

SMIL Boston provides an additional control over the active duration. The end
attribute allows the author to constrain the active duration of the animation by
specifying an end value using a simple offset, a time base, an event-base or DOM
methods calls. The end attribute generally constrains the active duration that is
otherwise defined by dur and any repeat behavior, although it will extend an implicit
simple duration (see examples below). The rules for combining the attributes to

15624 Feb 2000 08:26

SMIL Timing and Synchronization

compute the active duration are presented in the next section, Computing the active
duration .

The normative syntax rules for each attribute value variant are described in the
section Timing Attribute Values ; a syntax summary is provided here as an aid to the
reader.

end : smil-1.0-syncbase-value * | end-value-list | "indefinite"
Defines an end value for the animation that can constrain the active duration.
The attribute value is either a SMIL 1.0 syncbase declaration, a semi-colon
separated list of values, or the special value "indefinite".
smil-1.0-syncbase-value * : "id(" id-ref ")" ("(" ("begin" | "end" | clock-value) ")"
)?

Describes a syncbase and an offset from that syncbase. The end value is
defined relative to the begin or active end of another element.
*Note: Only compliant SMIL document players are required to support the
SMIL 1.0 syncbase-value syntax. Language designers integrating SMIL
Boston Timing and Synchronization should not support this syntax.

end-value-list : end-value (";" end-value-list)?
A semi-colon separated list of end values. The interpretation of a list of end
times is detailed below.

"indefinite"
The end value of the element will be determined by an endElement()
method call.
The SMIL Timing and Synchronization DOM methods are described in the
Supported Methods section.

end-value : (offset-value | syncbase-value | syncToPrev-value | event-value |
media-marker-value | wallclock-sync-value)

Describes the end value of the element.

offset-value : ("+" | "-")? clock-value

Describes the end value as an offset from an implicit syncbase. The
definition of the implicit syncbase depends upon the element’s parent time
container. The offset is measured in local time on the parent time container.

syncbase-value : (id-ref "." ("begin" | "end")) (("+" | "-") clock-value)?
Describes a syncbase and an offset from that syncbase. The end value is
defined relative to the begin or active end of another element.

syncToPrev-value : ("prev.begin" | "prev.end") (("+" | "-") clock-value)?
Specifies the previous timed sibling element, as reflected in the DOM, as
the syncbase element, and describes the syncbase time and an offset from
that syncbase. The end value is defined relative to the begin or active end
of the previous sibling element.

event-value : (id-ref ".")? (event-ref) (("+" | "-") clock-value)?
Describes an event and an optional offset that determine the end value.
The end value is defined relative to the time that the event is raised. Events
may be any event defined for the host language in accordance with

24 Feb 2000 08:26157

SMIL Timing and Synchronization

[DOM2Events]. These may include user-interface events, event-triggers
transmitted via a network, etc. Details of event-based timing are described
in the section below on Unifying Event-based and Scheduled Timing .

media-marker-value : id-ref ".marker(" marker-name ")"
Describes the end value as a named marker time defined by a media
element.

wallclock-sync-value : "wallclock(" wallclock-value ")"
Describes the end value as a real-world clock time. The wallclock time is
based upon syntax defined in [ISO8601].

If end specifies an event-value or syncbase-value that is not resolved, the value of
end is considered to be "indefinite" until resolved.

The end value can specify a list of times. This can be used to specify multiple
"ways" or "rules" to end an element, e.g. if any one of several events is raised. A list
of times can also define multiple end times that can correspond to multiple begin
times, allowing the element to play more than once (this behavior can be controlled -
see also Restarting elements).

In general, the earliest time in the list determines the end value used in Computing
the Active Duration . In the case where an element can begin multiple times, the end
value used is the earliest end time after the current begin time. There are additional
constraints upon the evaluation of the begin and end time lists, detailed in Evaluation
of begin and end time lists .

The end value generally constrains all other values, and does not extend the
active duration. However it will extend an implicit simple duration. In the following
example, the dur attribute is not specified, and so the simple duration is defined to
be the implicit media duration. In this case (and this case only) the value of end will
extend the active duration if it specifies a duration greater than the implicit (media)
duration. For the difference between the implicit simple duration and the active
duration, the ending state of the media (e.g. the last frame of video) will be shown.
This only applies to visual media - aural media will simply stop playing, or will not
play at all if the implicit simple duration is 0 (e,g, because of clipBegin and
clipEnd values).

In the following example, the video will be shown for 8 seconds, and then the last
frame will be shown for 2 seconds.

<video end="10s" src="8-SecondVideo.mpg" .../>

If the end value becomes resolved while the element is still active, and the
resolved time is in the past, the element should end the active duration immediately.
Time dependents defined relative to the end of this element should be resolved
using the computed active end (which may be in the past), and not the observed
active end. These cases arise from the use of negative offsets in the sync-base and
event-base forms, and authors should be aware of the complexities this can
introduce. See also Handling negative offsets .

15824 Feb 2000 08:26

SMIL Timing and Synchronization

In the following example, the active duration will end at the earlier of 10 seconds,
or the end of the "foo" element. This is particularly useful if "foo" is defined to begin
or end relative to an event.

<audio src="foo.au" dur="2s" repeatDur="10s"
 end="foo.end " .../>

In the following example, the active duration will end at 10 seconds, and will cut
short the simple duration defined to be 20 seconds. The effect is that only the first
half of the element is actually played. For a simple media element, the author could
just specify this using the dur attribute. However in other cases, it is sometimes
important to specify the simple duration independent of the active duration.

<par>
 <audio src="music.au" dur="20s" end="10s " ... />
</par>

In the following example, the element begins when the user clicks on the "gobtn"
element. The active duration will end 30 seconds after the parent time container
begins. Note that if the user has not clicked on the target element before 30 seconds
elapse, the element will never begin.

<par>
 <audio src="music.au" begin="gobtn.click" repeatDur="indefinite"
 end="30s " ... />
</par>

The defaults for the event syntax make it easy to define simple interactive
behavior. The following example stops the image when the user clicks on the
element.

<image src="image.jpg" end="click" />

Using end with an event value enables authors to end an element based on either
an interactive event or a maximum active duration. This is sometimes known as lazy
interaction.

In this example, a presentation describes factory processes. Each step is a video,
and set to repeat 3 times to make the point clear. Each element can also be ended
by clicking on the video, or on some element "next" that indicates to the user that the
next step should be shown.

<seq>
 <video dur="5s" repeatCount="3" end="click; next.click" .../>
 <video dur="5s" repeatCount="3" end="click; next.click" .../>
 <video dur="5s" repeatCount="3" end="click; next.click" .../>
 <video dur="5s" repeatCount="3" end="click; next.click" .../>
 <video dur="5s" repeatCount="3" end="click; next.click" .../>
</seq>

In this case, the active end of each element is defined to be the earlier of 15 (5s
dur * 3 repeats) seconds after it begins, or a click on "next". This lets the viewer sit
back and watch, or advance the presentation at a faster pace.

24 Feb 2000 08:26159

SMIL Timing and Synchronization

Computing the active duration

This section still needs work - and will change in the next day or two.

The table in Figure 3 defines a set of "forms" for the simple duration. These forms
are used in the table in Figure 4 to delineate the possible combinations of attributes
that can contribute to the active duration.

dur Implicit media duration Simple Duration Form

number * dur value explicit finite

"indefinite" * indefinite "indefinite"

unspecified 0 media dur implicit 0

unspecified number media dur implicit finite

unspecified continuous indefinite indefinite implicit indefinite

unspecified unresolved indefinite unresolved

Figure 3 - Describing the simple duration

@@There are two forms of table 4 presented. We are trying to decide which
presents the information more effectively. You be the judge which makes more
sense, which is clearer, and which we should include. Both use essentially the
same terminology, and present the same semantics (i.e. there should be no
discrepancy in the semantics described, but rather only differences in how the
information is presented).

The table in Figure 4 shows the semantics of all possible combinations of simple
duration, repeatCount and repeatDur , and end . The following conventions are
used in the table:

The repeatCount and repeatDur attributes are specified as either:
"unspecified" meaning that the attribute is not used, or has an illegal
attribute value
"finite" meaning that a legal numeric value is specified
"indefinite" meaning that the string value "indefinite" was specified

The end attribute column specifies the end value obtained by evaluating the the
attribute value according to the rules described in Controlling active duration
and Evaluation of begin and end time lists . Note that a list of values yields a
single end value at any given point of evaluation.

"unspecified" meaning that the attribute is not used, or has an illegal
attribute value.
"finite" meaning that a legal numeric value is specified, or that a time
specified in some other form has been resolved to a specific time.
"indefinite" meaning that the string value "indefinite" was specified.
"unresolved" meaning that some value was used that cannot (yet) be
resolved to a specific time.

16024 Feb 2000 08:26

SMIL Timing and Synchronization

Where the entry is a star ("*"), the value does not matter and can be any of the
possibilities.

Note in particular that where a value specifies "unresolved", that the table will be
reevaluated (generally using a different row) if and when the associated value
becomes resolved. For example if the element specifies:

<audio src="5-second.au" end="foo.click" />

The active duration is initially defined as equal to the (implicit finite) simple
duration. If the user clicks on "foo" before 5 seconds, the end value becomes
resolved and the active duration table is re-evaluated to be MIN(d, end-B) which
causes the element to end at the time of the click.

Some of the rules and results that are implicit in the table, and that should be
noted in particular are:

If end and dur are specified but neither of repeatCount or repeatDur are
specified, then the active duration AD is defined as the minimum of the simple
duration and the duration defined by end .
If only end is specified (i.e. none of dur , repeatCount or repeatDur are
specified), then the active duration AD is defined as the duration defined by end
(in this case end overrides any implicit simple duration).
If both end and either (or both) of repeatCount or repeatDur are specified,
the active duration AD is defined by the minimum duration defined by the
respective attributes.
It is possible to have an indefinite simple duration and a defined, finite active
duration. The active duration can constrain (cut short) the simple duration, but
the active duration does not define the simple duration, or change its value (i.e.
the simple duration is still indefinite).
For any active duration and simple duration that are both not indefinite (and
non-zero), the number of repeat iterations is defined by the active duration AD
divided by the simple duration d (this may yield partial repeat iterations, just as
repeatCount can specify).

Note that while the active duration is computed according to the rules in the table,
the parent time container places constraints upon the active duration of all children.
These constraints may cut short the active duration of any child, and so override the
definition described here. For more information, see the section Time Container
constraints on child durations .

The following symbols are used in the table as a shorthand:

B
The begin of an element.

d
The simple duration of an element.

24 Feb 2000 08:26161

SMIL Timing and Synchronization

@@This is a form of the table that has more rows, but may be clearer in
delineating the different cases. It uses the term "unresolved indefinite" for end
values, which is semantically equivalent to "unresolved" in the second table.

@@Note that in both table the handling of explicit 0 is a bit messy. This is only
needed if we want to say that simple Dur of 0 and repeatCount of "indefinite" yields a
0 active duration, rather than an indefinite AD. The tables would simplify if we went
with the latter.

Where the Active duration has a "+" suffix, the value may be reevaluated at some
point. The footnotes within the row indicate when the value will be reevaluated. Note
that when a value is re-evaluated, a different row in the table may apply.

Simple
duration(d)

repeatCount repeatDur end Active Duration

implicit 0 or
explicit 0

(ignored) unspecified unspecified 0

implicit 0 or
explicit 0

(ignored) "indefinite" unspecified indefinite

explicit finite
or implicit
finite

unspecified unspecified unspecified d

explicit finite
or implicit
finite

unspecified unspecified
unresolved
indefinite1 or
"indefinite"2

d+

"indefinite" or
implicit
indefinite

(ignored)
"indefinite"
or
unspecified

unspecified indefinite

"indefinite",
implicit 0, or
implicit
indefinite

(ignored)
"indefinite"
or
unspecified

unresolved
indefinite1 or
"indefinite"2

indefinite+

unresolved3 number or
unspecified

"indefinite"
or
unspecified

unresolved
indefinite1 or
"indefinite"2

indefinite+

unresolved3 number "indefinite" unspecified indefinite+

unresolved3 (ignored) unspecified unspecified indefinite+

explicit finite
or implicit
finite

number
"indefinite"
or
unspecified

unspecified repeatCount *d

16224 Feb 2000 08:26

SMIL Timing and Synchronization

explicit finite
or implicit
finite

number
"indefinite"
or
unspecified

unresolved
indefinite1 or
"indefinite"2

repeatCount *d+

(ignored)
"indefinite" or
unspecified

number unspecified repeatDur

(ignored)
"indefinite" or
unspecified

number
unresolved
indefinite1 or
"indefinite"2

repeatDur +

"indefinite",
implicit 0, or
implicit
indefinite

(ignored) number unspecified repeatDur

"indefinite",
implicit 0, or
implicit
indefinite

(ignored) number
unresolved
indefinite1 or
"indefinite"2

repeatDur +

unresolved3 number number

unspecified,
unresolved
indefinite1 , or
"indefinite"2

repeatDur +

explicit finite unspecified unspecified number MIN(d, end -B)

explicit finite unspecified "indefinite" number end -B

"indefinite",
implicit 0, or
implicit
indefinite

(ignored)
"indefinite"
or
unspecified

number end -B

unresolved3 number
"indefinite"
or
unspecified

number end -B+

(ignored) "indefinite"
"indefinite"
or
unspecified

number end -B

implicit finite
or unresolved

unspecified
"indefinite"
or
unspecified

number end -B

explicit finite
or implicit
finite

"indefinite"
"indefinite"
or
unspecified

unspecified indefinite

24 Feb 2000 08:26163

SMIL Timing and Synchronization

(ignored) unspecified "indefinite"
unresolved
indefinite1 or
"indefinite"2

indefinite+

(ignored)
"indefinite" or
unspecified

"indefinite" unspecified indefinite

(ignored) "indefinite"
"indefinite"
or
unspecified

unresolved
indefinite1 or
"indefinite"2

indefinite+

explicit finite
or implicit
finite

number number unspecified
MIN(repeatDur ,
repeatCount *d)

explicit finite
or implicit
finite

number number
unresolved
indefinite1 or
"indefinite"2

MIN(repeatDur ,
repeatCount *d)+

explicit finite
or implicit
finite

number number number
MIN(end -B,
repeatDur ,
repeatCount *d)

(ignored)
"indefinite" or
unspecified

number number
MIN(end -B,
repeatDur)

explicit finite
or implicit
finite

number
"indefinite"
or
unspecified

number
MIN(end -B,
repeatCount *d)

"indefinite",
implicit 0, or
implicit
indefinite

(ignored) number number
MIN(end -B,
repeatDur)

unresolved3 number number number
MIN(end -B,
repeatDur)+

Figure. 4a: Computing the active duration for different combinations of the
simple duration, repeatDur and repeatCount , and end .

1 reevaluate if/when end becomes resolved by event
2 reevaluate if/when end becomes resolved by DOM
3 reevaluate when simple duration is resolved

@@This is a form of the table that has fewer rows, and does not call out the
values that may be re-evaluated.

Note that any row that includes an "unresolved" value may be re-evaluated at
some point (i.e. if the value becomes resolved). Note that when a value is
re-evaluated, a different row in the table may apply.

16424 Feb 2000 08:26

SMIL Timing and Synchronization

Simple
duration d

repeatCount repeatDur end Active Duration

expl. finite unspecified unspecified

unspecified,
"indefinite"

or
unresolved

d

implicit 0, or
implicit finite

unspecified unspecified unspecified d

"indefinite",
impl.

indefinite or
unresolved

(ignored)
unspecified

or
"indefinite"

unspecified indefinite

implicit 0 or
explicit 0

"indefinite" unspecified unspecified 0

"indefinite",
implicit
finite,
impl.

indefinite or
unresolved

unspecified or
"indefinite"

unspecified
or

"indefinite"

 "indefinite"
or

unresolved
indefinite

expl. finite,
implicit 0, or
implicit finite

expl. finite
unspecified

or
"indefinite"

unspecified,
"indefinite"

or
unresolved

repeatCount *d

expl. finite
or

implicit finite

unspecified or
"indefinite"

expl. finite

unspecified,
"indefinite"

or
unresolved

repeatDur

implicit 0,
"indefinite",

impl.
indefinite or
unresolved

(ignored) expl. finite

unspecified,
"indefinite"

or
unresolved

repeatDur

expl. finite unspecified unspecified expl. finite MIN(d, end -B)

expl. finite "indefinite"
unspecified

or
"indefinite"

expl. finite end -B

expl. finite
unspecified or

"indefinite"
"indefinite" expl. finite end -B

24 Feb 2000 08:26165

SMIL Timing and Synchronization

implicit finite
unspecified or

"indefinite"

unspecified
or

"indefinite"
expl. finite end -B

implicit 0,
"indefinite",

impl.
indefinite or
unresolved

(ignored)
unspecified

or
"indefinite"

expl. finite end -B

(anything
except a 0

value)
"indefinite"

unspecified
or

"indefinite"

unspecified,
"indefinite"

or
unresolved

indefinite

(anything)
unspecified or

"indefinite"
"indefinite"

unspecified,
"indefinite"

or
unresolved

indefinite

expl. finite
or

implicit finite
expl. finite expl. finite

unspecified,
"indefinite"

or
unresolved

MIN(repeatCount *d,
repeatDur)

expl. finite
or

implicit finite
expl. finite expl. finite expl. finite

MIN(repeatCount *d,
repeatDur , (end -B))

*
unspecified or

"indefinite"
expl. finite expl. finite

MIN(repeatDur ,
(end -B))

implicit 0,
"indefinite",

impl.
indefinite or
unresolved

(ignored) expl. finite expl. finite
MIN(repeatDur ,
(end -B))

expl. finite
or

implicit finite
expl. finite

unspecified
or

"indefinite"
expl. finite

MIN(repeatCount *d,
(end -B))

Figure. 4b: Computing the active duration for different combinations of the
simple duration, repeatDur and repeatCount , and end .

It is possible to combine scheduled and interactive timing, e.g.:

<par dur="30s">

 <text src="description.html" />
 <audio src="audio.au" end="mutebutton.click"/>
</par>

16624 Feb 2000 08:26

SMIL Timing and Synchronization

The image and the text appear for the specified duration of the <par> (30
seconds). The audio will stop early if the image is clicked before the active end of the
audio (which in this case is the duration of the actual audio media "audio.au").

It is possible to declare both a scheduled duration, as well as an event-based
active end. This facilitates what are sometimes called "lazy interaction" use-cases,
such as a slideshow that will advance on its own, or in response to user clicks:

<seq>

 <!-- etc., etc. -->
</seq>

In this case, the active end of each element is defined to be the earlier of the
specified duration, or a click on the element. This lets the viewer sit back and watch,
or advance the slides at a faster pace.

Freezing elements

By default when an element’s active duration ends, it is no longer presented (or its
effect is removed from the presentation, depending upon the type of element).
Freezing an element extends it, using the last state presented in the active duration.
This can be used to fill gaps in a presentation, or to extend an element as context in
the presentation (e.g. with additive animation - see [SMIL-ANIMATION]).

The fill attribute allows an author to specify that an element should be extended
beyond the active duration by freezing the final state of the element. For discrete
media, the media is simply displayed as it would be during the active duration. For
continuous media, the "frame" that corresponds to the end of the active duration is
shown. For algorithmic media like animation, the value defined for the end of the
active duration should be used. The syntax of the fill attribute is the same as in
SMIL 1.0, with two extensions:

fill : ("remove" | "freeze" | "hold" | "transition")
This attribute can have the following values:

remove
Specifies that the element will not extend past the end of the active duration.

freeze
Specifies that the element will extend past the end of the active duration by
"freezing" the element state at the active end. The parent time container of the
element determines how long the element is frozen (as described below).

hold
Setting this to "hold" has the same effect as setting to "freeze", except that the
element is always frozen to extend to the end of the simple duration of the
parent time container of the element (independent of the type of time container).

transition
Setting this to "transition" has the same effect as setting to "freeze", except that
the element is removed at the end of the transition. The element is frozen to

24 Feb 2000 08:26167

SMIL Timing and Synchronization

extend to its active duration + the time for transition within same time container.
@@Need to refine this definition to be clearer where the transition duration
comes from, etc. Need to specify that this only applies if there is a transition
specified as per the Transitions module.

This attribute only has an effect on visual media elements. Non-visual media
elements (audio) should ignore this.

Note that <a> and <area> elements are still sensitive to user activation (e.g.
clicks) when frozen. See also the SMIL 1.0 specification [SMIL10].

The default value of the fill attribute depends on the element type, and whether
the element specifies any of the attributes that define the simple or active duration.

For elements that act as time containers (including media time container
elements as well as <par> , <seq> and <excl>), the default value is "remove".
For other timed elements, if none of the attributes dur , end , repeatCount or
repeatDur are specified on the element, then the default value of fill is
"freeze".
Otherwise, the default value is "remove".

An element with fill="freeze" is extended according to the parent time
container:

In a <par> , the element is frozen to extend to the end of the simple duration of
the <par> . In this case, fill="freeze" is equivalent to fill="hold" .
In a <seq> , the element is frozen to extend to the begin of the next element in
the <seq> . This will fill any gap in the presentation (although it may have no
effect if the next element begins immediately).
In an <excl> , the element is frozen to extend to the begin of the next element
to be activated in the <excl> . This will fill any gap in the presentation (although
it may have no effect if the next element interrupts the current element). Note
that if an element is paused, the active duration has not ended, and so the fill
attribute does not (yet) apply. See also the section The excl time container .

The fill attribute can be used to maintain the value of an media element after
the active duration of the element ends:

<par endSync="last">
 <video src="intro.mpg" begin= "5s" dur="30s" fill="freeze" />
 <audio src="intro.au" begin= "2s" dur="40s"/>
</par>

The video element ends 35 seconds after the parent time container began, but the
video frame at 30 seconds into the media remains displayed until the audio element
ends. The attribute "freezes" the last value of the element for the remainder of the
time container’s simple duration.

16824 Feb 2000 08:26

SMIL Timing and Synchronization

This functionality is also useful to keep prior elements on the screen while the next
item of a <seq> time container prepares to display as in this example:

<seq>
 <video id="v1" fill="freeze" src.../>
 <video id="v2" begin="2s" src.../>
</seq>

The first video is displayed and then the last frame is frozen for 2 seconds, until
the next element begins. Note that if it takes additional time to download or buffer
video "v2" for playback, the first video "v1" will remain frozen until video "v2" actually
begins.

@@Need a good example of freeze on a time container, showing both how it
extends any frozen children, as well as how it cuts off and freezes any children that
were active at the end.

Restarting elements

When an element is defined to begin at a simple offset (e.g. begin="5s"), there is
an unequivocal time when the element begins. However, if an element is defined to
begin relative to an event (e.g. begin="foo.click"), the event can happen at
any time, and moreover can happen more than once (e.g. if the user clicks on "foo"
several times). In some cases, it is desirable to restart an element if a second begin
event is received. In other cases, an author may want to preclude this behavior.

In SMIL Boston, an element can have a list of begin values. In some cases, the
intent is to begin at the earliest of the specified times (e.g. when the user clicks on
any one of several images). In other cases, the intent is that the element restart
when any of the begin times is encountered.

In addition, if an element is defined to begin relative to when another element
begins (using the syncbase- value syntax), the syncbase element can restart. The
restart attribute is used to control the restart behavior of an element.

restart = "always | whenNotActive | never "
always

The element can be restarted at any time.
This is the default value.

whenNotActive
The element can only be restarted when it is not active (i.e. it can be
restarted after the active end). Attempts to restart the element during its
active duration are ignored.

never
The element cannot be restarted for the remainder of the current simple
duration of the parent time container.

The default value for the restart attribute is "always". This may not be a sensible
default in all documents. In particular SMIL Boston documents with streaming media
may want restart="never" set on all of the elements. In order to not require

24 Feb 2000 08:26169

SMIL Timing and Synchronization

restart="never" be added to every media element in the document, the WG is
considering ways to override the default and set a new default for the document.

Note that there are several ways that an element may be restarted. The behavior
(i.e. to restart or not) in all cases is controlled by the restart attribute. The different
restart cases are:

An element with begin specified as an event-value can be restarted when the
named event fires multiple times.
An element with begin specified as a syncbase value, where the syncbase
element can restart. When an element restarts, other elements defined to begin
relative to the begin or active end of the restarting element may also restart
(subject to the value of restart on these elements).
An element can be restarted when the DOM "beginElement()" method is called
repeatedly.

When an element restarts, the primary semantic is that it behaves as though this
were the first time the element had begun, independent of any earlier behavior. Any
effect of an element playing earlier is no longer applied, and only the current begin
"instance" of the element is reflected in the presentation.

The synchronization relationship between an element and its parent time container
is re-established when the element restarts. A new synchronization relationship may
be defined. See also Controlling runtime synchronization behavior .

As with any begin time, if an element is scheduled to restart after the end of the
parent time container simple duration, the element will not restart.

Note that if the parent time container (or any ascendant time container) repeats or
restarts, any state associated with restart="never" will be reset, and the
element can begin again normally. See also Resetting element state .

The restart setting for an animation is evaluated when the syncbase element
restarts, when the eventbase event happens, or when the DOM method call (e.g.
beginElement()) happens. For example:

<video id="foo" begin="go_btn.click" ... />
<audio id="bar" begin="foo.begin+2s" dur="10s"
 restart="whenNotActive" ... " />

If the user clicks on the "go_btn" image at 5 seconds, element "foo" will begin, and
element "bar" will be scheduled to begin at 7 seconds. If the user clicks the image
again at 6 seconds, "foo" would restart and "bar" would be rescheduled to start at 8
seconds. If the user clicks again at 9 seconds, "foo" would restart but "bar" will not,
as it is set to allow restart only when it is not active.

If an element is currently active when a restart is scheduled, the element should
end immediately (at the time of the restart evaluation). It should not continue playing
until the rescheduled begin actually happens. For example:

17024 Feb 2000 08:26

SMIL Timing and Synchronization

<video id="foo" begin="go_btn.click" .../>
<audio id="bar" begin="foo.begin+2s" dur="10s" />

If the user clicks the image once at 3 seconds, "foo" begins to play and 2 seconds
later "bar" will play as well. If the user clicks again at 6 seconds, "foo" restarts
immediately, "bar" is stopped, and "bar" will restart at 8 seconds.

Note that using restart can also allow the author to define a single UI event to both
begin and end an element, as follows:

<audio id="foo" begin="toggle.click" end="toggle.click"
 repeatDur="indefinite" restart="whenNotActive" .../>

If "foo" were defined with the default restart behavior "always", a second click on
the image would simply restart the audio. However, since the second click cannot
restart the audio when restart is set to "whenNotActive", the click will just end the
active duration and stop the audio. This is sometimes described as "toggle"
activation. See also Unifying scheduling and interactive timing .

Note that in SMIL Language documents, a SMIL element cannot be visible before
it begins so having a begin="click" means it won’t ever begin. In languages with
timeAction support, this may not be the case. For example, the following is
reasonable:

 Click here to highlight. Click again to remove highlight.

See also "The SMIL Integration Module" for details of language profiles.

Using restart for toggle activation

A common use-case requires that the same UI event is used begin an element and
to end the active duration of the element. This is sometimes described as "toggle"
activation, because the UI event toggles the element "on" and "off". The restart
attribute can be used to author this, as follows:

<img id="foo" begin="bar.click" end="bar.click"
 restart="whenNotActive" ... />

If "foo" were defined with the default restart behavior "always", a second click on
the "bar" element would simply restart the element. However, since the second click
cannot restart the element when restart is set to "whenNotActive", the element
ignores the "begin" specification of the "click" event. The element can then use the
"click" event to end the active duration and stop the element.

This is based upon the event sensitivity semantics described in Unifying
Scheduling and Interactive Timing .

24 Feb 2000 08:26171

SMIL Timing and Synchronization

10.3.3 Time containers
SMIL Boston specifies three time containers: <par>, <seq>, and <excl>.

The par time container

<par>
A <par> container defines a simple parallel time grouping in which multiple
elements can play back at the same time.

The default syncbase of the child elements of a <par> is the begin of the <par> .
This is the same element introduced with SMIL 1.0.

The <par> element supports all element timing.

The seq time container

<seq>
A <seq> container defines a sequence of elements in which elements play one
after the other.

This is the same element introduced with SMIL 1.0, but the semantics (and
allowed syntax) for child elements of a <seq> are clarified. The default syncbase of a
child element is the active end of the previous element. Previous means the element
that occurs before this element in the sequence time container. For the first child of a
sequence (i.e. where no previous sibling exists), the default syncbase is the begin of
the sequence time container.

Child elements may define an offset from the syncbase, but may not define a
different syncbase (i.e. they may not define a begin time relative to another element,
or to an event). Thus, the syncbase of child elements of a sequence is always the
same as the default syncbase. Note however that child elements may define an end
that references other syncbases, event-bases, etc.

For children of a sequence, only the offset begin values are legal. None of the
following begin values may be used:

disallowed begin-values:
(syncbase-value | syncToPrev-value | event-value | media-marker-value |
wallclock-sync-value)

No constraints are placed upon the end argument values.

The <seq> element itself supports all element timing.

When a hyperlink traversal targets a child of a <seq> , and the target child is not
currently active, part of the seek action must be to enforce the basic semantic of a
<seq> that only one child may be active a given time. For details, see Hyperlinks
and timing and specifically Implications of beginElement() and hyperlinking for seq
and excl time containers .

17224 Feb 2000 08:26

SMIL Timing and Synchronization

The excl time container

SMIL Boston defines a new time container, <excl> .

<excl>
This defines a time container with semantics based upon par, but with the
additional constraint that only one child element may play at any given time. If
any element begins playing while another is already playing, the element that
was playing is either paused or stopped. Elements in an <excl> are grouped
into categories, and the pause/interruption behavior of each category can be
controlled using the new grouping element <priorityClass> .

The default syncbase of the child elements of the <excl> is indefinite (i.e.
equivalent to begin="indefinite").

The <excl> element itself supports all element timing.

With the <excl> time container, common use cases that were either difficult, or
impossible, to author are now easier and possible to create. The <excl> time
container is used to define a mutually exclusive set of clips, and to describe pausing
and resuming behaviors among these clips. Examples include:

interactive playlist
A selection of media clips is available for the user to choose from, only one of
which plays at a time. A new selection replaces the current selection.

audio descriptions
For visually impaired users, the current video is paused and audio descriptions
of the current scene are played. The video resumes when the audio description
completes.

interactive video sub-titles
Multiple language sub-titles are available for a video. Only one language version
can be shown at a time with the most recent selection replacing the previous
language choice, if any.

The interactive playlist use case above could be accomplished using a <par>
whose sources have interactive begin times and end events for all other sources.
This would require a prohibitively long list of values for end to maintain. The <excl>
time container provides a convenient short hand for this - the element begin times
are still interactive, but the end events do not need to be specified because the
<excl>, by definition, only allows one child element to play at a time.

The audio descriptions use case is not possible without the pause/resume
behavior provided by <excl> and <priorityClass> . This use case would be
authored with a video and each audio description as children of the <excl> . The
video element would be scheduled to begin when the <excl> begins and the audio
descriptions, peers of the video element, would start at scheduled begin times or in
response to stream events raised at specific times.

24 Feb 2000 08:26173

SMIL Timing and Synchronization

The dynamic video sub-titles use case requires the "play only one at a time"
behavior of <excl> . In addition, the child elements are declared in such as way so
to preserve the sync relationship to the video:

<par>
 <video id="vid" .../>
 <excl>
 <par begin="englishBtn.click" >
 <audio begin="vid1.begin" src="english.au" />
 </par>
 <par begin="frenchBtn.click" >
 <audio begin="vid1.begin" src="french.au" />
 </par>
 <par begin="swahiliBtn.click" >
 <audio begin="vid1.begin" src="swahili.au" />
 </par>
 </excl>
</par>

The three <par> elements are children of the <excl> , and so only one can play
at a time. The audio child in each <par> is defined to begin when the video begins.
Each audio can only be active when the parent time container (<par>) is active, but
the begin still specifies the synchronization relationship. This means that when each
<par> begins, the audio will start playing at some point in the middle of the audio
clip, and in sync with the video.

The <excl> time container is useful in many authoring scenarios by providing a
declarative means of describing complex clip interactions.

Pause behavior

Using priority classes to control the pausing behavior of children of the <excl>
allows the author to group content into categories of content, and then to describe
rules for how each category will interrupt or be interrupted by other categories.
Attributes of the new grouping element <priorityClass> describe the intended
interactions.

The <priorityClass> element is transparent to timing, and does not participate
in or otherwise affect the normal timing behavior of its children (i.e. it only defines
how elements interrupt one another). Child elements of the <priorityClass>
elements are time-children of the <excl> element (i.e. the parent <excl> of the
<priorityClass> elements).

Each <priorityClass> element describes a group of children, and the behavior
of those children when interrupted by other time-children of the <excl> . The
behavior is described in terms of peers, and higher and lower priority elements.
Peers are those elements within the same <priorityClass> element. The
priorityClass elements are assigned priority levels based upon the order in
which they are declared within the excl . The first <priorityClass> element has
highest priority, and the last has lowest priority.

17424 Feb 2000 08:26

SMIL Timing and Synchronization

When one element within the <excl> begins (or would normally begin) while
another is already active, several behaviors may result. The active element may be
paused or stopped, or the interrupting element may be deferred, or simply blocked
from beginning. When elements are paused or deferred, they are added to a queue
of pending elements. When an active element completes its active duration, the first
element (if any) in the queue of pending elements is made active. The queue is
ordered according to rules described in Pause queue semantics .

The careful choice of defaults makes common use cases very simple. See the
examples below.

<priorityClass>
Defines a group of <excl> time-children, and the pause/interrupt behavior of
the children. If a <priorityClass> element appears as the child of an
<excl> , then the <excl> can only contain <priorityClass> elements (i.e.
the author cannot mix timed children and <priorityClass> elements within
an <excl>).

The <excl> element content model is thus (assume that container content is an
updated version of the SMIL 1.0 DTD entity):

<!ENTITY % excl-content "priorityClass* | %container-content;">
<!ELEMENT excl (%excl-content;)*>

The <priorityClass> element supports a simple set of attributes to describe
the behavior of its children:

<!ELEMENT priorityClass %container-content;>
<!ATTLIST priorityClass
 id ID #IMPLIED
 peers (stop | pause | defer | never) ’stop’
 higher (stop | pause) ’pause’
 lower (defer | never) ’defer’
>

If no <priorityClass> element is used, all the children of the <excl> are
considered to be peers, with the default peers behavior "stop".

Note that the rules define the behavior of the currently active element and the
interrupting element. Any elements in the pause queue are not affected (except that
their position in the queue may be altered by new queue insertions).

peers = " stop | pause | defer | never "

Controls how child elements of this <priorityClass> will interrupt one
another.
Legal values for the attribute are:
stop

If a child element begins while another child element is active, the active
element is simply stopped.
This is the default for peers .

24 Feb 2000 08:26175

SMIL Timing and Synchronization

pause
If a child element begins while another child element is active, the active
element is paused and will resume when the new (interrupting) element
completes its active duration (subject to the constraints of the excl time
container). The paused element is added to the pause queue.

defer
If a child element attempts to (i.e. would normally) begin while another child
element is active, the new (interrupting) element is deferred until the active
element completes its active duration. This can also be thought of as
placing the new element in the pause queue, paused at its very beginning.

never
If a child element attempts to (i.e. would normally) begin while another child
element is active, the new (interrupting) element is prevented from
beginning. The begin of the new (interrupting) element is ignored.

higher = " stop | pause "

Controls how elements with higher priority will interrupt child elements of this
<priorityClass> .
Legal values for the attribute are:
stop

If a higher priority element begins while a child element of this
<priorityClass> is active, the active child element is simply stopped.

pause
If a higher priority element begins while a child element of this
<priorityClass> is active, the active child element is paused and will
resume when the new (interrupting) element completes its active duration
(subject to the constraints of the excl time container). The paused element
is added to the pause queue.
This is the default for the higher attribute.

lower = " defer | never "

Controls how elements defined with lower priority will interrupt child elements of
this <priorityClass> .
Legal values for the attribute are:
defer

If a lower priority element attempts to (would normally) begin while a child
element of this <priorityClass> is active, the new (interrupting) element
is deferred until the active element completes its active duration. This can
also be thought of as placing the new element in the pause queue, paused
at its very beginning. The rules for adding the element to the queue are
described below.
This is the default for the lower attribute.

never
If a lower priority element attempts to begin while a child element of this
<priorityClass> is active, the new (interrupting) element is prevented

17624 Feb 2000 08:26

SMIL Timing and Synchronization

from beginning. The begin of the new (interrupting) element is ignored, and
it is not added to the queue.

When an element begin is blocked (ignored) because of the "never" attribute
value, the blocked element does not begin in the time model. The time model should
not propagate begin or end activations to time dependents, nor should it raise begin
or end events.

excl and priorityClass Examples

Note that because of the defaults, the simple cases work without any additional
syntax. In the basic case, all the elements default to be peers, and stop one another:

<excl dur="indefinite">
 <audio id="song1" .../>
 <audio id="song2" .../>
 <audio id="song3" .../>
 ...
 <audio id="songN" .../>
</excl>

is equivalent to the following with explicit settings:

<excl dur="indefinite">
 <priorityClass peers="stop">
 <audio id="song1" .../>
 <audio id="song2" .../>
 <audio id="song3" .../>
 ...
 <audio id="songN" .../>
 </priorityClass>
</excl>

If the author wants elements to pause rather than stop, the syntax is:

<excl dur="indefinite">
 <priorityClass peers="pause">
 <audio id="song1" .../>
 <audio id="song2" .../>
 <audio id="song3" .../>
 ...
 <audio id="songN" .../>
 </priorityClass>
</excl>

The audio description use case for visually impaired users would look very similiar
to the previous example:

24 Feb 2000 08:26177

SMIL Timing and Synchronization

<excl dur="indefinite">
 <priorityClass peers="pause">
 <video id="main_video" .../>
 <audio id="scene1_description" begin="20s" dur="30s".../>
 <audio id="scene2_description" begin="2min" dur="30s" .../>
 ...
 <audio id="sceneN_description" .../>
 </priorityClass>
</excl>

This example shows a more complex case of program material and several
commercial insertions. The program videos will interrupt one another. The ads will
pause the program, but will not interrupt one another.

<excl dur="indefinite">
 <priorityClass id="ads" peers="defer">
 <video id="advert1" .../>
 <video id="advert2" .../>
 </priorityClass>
 <priorityClass id="program" peers="stop" higher="pause">
 <video id="program1" .../>
 <video id="program2" .../>
 <video id="program3" .../>
 <video id="program4" .../>
 </priorityClass>
</excl>

Pause queue semantics

Elements that are paused or deferred are placed in a priority-sorted queue of waiting
elements. When an active element ends its active duration and the queue is not
empty, the first (i.e. highest priority) element in the queue is pulled from the queue
and resumed or activated.

The queue semantics are described as a set of invariants and the rules for
insertion and removal of elements. For the purposes of discussion, the child
elements of a <priorityClass> element are considered to have the priority of
that <priorityClass> , and to have the behavior described by the peers ,
higher and lower attributes on the <priorityClass> parent.

Queue invariants

1. The queue is sorted by priority, with higher priority elements before lower priority
elements.

2. An element may not appear in the queue more than once.
3. An element may not simultaneously be active and in the queue.

Element insertion and removal

1. Elements are inserted into the queue sorted by priority (by invariant 1).
a) Paused elements are inserted before elements with the same priority.
b) Deferred elements are inserted after elements with the same priority.

17824 Feb 2000 08:26

SMIL Timing and Synchronization

2. Where the semantics define that an active element must be paused, the
element is paused at the current local time (position) when placed on the queue.
When a paused element is pulled normally from the queue, it will resume from
the point at which it was paused.

3. Where the semantics define that an element must be deferred, the element is
inserted in the queue, in an inactive (idle) state. When the element is pulled
normally from the queue, it will begin (i.e. be activated).

4. When an element is placed in the queue any previous instance of that element
is removed from the queue (by invariant 2).

5. When the active child (i.e. time-child) of an excl ends normally (i.e. not when it
is stopped by another, interrupting element), the element on the front of the
queue is pulled off the queue, and resumed or begun (according to rule 2 or 3).

Note that if an element is active and restarts (subject to the restart rule), it does
not interrupt itself in the sense of a peer interrupting it. Rather, it simply restarts and
the queue is unaffected.

Time dependency and pause/defer semantics

@@This section has more general impact that just in excl, and should perhaps be
moved elsewhere. E.g. when an element is paused with the pause() DOM method,
this semantic will apply as well.

When an element is paused, a resolved end time for the element may no longer
be resolved (although it could be computed in some cases). This change in the end
time must be propagated to any sync arc time dependents defined relative to the
active end of the paused element. See also the "Propagating Times" section in the
Timing draft.

When an element is deferred, sync-arc time-dependents of the element are
resolved when the element actually begins, and not when it is placed in the queue.
Similarly, the begin event is not raised until the element begins.

Scheduled begin times and <excl>

Although the default begin value for children of an <excl> is indefinite, scheduled
begin times are permitted. Scheduled begin times on children of the <excl> cause
the element to begin at the specified time, pausing or stopping other siblings
depending on the priorityClass settings (and default values).

To specify that a child of the <excl> should begin playing by default (i.e., when
the <excl> begins), specify begin="0" on that child element. If children of an
<excl> are scheduled to begin at the same time, the evaluation proceeds in
document order. For each element in turn, the priorityClass semantics are
considered, and elements may be paused, deferred or stopped. For example:

<excl>

</excl>

24 Feb 2000 08:26179

SMIL Timing and Synchronization

Given the default semantics for excl, the first image will begin and then be
immediately stopped by the second image, which will in turn be immediately stopped
by the third image. The net result is that only the third image is seen, and it lasts for
5 seconds. Note that the begin and end events for the first two images are raised
and propagated to all time dependents. If the behavior is set to "pause" as in this
example, the declared order is effectively reversed:

<excl>
 <priorityClass peers="pause">

 </priorityClass>
</excl>

In this case, the first image will begin and then be immediately paused by the
second image, which will in turn be immediately paused by the third image. The net
result is that the third image is seen for 5 seconds, followed by the second image for
5 seconds, followed by the 3rd image for 5 seconds. Note that the begin events for
the first two images are raised and propagated to all time dependents when the
excl begins.

In the following slideshow example, images begin at the earlier of their scheduled
begin time or when activated by a user input event:

<excl>

</excl>

Note, some surprising results may occur when combining scheduled and
interactive timing within an <excl> . If in the above example, the user clicks on
image1 and then on image2 before ten seconds have elapsed, image 2 will
re-appear at the ten second mark. Image 3 will appear at twenty seconds. The likely
intent of this particular use-case would be better represented with a seq time
container.

Side effects of activation

Children of the <excl> can be activated by scheduled timing, hyperlinks, events or
DOM methods calls. For all but hyperlink activation, the <excl> time container must
be active for child elements of the <excl> to be activated. With hyperlink activation,
the document may be seeked to force the parent <excl> to be active, and a seek
may occur to the begin time target child if it has a resolved begin time. That is, the
normal hyperlink seek semantics apply to a timed child of an <excl> .

With activation via a DOM method call (e.g. the beginElement() method), the
element will be activated at the current time (subject to the priorityClass
semantics), even if the element has a scheduled begin time. The exclusive
semantics of the time container (allowing only one active element at a time) and all
priorityClass semantics are respected nevertheless.

18024 Feb 2000 08:26

SMIL Timing and Synchronization

See also Hyperlinks and timing and specifically Implications of beginElement()
and hyperlinking for seq and excl time containers .

Specifying the simple duration of par and excl with endSync

The endSync attribute is only valid for <par> and <excl> time containers, and
media elements with timed children (e.g. animate or area elements). The
endSync attribute controls the end of the simple duration of these containers, as a
function of the children. This is particularly useful with children that have "unknown"
duration, e.g. an mpeg movie, that must be played through to determine the
duration.

@@ Add more info to the effect that: Note that paused children of an <excl>
container have not ended their active duration. Moreover (something to explain the
"Elements do not have to play to completion, but must have played at least once") (i
try ...) elements with multiple activation due to multiple begin and end value has only
to play once to be considered as having ended their active duration.

endSync = " first | last | all | id-ref "

Legal values for the attribute are:
first

The <par> , <excl> , or media element simple duration ends with the
earliest active end of all the child elements. This does not refer to the lexical
first child, or to the first child to start, but rather refers to the first child to end
its active duration.

last
The <par> , <excl> , or media element simple duration ends with the last
active end of the child elements. This does not refer to the lexical last child,
or to the last child to start, but rather refers to the last active end of all
children that have a resolved begin time.
This is the default value.

all
The <par> , <excl> , or media element simple duration ends when all of
the child elements have ended their respective active durations. Elements
with indefinite or unresolved begin times will keep the simple duration of the
time container from ending.

id-ref
The <par> , <excl> , or media element simple duration ends with the
specified child. The id must correspond to one of the immediate children of
the <par> time container.
Example: <par ... endSync="movie1" ...>

Semantics of endSync and indeterminate children:

endSync="first" means that the time container must wait for any element to
actually end its active duration. It does not matter whether the the first element
to end was scheduled or interactive.

24 Feb 2000 08:26181

SMIL Timing and Synchronization

endSync="last" means that the time container must wait for all elements that
have a resolved begin, to end the respective active durations. Note that
elements that had an interactive begin, but that became resolved before all
scheduled elements ended, are added to the set of children that must end their
active durations before the parent can end. This can chain, so that only one
element is running at one point, but before it ends its active duration another
interactive element is resolved. It may even yield "dead time" (where nothing is
playing), if the resolved begin is after the other elements active end.
At the point at which no elements are active, and no elements have a resolved
begin time after the current time, the parent time container can end its simple
duration.
Elements with indefinite or unresolved begin times will not keep the simple
duration of the time container from ending.
Elements with a resolved begin time but indefinite or unresolved end times will
keep the simple duration of the time container from ending.
@@Should we refine this to exclude elements with an explicit "indefinite"
duration? Seems like this matches SMIL 1 more closely.
@@ Also, how should be define "endSync=last" to work with children that have
multiple resolved begin times? Must all instances play, or must only one play.
We could also say that all elements with a resolved begin time that have not
already played once must have ended. The question is then whether we should
or should not cut off elements if they are playing a second time.
Child elements of an <excl> that are currently paused and waiting to resume
will keep the simple duration of the time container from ending.
endSync="all" means that every child element of the time container must
end the active duration. In the case of element with multiple begin times, or
restarting elements, note that elements do not have to play to completion; they
just must have played at least once (here "once" refers to an instance of an
active duration, and not to one repeat iteration of a repeating element). When all
elements have completed the active duration one or more times, the parent can
end.
Note that child elements of an <excl> that are currently paused and waiting to
resume (and have not already completed the active duration at least once) will
keep the simple duration of the time container from ending.
endSync=[id-ref] means that the time container must wait for the
referenced element to actually end its active duration. The id-ref must refer to a
child of the time container. If the referenced child has an indefinite active
duration, then the simple duration of the time container is also indefinite.
Note that if the referenced child is currently paused and waiting to resume, it will
keep the simple duration of the time container from ending.

@@ Do we need a note to call out that in some cases, endSync may define an
indefinite simple duration for the time container. This would flow "through the
computing the active duration" table accordingly, using "implicit indefinite" as the
simple duration.

18224 Feb 2000 08:26

SMIL Timing and Synchronization

The following pseudo-code describes the endSync algorithm:

//
// boolean timeContainerHasEnded()
//
// method on time containers called to evaluate whether
// time container has ended, according to the rules of endSync.
// Note: Only supported on par and excl
//
// A variant on this could be called when a child end is updated to
// create a scheduled (predicted) end time for the container.
//
// Note that we never check the end time of children - it don’t matter.
//
// Assumes:
// child list is stable during evaluation
// isActive state of children is up to date for current time.
// [In practice, this means that the children must all be
// pre-visited at the current time to see if they are done.
// If the time container is done, and repeats, the children
// may be resampled at the modified time.]
//
// Uses interfaces:
// on TimedNode:
// isActive() tests if node is currently active
// hasStarted() tests if node has (ever) begun
// begin and end begin and end TimeValues of node
//
// on TimeValue (a list of times for begin or end)
// isResolved(t) true if there is a resolved time
// at or after time t
//

boolean timeContainerHasEnded()
{

TimeInstant now = getCurrentTime(); // normalized for time container

boolean assumedResult;

// For first or ID, we assume a false result unless we find a child that has ended
// For last and all, we assume a true result unless we find a dis-qualifying child

if((endSyncRule == first) || (endSyncRule == ID))
 assumedResult = false;
else
 assumedResult = true;

// Our interpretation of endSync == all:
// we’re done when all children have begun, and none is active
//

// loop on each child in collection of timed children,
// and consider it in terms of the endSyncRule

 foreach (child c in timed-children-collection)
{
 switch(endSyncRule) {
 case first:
 // as soon as we find an ended child, return true.
 if(c.hasStarted() & !c.isActive())
 return true;

24 Feb 2000 08:26183

SMIL Timing and Synchronization

 // else, keep looking (assumedResult is false)
 break;

 case ID:
 // if we find the matching child, just return result
 if(endSyncID == c.ID)
 return(c.hasStarted() & !c.isActive());
 // else, keep looking (we’ll assume the ID is valid)
 break;

 case last:
 // we just test for disqualifying children
 // If the child is active, we’re definitely not done.
 // If the child has not yet begun but has a resolved begin,
 // then we’re not done. Note that if it has already begun,
 // then we do not care if it has more resolved begins.
 if(c.isActive()
 || (!c.hasStarted() && c.begin.isResolved(now)))
 return false;
 // else, keep checking (the assumed result is true)
 break;

 case all:
 // we just test for disqualifying children
 // all_means_last_done_after_all_begin

 // If the child is active, we’re definitely not done.
 // If the child has not yet begun then we’re not done.
 // Note that if it has already begun,
 // then we do not care if it has more resolved begins.
 if(c.isActive() || !c.hasStarted())
 return false;
 // else, keep checking (the assumed result is true)
 break;

 } // close switch

} // close foreach loop

return assumedResult;

} // close timeContainerHasEnded()

Time container duration

The implicit duration of a time container is defined in terms of the children of the
container. The children can be thought of as the "media" that is "played" by the time
container element. The semantics are specific to each of the defined time container
variants.

Implicit duration of <par> containers

By default, the simple duration of a <par> is defined by the endSync=last
semantics. The simple duration will end when all scheduled children have ended
their respective active durations.

The simple duration of a <par> container can be controlled with the dur and
endSync attributes. If the dur attribute is specified, the endSync attribute is
ignored. Using endSync , the end of the simple duration can be tied to the active end

18424 Feb 2000 08:26

SMIL Timing and Synchronization

of the first child that finishes, or to the active end of the last child to finish (the
default), or to the active end of a particular child element.

Implicit duration of <seq> containers

By default, the simple duration of a <seq> ends with the active end of the last child
of the <seq> . If any child of a <seq> has an indefinite active duration, the simple
duration of the <seq> is also indefinite.

Implicit duration of <excl> containers

The implicit simple duration of an <excl> container is defined the same as for a
<par> container, using the endSync=last semantics. However, since the default
timing for children of <excl> is interactive, it will be common for <excl> time
containers to have indefinite simple duration.

Implicit duration of media element time containers

For endSync={last or all} : The time children and the intrinsic media duration
define the simple duration of the media element time container. If a continuous
media duration is longer than the extent of all the time children, the continuous
media duration defines the implicit simple duration for the media element time
container. If the media is discrete, this is defined as for <par> elements.

For endSync={first} : The time children and the intrinsic media duration define
the simple duration of the media element time container. The element ends when the
first active duration ends, as defined above for endSync on a <par> , but no sooner
than the end of the intrinsic media duration of continuous media. If the media is
discrete, this is defined as for <par> elements.

For endSync={ID} : This is defined as for <par> elements.

If the calculated implicit simple duration is longer than the intrinsic duration for a
continuous media element, the ending state of the media (e.g. the last frame of
video) will be shown for the remainder of the simple duration. This only applies to
visual media - aural media will simply stop playing.

This semantic is similar to the case in which the author specifies a simple duration
that is longer than the intrinsic duration for a continuous media element. Note that for
both cases, although the media element is effectively frozen for the remainder of the
simple duration, the time container local time is not frozen during this period, and
any children will run normally without being affected by the media intrinsic duration.

Time container constraints on child durations

Time containers place certain overriding constraints upon the child elements. These
constraints can cut short the active duration of any child element.

All time containers share the basic overriding constraint:

24 Feb 2000 08:26185

SMIL Timing and Synchronization

A child element may not be active before the beginning, nor after the end of the
parent simple duration.

While the child may define a sync relationship that places the begin before the
parent begin, the child is not active until the parent begins. This is equivalent to the
semantic described in Negative begin delays .

If the child defines an active duration (or by the same token a simple duration) that
extends beyond the end of the parent simple duration, the active duration of the child
will be cut short when the parent simple duration ends. Note that this does not imply
that the child duration is automatically shortened, or that the parent simple duration
is "inherited" by the child.

For example:

<par dur="10s" repeatDur="25s">
 <video dur="6s" repeatCount="2" .../>
 <text begin="5s" dur="indefinite" .../>
 <audio begin="prev.end" .../>
</par>

The video will play once for 6 seconds, and then a second time but only for 4
seconds - the last 2 seconds will get cut short and will not be seen. The text shows
up for the last 5 seconds of the <par> , and the indefinite duration is cut short at the
end of the simple duration of the <par> . The audio will not show up at all, since it is
defined to begin at the end of the active duration of the previous element (the
<text> element). Since the text element ends when the time container ends, the
audio would begin after the time container has ended, and so never is heard. When
the <par> repeats the first time, everything has happens just as it did the first time.
However the last repeat is only a partial repeat (5 seconds), and so on the video will
be seen, but it will not be seen to repeat, and the last second of the video will be cut
off.

Note the time container is itself subject to the same constraints, and so may be cut
short by some ascendant time container. When this happens, the children of the time
container are also cut off, in the same manner as for the last partial repeat in the
example above.

In addition, <excl> time containers allow only one child to play at once. Subject
to the priorityClass semantics, the active duration of an element may be cut
short when another element in the time container begins.

Time container constraints on sync-arcs and events

We need a few good examples to illustrate these concepts.

SMIL 1.0 defined constraints on sync-arc definition (e.g., begin="image1.begin"),
allowing references only to qualified siblings. SMIL Boston explicitly removes this
constraint. SMIL Boston also adds event-based timing. Both sync-arcs and
event-timing are constrained by the parent time container of the associated element
as described above.

18624 Feb 2000 08:26

SMIL Timing and Synchronization

Specifics for sync-arcs

While a sync-arc is explicitly defined relative to a particular element, if this element is
not a sibling element, then the sync is resolved as a sync-relationship to the parent
(i.e. to an offset from the parent begin). If the defined sync would place the resolved
element begin before the parent time container begin, part of the element will simply
be cut off when it first plays. This is not unlike the behavior obtained using
clipBegin. However unlike with clipBegin, if the sync-arc defined child element also
has repeat specified, only the first iteration will be cut off, and subsequent repeat
iterations will play normally. See also Negative begin delays .

Note that in particular, an element defined with a sync-arc begin will not
automatically force the parent or any ancestor time container to begin.

For the case that an element with a sync-arc is in a parent (or ancestor) time
container that repeats: for each iteration of the parent or ancestor, the element is
played as though it were the first time the parent timeline was playing. With each
repeat of the parent, the sync-arc will be recalculated to yield a begin time relative to
the parent time container. See also the section Resetting element state .

Specifics for event-based timing

@@ If we allowed events on begin in children of sequence, we would have to refine
this language to say that an element is sensitive after the active end of the previous
element, and until its own active end.

The parent time container must be active for the child element to receive events.

Sequence children are only sensitive to events during their active duration. In the
following example, all children listen to the same end event and it works as
expected:

<seq>

</seq>

Negative begin delays

A begin time (ultimately) specifies a synchronization relationship between the
element and the parent time container. Syncbase variants, eventbase, marker and
wallclock timing are implicitly converted to an offset on the parent time container, just
as an offset value specifies this directly. For children of a <seq> , the result is always
a positive offset from the begin of the <seq> time container. However, for children of
<par> and <excl> time containers. the computed offset relative to the parent begin
time may be negative.

If the computed begin offset is negative, the time container constraints specify that
the element cannot actually begin until the parent time container begins.
Nevertheless, the element behaves as though it had begun earlier. A negative begin
offset can be thought of as defining a clipBegin value (with the same magnitude) for

24 Feb 2000 08:26187

SMIL Timing and Synchronization

the first -- and only the first -- iteration of a repeated element. If no repeat behavior is
specified, a negative begin offset is equivalent to a clipBegin specification with the
same magnitude as the offset value.

10.3.4 State transition model
@@This must be updated to reflect the impact of parent time container constraints
and the DOM methods (especially including the "paused" state, and possibly
Active-to-Active transition for seek()).

State paused: In the paused state, an animation continues to perform the
transformation of the specified presentation values that were current at the moment
of entering the pause state.

Pause transition: Active to Paused This transition may occur if an animation
element has its pause() method called while in the active state, or as a result of
<excl> stacking behavior and being interrupted by a sibling of the parent <excl>.

Unpause transition: Paused to Active This transition may occur if an animation
element has its unpause() method called while in the pause state, or as a result of
<excl> unstacking behavior.

At any moment in time, a timed element is in exactly one of the following states:
idle, active, finished or frozen. The state transitions are caused by events called
start, restart, freeze and stop. Figure 6 shows the legal transitions between the
states of an element:

18824 Feb 2000 08:26

SMIL Timing and Synchronization

Figure 6: State diagram of an element

The following sections explain the semantics of the states and transitions of a
timed element, and explain how to define the state transitions using timing attributes
of the element.

Note that the states and transitions are part of the model, and do not imply a
particular implementation. Note also that an element may transition through more
than one state in a virtual instant (i.e. with no time spent in a given state).

The presentation effect of timed elements is generally to display media, or to play
a timeline (e.g. for time containers). In some cases, the element may be an
animation that manipulates the presentation, but does not directly display anything.
In some integration scenarios, the presentation effect of the element may be to apply
a stylesheet, or to otherwise modify the presentation. In these discussions, the
common case of displaying media or playing a timeline is used to describe the states
and transitions. The same semantics should be understood to apply to all defined
actions or presentation effects, as specified in the language that integrates SMIL
Timing and Synchronization.

Initial state: Idle

When the document that contains a timed element is first presented, the element is
created in the idle state. This is the common starting state for all timed elements.

When a parent time container repeats or is restarted, all (timed) child elements of
the time container will be reset. As part of the element reset, the element is
re-initialized to the Idle state. See also Resetting element state .

In the idle state a timed element is inactive and does not affect the presentation of
the document in any way. The element simply waits for the time or event specified in
its begin attribute. Note that the element may transition immediately to the active
state if the element begins immediately when the document begins.

Start transition: Idle to Active

For an element to become active, the element’s parent time container must be
active. Given this, a timed element in the idle state transitions to the active state
when the condition specified in the begin attribute becomes true. As described in
the section on the begin attribute, this condition may depend upon one of several
factors:

reaching a particular time in the parent time container simple duration.
another element beginning or ending its active duration.
another (media) element reaching a particular point (i.e. marker) in its simple
duration.
the occurrence of an asynchronous event, such as a mouse click.

24 Feb 2000 08:26189

SMIL Timing and Synchronization

Additionally, an element may be started by a DOM beginElement() or
beginElementAt() method call, or as the result of being the target of an activated
hyperlink.

An element may become active as soon as its parent time container becomes
active, if the condition specified in the begin attribute is true at that point.

Note that the begin attribute can specify a condition that is a list of values. The
specific semantics of evaluating the list of values is described in the section Basic -
begin and dur .

Active state:

In the active state, a timed element displays the associated media or performs the
described timeline associated with the element. The active state includes the entire
active duration of the element. The active duration of an element is specified by the
interaction between the dur , end , repeatDur , and repeatCount attributes as
detailed in the section Computing the Active Duration .

Freeze transition: Active to Frozen

If a timed element has the fill attribute set to "freeze", "hold" or "transition", upon
reaching the end of its active duration, the element will transition to the frozen state.

Frozen state:

In the frozen state the element will continue to present the last defined state of visual
media or the timeline state at the end of the active duration (aural media render
nothing during the frozen state). The duration of the frozen state depends upon the
value of the fill attribute (as described in Freezing elements) and on the parent
time container (as described in Time Container constraints on child durations).

The frozen state may have 0 duration, e.g. if the parent time container ends with
the element.

Stop transition: Active to Finished

If a timed element has the fill attribute set to remove (the default), upon reaching
the end of its active duration, the element will transition to the finished state. Note
that the active duration of a child element may end when an ascendant time
container ends its simple duration.

Finished state:

In the finished state the timed element does not affect the presentation of the
document. The duration of the finished state depends upon the parent time
container. The finished state lasts until the end of the current simple duration of the
parent time container, or until the element is restarted (whichever comes first).

19024 Feb 2000 08:26

SMIL Timing and Synchronization

Restart transition: Frozen to Active

The ability of an element to make this transition depends upon the value of the
restart attribute. If the restart attribute value is always or whenNotActive
the element will transition to the active state in response to a DOM
beginElement() or beginElementAt() method call, or an additional begin
event. The restart transition effectively resets the state of the animation element; the
element’s simple and active duration must be recomputed as if it were being started
for the first time. See also Resetting element state .

Restart transition: Frozen to Idle

This transition happens the same way as the Frozen to Active transition
(immediately above). If the element specifies an offset from the syncbase or
eventbase, or if the DOM beginElementAt() method call specifies a non-0 offset,
then the element is returned to the Idle state until it actually restarts.

Restart transition: Active to Active

An element may receive a DOM beginElement() or beginElementAt()
method call or may receive an additional begin event while in the active state. In this
case, if the value of the restart attribute is "always" the element will re-transition to
the active state and restart as described above. Any other value for the restart
attribute will prevent this transition from occurring.

Restart transition: Active to Idle

This transition happens the same way as the Active to Active transition (immediately
above). If the element specifies an offset from the syncbase or eventbase, or if the
DOM beginElementAt() method call specifies a non-0 offset, then the element is
returned to the Idle state until it actually restarts.

Restart transition: Finished to Active

An element restart can result from a DOM call or an additional begin event, subject
to the restrictions imposed by the restart attribute. When in the finished state, an
element may re-transition to the active state if the value of the restart attribute is
"always" or "whenNotActive". If the restart attribute is set to "never", this
transition can not occur.

Restart transition: Finished to Idle

This transition happens the same way as the Finished to Active transition
(immediately above). If the element specifies an offset from the syncbase or
eventbase, or if the DOM beginElementAt() method call specifies a non-0 offset,
then the element is returned to the Idle state until it actually restarts.

24 Feb 2000 08:26191

SMIL Timing and Synchronization

10.3.5 Timing model details

Timing and real-world clock times

In this specification, elements are described as having local "time". In particular,
many offsets are computed in the local time of a parent time container. However,
simple durations can be repeated, and elements can begin and restart in many
ways. As such, there is no direct relationship between the local "time" for an
element, and the real world concept of time as reflected on a clock.

When the time manipulation attributes are used to adjust the speed and/or pacing
within the simple duration, the semantics can be thought of as changing the pace of
time in the given interval. An equivalent model is these attributes simply change the
pace at which the presentation progresses through the given interval. The two
interpretations are equivalent mathematically, and the significant point is that the
notion of "time" as defined for the simple duration and "local time" should not be
construed as real world clock time. For the purposes of SMIL Timing and
Synchronization, "time" can behave quite differently from real world clock time.

Interval timing

The SMIL timing model assumes the most common model for interval timing. This
describes intervals of time (i.e. durations) in which the begin time of the interval is
included in the interval, but the end time is excluded from the interval. This is also
referred to as end-point exclusive timing. This model makes arithmetic for intervals
work correctly, and provides sensible models for sequences of intervals.

Background rationale

In the real world, this is equivalent to the way that seconds add up to minutes, and
minutes add up to hours. Although a minute is described as 60 seconds, a digital
clock never shows more than 59 seconds. Adding one more second to "00:59" does
not yield "00:60" but rather "01:00", or 1 minute and 0 seconds. The theoretical end
time of 60 seconds that describes a minute interval is excluded from the actual
interval.

In the world of media and timelines, the same applies: Let a be a video, a clip of
audio, or an animation. Assume "A" begins at 10 and runs until 15 (in any units - it
does not matter). If "B" is defined to follow "A", then it begins at 15 (and not at 15
plus some minimum interval). When a runtime actually renders out frames (or
samples for audio), and must render the time "15", it should not show both a frame
of "A" and a frame of "B", but rather should only show the new element "B". This is
the same for audio, or for any interval on a timeline. If the model does not use
endpoint-exclusive timing, it will draw overlapping frames, or have overlapping
samples of audio, of sequenced animations, etc.

Note that transitions from "A" to "B" also adhere to the interval timing model. They
do require that "A" not actually end at 15, and that both elements actually overlap.
Nevertheless, the "A" duration is simply extended by the transition duration (e.g. 1
second). This new duration for "A" is also endpoint exclusive - at the end of this new

19224 Feb 2000 08:26

SMIL Timing and Synchronization

duration, the transition will be complete, and only "B" should be rendered - "A" is no
longer needed.

Implications for the time model

For the time model, several results of this are important: the definition of repeat, and
the value sampled during the "frozen" state.

When repeating an element simple duration, the arithmetic follows the end-point
exclusive model. Consider the example:

 <video dur="4s" repeatCount="4" .../>

At time 0, the simple duration is also at 0, and the first frame of video is
presented. This is the inclusive begin of the interval. The simple duration proceeds
normally up to 4 seconds. However, the appropriate way to map time on the active
duration to time on the simple duration is to use the remainder of division by the
simple duration:

 simpleTime = REMAINDER(t, d) where t is within the active duration

Note: REMAINDER(t, d) is defined as t - d*floor(t/d)

Using this, a time of 4 (or 8 or 12) maps to the time of 0 on the simple duration.
The endpoint of the simple duration is excluded from (i.e. not actually sampled on)
the simple duration.

For most continuous media, this aligns to the internal media model, and so no
frames (or audio samples) are ever excluded. However for sampled timeline media
(like animation), the distinction is important, and requires a specific semantic for
handling the frozen state.

If the active duration is an even multiple of the simple duration, the media to
show in the frozen state is the last frame (or last value) defined for the simple
duration.

The effect of this semantic upon animation functions is detailed in the
[SMIL-ANIMATION] module.

Unifying scheduling and interactive timing

A significant motivation for SMIL Boston is the desire to integrate declarative,
determinate scheduling with interactive, indeterminate scheduling. The goal is to
provide a common, consistent model and a simple syntax.

Note that "interactive" content does not refer simply to hypermedia with support for
linking between documents, but specifically to content within a presentation (i.e. a
document) that is activated by some interactive mechanism (often user-input events,
but including local hyperlinking as well).

SMIL Boston describes extensions to SMIL 1.0 to support interactive timing of
elements. These extensions allow the author to specify that an element should begin
or end in response to an event (such as a user-input event like "click"), or to a

24 Feb 2000 08:26193

SMIL Timing and Synchronization

hyperlink activation, or to a DOM method call.

The syntax to describe this uses event-value specifications and the special
argument value "indefinite" for the begin and end attribute values. Event values
describe user interface and other events. If an element should only begin (or end)
with a DOM method call, the begin and end attributes allow the special value
"indefinite" to indicate this. Setting begin="indefinite" can also be used when a
hyperlink will be used to begin the element. The element will begin when the
hyperlink is actuated (usually by the user clicking on the anchor). It is not possible to
control the active end of an element using hyperlinks.

Background

SMIL Boston represents an evolution from earlier multimedia runtimes. These were
typically either pure, static schedulers or pure event-based systems. Scheduler
models present a linear timeline that integrates both discrete and continuous
media. Scheduler models tend to be good for storytelling, but have limited support
for user-interaction. Event-based systems, on the other hand, model multimedia as a
graph of event bindings. Event-based systems provide flexible support for
user-interaction, but generally have poor scheduling facilities; they are best applied
to highly interactive and experiential multimedia.

The SMIL 1.0 model is primarily a scheduling model, but with some flexibility to
support continuous media with unknown duration. User interaction is supported in
the form of timed hyperlinking semantics, but there was no support for activating
individual elements via interaction.

Modeling interactive, event-based content in SMIL

To integrate interactive content into SMIL timing, the SMIL 1.0 scheduler model is
extended to support several new concepts: indeterminate timing and
event-activation.

With indeterminate timing, an element has an undefined begin or active end time.
The element still exists within the constraints of the document, but the begin or
active end time is determined by some external activation. Activation may be
event-based (such as by a user-input event), hyperlink based (with a hyperlink
targeted at the element), or DOM based (by a call to the beginElement() or
beginElementAt() methods). From a scheduling perspective, the time can be
thought of as unresolved.

The event-activation support provides a means of associating an event with the
begin or active end time for an element. When the event is raised (e.g. when the
user clicks on something), the associated time is resolved to a determinate time.
The actual begin (or end) time is computed as the time the event is raised plus or
minus any specified offset.

The computed time defines the synchronization for the element relative to the
parent time container. It is possible for the computed begin or end time to occur in
the past, e.g. when a negative offset value is specified, or if there is any appreciable
delay between the time the event is raised and when it is handled by the SMIL

19424 Feb 2000 08:26

SMIL Timing and Synchronization

implementation. See also the section Handling negative offsets .

Note that an event based end will not be activated until the element has already
begun. Any specified end event is ignored before the element begins.

The constraints imposed on an element by its time container are an important
aspect of the event-activation model. In particular, when a time container is itself
inactive (e.g. before it begins or after it ends), no events are handled by the children.
If the time container is frozen, no events are handled by the children. No
event-activation takes place unless the time container of an element is active. For
example:

<par begin="10s" dur="5s">
 <audio src="song1.au" begin="btn1.click" />
</par>

If the user clicks on the "btn1" element before 10 seconds, or after 15 seconds,
the audio element will not play. In addition, if the audio element begins but would
extend beyond the specified active end of the <par> container, it is effectively cut off
by the active end of the <par> container.

Event sensitivity

The SMIL Boston timing model supports synchronization based upon DOM events.
These can be user interface generated and other kinds of unpredictable events. The
model for handling events is that the notification of the event is delivered to the
timing element, and the timing element uses a set of rules to resolve any
synchronization dependent upon the event.

The semantics of element sensitivity to events are described by the following set
of rules:

1. While a time container is not active (i.e. before the time container begin or after
the time container active end), child elements do not respond to events (with
respect to the Time model). Note that while a parent time container is frozen, it
is not active, and so children do not handle begin or end event specifications.
a) Note that an element will not receive an instance of an event that begins

any ascendant time container.
b)

@@The above semantic is hard to implement based upon a standard
DOM event model. We may have to reconsider and say: Note that if the
element and its parent time container are both specified to begin with the
same event, the behavior is not defined. DOM Level 2 events does not
provide a means to order the registered listeners for an event, and so
implementations cannot guarantee that the parent will be activated before
the child. Authors should avoid this construct in documents.

2. If an element is not active (but the parent time container is), then events are
only handled for begin specifications. Thus if an event is raised and begin
specifies the event, the element begins and any specification of the event in end
is ignored for this event instance.

24 Feb 2000 08:26195

SMIL Timing and Synchronization

3. If an element is (already) active when an event is raised, and begin specifies
the event, then the behavior depends upon the value of restart:
a) If restart="always" , then a new begin time is resolved for the element

based on the event time. Any specification of the event in end is ignored for
this event instance.

b) If restart="never" or restart="whenNotActive" , then any begin
specification of the event is ignored for this instance of the event. If end
specifies the event, an end value is resolved based upon the event time,
and the active duration is re-evaluated (according to the rules in Computing
the active duration).

It is important to notice that in no case is a single event occurrence used to
resolve both a begin and end time on the same element.

These rules can be used with the restart attribute to describe "toggle" activation
use cases, as described in the section: Using restart for toggle activation .

Since the same event instance cannot be used to resolve both the begin and end
time on a single element, uses like the following will have behavior that may seem
non-intuitive to some people:

<audio src="bounce.wav" begin="foo.click" end="foo.click+3s"
 restart="whenNotActive"/>

This example will begin repeating the audio clip when "foo" is clicked, and stop the
audio clip 3 seconds after "foo" is clicked a second time. It is incorrect to interpret
this example as playing the audio clip for 3 seconds after "foo" is clicked. For that
behavior, the following markup should be used:

<audio src="bounce.wav" begin="foo.click" dur="3s"
 restart="whenNotActive"/>

Related to event-activation is link-activation. Hyperlinking has defined semantics
in SMIL 1.0 to seek a document to a point in time. When combined with
indeterminate timing, hyperlinking yields a variant on interactive content. A hyperlink
can be targeted at an element that does not have a scheduled begin time. When the
link is traversed, the element begins. Note that unlike event activation, the hyperlink
activation is not subject to the constraints of the parent time container. The details of
when hyperlinks activate an element, and when they seek the document timeline are
presented in the section Hyperlinks and timing .

Details of the time manipulations

Speed control

Speed modifies the pace of time for the element and its descendents, and so
modifies the interpretation of the normal timing attributes with respect to the normal
pace of (real-world) time. The attributes dur and repeatDur always specify a time in
unmodified local time for the element. As a result, the observed simple duration and
repeat duration for an element with a modified speed is not the same as the

19624 Feb 2000 08:26

SMIL Timing and Synchronization

specified speed. This is important to making the model be consistent when the
speed cascades in the time containment hierarchy, although it can make authoring
somewhat more complex.

Note that a speed attribute on an element does not affect the element begin time.
It may affect the element end time, if the end is defined only in terms of the simple
duration or repeat duration. An end value (defined by the end attribute) is converted
to element local time using the speed value. However, the result is that the active
duration is not affected by the speed value, since the values (syncbase values,
eventbase times, wallclocks times, etc.) are all defined in another timespace and
converted to the local timespace. See also the examples below.

To compute the effect of speed on the simple duration or on the active duration if
defined with repeat, the following function is used. This function is also used to
convert a time in the parent local timespace to a time in the child local timespace
that accounts for the speed attribute.

 T par is the time in the parent local timespace

 T el is the time in the element local timespace

 T el = (T par / speed)

When speed is applied to a time container, it scales the rate of progress through
the time container timeline. This effect cascades. When descendents also specify a
speed value, the parent speed and the child speed are multiplied to yield the result.
For example:

<par speed=2.0>
 <animation begin="2s" dur="9s" speed=0.75 .../>
</par>

The observed rate of play of the animation element is 1.5 times the normal play
speed. The element begins 1 second after the par begins (the begin offset is scaled
by the parent speed), and ends 6 seconds later (9/1.5).

The following example shows how an event based end combines with time filters:

<par speed=2.0>
 <animation begin="2s" dur="9s" speed=0.75
 repeatCount="4" end="click" .../>
</par>

This behaves as in the first example, but the animation element will repeat 4 times
for a total of 24 seconds (in real time), unless a click happens before that. Whenever
the click happens, the element ends. A variant on this demonstrates syncbase
timing:

<par speed=2.0>

 <animation begin="2s" dur="9s" speed=0.75
 repeatCount="4" end="click, foo.end" .../>
</par>

24 Feb 2000 08:26197

SMIL Timing and Synchronization

The image will display for 15 seconds. The animation element plays at an
observed rate of 1.5 times play speed, but it will end after 15 seconds, when the
image ends. The animation will have repeated 2.5 times at this point. Note that
although the animation has a speed value, this does not impact the semantic of the
syncbase timing. When the syncbase, eventbase, wallclock or media marker time is
observed to happen, it will be applied anywhere it is used at that real time (although
various timespace conversions are applied internally).

Note that in the examples above, the default duration of the <par> container is
defined as endSync="last" . This behavior is not affected by the speed
modifications, in the sense that the observed end of the elements will produce the
correct simple duration on the parent time container.

@@ Need to include notes about how begin offsets are also scaled by the parent
timescale, but not the local element scale.

The following example illustrates an important effect of offset time scaling:

<par speed=2.0>

 <animation begin="2s" dur="9s" speed=0.75
 repeatCount="4" end="foo.end+6s" .../>
</par>

The image will display for 15 seconds. The animation element plays at an
observed rate of 1.5 times play speed, and it will end after 18 seconds. The offset
added to the end of the image is scaled by the parent time container speed. The
animation will have repeated 3 times at this point.

The following example illustrates the speed modifications along with the fallback
for a video element that can only play normal forward speed.

<par speed=2.0>
 <video id="foo" dur="30s" accelerate="0.25" ...>
 <area begin="2s" dur="4s" .../>
 </video>
 <animation begin="2s" dur="9s" speed=0.75
 repeatCount="4" end="foo.end+6s" .../>
</par>

The video ignores the acceleration and the speed value, and plays at normal
speed for 15 seconds. The simple (and active) duration are still constrained by the
speed. The area element reflects what the video is playing, and so the area
becomes active after 2 seconds and remains active for 4 seconds. The animation
element behaves just as it did in the previous example, and ends after 18 seconds
and 3 repeats.

Issues with implicit duration and fallback speeds

@@ This should perhaps move to the Fallbacks section

19824 Feb 2000 08:26

SMIL Timing and Synchronization

Some media will use a fallback speed (e.g. because it cannot play at the
requested speed - see the section Fallbacks for time filters on a media element).
When this is the case, and the simple duration is defined by the implicit media
duration, the results are sometimes less clean, as the following example illustrates.
Assume that the video has an intrinsic duration of 30 seconds, and that this cannot
be determined until the video plays through to the end (as is sometimes the case).

<par speed=1.5>
 <video id="foo" repeatCount="3" accelerate="0.25" ...>
 <area begin="2s" dur="4s" .../>
 </video>
</par>

The video ignores the acceleration and the speed value, and plays at normal
speed for 30 seconds. At this point, the simple duration is resolved, and (accounting
for the parent speed) is computed to be 20 seconds. At this point the video *should*
be halfway into the second repeat iteration, moving 50% faster than normal
playspeed. The video should continue playing for another 30 seconds. The fallback
rules would define that each repeat iteration would play the first 20 seconds of the 30
second video. Given the linear behavior of the video element, the first 10 seconds
will be shown for the (remainder of the) second repeat iteration, followed by the first
20 seconds of video for the third repeat iteration. Needless to say, this may not
produce pleasing results. At the very least, authors should avoid mixing speed
modifications with media elements that use the implicit simple duration, and cannot
play at the specified speed. As stated elsewhere, the time modifications should be
used where appropriate.

@@ Note sure if this next is useful:

Note that the timing of all durations, begin and end times and events, is based
upon the computed values using the explicit speed and not the fallback speed. If the
media player is nominally playing at the explicit speed, but varies somewhat, then
the effective speed, end and durations should be used in the time model (i.e. the
behavior of the runtime in computing effective versus desired times, and managing
synchronization, should be consistent with the behavior of the media player and
timing model when the speed is 1.0, or normal play speed). Try: the rules and
mechanisms that a runtime uses to compute effective times versus desired times
should be consistently applied if the "attempted" speed is normal playspeed (1.0) or
offspeed (e.g. 2.0). If the "attempted" speed is not the desired speed, then a strict
interpretation of the desired times should be used for effective times.

@@ Proposal to help authors - is this useful?:

Define a new test attribute canPlaySpeed (?) to support alternate presentations
depending upon the capabilities of the media players. Should be evaluated at
runtime for the given media and associated player. Evaluates true if the media player
will attempt to play the specified speed. Evaluates false otherwise. If applied to a
time container, then should consider all the descendents of the time container, and
only evaluate to true if all descendents will attempt to play the desired speed. In
evaluating this, the cascaded desired speed must be used, and not the explicit

24 Feb 2000 08:26199

SMIL Timing and Synchronization

speed on each element.

Acceleration and Deceleration

@@ Borrow pictures and description of manipulation from keySplines in SMIL
Animation? Need to describe that time is actually manipulated and remapped, but
can think of it as progress.

The speed or rate of progress through the simple duration must be increased to
account for the acceleration/deceleration and preserve the simple duration. The
adjusted speed is described as the run rate. For an element with both acceleration
and deceleration, the speed over the simple duration varies from 0 up to the run rate
and then back down to 0.

To compute the run rate over the course of the simple duration, the following
formula is used. Let a be the value of accelerate, and b be the value of decelerate.
The run rate r is then:

r = 1 / (1 - a/2 - b/2)

Thus, for example, if the value of accelerate is 1 (i.e. accelerate throughout the
entire simple duration), the run rate is 2.

The speed s(t) at any point in time t (within the simple duration d) is defined as
a function of the run rate, as follows:

For: (0 <= t < (a*d)) I.e. in the acceleration interval
 s(t) = r * (t / (a * d))

For: ((a*d) <= t <= (d-(b*d))) I.e. in the run-rate interval
 s(t) = r

For: ((d-(b*d)) < t <= d) I.e. in the deceleration interval
 s(t) = r * ((t - (d-(b*d))) / (b* d))

If in place of t we use p, the proportional progress through the simple duration,
the equations simplify somewhat:

p = t / d

For: (0 <= p < a) I.e. in the acceleration interval
 s(p) = r * (p / a)

For: (a <= p <= (1- b)) I.e. in the run-rate interval
 s(p) = r

For: ((1- b) < p <= 1) I.e. in the deceleration interval
 s(p) = r * ((p - (1- b)) / b)

Examples:

In this example, a motion path will accelerate up from a standstill over the first 2
seconds, run at a faster than normal rate for 4 seconds, and then decelerate
smoothly to a stop during the last 2 seconds. This makes an animation look more
realistic. The animateMotion element is defined in the Animation section of SMIL

20024 Feb 2000 08:26

SMIL Timing and Synchronization

Boston.

 <animateMotion dur="8s" accelerate=".25" decelerate=".25" .../>

In this example, the image will "fly in" from offscreen left , and then decelerate
quickly during the last second to "ease in" to place. This assumes a layout model
that supports positioning (a similar effect could be achieved by animation the
position of a region in SMIL layout). The animate element is defined in the
Animation section of SMIL Boston.

 <animate attributeName="left" dur="4s" decelerate=".25"
 from="-1000" to="0" additive="sum" />

Play Forwards then Backwards

Examples:

A simple example is provided in the syntax description above.

In the following example the motion path will behave as above, but will end at the
earlier of 15 seconds or when the user clicks on the image. If the element ends at 15
seconds (if the user does not click), the motion path will leave the element at the end
of the defined path, 20 pixels to the right. Note that repeatDur and end are not
affected by the autoReverse attribute (although repeatCount is).

 <animateMotion by="20, 0" dur="5s" autoReverse="true"
 repeatDur="15" end="click" fill="freeze"/>

Accelerate and decelerate can be combined with autoReverse, and are applied to
the unmodified simple duration. For example:

 <animateMotion by="20, 0" dur="4s" autoReverse="true"
 accelerate=".25" decelerate=".25" />

This will produce a kind of elastic motion with the path accelerating for 1 second
from the original position as it moves to the right, moving slightly faster than normal
for 2 seconds, and then decelerating for 1 second as it nears the points 20 pixels to
the right. It accelerates back towards the original position and decelerates to the end
of the reversed motion path, at the original position.

Speed can also be combined with autoReverse, and modifies the entire effect.
This example combines all three time manipulations:

 <animateMotion by="20, 0" dur="4s" autoReverse="true"
 speed="0.5" accelerate=".25" decelerate=".25" />

24 Feb 2000 08:26201

SMIL Timing and Synchronization

This produces the same effect as in the previous example, except that everything
moves half as quickly and takes twice as long. The active duration is 16 seconds.

Timing Model

A theoretical model can be described that assumes that all element local timelines
(including any media elements) are completely non-linear and have unconstrained
ballistics. This ideal model can be applied to many applications, including pure
rendered graphics, text, etc. Nevertheless, many common applications also include
media with linear behavior and other constraints on playback. When the timegraph
includes media elements that have linear behavior, the model must adapt, and/or
provide consistent semantics that accommodate these real world constraints. This
sections below include a discussion of these fallback semantics.

Note that while the model does support timegraphs with a mix of linear and
non-linear behavior, and defines specific semantics for timegraphs that cannot
support the ideal non-linear model, it is not a goal to provide an ideal alternative
presentation for all possible timegraphs with such a mix. It is left to authors and
authoring tools to apply the time manipulations in appropriate situations. This section
describes both the ideal model as well as the semantics associated with
linear-media elements.

Ideal model

In the ideal model, the pace or speed of local time can be manipulated arbitrarily.
The graph advances (or is sampled, depending upon your perspective) as the
presentation time advances. A time container samples each of its children in turn, so
that a graph traversal is performed for each render time. Elements that are idle or
stopped (i.e. neither active nor frozen) are pruned from the traversal as an
optimization. As the traversal moves down the graph (from time containers to
children), each local timeline simply transforms the current time from the parent
time-space to the local time space, and then samples the local timeline at the
transformed current time. Note that the speed and effects of the time filters
effectively cascade down the time graph, since each element transforms local time
for itself and all descendents.

When linear media are added to this model and the "current time" (sample)
traversal encounters a media element, the media element is effectively told to
"sample" at a particular position. Given that linear media can not sample arbitrarily,
the semantic that is used is to verify the current position of the media (as observed
on the player) against the current theoretical timeline position for the timegraph.
Within certain limits (e.g. defined by a syncTolerance attribute), divergence from the
theoretical timeline position are ignored. So far, this is just a typical implementation
of a synchronization manager.

When the speed (and even direction) of the local timeline can vary from normal
forward playspeed, an additional parameter is added to the context for the "current
time" traversal to indicates the speed of the local timeline. The speed is defined as a
proportion of normal forward play speed. Thus a value of "1" is normal forward
playspeed, a value of "2" is twice normal forward speed, and a value of "-1" is

20224 Feb 2000 08:26

SMIL Timing and Synchronization

backwards, at the normal play speed. Note that a value of 0 is not allowed. The
speed is often broken down logically into the rate and the direction. The rate is just
the absolute value of the speed, and the direction is the "sign" of the speed.

Given the current computed position and speed for the timegraph, a media
element with linear behavior can handle the case of non-normal playspeed with the
use of fallback semantics. The fallback semantics depend upon how much or how
little the media player is capable of. Some may play forwards and backwards but
only at the normal rate of play, others may only handle normal forward play speed.
The fallback semantics are detailed in the next sections.

Fallbacks for time filters on a media element

@@Describe the properties that the fallback semantics are preserving so that the
rationale is clear

When any of the time filters are applied directly to a linear media element, the
element can directly examine the attributes and apply one set of fallback semantics.
These include:

If the element cannot support acceleration and deceleration, then these
attributes can be ignored. This is safe within the model, as they have no side
effects. Note that this applies to acceleration and deceleration applied directly to
the media element, but could also be applied to any time container that contains
media elements. This is a more drastic fallback than handling the speed on
each descendent of the time container, but it may be appropriate in some
scenarios.
If the media cannot play backwards (but can play at other than play speed) and
the element specifies a speed less than 0, the element can play at the specified
rate but in the forward direction. This will preserve the modified duration, and
accommodate the player. Note that this may not be a desired approach in many
cases, and so may not be a commonly used fallback.
If the media cannot play the desired rate, the element can use one of several
fallback mechanisms.

Just render a frozen frame for the requested simple duration. If the
direction is backwards, the element could put up a still of the last frame that
would be shown. This may be costly for some media types, and so the first
frame of the media would be shown. This fallback approach corresponds to
silence (i.e. not playing) for audio elements.
If the can play the computed direction but not the computed rate, it can play
the closest available rate in the given direction. This fallback may be used
in combination with the first approach, especially if the computed speed is
far out of the range that the element can play.
The element can just play at normal play speed.

In any case, the simple duration is still constrained by the computed simple
duration, as modified by the time filters. If the computed simple duration is
shorter than the intrinsic media duration at the fallback rate (usually if the speed
is > 1), the media is cut short just as for a dur value that overrides the intrinsic

24 Feb 2000 08:26203

SMIL Timing and Synchronization

media duration. If the specified simple duration is longer than the intrinsic media
duration (i.e. if the rate is < 1), the media should freeze for the difference, just as
it does for dur in SMIL 1.0. When an element must freeze, it should ideally
respect the direction of the speed, using the last frame for forward speeds and
the first frame for backwards speeds.

Note that the semantics of clipBegin and clipEnd are not affected (i.e. they are still
respected).
The clipBegin and clipEnd semantics are always interpreted in terms of normal
forward play speed. I.e. they are evaluated before any effects of time filters have
been applied to the time model. This is consistent with the model that they can be
evaluated by the media element handler, independent of the time model.

If a fallback semantic is applied to a media element and the media element has
child elements (i.e. is a media time container), the local time as passed through to
the children should reflect what the media actually performs. Thus if the accelerate
and decelerate are ignored, the local time as passed to the child elements should
not be filtered for acceleration and deceleration. This is important for cases like
anchors that are timed to associate with points in the media. If an author wishes to
apply acceleration to the children of the media (e.g. to accelerate a set of animation
children), a wrapping <par> with the time filters applied can be inserted under the
media time container. See also the next section for a general discussion of time
filters and time containers.

@@ Above semantic may be overly complex. It requires that the time runtime
know what the media players can actually do so that the proper timing parameters
can be passed down to the children. Is this restriction worth it, since playing with a
fallback will lead to a different presentation than intended anyway. The presentation
visually will act funny anyway, and the entire thing is constrained by the parent time
container, so it may not be as bad as noted.

The effect of these fallbacks is illustrated by some examples. In these examples,
the video player is assumed to be capable only of normal forward play speed.

In the following example, the acceleration and deceleration can be safely ignored
without side effect. Since they are ignored, the area child should become active 1
second after the video begins (i.e. if the video ignores the acceleration, then the
effect is not applied to the children either):

<video accelerate=0.5 decelerate=0.5 src...>
 <area begin=1s .../>
</video>

In the following example, the autoReverse attribute doubles the simple duration,
but the video will just play the 3 second simple duration twice, in the forward
direction both times. The area child should become active 1 second after the video
begins each time (i.e. if the video ignores the reverse play, then the speed change is
not applied to the children either):

20424 Feb 2000 08:26

SMIL Timing and Synchronization

<video autoReverse="true" dur=3s src...>
 <area begin=1s .../>
</video>

In the following example, the speed attribute decreases the simple duration by
33% (i.e. one third). The video will play the first two seconds at normal playspeed,
rather than three seconds at 1.5 times playspeed. The area child should become
active 1 second after the video begins each time (i.e. if the video ignores the speed
manipulation, then the speed change is not applied to the children either):

<video speed="1.5" dur=3s src...>
 <area begin=1s .../>
</video>

Fallbacks for time filters on time containers

When any of the time filters are applied to a time container element, the
implementation should generally respect the time filters and deal with the effects of
modified time for each media player. Nevertheless, in some situations it may be
desirable to apply a fallback semantic at the time container itself.

If the time container contains only media elements (or time containers and
media elements), it may make sense to ignore the acceleration and deceleration
attributes. These attributes can safely be treated as hints, and document
dominated by linear media may behave better if the acceleration and
deceleration are ignored. Note that while this fallback is defined for
implementations, it is much more likely that authors will simply avoid the use of
these attributes in the given situations.
Time containers may not ignore speed modifications, or the autoReverse
attribute. It is left to the author to avoid the use of these features in situations
that are inappropriate, or in which the results will be undesirable.

@@Need more info on how time containers run backwards. The use of
autoReverse is special, as it can generally use the end and begin times from the
forward half. Note that time dependencies work backwards, but that event-based
timing does not work correctly, and script events may not be fired. This needs more
discussion. Need a reasonable means of simplifying the implementation and still
allowing backwards play of fully scheduled timegraphs.

@@Examples!

More on the implementation

In the theoretical model, each element has a notion of local time that extends from 0
to some duration (the simple duration). To obtain the local time for an element in the
simple case with no pacing control, an arithmetic transform is performed for the
element and each ascendant time container up to the document root. This transform
allows for the begin offset of the element relative to its parent time container, and for
any repeat behavior of the element. The pseudo-code for this transform looks like:

24 Feb 2000 08:26205

SMIL Timing and Synchronization

@@Edit to make it produce both active and simple time? The only difference is in
how the final element is handled. Also need to have a control over unconstrained
versus constrained time. Sync arc calculation uses unconstrained time, but real
sampling uses end-constrained time that respects freeze.

@@ Edit to use the most recent parent begin if it is active, rather than the
constant repeatDuration

// globalToLocalTime()
//
// Recurses up to document root, and then transforms timeIn
// from parent to local time as the recursion unwinds
// Version 1: Ignores fill=freeze, assumes constant pace of time
// assumes repeat duration is constant,
// and assumes all times are resolved.
// Inputs:
// timeIn - the parent simple time
// Outputs:
// timeOut - the resulting local simple time
//
TimeInstant globalToLocalTime(TimeInstant timeIn)
{
 TimeInstant timeOut;
 Node parent = getParent();

 if(!parent.isDocumentTimeRoot())
 {
 // We have a parent time container above us.
 // First convert timeIn to simple local time for it,
 // and then adjust for this node.
 timeOut = parent.globalToLocalTime(timeIn);
 }
 else // Our parent is the top time container
 timeOut = timeIn;

 // Adjust for begin offset. Assume "begin" has simplified begin time.
 timeOut = timeOut - this.begin; // Adjust for begin offset
 if(this.repeats())
 {
 // Adjust for repeating simple duration.
 timeOut = timeOut % this.repeatDuration;
 }
 // timeOut is now converted to simple local time for this node
 return timeOut;
}

@@Next version shows how this is extended to support the time manipulations.
For autoReverse, remember the edge case for the endpoint. ?Talk about the
imprecision around the reverse point: interval math introduces an epsilon inaccuracy
at the end, where epsilon is the sample granularity (e.g. milliseconds in our
implementation).

@@How to show the update dependencies of repeatDur, segmentDur? Could just
show a method to recompute, that is called on changes. Ignore all optimization
issues.

20624 Feb 2000 08:26

SMIL Timing and Synchronization

Converting between local and global times

@@@ Need to discuss how to convert a time specified as a syncbase-value (and by
extension a wallclock-value or an event in document or system time) to a time on
the parent time container local timeline. Especially given the wallclock stuff, we
need to consider the name "local time".

Define the notion of document global time, and note that it is the normalized
timeline used to convert between different timespaces. Operations defined are
GlobalToLocal, and LocalToGlobal. To convert from one timespace to another,
simply convert the first time from local to global, and then from global to local for the
second tiespace.

Basic mechanism for global to local conversion is iterate downward from the
document body to the element converting the global time to a time on each time
container encountered along the way. This is often implemented as a recursive
algorithm, where the recursion moves from the local element up to the document
body, and the work is done as the recursion "unwinds". For each time container,
subtract the begin offset of the time container and then, use the remainder after
dividing by the simple duration (which may vary over time - yuck!) or subtract the
offset of the current repeat iteration from the begin time (better when working on
begin resolution on a reset). Then, apply any filters for time manipulations (speed,
acclerate/decelerate, autoReverse).

Basic mechanism for localToGlobal reverses the above algorithm. If the element is
active, then the effective begin time of the current iteration of all (repeating) ancestor
time containers is used when adding the begin offset. If the element is not active,
then for each ancestor time container that is not active, the earliest begin time is
used.

Note that the pure conversions do not take into account the clamping of active
durations, nor the effects of fill (where time is frozen). Global to local time
conversions used to translate between timespaces must ignore these issues, and so
may yield a time in the destination local timespace that is well before or well after the
simple duration of the element.

An alternate form of the conversion is used when actually sampling the time
graph. A time container is only sampled if it is active or frozen, and so no times will
be produced that are before a time container begins. If the global to local time
conversion for a time container yields a time during which the time container is
frozen, the time is clamped to the value of the active end.

Evaluation of begin and end time lists

In evaluating the list of begin values, one of two questions is asked:

what is the earliest begin time in the list?
what is the next begin time after a particular time?

24 Feb 2000 08:26207

SMIL Timing and Synchronization

The earliest time is used for example when an element is the target of a hyperlink
activation (see also Hyperlinks and timing). The next begin time may be used by a
scheduler when an element can begin more than once.

By the same token, a list of end values is evaluated for two cases:

what is the earliest end time in the list?
what is the next end time after a particular time?

The earliest time is used for example to calculate the simple duration of a time
container defined with endSync . The next end time may be used by a scheduler
when an element can begin more than once.

Begin and end time lists are considered in tandem. Begin times can be
constrained by an end specification, as well as by the parent time container. Note
that if an end time is not resolved, or is specified as "indefinite", then it is considered
to be "after" al begin times. The constraint rules are:

If a given begin time occurs after the end of the parent simple duration, the
begin time is ignored and will not cause the element to begin. An unresolved or
indefinite parent simple duration does not constrain any begin time.
If at least one end time was specified, but there is no end time that occurs after
a given begin time, the begin time is ignored and will not cause the element to
begin. Another way to look at this is that if all values in the end list are resolved
and occur before a begin time, then the element does not begin.

Thus, for a given point when an element is not active, the next begin and end time
are derived from the begin and end lists as follows:

1. Find the earliest resolved begin time after the current time
a) Discard any unresolved times
b) Discard any times that occur before the current time
c) Discard any times that occur after the end of the parent simple duration
d) Take the earliest time of the remaining times (if there are none, this step

fails)
2. If Step 1 fails, and if there are unresolved times, then the begin time is

considered to be unresolved, and behaves as though "indefinite" had been
specified. If Step 1 fails and there are no unresolved times, then this step fails.

If both Steps 1 and 2 fail, then the begin list only specifies resolved times in the
past, or after the end of the parent time container. In this case, there is no (valid)
begin time after the current time (although for the purposes of a hyperlink that
targets the element, even an "invalid" time may be used with additional constraints -
see Hyperlinks and timing).

If a begin time is found, then it must be checked against the list of end times. If no
end attribute is specified, the end is "indefinite", and any begin found above is valid.
If any end values are specified, the list is evaluated as follows:

20824 Feb 2000 08:26

SMIL Timing and Synchronization

1. Find the earliest resolved end time after the candidate begin time
a) Discard any unresolved times
b) Discard any times that occur before the begin time
c) Take the earliest time of the remaining times (if there are none, this step

fails)
2. If Step 1 fails, and if there are unresolved times, then the end time is considered

to be unresolved, and behaves as though "indefinite" had been specified. If Step
1 fails and there are no unresolved times, then all end times are resolved and
occur before the candidate begin time. In this case the candidate begin time is
rejected, and the element does not begin.

If a valid begin and end value are found, the end value found with the rules above
is the value used in Computing the Active Duration .

When it is specified that the element does not begin, begin and end events will not
be raised in the DOM, and time dependents defined relative to the begin or end of
this element will not be activated.

In contrast to the rules above, if a beginElement() or a beginElementAt()
call specifies a begin time after the last end time (with no unresolved end times), the
active duration is indefinite, as though end had been defined as "indefinite". Note
that if beginElement() or beginElementAt() is called when the parent time
container is not active, the method call will have no effect. If beginElementAt() is
called and specifies a time after the end of the parent simple duration, the method
call will have no effect. See also Supported methods .

Hyperlinks and timing

Hyperlinking semantics must be specifically defined within the time model in order to
ensure predictable behavior. Earlier hyperlinking semantics, such as those defined
by SMIL 1.0 are insufficient because they do not handle indeterminate and
interactive timing, nor do they handle author-time restart restrictions. Here we extend
SMIL 1.0 semantics for use in presentations using elements with indeterminate
timing, interactive timing, and author-time restart restrictions.

A hyperlink may be targeted at an element by specifying the value of the id
attribute of an element in the fragment part of the link locator. Traversing a hyperlink
that refers to a timed element will behave according to the following rules:

1. If the target element is active, seek the document time back to the (current)
begin time of the element. If there are multiple begin times, use the begin time
that corresponds to the current "begin instance".

2. Else if the target element begin time is resolved (i.e. there is any resolved time
in the list of begin times, or if the begin time was forced by an earlier hyperlink
or a beginElement() method call), seek the document time (forward or back,
as needed) to the earliest resolved begin time of the target element. Note that
the begin time may be resolved as a result of an earlier hyperlink, DOM or event
activation. Once the begin time is resolved (and until the element is reset, e.g.
when the parent repeats), hyperlink traversal always seeks. For a discussion of

24 Feb 2000 08:26209

SMIL Timing and Synchronization

"reset", see Resetting element state . Note also that for an element begin to be
resolved, the begin time of all ancestor elements must also be resolved.

3. Else (i.e. element begin time is unresolved), the target element begin time must
be resolved. This may require seeking and/or resolving ancestor elements as
well. This is done by recursing from the target element up to the closest
ancestor element that has a resolved begin time (again noting that for an
element to have a resolved begin time, all of its ancestors must have resolved
begin times). Then, the recursion is "unwound", and for each ancestor in turn
(beneath the resolved ancestor) as well as the target element, the following
steps are performed:

1. If the element is active, seek the document time back to the (current) begin
time of the element. If there are multiple begin times, use the begin time
that corresponds to the current "begin instance".

2. Else if the begin time is resolved, seek the document time (forward or back,
as needed) to the earliest resolved begin time of the target element.

3. Else (if the begin time is not resolved), just resolve the element begin time
at the current time on its parent time container (given the current document
position). Disregard the sync-base or event base of the element, and do not
"back-propagate" any timing logic to resolve the element, but rather treat it
as though it were defined with begin="indefinite" and just resolve begin time
to the current parent time.

In the above rules, the following additional constraints must also be respected:

1. If a begin time to be used as the seek target occurs before the beginning of the
parent time container, the seek-to time is clamped to the begin time of the
parent time container. This constraint is applied recursively for all ascendant
time containers.

2. If a begin time to be used as the seek target occurs after the end of the parent
simple duration, then the seek-to time is clamped to the end time of the parent
time container simple duration. This constraint is applied recursively for all
ascendant time containers.

Note that the first constraint means that a hyperlink to a child of a time container
will never seek to a time earlier than the beginning of the time container. The
second constraint implies that a hyperlink to a child that begins after the end of the
parent simple duration will seek to the end of the parent, and proceed from there.
While this may produce surprising results, it is the most reasonable fallback
semantic for what is essentially an error in the presentation.

If a seek of the presentation time is required, it may be necessary to seek either
forward or backward, depending upon the resolved begin time of the element and
the presentation current time at the moment of hyperlink traversal.

After seeking a document forward, the document should be in the same state as if
the user had allowed the presentation to run normally from the current time until
reaching the element begin time (but had otherwise not interacted with the
document). In particular, seeking the presentation time forward should also begin

21024 Feb 2000 08:26

SMIL Timing and Synchronization

any other elements that have resolved begin times between the current time and the
seeked-to time. The elements that are begun in this manner may still be active, may
be frozen, or may already have ended at the seeked-to time. If an element has
ended, it logically begins and ends during the seek. The associated DOM events are
raised, and all time dependents are updated. Also any elements currently active at
the time of hyperlinking should "fast-forward" over the seek interval. These elements
may also be active, frozen or already ended at the seeked-to time. The net effect is
that seeking forward to a presentation time puts the document into a state identical
to that as if the document presentation time advanced undisturbed to reach the seek
time.

If the resolved activation time for an element that is the target of a hyperlink
traversal occurs in the past, the presentation time must seek backwards. Seeking
backwards will rewind any elements active during the seek interval and will turn off
any elements that are resolved to begin at a time after the seeked-to time. Note that
resolved begin times (e.g. a begin associated with an event) are not cleared or lost
by seeking to an earlier time. Note further that seeking to a time before a resolved
begin time does not affect the interpretation of a "restart=never" setting for an
element; once the begin time is resolved, it cannot be changed or restarted. Subject
to the rules above for hyperlinks that target timed elements, hyperlinking to elements
with resolved begin times will function normally, advancing the presentation time
forward to the previously resolved time. When the document seeks backwards
before a resolved begin for an element time, this does not reset the element

These hyperlinking semantics assume that a record is kept of the resolved begin
time for all elements, and this record is available to be used for determining the
correct presentation time to seek to. Once resolved, begin times are not cleared by
hyperlinking. However, they can be overwritten by subsequent resolutions driven by
multiple occurrences of an event (i.e. by restarting). For example:

<par begin="0">

 ...
 Click here!
</par>

The begin time of elements "A" and "B" can be immediately resolved to be at 10
and 15 seconds respectively. The begin of elements "C" and "D" are unresolved
when the document starts. Therefore activating the hyperlink will have no effect upon
the presentation time or upon elements "C" and "D". Now, assume that "C" is clicked
at 25 seconds into the presentation. The click on "C" in turn resolves "D" to begin at
30 seconds. From this point on, traversing the hyperlink will cause the presentation
time to be seeked to 30 seconds.

If at 60 seconds into the presentation, the user again clicks on "C", "D" will
become re-resolved to a presentation time of 65 seconds. Subsequent activation of
the hyperlink will result in the seeking the presentation to 65 seconds.

24 Feb 2000 08:26211

SMIL Timing and Synchronization

If the time container were defined to repeat, or could restart, then all indeterminate
times for children of the time container are cleared(reset to "indefinite") when the
parent time container repeats or restarts. See also Resetting element state .

Implications of beginElement() and hyperlinking for seq and excl time
containers

For a child of a sequence time container, if a hyperlink targeted to the child is
traversed, this seeks the sequence to the beginning of the child. If the seek is
forward in time and the child does not have a resolved begin time, the document
time must seek past any scheduled active end on preceding elements, and then
activate the referenced child. In such a seek, if the currently active element does not
have a resolved active end, it should be ended at the current time. If there are other
intervening siblings (between the currently playing element and the targeted
element), the document time must seek past all scheduled times, and resolve any
unresolved times as seek proceeds (time will resolve to intermediate values of "now"
as this process proceeds). As times are resolved, all associated time dependents get
notified as the intervening elements are activated and deactivated.

When beginElement() or beginElementAt() is called for the child of a
sequence time container (subject to restart semantics), any currently active or frozen
child is stopped and the new child is begun at the current time (even if the element
has a scheduled begin time). Unlike hyperlinking, no seek is performed. The
sequence will play normally following the child that is begun with the method call (i.e.
as though the child had begun at its normal time).

@@The above semantic keeps things simple, although it may point up a need for
a seekToElement() method in the DOM interface that mimics the hyperlink
functionality.

Note that if a hyperlink targets (or if beginElement() or beginElementAt() is
called for) an element A defined to begin when another element B ends, and the
other element B has (e.g.) an event-base or syncbase end, the hyperlink or method
call will not end element B. It will only active element A. If the two elements are
siblings within a <seq> or <excl> time container, the parent time container
enforces its semantics and stops (or pauses) the running element.

@@ What if the target element is in an excl and is in a priorityclass that is defined
to be deferred if it tries to interrupt the current (higher priority) element? Do we
overrule the priorityClass rules, and just stop or pause the running element?

Note that the presentation agent need not actually prepare any media for elements
that are seeked over, but it does need to propagate the sync behavior to all time
dependents so that the effect of the seek is correct.

21224 Feb 2000 08:26

SMIL Timing and Synchronization

Propagating changes to times

There are several cases in which times may change as the document is presented.
In particular, when an element time is defined relative to an event, the time (i.e. the
element begin or active end) is resolved when the event occurs. Another case arises
with restart behavior - both the begin and active end time of an element can change
when it restarts. Since the begin and active end times of one element can be defined
relative to the begin or active end of other elements, any changes to times must be
propagated throughout the document.

When an element "foo" has a begin or active end time that specifies a syncbase
element (e.g. "bar" as below):

we say that "foo" is a time-dependent of "bar" - that is, the "foo" begin time
depends upon the active end of "bar". Any changes to the active end time of "bar"
must be propagated to the begin of "foo". The effect of the changes depends upon
the state of "foo" when the change happens. The rest of the section describes the
specific rules for propagating changes.

Note that it is possible for the syncbase element "bar" to end again, if it is
restarted. When "bar" restarts, the a new end time is calculated and all time
dependents are notified of the change. For example:

Element "foo" will end when "bar" ends, however "bar" can restart on another click.
When "bar" restarts, a new end is calculated, and "foo" is notified. However, as "foo"
will not restart, the change is ignored. A variant on this illustrates a case when the
time change does propagate through:

Element "foo" will end 10 seconds after "bar" ends. If "bar" is restarted within 10
seconds of when it first ended, "foo" will still be active, and the changed end time will
propagate through. Using example times, if the user clicks on the "btn" element 8
seconds after the parent time container begins, "bar" begins at 8 seconds and will
end at 13 seconds. Element "foo" would then end at 23 seconds. If the users clicks
"btn" again 3 seconds after "bar" ends, (i.e. at 16 seconds), the end of "bar" now has
the value of 21 seconds. This change propagates to "foo", and "pushes out" the end
of "foo" until 31 seconds.

The rule is that once an element has ended its active duration, changes that affect
its end time are ignored (within the current simple duration of the parent time
container).

When an element restarts (or when an ascendant time container repeats or
restarts), all child times are recalculated, and may again become indefinite. For
example:

24 Feb 2000 08:26213

SMIL Timing and Synchronization

Both elements will start when the "btn" element is first clicked. Element "foo" will
end when "mouseout" is raised on the img. At this point, the active duration of "bar"
will become defined (resolved), and "bar" will end the active duration. If the user
clicks on the target element again, both elements will restart, and "bar" will once
again have an indefinite active duration.

@@Add additional example with explanation. Note that if user clicks at 4s, image1
is never seen. The resolution of image end happens and sticks when image1 begin
is evaluated.

<par>

</par>

Handling negative offsets

The use of negative offsets to define begin times merely defines the synchronization
relationship of the element. If does not in any way override the time container
constraints upon the element, and it cannot override the constraints of presentation
time.

If an element has a begin time that resolves to a time before the parent time
container begins, the parent time container constraint still applies. For example:

<par>
 <video begin="-5s" dur="30s" src="movie.mpg" />
</par>

The video element cannot begin before the par begins. The begin is simply
defined to occur "in the past" when the par begins.

A begin or end time may be specified with a negative offset relative to an event or
to a syncbase that is not initially resolved. When the syncbase or eventbase time is
(eventually) resolved, the dependent time that is computed with a negative offset
may occur in the past. The computed time defines the scheduled synchronization
relationship of the element, even if it is not possible to begin or end the element at
the computed time.

When a begin time is defined to be in the past, the element begins immediately,
but acts as though it had begun at the specified time (playing from an offset into the
media). The behavior can be thought of as a clipBegin value applied to the
element, that only applies to the first iteration of repeating elements. The media will
actually begin at the time computed according to the following equation:

Let o be the offset value, d is the simple duration, AD is the active duration.
If AD is indefinite, it compares greater than any value of o or ABS(o) .
REM(x, y) is defined as x - floor(x/y) .
If y is indefinite, REM(x, y) is just x.

21424 Feb 2000 08:26

SMIL Timing and Synchronization

If ABS(o) >= AD the element does not begin.

Else the element media begins at REM(ABS(o), d) .

If the element repeats, the iteration value of the repeat event has the calculated
value based upon the computed begin, and not the observed number of repeats.
Thus for example:

<ref begin="foo.click-8s" dur="3s" repeatCount="10" .../>

The element begins when the user clicks on the element "foo". It begins to play at
2 seconds into the 3 second simple duration. Any time dependents are activated
relative to the computed begin time, and not the observed begin time. The begin
event is raised when the element begins, but has a timeStamp value that
corresponds to the defined begin time, 8 seconds earlier. One second later, the
element will repeat, and the associated repeat event will have the iteration value
set to 3 (it is zero based). The element will end 22 seconds after the click.

Note: If script authors wish to distinguish between the computed repeat iterations
and observed repeat iterations, they can count actual repeat events in the
associated event handler.

Behavior of 0 duration elements

Media elements with an active duration of zero or with the same begin and end time
trigger begin and end events, and propagate to time dependents. If an element’s end
time is before its begin time, no events are triggered (see alsoEvaluation of begin
and end time lists).

Whether or not media is retrieved and/or rendered is implementation dependent.

Resetting element state

When a time container repeats or restarts, all descendent children are "reset" with
respect to certain state:

1. Any event-base times that were resolved are reset to unresolved (equivalent to
"indefinite").

2. Any syncbase times are reevaluated (i.e. the translation between timespaces
must be recalculated - see Converting between local and global times).

3. Any state associated with the interpretation of the restart semantics is reset.
Thus, for example if an element specifies restart="never" , the element can
begin again after a reset. The restart="never" setting is only defined for the
extent of the parent time container simple duration.

When an element restarts, the rules 1 and 2 are also applied to the element itself,
although the rule 3 (controlling restart behavior) is not applied.

Note that when any time container ends its simple duration (including when it
repeats), all timed children that are still active are ended. See also Time container
constraints on child durations .

24 Feb 2000 08:26215

SMIL Timing and Synchronization

When an <excl> time container restarts or repeats, in addition to ending any
active or paused children, the pause queue for the <excl> is cleared.

10.3.6 Controlling runtime synchronization behavior
Proposed new support in SMIL Boston introduces finer grained control over the
runtime synchronization behavior of a document. The syncBehavior attribute allows
an author to describe for each element whether it must remain in a hard sync
relationship to the parent time container, or whether it can be allowed slip with
respect to the time container. Thus, if network congestion delays or interrupts the
delivery of media for an element, the syncBehavior attribute controls whether the
media element can slip while the rest of the document continues to play, or whether
the time container must also wait until the media delivery catches up.

The syncBehavior attribute can also be applied to time containers. This controls
the sync relationship of the entire timeline defined by the time container. In this
example, the audio and video elements are defined with hard or "locked" sync to
maintain lip sync, but the "speech" <par> time container is allowed to slip:

<par>
 <animation src="..." />
 ...
 <par id="speech" syncBehavior="canSlip" >
 <video src="speech.mpg" syncBehavior="locked" />
 <audio src="speech.au" syncBehavior="locked" />
 </par>
 ...
</par>

If either the video or audio must pause due to delivery problems, the entire
"speech" par will pause, to keep the entire timeline in sync. However, the rest of the
document, including the animation element will continue to play normally. Using the
syncBehavior attribute on elements and time containers, the author can effectively
describe the "scope" of runtime sync behavior, defining some portions of the
document to play in hard sync without requiring that the entire document use hard
synchronization.

This functionality also applies when an element first begins, and the media must
begin to play. If the media is not yet ready (e.g. if an image file has not yet
downloaded), the syncBehavior attribute controls whether the time container must
wait until the element media is ready, or whether the element begin can slip until the
media is downloaded.

The syncBehavior can affect the effective begin and effective end of an element,
but the use of the syncBehavior attribute does not introduce any other semantics
with respect to duration.

When the syncBehavior attribute is combined with interactive begin timing for an
element, the syncBehavior only applies once the sync relationship of the element is
resolved (e.g. when the specified event is raised). If at that point the media is not
ready and syncBehavior is specified as "locked", then the parent time container must

21624 Feb 2000 08:26

SMIL Timing and Synchronization

wait until the media is ready. Once an element with an interactive begin time has
begun playing, the syncBehavior semantics described above apply as thought the
element were defined with scheduled timing.

The syncBehavior attribute is subordinate to any sync relationships defined by
time containers, sync arcs, event arcs, etc. The syncBehavior attribute has no
bearing on the formation of the time graph, only the enforcement of it.

@@ Need to address how syncBehavior will interact with restart semantics. In
particular, do we re-establish the sync relationship when it restarts (this is my first
guess, assuming that restart is allowed). syncBehavior is not supposed to define all
the behavior of the element, but rather just the behavior when there is some problem
with sync, or when the user pauses or seeks an element. E.g. we do not require that
children of seq elements be locked, but we do require that the seq semantics be
maintained. If restart is allowed, then that should be orthogonal to the syncBehavior.
Note that all other aspects of timing (e.g. repeat, parent constraints and event-based
timing override the syncBehavior, so I think we have a precedent.

Note that the semantics of syncBehavior do not describe or require a particular
approach to maintaining sync; the approach will be implementation dependent.
Possible means of resolving a sync conflict may include:

Pausing the parent time container (i.e. first ancestor time container with canSlip
behavior) until the element that slipped can "catch up".
Pausing the element that is playing too fast until the parent (document) time
container catches up.
Seeking (i.e. resetting the current position of) the element that slipped, jumping
it ahead so that it "catches up" with the parent time container. This would only
apply to non-linear media types.

Additional control is provided over the hard sync model using the syncTolerance
attribute. This specifies the amount of slip that can be ignored for an element. Small
variance in media playback (e.g. due to hardware inaccuracies) can often be
ignored, and allow the overall performance to appear smoother.

@@ We need to move the general definition of the SMIL Default stuff elsewhere,
and just specify the possible arg values here. Ideas where it should go?

The value of the syncBehavior and syncTolerance attributes are not inherited, but
it is possible to set default behavior for elements or time containers using the
SMILdefault syntax below.

The default value for syncTolerance is implementation dependent, but should be
no greater than two seconds.

Sync behavior attributes

syncBehavior
Defines the runtime synchronization behavior for an element.
Legal values are:

24 Feb 2000 08:26217

SMIL Timing and Synchronization

canSlip
Allows the associated node to slip with respect to the parent time container.
When this value is used, any syncTolerance attribute is ignored.

locked
Forces the associated node to maintain sync with respect to the parent time
container. This can be eased with the use of the syncTolerance attribute.

syncTolerance
This attribute on timed elements and time containers defines the
synchronization tolerance for the associated element. It has an effect only if the
element has syncBehavior="locked" . This allows a locked sync
relationship to ignore a given amount of slew without forcing resynchronization.
resolution.
Legal values are Clock-values .

SMILdefault
Defines the default value for the runtime synchronization behavior for an
element and all descendents, or the default synchronization tolerance for the
associated element.
Legal values are:
syncBehavior:canSlip

Allows the associated node to slip with respect to the parent time container.
When this value is used, any syncTolerance attribute is ignored.

syncBehavior:locked
Forces the associated node to maintain sync with respect to the parent time
container. This can be eased with the use of the syncTolerance attribute.

syncTolerance: Clock-value
Defines the default value for the synchronization tolerance for an element,
and all descendents.

Sync master support

An additional proposed extension allows the author to specify that a particular
element should define or control the synchronization for a time container. This is
similar to the default behavior of many players that "slave" video and other elements
to audio, to accommodate the audio hardware inaccuracies and the sensitivity of
listeners to interruptions in the audio playback. The syncMaster attribute allows an
author to explicitly define that an element defines the playback "clock" for the time
container, and all other elements should be held in sync relative to the syncMaster
element.

In practice, linear media often need to be the syncMaster, where non-linear media
can more easily be adjusted to maintain hard sync. However, a player cannot
always determine which media behaves in a linear fashion and which media
behaves in a non-linear fashion. In addition, when there are multiple linear elements
active at a given point in time, the player cannot always make the "right" decision to
resolve sync conflicts. The syncMaster attribute allows the author to specify the
element that has linear media, or that is "most important" and should not be
compromised by the syncBehavior of other elements.

21824 Feb 2000 08:26

SMIL Timing and Synchronization

The syncMaster attribute interacts with the syncBehavior attribute. An element
with syncMaster set to true will define sync for the "scope" of the time container’s
synchronization behavior. That is, if the syncMaster element’s parent time container
has syncBehavior="locked", the syncMaster will also define sync for the ancestor
time container. The syncMaster will define sync for everything within the closest
ancestor time container that is defined with syncBehavior="canSlip".

The syncMaster attribute only applies when an element is active. If more than one
element within the syncBehavior scope has the syncMaster attribute set to true, and
the elements are both active at any moment in time, the behavior will be
implementation dependent.

syncMaster
Boolean attribute on media elements and time containers that forces the time
container playback to sync to this element.

The default value is false.
The associated property is read-only, and cannot be set by script.

10.3.7 Common syntax DTD definitions
@@ Need to decide whether endSync belongs on media elements (with timed
children) or not.

Timing attributes

<!ENTITY % timingAttrs
 begin CDATA #IMPLIED
 dur CDATA #IMPLIED
 end CDATA #IMPLIED
 restart (always | never |
 whenNotActive) "always"
 repeatCount CDATA #IMPLIED
 repeatDur CDATA #IMPLIED
 fill (remove | freeze | hold) "remove"
>

Runtime sync behavior attributes

<!ENTITY % runtimeSyncBvrAttrs
 syncBehavior (locked | canSlip) #IMPLIED
 defaultSyncBehavior (locked | canSlip) "canSlip"
 syncTolerance CDATA #IMPLIED
 defaultSyncTolerance CDATA #IMPLIED
 syncMaster (true | false) "false"
>

Time container elements

24 Feb 2000 08:26219

SMIL Timing and Synchronization

<!ELEMENT par ???>
<!ATTLIST par
 % timingAttrs
 % runtimeSyncBvrAttrs
 id ID #IMPLIED
 endSync CDATA #IMPLIED
>

<!ELEMENT seq ???>
<!ATTLIST seq
 % timingAttrs
 % runtimeSyncBvrAttrs
 id ID #IMPLIED
>

<!ELEMENT excl ???>
<!ATTLIST excl
 % timingAttrs
 % runtimeSyncBvrAttrs
 id ID #IMPLIED
 endSync CDATA #IMPLIED
>

10.4 Integrating SMIL Timing and Synchronization into
a host language
@@When this settles down, fill in subsections in TOC

This section describes what a language designer must actually do to specify the
integration of SMIL Timing and Synchronization support into a host language. This
includes basic definitions, constraints upon specification, and allowed/supported
events.

10.4.1 Required host language definitions
The host language designer must define some basic concepts in the context of the
particular host language. These provide the basis for timing and presentation
semantics.

The host language designer must define what "presenting a document" means. A
typical example is that the document is displayed on a screen.

The host language designer must define the document begin. Possible definitions
are that the document begins when the complete document has been received by a
client over a network, or that the document begins when certain document parts
have been received.

The host language designer must define the document end. This is typically when
the associated application exits or switches context to another document.

22024 Feb 2000 08:26

SMIL Timing and Synchronization

@@ Check to see if we really have issues with this, e.g. for specifying floating
point values. Can we use this in our definitions of offset value?

The host language must specify the formats supported for numeric attribute
values. This includes integer values and especially floating point values for attributes
such as keyTimes and keySplines . As a reasonable minimum, host language
designers are encouraged to support the format described in [CSS2]. The specific
reference within the CSS specification for these data types is 4.3.1 Integers and real
numbers.

10.4.2 Required definitions and constraints on element timing
@@ Need to talk about specifying which elements can be timed, and what it means
to time them.

The set of elements that may have timing includes ??? elements defined in host
languages.

Supported events for event-base timing

The host language must specify which event names are legal in event base values.
If the host language defines no allowed event names, event-based timing is
effectively precluded for the host language.

Host languages may specify that dynamically created events (as per the
[DOM2Events] specification) are legal as event names, and not explicitly list the
allowed names.

10.4.3 Error handling semantics
The host language designer may impose stricter constraints upon the error handling
semantics. That is, in the case of syntax errors, the host language may specify
additional or stricter mechanisms to be used to indicate an error. An example would
be to stop all processing of the document, or to halt all animation.

@@Broken link to Handling errors - Do we need a section on this?

Host language designers may not relax the error handling specifications, or the
error handling response (as described in "Handling syntax errors"). For example,
host language designers may not define error recovery semantics for missing or
erroneous values in the begin or end attribute values.

10.4.4 SMIL Timing and Synchronization namespace
Language designers can choose to integrate SMIL Timing and Synchronization as
an independent namespace, or can integrate SMIL Timing and Synchronization
names into a new namespace defined as part of the host language. Language
designers that wish to put the SMIL Timing and Synchronization functionality in an
isolated namespace should use the following namespace:

24 Feb 2000 08:26221

SMIL Timing and Synchronization

http://www.w3.org/TR/REC-CSS2/syndata.html#q13
http://www.w3.org/TR/REC-CSS2/syndata.html#q13

@@ URI to be confirmed by W3C webmaster

http://www.w3.org/2000/TR/smil20

10.5 Document object model support
Any XML-based language that integrates SMIL Timing will inherit the basic
interfaces defined in DOM [DOM2] (although not all languages may require a DOM
implementation). SMIL Timing specifies the interaction of timing functionality and
DOM. SMIL Timing also defines constraints upon the basic DOM interfaces, and
specific DOM interfaces to support SMIL Timing.

Much of the related SMIL-DOM functionality is proposed in the [SMIL-DOM]
section. We may need to go into further detail on the specific semantics of the
interfaces - the sections below are placeholders.

10.5.1 Element and attribute manipulation, mutation and
constraints
Define rules on element and attribute access (inherit from and point to Core DOM
docs for this). Define mutation constraints. This is currently covered in the
[SMIL-DOM] section.

10.5.2 Event model
SMIL event-timing assumes that the host language supports events, and that the
events can be bound in a declarative manner. DOM Level 2 Events [DOM2Events]
describes functionality to support this.

The specific events supported are defined by the host language. If no events are
defined by a host language, event-timing is effectively omitted.

The [SMIL-DOM] section defines the initial set of time-related events that have
been proposed.

10.5.3 Supported methods
SMIL Timing supports two methods for controlling the timing of elements:
beginElement() and endElement() . These methods are used to begin and end
the active duration of an element. Authors can (but are not required to) declare the
timing to respond to the DOM using the following syntax:

The beginElement() , beginElementAt() and endElement() methods are
all subject to time container constraints in much the same way that event-based
times are. If any of these methods are called when the parent time container is not
active, the methods have no effect.

22224 Feb 2000 08:26

SMIL Timing and Synchronization

Calling beginElement() causes the element to begin in the same way that an
element with event-based begin timing begins. The effective begin time is the current
presentation time at the time of the DOM method call. Note that beginElement()
is subject to the restart attribute in the same manner that event-based begin
timing is. If an element is specified to disallow restarting at a given point,
beginElement() methods calls must fail. Refer also to the section Restarting
elements .

Calling beginElementAt() causes the element to begin in the same way that
an element begins with event-based begin timing that includes an offset.

If the offset passed to beginElementAt() is positive, then the element will be
restarted (subject to the restart attribute semantics) at the specified offset
into the future from the current time. If the specified time is past the end of the
parent time container simple duration, the element may be stopped by the
restart semantics and yet not restart (due the the time container constraints).
If the offset passed to beginElementAt() is negative, then the element is
restarted in the same manner (and subject to the same constraints) as for the
beginElement() method. However, the element is begun as though it had
begun at the earlier offset. For details see Handling negative offsets .

Calling endElement() causes an element to end the active duration, just as end
does. Depending upon the value of the fill attribute, the element effect may no
longer be applied, or it may be frozen at the current effect. Refer also to the section
Freezing elements . If an element is not currently active (i.e. if it has not yet begun or
if it is frozen), the endElement() method will fail.

Interfaces are currently defined in the [SMIL-DOM] section.

10.6 Glossary

10.6.1 General concepts
The following concepts are the basic terms used to describe the timing model.

Time graph

A time graph is used to represent the temporal relations of elements in a document
with SMIL timing. Nodes of the time graph represent elements in the document.
Parent nodes can "contain" children, and children have a single parent. Siblings are
elements that have a common parent. The links or "arcs" of the time graph
represent synchronization relationships between the nodes of the graph.

Note that this definition is preliminary.

24 Feb 2000 08:26223

SMIL Timing and Synchronization

Descriptive terms for times

The time model description uses a set of adjectives to describe particular concepts
of timing:

implicit
This describes a time that is defined intrinsically by the element media (e.g.
based upon the length of a movie), or by the time model semantics.

explicit
This describes a time that has been specified by the author, using the SMIL
syntax.

desired
This is a time that the author intended - it is generally the explicit time if there is
one, or the implicit time if there is no explicit time.

effective
This is a time that is actually observed at document playback. It reflects both the
constraints of the timing model as well as real-world issues such as media
delivery.

Scheduled timing

An element is considered to have scheduled timing if the element’s start time is
given relative to the begin or active end of another element. A scheduled element
can be inserted directly into the time graph.

Events and interactive timing

Begin and active end times in SMIL Boston can be specified to be relative to events
that are raised in the document playback environment. This supports declarative,
interactive timing. Interactive in this sense includes user events such as mouse
clicks, events raised by media players like a mediaComplete event, and events
raised by the presentation engine itself such as a pause event.

More information on the supported events and the underlying mechanism is
described in the DOM section of this draft [SMIL-DOM].

Syncbases

In scheduled timing, elements are timed relative to other elements. The syncbase for
an element A is the other element B to which element A is relative. More precisely, it
is the begin or active end of the other element. The syncbase is not simply a
scheduled point in time, but rather a point in the time graph.

Note that this definition is preliminary. The name may also change.

22424 Feb 2000 08:26

SMIL Timing and Synchronization

Sync arcs

"Sync-arc" is an abbreviation for "synchronization arc". Sync-arcs are used to relate
nodes in the time graph, and define the timing relationship between the nodes. A
sync-arc relates an element to its syncbase. The sync-arc may be defined implicitly
by context, explicitly by id-ref or event name, or logically with special syntax.

Note that this definition is preliminary.

Clocks

A Clock is a particular timeline reference that can be used for synchronization. A
common example that uses real-world local time is referred to as wall-clock timing
(e.g. specifying 10:30 local time). Other clocks may also be supported by a given
presentation environment.

Hyperlinking and timing

A hyperlink into or within a timed document may cause a seek of the current
presentation time or may activate an element (if it is not in violation of any timing
model rules).

Activation

During playback, an element may be activated automatically by the progression of
time, via a hyperlink, or in response to an event. When an element is activated,
playback of the element begins.

Discrete and continuous Media

SMIL includes support for declaring media, using element syntax defined in "The
SMIL Media Object Module" . The media that is described by these elements is
described as either discrete or continuous:

discrete
The media does not have intrinsic timing, or intrinsic duration. These media are
sometimes described as "rendered" or "synthetic" media. This includes images,
text and some vector media.

continuous
The media is naturally time-based, and generally supports intrinsic timing and
an intrinsic notion of duration (although the duration may be indefinite). These
media are sometimes described as "time-based" or "played" media. This
includes most audio, movies, and time-based animations.

10.6.2 Timing concepts

24 Feb 2000 08:26225

SMIL Timing and Synchronization

Time containers

Time containers group elements together in time. They define common, simple
synchronization relationships among the grouped child elements. In addition, time
containers constrain the time that children may be active. Several containers are
defined, each with specific semantics and constraints on its children.

Content/Media elements

SMIL timing and synchronization support ultimately controls a set of content or
media elements. The content includes things like video and audio, images and
vector graphics, as well as text or HTML content. SMIL documents use the SMIL
media elements to reference this content. XML and HTML documents that integrate
SMIL Boston functionality may use SMIL media elements and/or content described
by the integrated language (e.g. paragraphs in HTML).

Basic markup

All elements - content/media as well as time containers - support timing markup to
describe a begin time and a duration, as well as the ability to play repeatedly. There
are several ways to define the begin time. The semantics vary somewhat depending
upon an element’s time container.

Simple and active durations

The time model defines two concepts of duration for each element - the simple
duration and the active duration. These definitions are closely related to the concept
of playing something repeatedly.

simple duration
This is the duration defined by the basic begin and duration markup. It does not
include any of the effects of playing repeatedly, or of fill. The simple duration is
defined by the explicit begin and duration, if one is specified. If the explicit times
are not specified, the simple duration is defined to be the implicit duration of the
element.

active duration
This is the duration during which the element plays normally. If no repeating
behavior is specified, and end is not specified, the active duration is the same
as the simple duration. If the element is set to play repeatedly, the simple
duration is repeated for the active duration, as defined by the repeat markup.
The active duration does not include the effect of fill.

The constraints of a parent time container may override the duration of its children.
In particular, a child element may not play beyond the simple end of the time
container.

The terms for these durations can be modified with the Descriptive Terms for
Times , to further distinguish aspects of the time graph.

22624 Feb 2000 08:26

SMIL Timing and Synchronization

Time manipulations

Time manipulations allow the element’s time (within the simple duration) to be
filtered or modified. For example the speed of time can be varied to make the
element play faster or slower than normal. The filtered time affects all descendents
of the element. Several time manipulations are proposed for SMIL Boston. Time
manipulation is primarily intended to be used with animation [SMIL-ANIMATION]
(W3C members only).

Note that any time manipulation that changes the effective play speed of an
element’s time may conflict with the basic capabilities of some media players. The
use of these manipulations is not recommended with linear media players, or with
time containers that contain linear media elements, such as streaming video.

There are a number of unresolved issues with this kind of time manipulation,
including issues related to event-based timing and negative play speeds, as well as
many media-related issues.

Determinate and indeterminate schedules

Using simple, scheduled timing, a time graph can be described in which all the times
have a known, defined sync relationship to the document timeline. We describe this
as determinate timing.

When timing is specified relative to events or external clocks, the sync relationship
is not initially defined. We describe this as indeterminate timing.

A time is resolved when the sync relationship is defined, and the time can actually
be scheduled on the document time graph.

Indeterminate times that are event-based are resolved when the associated event
occurs at runtime - this is described more completely in the section Unifying
Scheduling and Interactive Timing . Indeterminate times that are defined relative to
external clocks are usually resolved when the document playback begins, and the
relationship of the document timeline to the external clock reference is defined.

A determinate time may initially be unresolved, e.g. if it is relative to an unknown
time such as the end of a streaming MPEG movie (the duration of an MPEG movie
is not known until the entire file is downloaded). When the movie finishes,
determinate times defined relative to the end of the movie are resolved.

Hard and soft sync

SMIL 1.0 introduced the notion of synchronization behavior, describing user agent
behavior as implementing either "hard synchronization" or "soft synchronization".
Using hard sync, the entire presentation would be constrained to the strict
description of sync relationships in the time graph. Soft sync allowed for a looser
(implementation dependent) performance of the document.

While a document is playing, network congestion and other factors will sometimes
interfere with normal playback of media. In a SMIL 1.0 hard sync environment, this
will affect the behavior of the entire document. In order to provide greater control to

24 Feb 2000 08:26227

SMIL Timing and Synchronization

authors, SMIL Boston extends the hard and soft sync model to individual elements.
This support allows authors to define which elements and time containers must
remain in strict or "hard" sync, and which elements and time containers can have a
"soft" or slip sync relationship to the parent time container.

10.7 Appendix A: Annotated examples

10.7.1 Example 1: Simple timing within a Parallel time
container
This section includes a set of examples that illustrate both the usage of the SMIL
syntax, as well as the semantics of specific constructs. This section is informative.

Note: In the examples below, the additional syntax related to layout and other
issues specific to individual document types is omitted for simplicity.

All the children of a <par> begin by default when the <par> begins. For example:

<par>

</par>

Elements "i1" and "i2" both begin immediately when the par begins, which is the
default begin time. The active duration of "i1" ends at 5 seconds into the <par>. The
active duration of "i2" ends at 10 seconds into the <par>. The last element "i3"
begins at 2 seconds since it has an explicit begin offset, and has a duration of 5
seconds which means its active duration ends 7 seconds after the <par> begins.

An image that illustrated the timeline might be useful here.

10.7.2 Example 2: Simple timing within a Sequence time
container
Each child of a <seq> begins by default when the previous element ends. For
example:

<seq>

</seq>

The element "i1" begins immediately, with the start of the <seq>, and ends 5
seconds later. Note: specifying a begin time of 0 seconds is optional since the
default begin offset is always 0 seconds. The second element "i2" begins, by
default, 0 seconds after the previous element "i1" ends, which is 5 seconds into the
<seq>. Element "i2" ends 10 seconds later, at 15 seconds into the <seq>. The last
element, "i3", has a begin offset of 1 second specified, so it begins 1 second after

22824 Feb 2000 08:26

SMIL Timing and Synchronization

the previous element "i2" ends, and has a duration of 5 seconds, so it ends at 21
seconds into the <seq>.

Insert illustration.

10.7.3 Example 3: excl time container with child timing
variants

1. Exclusive element, children activated via link-based activation:

 <par>
 <excl>
 <par id="p1">
 ...
 </par>
 <par id="p2">
 ...
 </par>
 </excl>

 </par>

This example models jukebox-like behavior. Clicking on the first image
activates the media items of parallel container "p1". If the link on the second
image is traversed, "p2" is started (thereby deactivating "p1" if it would still be
active).

Shouldn’t we say, here, exactly where the elements of the selected par in the
excl should begin when a click happens, e.g., if we are 10 seconds into the
outer par and we click on button 2, does the MPG video in p2 start 10 seconds
into its stream (in-sync), or does it start at its time 0?

2. Exclusive element combined with event-based activation:

Note that the specific syntax for beginEvent argument values is still under
discussion.

 <par>
 <excl>
 <par begin="btn1.click">
 ...
 </par>
 <par begin="btn2.click">
 ...
 </par>
 </excl>

 </par>

The same jukebox example, using event-based activation.

24 Feb 2000 08:26229

SMIL Timing and Synchronization

In these two examples event-based and anchor-based activation look almost
identical, maybe we should come up with examples showing the difference and
the relative power of each.

3. Exclusive element using determinate declarative timing:

 <excl>
 <ref id="a" begin="0s" ... />
 <ref id="b" begin="5s" ... />
 </excl>

In the example above, the beginning of "b" deactivates "a" (assuming that a is
still active after 5 seconds). Note that this could also be modeled using a
sequence with an explicit duration on the children. While the determinate
syntax is allowed, this is not expected to be a common use-case scenario.

Issue - should we preclude the use of determinate timing on children of excl?
Other proposals would declare one child (possibly the first) to begin playing by
default. Proposals include an attribute on the <excl> container that indicate one
child to begin playing by default.

10.7.4 Example 4: default duration of discrete media
For simple media elements (i.e. media elements that are not time containers) that
reference discrete media, the implicit duration is defined to be indefinite. This can
lead to surprising results, as in this example:

<seq>

 <video src="vid2.mpg" />
 <video src="vid3.mpg" />
</seq>

The default syncbase of a sequence is defined to be the effective active end of the
previous element in the sequence, unless the active duration is indefinite in which
case the default syncbase is the begin of the previous element. In the example, the
implicit duration of the image is used to defined the simple and active durations. As a
result, the default begin of the second element causes it to begin at the same time
as the image. Thus, the image will not show at all! Authors will generally specify an
explicit duration for any discrete media elements.

10.7.5 Example 5: end specifies end of active dur, not end of
simple dur
There is an important difference between the semantics of end and dur.
The dur attribute, in conjunction with the begin time, specifies the simple duration for
an element.

This is the duration that is repeated when the element also has a repeat specified.
The attribute end on the other hand overrides the active duration of the element. If
the element does not have repeat specified, the active duration is the same as the

23024 Feb 2000 08:26

SMIL Timing and Synchronization

simple duration. However, if the element has repeat specified, then the end will
override the repeat, but will not affect the simple duration. For example:

<seq repeat="10" end="stopBtn.click">

</seq>

The sequence will play for 6 seconds on each repeat iteration. It will play through
10 times, unless the user clicks on a "stopBtn" element before 60 seconds have
elapsed.

10.7.6 Example 6: SMIL-DOM-initiated timing
When an implementation supports the SMIL-DOM, it will be possible to make an
element begin or end the active duration using script or some other browser
extension. When an author wishes to describe an element as interactive in this
manner, the following syntax can be used:

<audio src="song1.au" begin="indefinite" />

The element will not begin until the SMIL-DOM beginElement() method is
called.

10.8 Appendix B: Authoring guidelines (to be added)
This is a placeholder for a set of authoring guidelines intended to help authors avoid
potential mistakes and confusion, and to suggest best practices as intended by the
authors.

10.9 Appendix C: Differences from SMIL 1.0
SMIL 1.0 defines the model for timing, including markup to define element timing,
and elements to define parallel and sequence time containers. This version
introduces some syntax variations and additional functionality, including:

A new time container for hypermedia interactions
Additional control over the repeat behavior
A syntax for interactive (event-based) timing
Change in constraints on sync-arcs
A means of specifying a logical time-base relationship
Support for wall-clock timing
Support for time manipulations
Fill is now allowed on time containers as well as "leaf" elements

24 Feb 2000 08:26231

SMIL Timing and Synchronization

The complete syntax is described here, including syntax that is unchanged from
SMIL 1.0.

23224 Feb 2000 08:26

SMIL Timing and Synchronization

11. Integrating SMIL Timing into Other
XML-Based Languages
Editors:

Erik Hodge (ehodge@real.com) (RealNetworks)
Warner ten Kate (warner.ten.kate@philips.com) (Philips Electronics)

11.1 Abstract
This segment of the working draft specifies an architecture for applying timing
information to XML documents. It specifies the syntax and semantics of the
constructs that provide timing information. This approach builds on SMIL by
preserving SMIL’s timing model and maintaining the semantics of SMIL constructs.

The two non-In-Line Timing paradigms mentioned in this section of the working
draft, namely CSS Timing and Timesheets, have not been given as much
consideration by the SYMM Working Group as has In-Line Timing. The Working
Group will continue to concentrate on solidifying In-Line Timing before it revisits
other possible methods of adding timing such as CSS Timing and Timesheets.

11.2 Introduction
Currently there exists no standardized method for adding timing to elements in any
arbitrary XML document. This segment of the working draft defines the mechanisms
for doing so.

11.2.1 Background
Prior to SMIL 1.0 becoming a W3C recommendation, a significant number of W3C
members expressed interest in integrating SMIL timing functionality with XML-based
languages such as [XHTML10].

SMIL 1.0 describes timing relationships between objects, including complete XML
documents. SMIL 1.0 can not control the timing of individual elements contained
within these documents, e.g., the display of a single [XHTML10] heading before the
bulk body text appears, or the sequential display of the items of a group in an [SVG]
document. When using SMIL 1.0 for this, a content author is forced to contain each
temporal element set in a separate document, leading to very small documents in
some cases.

As another example, consider the split up of text that would occur when creating
closed captioning from a subtitle track using SMIL 1.0 if the text was in raw-text or
HTML form, two standard text data types that do not contain native timing. Using
SMIL timing, a text data type could be developed that would handle the presentation
of each caption as contained within one file. The SMIL file would then only have to
reference that one stream.

24 Feb 2000 08:26233

Integrating SMIL Timing into Other XML-Based Languages

The SMIL 1.0 architecture assumes that SMIL documents will be played by a
SMIL-based presentation environment. It does not treat the case where timing is an
auxiliary component, and the presentation environment is defined by another
language, like [XHTML10], a vector-graphics language like [SVG], or any
user-defined XML-based language and stylesheet.

This segment of the working draft specifies how SMIL timing can be used in other
XML languages, providing a solution to the above cases. This version of this
segment of the working draft only concentrates on In-line Timing; future versions
may include concepts like CSS Timing, where SMIL timing would be handled using
CSS, and possibly other methods of externally adding timing to a document. The
work is driven by the following goals:

Goal 1: To provide a solution for integrating timing into XML languages. The
XML language can be user defined.
Goal 2: To base that solution on SMIL. In case SYMM settles on a syntax
different from SMIL, e.g., a CSS-based solution, the semantics, names, values,
functionality and the timing model should be preserved as used by SMIL.
Goal 3: To strive for a single solution, rather than multiple alternatives.
Duplication of functionality is allowed only if it is well-justified. One example of a
well-justified deviation from this goal is the inclusion of some form of external
timing which would be necessary in such cases where a document to which the
timing is being added can not be altered due to copyright or other restrictions.
This would necessitate the existence of two methods for adding timing if in-line
timing is allowed.

11.2.2 Use cases
The following cases require the application of timing. These use cases are not listed
in any particular order:

1. Change media presentation over time.
Various media objects contained in or referenced in an XML-based document
are made to appear and disappear over time. Note: the media can be any
element that models content: a video, a paragraph, a database record, etc. An
example is a series of images and captions timed to appear as a slide show.

2. Schedule the presentation of elements of a Web page.
E.g., an HTML[*] page could be made to change over time by controlling the
display of its elements.

[*] Note: This assumes that the HTML document is a valid XML 1.0 [XML10]
document.

Use case 2A: Add in-line timing to an <H1> element of an [XHTML10]
document to schedule the display of that header’s text.
Use case 2B: Add timing to the existing structure of an [XHTML10]
document in order to schedule the presentation of the elements of a list or
of sections of the document. There are many ways that elements of a list or
the sections of a document could be presented. A common way might be to

23424 Feb 2000 08:26

Integrating SMIL Timing into Other XML-Based Languages

have the elements’ content appear one after the other with the prior
element’s content remaining displayed at least until the list is completely
displayed. Another way might be to have each list item display for a period
of time and then be replaced, spatially, by the next.
Consider the script of a play where each line of dialog is within a
<P>...</P> container. Such a document could be turned into a textual
performance of the play by adding the timing necessary to sequentially
present each of the child <P> elements of the <BODY> of the document.
Use case 2C: Add timing to a document where the timing is independent of
the structure of that document. Consider the following example:
Assume a human body display language. In this example different parts
appear and disappear in different combinations at different times regardless
of the content structuring, i.e., regardless of the order of the data in the
document body. The document DTD uses the human structure: human = {
face, torso, 2 arms, 2 legs }. A leg has a thigh, knee, calf and foot. Etc. The
document merely describes the structure of the human form.

3. Add timing to an immutable document.
Without modifying the original content document due to copyright and/or other
issues, apply an external timing document to that content document. In some
cases, timing will be applied externally to elements based on the names of their
XML mark-up tags, while in other cases timing will be applied externally to
elements of certain classes or to individual elements based on their unique IDs.
For example, The Daisy Consortium’s "talking book" applications use HTML
documents containing the text of a book whose pages are marked with
elements containing unique IDs. An external timing document could then be
used to apply unique timing to each of these elements.

4. Add timing to links.
Links could be made to be active only during certain periods.
Note: this can already be done within a SMIL 1.0 document.

5. Change the appearance of graphical objects over time.
For example, add timing to elements of a graphical display so that individual
graphical elements appear, disappear, and move in front of and behind each
other over time.

6. Change the style, as opposed to the visibility, of textual data over time.
For example, make something appear red for 5 seconds and then yellow for the
remainder of its duration.

11.2.3 Assumptions

1. The XML language to which the timing is applied can be of any type. The
language can be:

presentation agnostic
presentation oriented

2. For CSS or other stylesheet-specified timing, the XML language must be able to
cooperate with a stylesheet. The style language used is assumed to be CSS or
another style language like the Extensible Style Language [XSL].

24 Feb 2000 08:26235

Integrating SMIL Timing into Other XML-Based Languages

http://www.daisy.org/

Assumptions that may need further refinement

1. The XML language of the document can cooperate with the document’s
Document Object Model (DOM), if one exists.

2. If the full document, made up of the content document plus any external
(non-in-line) timing, is exposed to the content document’s DOM, that DOM
models the data along the tree as spanned in the body.

11.2.4 Requirements

1. Should follow the SMIL time model as it evolves.
2. Should be compatible/interoperable with SMIL as specified in the goal number

two .
3. Should be possible to apply the timing model to any XML language.
4. Should enable timing of styles as specified in the stylesheet accompanying the

XML document.
5. Should cooperate with events as specified by the content document’s DOM.
6. Any (allowed) mutations should be reflected appropriately in the time model, in a

dynamic manner. For example, if a media element’s begin time is based on the
end time of another media element that has ended early, the former should
begin right away rather than wait until its originally-scheduled begin time is
reached.

7. These requirements only apply to Timing methods other than In-Line Timing:
1. Should enable authoring across documents, e.g., temporal specification

may be separated from the content document.
2. Should enable construction of temporal templates, such that timing styles

can be developed and taken as an authoring basis for further refinement.
The precedence rules are the same as for CSS.

11.3 Framework
This section outlines the conceptual approach to adding timing to XML languages.
The Specification section specifies the constructs used. There are several methods
of adding this timing, but this version of this segment of the working draft considers
only method number 1, below, in any detail. Note that the second and third methods
will require considerable refinement and are only mentioned in this document to
show their potential for adding timing in cases where doing so using the first method
is either not possible or is less efficient:

1. Through In-line Timing . In-line timing is simply the addition of timing syntax into
a content document to schedule the presentation of its objects. This does not
include any timing done through CSS or other style sheet timing methods even
if the style sheet is "in-line", i.e., exists within the XML document to which it
applies. "In-line" in this section of the working draft refers only to adding SMIL
timing attributes to XML elements as well as adding SMIL time container
elements to the body of the content XML document.

23624 Feb 2000 08:26

Integrating SMIL Timing into Other XML-Based Languages

2. Future Methods Under Consideration:
Through Cascading Style Sheet (CSS) Timing . CSS Timing would treat
timing as style attributes and would allow the application of these timing
style attributes to elements of the content of a document in the same way
that [CSS1] and [CSS2] currently allow other styles (e.g., color, spacing) to
be applied to the content. CSS Timing may be added to the content
document or may be contained in an external document that is referenced
by the content document.
Through Timesheets . Timesheets are a new concept under development
that apply timing to elements in the content document. The order of the
items in a timesheet determines the order of presentation of the referenced
content elements. Unlike CSS Timing, a Timesheet separates timing from
the content document’s structure. A timesheet may be added to the content
document, may be contained in an external document that is referenced by
the content document, or may be a document that references the content
document external to itself.

How to ensure that In-line Timing cooperates uniformly with CSS Timing or
Timesheets is still under consideration.

In cases where SMIL timing is placed within an XML document, a hybrid DTD may
be needed containing the DTD for the SMIL Timing and Synchronization module as
well as the DTD for the XML language in which the original content document was
written.

11.3.1 Framework: In-line Timing
In some cases In-line Timing will make authoring easier, especially in cases where
the author wants the timing to flow with the structure of the content. In other cases,
CSS Timing or Timesheets may be needed.

The semantics of In-line Timing are the same as that of SMIL Boston timing, but
the syntax can differ. This module defines two ways to add In-line Timing to XML
content. These two methods may be used in combination:

1. The first is to add SMIL time container elements <par>...</par> ,
<seq>...</seq> , and <excl>...</excl> to create time blocks that apply
timing to all child elements. Legal SMIL Boston timing attributes, such as
begin , end , and dur , could be added to these elements as well as to
the resultant child elements. For instance, an author could place a <seq>
element as a parent of a list of items, then add dur="5s" to each list item
element, and consequently make those list items display one after the other for
five seconds each.

2. The second way is to add timing container functionality to some of the existing
XML mark-up elements. This has the advantage of not requiring the use of an
additional element that might make it harder to manage the layout and other
behavior of the document.
Essentially, and element is made to act as a parent par , seq , or excl , and

24 Feb 2000 08:26237

Integrating SMIL Timing into Other XML-Based Languages

may also contain optional SMIL timing attributes like duration, begin time
(relative to that of any parent element), and end time, to name a few. In order to
declare that an element should act as a time container, a new attribute,
"timeContainer" , is defined. This attribute is only legal within grouping
elements in XML documents, and specifically cannot be applied to any of the
time container elements including par , seq and excl . The use of this attribute
in a document does not preclude the use of par , seq , and excl elements
within that same document. A language designer may place additional
constraints on the elements that can support the "timeContainer " attribute.
Children of an element with this attribute have the same semantics as children
of the respective time container elements as specified in the SMIL Timing
module of this specification.

This example adds timing to an [XHTML10] <DIV> element so that it acts as a
<par> SMIL time container and has a duration of display of 10 seconds:
<div timeContainer="par" dur="10s"> .

Besides adding timing to the display of objects within an XML document, varying
styles like color and location over time may also be desired. This can be done two
ways:

1. By using a new attribute called "timeAction ". This attribute is the action
associated with the timing. This attribute would allow the author to specify how
the element’s timing should be applied, e.g., to the display of its content or to
style attributes like the color of its content. In SMIL 1.0, the begin, end, duration,
and other times specified in elements are always used to place the element on
its parent element’s time line. This new attribute, timeAction , was created to
allow alternate application of the specified time values, e.g., the begin time
could be applied to a style like the color of an element without affecting the true
begin time of the element. For example, the following would make an
[XHTML10] paragraph appear red for 5 seconds and then black for the
remainder of its duration. This example assumes that CSS class "redText" is
defined for the document:

<span class="redText"
 timeAction="class" dur="5s">This text will be red for 5 seconds and then
 black thereafter

The legal values for timeAction must be specified by the host language.
2. By using SMIL Animation [SMIL-ANIMATION]. Like timeAction , this allows

timing to be applied to elements’ attributes such as style. Unlike timeAction ,
SMIL animation allows for timing to be applied to multiple attributes of an
element. For example, making the contents of an [XHTML10] paragraph be
black for five seconds and then red for five seconds (at times relative to the
parent’s time line) while at the same time setting the duration of the display of
that paragraph to 20 seconds, could be done as follows. This example assumes
that CSS classes "blackText" and "redText" are defined for the document. Note
that class takes a string, thus a calcMode of discrete applies. The animation
will set the fontStyle to "blackText" for 5 seconds (half the simple duration) and

23824 Feb 2000 08:26

Integrating SMIL Timing into Other XML-Based Languages

then set the fontStyle to "redText" for the remaining 5 seconds of the animate
element’s duration:

<p class="blackText" dur="20s">
 <animate attributeName="class" from="blackText"
 to="redText" dur="10s"/>
 This text appears in black for five seconds, then changes to
 red for five more seconds. It changes back to black when the
 animate element’s duration is reached at 10 seconds because
 the default fill is "remove" for the animation. The dur of
 the p element applies to the display of the paragraph, not to
 the style.
</p>

Here is another, more-detailed example of In-line Timing being used to schedule
the application of color style attributes as specified in the XML document’s style
sheet: Consider the playback of a music album where the audio track plays in
concert with a list of the songs. Timing is added to the list so that the song that is
currently playing is colored differently from the others. A <set> element from SMIL
Animation in this example is used to set the style of the class "playing" (only) to the
text during the time specified. Note that, in this example, the text of the paragraphs,
namely "song 1", "song 2", and "song 3", all appear throughout the entire
presentation; it is only their color that has been modified over time using (in-line)
timing:

<head>
 <style>
 .stopped { color: black; }
 .playing { color: red; }
 </style>
</head>
<body timeContainer="par">
 <seq>
 <audio id="song1" src="song1.au" />
 <audio id="song2" src="song2.au" />
 <audio id="song3" src="song3.au" />
 </seq>
 <p class="stopped">
 <set begin="song1.begin" end="song1.end"
 attributeName="class" to="playing" />
 song 1
 </p>
 <p class="stopped">
 <set begin="song2.begin" end="song2.end"
 attributeName="class" to="playing" />
 song 2
 </p>
 <p class="stopped">
 <set begin="song3.begin" end="song3.end"
 attributeName="class" to="playing" />
 song 3
 </p>
</body>

24 Feb 2000 08:26239

Integrating SMIL Timing into Other XML-Based Languages

11.3.2 Framework: Future Frameworks Under Consideration

Future Framework: Cascading Style Sheet Timing

See Appendix B: Future Framework: Cascading Style Sheet Timing for one possible
method of applying timing that may be considered by the SYMM Working Group
after In-Line Timing is defined.

Future Framework: Timesheets

See Appendix C: Future Framework: Timesheets for another possible method of
applying timing that may be considered by the SYMM Working Group after In-Line
Timing is defined.

11.4 Specification
This section will precisely define the syntax and semantics of each method of
integrating SMIL timing into XML-based documents.

11.4.1 Specification: In-line Timing
This section specifies In-line timing syntax.

Time Container elements:

All time container elements defined in the SMIL Timing module may be used, along
with their respective legal attributes. These elements are predefined time container
elements.

The "timeContainer" attribute:

XML elements other than existing time container elements may be made into time
container elements through the "timeContainer " attribute. These elements
become declared time container elements. An XML language designer may place
additional constraints on the elements that can support the "timeContainer "
attribute. The syntax is:

 timeContainer="t"

where "t" is any valid time container defined in the SMIL Timing module , including
"par ", "seq ", and "excl ", or "none ":

Legal values are:

par
Defines a parallel time container with the same timing and synchronization
semantics as a par element.

24024 Feb 2000 08:26

Integrating SMIL Timing into Other XML-Based Languages

seq
Defines a sequence time container with the same timing and synchronization
semantics as a seq element.

excl
Defines an exclusive time container with the same timing and synchronization
semantics as an excl element.

none
Default value. Defines the current element to not have time container behavior
(i.e. to behave as a simple time leaf).

Timing Attributes for Child Elements of Time Container Elements:

All child elements of both predefined and declared time container elements may
contain any legal timing attributes defined for media elements as specified in the
SMIL Timing module .

Any document using in-line timing markup that is not within a predefined or
declared time container behaves as if the document’s body is wrapped in a
<par>/</par>.

The timeAction attribute:

The legal values for timeAction are as follows. Each host language must specify
which of the following are allowed and must define the intrinsic behavior of each
element to which timeAction may be applied. Note: a host language may not
expand on the following list. These values are:

1. "intrinsic": control the intrinsic behavior of the element, as defined on an
element-by-element basis. This is the default value for all elements. For SMIL
media elements like video, "intrinsic" is synonymous with "display", as described
below.

2. "display": make an element appear and disappear on its parent’s time line.
3. "visibility": make an element appear and disappear visibly without affecting its

presentation space. Note that this is the same as "display" for non-visual media.
4. "style": apply the timing to the inline style of the element.
5. "class:classname": add the specified classname to the value of the "class"

attribute of the element when the associated timing is active.
6. "none": apply no action when active. This is generally only useful for time

container elements as a means of indicating that no presentational control is
applied when active and only the timing semantic is applied.

Additional timeAction rules:

In host languages that do not support CSS, the timeAction values "style" and
"class:classname" must be treated as if "intrinsic" were specified as the
timeAction for that element.
Media elements (i.e. the SMIL media elements) define the "intrinsic behavior" as
the scheduling and playback of the media. When timeAction is set to any

24 Feb 2000 08:26241

Integrating SMIL Timing into Other XML-Based Languages

other value (besides intrinsic), the intrinsic scheduling behavior will be controlled
in addition to the specified timeAction .
Time Container elements (par , seq , and excl) have the intrinsic behavior of
the scheduling, as is true for SMIL media elements. By default, time containers
should not have their visibility controlled as part of the timeAction .
Phrasal, presentation, and style-like elements (e.g., XHTML’s b, em, strong ,
...etc.) must have an intrinsic timeAction behavior that applies their effect. When
timeAction is set to any other value (besides intrinsic), the intrinsic
presentation behavior will be controlled in addition to the specified
timeAction .
"Content" elements (e.g., XHTML’s p, div , span) have an intrinsic behavior
equivalent to "visibility", If set to any value other than "intrinsic", visibility will not
be controlled in addition to the specified timeAction .
Certain special elements have specific intrinsic semantics. For example,
elements like a and area have an intrinsic (default) timeAction that controls
these elements’ sensitivity to actuation by the user. Based upon the linking work
in SMIL, timing may actually force the actuation of links; this is still being
defined. Note that in XHTML, making these elements insensitive also has the
effect that the default styling that is applied to clickable links is removed when
the element is not active.
Host language designers should carefully consider and define the behavior
associated with the activation and deactivation of each element. For example,
script elements could execute when the timing is set to begin or they could
simply have an "intrinsic" timeAction equivalent to "none". Similarly, link
elements could apply a linked stylesheet when the timing begins or they too
could have an "intrinsic" timeAction behavior equivalent to "none".

Examples:

Note: the In-line Timing Framework section contains several examples using SMIL
timing .

11.4.2 Specification: Future Specifications Under
Consideration

Future Specification: CSS Timing

See Appendix D: Future Specification: CSS Timing .

Future Specification: Timesheets

See Appendix E: Future Specification: Timesheets .

24224 Feb 2000 08:26

Integrating SMIL Timing into Other XML-Based Languages

Cascading Rules

In the case where in-line timing and another method are active simultaneously,
in-line timing takes precedence if a conflict arises. This enables the creation of CSS
Timing or Timesheets to be used as templates whose rules can be easily modified
locally by in-line constructs. The only exception to this rule is the ability for
something like a user-stylesheet to be applied, such that !important rules are not
overridden by inline timing. This would allow special stylesheets to control the timing
in accessibility cases as well as other cases where user-specific timing may be
desired. Thus, as is true for SMIL Animation as well as CSS, a user-stylesheet
!important rule is always on top.

Integrating SMIL Timing into a host XML language

This section describes what a language designer must actually do to specify the
integration of SMIL Timing into a host XML language. This includes basic host
language definitions, and constraints upon timing.

Required host language definitions

The host language designer must define some basic concepts in the context of the
host language to which timing will be integrated.

The host language designer must define what "presenting a document" means. A
typical example is that the document is displayed on a computer screen.

The host language designer must explicitly define the begin time of a document,
i.e, does the document begin when the complete document has been received by a
client (possibly over a network), does the document begin when certain document
parts have been received, ...etc. This is important so that different applications that
play these documents will provide the same end-user experience under the same
conditions.

The host language designer must define the end time of the document. This is
typically when the associated application exits or switches context to another
document. The language designer may want to specify that an explicit "end"
attribute be defined for the body element of each document, or that the body element
has an indefinite duration.

The host language designer must specify which elements can be made into time
containers, i.e., which elements support the "timeContainer " attribute, which
support other timing attributes such as "begin" and "dur ", and then what the
behavior of the remaining timing-free elements is under different parent element
timing conditions.

The host language designer must specify when an element can be considered
made active and made inactive. For example, an XHTML "b" element becoming
active will only change the bold quality of text, which is something very different from
the activation of a "div" element which causes a block of text to appear. How the
element acts based on its activation and deactivation must be specified for each
element for the host language.

24 Feb 2000 08:26243

Integrating SMIL Timing into Other XML-Based Languages

Error handling semantics

The host language designer may impose stricter constraints upon the error handling
semantics, but may not relax them. That is, in the case of syntax errors, the host
language may specify additional or stricter mechanisms to be used to indicate an
error. An example of stricter constraints would be to stop all processing of the
document, and to halt playback of the document if it had begun before the erroneous
code was received by the parser. If a supported SMIL module states that certain
conditions should result in an error message, the host language must display an
error message under those conditions.

SMIL Timing namespace

A namespace for the "timeContainer" and "timeAction" attributes will be located at
http://www.w3.org/TR/1999/smil-boston-integration.

11.5 DTD
This section provides the formal specification for the inline-specific timing markup.
Refer to the SMIL Boston timing module for specification of the generic set of timing
elements and attributes. Other timing markup methods to be defined will also
include their DTD definitions here.

In-line Timing Syntax DTD definitions:

 <!ENTITY % integrateInlineTimingAttrs
 timeContainer (par | seq | excl | none) "none"
 timeAction CDATA #IMPLIED
 >

11.6 Appendix A. In-Line Method Examples
1. Consider an XML-based image-list language. Each document contains a list of

references to JPEG images. Timing of the images relative to one another is
done in line. Here is an example of such a document, where each image in the
list exists on the time line for its specified duration and is then replaced, both
spatially as well as on the time line, by the next image. The final image will be
active on the time line for only 8 of its 10-second duration because the parent is
explicitly specified to end at that time. Note: the presentation of the elements is
implied in this example.

<imagelist timeContainer="seq" end="28s">
 <image dur="5s" src="image1.jpg" />
 <image dur="3s" src="image2.jpg" />
 <image dur="12s" src="image3.jpg" />
 <image dur="10s" src="image4.jpg" />
</imagelist>

24424 Feb 2000 08:26

Integrating SMIL Timing into Other XML-Based Languages

11.7 Appendix B. Future Framework: Cascading Style
Sheet Timing
Reminder: the various syntaxes specified in this segment of the specification are
likely to change prior to the finalization of the working draft.

Still under discussion is whether the timing attributes are XML attributes or CSS
properties, i.e., whether CSS style rules will be used to apply timing properties to
XML elements, or whether the timing is an actual style property. For this version of
this segment of the working draft, we assume the latter but may switch to the former
after further debate:

CSS Timing is the use of SMIL timing within a style sheet, where timing may be a
style property, just like, for example, color and font-weight in CSS, that is applied to
elements in the content document. The resultant timing structure is based on and
depends on the structure of the content document. In some cases, in-line timing may
be inefficient, difficult, or impossible to add particular timing. In these cases, either
CSS Timing or Timesheets may be needed. Some possible cases where CSS
Timing will provide a better solution than in-line timing are:

where adding the same timing attributes to all elements of a class is needed,
e.g., making all list items in the document display for 3 seconds.
where reuse of the CSS Timing is desired for use with other content documents.
where the content document can not be altered due to copyright or other
restrictions.
where it is desired to have two possible presentations of the same content, one
a static (non-timed) presentation, and the other a timed one. This is possible
when the timing is in a separate document.

The same attributes mentioned in the In-Line Timing Framework section, above,
will be needed. "timeContainer" is needed to be able to declare that an element
should act as a time container. The "animate" element and/or the "timeAction"
attribute is needed to be able to apply timing to a style applied to the object(s).

How to ensure that CSS timing and in-line timing cooperate uniformly is still under
consideration.

Here is a simple example containing one possible syntax for integrating timing
using CSS. In this example, the list will play in sequence as dictated by the style
sheet in the HEAD section of the document. Note: the style sheet, like any CSS,
could alternatively exist as a separate document. Also, note that the timing applies,
by default, to the display of the elements as opposed to the style of the elements:

 </HEAD>
 <STYLE>
 UL { timeContainer: seq; }
 LI { font-weight: bold; dur: 5s; }
 </STYLE>
 </HEAD>
 <BODY>

24 Feb 2000 08:26245

Integrating SMIL Timing into Other XML-Based Languages

 This list item will appear at 0 seconds
 and last until 5 seconds.

 This list item will appear after the prior
 one ends and last until 10 seconds.

 </BODY>

11.8 Appendix C. Future Framework: Timesheets
Timesheets refer to both the conceptual model along which timing, including the
structure of the timing, is integrated into an XML document, as well as one possible
syntax implementation. This approach provides a solution where time can be
brought to any XML document regardless of its syntax and semantics.

A Timesheet uses SMIL timing within a separate document or separate section of
the content document and imposes that timing onto elements within the content
document. The resultant timing structure is not necessarily related to the structure of
the content document. Some possible cases where a Timesheet will provide a better
solution than in-line timing are a superset of such CSS Timing cases (which are
included in the list below):

where the timing structure doesn’t match the structure of the content, e.g.,
making the elements in a list appear out of order
where adding the same timing attributes to all elements of a class is needed,
e.g., making all list items in the document display for 3 seconds.
where reuse of the Timesheet is desired for use with other content documents.
where the content document can not be altered due to copyright or other
restrictions.
where it is desired to have two possible presentations of the same content, one
a static (non-timed) presentation, and the other a timed one. This is possible
when the timing is in a separate document.

11.8.1 Three document sections
Timesheets assume an XML document conceptually composed of three presentation
related sections:

1. the content part.
2. the formatting part.
3. the timing part.

24624 Feb 2000 08:26

Integrating SMIL Timing into Other XML-Based Languages

The first section, content, relates to the particular XML document. It conforms to a
DTD written for an XML language. The content part describes the media and its
structure.

The second section, formatting, provides control of the properties of the elements
in the content section. It conforms to a style language, which, for the purpose of this
discussion, we assume to be CSS. The style section describes the style and (spatial)
layout of presenting the content. "Formatting" might include matters like routing of
audio signals to loudspeakers.

The third section, timing, provides control of the temporal relations between the
elements in the content section. It conforms to SMIL’s timing model . The time
section describes the time at which content is presented as well as the time at which
style is applied. The time section contains the information to prepare a presentation
schedule.

Sections two and three provide presentation information to the content: the
stylesheet on style and positional layout, the timesheet on temporal layout. The
stylesheet and timesheet may influence each other, but there should be no circular
dependencies.

The idea is that each section operates independent from and compliant with the
others.

24 Feb 2000 08:26247

Integrating SMIL Timing into Other XML-Based Languages

11.8.2 Principles

1. The temporal structure is not necessarily implied by the content structure. Here
is an example .

2. A timesheet may not be sufficient to build a time graph to provide a timing
structure. A timesheet can consist of independent rules (time relations), which,
together with the content, build the timing graph. For example, a selector in a
timesheet may apply to multiple items in the content.

3. Unspecified timing may be left to the implementation to fill in. For example,
items in a list can be declared to appear sequentially, while the temporal
relations between lists and other content remain unspecified. When the author
does not supply these, the template is still to be obeyed.

4. A timesheet may over-specify time relations. Unused rules are ignored.
Conflicting time relations which concern the same element are either resolved
using the timesheet cascading rules (to be specified, e.g. in-line overrides a
template) or are an error (also to be made explicit). For example, when the
timesheet declares sequential presentation of list items, while there are none of
them in the document, the rule is simply ignored. Another example is where two
rules select list items specifying different durations, e.g., all list item elements
have a duration of 5 seconds except the first in each list has a duration of 8
seconds.

Here is a simple example where a timesheet exists, but in-line timing is also
specified and overrides the timing imposed by the timesheet:

This example has a timesheet that specifies that each "li" element will have a
begin time of 10 seconds and a duration of 15 seconds. However, the in-line timing
in the second "li" element has presidence over the timesheet and thus the second
line item ends up having a begin time of 0 seconds and a duration of 5 seconds.
 Note: this example could have been done just as easily using CSS Timing ; the
added power of Timesheets will be made clearer in the next example.

<time>
 <par>
 li { begin=10s dur=15s }
 </par>
</time>
<body>

 This first line will begin at 10 sec and run for 15 sec.
 <li begin="0s" dur="5s">This second line’s timing is dictated
 by the in-line timing which overrides the timesheet timing
 for each child "" element. It will thus
 begin at 0 seconds and last 5 seconds.

</body>

Following is an example showing some HTML extended with timing via a
Timesheet. As with the CSS example , the Timesheet could just as well have been
contained in a separate document and applied externally. CSS selector syntax

24824 Feb 2000 08:26

Integrating SMIL Timing into Other XML-Based Languages

http://www.w3.org/TR/REC-CSS2/selector.html#q1

[CSS-selectors] has been used. The use of CSS selectors here should not be
confused with CSS Timing, proposed in the prior section of this segment of the
specification.
The expected presentation of this would be to have the two Headings appear
together followed by the first list item in each list, namely Point A1 and Point B1,
appearing at 3 seconds followed thereafter by the second list item in each list,
namely Points A2 and B2, appearing at 6 seconds. All items would disappear at 10
seconds which is the duration of the outer <par> .

 <html>
 <head>
 <time>
 <par dur="10">
 <par>
 h1 {}
 </par>
 <par begin="3">
 <!-- Selects the first LI in each list: -->
 OL > LI:first-child { }
 </par>
 <par begin="6">
 <!-- Selects the second LI in each list: -->
 OL > LI:first-child + LI { }
 </par>
 </par>
 </time>
 </head>
 <body>
 <h1>Heading A</h1>

 <li id="PA1">Point A1
 <li id="PA2">Point A2

 <h1>Heading B</h1>

 <li id="PB1">Point B1
 <li id="PB2">Point B2

 </body>
 </html>

Note: the property fields {.} could contain duration and syncarc relations if the
author wished to add more complex timing.

Here is another example as mentioned in Use Case 2C . Assume a human body
display language. In this example different parts appear and disappear in different
combinations at different times regardless of the content structuring, i.e., regardless
of the order of the data in the document body. The document DTD uses the human
structure: human = { face, torso, 2 arms, 2 legs }. A leg has a thigh, knee, calf and
foot. Etc. The document merely describes the structure of the human form. Here is
an example of such a document:

24 Feb 2000 08:26249

Integrating SMIL Timing into Other XML-Based Languages

 <human>
 <face id="face" ...>
 <eye id="leftEye" color="green" .../>
 <eye id="rightEye" color="blue" .../>
 ...
 </face>
 ...
 <torso>
 ...
 </torso>
 <arm id="leftArm" ...>
 ...
 <hand id="leftHand" .../>
 </arm>
 ...
 <leg id="leftLeg" ...>
 <thigh id="leftThigh" .../>
 <knee id="leftKnee" .../>
 <calf id="leftCalf" .../>
 <foot id="leftFoot" .../>
 </leg>
 ...
 </human>

Both of the following examples are possible by applying a different timesheet in
each case to the same XML document. For these examples, we use the XML
"human" document, above. Note: these examples demonstrate the timesheet’s
ability to allow a content element to be displayed as if its parent were but with the
parent not displayed, in other words the child element is displayed in the same
place, spatially, as if the parent was displayed. "These examples presume that the
XML language allows a content element to be displayed as if the full document was,
but with some parents not displayed. In other words the child element is displayed in
the same place, spatially, as if the entire document was displayed. Not all XML
languages support this."

One example is to first display hands, then add feet, then each calf and forearm,
then knees and elbows, etc., building the whole human form up from the
extremities. The (abbreviated) timesheet might look like this:

<time>
 <par dur="60s">
 <par>
 #leftHand { }
 #rightHand { }
 </par>
 <par begin="10s">
 #leftFoot { }
 #rightFoot { }
 </par>
 <par begin="20s">
 #leftCalf { }
 #rightCalf { }
 #leftForearm { }
 #righForearm { }

25024 Feb 2000 08:26

Integrating SMIL Timing into Other XML-Based Languages

 </par>
 ...
 </par>
</time>

A second example is to combine <seq>s and <par>s in the time section. In
sequence, show a finger, the face, and a thigh. In parallel with that, accumulate
the foot, calf and knee of the same leg as the thigh. The inner <par> elements
are not necessary but are there to help delineate the two separate but parallel
accumulations of human body parts. The (abbreviated) timesheet might look like
this:

<time>
 <par dur="60s">
 <par>
 #rightIndexFinger { }
 #face { begin: 5s }
 #rightThigh { begin: 10s }
 </par>
 <par>
 #rightFoot { }
 #rightCalf { begin: 5s }
 #rightKnee { begin: 10s }
 </seq>
 </par>
</time>

11.9 Appendix D. Future Specification: CSS Timing
CSS timing syntax has not been specified, but several possibilities are under
consideration.

The exact specification of CSS Timing selectors is still being considered. Selector
algebra will most likely be that defined by CSS2 [CSS-selectors].

The CSS Timing Framework section contains an example using SMIL timing .

11.9.1 Timing style
In addition to selecting elements, style rules should be selectable. This enables
changing style properties over time, just as we saw in the In-Line Timing color style
example .

11.10 Appendix E. Future Specification: Timesheets
Timesheet syntax has not been specified, but several possibilities are under
consideration. The Timesheets Framework section contains several examples (1 , 2
) using SMIL timing .

24 Feb 2000 08:26251

Integrating SMIL Timing into Other XML-Based Languages

11.10.1 Structure copying
The structure of the body may be used to impose temporal semantics, where a time
property is assigned to an element. It is important to realize that time relations are
imposed between the elements selected. For instance, when selecting a in a
<seq> relation, it means that the ordered list is going to be displayed after or before
some other element. It does not mean that the list items contained by the ordered list
are to be presented in a sequence.

In order to provide a syntax for denoting temporal relations in line with the body
structure, a new type of selectors is added to those already available from CSS.

CSS has the notion of class selectors. These selectors imply that the rule (time
relation) they are part of should be applied for each element in the body that is a
member of that class.

Timesheets add a new type of class selectors, henceforth to be called structure
selectors . These selectors imply that the time relation they are part of applies to the
result of expanding the structure selector into id selectors of all elements in the body
that are members of that structure class. The id selectors have to appear in the order
in which the elements lexically appear in the body. In this way, by selecting the class
of descendants, the structure of the body section can be copied into the time section,
such that the copied structure receives the temporal semantics required.

11.10.2 Structure ownership
Another form of using the structure in the XML body is called ownership . Ownership
dictates whether a temporal relationship imposed on an element applies to all of its
descendants or only on the element itself. Ownership applies for example in the
sequenced case when child element(s) contain further markup. By
specifying that ownership is on, the children of element(s) will also take on the
same temporal relationship as their parents.

11.10.3 Timesheet selectors
As discussed earlier, in timesheets there are two ways to expand class selectors:

1. Class selector. The timesheet’s rule applies per member in the class. This is the
traditional CSS meaning; the timesheet’s rule is repeated per element in that
class.

2. Structure selector. The timesheet’s rule applies to the set elements resulting
from expanding the class selector into all its elements. For example, a structure
selector is used to create a <seq> of without identifying all these
individually.

The exact specification of timesheet selectors is still being considered. Selector
algebra will most likely be that defined by CSS2 [CSS-selectors] with some
additional algebra defined as necessary.

25224 Feb 2000 08:26

Integrating SMIL Timing into Other XML-Based Languages

11.11 Appendix F. CSS Timing, Timesheet, and other
non-In-Line Examples

1. This example uses CSS Timing to cause an otherwise static [XHTML10] list to
grow over time, where each list item shows up below the prior item, 10 seconds
after the prior item began its display. Because the UL becomes a "par" time
container, its list items do not disappear until the UL’s end time is reached.

/* style sheet document "growlist.css": */
.seqtimecontainer { timeContainer:
 seq; dur: 30s} LI { dur: 10s; }

<!-- HTML document (which happens to be well-formed XML): -->
<HTML>
 <HEAD>
 <LINK rel="stylesheet" type="text/css" href="growlist.css" />>
 </HEAD>
 <BODY>
 <UL class="seqtimecontainer">
 This is item 1. It appears from 0 to 30 seconds.

 This is item 2. It appears from 10 to 30 seconds.

 This is item 3. It appears from 20 to 30 seconds.

 </BODY>
</HTML>

2. Consider a document written in some graphics language where three big
squares are layed out inside a rectangle, and each square contains a smaller
square. We should be able to create a timesheet that can schedule the
appearance of each square at different times from the others. Note: the
presentation of the elements is implied in this example.

<rectangle id="window" geometry="..." fill="...">
 <square id="b1" ... >
 <square id="s1" ... / >
 </square>
 <square id="b2" ... >
 <square id="s2" ... / >
 </square>
 <square id="b3" ... >
 <square id="s3" ... / >
 </square>
</rectangle>

In order to time the presentation of the elements so that the big squares pop
up one after the other, followed by the simultaneous appearance of the small
ones, the timesheet might look like this:

24 Feb 2000 08:26253

Integrating SMIL Timing into Other XML-Based Languages

<time>
 <seq>
 <par>
 #b1 { dur: 2s }
 #b2 { dur: 2s; begin: 2s; }
 #b3 { dur: 2s; begin: 4s; }
 </par>
 <par>
 #s1 { }
 #s2 { }
 #s3 { }
 </par>
 </seq>
</time>

Note: the outer "window" rectangle has not been given any explicit timing. for
this example, we assume that the lack of timing implies a begin time of zero and
an indefinite duration if the element does not have an implicit duration.

25424 Feb 2000 08:26

Integrating SMIL Timing into Other XML-Based Languages

12. The SMIL Transition Effects Module
Editors

Eric Hyche (ehyche@real.com), (RealNetworks)

12.1 Introduction
In most public descriptions of SMIL, the language is described as "allowing authors
to bring TV-like content to the Web." However, one aspect of presentations
commonly seen on television has been noticeably absent from SMIL: transitions
such as fades and wipes. In SMIL 1.0, any representation of transitions had to be
"baked into" the media itself and there was no method of coordinating transitions
across multiple media regions and timelines. The purpose of this document is to
specify the semantics and syntax for describing transitions within SMIL and other
XML-based documents. Also, this specification describes a taxonomy of transitions
based on SMPTE 258M-1993 [SMPTE] as well as a compact set of parameters
which can be used to express this set of transitions. Although the majority of
transitions described in this document are visual transitions, a number of transitions
have audio equivalents and are equally applicable.

Any XML language that wants to make use of transitions must have:

1. A Layout Language. Transitions operate on media elements which are
associated with layout elements. If transitions are coordinated across multiple
media elements, then it is necessary to be able to access properties of the
layout region in which that media is playing. Therefore, any language which
would use transitions must have the ability to express the concept of playback
regions. CSS2 and SMIL 1.0 are examples of languages with layout language
capabilities.

2. A Timing Model. In this context, transitions are time-based, client-side effects
between media. Since transitions occur over time and are applied to media at a
certain point in time, then the host XML language must have ability to specify a
timeline. SMIL 1.0 and HTML+TIME are examples of languages with a time
model.

For example, consider a simple still image slideshow of four images, each
displayed for 5 seconds. In SMIL 1.0 this might look like:

<smil>
 <head>
 <layout>
 <root-layout width="256" height="256" background-color="#000000"/>
 <region id="whole" left="32" top="32" width="192" height="192"/>
 </layout>
 </head>
 <body>
 <seq>

24 Feb 2000 08:26255

Transition Effects

 </seq>
 </body>
</smil>

and the corresponding presentation in HTML+TIME (for the timing model) and
CSS2 (for the layout language):

<HTML>
 <HEAD>
 <XML:NAMESPACE PREFIX="t"/>
 <STYLE>
 DIV { position: absolute;
 left: 0px;
 top: 0px;
 width: 256px;
 height: 256px;
 background-color: #000000 }
 .whole { position: absolute;
 left: 32px;
 top: 32px;
 width: 192px;
 height: 192px }
 </STYLE>

 </HEAD>
 <BODY>
 <DIV STYLE="behavior:url(#default#time);" t:TIMELINE="seq">
 <t:IMG CLASS="whole" STYLE="behavior:url(#default#time);" t:SRC="butterfly.jpg" t:DUR="5" t:TIMEACTION="display"/>
 <t:IMG CLASS="whole" STYLE="behavior:url(#default#time);" t:SRC="eagle.jpg" t:DUR="5" t:TIMEACTION="display"/>
 <t:IMG CLASS="whole" STYLE="behavior:url(#default#time);" t:SRC="wolf.jpg" t:DUR="5" t:TIMEACTION="display"/>
 <t:IMG CLASS="whole" STYLE="behavior:url(#default#time);" t:SRC="seal.jpg" t:DUR="5" t:TIMEACTION="display"/>
 </DIV>
 </BODY>
</HTML>

Currently when these presentations play, we see a straight "cut" from one image
to another, as shown in this animated image. However, what we would like to see
are three wipes in between the four images: in between butterfly.jpg and eagle.jpg at
5 seconds, in between eagle.jpg and wolf.jpg at 10 seconds, and in between wolf.jpg
and seal.jpg at 15 seconds. Therefore, we must define the following to our
presentations:

1. The class of transition we wish to apply. For instance, if we want all three
transitions to be 1-second wipes, then we can define 1-second wipes as a
transition class and apply this class to the media elements. For purposes of
introductory illustration, we will use several transition parameters without first
defining them. However, for complete detail about transition parameters, see the
Transition Taxonomy and Parameters section.

2. The media elements to which we wish to apply this transition class. For more
detail about applying transition classes to media elements, see the Applying
Transitions to Media Elements section.

Adding these two definitions to the previous SMIL 1.0 slideshow example would
make the presentation now look like:

<smil>
 <head>
 <layout>
 <root-layout width="256" height="256" background-color="#000000"/>
 <region id="whole" left="32" top="32" width="192" height="192"/>
 </layout>
 <transition id="wipe1" type="wipe" subtype="slideHorizontal" dur="1s"/>

25624 Feb 2000 08:26

Transition Effects

 </head>
 <body>
 <seq>

 </seq>
 </body>
</smil>

and the presentation in HTML+TIME and CSS2 would now look like:
<HTML>
 <HEAD>
 <XML:NAMESPACE PREFIX="t"/>
 <STYLE>
 DIV { position: absolute;
 left: 0px;
 top: 0px;
 width: 256px;
 height: 256px;
 background-color: #000000 }
 .whole { position: absolute;
 left: 32px;
 top: 32px;
 width: 192px;
 height: 192px }
 .wipe1 { transitionType: wipe;
 transitionSubType: slideHorizontal;
 transitionDur: 1s }
 </STYLE>
 </HEAD>
 <BODY>
 <DIV STYLE="behavior:url(#default#time);" t:TIMELINE="seq">
 <t:IMG CLASS="whole" STYLE="behavior:url(#default#time);" t:SRC="butterfly.jpg" t:DUR="5" t:TIMEACTION="display"/>
 <t:IMG CLASS="whole;wipe1" STYLE="behavior:url(#default#time);" t:SRC="eagle.jpg" t:DUR="5" t:TIMEACTION="display"/>
 <t:IMG CLASS="whole;wipe1" STYLE="behavior:url(#default#time);" t:SRC="wolf.jpg" t:DUR="5" t:TIMEACTION="display"/>
 <t:IMG CLASS="whole;wipe1" STYLE="behavior:url(#default#time);" t:SRC="seal.jpg" t:DUR="5" t:TIMEACTION="display"/>
 </DIV>
 </BODY>
</HTML>

Now the presentations play as follows. First, at 0 seconds, we cut directly to
butterfly.jpg. Next, at 5 seconds we begin a 1-second wipe into eagle.jpg. Therefore,
at 6 seconds, eagle.jpg is fully displayed and remains displayed for 4 more seconds
until 10 seconds. At this time, we begin a another 1-second wipe from eagle.jpg to
wolf.jpg. At 11 seconds, wolf.jpg is fully displayed until 15 seconds, when we begin
another 1-second transition to seal.jpg. At 16 seconds, seal.jpg is fully displayed until
20 seconds at which time the presentation ends. When the presentation ends, there
is an immediate cut to black due to the default fill="remove" behavior of SMIL and
the TIMEACTION="display" behavior of HTML+TIME. This is visually illustrated by
this animated image. Notice that these transitions occur during the timeline each of
the images and do not add or subtract from their host timeline. In this case, the
transition occurs (by default) at the beginning of the timeline, although we will
discuss later a method of placing the transition at the end of a media element’s
timeline.

This document is structured as follows. In the Taxonomy section, we define a
taxonomy of transitions and describe the families of transitions. Next in the
Parameters section, we define a set of parameters which can fully describe all the
transitions in our taxonomy. Next, in the Applying Transitions to Media Elements
section, we describe the semantics of applying a transition class to a media element.
Next, in the Multiple-Element Transitions section, we describe how to apply single
transitions across multiple media elements.

24 Feb 2000 08:26257

Transition Effects

12.2 Transition Taxonomy
Using CSS, making text appear in a certain font face and size involves defining a
style and then using selectors to apply that style to the appropriate elements. The
entire set of possible font faces are grouped into broad font families with
specialization within each family. In a similar manner, we define in this section
several broad families of transitions and describe the distinguishing characteristics of
each family. In the next section, we will define a parameter set which can fully
specify all the transitions in each family.

In all of the examples of specific transitions mentioned in this document, we will
refer to the following model: we refer to the element being transitioned from as
element A (or just A) and we refer to the element being transitioned to as element B
(or just B). We define the following eight families (or types) of transitions:

edgeWipe
B is "under" A and is uncovered by combinations of edges. SMPTE Wipe Codes
1-74 are members of this family. For example, in SMPTE Wipe Code 1, a
vertical line moves left to right across A. B is revealed on the left side of the line,
while A remains on the right side. SMPTE Wipe Code 1 is illustrated by this
animated image.

irisWipe
B is "under" A and is uncovered by an expanding shape. SMPTE Wipe Codes
101-131 are members of this family. For example, in SMPTE Wipe Code 102, B
is gradually revealed by an expanding diamond shape. SMPTE Wipe Code 102
is illustrated by this animated image.

radialWipe
B is "under" A and is uncovered by one or more radial sweeps. SMPTE Wipe
Codes 201-264 are members of this family. For example, in SMPTE Wipe Code
201, B is revealed by a clockwise sweep, as shown in this animated image.

matrixWipe
B is "under" A and is uncovered by one or more block traversals. SMPTE Wipe
Codes 301-353 are members of this family. For example, in SMPTE Wipe Code
301, B is revealed by a block which alternates moving left to right then right to
left as it moves down A. This transition is illustrated by this animated image.

pushWipe
A is "pushed" out of view by B. An example of this family would be a transition
where B moves in from the left, while pushing A out of view. This transition is
illustrated by this animated image.

slideWipe
B "slides over" A. An example of this family would be a transition where B
moves in from the left, and slides over A, as illustrated by this animated image.

fade
additive blend between A and B, A and a color, or B and a color. An example of
this family would be a crossfade between A and B, as illustrated by this
animated image.

25824 Feb 2000 08:26

Transition Effects

warp
A or B is spatially distorted until only B remains. An example of this family would
be when B zooms in on top of A, as illustrated by this animated image.

Each of these transition "types" are further divided into many "subtypes". The table
below lists the possible subtypes for each type. Also the table lists the mapping
between the assigned name and the SMPTE Wipe Code (where applicable).

Transition
type

Transition subtypes (SMPTE Wipe Codes in parentheses)

edgeWipe

"slideHorizontal" (1) [default], "slideVertical" (2), "topLeft" (3),
"topRight" (4), "bottomRight" (5), "bottomLeft" (6), "fourCorner" (7),
"fourBox" (8), "barnVertical" (21), "barnHorizontal" (22), "topCenter"
(23), "rightCenter" (24), "bottomCenter" (25), "leftCenter" (26),
"diagonalLeftDown" (41), "diagonalRightDown" (42), "verticalBowTie"
(43), "horizontalBowTie" (44), "diagonalLeftOut" (45),
"diagonalRightOut" (46), "diagonalCross" (47), "diagonalBox" (48),
"filledVUp" (61), "filledVRight" (62), "filledVBottom" (63), "filledVLeft"
(64), "hollowVUp" (65), "hollowVRight" (66), "hollowVBottom" (67),
"hollowVLeft" (68), "verticalZigZag" (71), "horizontalZigZag" (72),
"verticalBarnZigZag" (73), "horizontalBarnZigZag" (74)

irisWipe

"rectangle" (101) [default], "diamond" (102), "triangleUp" (103),
"triangleRight" (104), "triangleDown" (105), "triangleLeft" (106),
"arrowheadUp" (107), "arrowheadRight" (108), "arrowheadDown"
(109), "arrowheadLeft" (110), "pentagonUp" (111), "pentagonDown"
(112), "hexagon" (113), "hexagonSide" (114), "cicle" (119), "oval"
(120), "ovalSide" (121), "catEye" (122), "catEyeSide" (123),
"roundRect" (124), "roundRectSide" (125), "star4pt" (127), "star5pt"
(128), "star6pt" (129), "heart" (130), "keyhole" (131)

radialWipe

"top" (201) [default], "right" (202), "bottom" (203), "left" (204),
"topBottom" (205), "leftRight" (206), "quadrant" (207), "topBottom180"
(211), "rightLeft180" (212), "topBottom90" (213), "rightLeft90" (214),
"top180" (221), "right180" (222), "bottom180" (223), "left180" (224),
"counterTopBottom" (225), "counterLeftRight" (226),
"doubleTopBottom" (227), "doubleLeftRight" (228), "vOpenTop" (231),
"vOpenRight" (232), "vOpenBottom" (233), "vOpenLeft" (234),
"vOpenTopBottom" (235), "vOpenLeftRight" (236), "topLeft" (241),
"bottomLeft" (242), "bottomRight" (243), "topRight" (244),
"topLeftBottomRight" (245), "bottomLeftTopRight" (246),
"topLeftRight" (251), "leftTopBottom" (252), "bottomLeftRight" (253),
"rightTopBottom" (254), "doubleCenterRight" (261),
"doubleCenterTop" (262), "doubleCenterTopBottom" (263),
"doubleCenterLeftRight" (264)

24 Feb 2000 08:26259

Transition Effects

matrixWipe

"horizontal" (301) [default], "vertical" (302), "topLeftDiagonal" (303),
"topRightDiagonal" (304), "bottomRightDiagonal" (305),
"bottomLeftDiagonal" (306), "cwTopLeft" (310), "cwTopRight" (311),
"cwBottomRight" (312), "cwBottomLeft" (313), "ccwTopLeft" (314),
"ccwTopRight" (315), "ccwBottomRight" (316), "ccwBottomLeft" (317),
"verticalStartTop" (320), "verticalStartBottom" (321),
"verticalStartTopOpposite" (322), "verticalStartBottomOpposite" (323),
"verticalStartLeft" (324), "verticalStartRight" (325),
"verticalStartLeftOpposite" (326), "verticalStartRightOpposite" (327),
"doubleDiagonalTopRight" (328), "doubleDiagonalBottomRight" (329),
"doubleSpiralTop" (340), "doubleSpiralBottom" (341),
"doubleSpiralLeft" (342), "doubleSpiralRight" (343),
"quadSpiralVertical" (344), "quadSpiralHorizontal" (345),
"verticalWaterfallLeft" (350), "verticalWaterfallRight" (351),
"horizontalWaterfallLeft" (352), "horizontalWaterfallRight" (353)

pushWipe "fromTop", "fromRight", "fromBottom", "fromLeft" [default]

slideWipe "fromTop", "fromRight", "fromBottom", "fromLeft" [default], "angular"

fade "crossfade" [default], "fadeToColor", "fadeFromColor"

warp "explode", "implode", "zoomOver" [default], "zoomBoth"

For each of the types, the first subtype is labeled as the "default" subtype. The
purpose of this is to allow for a default transition for this transition family, if either the
transition subtype is not specified or not implemented. This is a similar idea to CSS’s
font-family property, where the value is a comma-separated list of font faces of
families. If the first font in the list is not available, then the browser tries the second.
Usually, the last font in the list will be very generic, so that all browsers can support
it.

In the same way, authors can specify a type and subtype for a transition class. If
this transition class is not available or not implemented by the user agent, then the
user agent should fall back on the default subtype for that transition family. The side
effect of this is that all renderers are required to support a minimum of 8 transitions
(the default transition for each of the transition families).

12.3 Transition Parameters
Now that we have a taxonomy of transition types and subtypes defined, now we
must define a set of parameters which can span the entire space of transitions. In
the following list, not all the parameters apply to every transition type. However,
there is enough commonality between parameters for each family that it is not useful
to have a separate parameter set for each transition family.

26024 Feb 2000 08:26

Transition Effects

We also present the <transition> element for SMIL. In SMIL, this element
defines a single transition class. If the transition class is expressed in a stylesheet
language such as CSS, then each of these parameters are properties defined in
CSS syntax within the <STYLE> element. In order not to be distinguished from other
CSS properties, the prefix "transition" should be prepended to each of the parameter
names to create the CSS property name, using camelCase to mark the separation
between words. For example, the transition parameter "dur" would translate directly
to "dur" as a SMIL attribute but would translate to "transitionDur" as a CSS property.
We will reference an Integration section here when that section is complete.

12.3.1 The <transition> element
The <transition> element defines a single transition class within a SMIL
document. This element should appear in the <head> section of the document.
Since there may be multiple transition classes used in a SMIL document, then there
may be multiple <transition> elements in the <head> section of the SMIL
document.

Element attributes

id
This attribute uniquely identifies the transition element within the SMIL
document. Its value is an XML identifier.

type
This is the type or family of transition. The "type" attribute is required and must
be one of the transition families listed in the Taxonomy section.

subtype
This is the subtype of the transition. This parameter is optional and if specified,
must be one of the transition subtypes appropriate for the specified type as
listed in the table of subtypes in the Taxonomy section. If this parameter is not
specified, it defaults to the subtype listed as the default subtype for the specified
transition type.

dur
This is the duration of the transition. The value of this attribute must be a
clock-value as defined by the SMIL Timing and Synchronization Module . This
parameter has a default of 1 second.

base
This defines whether the transition is applied to beginning or the end of the host
timeline. There are two possible values for base:
begin

The transition occurs during the time [0,dur] in the host timeline. This is the
default value.

end
The transition occurs during the time [D-dur,D] in the host timeline, where D
is the duration of the host timeline, which may be possibly unknown at
authoring time.

24 Feb 2000 08:26261

Transition Effects

startPercent
This is the percentage through the transition at which to begin execution. Legal
values are integers in the range [0,100]. For instance, we may want to begin a
crossfade with the destination image being already 30% faded in.
The default value is zero.

endPercent
This is the percentage through the transition at which to end execution. Legal
values are integers in the range [0,100] and the value of this attribute must be
greater than or equal to the value of the "startPercent" attribute.
The default value is 100.

horzRepeat
This attribute specifies how many times to repeat the wipe pattern along the
horizontal axis.
The default value is 0 (the pattern is not repeated horizontally).

vertRepeat
This attribute specifies how many times to repeat the wipe pattern along the
vertical axis.
The default value is 0 (the pattern is not repeated vertically).

startX
This attribute specifies the distance from the left side of the element region at
which to start the warp transition. This parameter is a floating point number in
the range [-2.0, 2.0], where 0.0 is the center of the region, -1.0 is the left edge,
and 1.0 is the right edge. Therefore, half of the width of the region is defined as
a unit measure. So -2.0 is two units to the left of the center of the element
region, and 2.0 is two units to the right of the center of the element region.
The default value is 0.

startY
This attribute specifies the distance from the top side of the element at which to
start the warp transition. This parameter is a floating point number in the range
[-2.0, 2.0], where 0.0 is the center of the region, -1.0 is the left edge, and 1.0 is
the right edge. Therefore, half of the height of the region is defined as a unit
measure. So -2.0 is two units above the center of the element region, and 2.0 is
two units below the center of the element region.
The default value is 0.

endX
This attribute specifies the distance from the left side of the element at which to
end the warp transition. This parameter is a floating point number in the range
[-2.0, 2.0], where 0.0 is the center of the region, -1.0 is the left edge, and 1.0 is
the right edge. Therefore, half of the width of the region is defined as a unit
measure. So -2.0 is two units to the left of the center of the element region, and
2.0 is two units to the right of the center of the element region.
The default value is 0.

endY
This attribute specifies the distance from the top side of the element at which to
start the warp transition. This parameter is a floating point number in the range
[-2.0, 2.0], where 0.0 is the center of the element, -1.0 is the left edge, and 1.0 is

26224 Feb 2000 08:26

Transition Effects

the right edge. Therefore, half of the height of the region is defined as a unit
measure. So -2.0 is two units above the center of the element region, and 2.0 is
two units below the center of the element region.
The default value is 0.

borderWidth
This attribute specifies the width of a generated border along a wipe edge. Legal
values are integers greater than or equal to 0. If borderWidth is equal to 0, then
this implies no generated border along the wipe edge.
The default value is 0.

color
If the value of the "type" attribute is "wipe", "iris", "radial", "matrix", "push",
"slide", or "warp", then this attribute specifies the content of the generated
border along a wipe or warp edge. This attribute can either be a color (as
specified by the "background-color" property of the CSS2 specification) or the
string "blend". If the value of this attribute is a color, then the generated border
along the wipe or warp edge is filled with this color. If the value of this attribute is
"blend", then generated border along the wipe blend is an additive blend (or
blur). If the value of the "type" attribute is "fade" and the value of the "subtype"
attribute is "fadeToColor" or "fadeFromColor", then this color specifies the
starting or ending color of the fade.
The default value is "black".

Element content

The <transition> element is an empty element.

Examples of the <transition> element.

For example, suppose we wanted to define two transition classes: a simple 2-second
fade-to-black and a 5-second keyhole-shaped iris wipe. In SMIL, our definition would
look like:

 ...
 <head>
 ...
 <transition id="ftb2" type="fade" subtype="fadeToColor"
 dur="2s" color="#000000" />
 <transition id="key5" type="irisWipe" subtype="keyhole"
 dur="5s" />
 ...
 </head>
 ...

and in a CSS-like syntax our definition would look like:

 ...
 <HEAD>
 ...
 <STYLE>
 .ftb2 { transitionType: fade;
 transitionSubtype: fadeToColor;
 transitionDur: 2s;

24 Feb 2000 08:26263

Transition Effects

 transitionColor: #000000 }
 .key5 { transitionType: irisWipe;
 transitionSubtype: keyhole;
 transitionDur: 5s }
 </STYLE>
 ...
 </HEAD>
 ...

Note that in SMIL, the "id" attribute is necessary to identify the transition class. In
CSS, the transition class name is implicit in the CSS class selector notation and thus
an "id" property is unnecessary.

12.3.2 Handling Parameter Errors
Transitions parameters can be specified incorrectly in many different ways with
varying levels of severity. Therefore, the following errors should be handled with the
specified action:

1. Transitions subtype is not valid for specified transition type. The specified
transition subtype should be ignored and the default subtype for the specified
transition type should be performed.

2. Transition duration is not specified. The default duration of 1 second should be
assumed.

3. Transition parameter is outside the legal range. If a transition parameter is
specified outside of the legal range, then the default value of the parameter
should be assumed. For instance, the startX parameter has a legal range of
[-2.0,2.0] and a default value of 0.0. If startX were to be specified as 3.0, then
the specified value should be ignored and a default value of 0.0 should be
assumed.

4. Transition parameter does not apply to this transition type. Since not all
transition parameters apply to all transition types, then a common error could be
to specify a transition parameter which does not apply to the specified transition
type. These irrelevant parameters should be ignored. For instance, the "startX"
parameter only applies to the "warp" transition type. If "startX" were to be
specified for the "edgeWipe" transition type, then it should be ignored.

5. Transition duration is longer than the duration of the media object itself. In this
case, the entire transition should be ignored and not performed.

6. Two transitions are specified as active on the same region at the same time. For
example, image B follows image A in a region and A has an base="end"
transition and B has a base="begin" transition. In conflicts involving a begin
versus an end transition, the begin transition is used and the end transition is
ignored.

26424 Feb 2000 08:26

Transition Effects

12.4 Applying Transitions to Media Elements
Once a transition class has been defined in the head of a document, then a
transition instance can be created by applying the transition class to the timeline of a
media object element. For languages which support CSS style, the class selector is
used to apply a transition class to a media element. The value of the class attribute
is defined in the class selector of the transition definition. For SMIL, a "transition"
attribute is added to all media object elements.

12.4.1 The "transition" attribute.
The "transition" attribute is added to all media object elements. The default value of
the transition attribute is an empty string, which indicates that no transition should be
performed. The value of the "transition" attribute should be the same as the value of
the "id" attribute of one of the <transition> elements defined in the <head> of the
document. If the value of the "transition" attribute does not correspond to the value of
the "id" attribute of any one of the <transition> elements in the <head> of the
document, then this is an error. In this case, the value of the "transition" attribute
should be considered to be the empty string and therefore no transition should be
performed.

In SMIL, this attribute may be applied to any media object element. These
elements are listed in the SMIL Media Object Module . In other languages, this
attribute may be applied to the appropriate elements which reference media objects.
Also this element may be applied to other non-media elements for which transitions
are desired (such as the <DIV> element in HTML.

Examples of applying the "transition" attribute.

Consider the slideshow example in the Introduction of the document with two
additions: a fade-from-black is applied to butterfly.jpg and a fade-to-black is applied
to seal.jpg. In SMIL this would look like:

<smil>
 <head>
 <layout>
 <root-layout width="256" height="256" background-color="#000000"/>
 <region id="whole" left="32" top="32" width="192" height="192"/>
 </layout>
 <transition id="xfade1s" type="fade" subtype="crossfade" dur="1s"/>
 <transition id="fromblack1" type="fade" subtype="fadeFromColor" dur="1s"/>
 <transition id="toblack1" type="fade" subtype="fadeToColor" dur="1s" base="end" />
 </head>
 <body>
 <seq>

 </seq>
 </body>
</smil>

24 Feb 2000 08:26265

Transition Effects

and
<HTML>
 <HEAD>
 <XML:NAMESPACE PREFIX="t"/>
 <STYLE>
 DIV { position: absolute;
 left: 0px;
 top: 0px;
 width: 256px;
 height: 256px;
 background-color: #000000 }
 .whole { position: absolute;
 left: 32px;
 top: 32px;
 width: 192px;
 height: 192px }
 .xfade1s { transitionType: fade;
 transitionSubType: crossfade;
 transitionDur: 1s }
 .fromblack1 { transitionType: fade;
 transitionSubType: fadeFromColor;
 transitionDur: 1s;
 transitionColor: #000000 }
 .toblack1 { transitionType: fade;
 transitionSubType: fadeToColor;
 transitionDur: 1s;
 transitionColor: #000000;
 transitionBase: end }
 </STYLE>
 </HEAD>
 <BODY>
 <DIV STYLE="behavior:url(#default#time);" t:TIMELINE="seq">
 <t:IMG CLASS="whole,fromblack1" STYLE="behavior:url(#default#time);" t:SRC="butterfly.jpg" t:DUR="5" t:TIMEACTION="display"/>
 <t:IMG CLASS="whole,xfade1s" STYLE="behavior:url(#default#time);" t:SRC="eagle.jpg" t:DUR="5" t:TIMEACTION="display"/>
 <t:IMG CLASS="whole,xfade1s" STYLE="behavior:url(#default#time);" t:SRC="wolf.jpg" t:DUR="5" t:TIMEACTION="display"/>
 <t:IMG CLASS="whole,xfade1s,toblack1" STYLE="behavior:url(#default#time);" t:SRC="seal.jpg" t:DUR="5" t:TIMEACTION="display"/>
 </DIV>
 </BODY>
</HTML>

We will use this example to illustrate the following rules for applying transitions to
media elements:

1. Since the purpose of transitions is "transitioning" from one media object to
another, then transitions must be applied to either the beginning or end (or both)
of some media object. However, the visual effect may appear to be applying this
transition in the middle of an element’s timeline. Consider the following SMIL
snippet:

 ...
 <par>

 </par>
 ...

Assuming that region "bar" is z-ordered on top of region "foo", then transitions
applied to both the beginning and end of eagle.jpg would have the visual
appearance of being applied during the timeline of butterfly.jpg. However, from
the authoring perspective, they are still applied at the beginning and end of
eagle.jpg.

2. Applying a transition to the beginning or end of an element’s timeline does not
affect the duration of the element. For instance, in the example above, applying
a 1-second transition at the beginning of eagle.jpg does not add or subtract from
the timeline of eagle.jpg - it is still displayed from 5-10 seconds in the
presentation. Applying a 1-second transition at the beginning of eagle.jpg makes
the transition take place from [5,6] seconds and applying a 2-second transition
at the end of eagle.jpg would make the transition happen from [8,10] seconds.

3. Transitions which occur at the end of a media object’s timeline must respect the
object’s fill behavior. In other words, a transition intended for the end of a media

26624 Feb 2000 08:26

Transition Effects

object’s timeline actually take place at the effective end of that element’s
timeline. For instance, in the following presentation:

 ...
 <transition id="toblack1s" type="fade" subType="fadeToColor"
 color="#000000" base="end" dur="1s"/>
 ...
 <par>

 <video ... dur="30s" transition="toblack1s"/>
 </par>

the effective end of the element is 30s. Therefore both elements fade
to black together at 29s. However, in the following:

 ...

 <transition id="toblack1s" type="fade" subType="fadeToColor"
 color="#000000" base="end" dur="1s"/>
 ...
 <par>

 <video ... dur="30s" transition="toblack1s"/>
 </par>

the effective end of the element is 10s. Therefore, in this case the
 element fades to black starting at 9s and the <video> element fades to
black starting at 29s.

4. The timeline for the media element we are transitioning to must either overlap or
immediately follow the timeline for the media element we are transitioning from.
In the slideshow example, the timelines for each media object we are
transitioning to immediately follow the end of the timeline of the objects we are
transitioning from. In these cases (where the timelines immediately follow but do
not overlap), the transition is effectively between the frozen last frame of the
previous ("from") media and active frames of the current ("to") media. In cases
where the timelines overlap (and hence the regions being played to have
different z-orders), the transition is between active frames of both media. For
instance, in this transition:

 ...
 <seq>
 <video src="foo1.mpg" region=<reg1> ... />
 <video src="foo2.mpg" region=<reg1> transition="xfade1s" ... />
 </seq>
 ...

the timelines do not overlap and therefore we are doing a crossfade between
the last frame of foo1.mpg and active frames of foo2.mpg. In the following
presentation, however:

24 Feb 2000 08:26267

Transition Effects

 ...
 <transition id="xfadebeg" type="fade" subtype="crossfade" dur="1s" />
 <transition id="xfadeend" type="fade" subtype="crossfade" dur="1s" base="end" />
 ...
 <par>
 <video src="foo1.mpg" dur="30s" region="reg1" />
 <video src="foo2.mpg" begin="10s" dur="10s" region="reg2" transition="xfadebeg,xfadeend" />
 </par>
 ...

crossfades both at the beginning and end of foo2.mpg are between active
frames of both foo1.mpg and foo2.mpg.

5. If the timelines for the media objects involved in the transition do not overlap,
then the background color for the missing regions should be used. For example,

 ...
 <transition id="awipe" type="wipe" dur="1s" ... />
 ...
 <par>

 </par>
 ...

In this example, the timelines for img1.jpg and img2.jpg do not overlap.
Therefore, img1.jpg will transition to the background color of the region.

6. The fill behavior of an element instructs the user agent when it can remove the
media object. For instance, in the following example not using transitions,

 ...
 <seq>

 </par>
 ...

the implementation knows that it can remove the object representing img1.jpg
after 10 seconds. However, if we were using a transition between img1.jpg and
img2.jpg, then we need the object for img1.jpg to remain until after the transition
is completed and then it may be removed. This is a new kind of fill behavior and
is specified by a new value for the fill attribute called "transition". In the above
example,

 ...
 <seq>

 </par>
 ...

the implementation is instructed to keep the object for img1.jpg around long
enough to complete the transition between img1.jpg and img2.jpg in the region
named "whole".

26824 Feb 2000 08:26

Transition Effects

12.5 Multi-Element Transitions
Up until this point in the discussion, we have applied transitions to single media
object elements. However, it is common practice to apply transitions across several
different media at once. Consider the following example:

<smil>
 <head>
 <layout>
 <root-layout width="320" height="240" background-color="#000000"/>
 <region id="whole" left="0" top="0" width="320" height="240" z-index="0"/>
 <region id="leftpane" left="16" top="16" width="136" height="208" z-index="1"/>
 <region id="rightpane" left="168" top="16" width="136" height="208" z-index="1"/>
 </layout>
 </head>
 <body>
 <seq>
 <par>

 </par>
 <par>

 </par>
 </seq>
 </body>
</smil>

where the regions of this presentation look like:

Suppose that we had defined a transition class called "diagwipe" to be a 1-second
diagonal wipe from upper right to lower left. In this example, we consider 4 possible
different cases of how we might want to apply this transition to this presentation:

24 Feb 2000 08:26269

Transition Effects

Case 1 Case 2

Case 3 Case 4

Cases 1 and 4 are fairly straightforward, since they are applying individual
transitions to individual media elements, which we discussed in the previous section.
The SMIL for Case 1 would look like:

<smil>
 <head>
 <layout>
 <root-layout width="320" height="240" background-color="#000000"/>
 <region id="whole" left="0" top="0" width="320" height="240" z-index="0"/>
 <region id="leftpane" left="16" top="16" width="136" height="208" z-index="1"/>
 <region id="rightpane" left="168" top="16" width="136" height="208" z-index="1"/>
 </layout>
 <transition id="diagwipe" type="wipe" subtype="diagonalRightDown" dur="1s"/>
 </head>
 <body>
 <seq>
 <par>

 </par>
 <par>

27024 Feb 2000 08:26

Transition Effects

 </par>
 </seq>
 </body>
</smil>

and the SMIL for Case 4 would look like:

<smil>
 <head>
 <layout>
 <root-layout width="320" height="240" background-color="#000000"/>
 <region id="whole" left="0" top="0" width="320" height="240" z-index="0"/>
 <region id="leftpane" left="16" top="16" width="136" height="208" z-index="1"/>
 <region id="rightpane" left="168" top="16" width="136" height="208" z-index="1"/>
 </layout>
 <transition id="diagwipe" type="wipe" subtype="diagonalRightDown" dur="1s"/>
 </head>
 <body>
 <seq>
 <par>

 </par>
 <par>

 </par>
 </seq>
 </body>
</smil>

In Cases 2 and 3, however, we want to apply the transition to the "whole" region
and either have the "leftpane" and "rightpane" regions clip (Case 3) or not clip (Case
2) the transition. In order to express Cases 2 and 3, there are three additional
syntactical concepts which need to be added to SMIL:

1. Parent regions. How do we do this in CSS? As defined in the Layout Module,
the <region> element may be a structural child of another <region> element, as
in the following SMIL fragment:

 <region id="parent" ... >
 <region id="child1" ... />
 <region id="child2" ... />
 ...
 </region>

2. Allow child regions to clip their parent. How do we do this in CSS? In SMIL, we
will accomplish this by allowing adding a "childrenClip" attribute to the <region>
element. If childrenClip="true", then operations on the parent region (such as
transitions) will be clipped by the child regions. By default, childrenClip would be
"false".

3. Lightweight media object element. We introduce a new media object element
called <brush>. This element can be used to place lightweight media such as
solid fills or pattern fills in regions at points along the timeline. For our purposes,
we will use it to place transitions on the timeline for transitions which include
multiple media elements.

24 Feb 2000 08:26271

Transition Effects

The reason for introducing parent regions and a lightweight media object element
is to maintain consistency with single-media-element transitions. In
single-media-element transitions, we associate a transition with a media object
element which in turn is associated with a playback region. This, by inference,
makes a one-to-one mapping between transition and playback region. Therefore, in
order to have transitions which incorporate multiple media objects (and thus multiple
regions), we associate a transition with a lightweight media object which is then
associated with a parent region.

A secondary purpose of the parent region is to define the bounding rectangle for
transitions which will involve multiple media objects. An alternative would be to
assume that the bounding rectangle is defined by the convex hull (the minimum
bounding rectangle) of the set of all the regions involved. However, formally defining
a parent region is simpler and more flexible.

12.5.1 The <brush> element
The <brush> element is a lightweight media object element, meaning that the
media object is completely procedural. Since this media object is procedural, then all
the information about the media object is specified in the attributes of the element
itself. Therefore does not have to specify a "src" attribute.

Element attributes

color
The use and definition of this attribute are identical to the "background-color"
property in the CSS2 specification, except that the <brush> element does not
require support for "system colors".

transition
This attribute is the same as the transition attribute which was added to all
media object elements and defined previously.

The <brush> element also supports all timing and synchronization attributes
which all other media objects support (see the SMIL Timing and Synchronization
Module and the SMIL Media Object Module for a list of these attributes).

Element content

The <brush> element is an empty element.

Now, armed with these new syntactical constructs, we can express Cases 2 and 3
in SMIL. First, Case 2:

<smil>
 <head>
 <layout>
 <root-layout width="320" height="240" background-color="#000000"/>
 <region id="whole" left="0" top="0" width="320" height="240" z-index="0">
 <region id="leftpane" left="16" top="16" width="136" height="208" z-index="1"/>
 <region id="rightpane" left="168" top="16" width="136" height="208" z-index="1"/>
 </region>
 </layout>
 <transition id="diagwipe" type="wipe" subtype="diagonalRightDown" dur="1s"/>
 </head>
 <body>

27224 Feb 2000 08:26

Transition Effects

 <seq>
 <par>

 </par>
 <par>
 <brush dur="10s" region="whole" transition="diagwipe"/>

 </par>
 </seq>
 </body>
</smil>

Note the following changes from other cases. First, we have made the "leftpane"
and "rightpane" regions to be children of the "whole" region. Second, we have
placed the <brush> element on the timeline and associated the transition with it.
Now, Case 3 is a trivial change from Case 2:

<smil>
 <head>
 <layout>
 <root-layout width="320" height="240" background-color="#000000"/>
 <region id="whole" left="0" top="0" width="320" height="240" z-index="0" childrenClip="true">
 <region id="leftpane" left="16" top="16" width="136" height="208" z-index="1"/>
 <region id="rightpane" left="168" top="16" width="136" height="208" z-index="1"/>
 </region>
 </layout>
 <transition id="diagwipe" type="wipe" subtype="diagonalRightDown" dur="1s"/>
 </head>
 <body>
 <seq>
 <par>

 </par>
 <par>
 <brush dur="10s" region="whole" transition="diagwipe"/>

 </par>
 </seq>
 </body>
</smil>

where all we have done is added childrenClip="true" to the declaration of the
parent "whole" region.

12.6 Appendix A: Open Issues
1. Transitions vs. Effects - should we also be able to specify non-time-based

effects? These are not transitions between two different media types, but do fit
nicely into the idea of style. In other words, an "emboss" effect might just be a
style on a particular element. It doesn’t have a duration, but it could have a start.

2. How do we make the set of transitions and transition parameters extensible?
3. Is is possible to come up with a language for describing what a transition is,

rather than just enumerating a list of types?
4. Not all transition parameters apply to all transition subtypes - how to we enforce

this?
5. Some transitions (like fading to a color) really only make sense at the end of a

24 Feb 2000 08:26273

Transition Effects

timeline. How do we enforce this?
6. How do we express the notion of parent regions in CSS?
7. Implementing all of the transitions in this document is a daunting task. Do we

need to define some "baseline" transition subset which would be required for
compliance?

8. Do the child regions have to be completely geometrically contained by the
parent? If they do not have to be, then what is the behavior of the transition
across the regions (or partial regions) which are structural children but not
geometric children?

9. We implicitly assume that the lightweight media object will be placed by the
author at the appropriate place in the timeline. What happens if the timeline of
the lightweight media object doesn’t sync with a timeline of any media objects?

27424 Feb 2000 08:26

Transition Effects

13. The SMIL Document Object Model Module
Editors:

Philippe Le Hégaret, W3C
Patrick Schmitz, Microsoft

13.1 Abstract
This specification defines the Document Object Model (DOM) specification for
synchronized multimedia functionality [SMIL-DOM]. It is part of work in the
Synchronized Multimedia Working Group (SYMM) towards a next version of the
SMIL language and SMIL modules. Related documents describe the specific
application of this SMIL DOM for SMIL documents and for HTML and XML
documents that integrate SMIL functionality. The SMIL DOM builds upon the DOM
Core functionality, adding support for timing and synchronization, media integration
and other extensions to support synchronized multimedia documents.

24 Feb 2000 08:26275

Synchronized Multimedia Integration Language Document Object Model (SMIL DOM) Specification

27624 Feb 2000 08:26

Synchronized Multimedia Integration Language Document Object Model (SMIL DOM) Specification

14. SMIL Boston Language Profile
Editors:

Nabil Layaida (Nabil.Layaida@inrialpes.fr), INRIA
Jacco.van.Ossenbruggen (Jacco.van.Ossenbruggen@cwi.nl), CWI

14.1 Open issues
Should we remove the current profile definitions from the SMIL modules draft, or
should we integrate the SMIL language profile into SMIL modules?

Should the profile define a minimal list/recommended of media types?
see: Baseline formats .

Should we allow subsetting/splitting of modules (basic/Boston layout module)?

Does the profile require support for some or all features of SMIL Boston? If it
requires some, what features are not required If it requires all, is it realistic to expect
that someone will really implement the full Boston Language Profile in the near
future (including DOM, transitions, animation)

Should we define:

level of DOM support
level of XPointer support
transfer protocols?

See in-line for more remarks.

14.2 Abstract
The SMIL Boston profile describes the SMIL modules that are included and details
how this modules are integrated. It contains all of the SMIL Boston features including
animation, content control, layout, linking, media object, meta-information, structure,
timing and transition effects modules. It is designed for Web clients that support
direct SMIL Boston markup such as standalone multimedia players.

14.3 SMIL Boston Profile
This section is informative.

The SMIL Boston Profile is defined as a markup language. The syntax of this
language is formally described with a document type definition or Schema which are
based on SMIL modules as defined in "Modularization of SMIL" [SMIL-MOD]

24 Feb 2000 08:26277

The SMIL Boston Language Profile

The SMIL Boston Profile design requirements are:

1. Ensure that the profile is completely backward compatible with SMIL 1.0. (check
this)

2. Ensure that all the modules’ semantics maintain compatibility with SMIL
semantics (this includes content and timing).

3. Adopt new W3C recommendations when appropriate and not in conflict with
other requirements. (check against both Schemas and CC/PP, align with
XHTML)

4. Specify how the modules support the document object model. (Define specific
level of DOM support)

14.4 Normative Definition of SMIL Boston
This section is normative.

14.4.1 Document Conformance
A conforming SMIL Boston document is a document that requires only the facilities
described as mandatory in this specification. Such a document must meet all of the
following criteria:

1. It must validate against the DTD (or Schema?) found in Appendix A
2. The root element of the document must be <smil> .
3. The name of the default namespace on the root element must be the SMIL

Boston namespace name, (TBD) http://www.w3.org/2000/smil
4. There must be a DOCTYPE declaration in the document prior to the root

element. The public identifier included in the DOCTYPE declaration must
reference the DTD ot schema (TBD) found in Appendix A using its Formal
Public Identifier. The system identifier may be modified appropriately.

<!DOCTYPE SMIL-Boston PUBLIC "-//W3C//DTD SMIL Boston //EN"
 "smil-boston.dtd">

14.4.2 User Agent Conformance
The user agent must conform to the following user agent rules :

@fill in here requirements.

14.4.3 SMIL-Boston Profile
The SMIL-Boston Profile supports the timeline-centric multimedia features found in
SMIL language. This profile includes the following SMIL modules:

Animation Module
Content Control Module
Layout Module

27824 Feb 2000 08:26

The SMIL Boston Language Profile

Linking Module
Media Object Module
Metainformation Module
Structure Module
Timing and Synchronization Module
Transition Effects Module

Is it realistic to expect that someone will really implement this in the near future
(including full transitions, animation, DOM)? Check this with implementers.
Chairman: Yes, we should require what people will actually implement. If the group
wants to make certain features option, that is up for discussion.

14.4.4 Animation Module
The Animation Module provides a framework for incorporating animation onto a
timeline (a timing model) and a mechanism for composing the effects of multiple
animations (a composition model). The Animation Module defines semantics for the
animate, set, animateMotion, and animateColor elements:

Elements Attributes Minimal Content Model

animate TBD TBD

set TBD TBD

animateMotion TBD TBD

animateColor TBD TBD

This module adds the animate, set, animateMotion, and animateColor elements to
the content model of the par, seq, and excl elements of the Timing and
Synchronization Module. It also adds these elements to the content model of the
body element of the Structure Module.

Integration issues with animation

We need to think about how animation applies to SMIL. It should be possible to
animate regions, and so animation will apply to the elements of layout. Animating the
time containers is interesting, but likely beyond what we want to do here. What
properties of media elements are interesting to animate? How about the URL’s of
media objects? There is much up for discussion here.

14.4.5 Content Control Module
The Content Control Module provides a framework for selecting content based on a
set of test attributes. The Content Control Module defines semantics for the switch
element.

24 Feb 2000 08:26279

The SMIL Boston Language Profile

Elements Attributes Minimal Content Model

switch Common, Timing TBD

This module adds the switch, element to the content model of the par, seq, and
excl elements of the Timing and Synchronization Module. It also adds this element to
the content model of the body element of the Structure Module. It also adds this
element to the content model of the a element of the Linking Module. It also adds
this element to the content model of the head element of the Structure Module.

The Content Control Module defines the Attribute set "Test".

Collection
Name

Attributes in Collection

Test

systemBitrate (Number), systemCaption (on|off), systemLanguage
(CDATA), systemOverdubOrCaption (caption|overdub),
systemRequired (URI), systemScreenSize (CDATA),
systemScreenDepth (CDATA), systemOverdubOrSubtitle
(overdub|subtitle), systemAudioDesc (on|off), systemComponent
(CDATA),

We also want to include the test-attributes, which can be on elements within or
outside of a switch, the usergroups, and the prefetch element.

14.4.6 Layout Module
The Layout Module provides a framework for spatial layout of visual components.
The Layout Module defines semantics for the layout, root-layout, and region
elements.

We may want to split layout up, but this will not be done for this draft. This
shouldn’t affect this profile, since all of the layout will likely be included in the full
profile (as opposed to the Basic profile).

28024 Feb 2000 08:26

The SMIL Boston Language Profile

Elements Attributes
Minimal

Content Model

region
backgroundColor,bottom, fit (fill | hidden | meet |
scroll | slice), width, height, left, right, title, top,
volume, z-index,

TBD

root-layout backgroundColor, width, height, skip-content, title None

top-layout(*) backgroundColor, width, height, skip-content, title region, None

layout TBD**
root-layout,
region,
top-layout

(*) If the type attribute of the "layout" element has the value
"text/smil-basic-layout", it can contain the "region" and the "root-layout" elements. If
the type attribute of the layout element has the value "text/smil-extended-layout", in
addition to the "layout" and "root-layout" elements it can contain the "top-layout"
element.

(**) The "background-color" attribute of SMIL1.0 is deprecated in favor of
"backgroundColor".

This module adds the layout element to the content model of the head element of
the Structure Module. It also adds this element to the content model of the switch
element of the Content Control Module.

Probably need more explanation here as to how modules add to each other
through the integration profile. Any suggestions for a good format? Maybe define in
both sections: briefly note in the section adding functionality, and fully describe in the
section having functionality added.

14.4.7 Linking Module
The Linking Module provides a framework for relating documents to content,
documents and document fragments. The Linking Module defines semantics for the
a and area elements.

Both the a and area elements have an "href" attribute, whose value should be a
valid URI. Support for URI’s using http:// and file:/ access protocols is required.
Support for other protocols is optional.

Make support for RT(S)P required? Chairman: How about if RTP/RTSP is
supported by the implementation, then the markup must be supported. If not, then
the rtsp attributes/elements are ignored. This is the kind of thing that the profile has
to nail down).

Support for URI’s with XPointer fragment identifier syntax is not required.

24 Feb 2000 08:26281

The SMIL Boston Language Profile

Elements Attributes
Minimal

Content Model

a

href, sourceVolume, destinationVolume,
sourcePlaystate (play | pause | stop),
destinationPlaystate, show (new | replace),
accesskey, tabindex , target, actuate, Common,
Timing, Test

Media Objects,
Time Container
Elements,

area
coords, sourceVolume , destinationVolume,
sourcePlaystate, destinationPlaystate, show,
accesskey, tabindex, target, Common, Timing,Test

Empty

This module adds the area and a elements to the content model of the par, seq,
and excl elements of the Timing and Synchronization Module. It also adds these
elements to the content model of the body element of the Structure Module.

SMIL 1: The <anchor> element is deprecated in favor of <area>.

SMIL 1: The show attribute value "pause" is deprecated in favor of setting the the
"show" attribute to "new" and the "sourcePlaystate" attribute to "pause".

Chairman: need to define what "adding to the content model" means. This is not
fully descriptive, since the time containers can be children of media elements, etc.

14.4.8 Media Object Module
The Media Object Module provides a framework for declaring media. The Media
Object Module defines semantics for the ref, animation, audio, img, video, text, and
textstream elements.

Should the profile define a minimal list/recommended of media types?
see: Baseline formats .

In the SMIL Boston Language Profile, media object elements can have the
following attributes, in addition to the attributes defined in the SMIL Media Object
Module:

dur
Defined in the SMIL Timing Module

end
Defined in the SMIL Timing Module

fill
For a definition of the semantics of this attribute, see SMIL Timing Module. The
attribute can have the values "remove" and "freeze".

id
This attribute uniquely identifies an element within a document. Its value is an
XML identifier.

28224 Feb 2000 08:26

The SMIL Boston Language Profile

region
This attribute specifies an abstract rendering surface (either visual or acoustic)
defined within the layout section of the document. Its value must be an XML
identifier. If no rendering surface with this id is defined in the layout section, the
values of the formatting properties of this element are determined by the default
layout.

In the SMIL Boston Language Profile, media object elements can contain the
following elements:

anchor
Defined in Linking Module

area
Defined in Linking Module

par
Defined in Timing Module

seq
Defined in Timing Module

excl
Defined in Timing Module

animate
Defined in Animation Module

set
Defined in Animation Module

animateColor
Defined in Animation Module

animateMotion
Defined in Animation Module

rtpmap
Defined in the Media Object Module

param
defined in the Media Object Module

Can this be moved to an appendix?

Changes from SMIL 1.0

SMIL 1.0 only allowed "anchor" as a child element of a media element. In addition to
"anchor", the following elements are now allowed as children of a SMIL media
object:

area, anchor
Defined in Linking Module

par, seq, excl
Defined in Timing Module

param, rtpmap
Defined in Media Object Module

24 Feb 2000 08:26283

The SMIL Boston Language Profile

animate, set, animateColor, animateMotion
Defined in Animation Module

Elements Attributes Minimal Content Model

ref TBD TBD

img, text TBD TBD

audio, video, animation, textstream TBD TBD

This module adds the ref, animation, audio, img, video, text, and textstream
elements to the content model of the par, seq, and excl elements of the Timing and
Synchronization Module. It also adds these elements to the content model of the
body element of the Structure Module. It also adds these elements to the content
model of the a element of the Linking Module.

14.4.9 Metainformation Module
The Metainformation Module provides a framework for describing a document, either
to inform the human user or to assist in automation. The Metainformation Module
defines semantics for the meta and metadata elements.

Elements Attributes
Minimal Content

Model

meta
(TBD)

base, pics-label (or PICS-Label), title, xml:lang,
http-equiv, scheme

None

metadata RDF

This module adds the meta element to the content model of the head element of
the Structure Module.

14.4.10 Structure Module
The Structure Module provides a framework for structuring a SMIL document. The
Structure Module defines semantics for the smil, head, and body elements.

28424 Feb 2000 08:26

The SMIL Boston Language Profile

Elements Attributes Minimal Content Model

smil
Core, Accessibility,
xmlns

head?, body?, metadata?

head
Core, Accessibility,
profile

meta*, (switch | layout)?

body Core, Accessibility
(Schedule | MediaContent | MediaControl |
LinkAnchor)*

The Attribute collections in this table are defined as follows

Core
id (ID),

class (NMTOKEN)

Accessibility
xml:lang (NMTOKEN),

title (CDATA)

The collections in the table from the Content Model of the body element are
defined as follows

Schedule
par, seq, excl

MediaContent
ref, audio, video, img, animation, text, and textstream

MediaControl
switch

LinkAnchor
a, area

The body element acts as the root element to span the timing tree. The body
element has the schedule semantics of a time container equal to that of the "seq"
element from the timing and synchronization module. This module is a mandatory
part in any profile family labeled "SMIL".

14.4.11 Timing and Synchronization Module
The Timing and Synchronization Module provides a framework for describing timing
structure, timing control properties, and temporal relationships between elements.
The Timing and Synchronization Module defines semantics for par, seq, and excl
elements. In addition, this module defines semantics for attributes including begin,
dur, end, repeatCount, repeatDur, etc.

24 Feb 2000 08:26285

The SMIL Boston Language Profile

Elements Attributes
Minimal Content

Model

par, seq,
excl

TBD TBD

begin, end, dur, repeatCount, repeatDur,
TBD

TBD

This module is mandatory in any profile incorporating SMIL modules.

14.4.12 Transition Effects Module

Elements Attributes Minimal Content Model

TBD TBD TBD

@TBD This module is used, and it adds the TBD element to the content model of
the layout element of the Layout Module.

14.5 Document Type Definition
This section is normative.

The SMIL Boston document type is defined as a set of SMIL Boston modules. All
SMIL Boston modules are integrated according to the guidelines in the
"Modularization of SMIL Boston" specification [SMIL-MOD], and defined within their
respective module sections.

14.6 Appendix A: Document Type Definition or XML
Schema
This section is normative.

TBD. May instead be an XML Schema.

28624 Feb 2000 08:26

The SMIL Boston Language Profile

15. HTML+SMIL Language Profile
Editor:

Patrick Schmitz (pschmitz@microsoft.com), Microsoft

15.1 Abstract
The HTML+SMIL profile integrates a subset of the SMIL Boston specification with
HTML. It includes the SMIL Boston modules supporting animation, content control,
linking, media objects, timing an synchronization, and transition effects. The SMIL
Boston features are integrated directly with HTML and CSS, and can be used to
manipulate HTML and CSS features. It is designed for Web clients that support
HTML+SMIL markup.

The document type definition or Schema is implemented using SMIL modules as
defined in "Modularization of SMIL" [SMIL-MOD].

15.2 Introduction
This section is informative.

This profile describes the SMIL modules that are included, and details the
integration issues. The language integration includes the complete set of XHTML 1.1
modules. @@ We really need aspects of XHTML 2.0, but that is not very far along
yet).

Throughout the document, where reference is made to "HTML" functionality and
elements, this should be understood to refer to XHTML modules and elements.

15.2.1 Motivation and applications
Some notes on why we are doing this.

15.2.2 Design Rationale
This section explains why certain modules of SMIL Boston are not included. The
general philosophy is to use XHTML modules where appropriate.

Layout

The SMIL Boston layout module is not included, as HTML and CSS provide layout
functionality. Authors are already familiar with the HTML/ CSS layout model, and it
provides the tools authors need.

24 Feb 2000 08:26287

HTML+SMIL Language Profile

Structure

The SMIL Boston structure module is not included, as the HTML document is
defined to be the host language, and so provides the equivalent elements and
semantics.

Meta information

The SMIL Boston meta information module is not included, as XHTML provides the
equivalent elements and semantics.

15.3 Normative Definition of SMIL Boston
This section is normative.

15.3.1 Document Conformance
A conforming HTML+SMIL document is a document that requires only the facilities
described as mandatory in this specification. Such a document must meet all of the
following criteria:

1. It must validate against the DTD (in future the Schema) found in Appendix A
2. The root element of the document must be <html>.
3. The name of the default namespace on the root element must be the

HTML+SMIL namespace name, http://www.w3.org/2000/htmlplussmil (This
must still be verified)

4. There must be a DOCTYPE declaration in the document prior to the root
element. If present, the public identifier included in the DOCTYPE declaration
must reference the DTD found in Appendix A using its Formal Public Identifier.
The system identifier may be modified appropriately.

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML+SMIL //EN"
 "htmlplussmil.dtd">

15.3.2 User Agent Conformance
The user agent must conform to the "User Agent Conformance" section of the
XHTML specification ([XHTML10], section 3.2).

The user agent must conform to the following user agent rules :

@other requirements?

15.3.3 HTML+SMIL Profile
The HTML functionality in the HTML+SMIL document type is based upon XHTML
1.1 modules and associated document type. The XHTML 1.1 document type is made
up of the following abstract modules, as defined in XHTMLMOD [XMOD], and the
Ruby Annotation module as defined in [RUBY]. The formal definition of the modules

28824 Feb 2000 08:26

HTML+SMIL Language Profile

http://www.w3.org/TR/xhtml1/#uaconf

is not repeated here, but only the extensions introduced with timing. The notation,
terms and document conventions used here are borrowed from [XMOD].

Structure Module*
body, head, html, title

Basic Text Module*
abbr, acronym, address, blockquote, br, cite, code, dfn, div, em, h1, h2, h3, h4,
h5, h6, kbd, p, pre, q, samp, span, strong, var

Hypertext Module*
a

List Module*
dl, dt, dd, ol, ul, li

Applet Module
applet, param

Presentation Module
b, big, hr, i, small, sub, sup, tt

Edit Module
del, ins

BDO Module
bdo

Forms Module
form, input, select, option, textarea, button, fieldset, label, legend, optgroup

Tables Module
caption, table, td, th, tr, col, colgroup, tbody, thead, tfoot

Image Module
img

Client-side Image Map Module
area, map, (attribute extensions)

Server-side Image Map Module
(attribute extensions)

Object Module
object, param

Frames Module
frameset, frame, noframes, (attribute extensions)

Iframe Module
iframe

Intrinsic Events Module
(attribute extensions)

Meta Information Module
meta

Scripting Module
noscript, script

Stylesheet Module
style

Link Module
link

24 Feb 2000 08:26289

HTML+SMIL Language Profile

Base Module
base

Legacy Module
font, s, strike, u, (attribute extensions)

 (*) = This module is a required [XHTMLFamily] module.

@@We will also include the new Events module [XHTMLEvents] as it is
completed.

In addition, the HTML+SMIL document type supports the timeline-centric
multimedia features defined by SMIL Boston. The profile includes the following SMIL
Boston modules:

Animation Module
Content Control Module
Linking Module
Media Object Module
Timing and Synchronization Module
Transition Effects Module

15.3.4 Animation Module
The Animation Module provides a framework for incorporating animation onto a
timeline (a timing model) and a mechanism for composing the effects of multiple
animations (a composition model). The Animation Module defines semantics for the
animate, set, animateMotion, and animateColor elements:

Elements Attributes
Minimal
Content
Model

animate
Common, Timing, attributeName, attributeType,
additive, accumulate, calcMode, values, keyTimes,
keySplines, from, to, by

EMPTY

set Common, Timing, attributeName, attributeType, to EMPTY

animateMotion
Common, Timing, additive, accumulate, calcMode,
values, keyTimes, keySplines, from, to, by, path,
origin

EMPTY

animateColor
Common, Timing, attributeName, attributeType,
additive, accumulate, calcMode, values, keyTimes,
keySplines, from, to, by

EMPTY

This module adds the animate, set, animateMotion, and animateColor elements to
the content model of the par, seq, and excl elements of the Timing and
Synchronization Module. It adds the animate, set, and animateColor elements to the

29024 Feb 2000 08:26

HTML+SMIL Language Profile

content model of the elements of the Basic Text, Hypertext, List, Applet,
Presentation, Edit, Tables, Image, Client-side Image Map, Server-side Image Map,
Object and Legacy modules. It adds the animateMotionelement to the content model
of the elements of the Basic Text and Image modules (and possibly a few others -
need to nail this down).

This module defines the following content sets:

BaseAnimation
animate | set | animateColor

AllAnimation
BaseAnimation | animateMotion

Additional integration issues with animation

Need to talk about the legal attributes that can be targetted and the associated
values.
Need to talk about the positioning model and constraints for animateMotion.
Need to talk about the legal attributes for animateColor
Need to talk about the numeric forms for things like keyTimes and keySplines
(i.e. specific floating point syntax supported).

See also the Integration requirements from the SMIL Boston Animation module.

15.3.5 Content Control Module
The Content Control Module provides a framework for selecting content based on a
set of test attributes. The Content Control Module defines semantics for the switch
element.

Elements Attributes Minimal Content Model

switch Common, Timing Flow

This module adds the switch element to the Flow content set of the Basic Text
module. It also adds the Test attributes set to the elements in the Flow content set of
the Basic Text Module (as modified by all included modules).

The Content Control Module defines the Attribute set "Test".

24 Feb 2000 08:26291

HTML+SMIL Language Profile

Collection
Name

Attributes in Collection

Test

systemBitrate (Number), systemCaption (on|off), systemLanguage
(CDATA), systemOverdubOrCaption (caption|overdub),
systemRequired (URI), systemScreenSize (CDATA),
systemScreenDepth (CDATA), systemOverdubOrSubtitle
(overdub|subtitle), systemAudioDesc (on|off), systemComponent
(CDATA),

15.3.6 Linking Module
The SMIL Boston linking module is isomorphic to functionality defined in the XHTML
modules. However, it adds some additional attributes and semantics to the a and
area elements in XHTML. Rather than describing the elements that are added, the
additional functionality defined on the HTML elements a and area is described.

Elements Attributes
Minimal
Content
Model

a&
sourceVolume, destinationVolume, sourcePlaystate,
destinationPlaystate, actuate, show, Test, Timing

n/a

area&
sourceVolume, destinationVolume, sourcePlaystate,
destinationPlaystate, actuate, show, Test, Timing

n/a

This module adds the area element to the content model for the elements in the
Media module.

15.3.7 Media Object Module
The Media Object Module provides a framework for declaring media. The Media
Object Module defines semantics for the ref, animation, audio, img, video, text, and
textstream elements. XHTML defines an img element, and so the integration of the
Media module extends the semantics and content model of this element.

29224 Feb 2000 08:26

HTML+SMIL Language Profile

Elements Attributes Minimal Content Model

ref
Common, Test, Timing,
timeContainer

AllAnimation, TimeContainers, area,
param

animation
Common, Test, Timing,
timeContainer

AllAnimation, TimeContainers, area,
param

audio
Common, Test, Timing,
timeContainer

AllAnimation, TimeContainers, area,
param

img&
Common, Test, Timing,
timeContainer

AllAnimation, TimeContainers, area,
param

video
Common, Test, Timing,
timeContainer

AllAnimation, TimeContainers, area,
param

text
Common, Test, Timing,
timeContainer

AllAnimation, TimeContainers, area,
param

textstream

Common, Test, Timing,
timeContainer

AllAnimation, TimeContainers, area,
param

This module adds the ref, animation, audio, img, video, text, and textstream
elements to the content model of the par, seq, and excl elements of the Timing and
Synchronization Module. It also adds these elements to the Inline content set of the
Basic Text Module.

15.3.8 Timing and Synchronization Module
The Timing and Synchronization Module provides a framework for describing timing
structure, timing control properties, and temporal relationships between elements.

In addition to the data types defined by XHTML Modularization, The HTML+SMIL
profile defines the TimeActions data type and its semantics, described in the
following table:

24 Feb 2000 08:26293

HTML+SMIL Language Profile

Data type Description

TimeActions

Authors may use the following recognized time actions, listed here
with their interpretations.

none
Specifies that no action is performed on the element when it is
active. This is only legal for time containers, and allows the
author to introduce a new time space without affecting the
document presentation.

visibility
Specifies that the CSS "visibility" property is to be manipulated
over time. When the element is neither active nor frozen, the
property is set to "hidden". When it is active, the original value is
used. If the original value is "hidden", the time action will have
no effect (i.e. the element will remain hidden). See also [CSS2]

display
Specifies that the CSS "display" property is to be manipulated
over time. When the element is neither active nor frozen, the
property is set to "none". When it is active, the original value is
used. If the original value is "none", the time action will have no
effect (i.e. the element will remain out of view and layout). See
also [CSS2]

style
Specifies that the CSS inline style attribute "style" is to be
removed and applied over time. When the element is neither
active nor frozen, the inline stylesheet is cleared (so no style
modification is made). When it is active, the original value (i.e.
the string attribute value specified for the "style" attribute) is
used. If there is no inline style attribute on the element, the time
action will have no effect. See also [CSS2]

class: classname
Specifies that the name "[classname]" will be removed from and
added to the value of the "class" attribute over time. When the
element is neither active nor frozen, the specified string (i.e.
whatever the author specifies for "classname") is removed from
the value of the class attribute (if it was included). When the
element is active, the specified string is added to the value of
the class attribute. Note that any other values specified in the
class attribute are not affected. Note also that the application of
any associated style must be specified in a stylesheets for the
document. Note finally that the application of styles depends not
upon the order of names in the class attribute, but rather on the
order of the rules in the stylesheets for the document. See also
[CSS2].

29424 Feb 2000 08:26

HTML+SMIL Language Profile

The Timing and Synchronization Module defines the Attribute sets "Timing" and
"RuntimeSync".

Collection
Name

Attributes in Collection

Timing
begin (CDATA), dur (CDATA), repeatCount (CDATA), repeatDur
(CDATA), end (CDATA), fill (CDATA), restart (CDATA), timeAction
(TimeActions), onBegin (Script), onEnd (Script), onRepeat (Script)

RuntimeSync
syncBehavior (locked|canSlip), syncTolerance (CDATA),
syncMaster (true|false),

The Timing and Synchronization Module adds the Timing and RuntimeSync
attribute set to the elements in the Media Module, and adds the Timing attribute set
to the Flow content set of the Basic Text Module (as modified by all included
modules).

The Timing and Synchronization Module defines the elements par, seq, and excl.

Elements Attributes
Minimal Content

Model

par
Common, Test, Timing, RuntimeSync, timeAction
(CDATA)

par, seq, excl, Flow

seq
Common, Test, Timing, RuntimeSync, timeAction
(CDATA)

par, seq, excl, Flow

excl
Common, Test, Timing, RuntimeSync, timeAction
(CDATA)

par, seq, excl, Flow

This module adds the par, seq, and excl elements to the Inline content set of the
Basic Text, Hypertext and Tables Modules.

As part of the integration of timing and synchronization functionality with HTML,
two additional attributes are defined for many of the HTML elements: timeContainer
and timeAction. This module adds the timeContainer attribute to the elements of the
Flow content set of the Basic Text Module (as modified by all included modules).

The timeAction attribute defines the behavior that is controlled by the timing
model. The default depends upon the type of element. A special value "none" is
reserved for use with the time container elements and with elements that have been
set to be a time container (using "timeContainer= [par,seq,excl]").

The following table presents the default time actions. Those modules and
elements that are not included do not have a defined time behavior, and cannot
legally support timing attributes, or participate in the time model.

24 Feb 2000 08:26295

HTML+SMIL Language Profile

Certain elements have a reasonable notion of intrinsic behavior that can be
controlled over time. This is generally some presentation or behavioral effect, such
as the font style controls of the and elements, and the click
sensitivity of the <a> and <area> elements. One way to logically model the control
of intrinsic behavior is to convert the element to a when it is neither active
nor frozen, and to use the original element when it is active or frozen.

Many other elements simply contain content and so default to controlling the
"visibility" property for the element. In some cases, an element may have a
presentational effect (e.g. the Ruby module elements), but be modeled as a content
element. The decision is based upon the usefulness in common authoring scenarios
of controlling the presentational behavior in isolation.

For those elements that default to controlling "visibility", setting timeAction to any
other value overrides this, and will only control the specified timeAction (and not the
visibility). For all other elements, the timeAction will control the default (intrinsic)
behavior as well as the indicated timeAction behavior.

In addition, for those elements that default to "visibility", when they are children of
a sequence time container <seq> or an element with "timeContainer=seq ", the
default timeAction is "display". This more closely matches the expected behavior of
the SMIL Language profile.

29624 Feb 2000 08:26

HTML+SMIL Language Profile

Module Elements Default time action

Structure body "none"

Media (all) schedule and render

Timing (all) "none"

Text em intrinsic effect

Text kbd intrinsic effect

Text strong intrinsic effect

Text var intrinsic effect

Text (all others) "visibility"

Hypertext a link sensitivity

Lists (all) "visibility"

Applet applet "visibility"

Presentational (all) intrinsic effect

Edit (all) intrinsic effect

Forms (all) "visibility"

Tables (all) "visibility"

Image Map area link sensitivity

Object object "visibility"

Iframe iframe "visibility"

Ruby (all) "visibility"

Legacy (all) intrinsic effect

All modules not listed in the table, and all Structure module elements except body
do not support timing.

Additional integration issues with Timing

Define document begin and end
Define document presentation

15.3.9 Transition Effects Module
The Transition Effects Module defines a taxonomy of transition effects as well as
semantics and syntax for integrating these effects into XML documents

24 Feb 2000 08:26297

HTML+SMIL Language Profile

Elements Attributes Minimal Content Model

TBD TBD TBD

This module is used, it adds the TBD element to the content model of the layout
element of the Layout Module.

15.4 Appendix A: Document Type Definition
This section is normative.

TBD.

29824 Feb 2000 08:26

HTML+SMIL Language Profile

16. Requirements for a SMIL Basic Profile
Editors

Kenichi Kubota (kuboken@Research.Panasonic.COM), Panasonic
Aaron Cohen (aaron.m.cohen@intel.com), Intel

16.1 Abstract
This document describes the requirements for a SMIL Basic profile, which is
intended to meet the needs of low power devices such as mobile phones and other
information appliances. It includes comments and discussion about the need for
modules that only include the basic syntax and semantics of the SMIL language
profile.

16.2 Introduction

16.2.1 SMIL and Modularization
The SMIL language [SMIL10][SMIL-BOSTON] includes powerful functionality for
multimedia services not only on desktops but also for information appliances. SMIL
content authors may wish their works to be available on a widespread variety of web
clients, such as desktops, television sets, PDA’s, mobile phones, car navigation
systems and voice user agents. Each of these platforms has its specific capabilities
and may require its own profile. The SMIL Modularization draft [SMIL-MOD] provides
a solution to create subsets and extensions of the full SMIL language profile, in
addition to providing the means to integrate SMIL functionality into other languages.

The HTML group has demonstrated the effectiveness of modularization in working
on module-based XHTML [XHTML11], [XMOD], [MODMOD]. They also shed light on
the path towards greater interoperability of content among various user agents, by
making the requirement that the document profile of the content act as a basis for
interoperability guarantees [XHTML-PROF-REQ], by issuing guidelines for HTML
content [MOBILE-GUIDE], and by providing a minimum subset for portability and
conformance [XHTML-BASIC].

16.2.2 Neeed for a SMIL Basic profile
Mobile phones with web browsers have come on to the Internet providing seamless
connectivity with fairly broad bandwidth, enabling multimedia services. They might
become the smallest SMIL compliant devices. Internet access with mobile phones,
however, has some characteristics specific to the wireless environment and its
hardware and software constraints. Therefore it seems necessary for the SYMM
Working Group to consider a lightweight SMIL profile for mobile phones and to
provide a basis for interoperability guarantees between the cutting-edge full SMIL
profile and the mobile profile.

24 Feb 2000 08:26299

SMIL Basic Profile

The CC/PP [CC/PP] mechanism provides a way to notify device capabilities and
user preferences to an origin server and/or intermediaries such as a gateway or
proxy, that allows us to generate or select or transform tailored contents. Thus
CC/PP can be used with transformation of available documents between client and
server. However, as for clients, it is unclear which kind of profile they should
support?

Content authors wish their SMIL documents to be delivered to as wide an
audience as possible. Client users expect to enjoy SMIL presentations with various
kinds of devices, which may have different profiles. Therefore, some consensus
between these profiles is useful. The SMIL Basic profile would provide that minimal
profile.

"XHTML Document Profile Requirements" [XHTML-PROF-REQ] describes a
framework for content negotiation, and requirements for document profiles from the
viewpoint of content developers and designers of different kinds of web user agents.

The SMIL Basic profile would consist of a reduced set of modules among the
variety of SMIL modules in terms of semantics and syntax, and assures
conformance by using a subset of the full SMIL specification. It also describes
appropriate behavior of a conforming user agent. A profile for mobile devices can be
tailored according to SMIL Basic profile with or without extensions for mobile specific
features, and entitled "SMIL Basic". The SMIL Basic profile will provide the same
benefits for other devices such as PDA’s and TV sets. It should serve as a means of
providing SMIL across a wide range of mobile and, further, personal electronic
devices.

The Basic Profile does not propose to restrict extension, but aims at a baseline of
conformance between the full SMIL and one appropriate for mobile services.

16.3 Requirements for SMIL Basic Profile

16.3.1 Target Devices
SMIL Basic profile must be a client profile which can be supported by wide variety of
SMIL players, even those running on small mobile phones. Mobile devices share
some common characteristics:

1. Small display , Display can render texts, images, audio and stream data in a
small area.

2. Simple input method , Input devices are numeric keys, 4-way arrow keys, and
a select key. Some may have a pointing cursor. A few may have a voice
interpreter.

3. Real-time embedded OS, Resources for calculation is limited by priority order
of each task. So, in a SMIL player, the use of timers should be restricted in
number and frequency, and memory should be used sparingly.

4. Wireless network transaction , Network transactions should be reduced as
much as possible.

30024 Feb 2000 08:26

SMIL Basic Profile

@@ This is written to promote reader’s understanding of mobile environment.

The following media could be supported:

text -- plain text, HTML
img -- GIF, JPEG, PNG
audio -- voice, MIDI
video -- MPEG4

This section states requirements for the SMIL Basic profile starting from these
points.

16.3.2 Generic requirements
The generic requirements to be considered are that the SMIL Basic profile should:

1. Consist of a comfortably small set of modules chosen from the full set of SMIL
modules in terms of required semantics and syntax.

2. Assure conformance to the cutting edge SMIL.
3. Describe appropriate behavior for a conforming user agent according to SMIL

syntax and semantics.

16.3.3 User Interface
On a SMIL player window, the user would handle arrow keys to move focus on
objects and anchors, and select the target which activates playback or linking. A
pointing cursor "mouse-like" device might not be supported. So "move focus and
select" is a simple user interface for communication with the SMIL player.

Requirement
Users can enjoy SMIL Basic presentations with just focus and selection
control.
Users can enjoy SMIL Basic presentations with numeric keys.

Suggestion
The "accesskey " attribute and "keypress " events could be supported.
Event actions between hyperlink and playback control should not conflict.

@@These suggestions are not a complete solution however.

16.3.4 Timing and Synchronization
SMIL Timing and Synchronization presents dynamic and interactive multimedia
according to a timeline. The SMIL timing model is expressed in a structured
language effectively. The timeline normally needs to be calculated with limited
resources of memory and the processor. For example, recursive function calls,
caused by nesting elements, or memory allocation, say by additional timelines, at
any moment should be restricted. The timeline should be a simple and single
sequence of media objects. To achieve these, the single time container (use of par

24 Feb 2000 08:26301

SMIL Basic Profile

or seq) and single timing attribute value may be preferable. In a list of timing attribute
values, events can be activated with "click " and also with numeric keys familiar in
phones or TV controllers. For the simplest documents, if timing of "begin ", "dur ", or
"end " is not specified, discrete media in a time container should be allowed to be
shown if the region related with each of them has only one object of each, that
means, "fill=freeze " is default even when unspecified.

Requirement
Calculation of timeline is simple and lightweight with limited resources of
memory and processor.

Suggestion
Single time container.
Single timing attribute value.
Do not allow negative offset.
Allow "keypress " events to control presentations.
Allow displaying discrete media without specified timing or repeating if the
region related with each of them has only one object.

16.3.5 Layout
Layout Module presents spatial layout related with objects in a screen. Presentation
on a small display has some difficulty in rendering objects. Layout of objects may not
be adjusted flexibly comparing their specified regions. So, the layout should be
simple and effective.

Requirement
Simple and effective presentation should be rendered in small area.

Suggestion
Objects should fit their regions, or they may be rendered in no stretch, just
simple upper-left hand rendering.
"root-layout " may be full screen of the display.
Nesting of layout regions should not be allowed.
Objects could be moved by users in their positions and layers for better
visibility.

@@ This last does not seem lightweight.

16.3.6 Media Object
Media Object Module presents description of media which constitute contents, such
as text, image, audio and video.

Requirement
Players should reduce network transactions to minimize delay time as
much as possible.

30224 Feb 2000 08:26

SMIL Basic Profile

Suggestion
Media data may be packed in one format, such as MIME, MPEG4, and
ASF, and may not need extra run-time transactions burdening bandwidth.
Player may not care about fetching time.

16.3.7 Linking
Linking Module presents a hyperlink to relate objects with contents on a request by
users. "a" and "area " links could be activated with focus and selection control and
also with "accesskey ". These linking elements might also be within single time
container.

Requirement
Need to minimize processing complexity for traversing a link.
Should avoid complex timeline seeking behavior.

Suggestion
Linking elements within single time container may be supported.

16.3.8 Structure
Structure module describes a structure of SMIL Basic documents.

Requirement
Should be compatible with structure of full SMIL document.

Suggestion
Elements of structure module should have, as minimal content model,
elements defined in SMIL Basic.

16.4 Use of SMIL Basic Profile
SMIL Basic profile, can be used as is, is intended to be appropriate for small
information appliances like mobile phones, and PDAs. Its simple design could serve
as a baseline profile for extension for specific purpose. As for HTML+SMIL, another
use of SMIL Basic may be to integrate SMIL Basic timing and media functionality
with the HTML mobile profile.

24 Feb 2000 08:26303

SMIL Basic Profile

30424 Feb 2000 08:26

SMIL Basic Profile

17. Baseline Media Formats
Editor

Philipp Hoschka (ph@w3.org), (W3C)

17.1 Introduction
This Section defines a number of baseline media formats that the members of the
W3C SYMM Working Group believe will be widely supported by SMIL players.
Authors are encouraged to encode media objects in these formats to ensure that
their SMIL documents can be played back by a wide range of SMIL implementations.
Often, for audio and video formats, the baseline formats will be used as fallbacks
when a player cannot render a more efficient, but less widely supported format. This
can be achieved by using a switch element as shown in the following example:

<switch>
 <audio src="non-baseline-format-file" />
 <audio src="baseline-format-file" />
</switch>

Note that this Section is non-normative, and that thus implementation of the
baseline formats is not a precondition for conformance to this specification.

For selecting the baseline formats, the following criteria were used:

Implementing the format should not reqire a license fee OR
The format should be implemented on a wide variety of platforms, indicating that
licenses are available on reasonable and non-discriminatory terms. The
platforms reviewed were the Linux operating system, the Java Media
framework, Apple Quicktime, RealNetworks RealMedia and Microsoft Windows
Mediaplayer multimedia platforms, and the Netscape and Internet Explorer
browsers (trademarks are poperty of their respective owners).

17.2 Audio Formats
audio/basic [MIME-2]

@@ defined as follows: The content of the "audio/basic" subtype is single
channel audio encoded using 8bit ISDN mu-law [PCM] at a sample rate of 8000
Hz. Note that this is probably a subset only of .au - need a spec for .au.

Bandwidth: 64 Kbit/s

Editor’s note: The Working Group encourages information on other audio formats
that have lower bandwidth requirements than audio/basic and also do not require a
license fee.

24 Feb 2000 08:26305

Baseline Media Formats

@@@ all the following "support" lists will not go in the final version

Support:

Linux: yes (reference ?)
Java Media: yes
Quicktime: yes
RealMedia: yes for .au (@@ confirm .au is a superset of audio/basic)
MS Windows Media: yes for au (@@ but only if "local")
Internet Explorer: yes
Netscape: yes

@@ efforts to come up with license-free audio codecs

preliminary effort to develop IP free audio compression format
Ogg Vorbis CODEC project

17.3 Image Formats
image/png ([PNG-MIME], [PNG-REC])

Support:

Linux: yes
Java Media:no (but maybe in Java ?)
Quicktime: yes
RealMedia: yes (reference ?)
MS Windows Media: no
Internet Explorer: yes (reference ?)
Netscape: yes (reference ?)

image/jpeg ([MIME-2], [JFIF])
Support:

Linux: yes
JavaMedia: yes, supported in Java without Java Media Framework
Quicktime: yes
RealMedia: yes (baseline only, no support for progressive JPEG and
grayscale)
MS Windows Media: no
Internet Explorer: yes
Netscape: yes

17.4 Video Formats
video/mpeg [MIME-2]
@@ MIME type definition is unclear, supposedly, this is MPEG-1 video - is
there a spec for a file format for this ?

30624 Feb 2000 08:26

Baseline Media Formats

http://service.real.com/help/library/guides/production/realpgd.htm
http://www.apple.com/quicktime/authoring/ffsi.html#jfif/jpeg
http://www.apple.com/quicktime/authoring/ffsi.html#png
http://www.xiph.org/ogg/vorbis.html
http://www.sulaco.org/mp3/free.html
http://msdn.microsoft.com/library/psdk/wm_media/wmpsdk/mmp_sdk/overview/contentformats.htm
http://service.real.com/help/library/guides/production/htmfiles/video.htm#14183
http://www.apple.com/quicktime/authoring/ffda.html#au
http://java.sun.com/products/java-media/jmf/2.0/supported.html

@@ are there licensing requirements for MPEG-1 ? The availability of Linux
code would tend to suggest there aren’t.

Support:

Linux: yes
Java Media: yes
Quicktime: yes (Mac only, not on Windows)
RealMedia: yes, via plugin
MS Windows Media: yes
Internet Explorer: @@
Netscape: @@

video/quicktime ([QT-MIME], [QT])

@@ should restrict to one track and one codec, e.g motion JPEG or Cinepak

Support:

Linux: yes (?? Supported video is MJPA, JPEG Photo, PNG, RGB, YUV
4:2:2, and YUV 4:2:0 compression)
Java Media: yes (Cinepak, H.261, H.263, Indeo (iv31 and iv32), JPEG
(411, 422, 111), RGB)
Quicktime: yes
RealMedia: G2 on Windows supports CVID, Cinepak, and Indeo codec
compression, provided those codecs are installed on the machine already.
MS Windows Media: yes, supports version 2 and lower (@@ check which
codecs)
Internet Explorer: @@
Netscape: @@

Editor’s note: The Working Group encourages information on other video formats
that have lower bandwidth requirements that do not require a license fee.

17.5 Text Formats
text/plain [MIME-2]

For profiles supporting SMIL layout, players must choose a font size so that
the constraints expressed by the fit attribute of the region element
associated with the media object are fulfilled. If there is no associated region
element, @@@ all bets are off, since text has no intrinsic size.

@@ need to provide interpretation for "fit" attribute for objects without intrinsic
size
@@ suggestion to use CSS proposal for "copyfitting" (@@ pointer ?)

@@ suggestion to use generic CSS font names, see
http://www.w3.org/TR/REC-CSS2/fonts.html#generic-font-families

24 Feb 2000 08:26307

Baseline Media Formats

http://www.w3.org/TR/REC-CSS2/fonts.html#generic-font-families
http://msdn.microsoft.com/library/psdk/wm_media/wmpsdk/mmp_sdk/overview/contentformats.htm
http://msdn.microsoft.com/library/psdk/wm_media/wmpsdk/mmp_sdk/overview/contentformats.htm
http://heroine.linuxbox.com/quicktime.html
http://msdn.microsoft.com/library/psdk/wm_media/wmpsdk/mmp_sdk/overview/contentformats.htm
http://java.sun.com/products/java-media/jmf/2.0/supported.html
http://java.sun.com/products/java-media/jmf/2.0/supported.html
http://bmrc.berkeley.edu/frame/research/mpeg/

@@ suggestion to require CSS support for text/plain

text/html @@ with appropriate parameter ? XHTML WG needs to decide about
MIME type for XHTML profiles

XHTML profile consisting only of the basic modules [XMOD] "Structure"
(contains e.g. html and body element), "Basic Text" (contains e.g. p and h1
element), "Hyptertext" (contains a element) and "List" (contains e.g. ul and li
elements). The elements in this profile should be formatted using the
"Mosaic-style" formatting described in CSS2 (@@ this means that the
formatting is mostly fixed, and that there is no need to support CSS).

@@ Auxiliary links

Supported file formats in Quicktime
Supported content formats Windows media player
RealNetworks authoring guide (contains list of supported formats)
Supported media formats Java Media Framework 2.0 reference implementation

30824 Feb 2000 08:26

Baseline Media Formats

http://java.sun.com/products/java-media/jmf/2.0/supported.html
http://service.real.com/help/library/guides/production/realpgd.htm
http://msdn.microsoft.com/library/psdk/wm_media/wmpsdk/mmp_sdk/overview/contentformats.htm
http://www.apple.com/quicktime/authoring/ffsi.html
http://www.w3.org/TR/REC-CSS2/sample.html
http://www.w3.org/TR/xhtml-modularization/xhtml_modules.html#sec_4.2.

Appendix A. References
[CC/PP]

"CC/PP", technology of the W3C Mobile Interest Group. W3C Note 27 July
1999,
Available at http://www.w3.org/TR/NOTE-CCPP/

[CSS1]
"Cascading Style Sheets, level 1", Håkon Wium Lie, Bert Bos. W3C
Recommendation 17 Dec 1996, revised 11 Jan 1999,
Available at http://www.w3.org/TR/REC-CSS1

[CSS2]
"Cascading Style Sheets, level 2", Bert Bos, Håkon Wium Lie, Chris Lilley, Ian
Jacobs. W3C Recommendation 12 May 1998,
Available at http://www.w3.org/TR/REC-CSS2

[CSS-selectors]
Cascading Style Sheets, level 2, Specification, chapter 5,
Bert Bos, Håkon Wium Lie, Chris Lilley, Ian Jacobs. W3C Recommendation 12
May 1998,
Available at http://www.w3.org/TR/REC-CSS2/selector.html#q1

[DATETIME]
"Date and Time Formats", M. Wolf, C. Wicksteed. W3C Note 27 August 1998,
Available at: http://www.w3.org/TR/NOTE-datetime

[DC]
"Dublin Core Metadata Initiative", a Simple Content Description Model for
Electronic Resources.
Available at http://purl.org/DC/

[DOM1]
"Document Object Model (DOM) Level 1 Specification", W3C Recommendation
1 October 1998,
Available at http://www.w3.org/TR/REC-DOM-Level-1

[DOM2Events]
"W3C Document Object Model Level 2 Events", T. Pixley, W3C Candidate
Recommendation,
Available at http://www.w3.org/TR/DOM-Level-2/events.html

[DOM2]
"W3C (World Wide Web Consortium) Document Object Model (DOM) Level 2
Specification. W3C Candidate Recommendation 10 December, 1999
Available at http://www.w3.org/TR/DOM-Level-2

[draft-ietf-avt-rtp-mime-00]
"MIME Type Registration of RTP Payload Formats", Steve Casner and Philipp
Hoschka, June 1999.

[Foley]
Computer Graphics: Principles and Practice, Second Edition by James D. Foley,
Andries van Dam, Steven K. Feiner, John F. Hughes, Richard L. Phillips,
Addison-Wesley.

24 Feb 2000 08:26309

References

http://www.w3.org/TR/DOM-Level-2
http://www.w3.org/TR/DOM-Level-2/events.html
http://www.w3.org/TR/REC-DOM-Level-1
http://purl.org/DC/
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/REC-CSS2/selector.html#q1
http://www.w3.org/TR/REC-CSS2
http://www.w3.org/TR/REC-CSS1
http://www.w3.org/TR/NOTE-CCPP/

[HTML40]
"HTML 4.0 Specification" D. Raggett, A. Le Hors, I. Jacobs. W3C
Recommendation 24 December 1999,
Available at http://www.w3.org/TR/REC-html40

[ISO8601]
"Data elements and interchange formats - Information interchange -
Representation of dates and times", International Organization for
Standardization, 1998.

[IETF]
"IETF - content negotiation working group".
Available at http://www.ietf.org/html.charters/conneg-charter.html

[JFIF]
"JPEG File Interchange Format, Version 1.02"; Eric Hamilton, September 1992.
Available at http://www.w3.org/Graphics/JPEG/jfif.txt

[MIME-2]
"RFC 2046: Multipurpose Internet Mail Extensions (MIME) Part Two: Media
Types"; N. Freed, N. Borenstein, November 1996.
Available at ftp://ftp.isi.edu/in-notes/rfc2046.txt

[MOBILE-GUIDE]
"HTML4.0 Guidelines for Mobile Access", T. Kamada, Takuya Asada, Masayasu
Ishikawa, Shin’ichi Matsui. W3C Note 15 March 1999
Available at http://www.w3.org/TR/NOTE-html40-mobile/.

[MODMOD]
"Building XHTML [tm] Modules" Murray Altheim, Shane McCarron. W3C
Working Draft, work in progress,
Available at http://www.w3.org/TR/xhtml-building/

[NAMESPACES]
"Namespaces in XML", Tim Bray, Dave Hollander, Andrew Layman. W3C
Recommendation 14 January 1999, ,
Available at http://www.w3.org/TR/REC-xml-names

[PICS]
"PICS 1.1 Label Distribution - Label Syntax and Communication Protocols", T.
Krauskopf, J. Miller, P. Resnick and W. Trees. W3C Recommendation 31
October 1996,
Available at http://www.w3.org/TR/REC-PICS-labels

[PNG-MIME]
"Registration of new Media Type image/png"; Glenn Randers-Pehrson, Thomas
Boutell, 27 July 1996.
Available at ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/image/png

[PNG-REC]
"PNG (Portable Network Graphics) Specification Version 1.0"; Thomas Boutell
(Ed.).
Available at http://www.w3.org/TR/REC-png

[QT]
"QuickTime Movie File Format Specification", May 1996.
Available at

31024 Feb 2000 08:26

References

http://www.w3.org/TR/REC-png
ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/image/png
http://www.w3.org/TR/REC-PICS-labels
http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/xhtml-building/
http://www.w3.org/TR/NOTE-html40-mobile/
ftp://ftp.isi.edu/in-notes/rfc2046.txt
http://www.w3.org/Graphics/JPEG/jfif.txt
http://www.ietf.org/html.charters/conneg-charter.html
http://www.w3.org/TR/REC-html40

http://developer.apple.com/techpubs/quicktime/qtdevdocs/REF/refFileFormat96.htm
[QT-MIME]

"Registration of new MIME content-type/subtype"; Paul Lindner, 1993.
Available at
http://www.isi.edu/in-notes/iana/assignments/media-types/video/quicktime

[RDFsyntax]
"Resource Description Framework (RDF) Model and Syntax Specification", Ora
Lassila and Ralph R. Swick. W3C Recommendation 22 February 1999,
Available at http://www.w3.org/TR/REC-rdf-syntax/

[RDFschema]
"Resource Description Framework (RDF) Schema Specification", Dan Brickley
and R.V. Guha.W3C Proposed Recommendation 03 March 1999,
Available at http://www.w3.org/TR/PR-rdf-schema/

[RFC1766]
"Tags for the Identification of Languages", H. Alvestrand, March 1995.
Available at ftp://ftp.isi.edu/in-notes/rfc1766.txt

[RFC1889]
"RTP : A Transport Protocol for Real-Time Applications", Henning Schulzrinne,
Steve Casner, Ron Frederick and Van Jacobson, January 1996.
Available at ftp://ftp.isi.edu/in-notes/rfc1889.txt

[RFC1890]
" RTP Profile for Audio and Video Conferences with Minimal Control" Henning
Schulzrinne, January 1996.
Available at ftp://ftp.isi.edu/in-notes/rfc1890.txt

[RFC2326]
"Real Time Streaming Protocol (RTSP)" Henning Schulzrinne, Anup Rao and
Rob Lanphier, April 1998.
Available at ftp://ftp.isi.edu/in-notes/rfc2326.txt

[RFC2327]
"SDP: Session Description Protocol" M. Handley and V. Jacobson, April 1998.
Available at ftp://ftp.isi.edu/in-notes/rfc2327.txt

[RUBY]
"Ruby Annotation", Michel Suignard, Masayasu Ishikawa, Martin Dürst. W3C
Working Draft, work in progress.
Available at http://www.w3.org/TR/ruby/

[SMIL10]
"Synchronized Multimedia Integration Language (SMIL) 1.0" P. Hoschka. W3C
Recommendation 15 June 1998,
Available at http://www.w3.org/TR/REC-smil.

[SMIL-ANIMATION]
"SMIL Animation Module" Patrick Schmitz, Aaron Cohen and Philipp Hoschka.
W3C Working Draft, work in progress.
Available at http://www.w3.org/TR/smil-animation/

[SMIL-BOSTON]
"Synchronized Multimedia Integration Language (SMIL) Boston Specification".
W3C Working Draft, work in progress.
Available at http://www.w3.org/TR/smil-boston/

24 Feb 2000 08:26311

References

http://www.w3.org/TR/smil-boston/
http://www.w3.org/TR/smil-animation/
http://www.w3.org/TR/REC-smil
http://www.w3.org/TR/ruby/
ftp://ftp.isi.edu/in-notes/rfc2327.txt
ftp://ftp.isi.edu/in-notes/rfc2326.txt
ftp://ftp.isi.edu/in-notes/rfc1890.txt
ftp://ftp.isi.edu/in-notes/rfc1889.txt
ftp://ftp.isi.edu/in-notes/rfc1766.txt
http://www.w3.org/TR/PR-rdf-schema/
http://www.w3.org/TR/REC-rdf-syntax/
http://www.isi.edu/in-notes/iana/assignments/media-types/video/quicktime
http://developer.apple.com/techpubs/quicktime/qtdevdocs/REF/refFileFormat96.htm

[SMIL-CSS2]
"Displaying SMIL Basic Layout with a CSS2 Rendering Engine". W3C Note 20
July 1998,
Available at: http://www.w3.org/TR/NOTE-CSS-smil.html

[SMIL-DOM]
"Synchronized Multimedia Integration Language Document Object Model
(DOM)". W3C Working Draft, work in progress.
Available at http://www.w3.org/TR/smil-boston-dom/

[SMIL-MOD]
"Synchronized Multimedia Modules based upon SMIL 1.0", Patrick Schmitz, Ted
Wugofski and Warner ten Kate. W3C Note 23 February 1999,
Available at http://www.w3.org/TR/NOTE-SYMM-modules

[SMPTE]
"Transfer of Edit Decision Lists", ANSI/SMPTE 258M/1993

[SVG]
"Scalable Vector Graphics (SVG) 1.0 Specification". W3C Working Draft, work
in progress.
Available at http://www.w3.org/TR/SVG

[XHTML10]
"The Extensible HyperText Markup Language: A Reformulation of HTML 4.0 in
XML 1.0". W3C Recommendation 26 January 2000,
Available at http://www.w3.org/TR/xhtml1/

[XHTML11]
"XHTML 1.1 - Module-based XHTML", Murray Altheim, Shane McCarron,.W3C
Working Draft, work in progress.
Available at http://www.w3.org/TR/xhtml11.

[XHTML-BASIC]
"XHTML‚ Basic", Masayasu Ishikawa, Shinichi Matsui, Peter Stark, Toshihiko
Yamakami. W3C Working Draft, work in progress.
Available at http://www.w3.org/TR/xhtml-basic/

[XHTMLEvents]
"XHTML‚ Events Module" An updated events syntax for XML-based markup
languages, Ted Wugofski,Patrick Schmitz,Shane P. McCarron
Available at http://www.w3.org/TR/xhtml-events/

[XHTML-PROF-REQ]
"XHTML Document Profile Requirements, Document profiles - a basis for
interoperability guarantees", Dave Ragget, Peter Stark, Ted Wugofski. W3C
Working Draft.
Available at http://www.w3.org/TR/xhtml-prof-req/.

[XINCL]
"XML Inclusion Proposal (XInclude)", Jonathan Marsh and David Orchard. W3C
Note 23 November 1999,
Available at http://www.w3.org/TR/xinclude

[XLINK]
"XML Linking Language (XLink)", S. DeRose, D. Orchard and B. Trafford. W3C
Working Draft, work in progress.

31224 Feb 2000 08:26

References

http://www.w3.org/TR/xinclude
http://www.w3.org/TR/xhtml-prof-req/
http://www.w3.org/TR/xhtml-events/
http://www.w3.org/TR/xhtml-basic/
http://www.w3.org/TR/xhtml11
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/SVG
http://www.w3.org/TR/NOTE-SYMM-modules
http://www.w3.org/TR/smil-boston-dom/
http://www.w3.org/TR/NOTE-CSS-smil.html

Available at http://www.w3.org/TR/xlink
[XML10]

"Extensible Markup Language (XML) 1.0" T. Bray, J. Paoli and C.M.
Sperberg-McQueen. W3C Recommendation 10 February 1998 ,
Available at http://www.w3.org/TR/REC-xml

[XML-NS]
"Namespaces in XML" T. Bray, D. Hollander and A. Layman. W3C
Recommendation 14 January 1999,
Available at http:/www.w3.org/TR/REC-xml-names

[XMOD]
"Modularization of XHTML", Shane McCarron, Murray Altheim, et al. W3C
Working Draft, work in progress.
Available at http://www.w3.org/TR/xhtml-modularization

[XPROF]
"Building Document Profiles", Work in Progress, HTML & CCPP Working
Groups (W3C Members only)
Refer to http://www.w3.org/MarkUp/Group/ and
http://www.w3.org/Mobile/CCPP/Group

[XPTR]
"XML Pointer Language (XPointer)" Steve DeRose and Ron Daniel Jr. W3C
Working Draft, work in progress.
Available at http://www.w3.org/TR/WD-xptr

[XSL]
"Extensible Stylesheet Language (XSL) Specification", Stephen Deach. W3C
Working Draft, work in progress.
Available at http://www.w3.org/TR/xsl/

24 Feb 2000 08:26313

References

http://www.w3.org/TR/xsl/
http://www.w3.org/TR/WD-xptr
http://www.w3.org/Mobile/CCPP/Group
http://www.w3.org/MarkUp/Group/
http://www.w3.org/TR/xhtml-modularization/
http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xlink

	Synchronized Multimedia Integration Language †SMIL‡ Boston Specification
	W3C Working Draft 25 February 2000
	Abstract
	Status of this document
	Quick Table of Contents
	Full Table of Contents

	1. About SMIL Boston
	1.1 Introduction
	1.2 Acknowledgements

	2. Synchronized Multimedia Integration Language †SMIL‡ Modules
	2.1 Introduction
	2.2 SMIL Modules
	2.2.1 Animation Module
	2.2.2 Content Control Module
	2.2.3 Layout Module
	2.2.4 Linking Module
	2.2.5 Media Object Module
	2.2.6 Metainformation Module
	2.2.7 Structure Module
	2.2.8 Timing and Synchronization Module
	2.2.9 Transition Effects Module

	2.3 Isomorphism
	2.4 Multimedia Profiles
	2.4.1 Lightweight Presentations Profile
	2.4.2 SMIL-Boston Profile
	2.4.3 SMIL-Basic Profile
	2.4.4 HTML+SMIL Profile
	2.4.5 Web Enhanced Media Profile

	3. The SMIL Animation Module
	3.1 Introduction
	3.2 Overview and terminology
	3.2.1 Basics of animation
	3.2.2 Animation function values
	3.2.3 Symbols used in the semantic descriptions

	3.3 Animation model
	3.3.1 Specifying the animation target
	The Target attribute
	 The Target element

	3.3.2 Specifying the animation function f†t‡
	Interpolation and indefinite simple durations
	Animation function calculation modes
	Examples

	3.3.3 Specifying the animation effect F†t‡
	Repeated animations
	 Examples
	Controlling behavior of repeating animation - Cumulative animation

	Freezing animations
	Additive animation
	How from, to and by attributes affect additive behavior.
	 Additive and Cumulative animation

	Restarting animations

	3.3.4 Handling syntax errors
	3.3.5 The animation sandwich model
	3.3.6 Implications of Timing Model for animation
	3.3.7 Animation function value details

	3.4 Animation elements
	3.4.1 Common syntax DTD definitions
	3.4.2 The animate element
	3.4.3 The set element
	3.4.4 The animateMotion element
	3.4.5 The animateColor element

	3.5 Integrating SMIL Animation into a host language
	3.5.1 Required host language definitions
	3.5.2 Required definitions and constraints on animation targets
	 Specifying the target element
	 Target attribute issues
	 Integrating animateMotion functionality
	 Example: SVG

	3.5.3 Constraints on manipulating animation elements
	3.5.4 Extending animation
	3.5.5 Error handling semantics
	3.5.6 SMIL Animation namespace

	4. SMIL Content Control
	4.1 Introduction
	4.2 Content Selection
	4.2.1 The <switch> Element
	4.2.2 Predefined Test Attributes
	4.2.3 System Test Attribute In-Line Use
	4.2.4 User Groups
	 The <user_attributes> element
	 The <u_group> element€
	 The u_group attribute

	4.3 Presentation Priority/Grouping
	4.4 User-Centered Adaptation
	4.5 Presentation Optimization
	4.5.1 The <prefetch> element
	 The mediaSize, mediaTime, and bandwidth Attributes
	 Attribute value syntax
	 bytes-value
	 percent-value
	 clock-value
	 bitrate-value

	 Examples

	4.6 Open Issues

	5. SMIL Layout Module
	5.1 Introduction
	5.2 Brief overview of SMIL basic layout
	5.3 Extensions to SMIL 1.0 Basic Layout
	5.3.1 Multiple Top-Level Window Support
	5.3.2 Hierarchical Region Layout

	5.4 SMIL basic layout syntax and semantics
	5.4.1 Elements and attributes
	The <layout> element
	The <region> element
	The <root-layout> element
	The <top-layout> element
	 The region attribute

	5.4.2 SMIL basic layout language details

	5.5 Differences from SMIL 1.0 basic layout
	5.6 Open Issues

	6. The SMIL Linking Module
	6.1 Introduction
	6.2 Linking into SMIL documents
	6.2.1 Error handling

	6.3 Link Elements
	6.3.1 Handling of Links in Embedded Documents
	6.3.2 The <a> Element
	6.3.3 The <area> Element

	7. The SMIL Media Object Module
	7.1 Introduction
	7.2 The ref, animation, audio, img, video, text and textstream elements
	7.2.1 Element Attributes
	abstract
	alt
	author
	begin
	clipBegin †clip-begin‡
	clipEnd †clip-end‡
	copyright
	longdesc
	port
	readIndex
	rtpformat
	src
	stripRepeat
	title
	transport
	type
	xml:lang

	7.2.2 Element Content
	7.2.3 Media object initialization: the param element
	 Attribute definitions
	name
	value
	valuetype
	type

	 Element Description

	7.2.4 The rtpmap element
	 Attributes
	 payload
	 encoding

	7.3 Support for media player extensions
	7.3.1 Appendix A: Changes to SMIL 1.0 Media Object Attributes
	 clipBegin, clipEnd, clip-begin, clip-end
	 Handling of new clipBegin/clipEnd syntax in SMIL 1.0 software
	SDP Attributes
	 stripRepeat

	7.3.2 Appendix B: Element Content
	7.3.3 Appendix C: New sections
	 The param element
	 The rtpmap element
	 Support for media player extensions

	7.3.4 Appendix D: Backburner

	8. The SMIL Metadata Module
	8.1 Introduction
	8.2 Compatibility with SMIL 1.0 using the meta Element
	8.2.1 Element Attributes
	8.2.2 Element Content

	8.3 Extensions to SMIL 1.0 Metadata.
	8.3.1 Element Attributes
	8.3.2 Element Content
	8.3.3 Using multiple description schemes simultaneously

	8.4 The SMIL Metadata Schema
	8.5 An Example

	9. SMIL Structure Module
	9.1 Introduction
	9.2 The smil, head and body elements
	9.3 Integrating the SMIL Structure Module
	9.4 DTD

	10. The SMIL Timing and Synchronization Module
	10.1 Introduction
	10.2 Overview of SMIL timing
	10.3 Language definition
	10.3.1 Shared timing support
	Basics - begin and dur
	 Begin value semantics
	Dur value semantics
	 Resolving times
	 Examples

	 Timing attribute values
	Begin values
	End values
	 Parsing timing specifiers

	Clock values
	Offset values
	 SMIL 1.0 begin and end values€
	 ID-Reference values
	Syncbase values
	Sync To Prev values
	Event values
	Media marker values
	Wallclock-sync values
	 Examples

	10.3.2 Time manipulations
	 Background
	 Overview of support
	 Examples

	 Attribute syntax
	speed attribute
	accelerate and decelerate attributes
	 Examples:
	autoReverse attribute

	Repeating elements
	 repeatCount and repeatDur attributes
	 Examples
	SMIL 1.0 repeat †deprecated‡
	 repeat Attribute

	Controlling active duration
	Computing the active duration
	Freezing elements
	Restarting elements
	Using restart for toggle activation

	10.3.3 Time containers
	The par time container
	The seq time container
	The excl time container
	 Pause behavior

	peers = " stop | pause | defer | never "
	higher = " stop | pause "
	lower = " defer | never "
	excl and priorityClass Examples
	Pause queue semantics
	 Queue invariants
	 Element insertion and removal
	 Time dependency and pause/defer semantics
	 Scheduled begin times and <excl>
	 Side effects of activation

	Specifying the simple duration of par and excl with endSync
	 endSync = " first | last | all | id-ref "
	Time container duration
	 Implicit duration of <par> containers
	 Implicit duration of <seq> containers
	 Implicit duration of <excl> containers
	 Implicit duration of media element time containers

	Time container constraints on child durations
	Time container constraints on sync-arcs and events
	 Specifics for sync-arcs
	 Specifics for event-based timing

	Negative begin delays

	10.3.4 State transition model
	 Initial state: Idle
	 Start transition: Idle to Active
	 Active state:
	 Freeze transition: Active to Frozen
	 Frozen state:
	 Stop transition: Active to Finished
	 Finished state:
	 Restart transition: Frozen to Active
	 Restart transition: Frozen to Idle
	 Restart transition: Active to Active
	 Restart transition: Active to Idle
	 Restart transition: Finished to Active
	 Restart transition: Finished to Idle

	10.3.5 Timing model details
	 Timing and real-world clock times
	Interval timing
	 Background rationale
	 Implications for the time model

	Unifying scheduling and interactive timing
	 Background
	 Modeling interactive, event-based content in SMIL
	 Event sensitivity

	Details of the time manipulations
	 Speed control
	 Issues with implicit duration and fallback speeds
	 Acceleration and Deceleration
	 Examples:
	 Play Forwards then Backwards
	 Examples:
	Timing Model
	 Ideal model
	Fallbacks for time filters on a media element
	 Fallbacks for time filters on time containers
	 More on the implementation
	Converting between local and global times

	Evaluation of begin and end time lists
	Hyperlinks and timing
	 Implications of beginElement†‡ and hyperlinking for seq and excl time containers

	Propagating changes to times
	Handling negative offsets
	Behavior of 0 duration elements
	Resetting element state

	10.3.6 Controlling runtime synchronization behavior
	Sync behavior attributes
	Sync master support

	10.3.7 Common syntax DTD definitions

	10.4 Integrating SMIL Timing and Synchronization into a host language
	10.4.1 Required host language definitions
	10.4.2 Required definitions and constraints on element timing
	 Supported events for event-base timing

	10.4.3 Error handling semantics
	10.4.4 SMIL Timing and Synchronization namespace

	10.5 Document object model support
	10.5.1 Element and attribute manipulation, mutation and constraints
	10.5.2 Event model
	10.5.3 Supported methods

	10.6 Glossary
	10.6.1 General concepts
	Time graph
	Descriptive terms for times
	Scheduled timing
	Events and interactive timing
	Syncbases
	Sync arcs
	Clocks
	Hyperlinking and timing
	Activation
	Discrete and continuous Media

	10.6.2 Timing concepts
	Time containers
	Content/Media elements
	Basic markup
	Simple and active durations
	 Time manipulations
	Determinate and indeterminate schedules
	Hard and soft sync

	10.7 Appendix A: Annotated examples
	10.7.1 Example 1:€Simple timing within a Parallel time container
	10.7.2 Example 2:€Simple timing within a Sequence time container
	10.7.3 Example 3:€excl time container with child timing variants
	10.7.4 Example 4:€ default duration of discrete media
	10.7.5 Example 5:€ end specifies end of active dur, not end of simple dur
	10.7.6 Example 6: SMIL-DOM-initiated timing

	10.8 Appendix B: Authoring guidelines †to be added‡
	10.9 Appendix C: Differences from SMIL 1.0

	11. Integrating SMIL Timing into Other XML-Based Languages
	11.1 Abstract
	11.2 Introduction
	11.2.1 Background
	11.2.2 Use cases
	11.2.3 Assumptions
	Assumptions that may need further refinement

	11.2.4 Requirements

	11.3 Framework
	11.3.1 Framework: In-line Timing
	11.3.2 Framework: Future Frameworks Under Consideration
	Future Framework: Cascading Style Sheet Timing
	Future Framework: Timesheets

	11.4 Specification
	11.4.1 Specification: In-line Timing
	Time Container elements:
	The "timeContainer" attribute:
	Timing Attributes for Child Elements of Time Container Elements:
	The timeAction attribute:
	 Examples:

	11.4.2 Specification: Future Specifications Under Consideration
	Future Specification: CSS Timing
	Future Specification: Timesheets
	Cascading Rules
	Integrating SMIL Timing into a host XML language
	Required host language definitions
	Error handling semantics
	SMIL Timing namespace

	11.5 DTD
	11.6 Appendix A. In-Line Method Examples
	11.7 Appendix B. Future Framework: Cascading Style Sheet Timing
	11.8 Appendix C. Future Framework: Timesheets
	11.8.1 Three document sections
	11.8.2 Principles

	11.9 Appendix D. Future Specification: CSS Timing
	11.9.1 Timing style

	11.10 Appendix E. Future Specification: Timesheets
	11.10.1 Structure copying
	11.10.2 Structure ownership
	11.10.3 Timesheet selectors

	11.11 Appendix F. CSS Timing, Timesheet, and other non-In-Line Examples

	12. The SMIL Transition Effects Module
	12.1 Introduction
	12.2 Transition Taxonomy
	12.3 Transition Parameters
	12.3.1 The <transition> element
	 Examples of the <transition> element.

	12.3.2 Handling Parameter Errors

	12.4 Applying Transitions to Media Elements
	12.4.1 The "transition" attribute.
	 Examples of applying the "transition" attribute.

	12.5 Multi-Element Transitions
	12.5.1 The <brush> element

	12.6 Appendix A: Open Issues

	13. The SMIL Document Object Model Module
	13.1 Abstract

	14. SMIL Boston Language Profile
	14.1 Open issues
	14.2 Abstract
	14.3 SMIL Boston Profile
	14.4 Normative Definition of SMIL Boston
	14.4.1 Document Conformance
	14.4.2 User Agent Conformance
	14.4.3 SMIL-Boston Profile
	14.4.4 Animation Module
	14.4.5 Content Control Module
	14.4.6 Layout Module
	14.4.7 Linking Module
	14.4.8 Media Object Module
	 Changes from SMIL 1.0

	14.4.9 Metainformation Module
	14.4.10 Structure Module
	14.4.11 Timing and Synchronization Module
	14.4.12 Transition Effects Module

	14.5 Document Type Definition
	14.6 Appendix A: Document Type Definition or XML Schema

	15. HTML+SMIL Language Profile
	15.1 Abstract
	15.2 Introduction
	15.2.1 Motivation and applications
	15.2.2 Design Rationale
	 Layout
	 Structure
	 Meta information

	15.3 Normative Definition of SMIL Boston
	15.3.1 Document Conformance
	15.3.2 User Agent Conformance
	15.3.3 HTML+SMIL Profile
	15.3.4 Animation Module
	 Additional integration issues with animation

	15.3.5 Content Control Module
	15.3.6 Linking Module
	15.3.7 Media Object Module
	15.3.8 Timing and Synchronization Module
	 Additional integration issues with Timing

	15.3.9 Transition Effects Module

	15.4 Appendix A: Document Type Definition

	16. Requirements for a SMIL Basic Profile
	16.1 Abstract
	16.2 Introduction
	16.2.1 SMIL and Modularization
	16.2.2 Neeed for a SMIL Basic profile

	16.3 Requirements for SMIL Basic Profile
	16.3.1 Target Devices
	16.3.2 Generic requirements
	16.3.3 User Interface
	16.3.4 Timing and Synchronization
	16.3.5 Layout
	16.3.6 Media Object
	16.3.7 Linking
	16.3.8 Structure

	16.4 Use of SMIL Basic Profile

	17. Baseline Media Formats
	17.1 Introduction
	17.2 Audio Formats
	17.3 Image Formats
	17.4 Video Formats
	17.5 Text Formats

	Appendix A. References

