Document Object Model (DOM) Level 3 Content Models and Load and Save Specification

®

WaC

DocumentObject Model (DOM) Level 3 Content Models
and Load and SaveSpecification

Version 1.0

W3C Working Draft 01 September, 2000

This version:
[http://mvww.w3.org/ TR/2000/WD-DOM-Level-3-Content-Models-and-Load-Save-20000901
(|PostScripfilel, [PDFfile} plain text [ZIP file)

Latest version:
[http://www.w3.org/TR/DOM-Level-3-Content-Models-and-Load-3ave

Editors:
Ben ChangQracle
Andy Heninger)BM
Joe KesselmanBM

[Copyright© 200qW3d® (MIT} [INRIA] [Keid), All Rights Reserved. W3fability} frademarkdocument
uséandsoftwarelicensingrulesapply.

Abstract

This specification defines the Document Object Model Content Models and Load and Save Level 3, a
platform- and language-neutral interface that allows programs and scripts to dynamically access and
update the content, structure and style of documents. The Document Object Model Content Models and
Load and Save Level 3 builds on the Document Object Model Core Bevel

Status of this document
This document is a preliminary version of the LevalR.

It is a W3C Working Draft for review by W3C members and other interested parties and acts as a starting
point for the future DOM Working Group, should it be approved or not by the W3C Members. It is a draft
document and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate
to use W3C Working Drafts as reference material or to cite them as other than "wargriess".

http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/TR/DOM-Level-3-Content-Models-and-Load-Save
http://www.w3.org/TR/2000/WD-DOM-Level-3-Content-Models-and-Load-Save-20000901/DOM3-Content-Models-and-Load-Save.zip
http://www.w3.org/TR/2000/WD-DOM-Level-3-Content-Models-and-Load-Save-20000901/DOM3-Content-Models-and-Load-Save.txt
http://www.w3.org/TR/2000/WD-DOM-Level-3-Content-Models-and-Load-Save-20000901/DOM3-Content-Models-and-Load-Save.pdf
http://www.w3.org/TR/2000/WD-DOM-Level-3-Content-Models-and-Load-Save-20000901/DOM3-Content-Models-and-Load-Save.ps
http://www.w3.org/TR/2000/WD-DOM-Level-3-Content-Models-and-Load-Save-20000901
http://www.w3.org/

Table of contents

Comments on this document are invited and are to be sent to the public mailiwgwistom@w3.org
An archive is available ittp://lists.w3.org/Archives/Public/www-dom/

This document has been produced as part :MMBE DOM Activity] The authors of this document are
the DOM WG members. Different modules of the Document Object Model have diféelitors.

A list of[current W3C Recommendations and other techdicallmentsan be found at
http://www.w3.0rg/TR.

Table of contents

|[Expanded Table afontentp .
[CopyrightNotic¢ 5
|Chapter 1: Content Models an@lidaton9
[Chapter 2: Document Object Model load 8¢ 35
[Appendix A: IDL Definitong 39
[Appendix B: Java Languad®&ndinq¢ 43
[Appendix C: ECMA Script Languad®indinq b1

http://www.w3.org/TR/
http://www.w3.org/DOM/Activity.html
http://lists.w3.org/Archives/Public/www-dom/

Expanded Table of Contents

Expanded Table of Contents

|[Expanded Table dEontentp

|CopyrightNoticg
[W3C Document Copyright Notice ahicensg
[W3C Software Copyright Notice argdcensé

[Chapter 1: Content Models aNe@lidation

[1.1.1. GeneraCharacteristids.

|1.1.2. Use Cases aR&quirements
[Chapter 2: Document Object Model Load Sal/¢

[2.1. Load and Saveequiremenis .

[2.1.1. GenerdRequirements .

[2.1.2. LoadRequirements

[2.1.3. XML WriterRequirements .

[2.1.4. Other Items Und&onsideration

[Appendix A: IDL Definitiong

[Appendix B: Java Languadgnding
[Appendix C: ECMA Script Languadginding
References . . .

|1. Normativereferencds .

o v oW

© © ©

10
35
35
35
36
36
37

39
43
51
57
57
59

Expanded Table of Contents

Copyright Notice

Copyright Notice

Copyright © 2000World Wide Web Consortium] (Massachusetts Institute ofTechnology [Institut]
[National de Recherche en Informatique et eAutomatique] [Keio University). All Rights Reserved.

This document is published under fiM8C Document Copyright Notice alhttensg[p.5] . The bindings

within this document are published under[ii@C Software Copyright Notice andcens¢[p.6] . The

software license requires "Notice of any changes or modifications to the W3C files, including the date
changes were made." Consequently, modified versions of the DOM bindings must document that they do
not conform to the W3C standard; in the case of the IDL binding, the pragma prefix can no longer be
'w3c.org’; in the case of the Java binding, the package names can no longer be in the 'org.w3c’ package.

W3C Document Copyright Notice andLicense

Note: This section is a copy of the W3C Document Notice and License and could be found at
|http://Iwww.w3.org/Consortium/Legal/copyright-documents-1999p405

Copyright © 1994-2000World Wide Web Consortiumj, (Massachusetts Institute ofTechnology
[Institut National de Recherche en Informatique et erAutomatique} [Keio University). All Rights

Reserved.

http://iwww.w3.org/Consortium/Legal/

Public documents on the W3C site are provided by the copyright holders under the following license. The
software or Document Type Definitions (DTDs) associated with W3C specifications are governed by the
[SoftwareNoticg By using and/or copying this document, or the W3C document from which this

statement is linked, you (the licensee) agree that you have read, understood, and will comply with the
following terms and conditions:

Permission to use, copy, and distribute the contents of this document, or the W3C document from which
this statement is linked, in any medium for any purpose and without fee or royalty is hereby granted,
provided that you include the following @éh.L copies of the document, or portions thereof, that you use:

1. Alink or URL to the original W3C document.

2. The pre-existing copyright notice of the original author, or if it doesn’t exist, a notice of the form:
"Copyright © [$date-of-documen)/orld Wide WebConsortiumh (Massachusetts Institute |of
[Technology|institut National de Recherche en Informatique eAetomatiquélKeio University).

All Rights Reserved. http://www.w3.org/Consortium/Legal/" (Hypertext is preferred, but a textual
representation is permitted.)

3. Ifit exists, the STATUS of the W3C document.

When space permits, inclusion of the full text of tRBTICE should be provided. We request that
authorship attribution be provided in any software, documents, or other items or products that you create
pursuant to the implementation of the contents of this document, or any portion thereof.

http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-software.html
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/

W3C Software Copyright Notice and License

No right to create modifications or derivatives of W3C documents is granted pursuant to this license.
However, if additional requirements (documented ifGbpyrightFAQ) are satisfied, the right to create
modifications or derivatives is sometimes granted by the W3C to individuals complying with those
requirements.

THIS DOCUMENT IS PROVIDED "AS 1S," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR

OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
this document or its contents without specific, written prior permission. Title to copyright in this
document will at all times remain with copyright holders.

W3C Software Copyright Notice andLicense

Note: This section is a copy of the W3C Software Copyright Notice and License and could be found at
|http://Iwww.w3.org/Consortium/Legal/copyright-software-19980720

Copyright © 1994-200(0World Wide Web Consortium] (Massachusetts Institute ofTechnology,
[Institut National de Recherche en Informatique et erAutomatique} [Keio University). All Rights
Reserved.

http://www.w3.org/Consortium/Legal/

This W3C work (including software, documents, or other related items) is being provided by the copyright
holders under the following license. By obtaining, using and/or copying this work, you (the licensee)
agree that you have read, understood, and will comply with the following terms and conditions:

Permission to use, copy, and modify this software and its documentation, with or without modification,
for any purpose and without fee or royalty is hereby granted, provided that you include the following on
ALL copies of the software and documentation or portions thereof, including modifications, that you
make:

1. The full text of this NOTICE in a location viewable to users of the redistributed or derivative work.
2. Any pre-existing intellectual property disclaimers. If none exist, then a notice of the following form:

"Copyright © [$date-of-softwarg)Vorld Wide WebConsortium (Massachusetts Institute |of
[Technolog)/[institut National de Recherche en Informatique eAetomatiquéKeio University).

All Rights Reserved. http://www.w3.org/Consortium/Legal/."
3. Notice of any changes or modifications to the W3C files, including the date changes were made. (We

http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Legal/IPR-FAQ.html

W3C Software Copyright Notice and License

recommend you provide URIs to the location from which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT
HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR
DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
the software without specific, written prior permission. Title to copyright in this software and any
associated documentation will at all times remain with copyright holders.

W3C Software Copyright Notice and License

1. Content Models and Validation

1. Content Models andValidation

Editors
Ben Chang, Oracle
Joe KesselmariBM

1.1.Overview

This chapter describes the optional DOM Lev€@ddtent Moddl (CM) feature. This module provides a
representation for XML content models, e.g., DTDs and XML Schemas, together with operations on the
content models, and how such information within the content models could be applied to XML documents
used in both the document-editing and CM-editing worlds. It also provides additional tests for
well-formedness of XML documents, including Namespace well-formedness. A DOM application can use
thehasFeat ur e method of thddOM npl enent at i on interface to determine whether a given DOM
supports these capabilities or not. The feature string for all the interfaces listed in this séCtibh is

This chapter interacts strongly with thead and Save chapter, which is also under development in DOM

Level 3. Not only will that code serialize/deserialize content models, but it may also wind up defining its
well-formedness and validity checks in terms of what is defined in this chapter. In addition, the CM and
Load/Save functional areas will share a common error-reporting mechanism allowing user-registered error
callbacks. Note that this may not imply that the parser actually calls the DOM’s validation code -- it may

be able to achieve better performance via its own -- but the appearance to the user should probably be "as
if* the DOM has been asked to validate the document, and parsers should probably be able to validate
newly loaded documents in terms of a previously loaded DM

Finally, this chapter will have separate sections to address the needs of the document-editing and
CM-editing worlds, along with a section that details overlapping areas such as validation. In this manner,
the document-editing world’s focuses on editing aspects and usage of information in the CM are made
distinct from the CM-editing world’s focuses on defining and manipulating the information in the CM.

1.1.1.General Characteristics

In the October 9, 1997 DOM requirements document, the following appeared: "There will be a way to
determine the presence of a DTD. There will be a way to add, remove, and change declarations in the
underlying DTD (if available). There will be a way to test conformance of all or part of the given
document against a DTD (if available)." In later discussions, the following was added, "There will be a
way to query element/attribute (and maybe other) declarations in the underlying DTD (if available),"
supplementing the primitive support for these in Lével

That work was deferred past Level 2, in the hope that XML Schemas would be addressed as well.
Presently, it is still unclear whether XML Schemas will be ready in time to be supported in DOM Level 3,
but it is anticipated that lowest common denominator general APls generated in this chapter can support
both DTDs and XML Schemas, and other XML content models dowro#te

1.1.2. Use Cases and Requirements

The kinds of information that a Content Model must make available are mostly self-evident from the
definitions of Infoset, DTDs, and XML Schemas. However, some kinds of information on which the
DOM already relies, e.g., default values for attributes, will finally be given a visible represeh&ton

1.1.2.Use Cases an®equirements

The content model referenced in these use cases/requirements is an abstraction and does not refer to DTDs
or XML Schemas or any transformations betweertwhe

For the CM-editing and document-editing worlds, the following use cases and requirements are common
to both and could be labeled as the "Validation and Other Common Functioseditygn:

UseCases:

1. CUL. Maodify an existing content model because it needs to be updated.

2. CU2. Associating a content model (external and/or internal) with a document, or changing the current
association.

3. CU3. Using the same external content model with several documents, without having to reload it.
4. CU4. Create a new contemidel.

Requirements:

CRL1. Validate against the content model.

CR2. Retrieve information from content model.

CR3. Load an existing content model, perhaps independently from a document.
CR4. Being able to determine if a document has a content model associated with it.
CR5. Create a new content modbject.

aprwpdpE

Specific to the CM-editing world, the following are use cases and requirements and could be labeled as
the "CM-editing"section:

UseCases:

1. CMUL. Clone/map all or parts of an existing content model to a new or existing content model.
2. CMU2. Save a content model in a separate file. For example, a DTD can be broken up into reusable
pieces, which are then brought in via entity references, these can then be saved in a separate file.

3. CMUS3. Partial content model checking. For example, only certain portions of the content model need
bevalidated.

Requirements:

1. CMRL1. View and modify all parts of the content model.

2. CMR2. Validate the content model itself. For example, if an element/attribute is inserted incorrectly
into the content model.

CMRa3. Serialize the content model.
CMRA4. Clone all or parts of an existing content model.
5. CMR5. Validate portions of the XML document against the comtextel.

kW

10

1.1.2. Use Cases and Requirements

Specific to the document-editing world, the following are use cases and requirements and could be labeled
as the "Document-editingsection:

UseCases:

1.

2.

DU1. For editing documents with an associated content model, provide the assistance necessary so
that valid documents can be modified and remain valid.

DU2. For editing documents with an associated content model, provide the assistance necessary to
transform an invalid document into a vatide.

Requirements:

1.

2.

»

DR1. Being able to determine if the document is not well-formed, and if not, be given enough
assistance to locate the error.

DR2. Being able to determine if the document is not namespace well-formed, and if not, be given
enough assistance to locate the error.

DR3. Being able to determine if the document is not valid with respect to its associated content
model, and if not, give enough assistance to locate the error.

DRA4. Being able to determine if specific modifications to a document would make it become invalid.
DR5. Retrieve information from all content model. For example, getting a list of all the defined
element names for document editpgposes.

Generalssues:

1.

I1. Namespace issues associated with the content model. To address namespaces, a

i sNanespaceAwar e attribute to the generic CM object has been added to help applications
determine if qualified names are important. Note that this should not be interpreted as helping
identify what the underlying content model is. A MathML example to show how namespaced
documents will be validated will be added later.

. 12. Multiple CMs being associated with a XML document. For validation, this could: 1) result in an

exception; 2) a merged content model for the document to be validated against; 3) each content
model for the document to be validated against separately. In this chapter, we have gone for the third
choice, allowing the user to specify which content model to be active and allowing them to keep
adding content models to a list associated with the document.

. 13. Content model being able to handle more datatypes than strings. Currently, this functionality is

not available and should be dealt with in the future.

. 14. Round-trippability for include/ignore statements and other constructs such as parameter entities,

e.g., "macro-like" constructs, will not be supported since no data representation exists to support
these constructs without having to re-parse them.

I15. Basic interface for a common error handler both CM and Load/Save. Agreement has been to
utilize user-registered callbacks but other details to be warnkied

11

1.1.2. Use Cases and Requirements

1.1.2.1.Content Model Interfaces

A list of the proposed Content Model data structures and functions follow, starting off with the data
structures.

Interface CMObject

CMObj ect is an abstract object that could map to a DTD, an XML Schema, a database schema, etc.
It's a generalized content model object, that has both an internal and external subset. The internal
subset would always exist, even if empty, with a link to the external subset, i.e.,

[CVEXt er nal Qoj ect|[p.12] , which may be a non-negative number linked together. It is possible,
however, that none of the€Ext er nal Qbj ect s are active. An attribute available will be

i sNarmespaceAwar e to determine if qualified names are important.

IDL Definition

interface CMbj ect {
b

Interface CM External Object

CMExt er nal Obj ect is an abstract object that could map to a DTD, an XML Schema, a database
schema, etc. It's a generalized content model object that is not bound to a particular XML document.
Opaque.

IDL Definition

i nterface CMExternal Cbject {
b
Interface CMNode

CWMNode, or a CMObject Node, is analogous to a node in the parse tree, e.g., an element declaration.
This can exist for boftMExt er nal Obj ect][p.12] (include/ignore must be handled here) and
[CV] ect][p.2]] . It should handle the following:

i nterface Comrent sPlsDeclaration { attribute Processinglnstruction
pis; attribute Comment conments; }; interface Conditional
Declaration { attribute bool ean includel gnore; };

Opaque.
IDL Definition

interface CMNode {
b

Interface CMNodeList

CMNodelLi st is the CM analogue thodelLi st ; ordering is important, as opposed to
[NanmedCVNodeMap|[p.13] . Opaque.

12

1.1.2. Use Cases and Requirements

IDL Definition

i nterface CWMNodelLi st {
3

Interface NamedCMNodeMap

NanedCWVNodeMap is the CM analogue tdamedNodeMap. Ordering is not important. Opaque.
IDL Definition

i nterface NamedCWMNodeMap {
3
Interface CMDataType

CWMDat aType is a string for now, as in "int" or "float", hence no typechecking.
IDL Definition

i nterface CMVDat aType {
s
Interface CMType

CMType is CVMNode][p.22] 's node type. For example, one type could be
[El enent Decl ar at i on|[p.23] , composed of a tagname, content-type, etc. Others could be

[El ement CMVbdel |[p.26] andAt t ri but eDecl ar ati on|[p.14] .
IDL Definition

interface CMIype {
b

Interface ElementDeclaration

The element name along with a description: empty, any, mixed, elements, PCDATA, in the context

of alCVNode[p.27] .
IDL Definition
i nterface El enmentDecl aration {
readonly attribute DOVString el ement Nane;
attribute DOVString cont ent Type;

attri bute NanedCwvNodeMap attri butes;
}s

Attributes
attributes of typedNamedCVMNodeNap][p.13]
CM'’s analogy tdNarmredNodeMap.

cont ent Type of typeDOVSt ri ng
Empty, any, mixed, elemenB8CDATA.

13

1.1.2. Use Cases and Requirements

el ement Nane of typeDOVSt r i ng, readonly
Name ofelement.

Interface ElementCMM odel

An element in the context of@Node][p.22] .

IDL Definition
i nterface El enent CM\bdel {
attribute DOVString |'i st Operator;
attribute int mul tiplicity;
attribute int | owval ue;
attribute int hi ghVal ue;
attri bute NanedCwvNodeMap subModel s;
attri bute CMNodeli st def i ni ngEl enment ;
b
Attributes

def i ni ngEl enent of typelCMNodeLi st][p.12]
Which CMNode in the list defined tredement.

hi ghVal ue of typei nt
The high value in the valuange.

I'i st Oper at or of typeDOVSt ri ng
Operatotist.

| owval ue of typei nt
The low value in the valuange.

mul tiplicity oftypei nt
0 or 1 ormany.

subModel s of typeNanedCVNodeMap][p.13]
Additional[CMNode][p.22] s in which the element can Hefined.

Interface AttributeDeclaration

An attribute in the context off@Node][p.22] .

IDL Definition
interface AttributeDeclaration {
readonly attribute DOVString attr Nane;
attri bute CVDat aType attrType;
attribute DOVString def aul t Val ue;
attribute DOVSBtring enumAttr;
attri bute CMNodeli st owner El enent ;
}
Attributes

14

1.1.2. Use Cases and Requirements

at t r Namre of typeDOVSt r i ng, readonly
Name ofattribute.

at tr Type of typelCVDat aType][p.13]
Datatype of thattribute.

def aul t Val ue of typeDOVSt r i ng
Default value, which can also be expressed as a range, with high avalles.

enumAt t r of typeDOVSE ri ng
Enumeration o#ttribute.

owner El enent of typgCVNodeLi st |[p.12]
Owner element CMNode atttribute.

Interface EntityDeclaration

As in current DOM.
IDL Definition

interface EntityDeclaration {

}s

This section contains "Validation and Other" methods common to both the document-editing and
CM-editing worlds (include®ocunent , DOM npl enent at i on, andkr r or Handl er|[p.19]
methods).

Interface DocumentCM

This interface extends ti®cunment interface with additional methods for both document and CM

editing.
IDL Definition
i nterface DocunentCM : Docunent {
bool ean isvalid();
i nt nunCMs () ;
CMbj ect getlnternal CM);
CMExt er nal Obj ect * get CMs();
CMbj ect get ActiveCM);
voi d addCM i n CMbj ect cm;
voi d renoveCMin CMDbject cm;
bool ean activateCMin CMObject cn);
s
Methods
activat eCM
Make the givefCMOb] ect][p.21] active. Note that if an user wants to activate one CM to

get default attribute values and then activate another to do validation, an user can do that;
however, only one CM is active atime.
Parameters

15

1.1.2. Use Cases and Requirements

cmof type[CVMDb] ect][p.21]
CM to be active for the document. points to a list of
[CVEXt er nal Qoj ect|[p.12] s; with this call, only the specified CM will lzetive.

Return Value

bool ean True if thgCMDb] ect]has already been associated with the
document usingddCM) ; false ifnot.

No Exceptions

addCM
Associate {CMDb] ect][p.21] with a document. Can be invoked multiple times to result in
a list of OVExt er nal Obj ect][p.12] s. Note that only one sole interf@bj ect]is
associated with the document, however, and that only one of the possible list of
[CVEXt er nal Obj ect | is active at any ortane.
Parameters

cmof typelCMOb] ect][p.21]

CM to be associated with tlicument.

No return.
No Return Value
No Exceptions

get Acti veCM
Find the activéCVEXt er nal Obj ect|[p.12] for a document.
Return Value

[CMDbj ect]with a pointer to the actifl@VExt er nal Obj ect]
[p.21] [p.12] of document.

No Parameters
No Exceptions

get C\Vs
Obtains a list JCVEXt er nal Obj ect][p.12] s associated with a document from the
[p.21] . This list arises wheaddCM) is invoked.
Return Value

CMExt er nal Obj ect A list of[CVEXt er nal Qoj ect|[p.12] s associated
* with adocument.

No Parameters
No Exceptions

16

1.1.2. Use Cases and Requirements

getInternal CM

Find the sol{gCMDb] ect][p.21] of a document. Only off@Mb] ect]may be associated
with the document.

Return Value
[p.21] [CMD] ect]

No Parameters
No Exceptions

isvValid
Determines if XML document is valid.
Return Value

bool ean Valid or not.

No Parameters
No Exceptions

nunmCvs

Determines number {@VExt er nal Obj ect][p.12] s associated with the document. Only
onelCMb] ect][p.21] can be associated with the document, but it may point to a list of
[CVEXt er nal Ooj ect k.

Return Value

i nt Non-negative number of external Ghbjects.

No Parameters
No Exceptions

renoveCM

Removes a CM associated with a document; actually rem{@&&d er nal Ob] ect]

[p.12] . Can be invoked multiple times to remove a number of these in the list of
|CVEXt er nal Obj ect k.

Parameters

cmof typelCMOb] ect][p.21]
CM to beremoved.

No return.
No Return Value
No Exceptions

Interface Doml mplementationCM

17

1.1.2. Use Cases and Requirements

This interface extends tl@®m npl enent at i on interface with additional methods.
IDL Definition

i nterface Doml npl enentati onCM : Dom npl ement ati on {

bool ean val i date();

CMbj ect createCM);

CMEXt er nal Obj ect creat eExternal CM);
CMbj ect cloneCMin CMXject cm;

CMEXt er nal Obj ect cl oneExt ernal CM i n CMExt er nal Cbj ect cn;
}s
Methods

cl oneCM
Copies §CMD] ect][p.21] to anothejCMb] ect] ThelCMb] ect]returned wouldn't be
associated with document.
Parameters
cmof typelCVMDb] ect][p.21]

[CMDbj ect]to becloned.

Return Value

[CVo] ect][p.21] ClonedCMMj ect]or NULL if failure.

No Exceptions

cl oneExt er nal CM

Copies §CVEXt er nal Obj ect|[p.12] to anothelCVEXt er nal Obj ect| The
[CVExt er nal Obj ect]returned wouldn't be associated witd@cument.
Parameters
cmof typelCVEXt er nal Obj ect|[p.12]

[CMDb] ect][p.21] to becloned.

Return Value

[CVExt er nal Obj ect][p.12] ClonedCMMj ect][p.21] or NULL if failure.

No Exceptions

creat eCM
Creates a CMObject.
Return Value

[CMDo] ect][p.21] A NULL return indicategailure.

No Parameters
No Exceptions

18

1.1.2. Use Cases and Requirements

cr eat eExt er nal CM
Creates a CMExternalObiject.
Return Value

[CVEXt er nal Obj ect|[p.12] A NULL return indicatedailure.

No Parameters
No Exceptions

val i dat e
Determines if a CMObject or CMExternalObject itself is valid; note that within a
CMObiject, a pointer to a CMExternalObject can exist.
Return Value

bool ean Is the CMvalid?

No Parameters
No Exceptions

Interface ErrorHandler

Basic interface for CM or Load/Save error handlers. If an application needs to implement customized
error handling for CM or Load/Save, it must implement this interface and then register an instance
using the setErrorHandler method. All errors and warnings will then be reported through this
interface. Application writers can override the methods in a subclass to take user-specified actions.
IDL Definition

interface ErrorHandl er {
voi d war ni ng(in where DOMStri ng,
in how DOMSt ri ng,
in why DOMString)
rai ses(DOVExcepti on2);
voi d fatal Error(in where DOVMString,
in how DOVSt ri ng,
in why DOWVString)
rai ses(DOVExcepti on2);
voi d error(in where DOMString,
in how DOMVBt ri ng,
in why DOMString)
rai ses(DOVExcepti on2);
b

Methods
error
Receive notification of a recoverable error per section 1.2 of the W3C XML 1.0
recommendation. The default behavior if the user doesn'’t register a handler is to do
nothing. The application may use this method to report conditions that are not fatal errors,
and processing may continue even after invokingrtteghod.
Parameters

19

1.1.2. Use Cases and Requirements

DOVEt r i ng of typewher e
Location of the error, which could be either a source position in the case of loading, or
a node reference for later validation. The base, public ID and system ID for the error
location could be some of the information.

DOMVSE r i ng of typehow
How the fatal errooccurred.

DOWVSt ri ng of typewhy
Why the fatal errooccurred.

Exceptions

DOVExcept i on2 A subclass oDOMEXxception.

No Return Value

fatal Error

Report a fatal, non-recoverable CM or Load/Save error per section 1.2 of the W3C XML

1.0 recommendation. The default behavior if the user doesn'’t register a handler is to throw

a DOMException2. The application must stop all further processing when this method has

beeninvoked.

Parameters

DOWVEt r i ng of typewher e
Location of the fatal error, which could be either a source position in the case of
loading, or a node reference for later validation. The base, public ID and system ID for
the error location could be some of the information.

DOVESE r i ng of typehow
How the fatal errobccurred.

DOMVSE ri ng of typewhy
Why the fatal errooccurred.

Exceptions

DOVExcept i on2 A subclass oDOMEXxception.

No Return Value

war ni ng
Receive notification of a warning per the W3C XML 1.0 recommendation. The default
behavior if the user doesn’t register a handler is to do nothing. The application may use this
method to report conditions that are not errors or fatal errors, and processing may continue
even after invoking thimethod.
Parameters

20

1.1.2. Use Cases and Requirements

DOVEt r i ng of typewher e
Location of the warning, which could be either a source position in the case of
loading, or a node reference for later validation. The base, public ID and system ID for
the error location could be some of the information.

DOMVSE r i ng of typehow
How the warningpccurred.

DOWVSt ri ng of typewhy
Why the warningbccurred.

Exceptions

DOVExcept i on2 A subclass oDOMEXxception.

No Return Value

This section contains "CM-editing" methods (inclul@b] ect][p.21] ,[CVNode][p.22] ,
[El ement Decl ar at i on|[p.23] , andEl enent CM\Vbdel |[p.26] methods).

Interface CMObject

CMbj ect is an abstract object that could map to a DTD, an XML Schema, a database schema, etc.
It's a generalized content model object, that has both an internal and external subset. The internal
subset would always exist, even if empty, with a link to the external subset, i.e.,

[CVEXt er nal Obj ect|[p.12] , which may be a non-negative number linked together. It is possible,
however, that none of thg&ivExt er nal Cbj ect s are active. An attribute available will be

i sNanespaceAwar e to determine if qualified names are important.

IDL Definition
i nterface CMbject {
readonly attribute bool ean i sNamespaceAwar e;
nsEl ement get CMNanespace() ;
namedCVNodeMap get CMVEl enent s() ;
bool ean renoveCWMNode(i n CvNode node);
bool ean i nsert bef oreCvNode(i n CMNode newnode,

i n CWMNode par ent node) ;
b

Attributes
i sNanespaceAwar e of typebool ean, readonly
To determine if qualified names dmportant.

Methods
get CMVEl enent s
RetrievedCMNode] [p.22] list of which al[CMNodes] of type element declaration.

Return Value

21

1.1.2. Use Cases and Requirements

namedCMNodeMap List of all[CMNodes]|[p.22] of type elementieclaration.
No Parameters
No Exceptions

get CMNanespace
Determines namespace@{Obj ect .
Return Value

nsEl enment Namespace cEMDbj ect .
No Parameters
No Exceptions

i nsert bef or eCVNode
Inser{CVMNode][p.22] .

Parameters

newnode of typelCMNode][p.22]
[CWNode] to beinserted.

par ent node of typelCMNode]
[CWNode]to be insertethefore.

Return Value

bool ean Success or failure..

No Exceptions

renoveCMNode
RemovefCMNode][p.22] and its children, ifiny.

Parameters

node of typelCVNode] [p.22]
[CvNode|to beremoved.

Return Value

bool ean Success or failure..

No Exceptions

Interface CMNode

22

1.1.2. Use Cases and Requirements

CWMNode, or a CMObject Node, is analogous to a node in the parse tree, e.g., an element declaration.
This can exist for boftVEXt er nal Obj ect][p.12] (include/ignore must be handled here) and

[CMDb] ect][p.2]] . It should handle the following:

IDL Definition
i nterface CMNode {
CMType get CMNodeType() ;
}
Methods
get CMNodeType
Determines type dEMNode.

Return Value
[CMTy pe][p.13] [OMTy pe] of CMNodee.

No Parameters
No Exceptions

Interface ElementDeclaration

The element name along with a description: empty, any, mixed, elements, PCDATA, in the context

of alCVNode[p.27] .
IDL Definition
i nterface El enentDecl aration {
i nt get Cont ent Type() ;
El enent CMVbdel get CVEl erent () ;
namedCVNodeMap get CMAttri but es();
namedCVNodeMap get CMVEl enent sChi l dren() ;
b
Methods

get CMAt tri but es
Gets list of all attributes for thiSVNode|[p.22] .

Return Value

namedCMNodeMap Attributes list for thigCVMNode][p.22] .

No Parameters
No Exceptions

get CMVEl enent
Gets content model of element.
Return Value

[El ement CMVbdel |[p.26] Content model oélement.

23

1.1.2. Use Cases and Requirements

No Parameters
No Exceptions

get CMElI enent sChi | dren
Gets list of children JCVNode][p.22] .

Return Value

nanmedCMNodeMap Children list for thigCVNode][p.22] .

No Parameters
No Exceptions

get Cont ent Type
Gets content type, e.g., empty, any, mixed, elements, PCDATA, of an element within a

[p.22 .

Return Value

i nt Content typeconstant.

No Parameters
No Exceptions

Interface ElementCMM odel

An element in the context of@Node][p.22] .

IDL Definition
i nterface El enent CMVbdel {

El enent CMvbdel set CMVElI enent Cardinality(i n CMNode node,
in int high,
inint |ow;

El enent CMvbdel get CMVElI enent Cardinality(i n CMNode node,

out int high,
out int |low;
b

Methods
get CMVEl enent Cardinal ity
Gets cardinality range of elemenvalue.
Parameters
node of typelCMNode][p.22]
[CVNode] for values to beetrieved.

hi gh of typei nt
High value to beetrieved.

24

1.1.2. Use Cases and Requirements

| ow of typei nt
Low value to beetrieved.

Return Value

[El enent CMVbdel] Element in the context of@vNode] with its high and
[p.26] low valuesretrieved.

No Exceptions

set CVEl enent Cardi nal ity
Sets cardinality range of elementalue.
Parameters
node of typelCVNode][p.22]
[CVNode] for values to bénserted.

hi gh of typei nt
High value to bénserted.

| ow of typei nt
Low value to benserted.

Return Value

[El ement CWM\Vbdel | Element in the context off@vNode] with its high and
[p.26] low valuesset.

No Exceptions

This section contains "Document-editing" methods (inclidiete, El enment , Text andDocunent
methods).

Interface NodeCM

This interface extends tidode interface with additional methods for document editing.

IDL Definition
interface NodeCM : Node {
bool ean canl nsert Before();
bool ean canRenoveChi | d();
bool ean canRepl aceChi | d();
bool ean canAppendChi | d();
b
Methods

canAppendChi |l d
Has the same args AppendChi | d.
Return Value

25

1.1.2. Use Cases and Requirements

bool ean Success ofailure.

No Parameters
No Exceptions

canl nsert Before
Has the same args beser t Bef or e.
Return Value

bool ean Success ofailure.

No Parameters
No Exceptions

canRenoveChi |l d
Has the same args BenoveChi | d.
Return Value

bool ean Success ofailure.

No Parameters
No Exceptions

canRepl aceChi l d
Has the same args Bepl aceChi | d.
Return Value

bool ean Success ofailure.

No Parameters
No Exceptions
Interface ElementCMModel

An element in the context of@Node][p.22] .

IDL Definition
i nterface El enent CM\bdel {
bool ean isValid();
i nt cont ent Type();
bool ean canSet Attribute(in DOMString attrname,

in DOVMString attrval);
bool ean canSet Attri but eNode();

}s

26

1.1.2. Use Cases and Requirements

Methods
canSet Attri bute
Sets value for specifieattribute.
Parameters
at t r name of typeDOMVSt ri ng
Name ofattribute.

attrval of typeDOVStri ng
Value to be assigned to th#ribute.

Return Value

bool ean Success ofailure.

No Exceptions

canSet Attri but eNode
Determines if attribute can be set.
Return Value

bool ean Success ofailure.

No Parameters
No Exceptions

cont ent Type
Determines element content type.
Return Value

i nt Constant for mixed, empty, angtc.

No Parameters
No Exceptions
isvValid
Determines if element is valid.
Return Value

bool ean Success ofailure.

No Parameters
No Exceptions

27

1.1.2. Use Cases and Requirements

Interface TextCM

This interface extends tliext interface with additional methods for document editing.

IDL Definition
interface TextCM: Text {
bool ean i s\Whi tespaceOnl y();
bool ean canSet Dat a() ;
bool ean canAppendDat a() ;
bool ean canRepl aceDat a() ;
bool ean canl nsertData();
b
Methods

canAppendDat a
Determines if data can be appended.
Return Value

bool ean Success ofailure.

No Parameters
No Exceptions

canl nsert Dat a
Determines if data can be inserted.
Return Value

bool ean Success ofailure.

No Parameters
No Exceptions

canRepl aceDat a
Determines if data can be replaced.
Return Value

bool ean Success ofailure.

No Parameters
No Exceptions

canSet Dat a
Determines if data can be set.
Return Value

bool ean Success ofailure.

28

1.1.2. Use Cases and Requirements

No Parameters
No Exceptions

i sWi t espaceOnly
Determines if content is only whitespace.
Return Value

bool ean True if content only whitespace; false for non-whitespace if it is a text
node in elementontent.

No Parameters
No Exceptions

Interface DocumentCM

This interface extends tligcunent interface with additional methods for document editing.

IDL Definition
i nterface DocunentCM : Docurnent {
bool ean i sEl ement Defined(in DOVString el enifypeNane) ;
bool ean i sAttributeDefined(in DOVBtring el enTypeNane,
in DOVBtring attrNane);
bool ean i sentityDefined(in DOVString ent Nare);
s
Methods

i SAttri buteDefined
Determines if an attribute is defined in thecument.
Parameters
el enifypeNane of typeDOVSt r i ng
Name ofelement.

at t r Nane of typeDOVSt ri ng
Name ofattribute.

Return Value

bool ean Success ofailure.

No Exceptions

i SEl enent Defi ned
Determines if an element is defined in tlecument.
Parameters
el enTypeNane of typeDOVBt ri ng
Name ofelement.

29

1.1.2. Use Cases and Requirements

Return Value

bool ean Success ofailure.

No Exceptions

i sEntityDefined
Determines if an entity is defined in tHecument.
Parameters
ent Nane of typeDOVSt ri ng
Name ofentity.

Return Value

bool ean Success ofailure.

No Exceptions

1.1.2.2.Editing and Generating a ContentModel

Editing and generating a content model falls in the CM-editing world. The most obvious requirement for
this set of requirements is for tools that author content models, either under user control, i.e., explicitly
designed document types, or generated from other representations. The latter class includes transcoding
tools, e.g., synthesizing an XML representation to match a datstizesma.

It's important to note here that a DTD’s "internal subset" is part of the Content Model, yet is loaded,

stored, and maintained as part of the individual document instance. This implies that even tools which do
not want to let users change the definition of the Document Type may need to support editing operations
upon this portion of the CM. It also means that our representation of the CM must be aware of where each
portion of its content resides, so that when the serializer processes this document it can write out just the
internal subset. A similar issue may arise with external parsed entities, or if schemas introduce the ability

to reference other schemas. Finally, the internal-subset case suggests that we may want at least a two-level
representation of content models, so a single DOM representation of a DTD can be shared among several
documents, each potentially also having its own internal subset; it's possible that entity layering may be
represented the samay.

The API for altering the content model may also be the CM'’s official interface with parsers. One of the
ongoing problems in the DOM is that there is some information which must currently be created via
completely undocumented mechanisms, which limits the ability to mix and match DOMs and parsers.
Given that specialized DOMs are going to become more common (sub-classed, or wrappers around other
kinds of storage, or optimized for specific tasks), we must avoid that situation and provide a "builder"

API. Particular pairs of DOMs and parsers may bypass it, but it's required as a pomadxhtstnism.

Note that several of these applications require that a CM be able to be created, loaded, and manipulated
without/before being bound to a specific Document. A related issue is that we’d want to be able to share a
single representation of a CM among several documents, both for storage efficiency and so that changes in

30

1.1.2. Use Cases and Requirements

the CM can quickly be tested by validating it against a set of known-good documents. Similarly, there is a
known problem in DOM Level 2 where we assume that the DocumentType will be created before the
Document, which is fine for newly-constructed documents but not a good match for the order in which an
XML parser encounters this data; being able to "rebind" a Document to a new CM, after it has been
created may bdesirable.

As noted earlier, questions about whether one can alter the content of the CM via its syntax, via
higher-level abstractions, or both, exist. It's also worth noting that many of the editing concepts from the
Document tree still apply; users should probably be able to clone part of a CM, remove and re-insert parts,
and soon.

1.1.2.3.Content Model-directed DocumentManipulation

In addition to using the content model to validate a document instance, applications would like to be able
to use it to guide construction and editing of documents, which falls into the document-editing world.
Examples of this sort of guided editing already exist, and are becoming more common. The necessary
gueries can be phrased in several ways, the most useful of which may be a combination of "what does the
DTD allow me to insert here" and "if | insert this here, will the document still be valid". The former is

better suited to presentation to humans via a user interface, and when taken together with sub-tree
validation may subsume the latter.

It has been proposed that in addition to asking questions about specific parts of the content model, there
should be a reasonable way to obtain a list of all the defined symbols of a given type (element, attribute,
entity) independent of whether they’re valid in a given location; that might be useful in building a list in a
user-interface, which could then be updated to reflect which of these are relevant for the program’s current
state.

Remember that namespaces also weigh in on this issue, in the case of attributes, a "can-this-go-there" may
prompt a namespace-well-formedness check and warn you if you're about to conflict with or overwrite
another attribute with the same NSURI/localname but different prefix... or same nodename but different
NSURI.

As mentioned above, we have to deal with the fact that the shortest distance between two valid documents
may be through an invalid one. Users may want to know several levels of detail (all the possible children,
those which would be valid given what preceeds this point, those which would be valid given both
preceeding and following siblings). Also, once XML Schemas introduce context sensitive validity, we

may have to consider the effect of children as well as the individual nodeirsanigd.

1.1.2.4.Validating a Document Against a ContentModel

The most obvious use for a content model (DTD or XML Schema or any Content Model) is to use it to
validate that a given XML document is in fact a properly constructed instance of the document type
described by this CM. This again falls into the document-editing world. The XML spec only discusses
performing this test at the time the document is loaded into the "processor", which most of us have taken
to mean that this check should be performed at parse time. But it is obviously desirable to be able to
revalidate a document -- or selected subtrees -- at other times. One such case would be validating an
edited or newly constructed document before serializing it or otherwise passing it to other users. This

31

1.1.2. Use Cases and Requirements

issue also arises if the "internal subset" is altered -- or if the whole Content dhadeles.

In the past, the DOM has allowed users to create invalid documents, and assumed the serializer would
accept the task of detecting problems and announcing/repairing them when the document was written out
in XML syntax... or that they would be checked for validity when read back in. We considered adding
validity checks to the DOM’s existing editing operations to prevent creation of invalid documents, but are
currently inclined against this for several reasons. First, it would impose a significant amount of
computational overhead to the DOM, which might be unnecessary in many situations, e.g., if the change is
occurring in a context where we know the result will be valid. Second, "the shortest distance between two
good documents may be through a bad document". Preventing a document from becoming temporarily
invalid may impose a considerable amount of additional work on higher-level code and users Hence our
current plan is to continue to permit editing to produce invalid DOMs, but provide operations which

permit a user to check the validity of a nodedemand.

Note that validation includes checking that ID attributes are unique, and that IDREFs point to IDs which
actuallyexist.

1.1.2.5.Well-formednessTesting

XML defined the "well-formed'(WF) state for documents which are parsed without reference to their
DTDs. Knowing that a document is well-formed may be useful by itself even when a DTD is available.
For example, users may wish to deliberately save an invalid document, perhaps as a checkpoint before
further editing. Hence, the CM feature will permit both full validity checking (see next section) and
"lightweight" WF checking, as requested by the caller. This falls within the document-euitilay

While the DOM inherently enforces some of XML'’s well-formedness conditions (proper nesting of
elements, constraints on which children may be placed within each node), there are some checks that are
not yet performed. Theseclude:

® Character restrictions for text content and attribute values. Some characters aren’t permitted even
when expressed as numeric character entities

® The three-character sequence "]]>" in CDATASections.

® The two-character sequence "--" in comments. (Which, be it noted, some XML validators don'’t
currently remember ttest...)

In addition, Namespaces introduce their own concepts of well-forme@pessfically:

® No two attributes on a single Element may have the same combination of namespaceURI and
localname, even if their prefixes are different and hence they don’t conflict under XML 1.0 rules.

® NamespaceURIs must be legal URI syntax. (Note that once we have this code, it may be reusable for
the URI "datatype" in document content; see discussion of datatypes.)

e The mapping of namespace prefixes to their URIs must be declared and consistant. That isn't
required during normal DOM operation, since we perform "early binding" and thereafter refer to
nodes primarily via their NSURI and localname. But it does become an issue when we want to
serialize the DOM to XML syntax, and may be an issue if an application is assuming that all the
declarations are present and correct. This may imply that we should provide a
nanespaceNor mal i ze operation, which would create the implied declarations and reconcile

32

1.1.2. Use Cases and Requirements

conflicts in some reasonably standardized manner. This may be a major undertaking, since some
DOMs may be using the namespace to direct subclassing of the nodes or similar special treatment; as
with the existinghor mal i ze method, you may be left with a different-but-equivalent set of node
objects.

In the past, the DOM has allowed users to create documents which violate these rules, and assumed the
serializer would accept the task of detecting problems and announcing/repairing them when the document
was written out in XML syntax. We considered adding WF checks to the DOM'’s existing editing
operations to prevent WF violations from arising, but are currently inclined against this for two reasons.
First, it would impose a significant amount of computational overhead to the DOM, which might be
unnecessary in many situations (for example, if the change is occuring in a context where we know the
illegal characters have already been prevented from arising). Second, "the shortest distance between two
good documents may be through a bad document"” -- preventing a document from becoming temporarily
ill-formed may impose a considerable amount of additional work on higher-level code and users. (Note
possible issue for Serialization: In some applications, being able to save and reload marginally
poorly-formed DOMs might be useful -- editor checkpoint files, for example.) Hence our current plan is to
continue to permit editing to produce ill-formed DOMSs, but provide operations which permit a user to
check the well-formedness of a node on demand, and possily provide expose some of the primitive (eg,
string-checking) functiondirectly.

33

1.1.2. Use Cases and Requirements

34

2. Document Object Model Load and Save

2. Document Object Model Load andSave
Editors

Andy Heninger)BM
2.1.Load and SaveRequirements

DOM Level 3 will provide an API for loading XML source documents into a DOM representation and for
saving a DOM representation as a XML document.

Some environments, such as the Java platform or COM, have their own ways to persist objects to streams
and to restore them. There is no direct relationship between these mechanisms and the DOM load/save
mechanism. This specification defines how to serialize documents only to and from XML format.

2.1.1.General Requirements

Requirements that apply to both loading and saving documents.

2.1.1.1.DocumentSources
Documents must be able to be parsed from and saved to the folEwiraps:

® [nput and Output Streams
® URIs
® Files

Note that Input and Output streams take care of the in memory case. One point of caution is that a stream
doesn’t allow a base URI to be defined against which all relative URIs in the documessadved.

2.1.1.2.Content Model Loading

While creating a new document using the DOM API, a mechanism must be provided to specify that the
new document uses a pre-existing Content Model and to cause that Content Modighdethe

Note that while DOM Level 2 creation can specify a Content Model when creating a document (public
and system IDs for the external subset, and a string for the internal subset), DOM Level 2
implementations do not process the Content Model’s content. For DOM Level 3, the Content Model's
content must be bead.

2.1.1.3.Content Model Reuse
When processing a series of documents, all of which use the same Content Model, implementations

should be able to reuse the already parsed and load ed Content Model rather than reparsing it again for
each newdocument.

35

2.1.2. Load Requirements

This feature may not have an explicit DOM API associated with it, but it does require that nothing in this
section, or the Content Model section, of this specification block it or make it diffidaiplement.

2.1.1.4.Entity Resolution

Some means is required to allow applications to map public and system IDs to the correct document. This
facility should provide sufficient capability to allow the implementation of catalogs, but providing
catalogs themselves is not a requirement. In addition XML Base needaddressed.

2.1.1.5.Error Reporting
Loading a document can cause the generation of énctgling:

e |/O Errors, such as the inability to find or open the specdmiment.
XML well formednesserrors.
Validity errors

Saving a document can cause the generation of énabusling:

® |/O Errors, such as the inability to write to a specified stream, uilgor
Improper constructs, such as ’--’ in comments, in the DOM that cannot be represented as well formed
XML.

This section, as well as the DOM Level 3 Content Model section should use a common error reporting
mechanism. Well-formedness and validity checking are in the domain of the Content Model section, even
though they may be commonly generated in response to an application asking that a docloaéetibe

2.1.2.Load Requirements

The following requirements apply to loading documents.

2.1.2.1.Parser Properties andOptions
Parsers may have properties or options that can be set by applications. Exachjules

® Expansion of entity references.

e Creation of entity ref nodes.

e Handling of white space in element content.
e Enabling of namespace handling.

® Enabling of content modehlidation.

A mechanism to set properties, query the state of properties, and to query the set of properties supported
by a particular DOM implementationiisquired.

36

2.1.3. XML Writer Requirements

2.1.3. XML Writer Requirements

The fundamental requirement is to write a DOM document as XML source. All information to be
serialized should be available via the normal DOM API.

2.1.3.1. XML Writer Properties and Options
There are several options that can be defined when saving an XML document. Someavéthese

Saving to Canonical XML format.

Pretty Printing.

Specify the encoding in which a document is written.
How and when to use character entities.
Namespace prefix handling.

Saving of Content Models.

Handling of externaéntities.

2.1.3.2.Content Model Saving

Requirement from the Content Modgbup.

2.1.4.0ther Items Under Consideration

The following items are not committed to, but are under consideration. Public feedback on these items is
especially requested.

2.1.4.1.Incremental and/or Concurrent Parsing

Provide the ability for a thread that requested the loading of a document to continue execution without
blocking while the document is being loaded. This would require some sort of notification or completion
event when the loading process wase.

Provide the ability to examine the partial DOM representation before it has bedoddibyl.

In one form, a document may be loaded asynchronously while a DOM based application is accessing the
document. In another form, the application may explicitly ask for the next incremental portion of a
document to béaded.

2.1.4.2 Filtered Save

Provide the capability to write out only a part of a document. May be able to leverage TreeWalkers, or the
Filters associated with TreeWalkers, or Ranges as a means of specifying the portion of the document to be
written.

37

2.1.4. Other Items Under Consideration

2.1.4.3.DocumentFragments

Document fragments, as specified by the XML Fragment specification, should be able to be loaded. This
is useful to applications that only need to process some part of a large document. Because the DOM is
typically implemented as an in-memory representation of a document, fully loading large documents can
require large amounts aiemory.

XPath should also be considered as a way to identify XML Document fragméuwesl to
2.1.4.4.Document Fragments in Context of ExistingpOM

Document fragments, as specified by the XML Fragment specification, should be able to be loaded into
the context of an existing document at a point specified by a node position, or perhaps a range. This is a
separate feature than simply loading document fragments asMaukw

38

Appendix A: IDL Definitions

Appendix A: IDL Definitions

This appendix contains the complete OMG I[@MGIDL] for the Level 3 Document Object Model
Content Modetlefinitions.

The IDL files are also available as:
http://www.w3.0rg/TR/2000/WD-DOM-Level-3-Content-Models-and-Load-Save-20000901/idl.zip

contentModel.idl:

/1 File: contentMdel.idl

#i f ndef _CONTENTMODEL_| DL_
#define _CONTENTMODEL_| DL_

#i ncl ude "domidl"

#pragma prefix "dom w3c. org"
nmodul e cont ent Mbdel

{

typedef dom :DOMString DOVBtring;

typedef dom:int int;

typedef dom :where where;

typedef dom : how how;

typedef dom :why why;

typedef dom : nsEl enent nsEl enment;

typedef dom : nanedCMNodeMap nanmedCMNodeMap;
typedef dom : Docunment Docunent;

typedef dom : CMExt er nal Obj ect * CMExternal bject *;
typedef dom : Donml npl enent ati on Donl npl enent ati on;
typedef dom : Node Node;

typedef dom: Text Text;

interface CMbj ect {
3

i nterface CMExternal Object {
3

i nterface CMNode {
3

i nterface CMNodeLi st {
3

i nterface NanmedCWNodeMap {
3

i nterface CWVDat aType {
3

interface CMIype {
3

39

interface El enentDecl aration {
readonly attribute DOVString
attribute DOVSBtring

attri bute NanedCvNodeMap

I

i nterface El enent CMVbdel {
attribute DOVBtring
attribute int
attribute int
attribute int
attri bute NanedCwvNodeMap
attri bute CMNodelLi st

I

interface AttributeDeclaration {
readonly attribute DOMVString
attribute CMDat aType
attribute DOVBtring
attribute DOVBtring
attri bute CMNodeli st

contentModel.idl:

el enent Nane;
cont ent Type,;
attributes;

i stQperator;
mul tiplicity;

| owval ue;

hi ghVal ue;
subModel s;

defi ni ngEl enent ;

at t r Nane;
attr Type;
def aul t Val ue;
enumattr;
owner El enent ;

I

interface EntityDecl aration {

I

interface ErrorHandl er {

voi d

voi d

voi d

I

interface CMbj ect {
readonly attribute
nsEl ement
nanedCVNodeMap
bool ean
bool ean

3
i nterface CMNode ({

CMType
I

war ni ng(in where DOVStri ng,
i n how DOVSt ri ng,
in why DOVString)
rai ses(dom : DOVExcepti on2);
fatal Error(in where DOVBtring,
in how DOVBtring,
in why DOVString)
rai ses(dom : DOVExcepti on2);
error(in where DOVString,
i n how DOVSt ri ng,
in why DOVString)
rai ses(dom : DOVExcepti on2);

bool ean
get CMNanespace() ;
get CMVEl enent s() ;
removeCWNode(i n CMNode node);
i nsert bef oreCvNode(i n CMNode newnode

in CMNode parent node);

i sNanespaceAwar e;

get CMNodeType() ;

interface El enentDecl aration {

i nt

get Cont ent Type() ;

40

contentModel.idl:

El enent CMvbdel get CMVEl enent () ;

nanedCVNodeMap getCMAttri butes();

nanedCVNodeMap get CMVEl enent sChi I dren() ;

3
i nterface El enent CMVbdel {

El enent CMvbdel set CMEl enent Cardinality(i n CMNode node,
in int high,
inint |ow;

El enent CMvbdel get CMVEl enent Cardinality(i n CMNode node,

out int high,
out int |low;

3
i nterface El enent CMVbdel {
bool ean isValid();
i nt cont ent Type();
bool ean canSet Attribute(in DOMString attrnane,
in DOVBtring attrval);
bool ean canSet Attri but eNode();
3
i nterface Document CM : Docunent {
bool ean isValid();
i nt nunmCvs() ;
CMj ect getlnternal CM);
CMEXt er nal Obj ect * get CMs();
CMj ect get ActiveCM);
voi d addCM i n CMbject cm;
voi d removeCMin CMObj ect cm;
bool ean activateCMin CMbject cm;
3
interface Dom npl enmentati onCM : Dom npl enent ati on {
bool ean val i date();
CMbj ect createCM);
CMEXt er nal Obj ect creat eExternal CM);
CMbj ect cloneCMin CMMbject cm;

CMEXt er nal Obj ect cl oneExt ernal CM i n CMExt er nal Cbject cm;
3

interface NodeCM : Node {

bool ean canl nsertBefore();
bool ean canRenoveChi | d();
bool ean canRepl aceChi l d();
bool ean canAppendChi | d();
3
interface TextCM : Text {
bool ean i s\Whi tespaceOnl y();
bool ean canSet Dat a() ;
bool ean canAppendDat a() ;
bool ean canRepl aceDat a() ;
bool ean canl nsertData();
3

i nterface Document CM : Docunent {

41

contentModel.idl:

bool ean i sEl ement Defined(in DOVString el enifypeNane) ;
bool ean i sAttributeDefined(in DOVBtring el enTypeNane,

in DOVBtring attrNane);
bool ean i sentityDefined(in DOVString ent Nane);

I
I

#endif // _CONTENTMODEL | DL_

42

Appendix B: Java Language Binding

Appendix B: Java LanguageBinding

This appendix contains the complete Jfavd bindings for the Level 3 Document Object Model
ContentModel.

The Java files are also available as
http://www.w3.0rg/TR/2000/WD-DOM-Level-3-Content-Models-and-Load-Save-20000830/java-binding.zip

org/w3c/dom/contentModel/CMObject.java:

package org.w3c.dom cont ent Mbdel ;

public interface CMbject {
}

org/w3c/dom/contentModel/CMExternalObject.java:

package org.w3c.dom cont ent Mbdel ;

public interface CMEXternal Object {
}

org/w3c/dom/contentModel/CMNode.java:

package org.w3c.dom cont ent Mbdel ;

public interface CMNode {
}

org/w3c/dom/contentModel/CMNodeList.java:

package org.w3c.dom cont ent Mbdel ;

public interface CMNodeLi st {
}

org/w3c/dom/contentModel/NamedCMNodeMap.java:

package org.w3c.dom cont ent Mbdel ;

public interface NamedCWMNodeMap {
}

org/w3c/dom/contentModel/CMDataType.java:

package org.w3c.dom cont ent Mbdel ;

public interface CMDataType {
}

43

org/w3c/dom/contentModel/CMType.java:

org/w3c/dom/contentModel/CMType.java:

package org.w3c.dom cont ent Mbdel ;

public interface CMIype {
}

org/w3c/dom/contentModel/ElementDeclaration.java:

package org.w3c.dom cont ent Mbdel ;

public interface El enentDeclaration {
public String getEl enent Name();

public String getContentType();
public void setContent Type(String contentType);

publ i ¢ NanedCWNodeMap get Attri butes();
public void setAttributes(NanedCWNodeMap attri butes);

}

org/w3c/dom/contentModel/ElementCMModel.java:

package org.w3c.dom cont ent Mbdel ;
public interface El enent CM\bdel {
public String getListOperator();
public void setListOperator(String |istOperator);

public int getMultiplicity();
public void setMultiplicity(int multiplicity);

public int getLowval ue();
public void setLowval ue(int | owal ue);

public int getH ghVal ue();
public void setH ghVal ue(i nt hi ghVal ue);

publ i ¢ NanedCvWNodeMap get SubMddel s();
public void set SubMddel s(NanedCvNodeMap subModel s);

publ i c CMNodeLi st get Defi ni ngEl erment () ;
public void setDefini ngEl ement (CWMNodeLi st defi ni ngEl enent);

}

org/w3c/dom/contentModel/AttributeDeclaration.java:

package org.w3c. dom cont ent Mbdel ;

public interface AttributeDeclaration {
public String getAttrNanme();

publ i c CMVDat aType get AttrType();

44

org/w3c/dom/contentModel/EntityDeclaration.java:

public void setAttrType(CNVDat aType attrType);

public String getDefaultValue();
public void setDefaultValue(String defaultValue);

public String get EnumAttr();
public void setEnumAttr(String enumAttr);

publ i ¢ CMNodeLi st get Omner El enent () ;
public void set Oaner El ement (CMNodeLi st owner El enent) ;

org/w3c/dom/contentModel/EntityDeclaration.java:

package org.w3c.dom cont ent Mbdel ;

public interface EntityDeclaration {

}

org/w3c/dom/contentModel/DocumentCM.java:

package org.w3c.dom cont ent Mbdel ;

i mport org.w3c.dom Docunent ;
i mport org.w3c.dom CMEXt er nal Obj ect *;

public interface Docunent CM ext ends Docunent {
public boolean isValid();

public int numCMs();

public CMbj ect getlnternal CM);
publ i ¢ CMEXt ernal Obj ect * get CMs();
public CMbj ect getActiveCM);
public void addCM CMbj ect cm;
public void renoveCM CMbj ect cnj;

public bool ean activateCM CMbj ect cm;

org/w3c/dom/contentModel/DomimplementationCM.java:

package org.w3c.dom cont ent Mbdel ;
i mport org.w3c.dom Donl npl enent ati on;

public interface Dom npl ement ati onCM ext ends Doml npl enentati on {
publ i c bool ean validate();

45

org/w3c/dom/contentModel/ErrorHandler.java:

public CMbject createCM);
publ i ¢ CMEXt ernal Obj ect creat eExternal CM);
public CMbj ect cloneCM CMbject cm;

publ i ¢ CMEXt er nal Obj ect cl oneExt er nal CM CVEXxt er nal Obj ect

org/w3c/dom/contentModel/ErrorHandler.java:

package org.w3c.dom cont ent Mbdel ;

i mport org.w3c.dom how;

i mport org.w3c.dom wher e;

i mport org.w3c.dom why;

i mport org.w3c. dom DOVExcepti on2;

public interface ErrorHandl er {
public void warni ng(where DOVStri ng,
how DOVSt ri ng,
why DOMSt ri ng)
t hrows DOVEXxcepti on2;

public void fatal Error(where DOVStri ng,
how DOMSt ri ng,
why DOWVESt ri ng)
t hrows DOVExcepti on2;
public void error(where DOVStri ng,
how DOVSt ri ng,

why DOMSt ri ng)
t hrows DOVEXxcepti on2;

org/w3c/dom/contentModel/CMObject.java:

package org.w3c. dom cont ent Mbdel ;

i mport org.w3c. dom namedCMNodeMap;
i mport org.w3c.dom nsEl enent ;

public interface CMbject {
publ i ¢ bool ean get| sNanespaceAwar e() ;

public nsEl emrent get CMNanespace();
publ i ¢ nanedCvNodeMap get CMVEl enment s() ;

publ i ¢ bool ean renbveCWNode(CMNode node) ;

46

org/w3c/dom/contentModel/CMNode.java:

publ i ¢ bool ean insertbef oreCvNode(CVMNode newnode,
CWMNode par ent node) ;

}

org/w3c/dom/contentModel/CMNode.java:

package org.w3c.dom cont ent Mbdel ;

public interface CMNode {
public CMIype get CMNodeType();

}

org/w3c/dom/contentModel/ElementDeclaration.java:

package org.w3c.dom cont ent Mbdel ;
i mport org. w3c. dom nanmedCMNodeMap;

public interface El enentDeclaration {
public int getContentType();

publ i ¢ El enent CM\Wbdel get CVEl erent () ;
publ i ¢ nanedCvNodeMap get CMAttri butes();
publ i ¢ nanedCvNodeMap get CMVEl errent sChi | dren() ;

}

org/w3c/dom/contentModel/ElementCMModel.java:

package org.w3c.dom cont ent Mbdel ;
public interface El enent CMVbdel {
publ i ¢ El enent CMVbdel set CMVEl errent Car di nal i t y(CMNode node,
i nt high,
int |ow;
publ i c El enent CMVbdel get CMVEl errent Car di nal i t y(CMNode node,
i nt high,
int |ow;

}

org/w3c/dom/contentModel/NodeCM.java:

package org.w3c. dom cont ent Mbdel ;
i mport org.w3c. dom Node;

public interface NodeCM extends Node {
publ i ¢ bool ean canl nsertBefore();

47

org/w3c/dom/contentModel/ElementCMModel.java:

publ i ¢ bool ean canRenoveChil d();
publ i ¢ bool ean canRepl aceChil d();

publ i ¢ bool ean canAppendChil d();

org/w3c/dom/contentModel/ElementCMModel.java:

package org.w3c.dom cont ent Mbdel ;

public interface El enent CMVbdel {
public bool ean isValid();

public int contentType();

publ i c bool ean canSet Attribute(String attrnamne,
String attrval);

publ i c bool ean canSet Attri but eNode();

org/w3c/dom/contentModel/TextCM.java:

package org.w3c. dom cont ent Mbdel ;
i mport org.w3c.dom Text;

public interface TextCM extends Text ({
public bool ean i sWitespaceOnly();

publ i ¢ bool ean canSet Dat a();
publ i ¢ bool ean canAppendDat a();
publ i ¢ bool ean canRepl aceDat a();

publ i c bool ean canl nsertData();

org/w3c/dom/contentModel/DocumentCM.java:

package org.w3c.dom cont ent Mbdel ;
i mport org.w3c.dom Docunent ;

public interface Docunent CM extends Document {
publ i c bool ean i sEl enent Defi ned(String el enTypeNane) ;

public bool ean isAttributeDefined(String el eniTypeNane,
String attrNane);

48

org/w3c/dom/contentModel/DocumentCM.java:

public bool ean isEntityDefined(String entNane);

49

org/w3c/dom/contentModel/DocumentCM.java:

50

Appendix C: ECMA Script Language Binding

Appendix C: ECMA Script Language Binding

This appendix contains the complete ECMA SdgEMAScrip{ binding for the Level 3 Document
Object Model Content Modelefinitions.

ObjectCMObject
ObjectCMEXxternalObject
ObjectCMNode
ObjectCMNodeList
ObjectNamedCMNodeMap
ObjectCMDataType
ObjectCMType
ObjectElementDeclaration
TheElementDeclaration object has the following properties:
elementName
This property is of typ&tring.
contentType
This property is of typ&tring.
attributes
This property is of typ@lamedCMNodeMap.
ObjectElementCMModel
The ElementCMModel object has the following properties:
listOperator
This property is of typ&tring.
multiplicity
This property is of typent.
lowValue
This property is of typent.
highValue
This property is of typent.
subModels
This property is of typ@lamedCMNodeMap.
definingElement
This property is of typ€MNodelList.
ObjectAttributeDeclaration
TheAttributeDeclaration object has the following properties:
attrName
This property is of typ&tring.
attrType
This property is of typ€MDataType.
defaultValue
This property is of typ&tring.
enumaAttr
This property is of typ&tring.

51

Appendix C: ECMA Script Language Binding

ownerElement
This property is of typ€MNodelList.
ObjectEntityDeclaration
ObjectDocumentCM
DocumentCM has the all the properties and methodBa@éumentas well as the properties and
methods defined below.
The DocumentCM object has the following methods:
isValid()
This method returnslaoolean
numCMs()
This method returnsiat.
getinternalCM()
This method returns @MObject.
getCMs()
This method returns @MExternalObject *.
getActiveCM()
This method returns @MObject.
addCM(cm)
This method has no return value.
Thecm parameter is of typEMObject.
removeCM(cm)
This method has no return value.
Thecm parameter is of typEMObject.
activateCM(cm)
This method returnslaoolean
Thecm parameter is of typEMObject.
ObjectDomlImplementationCM
DomimplementationCM has the all the properties and method®ailimplementation as well as
the properties and methods defined below.
The DomimplementationCM object has the following methods:
validate()
This method returnslaoolean
createCM()
This method returns @MObject.
createExternalCM()
This method returns @MExternalObiject.
cloneCM(cm)
This method returns @MObject.
Thecm parameter is of typEMObject.
cloneExternalCM(cm)
This method returns @MExternalObiject.
Thecm parameter is of typEMExternalObject .
ObjectErrorHandler
TheErrorHandler object has the following methods:
warning(DOMString, DOMString, DOMString)
This method has no return value.

52

Appendix C: ECMA Script Language Binding

TheDOMString parameter is of typ&here.
TheDOMString parameter is of typleow.
The DOMString parameter is of typehy.
fatalError(DOMString, DOMString, DOMString)
This method has no return value.
TheDOMString parameter is of typ&here.
TheDOMString parameter is of typleow.
The DOMString parameter is of typehy.
error(DOMString, DOMString, DOMString)
This method has no return value.
TheDOMString parameter is of typ&here.
TheDOMString parameter is of typleow.
The DOMString parameter is of typehy.
ObjectCMObject
The CMObject object has the following properties:
isNamespaceAware
This property is of typboolean
The CMObject object has the following methods:
getCMNamespace()
This method returnsssElement
getCMElements()
This method returns mamedCMNodeMap.
removeCMNode(node)
This method returnslaoolean
Thenode parameter is of typ€MNode.
insertbeforeCMNode(newnode parentnode)
This method returnslaoolean
Thenewnodeparameter is of typEMNode.
Theparentnode parameter is of typEMNode.
ObjectCMNode
The CMNode object has the following methods:
getCMNodeType()
This method returns @MType.
ObjectElementDeclaration
The ElementDeclaration object has the following methods:
getContentType()
This method returnsiat.
getCMElement()
This method returns BlementCMModel.
getCMAttributes()
This method returns mamedCMNodeMap.
getCMElementsChildren()
This method returns mamedCMNodeMap.
ObjectElementCMModel
The ElementCMModel object has the following methods:

53

Appendix C: ECMA Script Language Binding

setCMElementCardinality(node, high,low)
This method returns BlementCMModel.
Thenode parameter is of typ€MNode.
Thehigh parameter is of typiat.
Thelow parameter is of typiat.
getCMElementCardinality(node, high, low)
This method returns BlementCMModel.
Thenode parameter is of typ€MNode.
Thehigh parameter is of typiat.
Thelow parameter is of typiat.
ObjectNodeCM
NodeCM has the all the properties and methodsade as well as the properties and methods
defined below.
TheNodeCM object has the following methods:
canlnsertBefore()
This method returnslaoolean
canRemoveChild()
This method returnslaoolean
canReplaceChild()
This method returnslaoolean
canAppendChild()
This method returnslaoolean
ObjectElementCMModel
The ElementCMModel object has the following methods:
isValid()
This method returnslaoolean
contentType()
This method returnsiat.
canSetAttribute(attrname, attrval)
This method returnslaoolean
Theattrname parameter is of typ8tring.
Theattrval parameter is of typ8tring.
canSetAttributeNode()
This method returnslaoolean
ObjectTextCM
TextCM has the all the properties and method$eit as well as the properties and methods defined
below.
TheTextCM object has the following methods:
isWhitespaceOnly()
This method returnslaoolean
canSetData()
This method returnslaoolean
canAppendData()
This method returnslaoolean
canReplaceData()
This method returnslaoolean

54

Appendix C: ECMA Script Language Binding

canlnsertData()
This method returnslaoolean
ObjectDocumentCM
DocumentCM has the all the properties and methodBa@dumentas well as the properties and
methods defined below.
The DocumentCM object has the following methods:
isElementDefined(elemTypeName)
This method returnslaoolean
TheelemTypeNameparameter is of typ8tring.
isAttributeDefined(elemTypeName attrName)
This method returnslaoolean
TheelemTypeNameparameter is of typ8tring.
TheattrName parameter is of typ8tring.
isEntityDefined(entName)
This method returnslaoolean
TheentNameparameter is of typ8tring.

55

Appendix C: ECMA Script Language Binding

56

References

References

For the latest version of any W3C specification please consult the[l8GfTechnicaReportkavailable
at http://www.w3.0rg/TR.

D.1: Normative references

ECMAScript
ECMA (European Computer Manufacturers Associaff@MAScript Languag&pecificatioh
Available at http://www.ecma.ch/ecmal/STAND/ECMA-262.HTM

Java
Sun Microsystems Infthe Java Languagdgpecificatioh James Gosling, Bill Joy, and Guy Steele,
September 1996. Available at http://java.sun.com/docs/booksl/jls

OMGIDL
OMG (Object Management Group) IDL (Interface Definition Language) defirf@denCommoh
[Object Request Broker: Architecture aBgecificatiop version 2.3.1, October 1999. Available at
http://sisyphus.omg.org/technology/documents/formal/corba_2.htm

57

http://sisyphus.omg.org/technology/documents/formal/corba_2.htm
http://sisyphus.omg.org/technology/documents/formal/corba_2.htm
http://java.sun.com/docs/books/jls
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM
http://www.w3.org/TR

D.1: Normative references

58

Index

ctivateC

attributef

!

lcanAppendChild
caninsertData

lcanReplaceData

canSetData
CMDataType
[contentTypke7, 13

defaultValug

[DomImplementationCIM

CMAScrip

lementNamnle

rro

atalErro

getActiveC

[getCMElementCardinality

[getCMNamespage

loetContentType

highValug

Index

[canAppendData

[canRemoveChild

[CMExternalObjedt
[CMObject12, 21

[definingElement

[ElementCMModell4, 24, 26

[EntityDeclaratioh

ErrorHandler

[oetCMALttributes

[oetCMElements

[getCMNodeType

59

|AttributeDeclaratioh

|caninsertBefoille

lcanReplaceChild

|canSetAttributeNode

[cloneExternalCM

CMNodg12, 22

[createExternalCM

15, 29

|[ElementDeclaratiqd 3, 23

getCMElement
lgetCMElementsChildrgn

[insertbeforeCMNode

isEntityDefineg
[sWhitespaceOnly

Javg

listOperatar

multiplicit

[NamedCMNodeMdp

OMGIDL

removeC

[setCMElementCardinality

validate

Index

isAttributeDefinedl

[sNamespaceAwdre

ownerElement

[removeCMNode

subModels

60

lisElementDefined
17,27

nuMCMs

	Document Object Model †DOM‡ Level 3 Content Models and Load and Save Specification
	Version 1.0
	W3C Working Draft 01 September, 2000
	Abstract
	Status of this document
	Table of contents

	Expanded Table of Contents
	Copyright Notice
	W3C Document Copyright Notice and License
	W3C Software Copyright Notice and License

	1. Content Models and Validation
	1.1. Overview
	1.1.1. General Characteristics
	1.1.2. Use Cases and Requirements
	1.1.2.1. Content Model Interfaces
	1.1.2.2. Editing and Generating a Content Model
	1.1.2.3. Content Model-directed Document Manipulation
	1.1.2.4. Validating a Document Against a Content Model
	1.1.2.5. Well-formedness Testing

	2. Document Object Model Load and Save
	2.1. Load and Save Requirements
	2.1.1. General Requirements
	2.1.1.1. Document Sources
	2.1.1.2. Content Model Loading
	2.1.1.3. Content Model Reuse
	2.1.1.4. Entity Resolution
	2.1.1.5. Error Reporting

	2.1.2. Load Requirements
	2.1.2.1. Parser Properties and Options

	2.1.3. XML Writer Requirements
	2.1.3.1. XML Writer Properties and Options
	2.1.3.2. Content Model Saving

	2.1.4. Other Items Under Consideration
	2.1.4.1. Incremental and/or Concurrent Parsing
	2.1.4.2. Filtered Save
	2.1.4.3. Document Fragments
	2.1.4.4. Document Fragments in Context of Existing DOM

	Appendix A: IDL Definitions
	
	contentModel.idl:

	Appendix B: Java Language Binding
	
	org/w3c/dom/contentModel/CMObject.java:
	org/w3c/dom/contentModel/CMExternalObject.java:
	org/w3c/dom/contentModel/CMNode.java:
	org/w3c/dom/contentModel/CMNodeList.java:
	org/w3c/dom/contentModel/NamedCMNodeMap.java:
	org/w3c/dom/contentModel/CMDataType.java:
	org/w3c/dom/contentModel/CMType.java:
	org/w3c/dom/contentModel/ElementDeclaration.java:
	org/w3c/dom/contentModel/ElementCMModel.java:
	org/w3c/dom/contentModel/AttributeDeclaration.java:
	org/w3c/dom/contentModel/EntityDeclaration.java:
	org/w3c/dom/contentModel/DocumentCM.java:
	org/w3c/dom/contentModel/DomImplementationCM.java:
	org/w3c/dom/contentModel/ErrorHandler.java:
	org/w3c/dom/contentModel/CMObject.java:
	org/w3c/dom/contentModel/CMNode.java:
	org/w3c/dom/contentModel/ElementDeclaration.java:
	org/w3c/dom/contentModel/ElementCMModel.java:
	org/w3c/dom/contentModel/NodeCM.java:
	org/w3c/dom/contentModel/ElementCMModel.java:
	org/w3c/dom/contentModel/TextCM.java:
	org/w3c/dom/contentModel/DocumentCM.java:

	Appendix C: ECMA Script Language Binding
	References
	D.1: Normative references

	Index

