
Document Object Model (DOM) Level 3 Content Models
and Load and Save Specification

Version 1.0

W3C Working Draft 01 September, 2000
This version:

http://www.w3.org/TR/2000/WD-DOM-Level-3-Content-Models-and-Load-Save-20000901
(PostScript file, PDF file, plain text, ZIP file)

Latest version:
http://www.w3.org/TR/DOM-Level-3-Content-Models-and-Load-Save

Editors:
Ben Chang, Oracle
Andy Heninger, IBM
Joe Kesselman, IBM

Copyright © 2000 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability , trademark, document
use and software licensing rules apply.

Abstract
This specification defines the Document Object Model Content Models and Load and Save Level 3, a
platform- and language-neutral interface that allows programs and scripts to dynamically access and
update the content, structure and style of documents. The Document Object Model Content Models and
Load and Save Level 3 builds on the Document Object Model Core Level 3.

Status of this document
This document is a preliminary version of the Level 3 API.

It is a W3C Working Draft for review by W3C members and other interested parties and acts as a starting
point for the future DOM Working Group, should it be approved or not by the W3C Members. It is a draft
document and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate
to use W3C Working Drafts as reference material or to cite them as other than "work in progress".

1

Document Object Model (DOM) Level 3 Content Models and Load and Save Specification

http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/TR/DOM-Level-3-Content-Models-and-Load-Save
http://www.w3.org/TR/2000/WD-DOM-Level-3-Content-Models-and-Load-Save-20000901/DOM3-Content-Models-and-Load-Save.zip
http://www.w3.org/TR/2000/WD-DOM-Level-3-Content-Models-and-Load-Save-20000901/DOM3-Content-Models-and-Load-Save.txt
http://www.w3.org/TR/2000/WD-DOM-Level-3-Content-Models-and-Load-Save-20000901/DOM3-Content-Models-and-Load-Save.pdf
http://www.w3.org/TR/2000/WD-DOM-Level-3-Content-Models-and-Load-Save-20000901/DOM3-Content-Models-and-Load-Save.ps
http://www.w3.org/TR/2000/WD-DOM-Level-3-Content-Models-and-Load-Save-20000901
http://www.w3.org/

Comments on this document are invited and are to be sent to the public mailing list www-dom@w3.org.
An archive is available at http://lists.w3.org/Archives/Public/www-dom/.

This document has been produced as part of the W3C DOM Activity . The authors of this document are
the DOM WG members. Different modules of the Document Object Model have different editors.

A list of current W3C Recommendations and other technical documents can be found at
http://www.w3.org/TR.

Table of contents
................ 3Expanded Table of Contents
................... 5Copyright Notice

............. 9Chapter 1: Content Models and Validation

........... 35Chapter 2: Document Object Model Load and Save

................ 39Appendix A: IDL Definitions

.............. 43Appendix B: Java Language Binding

............ 51Appendix C: ECMA Script Language Binding

.................... 57References

..................... 59Index

2

Table of contents

http://www.w3.org/TR/
http://www.w3.org/DOM/Activity.html
http://lists.w3.org/Archives/Public/www-dom/

Expanded Table of Contents
................ 3Expanded Table of Contents
................... 5Copyright Notice
........... 5W3C Document Copyright Notice and License
........... 6W3C Software Copyright Notice and License

............. 9Chapter 1: Content Models and Validation

.................. 91.1. Overview

.............. 91.1.1. General Characteristics

............ 101.1.2. Use Cases and Requirements

........... 35Chapter 2: Document Object Model Load and Save

.............. 352.1. Load and Save Requirements

.............. 352.1.1. General Requirements

.............. 362.1.2. Load Requirements

............. 362.1.3. XML Writer Requirements

............ 372.1.4. Other Items Under Consideration

................ 39Appendix A: IDL Definitions

.............. 43Appendix B: Java Language Binding

............ 51Appendix C: ECMA Script Language Binding

.................... 57References

................ 571. Normative references

..................... 59Index

3

Expanded Table of Contents

4

Expanded Table of Contents

Copyright Notice
Copyright © 2000 World Wide Web Consortium, (Massachusetts Institute of Technology, Institut
National de Recherche en Informatique et en Automatique, Keio University). All Rights Reserved.

This document is published under the W3C Document Copyright Notice and License [p.5] . The bindings
within this document are published under the W3C Software Copyright Notice and License [p.6] . The
software license requires "Notice of any changes or modifications to the W3C files, including the date
changes were made." Consequently, modified versions of the DOM bindings must document that they do
not conform to the W3C standard; in the case of the IDL binding, the pragma prefix can no longer be
’w3c.org’; in the case of the Java binding, the package names can no longer be in the ’org.w3c’ package.

W3C Document Copyright Notice and License
Note: This section is a copy of the W3C Document Notice and License and could be found at
http://www.w3.org/Consortium/Legal/copyright-documents-19990405.

Copyright © 1994-2000 World Wide Web Consortium, (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique et en Automatique, Keio University). All Rights
Reserved.

http://www.w3.org/Consortium/Legal/

Public documents on the W3C site are provided by the copyright holders under the following license. The
software or Document Type Definitions (DTDs) associated with W3C specifications are governed by the
Software Notice. By using and/or copying this document, or the W3C document from which this
statement is linked, you (the licensee) agree that you have read, understood, and will comply with the
following terms and conditions:

Permission to use, copy, and distribute the contents of this document, or the W3C document from which
this statement is linked, in any medium for any purpose and without fee or royalty is hereby granted,
provided that you include the following on ALL copies of the document, or portions thereof, that you use:

1. A link or URL to the original W3C document.
2. The pre-existing copyright notice of the original author, or if it doesn’t exist, a notice of the form:

"Copyright © [$date-of-document] World Wide Web Consortium, (Massachusetts Institute of
Technology, Institut National de Recherche en Informatique et en Automatique, Keio University).
All Rights Reserved. http://www.w3.org/Consortium/Legal/" (Hypertext is preferred, but a textual
representation is permitted.)

3. If it exists, the STATUS of the W3C document.

When space permits, inclusion of the full text of this NOTICE should be provided. We request that
authorship attribution be provided in any software, documents, or other items or products that you create
pursuant to the implementation of the contents of this document, or any portion thereof.

5

Copyright Notice

http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-software.html
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/

No right to create modifications or derivatives of W3C documents is granted pursuant to this license.
However, if additional requirements (documented in the Copyright FAQ) are satisfied, the right to create
modifications or derivatives is sometimes granted by the W3C to individuals complying with those
requirements.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
this document or its contents without specific, written prior permission. Title to copyright in this
document will at all times remain with copyright holders.

W3C Software Copyright Notice and License
Note: This section is a copy of the W3C Software Copyright Notice and License and could be found at
http://www.w3.org/Consortium/Legal/copyright-software-19980720

Copyright © 1994-2000 World Wide Web Consortium, (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique et en Automatique, Keio University). All Rights
Reserved.

http://www.w3.org/Consortium/Legal/

This W3C work (including software, documents, or other related items) is being provided by the copyright
holders under the following license. By obtaining, using and/or copying this work, you (the licensee)
agree that you have read, understood, and will comply with the following terms and conditions:

Permission to use, copy, and modify this software and its documentation, with or without modification,
for any purpose and without fee or royalty is hereby granted, provided that you include the following on
ALL copies of the software and documentation or portions thereof, including modifications, that you
make:

1. The full text of this NOTICE in a location viewable to users of the redistributed or derivative work.
2. Any pre-existing intellectual property disclaimers. If none exist, then a notice of the following form:

"Copyright © [$date-of-software] World Wide Web Consortium, (Massachusetts Institute of
Technology, Institut National de Recherche en Informatique et en Automatique, Keio University).
All Rights Reserved. http://www.w3.org/Consortium/Legal/."

3. Notice of any changes or modifications to the W3C files, including the date changes were made. (We

6

W3C Software Copyright Notice and License

http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Legal/IPR-FAQ.html

recommend you provide URIs to the location from which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT
HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR
DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
the software without specific, written prior permission. Title to copyright in this software and any
associated documentation will at all times remain with copyright holders.

7

W3C Software Copyright Notice and License

8

W3C Software Copyright Notice and License

1. Content Models and Validation
Editors

Ben Chang, Oracle
Joe Kesselman, IBM

1.1. Overview
This chapter describes the optional DOM Level 3 Content Model (CM) feature. This module provides a
representation for XML content models, e.g., DTDs and XML Schemas, together with operations on the
content models, and how such information within the content models could be applied to XML documents
used in both the document-editing and CM-editing worlds. It also provides additional tests for
well-formedness of XML documents, including Namespace well-formedness. A DOM application can use
the hasFeature method of the DOMImplementation interface to determine whether a given DOM
supports these capabilities or not. The feature string for all the interfaces listed in this section is "CM".

This chapter interacts strongly with the Load and Save chapter, which is also under development in DOM
Level 3. Not only will that code serialize/deserialize content models, but it may also wind up defining its
well-formedness and validity checks in terms of what is defined in this chapter. In addition, the CM and
Load/Save functional areas will share a common error-reporting mechanism allowing user-registered error
callbacks. Note that this may not imply that the parser actually calls the DOM’s validation code -- it may
be able to achieve better performance via its own -- but the appearance to the user should probably be "as
if" the DOM has been asked to validate the document, and parsers should probably be able to validate
newly loaded documents in terms of a previously loaded DOM CM.

Finally, this chapter will have separate sections to address the needs of the document-editing and
CM-editing worlds, along with a section that details overlapping areas such as validation. In this manner,
the document-editing world’s focuses on editing aspects and usage of information in the CM are made
distinct from the CM-editing world’s focuses on defining and manipulating the information in the CM.

1.1.1. General Characteristics

In the October 9, 1997 DOM requirements document, the following appeared: "There will be a way to
determine the presence of a DTD. There will be a way to add, remove, and change declarations in the
underlying DTD (if available). There will be a way to test conformance of all or part of the given
document against a DTD (if available)." In later discussions, the following was added, "There will be a
way to query element/attribute (and maybe other) declarations in the underlying DTD (if available),"
supplementing the primitive support for these in Level 1.

That work was deferred past Level 2, in the hope that XML Schemas would be addressed as well.
Presently, it is still unclear whether XML Schemas will be ready in time to be supported in DOM Level 3,
but it is anticipated that lowest common denominator general APIs generated in this chapter can support
both DTDs and XML Schemas, and other XML content models down the road.

9

1. Content Models and Validation

The kinds of information that a Content Model must make available are mostly self-evident from the
definitions of Infoset, DTDs, and XML Schemas. However, some kinds of information on which the
DOM already relies, e.g., default values for attributes, will finally be given a visible representation here.

1.1.2. Use Cases and Requirements

The content model referenced in these use cases/requirements is an abstraction and does not refer to DTDs
or XML Schemas or any transformations between the two.

For the CM-editing and document-editing worlds, the following use cases and requirements are common
to both and could be labeled as the "Validation and Other Common Functionality" section:

Use Cases:

1. CU1. Modify an existing content model because it needs to be updated.
2. CU2. Associating a content model (external and/or internal) with a document, or changing the current

association.
3. CU3. Using the same external content model with several documents, without having to reload it.
4. CU4. Create a new content model.

Requirements:

1. CR1. Validate against the content model.
2. CR2. Retrieve information from content model.
3. CR3. Load an existing content model, perhaps independently from a document.
4. CR4. Being able to determine if a document has a content model associated with it.
5. CR5. Create a new content model object.

Specific to the CM-editing world, the following are use cases and requirements and could be labeled as
the "CM-editing" section:

Use Cases:

1. CMU1. Clone/map all or parts of an existing content model to a new or existing content model.
2. CMU2. Save a content model in a separate file. For example, a DTD can be broken up into reusable

pieces, which are then brought in via entity references, these can then be saved in a separate file.
3. CMU3. Partial content model checking. For example, only certain portions of the content model need

be validated.

Requirements:

1. CMR1. View and modify all parts of the content model.
2. CMR2. Validate the content model itself. For example, if an element/attribute is inserted incorrectly

into the content model.
3. CMR3. Serialize the content model.
4. CMR4. Clone all or parts of an existing content model.
5. CMR5. Validate portions of the XML document against the content model.

10

1.1.2. Use Cases and Requirements

Specific to the document-editing world, the following are use cases and requirements and could be labeled
as the "Document-editing" section:

Use Cases:

1. DU1. For editing documents with an associated content model, provide the assistance necessary so
that valid documents can be modified and remain valid.

2. DU2. For editing documents with an associated content model, provide the assistance necessary to
transform an invalid document into a valid one.

Requirements:

1. DR1. Being able to determine if the document is not well-formed, and if not, be given enough
assistance to locate the error.

2. DR2. Being able to determine if the document is not namespace well-formed, and if not, be given
enough assistance to locate the error.

3. DR3. Being able to determine if the document is not valid with respect to its associated content
model, and if not, give enough assistance to locate the error.

4. DR4. Being able to determine if specific modifications to a document would make it become invalid.
5. DR5. Retrieve information from all content model. For example, getting a list of all the defined

element names for document editing purposes.

General Issues:

1. I1. Namespace issues associated with the content model. To address namespaces, a
isNamespaceAware attribute to the generic CM object has been added to help applications
determine if qualified names are important. Note that this should not be interpreted as helping
identify what the underlying content model is. A MathML example to show how namespaced
documents will be validated will be added later.

2. I2. Multiple CMs being associated with a XML document. For validation, this could: 1) result in an
exception; 2) a merged content model for the document to be validated against; 3) each content
model for the document to be validated against separately. In this chapter, we have gone for the third
choice, allowing the user to specify which content model to be active and allowing them to keep
adding content models to a list associated with the document.

3. I3. Content model being able to handle more datatypes than strings. Currently, this functionality is
not available and should be dealt with in the future.

4. I4. Round-trippability for include/ignore statements and other constructs such as parameter entities,
e.g., "macro-like" constructs, will not be supported since no data representation exists to support
these constructs without having to re-parse them.

5. I5. Basic interface for a common error handler both CM and Load/Save. Agreement has been to
utilize user-registered callbacks but other details to be worked out.

11

1.1.2. Use Cases and Requirements

1.1.2.1. Content Model Interfaces

A list of the proposed Content Model data structures and functions follow, starting off with the data
structures.

Interface CMObject

CMObject is an abstract object that could map to a DTD, an XML Schema, a database schema, etc.
It’s a generalized content model object, that has both an internal and external subset. The internal
subset would always exist, even if empty, with a link to the external subset, i.e.,
CMExternalObject [p.12] , which may be a non-negative number linked together. It is possible,
however, that none of these CMExternalObjects are active. An attribute available will be
isNamespaceAware to determine if qualified names are important.
IDL Definition

interface CMObject {
};

Interface CMExternalObject

CMExternalObject is an abstract object that could map to a DTD, an XML Schema, a database
schema, etc. It’s a generalized content model object that is not bound to a particular XML document.
Opaque.
IDL Definition

interface CMExternalObject {
};

Interface CMNode

CMNode, or a CMObject Node, is analogous to a node in the parse tree, e.g., an element declaration.
This can exist for both CMExternalObject [p.12] (include/ignore must be handled here) and
CMObject [p.21] . It should handle the following:

interface CommentsPIsDeclaration { attribute ProcessingInstruction
pis; attribute Comment comments; }; interface Conditional
Declaration { attribute boolean includeIgnore; };

Opaque.
IDL Definition

interface CMNode {
};

Interface CMNodeList

CMNodeList is the CM analogue to NodeList; ordering is important, as opposed to
NamedCMNodeMap [p.13] . Opaque.

12

1.1.2. Use Cases and Requirements

IDL Definition

interface CMNodeList {
};

Interface NamedCMNodeMap

NamedCMNodeMap is the CM analogue to NamedNodeMap. Ordering is not important. Opaque.
IDL Definition

interface NamedCMNodeMap {
};

Interface CMDataType

CMDataType is a string for now, as in "int" or "float", hence no typechecking.
IDL Definition

interface CMDataType {
};

Interface CMType

CMType is a CMNode [p.22] ’s node type. For example, one type could be
ElementDeclaration [p.23] , composed of a tagname, content-type, etc. Others could be
ElementCMModel [p.26] and AttributeDeclaration [p.14] .
IDL Definition

interface CMType {
};

Interface ElementDeclaration

The element name along with a description: empty, any, mixed, elements, PCDATA, in the context
of a CMNode [p.22] .
IDL Definition

interface ElementDeclaration {
 readonly attribute DOMString elementName;
 attribute DOMString contentType;
 attribute NamedCMNodeMap attributes;
};

Attributes
attributes of type NamedCMNodeMap [p.13]

CM’s analogy to NamedNodeMap.

contentType of type DOMString
Empty, any, mixed, elements, PCDATA.

13

1.1.2. Use Cases and Requirements

elementName of type DOMString, readonly
Name of element.

Interface ElementCMModel

An element in the context of a CMNode [p.22] .
IDL Definition

interface ElementCMModel {
 attribute DOMString listOperator;
 attribute int multiplicity;
 attribute int lowValue;
 attribute int highValue;
 attribute NamedCMNodeMap subModels;
 attribute CMNodeList definingElement;
};

Attributes
definingElement of type CMNodeList [p.12]

Which CMNode in the list defined the element.

highValue of type int
The high value in the value range.

listOperator of type DOMString
Operator list.

lowValue of type int
The low value in the value range.

multiplicity of type int
0 or 1 or many.

subModels of type NamedCMNodeMap [p.13]
Additional CMNode [p.22] s in which the element can be defined.

Interface AttributeDeclaration

An attribute in the context of a CMNode [p.22] .
IDL Definition

interface AttributeDeclaration {
 readonly attribute DOMString attrName;
 attribute CMDataType attrType;
 attribute DOMString defaultValue;
 attribute DOMString enumAttr;
 attribute CMNodeList ownerElement;
};

Attributes

14

1.1.2. Use Cases and Requirements

attrName of type DOMString, readonly
Name of attribute.

attrType of type CMDataType [p.13]
Datatype of the attribute.

defaultValue of type DOMString
Default value, which can also be expressed as a range, with high and low values.

enumAttr of type DOMString
Enumeration of attribute.

ownerElement of type CMNodeList [p.12]
Owner element CMNode of attribute.

Interface EntityDeclaration

As in current DOM.
IDL Definition

interface EntityDeclaration {
};

This section contains "Validation and Other" methods common to both the document-editing and
CM-editing worlds (includes Document, DOMImplementation, and ErrorHandler [p.19]
methods).

Interface DocumentCM

This interface extends the Document interface with additional methods for both document and CM
editing.
IDL Definition

interface DocumentCM : Document {
 boolean isValid();
 int numCMs();
 CMObject getInternalCM();
 CMExternalObject * getCMs();
 CMObject getActiveCM();
 void addCM(in CMObject cm);
 void removeCM(in CMObject cm);
 boolean activateCM(in CMObject cm);
};

Methods
activateCM

Make the given CMObject [p.21] active. Note that if an user wants to activate one CM to
get default attribute values and then activate another to do validation, an user can do that;
however, only one CM is active at a time.
Parameters

15

1.1.2. Use Cases and Requirements

cm of type CMObject [p.21]
CM to be active for the document. The CMObject points to a list of
CMExternalObject [p.12] s; with this call, only the specified CM will be active.

Return Value

boolean True if the CMObject has already been associated with the
document using addCM(); false if not.

No Exceptions

addCM
Associate a CMObject [p.21] with a document. Can be invoked multiple times to result in
a list of CMExternalObject [p.12] s. Note that only one sole internal CMObject is
associated with the document, however, and that only one of the possible list of
CMExternalObjects is active at any one time.
Parameters
cm of type CMObject [p.21]

CM to be associated with the document.

No return.
No Return Value
No Exceptions

getActiveCM
Find the active CMExternalObject [p.12] for a document.
Return Value

CMObject
[p.21]

CMObject with a pointer to the active CMExternalObject
[p.12] of document.

No Parameters
No Exceptions

getCMs
Obtains a list of CMExternalObject [p.12] s associated with a document from the
CMObject [p.21] . This list arises when addCM() is invoked.
Return Value

CMExternalObject
*

A list of CMExternalObject [p.12] s associated
with a document.

No Parameters
No Exceptions

16

1.1.2. Use Cases and Requirements

getInternalCM
Find the sole CMObject [p.21] of a document. Only one CMObject may be associated
with the document.
Return Value

CMObject [p.21] CMObject.

No Parameters
No Exceptions

isValid
Determines if XML document is valid.
Return Value

boolean Valid or not.

No Parameters
No Exceptions

numCMs
Determines number of CMExternalObject [p.12] s associated with the document. Only
one CMObject [p.21] can be associated with the document, but it may point to a list of
CMExternalObjects.
Return Value

int Non-negative number of external CM objects.

No Parameters
No Exceptions

removeCM
Removes a CM associated with a document; actually removes a CMExternalObject
[p.12] . Can be invoked multiple times to remove a number of these in the list of
CMExternalObjects.
Parameters
cm of type CMObject [p.21]

CM to be removed.

No return.
No Return Value
No Exceptions

Interface DomImplementationCM

17

1.1.2. Use Cases and Requirements

This interface extends the DomImplementation interface with additional methods.
IDL Definition

interface DomImplementationCM : DomImplementation {
 boolean validate();
 CMObject createCM();
 CMExternalObject createExternalCM();
 CMObject cloneCM(in CMObject cm);
 CMExternalObject cloneExternalCM(in CMExternalObject cm);
};

Methods
cloneCM

Copies a CMObject [p.21] to another CMObject. The CMObject returned wouldn’t be
associated with a document.
Parameters
cm of type CMObject [p.21]

CMObject to be cloned.

Return Value

CMObject [p.21] Cloned CMObject or NULL if failure.

No Exceptions

cloneExternalCM
Copies a CMExternalObject [p.12] to another CMExternalObject. The
CMExternalObject returned wouldn’t be associated with a document.
Parameters
cm of type CMExternalObject [p.12]

CMObject [p.21] to be cloned.

Return Value

CMExternalObject [p.12] Cloned CMObject [p.21] or NULL if failure.

No Exceptions

createCM
Creates a CMObject.
Return Value

CMObject [p.21] A NULL return indicates failure.

No Parameters
No Exceptions

18

1.1.2. Use Cases and Requirements

createExternalCM
Creates a CMExternalObject.
Return Value

CMExternalObject [p.12] A NULL return indicates failure.

No Parameters
No Exceptions

validate
Determines if a CMObject or CMExternalObject itself is valid; note that within a
CMObject, a pointer to a CMExternalObject can exist.
Return Value

boolean Is the CM valid?

No Parameters
No Exceptions

Interface ErrorHandler

Basic interface for CM or Load/Save error handlers. If an application needs to implement customized
error handling for CM or Load/Save, it must implement this interface and then register an instance
using the setErrorHandler method. All errors and warnings will then be reported through this
interface. Application writers can override the methods in a subclass to take user-specified actions.
IDL Definition

interface ErrorHandler {
 void warning(in where DOMString,
 in how DOMString,
 in why DOMString)
 raises(DOMException2);
 void fatalError(in where DOMString,
 in how DOMString,
 in why DOMString)
 raises(DOMException2);
 void error(in where DOMString,
 in how DOMString,
 in why DOMString)
 raises(DOMException2);
};

Methods
error

Receive notification of a recoverable error per section 1.2 of the W3C XML 1.0
recommendation. The default behavior if the user doesn’t register a handler is to do
nothing. The application may use this method to report conditions that are not fatal errors,
and processing may continue even after invoking this method.
Parameters

19

1.1.2. Use Cases and Requirements

DOMString of type where
Location of the error, which could be either a source position in the case of loading, or
a node reference for later validation. The base, public ID and system ID for the error
location could be some of the information.

DOMString of type how
How the fatal error occurred.

DOMString of type why
Why the fatal error occurred.

Exceptions

DOMException2 A subclass of DOMException.

No Return Value

fatalError
Report a fatal, non-recoverable CM or Load/Save error per section 1.2 of the W3C XML
1.0 recommendation. The default behavior if the user doesn’t register a handler is to throw
a DOMException2. The application must stop all further processing when this method has
been invoked.
Parameters
DOMString of type where

Location of the fatal error, which could be either a source position in the case of
loading, or a node reference for later validation. The base, public ID and system ID for
the error location could be some of the information.

DOMString of type how
How the fatal error occurred.

DOMString of type why
Why the fatal error occurred.

Exceptions

DOMException2 A subclass of DOMException.

No Return Value

warning
Receive notification of a warning per the W3C XML 1.0 recommendation. The default
behavior if the user doesn’t register a handler is to do nothing. The application may use this
method to report conditions that are not errors or fatal errors, and processing may continue
even after invoking this method.
Parameters

20

1.1.2. Use Cases and Requirements

DOMString of type where
Location of the warning, which could be either a source position in the case of
loading, or a node reference for later validation. The base, public ID and system ID for
the error location could be some of the information.

DOMString of type how
How the warning occurred.

DOMString of type why
Why the warning occurred.

Exceptions

DOMException2 A subclass of DOMException.

No Return Value

This section contains "CM-editing" methods (includes CMObject [p.21] , CMNode [p.22] ,
ElementDeclaration [p.23] , and ElementCMModel [p.26] methods).

Interface CMObject

CMObject is an abstract object that could map to a DTD, an XML Schema, a database schema, etc.
It’s a generalized content model object, that has both an internal and external subset. The internal
subset would always exist, even if empty, with a link to the external subset, i.e.,
CMExternalObject [p.12] , which may be a non-negative number linked together. It is possible,
however, that none of these CMExternalObjects are active. An attribute available will be
isNamespaceAware to determine if qualified names are important.
IDL Definition

interface CMObject {
 readonly attribute boolean isNamespaceAware;
 nsElement getCMNamespace();
 namedCMNodeMap getCMElements();
 boolean removeCMNode(in CMNode node);
 boolean insertbeforeCMNode(in CMNode newnode,
 in CMNode parentnode);
};

Attributes
isNamespaceAware of type boolean, readonly

To determine if qualified names are important.

Methods
getCMElements

Retrieves CMNode [p.22] list of which all CMNodes of type element declaration.
Return Value

21

1.1.2. Use Cases and Requirements

namedCMNodeMap List of all CMNodes [p.22] of type element declaration.

No Parameters
No Exceptions

getCMNamespace
Determines namespace of CMObject.
Return Value

nsElement Namespace of CMObject.

No Parameters
No Exceptions

insertbeforeCMNode
Insert CMNode [p.22] .
Parameters
newnode of type CMNode [p.22]

CMNode to be inserted.

parentnode of type CMNode
CMNode to be inserted before.

Return Value

boolean Success or failure..

No Exceptions

removeCMNode
Removes CMNode [p.22] and its children, if any.
Parameters
node of type CMNode [p.22]

CMNode to be removed.

Return Value

boolean Success or failure..

No Exceptions

Interface CMNode

22

1.1.2. Use Cases and Requirements

CMNode, or a CMObject Node, is analogous to a node in the parse tree, e.g., an element declaration.
This can exist for both CMExternalObject [p.12] (include/ignore must be handled here) and
CMObject [p.21] . It should handle the following:
IDL Definition

interface CMNode {
 CMType getCMNodeType();
};

Methods
getCMNodeType

Determines type of CMNode.
Return Value

CMType [p.13] CMType of CMNode.

No Parameters
No Exceptions

Interface ElementDeclaration

The element name along with a description: empty, any, mixed, elements, PCDATA, in the context
of a CMNode [p.22] .
IDL Definition

interface ElementDeclaration {
 int getContentType();
 ElementCMModel getCMElement();
 namedCMNodeMap getCMAttributes();
 namedCMNodeMap getCMElementsChildren();
};

Methods
getCMAttributes

Gets list of all attributes for this CMNode [p.22] .
Return Value

namedCMNodeMap Attributes list for this CMNode [p.22] .

No Parameters
No Exceptions

getCMElement
Gets content model of element.
Return Value

ElementCMModel [p.26] Content model of element.

23

1.1.2. Use Cases and Requirements

No Parameters
No Exceptions

getCMElementsChildren
Gets list of children of CMNode [p.22] .
Return Value

namedCMNodeMap Children list for this CMNode [p.22] .

No Parameters
No Exceptions

getContentType
Gets content type, e.g., empty, any, mixed, elements, PCDATA, of an element within a
CMNode [p.22] .
Return Value

int Content type constant.

No Parameters
No Exceptions

Interface ElementCMModel

An element in the context of a CMNode [p.22] .
IDL Definition

interface ElementCMModel {
 ElementCMModel setCMElementCardinality(in CMNode node,
 in int high,
 in int low);
 ElementCMModel getCMElementCardinality(in CMNode node,
 out int high,
 out int low);
};

Methods
getCMElementCardinality

Gets cardinality range of element’s value.
Parameters
node of type CMNode [p.22]

CMNode for values to be retrieved.

high of type int
High value to be retrieved.

24

1.1.2. Use Cases and Requirements

low of type int
Low value to be retrieved.

Return Value

ElementCMModel
[p.26]

Element in the context of a CMNode with its high and
low values retrieved.

No Exceptions

setCMElementCardinality
Sets cardinality range of element’s value.
Parameters
node of type CMNode [p.22]

CMNode for values to be inserted.

high of type int
High value to be inserted.

low of type int
Low value to be inserted.

Return Value

ElementCMModel
[p.26]

Element in the context of a CMNode with its high and
low values set.

No Exceptions

This section contains "Document-editing" methods (includes Node, Element, Text and Document
methods).

Interface NodeCM

This interface extends the Node interface with additional methods for document editing.
IDL Definition

interface NodeCM : Node {
 boolean canInsertBefore();
 boolean canRemoveChild();
 boolean canReplaceChild();
 boolean canAppendChild();
};

Methods
canAppendChild

Has the same args as AppendChild.
Return Value

25

1.1.2. Use Cases and Requirements

boolean Success or failure.

No Parameters
No Exceptions

canInsertBefore
Has the same args as InsertBefore.
Return Value

boolean Success or failure.

No Parameters
No Exceptions

canRemoveChild
Has the same args as RemoveChild.
Return Value

boolean Success or failure.

No Parameters
No Exceptions

canReplaceChild
Has the same args as ReplaceChild.
Return Value

boolean Success or failure.

No Parameters
No Exceptions

Interface ElementCMModel

An element in the context of a CMNode [p.22] .
IDL Definition

interface ElementCMModel {
 boolean isValid();
 int contentType();
 boolean canSetAttribute(in DOMString attrname,
 in DOMString attrval);
 boolean canSetAttributeNode();
};

26

1.1.2. Use Cases and Requirements

Methods
canSetAttribute

Sets value for specified attribute.
Parameters
attrname of type DOMString

Name of attribute.

attrval of type DOMString
Value to be assigned to the attribute.

Return Value

boolean Success or failure.

No Exceptions

canSetAttributeNode
Determines if attribute can be set.
Return Value

boolean Success or failure.

No Parameters
No Exceptions

contentType
Determines element content type.
Return Value

int Constant for mixed, empty, any, etc.

No Parameters
No Exceptions

isValid
Determines if element is valid.
Return Value

boolean Success or failure.

No Parameters
No Exceptions

27

1.1.2. Use Cases and Requirements

Interface TextCM

This interface extends the Text interface with additional methods for document editing.
IDL Definition

interface TextCM : Text {
 boolean isWhitespaceOnly();
 boolean canSetData();
 boolean canAppendData();
 boolean canReplaceData();
 boolean canInsertData();
};

Methods
canAppendData

Determines if data can be appended.
Return Value

boolean Success or failure.

No Parameters
No Exceptions

canInsertData
Determines if data can be inserted.
Return Value

boolean Success or failure.

No Parameters
No Exceptions

canReplaceData
Determines if data can be replaced.
Return Value

boolean Success or failure.

No Parameters
No Exceptions

canSetData
Determines if data can be set.
Return Value

boolean Success or failure.

28

1.1.2. Use Cases and Requirements

No Parameters
No Exceptions

isWhitespaceOnly
Determines if content is only whitespace.
Return Value

boolean True if content only whitespace; false for non-whitespace if it is a text
node in element content.

No Parameters
No Exceptions

Interface DocumentCM

This interface extends the Document interface with additional methods for document editing.
IDL Definition

interface DocumentCM : Document {
 boolean isElementDefined(in DOMString elemTypeName);
 boolean isAttributeDefined(in DOMString elemTypeName,
 in DOMString attrName);
 boolean isEntityDefined(in DOMString entName);
};

Methods
isAttributeDefined

Determines if an attribute is defined in the document.
Parameters
elemTypeName of type DOMString

Name of element.

attrName of type DOMString
Name of attribute.

Return Value

boolean Success or failure.

No Exceptions

isElementDefined
Determines if an element is defined in the document.
Parameters
elemTypeName of type DOMString

Name of element.

29

1.1.2. Use Cases and Requirements

Return Value

boolean Success or failure.

No Exceptions

isEntityDefined
Determines if an entity is defined in the document.
Parameters
entName of type DOMString

Name of entity.

Return Value

boolean Success or failure.

No Exceptions

1.1.2.2. Editing and Generating a Content Model

Editing and generating a content model falls in the CM-editing world. The most obvious requirement for
this set of requirements is for tools that author content models, either under user control, i.e., explicitly
designed document types, or generated from other representations. The latter class includes transcoding
tools, e.g., synthesizing an XML representation to match a database schema.

It’s important to note here that a DTD’s "internal subset" is part of the Content Model, yet is loaded,
stored, and maintained as part of the individual document instance. This implies that even tools which do
not want to let users change the definition of the Document Type may need to support editing operations
upon this portion of the CM. It also means that our representation of the CM must be aware of where each
portion of its content resides, so that when the serializer processes this document it can write out just the
internal subset. A similar issue may arise with external parsed entities, or if schemas introduce the ability
to reference other schemas. Finally, the internal-subset case suggests that we may want at least a two-level
representation of content models, so a single DOM representation of a DTD can be shared among several
documents, each potentially also having its own internal subset; it’s possible that entity layering may be
represented the same way.

The API for altering the content model may also be the CM’s official interface with parsers. One of the
ongoing problems in the DOM is that there is some information which must currently be created via
completely undocumented mechanisms, which limits the ability to mix and match DOMs and parsers.
Given that specialized DOMs are going to become more common (sub-classed, or wrappers around other
kinds of storage, or optimized for specific tasks), we must avoid that situation and provide a "builder"
API. Particular pairs of DOMs and parsers may bypass it, but it’s required as a portability mechanism.

Note that several of these applications require that a CM be able to be created, loaded, and manipulated
without/before being bound to a specific Document. A related issue is that we’d want to be able to share a
single representation of a CM among several documents, both for storage efficiency and so that changes in

30

1.1.2. Use Cases and Requirements

the CM can quickly be tested by validating it against a set of known-good documents. Similarly, there is a
known problem in DOM Level 2 where we assume that the DocumentType will be created before the
Document, which is fine for newly-constructed documents but not a good match for the order in which an
XML parser encounters this data; being able to "rebind" a Document to a new CM, after it has been
created may be desirable.

As noted earlier, questions about whether one can alter the content of the CM via its syntax, via
higher-level abstractions, or both, exist. It’s also worth noting that many of the editing concepts from the
Document tree still apply; users should probably be able to clone part of a CM, remove and re-insert parts,
and so on.

1.1.2.3. Content Model-directed Document Manipulation

In addition to using the content model to validate a document instance, applications would like to be able
to use it to guide construction and editing of documents, which falls into the document-editing world.
Examples of this sort of guided editing already exist, and are becoming more common. The necessary
queries can be phrased in several ways, the most useful of which may be a combination of "what does the
DTD allow me to insert here" and "if I insert this here, will the document still be valid". The former is
better suited to presentation to humans via a user interface, and when taken together with sub-tree
validation may subsume the latter.

It has been proposed that in addition to asking questions about specific parts of the content model, there
should be a reasonable way to obtain a list of all the defined symbols of a given type (element, attribute,
entity) independent of whether they’re valid in a given location; that might be useful in building a list in a
user-interface, which could then be updated to reflect which of these are relevant for the program’s current
state.

Remember that namespaces also weigh in on this issue, in the case of attributes, a "can-this-go-there" may
prompt a namespace-well-formedness check and warn you if you’re about to conflict with or overwrite
another attribute with the same NSURI/localname but different prefix... or same nodename but different
NSURI.

As mentioned above, we have to deal with the fact that the shortest distance between two valid documents
may be through an invalid one. Users may want to know several levels of detail (all the possible children,
those which would be valid given what preceeds this point, those which would be valid given both
preceeding and following siblings). Also, once XML Schemas introduce context sensitive validity, we
may have to consider the effect of children as well as the individual node being inserted.

1.1.2.4. Validating a Document Against a Content Model

The most obvious use for a content model (DTD or XML Schema or any Content Model) is to use it to
validate that a given XML document is in fact a properly constructed instance of the document type
described by this CM. This again falls into the document-editing world. The XML spec only discusses
performing this test at the time the document is loaded into the "processor", which most of us have taken
to mean that this check should be performed at parse time. But it is obviously desirable to be able to
revalidate a document -- or selected subtrees -- at other times. One such case would be validating an
edited or newly constructed document before serializing it or otherwise passing it to other users. This

31

1.1.2. Use Cases and Requirements

issue also arises if the "internal subset" is altered -- or if the whole Content Model changes.

In the past, the DOM has allowed users to create invalid documents, and assumed the serializer would
accept the task of detecting problems and announcing/repairing them when the document was written out
in XML syntax... or that they would be checked for validity when read back in. We considered adding
validity checks to the DOM’s existing editing operations to prevent creation of invalid documents, but are
currently inclined against this for several reasons. First, it would impose a significant amount of
computational overhead to the DOM, which might be unnecessary in many situations, e.g., if the change is
occurring in a context where we know the result will be valid. Second, "the shortest distance between two
good documents may be through a bad document". Preventing a document from becoming temporarily
invalid may impose a considerable amount of additional work on higher-level code and users Hence our
current plan is to continue to permit editing to produce invalid DOMs, but provide operations which
permit a user to check the validity of a node on demand.

Note that validation includes checking that ID attributes are unique, and that IDREFs point to IDs which
actually exist.

1.1.2.5. Well-formedness Testing

XML defined the "well-formed" (WF) state for documents which are parsed without reference to their
DTDs. Knowing that a document is well-formed may be useful by itself even when a DTD is available.
For example, users may wish to deliberately save an invalid document, perhaps as a checkpoint before
further editing. Hence, the CM feature will permit both full validity checking (see next section) and
"lightweight" WF checking, as requested by the caller. This falls within the document-editing world.

While the DOM inherently enforces some of XML’s well-formedness conditions (proper nesting of
elements, constraints on which children may be placed within each node), there are some checks that are
not yet performed. These include:

Character restrictions for text content and attribute values. Some characters aren’t permitted even
when expressed as numeric character entities
The three-character sequence "]]>" in CDATASections.
The two-character sequence "--" in comments. (Which, be it noted, some XML validators don’t
currently remember to test...)

In addition, Namespaces introduce their own concepts of well-formedness. Specifically:

No two attributes on a single Element may have the same combination of namespaceURI and
localname, even if their prefixes are different and hence they don’t conflict under XML 1.0 rules.
NamespaceURIs must be legal URI syntax. (Note that once we have this code, it may be reusable for
the URI "datatype" in document content; see discussion of datatypes.)
The mapping of namespace prefixes to their URIs must be declared and consistant. That isn’t
required during normal DOM operation, since we perform "early binding" and thereafter refer to
nodes primarily via their NSURI and localname. But it does become an issue when we want to
serialize the DOM to XML syntax, and may be an issue if an application is assuming that all the
declarations are present and correct. This may imply that we should provide a
namespaceNormalize operation, which would create the implied declarations and reconcile

32

1.1.2. Use Cases and Requirements

conflicts in some reasonably standardized manner. This may be a major undertaking, since some
DOMs may be using the namespace to direct subclassing of the nodes or similar special treatment; as
with the existing normalize method, you may be left with a different-but-equivalent set of node
objects.

In the past, the DOM has allowed users to create documents which violate these rules, and assumed the
serializer would accept the task of detecting problems and announcing/repairing them when the document
was written out in XML syntax. We considered adding WF checks to the DOM’s existing editing
operations to prevent WF violations from arising, but are currently inclined against this for two reasons.
First, it would impose a significant amount of computational overhead to the DOM, which might be
unnecessary in many situations (for example, if the change is occuring in a context where we know the
illegal characters have already been prevented from arising). Second, "the shortest distance between two
good documents may be through a bad document" -- preventing a document from becoming temporarily
ill-formed may impose a considerable amount of additional work on higher-level code and users. (Note
possible issue for Serialization: In some applications, being able to save and reload marginally
poorly-formed DOMs might be useful -- editor checkpoint files, for example.) Hence our current plan is to
continue to permit editing to produce ill-formed DOMs, but provide operations which permit a user to
check the well-formedness of a node on demand, and possily provide expose some of the primitive (eg,
string-checking) functions directly.

33

1.1.2. Use Cases and Requirements

34

1.1.2. Use Cases and Requirements

2. Document Object Model Load and Save
Editors

Andy Heninger, IBM

2.1. Load and Save Requirements
DOM Level 3 will provide an API for loading XML source documents into a DOM representation and for
saving a DOM representation as a XML document.

Some environments, such as the Java platform or COM, have their own ways to persist objects to streams
and to restore them. There is no direct relationship between these mechanisms and the DOM load/save
mechanism. This specification defines how to serialize documents only to and from XML format.

2.1.1. General Requirements

Requirements that apply to both loading and saving documents.

2.1.1.1. Document Sources

Documents must be able to be parsed from and saved to the following sources:

Input and Output Streams
URIs
Files

Note that Input and Output streams take care of the in memory case. One point of caution is that a stream
doesn’t allow a base URI to be defined against which all relative URIs in the document are resolved.

2.1.1.2. Content Model Loading

While creating a new document using the DOM API, a mechanism must be provided to specify that the
new document uses a pre-existing Content Model and to cause that Content Model to be loaded.

Note that while DOM Level 2 creation can specify a Content Model when creating a document (public
and system IDs for the external subset, and a string for the internal subset), DOM Level 2
implementations do not process the Content Model’s content. For DOM Level 3, the Content Model’s
content must be be read.

2.1.1.3. Content Model Reuse

When processing a series of documents, all of which use the same Content Model, implementations
should be able to reuse the already parsed and load ed Content Model rather than reparsing it again for
each new document.

35

2. Document Object Model Load and Save

This feature may not have an explicit DOM API associated with it, but it does require that nothing in this
section, or the Content Model section, of this specification block it or make it difficult to implement.

2.1.1.4. Entity Resolution

Some means is required to allow applications to map public and system IDs to the correct document. This
facility should provide sufficient capability to allow the implementation of catalogs, but providing
catalogs themselves is not a requirement. In addition XML Base needs to be addressed.

2.1.1.5. Error Reporting

Loading a document can cause the generation of errors including:

I/O Errors, such as the inability to find or open the specified document.
XML well formedness errors.
Validity errors

Saving a document can cause the generation of errors including:

I/O Errors, such as the inability to write to a specified stream, url, or file.
Improper constructs, such as ’--’ in comments, in the DOM that cannot be represented as well formed
XML.

This section, as well as the DOM Level 3 Content Model section should use a common error reporting
mechanism. Well-formedness and validity checking are in the domain of the Content Model section, even
though they may be commonly generated in response to an application asking that a document be loaded.

2.1.2. Load Requirements

The following requirements apply to loading documents.

2.1.2.1. Parser Properties and Options

Parsers may have properties or options that can be set by applications. Examples include:

Expansion of entity references.
Creation of entity ref nodes.
Handling of white space in element content.
Enabling of namespace handling.
Enabling of content model validation.

A mechanism to set properties, query the state of properties, and to query the set of properties supported
by a particular DOM implementation is required.

36

2.1.2. Load Requirements

2.1.3. XML Writer Requirements

The fundamental requirement is to write a DOM document as XML source. All information to be
serialized should be available via the normal DOM API.

2.1.3.1. XML Writer Properties and Options

There are several options that can be defined when saving an XML document. Some of these are:

Saving to Canonical XML format.
Pretty Printing.
Specify the encoding in which a document is written.
How and when to use character entities.
Namespace prefix handling.
Saving of Content Models.
Handling of external entities.

2.1.3.2. Content Model Saving

Requirement from the Content Model group.

2.1.4. Other Items Under Consideration

The following items are not committed to, but are under consideration. Public feedback on these items is
especially requested.

2.1.4.1. Incremental and/or Concurrent Parsing

Provide the ability for a thread that requested the loading of a document to continue execution without
blocking while the document is being loaded. This would require some sort of notification or completion
event when the loading process was done.

Provide the ability to examine the partial DOM representation before it has been fully loaded.

In one form, a document may be loaded asynchronously while a DOM based application is accessing the
document. In another form, the application may explicitly ask for the next incremental portion of a
document to be loaded.

2.1.4.2. Filtered Save

Provide the capability to write out only a part of a document. May be able to leverage TreeWalkers, or the
Filters associated with TreeWalkers, or Ranges as a means of specifying the portion of the document to be
written.

37

2.1.3. XML Writer Requirements

2.1.4.3. Document Fragments

Document fragments, as specified by the XML Fragment specification, should be able to be loaded. This
is useful to applications that only need to process some part of a large document. Because the DOM is
typically implemented as an in-memory representation of a document, fully loading large documents can
require large amounts of memory.

XPath should also be considered as a way to identify XML Document fragments to load.

2.1.4.4. Document Fragments in Context of Existing DOM

Document fragments, as specified by the XML Fragment specification, should be able to be loaded into
the context of an existing document at a point specified by a node position, or perhaps a range. This is a
separate feature than simply loading document fragments as a new Node.

38

2.1.4. Other Items Under Consideration

Appendix A: IDL Definitions
This appendix contains the complete OMG IDL [OMGIDL] for the Level 3 Document Object Model
Content Model definitions.

The IDL files are also available as:
http://www.w3.org/TR/2000/WD-DOM-Level-3-Content-Models-and-Load-Save-20000901/idl.zip

contentModel.idl:
// File: contentModel.idl

#ifndef _CONTENTMODEL_IDL_
#define _CONTENTMODEL_IDL_

#include "dom.idl"

#pragma prefix "dom.w3c.org"
module contentModel
{

 typedef dom::DOMString DOMString;
 typedef dom::int int;
 typedef dom::where where;
 typedef dom::how how;
 typedef dom::why why;
 typedef dom::nsElement nsElement;
 typedef dom::namedCMNodeMap namedCMNodeMap;
 typedef dom::Document Document;
 typedef dom::CMExternalObject * CMExternalObject *;
 typedef dom::DomImplementation DomImplementation;
 typedef dom::Node Node;
 typedef dom::Text Text;

 interface CMObject {
 };

 interface CMExternalObject {
 };

 interface CMNode {
 };

 interface CMNodeList {
 };

 interface NamedCMNodeMap {
 };

 interface CMDataType {
 };

 interface CMType {
 };

39

Appendix A: IDL Definitions

 interface ElementDeclaration {
 readonly attribute DOMString elementName;
 attribute DOMString contentType;
 attribute NamedCMNodeMap attributes;
 };

 interface ElementCMModel {
 attribute DOMString listOperator;
 attribute int multiplicity;
 attribute int lowValue;
 attribute int highValue;
 attribute NamedCMNodeMap subModels;
 attribute CMNodeList definingElement;
 };

 interface AttributeDeclaration {
 readonly attribute DOMString attrName;
 attribute CMDataType attrType;
 attribute DOMString defaultValue;
 attribute DOMString enumAttr;
 attribute CMNodeList ownerElement;
 };

 interface EntityDeclaration {
 };

 interface ErrorHandler {
 void warning(in where DOMString,
 in how DOMString,
 in why DOMString)
 raises(dom::DOMException2);
 void fatalError(in where DOMString,
 in how DOMString,
 in why DOMString)
 raises(dom::DOMException2);
 void error(in where DOMString,
 in how DOMString,
 in why DOMString)
 raises(dom::DOMException2);
 };

 interface CMObject {
 readonly attribute boolean isNamespaceAware;
 nsElement getCMNamespace();
 namedCMNodeMap getCMElements();
 boolean removeCMNode(in CMNode node);
 boolean insertbeforeCMNode(in CMNode newnode,
 in CMNode parentnode);
 };

 interface CMNode {
 CMType getCMNodeType();
 };

 interface ElementDeclaration {
 int getContentType();

40

contentModel.idl:

 ElementCMModel getCMElement();
 namedCMNodeMap getCMAttributes();
 namedCMNodeMap getCMElementsChildren();
 };

 interface ElementCMModel {
 ElementCMModel setCMElementCardinality(in CMNode node,
 in int high,
 in int low);
 ElementCMModel getCMElementCardinality(in CMNode node,
 out int high,
 out int low);
 };

 interface ElementCMModel {
 boolean isValid();
 int contentType();
 boolean canSetAttribute(in DOMString attrname,
 in DOMString attrval);
 boolean canSetAttributeNode();
 };

 interface DocumentCM : Document {
 boolean isValid();
 int numCMs();
 CMObject getInternalCM();
 CMExternalObject * getCMs();
 CMObject getActiveCM();
 void addCM(in CMObject cm);
 void removeCM(in CMObject cm);
 boolean activateCM(in CMObject cm);
 };

 interface DomImplementationCM : DomImplementation {
 boolean validate();
 CMObject createCM();
 CMExternalObject createExternalCM();
 CMObject cloneCM(in CMObject cm);
 CMExternalObject cloneExternalCM(in CMExternalObject cm);
 };

 interface NodeCM : Node {
 boolean canInsertBefore();
 boolean canRemoveChild();
 boolean canReplaceChild();
 boolean canAppendChild();
 };

 interface TextCM : Text {
 boolean isWhitespaceOnly();
 boolean canSetData();
 boolean canAppendData();
 boolean canReplaceData();
 boolean canInsertData();
 };

 interface DocumentCM : Document {

41

contentModel.idl:

 boolean isElementDefined(in DOMString elemTypeName);
 boolean isAttributeDefined(in DOMString elemTypeName,
 in DOMString attrName);
 boolean isEntityDefined(in DOMString entName);
 };
};

#endif // _CONTENTMODEL_IDL_

42

contentModel.idl:

Appendix B: Java Language Binding
This appendix contains the complete Java [Java] bindings for the Level 3 Document Object Model
Content Model.

The Java files are also available as
http://www.w3.org/TR/2000/WD-DOM-Level-3-Content-Models-and-Load-Save-20000830/java-binding.zip

org/w3c/dom/contentModel/CMObject.java:
package org.w3c.dom.contentModel;

public interface CMObject {
}

org/w3c/dom/contentModel/CMExternalObject.java:
package org.w3c.dom.contentModel;

public interface CMExternalObject {
}

org/w3c/dom/contentModel/CMNode.java:
package org.w3c.dom.contentModel;

public interface CMNode {
}

org/w3c/dom/contentModel/CMNodeList.java:
package org.w3c.dom.contentModel;

public interface CMNodeList {
}

org/w3c/dom/contentModel/NamedCMNodeMap.java:
package org.w3c.dom.contentModel;

public interface NamedCMNodeMap {
}

org/w3c/dom/contentModel/CMDataType.java:
package org.w3c.dom.contentModel;

public interface CMDataType {
}

43

Appendix B: Java Language Binding

org/w3c/dom/contentModel/CMType.java:
package org.w3c.dom.contentModel;

public interface CMType {
}

org/w3c/dom/contentModel/ElementDeclaration.java:
package org.w3c.dom.contentModel;

public interface ElementDeclaration {
 public String getElementName();

 public String getContentType();
 public void setContentType(String contentType);

 public NamedCMNodeMap getAttributes();
 public void setAttributes(NamedCMNodeMap attributes);

}

org/w3c/dom/contentModel/ElementCMModel.java:
package org.w3c.dom.contentModel;

public interface ElementCMModel {
 public String getListOperator();
 public void setListOperator(String listOperator);

 public int getMultiplicity();
 public void setMultiplicity(int multiplicity);

 public int getLowValue();
 public void setLowValue(int lowValue);

 public int getHighValue();
 public void setHighValue(int highValue);

 public NamedCMNodeMap getSubModels();
 public void setSubModels(NamedCMNodeMap subModels);

 public CMNodeList getDefiningElement();
 public void setDefiningElement(CMNodeList definingElement);

}

org/w3c/dom/contentModel/AttributeDeclaration.java:
package org.w3c.dom.contentModel;

public interface AttributeDeclaration {
 public String getAttrName();

 public CMDataType getAttrType();

44

org/w3c/dom/contentModel/CMType.java:

 public void setAttrType(CMDataType attrType);

 public String getDefaultValue();
 public void setDefaultValue(String defaultValue);

 public String getEnumAttr();
 public void setEnumAttr(String enumAttr);

 public CMNodeList getOwnerElement();
 public void setOwnerElement(CMNodeList ownerElement);

}

org/w3c/dom/contentModel/EntityDeclaration.java:
package org.w3c.dom.contentModel;

public interface EntityDeclaration {
}

org/w3c/dom/contentModel/DocumentCM.java:
package org.w3c.dom.contentModel;

import org.w3c.dom.Document;
import org.w3c.dom.CMExternalObject *;

public interface DocumentCM extends Document {
 public boolean isValid();

 public int numCMs();

 public CMObject getInternalCM();

 public CMExternalObject * getCMs();

 public CMObject getActiveCM();

 public void addCM(CMObject cm);

 public void removeCM(CMObject cm);

 public boolean activateCM(CMObject cm);

}

org/w3c/dom/contentModel/DomImplementationCM.java:
package org.w3c.dom.contentModel;

import org.w3c.dom.DomImplementation;

public interface DomImplementationCM extends DomImplementation {
 public boolean validate();

45

org/w3c/dom/contentModel/EntityDeclaration.java:

 public CMObject createCM();

 public CMExternalObject createExternalCM();

 public CMObject cloneCM(CMObject cm);

 public CMExternalObject cloneExternalCM(CMExternalObject cm);

}

org/w3c/dom/contentModel/ErrorHandler.java:
package org.w3c.dom.contentModel;

import org.w3c.dom.how;
import org.w3c.dom.where;
import org.w3c.dom.why;
import org.w3c.dom.DOMException2;

public interface ErrorHandler {
 public void warning(where DOMString,
 how DOMString,
 why DOMString)
 throws DOMException2;

 public void fatalError(where DOMString,
 how DOMString,
 why DOMString)
 throws DOMException2;

 public void error(where DOMString,
 how DOMString,
 why DOMString)
 throws DOMException2;

}

org/w3c/dom/contentModel/CMObject.java:
package org.w3c.dom.contentModel;

import org.w3c.dom.namedCMNodeMap;
import org.w3c.dom.nsElement;

public interface CMObject {
 public boolean getIsNamespaceAware();

 public nsElement getCMNamespace();

 public namedCMNodeMap getCMElements();

 public boolean removeCMNode(CMNode node);

46

org/w3c/dom/contentModel/ErrorHandler.java:

 public boolean insertbeforeCMNode(CMNode newnode,
 CMNode parentnode);

}

org/w3c/dom/contentModel/CMNode.java:
package org.w3c.dom.contentModel;

public interface CMNode {
 public CMType getCMNodeType();

}

org/w3c/dom/contentModel/ElementDeclaration.java:
package org.w3c.dom.contentModel;

import org.w3c.dom.namedCMNodeMap;

public interface ElementDeclaration {
 public int getContentType();

 public ElementCMModel getCMElement();

 public namedCMNodeMap getCMAttributes();

 public namedCMNodeMap getCMElementsChildren();

}

org/w3c/dom/contentModel/ElementCMModel.java:
package org.w3c.dom.contentModel;

public interface ElementCMModel {
 public ElementCMModel setCMElementCardinality(CMNode node,
 int high,
 int low);

 public ElementCMModel getCMElementCardinality(CMNode node,
 int high,
 int low);

}

org/w3c/dom/contentModel/NodeCM.java:
package org.w3c.dom.contentModel;

import org.w3c.dom.Node;

public interface NodeCM extends Node {
 public boolean canInsertBefore();

47

org/w3c/dom/contentModel/CMNode.java:

 public boolean canRemoveChild();

 public boolean canReplaceChild();

 public boolean canAppendChild();

}

org/w3c/dom/contentModel/ElementCMModel.java:
package org.w3c.dom.contentModel;

public interface ElementCMModel {
 public boolean isValid();

 public int contentType();

 public boolean canSetAttribute(String attrname,
 String attrval);

 public boolean canSetAttributeNode();

}

org/w3c/dom/contentModel/TextCM.java:
package org.w3c.dom.contentModel;

import org.w3c.dom.Text;

public interface TextCM extends Text {
 public boolean isWhitespaceOnly();

 public boolean canSetData();

 public boolean canAppendData();

 public boolean canReplaceData();

 public boolean canInsertData();

}

org/w3c/dom/contentModel/DocumentCM.java:
package org.w3c.dom.contentModel;

import org.w3c.dom.Document;

public interface DocumentCM extends Document {
 public boolean isElementDefined(String elemTypeName);

 public boolean isAttributeDefined(String elemTypeName,
 String attrName);

48

org/w3c/dom/contentModel/ElementCMModel.java:

 public boolean isEntityDefined(String entName);

}

49

org/w3c/dom/contentModel/DocumentCM.java:

50

org/w3c/dom/contentModel/DocumentCM.java:

Appendix C: ECMA Script Language Binding
This appendix contains the complete ECMA Script [ECMAScript] binding for the Level 3 Document
Object Model Content Model definitions.

Object CMObject
Object CMExternalObject
Object CMNode
Object CMNodeList
Object NamedCMNodeMap
Object CMDataType
Object CMType
Object ElementDeclaration

The ElementDeclaration object has the following properties:
elementName

This property is of type String.
contentType

This property is of type String.
attributes

This property is of type NamedCMNodeMap.
Object ElementCMModel

The ElementCMModel object has the following properties:
listOperator

This property is of type String.
multiplicity

This property is of type int .
lowValue

This property is of type int .
highValue

This property is of type int .
subModels

This property is of type NamedCMNodeMap.
definingElement

This property is of type CMNodeList.
Object AttributeDeclaration

The AttributeDeclaration object has the following properties:
attrName

This property is of type String.
attrType

This property is of type CMDataType.
defaultValue

This property is of type String.
enumAttr

This property is of type String.

51

Appendix C: ECMA Script Language Binding

ownerElement
This property is of type CMNodeList.

Object EntityDeclaration
Object DocumentCM

DocumentCM has the all the properties and methods of Document as well as the properties and
methods defined below.
The DocumentCM object has the following methods:

isValid()
This method returns a boolean.

numCMs()
This method returns a int .

getInternalCM()
This method returns a CMObject .

getCMs()
This method returns a CMExternalObject * .

getActiveCM()
This method returns a CMObject .

addCM(cm)
This method has no return value.
The cm parameter is of type CMObject .

removeCM(cm)
This method has no return value.
The cm parameter is of type CMObject .

activateCM(cm)
This method returns a boolean.
The cm parameter is of type CMObject .

Object DomImplementationCM
DomImplementationCM has the all the properties and methods of DomImplementation as well as
the properties and methods defined below.
The DomImplementationCM object has the following methods:

validate()
This method returns a boolean.

createCM()
This method returns a CMObject .

createExternalCM()
This method returns a CMExternalObject .

cloneCM(cm)
This method returns a CMObject .
The cm parameter is of type CMObject .

cloneExternalCM(cm)
This method returns a CMExternalObject .
The cm parameter is of type CMExternalObject .

Object ErrorHandler
The ErrorHandler object has the following methods:

warning(DOMString, DOMString, DOMString)
This method has no return value.

52

Appendix C: ECMA Script Language Binding

The DOMString parameter is of type where.
The DOMString parameter is of type how.
The DOMString parameter is of type why.

fatalError(DOMString, DOMString, DOMString)
This method has no return value.
The DOMString parameter is of type where.
The DOMString parameter is of type how.
The DOMString parameter is of type why.

error(DOMString, DOMString, DOMString)
This method has no return value.
The DOMString parameter is of type where.
The DOMString parameter is of type how.
The DOMString parameter is of type why.

Object CMObject
The CMObject object has the following properties:

isNamespaceAware
This property is of type boolean.

The CMObject object has the following methods:
getCMNamespace()

This method returns a nsElement.
getCMElements()

This method returns a namedCMNodeMap.
removeCMNode(node)

This method returns a boolean.
The node parameter is of type CMNode.

insertbeforeCMNode(newnode, parentnode)
This method returns a boolean.
The newnode parameter is of type CMNode.
The parentnode parameter is of type CMNode.

Object CMNode
The CMNode object has the following methods:

getCMNodeType()
This method returns a CMType.

Object ElementDeclaration
The ElementDeclaration object has the following methods:

getContentType()
This method returns a int .

getCMElement()
This method returns a ElementCMModel.

getCMAttributes()
This method returns a namedCMNodeMap.

getCMElementsChildren()
This method returns a namedCMNodeMap.

Object ElementCMModel
The ElementCMModel object has the following methods:

53

Appendix C: ECMA Script Language Binding

setCMElementCardinality(node, high, low)
This method returns a ElementCMModel.
The node parameter is of type CMNode.
The high parameter is of type int .
The low parameter is of type int .

getCMElementCardinality(node, high, low)
This method returns a ElementCMModel.
The node parameter is of type CMNode.
The high parameter is of type int .
The low parameter is of type int .

Object NodeCM
NodeCM has the all the properties and methods of Node as well as the properties and methods
defined below.
The NodeCM object has the following methods:

canInsertBefore()
This method returns a boolean.

canRemoveChild()
This method returns a boolean.

canReplaceChild()
This method returns a boolean.

canAppendChild()
This method returns a boolean.

Object ElementCMModel
The ElementCMModel object has the following methods:

isValid()
This method returns a boolean.

contentType()
This method returns a int .

canSetAttribute(attrname, attrval)
This method returns a boolean.
The attrname parameter is of type String.
The attrval parameter is of type String.

canSetAttributeNode()
This method returns a boolean.

Object TextCM
TextCM has the all the properties and methods of Text as well as the properties and methods defined
below.
The TextCM object has the following methods:

isWhitespaceOnly()
This method returns a boolean.

canSetData()
This method returns a boolean.

canAppendData()
This method returns a boolean.

canReplaceData()
This method returns a boolean.

54

Appendix C: ECMA Script Language Binding

canInsertData()
This method returns a boolean.

Object DocumentCM
DocumentCM has the all the properties and methods of Document as well as the properties and
methods defined below.
The DocumentCM object has the following methods:

isElementDefined(elemTypeName)
This method returns a boolean.
The elemTypeName parameter is of type String.

isAttributeDefined(elemTypeName, attrName)
This method returns a boolean.
The elemTypeName parameter is of type String.
The attrName parameter is of type String.

isEntityDefined(entName)
This method returns a boolean.
The entName parameter is of type String.

55

Appendix C: ECMA Script Language Binding

56

Appendix C: ECMA Script Language Binding

References
For the latest version of any W3C specification please consult the list of W3C Technical Reports available
at http://www.w3.org/TR.

D.1: Normative references
ECMAScript

ECMA (European Computer Manufacturers Association) ECMAScript Language Specification.
Available at http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM

Java
Sun Microsystems Inc. The Java Language Specification, James Gosling, Bill Joy, and Guy Steele,
September 1996. Available at http://java.sun.com/docs/books/jls

OMGIDL
OMG (Object Management Group) IDL (Interface Definition Language) defined in The Common
Object Request Broker: Architecture and Specification, version 2.3.1, October 1999. Available at
http://sisyphus.omg.org/technology/documents/formal/corba_2.htm

57

References

http://sisyphus.omg.org/technology/documents/formal/corba_2.htm
http://sisyphus.omg.org/technology/documents/formal/corba_2.htm
http://java.sun.com/docs/books/jls
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM
http://www.w3.org/TR

58

D.1: Normative references

Index
activateCM addCM AttributeDeclaration

attributes attrName attrType

canAppendChild canAppendData canInsertBefore

canInsertData canRemoveChild canReplaceChild

canReplaceData canSetAttribute canSetAttributeNode

canSetData cloneCM cloneExternalCM

CMDataType CMExternalObject CMNode 12, 22

CMNodeList CMObject 12, 21 CMType

contentType 27, 13 createCM createExternalCM

defaultValue definingElement DocumentCM 15, 29

DomImplementationCM

ECMAScript ElementCMModel 14, 24, 26 ElementDeclaration 13, 23

elementName EntityDeclaration enumAttr

error ErrorHandler

fatalError

getActiveCM getCMAttributes getCMElement

getCMElementCardinality getCMElements getCMElementsChildren

getCMNamespace getCMNodeType getCMs

getContentType getInternalCM

highValue

59

Index

insertbeforeCMNode isAttributeDefined isElementDefined

isEntityDefined isNamespaceAware isValid 17, 27

isWhitespaceOnly

Java

listOperator lowValue

multiplicity

NamedCMNodeMap NodeCM numCMs

OMGIDL ownerElement

removeCM removeCMNode

setCMElementCardinality subModels

TextCM

validate

warning

60

Index

	Document Object Model †DOM‡ Level 3 Content Models and Load and Save Specification
	Version 1.0
	W3C Working Draft 01 September, 2000
	Abstract
	Status of this document
	Table of contents

	Expanded Table of Contents
	Copyright Notice
	W3C Document Copyright Notice and License
	W3C Software Copyright Notice and License

	1. Content Models and Validation
	1.1. Overview
	1.1.1. General Characteristics
	1.1.2. Use Cases and Requirements
	1.1.2.1. Content Model Interfaces
	1.1.2.2. Editing and Generating a Content Model
	1.1.2.3. Content Model-directed Document Manipulation
	1.1.2.4. Validating a Document Against a Content Model
	1.1.2.5. Well-formedness Testing

	2. Document Object Model Load and Save
	2.1. Load and Save Requirements
	2.1.1. General Requirements
	2.1.1.1. Document Sources
	2.1.1.2. Content Model Loading
	2.1.1.3. Content Model Reuse
	2.1.1.4. Entity Resolution
	2.1.1.5. Error Reporting

	2.1.2. Load Requirements
	2.1.2.1. Parser Properties and Options

	2.1.3. XML Writer Requirements
	2.1.3.1. XML Writer Properties and Options
	2.1.3.2. Content Model Saving

	2.1.4. Other Items Under Consideration
	2.1.4.1. Incremental and/or Concurrent Parsing
	2.1.4.2. Filtered Save
	2.1.4.3. Document Fragments
	2.1.4.4. Document Fragments in Context of Existing DOM

	Appendix A: IDL Definitions
	
	contentModel.idl:

	Appendix B: Java Language Binding
	
	org/w3c/dom/contentModel/CMObject.java:
	org/w3c/dom/contentModel/CMExternalObject.java:
	org/w3c/dom/contentModel/CMNode.java:
	org/w3c/dom/contentModel/CMNodeList.java:
	org/w3c/dom/contentModel/NamedCMNodeMap.java:
	org/w3c/dom/contentModel/CMDataType.java:
	org/w3c/dom/contentModel/CMType.java:
	org/w3c/dom/contentModel/ElementDeclaration.java:
	org/w3c/dom/contentModel/ElementCMModel.java:
	org/w3c/dom/contentModel/AttributeDeclaration.java:
	org/w3c/dom/contentModel/EntityDeclaration.java:
	org/w3c/dom/contentModel/DocumentCM.java:
	org/w3c/dom/contentModel/DomImplementationCM.java:
	org/w3c/dom/contentModel/ErrorHandler.java:
	org/w3c/dom/contentModel/CMObject.java:
	org/w3c/dom/contentModel/CMNode.java:
	org/w3c/dom/contentModel/ElementDeclaration.java:
	org/w3c/dom/contentModel/ElementCMModel.java:
	org/w3c/dom/contentModel/NodeCM.java:
	org/w3c/dom/contentModel/ElementCMModel.java:
	org/w3c/dom/contentModel/TextCM.java:
	org/w3c/dom/contentModel/DocumentCM.java:

	Appendix C: ECMA Script Language Binding
	References
	D.1: Normative references

	Index

