Mathematical Markup Language (MathML) Version 2.0

W3C Candidate Recommendation 13 November 2000

This version: http://www.w3.0rg/TR/2000/CR-MathML2-20001113
Also available asHTML zip archive XHTML zip archive, XML zip archive, PDF (screen)PDF (paper)
Latest version: http://www.w3.0rg/TR/MathML2
Previous versions:
http://www.w3.0rg/TR/2000/WD-MathML2-20000328
http://mww.w3.0org/TR/2000/WD-MathML2-20000211
http://Mmww.w3.0rg/TR/1999/WD-MathML2-19991222
http:/Mmww.w3.0rg/TR/1999/WD-MathML2-19991201
Editors: David Carlisle (NAG)
Patrick lon (Mathematical Reviews, American Mathematical Society)
Robert Miner (Design Science, Inc.)
Nico Poppelier (Penta Scope)
Principal Authors: Ron Ausbrooks, Stephen Buswell, Stéphane Dalmas, Stan Devitt, Angel Diaz, Roger Hunter,
Bruce Smith, Neil Soiffer, Robert Sutor, Stephen Watt

Copyright(© 1998-2000 W3® (MIT, INRIA, Keio), All Rights Reserved\/3C liability, trademarkdocument usand
software licensingules apply.

Abstract

This specification defines the Mathematical Markup Language, or MathML. MathML is an XML application for de-
scribing mathematical notation and capturing both its structure and content. The goal of MathML is to enable mathe
matics to be served, received, and processed on the World Wide Web, just as HTML has enabled this functionality fc
text.

This specification of the markup language MathML is intended primarily for a readership consisting of those who will
be developing or implementing renderers or editors using it, or software that will communicate using MathML as a
protocol for input or output. It imot a User's Guide but rather a reference document.

This document begins with background information on mathematical notation, the problems it poses, and the philosopt
underlying the solutions MathML proposes. MathML can be used to encode both mathematical notation and matheme
ical content. About thirty of the MathML tags describe abstract notational structures, while another about one hundre
and fifty provide a way of unambiguously specifying the intended meaning of an expression. Additional chapters dis
cuss how the MathML content and presentation elements interact, and how MathML renderers might be implemente
and should interact with browsers. Finally, this document addresses the issue of MathML characters and their relatic
to fonts.

While MathML is human-readable, it is anticipated that, in all but the simplest cases, authors will use equation edi
tors, conversion programs, and other specialized software tools to generate MathML. Several early versions of su
MathML tools already exist, and a number of others, both freely available software and commercial products, are unds
development.

Status of this document

This section describes the status of this document at the time of its publication. Other documents may supersede this
document. The latest status of this document series is maintained at the W3C.

http://www.w3.org/TR/2000/CR-MathML2-20001113/
file:CR-MathML2-20001113.zip
file:XHTML-MathML-20001113.zip
file:XML-MathML-20001113.zip
http://www.w3.org/TR/MathML2
http://www.w3.org/TR/2000/WD-MathML2-20000328/
http://www.w3.org/TR/2000/WD-MathML2-20000211/
http://www.w3.org/TR/1999/WD-MathML2-19991222/
http://www.w3.org/TR/1999/WD-MathML2-19991201/
http://www.w3.org/Consortium/Legal/ipr-notice.html#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice.html#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents.html
http://www.w3.org/Consortium/Legal/copyright-software.html

This is a Candidate Recommendation of the MathML 2 specification. The W3C Math Working Group members conside
this specification to be stable and encourage implementation using it and comment on it. The Candidate Recommenc
tion review period ends on 14 December 2000. Please send review comments before the end of the reviewiperiod to
public mailing list of the Math Working Grouflist archive3.

Should this specification prove unexpectedly difficult to implement, the Working Group will return the document to
Working Draft status and make necessary changes. Otherwise the Math Working Group anticipates asking the W3
Director to advance this document to Proposed Recommendation status.

This is still a W3C Working Draft for review by W3C members and other interested parties. It is inappropriate to use
W3C working drafts as reference material, except in this case for trial implementations, or to cite them as other tha
"work in progress". This is work in progress and endorsement of it by, or the consensus in this regard of, the W3(
membership may not be assumed.

This document has been produced by \itieéC Math Working Grougas part of the activity of thgV3C User Interface
Domain The goals of the W3C Math Working Group are discussed in/tt3& Math WG Charte(revised February
2000 from original of 11 June 1998). A list phrticipants in the W3C Math Working Grougavailable.

A list of current W3C Technical Reports can be foundhép://www.w3.0rg/TR

The present draft is a revision of the earlier corredté®lC Recommendation MathML 1.0l differs from it in that all
chapters have been updated and two new ones and some appendices added.

Chapters 1 and 2, which are introductory material, have been revised to reflect the changes elsewhere in the docume
and in the rapidly evolving Web environment. Chapters 3 and 4 have been extended to describe new functionalities add
as well as smaller improvements of material already proposed. Chapter 5 has been newly written to reflect changes
the technology available. The major tables in Chapter 6 have been regenerated and reorganized to reflect an improy
list of characters useful for mathematics, and the text revised to reflect the new situation in regard to Unicode. Chapt
7 has been completely revised since Web technology has changed. A new Chapter 8 on the DOM for MathML has be
added; the latter points to new appendices D and E for detailed listings.

The appendices have been reorganized into normative and non-normative groups. Appendices D, E and G are complet
new.

mailto:www-math@w3.org
mailto:www-math@w3.org
http://lists.w3.org/Archives/Public/www-math/
http://www.w3.org/Math/
http://www.w3.org/UI/
http://www.w3.org/UI/
http://www.w3.org/Math/W3CDocs/mathcharter.html
http://www.w3.org/TR/
http://www.w3.org/1999/07/REC-MathML-19990707/

Contents

1 Introduction 10
1.1 Mathematics and its Notation 10
1.2 Origins and Goals 11

1.2.1 The History of MathML 11
1.2.2 Limitations of HTML 11

1.2.3 Requirements for Mathematics Markup2
1.2.4 Design Goals of MathML 13
1.3 The Role of MathML on the Web 14

131 Layered Design of Mathematical Web Servicdg
1.3.2 Relation to Other Web Technology 5

2 MathML Fundamentals 18

2.1 MathML Overview 18

21.1 Taxonomy of MathML Elements18
2.1.2 Presentation Markup20

2.13 Content Markup 21

2.1.4 Mixing Presentation and Conten21

2.2 MathML in a Document 22

2.3 Some MathML Examples 23

2.3.1 Presentation Example23

2.3.2 Content Examples25

2.3.3 Mixed Markup Examples 27

24 MathML Syntax and Grammar 29

24.1 MathML Syntax and Grammar29

2.4.2 An XML Syntax Primer 30

2.4.3 Children versus Arguments30

24.4 MathML Attribute Values 31

2.4.5 Attributes Shared by all MathML Elements$6
2.4.6 Collapsing Whitespace in Inpu37

3 Presentation Markup 38

3.1 Introduction 38

3.1.1 What Presentation Elements Represei&
3.1.2 Terminology Used In This ChapteB9
3.13 Required Arguments40

3.14 Elements with Special Behaviord 1

3.1.5 Bidirectional Layout 42

3.1.6 Summary of Presentation Elementt3

3.2 Token Elements 43

3.2.1 MathML characters in token elementg4

3.2.2 Mathematics style attributes common to token eleme#fs

3.2.3 Identifier@i) 47

3.24 Numberifn) 49

3.25 Operator, Fence, Separator or Accen) (50
3.2.6 Text fitext) 59

3.2.7 Spacen(space) 61

3.2.8 String Literalfs) 62

3.2.9 Adding new character glyphs to MathMbg(lyph) 63
3.3 General Layout Schemata 64

3.3.1 Horizontally Group Sub-Expressiong¢w) 64
3.3.2 Fractionso(frac) 67

3.3.3 Radicalsn(sqrt, mroot) 69

3.34 Style Changengtyle) 69

3.35 Error Messagenérror) 74

3.3.6 Adjust Space Around Contenfpadded) 75
3.3.7 Making Subexpressions Invisibigphantom) 79

3.3.8 Expression Inside Pair of Fencesdnced) 81
3.3.9 Enclose Expression Inside Notatiaefclose) 84
3.4 Script and Limit Schemata 85

3.4.1 Subscriptr{sub) 86

3.4.2 Superscripimsup) 86

3.4.3 Subscript-superscript Paitsftbsup) 87
3.4.4 Underscriptrunder) 88

3.45 Overscriptfover) 89

3.4.6 Underscript-overscript Paitynderover) 91
3.4.7 Prescripts and Tensor Indicesafltiscripts) 92
3.5 Tables and Matrices 94

3.5.1 Table or Matrixftable) 94

3.5.2 Row in Table or Matrixu(tr) 97

3.5.3 Labeled Row in Table or Matrixx{abeledtr) 98
3.54 Entry in Table or Matrixu(td) 99

3.5.5 Alignment Markers 100

3.6 Enlivening Expressions 108

3.6.1 Bind Action to Sub-Expressiongction) 108
4 Content Markup 110

4.1 Introduction 110

41.1 The Intent of Content Markupi10
4.1.2 The Scope of Content Markupl 10
4.1.3 Basic Concepts of Content Markugd11
4.2 Content Element Usage Guide 112
421 Overview of Syntax and Usagd 12
4.2.2 Containers 121

4.2.3 Functions, Operators and Qualifier&25
424 Relations 130

4.2.5 Conditions 130

4.2.6 Syntax and Semantics 32

4.2.7 Semantic Mappings134

42.8 Constants and Symbold 34

4.2.9 MathML element types 134

4.3 Content Element Attributes 134

43.1 Content Element Attribute Valued 34

4.3.2 Attributes Modifying Content Markup Semantic$35
4.3.3 Attributes Modifying Content Markup Renderind 37
4.4 The Content Markup Elements 138

4.4.1 Token Elements 142

4.4.2 Basic Content Elementsi45

443 Arithmetic, Algebra and Logic 158

444 Relations 174

4.4.5 Calculus and Vector Calculud 78

4.4.6 Theory of Sets 188

4.4.7 Sequences and Serie$95

4.4.8 Elementary classical functiond 99

4.4.9 Statistics 201

4.4.10 Linear Algebra 204

4411 Semantic Mapping Element210

4.4.12 Constant and Symbol Element812

5 Combining Presentation and Content Markup 219
5.1 Why Two Diftferent Kinds of Markup? 219
5.2 Mixed Markup 220

5.2.1 Reasons to Mix Markup220

5.2.2 Combinations that are prohibite®22

5.2.3 Presentation Markup Contained in Content Mark2g3
5.2.4 Content Markup Contained in Presentation Marka2g3
5.3 Parallel Markup 224

5.3.1 Top-level Parallel Markup 224

5.3.2 Fine-grained Parallel Markup225

5.3.3 Parallel Markup via Cross-Referencesandxref 226
5.3.4 Annotation Cross-References using XLin&:andhref 227
5.4 Tools, Style Sheets and Macros for Combined Markup 228

54.1 Notational Style Sheets229
5.4.2 Content-Faithful Transformation230
5.4.3 Style Sheets for Extensiong231

6 Characters, Entities and Fonts 233
6.1 Introduction 233
6.2 MathML Characters 233

6.2.1 Unicode Character Data234

6.2.2 Special Characters Not in Unicod@34

6.2.3 Mathematical Alphabetic Symbol Characterg34
6.2.4 Non-Marking Characters235

6.3 Character Symbol Listings 236

6.3.1 Special Constants236

6.3.2 Character Tables (ASCII formatp37

6.3.3 Tables arranged by Unicode blocR37

6.3.4 Negated Mathematical Charactei238

6.3.5 Variant Mathematical Characterg238

6.3.6 Mathematical Alphabetic Characterg39
6.3.7 MathML Character Names239

6.4 Differences from Characters in MathML 1 240
6.4.1 Coverage 240

6.4.2 Fewer Non-marking Characters240

6.4.3 ISO Tables 240

6.4.4 Status of Character Encoding240

7 The MathML Interface 242

7.1 Embedding MathML in other Documents 242
7.1.1 MathML and Namespaces43

7.1.2 The Top-Levehath Element 245

7.1.3 Invoking MathML Processors246

7.1.4 Mixing and Linking MathML and HTML 247
7.1.5 Using CSS with MathML 248

7.2 Generating, Processing and Rendering MathML 249
7.2.1 MathML Compliance 250

7.2.2 Handling of Errors 251

7.2.3 Attributes for unspecified data251

7.3 Future Extensions 252

7.3.1 Macros and Style Sheetg52

7.3.2 XML Extensions to MathML 253

8 Document Object Model for MathML 254
8.1 Introduction 254

8.1.1 hasFeature String255

8.1.2 MathML DOM Extensions 255

A Parsing MathML 256

A.l MathML as a DTD Module 256

A.2 Use of MathML without a DTD 256

A.3 SGML 257

A4 The MathML DTD 257

B Content Markup Validation Grammar 299
C Content Element Definitions 304

C.l1 About Content Markup Elements 304

Cl1 The Default Definitions 304

C.l1.2 The Structure of an MMLdefinition.305
C.2 Definitions of MathML Content Elements 307
Cc.21 Token Elements 307

C.2.2 Basic Content Elements308

c.2.3 Arithmetic Algebra and Logic 317
C.24 Relations 335

C.25 Calculus and Vector Calculus339

C.2.6 Theory of Sets 345

c.2.7 Sequences and Serie350

Cc.2.8 Elementary Classical Functiong§52
C.29 Statistics 362

Cc.2.10 Linear Algebra 365

c.211 Constants and Symbol Element¥70

D Document Object Model for MathML 380
D.1 IDL Interfaces 380

D.11 Miscellaneous Object Definitions380
D.1.2 Generic MathML Elements382

D.1.3 Presentation Elements389

D.1.4 Content Elements409

D.2 MathML DOM Tables 427

D.21
D.2.2

E.l
E.2
E.2.1
E.2.2
E.2.3
E.24
E.25
E.2.6
E.2.7
E.2.8
E.2.9
E.2.10
E.2.11
E.2.12
E.2.13
E.2.14
E.2.15
E.2.16
E.2.17
E.2.18
E.2.19
E.2.20
E.2.21
E.2.22
E.2.23
E.2.24
E.2.25
E.2.26
E.2.27
E.2.28
E.2.29
E.2.30
E.2.31
E.2.32
E.2.33
E.2.34
E.2.35
E.2.36
E.2.37
E.2.38
E.2.39
E.2.40
E.2.41
E.2.42
E.2.43
E.2.44

Chart of MathML DOM Inheritance 427

Table of Elements and MathML DOM RepresentatiodS0
MathML Document Object Model Bindings (Non-Normative) 431
MathML Document Object Model IDL Binding 431
MathML Document Object Model Java Binding 443
org/w3c/mathmldom/MathMLDOMImplementation.javd43
org/w3c/mathmldom/MathMLDocument.java43
org/w3c/mathmldom/MathMLNodeList.javad43
org/w3c/mathmldom/MathMLElement.javal43
org/w3c/mathmldom/MathMLContainer.java44
org/w3c/mathmldom/MathMLMathElement.javd45
org/w3c/mathmldom/MathMLSemanticsElement.java5
org/w3c/mathmldom/MathMLAnNnotationElement.javé4s
org/w3c/mathmldom/MathMLXMLAnNnNotationElement.javd46
org/w3c/mathmldom/MathMLPresentationElement.jaxd6
org/w3c/mathmldom/MathMLGlyphElement.javd46
org/w3c/mathmldom/MathMLSpaceElement.javit7
org/w3c/mathmldom/MathMLPresentationToken.jayd7
org/w3c/mathmldom/MathMLOperatorElement.javi!7
org/w3c/mathmldom/MathMLStringLitElement.javd48
org/w3c/mathmldom/MathMLPresentationContainer.ja448
org/w3c/mathmldom/MathMLStyleElement.java48
org/w3c/mathmldom/MathMLPaddedElement.java9
org/w3c/mathmldom/MathMLFencedElement.jav9
org/w3c/mathmldom/MathMLEnNcloseElement.jad0
org/w3c/mathmldom/MathMLActionElement.javd50
org/w3c/mathmldom/MathMLFractionElement.jav#50
org/w3c/mathmldom/MathMLRadicalElement.jav50
org/w3c/mathmldom/MathMLScriptElement.javd5 1
org/w3c/mathmldom/MathMLUnderOverElement.javd 1
org/w3c/mathmldom/MathMLMultiScriptsElement.javds2
org/w3c/mathmldom/MathMLTableElement.javd53
org/w3c/mathmldom/MathMLTableRowElement.javés4
org/w3c/mathmldom/MathMLLabeledRowElement.jav4
org/w3c/mathmldom/MathMLTableCellElement.javés5
org/w3c/mathmldom/MathMLAIlignGroupElement.javds5
org/w3c/mathmldom/MathMLAlignMarkElement.javds5s
org/w3c/mathmldom/MathMLContentElement.javb6
org/w3c/mathmldom/MathMLContentToken.javé&56
org/w3c/mathmldom/MathMLCnElement.javd56
org/w3c/mathmldom/MathMLCiElement.java57
org/w3c/mathmldom/MathMLCsymbolElement.jav&57
org/w3c/mathmldom/MathMLContentContainer.javd 7
org/w3c/mathmldom/MathMLApplyElement.javas8
org/w3c/mathmldom/MathMLFnElement.javd58
org/w3c/mathmldom/MathMLLambdaElement.jav#9
org/w3c/mathmldom/MathMLSetElement.javd59
org/w3c/mathmldom/MathMLListElement.javd59
org/w3c/mathmldom/MathMLBvarElement.javd59

E.2.45
E.2.46
E.2.47
E.2.48
E.2.49
E.2.50
E.2.51
E.2.52
E.2.53
E.3
E.3.1
E.3.2
E.3.3
E.3.4
E.3.5
E.3.6
E.3.7
E.3.8
E.3.9
E.3.10
E.3.11
E.3.12
E.3.13
E.3.14
E.3.15
E.3.16
E.3.17
E.3.18
E.3.19
E.3.20
E.3.21
E.3.22
E.3.23
E.3.24
E.3.25
E.3.26
E.3.27
E.3.28
E.3.29
E.3.30
E.3.31
E.3.32
E.3.33
E.3.34
E.3.35
E.3.36
E.3.37
E.3.38
E.3.39

org/w3c/mathmldom/MathMLPredefinedSymbol.javs0
org/w3c/mathmldom/MathMLIntervalElement.javd60
org/w3c/mathmldom/MathMLConditionElement.jav460
org/w3c/mathmldom/MathMLDeclareElement.jav#60
org/w3c/mathmldom/MathMLVectorElement.javd61
org/w3c/mathmldom/MathMLMatrixElement.java61
org/w3c/mathmldom/MathMLMatrixrowElement.javd62
org/w3c/mathmldom/MathMLPiecewiseElement.jav#?2
org/w3c/mathmldom/MathMLCaseElement.javi63
MathML Document Object Model ECMAScript Binding 463
Object MathMLDOMImplementation463

Object MathMLDocument 464

Object MathMLNodelList 464

Object MathMLElement 464

Object MathMLContainer 464

Object MathMLMathElement465

Object MathMLSemanticsElemen#65

Object MathMLANnotationElement465

Object MathMLXMLANNotationElement465

Object MathMLPresentationElemert66

Object MathMLGlyphElement466

Object MathMLSpaceElemen#66

Object MathMLPresentationToke#66

Object MathMLOperatorElemen#66

Object MathMLStringLitElement467

Object MathMLPresentationContainet67

Object MathMLStyleElement467

Object MathMLPaddedElemen#67

Object MathMLFencedElemen#67

Object MathMLENcloseElemen#68

Object MathMLActionElement468

Object MathMLFractionElemeni468

Object MathMLRadicalElement468

Object MathMLScriptElement468

Object MathMLUnderOverElemen#69

Object MathMLMultiScriptsElement469

Object MathMLTableElement470

Object MathMLTableRowElemen#70

Object MathMLLabeledRowElemen#71

Object MathMLTableCellElemen471

Object MathMLAlignGroupElement471

Object MathMLAlignMarkElement 471

Object MathMLContentElemen#71

Object MathMLContentToken472

Object MathMLCnElement472

Object MathMLCiElement 472

Object MathMLCsymbolElement472

Object MathMLContentContaine#72

Object MathMLApplyElement 473

E.3.40 Object MathMLFnElement473
E.3.41 Object MathMLLambdaElemen#73
E.3.42 Object MathMLSetElement473
E.3.43 Object MathMLListElement 473
E.3.44 Object MathMLBvarElement474
E.3.45 Object MathMLPredefinedSymbo#74
E.3.46 Object MathMLIntervalElement474
E.3.47 Object MathMLConditionElement474
E.3.48 Object MathMLDeclareElemeni74
E.3.49 Object MathMLVectorElement475
E.3.50 Object MathMLMatrixElement 475
E.3.51 Object MathMLMatrixrowElement 475
E.3.52 Object MathMLPiecewiseElemen#76
E.3.53 Object MathMLCaseElemen#76

F Operator Dictionary (Non-Normative) 477

F.1 Format of operator dictionary entries 477

F.2 Indexing of operator dictionary 478

F.3 Choice of entity names 478

F.4 Notes on 1space and rspace attributes 478

F.5 Operator dictionary entries 478

G Sample CSS Stylesheet for MathML (Non-Normative) 488
H Glossary (Non-Normative) 494

I Working Group Membership and Acknowledgments (Non-Normative) 498
1.1 The Math Working Group Memberships 498

1.2 Acknowledgments 499

J Changes (Non-Normative) 500

K References (Non-Normative) 503

Chapter 1

Introduction

1.1 Mathematics and its Notation

A distinguishing feature of mathematics is the use of a complex and highly evolved system of two-dimensional symboli
notations. As J.R. Pierce has written in his book on communication theory, mathematics and its notations should not |
viewed as one and the same thifge]]. Mathematical ideas exist independently of the notations that represent
them. However, the relation between meaning and notation is subtle, and part of the power of mathematics to descri
and analyze derives from its ability to represent and manipulate ideas in symbolic form. The challenge in putting
mathematics on the World Wide Web is to capture both notation and content (that is, meaning) in such a way the
documents can utilize the highly-evolved notational forms of written and printed mathematics, and the potential fol
interconnectivity in electronic media.

Mathematical notations are constantly evolving as people continue to make innovations in ways of approaching ar
expressing ideas. Even the commonplace notations of arithmetic have gone through an amazing variety of styles, |
cluding many defunct ones advocated by leading mathematical figures of their dlayi1 929. Modern mathematical
notation is the product of centuries of refinement, and the notational conventions for high-quality typesetting are quit
complicated. For example, variables and letters which stand for numbers are usually typeset today in a special matt
matical italic font subtly distinct from the usual text italic. Spacing around symbols for operations such asand/

is slightly different from that of text, to reflect conventions about operator precedence. Entire books have been devote
to the conventions of mathematical typesetting, from the alignment of superscripts and subscripts, to rules for choosir
parenthesis sizes, and on to specialized notational practices for subfields of mathematics (for instancelyL 95},

[el Pl } or in the EX literature | Jand [.

Notational conventions in mathematics, and in printed text in general, guide the eye and make printed expressions mu
easier to read and understand. Though we usually take them for granted, we rely on hundreds of conventions such
paragraphs, capital letters, font families and cases, and even the device of decimal-like numbering of sections such
we are using in this document (an invention due to G. Peano, who is probably better known for his axioms for the natur:
numbers). Such notational conventions are perhaps even more important for electronic media, where one must conte
with the difficulties of on-screen reading.

However, there is more to putting mathematics on the Web than merely finding ways of displaying traditional mathe
matical notation in a Web browser. The Web represents a fundamental change in the underlying metaphor for knowled:
storage, a change in whidhterconnectivity plays a central role. It is becoming increasingly important to find ways of
communicating mathematics which facilitate automatic processing, searching and indexing, and reuse in other math
matical applications and contexts. With this advance in communication technology, there is an opportunity to expan
our ability to represent, encode, and ultimately to communicate our mathematical insights and understanding with ea
other. We believe that MathML is an important step in developing mathematics on the Web.

10

1.2 Origins and Goals
1.2.1 The History of MathML

The problem of encoding mathematics for computer processing or electronic communication is much older than th
Web. The common practice among scientists before the Web was to write papers in some encoded form based
the ASCII character set, and e-mail them to each other. Several markup methods for mathematics, in pgiicular T
[], were already in wide use in 1992 just before the Web rose to prominence)§ |

Since its inception, the Web has demonstrated itself to be a very effective method of making information available
to widely separated groups of individuals. However, even though the World Wide Web was initially conceived and
implemented by scientists for scientists, the possibilities for including mathematical expressions in HTML has beer
very limited. At present, most mathematics on the Web consists of text with images of scientific notation (in GIF or
JPEG format), which are difficult to read and to author, or of entire documents in PDF form.

The World Wide Web Consortium (W3C) recognized that lack of support for scientific communication was a serious
problem. Dave Raggett included a proposal for HTML Math in the HTML 3.0 working draft in 1994. A panel dis-
cussion on mathematical markup was held at the WWW Conference in Darmstadt in April 1995. In November 1995
representatives from Wolfram Research presented a proposal for doing mathematics in HTML to the W3C team. |
May 1996, the Digital Library Initiative meeting in Champaign-Urbana played an important role in bringing together
many interested parties. Following the meeting, an HTML Math Editorial Review Board was formed. In the intervening
years, this group has grown, and was formally reconstituted as the first W3C Math Working Group in March 1997. The
second W3C Math Working Group was chartered in July 1998 with a term which was later extended to run to the en
of the year 2000.

The MathML proposal reflects the interests and expertise of a very diverse group. Many contributions to the devel
opment of MathML deserve special mention, some of which we touch on here. One such contribution concerns th
guestion of accessibility, especially for the visually handicapped. T. V. Raman is particularly notable in this regard
Neil Soiffer and Bruce Smith from Wolfram Research shared their experience with the problems of representing matt
ematics in connection with the design of Mathematica 3.0; this expertise was an important influence in the design c
the presentation elements. Paul Topping from Design Science also contributed his expertise in mathematical formattil
and editing. MathML has benefited from the participation of a number of working group members involved in other
mathematical encoding efforts in the SGML and computer-algebra communities, including Stephen Buswell from Stilc
Technologies, Nico Poppelier at first with Elsevier Science, Stéphane Dalmas from INRIA (Sophia Antipolis), Stan De-
vitt at first with Waterloo Maple, Angel Diaz and Robert S. Sutor from IBM, and Stephen M. Watt from the University
of Western Ontario. In particular, MathML has been influenced by the OpenMath project, the work of the ISO 12083
working group, and Stilo Technologies’ work on a ‘semantic’ mathematics DTD fragment. The American Mathematical
Society has played a key role in the development of MathML. Among other things, it has provided two working group
chairs: Ron Whitney led the group from May 1996 to March 1997, and Patrick lon, who has co-chaired the group witt
Robert Miner from The Geometry Center from March 1997 to the June 1998, and since July 1998 with Angel Diaz of
IBM.

1.2.2 Limitations of HTML

The demand for effective means of electronic scientific communication remains high. Ever increasingly, researcher
scientists, engineers, educators, students and technicians find themselves working at dispersed locations and rely
on electronic communication. At the same time, the image-based methods that are currently the predominant mea
of transmitting scientific notation over the Web are primitive and inadequate. Document quality is poor, authoring is
difficult, and mathematical information contained in images is not available for searching, indexing, or reuse in othe
applications.

The most obvious problems with HTML for mathematical communication are of two types.

11

Display Problems. Consider the equatior?2= 10. This equation is sized to match the surrounding line in 14pt type
on the system where it was authored. Of course, on other systems, or for other font sizes, the equation is too small
too large. A second point to observe is that the equation image was generated against a white background. Thus, i
reader or browser resets the page background to another color, the anti-aliasing in the image results in white ‘halo:
Next, consider the equation= —2Ev*—4ac W, which is an example with the equation’s horizontal alignment axis above
the tops of the lower-case letters in the surrounding text.

This equation has a descender which places the baseline for the equation at a point about a third of the way fro
the bottom of the image. One can pad the image like this; 2=V —4ac szm, so that the centerline of the image and

the baseline of the equation coincide, but this causes problems with the inter-line spacing, resulting in the equatic
becoming difficult to read. Moreover, center alignment of images is handled in slightly different ways by different
browsers, making it impossible to guarantee proper alignment for different clients.

Image-based equations are generally harder to see, read and comprehend than the surrounding text in the brow
window. Moreover, these problems become worse when the document is printed. The resolution of the equations
images will be around 70 dots per inch, while the surrounding text will typically be 300, 600 or more dots per inch. The
disparity in quality is judged to be unacceptable by most people.

Encoding Problems. Consider trying to search this document for part of an equation, for example, the ‘=10’ from the
first equation above. In a similar vein, consider trying to cut and paste an equation into another application; even moi
demanding is to cut and paste a sub-expression. Using image-based methods, neither of these common needs ca
adequately addressed. Although the use ofathiein the document source can help, it is clear that highly interactive
Web documents must provide a more sophisticated interface between browsers and mathematical notation.

Another problem with encoding mathematics as images is that it requires more bandwidth. Markup describing an equ
tion is typically smaller and more compressible than an image of the equation. In addition, by using markup-base
encoding, more of the rendering process is moved to the client machine.

1.2.3 Requirements for Mathematics Markup

Some display problems associated with including mathematical notation in HTML documents as images could b
addressed by improving image handling by browsers. However, even if image handling were improved, the problem c
making the information contained in mathematical expressions available to other applications would remain. Therefore
in planning for the future, it is not sufficient merely to upgrade image-based methods. To integrate mathematical materi
fully into Web documents, a markup-based encoding of mathematical notation and content is required.

In designing any markup language, it is essential to consider carefully the needs of its potential users. In the case
MathML, the needs of potential users cover a broad spectrum, from education to research, and on to commerce:

The education community is a large and important group that must be able to put scientific curriculum materials on th
Web. At the same time, educators often have limited time and equipment, and are severely hampered by the difficulty
authoring technical Web documents. Students and teachers need to be able to create mathematical content quickly .
easily, using intuitive, easy-to-learn, low-cost tools.

Electronic textbooks are another way of using the Web which will potentially be very important in education. Manage-
ment consultant Peter Drucker has prophesied the end of big-campus residential higher education and its distributi
over the Web. Electronic textbooks will need to be interactive, allowing intercommunication between the text and sci
entific software and graphics.

The academic and commercial research communities generate large volume of dense scientific material. Increasing
research publications are being stored in databases, such as the highly sugdesstel and mathematics preprint

server and archivat Los Alamos National Laboratory. This is especially true in some areas of physics and mathematics
where academic journal prices have been increasing at an unsustainable rate. In addition, databases of information

12

http://xxx.lanl.gov
http://xxx.lanl.gov

mathematical research, suchMsthematical ReviewandZentralblatt fur Mathematikoffer millions of records on the
Web containing mathematics.

To accommodate the research community, a design for mathematical markup must facilitate the maintenance and c
eration of large document collections, for which automatic searching and indexing are important. Because of the larc
collection of legacy documents containing mathematics, especialigdntfie ability to convert between existing for-
mats and any new one is also very important to the research community. Finally, the ability to maintain information for
archival purposes is vital to academic research.

Corporate and academic scientists and engineers also use technical documents in their work to collaborate, to rec
results of experiments and computer simulations, and to verify calculations. For such uses, mathematics on the W
must provide a standard way of sharing information that can be easily read, processed and generated using commo
available, easy-to-use tools.

Another general design requirement is the ability to render mathematical material in other media such as speech
braille, which is extremely important for the visually impaired.

Commercial publishers are also involved with mathematics on the Web at all levels from electronic versions of prin
books to interactive textbooks and academic journals. Publishers require a method of putting mathematics on the W
that is capable of high-quality output, robust enough for large-scale commercial use, and preferably compatible wit
their previous, often SGML-based, production systems.

124 Design Goals of MathML

In order to meet the diverse needs of the scientific community, MathML has been designed with the following ultimate
goals in mind.

MathML should:

Encode mathematical material suitable for teaching and scientific communication at all levels.

Encode both mathematical notation and mathematical meaning.

Facilitate conversion to and from other mathematical formats, both presentational and semantic. Outpu
formats should include:

— graphical displays

— speech synthesizers

— input for computer algebra systems

— other mathematics typesetting languages, suclpés T

— plain text displays, e.g. VT100 emulators

— print media, including braille

Itis recognized that conversion to and from other notational systems or media may entail loss of information
in the process.

Allow the passing of information intended for specific renderers and applications.

Support efficient browsing of lengthy expressions.

Provide for extensibility.

Be well suited to template and other mathematics editing techniques.

° Be human legible, and simple for software to generate and process.

No matter how successfully MathML may achieve its goals as a markup language, it is clear that MathML will only
be useful if it is implemented well. To this end, the W3C Math Working Group has identified a short list of additional

implementation goals. These goals attempt to describe concisely the minimal functionality MathML rendering anc
processing software should try to provide.

° MathML expressions in HTML (and XHTML) pages should render properly in popular Web browsers, in

accordance with reader and author viewing preferences, and at the highest quality possible given the cap
bilities of the platform.

13

http://www.ams.org/mathscinet
http://www.zblmath.fiz-karlsruhe.de

° HTML (and XHTML) documents containing MathML expressions should print properly and at high-quality
printer resolutions.

° MathML expressions in Web pages should be able to react to user gestures, such those as with a mouse, ¢
to coordinate communication with other applications through the browser.
° Mathematical expression editors and converters should be developed to facilitate the creation of Web page

containing MathML expressions.

These goals have begun to be addressed for the near term by using embedded elements such as Java applets, |
ins and ActiveX controls to render MathML. However, the extent to which these goals are ultimately met depends ot
the cooperation and support of browser vendors, and other software developers. The W3C Math working group h:
continued to work with the working groups for the Document Object Model (DOM) and the Extensible Style Language
(XSL) to ensure that the needs of the scientific community will be met in the future, and feels that MathML 2.0 shows
considerable progress in this area over the situation that obtained at the time of the MathML 1.0 Recommendation (Ap!
1998).

1.3 The Role of MathML on the Web
131 Layered Design of Mathematical Web Services

The design goals of MathML require a system for encoding mathematical material for the Web which is flexible and
extensible, suitable for interaction with external software, and capable of producing high-quality rendering in severs
media. Any markup language that encodes enough information to do all these tasks well will of necessity involve som
complexity.

At the same time, it is important for many groups, such as students, to have simple ways to include mathematics in We
pages by hand. Similarly, other groups, such as tdecbmmunity, would be best served by a system which allowed
the direct entry of markup languages likeXTinto Web pages. In general, specific user groups are better served by
specialized kinds of input and output tailored to their needs. Therefore, the ideal system for communicating mathemati
on the Web should provide both specialized services for input and output, and general services for interchange
information and rendering to multiple media.

In practical terms, the observation that mathematics on the Web should provide for both specialized and general nee
naturally leads to the idea of a layered architecture. One layer consists of powerful, general software tools exchangin
processing and rendering suitably encoded mathematical data. A second layer consists of specialized software toc
aimed at specific user groups, which are capable of easily generating encoded mathematical data that can then be shi
with a particular audience.

MathML is designed to provide the encoding of mathematical information for the bottom, more general layer in a
two-layer architecture. It is intended to encode complex notational and semantic structure in an explicit, regular, an
easy-to-process way for renderers, searching and indexing software, and other mathematical applications.

As a consequence, raw MathML markumist primarily intended for direct use by authors. While MathML is human-
readable, which helps a lot in debugging it, in all but the simplest cases it is too verbose and error-prone for han
generation. Instead, it is anticipated that authors will use equation editors, conversion programs, and other specializ
software tools to generate MathML. Alternatively, some renderers and systems supporting mathematics may conve
other kinds of input directly included in Web pages into MathML on the fly, in response to a cut-and-paste operation
for example.

In some ways, MathML is analogous to other low-level, communication formats such as Adobe’s PostScript language
You can create PostScript files in a variety of ways, depending on your needs; experts write and modify them b
hand, authors create them with word processors, graphic artists with illustration programs, and so on. Once you ha

14

a PostScript file, however, you can share it with a very large audience, since devices which render PostScript, such
printers and screen previewers, are widely available.

Part of the reason for designing MathML as a markup language for a low-level, general, communication layer is tc
stimulate mathematical Web software development in the layer above. MathML provides a way of coordinating the
development of modular authoring tools and rendering software. By making it easier to develop a functional piece of
larger system, MathML can stimulate a ‘critical mass’ of software development, greatly to the benefit of potential user:
of mathematics on the Web.

One can envision a similar situation for mathematical data. Authors are free to create MathML documents using th
tools best suited to their needs. For example, a student might prefer to use a menu-driven equation editor that c
write out MathML to an XHTML file. A researcher might use a computer algebra package that automatically encodes
the mathematical content of an expression, so that it can be cut from a Web page and evaluated by a colleague. .
academic journal publisher might use a program that convgsmarkup to HTML and MathML. Regardless of the
method used to create a Web page containing MathML, once it exists, all the advantages of a powerful and genel
communication layer become available. A variety of MathML software could all be used with the same document tc
render it in speech or print, to send it to a computer algebra system, or to manage it as part of a large Web docume
collection. To render high-quality printed mathematics the MathML encoding will often be converted back to standarc
typesetting and composition languages, includigy Which is widely appreciated for the job it does in this regard.
Finally, one may expect that eventually MathML will be integrated into other arenas where mathematical formulas
occur, such as spreadsheets, statistical packages and engineering tools.

The W3C Math Working Group has been working with vendors to ensure that a variety of MathML software will soon
be available, including both rendering and authoring tools. A current list of MathML software is maintained on the
public Math page at the World Wide Web Consortium

1.3.2 Relation to Other Web Technology

The original conception of an HTML Math was a simple, straightforward extension to HTML that would be natively
implemented in browsers. However, very early on, the explosive growth of the Web made it clear that a general extensic
mechanism was required, and that mathematics was only one of many kinds of structured data which would have to |
integrated into the Web using such a mechanism.

Given that MathML must integrate into the Web as an extension, it is extremely important that MathML, and MathML
software, can interact well with the existing Web environment. In particular, MathML has been designed with three kinds
of interaction in mind. First, in order to create mathematical Web content, it is important that existing mathematical
markup languages can be converted to MathML, and that existing authoring tools can be modified to generate MathMl
Second, it must be possible to embed MathML markup seamlessly in HTML markup, as it evolves, in such a way the
it will be accessible to future browsers, search engines, and all the kinds of Web applications which now manipulat
HTML. Finally, it must be possible to render MathML embedded in HTML in today’s Web browsers in some fashion,

evenifitis less than ideal. As HTML evolves into XHTML, all the preceding requirements become increasingly needed

The World Wide Web is a fully international and collaborative movement. Mathematics is a language used all over the
world. The mathematical notation in science and engineering is embedded in a matrix of local natural languages. T}
W3C strives to be a constructive force in the spread of possibilities for communication throughout the world. Therefore
MathML will encounter problems of internationalization. This version of MathML is not knowingly incompatible with
the needs of languages which are written from left to right. However the default orientation of MathML 2 is left-to-right,
and it is clear that the needs for the writing of mathematical formulas embedded in some natural languages may not y
be met. So-called bi-directional technology is still in development, and better support for formulas in that context mus
be a matter for future developers.

15

http://www.w3.org/Math

1.3.2.1 Existing Mathematical Markup Languages

Perhaps the most important influence on mathematical markup languages of the last two decadgX iypesdtting
system developed by Donald Knuthi{]. TEX is a de facto standard in the mathematical research community,
and it is pervasive in the scientific community at largeX Bets a standard for quality of visual rendering, and a great
deal of effort has gone into ensuring MathML can provide the same visual rendering quality. Moreover, because of th
many legacy documents irgX, and because of the large authoring community verseg¥g a priority in the design

of MathML was the ability to convertgX mathematics input into MathML format. The feasibility of such conversion
has been demonstrated by prototype software.

Extensive work on encoding mathematics has also been done in the SGML community, and SGML-based encodir
schemes are widely used by commercial publishers. ISO 12083 is an important markup language which contains
DTD fragment primarily intended for describing the visual presentation of mathematical notation. Because I1SO 1208:
mathematical notation and its derivatives share many presentational aspectgXyiin@ because SGML enforces
structure and regularity more thapX, much of the work in ensuring MathML is compatible witpXalso applies well

to 1ISO 12083.

MathML also pays particular attention to compatibility with other mathematical software, and in particular, with com-
puter algebra systems. Many of the presentation elements of MathML are derived in part from the mechanism c
typesetting boxes. The MathML content elements are heavily indebted to the OpenMath project and the work by Stil
Technologies on a mathematical DTD fragment. The OpenMath project has close ties to both the SGML and cormr
puter algebra communities, and has laid a foundation for an SGML- and XML-based means of communication betwee
mathematical software packages, amongst other things. The feasibility of both generating and interpreting MathML i
computer algebra systems has been demonstrated by prototype software.

1.3.2.2 HTMIL Extension Mechanisms

As noted above, the success of HTML has led to enormous pressure to incorporate a wide variety of data types a
software applications into the Web. Each new format or application potentially places new demands on HTML and ol
browser vendors. For some time, it has been clear that a general extension mechanism is necessary to accommodate
extensions to HTML. At the very beginning, the working group began its work thinking of a plain extension to HTML
in the spirit of the first mathematics support suggested for HTML 3.2. But for a good humber of reasons, once we gc
into the details, this proved to be not so good an idea. Since work first began on MathML, XML has emerged as th
dominant such general extension mechanism.

XML stands for Extensible Markup Language. It is designed as a simplified version of SGML, the meta-language use
to define the grammar and syntax of HTML. One of the goals of XML is to be suitable for use on the Web, and in
the context of this discussion it can be viewed as the general mechanism for extending HTML. As its name implies
extensibility is a key feature of XML; authors are free to declare and use new elements and attributes. At the samr
time, XML grammar and syntax rules carefully enforce regular document structure to facilitate automatic processing
and maintenance of large document collections. Mathematically speaking XML is essentially a notation for decorate
rooted planar trees, and thus of great generality as an encoding tool.

Since the setting up of the first W3C Math Working Group, XML has garnered broad industry support, including that of
major browser vendors. The migration of HTML to an XML form has been important to the W3C, and has resulted in
the XHTML Recommendation which delivers a new modularized form of HTML. MathML can be viewed as another

module which fits very well with the new XHTML. Indeed in Sectiénl there is a new DTD for mathematics which

is the result of collaboration with the W3C HTML Working Group.

Furthermore, other applications of XML for all kinds of document publishing and processing promise to become in-
creasingly important. Consequently, both on theoretical and pragmatic grounds, it has made a great deal of sense
specify MathML as an XML application.

16

1.3.2.3 Browser Extension Mechanisms

By now, as opposed to the situation when tethML 1.0 Recommendatiowas adopted, the details of a general
model for rendering and processing XML extensions to HTML are largely clear. Formatting Properties, developec
by the Cascading Style Sheets and Formatting Properties Working Group for CSS and made available through tl
Document Object Model (DOM), will be applied to MathML elements to obtain stylistic control over the presentation
of MathML. Further development of these Formatting Properties falls within the charters of both the CSS&FP and the
XSL working groups. For an introduction to this topic see the discussion in Chagter detailed commentary on how

to render MathML with current systems consult th€C Math WG Home Page

Until style sheet mechanisms are capable of delivering native browser rendering of MathML, however, it is necessary
extend browser capabilities by using embedded elements to render MathML. It is already possible to instruct a brows
to use a particular embedded renderer to process embedded XML markup such as MathML, and to coordinate tl
resulting output with the surrounding Web page, however the results are not yet entirely as one wishes. Seé.Chapter

For specialized processing, such as connecting to a computer algebra system, the capability of calling out to oth
programs is likely to remain highly desirable. However, for such an interaction to be really satisfactory, it is necessar
to define a document object model rich enough to facilitate complicated interactions between browsers and embedd
elements. For this reason, the W3C Math working group has coordinated its efforts closely with the Document Objec
Model (DOM) working group. The results are described in Chagter

For processing by embedded elements, and for inter-communication between scientific software generally, a style she
based layout model is in some ways less than ideal. It can impose an additional implementation burden in a settir
where it may offer few advantages, and it imposes implementation requirements for coordination between browsers a
embedded renderers that will likely be unavailable in the immediate future.

For these reasons, the MathML specification defines an attribute-based layout model, which has proven very effecti
for high-quality rendering of complicated mathematical expressions in several independent implementations. MathMI
presentation attributes utilize W3C Formatting Properties where possible. Also, MathML elementg aesepityle

andid attributes to facilitate their use with CSS style sheets. However, at present, there are few settings where CS
machinery is currently available to MathML renderers.

The use of CSS style sheet mechanisms has been mentioned above. The mechanisms of XSL have also recently bec
available for the transformation of XML documents to effect their rendering. Indeed the alternative forms of this presen
recommendation, including the definitive public HTML version, have been prepared from an underlying XML source
using XSL transformation language tools. As further developments in this direction become available to MathML, it
is anticipated their use will become the dominant method of stylistic control of MathML presentation meant for use in
rendering environments which support those mechanisms.

17

http://www.w3.org/TR/1998/REC-MathML-19980407/
http://www.w3.org/Math

Chapter 2

MathML Fundamentals

2.1 MathML Overview

This chapter introduces the basic ideas of MathML. The first section describes the overall design of MathML. The
second section presents a number of motivating examples, to give the reader something concrete to refer to wh
reading subsequent chapters of the MathML specification. The final section describes basic features of the MathV
syntax and grammar, which apply to all MathML markup. In particular, Se@idshould be readefore Chapter3,
Chapter4 and Chapteb.

A fundamental challenge in defining a markup language for mathematics on the Web is reconciling the need to enco
both the presentation of a mathematical notation and the content of the mathematical idea or object which it represen

The relationship between a mathematical notation and a mathematical idea is subtle and deep. On a formal level, t
results of mathematical logic raise unsettling questions about the correspondence between systems of symbolic lo
and the phenomena they model. At a more intuitive level, anyone who uses mathematical notation knows the differen
that a good choice of notation can make; the symbolic structure of the notation suggests the logical structure. F
example, the Leibniz notation for derivatives ‘suggests’ the chain rule of calculus through the symbolic cancellation o

. .dfdx _ df
fractlons.&a = G-

Mathematicians and teachers intuitively understand this very well; part of their expertise lies in choosing notation tha
emphasizes key aspects of a problem while hiding or diminishing extraneous aspects. It is commonplace in mathemat
and science to write one thing when strictly technically something else is meant, because long experience shows tt
actually communicates the idea better at some higher level than rigorous detail.

In many other settings, though, mathematical notation is used to encode the full, precise meaning of a mathematic
object. Mathematical notation is capable of prodigious rigor, and when used carefully, it can be virtually free of ambi-
guity. Moreover, it is precisely this lack of ambiguity which makes it possible to describe mathematical objects so tha
they can be used by software applications such as computer algebra systems and voice renderers. In situations wt
such inter-application communication is of paramount importance, the nuances of visual presentation generally play
minimal role.

MathML allows authors to encode both the notation which represents a mathematical object and the mathematic
structure of the object itself. Moreover, authors can mix both kinds of encoding in order to specify both the presentatiol
and content of a mathematical idea. The remainder of this section gives a basic overview of how MathML can be use
in each of these ways.

211 Taxonomy of MathML Elements

All MathML elements fall into one of three categories: presentation elements, content elements and interface elemen
Each of these categories is described in detail in Ch&p&hapterd and Chapter, respectively.

18

Presentation elements describe mathematical notation’s visually oriented two-dimensional structure. Typical exampl
are themrow element, which is usually employed to indicate a horizontal row of pieces of expressions, arghe
element, which is used to mark up a base expression and a superscript to it. As a general rule, each presentation elen
corresponds to a single kind of notational ‘schema’ such as a row, a superscript, a subscript, an underscript and so
Any formula is made by putting together parts which ultimately can be analyzed down to the simplest items such a
digits, letters, or other symbol characters.

Although the previous paragraph was concerned with the display aspect of mathematical notation, and hence wi
presentation markup, the same observation about decomposition applies equally well to abstract mathematical objec
and hence to content markup. For example, in the context of content markup a superscript would typically be denoted
an exponentiation operation that would require two operands: a ‘base’ and an ‘exponent’. This is no coincidence, sinc
as a general rule, mathematical notation’s layout closely follows the logical structure of the underlying mathematica
objects.

The recursive nature of mathematical objects and notation is strongly reflected in MathML markup. In use, most pre
sentation or content elements contain some number of other MathML elements corresponding to the constituent piec
out of which the original object is recursively built. The original schema is commonly callepathet schema, and

the constituent pieces are calleidid schemata. More generally, MathML expressions can be regarded as trees, where
each node corresponds to a MathML element, the branches under a ‘parent’ node correspond to its ‘children’, and tl
leaves in the tree correspond to atomic notation or content units such as numbers, characters, etc.

Most leaf nodes in a MathML expression tree are eitl@onically empty elements with no bodies, otoken elements.
Canonically empty elements represent symbols directly in MathML, for example, the content etemest> does

this. MathML token elements are the only MathML elements permitted to contain MathML character data. MathML
character data consists of Unicode characters with the infrequent addition of special character constructions done w
themglyph element. A third kind of leaf node permitted in MathML is thenotation element, which is used to hold

data which is not in MathML format.

The most important presentation token elementsiaren andmo for representing identifiers, numbers and operators
respectively. Typically a renderer will employ slightly different typesetting styles for each of these kinds of character
data: numbers are usually in upright font, identifiers in italics, and operators have extra space around them. In conte
markup, there are only three tokenrs,, cn and csymbol, for identifiers, numbers and new symbols introduced in
the document itself, respectively. In content markup, separate elements are provided for commonly used functions a
operators. Thepply elementis provided for user-defined extensions to the base set.

In terms of markup, most MathML elements are denoted bt tag and arend tag, which enclose the markup for

their contents. In the case of tokens, the content is character data, and in most other cases, the content is the markug
child elements. Elements in a third category, called canonically empty elements, do not require any contents, and &
denoted by a single tag of the formaame/>. An example of this kind of markup isplus/> in content markup.

Let us take the very simple example af€ b)?, and we can now see how the principles discussed above play out in
practice. One form of presentation markup for this example is:

<mrow>
<msup>
<mfenced>
<mrow>
<mi>a</mi>
<mo>+</mo>
<mi>b</mi>
</mrow>
</mfenced>

19

<mn>2</mn>
</msup>
</mrow>

This example demonstrates a number of presentation elements. The first element, one that is used a greatwdeal is
This element is used to denote a row of horizontally aligned material. The material contained betweerothe
and</mrow> tags is considered to be an argument tonthew element. Thus the whole expression here is contained

in anmrow element. As previously noted, almost all mathematical expressions decompose into subexpressions. The
subexpressions can, in turn, also be contained imram element. For example, a + b is also contained imas.

Themfenced element is used to provide fences (braces, brackets, and parentheses) around formula material. It defau
to using parentheses.

Note the use of thai element for displaying the variables a and b andiifielement for marking the + operator.

Themsup element is for expressions involving superscripts and takes two arguments, in order, the base expression (he
(atb)) and the exponent expression (here, 2).

The content markup for the same example is:

<mrow>
<apply>
<power/>
<apply>
<plus/>
<ci>a</ci>
<ci>b</ci>
</apply>
<cn>2</cn>
</apply>
</mrow>
Here, theapply content element means apply an operation to an expression. In this exampleyétreclement (for
exponentiation), which requires no body, and the sinpilars element (for addition) are bo#ipplied. Observe that both
operators take two arguments, the order being particularly significant in the case of the power operator. But the ord
of the children is crucial in the use of theply since the first child, the operator, takes as argument list the remaining
ones.

Note the use of thei element to mark up the variables a and b, andcthelement to mark up the number 2.

2.1.2 Presentation Markup

MathML presentation markup consists of about 30 elements which accept over 50 attributes. Most of the elemen
correspond tdayout schemata, which contain other presentation elements. Each layout schema corresponds to a two-
dimensional notational device, such as a superscript or subscript, fraction or table. In addition, there are the presentat
token elementsii, mo andmn introduced above, as well as several other less commonly used token elements. The
remaining few presentation elements are empty elements, and are used mostly in connection with alignment.

The layout schemata fall into several classes. One group of elements is concerned with scripts, and contains e
ments such assub, munder, andmnultiscripts. Another group focuses on more general layout and includes,
mstyle, andmfrac. A third group deals with tables. The.ction elementis in a category by itself, and allows coding

of various kinds of actions on notation, such as occur in an expression which toggles between two pieces of notation.

An important feature of many layout schemata is that the order of child schemata is significant. For example, the firs
child of anmfrac element is the numerator and the second child is the denominator. Since the order of child schemata |

20

not enforced at the XML level by the MathML DTD, the information added by ordering is only available to a MathML
processor, as opposed to a generic XML processor. When we want to emphasize that a MathML elementtsuach as
requires children in a specific order, we will refer to themuasiments, and think of thenfrac element as a notational
‘constructor’.

2.1.3 Content Markup

Content markup consists of about 120 elements accepting roughly a dozen attributes. The majority of these elemel
are empty elements corresponding to a wide variety of operators, relations and named functions. Examples of this s
includepartialdiff, leq andtan. Others such asatrix andset are used to encode various mathematical data
types, and a third, important category of content elements suehas are used to apply operations to expressions
and also to make new mathematical objects from others.

The apply element is perhaps the single most important content element. It is used to apply a function or operatior
to a collection of arguments. The positions of the child schemata are again significant, with the first child denoting th
function to be applied, and the remaining children denoting the arguments of the function in order. Notedppl the
construct always uses prefix notation, like the programming language LISP. In particular, even binary operations suc
as subtraction are marked up by applying a prefix subtraction operator to two arguments. For exaipleuld be
marked up as

<mrow>
<apply>

<minus/>

<ci>a</ci>

<ci>b</ci>
</apply>
</mrow>
A number of functions and operations require one or more quantifiers to be well-defined. For example, in addition tc
an integrand, a definite integral must specify the limits of integration and the bound variable. For this reason, there al
severalqualifier schemata such asrar andlowlimit. They are used with operators suchiasf andint.

The declare construct is especially important for content markup that might be evaluated by a computer algebra
system. Theleclare element provides a basic assignment mechanism, where a variable can be declared to be of
certain type, with a certain value.

In both the presentation and content markup examples, mathematical expressions are recursively decomposed i
nested, simpler MathML elements specifying each stage of the decomposition. The examples in the following sectior
illustrate this with more complex expressions.

214 Mixing Presentation and Content

Different kinds of markup will be found most appropriate for different kinds of tasks. Documents written before the
World Wide Web became important were most often intended only for visual communication of information, so that
legacy data is probably best translated into pure presentation markup, since semantic information about what the autt
meant can only be guessed at heuristically. By contrast, some mathematical applications and pedagogically-orient
authoring tools will likely choose to be entirely content-based. The majority of applications fall somewhere in betweer
these extremes. For these applications, the most appropriate markup is a mixture of both presentation and cont:
markup.

The rules for mixing presentation and content markup derive from the general principle that mixed content shoul
only be allowed in places where it makes sense. For content markup embedded in presentation markup this basice

21

means that any content fragments should be semantically meaningful, and should not require additional argumer
or quantifiers to be fully specified. For presentation markup embedded in content markup, this usually means th
presentation markup must be contained in a content token element, so that it will be treated as an indivisible notation
unit used as a variable or function name.

Another option is to use #emantics element. Thaemantics element is used to bind MathML expressions to various
kinds of annotations. One common use for temantics element is to bind a piece of content markup to some
presentation markup as a semantic annotation. In this way, an author can specify a non-standard notation to be u:
when displaying a particular content expression. Another use afdhentics element is to bind some other kind of
semantic specification, such as an OpenMath expression, to a MathML expression. In this weyathd cs element

can be used to extend the scope of MathML content markup.

2.2 MathML in a Document

The discussion above has actually been of fragmentary formulas outside the context of any document. To be mo
specific let us look at what corresponds to a programming language’s "Hello World!" example. We shall provide more
complete code for an XHTML 1.0 document containing the square of a sum of two variables mentioned above. It woul
be

<html xmlns="http://wuw.w3.org/1999/xhtml" lang="en" xml:lang="en">

<head>
<title>MathML’s Hello Square/title>
</head>

<body>
<p> This is a perfect square:</p>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>
<msup>
<mfenced>
<mrow>
<mi>a</mi>
<mo>+</mo>
<mi>b</mi>
</mrow>
</mfenced>
<mn>2</mn>
</msup>
</mrow>
</math>

</body>
</html>

Here we have the normal structure of an XHTML document. It begins with the stashtag > embellished with an
XML namespace declaration and language assertiohsad element contains a title as is customary. Therxtheiy>

22

beginning also has a namespace declaration of an abbreviative prefixulétidye used for the standard MathML
namespace. Next comes a simple paragraph. Finally we gettheelement which also has a namespace association
declared. Inside thaath element is MathML markup as we are beginning to be used to it. The reasons why one
might have to do a more complex namespace declaration for MathML are explained in Chapégrhave to do with
present-day limitations in some XML handling, that may be expected to go away.

For the next level of technical detail concerning such matter®asTYPE statements and the like, see the discussion
in Chapter7.

2.3 Some MathML Examples

We continue below to display examples in the form of fragments of MathML markup such as would appeatdnside
elements in real documents. For the sake of clearer exposition of principles, the examples in Chapters 3, 4, 5 anc
follow this form of giving examples as MathML fragments.

231 Presentation Examples
Notation:x? + 4x + 4 = 0.

Markup:

<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
<mo>+</mo>
<mrow>
<mn>4</mn>
<mo>⁢</mo>
<mi>x</mi>
</mrow>
<mo>+</mo>
<mn>4</mn>
</mrow>
<mo>=</mo>
<mn>0</mn>
</mrow>

Note the use of nestetrow elements to denote terms, for example, the left-hand side of the equation functioning as an
operand of ‘=". Marking terms greatly facilitates spacing for visual rendering, voice rendering, and line breaking. The
InvisibleTimes MathML character entity is used here to indicate to a renderer that there are special spacing rule:
between the 4 and the x, and that the 4 and the x should not be broken onto separate lines. In fact, this use of an en
which was introduced in MathML 1.0 is no longer the way that is preferred. Ultimately all ordinary character data is
given by Unicode values. However, although a charactegIarvisibleTimes; iS expected in Unicode 3.2, and there

is a suggested code point for under consideration in a Unicode amendment, there is no Unicode 3.0 character to be u
at present. We could use the expected numerical character reference ࠎ but for clarity we will continue to us
entity references in these examples. The situation is explicitly discussed in Sg¢&tard in Chapte6.

23

Notation:x = ~b=vb*—4ac.

Markup:

<mrow>
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mo>-</mo>
<mi>b</mi>
</mrow>
<mo>±</mo>
<msqrt>
<mrow>
<msup>
<mi>b</mi>
<mn>2</mn>
</msup>
<mo>-</mo>
<mrow>
<mn>4</mn>
<mo>⁢</mo>
<mi>a</mi>
<mo>⁢</mo>
<mi>c</mi>
</mrow>
</mrow>
</msqrt>
</mrow>
<mrow>
<mn>2</mn>
<mo>⁢</mo>
<mi>a</mi>
</mrow>
</mfrac>
</mrow>

Themfrac andmsqrt elements are used for generating fractions and square roots, respectively.

Notice that the ‘plus or minus’ sign is given by a special entity n&®ieusMinus ;, though in this case there already

is a Unicode character �B1;. MathML provides a very comprehensive list of character names for mathematice
symbols. In addition to the mathematical symbols needed for screen and print rendering, MathML provides symbols t
facilitate audio rendering. For audio rendering, it is important to be able to automatically determine whether

<mrow>
<mi>z</mi>
<mfenced>
<mrow>
<mi>x</mi>

24

<mo>+</mo>
<mi>y</mi>
</mrow>
</mfenced>
</mrow>

should be read az times the quantit plusy’ or ‘z of x plusy'. The character⁢ (U+2062) and
⁡ (U+2061) provide a way for authors to directly encode the distinction for audio renderers. For
instance, in the first caganvisibleTimes; (U+2062) should be inserted after the line containingzidathML also
introduces entities likⅆ (U+2146) representing a ‘differential d’, which renders with slightly different spacing in
print and can be rendered as ‘d’ or ‘with respect to’ in speech. Unless content tags, or some other mechanism, are us
to eliminate the ambiguity, authors should always use these characters here referred to as entities, in order to make tt
documents more accessible.

Notation:A = [Xy }
zZ W

Markup:

<mrow>
<mi>A</mi>
<mo>=</mo>
<mfenced open="[" close="]">
<mtable>
<mtr>
<mtd><mi>x</mi></mtd>
<mtd><mi>y</mi></mtd>
</mtr>
<mtr>
<mtd><mi>z</mi></mtd>
<mtd><mi>w</mi></mtd>
</mtr>
</mtable>
</mfenced>
</mrow>

Themtable element denotes that a MathML table is being created.mklespecifies a row of the table and thed
element holds the data for an element of a row. Most elements have a number of attributes that control the details
their screen and print rendering. For example, there are several attributes fdrthed element that controls what
delimiters should be used at the beginning and the end of the grouped expression above. The attributes for opera
elements given usingmo> are set to default values determined by a dictionary. For the suggested MathML operator
dictionary, see Appendik.

2.3.2 Content Examples
Notation:x? + 4x + 4 = 0.

Markup:

<mrow>

<apply>
<eq/>

25

<apply>
<plus/>
<apply>
<power/>
<ci>x</ci>
<cn>2</cn>
</apply>
<apply>
<times/>
<cn>4</cn>
<ci>x</ci>
</apply>
<cn>4</cn>
</apply>
<cn>0</cn>
</apply>
</mrow>
Note that theapply element is used for relations, operators and functions.

Notation:x = *bizi‘/f*i“ac.

Markup:

<mrow>
<apply>
<eq/>
<ci>x</ci>
<apply>
<divide/>
<apply>
<mo>&PlusMinus ;</mo>
<apply>
<minus/>
<ci>b</ci>
</apply>
<apply>
<root/>
<apply>
<minus/>
<apply>
<power/>
<ci>b</ci>
<cn>2</cn>
</apply>
<apply>
<times/>
<cn>4</cn>
<ci>a</ci>
<ci>c</ci>
</apply>

26

</apply>
<cn>2</cn>
</apply>
</apply>
<apply>
<times/>
<cn>2</cn>
<ci>a</ci>
</apply>
</apply>
</apply>
</mrow>
MathML content markup does not directly contain an element for the ‘plus or minus’ operation. Therefore, we use the
mo element to declare that we want the presentation markup for this operator to act as a content operator. This is a simj
example of how presentation and content markup can be mixed to extend content markup.

Notation:A = < Xy >
Z W

Markup:

<mrow>
<apply>
<eq/>
<ci>A</ci>
<matrix>
<matrixrow>
<ci>x</ci>
<ci>y</ci>
</matrixrow>
<matrixrow>
<ci>z</ci>
<cid>w</ci>
</matrixrow>
</matrix>
</apply>
</mrow>
Here we have used theatrix element, and theatrixrow element to wrap the entries in a row of the matrix. Note
that, by default, the rendering of the content elemerttrix includes enclosing parentheses, so we need not directly
encode them. This is quite different from the presentation elemeintl e which may or may not refer to a matrix, and
hence requires explicit encoding of parentheses if they are desired.

2.3.3 Mixed Markup Examples
rd

Notation:/—x.
/ X

Markup:

27

<mrow>
<semantics>
<mrow>
<msubsup>
<mo>&int ;</mo>
<mn>1</mn>
<mi>t</mi>
</msubsup>
<mfrac>
<mrow>
<mo>&dd ; </mo>
<mi>x</mi>
</mrow>
<mi>x</mi>
</mfrac>
</mrow>
<annotation-xml encoding="MathML-Content">
<apply>
<int/>
<bvar><ci>x</ci></bvar>
<lowlimit><cn>1</cn></lowlimit>
<uplimit><ci>t</ci></uplimit>
<apply>
<divide/>
<cn>1</cn>
<ci>x</ci>
</apply>
</apply>
</annotation-xml>
</semantics>
</mrow>

In this example, we use theemantics element to provide a MathML content expression to serve as a ‘semantic
annotation’ for a presentation expression. In the display markup, we have ussabs@ap element to attach a subscript
and a superscript to an expression, in this case the integral sign. We also usedé&intitieandⅆ to specify the
integral and differential symbols.

The semantics element has as its first child the expression being annotated, and the subsequent children are tt
annotations. There is no restriction on the kind of annotation that can be attached usiegdheics element. For
example, one might give &X encoding, or computer algebra input in an annotation. The type of annotation is specified
by theencoding attribute and thennotation andannotation-xml elements.

Another common use of theemantics element arises when one wants to use a content coding, and provide a sugges-
tion for its presentation. In such a case, applied to the formula above we would have the markup:

<semantics>
<apply>
<int/>
<bvar><ci>x</ci></bvar>
<lowlimit><cn>1</cn></lowlimit>
<uplimit><ci>t</ci></uplimit>

28

<apply>
<divide/>
<cn>1</cn>
<ci>x</ci>
</apply>
</apply>
<annotation-xml encoding="MathML-Presentation">
<mrow>
<msubsup>
<mo>&int ; </mo>
<mn>1</mn>
<mi>t</mi>
</msubsup>
<mfrac>
<mrow>
<mo>&dd ; </mo>
<mi>x</mi>
</mrow>
<mi>x</mi>
</mfrac>
</mrow>
</annotation-xml>
</semantics>

This kind of annotation is useful when something other than the default rendering of the content encoding is desired. F
example, by default, some renderers might layout the integrand something liRedX1/Specifying that the integrand
should by preference render as/x instead can be accomplished with the use of a MathML Presentation annotation
as shown. Be aware, however, that renderers are not required to take into account information contained in annotatio
and what use is made of them, if any, will depend on the renderer.

2.4 MathML Syntax and Grammar
24.1 MathML Syntax and Grammar

MathML is an application of {VIL], or Extensible Markup Language, and as such its syntax is governed by the rules of

XML syntax, and its grammar is in part specified by a DTD, or Document Type Definition. In other words, the details

of using tags, attributes, entity references and so on are defined in the XML language specification, and the details abc
MathML element and attribute names, which elements can be nested inside each other, and so on are specified in

MathML DTD. This is in AppendixA.

The W3C in seeking to increase the flexibility of the use of XML for the Web, and to encourage modularization of appli-
cations built with XML, has found that the basic form of a DTD is not sufficiently flexible. Therefore, a W3C Working
Group was created to develop a specification for XML Schemias | }, which are specification documents

that will eventually supersede DTDs. MathML 2.0 is consciously designed so that mathematics may take advantage
the latest in the evolving Web technology. Thus, there is to be a Schema for MathML. For further information on a
MathML Schema see Appendix and theMathML Home Page

However, MathML also specifies some syntax and grammar rules in addition to the general rules it inherits as an XMl
application. These rules allow MathML to encode a great deal more information than would ordinarily be possible
with pure XML, without introducing many more elements, and using a substantially more complex DTD or schema. A

29

http://www.w3.org/Math

grammar for content markup expressions is given in AppeBdi®f course, one drawback to using MathML specific
rules is that they are invisible to generic XML processors and validators.

There are basically two kinds of additional MathML grammar and syntax rules. One kind involves placing additional
criteria on attribute values. For example, it is not possible in pure XML to require that an attribute value be a positive
integer. The second kind of rule specifies more detailed restrictions on the child elements (for example on ordering
than are given in the DTD or even a schema. For example, it is not possible in XML to specify that the first child be
interpreted one way, and the second in another.

The following sections discuss features both of XML syntax and grammar in general, and of MathML in particular.
Throughout the remainder of the MathML specification, we will usually take care to distinguish between usage requiret
by XML syntax and the MathML DTD (and Schema) and usage required by MathML specific rules. However, we will

frequently allude to ‘MathML errors’ without identifying which part of the specification is being violated.

2.4.2 An XML Syntax Primer

Since MathML is an application of XML, the MathML Specification uses the terminology of XML to describe it.
Briefly, XML data is composed of Unicode characters (which include ordinary ASCII characters), ‘entity references’
(informally called ‘entities’) such a< which usually represent ‘extended characters’, and ‘elements’ suchias
fontstyle="normal"> x </mi>.

An element quite often encloses other XML data called its ‘content’, or ‘body’, between a ‘start tag’ (sometimes called
a ‘begin tag") and an ‘end tag’, much as in HTML. There are also ‘empty elements’ sugbilas/>, whose start

tag ends with/> to indicate that the element has no content or end tag. The start tag can contain hamed paramete
called ‘attributes’, such agontstyle="normal" in the example above. For further details on XML, consult the XML
specification ML].

As XML is case-sensitive, MathML element and attribute names are case-sensitive. For reasons of legibility, th
MathML specification defines them almost all in lowercase.

In formal discussions of XML markup, a distinction is maintained between an element, suclhassaglement, and

the tagxmrow> and</mrow> marking it. What is between thenrow> start tag and the/mrow> end tag is the content,

or body, of themrow element. An ‘empty element’ such asne is defined to have no body, and so has a single tag of
the form<none/>. Usually, the distinction between elements and tags will not be so finely drawn in this specification.
For instance, we will sometimes refer to therow> and<none/> elements, really meaning the elements whose tags
these are, in order that references to elements are visually distinguishable from references to attributes. However, t
words ‘element’ and ‘tag’ themselves will be used strictly in accordance with XML terminology.

2.4.3 Children versus Arguments

Many MathML elements require a specific number of child elements or attach additional meanings to children in certail
positions. As noted above, these kinds of requirements are MathML specific, and cannot be given entirely using XMl
syntax and grammar. When the children of a given MathML element are subject to these kinds of additional conditions
we will often refer to them aarguments instead of merely as children, in order to emphasize their MathML specific
usage. Note that, especially in Chapsethe term ‘argument’ is usually used in this technical sense, unless otherwise
noted, and therefore refers to a child element.

In the detailed discussions of element syntax given with each element throughout the MathML specification, the numbe
of required arguments and their order is implicitly indicated by giving hames for the arguments at various positions
This information is also given for presentation elements in the table of argument requirements in $éci@md for
content elements in Appendik

A few elements have other requirements on the number or type of arguments. These additional requirements are ¢
scribed together with the individual elements.

30

2.4.4 MathML Attribute Values

According to the XML language specification, attributes given to elements must have one of the forms

attribute—-name = "value"
or
attribute—-name = ’value’

where whitespace around the '=" is optional.

Attribute names are generally shown imenospaced font within descriptive text in this specification, just as the
monospaced font is used for examples.

An attribute’s value, which in general in MathML can be a string of arbitrary characters, must be surrounded by a pai
of either double quotes') or single quotes?(). The kind of quotes not used to surround the value may be included
within it.

MathML uses a more complicated syntax for attribute values than the generic XML syntax required by the MathML
DTD. These additional rules are intended for use by MathML applications, and it is a MathML error to violate them,
though they cannot be enforced by XML processing. The MathML syntax of each attribute value is specified in the
table of attributes provided with the description of each element, using a notation described below. When MathML
applications process attribute values, whitespace is ignored except to separate letter and digit sequences into individ
words or numbers. Attribute values may contain any MathML characters listed in S6ciparmitted by the syntax
restrictions for an attribute. Character data can be included directly in attribute values, or by using entity references :
described in Sectiof.2.1.

In particular, the characters ’, & and< can be included in MathML attribute values (when permitted by the attribute
value syntax) using the entity referenéemot ;, ', & and<, respectively.

The MathML DTD provided in Appendi® declares most attribute value types@4TA strings. This permits increased
interoperability with existing SGML and XML software and allows extension to the lists of predefined values. Similar
sorts of considerations apply with XML schemas.

2.4.4.1 Syntax notations used in the MathML specification

To describe the MathML-specific syntax of permissible attribute values, the following conventions and notations are
used for most attributes in the present document.

31

Notation What it matches

number decimal integer or rational number (a string of digits with one decimal point), optionally starting
with -’

unsigned-number decimal integer or real number, no sign

integer decimal integer, optionally starting with *-’

positive-integer decimal integer, unsigned, not O

string arbitrary string (always the entire attribute value)

character single non-whitespace character, or MathML entity reference; whitespace separation is optiong

#rrggbb RGB color value; the three pairs of hexadecimal digits in the example #5599dd define propor-
tions of red, green and blue on a scale of x00 through xFF, which gives a strong sky blue.

h-unit unit of horizontal length (allowable units are listed below)

V-unit unit of vertical length (allowable units are listed below)

css-fontfamily explained in the CSS subsection below

css-color-name explained in the CSS subsection below

other italicized words explained in the text for each attribute

form + one or more instances of 'form’

form * zero or more instances of 'form’

fif2...fn one instance of each form, in sequence, perhaps separated by whitespace

fr|f2|...]fn any one of the specified forms

[form] an optional instance of 'form’

(form) same as form

word in plain text that word, literally present in the attribute value (unless it is obviously part of an explanatory
phrase)

guoted symbol that symbol, literally present in attribute value (e.g. "+" or '+")

The order of precedence of the syntax notation operators is, from highest to lowest precedence:

. form + or form *
° f1f2 ... fn (sequence of forms)
. f1|f2]...|fn (alternative forms)

A string can contain arbitrary characters which are specifiable within XJUATA attribute values. See Chaptefor a
dicussion and complete listing of MathML characters. No syntax rule in MathML includesng as only part of an
attribute value, only as the entire value.

Adjacent keywords and numbers must be separated by whitespace in the actual attribute values, except for unit ider
fiers (denoted byi-unit or v-unit syntax symbols) following numbers. Whitespace is not otherwise required, but is
permitted between any of the tokens listed above, except (for compatibility with CSS) immediately before unit identi-
fiers, between the ’-’ signs and digits of negative numbers, or betweekrggbb andrgb

Numerical attribute values for dimensions that should depend upon the current font can be given in font-related unit:
or in named absolute units (described in a separate subsection below). Horizontal dimensions are conventionally giv
in em’s, and vertical dimensions iax’s, by immediately following a number by one of the unit identifiefsor ex. For
example, the horizontal spacing around an operator such as ‘+’ is conventionally gans) though other units can be
used. Using font-related units is usually preferable to using absolute units, since it allows renderings to grow or shrin
in proportion to the current font size.

For most numerical attributes, only those in a subset of the expressible values are sensible; values outside this suk
are not errors, unless otherwise specified, but rather are rounded up or down (at the discretion of the renderer) to t
closest value within the allowed subset. The set of allowed values may depend on the renderer, and is not specified
MathML.

If a numerical value within an attribute value syntax description is declared to allow a minus sign ('-Buebgr or
integer, it is not a syntax error when one is provided in cases where a negative value is not sensible. Instead, the vall

32

should be handled by the processing application as described in the preceding paragraph. An explicit plus sign ('+') |
not allowed as part of a numerical value except when it is specifically listed in the syntax (as a quoted '+’ or "+"), and
its presence can change the meaning of the attribute value (as documented with each attribute which permits it).

The symbols-unit, v-unit, css-fontfamily, andcss-color-name are explained in the following subsections.

2.4.4.2 Attributes with units

Some attributes accept horizontal or vertical lengths as numbers followed by a ‘unit identifier’ (often just called a ‘unit’).
The syntax symbols-unit andv-unit refer to a unit for horizontal or vertical length, respectively. The possible units
and the lengths they refer to are shown in the table below; they are the same for horizontal and vertical lengths, but tl
syntax symbols are distinguished in attribute syntaxes as a reminder of the direction each is used in.

The unit identifiers and meanings are taken from CSS. However, the syntax of numbers followed by unit identifiers ir
MathML is not identical to the syntax of length values with units in CSS style sheets, since humbers in CSS cannot en
with decimal points, and are allowed to start with '+’ signs.

The possible horizontal or vertical units in MathML are:

Unit identifier Unit description

em em (font-relative unit traditionally used for horizontal lengths)
ex ex (font-relative unit traditionally used for vertical lengths)

px pixels, or pixel size of the current display

in inches (1 inch = 2.54 centimeters)

cm centimeters

mm millimeters

pt points (1 point = 1/72 inch)

pc picas (1 pica = 12 points)

% percentage of default value

The typesetting unitsm andex are defined in Appendik, and discussed further under ‘Additional notes’ below.

% is a ‘relative unit’; when an attribute value is givenms(for any numerical value), the value being specified is the
default value for the property being controlled multipliedbdivided by 100. The default value (or the way in which

it is obtained, when it is not constant) is listed in the table of attributes for each element, and its meaning is described |
the subsequent documentation about that attribute. ffheded element has its own syntax fgrand does not allow

it as a unit identifier.)

For consistency with CSS, length units in MathML are rarely optional. When they are, the unit symbol is enclosec
in square brackets in the attribute syntax, following the number to which it appliesywger [h-unit]. The
meaning of specifying no unit is given in the documentation for each attribute; in general it is that the number given is ¢
multiplier for the default value of the attribute. (In such cases, specifying the numhevithout a unit is equivalent to
specifying the numbetnn times 100 followed by;,. For examplegmo maxsize="2"> (</mo> is equivalent taxmo
maxsize="200%"> (</mo>.)

As a special exception (also consistent with CSS), a numerical value equal to 0 need not be followed by a unit identifie
even if the syntax specified here requires one. In such cases, the unit identifier (or lack of one) would not matter, sin
0 times any unit is 0.

For most attributes, the typical unit which would be used to describe them in typesetting is chosen as the one used
that attribute’s default value in this specification; when a specific default value is not given, the typical unit is usually
mentioned in the syntax table or in the documentation for that attribute. The most common uait®ase. However,

any unit can be used, unless otherwise specified for a specific attribute.

33

Additional notes about units

Note that some attributes, eframespacing on a<mtable>, can contain more than one numerical value, each fol-
lowed by its own unit.

It is conventional to use the font-relative uait mainly for vertical lengths, anem mainly for horizontal lengths, but

this is not required. These units are relative to the font and font size which would be used for rendering the element i
whose attribute value they are specified, which means they should be intergfitetesttributes such asontfamily
andfontsize are processed, if those occur on the same element, since changing the current font or font size can chan
the length of one of these units.

The definition of the length of each unit, but not the MathML syntax for length values, is as specified in CSS, excep
that if a font provides specific values fem andex which differ from the values defined by CSS (the font size and
‘X’-height respectively), those values should be used.

2.4.4.3 CSS-compatible attributes

Several MathML attributes, listed below, correspond closely to text rendering properties defined originatiysii [

In MathML 1.01, the names and values of these attributes were aligned with the CSS Recommendation where possib
This was done so that renderers in CSS environments could query the environment for the corresponding property wh
determining the default values for the attributes.

Allowing style properties to be set both via MathML attributes and CSS stylesheets has drawbacks. At a minimum
its confusing, and at worst, it leads to the meaning of equations being inadvertently changed by document-wide CS
changes. For these reasons, these attributes havedeeescatedin their place, MathML 2.0 introduces four new
mathematical style attributes. These attributes use logical values to better capture the abstract categories of letter-I
symbols used in math, and afford a much cleaner separation between MathML and CSS. See€3Se2tmnmore
details.

For reference, a table showing the correspondence of the deprecated MathML 1.01 style attribute with the CSS cou
terparts is given below:

MathML attribute CSS property syntax symbol MathML elements refer to

fontsize font-size - presentation tokenstyle Section3.2.2
fontweight font-weight - presentation tokemsstyle Section3.2.2
fontstyle font-style - presentation tokemsstyle Section3.2.2
fontfamily font-family css-fontfamily presentation tokemsstyle Section3.2.2
color color css-color-name presentation tokens;yle Section3.3.4
background background css-color-name mstyle Section3.3.4

See also Sectioh.4.5below for a discussion of thelass, style andid attributes for use with style sheets.

Order of processing attributes versus style sheets

CSS or analogous style sheets can specify changes to rendering properties of selected MathML elements. Since ren
ing properties can also changed by attributes on an element, or changed automatically by the renderer, it is necessar
specify the order in which changes from various sources occur. An example of automatic adjustment is what happel
for fontsize, as explained in the discussion seriptlevel in Section3.3.4 In the case of ‘absolute’ changes, i.e.,
setting a new property value independent of the old value (as opposed to ‘relative’ changes, such as increments or m
tiplications by a factor), the absolute change performed last will be the only absolute change which is effective, so th
sources of changes which should have the highest priority must be processed last.

In the case of CSS, the order of processing of changes from various sources which affect one MathML element
rendering properties should be as follows:

34

(first changes; lowest priority)

° Automatic changes to properties or attributes based on the type of the parent element, and this element
position in the parent, as for the changesséatsize in relation toscriptlevel mentioned above; such
changes will usually be implemented by the parent element itself before it passes a set of rendering propertie
to this element

From a style sheet from the reader: styles whichmatedeclared ‘important’

Explicit attribute settings on this MathML element

From a style sheet from the author: styles whichmrnedeclared ‘important’

From a style sheet from the reader: styles whighdeclared ‘important’

From a style sheet from the author: styles whiedrdeclared ‘important’

(last changes; highest priority)

Note that the order of the changes derived from CSS style sheets is specified by CSS itself. The following rationale
related only to the issue of where in this pre-existing order the changes caused by explicit MathML attribute setting
should be inserted.

Rationale: MathML rendering attributes are analogous to HTML rendering attributes sagh@s which the CSS
section on cascading order specifies should be processed with the same priority. Furthermore, this choice of priori
permits readers, by declaring certain CSS styles as ‘important’, to decide which of their style preferences should overric
explicit attribute settings in MathML. Since MathML expressions, whether composed of ‘presentation’ or ‘content’
elements, are primarily intended to convey meaning, with their ‘graphic design’ (if any) intended mainly to aid in that
purpose but not to be essential in it, it is likely that readers will often want their own style preferences to have priority;
the main exception will be when a rendering attribute is intended to alter the meaning conveyed by an expression, whic
is generally discouraged in the presentation attributes of MathML.

2444 Deftault values of attributes

Default values for MathML attributes are in general given along with the detailed descriptions of specific elements ir
the text. Default values shown in plain text in the tables of attributes for an element are literal (unless they are obviousl
explanatory phrases), but when italicized are descriptions of how default values can be computed.

Default values described asherited are taken from the rendering environment, as described wdegil e, or in some

cases (described individually) from the values of other attributes of surrounding elements, or from certain parts of thos
values. The value used will always be one which could have been specified explicitly, had it been known; it will never
depend on the content or attributes of the same element, only on its environment. (What it means when used mze
however, depend on those attributes or the content.)

Default values described astomatic should be computed by a MathML renderer in a way which will produce a high-
quality rendering; how to do this is not usually specified by the MathML specification. The value computed will always
be one which could have been specified explicitly, had it been known, but it will usually depend on the element conter
and possibly on the rendering environment.

Other italicized descriptions of default values which appear in the tables of attributes are explained for each attribut
individually.

The single or double quotes which are required around attribute values in an XML start tag are not shown in the table
of attribute value syntax for each element, but are shown around example attribute values in the text.

Note that, in general, there is no value which can be given explicitly for a MathML attribute which will simulate the
effect of not specifying the attribute at all for attributes which ateerited or automatic. Giving the words ‘inherited’

or ‘automatic’ explicitly will not work, and is not generally allowed. Furthermore, even for presentation attributes for
which a specific default value is documented herenifieyle element (Sectiod.3.4 can be used to change this for

35

the elements it contains. Therefore, the MathML DTD declares most presentation attribute default vales 28D,
which prevents XML preprocessors from adding them with any specific default value. This point of view is carried
through to the MathML schema.

2.4.4.5 Attribute values in the MathML DTD

Inan XML DTD, allowed attribute values can be declared as general strings, or they can be constrained in various way
either by enumerating the possible values, or by declaring them to be certain special data types. The choice of an XM
attribute type affects the extent to which validity checks can be performed using a DTD.

The MathML DTD specifies formal XML attribute types for all MathML attributes, including enumerations of legiti-
mate values in some cases. In general, however, the MathML DTD is relatively permissive, frequently declaring attribut
values as strings; this is done to provide for interoperability with SGML parsers while allowing multiple attributes on
one MathML element to accept the same values (sudras andfalse), and also to allow extension to the lists of
predefined values.

At the same time, even though an attribute value may be declared as a string in the DTD, only certain values ai
legitimate in MathML, as described above and in the rest of this specification. For example, many attributes expec
numerical values. In the sections which follow, the allowed attribute values are described for each element. To determir
when these constraints are actually enforced in the MathML DTD, consult Appéndieowever, lack of enforcement

of a requirement in the DTD doemt imply that the requirement is not part of the MathML language itself, or that it
will not be enforced by a particular MathML renderer. (See Secti@for a description of how MathML renderers
should respond to MathML errors.)

Furthermore, the MathML DTD is provided for convenience; although it is intended to be fully compatible with the
text of the specification, the text should be taken as definitive if there is a contradiction. (Any contradictions which may
exist between various chapters of the text should be resolved by favoring Chdpsty then ChapteB, Chapters,

then Sectior?.4, and then other parts of the text.) For the MathML schema the situation will be the same: the published
Recommendation text takes precedence. Though this is what is intended to happen, there is a practical difficulty. If tf
system processing the MathML uses a validating parser, whether it be based on a DTD or on a Schema, the process \
probably simply stop when it hits something held to be incorrect syntax, whether or not further MathML processing in
full harmony with the specification would have processed the piece correctly.

245 Attributes Shared by all MathML Elements

In order to facilitate use with style sheet mechanisms suck@si|] and [] all MathML elements acceptlass,

style, andid attributes in addition to the attributes described specifically for each element. MathML renderers not
supporting CSS may ignore these attributes. MathML specifies these attribute values as general strings, even if sty
sheet mechanisms have more restrictive syntaxes for them. That is, any value for them is valid in MathML.

In order to facilitate compatibility with linking mechanisms, all MathML elements acgephk : href attribute.

All MathML elements also accepts theef attribute for use in parallel markup Sectibr8. Theid is also used in this
context.

Every MathML element, because of a legacy from MathML 1.0, also acceptdefhecatedttribute other (Sec-

tion 7.2.3 which was conceived for passing non-standard attributes without violating the MathML DTD. MathML
renderers are only required to process this attribute if they respond to any attributes which are not standard in MathM
However, the use afther is strongly deprecated when there are already other ways within MathML of passing specific
information.

See also Sectiod.2.2for a list of MathML attributes which can be used on most presentation token elements.

36

2.4.6 Collapsing Whitespace in Input

MathML ignores whitespace occurring outside token elements. Non-whitespace characters are not allowed there. Whit
pace occurring within the content of token elements is ‘trimmed’ from the ends, i.e., all whitespace at the beginning an
end of the content is removed. Whitespace internal to content of MathML elements is ‘collapsed’ canonically, i.e., eac
sequence of 1 or more whitespace characters is replaced with one space character (sometimes called a blank charac

In MathML, as in XML, ‘whitespace’ means simple spaces, tabs, newlines, or carriage returns, i.e., characters witl
hexadecimal Unicode cod&%0020, U+0009, U+0004A, or U+000D, respectively.

For examplegmo> (</mo> is equivalent tamo> (</mo>, and

<mtext>
Theorem
1:

</mtext>

is equivalent tomtext>Theorem 1:</mtext>.

Authors wishing to encode whitespace characters at the start or end of the content of a token, or in sequences other tl
a single space, without having them ignored, mustgesp; or other ‘whitespace’ non-marking entities as described
in Section6.2.4 For example, compare

<mtext>
Theorem
1:
</mtext>

with

<mtext>
 Theorem 1:
</mtext>

When the first example is rendered, there is no whitespace before ‘Theorem’, one space between ‘Theorem’ and ‘1:’, al
no whitespace after ‘1:". In the second example, a single space is rendered before ‘Theorem’, two spaces are rende
before ‘1", and there is no whitespace after the ‘1:’.

Note that thexml : space attribute does not apply in this situation since XML processors pass whitespace in tokens to a
MathML processor; it is the MathML processing rules which specify that whitespace is trimmed and collapsed.

For whitespace occurring outside the content of the token eleménts, mo, ms, mtext, ci, cn andannotation, an
mspace element should be used, as opposed tataxt element containing only ‘whitespace’ entities.

37

Chapter 3

Presentation Markup

3.1 Introduction

This chapter specifies the ‘presentation’ elements of MathML, which can be used to describe the layout structure c
mathematical notation.

3.1.1 What Presentation Elements Represent

Presentation elements correspond to the ‘constructors’ of traditional mathematical notation - that is, to the basic kinc
of symbols and expression-building structures out of which any particular piece of traditional mathematical notation i
built. Because of the importance of traditional visual notation, the descriptions of the notational constructs the elemen
represent are usually given here in visual terms. However, the elements are medium-independent in the sense t
they have been designed to contain enough information for good spoken renderings as well. Some attributes of the
elements may make sense only for visual media, but most attributes can be treated in an analogous way in audio as v
(for example, by a correspondence between time duration and horizontal extent).

MathML presentation elements only suggest (i.e. do not require) specific ways of rendering in order to allow for
medium-dependent rendering and for individual preferences of style. This specification describes suggested visual re
dering rules in some detail, but a particular MathML renderer is free to use its own rules as long as its renderings al
intelligible.

The presentation elements are meant to express the syntactic structure of mathematical notation in much the same v
as titles, sections, and paragraphs capture the higher-level syntactic structure of a textual document. Because of this,
example, a single row of identifiers and operators, suckx asd / b, will often be represented not just by oaeow
element (which renders as a horizontal row of its arguments), but by multiple nestedlements corresponding to

the nested sub-expressions of which one mathematical expression is composed - in this case,

<mrow>
<mi> x </mi>
<mo> + </mo>
<mrow>
<mi> a </mi>
<mo> / </mo>
<mi> b </mi>
</mrow>
</mrow>

Similarly, superscripts are attached not just to the preceding character, but to the full expression constituting their bas
This structure allows for better-quality rendering of mathematics, especially when details of the rendering environmer

38

such as display widths are not known to the document author; it also greatly eases automatic interpretation of tf
mathematical structures being represented.

Certain MathML characters are used to name operators or identifiers that in traditional notation render the same as ott
symbols, such aⅆ, &ExponentialkE;, or ⅈ, or operators that usually render invisibly,
such akInvisibleTimes;, ⁡, Or ⁣. These are distinct notational symbols or
objects, as evidenced by their distinct spoken renderings and in some cases by their effects on linebreaking and spac
in visual rendering, and as such should be represented by the appropriate specific entity references. For example,
expression represented visually d$x)’ would usually be spoken in English a$ bf X' rather than just f x'; this is
expressible in MathML by the use of tedpplyFunction; operator after thef’, which (in this case) can be aurally
rendered as ‘of’.

The complete list of MathML entities is described in Chater

3.1.2 Terminology Used In This Chapter

It is strongly recommended that, before reading the present chapter, one read 3etbanMathML syntax and
grammar, which contains important information on MathML notations and conventions. In particular, in this chapter it
is assumed that the reader has an understanding of basic XML terminology described in 5écjamd the attribute

value notations and conventions described in Secidnt

The remainder of this section introduces MathML-specific terminology and conventions used in this chapter.

3.1.2.1 Types of presentation elements

The presentation elements are divided into two clasBden elements represent individual symbols, nhames, numbers,
labels, etc. In general, tokens can have only characters as content. The only exceptions are the vertical alignme
elementmalignmark, mglyph, and entity referenced.ayout schemata build expressions out of parts, and can have
only elements as content (except for whitespace, which they ignore). There are also a few empty elements used only
conjunction with certain layout schemata.

All individual ‘'symbols’ in a mathematical expression should be represented by MathML token elements. The primary
MathML token element types are identifiers (e.g. variables or function names), numbers, and operators (includin
fences, such as parentheses, and separators, such as commas). There are also token elements for representing t
whitespace that has more aesthetic than mathematical significance, and for representing ‘string literals’ for compatibilif
with computer algebra systems. Note that although a token element represents a single meaningful ‘symbol’ (nam
number, label, mathematical symbol, etc.), such symbols may be comprised of more than one character. For exam|
sin and24 are represented by the single tokeas>sin</mi> and<mn>24</mn> respectively.

In traditional mathematical notation, expressions are recursively constructed out of smaller expressions, and ultimate
out of single symbols, with the parts grouped and positioned using one of a small set of notational structures, which ce
be thought of as ‘expression constructors’. In MathML, expressions are constructed in the same way, with the layol
schemata playing the role of the expression constructors. The layout schemata specify the way in which sub-expressic
are builtinto larger expressions. The terminology derives from the fact that each layout schema corresponds to a differe
way of ‘laying out’ its sub-expressions to form a larger expression in traditional mathematical typesetting.

3.1.2.2 Terminology for other classes of elements and their relationships

The terminology used in this chapter for special classes of elements, and for relationships between elements, is
follows: The presentation elements are the MathML elements defined in this chapter. These elements are listed in
Section3.1.6 Thecontent elements are the MathML elements defined in Chaptehe content elements are listed in
Sectiord.4.

39

A MathML expression is a single instance of any of the presentation elements with the exception of the empty elements
none Ormprescripts, Or is a single instance of any of the content elements which are allowed as content of presentatior
elements (described in Sectiér?.4). A sub-expression of an expressiol is any MathML expression that is part of

the content o, whetherdirectly or indirectly, i.e. whether it is a ‘child’ ofE or not.

Since layout schemata attach special meaning to the number and/or positions of their children, a child of a layout scher
is also called aargument of that element. As a consequence of the above definitions, the content of a layout scheme
consists exactly of a sequence of zero or more elements that are its arguments.

3.1.3 Required Arguments

Many of the elements described herein require a specific number of arguments (always 1, 2, or 3). In the detailed d
scriptions of element syntax given below, the number of required arguments is implicitly indicated by giving names
for the arguments at various positions. A few elements have additional requirements on the number or type of argt
ments, which are described with the individual element. For example, some elements accept sequences of zero or m
arguments - that is, they are allowed to occur with no arguments at all.

Note that MathML elements encoding rendered spiaceount as arguments of the elements in which they appear. See
Section3.2.7for a discussion of the proper use of such space-like elements.

3.1.3.1 Inferred mrows

The elements listed in the following table as requiring 1* argumesgft, mstyle, merror, menclose, mpadded,
mphantom, mtd, andmath) actually accept any number of arguments. However, if the number of arguments is 0, or is
more than 1, they treat their contents as a singferred mrow formed from all their arguments. Although theth
element is not a presentation element, it is listed below for completeness.

For example,

<mtd>
</mtd>

is treated as if it were

<mtd>
<mrow>
</mrow>

</mtd>

and

<msqrt>
<mo> - </mo>
<mn> 1 </mn>
</msqrt>

is treated as if it were

<msqrt>

<mrow>
<mo> - </mo>
<mn> 1 </mn>

40

</mrow>
</msqrt>
This feature allows MathML data not to contain (and its authors to leave out) mamyelements that would otherwise
be necessary.

In the descriptions in this chapter of the above-listed elements’ rendering behaviors, their content can be assumed
consist of exactly one expression, which may be®sw element formed from their arguments in this manner. However,
their argument counts are shown in the following table as 1*, since they are most naturally understood as acting on
single expression.

3.1.3.2 Table of argument requirements

For convenience, here is a table of each element’'s argument count requirements, and the roles of individual argume
when these are distinguished. An argument count of 1* indicates an intereachs described above.

Element Required argument count Argument roles (when these differ by position)
mrow 0 or more

mfrac 2 numerator denominator
msqrt 1*

mroot 2 base index

mstyle 1*

merror 1*

mpadded 1*

mphantom 1*

mfenced 0 or more

menclose 1*

msub 2 base subscript

msup 2 base superscript
msubsup 3 base subscript superscript
munder 2 base underscript

mover 2 base overscript
munderover 3 base underscript overscript

mmultiscripts 1 or more base (subscript superscript)* [<mprescripts/> (presubscript presuperscript)*

mtable 0 or more rows 0 or morgtr ormlabeledtr elements
mlabeledtr 1 or more a label and 0 or moied elements

mtr 0 or more 0 or moratd elements

mtd 1*

maction 1 or more depend oactiontype attribute

math 1*

3.14 Elements with Special Behaviors

Certain MathML presentation elements exhibit special behaviors in certain contexts. Such special behaviors are di
cussed in the detailed element descriptions below. However, for convenience, some of the most important classes
special behavior are listed here.

Certain elements are considered space-like; these are defined in Se2tibhis definition affects some of the sug-
gested rendering rules fab elements (Sectiof.2.5.

Certain elements, e.gsup, are able to embellish operators that are their first argument. These elements are listed ir
Section3.2.5 which precisely defines an ‘embellished operator’ and explains how this affects the suggested renderin
rules for stretchy operators.

41

Certain elements treat their arguments as the arguments of an ‘infewedf they are not given exactly one argument,
as explained in Sectioh 1.3

In MathML 1.x, themtable element could infemtr elements around its arguments, andile element could infer
mtd elements. In MathML 2.0ptr andmtd elements must be explicit. However, for backward compatibility renderers
may wish to continue supporting inferredr andmtd elements.

3.1.5 Bidirectional Layout

The term ’bidirectional layout’ refers to the fact that letters from certain scripts, in particular Arabic and Hebrew, are
written from right to left, and that mixing these with numbers or letters from scripts written left- to-right results in text
runs of two differing directions within the same line or paragraph.

For ordinary text, Unicode defines a bidirectional algorithPnThis algorithm assumes that the order of characters in a
'backing store’ is in logical order (i.e. in the order it would be pronounced or typed in), and defines how the character:
get reordered for display based on character properties and other directives. HTML, CSS, XSL, and SVG adopt th
algorithm and provide ways to control it via markup or styling.

In mathematical expressions, bidirectional layout is more difficult than it is in text. In part, this is due to the 2-
dimensional nature of mathematical layout, and the fact that spatial relationships are often used to convey meanil
in mathematics notation. Another factor is the lack of established conventions for bidirectional mathematics layout
since this is relatively uncommon, even in right-to-left contexts.

For these reasons, MathML 2.0 only adopts a restricted version of the Unicode Bidirectional Algorithm, as described i
the remainder of this section.

3.1.5.1 Bidirectional Layout in Token Elements

For MathML token elements that can contain textdxt, mo, mi, mn andms), the implicit part of the Unicode bidi-
rectional algorithni?? is applied when its content is rendered visually (i.e. characters are reordered based on characte
properties). The base directionality is left-to-right.

The implicit part of the Unicode bidirectional algorithm is identical to straightforward left-to-right layout if there is only
one character, or if there are no strong right-to-left characters (i.e. no characters from the Arabic, Hebrew, or simile
scripts).

Applications are not required to apply the Unicode bidirectional algorithm if they do not render strong right-to-left
characters.

Please note that for the transfinite cardinals represented by Hebrew characters, the codepoints U+2135-U+2138 (ALl
SYMBOL, BET SYMBOL, GIMEL SYMBOL, DALET SYMBOL) should be used. These are strong left-to-right.

3.1.5.2 Bidirectional Layout of Mathematics Formulas

MathML 2.0 does not address right-to-left or bidirectional layout in mathematics formulas. Only left-to-right layout is
supported. Right-to-left layout of mathematical formulas may be addressed in a future version of MathML.

42

3.1.6 Summary of Presentation Elements

3.1.6.1 Token Elements
mi

mn

mo

mtext

mspace

ms

mglyph

3.1.6.2 General Layout Schemata

mrow
mfrac
msqrt
mroot
mstyle
merror
mpadded
mphantom
mfenced
menclose

3.1.6.3 Script and Limit Schemata

msub

msup

msubsup
munder

mover
munderover
mmultiscripts

3.1.64 Tables and Matrices

mtable

mlabeledtr

mtr

mtd

maligngroup andmalignmark

3.1.6.5 Enlivening Expressions

maction

3.2 Token Elements

identifier

number

operator, fence, or separator

text

space

string literal

adding new character glyphs to MathML

group any number of sub-expressions horizontally

form a fraction from two sub-expressions

form a square root (radical without an index)

form a radical with specified index

style change

enclose a syntax error message from a preprocessor

adjust space around content

make content invisible but preserve its size

surround content with a pair of fences

enclose content with a stretching symbol such as a long division sign.

attach a subscript to a base

attach a superscript to a base

attach a subscript-superscript pair to a base
attach an underscript to a base

attach an overscript to a base

attach an underscript-overscript pair to a base
attach prescripts and tensor indices to a base

table or matrix

row in a table or matrix with a label or equation number
row in a table or matrix

one entry in a table or matrix

alignment markers

bind actions to a sub-expression

Token elements in presentation markup are broadly intended to represent the smallest units of mathematical notati
which carry meaning. Tokens are roughly analogous to words in text. However, because of the precise, symbolic n:

43

ture of mathematical notation, the various categories and properties of token elements figure prominently in MathMl
markup. By contrast, in textual data, individual words rarely need to be marked up or styled specially.

Frequently tokens consist of a single character denoting a mathematical symbol. Other cases, e.g. function nam
involve multi-character tokens. Further, because traditional mathematical notation makes wide use of symbols distit
guished by their typographical properties (e.g. a Fraktur 'g’ for a Lie algebra, or a bold 'x’ for a vector), care must be
taken to insure that styling mechanisms respect typographical properties which carry meaning. Consequently, chare
ters, tokens, and typographical properties of symbols are closely related to one another in MathML.

3.2.1 MathML characters in token elements

Character data in MathML markup is only allowed to occur as part of the content of token elements. The only exceptiol
is whitespace between elements, which is ignored. Token elements can contain any sequence of zero or more Unice
characters. In particular, tokens with empty content are allowed, and should typically render invisibly, with no width
except for the normal extra spacing for that kind of token element. The exceptions to this are the empty elemen
mspace andmglyph. Themspace element’'s width depends upon its attribute values. digeyph element renders

using the character described by its attributes.

While all Unicode character data is valid in token element content, MathML 2.0 distinguishes a special subset of name
Unicode 3.2 characters, called MathML Characters in this document. The complete list of MathML Characters is define
in Chapter6. MathML Characters can be either represented directly as Unicode character data, or indirectly via numeris
or character entity references. See Chapter a discussion of the advantages and disadvantages of numeric character
references versus entity references. New mathematics characters that arise, or non-standard glyphs for existing Mathl
characters, may be represented by means aighgph element.

Apart from themglyph element, thenalignmark element is the only other element allowed in the content of tokens.
See SectioR.5.5for details.

Token elements (other thaspace andmglyph) should be rendered as their content (i.e. in the visual case, as a closely-
spaced horizontal row of standard glyphs for the characters in their content). Rendering algorithms should also take in
account the mathematics style attributes as described below, and modify surrounding spacing by rules or attribut
specific to each type of token element.

3.2.1.1 Letter-like symbol characters

A large class of mathematical symbols are single letter identifiers typically used as variable names in formulas. Differer
font variants of a letter are treated as separate symbols. These letter-like symbols are traditionally typeset different
than the same characters appearing in text, with different spacing and ligature conventions. These characters must &
be treated specially by style mechanisms, since arbitrary style transformations can change meaning in an expressior

For these reasons, Unicode 3.1 will be adding more than nine hundred Math Alphabet characters corresponding to lett
like symbols. These characters are in the Secondary Multilingual Plane (SMP). See @Ghayptarore information.

As valid Unicode data, these characters are permitted in MathML 2.0, and as tools and fonts for them become wide
available, we anticipate they will be the predominant way of denoting letter-like symboils.

Until support for SMP characters is widely available, however, it is still necessary to provide an alternative encoding
using only Basic Multilingual Plane (BMP) characters together with markup. MathML 2.0 defines a correspondence
between token elements with certain combinations of BMP character data andttheariant attribute and tokens
containing SMP Math Alphabet characters. Processing applications that accept SMP characters are required to treat
corresponding BMP and attribute combinations identically. The next section discusseslikeriant attribute, and

a complete technical description of the correspondence is given in Séctién

44

3.2.2 Mathematics style attributes common to token elements

MathML 2.0 introduces four newnathematics style attributes. These attributes are valid on all presentation token
elements exceptspace andmglyph, and on no other elements exceptyle. The attributes are:

Name values default

mathvariant normal | bold | italic | bold-italic | double-struck | bold-fraktur | scriptgrmal except on <mi>)
bold-script | fraktur | sans-serif | bold-sans-serif | sans-serif-italic | sans-
serif-bold-italic | monospace

mathsize small | normal | big | number v-unit inherited
mathcolor #rgb | #rrggbb | html-color-name inherited
mathbackground #rgb | #rrggbb | html-color-name inherited

(See Sectiorz.4.4for terminology and notation used in attribute value descriptions.)

The mathematics style attributes define logical classes of token elements. Each class is intended to correspond to a ¢
lection of typographically-related symbolic tokens. In the case ohtt¥hvariant attribute used with certain ranges

of BMP character data, the resulting logical classes exactly correspond to the classes of SMP letter-like symbol che
acters described above. As previously noted, MathML 2.0 processors are required to treat tokens marked up with tl
mathvariant attribute as equivalent with their counterparts using SMP characters.

Since MathML 2.0 mathematics style attributes describe logical classes of tokens instead of rendering properties, re
derers have a good deal of freedom in mapping mathematics style attributes to specific rendering properties. The ma
ematics style attribute names and values suggest obvious typographical properties, but it is left to the renderer’s sty
mechanism to determine, for example, whether a token withihavariant attribute set t@ans-serif should be
rendered in Helvetica or Arial, etc. However style engines should attempt to respect the logical categories defined t
the mathematics style attributes as far as possible. Thus, for example, rendering a tokertiwittriant attribute set

to sans-serif in a Times Roman font should be avoided.

When MathML rendering takes place in an environment where CSS is available, the mathematics style attributes ce
be used as selectors in CSS style rules. See Sectionfor further discussion. A sample CSS style sheet is given in
AppendixG.

Tokens elements also permid, xref, class andstyle attributes for compatibility with style sheet mechanisms, as
described in Sectiof.4.5 However, some care must be taken when using CSS generally. Using CSS to produce visua
effects that alter the meaning of an equation should be especially avoided, since MathML is used in many non-CS
environments. Similarly, care should be taken to insure arbitrary document-wide style transformations do not affec
mathematics expressions in such a way that meaning is altered.

Since MathML expressions are often embedded in a textual data format such as XHTML, the surrounding text an
the MathML must share rendering attributes such as font size, so that the renderings will be compatible in style. Fc
this reason, most attribute values affecting text rendering are inherited from the rendering environment, as shown

the ‘default’ column in the table above. (In cases where the surrounding text and the MathML are being rendered b
separate software, e.g. a browser and a plug-in, it is also important for the rendering environment to provide the MathM
renderer with additional information, such as the baseline position of surrounding text, which is not specified by an
MathML attributes.) Note, however, that MathML 2.0 doesn't specify the mechanism by which style information is

inherited from the rendering environment. For example, one browser plug-in might choose to rely completely on the
CSS inheritance mechanism and use the fully resolved CSS properties for rendering, while another application mig
only consult a style environment at the root node, and then use its own internal style inheritance rules.

Most MathML renderers will probably want to rely on some degree to additional, internal style processing algorithms. In
particular, inheritance of theathvariant attribute does not follow the CSS model. The default value for this attribute

is normal (non-slanted) for all tokens excepi. Formi tokens, the default depends on the number of characters in
tokens’ content. (Theeprecatedontslant attribute also behaves this way.) See Secsigh3for details.

45

3.2.2.1 Deprecated style attributes on token elements

The MathML 1.01 style attributes listed below have bédeprecateih MathML 2.0. If both a new math style attribute

and its corresponding deprecated attribute are given, the new math style attribute value should be used. In render
environments that support CSS, it is preferable to use CSS to control the rendering properties corresponding to the
attributes. However as explained above, direct manipulation of these rendering properties by whatever means shot
usually be avoided.

Atthe same time, the MathML 1.01 attributes still serve a purpose. Since they correspond directly to rendering propertie
needed for mathematics layout, they are very useful for describing MathML layout rules and algorithms. For this reasotr
and for backward compatibility, the MathML rendering rules suggested in this chapter continue to be described in term
of the rendering properties described by these MathML 1.01 style attributes.

The deprecated attributes are:

Name values default

fontsize number v-unit inherited

fontweight normal | bold inherited

fontstyle normal | italic normalkfcept on <mi>)
fontfamily string | css-fontfamily inherited

color #rgb | #rrggbb | html-color-name inherited

Thefontsize attribute specifies the desired font sizeunit represents a unit of vertical length (see Sectah4.3.
The most common unit for specifying font sizes in typesettingtigpoints).

If the requested size of the current font is not available, the renderer should approximate it in the manner likely to lea
to the most intelligible, highest quality rendering.

Many MathML elements automatically chanfientsize in some of their children; see the discussiogefiptlevel
in the section omstyle, Section3.3.4

The value of thefontfamily attribute should be the name of a font that may be available to a MathML renderer,

or information that permits the renderer to select a font in some manner; acceptable values and their meanings ¢
dependent on the specific renderer and rendering environment in use, and are not specified by MathML (but see the n
aboutcss-fontfamily below). (Note that the renderer’s mechanism for finding fonts by name may be case-sensitive.)

If the value offontfamily is not recognized by a particular MathML renderer, this should never be interpreted as a
MathML error; rather, the renderer should either use a font that it considers to be a suitable substitute for the request
font, or ignore the attribute and act as if no value had been given.

Note that any use of theontfamily attribute is unlikely to be portable across all MathML renderers. In particular, it
should never be used to try to achieve the effect of a reference to an non-ASCII MathML character (for example, b
using a reference to a character in some symbol font that maps ordinary characters to glyphs for non-ASCII character
As a corollary to this principle, MathML renderers should attempt to always produce intelligible renderings for the
MathML characters listed in Chaptéreven when these characters are not available in the font family indicated. Such
a rendering is always possible - as a last resort, a character can be rendered to appear as an XML-style entity refere
using one of the entity names given for the same character in Ctapter

The symbolcss-fontfamily refers to a legal value for theont-family property in CSS, which is a comma-
separated list of alternative font family hames or generic font types in order of preference, as documented in mor
detail in CSS{]. MathML renderers are encouraged to make use of the CSS syntax for specifying fonts when
this is practical in their rendering environment, even if they do not otherwise support CSS. (See also the subsectic
CSS-compatible attributes within Sectigrt.4.3.

46

3.22.2 Color-related attributes

Themathcolor (and depreciatedolor) attribute controls the color in which the content of tokens is rendered. Addi-
tionally, when inherited fronmstyle or from a MathML expression’s rendering environment, it controls the color of
all other drawing by MathML elements, including the lines or radical signs that can be dranfrby, mtable, or
msqrt.

The values ofnathcolor, color, mathbackground, andbackground can be specified as a string consisting of '#
followed without intervening whitespace by either 1-digit or 2-digit hexadecimal values for the red, green, and blue
components, respectively, of the desired color, with the same number of digits used for each component (or as tl
keyword ‘transparent’ fobackground). The hexadecimal digits are not case-sensitive. The possible 1-digit values
range from O (component not present) to F (component fully present), and the possible 2-digit values range from C
(component not present) to FF (component fully present), with the 1-digit xabeéng equivalent to the 2-digit value

xx (rather tharx0). % x0 would be a more strictly correct notation, but renders terribly in some browsers.

These attributes can also be specified astatl-color-name, which is defined below.

The color syntax described above is a subset of the syntax afother andbackground-color properties of CSS.
Thebackground-color syntax is in turn a subset of the full C$&ckground property syntax, which also permits
specification of (for example) background images with optional repeats. The more general attribute clegreund

is used in MathML to facilitate possible extensions to the attribute’s scope in future versions of MathML.

Color values on either attribute can also be specified as@h-color-name, thatis, as one of the color-name keywords
definedin [] (aqua, black, blue, fuchsia, gray, green, lime, maroon, navy, olive, purple, red, silver,

teal, white, andyellow). Note that the color name keywords are not case-sensitive, unlike most keywords in MathML
attribute values for compatibility with CSS and HTML.

The suggested MathML visual rendering rules do not define the precise extent of the region whose background
affected by using th®ackground attribute onmstyle, except that, whenstyle’s content does not have negative
dimensions and its drawing region is not overlapped by other drawing due to surrounding negative spacing, this regic
should lie behind all the drawing done to render the content afighigle, but should not lie behind any of the drawing
done to render surrounding expressions. The effect of overlap of drawing regions caused by negative spacing on t
extent of the region affected by theckground attribute is not defined by these rules.

3.2.3 Identifier (mi)
3.2.3.1 Description

An mi element represents a symbolic name or arbitrary text that should be rendered as an identifier. Identifiers ce
include variables, function names, and symbolic constants.

Not all ‘mathematical identifiers’ are representeddiyelements - for example, subscripted or primed variables should
be represented usimgub or msup respectively. Conversely, arbitrary text playing the role of a ‘term’ (such as an ellipsis
in a summed series) can be represented using @aement, as shown in an example in SecBdh6.4

It should be stressed that is a presentation element, and as such, it only indicates that its content should be renderec
as an identifier. In the majority of cases, the contents afiawill actually represent a mathematical identifier such as

a variable or function name. However, as the preceding paragraph indicates, the correspondence between notations
should render like identifiers and notations that are actually intended to represent mathematical identifiers is not perfe
For an element whose semantics is guaranteed to be that of an identifier, see the descrptiarCfapterd.

3.2.3.2 Attributes

mi elements accept the attributes listed in Sec@idh2 but in one case with a different default value:

47

Name values default

mathvariant normal | bold | italic | bold-italic | double-struck (Hepends on content; described below)
bold-fraktur | script | bold-script | fraktur | sans-serif
| bold-sans-serif | sans-serif-italic | sans-serif-bold-
italic | monospace

fontstyle @deprecated normal | italic (depends on content; described below)

A typical graphical renderer would render ah element as the characters in its content, with no extra spacing around
the characters (except spacing associated with neighboring elements). Therdefaudtriant andfontstyle would
(typically) benormal (non-slanted) unless the content is a single character, in which case it waidd iec. Note that

this rule formathvariant andfontstyle attributes is specific tai elements; the default value for thethvariant
andfontstyle attributes on other MathML token elementsitgrmal.

Note that for purposes of determining equivalences of Math Alphabet characters (See &2cliand Sectiors.2.1.)
the value of thenathvariant attribute should be resolved first, including the special defaulting behavior described
above.

3.2.3.3 Examples

<mi> x </mi>
<mi> D </mi>
<mi> sin </mi>
<mi></mi>

Anmi element with no content is allowedni></mi> might, for example, be used by an ‘expression editor’ to represent
alocation in a MathML expression which requires a ‘term’ (according to conventional syntax for mathematics) but doe:
not yet contain one.

Identifiers include function names such as ‘sin’. Expressions such ag 'siould be written using theApplyFunc-
tion; operator (which also has the short nafag ;) as shown below; see also the discussion of invisible operators in
Section3.2.5

<mrow>
<mi> sin </mi>
<mo> ⁡ </mo>
<mi> x </mi>

</mrow>

Miscellaneous text that should be treated as a ‘term’ can also be representedibglament, as in:

<mrow>
<mn> 1 </mn>
<mo> + </mo>
<mi> ... </mi>
<mo> + </mo>
<mi> n </mi>
</mrow>

When ammi is used in such exceptional situations, explicitly settingftbetstyle attribute may give better results
than the default behavior of some renderers.

The names of symbolic constants should be represented elsments:

48

<mi> π </mi>

<mi> &Imaginaryl; </mi>

<mi> ⅇ </mi>

Use of special entity references for such constants can simplify the interpretation of MathML presentation element:
See Chaptes for a complete list of character entity references in MathML.

3.24 Number n)
3.24.1 Description

An mn element represents a ‘numeric literal’ or other data that should be rendered as a numeric literal. Generall
speaking, a numeric literal is a sequence of digits, perhaps including a decimal point, representing an unsigned intec
or real number.

The mathematical concept of a ‘number’ can be quite subtle and involved, depending on the context. As a consequent
not all mathematical numbers should be represented waingkamples of mathematical numbers that should be repre-
sented differently are shown below, and include complex numbers, ratios of numbers shown as fractions, and names
numeric constants.

Conversely, sincen is a presentation element, there are a few situations where it may desirable to include arbitrary
text in the content of amn that should merely render as a numeric literal, even though that content may not be unam-
biguously interpretable as a number according to any particular standard encoding of numbers as character sequen
As a general rule, however, tha element should be reserved for situations where its content is actually intended to
represent a numeric quantity in some fashion. For an element whose semantics are guaranteed to be that of a partic
kind of mathematical number, see the descriptionmoin Chapterd.

3.24.2 Attributes
mn elements accept the attributes listed in SecBidh2

A typical graphical renderer would render am element as the characters of its content, with no extra spacing around
them (except spacing from neighboring elements suatiofisUnlike mi, mn elements are (typically) rendered in an
unslanted font by default, regardless of their content.

3.24.3 Examples

<mn> 2 </mn>

<mn> 0.123 </mn>

<mn> 1,000,000 </mn>
<mn> 2.1e10 </mn>
<mn> OxFFEF </mn>
<mn> MCMLXIX </mn>
<mn> twenty one </mn>

3.2.4.4 Numbers that should not be written using mn alone

Many mathematical numbers should be represented using presentation elements other alwne; this includes
complex numbers, ratios of numbers shown as fractions, and names of numeric constants. Examples of MathML repr
sentations of such numbers include:

49

<mrow>
<mn> 2 </mn>
<mo> + </mo>
<mrow>
<mn> 3 </mn>
<mo> ⁢ </mo>
<mi> &ImaginaryIl; </mi>
</mrow>
</mrow>
<mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac>
<mi> π </mi>
<mi> ⅇ </mi>

3.25 Operator, Fence, Separator or Accento)
3.2.5.1 Description

An mo element represents an operator or anything that should be rendered as an operator. In general, the notatio
conventions for mathematical operators are quite complicated, and therefore MathML provides a relatively sophisticate
mechanism for specifying the rendering behavior olmarelement. As a consequence, in MathML the list of things
that should ‘render as an operator’ includes a number of notations that are not mathematical operators in the ordina
sense. Besides ordinary operators with infix, prefix, or postfix forms, these include fence characters such as brac
parentheses, and ‘absolute value’ bars, separators such as comma and semicolon, and mathematical accents suct
bar or tilde over a symbol.

The term ‘operator’ as used in the present chapter means any symbol or notation that should render as an operal
and that is therefore representable bynarelement. That is, the term ‘operator’ includes any ordinary operator, fence,
separator, or accent unless otherwise specified or clear from the context.

All such symbols are represented in MathML with elements since they are subject to essentially the same rendering
attributes and rules; subtle distinctions in the rendering of these classes of symbols, when they exist, are supported us
the boolean attributegence, separator andaccent, which can be used to distinguish these cases.

A key feature of theno element is that its default attribute values are set on a case-by-case basis from an ‘operato
dictionary’ as explained below. In particular, default valuesffaice, separator andaccent can usually be found in
the operator dictionary and therefore need not be specified ormeagbment.

Note that some mathematical operators are represented nat elements alone, but byo elements ‘embellished’

with (for example) surrounding superscripts; this is further described below. Conversely, as presentation elements,
elements can contain arbitrary text, even when that text has no standard interpretation as an operator; for an example,
the discussion ‘Mixing text and mathematics’ in Sectif.6 See also Chapter for definitions of MathML content
elements that are guaranteed to have the semantics of specific mathematical operators.

3.252 Attributes

mo elements accept the attributes listed in Seclidn? and the additional attributes listed here. Most attributes get their
default values from the Sectidh2.5.7 as described later in this section. When a dictionary entry is not found for a
givenmo element, the default value shown here in parentheses is used.

50

Name values default

form prefix | infix | postfix set by position of operator in anow (rule given
below); used withno content to index operator dic-
tionary

fence true | false set by dictionary (false)

separator true | false set by dictionary (false)

Ispace number h-unit | namedspace set by dictionary (thickmathspace)

rspace number h-unit | namedspace set by dictionary (thickmathspace)

stretchy true | false set by dictionary (false)

symmetric true | false set by dictionary (true)

maxsize number [v-unit | h-unit] | namedspace | infinity set by dictionary (infinity)

minsize number [v-unit | h-unit] | namedspace set by dictionary (1)

largeop true | false set by dictionary (false)

movablelimits true | false set by dictionary (false)

accent true | false set by dictionary (false)

h-unit represents a unit of horizontal length, ancinit represents a unit of vertical length (see Secfioch4.).
namedspace IS One ofveryverythinmathspace, verythinmathspace, thinmathspace, mediummathspace, thick-
mathspace, verythickmathspace, Or veryverythickmathspace. These values are settable by itayle element
which is discussed in Sectidh3.4 The default values oferyverythinmathspace... veryverythickmathspace
are 1/18em...7/18em, respectively.

If no unit is given withmaxsize or minsize, the number is a multiplier of the normal size of the operator in the
direction (or directions) in which it stretches. These attributes are further explained below.

Typical graphical renderers show alh elements as the characters of their content, with additional spacing around the
element determined from the attributes listed above. Detailed rules for determining operator spacing in visual renderin
are described in a subsection below. As always, MathML does not require a specific rendering, and these rules ¢
provided as suggestions for the convenience of implementors.

Renderers without access to complete fonts for the MathML character set may choose not to redelearent as
precisely the characters in its content in some cases. For exataple,≤ </mo> might be rendered as= to a
terminal. However, as a general rule, renderers should attempt to render the conteabcflament as literally as
possible. That isgmo> ≤ </mo> and<mo> &1t;= </mo> should render differently. (The first one should render
as a single character representing a less-than-or-equal-to sign, and the second one as the two-characte=sequence

3.2.5.3 Examples with ordinary operators

<mo> + </mo>

<mo> < </mo>

<mo> ≤ </mo>

<mo> <= </mo>

<mo> ++ </mo>

<mo> ∑ </mo>

<mo> .NOT. </mo>

<mo> and </mo>

<mo> ⁢ </mo>

3.2.5.4 Examples with fences and separators

Note that theno elements in these examples don’t need expfigiice or separator attributes, since these can be found
using the operator dictionary as described below. Some of these examples could also be encodednsingdhe

51

element described in Secti@n3.8
(at+b)

<mrow>
<mo> (</mo>
<mrow>
<mi> a </mi>
<mo> + </mo>
<mi> b </mi>
</mrow>
<mo>) </mo>
</mrow>

[0,1)

<mrow>
<mo> [</mo>
<mrow>
<mn> 0 </mn>
<mo> , </mo>
<mn> 1 </mn>
</mrow>
<mo>) </mo>
</mrow>

fxy)

<mrow>
<mi> f </mi>
<mo> ⁡ </mo>
<mrow>
<mo> (</mo>
<mrow>
<mi> x </mi>
<mo> , </mo>
<mi> y </mi>
</mrow>
<mo>) </mo>
</mrow>
</mrow>

3.2.5.5 Invisible operators

Certain operators that are ‘invisible’ in traditional mathematical notation should be represented using specific entit
references withimo elements, rather than simply by nothing. The entity references used for these ‘invisible operators’
are:

Full name Short name Examples of use
⁢ ⁢ Xy
⁡ ⁡ f(x) sinx
⁣ ⁣ Mo

52

The MathML representations of the examples in the above table are:

<mrow>
<mi> x </mi>
<mo> ⁢ </mo>
<mi> y </mi>

</mrow>

<mrow>
<mi> f </mi>
<mo> ⁡ </mo>
<mrow>
<mo> (</mo>
<mi> x </mi>
<mo>) </mo>
</mrow>
</mrow>

<mrow>
<mi> sin </mi>
<mo> ⁡ </mo>
<mi> x </mi>

</mrow>

<msub>
<mi> m </mi>
<mrow>
<mn> 1 </mn>
<mo> ⁣ </mo>
<mn> 2 </mn>
</mrow>
</msub>

The reasons for using specifie elements for invisible operators include:

° such operators should often have specific effects on visual rendering (particularly spacing and linebreakin
rules) that are not the same as either the lack of any operator, or spacing represeitpadayor mtext
elements;
these operators should often have specific audio renderings different than that of the lack of any operator;
automatic semantic interpretation of MathML presentation elements is made easier by the explicit specifica
tion of such operators.

For example, an audio renderer might rendéx) (represented as in the above examples) by speaking ‘f of x’, but

use the word ‘times’ in its rendering ady. Although its rendering must still be different depending on the structure

of neighboring elements (sometimes leaving out ‘of’ or ‘times’ entirely), its task is made much easier by the use of ¢

differentmo element for each invisible operator.

3.2.5.6 Names for other special operators

MathML also includesⅆ for use in amo element representing the differential operator symbol usually
denoted by ‘d’. The reasons for explicitly using this special entity are similar to those for using the special entities for
invisible operators described in the preceding section.

53

3.2.5.7 Detailed rendering rules for mo elements

Typical visual rendering behaviors fas elements are more complex than for the other MathML token elements, so the
rules for rendering them are described in this separate subsection.

Note that, like all rendering rules in MathML, these rules are suggestions rather than requirements. Furthermore, r
attempt is made to specify the rendering completely; rather, enough information is given to make the intended effect «
the various rendering attributes as clear as possible.

The operator dictionary

Many mathematical symbols, such as an integral sign, a plus sign, or a parenthesis, have a well-established, predictal
traditional notational usage. Typically, this usage amounts to certain default attribute valuesements with specific
contents and a specifitorm attribute. Since these defaults vary from symbol to symbol, MathML anticipates that
renderers will have an ‘operator dictionary’ of default attributesrforelements (see Appendi) indexed by each

mo element’s content antlorm attribute. If anmo element is not listed in the dictionary, the default values shown in
parentheses in the table of attributes forshould be used, since these values are typically acceptable for a generic
operator.

Some operators are ‘overloaded’, in the sense that they can occur in more than one form (prefix, infix, or postfix)
with possibly different rendering properties for each form. For example, ‘+’ can be either a prefix or an infix operator.
Typically, a visual renderer would add space around both sides of an infix operator, while only on the left of a prefix
operator. Theorm attribute allows specification of which form to use, in case more than one form is possible according
to the operator dictionary and the default value described below is not suitable.

Deftault value of the form attribute

The form attribute does not usually have to be specified explicitly, since there are effective heuristic rules for inferring
the value of theform attribute from the context. If it is not specified, and there is more than one possible form in the
dictionary for ammo element with given content, the renderer should choose which form to use as follows (but see the
exception for embellished operators, described later):

. If the operator is the first argument in anow of length (i.e. number of arguments) greater than one (ignoring
all space-like arguments (see SectibA.?) in the determination of both the length and the first argument),
the prefix form is used,;

° if it is the last argument in anrow of length greater than one (ignoring all space-like arguments), the postfix
form is used,;
° in all other cases, including when the operator is not part afrarr, the infix form is used.

Note that these rules make reference torthew in which themo element lies. In some situations, thisow might be
an inferrednrow implicitly present around the arguments of an element suefz@st or mtd.

Opening (left) fences should haverm="prefix", and closing (right) fences should haierm="postfix"; separators are
usually ‘infix’, but not always, depending on their surroundings. As with ordinary operators, these values do not usuall
need to be specified explicitly.

If the operator does not occur in the dictionary with the specified form, the renderer should use one of the forms the
is available there, in the order of preference: infix, postfix, prefix; if no forms are available for thengivelament
content, the renderer should use the defaults given in parentheses in the table of attrilmstes for

Exception for embellished operators

There is one exception to the above rules for choosingcaelement’s defaulform attribute. Anmo element that is
‘embellished’ by one or more nested subscripts, superscripts, surrounding text or whitespace, or style changes beha

54

differently. It is the embellished operator as a whole (this is defined precisely, below) whose positionriowais
examined by the above rules and whose surrounding spacing is affected by its form, notaleenent at its core;
however, the attributes influencing this surrounding spacing are taken frofio telement at the core (or from that
element’s dictionary entry).

For example, the ‘# in a+4b should be considered an infix operator as a whole, due to its position in the middle of
anmrow, but its rendering attributes should be taken fromidheslement representing the ‘+’, or when those are not
specified explicitly, from the operator dictionary entry fato form="infix"> + </mo>. The precise definition of an
‘embellished operator’ is:

° anmo element;

° or one of the elementssub, msup, msubsup, munder, mover, munderover, mmultiscripts, mfrac, or
semantics (Sectiond.2.6, whose first argument exists and is an embellished operator;

° or one of the elemenisstyle, mphantom, Or mpadded, such that amrow containing the same arguments
would be an embellished operator;

° or anmaction element whose selected sub-expression exists and is an embellished operator;

° or anmrow whose arguments consist (in any order) of one embellished operator and zero or more space-lik
elements.

Note that this definition permits nested embellishment only when there are no intervening enclosing elements not in tf
above list.

The above rules for choosing operator forms and defining embellished operators are chosen so that in all ordinary cas
it will not be necessary for the author to specif§an attribute.

Rationale for definition of embellished operators

The following notes are included as a rationale for certain aspects of the above definitions, but should not be importal
for most users of MathML.

Anmfrac is included as an ‘embellisher because of the common notation for a differential operator:

<mfrac>
<mo> ⅆ </mo>
<mrow>
<mo> ⅆ </mo>
<mi> x </mi>
</mrow>
</mfrac>

Since the definition of embellished operator affects the use of the attributes related to stretching, it is important that
includes embellished fences as well as ordinary operators; thus it appliestiie algment.

Note that amrow containing a single argument is an embellished operator if and only if its argument is an embellished
operator. This is because anow with a single argument must be equivalent in all respects to that argument alone (as
discussed in Sectiagh 3.1). This means that at element that is the sole argument ofaow will determine its default

form attribute based on thatow’s position in a surrounding, perhaps inferradow (if there is one), rather than based

on its own position in therow in which it is the sole argument.

Note that the above definition defines eveky element to be ‘embellished’ - that is, ‘embellished operator’ can be
considered (and implemented in renderers) as a special class of MathML expressions, afonbialspecific case.

55

Spacing around an operator

The amount of space added around an operator (or embellished operator), when it occursdn, @an be directly
specified by thé space andrspace attributes. These values are in ems if no units are given. By convention, operators
that tend to bind tightly to their arguments have smaller values for spacing than operators that tend to bind less tightl
This convention should be followed in the operator dictionary included with a MathML renderggX|rihese values

can only be one of three values; typically they are 3/18em, 4/18em, and 5/18em. MathML does not impose this limit.

Some renderers may choose to use no space around most operators appearing within subscripts or superscripts,
done in EX.

Non-graphical renderers should treat spacing attributes, and other rendering attributes described here, in analogous w
for their rendering medium. For example, more space might translate into a longer pause in an audio rendering.

3.2.5.8 Stretching of operators, fences and accents

Four attributes govern whether and how an operator (perhaps embellished) stretches so that it matches the size of ot
elementssstretchy, symmetric, maxsize, andminsize. If an operator has the attributeretchy=true, then it

(that is, each character in its content) obeys the stretching rules listed below, given the constraints imposed by the for
and font rendering system. In practice, typical renderers will only be able to stretch a small set of characters, and qui
possibly will only be able to generate a discrete set of character sizes.

There is no provision in MathML for specifying in which direction (horizontal or vertical) to stretch a specific character
or operator; rather, whestretchy=true it should be stretched in each direction for which stretching is possible. It is
up to the renderer to know in which directions it is able to stretch each character. (Most characters can be stretched in
most one direction by typical renderers, but some renderers may be able to stretch certain characters, such as diagc
arrows, in both directions independently.)

Theminsize andmaxsize attributes limit the amount of stretching (in either direction). These two attributes are given
as multipliers of the operator’'s normal size in the direction or directions of stretching, or as absolute sizes using unit:
For example, if a character hasxsize="3", then it can grow to be no more than three times its normal (unstretched)
size.

Thesymmetric attribute governs whether the height and depth above and belowithef the character are forced to

be equal (by forcing both height and depth to become the maximum of the two). An example of a situation where on
might setsymmetric=false arises with parentheses around a matrix not aligned on the axis, which frequently occurs
when multiplying non-square matrices. In this case, one wants the parentheses to stretch to cover the matrix, where
stretching the parentheses symmetrically would cause them to protrude beyond one edge of the mafrixeftra c
attribute only applies to characters that stretch vertically (otherwise it is ignored).

If a stretchymo element is embellished (as defined earlier in this section)pshelement at its core is stretched to a
size based on the context of the embellished operator as a whole, i.e. to the same size as if the embellishments w
not present. For example, the parentheses in the following example (which would typically be set to be stretchy by th
operator dictionary) will be stretched to the same size as each other, and the same size they would have if they were |
underlined and overlined, and furthermore will cover the same vertical interval:

<mrow>
<munder>
<mo> (</mo>
<mo> _ </mo>
</munder>
<mfrac>

56

<mi> a </mi>

<mi> b </mi>
</mfrac>
<mover>

<mo>) </mo>

<mo> ‾ </mo>
</mover>

</mrow>

Note that this means that the stretching rules given below must refer to the context of the embellished operator as
whole, not just to thewo element itself.

Example of stretchy attributes

This shows one way to set the maximum size of a parenthesis so that it does not grow, even though its default value
stretchy=true.

<mrow>
<mo maxsize="1"> (</mo>
<mfrac>
<mi> a </mi> <mi> b </mi>
</mfrac>
<mo maxsize="1">) </mo>
</mrow>

The above should render &%) as opposed to the default renderi(r@.

Note that each parenthesis is sized independently; if only one of themdiad ze="1", they would render with
different sizes.

Vertical Stretching Rules

° If a stretchy operator is a direct sub-expression afiasw element, or is the sole direct sub-expression of an
mtd element in some row of a table, then it should stretch to cover the height and depth (above and belov
the axis) of the non-stretchy direct sub-expressions inifiew element or table row, unless stretching is
constrained byinsize ormaxsize attributes.

° In the case of an embellished stretchy operator, the preceding rule applies to the stretchy operator at its cor

° If symmetric=true, then the maximum of the height and depth is used to determine the size, before appli-
cation of theminsize Ormaxsize attributes.

. The preceding rules also apply in situations wherenttes element is inferred.

Most common opening and closing fences are defined in the operator dictionary to stretch by default; and they stret
vertically. Also, operators such @asum;, ∫, /, and vertical arrows stretch vertically by default.

In the case of a stretchy operator in a table cell (i.e. withim&d element), the above rules assume each cell of the
table row containing the stretchy operator covers exactly one row. (Equivalently, the valuerofithyen attribute is
assumed to be 1 for all the table cells in the table row, including the cell containing the operator.) When this is not the
case, the operator should only be stretched vertically to cover those table cells that are entirely within the set of tab
rows that the operator’s cell covers. Table cells that extend into rows not covered by the stretchy operator’s table ce
should be ignored. See Sectidrb.4.2for details about theowspan attribute.

57

Horizontal Stretching Rules

° If a stretchy operator, or an embellished stretchy operator, is a direct sub-expressiamafian, mover,
or munderover element, or if it is the sole direct sub-expression ofmad element in some column of a
table (seantable), then it, or theno element at its core, should stretch to cover the width of the other direct
sub-expressions in the given element (or in the same table column), given the constraints mentioned above

. If a stretchy operator is a direct sub-expression ofiander, mover, Or munderover element, or if it is
the sole direct sub-expression of mtd element in some column of a table, then it should stretch to cover
the width of the other direct sub-expressions in the given element (or in the same table column), given the
constraints mentioned above.

. In the case of an embellished stretchy operator, the preceding rule applies to the stretchy operator at its cor

By default, most horizontal arrows and some accents stretch horizontally.

In the case of a stretchy operator in a table cell (i.e. withim&f element), the above rules assume each cell of the
table column containing the stretchy operator covers exactly one column. (Equivalently, the value cfifuespan
attribute is assumed to be 1 for all the table cells in the table row, including the cell containing the operator.) Wher
this is not the case, the operator should only be stretched horizontally to cover those table cells that are entirely with
the set of table columns that the operator’s cell covers. Table cells that extend into columns not covered by the stretcl
operator’s table cell should be ignored. See Se@ién4.2for details about theowspan attribute.

The rules for horizontal stretching included elements to allow arrows to stretch for use in commutative diagrams
laid out usingntable. The rules for the horizontal stretchiness include scripts to make examples such as the following
work:

<mrow>
<mi> x </mi>
<munder>
<mo> → </mo>
<mtext> maps to </mtext>
</munder>
<mi> y </mi>
</mrow>

This displays ag m y.

Rules Common to both Vertical and Horizontal Stretching

If a stretchy operator is not required to stretch (i.e. if it is not in one of the locations mentioned above, or if there are nc
other expressions whose size it should stretch to match), then it has the standard (unstretched) size determined by
font and current fontsize.

If a stretchy operator is required to stretch, but all other expressions in the containing element (as described above)
also stretchy, all elements that can stretch should grow to the maximum of the normal unstretched sizes of all elemer
in the containing object, if they can grow that large. If the valusiofsize ormaxsize prevents this then that (min or

max) size is used.

For example, in amrow containing nothing but vertically stretchy operators, each of the operators should stretch to the
maximum of all of their normal unstretched sizes, provided no other attributes are set that override this behavior. C
course, limitations in fonts or font rendering may result in the final, stretched sizes being only approximately the same

3.2.5.9 Other attributes of mo

Thelargeop attribute specifies whether the operator should be drawn larger than nordnabpifaystyle=true in
the current rendering environment. This roughly correspondgXts \displaystyle style setting. MathML uses

58

two attributesdisplaystyle andscriptlevel, to control orthogonal presentation features th@f €ncodes into
one ‘style’ attribute with value§displaystyle, \textstyle, \scriptstyle, and\scriptscriptstyle. These
attributes are discussed further in Sectio®4describing thestyle element. Note that these attributes can be specified
directly on ammstyle element’s start tag, but not on most other elements. Examples of large operators ériclugle
and∏.

Themovablelimits attribute specifies whether underscripts and overscripts attached taotkeiement should be
drawn as subscripts and superscripts whesplaystyle=false. movablelimits=false means that underscripts

and overscripts should never be drawn as subscripts and superscripts. In gerglalystyle is true for displayed
mathematics andalse for inline mathematics. Alsodisplaystyle is false by default within tables, scripts and
fractions, and a few other exceptional situations detailed in Se8tibd Thus, operators withovablelimits=true

will display with limits (i.e. underscripts and overscripts) in displayed mathematics, and with subscripts and superscript
in inline mathematics, tables, scripts and so on. Examples of operators that typicallydhav@elimits=true are

sum, prod, andlim.

The accent attribute determines whether this operator should be treated by default as an accent (diacritical mark
when used as an underscript or overscript; s@seder, mover, andmunderover (Section3.4.4 Section3.4.5and
Section3.4.6.

The separator attribute may affect automatic linebreaking in renderers that position ordinary infix operators at the
beginnings of broken lines rather than at the ends (that is, which avoid linebreaking just after such operators), sinc
linebreaking should be avoided just before separators, but is acceptable just after them.

The fence attribute has no effect in the suggested visual rendering rules given here; it is not needed for properly
rendering traditional notation using these rules. It is provided so that specific MathML renderers, especially non-visue
renderers, have the option of using this information.

3.2.6 Text @ptext)
3.2.6.1 Description

An mtext element is used to represent arbitrary text that should be rendered as itself. In generadxthelement is
intended to denote commentary text.

Note that some text with a clearly defined notational role might be more appropriately marked upiusing; this
is discussed further below.

An mtext element can be used to contain ‘renderable whitespace’, i.e. invisible characters that are intended to alter tt
positioning of surrounding elements. In non-graphical media, such characters are intended to have an analogous effe
such as introducing positive or negative time delays or affecting rhythm in an audio renderer. This is not related to an
whitespace in the source MathML consisting of blanks, newlines, tabs, or carriage returns; whitespace present direc
in the source is trimmed and collapsed, as described in Settiod Whitespace that is intended to be rendered as part

of an element’s content must be represented by entity refereneapate elements (unless it consists only of single
blanks between non-whitespace characters).

Renderable whitespace can have a positive or negative widthg@kinSpace; and​, Or zero
width, as inkZeroWidthSpace ;. The complete list of such characters is given in Chaftdiote that there is no formal
distinction in MathML between renderable whitespace characters and any other class of charactexs, or in any
other element.

Renderable whitespace can also include characters that affect alignment or linebreaking. Some of these characters ¢

59

Entity name Purpose (rough description)

&NewlLine; start a new line and do not indent

&lIndentingNewLine; start a new line and do indent

⁠ do not allow a linebreak here

&GoodBreak; if a linebreak is needed on the line, here is a good spot
&BadBreak; if a linebreak is needed on the line, try to avoid breaking here

For the complete list of MathML entities, consult Chagier

3.2.6.2 Attributes
mtext elements accept the attributes listed in Secfidh2

See also the warnings about the legal grouping of ‘space-like elements’ in S8&i@nand about the use of such
elements for ‘tweaking’ or conveying meaning in Secti8.a

3.2.6.3 Examples

<mtext> Theorem 1: </mtext>

<mtext>   </mtext>

<mtext>      </mtext>
<mtext> /* a comment */ </mtext>

3.2.6.4 Mixing text and mathematics

In some cases, text embedded in mathematics could be more appropriately represented osinigelements. For
example, the expression ‘there exidts 0 such thaff (x) <1’ is equivalenttald > 0> f(x) < 1 and could be represented
as:

<mrow>
<mo> there exists </mo>
<mrow>
<mrow>
<mi> δ </mi>
<mo> > </mo>
<mn> 0 </mn>
</mrow>
<mo> such that </mo>
<mrow>
<mrow>
<mi> f </mi>
<mo> ⁡ </mo>
<mrow>
<mo> (</mo>
<mi> x </mi>
<mo>) </mo>
</mrow>
</mrow>
<mo> < </mo>

60

<mn> 1 </mn>
</mrow>
</mrow>
</mrow>

An example involving ami element isx+x2+---+x". In this example, ellipsis should be represented usingiaement,
since it takes the place of a term in the sum (see Seé&tid1 mi).

On the other hand, expository text within MathML is best represented wiitt ext element. An example of this is:
Theorem 1: ifx > 1, thenx? > x.

However, when MathML is embedded in HTML, or another document markup language, the example is probably bes
rendered with only the two inequalities represented as MathML at all, letting the text be part of the surrounding HTML.

Another factor to consider in deciding how to mark up text is the effect on rendering. Text enclosetbielament is
unlikely to be found in a renderer’s operator dictionary, so it will be rendered with the format and spacing appropriate
for an ‘unrecognized operator’, which may or may not be better than the format and spacing for ‘text’ obtained by usinc
anmtext element. An ellipsis entity in ani element is apt to be spaced more appropriately for taking the place of a
term within a series than if it appeared inmtext element.

3.2.7 Spacern{space)
3.2.7.1 Description

An mspace empty element represents a blank space of any desired size, as set by its attributes. It can also be used
make linebreaking suggestions to a visual renderer. Note that the default values for attributes have been chosen so 1
they typically will have no effect on rendering. Thus, tiepace element is generally used with one or more attribute
values explicitly specified.

3.2.72 Attributes

mspace elements accept the attributes listed in Secich?, and the additional attributes listed here.

Name values default
width number h-unit | namedspace Oem
height number v-unit Oex
depth number v-unit Oex
linebreak auto | newline | indentingnewline | nobreak | goodbreak | badbreak auto

h-unit andv-unit represent units of horizontal or vertical length, respectively (see Settiof.).

The linebreak attribute is used to give a linebreaking hint to a visual renderer. The default vatue ds which
indicates that a renderer should use whatever default linebreaking algorithm it would normally use. The meaning of th
other possible values for theanebreak attribute are described above in the discussion on renderable whitespace in the
mtext element. See Sectidh2.6for details.

In the case when both dimensional attributes and a linebreaking attribute are set, the linebreaking attribute is ignored

Note the warning about the legal grouping of ‘space-like elements’ given below, and the warning about the use ©
such elements for ‘tweaking’ or conveying meaning in Sec8dha See also the other elements that can render as
whitespace, namelytext, mphantom, andmaligngroup.

61

3.2.7.3 Definition of space-like elements

A number of MathML presentation elements are ‘space-like’ in the sense that they typically render as whitespace, ar
do not affect the mathematical meaning of the expressions in which they appear. As a consequence, these elements o
function in somewhat exceptional ways in other MathML expressions. For example, space-like elements are handle
specially in the suggested rendering rulesfoigiven in SectiorB.2.5 The following MathML elements are defined to

be ‘space-like’:

anmtext,mspace,maligngroup,Ormalignmarkekﬂnent

anmstyle, mphantom, ormpadded element, all of whose direct sub-expressions are space-like;

anmaction element whose selected sub-expression exists and is space-like;

anmrow all of whose direct sub-expressions are space-like.

Note that amphantom is not automatically defined to be space-like, unless its content is space-like. This is because
operator spacing is affected by whether adjacent elements are space-like. Sinpadtreom element is primarily
intended as an aid in aligning expressions, operators adjacenifthantom should behave as if they were adjacent to

the contents of themphantom, rather than to an equivalently sized area of whitespace.

3.2.74 Legal grouping of space-like elements

Authors who insert space-like elementsmphantom elements into an existing MathML expression should note that
such elementare counted as arguments, in elements that require a specific number of arguments, or that interpre
different argument positions differently.

Therefore, space-like elements inserted into such a MathML element should be grouped with a neighboring argume
of that element by introducing airow for that purpose. For example, to allow for vertical alignment on the right edge
of the base of a superscript, the expression

<msup>
<mi> x </mi>
<malignmark edge="right"/>
<mn> 2 </mn>

</msup>

is illegal, becausasup must have exactly 2 arguments; the correct expression would be:

<msup>
<mrow>
<mi> x </mi>
<malignmark edge="right"/>
</mrow>
<mn> 2 </mn>
</msup>

See also the warning about ‘tweaking’ in Sectif.6

3.2.8 String Literal (ms)
3.2.8.1 Description

Thems element is used to represent ‘string literals’ in expressions meant to be interpreted by computer algebra syster
or other systems containing ‘programming languages’. By default, string literals are displayed surrounded by doubl
guotes. As explained in Secti@?2.§ ordinary text embedded in a mathematical expression should be marked up with
mtext, Of iIN SOMe caseso Or mi, but never withns.

62

Note that the string literals encoded lay are ‘Unicode strings’ rather than ‘ASCII strings’. In practice, non-ASCI|
characters will typically be represented by entity references. For exarmpiegamp</ms> represents a string literal
containing a single charactés, and<ms>& ; amp ; </ms> represents a string literal containing 5 characters, the first
one of which isk.

Like all token elementsys does trim and collapse whitespace in its content according to the rules of Sectidghso
whitespace intended to remain in the content should be encoded as described in that section.

3.2.8.2 Attributes

ms elements accept the attributes listed in Seciéh?, and additionally:

Name values default
lquote string "
rquote string "

In visual renderers, the content of aa element is typically rendered with no extra spacing added around the string,
and a quote character at the beginning and the end of the string. By default, the left and right quote characters are b
the standard double quote charactguot ;. However, these characters can be changed withdhete andrquote
attributes respectively.

The content ofas elements should be rendered with visible ‘escaping’ of certain characters in the content, including
at least ‘double quote’ itself, and preferably whitespace other than individual space characters. The intent is for th
viewer to see that the expression is a string literal, and to see exactly which characters form its content. For exampl

un

<ms>double quote is "</ms> might be rendered as "double quote is \"".

3.2.9 Adding new character glyphs to MathML (@mglyph)
3.2.9.1 Description

Unicode defines a large number of characters used in mathematics, and in most cases, glyphs representing these ¢
acters are widely available in a variety of fonts. Although these characters should meet almost all users needs, MathM
recognizes that mathematics is not static and that new characters are added when convenient. Characters that bec
well accepted will likely be eventually incorporated by the Unicode Consortium or other standards bodies, but tha
is often a lengthy process. In the meantime, a mechanism is necessary for accessing glyphs from non-standard fo
representing these characters.

Themglyph element is the means by which users can directly access glyphs for characters that are not defined
Unicode, or not known to the renderer. Similarly, thelyph element can also be used to select glyph variants for
existing Unicode characters, as might be desirable when a glyph variant has begun to differentiate itself as a ne
character by taking on a distinguished mathematical meaning.

Themglyph element names a specific character glyph, and is valid inside any MathML leaf content listed in Sec-
tion 3.1.6(mi, etc.) or Sectiod.2.2(c1i, etc.) unless otherwise restricted by an attribute (@&ge=2 to<cn>). In order

for a visually-oriented renderer to render the character, the renderer must be told what font to use and what index with
that font to use.

3.2.9.2 Attributes

mglyph elements accept the attributes listed in Sectidh?, and the additional attributes listed here.

Name values default
alt string required
fontfamily string | css-fontfamily required
index integer required

63

The alt attribute provides an alternate name for the glyph. If the specified font can't be found, the renderer may ust
this name in a warning message or some unknown glyph notation. The hame might also be used by an audio renderel
symbol processing system and should be chosen to be descriptivéoititamily andindex uniquely identify the
mglyph; two mglyphs with the same values fdontfamily andindex should be considered identical by applications
that must determine whether two characters/glyphs are identicalaT’hattribute should not be part of the identity

test.

Thefontfamily andindex attributes name a font and position within that font. All font properties apart froim -
family are inherited. Variants of the font (e.g., bold) that may be inherited may be ignored if the variant of the font is
not present.

Authors should be aware that rendering requires the fonts referencegl pyh, which the MathML renderer may not
have access to or may be not be supported by the system on which the renderer runs. For these reasons, authors
encouraged to usgglyph only when absolutely necessary, and not for stylistic purposes.

3.29.3 Example

The following example illustrates how a researcher might useghgph construct with an experimental font to work
with braid group notation.

<mrow>
<mi><mglyph fontfamily="my-braid-font" index="2" alt="23braid"/></mi>
<mo>+</mo>
<mi><mglyph fontfamily="my-braid-font" index="5" alt="132braid"/></mi>
<mo>=</mo>
<mi><mglyph fontfamily="my-braid-font" index="3" alt="13braid"/></mi>
</mrow>

This might render as:

3.3 General Layout Schemata

Besides tokens there are several families of MathML presentation elements. One family of elements deals with variol
‘scripting’ notations, such as subscript and superscript. Another family is concerned with matrices and tables. Th
remainder of the elements, discussed in this section, describe other basic notations such as fractions and radicals
deal with general functions such as setting style properties and error handling.

3.3.1 Horizontally Group Sub-Expressionstfirow)
3.3.1.1 Description

An mrow element is used to group together any number of sub-expressions, usually consisting of one @6 more
elements acting as ‘operators’ on one or more other expressions that are their ‘operands’.

Several elements automatically treat their arguments as if they were containetriowa@lement. See the discussion
of inferredmrows in Sectior8.1.3 See alsafenced (Section3.3.9, which can effectively form amrow containing its
arguments separated by commas.

64

3.3.1.2 Attributes
This element only permitsd, xref, class andstyle attributes, as described in Sectidpd .5

mrow elements are typically rendered visually as a horizontal row of their arguments, left to right in the order in which
the arguments occur, or audibly as a sequence of renderings of the arguments. The description irB 2egtibn
suggested rendering rules fas elements assumes that all horizontal spacing between operators and their operands i
added by the rendering @b elements (or, more generally, embellished operators), not by the renderingmafotire

they are contained in.

MathML is designed to allow renderers to automaticathebreak expressions (that is, to break excessively long ex-
pressions into several lines), without requiring authors to specify explicitly how this should be done. This is becaus:
linebreaking positions can’'t be chosen well without knowing the width of the display device and the current font size,
which for many uses of MathML will not be known except by the renderer at the time of each rendering.

Determining good positions for linebreaks is complex, and rules for this are not described here; whether and how
is done is up to each MathML renderer. Typically, linebreaking will involve selection of ‘good’ points for insertion of
linebreaks between successive argumenig o elements.

Although MathML does not require linebreaking or specify a particular linebreaking algorithm, it has several features
designed to allow such algorithms to produce good results. These include the use of special entities for certain operatc
including invisible operators (see SectiBr2.5, or for providing hints related to linebreaking when necessary (see
Section3.2.6, and the ability to use nestadtows to describe sub-expression structure (see below).

mrow of one argument

MathML renderers are required to treatatow element containing exactly one argument as equivalent in all ways to the
single argument occurring alone, provided there are no attributes airdlveclement’s start tag. If there are attributes

on themrow element’s start tag, no requirement of equivalence is imposed. This equivalence condition is intended ft
simplify the implementation of MathML-generating software such as template-based authoring tools. It directly affects
the definitions of embellished operator and space-like element and the rules for determining the default value of th
form attribute of amo element; see Sectidh2.5and SectiorB.2.7. See also the discussion of equivalence of MathML
expressions in Chaptér

3.3.1.3 Proper grouping of sub-expressions using mrow

Sub-Expressions should be grouped by the document author in the same way as they are grouped in the mathemat
interpretation of the expression; that is, according to the underlying ‘syntax tree’ of the expression. Specifically, opere
tors and their mathematical arguments should occur in a single; more than one operator should occur directly in
onemrow only when they can be considered (in a syntactic sense) to act together on the interleaved arguments, e.g. 1
a single parenthesized term and its parentheses, for chains of relational operators, or for sequences of terms separ
by + and-. A precise rule is given below.

Proper grouping has several purposes: it improves display by possibly affecting spacing; it allows for more intelligen
linebreaking and indentation; and it simplifies possible semantic interpretation of presentation elements by comput
algebra systems, and audio renderers.

Although improper grouping will sometimes result in suboptimal renderings, and will often make interpretation other
than pure visual rendering difficult or impossible, any grouping of expressionsmsigs allowed in MathML syntax;
that is, renderers should not assume the rules for proper grouping will be followed.

65

Precise rule for proper grouping

A precise rule for when and how to nest sub-expressions usiog is especially desirable when generating MathML
automatically by conversion from other formats for displayed mathematics, sugXaw/fich don't always specify
how sub-expressions nest. When a precise rule for grouping is desired, the following rule should be used:

Two adjacent operators (ieo elements, possibly embellished), possibly separated by operands (i.e. anything other thar
operators), should occur in the samew only when the left operator has an infix or prefix form (perhaps inferred),
the right operator has an infix or postfix form, and the operators are listed in the same group of entries in the operat
dictionary provided in Appendik. In all other cases, nestedows should be used.

When forming a nestesirow (during generation of MathML) that includes just one of two successive operators with the
forms mentioned above (which mean that either operator could in principle act on the intervening operand or operandz
it is necessary to decide which operator acts on those operands directly (or would do so, if they were present). Ideall
this should be determined from the original expression; for example, in conversion from an operator-precedence-bas
format, it would be the operator with the higher precedence. If this cannot be determined directly from the original
expression, the operator that occurs later in the suggested operator dictionary (Appecatixoe assumed to have a
higher precedence for this purpose.

Note that the above rule has no effect on whether any MathML expression is valid, only on the recommended way ¢
generating MathML from other formats for displayed mathematics or directly from written notation.

(Some of the terminology used in stating the above rule in defined in Secfidh)

3.3.1.4 Examples

As an example, 2+y-z should be written as:

<mrow>
<mrow>
<mn> 2 </mn>
<mo> ⁢ </mo>
<mi> x </mi>
</mrow>
<mo> + </mo>
<mi> y </mi>
<mo> - </mo>
<mi> z </mi>
</mrow>
The proper encoding ok(y) furnishes a less obvious example of nestitrgws:

<mrow>
<mo> (</mo>
<mrow>
<mi> x </mi>
<mo> , </mo>
<mi> y </mi>
</mrow>
<mo>) </mo>
</mrow>

In this case, a nestetkow is required inside the parentheses, since parentheses and commas, thought of as fence au
separator ‘operators’, do not act together on their arguments.

66

3.3.2 Fractions fifrac)
3.3.2.1 Description

Themfrac elementis used for fractions. It can also be used to mark up fraction-like objects such as binomial coefficient:
and Legendre symbols. The syntax fditrac is

<mfrac> numerator denominator </mfrac>

3.3.2.2 Attributes of mfrac

In addition to the attributes listed below, this element permitsxref, class andstyle attributes, as described in
Section2.4.5

Name values default
linethickness number [v-unit] | thin | medium | thick 1 (rule thickness)
numalign left | center | right center
denomalign left | center | right center

bevelled true | false false

Thelinethickness attribute indicates the thickness of the horizontal ‘fraction bar’, or ‘rule’, typically used to render
fractions. A fraction withLinethickness="0" renders without the bar, and might be used within binomial coefficients.
A linethickness greater than one might be used with nested fractions. These cases are shown below:

a a

(6) B

C

d
In general, the value dfinethickness can be a number, as a multiplier of the default thickness of the fraction bar

(the default thickness is not specified by MathML), or a number with a unit of vertical length (see Sedtibg, or
one of the keywordaedium (same as 1)thin (thinner than 1, otherwise up to the renderer)tiotck (thicker than 1,
otherwise up to the renderer).

The numalign and denomalign attributes control the horizontal alignment of the numerator and denominator re-
spectively. Typically, numerators and denominators are centered, but a very long numerator or denominator might t
displayed on several lines and a left alignment might be more appropriate for displaying them.

Thebevelled attribute determines whether the fraction is displayed with the numerator above the denominator sep
arated by a horizontal line or whether a diagonal line is used to separate a slightly raised numerator from a slightl
lowered denominator. The latter form corresponds to the attribute value beirrgand provides for a more compact
form for simple numerator and denominators. An example illustrating the bevelled form is show below:

1 _1
R

Themfrac element setelisplaystyle to false, or if it was already false incremengeriptlevel by 1, within
numerator anddenominator. These attributes are inherited by every element from its rendering environment, but can be
set explicitly only on theanstyle element. (See Sectidh3.4)

3.3.2.3 Examples

The examples shown above can be represented in MathML as:

<mrow>
<mo> (</mo>
<mfrac linethickness="0">

67

<mi> a </mi>
<mi> b </mi>
</mfrac>
<mo>) </mo>
</mrow>

<mfrac linethickness="2">

<mfrac>
<mi> a </mi>
<mi> b </mi>
</mfrac>
<mfrac>
<mi> ¢ </mi>
<mi> d </mi>
</mfrac>
</mfrac>

<mfrac>
<mn> 1 </mn>
<mrow>
<msup>
<mi> x </mi>
<mn> 3 </mn>
</msup>
<mo> + </mo>
<mfrac>
<mi> x </mi>
<mn> 3 </mn>
</mfrac>
</mrow>
</mfrac>
<mo> = </mo>
<mfrac bevelled="true">
<mn> 1 </mn>
<mrow>
<msup>
<mi> x </mi>
<mn> 3 </mn>
</msup>
<mo> + </mo>
<mfrac>
<mi> x </mi>
<mn> 3 </mn>
</mfrac>
</mrow>
</mfrac>

A more generic example is:

<mfrac>

68

<mrow>
<mn> 1 </mn>
<mo> + </mo>
<msqrt>
<mn> 5 </mn>
</msqrt>
</mrow>
<mn> 2 </mn>
</mfrac>

3.3.3 Radicals fisqrt, mroot)
3.3.3.1 Description

These elements construct radicals. Tkgrt element is used for square roots, while treot element is used to draw
radicals with indices, e.g. a cube root. The syntax for these elements is:

<msqrt> base </msqrt>
<mroot> base index </mroot>

Themroot element requires exactly 2 arguments. Howevegrt accepts any number of arguments; if this number is
not 1, its contents are treated as a single ‘infetresk’ containing its arguments, as described in Secldn3

3.3.3.2 Attributes
This element only permitsd, xref, class andstyle attributes, as described in Sectidd .5

Themroot element incrementscriptlevel by 2, and setdisplaystyle to false, within index, but leaves both
attributes unchanged withibase. Themsqrt element leaves both attributes unchanged within all its arguments. These
attributes are inherited by every element from its rendering environment, but can be set explicitly nstyoa. (See
Section3.3.4)

3.34 Style Changen{style)
3.3.4.1 Description

Themstyle element is used to make style changes that affect the rendering of its comtantse can be given any
attribute accepted by any MathML presentation element provided that the attribute value is inherited, computed or h:
a default value; presentation element attributes whose values are required are not accepted iyl thelement. In
additionmstyle can also be given certain special attributes listed below.

Themstyle element accepts any number of arguments. If this number is not 1, its contents are treated as a sing
‘inferredmrow’ formed from all its arguments, as described in Secah3

Loosely speaking, the effect of thestyle element is to change the default value of an attribute for the elements it
contains. Style changes work in one of several ways, depending on the way in which default values are specified for
attribute. The cases are:

° Some attributes, such @dsplaystyle or scriptlevel (explained below), are inherited from the sur-
rounding context when they are not explicitly set. Specifying such an attribute natgne element sets
the value that will be inherited by its child elements. Unless a child element overrides this inherited value, it
will pass it on to its children, and they will pass it to their children, and so on. But if a child element does
override it, either by an explicit attribute setting or automatically (as is commagcioiptlevel), the new

69

(overriding) value will be passed on to that element’s children, and then to their children, etc, until it is again
overridden.

. Other attributes, such dsinethickness onmfrac, have default values that are not normally inherited.
That is, if thelinethickness attribute is not set on the start tag ofmfrac element, it will normally use
the default value of, even if it was contained in a largefrac element that set this attribute to a different
value. For attributes like this, specifying a value withmstyle element has the effect of changing the
default value for all elements within its scope. The net effect is that setting the attribute valueswvgthe
propagates the change to all the elements it contains directly or indirectly, except for the individual element:
on which the value is overridden. Unlike in the case of inherited attributes, elements that explicitly override
this attribute have no effect on this attribute’s value in their children.

° Another group of attributes, such asretchy andform, are computed from operator dictionary informa-
tion, position in the enclosingrow, and other similar data. For these attributes, a value specified by an
enclosingnstyle overrides the value that would normally be computed.

Note that attribute values inherited fromagityle in any manner affect a given element in tixetyle’s content only

if that attribute is not given a value in that element’s start tag. On any element for which the attribute is set explicitly,
the value specified on the start tag overrides the inherited value. The only exception to this rule is when the value give
on the start tag is documented as specifying an incremental change to the value inherited from that element’s context
rendering environment.

Note also that the difference between inherited and non-inherited attributessetyidy, explained above, only matters
when the attribute is set on some element withintheyle’s contents that has children also setting it. Thus it never
matters for attributes, such aslor, which can only be set on token elements (omenyle itself).

There is one exceptional elemenpadded, whose attributes cannot be set wiiityle. Thempadded element shares
several attribute names with thepace andmo elements. Thus, when the attributesith, height anddepth are spec-
ified on anmstyle element, they apply only to thespace element, and not the corresponding attributespaidded.
Similarly, whenlspace is set withmstyle, it applies only to thewo element.

3.34.2 Attributes

As stated aboveystyle accepts all attributes of all MathML presentation elements which do not have required values.
That is, all attributes which have an explicit default value or a default value which is inherited or computed are accepte
by themstyle element.

This element also accepid, xref, class andstyle attributes, as described in Sectidd.5

Additionally, mstyle can be given the following special attributes that are implicitly inherited by every MathML ele-
ment as part of its rendering environment:

70

Name values default

scriptlevel [+’ | -] unsigned-integer inherited
displaystyle true | false inherited
scriptsizemultiplier number 0.71
scriptminsize number v-unit 8pt

color #rgb | #rrggbb | html-color-name inherited
background #rgb | #rrggbb | transparent | html-color-name transparent
veryverythinmathspace number h-unit 0.0555556em
verythinmathspace number h-unit 0.111111em
thinmathspace number h-unit 0.166667em
mediummathspace number h-unit 0.222222em
thickmathspace number h-unit 0.277778em
verythickmathspace number h-unit 0.333333em
veryverythickmathspace number h-unit 0.388889%em

scriptlevel and displaystyle

MathML uses two attributesiisplaystyle andscriptlevel, to control orthogonal presentation features th¢ T
encodes into ongtyle attribute with values \displaystyle, \textstyle, \scriptstyle, and \scriptscriptstyle. The correspond-
ing values odisplaystyle andscriptlevel for those EX styles would becrue ando, false ando, false and1,
andfalse and2, respectively.

The main effect of theisplaystyle attribute is that it determines the effect of other attributes such aapeop and
movablescripts attributes ofno. The main effect of thecriptlevel attribute is to control the font size. Typically,

the higher thecriptlevel, the smaller the font size. (Non-visual renderers can respond to the font size in an analogous
way for their medium.) More sophisticated renderers may also choose to use these attributes in other ways, such
rendering expressions withisplaystyle=false in a more vertically compressed manner.

These attributes are given initial values for the outermost expression of an instance of MathML based on its renderir
environment. A short list of layout schemata described below modify these values for some of their sub-expression
Otherwise, values are determined by inheritance whenever they are not directly specified on a given element’s start t

For an instance of MathML embedded in a textual data format (such as HTML) in ‘display’ mode, i.e. in place of a
paragraphdisplaystyle = true andscriptlevel = 0 for the outermost expression of the embedded MathML; if
the MathML is embedded in ‘inline’ mode, i.e. in place of a characegplaystyle = false andscriptlevel =

0 for the outermost expression. See Chaptéor further discussion of the distinction between ‘display’ and ‘inline’
embedding of MathML and how this can be specified in particular instances. In general, a MathML renderer may
determine these initial values in whatever manner is appropriate for the location and context of the specific instance
MathML it is rendering, or if it has no way to determine this, based on the way it is most likely to be used; as a last
resort it is suggested that it use the most generic valiigglaystyle = "true" andscriptlevel ="0".

The MathML layout schemata that typically display some of their arguments in smaller type or with less vertical spacing
namely the elements for scripts, fractions, radicals, and tables or matricédsspetystyle to false, and in some
cases increasecriptlevel, for those arguments. The new values are inherited by all sub-expressions within those
arguments, unless they are overridden.

The specific rules by which each element modifiesplaystyle and/orscriptlevel are given in the specifica-

tion for each element that does so; the complete list of elements that modify either attribute are: the ‘scripting’ ele
mentsmsub, msup, msubsup, munder, mover, munderover, andmmultiscripts; and the elementsfrac, mroot,
andmtable.

Whenmstyle is given ascriptlevel attribute with no sign, it sets the valuesdfriptlevel within its contents to the
value given, which must be a nonnegative integer. When the attribute value consists of a sign followed by an integer, tt

71

value ofscriptlevel is incremented (for '+’) or decremented (for '-’) by the amount given. The incremental syntax
for this attribute is an exception to the general rules for setting inherited attributesnssinge, and is not allowed by
any other attribute omstyle.

Whenever thescriptlevel is changed, either automatically or by being explicitly incremented, decremented, or set,
the current font size is multiplied by the valuesafriptsizemultiplier to the power of the change #itriptlevel.

For example, ifscriptlevel is increased by 2, the font size is multiplied ®yriptsizemultiplier twice in suc-
cession; ifscriptlevel is explicitly set to 2 when it had been 3, the font size is divided&yiptsizemultiplier.
References tdontsize in this section should be interpreted to mean eitherfihretsize attribute or thenathsize
attribute.

The default value okcriptsizemultiplier is less than one (in fact, it is approximately the square root of 1/2),
resulting in a smaller font size with increasiagriptlevel. To prevent scripts from becoming unreadably small, the
font size is never allowed to go below the valuesetiptminsize as a result of a change seriptlevel, though it

can be set to a lower value using thentsize attribute (Sectior3.2.2 onmstyle or on token elements. If a change to
scriptlevel would cause the font size to become lower tBaniptminsize using the above formula, the font size
is instead set equal tcriptminsize within the sub-expression for whidtriptlevel was changed.

In the syntax forscriptminsize, v-unit represents a unit of vertical length (as described in Seéidnt.9. The
most common unit for specifying font sizes in typesettingtigpoints).

Explicit changes to théontsize attribute have no effect on the valuesafriptlevel.

Further details on scriptlevel for renderers

For MathML renderers that support CSS style sheets, or some other analogous style sheet mechanism, absolute
relative changes téontsize (or other attributes) may occur implicitly on any element in response to a style sheet.
Changes tfontsize of this kind also have no effect asxriptlevel. A style sheet-induced changefontsize
overridesscriptminsize in the same way as for an explicit changefientsize in the element’s start tag (dis-
cussed above), whether it is specified in the style sheet as an absolute or a relative change. (However, any subseqt
scriptlevel-induced change toontsize will still be affected by it.) As is required for inherited attributes in CSS,

the style sheet-modifietbntsize is inherited by child elements.

If the same element is subject to both a style sheet-induced and an autoseatipt(level-related) change to its
ownfontsize, thescriptlevel-related change is done first - in fact, in the simplest implementation of the element-
specific rules foscriptlevel, this change would be done by the element’s parent as part of producing the rendering
properties it passes to the given element, since it is the parent element that knows wheipen evel should be
changed for each of its child elements.

If the element’s owrfontsize is changed by a style sheet and it also chargesptlevel (and thusfontsize) for

one of its children, the style sheet-induced change is done first, followed by the change inherited by that child. If mor
than one child'sscriptlevel is changed, the change inherited by each child has no effect on the other children. (As
a mnemonic rule that applies to a ‘parse tree’ of elements and their children, style sheet-induced chzviges i@

can be associated to nodes of the tree, i.e. to MathML elementscan@tlevel-related changes can be associated

to the edges between parent and child elements; then the order of the associated changes corresponds to the orde
nodes and edges in each path down the tree.) For general information on the relative order of processing of propert
set by style sheets versus by attributes, see the appropriate subsection of CSS-compatible attributes 2v4S&étion

If scriptlevel is changed incrementally by aiztyle element that also sets certain other attributes, the overall effect
of the changes may depend on the order in which they are processed. In such cases, the attributes in the following |
should be processed in the following order, regardless of the order in which they occur in the XML-format attribute list
of themstyle start tagscriptsizemultiplier, scriptminsize, scriptlevel, fontsize.

72

Note thatscriptlevel can, in principle, attain any integral value by being decremented sufficiently, even though it can
only be explicitly set to nonnegative values. Negative valuesefiptlevel generated in this way are legal and should
work as described, generating font sizes larger than those of the surrounding expressiascSipeeevel is initially

0 and never decreases automatically, it will always be nonnegative unless it is decremented pasi€tysing

Explicit decrements ofcriptlevel after the font size has been limited byriptminsize as described above would
produce undesirable results. This might occur, for example, in a representation of a continued fraction, in which th
scriptlevel was decremented for part of the denominator back to its value for the fraction as a whole, if the continue
fraction itself was located in a place that had a higliptlevel. To prevent this problem, MathML renderers should,
when decrementingcriptlevel, use as the initial font size the value the font size would have had if it had never
been limited byscriptminsize. They should not, however, ignore the effects of explicit setting&atsize, even

to values belovgcriptminsize.

Since MathML renderers may be unable to make use of arbitrary font sizes with good results, they may wish to modif
the mapping from scriptlevel to fontsize to produce better renderings in their judgment. In particular, if fontsizes have
to be rounded to available values, or limited to values within a range, the details of how this is done are up to th
renderer. Renderers should, however, ensure that a series of incremental changégtibevel resulting in its return

to the same value for some sub-expression that it had in a surrounding expression results in the same fontsize for tl
sub-expression as for the surrounding expression.

Color and background attributes

The color attribute controls the color in which the content of tokens is rendered. Additionally, when inherited from
mstyle or from a MathML expression’s rendering environment, it controls the color of all other drawing by MathML
elements, including the lines or radical signs that can be drawttt byc, mtable, ormsqrt.

Note that thebackground attribute, though not inherited, has the default value ‘transparent’ (as in CSS2), which
effectively allows an element’s parent to control its background.

The values otolor andbackground can be specified as a string consisting of '#’ followed without intervening whites-
pace by either 1-digit or 2-digit hexadecimal values for the red, green, and blue components, respectively, of the desir
color, with the same number of digits used for each component (or as the keyword ‘transpareatidgtound).

The hexadecimal digits are not case-sensitive. The possible 1-digit values range from 0 (component not present) to
(component fully present), and the possible 2-digit values range from 00 (component not present) to FF (compone
fully present), with the 1-digit valug being equivalent to the 2-digit value (rather tharx0). % x0 would be a more
strictly correct notation, but renders terribly in some browsers.

These attributes can also be specified astatl-color-name, which is defined in the following subsection.

CSS compeatibility of color attributes

The color syntax described above is a subset of the syntax ebthe andbackground-color properties of CSS2.
(Thebackground-color syntax is in turn a subset of the full CS82ckground property syntax, which also permits
specification of (for example) background images with optional repeats. The more general attribute.clgggreund

is used in MathML to facilitate possible extensions to the attribute’s scope in future versions of MathML.)

Color values on either attribute can also be specified as@ah-color-name, thatis, as one of the color-name keywords
defined in |] (aqua, black, blue, fuchsia, gray, green, lime, maroon, navy, olive, purple, red, silver, teal, white,
and yellow). Note that the color name keywords are not case-sensitive, unlike most keywords in MathML attribute
values for compatibility with CSS and HTML.

73

Precise background region not specified

The suggested MathML visual rendering rules do not define the precise extent of the region whose background
affected by using the&ackground attribute onmstyle, except that, whemastyle’'s content does not have negative
dimensions and its drawing region is not overlapped by other drawing due to surrounding negative spacing, this regic
should lie behind all the drawing done to render the content afighgle, but should not lie behind any of the drawing
done to render surrounding expressions. The effect of overlap of drawing regions caused by negative spacing on t
extent of the region affected by theckground attribute is not defined by these rules.

Meaning of named mathspaces

The spacing between operators is often one of a small number of potential values. MathML names these values a
allows their values to be changed. Because the default values for spacing around operators that are given in the oper:
dictionary AppendixF are defined using these named spaces, changing their values will produce tighter or loosel
spacing. These values can be used anywharaiait or v-unit unit is allowed. See Sectidh4.4.2

The predefinedamedspaces arewveryverythinmathspace, verythinmathspace, thinmathspace, mediummath-
space, thickmathspace, verythickmathspace, Of veryverythickmathspace. The default values oferyvery-
thinmathspace... veryverythickmathspace are 1/18em...7/18em, respectively.

3.3.4.3 Examples

The example of limiting the stretchiness of a parenthesis shown in the section on <mo>,

<mrow>
<mo maxsize="1"> (</mo>
<mfrac> <mi> a </mi> <mi> b </mi> </mfrac>
<mo maxsize="1">) </mo>

</mrow>

can be rewritten usingstyle as:

<mstyle maxsize="1">
<mrow>
<mo> (</mo>
<mfrac> <mi> a </mi> <mi> b </mi> </mfrac>
<mo>) </mo>
</mrow>
</mstyle>

3.35 Error Message ferror)
3.3.5.1 Description

Themerror element displays its contents as an ‘error message’. This might be done, for example, by displaying the cor
tents in red, flashing the contents, or changing the background color. The contents can be any expression or express
sequence.

merror accepts any number of arguments; if this number is not 1, its contents are treated as a single ninéerrad
described in Sectiof.1.3

The intent of this element is to provide a standard way for programgtiatate MathML from other input to report
syntax errors in their input. Since it is anticipated that preprocessors that parse input syntaxes designed for easy he

74

entry will be developed to generate MathML, it is important that they have the ability to indicate that a syntax error
occurred at a certain point. See Sectioh.2

The suggested use mérror for reporting syntax errors is for a preprocessor to replace the erroneous part of its input
with anmerror element containing a description of the error, while processing the surrounding expressions normally
as far as possible. By this means, the error message will be rendered where the erroneous input would have appea
had it been correct; this makes it easier for an author to determine from the rendered output what portion of the inpt
was in error.

No specific error message format is suggested here, but as with error messages from any program, the format shoulc
designed to make as clear as possible (to a human viewer of the rendered error message) what was wrong with the in
and how it can be fixed. If the erroneous input contains correctly formatted subsections, it may be useful for these to t
preprocessed normally and included in the error message (within the contentsi@ftle element), taking advantage

of the ability ofmerror to contain arbitrary MathML expressions rather than only text.

3.3.5.2 Attributes

This element only permitsd, xref, class andstyle attributes, as described in Sectidpd .5

3.3.5.3 Example

If a MathML syntax-checking preprocessor received the input

<mfraction>
<mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow>
<mn> 2 </mn>

</mfraction>

which contains the non-MathML elemenfraction (presumably in place of the MathML elemeinirac), it might
generate the error message

<merror>
<mtext> Unrecognized element: mfraction;
arguments were: </mtext>
<mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow>
<mtext> and </mtext>
<mn> 2 </mn>
</merror>

Note that the preprocessor’s input is not, in this case, valid MathML, but the error message it outputs is valid MathML

3.3.6 Adjust Space Around Contentgpadded)
3.3.6.1 Description

An mpadded element renders the same as its content, but with its overall size and other dimensions (such as baselil
position) modified according to its attributes. Tiyeadded element does not rescale (stretch or shrink) its content; its
only effect is to modify the apparent size and position of the ‘bounding box’ around its content, so as to affect the
relative position of the content with respect to the surrounding elements. The name of the element reflects the use
mpadded to effectively add ‘padding’, or extra space, around its content. If the ‘padding’ is negative, it is possible for
the content olpadded to be rendered outside thmpadded element’s bounding box; see below for warnings about
several potential pitfalls of this effect.

75

The mpadded element accepts any number of arguments; if this number is not 1, its contents are treated as a sing|
‘inferredmrow’ as described in Sectioh.1.3

It is suggested that audio renderers add (or shorten) time delays based on the attributes representing horizontal sp
(width andlspace).

3.3.6.2 Attributes

In addition to the attributes listed below, this element permitsxref, class andstyle attributes, as described in
Section2.4.5

Name values default

width [+ | -] unsigned-number (% [pseudo-unit] | pseudo-unit | h-unit | namedspace) same as content
Ispace [+ |- Junsigned-number (% [pseudo-unit | | pseudo-unit | h-unit) 0

height [+ |- Junsigned-number (% [pseudo-unit | | pseudo-unit | v-unit) same as content
depth [+ |- Junsigned-number (% [pseudo-unit | | pseudo-unit | v-unit) same as content

(The pseudo-unit syntax symbol is described below.)

These attributes modify the dimensions of the ‘bounding box’ ofripeided element. The dimensions (which have

the same names as the attributes) are defined in the next subsection. Depending on the format of the attribute val
a dimension may be set to a new value, or to an incremented or decremented version of the content’s correspondi
dimension. Values may be specified as multiples or percentages of any of the dimensions of the normal rendering of t
element’s content (using so-called ‘pseudo-units’), or they can be set directly using standard unitsZSgétian

If an attribute value begins with-aor - sign, it specifies an increment or decrement of the corresponding dimension
by the following length value (interpreted as explained below). Otherwise, the corresponding dimension is set directl
to the following length value. Note that theand- do not mean that the following value is positive or negative, even
when an explicit length unith-unit or v-unit) is given. In particular, these attributes cannot directly set a dimension to

a negative value.

Length values (after the optional sign, which is not part of the length value) can be specified in several formats. Eac
format begins with amnsigned-number, which may be followed by & sign and an optional ‘pseudo-unit’ (denoted by
pseudo-unit in the attribute syntaxes above), by a pseudo-unit alone, or by one of the length units (denbtedity

or v-unit) specified in Sectio.4.4.2 not including’. The possible pseudo-units are the keywordléth, 1space,
height, anddepth; they each represent the length of the same-named dimension mpdhieed element’s content

(not of thempadded element itself). The lengths representedhbynit or v-unit are described in Sectich4.4.2

In any of these formats, the length value specified is the product of the specified number and the length represented
the unit or pseudo-unit. The result is multiplied by 0.0% i given. If no pseudo-unit is given aftér the one with the
same name as the attribute being specified is assumed.

Some examples of attribute formats using pseudo-units (explicit or default) are as falkgyd="100% height"
anddepth="1.0 height" both set the depth of thepadded element to the height of its conterdepth="105%" sets
the depth to 1.05 times the content’s depth, and eileeth="+100%" or depth="200%" sets the depth to twice the
content’s depth.

Dimensions that would be positive if the content was rendered normally cannot be made negativepasdieg;

a positive dimension is set to 0 if it would otherwise become negative. Dimensions that are initially 0 can be made
negative, but this should generally be avoided. See the warnings below on the use of negative spacing for ‘tweaking’ t
conveying meaning.

The rules given above imply that all of the following attribute settings have the same effect, which is to leave the
content’s dimensions unchanged:

76

<mpadded width="+0em"> ... </mpadded>

<mpadded width="+0%"> ... </mpadded>
<mpadded width="-Oem"> ... </mpadded>
<mpadded width="- 0 height"> ... </mpadded>
<mpadded width="100%"> ... </mpadded>
<mpadded width="100% width"> ... </mpadded>
<mpadded width="1 width"> ... </mpadded>
<mpadded width="1.0 width"> ... </mpadded>
<mpadded> ... </mpadded>

3.3.6.3 Meanings of dimension attributes
See Appendix for further information about some of the typesetting terms used here.

The width attribute refers to the overall horizontal width of a bounding box. By default (i.e. vilsgace is not
modified), the bounding box of the content of mprdded element should be rendered flush with the left edge of the
mpadded element’s bounding box. Thus, increasingith alone effectively adds space on the right edge of the box.

Thelspace attribute refers to the amount of space between the left edge of a bounding box and the start of the renderir
of its contents’ bounding box actually begins. Unlike the other dimensibyisace does not correspond to a real
property of a bounding box, but exists only transiently during the computations done by each instggckief. It is
provided so that there is a way to add space on the left edge of a bounding box.

The rationale behind usingidth andlspace to control horizontal padding instead of more symmetric attributes, such
as a hypotheticatspace andlspace, is that it is desirable to have a ‘width’ pseudo unit, in part because ‘width’ is an
actual property of a bounding box.

Theheight attribute refers to the amount of vertical space between the baseline (the line along the bottom of mos
letter glyphs in normal text rendering) and the top of the bounding box.

Thedepth attribute refers to the amount of vertical space between the bottom of the bounding box and the baseline.

MathML renderers should ensure that, except for the effects of the attributes, relative spacing between the contents
mpadded and surrounding MathML elements is not modified by replacinggeided element with amrow element

with the same content. This holds even if linebreaking occurs withimplagded element. However, if ampadded
element with non-default attribute values is subjected to linebreaking, MathML does not define how its attributes o
rendering interact with the linebreaking algorithm.

3.3.6.4 Warning: nonportability of ‘tweaking’

A likely temptation for the use of thepadded andmspace elements (and perhaps alsghantom andmtext) will be
for an author to improve the spacing generated by a specific renderer by slightly modifying it in specific expressions
i.e. to ‘tweak’ the rendering.

Authors are strongly warned thaifferent MathML renderers may use different spacing rules for computing the relative
positions of rendered symbols in expressions that have no explicit modifications to their spacing; if renderer B improve
upon renderer A's spacing rules, explicit spacing added to improve the output quality of renderer A may produce ver
poor results in renderer B, very likely worse than without any ‘tweaking’ at all.

Even when a specific choice of renderer can be assumed, its spacing rules may be improved in successive versions
that the effect of tweaking in a given MathML document may grow worse with time. Also, when style sheet mechanisms
are extended to MathML, even one version of a renderer may use different spacing rules for users with different styl
sheets.

77

Therefore, it is suggested that MathML markup never msedded or mspace elements to tweak the rendering of
specific expressions, unless the MathML is generated solely to be viewed using one specific version of one MathM
renderer, using one specific style sheet (if style sheets are available in that renderer).

In cases where the temptation to improve spacing proves too strong, carefuhpad@$d, mphantom, or the alignment
elements (SectioB.5.5 may give more portable results than the direct insertion of extra spacensgiage or mtext.
Advice given to the implementors of MathML renderers might be still more productive, in the long run.

3.3.6.5 Warning: spacing should not be used to convey meaning

MathML elements that permit ‘negative spacing’, namedypace, mpadded, andmtext, could in theory be used to
simulate new notations or ‘overstruck’ characters by the visual overlap of the renderings of more than one MathML
sub-expression.

This practice istrongly discouraged in all situations, for the following reasons:

it will give different results in different MathML renderers (so the warning about ‘tweaking’ applies);

it is likely to appear much worse than a more standard construct supported by good renderers;

such expressions are almost certain to be uninterpretable by audio renderers, computer algebra systems, t
searches for standard symbols, or other processors of MathML input.

More generally, any construct that uses spacing to convey mathematical meaning, rather than simply as an aid to viewi
expression structure, is discouraged. That is, the constructs that are discouraged are those that would be interpre
differently by a human viewer of rendered MathML if all explicit spacing was removed.

If such constructs are used in spite of this warning, they should be enclosegraatics element that also provides
an additional MathML expression that can be interpreted in a standard way.

For example, the MathML expression

<mrow>
<mpadded width="0"> <mi> C </mi> </mpadded>
<mspace width="0.3em"/>
<mtext> | </mtext>

</mrow>

forms an overstruck symbol in violation of the policy stated above; it might be intended to represent the set of comple:
numbers for a MathML renderer that lacks support for the standard symbol used for this purpose. This kind of constru
should always be avoided in MathML, for the reasons stated above; indeed, it should never be necessary for stand:
symbols, since a MathML renderer with no better method of rendering them is free to use overstriking internally, so tha
it can still support general MathML input.

However, if for whatever reason such a construct is used in MathML, it should always be encloseemimaics
element such as

<semantics>

<mrow>
<mpadded width="0"> <mi> C </mi> </mpadded>
<mspace width="0.3em"/>
<mtext> | </mtext>

</mrow>

<annotation-xml encoding="MathML-Presentation">
<mi> ℂ </mi>

78

</annotation-xml>
</semantics>

which provides an alternative, standard encoding for the desired symbol, which is much more easily interpreted the
the construct using negative spacing. (The alternative encoding in this example uses MathML presentation elemen
the content elements described in Chagtehould also be considered.)

(The above warning also applies to most uses of rendering attributes to alter the meaning conveyed by an expressi
with the exception of attributes ari (such agontweight) used to distinguish one variable from another.)

3.3.7 Making Subexpressions Invisibler{phantom)
3.3.7.1 Description

The mphantom element renders invisibly, but with the same size and other dimensions, including baseline position,
that its contents would have if they were rendered normafiyantom can be used to align parts of an expression by
invisibly duplicating sub-expressions.

Themphantom element accepts any number of arguments; if this number is not 1, its contents are treated as a sing|
‘inferredmrow’ formed from all its arguments, as described in Secah3

3.3.7.2 Attributes
This element only permitsd, xref, class andstyle attributes, as described in Sectidd.5

Note that it is possible to wrap both aphantom and anmpadded element around one MathML expression, as in
<mphantom><mpadded attribute-settings> ... </mpadded></mphantom>, to change its size and make it in-
visible at the same time.

MathML renderers should ensure that the relative spacing between the contentspatanom element and the sur-
rounding MathML elements is the same as it would be ifitplantom element were replaced by anow element with
the same content. This holds even if linebreaking occurs withinphentom element.

For the above reasomphanton is not considered space-like (SectiBr2.7) unless its content is space-like, since the
suggested rendering rules for operators are affected by whether nearby elements are space-like. Even so, the warr
about the legal grouping of space-like elements may apply to usgshahtom.

There is one situation where the preceding rule for renderingphantom may not give the desired effect. When
anmphantom iS wrapped around a subsequence of the arguments of@n the default determination of thi&orm
attribute for amo element within the subsequence can change. (See the default valuef ofihattribute described in
Section3.2.5) It may be necessary to add an expligitrm attribute to such amo in these cases. This is illustrated in
the following example.

3.3.7.3 Examples

In this examplemphantom is used to ensure alignment of corresponding parts of the numerator and denominator of a
fraction:

<mfrac>

<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>

79

<mo> + </mo>
<mi> z </mi>
</mrow>
<mrow>
<mi> x </mi>
<mphantom>
<mo form="infix"> + </mo>
<mi> y </mi>
</mphantom>
<mo> + </mo>
<mi> z </mi>
</mrow>
</mfrac>

This would render as something like

X+y+z
X 4z

rather than as

X+y+z
X+2Z

The explicit attribute settingorm="infix" on the mo element inside thephantom sets theform attribute to what it
would have been in the absence of the surroundisighntom. This is necessary since otherwise, theign would be
interpreted as a prefix operator, which might have slightly different spacing.

Alternatively, this problem could be avoided without any explicit attribute settings, by wrapping each of the arguments
<mo>+</mo> and<mi>y</mi> in its ownmphantom element, i.e.

<mfrac>
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
+ </mo>
z </mi>

<mo>
<mi>
</mrow>
<mrow>
<mi> x </mi>
<mphantom>
<mo> + </mo>
</mphantom>
<mphantom>
<mi> y </mi>
</mphantom>
<mo> + </mo>
<mi> z </mi>
</mrow>
</mfrac>

80

3.3.8 Expression Inside Pair of Fencesfenced)
3.3.8.1 Description

Themfenced element provides a convenient form in which to express common constructs involving fences (i.e. braces
brackets, and parentheses), possibly including separators (such as comma) between the arguments.

For examplegmfenced> <mi>x</mi> </mfenced> renders as X)' and is equivalent to

<mrow> <mo> (</mo> <mi>x</mi> <mo>) </mo> </mrow>
and<mfenced> <mi>x</mi> <mi>y</mi> </mfenced> renders as X, y)' and is equivalent to

<mrow>
<mo> (</mo>
<mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow>
<mo>) </mo>
</mrow>
Individual fences or separators are represented usinglements, as described in Secti®2.5 Thus, anynfenced
element is completely equivalent to an expanded form described below; either form can be used in MathML, at th
convenience of an author or of a MathML-generating program. A MathML renderer is required to render either of thes
forms in exactly the same way.

In general, amfenced element can contain zero or more arguments, and will enclose them between fencesdn;an

if there is more than one argument, it will insert separators between adjacent arguments, using an additionabwested
around the arguments and separators for proper grouping (S&ctidh The general expanded form is shown below.
The fences and separators will be parentheses and comma by default, but can be changed using attributes, as show
the following table.

3.3.8.2 Attributes

In addition to the attributes listed below, this element permitsxref, class andstyle attributes, as described in
Section2.4.5

Name values default
open string (

close string)
separators character * ,

A genericmfenced element, with all attributes explicit, looks as follows:

<mfenced open="opening-fence"
close="closing-fence"
separators="sep#l sep#2 ... sep#(n-1)" >
arg#l

arg#n
</mfenced>
Theopening-fence andclosing-fence are arbitrary strings. (Since they are used as the contenteiements, any
whitespace they contain will be trimmed and collapsed as described in S2ctiGn

The value olseparators is a sequence of zero or more separator characters (or entity references), optionally separate
by whitespace. Eackep#i consists of exactly one character or entity reference. Tdugmrators=", ;" is equivalent
to separators=" , ; ".

81

The generahfenced element shown above is equivalent to the following expanded form:

<mrow>
<mo fence="true"> opening-fence </mo>
<mrow>
arg#l
<mo separator="true"> sep#l </mo>

<mo separator="true"> sep#(n-1) </mo>
arg#n
</mrow>
<mo fence="true"> closing-fence </mo>
</mrow>

Each argument except the last is followed by a separator. Thermoeris added for proper grouping, as described in
Section3.3.1

When there is only one argument, the above form has no separatorsgsirtwe arg#l </mrow> iS equivalent to
arg#1 (as described in Sectidh3.]), this case is also equivalent to:

<mrow>
<mo fence="true"> opening-fence </mo>
arg#l
<mo fence="true"> closing-fence </mo>
</mrow>

If there are too many separator characters, the extra ones are ignored. If separator characters are given, but there are
few, the last one is repeated as necessary. Thus, the default vakieseb tors="," is equivalent teseparators=",",
separators=",,", etc. If there are no separator characters provided but some are needed, for exaryHe ifcors="

" or " and there is more than one argument, then no separator elements are inserted at all - that is, the<ements
separator="true"> sep#i </mo> are left out entirely. Note that this is different from inserting separators consisting

of mo elements with empty content.

Finally, for the case with no arguments, i.e.

<mfenced open="opening-fence"
close="closing-fence"
separators="anything" >
</mfenced>

the equivalent expanded form is defined to include just the fences withinan

<mrow>

<mo fence="true"> opening-fence </mo>

<mo fence="true"> closing-fence </mo>
</mrow>
Note that not all ‘fenced expressions’ can be encoded hyfenced element. Such exceptional expressions include
those with an ‘embellished’ separator or fence or one encloseduz@fle element, a missing or extra separator or
fence, or a separator with multiple content characters. In these cases, it is hecessary to encode the expression usin
appropriately modified version of an expanded form. As discussed above, it is always permissible to use the expand
form directly, even when it is not necessary. In particular, authors cannot be guaranteed that MathML preprocesso
won't replace occurrences afenced with equivalent expanded forms.

82

Note that the equivalent expanded forms shown above include attributes aio #lements that identify them as
fences or separators. Since the most common choices of fences and separators already occur in the operator dictior
with those attributes, authors would not normally need to specify those attributes explicitly when using the expande
form directly. Also, the rules for the defaulbrm attribute (Sectior8.2.9 cause the opening and closing fences to be
effectively given the valuesorm="prefix" andform="postfix" respectively, and the separators to be given the value
form="infix".

Note that it would be incorrect to usgenced with a separator of, for instance, ‘+’, as an abbreviation for an expression
using ‘+’ as an ordinary operator, e.g.

<mrow>
<mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>+</mo> <mi>z</mi>
</mrow>

This is because the signs would be treated as separators, not infix operators. That is, it would render as if they were
marked up agmo separator="true">+</mo>, which might therefore render inappropriately.

3.3.8.3 Examples
(at+b)

<mfenced>
<mrow>
<mi> a </mi>
<mo> + </mo>
<mi> b </mi>
</mrow>
</mfenced>

Note that the aboverow is necessary so that the€enced has just one argument. Without it, this would render incor-
rectly as ‘@, +,b)’.

[0,1)

<mfenced open="[">
<mn> 0 </mn>
<mn> 1 </mn>

</mfenced>

fxy)

<mrow>
<mi> f </mi>
<mo> ⁡ </mo>
<mfenced>
<mi> x </mi>
<mi> y </mi>
</mfenced>
</mrow>

83

3.3.9 Enclose Expression Inside Notatiomnmenclose)
3.3.9.1 Description

Themenclose element renders its content inside the enclosing notation specifieddytis ion attribute menclose
accepts any number of arguments; if this number is not 1, its contents are treated as a single fintarredntaining
its arguments, as described in Sectih.3

3.3.9.2 Attributes

In addition to the attributes listed below, this element permitsxref, class andstyle attributes, as described in
Section2.4.5

Name values default
notation longdiv | actuarial | radical longdiv

Whennotation has the valudongdiv, the contents are drawn enclosed by a long division symbol. A complete exam-
ple of long division is accomplished by also usifighble andmalign. Whennotation is specified aactuarial,

the contents are drawn enclosed by an actuarial symbol. The caseafion=radical is equivalent to thesqrt
schema.

3.3.9.3 Examples

The following markup might be used to encode an elementary US-style long division problem.

<mtable columnspacing=’0’ rowspacing=’0’>
<mtr>
<mtd></mtd>
<mtd columnalign=’right’><mn>10</mn></mtd>
</mtr>
<mtr>
<mtd columnalign=’right’><mn>131</mn></mtd>
<mtd columnalign=’right’>
<menclose notation=’longdiv’><mn>1413</mn></menclose>
</mtd>
</mtr>
<mtr>
<mtd></mtd>
<mtd columnalign=’right’>
<mrow>
<munder>
<mn>131</mn>
<mo> _ </mo>
</munder>
<mphantom><mn>3</mn></mphantom>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd></mtd>
<mtd columnalign=’right’><mn>103</mn></mtd>

84

</mtr>
</mtable>

This might be rendered roughly as:
10

131)1413
131

103
An example of usingienclose for actuarial notation is

<msub>
<mi>a</mi>
<mrow>
<menclose notation=’actuarial’>
<mi>n</mi>
</menclose>
<mo>&it ;</mo>
<mi>i</mi>
</mrow>
</msub>

which renders roughly as

a
nj i

3.4 Script and Limit Schemata

The elements described in this section position one or more scripts around a base. Attaching various kinds of scrif
and embellishments to symbols is a very common notational device in mathematics. For purely visual layout, a singl
general-purpose element could suffice for positioning scripts and embellishments in any of the traditional script locationr
around a given base. However, in order to capture the abstract structure of common notation better, MathML provide
several more specialized scripting elements.

In addition to sub/superscript elements, MathML has overscript and underscript elements that place scripts above a
below the base. These elements can be used to place limits on large operators, or for placing accents and lines abov
below the base. The rules for rendering accents differ from those for overscripts and underscripts, and this differenc
can be controlled with theccent andaccentunder attributes, as described in the appropriate sections below.

Rendering of scripts is affected by theriptlevel anddisplaystyle attributes, which are part of the environment
inherited by the rendering process of every MathML expression, and are describedstydier (Section3.3.4). These
attributes cannot be given explicitly on a scripting element, but can be specified on the start tag of a surseuwydiag
element if desired.

MathML also provides an element for attachment of tensor indices. Tensor indices are distinct from ordinary subscript
and superscripts in that they must align in vertical columns. Tensor indices can also occur in prescript positions.

Because presentation elements should be used to describe the abstract notational structure of expressions, itis impor
that the base expression in all ‘scripting’ elements (i.e. the first argument expression) should be the entire expressi
that is being scripted, not just the rightmost character. For examxgi@?(should be written as:

85

<msup>
<mrow>
<mo> (</mo>
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
</mrow>
<mo>) </mo>
</mrow>
<mn> 2 </mn>
</msup>

3.4.1 Subscript fisub)
3.4.1.1 Description

The syntax for thesub element is:

<msub> base subscript </msub>

34.1.2 Attributes

In addition to the attributes listed below, this element permitsxref, class andstyle attributes, as described in
Section2.4.5

Name values default
subscriptshift number v-unit automatic (typical unit is ex)

Thesubscriptshift attribute specifies the minimum amount to shift the baselineidcript down.
v-unit represents a unit of vertical length (see Secfigh4.2.

Themsub element incrementscriptlevel by 1, and setdisplaystyle to false, within subscript, but leaves both
attributes unchanged withibase. (These attributes are inherited by every element through its rendering environment,
but can be set explicitly only onstyle; see Sectioi3.3.4)

3.4.2 Superscript fusup)
3.4.2.1 Description

The syntax for thexsup element is:

<msup> base superscript </msup>

3.4.2.2 Attributes

In addition to the attributes listed below, this element permitsxref, class andstyle attributes, as described in
Section2.4.5

Name values default
superscriptshift number v-unit automatic (typical unit is ex)

86

Thesuperscriptshift attribute specifies the minimum amount to shift the baselinepdrscript up.
v-unit represents a unit of vertical length (see Sectigh4.2).

Themsup elementincrementscriptlevel by 1, and setdisplaystyle to false, within superscript, but leaves both
attributes unchanged withibase. (These attributes are inherited by every element through its rendering environment,
but can be set explicitly only onstyle; see Sectio3.3.4)

3.4.3 Subscript-superscript Pair fisubsup)
3.4.3.1 Description

Themsubsup element is used to attach both a subscript and superscript to a base expression. Note that both scripts ¢
positioned tight against the basg? versusx.

The syntax for thesubsup element is:

<msubsup> base subscript superscript </msubsup>

3.4.3.2 Attributes

In addition to the attributes listed below, this element permitsxref, class andstyle attributes, as described in
Section2.4.5

Name values default
subscriptshift number v-unit automatic (typical unit is ex)
superscriptshift number v-unit automatic (typical unit is ex)

The subscriptshift attribute specifies the minimum amount to shift the baselineubscript down. Thesuper-
scriptshift attribute specifies the minimum amount to shift the baseline@drscript up.

v-unit represents a unit of vertical length (see Secfigh4.).

Themsubsup element incrementscriptlevel by 1, and setdisplaystyle to false, within subscript andsuper-
script, but leaves both attributes unchanged withire. (These attributes are inherited by every element through its
rendering environment, but can be set explicitly onlymsnyle; see Sectior3.3.4)

3.4.3.3 Examples

The msubsup is most commonly used for adding sub/superscript pairs to identifiers as illustrated above. However,
another important use is placing limits on certain large operators whose limits are traditionally displayed in the scrip
positions even when rendered in display style. The most common of these is the integral. For example,

1
0/e"dx

would be represented as

<mrow>
<msubsup>
<mo> ∫ </mo>
<mn> 0 </mn>
<mn> 1 </mn>
</msubsup>

87

<mrow>
<msup>
<mi> ⅇ </mi>
<mi> x </mi>
</msup>
<mo> ⁢ </mo>
<mrow>
<mo> ⅆ </mo>
<mi> x </mi>
</mrow>
</mrow>
</mrow>

3.4.4 Underscript fnunder)
3.4.4.1 Description

The syntax for theunder element is:

<munder> base underscript </munder>

3.4.4.2 Attributes

In addition to the attributes listed below, this element permitsxref, class andstyle attributes, as described in
Section2.4.5

Name values default
accentunder true | false automatic

The accentunder attribute controls whethernderscript is drawn as an ‘accent’ or as a limit. The main difference
between an accent and a limit is that the limit is reduced in size whereas an accent is the same size as the base. A sec
difference is that the accent is drawn closer to the base.

The default value ofccentunder is false, unlessinderscript is anmo element or an embellished operator (see Sec-

tion 3.2.9. If underscript is anmo element, the value of itsccent attribute is used as the default valueetentunder.

If underscript is an embellished operator, thecent attribute of theno element at its core is used as the default value.

As with all attributes, an explicitly given value overrides the default.

Here is an example (accent versus underscript)y 4+ z versusx+ y+ z. The MathML representation for this example
SN—— ———

is shown below.

If the base is an operator witlbvablelimits=true (or an embellished operator whose element core hasov-
ablelimits=true), anddisplaystyle=false, thenunderscript is drawn in a subscript position. In this case, the
accentunder attribute is ignored. This is often used for limits on symbols suctsas;.

Within underscript, munder always setslisplaystyle to false, but incrementscriptlevel by 1 only whenac-
centunder is false. Within base, it always leaves both attributes unchanged. (These attributes are inherited by every
element through its rendering environment, but can be set explicitly ontigoyile; see Sectior3.3.4)

3.4.4.3 Examples

The MathML representation for the example shown above is:

88

<mrow>
<munder accentunder="true">

<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>
</mrow>
<mo> ⏟ </mo>
</munder>

<mtext> versus </mtext>
<munder accentunder="false">

<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>
</mrow>
<mo> ⏟ </mo>
</munder>
</mrow>

3.45 Overscript fnover)
3.4.5.1 Description

The syntax for thewover element is:

<mover> base overscript </mover>

3.4.5.2 Attributes

In addition to the attributes listed below, this element permitsxref, class andstyle attributes, as described in
Section2.4.5

Name values default
accent true | false automatic

The accent attribute controls whethesverscript is drawn as an ‘accent’ (diacritical mark) or as a limit. The main
difference between an accent and a limit is that the limit is reduced in size whereas an accent is the same size as
base. A second difference is that the accent is drawn closer to the base. This is shown below (accent versus limit).
Versusx.

These differences also apply to ‘mathematical accents’ such as bars over expressipnsz versusx—+y+z The
MathML representation for each of these examples is shown below.

The default value ofccent is false, unlessverscript is anmo element or an embellished operator (see Se@iarh.
If overscript is anmo element, the value of itsccent attribute is used as the default valuea@fcent for mover. If
overscript is an embellished operator, thecent attribute of themo element at its core is used as the default value.

89

If the base is an operator wilbvablelimits=true (or an embellished operator whaose element core hasov-
ablelimits=true), anddisplaystyle=false, thenoverscript is drawn in a superscript position. In this case, the
accent attribute is ignored. This is often used for limits on symbols sudbsas ;.

Within overscript, mover always setslisplaystyle to false, but incrementscriptlevel by 1 only whenaccent
is false. Within base, it always leaves both attributes unchanged. (These attributes are inherited by every elemen
through its rendering environment, but can be set explicitly onlystyle; see Sectio.3.4)

3.4.5.3 Examples

The MathML representation for the examples shown above is:

<mrow>
<mover accent="true">
<mi> x </mi>
<mo> ^ </mo>
</mover>
<mtext> versus </mtext>
<mover accent="false">
<mi> x </mi>
<mo> ^ </mo>
</mover>
</mrow>

<mrow>
<mover accent="true">
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>
</mrow>
<mo> &0OverBar; </mo>
</mover>
<mtext> versus </mtext>
<mover accent="false">

<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>
</mrow>
<mo> &0verBar; </mo>
</mover>
</mrow>

90

3.4.6 Underscript-overscript Pair munderover)
3.4.6.1 Description

The syntax for th@underover element is:

<munderover> base underscript overscript </munderover>

3.4.6.2 Attributes

In addition to the attributes listed below, this element permitsxref, class andstyle attributes, as described in
Section2.4.5

Name values default
accent true | false automatic
accentunder true | false automatic

Themunderover element is used so that the underscript and overscript are vertically spaced equally in relation to the
base and so that they follow the slant of the base as in the second expression shown below:

0

/

0
versus

(o)

/

0
The MathML representation for this example is shown below.

The difference in the vertical spacing is too small to be noticed on a low resolution display at a normal font size, bu
is noticeable on a higher resolution device such as a printer and when using large font sizes. In addition to the visu
differences, attaching both the underscript and overscript to the same base more accurately reflects the semantics of
expression.

The accent andaccentunder attributes have the same effect as the attributes with the same namesean(Sec-

tion 3.4.5 andmunder (Section3.4.4), respectively. Their default values are also computed in the same manner as
described for those elements, with the default valueafent depending oroverscript and the default value afc-
centunder depending omnderscript.

If the base is an operator wittvbvablelimits=true (or an embellished operator whaseelement core hasovable-
limits=true), anddisplaystyle=false, thenunderscript andoverscript are drawn in a subscript and superscript
position, respectively. In this case, thecent andaccentunder attributes are ignored. This is often used for limits on
symbols such a∑.

Within underscript, munderover always setslisplaystyle to false, but incrementscriptlevel by 1 only when
accentunder iSfalse. Within overscript, munderover always setdisplaystyletofalse, butincrementscriptlevel
by 1 only whemaccent is false. Within base, it always leaves both attributes unchanged. (These attributes are inherited
by every element through its rendering environment, but can be set explicitly oalytgie; see Sectior3.3.4).

3.4.6.3 Examples

The MathML representation for the example shown above with the first expression made using semakateand
mover elements, and the second one usingraiderover element, is:

91

<mrow>
<mover>
<munder>
<mo> ∫ </mo>
<mn> 0 </mn>
</munder>
<mi> ∞ </mi>
</mover>
<mtext> versus </mtext>
<munderover>
<mo> ∫ </mo>
<mn> 0 </mn>
<mi> ∞ </mi>
</munderover>
</mrow>

3.4.7 Prescripts and Tensor Indicesnmultiscripts)
3.4.7.1 Description

The syntax for themultiscripts elementis:

<mmultiscripts>

base

(subscript superscript)x*

[<mprescripts/> (presubscript presuperscript)*]
</mmultiscripts>

Presubscripts and tensor notations are represented by a single element,scripts. This element allows the rep-
resentation of any number of vertically-aligned pairs of subscripts and superscripts, attached to one base expressi
It supports both postscripts (to the right of the base in visual notation) and prescripts (to the left of the base in visue
notation). Missing scripts can be represented by the empty elamaat

The prescripts are optional, and when present are gifien the postscripts, because prescripts are relatively rare
compared to tensor notation.

The argument sequence consists of the base followed by zero or more pairs of vertically-aligned subscripts and sup
scripts (in that order) that represent all of the postscripts. This list is optionally followed by an empty elgment
scripts and a list of zero or more pairs of vertically-aligned presubscripts and presuperscripts that represent all of th
prescripts. The pair lists for postscripts and prescripts are given in a left-to-right order. If no subscript or superscrip
should be rendered in a given position, then the empty elemarrt should be used in that position.

The base, subscripts, superscripts, the optional separator eleprenicripts, the presubscripts, and the presuper-
scripts, are all direct sub-expressions ofth@ltiscripts element, i.e. they are all at the same level of the expression
tree. Whether a script argument is a subscript or a superscript, or whether it is a presubscript or a presuperscript is det
mined by whether it occurs in an even-numbered or odd-numbered argument position, respectively, ignoring the emp
elemenmprescripts itself when determining the position. The first argument, the base, is considered to be in position
1. The total number of arguments must be oddpifescripts is not given, or even, ifitis.

The empty elemenisprescripts andnone are only allowed as direct sub-expressionamiltiscripts.

92

3.4.7.2 Attributes
Same as the attributes @ubsup.

Themmultiscripts element incrementscriptlevel by 1, and setglisplaystyle to false, within each of its
arguments exceflse, but leaves both attributes unchanged wittige. (These attributes are inherited by every element
through its rendering environment, but can be set explicitly onlystyle; see Sectior3.3.4)

3.4.7.3 Examples
Two examples of the use @fwltiscripts are:

oF1(;a;2).

<mrow>
<mmultiscripts>
<mi> F </mi>
<mn> 1 </mn>
<none/>
<mprescripts/>
<mn> 0 </mn>
<none/>
</mmultiscripts>
<mo> ⁡ </mo>
<mrow>
<mo> (</mo>
<mrow>
<mo> ; </mo>
<mi> a </mi>
<mo> ; </mo>
<mi> z </mi>
</mrow>
<mo>) </mo>
</mrow>
</mrow>

Rujd (wherek andl are different indices)

<mmultiscripts>
<mi> R </mi>
<mi> i </mi>
<none/>
<none/>
<mi> j </mi>
<mi> k </mi>
<none/>
<mi> 1 </mi>
<none/>
</mmultiscripts>

93

3.5 Tables and Matrices

Matrices, arrays and other table-like mathematical notation are marked upnitsibfe, mtr, mlabeledtr andmtd
elements. These elements are similar toTthBLE, TR andTD elements of HTML, except that they provide specialized
attributes for the fine layout control necessary for commutative diagrams, block matrices and so on.

Themlabeledtr element represents a labeled row of a table and can be used for numbered equations. The first chil
of mlabeledtr is the label. A label is somewhat special in that it is not considered an expression in the matrix and is
not counted when determining the number of columns in that row.

3.5.1 Table or Matrix (mtable)

3.5.1.1 Description

A matrix or table is specified using thetable element. Inside of thetable element, onlymtr or mlabeledtr
elements may appear.

In MathML 1.x, themtable element could infemtr elements around its arguments, andile element could infer

mtd elements. In other words, if some argument tan@able was not amtr element, a MathML application was to
assume a row with a single column (i.e. the argument was effectively wrapped with an imferje&imilarly, if some
argument to a (possibly inferred}r element was not antd element, that argument was to be treated as a table entry
by wrapping it with an inferreditd element. MathML 2.@leprecatethe inference ohtr andmtd elementsmtr and

mtd elements must be used insidemfible andmtr respectively.

Table rows that have fewer columns than other rows of the same table (whether the other rows precede or follow ther
are effectively padded on the right with emptyd elements so that the number of columns in each row equals the
maximum number of columns in any row of the table. Note that the usgdflements with non-default values of
therowspan Or columnspan attributes may affect the numbermwid elements that should be given in subsequemt
elements to cover a given number of columns. Note also that the labekhiba®eledtr element is not considered a
column in the table.

3.5.1.2 Attributes

In addition to the attributes listed below, this element permitsxref, class andstyle attributes, as described in
Section2.4.5

94

Name values default
align (top | bottom | center | baseline | axis) [rownumber] axis
rowalign (top | bottom | center | baseline | axis) + baseline
columnalign (left | center | right) + center
groupalign group-alignment-list-list left
alignmentscope (true | false) + true
columnwidth (‘auto | number h-unit | namedspace | fit) + auto
width auto | number h-unit auto
rowspacing (number v-unit) + 1.0ex
columnspacing (number h-unit | namedspace) + 0.8em
rowlines (none | solid | dashed) + none
columnlines (none | solid | dashed) + none
frame none | solid | dashed none
framespacing (number h-unit | namedspace) (number v-unit | namedspace) 0.4em 0.5e)
equalrows true | false false
equalcolumns true | false false
displaystyle true | false false

side left | right | leftoverlap | rightoverlap right
minlabelspacing number h-unit 0.8em

Note that the default value for eachmafwlines, columnlines andframe is the literal string ‘none’, meaning that the
default is to render no lines, rather than that there is no default.

As described in Sectiofi.4.4 the notation(x | y)+ means one or more occurrences of eithar y, separated by
whitespace. For example, possible valuesfirumnalign areleft, left left,andleft right center center.
If there are more entries than are necessary (e.g. more entries than coluneeduerialign), then only the first

entries will be used. If there are fewer entries, then the last entry is repeated as often as necessary. For example
columnalign="right center" and the table has three columns, the first column will be right aligned and the second anc
third columns will be centered. The label imaabeledtr is not considered as a column in the table and the attribute
values that apply to columns do not apply to labels.

The align attribute specifies where to align the table with respect to its environrmens. means to align the center

of the table on the environment’s axis. (The axis of an equation is an alignment line used by typesetters. It is the lin
on which a minus sign typically lies. The center of the table is the midpoint of the table’s vertical extente) and
baseline both mean to align the center of the table on the environment’s basetiper bottom aligns the top or
bottom of the table on the environment's baseline.

If the align attribute value ends with aownumber between 1 ana (for a table withn rows), the specified row is
aligned in the way described above, rather than the table as a whole; the top (first) row is numbered 1, and the bottc
(last) row is numbered. The same is true if the row number is negative, between -1@rekeept that the bottom row

is referred to as -1 and the top row as ©Other values ofownumber are illegal.

Therowalign attribute specifies how the entries in each row should be aligned. For examplmeans that the tops
of each entry in each row should be aligned with the tops of the other entries in that rowo Tinmalign attribute
specifies how the entries in each column should be aligned.

Thegroupalign andalignmentscope attributes are described with the alignment elemeri$igngroup andma-
lignmark, in Section3.5.5

Thecolumnwidth attribute specifies how wide a column should be. 3treo value means that the column should be as
wide as needed, which is the default. If an explicit value is given, then the column is exactly that wide and the content
of that column are made to fit in that width. The contents are linewrapped or clipped at the discretion of the rendere
If fit is given as a value, the remaining page width after subtracting the widths for columns specified and/or

95

specific widths is divided equally among tl&t columns and this value is used for the column width. If insufficient
room remains to hold the contents of thiet columns, renderers may linewrap or clip the contents of threcolumns.

When thecolumnwidth is specified as a percentage, the value is relative to the width of the table. That is, a renderel
should try to adjust the width of the column so that it covers the specified percentage of the entire table width.

Thewidth attribute specifies the desired width of the entire table and is intended for visual user agents. When the valu
is a percentage value, the value is relative to the horizontal space a MathML renderer has available for the table eleme
When the value iauto, the MathML renderer should calculate the table width from its contents using whatever layout
algorithm it chooses.

MathML 2.0 does not specify a table layout algorithm. In particular, it is the responsibility of a MathML renderer to
resolve conflicts between the dth attribute and other constraints on the width of a table, such as explicit values for
columnwidth attributes, and minimum sizes for table cell contents. For a discussion of table layout algorithms, see
Cascading Style Sheets, level 2

The rowspacing and columnspacing attributes specify how much space should be added between each row and
column. However, spacing before the first row and after the last row (i.e. at the top and bottom of the table) is given b
the second number in the value of theamespacing attribute, and spacing before the first column and after the last
column (i.e. on the left and on the right of the table) is given by the first number in the value tfdhespacing
attribute.

In those attributes’ syntaxeh;unit or v-unit represents a unit of horizontal or vertical length, respectively (see Sec-
tion 2.4.4.9. The units shown in the attributes’ default values ¢r ex) are typically used.

Therowlines andcolumnlines attributes specify whether and what kind of lines should be added between each row
and column. Lines before the first row or column and after the last row or column are given usfiigutleaattribute.

If a frame is desired around the table, thweame attribute is used. If the attribute value is not ‘none’, tifarames-
pacing is used to add spacing between the lines of the frame and the first and last rows and columns of the table.
frame="none", then the&ramespacing attribute is ignored. Thérame andframespacing attributes are not part of
therowlines/columnlines, rowspacing/columnspacing options because having them be so would often require
thatrowlines andcolumnlines would need to be fully specified instead of just giving a single value. For example, if
a table had five columns and we wanted lines between the columns, but no frame, then we would have éawite
lines="none solid solid solid solid none". By separating the frame from the internal lines, we only need to
write columnlines="so0lid".

Theequalrows attribute forces the rows all to be the same total height when setu® Theequalcolumns attribute
forces the columns all to be the same width when setktee.

Thedisplaystyle attribute specifies the value displaystyle (described undetistyle in Section3.3.4) within

each cell gtd element) of the table. Settinfisplaystyle=true can be useful for tables whose elements are whole
mathematical expressions; the default valueadfse is appropriate when the table is part of an expression, for example,
when it represents a matrix. In either caseriptlevel (Section3.3.4 is not changed for the table cells.

Theside attribute specifies what side of a table a label for a table row should should be placed. This attribute is intende
to be used for labeled expressionsléfft or right is specified, the label is placed on the left or right side of the table
row respectively. The other two attribute values are variationsedit andright: if the labeled row fits within the

width allowed for the table without the label, but does not fit within the width if the label is included, then the label
overlaps the row and is displayed above the rowifalign for that row istop; otherwise the label is displayed below

the row.

If there are multiple labels in a table, the alignment of the labels within the virtual column that they form is left-aligned
for labels on the left side of the table, and right-aligned for labels on the right side of the table. The alignment can b
overridden by specifyingolumnalignment for amlabeledtr element.

96

http://www.w3.org/TR/CSS2/tables.html#width-layout

Theminlabelspacing attribute specifies the minimum space allowed between a label and the adjacent entry in the
row.

3.5.1.3 Examples

A 3 by 3 identity matrix could be represented as follows:

<mrow>
<mo> (</mo>
<mtable>
<mtr>
<mtd> <mn>1</mn> </mtd>
<mtd> <mn>0</mn> </mtd>
<mtd> <mn>0</mn> </mtd>
</mtr>
<mtr>
<mtd> <mn>0</mn> </mtd>
<mtd> <mn>1</mn> </mtd>
<mtd> <mn>0</mn> </mtd>
</mtr>
<mtr>
<mtd> <mn>0</mn> </mtd>
<mtd> <mn>0</mn> </mtd>
<mtd> <mn>1</mn> </mtd>
</mtr>
</mtable>
<mo>) </mo>
</mrow>

This might be rendered as:

1 00
010
0 01

Note that the parentheses must be represented explicitly; they are not partmhtie element’'s rendering. This
allows use of other surrounding fences, such as brackets, or none at all.

3.5.2 Row in Table or Matrix (mtr)
3.5.2.1 Description

An mtr element represents one row in a table or matrixm&n element is only allowed as a direct sub-expression of
anmtable element, and specifies that its contents should form one row of the table. Each argumanisgblaced in
a different column of the table, starting at the leftmost column.

As described in SectioB.5.1, mtr elements are effectively padded on the right witld elements when they are shorter
than other rows in a table.

3.5.2.2 Attributes

In addition to the attributes listed below, this element permitsxref, class andstyle attributes, as described in
Section2.4.5

97

Name values default

rowalign top | bottom | center | baseline | axis inherited
columnalign (left | center | right) + inherited
groupalign group-alignment-list-list inherited

Therowalign andcolumnalign attributes allow a specific row to override the alignment specified by the same at-
tributes in the surroundingtable element.

As with mtable, if there are more entries than necessary in the valu®bimnalign (i.e. more entries than columns
in the row), then the extra entries will be ignored. If there are fewer entries than columns, then the last entry will be
repeated as many times as needed.

Thegroupalign attribute is described with the alignment elements,igngroup andmalignmark, in Section3.5.5

3.5.3 Labeled Row in Table or Matrix (mlabeledtr)
3.5.3.1 Description

Anmlabeledtr element represents one row in a table that has a label on either the left or right side, as determined b
theside attribute. The label is the first child efiabeledtr. The rest of the children represent the contents of the row
and are identical to those used farr; all of the children except the first must fhed elements.

An mlabeledtr element is only allowed as a direct sub-expression afitable element. Each argument afia-
beledtr except for the first argument (the label) is placed in a different column of the table, starting at the leftmost
column.

Note that the label element is not considered to be a cell in the table row. In particular, the label element is not take
into consideration in the table layout for purposes of width and alignment calculations. For example, in the case of a
mlabeledtr with a label and a single centeradd child, the child is first centered in the enclosifigable, and then

the label is placed. Specifically, the childrst centered in the space that remains in the table after placing the label.

While MathML 2.0 does not specify an algorithm for placing labels, implementors of visual renderers may find the
following formatting model useful. To place a label, an implementor might think in terms of creating a larger table, with
an extra column on both ends. Thelumnwidth attributes of both these border columns would be se&titoso that

they expand to fill whatever space remains after the inner columns have been laid out. Finally, depending on the valu
of side andminlabelspacing, the label is placed in whatever border column is appropriate, possibly shifted down if
necessary.

3.5.3.2 Attributes

The attributes fomlabeledtr are the same as fartr. Unlike the attributes for thatable element, attributes of
mlabeledtr that apply to column elements also apply to the label. For example, in a one column table,

<mlabeledtr rowalign=’top’>

means that the label and other entries in the row are vertically aligned along their top. To force a particular alignmer
on the label, the appropriate attribute would normally be set onthestart tag that surrounds the label content.

3.5.3.3 Equation Numbering

One of the important uses miabeledtr is for numbered equations. Imaabeledtr, the label represents the equation
number and the elements in the row are the equation being numberedidéi@andminlabelspacing attributes of
mtable determine the placement of the equation number.

98

In larger documents with many numbered equations, automatic numbering becomes important. While automatic equ
tion numbering and automatically resolving references to equation numbers is outside the scope of MathML, thes
problems can be addressed by the use of style sheets or other means. The mlabeledtr construction provides suppor
both of these functions in a way that is intended to facilitate XSLT processingnllt®ledtr element can be used to
indicate the presence of a numbered equation, and the first child can be changed to the current equation number, al
with incrementing the global equation number. For cross references, an id on either the mlabeledtr element or on t
first element itself could be used as a target of any link.

<mtable>
<mlabeledtr id=’e-is-m-c-square’>
<mtd>
<mtext> (2.1) </mtext>
</mtd>
<mtd>
<mrow>
<mi>E</mi>
<mo>=</mo>
<mrow>
<mi>m</mi>
<mo>&it ;</mo>
<msup>
<mi>c</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mtd>
</mlabeledtr>
</mtable>

This should be rendered as:
E=mc (2.1)

3.54 Entry in Table or Matrix (mtd)
3.54.1 Description

An mtd element represents one entry, or cell, in a table or matrixm#d element is only allowed as a direct sub-
expression of amtr or anmlabeledtr element.

Themtd element accepts any number of arguments; if this number is not 1, its contents are treated as a single ‘inferre
mrow’ formed from all its arguments, as described in Sec8dn3

3.54.2 Attributes

Name values default
rowspan number 1
columnspan number 1
rowalign top | bottom | center | baseline | axis inherited
columnalign left | center | right inherited
groupalign group-alignment-list inherited

99

The rowspan and columnspan attributes allow a specific matrix element to be treated as if it occupied the number
of rows or columns specified. The interpretation of how this larger element affects specifying subsequent rows an
columns is meant to correspond with the similar attributes for HTML 4.01 tables.

Therowspan andcolumnspan attributes can be used aroundretdl element that represents the label inlabeledtr
element. Also, the label oflabeledtr element is not considered to be part of a previntigspan andcolumnspan.

Therowalign andcolumnalign attributes allow a specific matrix element to override the alignment specified by a
surroundingntable or mtr element.

Thegroupalign attribute is described with the alignment elements,igngroup andmalignmark, in Section3.5.5

3.55 Alignment Markers
3.5.5.1 Description

Alignment markers are space-like elements (see Se8tibi) that can be used to vertically align specified points within
a column of MathML expressions by the automatic insertion of the necessary amount of horizontal space betwee
specified sub-expressions.

The discussion that follows will use the example of a set of simultaneous equations that should be rendered with vertic
alignment of the coefficients and variables of each term, by inserting spacing somewhat like that shown here:

8.44x + 55 y = 0

3.1x - 0.7y =-1.1

If the example expressions shown above were arranged in a column but not aligned, they would appear as:

8.44x + 55y = 0

3.1x - 0.7y = -1.1
(For audio renderers, it is suggested that the alignment elements produce the analogous behavior of altering the rhyt
of pronunciation so that it is the same for several sub-expressions in a column, by the insertion of the appropriate tirr
delays in place of the extra horizontal spacing described here.)

The expressions whose parts are to be aligned (each equation, in the example above) must be given as the table elem
(i.e. as themtd elements) of one column of amtable. To avoid confusion, the term ‘table cell’ rather than ‘table
element’ will be used in the remainder of this section.

All interactions between alignment elements are limited tarteble column they arise in. That is, every column of

a table specified by amtable element acts as an ‘alignment scope’ that contains within it all alignment effects arising
from its contents. It also excludes any interaction between its own alignment elements and the alignment elements insi
any nested alignment scopes it might contain.

The reasomtable columns are used as alignment scopes is that they are the only general way in MathML to arrange
expressions into vertical columns. Future versions of MathML may provideeahgnscope element that allows an
alignment scope to be created around any MathML element, but even then, table columns would still sometimes ne
to act as alignment scopes, and since they are not elements themselves, but rather are made from corresponding par
the content of severaltr elements, they could not individually be the content of an alignment scope element.

An mtable element can be given the attribut®ignmentscope=false to cause its columns not to act as alignment
scopes. This is discussed further at the end of this section. Otherwise, the discussion in this section assumes that 1
attribute has its default value otue.

3.5.5.2 Specifying alignment groups

To cause alignment, it is necessary to specify, within each expression to be aligned, the points to be aligned wi
corresponding points in other expressions, and the beginning ofagé@alment group of sub-expressions that can be

100

horizontally shifted as a unit to effect the alignment. Each alignment group must contain one alignment point. It is als
necessary to specify which expressions in the column have no alignment groups at all, but are affected only by tt
ordinary column alignment for that column of the table, i.e. bydbeumnalign attribute, described elsewhere.

The alignment groups start at the locations of invist®¥a igngroup elements, which are rendered with zero width
when they occur outside of an alignment scope, but within an alignment scope are rendered with just enough horizont
space to cause the desired alignment of the alignment group that follows them. A simple algorithm by which a MathML
application can achieve this is given later. In the example above, each equation would has@ Ggagroup element

before each coefficient, variable, and operator on the left-hand side, one befersigine and one before the constant

on the right-hand side.

In general, a table cell containimynaligngroup elements containg alignment groups, with thigh group consisting
of the elements entirely after thidh maligngroup element and before théHl)-th; no element within the table cell's
content should occur entirely before its fitstl igngroup element.

Note that the division into alignment groups does necessarily fit the nested expression structure of the MathML
expression containing the groups - that is, it is permissible for one alignment group to consist of the engrofioa#

of another one, and the beginning of a third one, for example. This can be seen in the MathML markup for the presel
example, given at the end of this section.

The nested expression structure formedhbyws and other layout schemata should reflect the mathematical structure of
the expression, not the alignment-group structure, to make possible optimal renderings and better automatic interpre
tions; see the discussion of proper grouping in section Segtibf Insertion of alignment elements (or other space-like
elements) should not alter the correspondence between the structure of a MathML expression and the structure of 1
mathematical expression it represents.

Although alignment groups need to coincide with the nested expression structure of layout schemata, there are nonet
less restrictions on where aaligngroup element is allowed within a table cell. Theligngroup element may only
be contained within elements of the following types (which are themselves contained in the table cell):

anmrow element, including an inferreti-ow such as the one formed by a multi-argumetd element;
anmstyle element;

anmphantom element;

anmfenced element;

anmaction element, though only its selected sub-expression is checked,;

asemantics element.

These restrictions are intended to ensure that alignment can be unambiguously specified, while avoiding complexitit
involving things like overscripts, radical signs and fraction bars. They also ensure that a simple algorithm suffices
accomplish the desired alignment.

Note that some positions for araligngroup element, although legal, are not useful, such as fonanigngroup
element to be an argument of afienced element. When inserting araligngroup element before a given element

in pre-existing MathML, it will often be necessary, and always acceptable, to form annewelement to contain

just themaligngroup element and the element it is inserted before. In general, this will be necessary except wher
themaligngroup element is inserted directly into airow or into an element that can form an inferrecbw from its
contents. See the warning about the legal grouping of ‘space-like elements’ in Sketion

For the table cells that are divided into alignment groups, every element in their content must be part of exactly on
alignment group, except the elements from the above list that camaigngroup elements inside them, and the-
ligngroup elements themselves. This means that, within any table cell containing alignment groups, the first complet
element must be amligngroup element, though this may be preceded by the start tags of other elements.

This requirement removes a potential confusion about how to align elements before thelfirghgroup element,
and makes it easy to identify table cells that are left out of their column’s alignment process entirely.

101

Note that it is not required that the table cells in a column that are divided into alignment groups each contain the san
number of groups. If they don't, zero-width alignment groups are effectively added on the right side of each table cel
that has fewer groups than other table cells in the same column.

3.5.5.3 Table cells that are not divided into alignment groups

Expressions in a column that are to have no alignment groups should contadn fgnhgroup elements. Expressions

with no alignment groups are aligned using only ¢eeéumnalign attribute that applies to the table column as a whole,
and are not affected by thgoupalign attribute described below. If such an expression is wider than the column width
needed for the table cells containing alignment groups, all the table cells containing alignment groups will be shifted a
a unit within the column as described by thelumnalign attribute for that column. For example, a column heading
with no internal alignment could be added to the column of two equations given above by preceding them with anothe
table row containing antext element for the heading, and using the defaultumnalign="center" for the table, to
produce:

equations with aligned variables
8.44x + 65 y = O
3.1x - 0.7y = -1.1

or, with a shorter heading,

some equations
8.44x + 55 y = 0
3.1x - 0.7y = -1.1

3.5.5.4 Specifying alignment points using malignmark

Each alignment group’s alignment point can either be specified by atgnmark element anywhere within the align-
ment group (except within another alignment scope wholly contained inside it), or it is determined automatically from
thegroupalign attribute. Thegroupalign attribute can be specified on the group’s precedisilii gngroup element

or on its surroundingitd, mtr, or mtable elements. In typical cases, using eoupalign attribute is sufficient to
describe the desired alignment points, samadignmark elements need to be provided.

Themalignmark element indicates that the alignment point should occur on the right edge of the preceding element
or the left edge of the following element or character, depending oadge attribute ofmalignmark. Note that it may

be necessary to introduce ahow to group amalignmark element with a neighboring element, in order not to alter
the argument count of the containing element. (See the warning about the legal grouping of ‘space-like elements’ i
Section3.2.7).

When anmalignmark element is provided within an alignment group, it can occur in an arbitrarily deeply nested
element within the group, as long as it is not within a nested alignment scope. It is not subject to the same restrictior
on location asnaligngroup elements. However, its immediate surroundings need to be such that the element to its
immediate right or left (depending on iégge attribute) can be unambiguously identified. If no such element is present,
renderers should behave as if a zero-width element had been inserted there.

For the purposes of alignment, an element X is considered to be to the immediate left of an element Y, and Y t
the immediate right of X, whenever X and Y are successive arguments of one (possibly inferedjement, with X
coming before Y. In the case af enced elements, MathML applications should evaluate this relation as iitheced
element had been replaced by the equivalent expanded form invalying Similarly, anmaction element should be
treated as if it were replaced by its currently selected sub-expression. In all other cases, no relation of ‘to the immedia
left or right’ is defined for two elements X and Y. However, in the case of content elements interspersed in presentatio

102

markup, MathML applications should attempt to evaluate this relation in a sensible way. For example, if a rendere
maintains an internal presentation structure for rendering content elements, the relation could be evaluated with resp
to that. (See Chaptdrand Chapteb for further details about mixing presentation and content markup.)

Unlike all other elements in MathMImalignmark elements are allowed to occur within the content of token elements,
such asmn, mi, or mtext. When this occurs, the character immediately before or aftendhegnmark element will

carry the alignment point; in all other cases, the element to its immediate left or right will carry the alignment point.
The rationale for this is that it is sometimes desirable to align on the edges of specific characters within multi-characte
token elements.

If there is more than onealignmark element in an alignment group, all but the first one will be ignored. MathML
applications may wish to provide a mode in which they will warn about this situation, but it is not an error, and should
trigger no warnings by default. (Rationale: it would be inconvenient to have to remove all unnecessaymark
elements from automatically generated data, in certain cases, such as when they are used to specify alignment
‘decimal points’ other than the '’ character.)

3.5.5.5 Attributes

In addition to the attributes listed below, thelignmark element permitdd, xref, class andstyle attributes, as
described in Sectiof.4.5

Name values default
edge left | right left

malignmark has one attributesdge, which specifies whether the alignment point will be found on the left or right
edge of some element or character. The precise location meant by ‘left edge’ or ‘right edge’ is discussed below. |
edge="right", the alignment point is the right edge of the element or character to the immediate lefnafittymmark
element. Ifedge="left", the alignment point is the left edge of the element or character to the immediate right of the
malignmark element. Note that the attribute refers to the choice of edge rather than to the direction in which to look
for the element whose edge will be used.

Formalignmark elements that occur within the content of MathML token elements, the preceding or following charac-
ter in the token element’s content is used; if there is no such character, a zero-width character is effectively inserted f
the purpose of carrying the alignment point on its edge. For all ethetgnmark elements, the preceding or following
element is used; if there is no such element, a zero-width element is effectively inserted to carry the alignment point.

The precise definition of the ‘left edge’ or ‘right edge’ of a character or glyph (e.g. whether it should coincide with an
edge of the character’s bounding box) is not specified by MathML, but is at the discretion of the renderer; the rendere
is allowed to let the edge position depend on the character’s context as well as on the character itself.

For proper alignment of columns of numbers (usitgupalign values ofleft, right, ordecimalpoint), itis likely

to be desirable for the effective width (i.e. the distance between the left and right edges) of decimal digits to be constar
even if their bounding box widths are not constant (e.g. if ‘1" is narrower than other digits). For other characters, sucl
as letters and operators, it may be desirable for the aligned edges to coincide with the bounding box.

The ‘left edge’ of a MathML element or alignment group refers to the left edge of the leftmost glyph drawn to render
the element or group, except that explicit space representesidaye or mtext elements should also count as ‘glyphs’

in this context, as should glyphs that would be drawn if notdfsitantom elements around them. The ‘right edge’ of an
element or alignment group is defined similarly.

3.5.5.6 Attributes

In addition to the attributes listed below, thelignmark element permitdd, xref, class andstyle attributes, as
described in SectioR.4.5

103

Name values default
groupalign left | center | right | decimalpoint inherited

maligngroup has one attributegroupalign, which is used to determine the position of its group’s alignment point
when nomalignmark element is present. The following discussion assumes thathhdgnmark element is found
within a group.

In the example given at the beginning of this section, there is one column of 2 table cells, with 7 alignment groups ir
each table cell; thus there are 7 columns of alignment groups, with 2 groups, one above the other, in each column. The
columns of alignment groups should be given thgrédupalign values ‘decimalpoint left left decimalpoint left left
decimalpoint’, in that order. How to specify this list of values for a table cell or table column as a whole, using attributes
on elements surrounding theligngroup element is described later.

If groupalign is ‘left’, ‘right’, or ‘center’, the alignment point is defined to be at the group’s left edge, at its right edge,
or halfway between these edges, respectively. The meanings of ‘left edge’ and ‘right edge’ are as discussed above
relation tomalignmark.

If groupalign is ‘decimalpoint’, the alignment point is the right edge of the last character before the decimal point.
The decimal point is the first ‘" character (ASCII 0x2e) in the fitstelement found along the alignment group’s base-
line. More precisely, the alignment group is scanned recursively, depth-first, for thenfelgment, descending into all
arguments of each element of the typesw (including inferrednrows), mstyle, mpadded, mphantom, mfenced, Or
msqrt, descending into only the first argument of each ‘scripting’ elemesil{, msup, msubsup, munder, mover,
munderover, mmultiscripts) or of eachmroot or semantics element, descending into only the selected sub-
expression of eachaction element, and skipping the content of all other elements. Thenfirsto found always
contains the alignment point, which is the right edge of the last character before the first decimal point in the content c
themn element. If there is no decimal point in the element, the alignment point is the right edge of the last character
in the content. If the decimal point is the first character ofdiheslement’s content, the right edge of a zero-width
character inserted before the decimal point is used. lhimelement is found, the right edge of the entire alignment
group is used (as fgtroupalign="right").

In order to permit alignment on decimal pointsdn elements, a MathML application can convert a content expression
into a presentation expression that renders the same way before searching for decimal points as described above.

If characters other than ‘" should be used as ‘decimal points’ for alignment, they should be precedad diymark
elements within then token’s content itself.

For any of thegroupalign values, if an explicihalignmark element is present anywhere within the group, the position
it specifies (described earlier) overrides the automatic determination of alignment point frgpotipalign value.

3.5.5.7 Inheritance of groupalign values

Itis not usually necessary to pugaoupalign attribute on everyaligngroup element. Since this attribute is usually

the same for every group in a column of alignment groups to be aligned, it can be inherited from an attribute on th
mtable that was used to set up the alignment scope as a whole, or fromtther mtd elements surrounding the
alignment group. It is inherited via an ‘inheritance path’ that proceeds frosble through successively contained

mtr, mtd, andmaligngroup elements. There is exactly one element of each of these kinds in this path frotatsre

to any alignment group inside it. In general, the valugodupalign will be inherited by any given alignment group
from the innermost element that surrounds the alignment group and provides an explicit setting for this attribute.

Note, however, that eactitd element needs, in general, a list g@foupalign values, one for eachaligngroup
element inside it, rather than just a single value. Furthermonetailor mtable element needs, in general, a list of lists
of groupalign values, since it spans multipieeable columns, each potentially acting as an alignment scope. Such
lists of group-alignment values are specified using the following syntax rules:

104

group-alignment left | right | center | decimalpoint

group-alignment-list := group-alignment +

group-alignment-list-list := (’{’ group-alignment-list ’}’) +

As described in Sectiof.4.4 | separates alternatives;represents optional repetition (i.e. 1 or more copies of what
precedes it), with extra values ignored and the last value repeated if necessary to cover additional table columns
alignment group columns;’ and ’’ represent literal braces; arf{dand) are used for grouping, but do not literally
appear in the attribute value.

The permissible values of thgoupalign attribute of the elements that have this attribute are specified using the above
syntax definitions as follows:

Element type groupalign attribute syntax default value

mtable group-alignment-list-list left

mtr group-alignment-list-list inherited fromtable attribute
mtd group-alignment-list inherited from withintr attribute
maligngroup group-alignment inherited from withiatd attribute

In the example near the beginning of this section, the group alignment values could be specified arté\edey
ment usinggroupalign = ‘decimalpoint left left decimalpoint left left decimalpoint’, or on everyr element using
groupalign = ‘decimalpoint left left decimalpoint left left decimalpoint’, or (most conveniently) onitheble as a
whole usinggroupalign = ‘decimalpoint left left decimalpoint left left decimalpoint’, which provides a single braced
list of group-alignment values for the single column of expressions to be aligned.

3.5.5.8 MathML representation of an alignment example

The above rules are sufficient to explain the MathML representation of the example given near the start of this sectiol
To repeat the example, the desired rendering is:

8.44x + 55 y = 0
3.1x - 0.7y = -1.1

One way to represent that in MathML is:

<mtable groupalign="decimalpoint left left decimalpoint left left decimalpoint">
<mtr>
<mtd>
<mrow>
<mrow>

<mrow>
<maligngroup/>
<mn> 8.44 </mn>
<mo> ⁢ </mo>
<maligngroup/>
<mi> x </mi>

</mrow>

<maligngroup/>

<mo> + </mo>

<mrow>
<maligngroup/>
<mn> 55 </mn>

105

<mo> ⁢ </mo>
<maligngroup/>
<mi> y </mi>
</mrow>
</mrow>
<maligngroup/>
<mo> = </mo>
<maligngroup/>
<mn> 0 </mn>
</mrow>
</mtd>
<mtd>
<mrow>
<mrow>
<mrow>
<maligngroup/>
<mn> 3.1 </mn>
<mo> ⁢ </mo>
<maligngroup/>
<mi> x </mi>
</mrow>
<maligngroup/>
<mo> - </mo>
<mrow>
<maligngroup/>
<mn> 0.7 </mn>
<mo> ⁢ </mo>
<maligngroup/>
<mi> y </mi>
</mrow>
</mrow>
<maligngroup/>
<mo> = </mo>
<maligngroup/>
<mrow>
<mo> - </mo>
<mn> 1.1 </mn>
</mrow>
</mrow>
</mtd>
</mtr>
</mtable>

3.5.5.9 Further details of alignment elements

The alignment elements:1igngroup andmalignmark can occur outside of alignment scopes, where they are ignored.
The rationale behind this is that in situations in which MathML is generated, or copied from another document, withou
knowing whether it will be placed inside an alignment scope, it would be inconvenient for this to be an error.

An mtable element can be given the attribut®ignmentscope=false to cause its columns not to act as alignment

106

scopes. In general, this attribute has the syiftaxue | false) +;ifitsvalue is a list of boolean values, each boolean
value applies to one column, with the last value repeated if necessary to cover additional columns, or with extra value
ignored. Columns that are not alignment scopes are part of the alignment scope surroundituplleelement, if

there is one. Use aflignmentscope=false allows nested tables to contaialignmark elements for aligning the

inner table in the surrounding alignment scope.

As discussed above, processing of alignment for content elements is not well-defined, since MathML does not speci
how content elements should be rendered. However, many MathML applications are likely to find it convenient to
internally convert content elements to presentation elements that render the same way. Thus, as a general rule, e
if a renderer does not perform such conversions internally, it is recommended that the alignment elements should |
processed as if it did perform them.

A particularly important case for renderers to handle gracefully is the interaction of alignment elements with the
trix content element, since this element may or may not be internally converted to an expression contaitubdan
element for rendering. To partially resolve this ambiguity, it is suggested, but not required, thataftthie: element

is converted to an expression involving atable element, that thetable element be given the attributd ign-
mentscope=false, which will make the interaction of theatrix element with the alignment elements no different
than that of a generic presentation element (in particular, it will allow it to comtaini gnmark elements that operate
within the alignment scopes created by the columns oftatble that contains theatrix element in one of its table
cells).

The effect of alignment elements within table cells that have non-default values e6éthenspan or rowspan at-
tributes is not specified, except that such use of alignment elements is not an error. Future versions of MathML ma
specify the behavior of alignment elements in such table cells.

The effect of possible linebreaking of amable element on the alignment elements is not specified.

3.5.5.10 A simple alignment algorithm

A simple algorithm by which a MathML applications can perform the alignment specified in this section is given here.
Since the alignment specification is deterministic (except for the definition of the left and right edges of a character)
any correct MathML alignment algorithm will have the same behavior as this one.nftadhe column (alignment
scope) can be treated independently; the algorithm given here applies igatsiee column, and takes into account

the alignment elements, tlgg-oupalign attribute described in this section, and i umnalign attribute described
undemtable (Section3.5.1]).

First, a rendering is computed for the contents of each table cell in the column, using zero widtm&righgroup
andmalignmark elements. The final rendering will be identical except for horizontal shifts applied to each alignment
group and/or table cell. The positions of alignment points specified bynahygnmark elements are noted, and the
remaining alignment points are determined usitgupalign values.

For each alignment group, the horizontal positions of the left edge, alignment point, and right edge are noted, allowin
the width of the group on each side of the alignment point (left and right) to be determined. The sum of these twc
‘side-widths’, i.e. the sum of the widths to the left and right of the alignment point, will equal the width of the alignment
group.

Second, each column of alignment groups, from left to right, is scannedtiThean covers thigh alignment group in
each table cell containing any alignment groups. Table cells with no alignment groups, or with fewiealigament
groups, are ignored. Each scan computes two maximums over the alignment groups scanned: the maximum width to 1
left of the alignment point, and the maximum width to the right of the alignment point, of any alignment group scanned.

The sum of all the maximum widths computed (two for each column of alignment groups) gives one total width, which
will be the width of each table cell containing alignment groups. Call the maximum number of alignment groups in one

107

cell n; each such cell's width is divided intm2adjacent sections, calledil.@nd R{) for i from 1 ton, using the &
maximum side-widths computed above; for eactine width of all sections called L(is the maximum width of any
cell’s ith alignment group to the left of its alignment point, and the width of all sections callgdsRtie maximum
width of any cell'sith alignment group to the right of its alignment point.

The alignment groups are then positioned in the unique way that places the part othegabup to the left of its
alignment point in a section calledil(and places the part of eadn group to the right of its alignment point in

a section called R). This results in the alignment point of eaith group being on the boundary between adjacent
sections Li) and R{), so that all alignment points @th groups have the same horizontal position.

The widths of the table cells that contain no alignment groups were computed as part of the initial rendering, and ma
be different for each cell, and different from the single width used for cells containing alignment groups. The maximurm
of all the cell widths (for both kinds of cells) gives the width of the table column as a whole.

The position of each cell in the column is determined by the applicable part of the valueaefltlvenalign attribute

of the innermost surroundingtable, mtr, ormtd element that has an explicit value for it, as described in the sections
on those elements. This may mean that the cells containing alignment groups will be shifted within their column, ir
addition to their alignment groups having been shifted within the cells as described above, but since each such cell h
the same width, it will be shifted the same amount within the column, thus maintaining the vertical alignment of the
alignment points of the corresponding alignment groups in each cell.

3.6 Enlivening Expressions
3.6.1 Bind Action to Sub-Expressionfiaction)

There are many ways in which it might be desirable to make mathematical content active. Adding a link to a MathML
sub-expression is one basic kind of interactivity. See Sectibrt However, many other kinds of interactivity cannot

be easily accommodated by generic linking mechanisms. For example, in lengthy mathematical expressions, the abil
to ‘fold’ expressions might be provided, i.e. a renderer might allow a reader to toggle between an ellipsis and a muc
longer expression that it represents.

To provide a mechanism for binding actions to expressions, MathML providesattieion element. This element
accepts any number of sub-expressions as arguments.

3.6.1.1 Attributes

In addition to the attributes listed below, this element permitsxref, class andstyle attributes, as described in
Section2.4.5

Name values default
actiontype (described below) (required attribute, no default value)
selection positive-integer 1

By default, MathML applications that do not recognize the specifietiiontype should render the selected sub-
expression as defined below. If no selected sub-expression exists, it is a MathML error; the appropriate rendering in th
case is as described in Sectibr2.2on the treatment of MathML errors.

Since a MathML-compliant application is not required to recognize any partieatarontypes, an application can be
fully MathML compliant just by implementing the above-described default behavior.

The selection attribute is provided for thosectiontypes that permit someone viewing a document to select one
of several sub-expressions for viewing. Its value should be a positive integer that indicates one of the sub-expressio

108

of themaction element, numbered from 1 to the number of children of the element. When this is the case, the sub
expression so indicated is defined to be the ‘selected sub-expression'mafdtieon element; otherwise the ‘selected
sub-expression’ does not exist, which is an error. Whers#fiection attribute is not specified (including for action-
types for which it makes no sense), its default value is 1, so the selected sub-expression will be the first sub-expressic

Furthermore, as described in Chapigeif a MathML application responds to a user command to copy a MathML sub-
expression to the environment's ‘clipboard’, amction elements present in what is copied should be given selection
attributes that correspond to their selection state in the MathML rendering at the time of the copy command.

A suggested list okctiontypes and their associated actions is given below. Keep in mind, however, that this list is
mainly for illustration, and recognized values and behaviors will vary from application to application.

<maction actiontype="toggle" selection="positive-integer" > (first expression) (second expression)... </maction>
For this action type, a renderer would alternately display the given expressions, cycling through them wher
a reader clicked on the active expression, starting with the selected expression and updatngdhéon
attribute value as described above. Typical uses would be for exercises in education, ellipses in long corr
puter algebra output, or to illustrate alternate notations. Note that the expressions may be of significantl
different size, so that size negotiation with the browser may be desirable. If size negotiation is not available
scrolling, elision, panning, or some other method may be necessary to allow full viewing.

<maction actiontype="statusline"> (expression) (message) </maction>
In this case, the renderer would display the expression in context on the screen. When a reader clicked on tt
expression or moved the mouse over it, the renderer would send a rendering of the message to the brows
statusline. Since most browsers in the foreseeable future are likely to be limited to displaying text on their
statusline, authors would presumably use plain text imiagxt element for the message in most circum-
stances. For nomtext messages, renderers might provide a natural language translation of the markup, but
this is not required.

<maction actiontype="tooltip"> (expression) (message) </maction>
Here the renderer would also display the expression in context on the screen. When the mouse pauses o\
the expression for a long enough delay time, the renderer displays a rendering of the message in a poj
up ‘tooltip’ box near the expression. These message boxes are also sometimes called ‘balloon help’ boxe
Presumably authors would use plain text inmarext element for the message in most circumstances. For
nonmtext messages, renderers may provide a natural language translation of the markup if full MathML
rendering is not practical, but this is not required.

<maction actiontype="highlight" my:color="red"> my:background="yellow"> expression </maction>
In this case, a renderer might highlight the enclosed expression on a ‘mouse-over’ event. In the example give
above, non-standard attributes from another namespace are being used to pass additional information to re
derers that support them, without violating the MathML DTD (see Sedcti@r). Themy: color attribute
changes the color of the characters in the presentation, whiteythe.ckground attribute changes the color
of the background behind the characters.

<maction actiontype="menu" selection="1" > (menu item 1) (menu item 2) ... </maction>
This action type instructs a renderer to provide a pop up menu. This allows a one-to-many linking capability.
Note that the menu items may be other <maction actiontype="menu">...</maction> expressions, thereb
allowing nested menus. It is assumed that the user choosing a menu item would invoke some kind of actioi
associated with that item. Such action might be completely handled by the renderer itself or it might trigger
some kind of event within the browser that could be linked to other programming logic.

109

Chapter 4

Content Markup

4.1 Introduction
41.1 The Intent of Content Markup

As has been noted in the introductory section of this Recommendation, mathematics can be distinguished by its use
a (relatively) formal language, mathematical notation. However, mathematics and its presentation should not be viewe
as one and the same thing. Mathematical sums or products exist and are meaningful to many applications complett
without regard to how they are rendered aurally or visually. The intent of the content markup in the Mathematical
Markup Language is to provide an explicit encoding of tihderlying mathematical structure of an expression, rather

than any particular rendering for the expression.

There are many reasons for providing a specific encoding for content. Even a disciplined and systematic use of pr
sentation tags cannot properly capture this semantic information. This is because without additional information it i
impossible to decide whether a particular presentation was chosen deliberately to encode the mathematical structure
simply to achieve a particular visual or aural effect. Furthermore, an author using the same encoding to deal with bot
the presentation and mathematical structure might find a particular presentation encoding unavailable simply becau
convention had reserved it for a different semantic meaning.

The difficulties stem from the fact that there are many to one mappings from presentation to semantics and vice vers
For example the mathematical construét multiplied by €' is often encoded using an explicit operator agdin< e.

In different presentational contexts, the multiplication operator might be invisible€’, or rendered as the spoken
word ‘times’. Generally, many different presentations are possible depending on the context and style preferences of t
author or reader. Thus, giveH € out of context it may be impossible to decide if this is the name of a chemical or a
mathematical product of two variablesande.

Mathematical presentation also changes with culture and time: some expressions in combinatorial mathematics tod
have one meaning to a Russian mathematician, and quite another to a French mathematician; see4sgfioan
example. Notations may lose currency, for example the use of musical sharp and flat symbols to denote maxima al
minima [}: A notation in use in 1644 for the multiplication mentioned above Bds e].

When we encode the underlying mathematical structure explicitly, without regard to how it is presented aurally ot
visually, we are able to interchange information more precisely with those systems that are able to manipulate th
mathematics. In the trivial example above, such a system could substitute values for the veriabtksand evaluate

the result. Further interesting application areas include interactive textbooks and other teaching aids.

4.1.2 The Scope of Content Markup

The semantics of general mathematical notation is not a matter of consensus. It would be an enormous job to system:
cally codify most of mathematics - a task that can never be complete. Instead, MathML makes explicit a relatively smal
number of commonplace mathematical constructs, chosen carefully to be sufficient in a large number of applications.

110

addition, it provides a mechanism for associating semantics with new notational constructs. In this way, mathematic:
concepts that are not in the base collection of elements can still be encoded (8&ttipn

The base set of content elements is chosen to be adequate for simple coding of most of the formulas used from kind
garten to the end of high school in the United States, and probably beyond through the first two years of college, that
up to A-Level or Baccalaureate level in Europe. Subject areas covered to some extent in MathML are:

arithmetic, algebra, logic and relations
calculus and vector calculus

set theory

sequences and series

elementary classical functions
statistics

linear algebra

It is not claimed, or even suggested, that the proposed set of elements is complete for these areas, but the provision
author extensibility greatly alleviates any problem omissions from this finite list might cause.

4.1.3 Basic Concepts of Content Markup

The design of the MathML content elements are driven by the following principles:

° The expression tree structure of a mathematical expression should be directly encoded by the MathMl
content elements.

° The encoding of an expression tree should be explicit, and not dependent on the special p&Ghag of
or on additional processing such as operator precedence parsing.

. The basic set of mathematical content constructs that are provided should have default mathematical sema
tics.

. There should be a mechanism for associating specific mathematical semantics with the constructs.

The primary goal of the content encoding is to establish explicit connections between mathematical structures and the
mathematical meanings. The content elements correspond directly to parts of the underlying mathematical expressi
tree. Each structure has an associated default semantics and there is a mechanism for associating new mathema
definitions with new constructs.

Significant advantages to the introduction of content-specific tags include:

° Usage of presentation elements is less constrained. When mathematical semantics are inferred from presen
tion markup, processing agents must either be quite sophisticated, or they run the risk of inferring incomplete
or incorrect semantics when irregular constructions are used to achieve a particular aural or visual effect.

. It is immediately clear which kind of information is being encoded simply by the kind of elements that are
used.
. Combinations of semantic and presentation elements can be used to convey both the appearance and

mathematical meaning much more effectively than simply trying to infer one from the other.

Expressions described in terms of content elements must still be rendered. For common expressions, default visl
presentations are usually clear. ‘Take care of the sense and the sounds will take care of themselves’ wrote Lewis Carr
[]. Default presentations are included in the detailed description of each element occurring in &dction

To accomplish these goals, the MathML content encoding is based on the concept of an expression tree. A conte
expression tree is constructed from a collection of more primitive objects, referred to heseinaggers andoperators.
MathML possesses a rich set of predefined container and operator objects, as well as constructs for combining contain
and operators in mathematically meaningful ways. The syntax and usage of these content elements and construction
described in the next section.

111

4.2 Content Element Usage Guide

Since the intent of MathML content markup is to encode mathematical expressions in such a way that the mathematic
structure of the expression is clear, the syntax and usage of content markup must be consistent enough to facilit
automated semantic interpretation. There must be no doubt when, for example, an actual sum, product or functic
application is intended and if specific numbers are present, there must be enough information present to reconstri
the correct number for purposes of computation. Of course, it is still up to a MathML-compliant processor to decide
what is to be done with such a content-based expression, and computation is only one of many options. A render
or a structured editor might simply use the data and its own built-in knowledge of mathematical structure to rende
the object. Alternatively, it might manipulate the object to build a new mathematical object. A more computationally
oriented system might attempt to carry out the indicated operation or function evaluation.

The purpose of this section is to describe the intended, consistent usage. The requirements involve more than jt
satisfying the syntactic structure specified by an XML DTD. Failure to conform to the usage as described below will
result in a MathML error, even though the expression may be syntactically valid according to the DTD.

In addition to the usage information contained in this section, Sedtidmives a complete listing of each content
element, providing reference information about their attributes, syntax, examples and suggested default semantics &
renderings. The rules for using presentation markup within content markup are explained in S&cickn informal

EBNF grammar describing the syntax for the content markup is given in App@ndix

421 Overview of Syntax and Usage

MathML content encoding is based on the concept of an expression tree. As a general rule, the terminal nodes in t
tree represent basic mathematical objects, such as numbers, variables, arithmetic operations and so on. The intel
nodes in the tree generally represent some kind of function application or other mathematical construction that builc
up a compound object. Function application provides the most important example; an internal node might represent tl
application of a function to several arguments, which are themselves represented by the terminal nodes underneath
internal node.

The MathML content elements can be grouped into the following categories based on their usage:

containers

operators and functions
qualifiers

relations

conditions

semantic mappings
constants and symbols

These are the building blocks out of which MathML content expressions are constructed. Each category is discussed
a separate section below. In the remainder of this section, we will briefly introduce some of the most common elemen
of each type, and consider the general constructions for combining them in mathematically meaningful ways.

4.2.1.1 Constructing Mathematical Objects

Content expression trees are built up from basic mathematical objects. At the lowedkldualdes are encapsulated

in non-empty elements that define their type. Numbers and symbols are markeddiethelementsn andci. More
elaborate constructs such as sets, vectors and matrices are also marked using elements to denote their types, but re
than containing data directly, thesentainer elements are constructed out of other elements. Elements are used in order
to clearly identify the underlying objects. In this way, standard XML parsing can be used and attributes can be used t
specify global properties of the objects.

112

The containers such &gn>12345<cn/> , <ci>x</ci> and<csymbol definitionURL="mySymbol.htm" encod-
ing="text">S</csymbol>represent mathematical numbers , identifiers and externally defined symbols. Below, we
will look at operator elements such gslus or sin, which provide access to the basic mathematical operations and
functions applicable to those objects. Additional containers suele@for sets, anchatrix for matrices are provided

for representing a variety of common compound objects.

For example, the number 12345 is encoded as

<cn>12345</cn>

The attributes an@CDATA content together provide the data necessary for an application to parse the number. Fol
example, a default base of 10 is assumed, but to communicate that the underlying data was actually written in base
simply set thebase attribute to 8 as in

<cn base="8">12345</cn>

while the complex number 3 + 4i can be encoded as

<cn type="complex">3<sep/>4</cn>
Such information makes it possible for another application to easily parse this into the correct number.

As another example, the scalar symb@ encoded as

<ci>v</ci>

By default,ci elements represent elements from a commutative field (see Appenhdia vector is intended then this
fact can be encoded as

<ci type="vector">v</ci>

This invokes default semantics associated withvidiet or element, namely an arbitrary element of a finite-dimensional
vector space.

By using theci andcsymbol elements we have made clear that we are referring to a mathematical identifier or symbol
but this does not say anything about how it should be rendered. By default a symbol is rendered@isof deymbol
element were actually the presentation elenteinfsee Sectior8.2.3. The actual rendering of a mathematical symbol
can be made as elaborate as necessary simply by using the more elaborate presentational constructs (as describe
Chapter3) in the body of theci or csymbol element.

The default rendering of a simpta-tagged object is the same as for the presentation elemaemith some provision
for overriding the presentation of tl€DATA by providing explicitnn tags. This is described in detail in SectibA.

The issues for compound objects such as sets, vectors and matrices are all similar to those outlined above for numb
and symbols. Each such object has global properties as a mathematical object that impact how it is to be parsed. This n
affect everything from the interpretation of operations that are applied to it to how to render the symbols representin
it. These mathematical properties are captured by setting attribute values.

4.2.1.2 Constructing General Expressions

The notion of constructing a general expression tree is essentially that of applying an operator to sub-objects. F
example, the suma + b can be thought of as an application of the addition operator to two arguraertd b. In
MathML, elements are used for operators for much the same reason that elements are used to contain objects. They
recognized at the level of XML parsing, and their attributes can be used to record or modify the intended semantics. F
example, with the MathMIplus element, setting th@efinitionURL andencoding attributes as in

113

<plus definitionURL="www.example.com/VectorCalculus.htm"
encoding="text"/>

can communicate that the intended operation is vector-based.

There is also another reason for using elements to denote operators. There is a crucial semantic distinction betwe
the function itself and the expression resulting from applying that function to zero or more arguments which must be
captured. This is addressed by making the functions self-contained objects with their own properties and providin
an explicitapply construct corresponding to function application. We will considerathely construct in the next
section.

MathML contains many pre-defined operator elements, covering a range of mathematical subjects. However, an ir
portant class of expressions involve unknown or user-defined functions and symbols. For these situations, MathM
provides a generalsymbol element, which is discussed below.

4.2.1.3 The apply construct

The most fundamental way of building up a mathematical expression in MathML content markuggg tgeonstruct.

An apply element typically applies an operator to its arguments. It corresponds to a complete mathematical expressio
Roughly speaking, this means a piece of mathematics that could be surrounded by parentheses or ‘logical bracke
without changing its meaning.

For example,X + y) might be encoded as

<apply>
<plus/>
<ci> x </ci>
<ci> y </ci>
</apply>
The opening and closing tags afply specify exactly the scope of any operator or function. The most typical way of
usingapply is simple and recursive. Symbolically, the content model can be described as:

<apply>

op

a

b </apply>
where theoperands a and b are containers or other content-based elements themselves jsad operator or function.
Note that sincexpply is a container, this allowspply constructs to be nested to arbitrary depth.

An apply may in principle have any number of operands:

<apply> op a b [c...] <apply>
For example,X + y + 2) can be encoded as

<apply>
<plus/>
<ci> a </ci>
<ci> b </ci>
<ci> ¢ </ci>
</apply>

114

Mathematical expressions involving a mixture of operations result in nested occurrerggd of For examplea x +
b would be encoded as
<apply>
<plus/>
<apply>
<times/>
<ci> a </ci>
<ci> x </ci>
</apply>
<ci> b </ci>
</apply>
There is no need to introduce parentheses or to resort to operator precedence in order to parse the expression corre
The apply tags provide the proper grouping for the re-use of the expressions within other constructs. Any expressiol
enclosed by aapply element is viewed as a single coherent object.

An expression such af (+ G)(x) might be a product, as in

<apply>
<times/>
<apply>
<plus/>
<ci> F </ci>
<ci> G </ci>
</apply>
<ci> x </ci>
</apply>
or it might indicate the application of the functién+ G to the argument. This is indicated by constructing the sum

<apply>
<plus/>
<ci> F </ci>
<ci> G </ci>
</apply>
and applying it to the argumenrtas in

<apply>
<apply>
<plus/>
<ci> F </ci>
<ci> G </ci>
</apply>
<ci> x </ci>
</apply>
Both the function and the arguments may be simple identifiers or more complicated expressions.

In MathML 1.0, another construction closely related to the use cdjipay element with operators and arguments was
thereln element. Thereln element was used to denote that a mathematical relation holds between its arguments, a
opposed to applying an operator. Thus, the MathML markup for the expressigiwas given in MathML 1.0 by:

115

<reln>
<1t/>
<ci> x </ci>
<ci> y </ci>
</reln>
In MathML 2.0, theapply construct is used with all operators, including logical operators. The expression above
becomes

<apply>
<1t/>
<ci> x </ci>
<ci> y </ci>
</apply>
in MathML 2.0. The use oteln with relational operators is supported for reasons of backwards compatibility, but
deprecatedAuthors creating new content are encouraged taapgéy in all cases.

4.2.1.4 Explicitly defined functions and operators

The most common operations and functions suchlas andsin have been predefined explicitly as empty elements
(see Sectiont.4). They havetype anddefinitionURL attributes, and by changing these attributes, the author can
record that a different sort of algebraic operation is intended. This allows essentially the same notation to be re-used f
a discussion taking place in a different algebraic domain.

Due to the nature of mathematics the notation must be extensible. The key to extensibility is the ability of the user t
define new functions and other symbols to expand the terrain of mathematical discourse.

It is always possible to create arbitrary expressions, and then to use them as symbols in the language. Their propert
can then be inferred directly from that usage as was done in the previous section. However, such an approach wot
preclude being able to encode the fact that the construct was a known symbol, or to record its mathematical properti
except by actually using it. Thesymbol element is used as a container to construct a new symbol in much the same way
thatci is used to construct an identifier. (Note that ‘symbol’ is used here in the abstract sense and has no connectic
with any presentation of the construct on screen or paper). The difference in usagedsyilitail should refer to

some mathematically defined concept with an external definition referenced diaftivei t ionURL attribute, whereas

ci is used for identifiers that are essentially ‘local’ to the MathML expression and do not use any external definition
mechanism. The target of thiefinitionURL attribute on thecsymbol element may encode the definition in any
format; the particular encoding in use is given by #aeoding attribute.

To usecsymbol to describe a completely new function, we write for example

<csymbol definitionURL="www.example.com/VectorCalculus.htm"
encoding="text">
Christoffel
</csymbol>

The definitionURL attribute specifies a URI that provides a written definition for theistoffel symbol. Sug-
gested default definitions for the content elements of MathML appear in Appéndia format based on OpenMath,
although there is no requirement that a particular format be used. The role @étheitionURL attribute is very
similar to the role of definitions included at the beginning of many mathematical papers, and which often just refer to ¢
definition used by a particular book.

116

MathML 1.0 supported the use of tHa to encode the fact that a construct is explicitly being used as a function or
operator. To record the fact that- G is being used semantically as if it were a function, it was encoded as:

<fn>
<apply>
<plus/>
<ci>F</ci>
<ci>G</ci>
</apply>
</fn>

This usage, although allowed in MathML 2.0 for reasons of backwards compatibility, islepwcatedThe fact that

a construct is being used as an operator is clear from the position of the construct as the first chitgppf yhéf it is
required to add additional information to the construct, it should be wrappeddmnamtics element, for example:

<semantics definitionURL="www.example.com/vectorfuncs/plus.htm"
encoding="Mathematica">
<apply>
<plus/>
<ci>F</ci>
<ci>G</ci>
</apply>
</semantics>

MathML 1.0 supported the use 6éfinitionURL with fn to refer to external definitions for user-defined functions.

This usage, although allowed for reasons of backwards compatibilit\gsecatedn MathML 2.0 in favor of using
csymbol to define the function, and thespply to link the function to its arguments. For example:

<apply>
<csymbol definitionURL="http://www.example.org/function_spaces.html#my_def"
encoding="text">
BigK
</csymbol>
<ci>x</ci>
<ci>y</ci>
</apply>

4.2.1.5 The inverse construct
Given functions, it is natural to have functional inverses. This is handled byntherse element.

Functional inverses can be problematic from a mathematical point of view in that they implicitly involve the definition
of an inverse for an arbitrary functidgh Even at the K-through-12 level the concept of an invérsé of many common
functionsF is not used in a uniform way. For example, the definitions used for the inverse trigonometric functions may
differ slightly depending on the choice of domain and/or branch cuts.

MathML adopts the view: i is a function from a domai® to D’, then the inversé of F is a function oveiD’ such
thatG(F (x)) = x for x in D. This definition does not assert that such an inverse exists for all or indeedraby or that
it is single-valued anywhere. Also, depending on the functions involved, additional properties $U&G(@¥ =y fory
in D’ may hold.

117

Theinverse element is applied to a function whenever an inverse is required. For example, application of the inverse
sine function tox, i.e. sin~! (x), is encoded as:

<apply>
<apply> <inverse/> <sin/> </apply>
<ci> x </ci>
</apply>
While arcsin is one of the predefined MathML functions, an explicit reference to ¥x) might occur in a document
discussing possible definitions afcsin.

4.2.1.6 The declare construct

Consider a document discussing the vectors(a, b, ¢) andB = (d, g,), and later including the expressivr= A + B.
It is important to be able to communicate the fact that wher@amndB are used they represent a particular vector. The
properties of that vector may determine aspects of operators spthias

The simple fact thaf is a vector can be communicated by using the markup
<ci type="vector">A</ci>

but this still does not communicate, for example, which vector is involved or its dimensions.

Thedeclare construct is used to associate specific properties or meanings with an object. The actual declaration itse
is not rendered visually (or in any other form). However, it indirectly impacts the semantics of all affected uses of the
declared object.

The scope of a declaration is, by default, local to the MathML element in which the declaration is madeckibe
attribute of thedeclare element is set tglobal, the declaration applies to the entire MathML expression in which it
appears.

The uses of theleclare element range from resetting default attribute values to associating an expression with a
particular instance of a more elaborate structure. Subsequent uses of the original expression (within the scope of t
declare) play the same semantic role as would the paired object.

For example, the declaration

<declare>
<ci> A </ci>
<vector>
<ci> a </ci>
<ci> b </ci>
<ci> ¢ </ci>
</vector>
</declare>

specifies thaf stands for the particular vectaa, (b, c) so that subsequent usesfdés inV = A + B can take this into
account. Whemrleclare is used in this way, the actual encoding

<apply>
<eq/>
<ci> V </ci>
<apply>
<plus/>

118

<ci> A </ci>
<ci> B </ci>
</apply>
</apply>
remains unchanged but the expression can be interpreted properly as vector addition.

There is no requirement to declare an expression to stand for a specific object. For example, the declaration

<declare type="vector">
<ci> A </ci>
</declare>

specifies thal is a vector without indicating the number of components or the values of specific components. The
possible values for theype attribute include all the predefined container element names succasr, matrix or
set (see Sectiod.3.2.9.

4.2.1.7 The lambda construct

The lambda calculus allows a user to construct a function from a variable and an expression. For example, the lamb
construct underlies the common mathematical idiom illustrated here:

Let f be the function taking tox 2 + 2

There are various notations for this concept in mathematical literature, sa¢k, #x)) = F or A(x, [F]) =F, wherex
is a free variable irf.

This concept is implemented in MathML with thembda element. A lambda construct withinternal variables is
encoded by aambda element withn+1 children. All but the last child must berar elements containing the identifiers
of the internal variables. The last child is an expression defining the function. This is typicalppamn, but can also
be any container element.

The following constructa (x, sinf+1)):

<lambda>
<bvar><ci> x </ci></bvar>
<apply>
<sin/>
<apply>
<plus/>
<ci> x </ci>
<cn> 1 </cn>
</apply>
</apply>
</lambda>
To usedeclare andlambda to construct the functior for which f(x) = x2 + x + 3 use:

<declare type="£fn">
<ci> f </ci>
<lambda>
<bvar><ci> x </ci></bvar>
<apply>
<plus/>
<apply>

119

<power/>
<ci> x </ci>
<cn> 2 </cn>
</apply>
<ci> x </ci>
<cn> 3 </cn>
</apply>
</lambda>
</declare>

The following markup declares and constructs the funcicuch that)(x, y) is the integral fromx to y of t 4 with
respect td.

<declare type="£fn">
<ci> J </ci>
<lambda>
<bvar><ci> x </ci></bvar>
<bvar><ci> y </ci></bvar>
<apply> <int/>
<bvar>
<ci> t </ci>
</bvar>
<lowlimit>
<ci> x </ci>
</lowlimit>
<uplimit>
<ci> y </ci>
</uplimit>
<apply> <power/>
<ci>t</ci>
<cn>4</cn>
</apply>
</apply>
</lambda>
</declare>

The functiond can then in turn be applied to an argument pair.

4.2.1.8 The use of qualifier elements and the condition construct

The last example of the preceding section illustrates the ugeadffier elementdowlimit, uplimit, andbvar used

in conjunction with theint element. A number of common mathematical constructions involve additional data that is
either implicit in conventional notation, such as a bound variable, or thought of as part of the operator rather than a
argument, as is the case with the limits of a definite integral.

Content markup uses qualifier elements in conjunction with a number of operators, including integrals, sums, serie
and certain differential operators. Qualifier elements appear in the sapg element with one of these operators. In
general, they must appear in a certain order, and their precise meaning depends on the operators being used. For det
see Sectiod.2.3.2

The qualifier elemenbvar is also used in another important MathML construction. Thadition element is used

120

to place conditions on bound variables in other expressions. This allows MathML to define sets by rule, rather tha
enumeration, for example. The following markup, for instance, encodes the| get 1:

<gset>
<bvar><ci> x </ci></bvar>
<condition>
<apply>
<1t/>
<ci> x </ci>
<cn> 1 </cn>
</apply>
</condition>
</set>

4.2.1.9 Rendering of Content elements

While the primary role of the MathML content element set is to directly encode the mathematical structure of ex-
pressions independent of the notation used to present the objects, rendering issues cannot be ignored. Each con
element has a default rendering, given in Sectigh and several mechanisms (including Sectioh 3.9 are provided

for associating a particular rendering with an object.

4.2.2 Containers
Containers provide a means for the construction of mathematical objects of a given type.

Tokens ci, cn, csymbol
Constructors interval, list, matrix, matrixrow, set, vector, apply, reln, fn, lambda, piecewise, piece, other
Specials declare

4.2.2.1 Tokens

Token elements are typically the leaves of the MathML expression tree. Token elements are used to indicate mathem
ical identifiers, numbers and symbols.

It is also possible for the canonically empty operator elements suekpasin andcos to be leaves in an expression
tree. The usage of operator elements is described in Setich

cn Thecn element is the MathML token element used to represent numbers. The supported types of numbers includ
real, integer, rational, complex-cartesian, andcomplex-polar, with real being the default type.
An attributebase (with default valuel0) is used to help specify how the content is to be parsed. The content
itself is essentiallPCDATA, separated bysep/> when two parts are needed in order to fully describe a
number. For example, the real number 3 is constructedcday type="real"> 3 </cn>, while the ratio-
nal number 3/4 is constructed asn type="rational"> 3<sep/>4 </cn>. The detailed structure and
specifications are provided in Sectiénrt.1.1

ci Theci element, or ‘content identifier’ is used to construct a variable, or an identifieypA attribute indicates the
type of object the symbol represents. Typically,represents a real scalar, but no default is specified. The
content is eithePCDATA or a general presentation construct (see Se&ibrf). For example,

<ci>

<msub>
<mi>c</mi>

121

<mn>1</mn>
</msub>
</ci>
encodes an atomic symbol that displays visuallgaahich, for purposes of content, is treated as a single
symbol representing a real number. The detailed structure and specifications are provided indSkdtidn

csymbol Thecsymbol element, or ‘content symbol’ is used to construct a symbol whose semantics are not part of the

4.2.2.2

core content elements provided by MathML, but defined externadlymbol does not make any attempt

to describe how to map the arguments occurring in any application of the function into a new MathML
expression. Instead, it depends ondtsfinitionURL attribute to point to a particular meaning, and the
encoding attribute to give the syntax of this definition. The content afsgmbol is eitherPCDATA or a
general presentation construct (see Sedidng. For example,

<csymbol definitionURL="www.example.com/ContDiffFuncs.htm"
encoding="text">

<msup>

<mi>C</mi>

<mn>2</mn>
</msup>
</csymbol>
encodes an atomic symbol that displays visuallfCasand that, for purposes of content, is treated as a

single symbol representing the space of twice-differentiable continuous functions. The detailed structure an:
specifications are provided in Sectiér.1.3

Constructors

MathML provides a number of elements for combining elements into familiar compound objects. The compound object
include things like lists and sets. Each constructor produces a new type of object.

interval Theinterval element is described in detail in Sectibr.2.4 It denotes an interval on the real line with the

values represented by its children as end points.clleeure attribute is used to qualify the type of interval
being represented. For example,

<interval closure="open-closed">
<ci> a </ci>
<ci> b </ci>

</interval>
represents the open-closed interval often writigr].

set and list The set andlist elements are described in detail in Sectibi.6.1and Sectiort.4.6.2 Typically, the

child elements of a possibly empty st element are the actual components of an ordéked-or example,
an ordered list of the three symbalsh, andc is encoded as

<list> <ci> a </ci> <ci> b </ci> <ci> ¢ </ci> </1list>
Alternatively, bvar and condition elements can be used to define lists where membership depends on

satisfying certain conditions. Aerder attribute can be used to specify what ordering is to be used. When
the nature of the child elements permits, the ordering defaults to a numeric or lexicographic ordering. Set:
are structured much the same as lists except that there is no implied ordering aggdhef set may be
normal Or multiset with multiset indicating that repetitions are allowed. For both sets and lists, the
child elements must be valid MathML content elements. The type of the child elements is not restricted. For
example, one might construct a list of equations, or of inequalities.

matrix and matrixrow Thematrix element is used to represent mathematical matrices. It is described in detail in

Section4.4.10.2 It has zero or more child elements, all of which aterixrow elements. These in turn

122

expect zero or more child elements that evaluate to algebraic expressions or numbers. These sub-eleme
are often real numbers, or symbols as in

<matrix>
<matrixrow> <cn> 1 </cn> <cn> 2 </cn> </matrixrow>
<matrixrow> <cn> 3 </cn> <cn> 4 </cn> </matrixrow>

</matrix>
Thematrixrow elements must always be contained inside of a matrix, and all rows in a given matrix must

have the same number of elements. Note that the behavior akthe x andmatrixrow elements is sub-
stantially different from thetable andmtr presentation elements.

vector Thevector elementis described in detail in Sectibrd.10.1 It constructs vectors from andimensional vector
space so that its child elements typically represent real or complex valued scalars as in the three-element
vector

<vector>
<apply>
<plus/>
<ci> x </ci>
<ci> y </ci>
</apply>
<cn> 3 </cn>
<cn> 7 </cn>
</vector>
apply Theapply element is described in detail in Sectidrl.2.1 Its purpose is to apply a function or operator to its
arguments to produce an expression representing an element of the codomain of the function. It is involve
in everything from forming sums such as b as in

<apply>
<plus/>
<ci> a </ci>
<ci> b </ci>
</apply>
through to using the sine function to construct g)rgs in

<apply>

<sin/>

<ci> a </ci>
</apply>
or constructing integrals. Its usage in any particular setting is determined largely by the properties of the
function (the first child element) and as such its detailed usage is covered together with the functions ant
operators in Section.2.3

reln Thereln elementis described in detail in Sectiért.2.2 It was used in MathML 1.0 to construct an expression

suchas=Db, asin

<reln><eq/>
<ci> a </ci>
<ci> b </ci>

</reln>
indicating an intended comparison between two mathematical values. MathML 2.0 takes the view that this

should be regarded as the application of a boolean function, and as such could be constructgsbiiging

123

The use ofreln with logical operators is supported for reasons of backwards compatibilitgemrecated
in favor of apply.

fn The fn element was used in MathML 1.0 to make explicit the fact that an expression is being used as a functior

or operator. This is allowed in MathML 2.0 for backwards compatibility, butdsrecategas the use of an
expression as a function or operator is clear from its position as the first child=gfpary. £n is discussed
in detail in Sectiont.4.2.3

lambda The lambda element is used to construct a user-defined function from an expression and one or more free

variables. The lambda construct withnternal variables takast+1 children. The first (second, uptis a
bvar containing the identifiers of the internal variables. The last is an expression defining the function. This
is typically anapply, but can also be any container element. The following constdEtssin x)
<lambda>
<bvar><ci> x </ci></bvar>
<apply>
<sin/>
<ci> x </ci>
</apply>
</lambda>
The following constructs the constant functibifx, 3)

<lambda>
<bvar><ci> x </ci></bvar>
<cn> 3 </cn>

</lambda>

piecewise, piece, otherwisd he piecewise, piece, otherwise elements are used to support ‘piecewise’ declara-

4.2.2.3

tions of the form ‘H(x) = 0 if x less than OH(X) = 1 otherwise’.

<piecewise>
<piece>
<cn> 0 </cn>
<apply><lt/><ci> x </ci> <cn> 0 </cn></apply>
</piece>
<otherwise>
<ci> x </ci>
</otherwise>

</piecewise>
Thepiecewise elements are discussed in detail in Sectioh2.16

Special Constructs

Thedeclare construct is described in detail in Sectiénrt.2.8 It is special in that its entire purpose is to modify the
semantics of other objects. It is not rendered visually or aurally.

The need for declarations arises any time a symbol (including more general presentations) is being used to represent
instance of an object of a particular type. For example, you may wish to declare that the symbolic idéntifiersents

a vector.

The declaration

<declare type="vector"><ci>V</ci></declare>

resets the default type attribute ofi>V</ci> to vector for all affected occurrences gici>V</ci>. This avoids
having to write<ci type="vector">V</ci> every time you use the symbol.

124

More generallydeclare can be used to associate expressions with specific content. For example, the declaration

<declare>
<ci>F</ci>
<lambda>
<bvar><ci> U </ci></bvar>
<apply>
<int/>
<bvar><ci> x </ci></bvar>
<lowlimit><cn> 0 </cn></lowlimit>
<uplimit><ci> a </ci></uplimit>
<ci> U </ci>
</apply>
</lambda>
</declare>

associates the symbBlwith a new function defined by thiambda construct. Within the scope where the declaration
is in effect, the expression

<apply>
<ci>F</ci>
<ci> U </ci>

</apply>

stands for the integral & from O toa.

The declare element can also be used to change the definition of a function or operator. For example, if the URL
http://.../MathML:noncommutplus described a non-commutative plus operation encoded in Maple syntax, then
the declaration

<declare definitionURL="http://.../MathML:noncommutplus"
encoding="Maple">
<plus/>
</declare>

would indicate that all affected usesifus are to be interpreted as having that definitiopdis.

4.2.3 Functions, Operators and Qualifiers
The operators and functions defined by MathML can be divided into categories as shown in the table below.

125

unary arithmetic exp, factorial, minus, abs, conjugate, arg, real, imaginary, floor,

ceiling
unary logical not
unary functional inverse, ident, domain, codomain, image

unary elementary classical functionsin, cos, tan, sec, csc, cot, sinh, cosh, tanh, sech, csch, coth, arc-
sin, arccos, arctan, arccosh, arccot, arccoth, arccsc, arccsch, arc-
sec, arcsech, arcsinh, arctanh, exp, 1n, log

unary linear algebra determinant, transpose

unary calculus and vector calculus divergence, grad, curl, laplacian
unary set-theoretic card

binary arithmetic quotient, divide, minus, power, rem
binary logical implies, equivalent, approx

binary set operators setdiff

binary linear algebra vectorproduct, scalarproduct, outerproduct
n-ary arithmetic plus, times, max, min, gcd, lcm

n-ary statistical mean, sdev, variance, median, mode
n-ary logical and, or, xor

n-ary linear algebra selector

n-ary set operator union, intersect, cartesianproduct
n-ary functional fn, compose

integral, sum, product operators int, sum, product

differential operator diff, partialdiff

guantifier forall, exists

From the point of view of usage, MathML regards functions (for examaple and cos) and operators (for example
plus andtimes) in the same way. MathML predefined functions and operators are all canonically empty elements.

Note that the:symbol element can be used to construct a user-defined symbol that can be used as a function or operatc

4.2.3.1 Predefined functions and operators

MathML functions can be used in two ways. They can be used as the operator withippanelement, in which case
they refer to a function evaluated at a specific value. For example,

<apply>
<sin/>
<cn>5</cn>
</apply>
denotes a real number, namely sin(5).
MathML functions can also be used as arguments to other operators, for example
<apply>
<plus/><sin/><cos/>
</apply>

denotes a function, namely the result of adding the sine and cosine functions in some function space. (The defal
semantic definition oplus is such that it infers what kind of operation is intended from the type of its arguments.)

The number of child elements in theply is defined by the element in the first (i.e. operator) position.

Unary operators are followed by exactly one other child element withirafipa y.

126

Binary operators are followed by exactly two child elements.
N-ary operators are followed by two or more child elements.

The one exception to these rules is thatlare elements may be inserted in any position except the fiegtlare
elements are not counted when satisfying the child element count fasry containing a unary or binary operator
element.

Integral, sum, product and differential operators are discussed below in S&&iBr2

4.2.3.2 Operators taking Qualifiers
The table below contains the qualifiers and the operators defined as taking qualifiers in MathML.

qualifiers lowlimit, uplimit, bvar, degree, logbase, interval, condition, domainofapplication, momentabout
operators int, sum, product, root, diff, partialdiff, 1imit, log, moment, min, max, forall, exists

Operators taking qualifiers are canonically empty functions that differ from ordinary empty functions only in that they
support the use of specigalifier elements to specify their meaning more fully. They are used in exactly the same way
as ordinary operators, except that when they are used as operators, certain qualifier elements are also permitted to b
the enclosingapply. Qualifiers always follow the operator and precede the argument if it is present. If more than one
qualifier is present, they appear in the ordesr, lowlimit, uplimit, interval, condition, domainofapplica-
tion, degree, momentabout, logbase. A typical example is:
<apply>
<int/>
<bvar><ci>x</ci></bvar>
<interval><cn>0</cn><cn>1</cn></interval>
<apply>
<power/>
<ci>x</ci>
<cn>2</cn>
</apply>
</apply>
It is also valid to use qualifier schema with a function not applied to an argument. For example, a function acting or
integrable functions on the interval [0,1] might be denoted:
<fn>
<apply>
<int/>
<bvar><ci>x</ci></bvar>
<lowlimit><cn>0</cn></lowlimit>
<uplimit><cn>1</cn></uplimit>
</apply>
</fn>
In addition to the defined usage in MathML, qualifier schema may be used with any user-defined symbol (eg usin
csymbol) or construct. The meaning of such a usage is not defined by MathML,; it would normally be user-defined
using thedefinitionURL attribute.

The meaning and usage of qualifier schema varies from function to function. The following list summarizes the usag
of qualifier schema with the MathML functions taking qualifiers.

int The int function accepts th@owlimit, uplimit, bvar, interval, condition anddomainofapplication
schemata. If bothowlimit anduplimit schema are present, they denote the limits of a definite integral.

127

The domain of integration may alternatively be specified usiigerval, condition Or domainofappli-
cation. Thebvar schema signifies the variable of integration. When used with each qualifier schema
is expected to contain a single child schema; otherwise an error is generated.

diff Thediff function accepts thevar schema. Thevar schema specifies with respect to which variable the deriva-
tive is being taken. Thevar may itself contain alegree schema that is used to specify the order of the
derivative, i.e. a first derivative, a second derivative, etc. For example, the second derivativglofespect
toxis:

<apply>
<diff/>
<bvar>
<ci> x </ci>
<degree>
<cn> 2 </cn>
</degree>
</bvar>
<apply><fn><ci>f</ci></fn>
<ci> x </ci>
</apply>
</apply>
partialdiff Thepartialdiff operator accepts zero or marear schemata, and an optionidgree qualifier schema.
The bvar schema specify, in order, the variables with respect to which the derivative is being taken. Each
bvar element may contain degree schema which is used to specify the order of the derivative being
taken with respect to that variable. The optioaagree schema qualifier associated with thertiald-
iff element itself (that is, appearing as a child of the enclosisigly element rather than of one of the
bvar qualifiers) is used to represent the total degree of the differentiation. degefee schema used with
partialdiff is expected to contain a single child schema. For example,

<apply>
<partialdiff/>
<bvar>
<degree><cn>2</cn></degree>
<ci>x</ci>
</bvar>
<bvar><ci>y</ci></bvar>
<bvar><ci>x</ci></bvar>
<degree><cn>4</cn></degree>
<ci type="fn">f</ci>
</apply>
denotes the mixed partial derivative{ /d®x dy dx) f.
sum, product The sum and product functions accept thevar, lowlimit, uplimit, interval, condition and
domainofapplication schemata. If bothowlimit anduplimit schemata are present, they denote the
limits of the sum or product. The limits may alternatively be specified usingifierval, condition or
domainofapplication schema. Th&var schema signifies the internal variable in the sum or product. A
typical example might be:

<apply>

<sum/>
<bvar><ci>i</ci></bvar>

128

<lowlimit><cn>0</cn></lowlimit>
<uplimit><cn>100</cn></uplimit>
<apply>
<power/>
<cid>x</ci>
<ci>i</ci>
</apply>
</apply>
When used withsum or product, each qualifier schema is expected to contain a single child schema; other-
wise an error is generated.

limit The 1imit function accepts zero or mokerar schemata, and optionabndition andlowlimit schemata.

A condition may be used to place constraints on ther. Thebvar schema denotes the variable with
respect to which the limit is being taken. Thewlimit schema denotes the limit point. When used with
limit, thebvar andlowlimit schemata are expected to contain a single child schema; otherwise an error
is generated.

log Thelog function accepts only theogbase schema. If present, theogbase schema denotes the base with respect

to which the logarithm is being taken. Otherwise, the log is assumed to be base 10. When udeg vifite
logbase schema is expected to contain a single child schema; otherwise an error is generated.

moment Themoment function accepts théegree andmomentabout schema. If present, thiegree schema denotes

min, max

the order of the moment. Otherwise, the moment is assumed to be the first order moment. When used wit
moment, thedegree schema is expected to contain a single child schema; otherwise an error is generated
If present, themomentabout schema denotes the point about which the moment is taken. Otherwise, the
moment is assumed to be the moment about zero.

Themin andmax functions accept avar schema in cases where the maximum or minimum is being taken
over a set of values specified byendition schema together with an expression to be evaluated on that set.
In MathML1.0, thebvar element was optional when usingéndition; if a condition element containing

a single variable was given by itself followingnan or max operator, the variable was implicitly assumed to

be bound, and the expression to be maximized or minimized (if absent) was assumed to be the single bour
variable. This usage igeprecateih MathML 2.0 in favor of explicitly stating the bound variable(s) and the
expression to be maximized or minimized in all cases.mheandmax elements may also be applied to a list

of values in which case no qualifier schemata are used. For examples of all three usages, seé¢.&&cfion

forall, exists The universal and existential quantifier operatbysall andexists are used in conjuction with one or

morebvar schemata to represent simple logical assertions. There are two ways of using the logical quantifie
operators. The first usage is for representing a simple, quantified assertion. For example, the statement ‘the
existsx< 9" would be represented as:

<apply>

<exists/>

<bvar><ci> x </ci></bvar>

<apply><1t/>

<ci> x </ci><cn> 9 </cn>

</apply>
</apply>
The second usage is for representing implications. Hypotheses are giverhyia ion element following
the bound variables. For example the statement ‘fax &lB, x < 10’ would be represented as:

<apply>
<forall/>
<bvar><ci> x </ci></bvar>

129

<condition>
<apply><1lt/>
<ci> x </ci><cn> 9 </cn>
</apply>
</condition>
<apply><1lt/>
<ci> x </ci><cn> 10 </cn>
</apply>
</apply>
Note that in both usages one or marear qualifiers are mandatory.

42.4 Relations

binary relation neq, equivalent, approx, factorof
binary logical relation implies

binary set relation in, notin, notsubset, notprsubset
binary series relation tendsto

n-ary relation eq, leq, 1t, geq, gt

n-ary set relation subset, prsubset

The MathML content tags include a number of canonically empty elements which denote arithmetic and logical rela
tions. Relations are characterized by the fact that, if an external application were to evaluate them (MathML does n
specify how to evaluate expressions), they would typically return a truth value. By contrast, operators generally retur
a value of the same type as the operands. For example, the result of evaduatirig either true or false (by contrast,

1+ 2 is again a number).

Relations are bracketed with their arguments usingfipd y element in the same way as other functions. In MathML
1.0, relational operators were bracketed uste@n. This usage, although still supported, is ndeprecatedn favor

of apply. The element for the relational operator is the first child element oapipe@y. Thus, the example from the
preceding paragraph is properly marked up as:

<apply>
<1t/>
<ci>a</ci>
<ci>b</ci>
</apply>
Itis an error to enclose a relation in an element other taily or reln.

The number of child elements in theply is defined by the element in the first (i.e. relation) position.
Unary relations are followed by exactly one other child element withinael y.

Binary relations are followed by exactly two child elements.

N-ary relations are followed by zero or more child elements.

The one exception to these rules is thatlare elements may be inserted in any position except the fiegtlare
elements are not counted when satisfying the child element count fapy containing a unary or binary relation
element.

425 Conditions

condition condition

130

The condition element is used to define the ‘such that’' construct in mathematical expressions. Condition element:
are used in a number of contexts in MathML. They are used to construct objects like sets and lists by rule instead of &
enumeration. They can be used with therall andexists operators to form logical expressions. And finally, they
can be used in various ways in conjunction with certain operators. For example, they can be used nitelament

to specify domains of integration, or to specify argument lists for operatoraiik@ndmax.

Thecondition element is always used together with one or narer elements.

The exact interpretation depends on the context, but generally speakingniiet ion element is used to restrict the
permissible values of a bound variable appearing in another expression to those that satisfy the relations contained
thecondition. Similarly, when theondition element contains set, the values of the bound variables are restricted

to that set.

A condition element contains a single child that is eitheappily, or areln element (eprecated Compound condi-
tions are indicated by applying relations suctaag inside the child of the condition.

4.2.5.1 Examples

The following encodes ‘there existsuch thak ® < 3.

<apply>
<exists/>
<bvar><ci> x </ci></bvar>
<condition>
<apply><1t/>
<apply>
<power/>
<ci>x</ci>
<cn>5</cn>
</apply>
<cn>3</cn>
</apply>
</condition>
</apply>
The next example encodes ‘for alin N there exist prime numbers q such thatp+q = 2x.

<apply>
<forall/>
<bvar><ci>x</ci></bvar>
<condition>
<apply><in/>
<ci>x</ci>
<csymbol encoding="OpenMath" definitionURL="http://www.openmath.org/cd/setnamel.ocd">N<,
</apply>
</condition>

<apply><exists/>
<bvar><ci>p</ci></bvar>
<bvar><ci>q</ci></bvar>
<condition>

131

<apply><and/>
<apply><in/><ci>p</ci>
<csymbol encoding="OpenMath" definitionURL="http://www.openmath.org/cd/setnamel.ocd">]
</apply>
<apply><in/><ci>q</ci>
<csymbol encoding="OpenMath" definitionURL="http://www.openmath.org/cd/setnamel.ocd">l
</apply>
<apply><eq/>
<apply><plus/><ci>p</ci><ci>q</ci></apply>
<apply><times/><cn>2</cn><ci>x</ci></apply>
</apply>
</apply>
</condition>
</apply>
</apply>
A third example shows the use of quantifiers wihhdition. The following markup encodes ‘there exists 3 such
thatx 2 = 4'.
<apply>
<exists/>
<bvar><ci> x </ci></bvar>
<condition>
<apply><1lt/><ci>x</ci><cn>3</cn></apply>
</condition>
<apply>
<eq/>
<apply>
<power/><ci>x</ci><cn>2</cn>
</apply>
<cn>4</cn>
</apply>
</apply>

4.2.6 Syntax and Semantics
mappings semantics, annotation, annotation-xml

The use of content markup rather than presentation markup for mathematics is sometimes refeseachigiasagging

[}. The parse-tree of a valid element structure using MathML content elements corresponds directly to the
expression tree of the underlying mathematical expression. We therefore regard the content tagging itself as encoding
syntax of the mathematical expression. This is, in general, sufficient to obtain some rendering and even some symbol
manipulation (e.g. polynomial factorization).

However, even in such apparently simple expressionX asY, some additional information may be required for
applications such as computer algebra. ArandY integers, or functions, etc.? ‘Plus’ represents addition over which
field? This additional information is referred to &snantic mapping. In MathML, this mapping is provided by the
semantics, annotation andannotation-xml elements.

The semantics element is the container element for the MathML expression together with its semantic mappings.
semantics expects a variable number of child elements. The first is the element (which may itself be a complex
element structure) for which this additional semantic information is being defined. The second and subsequent childre
if any, are instances of the elemenismotation and/orannotation-xml.

132

Thesemantics element also accepts tdefinitionURL andencoding attributes for use by external processing ap-
plications. One use might be a URI for a semantic content dictionary, for example. Since the semantic mapping informs
tion might in some cases be provided entirely bydhéinitionURL attribute, theannotation Or annotation-xml
elements are optional.

The annotation element is a container for arbitrary data. This data may be in the form of text, computer algebra
encodings, C programs, or whatever a processing application expettsation has an attributencoding defining

the form in use. Note that the content modelamhotation is PCDATA, SO care must be taken that the particular
encoding does not conflict with XML parsing rules.

The annotation-xml element is a container for semantic information in well-formed XML. For example, an XML
form of the OpenMath semantics could be given. Another possible use here is to embed, for example, the presentati
tag form of a construct given in content tag form in the first child elemesenéntics (or vice versa)annotation-

xml has an attributencoding defining the form in use.

For example:

<semantics>
<apply>
<divide/>
<cn>123</cn>
<cn>456</cn>
</apply>
<annotation encoding="Mathematica">
N[123/456, 39]
</annotation>
<annotation encoding="TeX">
$0.269736842105263157894736842105263157894\1dots$
</annotation>
<annotation encoding="Maple">
evalf (123/456, 39);
</annotation>
<annotation-xml encoding="MathML-Presentation">
<mrow>
<mn> 0.269736842105263157894 </mn>
<mover accent=’true’>
<mn> 736842105263157894 </mn>
<mo> &Q0verBar; </mo>
</mover>
</mrow>
</annotation-xml>
<annotation-xml encoding="OpenMath">
<OMA xmlns="http://www.openmath.org/OpenMath">
<0MS cd="arithl" name="divide"/>
<OMI>123</0MI>
<0OMI>456</0MI>
</0MA>
</annotation-xml>
</semantics>

where0QMA is the element defining the additional semantic information.

133

Of course, providing an explicit semantic mapping at all is optional, and in general would only be provided where there
is some requirement to process or manipulate the underlying mathematics.

4.2.7 Semantic Mappings

Although semantic mappings can easily be provided by various proprietary, or highly specialized encodings, there al
no widely available, non-proprietary standard schemes for semantic mapping. In part to address this need, the goal
the OpenMath effort is to provide a platform-independent, vendor-neutral standard for the exchange of mathematic
objects between applications. Such mathematical objects include semantic mapping information. The OpenMath groi
has defined an XML syntax for the encoding of this informatiom §]2 This element set could provide the
basis of onennotation-xml element set.

An attractive side of this mechanism is that the OpenMath syntax is specified in XML, so that a MathML expression
together with its semantic annotations can be validated using XML parsers.

4.2.8 Constants and Symbols

MathML provides a collection of predefined constants and symbols which represent frequently-encountered concer
in K-12 mathematics. These include symbols for well-known sets, suthtagers andrationals, and also some
widely known constant symbols such#sl se, true, exponentiale.

4.2.9 MathML element types

MathML functions, operators and relations can all be thought of as mathematical functions if viewed in a sufficiently
abstract way. For example, the standard addition operator can be regarded as a function mapping pairs of real numb
to real numbers. Similarly, a relation can be thought of as a function from some space of ordered pairs into the set «
values true, false. To be mathematically meaningful, the domain and codomain of a function must be precisely specifie
In practical terms, this means that functions only make sense when applied to certain kinds of operands. For examp
thinking of the standard addition operator, it makes no sense to speak of ‘adding’ a set to a function. Since MathMlI
content markup seeks to encode mathematical expressions in a way that can be unambiguously evaluated, it is
surprise that the types of operands is an issue.

MathML specifies the types of arguments in two ways. The first way is by providing precise instructions for processing
applications about the kinds of arguments expected by the MathML content elements denoting functions, operators a
relations. These operand types are defined in a dictionary of default semantic bindings for content elements, which
given in AppendixC. For example, the MathML content dictionary specifies that for real scalar arguments the plus
operator is the standard commutative addition operator over a field. The elemédrats atype attribute with a default

value ofreal. Thus some processors will be able to use this information to verify the validity of the indicated operations.

Although MathML specifies the types of arguments for functions, operators and relations, and provides a mechanism fi
typing arguments, a MathML-compliant processor is hot required to do any type checking. In other words, a MathML
processor will not generate errors if argument types are incorrect. If the processor is a computer algebra system, it m
be unable to evaluate an expression, but no MathML error is generated.

4.3 Content Element Attributes
4.3.1 Content Element Attribute Values
Content element attributes are all of the tyyPATA, that is, any character string will be accepted as valid. In addition,

each attribute has a list of predefined values, which a content processor is expected to recognize and process. The ree

134

that the attribute values are not formally restricted to the list of predefined values is to allow for extension. A processo
encountering a value (not in the predefined list) which it does not recognize may validly process it as the default valu
for that attribute.

4.3.2 Attributes Modifying Content Markup Semantics

Each attribute is followed by the elements to which it can be applied.

4.3.2.1 base

cn indicates numerical base of the number. Predefined values: any numeric string. The defaultMalue is

4.3.2.2 closure

interval indicates closure of the interval. Predefined valegen, closed, open-closed, closed-open. The default
value isclosed

4.3.2.3 definitionURL

csymbol, declare, semantics, any operator elemeroints to an external definition of the semantics of the symbol
or construct being declared. The value is a URL or URI that should point to some kind of definition. This
definition overrides the MathML default semantics. At present, MathML does not specify the format in which
external semantic definitions should be given. In particulere is no requirement that the target of the URI
be loadable and parsable.An external definition could, for example, define the semantics in human-readable
form. Ideally, in most situations the definition pointed to by & initionURL attribute would be some
standard, machine-readable format. However, there are several reasons why MathML does not require suct
format. First, no such format currently exists. There are several projects underway to develop and implemer
standard semantic encoding formats, most notably the OpenMath effort. But by nature, the development c
a comprehensive system of semantic encoding is a very large enterprise, and while much work has bee
done, much additional work remains. Therefore, even thoughdhenitionURL is designed and intended
for use with a formal semantic encoding language such as OpenMath, it is premature to require any on
particular format. Another reason for leaving the format ofédheinitionURL attribute unspecified is that
there will always be situations where some non-standard format is preferable. This is particularly true in
situations where authors are describing new ideas. It is anticipated that in the near term, there will be :
variety of renderer-dependent implementations ofdé&initionURL attribute. For example, a translation
tool might simply prompt the user with the specified definition in situations where the proper semantics have
been overridden, and in this case, human-readable definitions will be most useful. Other software may utiliz
OpenMath encodings. Still other software may use proprietary encodings, or look for definitions in any of
several formats. As a consequence, authors need to be aware that there is no guarantee a generic rend
will be able to take advantage of information pointed to bydbéinitionURL attribute. Of course, when
widely-accepted standardized semantic encodings are available, the definitions pointed to can be replace
without modifying the original document. However, this is likely to be labor intensive. There is no default
value for thedefinitionURL attribute, i.e. the semantics are defined within the MathML fragment, and/or
by the MathML default semantics.

4.3.24 encoding

annotation, annotation-xml, csymbol, semantics, all operator elementidicates the encoding of the annotation, or
in the case otsymbol , semantics and operator elements, the syntax of the target referred teby-
nitionURL. Predefined values aMathML-Presentation, MathML-Content. Other typical valuesTexX,
OpenMath. The default value is ", i.e. unspecified.

135

4.3.2.5 nargs

declare indicates number of arguments for function declarations. Pre-defined vakigs:or any numeric string. The
default value idl.

4.3.2.6 occurrence

declare indicates occurrence for operator declarations. Pre-defined valpesix, infix, function-model. The
default value iSunction-model.

4.3.2.7 order

list indicates ordering on the list. Predefined valuesticographic, numeric. The default value iaumeric.

4.3.2.8 scope

declare indicates scope of applicability of the declaration. Pre-defined valwesl, global.
e local means the containing MathML element.
e global means the containingath element.
The default value idocal. At present, declarations cannot affect anything outside of the contaiaittg
element. ldeally, one would like to make document-wide declarations by setting the value safoitre

attribute to beglobal-document. However, the proper mechanism for document-wide declarations very
much depends on details of the way in which XML will be embedded in HTML, future XML style sheet
mechanisms, and the underlying Document Object Model. Since these supporting technologies are still i

flux at present, the MathML specification does not inclgtlebal-document as a pre-defined value of the

scope attribute. It is anticipated, however, that this issue will be revisited in future revisions of MathML as
supporting technologies stabilize. In the near term, MathML implementors that wish to simulate the effect of
a document-wide declaration are encouraged to pre-process documents in order to distribute document-wic

declarations to each individuahth element in the document.

4.3.2.9 type

cn indicates type of the number. Predefined valeegsotation, integer, rational, real, float, complex, complex-
polar, complex-cartesian, constant. The default value iseal. Notes. Each data type implies that the

data adheres to certain formatting conventions, detailed below. If the data fails to conform to the expecte

format, an error is generated. Details of the individual formats are:

real A real number is presented in decimal notation. Decimal notation consists of an optional sign (‘+’ or
‘") followed by a string of digits possibly separated into an integer and a fractional part by a ‘deci-

mal point’. Some examples are 0.3, 1, and -31.56. If a diffebast is specified, then the digits are
interpreted as being digits computed to that base.

e-notation A real number may also be presented in scientific notation. Such numbers have two parts (a
mantissa and an exponent) separated by ‘e’ or ‘E’. The first part is a real number, while the second par
is an integer exponent indicating a power of the base. For example, 12.3e5 represents 12.3times 10

integer An integer is represented by an optional sign followed by a string of 1 or more ‘digits’. What a

‘digit’ is depends on th@ase attribute. Ifbase is present, it specifies the base for the digit encoding,
and it specifies it base 10. Thhsse="16" specifies a hex encoding. Whease > 10, letters are added
in alphabetical order as digits. The legitimate valuetote are therefore between 2 and 36.
rational A rational number is two integers separated<sgp/>. If base is present, it specifies the base
used for the digit encoding of both integers.
complex-cartesian A complex number is of the form two real point numbers separatedsby/>.

136

complex-polar A complex number is specified in the form of a magnitude and an angle (in radians). The
raw data is in the form of two real numbers separateddsp/>.

constant The constant type is used to denote named constants. For example, an instahee eofpe=
"constant">π </cn>should be interpreted as having the semantics of the mathematical constant
Pi. The data for a constant tag may be one of the following common constants:

Symbol Value

π The usuakpi; of trigonometry: approximately 3.141592653...
&ExponentialkE; (Or ⅇ) The base for natural logarithms: approximately 2.718281828 ...
&Imaginaryl; (Orⅈ) Square root of -1

&gamma ; Euler’s constant: approximately 0.5772156649...

∞ (Or&infty;) Infinity. Proper interpretation varies with context

&true; the logical constantrue

&false; the logical constantalse

&NotANumber; (Or &NaN;) represents the result of an ill-defined floating point division

ci indicates type of the identifier. Predefined valuasteger, rational, real, float, complex, complex-polar,
complex-cartesian, constant, or the name of any content element. The meaning of the various attribute
values is the same as that listed above fordthelement. The default value is ", i.e. unspecified.

declare indicates type of the identifier being declared. Predefined values: any content element name. The default valt
isci, i.e. a generic identifier

set indicates type of the set. Predefined valuestmal, multiset. multiset indicates that repetitions are allowed.
The default value iaormal.

tendsto indicates the direction from which the limiting value is approached. Predefined valtess, below, two-
sided. The default value iabove.

4.3.3 Attributes Modifying Content Markup Rendering
4.3.3.1 type

Thetype attribute, in addition to conveying semantic information, can be interpreted to provide rendering information.
For example in

<ci type="vector">V</ci>
a renderer could display a boldfor the vector.

4.3.3.2 General Attributes

All content elements support the following general attributes that can be used to modify the rendering of the markup.
class

style

id

other

Theclass, style andid attributes are intended for compatibility with Cascading Style Sheets (CSS), as described in
Section2.4.5

Content or semantic tagging goes along with the (frequently implicit) premise that, if you know the semantics, you cat
always work out a presentation form. When an author’'s main goal is to mark up re-usable, evaluatable mathematic
expressions, the exact rendering of the expression is probably not critical, provided that it is easily understandabl
However, when an author’s goal is more along the lines of providing enough additional semantic information to make
document more accessible by facilitating better visual rendering, voice rendering, or specialized processing, controllir
the exact notation used becomes more of an issue.

137

MathML elements accept an attribudeher (see Sectiorr.2.3, which can be used to specify things not specifically
documented in MathML. On content tags, this attribute can be used by an author to expre&seace between
equivalent forms for a particular content element construct, where the selection of the presentation has nothing to
with the semantics. Examples might be

inline or displayed equations
script-style fractions
use ofx with a dot for a derivative over gd t

Thus, if a particular renderer recognized a display attribute to select between script-style and display-style fractions, ¢
author might write

<apply other=’display="scriptstyle"’>

<divide/>

<mn> 1 </mn>

<mi> x </mi>
</apply>

to indicate that the rendering 1is preferred.

The information provided in thether attribute is intended for use by specific renderers or processors, and therefore,
the permitted values are determined by the renderer being used. It is legal for a renderer to ignore this informatiol
This might be intentional, as in the case of a publisher imposing a house style, or simply because the renderer does |
understand them, or is unable to carry them out.

4.4

The Content Markup Elements

This section provides detailed descriptions of the MathML content tags. They are grouped in categories that broad|
reflect the area of mathematics from which they come, and also the grouping in the MathML DTD. There is no linguistic
difference in MathML between operators and functions. Their separation here and in the DTD is for reasons of historice

usage.

When working with the content elements, it can be useful to keep in mind the following.

The role of the content elements is analogous to data entry in a mathematical system. The information the
is provided is there to facilitate the successful parsing of an expression as the intended mathematical obje
by a receiving application.

MathML content elements do not by themselves ‘perform’ any mathematical evaluations or operations. They
do not ‘evaluate’ in a browser and any ‘action’ that is ultimately taken on those objects is determined en-
tirely by the receiving mathematical application. For example, editing programs and applications geared tc
computation for the lower grades would typically leave 3 + 4 as is, whereas computational systems targeting
a more advanced audience might evaluate this as 7. Similarly, some computational systems might evalua
sin(0) to 0, whereas others would leave it unevaluated. Yet other computational systems might be unable t
deal with pure symbolic expressions like sinénd may even regard them as data entry errors. None of this
has any bearing on the correctness of the original MathML representation. Where evaluation is mentioned ¢
all in the descriptions below, it is merely to help clarify the meaning of the underlying operation.

Apart from the instances where there is an explicit interaction with presentation tagging, there is no requirec
rendering (visual or aural) - only a suggested default. As such, the presentations that are included in thi
section are merely to help communicate to the reader the intended mathematical meaning by associatic
with the same expression written in a more traditional notation.

The available content elements are:

138

token elements

— cn

- ci

— csymbol (MathML 2.0)
basic content elements

— apply

— reln (deprecated)

— fn (deprecated for externally defined functions)
- interval

- inverse

— sep

- condition

- declare

- lambda

— compose

- ident

— domain (MathML 2.0)

— codomain (MathML 2.0)
— image (MathML 2.0)

— domainofapplication (MathML 2.0)
— piecewise (MathML 2.0)
— piece (MathML 2.0)

— otherwise (MathML 2.0)
arithmetic, algebra and logic
- quotient

— exp

- factorial

- divide

— max andmin

- minus

— plus

— power

— rem

- times

— root

— gcd

- and

- or

- xor

— not

- implies

- forall

- exists

- abs

- conjugate

— arg(MathML 2.0)

— real (MathML 2.0)

— imaginary (MathML 2.0)
— lcm (MathML 2.0)

139

floor (MathML 2.0)
ceiling (MathML 2.0)

relations

eq
neq

gt

1t

geq

leq

equivalent (MathML 2.0)
approx (MathML 2.0)
factorof (MathML 2.0)

calculus and vector calculus

int

diff

partialdiff

lowlimit

uplimit

bvar

degree

divergence (MathML 2.0)
grad (MathML 2.0)

curl (MathML 2.0)
laplacian (MathML 2.0)

theory of sets

set

list

union
intersect
in

notin
subset
prsubset
notsubset
notprsubset
setdiff
card (MathML 2.0)

cartesianproduct (MathML 2.0)

sequences and series

sum
product
limit

tendsto

elementary classical functions

exp
In

log
sin
cos

140

— tan

- sec

- csc

- cot

- sinh

— cosh

- tanh

- sech

- csch

- coth

- arcsin

- arccos

- arctan

- arccosh

- arccot

- arccoth

- arccsc

- arccsch

- arcsec

- arcsech

- arcsinh

- arctanh

statistics

- mean

- sdev

- variance

— median

- mode

- moment

— momentabout (MathML 2.0)
linear algebra

- vector

- matrix

- matrixrow

- determinant

- transpose

- selector

— vectorproduct (MathML 2.0)
— scalarproduct (MathML 2.0)
— outerproduct (MathML 2.0)
semantic mapping elements

- annotation

- semantics

- annotation-xml

constant and symbol elements
— integers (MathML2.0)

— reals (MathML2.0)

— rationals (MathML2.0)

— naturalnumbers (MathML2.0)

141

— complexes (MathML2.0)
— primes (MathML2.0)

— exponentiale (MathML2.0)
— imaginaryi (MathML2.0)
— notanumber (MathML2.0)
— true (MathML2.0)

— false (MathML2.0)

— emptyset (MathML2.0)

- pi(MathML2.0)

— eulergamma (MathML2.0)
— infinity (MathML2.0)

4.4.1 Token Elements
4.4.1.1 Number (cn)
Discussion

The cn element is used to specify actual numerical constants. The content model must provide sufficient informatior
that a number may be entered as data into a computational system. By default, it represents a signed real number in b
10. Thus, the content normally consistsP@DATA restricted to a sign, a string of decimal digits and possibly a decimal
point, or alternatively one of the predefined symbolic constants sugpigs

The cn element uses the attributgpe to represent other types of numbers such as, for example, integer, rational, real
or complex, and uses the attribitese to specify the numerical base.

In addition to simplePCDATA, cn accepts as conteRCDATA separated by the (empty) elemerp. This determines the
different parts needed to construct a rational or complex-cartesian number.

The cn element may also contain arbitrary presentation markup in its content (see Chlaptethat its presentation
can be very elaborate.

Alternative input notations for numbers are possible, but must be explicitly defined by usiagfthei t ionURL and
encoding attributes, to refer to a written specification of how a sequence of real numbers separaseg byshould
be interpreted.

Attributes

All attributes areCDATA:

type Allowed values areeal, integer, rational, complex-cartesian, complex-polar, constant
base Number CDATA for XML DTD) between 2 and 36.

definitionURL URL or URI pointing to an alternative definition.

encoding Syntax of the alternative definition.

Examples

<cn type="real"> 12345.7 </cn>

<cn type="integer"> 12345 </cn>

<cn type="integer" base="16"> AB3 </cn>

<cn type="rational"> 12342 <sep/> 2342342 </cn>
<cn type="complex-cartesian"> 12.3 <sep/> 5 </cn>

142

<cn type="complex-polar"> 2 <sep/> 3.1415 </cn>
<cn type="constant"> π </cn>

Default Rendering

By default, a contiguous block @fCDATA contained in an element should render as if it were wrapped inman
presentation element.

If an application supports bidirectional text rendering, then the rendering witkin @ement follows the Unicode
bidirectional rendering rules just as if it were wrapped imarpresentation element.

Similarly, presentation markup contained irc@a element should render as it normally would. A mixturePGDATA
and presentation markup should render as if it were wrapped ir @ element, with contiguous blocks 8EDATA
wrapped inmn elements.

However, not all mathematical systems that encounter content based tagging do visual or aural rendering. The receivi
applications are free to make use of a number in the manner in which they normally handle numerical data. Somr
systems might simplify the rational number 12342/2342342 to 6171/1171171 while pure floating point based systerr
might approximate this as 0.5269085385e-2. All numbers might be re-expressed in base 10. The role of MathML i
simply to record enough information about the mathematical object and its structure so that it may be properly parsec

The following renderings of the above MathML expressions are included both to help clarify the meaning of the cor-
responding MathML encoding and as suggestions for authors of rendering applications. In each case, no mathemati
evaluation is intended or implied.

12345.7

12345

AB3 16

12342 /2342342
12.3+5i

Polar(2, 3.1415)
T

4.4.1.2 Identifier (ci)
Discussion

Theci element is used to name an identifier in a MathML expression (for example a variable). Such names are used
identify mathematical objects. By default they are assumed to represent complex scalars eldraent may contain
arbitrary presentation markup in its content (see Chaj)tso that its presentation as a symbol can be very elaborate.

The ci element uses theype attribute to specify the type of object that it represents. Valid types incudeger,
rational,real, float, complex, constant, and more generally, any of the names of the MathML container elements
(e.g.vector) or their type values. TheefinitionURL andencoding attributes can be used to extend the definition
of ci to include other types. For example, a more advanced use might reqtitp Bex-vector.

Examples

<ci> x </ci>

<ci type="vector"> V </ci>

143

<ci>
<msub>
<mi>x</mi>
<mi>a</mi>
</msub>
</ci>

Default Rendering

If the content of aci element is tagged using presentation tags, that presentation is used. If no such tagging is supplie
then thePCDATA content would typically be rendered as if it were the content afiaalement.

If an application supports bidirectional text rendering, then the rendering witkin @ement follows the Unicode
bidirectional rendering rules just as if it were wrapped imarpresentation element.

A renderer may wish to make use of the value of the type attribute to improve on this. For example, a symbol of type
vector might be rendered using a bold face. Typical renderings of the above symboils are:

X
° V
X

4.4.1.3 Externally defined symbol (csymbol)
Discussion

Thecsymbol element allows a writer to create an element in MathML whose semantics are externally defined (i.e. no
in the core MathML content). The element can then be used in a MathML expression as for example an operator
constant. Attributes are used to give the syntax and location of the external definition of the symbol semantics.

Use ofcsymbol for referencing external semantics can be contrasted with use ekitetics to attach additional
information in-line (ie. within the MathML fragment) to a MathML construct. See Secti@ra

Attributes

All attributes areCDATA:

definitionURL Pointer to external definition of the semantics of the symbol. MathML does not specify a particular
syntax in which this definition should be written.

encoding Gives the syntax of the definition pointed to by definitionURL. An application can then test the value of this
attribute to determine whether it is able to process the target afdhenitionURL. This syntax might be
text, or a formal syntax such as OpenMath.

Examples

<!- reference to OpenMath formal syntax definition of Bessel function ->
<apply>
<csymbol encoding="OpenMath"
definitionURL="http://www.openmath.org/cd/BesselFunctions.ocd">
<msub><mi>J</mi><mn>0</mn></msub>
</csymbol>
<ci>y</ci>

144

</apply>

<!- reference to human readable text description of Boltzmann’s constant ->
<csymbol encoding="text"
definitionURL="www.example.org/universalconstants/Boltzmann.htm">
k
</csymbol>

Default Rendering

By default, a contiguous block GCDATA contained in asymbol element should render as if it were wrapped iman
presentation element.

If an application supports bidirectional text rendering, then the rendering witiigmbol element follows the Unicode
bidirectional rendering rules just as if it were wrapped imarpresentation element.

Similarly, presentation markup contained incaymbol element should render as it normally would. A mixture of
PCDATA and presentation markup should render as if it were contained wrappediroarelement, with contiguous
blocks of PCDATA wrapped imnmo elements. The examples above would render by default as

] Jo(y)
° k

As csymbol is used to support reference to externally defined semantics, it is a MathML error to have embedded conter
MathML elements within thesymbol element.

4.4.2 Basic Content Elements
4.4.2.1 Apply (apply)
Discussion

The apply element allows a function or operator to be applied to its arguments. Nearly all expression construction in
MathML content markup is carried out by applying operators or functions to arguments. The first ciplsiLgfis the
operator to be applied, with the other child elements as arguments or qualifiers.

The apply element is conceptually necessary in order to distinguish between a function or operator, and an instanc
of its use. The expression constructed by applying a function to O or more arguments is always an element from tt
codomain of the function.

Proper usage depends on the operator that is being applied. For examplendéheperator may have zero or more
arguments, while theinus operator requires one or two arguments to be properly formed.

If the object being applied as a function is not already one of the elements known to be a function (&uciasor
plus) then it is treated as if it were the content of&anelement.

Some operators such dasff andint make use of ‘named’ arguments. These special arguments are elements that
appear as children of thepply element and identify ‘parameters’ such as the variable of differentiation or the domain
of integration. These elements are discussed further in Settod.2

Examples

<apply>
<factorial/>

145

<cn>3</cn>
</apply>

<apply>
<plus/>
<cn>3</cn>
<cn>4</cn>

</apply>

<apply>
<sin/>
<ci>x</ci>

</apply>

Default Rendering

A mathematical system that has been passegahy element is free to do with it whatever it normally does with such
mathematical data. It may be that no rendering is involved (e.g. a syntax validator), or that the ‘function application’ is
evaluated and that only the result is rendered (e.g. sir(0).

When an unevaluated ‘function application’ is rendered there are a wide variety of appropriate renderings. The choic
often depends on the function or operator being applied. Applications of basic operations guab ase generally
presented using an infix notation while applicationssof would use a more traditional functional notation such as
sin(x). Consult the default rendering for the operator being applied.

Applications of user-defined functions (segymbol, £n) that are not evaluated by the receiving or rendering application
would typically render using a traditional functional notation unless an alternative presentation is specified using th
semantics tag.

4.4.2.2 Relation (reln)

Discussion

Thereln element was used in MathML 1.0 to construct an equation or relation. Relations were constructed in a manne
exactly analogous to the use &fply. This usage isleprecatedn MathML 2.0 in favor of the more generally usable
apply.

The first child ofreln is the relational operator to be applied, with the other child elements acting as arguments. See
Section4.2.4for further details.

Examples

<reln>
<eq/>
<ci> a </ci>
<ci> b </ci>
</reln>

<reln>
<1t/>

146

<ci> a </ci>
<ci> b </ci>
</reln>

Default Rendering

° a=>b
° a<b

4.4.2.3 Function (fn)
Discussion

The fn element makes explicit the fact that a more general (possibly constructed) MathML object is being used in the
same manner as if it were a pre-defined function suadia®r plus.

fn has exactly one child element, used to give the name (or presentation form) of the functionf M\ibeised as the
first child of an apply, the number of following arguments is determined by the contentsff.the

In MathML 1.0, fn was also the primary mechanism used to extend the collection of ‘known’ mathematical functions.
This usage is nowleprecatedh favor of the more generally applicabteymbol element. (New functions may also be
introduced by usindeclare in conjunction with alambda expression.)

Examples

<fn><ci> L </ci> </fn>

<apply>
<fn>
<apply>
<plus/>
<ci> f </ci>
<ci> g </ci>
</apply>
</fn>
<ci>z</ci>
</apply>

Default Rendering

An fn object is rendered in the same way as its content. A rendering application may add additional adornments suc
as parentheses to clarify the meaning.

. L
o (f+0)z

147

4.4.2.4 Interval (interval)
Discussion

Theinterval element is used to represent simple mathematical intervals of the real number line. It takes an attribut
closure, which can take on any of the valuegen, closed, open-closed, Or closed-open, with a default value of
closed.

More general domains are constructed by using-thelition andbvar elements to bind free variables to constraints.

Theinterval element expectsither two child elements that evaluate to real numbharene child element that is a
condition defining theinterval.

Examples

<interval>
<ci> a </ci>
<ci> b </ci>

</interval>

<interval closure="open-closed">
<ci> a </ci>
<ci> b </ci>

</interval>

Default Rendering

° [a,m
° (a,b

4.4.2.5 Inverse (inverse)
Discussion

The inverse element is applied to a function in order to construct a generic expression for the functional inverse of
that function. (See also the discussioniafrerse in Section4.2.1.5. As with other MathML functionsinverse may

either be applied to arguments, or it may appear alone, in which case it represents an abstract inversion operator act
on other functions.

A typical use of theinverse element is in an HTML document discussing a number of alternative definitions for a
particular function so that there is a need to write and defiifie) (x). To associate a particular definition with(—1),
use thedefinitionURL andencoding attributes.

Examples

<apply>
<inverse/>
<ci> f </ci>

</apply>

148

<apply>
<inverse definitionURL="../MyDefinition.htm" encoding="text"/>
<ci> f </ci>

</apply>

<apply>
<apply><inverse/>
<ci type="matrix"> a </ci>
</apply>
<ci> A </ci>
</apply>

Default Rendering

The default rendering for a functional inverse makes use of a parenthesized exponent ().

4.4.2.6 Separator (sep)
Discussion

The sep element is used to separ&®€DATA into separate tokens for parsing the contents of the various specialized
forms of thecn elements. For exampleep is used when specifying the real and imaginary parts of a complex number
(see Sectiod.4.]). If it occurs between MathML elements, it is a MathML error.

Examples

<cn type="complex"> 3 <sep/> 4 </cn>

Default Rendering

Thesep element is not directly rendered (see Sectioh).

4.4.2.7 Condition (condition)
Discussion

Thecondition element is used to place a condition on one or more free variables or identifiers. The conditions may
be specified in terms of relations that are to be satisfied by the variables, including general relationships such as ¢
membership.

It is used to define general sets and lists in situations where the elements cannot be explicitly enumerated. Conditit
contains either a singlepply or reln element; theapply element is used to construct compound conditions. For
example, it is used below to describe the set okallch thatx < 5. See the discussion on sets in SectlohG See
Sectiond.2.5for further details.

149

Examples

<condition>
<apply><in/><ci> x </ci><ci type="set"> R </ci></apply>
</condition>

<condition>
<apply>
<and/>
<apply><gt/><ci> x </ci><cn> 0 </cn></apply>
<apply><1t/><ci> x </ci><cn> 1 </cn></apply>
</apply>
</condition>

<apply>
<max/>
<bvar><ci> x </ci></bvar>
<condition>
<apply> <and/>
<apply><gt/><ci> x </ci><cn> 0 </cn></apply>
<apply><1lt/><ci> x </ci><cn> 1 </cn></apply>
</apply>
</condition>
<apply>
<minus/>
<ci> x </ci>
<apply>
<sin/>
<ci> x </ci>
</apply>
</apply>
</apply>

Default Rendering

xeR
X>0AXx<1
max{x—sinx| 0 <x<1}

4.4.2.8 Declare (declare)
Discussion

The declare construct has two primary roles. The first is to change or set the default attribute values for a specific
mathematical object. The second is to establish an association between a ‘name’ and an object. Once a declaration i
effect, the ‘name’ object acquires the new attribute settings, and (if the second object is present) all the properties of ti
associated object.

The various attributes of théeclare element assign properties to the object being declared or determine where the
declaration is in effect.

150

By default, the scope of a declaration is ‘local’ to the surrounding container element. Setting the value afpihe
attribute toglobal extends the scope of the declaration to the enclasing element. As discussed in Sectiérs.2.§
MathML contains no provision for making document-wide declarations at present, though it is anticipated that this
capability will be added in future revisions of MathML, when supporting technologies become available.

declare takes one or two children. The first child, which is mandatory,ds aontaining the identifier being declared:

<declare type="vector"> <ci> V </ci> </declare>

The second child, which is optional, is a constructor initializing the variable:

<declare type="vector">
<ci> V </ci>
<vector>
<cn> 1 </cn><cn> 2 </cn><cn> 3 </cn>
</vector>
</declare>

The constructor type and the type of the element declared must agree. For example, if the type attribute of the declarati
is fn, the second child (constructor) must be an element equivalent f@ alement. (This would include actush
elementslambda elements and any of the defined functions in the basic set of content tags.) If no type is specified in
the declaration then the type attribute of the declared name is set to the type of the constructor (second child) of tt
declaration. The type attribute of the declaration can be especially useful in the special case of the second element be
a semantic tag.

Attributes

All attributes areCDATA:

type defines the MathML element type of the identifier declared.

scope defines the scope of application of the declaration.

nargs number of arguments for function declarations.

occurrence describes operator usagem®fix, infix or function-model indications.
definitionURL URI pointing to detailed semantics of the function.

encoding syntax of the detailed semantics of the function.

Examples

The declaration

<declare type="fn" nargs="2" scope="local">
<ci> f </ci>
<apply>
<plus/>
<ci> F </ci><ci> G </ci>
</apply>
</declare>

declaresf to be a two-variable function with the property tHgk, y) = (F+ G)(X,).

The declaration

151

<declare type="£fn">
<ci> J </ci>
<lambda>
<bvar><ci> x </ci></bvar>
<apply><1ln/>
<ci> x </ci>
</apply>
</lambda>
</declare>

associates the nandavith a one-variable function defined so tl3gy) = In y. (Note that because of the type attribute of
thedeclare element, the second argument must be something of function type , namely a known functidim Jike
alambda construct.)

The type attribute on the declaration is only necessary if the type cannot be inferred from the type of the seconc
argument.

Even when a declaration is in effect it is still possible to override attributes values selectively<ad inype="set">
S </ci>. This capability is needed in order to write statements of the formslbet a member of.

Detault Rendering

Since thedeclare construct is not directly rendered, most declarations are likely to be invisible to a reader. However,
declarations can produce quite different effects in an application which evaluates or manipulates MathML conten
While the declaration

<declare>
<ci> v </ci>
<vector>
<cn> 1 </cn>
<cn> 2 </cn>
<cn> 3 </cn>
</vector>
</declare>

is active the symbol acquires all the properties of the vector, and even its dimension and components have meaningfu
values. This may affect howis rendered by some applications, as well as how it is treated mathematically.

44.2.9 Lambda (1ambda)
Discussion

Thelambda elementis used to construct a user-defined function from an expression and one or more free variables. Tt
lambda construct with internal variables takas+1 children. The firsh children identify the variables that are used as
placeholders in the last child for actual parameter values. See Sécti@n2for further details.

Examples

The first example presents a simple lambda construct.

152

<lambda>
<bvar><ci> x </ci></bvar>
<apply><sin/>
<apply>
<plus/>
<ci> x </ci>
<cn> 1 </cn>
</apply>
</apply>
</lambda>
The next example constructs a one-argument function in which the arglispstifies the upper bound of a specific
definite integral.

<lambda>
<bvar><ci> b </ci></bvar>
<apply>
<int/>
<bvar>
<ci> x </ci>
</bvar>
<lowlimit>
<ci> a </ci>
</lowlimit>
<uplimit>
<ci> b </ci>
</uplimit>
<apply><fn><ci> f </ci></fn>
<ci> x </ci>
</apply>
</apply>
</lambda>

Such constructs are often used in conjunction withlare to construct new functions.

Default Rendering
o A(X,sinx+1)
. A(b, [(x) dx)

4.4.2.10 Function composition (compose)
Discussion

Thecompose element represents the function composition operator. Note that MathML makes no assumption about th
domain and codomain of the constituent functions in a composition; the domain of the resulting composition may b
empty.

To override the default semantics for thempose element, or to associate a more specific definition for function
composition, use théefinitionURL andencoding attributes. See Sectigh2.3for further details.

153

Examples

<apply>
<compose/>
<fn><ci> f </ci></fn>
<fn><ci> g </ci></fn>

</apply>

<apply>
<compose/>
<ci type="fn"> f </ci>
<ci type="fn"> g </ci>
<ci type="fn"> h </ci>
</apply>

<apply>
<apply><compose/>
<fn><ci> f </ci></fn>
<fn><ci> g </ci></fn>
</apply>
<ci> x </ci>
</apply>

<apply>
<fn><ci> f </ci></fn>
<apply>
<fn><ci> g </ci></fn>
<ci> x </ci>
</apply>
</apply>

Default Rendering

fog
fogoh
(fog)(x)
f(9(0))

4.4.2.11 Identity function (ident)
Discussion

Theident element represents the identity function. MathML makes no assumption about the function space in whict
the identity function resides. That is, proper interpretation of the domain (and hence codomain) of the identity functior
depends on the context in which it is used.

To override the default semantics for théent element, or to associate a more specific definition, useldtieni-
tionURL andencoding attributes (see Sectigh2.3.

154

Examples

<apply>
<eq/>
<apply><compose/>
<fn><ci> f </ci></fn>
<apply><inverse/>
<fn><ci> f </ci></fn>
</apply>
</apply>
<ident/>
</apply>

Default Rendering
fof-l=id

4.4.2.12 Domain (domain)
Discussion
Thedomain element denotes the domain of a given function, which is the set of values over which it is defined.

To override the default semantics for themain element, or to associate a more specific definition, usddlieéni-
tionURL andencoding attributes (see Sectigh2.3.

Examples

If fis afunction from the reals to the rationals, then:

<apply>
<eq/>
<apply><domain/>
<fn><ci> f </ci></fn>
</apply>
<reals/>
</apply>

Default Rendering
domair(f) =R

4.4.2.13 codomain (codomain)
Discussion

The codomain element denotes the codomain of a given function, which is a set containing all values taken by the
function. It is not necessarily the case that every point in the codomain is generated by the function applied to som
point of the domain. (For example | may know that a function is integer-valued, so its codomain is the integers, withou
knowing (or stating) which subset of the integers is mapped to by the function.)

155

Codomain is sometimes also called Range.

To override the default semantics for thedomain element, or to associate a more specific definition, usadiéni-
tionURL andencoding attributes (see Sectigh2.3.

Examples

If fis afunction from the reals to the rationals, then:

<apply>
<eq/>
<apply><codomain/>
<fn><ci> f </ci></fn>
</apply>
<rationals/>
</apply>

Detault Rendering
codomairif) =Q

4.4.2.14 Image (image)
Discussion

The image element denotes the image of a given function, which is the set of values taken by the function. Every poin
in the image is generated by the function applied to some point of the domain.

To override the default semantics for thweage element, or to associate a more specific definition, useldliéni-
tionURL andencoding attributes (see Sectigh2.3.

Examples

The realsin function is a function from the reals to the reals, taking values between -1 and 1.

<apply>
<eq/>
<apply><image/>
<sin/>
</apply>
<interval>
<cn>-1</cn>
<cn> 1</cn>
</interval>
</apply>

Default Rendering
imagdsin(x)) = [—1,1] forxin R

156

4.4.2.15 Domain of Application (domainofapplication)
Discussion

Thedomainofapplication element denotes the domain over which a given function is being applied. It is intended
to be a more general alternative to specification of this domain using such qualifier elemenés akowlimit or
condition.

To override the default semantics for themainofapplication element, or to associate a more specific definition,
use thedefinitionURL andencoding attributes (see Sectigh2.3.

Examples

The integral of a functiorf over an arbitrary domai@ .

<apply>
<int/>
<domainofapplication>
<ci> C </ci>
</domainofapplication>
<ci> f </ci>
</apply>

Default Rendering

The default rendering depends on the particular function being applied.

Jet

4.4.2.16 Piecewise declaration (piecewise, piece, otherwise)
Discussion

Thepiecewise, piece, andotherwise elements are used to support ‘piecewise’ declarations of the fet(w)' = 0
if xless than OH(x) = 1 otherwise’.

The declaration is constructed using fliecewise element. This contains one or maresce elements, and optionally
oneotherwise element. Eaclpiece element contains exactly two children. The first child defines the value taken by
thepiecewise expression when the condition specified in the associated second childpafiteis true.

otherwise allows the specification of a value to ba taken by hecewise function when none of the conditions
(second child elements of theece elements) is true, i.e. a default value.

It should be noted that no ‘order of execution’ is implied by the ordering opilkee child elements withipiecewise.

It is the responsibility of the author to ensure that the subsets of the function domain defined by the second children
thepiece elements are disjoint, or that, where they overlap, the values of the corresponding first childrepiefcine
elements coincide. If this is not the case, the meaning of the expression is undefined.

Thepiecewise elements areonstructors (see Sectiod.2.2.9.

157

Examples

<piecewise>
<piece>
<cn> 0 </cn>
<apply><1lt/><ci> x </ci> <cn> 0 </cn></apply>
</piece>
<otherwise>
<ci> x </ci>
</otherwise>
</piecewise>

The following might be a definition adibgx)

<piecewise>
<piece>
<apply><minus/><ci> x </ci></apply>
<apply><1lt/><ci> x </ci> <cn> 0 </cn></apply>
</piece>
<piece>
<cn> 0 </cn>
<apply><eq/><ci> x </ci> <cn> 0 </cn></apply>
</piece>
<piece>
<ci> x </ci>
<apply><gt/><ci> x </ci> <cn> 0 </cn></apply>

</piece>
</piecewise>
Default Rendering
0 ifx<O
H(X)_{ 1 otherwise

4.4.3 Arithmetic, Algebra and Logic
4.4.3.1 Quotient (quotient)
Discussion

The quotient element is the operator used for division modulo a particular base. Whequt¢haent operator is
applied to integer argumendsandb, the result is the ‘quotient @& divided byb'. That is,quotient returns the unique
integerg such thata=q b+ r. (In common usagey is called the quotient andis the remainder.)

Thequotient element takes the attribuefinitionURL andencoding attributes, which can be used to override the
default semantics.
Thequotient element is ainary arithmetic operator (See Sectiod.2.3.

Example

158

<apply>
<quotient/>
<ci> a </ci>
<ci> b </ci>
</apply>
Various mathematical applications will use this data in different ways. Editing applications might choose an image suc
as shown below, while a computationally based application would evaluate it to 2axti8randb=5.

Default Rendering

There is no commonly used notation for this concept. Some possible renderings are

° quotient ofa divided byb
. integer partof /b
la/b]

4.4.3.2 Factorial (factorial)
Discussion
Thefactorial element is used to construct factorials.

Thefactorial element takes théefinitionURL andencoding attributes, which can be used to override the default
semantics.

Thefactorial element is amnary arithmetic operator (See Sectiod.2.3.

Example

<apply>
<factorial/>
<ci> n </ci>

</apply>

If this were evaluated at =5 it would evaluate to 120.

Detault Rendering

n!

4.4.3.3 Division (divide)
Discussion
Thedivide element is the division operator.

Thedivide element takes th@efinitionURL andencoding attributes, which can be used to override the default
semantics.

Thedivide element is ainary arithmetic operator (see Sectiod.2.3.

159

Example

<apply>

<divide/>

<ci> a </ci>

<ci> b </ci>
</apply>
As a MathML expression, this does not evaluate. However, on receiving such an expression, some applications m
attempt to evaluate and simplify the value. For example, wdreh andb=2 some mathematical applications may
evaluate this to 2.5 while others will treat is as a rational number.

Detault Rendering
a/b

44.34 Maximum and minimum (max, min)
Discussion

The elementsiax andmin are used to compare the values of their arguments. They return the maximum and minimum
of these values respectively.

Themax andmin elements take théefinitionURL andencoding attributes that can be used to override the default
semantics.

Themax andmin elements ar@-ary arithmetic operators (see Sectiord.2.3.

Examples

When the objects are to be compared explicitly they are listed as arguments to the function as in:

<apply>
<max/>
<ci> a </ci>
<ci> b </ci>
</apply>
The elements to be compared may also be described using bound variablesanifii &ion element and an expression
to be maximized (or minimized), as in:

<apply>
<min/>
<bvar><ci>x</ci></bvar>
<condition>
<apply><notin/><ci> x </ci><ci type="set"> B </ci></apply>
</condition>
<apply>
<power/>
<ci> x </ci>
<cn> 2 </cn>

160

</apply>
</apply>
Note that the bound variable must be stated even if it might be implicit in conventional notation. In MathML1.0, the
bound variable and expression to be evaluai@aguld be omitted in the example below: this usagddgrecatedn
MathML2.0 in favor of explicitly stating the bound variable and expression in all cases:

<apply>
<max/>
<bvar><ci>x</ci></bvar>
<condition>
<apply><and/>
<apply><in/><ci>x</ci><ci type="set">B</ci></apply>
<apply><notin/><ci>x</ci><ci type="set">C</ci></apply>
</apply>
</condition>
<ci>x</ci>
</apply>

Detault Rendering

max{a, b}
ming{ x? | x¢ B}
o max{xe BAx¢C}

4.4.3.5 Subtraction (minus)
Discussion
Theminus element is the subtraction operator.

Theminus element takes th@efinitionURL andencoding attributes, which can be used to override the default
semantics.

Theminus element can be used asgary arithmetic operator (e.g. to representx), or as abinary arithmetic operator
(e.g. to represent y).

Example

<apply> <minus/>
<ci> x </ci>
<ci> y </ci>
</apply>
If this were evaluated at=5 andy=2 it would yield 3.

Detault Rendering
X—y

161

4.4.3.6 Addition (plus)
Discussion
Theplus element is the addition operator.

The plus element takes théefinitionURL and encoding attributes, which can be used to override the default
semantics.

Theplus element is am-ary arithemtic operator (See Sectiod.2.3.

Example

<apply>
<plus/>
<ci> x </ci>
<ci> y </ci>
<ci> z </ci>
</apply>
If this were evaluated at= 5,y =2 andz= 1 it would yield 8.

Default Rendering
X+y+z

4.4.3.7 Exponentiation (power)
Discussion

Thepower element is a generic exponentiation operator. That is, when applied to arguneerlis, it returns the value
of ‘ato the power ob'.

The power element takes the@efinitionURL andencoding attributes, which can be used to override the default
semantics.

Thepower element is ainary arithmetic operator (See Sectiod.2.3.

Example

<apply>
<power/>
<ci> x </ci>
<cn> 3 </cn>
</apply>
If this were evaluated a¢= 5 it would yield 125.

Default Rendering
x3

162

4.4.3.8 Remainder (rem)
Discussion

The rem element is the operator that returns the ‘remainder’ of a division modulo a particular base. Whem the
operator is applied to integer argumeatandb, the result is the ‘remainder afdivided byb'. That is, rem returns the
unique integer; such that = q b+ r, wherer < g. (In common usagey is called the quotient andis the remainder.)

Therem element takes théefinitionURL andencoding attributes, which can be used to override the default seman-
tics.

Therem element is ainary arithmetic operator (See Sectiod.2.3.

Example

<apply>
<rem/>
<ci> a </ci>
<ci> b </ci>
</apply>

If this were evaluated at = 15 andb = 8 it would yield 7.

Detault Rendering

amodb

4.4.3.9 Multiplication (times)
Discussion
Thetimes element is the multiplication operator.

times takes thelefinitionURL andencoding attributes, which can be used to override the default semantics.

Example

<apply>
<times/>
<ci> a </ci>
<ci> b </ci>

</apply>

If this were evaluated a = 5.5 andb = 3 it would yield 16.5.

Default Rendering
ab

163

4.4.3.10 Root (root)

Discussion

The root element is used to construct roots. The kind of root to be taken is specifiedidyrae element, which
should be given as the second child of tly element enclosing theoot element. Thus, square roots correspond
to the case whergegree contains the value 2, cube roots correspond to 3, and so ondégxee is present, a default
value of 2 is used.

The root element takes théefinitionURL and encoding attributes, which can be used to override the default
semantics.

Theroot element is amwperator taking qualifiers (See Sectiod.2.3.9.

Example
Thenth root ofa s is given by
<apply>
<root/>
<degree><ci type=’integer’> n </ci></degree>

<ci> a </ci>
</apply>

Default Rendering

Ja

4.4.3.11 Greatest common divisor (gcd)

Discussion

Thegcd element is used to denote the greatest common divisor of its arguments.

Thegcd takes thelefinitionURL andencoding attributes, which can be used to override the default semantics.

Thegcd element is am-ary operator (See Sectiod.2.3.

Example

<apply> <gcd/>
<ci> a </ci>
<ci> b </ci>
<ci> ¢ </ci>
</apply>
If this were evaluated at = 15,b = 21,c =48, it would yield 3.

Default Rendering

gcd(a, b, c)
This default rendering is English-language locale specific: other locales may have different default renderings.

164

4.4.3.12 And (and)
Discussion
Theand element is the boolean ‘and’ operator.

Theand element takes théefinitionURL andencoding attributes, which can be used to override the default seman-
tics.

Theand element is am-ary logical operator (See Sectiod.2.3.

Example

<apply>
<and/>
<ci> a </ci>
<ci> b </ci>
</apply>
If this were evaluated and bothandb had truth values ofrue, then the result would berue.

Detault Rendering
aAb

4.4.3.13 Or (or)

Discussion

Theor element is the boolean ‘or’ operator.

Theor element takes thé&ef initionURL andencoding attributes, which can be used to override the default semantics.

Theor element is am-ary logical operator (See Sectiod.2.3.

Example

<apply>
<or/>
<ci> a </ci>
<ci> b </ci>
</apply>

Default Rendering
avb

4.4.3.14 Exclusive Or (xor)

Discussion

Thexor element is the boolean ‘exclusive or’ operator.

xor takes thelefinitionURL andencoding attributes, which can be used to override the default semantics.

Thexor element is am-ary logical operator (see Sectiod.2.3.

165

Example

<apply>
<xor/>
<ci> a </ci>
<ci> b </ci>
</apply>

Detault Rendering

axorb

4.4.3.15 Not (not)
Thenot operator is the boolean ‘not’ operator.

Thenot element takes the attribudefinitionURL andencoding attributes, which can be used to override the default
semantics.

Thenot element is ainary logical operator (see Sectiod.2.3.

Example

<apply>

<not/>

<ci> a </ci>
</apply>

Detault Rendering

—a

4.4.3.16 Implies (implies)
Discussion
Theimplies element is the boolean relational operator ‘implies’.

Theimplies element takes théefinitionURL andencoding attributes, which can be used to override the default
semantics.

Theimplies element is ainary logical operator (See Sectiod.2.4).

Example

<apply>
<implies/>
<ci> A </ci>
<ci> B </ci>
</apply>
Mathematical applications designed for the evaluation of such expressions would evaluatethisitena = false
andb = true.

166

Default Rendering
A=B

4.4.3.17 Universal quantifier (forall)
Discussion

The forall element represents the universal quantifier of logic. It must be used in conjunction with one or more
bound variables, an optionabndition element, and an assertion, which should take the form afpaty element.
In MathML 1.0, thereln element was also permitted here: this usage is now deprecated.

The forall element takes th@efinitionURL andencoding attributes, which can be used to override the default
semantics.

Theforall element is ajuantifier (See Sectiod.2.3.9.

Examples

The first example encodes a simple identity.

<apply>
<forall/>
<bvar><ci> x </ci></bvar>
<apply><eq/>
<apply>
<minus/><ci> x </ci><ci> x </ci>
</apply>
<cn>0</cn>
</apply>
</apply>
The next example is more involved, and makes use of an optéenali tion element.

<apply>
<forall/>
<bvar><ci> p </ci></bvar>
<bvar><ci> q </ci></bvar>
<condition>
<apply><and/>
<apply><in/><ci> p </ci><rationals/></apply>
<apply><in/><ci> q </ci><rationals/></apply>
<apply><1lt/><ci> p </ci><ci> q </ci></apply>
</apply>
</condition>
<apply><1lt/>
<ci> p </ci>
<apply>
<power/>
<ci> q </ci>
<cn> 2 </cn>

167

</apply>
</apply>
</apply>
The final example uses both tlierall andexists quantifiers.

<apply>
<forall/>
<bvar><ci> n </ci></bvar>
<condition>
<apply><and/>
<apply><gt/><ci> n </ci><cn> 0 </cn></apply>
<apply><in/><ci> n </ci><integers/></apply>
</apply>
</condition>
<apply>
<exists/>
<bvar><ci> x </ci></bvar>
<bvar><ci> y </ci></bvar>
<bvar><ci> z </ci></bvar>
<condition>
<apply><and/>
<apply><in/><ci> x </ci><integers/></apply>
<apply><in/><ci> y </ci><integers/></apply>
<apply><in/><ci> z </ci><integers/></apply>
</apply>
</condition>
<apply>
<eq/>
<apply>
<plus/>
<apply><power/><ci> x </ci><ci> n </ci></apply>
<apply><power/><ci> y </ci><ci> n </ci></apply>
</apply>
<apply><power/><ci> z </ci><ci> n </ci></apply>
</apply>
</apply>
</apply>

Default Rendering
VX:x—x=0

VpeQ,qeQ,p<q:p<of
Vn>0neZ:3IxeZyeZ,zeZ:X"+y"'=2"

4.4.3.18 Existential quantifier (exists)
Discussion

Theexists element represents the existential quantifier of logic. It must be used in conjuction with one or more bounc
variables, an optionatondition element, and an assertion, which may take the form of eithetpaby or reln

168

element.

The exists element takes th@efinitionURL andencoding attributes, which can be used to override the default
semantics.

Theexists element is qquantifier (see Sectiod.2.3.9.

Example

The following example encodes the sense of the expression ‘there exisssian thatf (x) = 0.

<apply>
<exists/>
<bvar><ci> x </ci></bvar>
<apply><eq/>
<apply>
<fn><ci> f </ci></fn>
<ci> x </ci>
</apply>
<cn>0</cn>
</apply>
</apply>

Detault Rendering
Ix: f(x)=0

4.4.3.19 Absolute Value (abs)
Discussion
Theabs element represents the absolute value of a real quantity or the modulus of a complex quantity.

Theabs element takes théefinitionURL andencoding attributes, which can be used to override the default seman-
tics.

Theabs element is ainary arithmetic operator (See Sectiod.2.3.

Example
The following example encodes the absolute value of
<apply>

<abs/>

<ci> x </ci>
</apply>

Default Rendering

X

169

4.4.3.20 Complex conjugate (conjugate)
Discussion
Theconjugate element represents the complex conjugate of a complex quantity.

Theconjugate element takes théefinitionURL andencoding attributes, which can be used to override the default
semantics.

Theconjugate element is amary arithmetic operator (See Sectiod.2.3.

Example

The following example encodes the conjugate efi .

<apply>
<conjugate/>
<apply>
<plus/>
<ci> x </ci>
<apply><times/>
<cn> &Imaginaryl; </cn>
<ci> y </ci>
</apply>
</apply>
</apply>

Detault Rendering

X+1y

4.4.3.21 Argument (arg)
Discussion

Thearg operator (introduced in MathML 2.0) gives the ‘argument’ of a complex number, which is the angle (in radians)
it makes with the positive real axis. Real negative humbers have argument equal to +

Thearg element takes théef initionURL andencoding attributes, which can be used to override the default seman-
tics.

Thearg element is ainary arithmetic operator (See Sectiod.2.3.

Example

The following example encodes the argument operatiox-dny.

<apply>
<arg/>
<apply><plus/>
<ci> x </ci>
<apply><times/>

170

<cn> ⅈ </cn>
<ci> y </ci>
</apply>
</apply>
</apply>

Detault Rendering
argx+iy)

4.4.3.22 Real part (real)

Discussion

Thereal operator (introduced in MathML 2.0) gives the real part of a complex number, that is the x compoxent in
'y

Thereal element takes the attributescoding anddef initionURL that can be used to override the default semantics.

Thereal element is amnary arithmetic operator (see Sectiod.2.3.

Example

The following example encodes the real operatiorxen y.

<apply>
<real/>
<apply><plus/>
<ci> x </ci>
<apply><times/>
<cn> ⅈ </cn>
<ci> y </ci>
</apply>
</apply>
</apply>
A MathML-aware evaluation system would return theomponent, suitably encoded.

Detault Rendering
O(x+1iy)

4.4.3.23 Imaginary part (imaginary)
Discussion

The imaginary operator (introduced in MathML 2.0) gives the imaginary part of a complex number, that is, the y
component ik +iy.

The imaginary element takes the attributeacoding anddefinitionURL that can be used to override the default
semantics.

The imaginary element is amary arithmetic operator (See Sectiod.2.3.

171

Example

The following example encodes the imaginary operation en y.

<apply>
<imaginary/>
<apply><plus/>
<ci> x </ci>
<apply><times/>
<cn> &ImaginaryIl; </cn>
<ci> y </ci>
</apply>
</apply>
</apply>
A MathML-aware evaluation system would return theomponent, suitably encoded.

Default Rendering
O(x+1y)

4.4.3.24 Lowest common multiple (1cm)

Discussion

Thelcm element (introduced in MathML 2.0) is used to denote the lowest common multiple of its arguments.
Thelcm takes thelefinitionURL andencoding attributes, which can be used to override the default semantics.

Thelcm element is am-ary operator (see Sectiod.2.3.

Example

<apply> <lcm/>
<ci> a </ci>
<ci> b </ci>
<ci> ¢ </ci>
</apply>
If this were evaluated &= 2,b=4,c=6 it would yield 12.

Default Rendering
lcm(a, b, c)

This default rendering is English-language locale specific: other locales may have different default renderings.

4.4.3.25 Floor (f1loor)

Discussion

Thefloor element (introduced in MathML 2.0) is used to denote the round-down (towards -infinity) operator.
Thefloor takes thelefinitionURL andencoding attributes, which can be used to override the default semantics.

Thefloor element is amary operator (See Sectiod.2.3.

172

Example

<apply> <floor/>
<ci> a </ci>
</apply>
If this were evaluated at = 15.015, it would yield 15.

<apply> <forall/>
<bvar><ci> a </ci></bvar>
<apply><and/>
<apply><leq/>
<apply><floor/>
<ci>a</ci>
</apply>
<ci>a</ci>
</apply>
<apply><1lt/>
<ci>a</ci>
<apply><plus/>
<apply><floor/>
<ci>a</ci>
</apply>
<cn>1</cn>
</apply>
</apply>
</apply>
</apply>

Detault Rendering

a]

4.4.3.26 Ceiling (ceiling)

Discussion

Theceiling element (introduced in MathML 2.0) is used to denote the round-up (towards +infinity) operator.
Theceiling takes thelefinitionURL andencoding attributes, which can be used to override the default semantics.

Theceiling element is amary operator (see Sectiod.2.3.

Example

<apply> <ceiling/>
<ci> a </ci>
</apply>
If this were evaluated a& = 15.015, it would yield 16.

173

<apply> <forall/>
<bvar><ci> a </ci></bvar>
<apply><and/>
<apply><1lt/>
<apply><minus/>
<apply><ceiling/>
<ci>a</ci>
</apply>
<cn>1</cn>
</apply>
<ci>a</ci>
</apply>
<apply><leq/>
<ci>a</ci>
<apply><ceiling/>
<ci>a</ci>
</apply>
</apply>
</apply>
</apply>

Detault Rendering

[a]

4.4.4 Relations

4.4.4.1 Equals (eq)

Discussion

Theeq element is the relational operator ‘equals’.

Theeq element takes théefinitionURL andencoding attributes, which can be used to override the default semantics.

Theequals element is am-ary relation (see Sectiod.2.3.2.

Example

<apply>
<eq/>
<ci> a </ci>
<ci> b </ci>
</apply>
If this were tested a = 5.5 andb = 6 it would yield the truth valu€alse.

Detault Rendering

a=>b

174

4.4.4.2 Not Equals (neq)

Discussion

Theneq element is the ‘not equal to’ relational operator.

neq takes thelefinitionURL andencoding attributes, which can be used to override the default semantics.

Theneq element is ainary relation (See Sectiod.2.4).

Example

<apply>
<neq/>
<ci> a </ci>
<ci> b </ci>
</apply>
If this were tested ad = 5.5 andb = 6 it would yield the truth valuerue.

Detault Rendering
azb

4.4.4.3 Greater than (gt)

Discussion

Thegt element is the ‘greater than’ relational operator.

Thegt element takes théefinitionURL andencoding attributes, which can be used to override the default semantics.

Thegt element is am-ary relation (See Sectiod.2.4).

Example

<apply>
<gt/>
<ci> a </ci>
<ci> b </ci>
</apply>
If this were tested a = 5.5 andb = 6 it would yield the truth valugalse.

Default Rendering

a>b

4.4.44 Less Than (1t)

Discussion

Thelt element is the ‘less than’ relational operator.

Thelt element takes théef initionURL andencoding attributes, which can be used to override the default semantics.

Thelt element is am-ary relation (see Sectiod.2.9).

175

Example

<apply>
<1t/>
<ci> a </ci>
<ci> b </ci>
</apply>

If this were tested a = 5.5 andb = 6 it would yield the truth value ‘true’.

Detault Rendering

a<b

4.4.4.5 Greater Than or Equal (geq)
Discussion
Thegeq element is the relational operator ‘greater than or equal’.

Thegeq element takes théefinitionURL andencoding attributes, which can be used to override the default seman-
tics.

Thegeq element is am-ary relation (See Sectiod.2.4).

Example

<apply>
<geq/>
<ci> a </ci>
<ci> b </ci>
</apply>

If this were tested foa= 5.5 andb = 5.5 it would yield the truth valuerue.

Default Rendering

a>b

4.4.4.6 Less Than or Equal (1eq)
Discussion
Theleq element is the relational operator ‘less than or equal’.

Theleq element takes théef initionURL andencoding attributes, which can be used to override the default seman-
tics.

Theleq element is am-ary relation (see Sectiod.2.4).

176

Example

<apply>
<leq/>
<ci> a </ci>
<ci> b </ci>
</apply>
If a=5.4 andb = 5.5 this will yield the truth valuerue.

Default Rendering

a<b

4.4.4.7 Equivalent (equivalent)
Discussion
Theequivalent element is the ‘equivalence’ relational operator.

Theequivalent element takes the attributeacoding anddefinitionURL that can be used to override the default
semantics.

Theequivalent element is am-ary relation (See Sectiod.2.3.9.

Example

<apply>
<equivalent/>
<ci> a </ci>

<apply>
<not/>
<apply> <not/> <ci> a </ci> </apply>
</apply>
</apply>
This yields the truth valuerue for all values ofa.

Default Rendering

a=-(-a)

4.4.4.8 Approximately (approx)
Discussion

Theapprox element is the relational operator ‘approximately equal’. This is a generic relational operator and no specific
arithmetic precision is implied

The approx element takes the attributeacoding anddefinitionURL that can be used to override the default se-
mantics.

Theapprox element is ainary relation (See Sectiod.2.3.9.

177

Example

<apply>
<approx/>
<cn type="rational"> 22 <sep/> 7 </cn>
<cn type="constant"> π </cn>
</apply>

Detault Rendering

a~xb

4.4.4.9 Factor Of (factorof)
Discussion

Thefactorof element is the relational operator element on two integensdb specifying whether one is an integer
factor of the other.

Thefactorof element takes théefinitionURL andencoding attributes, which can be used to override the default
semantics.

Thediff element is arbinary relational operator (See Sectiod.2.4).

Example

<apply>
<factorof/>
<ci> a </ci>
<ci> b </ci>
</apply>

Default Rendering
alb

445 Calculus and Vector Calculus
4.4.5.1 Integral (int)
Discussion

The int element is the operator element for an integral. The lower limit, upper limit and bound variable are given by
(optional) child elementsowlimit, uplimit andbvar in the enclosingpply element. The integrand is also specified
as a child element of the enclosiagply element.

The domain of integration may be specified by using eithetmtrerval element or a&ondition element. In such
cases, if a bound variable of integration is intended, it must be specified explicitly. (The condition may involve more
than one symbol.)

Theint element takes théefinitionURL andencoding attributes, which can be used to override the default seman-
tics.

Theint element is awperator taking qualifiers (See Sectiod.2.3.2.

178

Examples
This example specifieslowlimit, uplimit, andbvar.

<apply>
<int/>
<bvar>
<ci> x </ci>
</bvar>
<lowlimit>
<cn> 0 </cn>
</lowlimit>
<uplimit>
<ci> a </ci>
</uplimit>
<apply>
<ci> f </ci>
<ci> x </ci>
</apply>
</apply>

This example specifies the domain of integration withiaterval element.

<apply>
<int/>
<bvar>
<ci> x </ci>
</bvar>
<interval>
<ci> a </ci>
<ci> b </ci>
</interval>
<apply><cos/>
<ci> x </ci>
</apply>
</apply>

The final example specifies the domain of integration withvadition element.

<apply>
<int/>
<bvar>
<ci> x </ci>
</bvar>
<condition>
<apply><in/>
<ci> x </ci>
<ci type="set"> D </ci>
</apply>
</condition>
<apply><ci type="fn"> f </ci>

179

<ci> x </ci>
</apply>
</apply>

Default Rendering
a
/ f(x) dx
0
b

/ cosxdx

a

/ (%) dx

xeD

4.4.5.2 Differentiation (diff)
Discussion

Thediff element is the differentiation operator element for functions of a single variable. It may be applied directly
to an actual function such as sine or cosine, thereby denoting a function which is the derivative of the original function
or it can be applied to an expression involving a single variable such a3, sin€osk). or a polynomial inx. For the
expression case the actual variable is designatecbbgaelement that is a child of the containiagply element. The

bvar element may also containdagree element, which specifies the order of the derivative to be taken.

The diff element takes théefinitionURL and encoding attributes, which can be used to override the default
semantics.

Thediff element is amperator taking qualifiers (See Sectiod.2.3.9.

Examples

The derivative of a functior (often displayed a$’) can be written as:

<apply>
<diff/>
<ci> f </ci>
</apply>
The derivative with respect toof an expression i such as (x) can be written as:

<apply>
<diff/>
<bvar>
<ci> x </ci>
</bvar>
<apply><ci type="fn"> f </ci>
<ci> x </ci>
</apply>
</apply>

180

Default Rendering
f /
df (x)
dx

4.4.5.3 Partial Differentiation (partialdiff)
Discussion

The partialdiff element is the partial differentiation operator element for functions or algebraic expressions in
several variables.

In the case of algebraic expressions, the bound variables are givierabyelements, which are children of the con-
taining apply element. Thévar elements may also contatiegree element, which specify the order of the partial
derivative to be taken in that variable.

For the expression case the actual variable is designatedbbyraelement that is a child of the containirgply
element. Th&var elements may also contairdagree element, which specifies the order of the derivative to be taken.

Where a total degree of differentiation must be specified, this is indicated by usigtee element at the top level,
ie without any associataslrar, as a child of the contaioningpply element.

For the case of partial differentation of a function, the contairimgly takes two child elements: firstly a list of indices
indicating by position which coordinates are involved in constructing the partial derivatives, and secondly the actua
function to be partially differentiated. The coordinates may be repeated.

The partialdiff element takes th@efinitionURL andencoding attributes, which can be used to override the
default semantics.

Thepartialdiff element is amperator taking qualifiers (See Sectiod.2.3.2.

Examples

<apply><partialdiff/>
<bvar><ci> x </ci><degree><ci> m </ci></degree></bvar>
<bvar><ci> y </ci><degree><ci> n </ci></degree></bvar>
<degree><ci> k </ci></degree>
<apply><ci type="fn"> f </ci>
<ci> x </ci>
<ci> y </ci>
</apply>
</apply>

<apply><partialdiff/>
<bvar><ci> x </ci></bvar>
<bvar><ci> y </ci></bvar>
<apply><ci type="fn"> f </ci>
<ci> x </ci>
<ci> y </ci>
</apply>
</apply>

181

<apply><partialdiff/>
<list><cn>1</cn><cn>1</cn><cn>3</cn></list>
<ci type="fn">f</ci>

</apply>

Detault Rendering

(ale;y” > fxy)

2
mf(X,y)

D113(f)

4.4.54 Lower limit (1owlimit)
Discussion

Thelowlimit element is the container element used to indicate the ‘lower limit’ of an operator using qualifiers. For
example, in an integral, it can be used to specify the lower limit of integration. Similarly, it can be used to specify the
lower limit of an index for a sum or product.

The meaning of theowlimit element depends on the context it is being used in. For further details aboythbfiers
are used in conjunction with operators taking qualifiers, consult Se¢tib8.2

Example

<apply>
<int/>
<bvar>
<ci> x </ci>
</bvar>
<lowlimit>
<ci> a </ci>
</lowlimit>
<uplimit>
<ci> b </ci>
</uplimit>
<apply><ci type="fn"> f </ci>
<ci> x </ci>
</apply>
</apply>

Default Rendering

The default rendering of theowlimit element and its contents depends on the context. In the preceding example, it
should be rendered as a subscript to the integral sign:

b
/f(x) dx

Consult the descriptions of individual operators that make use dfdheimit construct for default renderings.

182

4.4.5.5 Upper limit (uplimit)
Discussion

Theuplimit element is the container element used to indicate the ‘upper limit' of an operator using qualifiers. For
example, in an integral, it can be used to specify the upper limit of integration. Similarly, it can be used to specify the
upper limit of an index for a sum or product.

The meaning of theplimit element depends on the context it is being used in. For further details aboyt:hbifiers
are used in conjunction with operators taking qualifiers, consult Se¢tib.2

Example

<apply>
<int/>
<bvar>
<ci> x </ci>
</bvar>
<lowlimit>
<ci> a </ci>
</lowlimit>
<uplimit>
<ci> b </ci>
</uplimit>
<apply><ci type="fn"> f </ci>
<ci> x </ci>
</apply>
</apply>

Default Rendering

The default rendering of theplimit element and its contents depends on the context. In the preceding example, it
should be rendered as a superscript to the integral sign:
b

/f(x) dx

a
Consult the descriptions of individual operators that make use afghenit construct for default renderings.

4.4.5.6 Bound variable (bvar)
Discussion

The bvar element is the container element for the ‘bound variable’ of an operation. For example, in an integral it
specifies the variable of integration. In a derivative, it indicates the variable with respect to which a function is being
differentiated. When thevar element is used to qualify a derivative, thear element may contain a chiltkgree
element that specifies the order of the derivative with respect to that variablévaheslement is also used for the
internal variable in sums and products and for the bound variable used with the universal and existential quantifiel
forall andexists.

The meaning of thevar element depends on the context it is being used in. For further details aboguhbifiers are
used in conjunction with operators taking qualifiers, consult Seetiar3.2

183

Examples

<apply>
<diff/>
<bvar>
<ci> x </ci>
<degree>
<cn> 2 </cn>
</degree>
</bvar>
<apply>
<power/>
<ci> x </ci>
<cn> 4 </cn>
</apply>
</apply>

<apply>
<int/>
<bvar><ci> x </ci></bvar>
<condition>
<apply><in/><ci> x </ci><ci> D </ci></apply>
</condition>
<apply><ci type="fn"> f </ci>
<ci> x </ci>
</apply>
</apply>

Detault Rendering

The default rendering of thevar element and its contents depends on the context. In the preceding examples, it should
be rendered as thein the & of the integral, and as thein the denominator of the derivative symbol, respectively:

dx*

dx?

/ (%) dx

xeb
Note that in the case of the derivative, the default rendering odélgeee child of thebvar element is as an exponent.

Consult the descriptions of individual operators that make use afithe construct for default renderings.

4.4.5.7 Degree (degree)
Discussion

The degree element is the container element for the ‘degree’ or ‘order’ of an operation. There are a number of basic
mathematical constructs that come in families, such as derivatives and moments. Rather than introduce special eleme
for each of these families, MathML uses a single general construaigthe=e element for this concept of ‘order’.

The meaning of theegree element depends on the context it is being used in. For further details aboguhbfiers
are used in conjunction with operators taking qualifiers, consult Se¢tibA.2

184

Example

<apply>
<partialdiff/>
<bvar>
<ci> x </ci>
<degree>
<ci> n </ci>
</degree>
</bvar>
<bvar>
<ci> y </ci>
<degree>
<ci> m </ci>
</degree>
</bvar>
<apply><sin/>
<apply> <times/>
<ci> x </ci>
<ci> y </ci>
</apply>
</apply>
</apply>

Default Rendering

The default rendering of théegree element and its contents depends on the context. In the preceding example, the

degree elements would be rendered as the exponents in the differentiation symbols:
an+m

ax0y sin(xy)
Consult the descriptions of individual operators that make use afdfeee construct for default renderings.

4.4.5.8 Divergence (divergence)
Discussion
Thedivergence element is the vector calculus divergence operator, often called div.

Thedivergence element takes the attributeacoding anddefinitionURL that can be used to override the default
semantics.

Thedivergence element is amary calculus operator (See Sectiod.2.3.

Example

<apply>
<divergence/>
<ci> a </ci>

</apply>

185

If ais a vector field defined inside a closed surf8@nclosing a volum¥, then the divergence @afis given by

<apply>
<limit/>
<bvar>
<ci> V </ci>
</bvar>
<condition>
<apply>
<tendsto/>
<ci> V </ci>
<cn> 0 </cn>
</apply>
</condition>
<apply>
<divide/>
<apply><int encoding="text" definitionURL="Surfacelntegrals.htm"/>
<bvar>
<ci> 8</ci>
</bvar>
<ci> a </ci>
</apply>
<ci> V </ci>
</apply>
</apply>

Detault Rendering

diva

4.4.5.9 Gradient (grad)

Discussion

Thegrad element is the vector calculus gradient operator, often called grad.

Thegrad element takes the attributescoding anddef initionURL that can be used to override the default semantics.

Thegrad element is amnary calculus operator (see Sectiod.2.3.

Example

<apply>
<grad/>
<ci> f</ci>

</apply>

Where for exampld is a scalar function of three real variables.

186

Default Rendering
gradf

4.4.5.10 Curl (curl)

Discussion

The curl element is the vector calculus curl operator.

Thecurl element takes the attributescoding anddef initionURL that can be used to override the default semantics.

Thecurl element is amary calculus operator (See Sectiod.2.3.

Example

<apply>
<curl/>
<ci> a </ci>
</apply>
Where for exampla is a vector field.

Default Rendering

curla

4.4.5.11 Laplacian (1aplacian)
Discussion
Thelaplacian element is the vector calculus laplacian operator.

The laplacian element takes the attributeacoding anddefinitionURL that can be used to override the default
semantics.

Thelaplacian element is amnary calculus operator (See Sectiod.2.3.

Example

<apply>
<eq/>
<apply><laplacian/>
<ci> f </ci>
</apply>
<apply>
<divergence/>
<apply><grad/>
<ci> f </ci>
</apply>
</apply>
</apply>
Where for exampld is a scalar function of three real variables.

187

Default Rendering
02 f

4.4.6 Theory of Sets
4.4.6.1 Set (set)
Discussion

Theset element is the container element that constructs a set of elements. The elements of a set can be defined eit
by explicitly listing the elements, or by using thear andcondition elements.

Theset element is &onstructor element (See Sectiod.2.2.2).

Examples

<set>
<ci> b </ci>
<ci> a </ci>
<ci> ¢ </ci>
</set>

This constructs the set b, a, ¢

<set>
<bvar><ci> x </ci></bvar>
<condition>
<apply><and/>
<apply><1lt/>
<ci> x </ci>
<cn> 5 </cn>
</apply>
<apply><in/>
<ci> x </ci>
<naturalnumbers/>
</apply>
</apply>
</condition>
<ci> x </ci>
</set>

This constructs the set of all natural numbers less than 5, ie. the set 0, 1, 2, 3, 4

Default Rendering
o {a,b,c}
o {X| x < 5andxe N}

188

4.4.6.2 List (1ist)
Discussion

Thelist elementis the container element that constructs a list of elements. Elements can be defined either by explicitl
listing the elements, or by using tlhéar andcondition elements.

Lists differ from sets in that there is an explicit order to the elements. Two orders are supported: lexicographic an
numeric. The kind of ordering that should be used is specified by#ter attribute.

Thelist element is a&onstructor element (See Sectiod.2.2.2).

Examples

<list>
<ci> a </ci>
<ci> b </ci>
<ci> ¢ </ci>
</list>

<list order="numeric">
<bvar><ci> x </ci></bvar>
<condition>
<app1y><lt/>
<ci> x </ci>
<cn> 5 </cn>
</apply>
</condition>
<ci> x </ci>
</list>

Default Rendering

° [a,b,q
. [X|x< 5

4.4.6.3 Union (union)
Discussion
Theunion element is the operator for a set-theoretic union or join of two (or more) sets.

Theunion attribute takes theefinitionURL andencoding attributes, which can be used to override the default
semantics.

Theunion element is am-ary set operator (See Sectiod.2.3.

Example

<apply>

189

<union/>

<ci> A </ci>

<ci> B </ci>
</apply>

Default Rendering
AUB

4.4.6.4 Intersect (intersect)
Discussion
Theintersect element is the operator for the set-theoretic intersection or meet of two (or more) sets.

Theintersect element takes théefinitionURL andencoding attributes, which can be used to override the default
semantics.

Theintersect element is am-ary set operator (See Sectiod.2.3.

Example

<apply>
<intersect/>
<ci type="set"> A </ci>
<ci type="set"> B </ci>
</apply>

Detault Rendering
ANB

4.4.6.5 Setinclusion (in)

Discussion

Thein element is the relational operator used for a set-theoretic inclusion (‘is in’ or ‘is a member of’).

Thein element takes théefinitionURL andencoding attributes, which can be used to override the default semantics.

Thein element is ainary set relation (See Sectiod.2.4).

Example

<apply>

<in/>

<ci> a </ci>

<ci type="set"> A </ci>
</apply>

190

Default Rendering

acA

4.4.6.6 Set exclusion (notin)
Discussion

Thenotin element is the relational operator element used for set-theoretic exclusion (‘is not in’ or ‘is not a member
of").

Thenotin element takes the@efinitionURL andencoding attributes, which can be used to override the default
semantics.

Thenotin element is ainary set relation (See Sectiod.2.4).

Example

<apply>
<notin/>
<ci> a </ci>
<ci> A </ci>

</apply>

Default Rendering
a¢A

4.4.6.7 Subset (subset)
Discussion
Thesubset element is the relational operator element for a set-theoretic containment (‘is a subset of’).

The subset element takes th@efinitionURL andencoding attributes, which can be used to override the default
semantics.

Thesubset element is am-ary set relation (see Sectiod.2.4).

Example

<apply>
<subset/>
<ci> A </ci>
<ci> B </ci>

</apply>

Default Rendering
ACB

191

4.4.6.8 Proper Subset (prsubset)
Discussion
Theprsubset element is the relational operator element for set-theoretic proper containment (‘is a proper subset of’).

Theprsubset element takes théefinitionURL andencoding attributes, which can be used to override the default
semantics.

Thesubset element is am-ary set relation (see Sectiod.2.4).

Example

<apply>
<prsubset/>
<ci> A </ci>
<ci> B </ci>

</apply>

Default Rendering
ACB

4.4.6.9 Not Subset (notsubset)
Discussion
Thenotsubset element is the relational operator element for the set-theoretic relation ‘is not a subset of’.

Thenotsubset element takes théefinitionURL andencoding attributes, which can be used to override the default
semantics.

Thenotsubset element is ainary set relation (See Sectiod.2.4).

Example

<apply>
<notsubset/>
<ci> A </ci>
<ci> B </ci>

</apply>

Default Rendering
AZB

192

4.4.6.10 Not Proper Subset (notprsubset)
Discussion
Thenotprsubset element is the operator element for the set-theoretic relation ‘is not a proper subset of’.

The notprsubset takes thedefinitionURL and encoding attributes, which can be used to override the default
semantics.

Thenotprsubset element is ainary set relation (see Sectiod.2.4).

Example

<apply>
<notprsubset/>
<ci> A </ci>
<ci> B </ci>

</apply>

Detault Rendering
AZB

4.4.6.11 Set Difference (setdiff)
Discussion
Thesetdiff element is the operator element for a set-theoretic difference of two sets.

The setdiff element takes theefinitionURL andencoding attributes, which can be used to override the default
semantics.

Thesetdiff element is ainary set operator (See Sectiod.2.3.

Example

<apply>
<setdiff/>
<ci> A </ci>
<ci> B </ci>

</apply>

Detault Rendering
A\B

4.4.6.12 Cardinality (card)

Discussion

Thecard element is the operator element for the size or cardinality of a set.

Thecard element takes the attributésf initionURL andencoding that can be used to override the default semantics.

Thecard element is amnary set operator (see Sectiod.2.3.

193

Example

<apply>
<eq/>
<apply><card/>
<ci> A </ci>
</apply>
<ci> 5 </ci>
</apply>

where A is a set with 5 elements.

Detault Rendering
Al =5

4.4.6.13 Cartesian product (cartesianproduct)
Discussion

The cartesianproduct element is the operator element for the Cartesian product of two or more se&ndiB are
two sets, then the Cartesian producfadndB is the set of all pairga, b) with ain Aandb in B.

The cartesianproduct element takes the attributésfinitionURL andencoding that can be used to override the
default semantics.

Thecartesianproduct element is a-ary set operator (See Sectiod.2.3.

Example

<apply><cartesianproduct/>
<ci> A </ci>
<ci> B </ci>

</apply>

<apply><cartesianproduct/>
<reals/>
<reals/>
<reals/>

</apply>

Default Rendering
AxB
RxRxR
R3

194

4.4.7 Sequences and Series
4.4.7.1 Sum (sum)
Discussion

The sum element denotes the summation operator. Upper and lower limits for the index of a sum can be specified usin
uplimit andlowlimit. More general domains for the indices can be specified usiegdi tion involving the bound
variables. The index for the summation is specified by ar element.

Thesum element takes théefinitionURL andencoding attributes, which can be used to override the default seman-
tics.

The sum element is amperator taking qualifiers (see Sectiod.2.3.9.

Examples

<apply>
<sum/>
<bvar>
<ci> x </ci>
</bvar>
<lowlimit>
<ci> a </ci>
</lowlimit>
<uplimit>
<ci> b </ci>
</uplimit>
<apply><ci type="fn"> f </ci>
<ci> x </ci>
</apply>
</apply>

<apply>
<sum/>
<bvar>
<ci> x </ci>
</bvar>
<condition>
<apply> <in/>
<ci> x </ci>
<ci type="set"> B </ci>
</apply>
</condition>
<apply><ci type="fn"> f </ci>
<ci> x </ci>
</apply>
</apply>

195

Default Rendering

b
z f(x)

X=a

;f(x)

4.4.7.2 Product (product)
Discussion

Theproduct element denotes the product operator. Upper and lower limits for the index of a product can be specifiec
usinguplimit andlowlimit. More general domains for the indices can be specified ustegdi tion involving the
bound variables. The index for the product is specified byza element.

Theproduct element takes theefinitionURL andencoding attributes, which can be used to override the default
semantics.

Theproduct element is amperator taking qualifiers (See Sectiod.2.3.9.
Examples

<apply>
<product/>
<bvar>
<ci> x </ci>
</bvar>
<lowlimit>
<ci> a </ci>
</lowlimit>
<uplimit>
<ci> b </ci>
</uplimit>
<apply><ci type="fn"> f </ci>
<ci> x </ci>
</apply>
</apply>

<apply>
<product/>
<bvar>
<ci> x </ci>
</bvar>
<condition>
<apply> <in/>
<ci> x </ci>
<ci type="set"> B </ci>
</apply>
</condition>
<apply><ci type="fn"> f </ci>

196

<ci> x </ci>
</apply>
</apply>

Detault Rendering

4.4.7.3 Limit (1imit)
Discussion

Thelimit element represents the operation of taking a limit of a sequence. The limit point is expressed by specifying
alowlimit and abvar, or by specifying aondition on one or more bound variables.

The 1imit element takes th@efinitionURL andencoding attributes, which can be used to override the default
semantics.

Thelimit element is amwperator taking qualifiers (see Sectiod.2.3.2.

Examples

<apply>
<limit/>
<bvar>
<ci> x </ci>
</bvar>
<lowlimit>
<cn> 0 </cn>
</lowlimit>
<apply><sin/>
<ci> x </ci>
</apply>
</apply>

<apply>
<limit/>
<bvar>
<ci> x </ci>
</bvar>
<condition>
<apply>
<tendsto type="above"/>
<ci> x </ci>
<ci> a </ci>
</apply>

197

</condition>
<apply><sin/>
<ci> x </ci>
</apply>
</apply>

Default Rendering

° lim sinx

X—

° lim sinx
xla

4.4.74 Tends To (tendsto)

Discussion

Thetendsto element is used to express the relation that a quantity is tending to a specified value.
Thetendsto element takes the attributegpe to set the direction from which the limiting value is approached.

Thetendsto element is ainary relational operator (See Sectiod.2.4).

Examples

<apply>
<tendsto type="above"/>
<apply>
<power/>
<ci> x </ci>
<cn> 2 </cn>
</apply>
<apply>
<power/>
<ci> a </ci>
<cn> 2 </cn>
</apply>
</apply>
To expressX, y) —(f(x, y), g(x, ¥)), one might use vectors, as in:

<apply>
<tendsto/>
<vector>
<ci> x </ci>
<ci> y </ci>
</vector>
<vector>
<apply><ci type="fn"> f </ci>
<ci> x </ci>
<ci> y </ci>
</apply>

198

<apply><ci type="fn"> g </ci>
<ci> x </ci>
<ci> y </ci>
</apply>
</vector>
</apply>

Default Rendering
x? | a?

(x,y) = (f(xy),9(%,y))

4.4.8 Elementary classical functions
4.4.8.1 common trigonometric functions

The names of the common trigonometric functions supported by MathML are listed below. Since their standard inter
pretations are widely known, they are discussed as a group.

sin cos tan

sec csc cot
sinh cosh tanh
sech csch coth
arcsin arccos arctan
arccosh arccot arccoth
arccsc arccsch arcsec
arcsech arcsinh arctanh
Discussion

These operator elements denote the standard trigonometrical functions.

These elements all take tiefinitionURL andencoding attributes, which can be used to override the default se-

mantics.

They are allunary trigonometric operators. (see Sectiod.2.3.

Examples

<apply>
<sin/>
<ci> x </ci>
</apply>
<apply>
<sin/>
<apply>
<plus/>
<apply><cos/>
<ci> x </ci>
</apply>
<apply>

199

<power/>
<ci> x </ci>
<cn> 3 </cn>
</apply>
</apply>
</apply>

Default Rendering

sinx
sin(cosx+ x°)

4.4.8.2 Exponential (exp)
Discussion

Theexp element represents the exponential function associated with the inversaafftiretion. In particular, exp(1)
is approximately 2.718281828.

The exp element takes th@efinitionURL andencoding attributes, which may be used to override the default se-
mantics.

Theexp element is ainary arithmetic operator (See Sectiod.2.3.

Example

<apply>

<exp/>

<ci> x </ci>
</apply>

Detault Rendering
e

4.4.8.3 Natural Logarithm (1n)

Discussion

Theln element represents the natural logarithm function.

Theln elementtakes théef initionURL andencoding attributes, which can be used to override the default semantics.

Theln element is amary calculus operator (See Sectiod.2.3.

Example

<apply>
<ln/>
<ci> a </ci>
</apply>
If a=e¢, (whereeis the base of the natural logarithms) this will yield the value 1.

200

Default Rendering

Ina

4.4.8.4 Logarithm (1og)
Discussion

The log element is the operator that returns a logarithm to a given base. The base may be specified eigtaga
element, which should be the first element followingg, i.e. the second child of the containiagply element. If the
logbase element is not present, a default base of 10 is assumed.

Thelog element takes théef initionURL andencoding attributes, which can be used to override the default seman-
tics.

Thelog element can be used as eitheraparator taking qualifiers Or aunary calculus operator (See Sectiod.2.3.9.

Example

<apply>
<log/>
<logbase>
<cn> 3 </cn>
</logbase>
<ci> x </ci>
</apply>
This markup represents ‘the base 3 logarithm of x’. For natural logarithms base e dlenent should be used instead.

Detault Rendering

logs x

449 Statistics

4.4.9.1 Mean (mean)

Discussion

mean iS the operator element representingiéan or average.

mean takes thelefinitionURL andencoding attributes, which can be used to override the default semantics.

Example
mean iS ann-ary operator (see Sectiod.2.3.
<apply>

<mean/>

<ci> X </ci>
</apply>

201

Default Rendering
Xor (X)

4.4.9.2 Standard Deviation (sdev)
Discussion
sdev is the operator element representing the statisttaatiard deviation operator.

sdev takes thelefinitionURL andencoding attributes, which can be used to override the default semantics.

Example
sdev is ann-ary operator (See Sectiod.2.3.
<apply>

<sdev/>

<ci> X </ci>
</apply>

Detault Rendering
o(X)

4.4.9.3 Variance (variance)
Discussion
variance is the operator element representing the statistimaince operator.

variance takes thelefinitionURL andencoding attributes, which can be used to override the default semantics.

Example
variance iS ann-ary operator (See Sectiod.2.3.
<apply>

<variance/>

<ci> X </ci>
</apply>

Detault Rendering
o(X)?

4.4.9.4 Median (median)
Discussion
median is the operator element representing the statistizalian operator.

median takes thelef initionURL andencoding attributes, which can be used to override the default semantics.

202

Example
median iS ann-ary operator (See Sectiod.2.3.
<apply>

<median/>

<ci> X </ci>
</apply>

Default Rendering
mediar{X)

4.4.9.5 Mode (mode)
Discussion
mode is the operator element representing the statisticale operator.

mode takes thelefinitionURL andencoding attributes, which can be used to override the default semantics.

Example
mode iS ann-ary operator (see Sectiod.2.3.
<apply>

<mode/>

<ci> X </ci>
</apply>

Detault Rendering
mode&X)

4.4.9.6 Moment (moment)
Discussion

Themoment element represents the statistioalment operator. Use the qualifielegree for thenin * n-th moment'.
Use the qualifiemomentabout for the p in ‘moment aboup'.

moment takes thelefinitionURL andencoding attributes, which can be used to override the default semantics.

Example

moment IS anoperator taking qualifiers (See Sectiod.2.3.). The third moment of the distributiod about the poinp
IS written:

<apply>
<moment/>
<degree>

203

<cn> 3 </cn>
</degree>
<momentabout>
<ci> p </ci>
</momentabout>
<ci> X </ci>
</apply>

Default Rendering
(X3)

4.4.9.7 Point of Moment (momentabout)
Discussion

Themomentabout element is aqualifier element used with theoment element to represent statistical moments. Use
the qualifiemomentabout for the p in ‘moment aboup'.

momentabout takes thelef initionURL andencoding attributes, which can be used to override the default semantics.

Example
The third moment of the distributiod about the poinp is written:

<apply>
<moment/>
<degree>
<cn> 3 </cn>
</degree>
<momentabout>
<ci> p </ci>
</momentabout>
<ci> X </ci>
</apply>

Detault Rendering
(X3)

4.4.10 Linear Algebra

4.4.10.1 Vector (vector)

Discussion

vector is the container element for a vector. The child elements form the components of the vector.

For purposes of interaction with matrices and matrix multiplication, vectors are regarded as equivalent to a matri:

consisting of a single column, and the transpose of a vector behaves the same as a matrix consisting of a single row.

204

Example

vector iS aconstructor element (see Sectigh2.2.).

<vector>
<cn> 1 </cn>
<cn> 2 </cn>
<cn> 3 </cn>
<ci> x </ci>
</vector>

Detault Rendering

=

X wWwN

1,2,3x

4.4.10.2 Matrix (matrix)
Discussion

Thematrix element is the container element for matrix rows, which are representegtlbyxrow. Thematrixrows
contain the elements of a matrix.

Example

matrix iS aconstructor element (see Sectigh2.2.).

<matrix>
<matrixrow>
<cn> 0 </cn> <cn> 1 </cn> <cn> 0 </cn>
</matrixrow>
<matrixrow>
<cn> 0 </cn> <cn> 0 </cn> <cn> 1 </cn>
</matrixrow>
<matrixrow>
<cn> 1 </cn> <cn> 0 </cn> <cn> 0 </cn>
</matrixrow>
</matrix>

Default Rendering

01
A=1|1 0 0
10

[oN o]

205

4.4.10.3 Matrix row (matrixrow)
Discussion

Thematrixrow element is theontainer element for the rows of a matrix.

Example

matrixrow iS a constructor element (see Sectibh.2.).

<matrixrow>
<cn> 1 </cn>
<cn> 2 </cn>
</matrixrow>
<matrixrow>
<cn> 3 </cn>
<ci> x </ci>
</matrixrow>

Detault Rendering

Matrix rows are not directly rendered by themselves outside of the context of a matrix.

4.4.10.4 Determinant (determinant)
Discussion
Thedeterminant element is the operator for constructing the determinant of a matrix.

determinant takes thelefinitionURL andencoding attributes, which can be used to override the default semantics.

Example

determinant iS aunary operator (see Sectiod.2.3.

<apply>
<determinant/>
<ci type="matrix"> A </ci>
</apply>
Detault Rendering
detA

4.4.10.5 Transpose (transpose)
Discussion
Thetranspose element is the operator for constructing the transpose of a matrix.

transpose takes thelefinitionURL andencoding attributes, which can be used to override the default semantics.

206

Example

transpose IS aunary operator (See Sectiod.2.3.

<apply>
<transpose/>
<ci type="matrix"> A </ci>
</apply>
Detault Rendering
AT

4.4.10.6 Selector (selector)
Discussion

The selector element is the operator for indexing into vectors matrices and lists. It accepts one or more arguments
The first argument identifies the vector, matrix or list from which the selection is taking place, and the second anc
subsequent arguments, if any, indicate the kind of selection taking place.

Whenselector is used with a single argument, it should be interpreted as giving the sequence of all elements in the
list, vector or matrix given. The ordering of elements in the sequence for a matrix is understood to be first by column
then by row. That is, for a matrixg j), where the indices denote row and column, the ordering woulthhea 1 o, ...
az1,azy ... etc.

When three arguments are given, the last one is ignored for a list or vector, and in the case of a matrix, the second a
third arguments specify the row and column of the selected element.

When two arguments are given, and the first is a vector or list, the second argument specifies an element in the list
vector. When a matrix and only one indieis specified as in

<apply>
<selector/>
<matrix>
<matrixrow>
<cn> 1 </cn> <cn> 2 </cn>
</matrixrow>
<matrixrow>
<cn> 3 </cn> <cn> 4 </cn>
</matrixrow>
</matrix>
<cn> 1 </cn>
</apply>
it refers to thd-th matrixrow. Thus, the preceding example selects the following row:

<matrixrow> <cn> 1 </cn> <cn> 2 </cn> </matrixrow>

selector takes thelefinitionURL andencoding attributes, which can be used to override the default semantics.

selector is classified as an n-ary linear algebra operator even though it can take only one, two, or three arguments.

207

Example

<apply>
<selector/>
<ci type="matrix"> A </ci>
<cn> 3 </cn>
<cn> 2 </cn>
</apply>

Default Rendering

Theselector construct renders the same as the expression it selects.

4.4.10.7 Vector product (vectorproduct)
Discussion
Thevectorproduct is the operator element for deriving the vector product of two vectors

The vectorproduct element takes the attributéefinitionURL andencoding that can be used to override the
default semantics.

Thevectorproduct element is ainary vector operator (See Sectiod.2.3.

Example

<apply>
<eq/>
<apply><vectorproduct/>
<ci type="vector"> A </ci>
<ci type="vector"> B </ci>
</apply>
<apply><times/>
<ci> a </ci>
<ci> b </ci>

<apply><sin/>
<ci> θ </ci>
</apply>
<ci type="vector"> N </ci>
</apply>
</apply>

whereA andB are vectorsN is a unit vector orthogonal tA andB, a, b are the magnitudes of A, B ar@iils the angle
between A and B.

Detault Rendering
AxB

208

4.4.10.8 Scalar product (scalarproduct)
Discussion
Thescalarproduct is the operator element for deriving the scalar product of two vectors

The scalarproduct element takes the attributeée@finitionURL andencoding that can be used to override the
default semantics.

Thescalarproduct element is ainary vector operator (See Sectiod.2.3.

Example

<apply>
<eq/>
<apply><scalarproduct/>
<ci type="vector"> A </ci>
<ci type="vector">B </ci>
</apply>
<apply><times/>
<ci> a </ci>
<ci> b </ci>
<apply><cos/>
<ci> θ </ci>
</apply>
</apply>
</apply>
where A and B are vectora, b are the magnitudes of A, B arfiis the angle between A and B.

Default Rendering
A.B

4.4.10.9 Outer product (outerproduct)
Discussion
Theouterproduct is the operator element for deriving the outer product of two vectors

Theouterproduct element takes the attributésfinitionURL andencoding that can be used to override the default
semantics.

Theouterproduct element is ainary vector operator (See Sectiod.2.3.

Example

<apply>
<outerproduct/>
<ci type="vector">A</ci>
<ci type="vector">B</ci>
</apply>
where A and B are vectors.

209

Default Rendering
A.B

4.4.11 Semantic Mapping Elements

This section explains the use of the semantic mapping eleraen#sitics, annotation andannotation-xml.

4.4.11.1 Annotation (annotation)
Discussion
Theannotation element is the container element for a semantic annotation in a non-XML format.

Theannotation element takes the attribuéacoding to define the encoding being used.

Example

Theannotation element is a semantic mapping element. It is always usedsaiiAntics.

<semantics>
<apply>
<plus/>
<apply><sin/>
<ci> x </ci>
</apply>
<cn> 5 </cn>
</apply>
<annotation encoding="TeX">
\sin x + 5
</annotation>
</semantics>

Detault Rendering

None. The information contained in annotations may optionally be used by a renderer able to process the kind
annotation given.

4.4.11.2 Semantics (semantics)
Discussion

Thesemantics element is the container element that associates additional representations with a given MathML con
struct. Thesemantics element has as its first child the expression being annotated, and the subsequent children ar
the annotations. There is no restriction on the kind of annotation that can be attached using the semantics element. |
example, one might give g2X encoding, or computer algebra input in an annotation.

The representations that are XML based are enclosed an@dtation-xml element while those representations that
are to be parsed &EDATA are enclosed in amnnotation element.

Thesemantics element takes théefinitionURL andencoding attributes, which can be used to reference an external
source for some or all of the semantic information.

210

An important purpose of theemantics construct is to associate specific semantics with a particular presentation,
or additional presentation information with a content construct. The default renderingeabatics element is the
default rendering of its first child. When a MathML-presentation annotation is provided, a MathML renderer may
optionally use this information to render the MathML construct. This would typically be the case when the first child is
a MathML content construct and the annotation is provided to give a preferred rendering differing from the default for
the content elements.

Use ofsemantics to attach additional information in-line to a MathML construct can be contrasted with use of the
csymbol for referencing external semantics. See Sectidnl.3

Examples

Thesemantics element is a semantic mapping element.

<semantics>
<apply>
<plus/>
<apply>
<sin/>
<ci> x </ci>
</apply>
<cn> 5 </cn>
</apply>
<annotation encoding="Maple">
sin(x) + 5
</annotation>
<annotation-xml encoding="MathML-Presentation">

</annotation-xml>

<annotation encoding="Mathematica">
Sin[x] + 5

</annotation>

<annotation encoding="TeX">
\sin x + 5

</annotation>

<annotation-xml encoding="OpenMath">
<OMA xmlns="http://www.openmath.org/OpenMath">

<0MS cd="transcl" name="sin"/>

<OMI>5</0MI>
</0MA>

</annotation-xml>

</semantics>

Default Rendering

The default rendering of semantics element is the default rendering of its first child.

211

4.4.11.3 XML-based annotation (annotation-xml)
Discussion

The annotation-xml container element is used to contain representations that are XML based. It is always used
together with thesemantics element, and takes the attributecoding to define the encoding being used.

annotation-xml iS @ Semantic mapping element.

Example

<semantics>
<apply>
<plus/>
<apply><sin/>
<ci> x </ci>
</apply>
<cn> 5 </cn>
</apply>
<annotation-xml encoding="OpenMath">
<OMA><0MS name="plus" cd="arithl"/>
<0OMA><0OMS name="sin" cd="transcl"/>
<0OMV name="x"/>
</0MA>
<0MI>5</0MI>
</0MA>
</annotation-xml>
</semantics>

See also the discussion ®mantics above.

Detault Rendering

None. The information may optionally be used by a renderer able to process the kind of annotation given.

4.4.12 Constant and Symbol Elements

This section explains the use of the Constant and Symbol elements.

4.4.12.1 integers (integers)
Discussion

integers represents the set of all integers.

Example

<apply>
<in/>
<cn type="integer"> 42 </cn>
<integers/>

</apply>

212

Default Rendering
42¢ 7

4.4.12.2 reals (reals)
Discussion

reals represents the set of all real numbers.

Example

<apply>
<in/>
<cn type="real"> 44.997 </cn>
<reals/>

</apply>

Detault Rendering
44997 R

4.4.12.3 Rational Numbers (rationals)

Discussion

rationals represents the set of all rational numbers.

Example

<apply>
<in/>
<cn type="rational"> 22 <sep/>7</cn>
<rationals/>

</apply>

Detault Rendering
22/7€Q

4.4.12.4 Natural Numbers (naturalnumbers)

Discussion

naturalnumbers represents the set of all natural numbers, ie. non-negative integers.

213

Example

<apply>
<in/>
<cn type="integer">1729</cn>
<naturalnumbers/>

</apply>

Detault Rendering
1729e N

4.4.12.5 complexes (complexes)
Discussion

complexes represents the set of all complex numbers, ie. numbers which may have a real and an imaginary part.

Example

complexes represents the set of all complex numbers, ie. numbers which may have a real and an imaginary part.

Example
<apply>
<in/>
<cn type="complex">17<sep/>29</cn>
<complexes/>
</apply>
Default Rendering
17429 ¢C

4.4.12.6 primes (primes)
Discussion

primes represents the set of all natural prime numbers, ie. integers greater than 1 which have no positive integer fact
other than themselves and 1.

Example

<apply>
<in/>
<cn type="integer">17</cn>
<primes/>

</apply>

214

Default Rendering
17¢P

4.4.12.7 Exponential e (exponentiale)
Discussion

exponentiale represents the mathematical constant which is the exponential base of the natural logarithms, commonl
writtene. It is approximately 2.718281828..

Example

<apply> <eq/>
<apply>
<1ln/>
<exponentiale/>
</apply>
<cn>1</cn>
</apply>

Detault Rendering

Ine=1

4.4.12.8 Imaginary i (imaginaryi)
Discussion

imaginaryi represents the mathematical constant which is the square root of -1, commonly written

Example

<apply> <eq/>
<apply>
<power/>
<imaginaryi/>
<cn>2</cn>
</apply>
<cn>-1</cn>
</apply>

Default Rendering
iZ=-1

4.4.12.9 Not A Number (notanumber)
Discussion

notanumber represents the result of an ill-defined floating point operation, sometimes also/SaNed

215

Example

<apply> <eq/>
<apply>
<divide/>
<cn>0</cn>
<cn>0</cn>
</apply>
<notanumber/>
</apply>

Detault Rendering
0/0=NaN

4.4.12.10 True (true)
Discussion

true represents the logical constant for truth.

Example

<apply> <eq/>
<apply>
<or/>
<true/>
<ci type = "logical">P</ci>
</apply>
<true/>
</apply>

Default Rendering

trueorP=true

4.4.12.11 False (false)

Discussion

false represents the logical constant for falsehood.

Example

<apply> <eq/>
<apply>
<and/>
<false/>
<ci type = "logical">P</ci>

216

</apply>
<false/>
</apply>

Default Rendering

falseandP= false

4.4.12.12 Empty Set (emptyset)
Discussion

emptyset represents the empty set.

Example

<apply>
<neq/>
<integers/>
<emptyset/>

</apply>

Default Rendering
7Z+0

4.4.12.13 pi(pi)
Discussion

pi represents the mathematical constant which is the ratio of a circle’s circumference to its diameter, approximatel
3.141592653.

Example

<apply>

<approx/>

<pi/>

<cn type = "rational">22<sep/>7</cn>
</apply>

Default Rendering
i~ 22/7

217

4.4.12.14 Euler gamma (eulergamma)
Discussion

eulergamma represents Euler’s constant, approximately 0.5772156649

Example

<eulergamma/>

Default Rendering
Y

4.4.12.15 infinity (infinity)
Discussion

infinity represents the concept of infinity. Proper interpretation depends on context.

Example

<infinity/>

Detault Rendering

o0

218

Chapter 5

Combining Presentation and Content Markup

Presentation markup and content markup can be combined in two ways. The first manner is to intersperse content ¢
presentation elements in what is essentially a single tree. This is ealied markup. The second manner is to provide
both an explicit presentation and an explicit content in a pair of trees. This is cadiadle]l markup. This chapter
describes both mixed and parallel markup, and how they may used in conjunction with style sheets and other tools.

51 Why Two Different Kinds of Markup?
Chapters 3 and 4 describe two kinds of markup for encoding mathematical material in documents.

Presentation markup capturesnotational structure. It encodes the notational structure of an expression in a sufficiently
abstract way to facilitate rendering to various media. Thus, the same presentation markup can be rendered with relat
ease on screen in either wide and narrow windows, in ASCII or graphics, in print, or it can be enunciated in a sensibl
way when spoken. It does this by providing information such as structured grouping of expression parts, classificatio
of symbols, etc.

Presentation markup doest directly concern itself with the mathematical structure or meaning of an expression. In
many situations, notational structure and mathematical structure are closely related, so a sophisticated processing ap
cation may be able to heuristically infer mathematical meaning from notational structure, provided sufficient context i
known. However, in practice, the inference of mathematical meaning from mathematical notation must often be left t
the reader.

Employing presentation tags alone may limit the ability to re-use a MathML object in another context, especially
evaluation by external applications.

Content markup capturesnathematical structure. It encodes mathematical structure in a sufficiently regular way in order

to facilitate the assignment of mathematical meaning to an expression by application programs. Though the details

mapping from mathematical expression structure to mathematical meaning can be extremely complex, in practice, the
is wide agreement about the conventional meaning of many basic mathematical constructions. Consequently, much
the meaning of a content expression is easily accessible to a processing application, independently of where or how it
displayed to the reader. In many cases, content markup could be cut from a Web browser and pasted into a mathemat
software tool with confidence that sensible values will be computed.

Since content markup isot directly concerned with how an expression is displayed, a renderer must infer how an ex-

pression should be presented to a reader. While a sufficiently sophisticated renderer and style-sheet mechanism coul
principle allow a user to read mathematical documents using personalized notational preferences, in practice, render
content expressions with notational nuances may still require intervention of some sort.

Employing content tags alone may limit the ability of the author to precisely control how an expression is rendered.

219

Both content and presentation tags are necessary in order to provide the full expressive capability one would expect ir
mathematical markup language. Often the same mathematical notation is used to represent several completely differ:
concepts. For example, the notatidmay be intended (in polynomial algebra) as itfile power of the variablg, or as

thei-th component of a vectot (in tensor calculus). In other cases, the same mathematical concept may be displayec
in one of various notations. For instance, the factorial of a number might be expressed with an exclamation mark,
Gamma function, or a Pochhammer symbol.

Thus the same notation may represent several mathematical ideas, and, conversely, the same mathematical idea ¢
has several notations. In order to provide authors with the ability to precisely control notation while at the same time
encoding meanings in a machine-readable way, both content and presentation markup are needed.

In general, if it is important to control exactly how an expression is rendered, presentation markup will generally be
more satisfactory. If it is important that the meaning of an expression can be interpreted dependably and automatical
then content markup will generally be more satisfactory.

5.2 Mixed Markup

MathML offers authors elements for both content and presentation markup. Whether to use one or the other, or
combination of both, depends on what aspects of rendering and interpretation an author wishes to control, and wk
kinds of re-use he or she wishes to facilitate.

5.21 Reasons to Mix Markup

In many common situations, an author or authoring tool may choose to generate either presentation or content mark
exclusively. For example, a program for translating legacy documents would most likely generate pure presentatic
markup. Similarly, an educational software package might very well generate only content markup for evaluation ir
a computer algebra system. However, in many other situations, there are advantages to mixing both presentation &
content markup within a single expression.

If an author is primarily presentation-oriented, interspersing some content markup will often produce more accessibls
more re-usable results. For example, an author writing about linear algebra might write:

<mrow>
<apply>
<power/>
<ci>x</ci>
<cn>2</cn>
</apply>
<mo>+</mo>
<msup>
<mi>v</mi>
<mn>2</mn>
</msup>
</mrow>
wherev is a vector and the superscript denotes a vector componenk igralreal variable. On account of the linear
algebra context, a visually impaired reader may have directed his or her voice synthesis software to render superscri
as vector components. By explicitly encoding the power, the content markup yields a much better voice rendering the
would likely happen by default.

220

If an author is primarily content-oriented, there are two reasons to intersperse presentation markup. First, using prese
tation markup provides a way of modifying or refining how a content expression is rendered. For example, one migh
write:

<apply>
<in/>
<ci><mi mathvariant="bold">v</mi></ci>
<ci>S</ci>

</apply>

In this case, the use of embedded presentation markup allows the author to spegighthat be rendered in boldface.
In the same way, it is somtimes the case that a completely different notation is desired for a content expression. F
example, here we express a fact about factonetsn!/(n-1)!, using the ascending factorial notation:

<apply>
<equivalent/>
<ci>n</ci>
<apply>
<divide/>
<semantics>
<apply>
<factorial/>
<ci>n</ci>
</apply>
<annotation-xml encoding="MathML-Presentation">
<msup>
<mn>1</mn>
<mover accent="true">
<mi>n</mi>
<mo>&0verBar ;</mo>
</mover>
</msup>
</annotation-xml>
</semantics>
<semantics>
<apply>
<factorial/>
<apply><minus/><ci>n</ci><cn>1</cn></apply>
</apply>
<annotation-xml encoding="MathML-Presentation">
<msup>
<mn>1</mn>
<mover accent="true">
<mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow>
<mo>&0verBar ;</mo>
</mover>
</msup>
</annotation-xml>
</semantics>

221

</apply>
</apply>)
This content expression would render using the given notatiog%fays:

A second reason to use presentation within content markup is that there is a continually growing list of areas of discour:
that do not have pre-defined content elements for encoding their objects and operators. As a consequence, any sys
of content markup inevitably requires an extension mechanism that combines notation with semantics in some wa
MathML content markup specifies several ways of attaching an external semantic definitions to content objects. It i
necessary, however, to use MathML presentation markup to specify how such user-defined semantic extensions sho
be rendered.

For example, the ‘rank’ operator from linear algebra is not included as a pre-defined MathML content element. Thus
to express the statement rank¢)=1 we use aemantics element to bind a semantic definition to the symizwik.

<apply>
<eq/>
<apply>
<semantics>
<mi>rank</mi>
<annotation-xml encoding="OpenMath">
<OMS name="rank" cd="linalg3" xmlns="http://www.openmath.org/OpenMath"/>
</annotation-xml>
</semantics>
<apply>
<times/>
<apply> <transpose/> <ci>u</ci> </apply>
<ci>v</ci>
</apply>
</apply>
<cn>1</cn>
</apply>
Here, the semantics of rank have been given using a symbol from an OpenMath content dictionary (CD).

5.2.2 Combinations that are prohibited

The main consideration when presentation markup and content markup are mixed together in a single expression is tl
the result should still make sense. When both kinds of markup are contained in a presentation expression, this mee
it should be possible to render the resulting mixed expressions simply and sensibly. Conversely, when mixed markt
appears in a content expression, it should be possible to simply and sensibly assign a semantic interpretation to f
expression as whole. These requirements place a few natural constraints on how presentation and content markup
be mixed in a single expression, in order to avoid ambiguous or otherwise problematic expressions.

Two examples illustrate the kinds of problems that must be avoided in mixed markup. Consider:

<mrow>
<bvar> x </bvar> <mo> + </mo> <bvar> y </bvar>
</mrow>

In this example, the content elemeartar has been indiscriminately embedded in a presentation expressionbgiice
requires an enclosing context for its meaning, this expression is unclear.

Similarly, consider:

222

<apply>

<ci> x </ci> <mo> + </mo> <ci> y </ci>
</apply>
Here, themo element is problematic. Should a renderer infer that the usual arithmetic operator is intended, and act as
the prefix content elemeptLlus had been used? Or should this be literally interpreted as the opzrapmlied to two
argumentsgmo>+</mo> and<mi>y</mi> ? Even if we were to decide thaho>+</mo> was the operator, then what
should its meaning be? These questions do not have particularly compelling answers, so this kind of mixing of conter
and presentation markup is also prohibited.

5.2.3 Presentation Markup Contained in Content Markup

The use of presentation markup within content markup is limited to situations that do not effect the ability of content
markup to unambiguously encode mathematical meaning. Specifically, presentation markup may only appear in conte
markup in three ways:

1. within ci andcn token elements
2. within the csymbol element
3. within the semantics element

Any other presentation markup occurring within a content markup is a MathML error. More detailed discussion of these
three cases follows:

Presentation markup within token elements. The token elementsi andcn are permitted to contain any sequence
of MathML characters (defined in Chapt®; presentation elements, agdp empty elements. Contiguous
blocks of MathML characters iai and cn elements are rendered as if they were wrappedgii@ndmn
elements respectively. If a token element contains both MathML characters and presentation elements, co
tiguous blocks of MathML characters (if any) are treated as if wrapped or mn elements as appropriate,
and the resulting collection of presentation elements are rendered as if wrappetkiswagiement.

Presentation markup within the csymbol element. The csymbol element may contain either MathML characters
interspersed with presentation markup, or content elements of the container type. It is a MathML error for a
csymbol element to contain both presentation and content elements. Whesithieol element contains
both raw data and presentation markup, the same rendering rules that apply to content elements of the tok
type should be used.

Presentation markup within the semantics element. One of the main purposes of themantics element is to
provide a mechanism for incorporating arbitrary MathML expressions into content markup in a semantically
meaningful way. In particular, any valid presentation expression can be embedded in a content expressic
by placing it as the first child of aemantics element. The meaning of this wrapped expression should be
indicated by one or more annotation elements also contained éeita@tics element. Suggested rendering
for asemantics element is discussed in Sectidr?.a

5.24 Content Markup Contained in Presentation Markup

The guiding principle for embedding content markup within presentation expressions is that the resulting expressio
should still have an unambiguous rendering. In general, this means that embedded content expressions must be sen
tically meaningful, since rendering of content markup depends on its meaning.

Certain content elements derive part of their semantic meaning from the surrounding context, such as whather a
element is qualifying an integral, logical quantifier or lambda expression. Another example would be whieghsrea
element occurs in aoot or partialdiff element. Thus, in a presentation context, elements such as these do not have
a clearly defined meaning, and hence there is no obvious choice for a rendering. Consequently, they are not allowed.

223

Using the terminology of Sectiof.2.1, we see that operator, relation, container, constant and symbol elements make
sense on their own, while elements of the qualifier and condition type do not. (Notentteatval may be used either
as a general container, or as a qualifier.)

Outside these categories, certain elements deserve specific comment: the etemesnte, sep, annotation and
annotation-xml can only appear in very specific contexts and consequently are not permitted as direct sub-expressior
of any presentation element. Finally, the elemesiiantics carries with it sufficient information to be permitted in
presentation.

The complete list of content elements thatnot appear as a child in a presentation elementrigotation, annotation-
xml, sep, declare, bvar, condition, degree, logbase, lowlimit, uplimit.

Note that within presentation markup, content expressions may only appear in locations where it is valid for any
MathML expression to appear. In particular, content expressions may not appear within presentation token elements.
this regard mixing presentation and content are asymmetrical.

Note that embedding content markup in presentation will often require applications to render operators outgige of an
ply context. E.g., it may be necessary to renslet, plus, root or sin outside of an application. Content/presentation
mixing does not introduce any new requirements, however, since unapplied operators are already permitted in conte
expressions, for example:

<apply>
<compose/>
<sin/>
<apply>
<inverse/>
<root/>
</apply>
</apply>

5.3 Parallel Markup

Some applications are able to make uséah presentation and content information. For these applications it is desir-
able to provide both forms of markup for the same mathematical expression. This ispeadiéel markup.

Parallel markup is achieved with thkemantics element. Parallel markup for an expression can be used on its own, or
can be incorporated as part of a larger content or presentation tree.

5.3.1 Top-level Parallel Markup

In many cases what is desired is to provide presentation markup and content markup for a mathematical expression
a whole. To achieve this, a singlemantics element is used pairing two markup trees, with the first branch being the
MathML presentation markup, and the second branch being the MathML content markup.

The following example encodes the boolean arithmetic expresaidn(€+d) in this way.

<semantics>
<mrow>
<mrow><mo>(</mo><mi>a</mi> <mo>+</mo> <mi>b</mi><mo>)</mo></mrow>
<mo>⁢</mo>
<mrow><mo>(</mo><mi>c</mi> <mo>+</mo> <mi>d</mi><mo>)</mo></mrow>

224

</mrow>
<annotation-xml encoding="MathML-Content">
<apply><and/>
<apply><xor/><ci>a</ci> <ci>b</ci></apply>
<apply><xor/><ci>c</ci> <ci>d</ci></apply>
</apply>
</annotation-xml>
</semantics>

This example is non-trivial in the sense that the content markup could not be easily derived from the presentation markt
alone.

5.3.2 Fine-grained Parallel Markup

Top-level pairing of independent presentation and content markup is sufficient for many, but not all, situations. Appli-
cations that allow treatment afib-expressions of mathematical objects require the ability to associate presentation,
content or information with thearts of an object with mathematical markup. Top-level pairing witBemantics
element is insufficient in this type of situation; identification of a sub-expression in one branehaftics element

gives no indication of the corresponding parts in other branches.

The ability to identify corresponding sub-expressions is required in applications such as mathematical expression ec
tors. In this situation, selecting a sub-expression on a visual display can identify a particular portion of a presentatio
markup tree. The application then needs to determine the corresponding annotations of the sub-expressions; in parti
lar, the application requires the sub-expressions oétim@tation-xml tree in MathML content notation.

It is, in principle, possible to provide annotations for each presentation node by incorparatiagtics elements
recursively.

<semantics>
<mrow>
<semantics>
<mrow><mo> (</mo><mi>a</mi> <mo>+</mo> <mi>b</mi><mo>)</mo></mrow>
<annotation-xml encoding="MathML-Content">
<apply><plus/><ci>a</ci> <ci>b</ci></apply>
</annotation-xml>
</semantics>
<mo>⁢</mo>
<semantics>
<mrow><mo> (</mo><mi>c</mi> <mo>+</mo> <mi>d</mi><mo>)</mo></mrow>
<annotation-xml encoding="MathML-Content">
<apply><plus/><ci>c</ci> <ci>d</ci></apply>
</annotation-xml>
</semantics>
</mrow>

<annotation-xml encoding="MathML-Content">
<apply><times/>
<apply><plus/><ci>a</ci> <ci>b</ci></apply>
<apply><plus/><ci>c</ci> <ci>d</ci></apply>
</apply>
</annotation-xml>

225

</semantics>

To be complete this example would be much more verbose, wrapping each of the individuahtsaveandmn in a
further seversemantics elements.

This approach is very general and works for all kinds of annotations (including non-MathML annotations and multiple
annotations). It leads, however, tor@) increase in size of the document. This is therefore not a suitable approach for
fine-grained parallel markup of large objects.

5.3.3 Parallel Markup via Cross-Referencesid and xref

To better accomodate applications that must deal with sub-expressions of large objects, MathML uses cross-referent
between the branches okamantics element to identify corresponding sub-structures.

Cross-referencing is achieved using andxref attributes within the branches of a containisgmantics element.
These attributes may optionally be placed on MathML elements of any type.

The following example shows this cross-referencing for the boolean arithmetic expresdidfc{d).

<semantics>
<mrow id="E">
<mrow id="E.1">
<mo id="E.1.1">(</mo>
<mi id="E.1.2">a</mi>
<mo id="E.1.3">+</mo>
<mi id="E.1.4">b</mi>
<mo id="E.1.5">)</mo>
</mrow>
<mo id="E.2">⁢</mo>
<mrow id="E.3">
<mo id="E.3.1">(</mo>
<mi id="E.3.2">c</mi>
<mo id="E.3.3">+</mo>
<mi id="E.3.4">d</mi>
<mo id="E.3.5">)</mo>
</mrow>
</mrow>

<annotation-xml encoding="MathML-Content">
<apply xref="E">
<and xref="E.2"/>
<apply xref="E.1">
<xor xref="E.1.3"/><ci xref="E.1.2">a</ci><ci xref="E.1.4">b</ci>
</apply>
<apply xref="E.3">
<xor xref="E.3.3"/><ci xref="E.3.2">c</ci><ci xref="E.3.4">d</ci>
</apply>
</apply>
</annotation-xml>
</semantics>

226

An id attribute and a correspondingref appearing within the samgemantics element create a correspondence
between sub-expressions.

In creating these correspondences by cross-referaficef the id attributes referenced by amygef must be in the

same branch of an enclosingemantics element. This constraint guarantees that these correspondences do not create
unintentional cycles. (Note that this restriction daesexclude the use afd attributes within the other branches of the
enclosingsemantics element. It does, however, exclude references to these ndtatributes originating in the same
semantics element.)

There is no restriction on which branch of themantics element may contain the destinatibé attributes. It is up to
the application to determine which branch to use.

In general, there will not be a one-to-one correspondence between nodes in parallel branches. For example, a prese
tion tree may contain elements, such as parentheses, that have no correspondents in the content tree. It is therefore c
useful to put theid attributes on the branch with the finest-grained node structure. Then all of the other branches will
havexref attributes to some subset of theé attributes.

In absence of other criteria, the first branch of #eeantics element is a sensible choice to contain tdeattributes.
Applications that add or remove annotations will then not have to re-assign attributestmthe ics trees.

In general, the use afd andxref attributes allows a full correspondence between sub-expressions to be given in text
that is at most a constant factor larger than the original. The direction of the references should not be taken to imply th
sub-expression selection is intended to be permitted only on one child sétlaatics element. It is equally feasible

to select a subtree in any branch and to recover the corresponding subtrees of the other branches.

5.3.4 Annotation Cross-References using XLinkid and href

It is possible to give cross-references between a MathML expression and a non-MathML XML annotation using the
XLink protocol []. As an example, the boolean expression of the previous section can be annotated with Open
Math, and cross-linked as follows:

<semantics>
<mrow id="E">
<mrow id="E.1" xlink:id="E.1">
<mo id="E.1.1">(</mo>
<mi id="E.1.2">a</mi>
<mo id="E.1.3">+</mo>
<mi id="E.1.4">b</mi>
<mo id="E.1.5">)</mo>
</mrow>
<mo id="E.2">⁢</mo>
<mrow id="E.3">
<mo id="E.3.1">(</mo>
<mi id="E.3.2">c</mi>
<mo id="E.3.3">+</mo>
<mi id="E.3.4">d</mi>
<mo id="E.3.5">)</mo>
</mrow>
</mrow>

<annotation-xml encoding="MathML-Content">
<apply xref="E">

227

<and xref="E.2"/>
<apply xref="E.1">
<xor xref="E.1.3"/><ci xref="E.1.2">a</ci><ci xref="E.1.4">b</ci>
</apply>
<apply xref="E.3">
<xor xref="E.3.3"/><ci xref="E.3.2">c</ci><ci xref="E.3.4">d</ci>
</apply>
</apply>
</annotation-xml>

<annotation-xml encoding="OpenMath">
<OMA xlink:href="id(’E’)" xmlns="http://www.openmath.org/OpenMath">
<0MS name="and" cd="logicl" xlink:href="id(’E’)"/>
<OMA xlink:href="id(’E.1°)">
<OMS name="xor" cd="logicl" xlink:href="id(’E.1.3’)"/>
<OMV name="a" xlink:href="id(’E.1.2°)"/>
<OMV name="b" xlink:href="id(’E.1.4°)"/>
</0MA>
<0MA xlink:href="id(’E.3’)">
<0MS name="xor" cd="logicl" xlink:href="id(’E.3.37)"/>
<OMV name="c" xlink:href="id(’E.3.2°)"/>
<OMV name="d" xlink:href="id(’E.3.4°)"/>
</0MA>
</0MA>
</annotation-xml>
</semantics>

Here0OMA, OMS andOMV are elements defined in the OpenMath standard for representing application, symbol and vari-
able, respectively.

Note that the application might or might not have a mechanism for extending DTDs. It will be the case, therefore tha
some applications will give well-formed, but not "valid," XML withimnotation-xml elements. Consequently, some
MathML applications usinginnotation-xml will not be validated. More flexibility is offered by the use of XML
Schemas.

5.4 Tools, Style Sheets and Macros for Combined Markup

The interaction of presentation and content markup can be greatly enhanced through the use of various tools. While t
set of tools and standards for working with XML applications is rapidly evolving at the present, we can already outline
some specific techniques.

In general, the interaction of content and presentation is handled via transformation rules on MathML trees. Thes
transformation rules are sometimes called ‘macros’. In principle, these rules can be expressed using any one of a numl
of mechanisms, including DSSSL, Java programs operating on a DOM, etc. We anticipate, however, that the princip
mechanism for these transformations in most applications shall be XSLT.

In this section we discuss transformation rules for two specific purposes: for notational style sheets, and to simplif
parallel markup.

228

54.1 Notational Style Sheets

Authors who make use of content markup may be required to deploy their documents in locales with notational cor
ventions different than the default content rendering. It is therefore expected that transformation tools will be used t
determine notations for content elements in different settings. Certain elementsaeh@a, mean and transpose,

have widely varying common notations and will often require notational selection. Some examples of notational varia
tions are given below.

. V versusv/
. tanx versus tgx
o () versus,C™ versusCh, versusCly
1 1
. a0+‘71|+...+‘%versus[ao,al,...,ak}

Other elements, for examppdus andsin, are less likely to require these features.

Selection of notational style is sometimes necessary for correct understanding of documents by locale. For instance,
binomial coefficienCy, in French notation is equivalent @' in Russian notation.

A natural way for a MathML application to bind a particular notation to the set of content tags is with an XSLT style
sheet |]. The examples of this section shall assume this is the mechanism to express style choices. (Other choic
are equally possible, for example an application program may provide menus offering a number of rendering choice
for all content tags.)

When writing XSLT style sheets for mathematical notation, some transformation rules can be purely local, while other:
will require multi-node context to determine the correct output notation. The following example gives a local transfor-
mation rule that could be included in a notational style sheet displaying open intervajg[aather than asgb).

<xsl:template match="m:interval">
<m:mrow>
<xsl:choose>
<xsl:when test="@closure=’closed’">
<m:mfenced open="[" close="]" separators=",">
<xsl:apply-templates/>
</m:mfenced>
</xsl:when>
<xsl:when test="Q@closure=’open’">
<m:mfenced open="]" close="[" separators=",6">
<xsl:apply-templates/>
</m:mfenced>
</xsl:when>
<xsl:when test="Q@closure=’open-closed’">
<m:mfenced open="]" close="]" separators=",">
<xsl:apply-templates/>
</m:mfenced>
</xsl:when>
<xsl:when test="Qclosure=’closed-open’">
<m:mfenced open="[" close="[" separators=",">
<xsl:apply-templates/>
</m:mfenced>
</xsl:when>
<xsl:otherwise>
<m:mfenced open="[" close="]" separators=",">
<xsl:apply-templates/>

229

</m:mfenced>
</xsl:otherwise>
</xsl:choose>
</m:mrow>
</xsl:template>

Heren is established as the MathML namespace.

An example of a rule requiring context information would be:

<xsl:template match="m:apply[m:factoriall] ">
<m:mrow>
<xsl:choose>
<xsl:when test="not(*[2]=m:ci) and not(*[2]=m:cn)">
<m:mrow>
<m:mo>(</m:mo>
<xsl:apply-templates select="*[2]" />
<m:mo>)</m:mo>
</m:mrow>
</xsl:when>
<xsl:otherwise>
<xsl:apply-templates select="*[2]" />
</xsl:otherwise>
</xsl:choose>
<m:mo>!</m:mo>
</m:mrow>
</xsl:template>

Other examples of context-dependent transformations would be, e.g. fapjihg of a plus to rendera-b+c, rather
thana+ -b+c, or for theapply of apower to render sifix, rather than sin?.

Notational variation will occur both for built-in content elements as well as extensions. Notational style for extensions
can be handled as described above, with rules matching the names of any extension tags, and with the content hand
(in a content-faithful style sheet) proceeding as described in SeaHoR

5.4.2 Content-Faithful Transformations

There may be a temptation to view notational style sheets as a transformation from content markup to equivalent prese
tation markup. This viewpoint is explicitly discouraged, since information will be lost and content-oriented applications
will not function properly.

We define a ‘content-faithful’ transformation to be a transformation that retains the original content in parallel markup
(Sections.3).

Tools that support MathML should be ‘content-faithful’, and not gratuitously convert content elements to presentatior
elements in their processing. Notational style sheets should be content-faithful whenever they may be used in interacti
applications.

It is possible to write content-faithful style sheets in a number of ways. Top-level parallel markup can be achieved b
incorporating the following rules in an XSLT style sheet:

<xsl:template match="m:math">
<m:semantics>

230

<xsl:apply-templates/>

<m:annotation-xml m:encoding="MathML-Content">
<xsl:copy-of select="."/>
</m:annotation-xml>
</m:semantics>
</xsl:template>

The notation would be generated by additional rules for producing presentation from content, such as those in Se
tion 5.4.1 Fine-grained parallel markup can be achieved with additional rules treatiagributes.

5.4.3 Style Sheets for Extensions

The presentation tags of MathML form a closed vocabulary of notational structures, but are quite rich and can be use
to express a rendering of most mathematical notations. Complex notations can be composed from the basic eleme
provided for presentation markup. In this sense, the presentation ability of MathML is open-ended. It is often useful
however, to give a name to new notational schemas if they are going to be used often. For example, we can shorten ¢
clarify the ascending factorial example of Secttof.1, with a rule which replaces

<mx:a-factorial>X</mx:a-factorial>
with

<semantics>
<apply> <factorial/> <mi>X</mi> </apply>
<annotation-xml encoding="MathML-Presentation">
<msup>
<mn>1</mn>
<mover accent="true">
<mi>X</mi>
<mo>&0verBar ;</mo>
</mover>
</msup>
</annotation-xml>
</semantics>

Then the example would be more clearly written as:

<apply>
<equivalent/>
<ci>n</ci>
<apply>
<divide/>
<mx:a-factorial><ci>n</ci></mx:a-factorial>
<mx:a-factorial>
<apply><minus/><ci>n</ci><cn>1</cn></apply>
</mx:a-factorial>
</apply>
</apply>
Likewise, the content tags form a fixed vocabulary of concepts covering the types of mathematics seen in most comm
applications. It is not reasonable to expect users to compose existing MathML content tags to construct new conte

231

concepts. (This approach is frought with technical difficulties even for professional mathematicians.) Instead, it is an
ticipated that applications whose mathematical content concepts extend beyond what is offered by MathML will ust
annotations and attributes with#remantics andcsymbol elements, and that these annotations will use content de-
scription languages outside of MathML.

Often the naming of a notation and the identification of a new semantic concept are related. This allows a singl
transformation rule to capture both a presentation and a content markup for an expression. This is one of the areas
MathML that benefits most strongly from the use of macro processing.

<mx:rank/>

and

<mx:tr>X</mx:tr>

and respectively transform them to

<semantics>
<ci><mo>rank</mo></ci>
<annotation-xml encoding="OpenMath">
<0MS name="rank" cd="linalg3" xmlns="http://www.openmath.org/OpenMath"/>
</annotation-xml>
</semantics>

and

<apply>
<transpose/>
<ci>X</ci>
</apply>
The lengthy sample encoding of rankg)=1, from Sectiorb.2.1could then be condensed to

<apply>
<eq/>
<apply>
<mx:rank/>
<apply> <times/> <mx:tr>u</mx:tr> <ci>v</ci> </apply>
</apply>
<cn>1</cn>
</apply>
From this example we see how the combination of presentation and content markup could become much simpler a
effective to generate as standard style-sheet libraries become available.

232

Chapter 6

Characters, Entities and Fonts

6.1 Introduction

Notation and symbols have proved very important for mathematics. Mathematics has grown in part because of the su
cinctness and suggestiveness of its evolving notation. There have been many new signs evolved for use in mathemati
notation, and mathematicians have not held back from making use of many symbols originally developed elsewher
The result is that mathematics makes use of a very large collection of symbols. It is difficult to write mathematics flu-
ently if these characters are not available for use in coding. It is difficult to read mathematics if corresponding glyph:
are not available for presentation on specific display devices.

This situation posed a problem for the first W3C Math Working Group when it was brought into existence. It did not fall
naturally within the purview of developing a specification enabling mathematics to be used with HTML and producing
a DTD for this to worry about more than the entities allowed in the DTD. However, as experience has shown, a long lis
of entities with no means to display them is of little use, and a cause of frequent frustrations in trying to use a standar
On the other hand, a large collection of glyphs and fonts representing characters without a standard way to refer to the
is not of much use either.

The W3C Math Working Group therefore took on directly the task of specifying part of the full mechanism needed to
proceed from notation to final presentation, and started collaboration with organizations undertaking specification c
the rest.

This chapter of the MathML Specification contains a listing of character names for use in MathML, recommendation:
for their use, and warnings to pay attention to the correct form of the corresponding code points given in the UCS (Uni
versal Character Set) as codified in Unicode and 1ISO 10646 [seeddd and theUnicode Web sitg For simplicity

we shall refer to this character set by the short name Unicode. Though Unicode changes from time to time so that
is specified exactly by using version numbers, unless this brings clarity on some point we shall not use them. Thi
specification of MathML makes use of some characters that are not part of Unicode 3.0 but which have been propost
to the Unicode Technical Committee (UTC), and thus for inclusion in ISO 10646. They are presently expected to be il
the revisions Unicode 3.1 and 3.2. (For more detail about this see Séctiar)

While the process of review and adoption by UTC and ISO/IEC of the characters of special interest to mathematics ar
MathML is largely completelynicode Work in Progre3shere remains the possibility of some further modification of

the lists of characters accepted, of the code assignments for those adopted, or of the names given them by Unicode.
make sure any possible corrections to relevant standards are taken into account, and for the latest character tables
font information, see theévV3C Math Working Group home pa@ad theUnicode site

6.2 MathML Characters

A MathML token element Sectiod.2, and Sectiont.4.1takes as content a sequenceVfthML Characters. MathML
Characters are defined to be either Unicode characters legal in XML documegisyph elements. The latter are used

233

http://www.unicode.org/
http://www.unicode.org/unicode/alloc/Pipeline.html
http://www.w3.org/Math/
http://www.unicode.org/

to represent characters that do not have a Unicode encoding, as described in E2di@ecause the Unicode UCS
provides approximately one thousand special alphabetic characters for the use of mathematics (Unicode 3.1), and v
provide over 900 special symbols in Unicode 3.2, the needgdoyph should be rare.

6.2.1 Unicode Character Data

As always in XML, any character allowed by XML may be used in MathML in an XML document. The legal characters
have the hexadecimal code numbers 09 (tab = U+0009), OA (line feed = U+000A), 0D (carriage return = U+000D), 20
D7FF (U+0020..U+D7FF), EO00-FFFD (U+E000..U+FFFD), and 10000-10FFFF (U+010000..U+10FFFF). The paren:
thetical notation beginning with U+ is one recommended by Unicode for referring to Unicode charactersi[seeq],

page xxviii]. The exclusions above code number D7FF are of the blocks used in surrogate pairs, and the two characte
guaranteed not to be Unicode characters at all. U+FFFE is excluded to allow determination of byte order in certai
encodings.

There are essentially three different ways of encoding character data.

. Using characters directly: For example, an A may be entered as ‘A from a keyboard (character U+0061). This
option is only available if the character encoding specified for the XML document includes the character.
Most commonly used encodings will have ‘A’ in the ASCII position. In many encodings, characters may
need more than one byte. Note that if the document is, for example, encoded in Latin-1 (ISO-8859-1) ther
only the characters in that encoding are available directly. Unfortunately, most mathematical symbols may
not be encoded as character data in this way.

° Using Numeric XML character references: Using this notation, ‘A’ may be represented as = (decimal)
or A (hex). Note that the numbers always refer to the Unicode encoding (and not to the charactel
encoding used in the XML file). By using Character references it is always possible to access the entire
Unicode range. For a general XML vocabulary, there is a disadvantage to this approach: character referenc
may not be used in XML element or attribute names. However, this is not an issue for MathML, as all element
names in MathML are restricted to ASCII characters.

° Using entity references: The MathML DTD defines internal entities that expand to character data. Thus for
example the entity reference é may be used rather than the character reference "é or, if, fo
example, the document is encoded in ISO-8859-1, the character é. An XML fragment that uses an entit
reference which is not defined in a DTD is not well formed; therefore it will be rejected by an XML parser.
For this reasomvery fragment using entity referencesist use a DOCTYPE declaration which specifies the
MathML DTD, or a DTD that at least declares any entity reference used in the MathML instance. The need
to use a DOCTYPE complicates inclusion of MathML in some documents. However, entity references are
very useful for small illustrative examples, and are used in most examples in this document. For this reasol
entity references are perhaps not optimal for use in generated MathML, however they are very useful fol
small illustrative examples, as used in this document.

6.2.2 Special Characters Not in Unicode

For special purposes, one may need to use a character which is not in Unicode, even with the expected additions.
these cases one may use g8 yph element for direct access to a glyph from some font and creation of a MathML
character corresponding. All MathML token elements that accept character data also aegggtarin their content.

Beware, however, that the font chosen may not be available to all MathML processors.

6.2.3 Mathematical Alphabetic Symbol Characters.

A noticeable feature of mathematical and scientific writing is the use of single letters to denote variables and constants
a given context. The increasing complexity of science has led to the use of certain common alphabet and font variatiol

234

to provide enough special symbols of this letter-like type. These denotations are ifdetters that may be used

to make up words with recognized meanings, but individual carriers of semantics themselves. Writing a string of suc
symbols is usually interpreted in terms of some composition law, for instance, multiplication. Many letter-like symbols
may be quickly interpreted by specialists in a given area as of a certain mathematical type: for instance, bold symbol
whether based on Latin or Greek letters, as vectors in physics or engineering, or fraktur symbols as Lie algebras

part of pure mathematics. Again, in given areas of science, some constants are recognizable letter forms. When y
look carefully at the range of letter-like mathematical symbols in common use today, as the STIX project supporte
by major scientific and technical publishers did, you come up with perhaps surprisingly many. A proposal to facilitate
mathematical publishing by inclusion of mathematical alphabetic symbols in the UCS was made, and has been favoral
handled.

The new Mathematical Alphabetic characters expected Unicode 3.1 have provisional code pBlats ih that is,

in the first plane with Unicode values higher thal?.2This plane of characters is also known as the Supplemental
Multilingual Plane (SMP), in contrast to the Basic Multilingual Plane (BMP) which has been used by Unicode so far.
Support for Plane 1 characters in currently deployed software is not always reliable, and in particular support for thes
Mathematical Alphabetic characters is not likely to be widespread until after final positions in Unicode 3.1 have beel
confirmed in the standard ISO 10646.

As discussed in Sectioh 2.2 MathML offers an alternative mechanism to specify mathematical alphabetic characters,
which will help bridge the time of transition to Unicode revisions and the associated deployment of implementing
software and fonts therefore required. Namely, one usesatievariant attribute on the surrounding token element,
which will most commonly bei. In this section we detail the correspondence that a MathML processor should apply
between certain characters Rtane 0 (BMP) of Unicode, modified by th@athvariant attribute, and the Plane 1
Mathematical Alphabetic Symbol characters.

The basic idea of the correspondence is fairly simple. For example, a Mathematical Fraktur alphabet is being added, a
the code point for Mathematical Fraktur A is U1D504. Thus using these proposed characters, a typical example mig|
be

<mi>𝔄</mi>

However, an alternative, equivalent markup would be to use the standard A and modify the identifier usiighthe
variant attribute, as follows:

<mi mathvariant="fraktur">A</mi>

The exact correspondence between a mathematical alphabetic character and an unstyled character is complicated by
fact that certain characters that were already present in Unicode are not in the ‘expected’ sequence.

The detailed correspondence is shown in the tables given in Séctdh

Mathematical Alphabetic Symbol characters should not be used for styled text. For example, Mathematical Fraktur ;
must not be used to just select a blackletter font for an uppercase A. Doing this sort of thing would create problems fc
searching, restyling (e.g. for acessibility), and many other kinds of processing.

6.2.4 Non-Marking Characters

Some characters, although important for the quality of print or alternative rendering, do not have glyph marks tha
correspond directly. They are called here non-marking characters. Below we have a table of those adopted for tt
purposes of MathML. Their roles are discussed in Chaptand Chapter, respectively. The values of the spaces

given are recommendations. Some of these characters are among those with new Unicode values, and some are g
as combinations of Unicode characters employing the new special mathematics modifier character (UOFEQO). Tt

235

correspondence between the spacing amounts mentioned below and those in the Unicode descriptions is not exact,
the matches are good.

In MathML 2 control of page composition, such as line-breaking, is effected by the use of the proper attributes on the
mspace element.

The last two characters below, with mnemonic entity na®BsvisibleTimes; and ⁡, are not
simple spacers. They are especially important new additions to the UCS because they provide textual clues which c
increase the quality of print rendering, permit correct audio rendering, and allow the unique recovery of mathematice
semantics from text which is visually ambiguous.

Character name Unicode Description

	 00009 tabulator stop; horizontal tabulation

 0000A force a line break; line feed

&Space; 00020 one em of space in the current font

 000A0 space that is not a legal breakpoint

​ 0200B space of no width at all

  0200A space of width 1/18 em

  02009 space of width 3/18 em

  02005 space of width 4/18 em

   02005-0200A space of width 5/18 em

​ 0200A-OFEO0 space of width -1/18 em

​ 02009-0FEO0 space of width -3/18 em

​ 0205F-0FEOO0 space of width -4/18 em

​ 02005-0FEO0 space of width -5/18 em

⁢ 02062 marks multiplication when it is understood without a mark (Se&iarb
⁡ 02061 character showing function application in presentation tagging (S&cHidr
6.3 Character Symbol Listings

The Universal Character Set (UCS) of Unicode and ISO 10646 continues to evolve $ettibA small number of the
changes recently introduced, relative to those resulting from the needs of Asian languages, are those designed exa
to facilitate the use of Unicode by the ‘equation-writing’ community. This specification is written on the assumption
that the code assignments suggested to ISO/IEC JTC1/SC2/WG2 by the UTC will be confirmed as they are in publi
draft forms of Unicode 3.1 and 3.2. As before, we can only reiterate that for latest developments on details of charact
standards as far as they influence mathematical formalism the Home Page of the W3C Math WG should be consultec

The characters are given with entity names as well as Unicode numbers. To facilitate comprehension of a fairly large li
of names, which totals over 2000 in this case, we offer more than one way to find to a given character. A correspondir
full set of entity declarations is in the DTD in Appendix For discussion of entity declarations see that appendix.

The characters are listed by name, and sample glyphs provided for all of them. Each character name is accompan
by a code for a character grouping chosen from a list given below, a short verbal description, and a Unicode hex coc
drawn from 1SO 10646, now extended in accordance with the proposal forwarded by the UTC to ISO/IEC WG2 in
March 2000.

The character listings by alphabetical and Unicode order in Se6tidiare in harmony with the 1ISO character sets
given, in that if some part of a set is included then the entire set is included.

6.3.1 Special Constants

To begin we list separately a few of the special characters which MathML has introduced. These have been accord
new Unicode values. Rather like the non-markétimvisibleTimes; and⁡ above, they provide

236

very useful capabilities in the context of machinable mathematics. It might be imagined there could also be entrie
below for &true;, &false; and &NotANumber;, but these do not yet have Unicode points assigned. They can be
introduced by the character extension mechanisms provided lglly®h andcsymbol elements.

Entity name Unicode Description

ⅅ 02145 D for use in differentials, e.g. within integrals
ⅆ 02146 d for use in differentials, e.g. within integrals
&Exponentialk; 02147 e for use for the exponential base of the natural logarithms
&Imaginaryl; 02148 i for use as a square root of -1

6.3.2 Character Tables (ASCII format)

The first table offered is a very large ASCII listing of characters considered particularly relevant to Mathematics. This
is given inUnicode (or proposed Unicode) ord#tost, but not all, of these characters have MathML names defined via
entity declarations in the DTD. Those that do not are usually symbols which seem mathematically peripheral, such ¢
dingbats, machine graphics or technical symbols.

A second table lists those characters that do have MathML entity nanuesed alphabeticallwith a lower-case letter
preceding its upper-case counterpart.

6.3.3 Tables arranged by Unicode block

The tables in this section detail Unicode code points (displayed with 256 code points per table) that have mathematical
significant characters. The sample glyph images link tadhé& of characters ordered by Unicagieen in the previous
section. As shown in the key for each table, the status of each character (for example in Unicode 3.0 or in the propost
additions) is indicated by a CSS class on the table cell (which by default is indicated by varying the background color)
The names of the blocks are those of the Unicode blocks included in the numerical range given; bracketing indicate
characters of that type are not shown in these tables.

237

file:bycodes.html
file:byalpha.html
file:bycodes.html

Block Range Description

00000 - O00OFF Controls and Basic Latin, and Latin-1 Supplement

00100 - 001FF Latin Extended-A, Latin Extended-B

00200 - 002FF IPA Extensions, Spacing Modifier Letters

00300 - 003FF Combining Diacritical Marks, Greek [and Coptic]

00400 - 004FF Cyrillic

00500 - 005FF Cyrillic Supplement, [Armenian, Hebrew]

02000 - 020FF General Punctuation, Superscripts and Subscripts, Currency Symbols, Combining Diacritical Marks
02100 - 021FF Letter-like Symbols, Number Forms, Arrows

02200 - 022FF Mathematical Operators

02300 - 023FF Miscellaneous Technical

02400 - 024FF Control Pictures, Optical Character Recognition, Enclosed Alphanumerics

02500 - 025FF Box Drawing, Block Elements, Geometric Shapes

02600 - 026FF Miscellaneous Symbols

02700 - 027FF Dingbats

02900 - 029FF Supplemental Arrows, Miscellaneous Mathematical Symbols

02A00 - 02AFF Supplemental Mathematical Operators

03000 - 030FF CJK Symbols and Punctuation, [Hiragana, Katakana]

OFBOO - OFBFF Alphabetic Presentation Forms

OFEOO - OFEFF [Combining Half Marks, CIJK Compatibility Forms, Small Form Variants, Arabic Presentation Forms-
1D400 - 1D4FF Mathematical Styled Latin (Bold, Italic, Bold Italic, Script, Bold Script begins)

1D500 - 1D5FF Mathematical Styled Latin (Bold Script ends, Fraktur, Double-struck, Bold Fraktur, Sans-serif, Sans-
1D600 - 1D6FF Mathematical Styled Latin (Sans-serif Bold ends, Sans-serif Italic, Sans-serif Bold Italic, Monospace
1D700 - 1D7FF Mathematical Styled Greek (ltalic continued, Bold Italic, Sans-serif Bold), Mathematical Styled Digit:

6.3.4 Negated Mathematical Characters

In addition to the Unicode Characters so far listed, one may use the combining characters U0338 (/), U20D2 (]) an
U20ES5 (\) to produce negated or canceled forms of characters. A combining character should be placed immediate
after its ‘base’ character, with no intervening markup or space, just as is the case for combining accents.

In principle, the negation characters may be applied to any Unicode character, although fonts designed for mathemat
typically have some negated glyphs ready composed. A MathML renderer should be able to use these pre-compos
glyphs in these cases. A compound character code either represents a UCS character that is already available, as ir
case of U0O003D+00038 which amounts to U02260, or it does not as is the case for U02202+00338. The common cas
of negations, of both types, that have been identified are listed in the table

Note that it is the policy of the W3C and of Unicode that if a single character is already defined for what can be achieve
with a combining character, that character must be used instead of the decomposed form. It is also intended that no n
single characters representing what can be done by with existing compositions will be introduced.

° cancellations

6.3.5 Variant Mathematical Characters

Unicode attempts to avoid having several character codes for simple font variant. For a code point to be assigned the
should be more than a nuance in glyphs to be recorded. To record some nuances as variants there is a special chare
U+FEOO (Variant Selector-1) which acts as a postfix modifier. However the legally allowed combinations with this
variant selector are restricted to a list recorded as part of Unicode. The variant selector-1 character may only be appli
to the characters listed here.

° variants

238

file:000.html
file:001.html
file:002.html
file:003.html
file:004.html
file:005.html
file:020.html
file:021.html
file:022.html
file:023.html
file:024.html
file:025.html
file:026.html
file:027.html
file:029.html
file:02A.html
file:030.html
file:0FB.html
file:0FE.html
file:1D4.html
file:1D5.html
file:1D6.html
file:1D7.html
file:cancellations.html
file:variants.html

6.3.6 Mathematical Alphabetic Characters

Here we list the special mathematical alphabets. Note that the names for these alphabetic runs should be regardec
conventions resulting from recent tradition in the typesetting of mathematical formulas, rather than as fixing exactly an
forever the styles which are to be used. Of course, they do correspond to the styles presently most common. But, f
instance, there may be font variations in the glyphs from double-struck, open-face or blackboard bold fonts, all of whicl
would naturally be used for the characters in the range here labelled Double-struck. Similar considerations would app
to appellations such as fraktur and gothic, or script and calligraphic.

As discussed above, the use of these characters is formally equivalent to the use of characters in Plane 0, together v
a suitable value for theathvariant attribute. The correspondence is given in the character tables. Most of these
characters come from the proposed additions to Plane 1, however a few characters (such as the double-struck lett
N, P, Z, Q, R, C, H representing common number sets) were already present in Unicode 3.0 and retain their origin:
positions. These characters are highlighted in the tables.

. Bold

° Italic

° Bold Italic

° Double-struck
° Script

° Bold Script

° Fraktur

° Bold Fraktur

° Sans-serif

° Bold Sans-serif
° Sans-serif Italic
° Sans-serif Bold Italic
° Monospace

6.3.7 MathML Character Names

This section corresponds closely with the entity definitions in the DTD described in Appéndik of the entity sets
except the last correspond to entity sets defined by ISO 8879 or ISO 9573-13.

239

file:bold.html
file:italic.html
file:bold-italic.html
file:double-struck.html
file:script.html
file:bold-script.html
file:fraktur.html
file:bold-fraktur.html
file:sans-serif.html
file:bold-sans-serif.html
file:sans-serif-italic.html
file:sans-serif-bold-italic.html
file:monospace.html

ISO Handle

Description

ISOAMSA Added Mathematical Symbols: Arrows
ISOAMSB Added Mathematical Symbols: Binary Operators
ISOAMSC Added Mathematical Symbols: Delimiters
ISOAMSN Added Mathematical Symbols: Negated Relations
ISOAMSO Added Mathematical Symbols: Ordinary
ISOAMSR Added Mathematical Symbols: Relations
ISOBOX Box and Line Drawing

ISOCYR1 Cyrillic-1

ISOCYR2 Cyrillic-2

ISODIA Diacritical Marks

ISOGRK3 Greek-3

ISOLAT1 Latin-1

ISOLAT2 Latin-2

ISOMFRK Mathematical Fraktur

ISOMOPF Mathematical Openface (Double-struck)
ISOMSCR Mathematical Script

ISONUM Numeric and Special Graphic

ISOPUB Publishing

ISOTECH General Technical

MMLEXTRA Extra Names added by MathML

6.4 Differences from Characters in MathML 1

6.4.1 Coverage

We have excluded a very few other characters that may have appeared in the corresponding lists in MathML 1. Tho:
characters thukst will be found to be used very infrequently in the experience of mathematical publishers, or simply
to be completely unacceptable for inclusion in Unicode. However MathML 2 does providegllyph element to
accommodate new characters that authors may wish to introduce.

6.4.2 Fewer Non-marking Characters

It used to be in MathML 1.0 that there were a number more non-marking character entities listed. These were concern
with composition control, such as line-breaking. In MathML 2 such control is effected by the use of the proper attributes
on themspace element.

6.4.3 ISO Tables

The character listings by alphabetical and Unicode order in Se6tibihave now been brought more into line with

the corresponding ISO character sets than was the case in MathML 1.0, in that if some part of a set is included then tl
entire set is included. In addition, the group ISOCHEM has been dropped as more properly the concern of chemist
All the ISO mathematical alphabets are listed, since there are now Unicode characters to point to, in particular the bo
Greek of ISOGRK3. These changes have also been reflected in the entity declarations in the DTD in Appendix

6.4.4 Status of Character Encodings

A significant change since MathML 1.0 is the movement toward adoption of more characters for mathematics in th
UCS (Universal Character Set) and availability of public fonts for mathematics. The encoding of characters in the UC:!

240

file:isoamsa.html
file:isoamsb.html
file:isoamsc.html
file:isoamsn.html
file:isoamso.html
file:isoamsr.html
file:isobox.html
file:isocyr1.html
file:isocyr2.html
file:isodia.html
file:isogrk3.html
file:isolat1.html
file:isolat2.html
file:isomfrk.html
file:isomopf.html
file:isomscr.html
file:isonum.html
file:isopub.html
file:isotech.html
file:mmlextra.html

(Universal Character Set) is done jointly by the Unicode Technical Committee and by ISO/IEC JTC1/SC2/WG2. The
process of encoding takes quite some time from the deliberation of first proposals to the final approval. The characte
mentioned in this chapter and listed in the associated tables are at various stages of this approval process. This sec
gives detailed information about the stages relevant to this specification and gives an overview of the characters affecte
The lists, as well as other places that discuss characters, mention when characters are not fully approved or show t
graphically. Updates on the status of the characters will be provided by updates to this specification, by errata to th
specification, and by notices on thé3C Math home pageThe final word on all Unicode matters is naturally to be
found atthe Unicode Consortium

The characters relevant for MathML fall at present into three categories: Fully accepted characters, characters in fin
(JTC1) ISO/IEC ballot, and characters before the final ISO/IEC ballot.

Fully accepted characters include a large number of Latin, Greek, and Cyrillic letters, a large number of
Mathematical Operators and symbols, including arrows, and so on. Fully accepted characters currently e»
actly those that are part of both [Unicode 3.0] and [ISO/IEC 10646-1:2000], which are identical code point
by code point. Fully accepted characters are not specially marked or mentioned in this specification; they d
not pose any unusual implementation problems other than possibly finding fonts to display them. Those o
obvious special interest to mathematics number over 1,500, depending on how you count.

The characters presently in final ballot are the Mathematical Alphanumeric Symbols with a large number of
ideographs and other characters not directly relevant for mathematics. There are just about 1,000 of thes
The due date of the ballot is early in 2001. If accepted, the additions will still take some time to be formally
published. At this stage, there can be only acceptance or rejection of the full proposal without technical
changes. The additions are expected to be published as ISO/IEC 10646-2, and to become part of Unicoc
3.1, which is tentatively scheduled for March 2001. While acceptance of this ballot seems more likely than
rejection, implementers and users of MathML have to be aware that until the final acceptance, they are
using the code points of characters in final ballot at their own risk. Entities (see Séciiohand the
mathvariant attribute (see SectioB.2.2 can be used to avoid that risk.

Characters before final ballot relevant to MathML make up a long list of operators and symbols, including
some special constants and non-marking characters (see Se2titeind Sectior®.3.1). There are about 590

of these. The proposal going to ballot is the result of repeated refinements by the UTC; several, possibly fina
changes (5) were made at a WG2 meeting in Athens in September. This document reflects these changes. T
majority of these characters have proved completely uncontroversial. ISO balloting processes, which involve
a PDAM and an FPDAM during which technical changes are possible, and an FDAM with no changes
allowed, may be expected to end in November 2001. The additions accepted are expected to be published
an amendment to [ISO/IEC 10646-1], and to become part of Unicode 3.2. It can therefore be expected the
almost all of the characters in this category will finally be accepted, and encoded at the current code points
It is possible that a small number of characters may be renamed, moved, or less likely, ultimately rejected
Until final acceptance, implementers and users of MathML are using these characters and code points at the
own risk. Entities and therathvariant attribute are used to avoid that risk.

241

http://www.w3.org/Math/
http://www.unicode.org/

Chapter 7

The MathML Interface

To be effective, MathML must work well with a wide variety of renderers, processors, translators and editors. This
chapter addresses some of the interface issues involved in generating and rendering MathML. Since MathML exists p
marily to encode mathematics in Web documents, perhaps the most important interface issues are related to embedc
MathML in []and []

There are three kinds of interface issues that arise in embedding MathML in other XML documents. First, MathML
must be semantically integrated. MathML markup must be recognized as valid embedded XML content, and not as ¢
error. This is primarily a question of managing namespaces in XiNHnj ik

Second, in the case of HTML/XHTML, MathML rendering must be integrated into browser software. Some browsers
already implement MathML rendering natively, and one can expect more browsers will do so in the future. At the sam:
time, other browsers have developed infrastructure to facilitate the rendering of MathML and other embedded XML
content by third-party software. Using these browser specific mechanisms generally requires some additional interfa
markup of some sort to activate them.

Third, other tools for generating and processing MathML must be able to intercommunicate. A number of MathML
tools have been or are being developed, including editors, translators, computer algebra systems, and other scient
software. However, since MathML expressions tend to be lengthy, and prone to error when entered by hand, speci
emphasis must be given to insuring that MathML can be easily generated by user-friendly conversion and authorir
tools, and that these tools work together in a dependable, platform and vendor independent way.

The W3C Math Working Group is committed to providing support to software vendors developing any kind of MathML
tool. The working group monitors the public mailing listvww-math@w3.organd will attempt to answer questions
about the MathML specification. The working group works with MathML developer and user groups. For current
information about MathML tools, applications and user support activities, consultatme page of the W3C Math
Working Group

7.1 Embedding MathML in other Documents

While MathML can be used in isolation as a language for exchanging mathematical expressions between MathML
aware applications, the primary anticipated use of MathML is to encode mathematical expression within larger docL
ments. MathML is ideal for embedding math expressions in other applications of XML.

In particular, the focus here is on the mechanics of embedding MathM{HR [VIL]. XHTML is a W3C Recommen-
dation formulating a family of current and future XML-based document types and modules that reproduce, subset, ar
extend HTML. While |] is the dominant language of the Web at the time of this writing, one may anticipate a
shift from HTML to XHTML. Indeed, XHTML can already be made to render properly in most HTML user agents.

Since MathML and XHTML share a common XML framework, namespaces provide a standard mechanism for em
bedding MathML in XHTML. While some popular user agents also support inclusion of MathML directly in HTML

242

mailto:www-math@w3.org
http://www.w3.org/Math/
http://www.w3.org/Math/

as "XML data islands," this is a transitional strategy. Consult user agent documentation for specific information on it:
support for embedding XML in HTML.

7.1.1 MathML and Namespaces

Embedding MathML in XML-based documents in general, and XHTML in particular, is a matter of managing names-
paces. See the W3C Recommendation "Namespaces in XNihf Jdor full details.

An XML namespace is a collection of names identified by a URI. The URI for the MathML namespace is:
http://www.w3.0rg/1998/Math/MathML

Using namespaces, embedding a MathML expression in a larger XML document is merely a matter of identifying the
MathML markup as residing in the MathML namespace. This can be accomplished by either explicitly identifying each
MathML element name by attaching a hnamespace prefix, or by declaring a default namespace on an enclosing eleme

To declare a namespace, one usesmms attribute, or an attribute with atmlns prefix. When thexmlns attribute is
used alone, it sets the namespace for the element on which it appears, and for any children elements.

Example:

<math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>...</mrow>
</math>

When thexmlns attribute is used as a prefix, it declares a prefix which can then be used to explicitly associate othe
elements and attributes with a particular namespace.

Example:

<body xmlns:m="http://www.w3.org/1998/Math/MathML">

<m:math><m:mrow>...</m:mrow></m:math>

</body>

These two methods of namespace declaration can be used together. For example, by using both an explicit docume
wide namespace prefix, and default namespace declarations on individual mathematical elements, it is possible to
calize namespace related markup to the top-leeeh element. This is also important for implementation with some
user agents, since attaching rendering behaviors to an element currently requires an explicit namespace prefix in ths

browsers. At the same time, a number of MathML authoring tools are not yet namespace-aware, and thus the ability
use markup without prefixes is also desirable in the short term.

Example:

<body xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>...<mrow>

</m:math>

</body>

243

7.1.1.1 Document Validation Issues

The use of namespace prefixes creates an issue for DTD validation of documents embedding MathML. DTD validatio
requires knowing the literal (possibly prefixed) element names used in the document. However, the Namespaces in XV
Recommendation\[Jallows the prefix to be changed at arbitrary points in the document, since namespace
prefixes may be declared on any element.

The ‘historical’ method of bridging this gap was to write a DTD with a fixed prefix, or in the case of XHTML and
MathML, with no prefix, and mandate that the specified form must be used throughout the document. However, this i
somewhat restricting for a modular DTD that is intended for use in conjunction with another DTD, which is exactly the
situation with MathML in XHTML. In essence, the MathML DTD would have to allocate a prefix for itself and hope
no other module uses the same prefix to avoid name clashes, thus losing one of the main benefits of XML namespac

One strategy for addressing this problem is to make every element name in the DTD be accessed by an entity referen
This means that by declaring a couple of entities to specify the prefix before the DTD is loaded, the prefix can be chose
by a document author, and compound DTDs that include several modules can, without changing the module DTD
specify unique prefixes for each module to avoid clashes. The MathML DTD has been designed in this fashion. Se
SectionA.4 and |] for details.

An extra issue arises in the case where explicit prefixes are used on the topalgvelement, but a default namespace

is used for other MathML elements. In this case, one wants the MathML module to be included into XHTML with
the prefix set to empty. However, the ‘driver’ DTD file that sets up the inclusion of the MathML module would then
need to define a new element called m:math. This would allow the top#ewal element to use an explicit prefix,

for attaching rendering behaviors in current browsers, while the contents would not need an explicit prefix, for ease c
interoperability between authoring tools, etc.

7.1.1.2 Compatibility Suggestions

While the use of namespaces to embed MathML in other XML applications is completely described by the relevan
W3C Recommendations, a certain degree of pragmatism is still called for at present. Support for XML, namespace
and rendering behaviors in popular user agents is not always fully in alignment with W3C Recommendations. In som
cases, the software predates the relevant standards, and in other cases, the relevant standards are not yet complete.

During the transitional period, in which some software may not be fully namespace-aware, a few conventional practice
will ease compatibility problems:

1. When using namespace prefixes with MathML markup, use m: as a conventional prefix for the MathML
namespace. Using an explicit prefix is probably safer for compatibility in current user agents.

2. When using namespace prefixes, pick one and use it consistently within a document.

3. Explicitly declare the MathML namespace onmdlth elements.

Examples.

<body>

<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mrow>...<m:mrow>
</m:math>

</body>
Or

244

<body>

<math xmlns="http://wuw.w3.org/1998/Math/MathML">
<mrow>. ..<mrow>
</math>

</body>

Note that these suggestions alone may not be sufficient for creating functional Web pages containing MathML marku
It will generally be the case that some additional document-wide markup will be required. Additional work may also be
required to make all MathML instances in a document compatible with document-wide declarations. This is particularly

true when documents are created by cutting and pasting MathML expressions, since current tools will probably not b
able to query global namespace information.

Consult thew3C Math Working Grouphome page for compatibility and implementation suggestions for current
browsers and other MathML-aware tools.

7.1.2 The Top-Levelmath Element

MathML specifies a single top-level or rasith element, which encapsulates each instance of MathML markup within
a document. All other MathML content must be contained inaah element; equivalently, every valid, complete
MathML expression must be contained<inath> tags. Thanath element must always be the outermost element in a
MathML expression; it is an error for omeath element to contain another.

Applications that return sub-expressions of other MathML expressions, for example, as the result of a cut-and-pas
operation, should always wrap themdmath> tags. ldeally, the presence of enclosigath> tags should be a very

good heuristic test for MathML material. Similarly, applications which insert MathML expressions in other MathML
expressions must take care to removedheth> tags from the inner expressions.

Themath element can contain an arbitrary number of children schemata. The children schemata render by default as
they were contained in atrow element.

The attributes of theath element are:

class, id, style Provided for use with stylesheets.

xref Provided along withi.d for use with XSL processing (See Sectiod)

macros This attribute provides a way of pointing to external macro definition files. Macros are not part of the MathML
specification, and much of the functionality provided by macros in MathML can be accommodated by XSL
transformationsX]. However, thenacros attribute is provided to make possible future development of
more streamlined, MathML-specific macro mechanisms. The value of this attribute is a sequence of URL:
or URIs, separated by whitespace

mode Themode attribute specifies whether the enclosed MathML expression should be rendered in a display style o
an in-line style. Allowed values ar&isplay andinline (default). This attribute isleprecatedn favor of
the newdisplay attribute, or theCSS2 ‘display’ propertwith the analogouslock andinline values.

display Thedisplay attribute replaces the deprecatedie element. It specifies whether the enclosed MathML ex-
pression should be rendered in a display style or an in-line style. Allowed valuéd @& andinline
(default).

The attributes of theath element affect the entire enclosed expression. They are, in a sense, ‘inward looking’. However,
to render MathML properly in a browser, and to integrate it properly into an XHTML document, a second collection of
‘outward looking’ attributes are also useful.

While general mechanisms for attaching rendering behaviors to elements in XML documents are under developmer
wide variations in strategy and level of implementation remain between various existing user agents. Consequently, tl

245

http://www.w3.org/Math
http://www.w3.org/TR/CSS2/visuren.html#propdef-display

remainder of this section describes attributes and functionality that are desirable for integrating third-party renderin
modules with user agents:

overflow In cases where size negotiation is not possible or fails (for example in the case of an extremely long equation
this attribute is provided to suggest an alternative processing method to the renderer. Allowed values are
scroll The window provides a viewport into the larger complete display of the mathematical expression.
Horizontal or vertical scrollbars are added to the window as necessary to allow the viewport to be
moved to a different position.
elide The display is abbreviated by removing enough of it so that the remainder fits into the window. For
example, a large polynomial might have the first and last terms displayed with ‘+ ... +’ between them.
Advanced renderers may provide a facility to zoom in on elided areas.
truncate The display is abbreviated by simply truncating it at the right and bottom borders. It is recom-
mended that some indication of truncation is made to the viewer.
scale The fonts used to display the mathematical expression are chosen so that the full expression fits in th
window. Note that this only happens if the expression is too large. In the case of a window larger than
necessary, the expression is shown at its normal size within the larger window.
altimg This attribute provides a graceful fall-back for browsers that do not support embedded elements. The value c
the attribute is an URL.
alttext This attribute provides a graceful fall-back for browsers that do not support embedded elements or images. Tt
value of the attribute is a text string.

7.1.3 Invoking MathML Processors

In browsers where MathML is not natively supported, it is anticipated that MathML rendering will be carried out via
embedded objects such as plug-ins, applets, or helper applications. The direction which has begun emerging for invoki
third-party rendering and processing software is elucidated in the W3C Working Draft "Behavioral Extensions to CSS'

[I

Behavioral extensions use the linking mechanism of CSS to attach executable components to elements. Typically, t
executable components involve script code which manipulate the DOM to instantiate other MathML processing com
ponents. Using experimental implementations of behavior extensions in current user agents, it is possible to attas
processing componentsitath elements which then carry out the rendering of MathML markup in an XHTML page.

Work on on Behavior Extensions to CSS is ongoing at W3C, and existing implementations must be regarded as no
standard at this time. However, it offers a very promising direction for powerful and flexible invocation of third-party
MathML processors.

MIME types [][} offer an alternative strategy that can also be used in current user agents to invoke a
MathML renderer. This is primarily useful when referencing separate files containing MathML markup flEMBEN

or 0BJECT element. The W3C Math Working Group suggests that MathML be assigned the MIMEgppécation/
mathml+xml, and for browser registry, the standard file extensienl should be used. In MathML 1.@ext/mathml

was given as the suggested MIME type. The new suggestion is intended to be more compatible with current propose
for XML Media Types. However, the reader is cautioned that designations for XML Media Types are very much under
debate, and the MathML MIME type is subject to change in the future.

Although rendering MathML expressions typically occurs in place in a Web browser, other MathML processing func-
tions take place more naturally in other applications. Particularly common tasks include opening a MathML expressio
in an equation editor or computer algebra system.

At present, there is no standard way of selecting between various applications which might be used to render or proce
embedded MathML. As work progresses on coordination between browsers and embedded elements and the Docum
Object Model |], providing this kind of functionality should be a priority. Both authors and readers should be able

246

to indicate a preference about what MathML application to use in a given context. For example, one might imagine the
some mouse gesture over a MathML expression causes a browser to present the reader with a pop-up menu, showing
various kinds of MathML processing available on the system, and the MathML processors recommended by the authc

Since MathML is most often generated by authoring tools, it is particularly important that opening a MathML expression
in an editor should be easy to do and to implement. In many cases, it will be desirable for an authoring tool to recor
some information about its internal state along with a MathML expression, so that an author can pick up editing wher
he or she left off. The MathML specification does not explicitly contain provisions for recording information about
the authoring tool. In some circumstances, it may be possible to include authoring tool information that applies to al
entire document in the form of meta-data; interested readers are encouraged to conS@ICthetadata Activityfor

current information about metadata and resource definition. For encoding authoring tool state information that applie
to a particular MathML instance, readers are referred to the possible use ©dnthetics element for this purpose
Section4.4.11.2

In the short term, regardless of the methodology, implementors of embedded MathML processing applications at
encouraged to try to allow for the following kinds of functionality:

. An author wishing to reach an audience as wide as possible might want MathML to be rendered by any
available processor.

° An author targeting a specific audience might want to indicate that a particular MathML processor be used.

. A reader might wish to specify which of several available processors installed locally should be used.

7.1.4 Mixing and Linking MathML and HTML

In order to fully integrate MathML into XHTML, it should be possible not only to embed MathML in XHTML, but also

to embed XHTML in MathML. However, the problem of supporting XHTML in MathML presents many difficulties.
Therefore, at present, the MathML specification does not permit any XHTML elements within a MathML expression,
although this may be subject to change in a future revision of MathML.

In most cases, XHTML elements (headings, paragraphs, lists, etc.) either do not apply in mathematical contexts,
MathML already provides equivalent or better functionality specifically tailored to mathematical content (tables, math-
ematics style changes, etc.). However, there are two notable exceptions, the XHTML anchor and image elements. F
this functionality, MathML relies on the general XML linking and graphics mechanisms being developed by other W3C
Activities.

7.1.4.1 Linking

MathML has no element that corresponds to the XHTML anchor eleméntXHTML, anchors are used both to make
links, and to provide locations to which a link can be made. MathML, as an XML application, defines links by the use
of the mechanism described in the W3C Candidate Recommendation "XML Linking LanguageX]. The reader is
cautioned that at the time of this writing, XLink is not yet a Recommendation, and is therefore subject to future revision
Since the MathML linking mechanism is defined in terms of the XML linking specification, the same proviso holds for
it as well.

A MathML element is designated as a link by the presence of the atteiftitek : href. To use the attributel ink : href,
it is also necessary to declare the appropriate namespace. Thus, a typical MathML link might look like:

<mrow xmlns:xlink="http://www.w3.org/1999/x1link"
xlink:href="sample.xml">

</mrow>

247

http://www.w3.org/Metadata

MathML designates that almost all elements can be used as XML linking elements. The only elements that cannot ser
as linking elements are those such asgég element, which exist primarily to disambiguate other MathML constructs
and in general do not correspond to any part of a typical visual rendering. The full list of exceptional elements tha
cannot be used as linking elements is given in the table below.

Table 7.1: MathML elements that cannot be linking elements.

mprescripts none sep
malignmark maligngroup
Note that the XML Linking J] and XML Pointer Languageq] specifications also define how to lirikto

a MathML expressions. Be aware, however, that such links may or may not be properly interpreted in current software

7.1.4.2 Images

The IMG element has no MathML equivalent. The decision to omit a general mechanism for image inclusion from
MathML was based on several factors. However, the main reason for not providing an image facility is that MathML
takes great pains to make the notational structure and mathematical content it encodes easily available to process
whereas information contained in images is only available to a human reader looking at a visual representation. Thu
for example, in the MathML paradigm, it would be preferable to introduce new glyphs viggtheh element which

at a minimum identifies them as glyphs, rather than simply including them as images.

Finally, apart from the introduction of new glyphs, many of the situations where one might be inclined to use an image
amount to some sort of labeled diagram. For example, knot diagrams, Venn diagrams, Dynkin diagrams, Feynmz
diagrams and complicated commutative diagrams all fall into this category. As such, their content would be bette
encoded via some combination of structured graphics and MathML markup. Because of the generality of the ‘labele
diagram’ construction, the definition of a markup language to encode such constructions extends beyond the scope
the current W3C Math activity. (Séetp://www.w3.org/Graphicor further W3C activity in this area.)

7.1.5 Using CSS with MathML

When MathML is rendered in an environment that supports CSS, controlling mathematics style properties with a CS.
stylesheet is obviously desirable. MathML 2.0 has significantly redesigned the way presentation element style properti
are organized to facilitate better interaction between MathML renderers and CSS style mechanisms. It introduces fo
new mathematics style attributes with logical values. Roughly speaking, these attributes can be viewed as the propet
selectors for CSS rules that affect MathML.

Controlling mathematics styling is not as simple as it might first appear because mathematics styling and text stylin
are quite different in character. In text, meaning is primarily carried by the relative positioning of characters next to
one another to form words. Thus, although the font used to render text may impart nuances to the meaning, transfori
ing the typographic properties of the individual characters leaves the meaning of text basically intact. By contrast, i
mathematical expressions, individual characters in specific typefaces tend to function as atomic symbols. Thus, in il
same equation, a bold italic 'x’ and a normal italic 'x’ are almost always intended to be two distinct symbols that mean
different things. In traditional usage, there are eight basic typographical categories of symbols. These categories &
described by mathematics style attributes, primarilynthehvariant attribute.

Text and mathematics layout also obviously differ in that mathematics uses 2-dimensional layout. As a result, many c
the style parameters that affect mathematics layout have no textual analogs. Even in cases where there are analog
properties, the sensible values for these properties may not correspond. For example, traditional mathematical typc
raphy usually uses italic fonts for single character identifiers, and upright fonts for multicharacter identifier. In text,
italicization does not usually depend on the number of letters in a word. Thus although a font-slant property make
sense for both mathematics and text, the natural default values are quite different.

248

http://www.w3.org/Graphics

Because of the difference between text and mathematics styling, only some aspects of MathML layout are good cant
dates for CSS control. MathML 2.0 captures the most important properties with the new mathematics style attribute:
and users should try to use them whenever possible over more direct, but less robust, approaches. A sample C
stylesheet illustrating the use of the mathematical style attributes is available in Apg@&ndix

Generally speaking, the model for CSS interaction with the math style attributes runs as follows. A CSS style shee
might provide a style rule such as:

math *.[mathsize="small"] {
font-size: 80Y%
}

This rule sets the CSS font-size properties for all children ofititeh element that have theathsize attribute set to

small. A MathML renderer would then query the style engine for the CSS environment, and use the values returned :
input to its own layout algorithms. MathML does not specify the mechanism by which style information is inherited
from the environment. However, some suggested rendering rules for the interaction between properties of the ambie
style environment and MathML-specific rendering rules are discussed in S8cti@nand more generally throughout
Chapter3.

It should be stressed, however, that some caution is required in writing CSS stylesheets for MathML. Because changil
typographic properties of mathematics symbols can change the meaning of an equation, stylesheet should be writter
a way such that changes to document-wide typographic styles do not affect embedded MathML expressions. By usil
the MathML 2.0 mathematics style attributes as selectors for CSS rules, this danger is minimized.

Another pitfall to be avoided is using CSS to provide typographic style information necessary to the proper understanc
ing of an expression. Expressions dependent on CSS for meaning will not be portable to non-CSS environments such
computer algebra systems. By using the logical values of the new MathML 2.0 mathematics style attributes as selectc
for CSS rules, it can be assured that style information necessary to the sense of an expression is encoded directly in
MathML.

MathML 2.0 does not specify how a user agent should process style information, because there are many non-C:
MathML environments, and because different users agents and renderers have widely varying degrees of access to (
information. In general, however, developers are urged to provide as much CSS support for MathML as possible.

7.2 Generating, Processing and Rendering MathML

Information is increasingly generated, processed and rendered by software tools. The exponential growth of the Web
fueling the development of advanced systems for automatically searching, categorizing, and interconnecting inform
tion. Thus, although MathML can be written by hand and read by humans, the future of MathML is largely tied to the
ability to process it with software tools.

There are many different kinds of MathML editors, translators, processors and renderers. What it means to suppc
MathML varies widely between applications. For example, the issues that arise with a MathML-compliant validating
parser are very different from those for a MathML-compliant equation editor.

In this section, guidelines are given for describing different types of MathML support, and for quantifying the extent
of MathML support in a given application. Developers, users and reviewers are encouraged to use these guidelin
in characterizing products. The intention behind these guidelines is to facilitate reuse and interoperability betwee
MathML applications by accurately characterizing their capabilities in quantifiable terms.

249

7.2.1 MathML Compliance

A valid MathML expression is an XML construct determined by the MathML DTD together with the additional re-
quirements given in this specification.

Define a ‘MathML processor’ to mean any application that can accept, produce, or ‘roundtrip’ a valid MathML expres-
sion. An example of an application that might round-trip a MathML expression might be an editor that writes a new file
even though no modifications are made.

Three forms of MathML compliance are specified:

1. A MathML-input-compliant processor must accept all valid MathML expressions, and faithfully translate all
MathML expressions into application-specific form allowing native application operations to be performed.

2. A MathML-output-compliant processor must generate valid MathML, faithfully representing all application-
specific data.

3. A MathML-roundtrip-compliant processor must preserve MathML equivalence. Two MathML expressions

are ‘equivalent’ if and only if both expressions have the same interpretation (as stated by the MathML
DTD and specification) under any circumstances, by any MathML processor. Equivalence on an element-by
element basis is discussed elsewhere in this document.

Beyond the above definitions, the MathML specification makes no demands of individual processors. In order to guid
developers, the MathML specification includes advisory material; for example, there are many suggested rendering rul
throughout ChapteB. However, in general, developers are given wide latitude in interpreting what kind of MathML
implementation is meaningful for their own particular application.

To clarify the difference between compliance and interpretation of what is meaningful, consider some examples:

1. In order to be MathML-input-compliant, a validating parser needs only to accept expressions, and returr
‘true’ for expressions that are valid MathML. In particular, it need not render or interpret the MathML
expressions at all.

2. A MathML computer-algebra interface based on content markup might choose to ignore all presentatior
markup. Provided the interface accepts all valid MathML expressions included those containing presentatiol
markup, it would be technically correct to characterize the application as MathML-input-compliant.

3. A equation editor might have an internal data representation that makes it easy to export some equations
MathML but not others. If the editor exports the simple equations as valid MathML, and merely displays
an error message to the effect that conversion failed for the others, it is still technically MathML-output-
compliant.

7.2.1.1 MathML Test Suite and Validator

As the previous examples show, to be useful, the concept of MathML compliance frequently involves a judgment abot
what parts of the language are meaningfully implemented, as opposed to parts that are merely processed in a technic:
correct way with respect to the definitions of compliance. This requires some mechanism for giving a quantitative
statement about which parts of MathML are meaningfully implemented by a given application. To this end, the W3C
Math working group has providedtast suite

The test suite consists of a large number of MathML expressions categorized by markup category and domina
MathML element being tested. The existence of this test suite makes it possible, for example, to characterize qua
titatively the hypothetical computer algebra interface mentioned above by saying that it is a MathML-input compliant
processor which meaningfully implements MathML content markup, including all of the expressions in the content
markup section of the test suite.

Developers who choose not to implement parts of the MathML specification in a meaningful way are encouraged t
itemize the parts they leave out by referring to specific categories in the test suite.

250

http://www.w3.org/Math/testsuite

For MathML-output-compliant processors, there is alddahML validatoraccessible over the Web. Developers of
MathML-output-compliant processors are encouraged to verify their output using this validator.

Customers of MathML applications who wish to verify claims as to which parts of the MathML specification are
implemented by an application are encouraged to use the test suites as a part of their decision processes.

7.2.1.2 Deprecated MathML 1.x Features

MathML 2.0 contains a number of MathML 1.x features which are now deprecated. The following points define what it
means for a feature to be deprecated, and clarify the relation between deprecated features and MathML 2.0 complian

1. In order to be MathML-output-compliant, authoring tools may not generate MathML markup containing
deprecated features.
2. In order to be MathML-input-compliant, rendering/reading tools must support deprecated features if they are

to be MathML 1.x compliant. They do not have to support deprecated features to be considered MathML 2.C
compliant. However, all tools are encouraged to support the old forms as much as possible.

3. In order to be MathML-roundtrip-compliant, a processor need only preserve MathML equivalence on ex-
pressions containing no deprecated features.

7.2.2 Handling of Errors

If a MathML-input-compliant application receives input containing one or more elements with an illegal number or type
of attributes or child schemata, it should nonetheless attempt to render all the input in an intelligible way, i.e. to rende
normally those parts of the input that were valid, and to render error messages (rendered as if enclosedrinran
element) in place of invalid expressions.

MathML-output-compliant applications such as editors and translators may choose to geaerateexpressions to
signal errors in their input. This is usually preferable to generating valid, but possibly erroneous, MathML.

7.2.3 Attributes for unspecified data

The MathML attributes described in the MathML specification are necessary for presentation and content markup. Ide
ally, the MathML attributes should be an open-ended list so that users can add specific attributes for specific rendere
However, this cannot be done within the confines of a single XML DTD. Although it can be done using extensions of the
standard DTD, some authors will wish to use non-standard attributes to take advantage of renderer-specific capabiliti
while remaining strictly in compliance with the standard DTD.

To allow this, the MathML 1.0 specification allowed the attribateher on all elements, for use as a hook to pass

on renderer-specific information. In particular, it was intended as a hook for passing information to audio renderers
computer algebra systems, and for pattern matching in future macro/extension mechanisms. The motivation for th
approach to the problem was historical, looking to PostScript, for example, where comments are widely used to pa:
information that is not part of PostScript.

In the meantime, however, the development of a general XML namespace mechanism has made the usa«f the
attribute obsolete. In MathML 2.0, theeher attribute isdeprecateih favor of the use of namespace prefixes to identify
non-MathML attributes.

For example, in MathML 1.0, it was recommended that if additional information was used in a renderer-specific imple-
mentation for thenaction element (Sectiof3.6.]), that information should be passed in using ¢heer attribute:

<maction actiontype="highlight" other="color="#ff0000’"> expression </maction>

In MathML 2.0, acolor attribute from another namespace would be used:

251

http://www.w3.org/Math/validator

<body xmlns:my="http://www.myrenderer.com/MathML/extensions">

<maction actiontype="highlight" my:color="#£f£f0000"> expression </maction>

</body>

Note that the intent of allowing non-standard attributesdsto encourage software developers to use this as a loop-

hole for circumventing the core conventions for MathML markup. Authors and applications should use non-standar
attributes judiciously.

7.3 Future Extensions

If MathML is to remain useful in the future, it is to be expected that MathML will need to be extended and revised in
various ways. Some of these extensions can be easily foreseen; for example, as work on behavioral extensions to C
proceeds, MathML will likely need to be extended as well.

Similarly, there are several kinds of functionality that are fairly obvious candidates for future MathML extensions. These
include macros, style sheets, and perhaps a general facility for ‘labeled diagrams’. However, there will no doubt be othe
desirable extensions to MathML that will only emerge as MathML is widely used. For these extensions, the W3C Matt
Working Group relies on the extensible architecture of XML, and the common sense of the larger Web community.

7.3.1 Macros and Style Sheets

The development of style-sheet mechanisms for XML is part of the ongoing XML activity of the World Wide Web
Consortium. Both XSL and CSS are working to incorporate greater support for mathematics.

In particular, XSL Transformations{[5LT] are likely to have a large impact on the future development of MathML.
Macros have traditionally contributed greatly the usability and effectiveness of mathematics encodings. Further wor
developing applications of XSLT tailored specifically to MathML is clearly called for.

Some of the possible uses of macro capabilities for MathML include:

Abbreviation One common use of macros is for abbreviation. Authors needing to repeat some complicated but constat
notation can define a macro. This greatly facilitates hand authoring. Macros that allow for substitution of
parameters facilitate such usage even further.

Extension of Content Markup By defining macros for semantic objects, for example a binomial coefficient, or a
Bessel function, one can in effect extend the content markup for MathML. Such a macro could include
an explicit semantic binding, or such a binding could be easily added by an external application. Narrowly
defined disciplines should be able to easily introduce standardized content markup by using standard mac
packages. For example, the OpenMath project could release macro packages for attaching OpenMath conte
markup.

Rendering and Style Control Another basic way in which macros are often used is to provide a way of controlling
style and rendering behavior by replacing high-level macro definitions. This is especially important for con-
trolling the rendering behavior of MathML content tags in a context sensitive way. Such a macro capability
is also necessary to provide a way of attaching renderings to user-defined XML extensions to the MathML
core.

Accessibility Reader-controlled style sheets are important in providing accessibility to MathML. For example, a reader
listening to a voice renderer might, by default, hear a bit of MathML presentation markup read as ‘D sub
x sup 2 of f’. Knowing the context to be multi-variable calculus, the reader may wish to use a style sheet
or macro package that instructs the renderer to rendekihisbsup> element as ‘second derivative with
respect to x of .

252

7.3.2 XML Extensions to MathML

The set of elements and attributes specified in the MathML specification are necessary for rendering common mat
ematical expressions. It is recognized that not all mathematical notation is covered by this set of elements, that ne
notations are continually invented, and that sub-communities within mathematics often have specialized notations; at
furthermore that the explicit extension of a standard is a necessarily slow and conservative process. This implies th
the MathML standard could never explicitly cover all the presentational forms used by every sub-community of author:
and readers of mathematics, much less encode all mathematical content.

In order to facilitate the use of MathML by the widest possible audience, and to enable its smooth evolution to encom
pass more notational forms and more mathematical content (perhaps eventually covered by explicit extensions to t
standard), the set of tags and attributes is open-ended, in the sense described in this section.

MathML is described by an XML DTD, which necessarily limits the elements and attributes to those occurring in
the DTD. Renderers desiring to accept non-standard elements or attributes, and authors desiring to include these
documents, should accept or produce documents that conform to an appropriately extended XML DTD that has tt
standard MathML DTD as a subset.

MathML-compliant renderers are allowed, but not required, to accept non-standard elements and attributes, and
render them in any way. If a renderer does not accept some or all non-standard tags, it is encouraged either to han
them as errors as described above for elements with the wrong number of arguments, or to render their arguments a
they were arguments to airow, in either case rendering all standard parts of the input in the normal way.

253

Chapter 8

Document Object Model for MathML

8.1 Introduction

This document extends the Core API of the DOM Level 2 to describe objects and methods specific to MathML element
in documents. The functionality needed to manipulate basic hierarchical document structures, elements, and attribu
will be found in the core document; functionality that depends on the specific elements defined in MathML will be
found in this document.

The actual DOM specification appears in Appendix
The goals of the MathML-specific DOM API are:

° To specialize and add functionality that relates specifically to MathML elements.
. To provide convenience mechanisms, where appropriate, for common and frequent operations on MathMI
elements.

This document includes the following specializations for MathML.:

. A MathMLElement interface derived from the core interfaEeement. MathMLElement specifies the oper-
ations and queries that can be made on any MathML element. Methag@staMLElement include those
for the retrieval and modification of attributes that apply to all MathML elements.

° Various specializations ¢fathMLElement t0 encode syntactical restrictions imposed by MathML.

. Specializations oMathMLElement representing all MathML elements with attributes extending beyond
those specified in théathMLElement interface. For all such attributes, the derived interface for the element
contains explicit methods for setting and getting the values.

° Special methods for insertion and retrieval of children of MathML elements. While the basic methods inher-
ited from theNode andElement interfaces must clearly remain available, it is felt that in many cases they
may be misleading. Thus, for instance, tethMLFractionElement interface provides for accessia-
merator anddenominator attributes; a call t@etDenominator (newNode) is less ambiguous from a call-
ing application’s perspective than a caliede : :replaceNode (newNode, Node::childNodes().item(2)).

MathML specifies rules that are invisible to generic XML processors and validators. The fact that MathML DOM
objects are required to respect these rules, and to throw exceptions when those rules are violated, is an important rea
for providing a MathML-specific DOM extension.

There are basically two kinds of additional MathML grammar and syntax rules. One kind involves placing additional
criteria on attribute values. For example, it is not possible in pure XML to require that an attribute value be a positive
integer. The second kind of rule specifies more detailed restrictions on the child elements (for example on ordering
than are given in the DTD. For example, it is not possible in XML to specify that the first child be interpreted one way,
and the second in another. The MathML DOM objects are required to provide this interpretation.

MathML ignores whitespace occurring outside token elements. Non-whitespace characters are not allowed there. Whit
pace occurring within the content of token elements is ‘trimmed’ from the ends (i.e. all whitespace at the beginning an

254

end of the content is removed), and ‘collapsed’ internally (i.e. each sequence of 1 or more whitespace characters
replaced with one blank character). The MathML DOM elements perform this whitespace trimming as necessary. i
MathML, as in XML, ‘whitespace’ means blanks, tabs, newlines, or carriage returns, i.e. characters with hexadecime
Unicode codes U+0020, U+0009, U+000a, or U+000d, respectively.

8.1.1 hasFeature String

Support for the MathML Document Object Model may be queried by callin@@¥&mplementation: :hasFeature
method with the test string "org.w3c.dom.mathml".

8.1.2 MathML DOM Extensions

It is expected that a future version of the MathML DOM may deal with issues which are not resolved here. Some o
these are described here.

8.1.2.1 Traversal and Range Interfaces

Itis likely that a need will become obvious for MathML-specific specializations of interfaces belonging to the Traversal
and Range Modules of the Document Object Model Level 2. The order of traversal of bound variables, conditions, an
declarations - or whether they should be omitted from a given traversal altogether - offers an example of a potential utilit
for such specializations. However, it would be premature to specify any such interfaces at this time. Implementatio
experience will be necessary in order to discover the appropriate interfaces which should be specified.

255

Appendix A

Parsing MathML

MathML documents should be validated using ¥iéL DTD for MathML , which is also shown below in Sectign4.

Al MathML as a DTD Module

Normally. however, a MathML expression does not constitute an entire XML document. MathML is designed to be
used as the mathematics fragment of larger markup languages. In particular it is designed to be useduésia
documents marked up with the XHTML family of markup languages, as definéddrf]. As a convenience,
aversion of the<HTML DTD, extended with this MathML modulas also provided as a concrete example. This version
includes all the necessary declarations included into one file. (In contrast to the standalone version of the MathML DTI
which references several files for entity declarations etc.

In some circumstances, when embedding MathML in documents it is necessary, or convenient, to use the mechanis
described in Chaptet which provide a namespace prefix on MathML element names. The DTD below is designed to
allow this usage. If the parameter enttyTHML . prefixed is declared to be INCLUDE, using a declaration such as

<!ENTITY % MATHML.prefixed "INCLUDE" >

either in the local subset of the DOCTYPE declaration, or in the DTD file that is including the MathML DTD, then all
MathML elements should be used with a prefix, for examplemrow>, <m: apply>, etc. The prefix defaults te: but
another prefix may be declared by declaring in addition the parameter atitylL. . prefix. For example,

<!ENTITY % MATHML.prefix "math" >

would set the prefix for the MathML hamespacentah:.

Note that while thelf }Recommendation provides mechanisms to change the prefix at arbitrary points in the
document, this flexibility isiot provided in this DTD (and is probably not possible to specify in any DTD).

A.2 Use of MathML without a DTD

If a MathML fragment is parsed without a DTD, in other words as a well-formed XML fragment, it is the responsibility
of the processing application to treat the whitespace whitespace characters occurring outside of token elements as
significant.

Note also that if no DTD is specified with a DOCTYPE declaration, that entity references (for example to refer to
MathML characters by name) may not be used.

256

file:dtd/mathml2.dtd
file:dtd/xhtml-math11-f.dtd

A3 SGML

An SGML parser, such assgmls, can be used to validate MathML. In this case an SGML declaration defining the
constraints of XML applicable to an SGML parser must be used. Se®otieeon SGML and XML

Some older SGML systems may not be able to process files referring to plane 1 characters (those with Unicode valu
above hex FFFF).

A4 The MathML DTD

The entity declarations for characters are referenced at the end of the DTD. These are linked to the character tables
Chapter6 for each entity set.

Lists of the combined MathML set of character names, orderethiyeor by Unicode valuere also available.

In order to accommodate XML Namespace prefixes, the DTD does not directly refer to an element namensoeh as
but instead always refers to the name via a parameter entity sulr&s. gname ;. The definitions of these parameter
entities are in the filebut are not shown here. They are simply declarations such as the following, one for each MathML
element.

<!ENTITY % mrow.gname "%MATHML . pfx;mrow" >

Here we give the main body of the DTD. The full DTD, as well as the XHTML-Math DTD, is availablezgsachive
<KI= MathML 2.0 DD .ttt ittt ettt et et et et et et ettt et e ->

<!- file: mathml2.dtd

->

<!- MathML 2.0 DTD

This is the Mathematical Markup Language (MathML) 2.0, an XML
application for describing mathematical notation and capturing
both its structure and content.

Copyright 1998-2000 World Wide Web Consortium
(Massachusetts Institute of Technology, Institut National de
Recherche en Informatique et en Automatique, Keio University).
A1l Rights Reserved.

Permission to use, copy, modify and distribute the XHTML 1.1 DTD and
its accompanying documentation for any purpose and without fee is
hereby granted in perpetuity, provided that the above copyright notice
and this paragraph appear in all copies. The copyright holders make
no representation about the suitability of the DTD for any purpose.
It is provided "as is" without expressed or implied warranty.

Revision: $Id: parsing.xml,v 1.27 2000/11/02 11:55:51 davidc Exp $

This entity may be identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//DTD MathML 2.0//EN"

257

http://www.w3.org/TR/NOTE-sgml-xml
file:byalpha.html
file:bycodes.html
file:dtd/mathml2-qname-1.mod
file:DTD-MathML-20001113.zip

SYSTEM "mathml2.dtd"

Revisions: editor and revision history at EOF

<!- MathML Qualified Names modulec.c.iiiiuimuenennnnnn ->
<!ENTITY % mathml-qname.module "INCLUDE" >
<! [%mathml-gname.module; [
<!ENTITY % mathml-gname.mod
PUBLIC "-//W3C//ENTITIES MathML 2.0 Qualified Names 1.0//EN"
"mathml2-gname-1.mod" >
Jmathml-gname.mod;]]>

<!- if YNS.prefixed; is INCLUDE, include all NS attributes,
otherwise just those associated with MathML

->

<! [%NS.prefixed; [

<!ENTITY % MATHML.NamespaceDecl.attrib
"%NamespaceDecl.attrib;"

>

11>

<!ENTITY % MATHML.NamespaceDecl.attrib
"YMATHML.xmlns.attrib;"

>
<!- Attributes shared by all elementsooun. ->
<!ENTITY % MATHML.Common.attrib
"%MATHML . NamespaceDecl.attrib;
xlink:href = CDATA #IMPLIED
class CDATA #IMPLIED
style CDATA #IMPLIED
id ID #IMPLIED
xref IDREF #IMPLIED
other CDATA #IMPLIED"
>
<!- Presentation element set, ->

<!- Attribute definitions ->

<IENTITY % att-fontsize

"fontsize CDATA #IMPLIED" >
<!ENTITY % att-fontweight

"fontweight (normal | bold) #IMPLIED" >
<!ENTITY % att-fontstyle

"fontstyle (normal | italic) #IMPLIED" >

<!ENTITY % att-fontfamily

258

"fontfamily
<IENTITY % att-
"color

CDATA
color
CDATA

<IENTITY % att-mathvariant

"mathvariant
<IENTITY % att-
"mathsize
<IENTITY % att-
"mathcolor

<!ENTITY % att-mathbackground

"mathbackgro

<IENTITY % att-
"Y%att-fontsi
%att-fontwe
%att-fontst

hatt-fontfamily;

Y%att-color;

%att-mathvariant;

%att-mathsi
%att-mathco

%att-mathbackground;"

<IENTITY % att-
"form
<IENTITY % att-
"fence
<IENTITY % att-
"'separator
<!ENTITY % att-
"lspace

<!ENTITY % att-

"rspace

<!ENTITY % att-

"stretchy

<I!ENTITY % att-

"'symmetric

<I!ENTITY % att-

"maxsize

<I!ENTITY % att-

"minsize

<I!ENTITY % att-

"largeop

<IENTITY % att-movablelimits
"movablelimits (true

CDATA #IMPLIED"
mathsize
CDATA #IMPLIED" >
mathcolor
CDATA #IMPLIED"
und CDATA #IMPLIED"
fontinfo
ze;
ight;
yle;
ze;
lor;
form
(prefix | infix | postfix) #IMPLIED" >
fence
(true | false) #IMPLIED" >
separator
(true | false) #IMPLIED" >
1space
CDATA #IMPLIED" >
rspace
CDATA #IMPLIED" >
stretchy
(true | false) #IMPLIED" >
symmetric
(true | false) #IMPLIED" >
maxsize
CDATA #IMPLIED" >
minsize
CDATA #IMPLIED" >
largeop
(true | false) #IMPLIED" >
| false) #IMPLIED" >

#IMPLIED"

#IMPLIED"

>

>

!- MathML2 typographically-distinguished symbol attributes ->

259

<IENTITY % att-accent
"accent (true | false)

<!ENTITY % att-opinfo
"Yatt-form;
%att-fence;
hatt-separator;
%att-lspace;
hatt-rspace;
%att-stretchy;
hatt-symmetric;
Y%att-maxsize;
%att-minsize;
%hatt-largeop;
%att-movablelimits;
Y%att-accent;"

<!ENTITY % att-width
"width CDATA
<!ENTITY % att-height
"height CDATA
<!ENTITY % att-depth
"depth CDATA
<!ENTITY % att-linebreak
"linebreak CDATA
<IENTITY % att-sizeinfo
"%att-width;
hatt-height;
%hatt-depth;"

<!ENTITY % att-lquote

"lquote CDATA
<!ENTITY % att-rquote
"rquote CDATA

<!ENTITY % att-linethickness
"linethickness CDATA

<!ENTITY % att-scriptlevel
"scriptlevel CDATA

<!ENTITY % att-displaystyle
"displaystyle (true | false)

<!ENTITY % att-scriptsizemultiplier
"scriptsizemultiplier CDATA

<!ENTITY % att-scriptminsize
"scriptminsize CDATA

<!ENTITY % att-background
"background CDATA

<!ENTITY % att-open
"open CDATA

<!ENTITY % att-close

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

#IMPLIED"

>

260

"close CDATA #IMPLIED" >
<!ENTITY % att-separators

"separators CDATA #IMPLIED" >
<!ENTITY % att-subscriptshift

"subscriptshift CDATA #IMPLIED" >
<!ENTITY % att-superscriptshift

"superscriptshift CDATA #IMPLIED" >
<!ENTITY % att-accentunder

"accentunder (true | false) #IMPLIED" >
<!ENTITY % att-align

"align CDATA #IMPLIED" >
<!ENTITY % att-rowalign

"rowalign CDATA #IMPLIED" >
<!ENTITY % att-columnalign

"columnalign CDATA #IMPLIED" >
<!ENTITY % att-columnwidth

"columnwidth CDATA #IMPLIED" >
<IENTITY % att-groupalign

"groupalign CDATA #IMPLIED" >
<IENTITY % att-alignmentscope

"alignmentscope CDATA #IMPLIED" >
<IENTITY % att-rowspacing

"rowspacing CDATA #IMPLIED" >
<!ENTITY % att-columnspacing

"columnspacing CDATA #IMPLIED" >
<!ENTITY % att-rowlines

"rowlines CDATA #IMPLIED" >
<!ENTITY % att-columnlines

"columnlines CDATA #IMPLIED" >
<!ENTITY % att-frame

"frame (none | solid | dashed) #IMPLIED" >
<!ENTITY % att-framespacing

"framespacing CDATA #IMPLIED" >
<!ENTITY % att-equalrows

"equalrows CDATA #IMPLIED" >
<!ENTITY % att-equalcolumns

"equalcolumns CDATA #IMPLIED" >

<!ENTITY % att-tableinfo
"%att-align;
%att-rowalign;
%hatt-columnalign;
Y%att-columnwidth;
hatt-groupalign;
%att-alignmentscope;
hatt-rowspacing;
%att-columnspacing;
%att-rowlines;
%att-columnlines;

261

Y%att-frame;
hatt-framespacing;
%att-equalrows;
%att-equalcolumns;
%att-displaystyle;"

<!ENTITY % att-rowspan

"rowspan CDATA #IMPLIED" >
<!ENTITY % att-columnspan

"columnspan CDATA #IMPLIED" >
<!ENTITY % att-edge

"edge (left | right) #IMPLIED" >
<!ENTITY % att-actiontype

"actiontype CDATA #IMPLIED" >
<!ENTITY % att-selection

"'selection CDATA #IMPLIED" >

<!ENTITY % att-name

"name CDATA #IMPLIED" >
<IENTITY % att-alt

"alt CDATA #IMPLIED" >
<!ENTITY % att-index

"index CDATA #IMPLIED" >

<IENTITY % att-bevelled
"bevelled CDATA #IMPLIED" >

<!- Presentation schemata with content ->

<IENTITY % ptoken
"%mi.gname; | %mn.gname; | %mo.gname;
| mtext.gqname; | %ms.gname;" >

<VATTLIST %mi.qname;
%MATHML . Common.attrib;
%att-fontinfo;

<!ATTLIST %mn.gname;
%MATHML . Common . attrib;
%att-fontinfo;

<!ATTLIST %mo.qgname;
%MATHML . Common.attrib;
Y%att-fontinfo;
%att-opinfo;

262

<IATTLIST %mtext.gname;
%MATHML . Common.attrib;
%att-fontinfo;

>
<IATTLIST %ms.qname;
%MATHML . Common . attrib;
%att-fontinfo;
%att-lquote;
hatt-rquote;
>

<!- Empty presentation schemata ->

<!ENTITY % petoken
"Ymspace.gname;" >
<IELEMENT Ymspace.qname;

<!ATTLIST %mspace.qgname;
Y%att-sizeinfo;
%att-linebreak;
%MATHML . Common.attrib;

<!- Presentation: general layout schemata ->

<!ENTITY % pgenschema

"Jmrow.gname; | %mfrac.gname;
| %menclose.qname; | Y%mstyle.qname; | %merror.gname;
| %mpadded.qname; | %mphantom.qname; | %mfenced.qname;" >

<!ATTLIST %mrow.gname;
%MATHML . Common . attrib;

>
<!ATTLIST %mfrac.qgname;
%MATHML . Common.attrib;
%att-bevelled;
%att-linethickness;
>
<IATTLIST %msqrt.qgname;
%MATHML . Common .attrib;
>

<!ATTLIST %menclose.qgname;
%MATHML . Common.attrib;

notation CDATA ’longdiv’ >

| %msqrt.qname; | %mroot.qname;

263

<!ATTLIST %mroot.gname;
%MATHML . Common .attrib;

<IATTLIST %mstyle.qgname;
%MATHML . Common .attrib;
Y%att-fontinfo;
hatt-opinfo;
%att-lquote;
hatt-rquote;
%att-linethickness;
hatt-scriptlevel;
%att-scriptsizemultiplier;
%att-scriptminsize;
%hatt-background;
%att-open;
%att-close;
%att-separators;
hatt-subscriptshift;
%att-superscriptshift;
%att-accentunder;
%att-tableinfo;
%hatt-rowspan;
%att-columnspan;
hatt-edge;
%att-actiontype;
Y%att-selection;

<!ATTLIST %merror.qgname;
%MATHML . Common . attrib;

<!ATTLIST %mpadded.qgname;
%MATHML . Common.attrib;
%att-sizeinfo;
%hatt-lspace;

<IATTLIST %mphantom.qgname;
%MATHML . Common .attrib;

<IATTLIST %mfenced.qname;
%MATHML . Common.attrib;
%att-open;
%att-close;
%hatt-separators;

264

<!- Presentation layout schemata: scripts and limits ->

<!ENTITY % pscrschema
"Jmsub.qname; | %msup.gname; | %msubsup.gname; | %munder.gname;
| %mover.qname; | %munderover.qname; | %mmultiscripts.qname;" >

<!ATTLIST %msub.gname;
%MATHML . Common.attrib;
hatt-subscriptshift;

<!ATTLIST %msup.qname;
%MATHML .Common.attrib;
%att-superscriptshift;

<IATTLIST %msubsup.qname;
%MATHML . Common.attrib;
%att-subscriptshift;
hatt-superscriptshift;

<IATTLIST %munder.qgname;
%MATHML . Common.attrib;
Y%att-accentunder;

<!ATTLIST %mover.gname;
%MATHML . Common .attrib;
%att-accent;

<!ATTLIST %munderover.gname;
%MATHML . Common.attrib;
%att-accent;
Y%att-accentunder;

<VATTLIST %mmultiscripts.qname;
%MATHML . Common.attrib;
%att-subscriptshift;
hatt-superscriptshift;

<!- Presentation layout schemata: empty elements for scripts ->

<!ENTITY % pscreschema

265

"Ymprescripts.qname; | J%none.qgname;" >

<!ELEMENT Ymprescripts.qname; EMPTY >
<!ATTLIST Y%mprescripts.qgname;
%MATHML .xmlns.attrib; >

<!ELEMENT %none.qgname; EMPTY >
<!ATTLIST %none.gname;
%MATHML . xmlns.attrib; >

<!- Presentation layout schemata: tables —>

<!ENTITY % ptabschema
"Ymtable.gname; | Ymtr.qname; | %mlabeledtr.qname;

<IATTLIST %mtable.qname;
%MATHML . Common . attrib;
%att-tableinfo;

<IATTLIST %mtr.qname;
%MATHML . Common .attrib;
%att-rowalign;
%hatt-columnalign;
%hatt-groupalign;

<!ATTLIST %mlabeledtr.qgname;
%MATHML . Common.attrib;
%att-rowalign;
%hatt-columnalign;
%att-groupalign;

<!ATTLIST %mtd.gname;
%MATHML . Common.attrib;
hatt-rowalign;
%att-columnalign;
hatt-groupalign;
hatt-rowspan;
%att-columnspan;

<!ENTITY % plschema
"Yipgenschema; | %pscrschema; | %ptabschema;" >
<!- Empty presentation layout schemata ->

<!ENTITY % peschema

| %mtd.gname;" >

266

"Ymaligngroup.qname; | %malignmark.qgname;" >
<!ELEMENT Ymalignmark.qname; EMPTY >

<!ATTLIST %malignmark.gname;
%att-edge; >

<!ELEMENT %maligngroup.qname; EMPTY >

<IATTLIST %maligngroup.qname;
%MATHML . Common .attrib;
hatt-groupalign;

<!ELEMENT %mglyph.gname; EMPTY >
<IATTLIST %mglyph.qname;
hatt-alt;
hatt-fontfamily;
Yatt-index; >

<!- Presentation action schemata ->

<!ENTITY % pactions
"Ymaction.qgname;" >

<IATTLIST %maction.qname;
%MATHML . Common.attrib;
%att-actiontype;
%att-selection;

<!- The following entity for substitution into
content constructs excludes elements that
are not valid as expressions.

<1ENTITY % PresInCont
"Yptoken; | Y%petoken; |
hplschema; | %peschema; | %pactions;" >

<!- Presentation entity: all presentation constructs —>

<IENTITY % Presentation

"%ptoken; | Ypetoken; | Y%pscreschema; |
%plschema; | %peschema; | Ypactions;">
<!- Content element set i, ->

<!- Attribute definitions ->

267

<!ENTITY % att-base

"base CDATA 107" >
<!ENTITY % att-closure

"closure CDATA ’closed’" >
<!ENTITY % att-definition

"definitionURL CDATA o>
<IENTITY % att-encoding

"encoding CDATA >
<!ENTITY % att-nargs

"nargs CDATA e >
<!ENTITY % att-occurrence

"occurrence CDATA ’function-model’" >
<!ENTITY % att-order

"order CDATA ’numeric’" >
<!ENTITY 7 att-scope

"scope CDATA ’local’" >
<IENTITY % att-type

"type CDATA #IMPLIED" >

<!- Content elements: leaf nodes ->

<!ENTITY % ctoken
"Yicsymbol.qgname; | %ci.qname; | %cn.qname;" >

<IATTLIST Y%ci.qgname;
%MATHML . Common.attrib;
%hatt-type;
%att-definition;
%hatt-encoding;

<IATTLIST %csymbol.qgname;
%MATHML . Common.attrib;
%att-encoding;
hatt-type;
Y%att-definition;

<IATTLIST %cn.qname;
%MATHML . Common .attrib;
%att-type;
%att-base;
Y%att-definition;
hatt-encoding;

<!- Content elements: specials ->

<!ENTITY % cspecial

268

"Y%apply.qname; | %reln.qname;
%lambda.qname;" >

<!ATTLIST %apply.qgname;
%MATHML . Common .attrib;

<!ATTLIST %reln.qgname;
%MATHML . Common .attrib;

<IATTLIST %lambda.qname;
#%MATHML . Common .attrib;

<!- Content elements: others ->

<!ENTITY % cother
"%condition.qgname; | %declare.gname; | Y%sep.qname;" >

<IATTLIST %condition.qgname;
%MATHML . Common .attrib;

<IATTLIST %declare.qname;
%MATHML . Common.attrib;
%hatt-type;
hatt-scope;
hatt-nargs;
Y%iatt-occurrence;
%att-definition;
%att-encoding;

<IELEMENT %sep.qname; EMPTY >
<!ATTLIST Y%sep.qname;
%MATHML . xmlns.attrib; >

<!- Content elements: semantic mapping —>

<!ENTITY 7 csemantics
"%semantics.qname; | %annotation.gname; |
%annotation-xml.qgname;" >

<IATTLIST %semantics.gname;
%MATHML . Common.attrib;
Y%att-definition;
%hatt-encoding;

269

<!ATTLIST %annotation.gname;
%MATHML . Common.attrib;
%att-encoding;

>
<VATTLIST %annotation—xml.qname;
%MATHML . Common . attrib;
hatt-encoding;
>

<!- Content elements: constructors —->

<IVENTITY % cconstructor

"Yinterval.qname; | %list.qname; | %matrix.qname;

| Ymatrixrow.qgname; | %set.gname;
q q
| Ypiecewise.qname; " >

<IATTLIST %interval.qgname;
%MATHML . Common .attrib;
%att-closure;

>
<!ATTLIST Y%set.gname;
%MATHML . Common .attrib;
hatt-type;
>

<IATTLIST %list.qgname;
%MATHML . Common . attrib;
%att-order;

<IATTLIST %vector.qname;
%MATHML . Common.attrib;

<IATTLIST %matrix.qname;
%MATHML . Common . attrib;

<!ATTLIST Ymatrixrow.gname;
%MATHML . Common . attrib;

<VATTLIST %piecewise.qgname;
%MATHML . Common .attrib;

| %vector.qname;

270

<IATTLIST Y%piece.qname;
%MATHML . Common . attrib;

<!ATTLIST %otherwise.qgname;
7%MATHML . Common .attrib;

<!- Content elements: symbols —>

<!ENTITY % cOary
"%integers.qname; |
%reals.qgname; |
f%rationals.qgname; |
%naturalnumbers.qname;
f%complexes.qgname; |
%primes.qname; |
%exponentiale.qgname; |
%imaginaryi.qname; |
%notanumber.qgname; |
%true.qname; |
%false.qgname; |
%hemptyset.qname; |
%pi.qname; |
%heulergamma.qname; |
%infinity.qgname;" >

<!ELEMENT %integers.qname; EMPTY >
<!ATTLIST %integers.qgname;
%MATHML . Common .attrib;
Yiatt-definition;
hatt-encoding;

<!ELEMENT Y%reals.qname; EMPTY >

<!ATTLIST Y%reals.gname;
%MATHML . Common.attrib;
%att-definition;
%hatt-encoding;

<!ELEMENT Y%rationals.qgname; EMPTY >
<!ATTLIST Y%rationals.gname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

271

<!ELEMENT %naturalnumbers.gname; EMPTY >
<IATTLIST %naturalnumbers.qname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;

<!ELEMENT Y%complexes.qgname; EMPTY >
<!ATTLIST %complexes.qname;
%MATHML . Common .attrib;
%att-definition;
%att-encoding;

<!ELEMENT Y%primes.qname; EMPTY >

<IATTLIST Y%primes.qgname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;

<!ELEMENT Y%exponentiale.qgname; EMPTY >
<!ATTLIST %exponentiale.qname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

<!ELEMENT %imaginaryi.qgname; EMPTY >
<VATTLIST %imaginaryi.gname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

<!ELEMENT %notanumber.qname; EMPTY >
<!ATTLIST %notanumber.qgname;
%MATHML . Common.attrib;
%att-definition;
%hatt-encoding;

<!ELEMENT Y%true.qname; EMPTY >

<IATTLIST %true.qgname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

272

<!ELEMENT Y%false.qname; EMPTY >

<IATTLIST %false.gname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;

<!ELEMENT Y%emptyset.gname; EMPTY >
<IATTLIST %emptyset.qname;
%MATHML . Common .attrib;
%att-definition;
%att-encoding;

<!ELEMENT %pi.qname; EMPTY >

<IATTLIST %pi.qname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;

<!ELEMENT Y%eulergamma.qname; EMPTY >
<IATTLIST %eulergamma.qgname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

<!ELEMENT %infinity.qname; EMPTY >
<VATTLIST %infinity.qgname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

<!- Content elements: operators ->

<!ENTITY % cfuncoplary

"%inverse.gname; | %ident.qname; |
%domain.qname; | Y%codomain.qgname; |
%image.qgname; " >

<!ELEMENT %inverse.qname; EMPTY >

<IATTLIST %inverse.qname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

273

<!ELEMENT Y%domain.qname; EMPTY >

<!ATTLIST %domain.qgname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;

<!ELEMENT %codomain.gname; EMPTY >
<!ATTLIST %codomain.gname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

<!ELEMENT %image.gname; EMPTY >

<!ATTLIST %image.qname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;

<!ENTITY % cfuncopnary
"%fn.qgname; | %compose.gname;" >

<IATTLIST %fn.qgname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;

<!ELEMENT %ident.qgname; EMPTY >

<!ATTLIST %ident.qgname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

<!ELEMENT %compose.qname; EMPTY >

<IATTLIST %compose.qgname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

<!ENTITY % carithoplary
"%abs.qname; | Jconjugate.qname; | %exp.qname; | %factorial.gname; |
%arg.qname; | %real.gqname; | %imaginary.qname; |

274

%floor.gname; | J%ceiling.qgname;" >

<!ELEMENT %exp.qname; EMPTY >

<!ATTLIST %exp.qname;
%MATHML . Common.attrib;
%att-definition;
%hatt-encoding;

<!ELEMENT %abs.qgname; EMPTY >

<IATTLIST %abs.gname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;

<!ELEMENT %arg.qname; EMPTY >

<!ATTLIST %arg.qname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

<!ELEMENT Y%real.qname; EMPTY >

<IATTLIST Y%real.gname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

<!ELEMENT %imaginary.qname;

<!ATTLIST %imaginary.qgname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

<!ELEMENT Y%conjugate.qgname;

<!ATTLIST Y%conjugate.qgname;
%MATHML . Common.attrib;
Yiatt-definition;
hatt-encoding;

<!ELEMENT Y%factorial.gname;

<IATTLIST %factorial.gname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;

EMPTY >

EMPTY >

EMPTY >

275

<!ELEMENT %floor.gname; EMPTY >

<IATTLIST %floor.gname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;

<!ELEMENT Y%ceiling.qname; EMPTY >

<IATTLIST Y%ceiling.qname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

<!ENTITY % carithoplor2ary
"Yminus.qgname;" >

<!ELEMENT %minus.gname; EMPTY >

<IATTLIST %minus.gname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

<!ENTITY % carithop2ary
"Yquotient.qname; | %divide.qname; | Y%power.qgname;

<!ELEMENT %quotient.qgname; EMPTY >
<IATTLIST %quotient.qgname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

<!ELEMENT Y%divide.qname; EMPTY >

<IATTLIST %divide.qname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;

<!ELEMENT Y%power.gname; EMPTY >

<IATTLIST Y%power.qname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

| Y%rem.gname;" >

276

<!ELEMENT %rem.qgname; EMPTY >
<IATTLIST Y%rem.gname;
%MATHML .Common.attrib;
Y%att-definition;
hatt-encoding;

<IENTITY % carithopnary
"Y%plus.qname; | %times.qgname; | %max.qname;

| %min.gname; | %gcd.gqname; | %lcm.gname;" >

<!ELEMENT Y%plus.qname; EMPTY >
<!ATTLIST %plus.qgname;
%MATHML .Common.attrib;
Y%att-definition;
hatt-encoding;

<!ELEMENT %max.qname; EMPTY >

<IATTLIST %max.qname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

<!ELEMENT %min.gname; EMPTY >

<!ATTLIST %min.qgname;
%MATHML . Common.attrib;
Yatt-definition;
%hatt-encoding;

<!ELEMENT Y%times.qname; EMPTY >

<!ATTLIST %times.gname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;

<!ELEMENT %gcd.qgname; EMPTY >

<IATTLIST %gcd.qname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

<!ELEMENT %lcm.gname; EMPTY >
<IATTLIST %lcm.gname;

277

%MATHML . Common . attrib;
%att-definition;
%att-encoding;

<!ENTITY % carithoproot
"Yroot.qname;" >

<!ELEMENT %root.qgname; EMPTY >

<IATTLIST %root.gname;
%MATHML . Common.attrib;
Y%att-definition;
%att-encoding;

<!ENTITY % clogicopquant
"Yexists.qname; | %forall.gname;" >

<!ELEMENT %exists.qgname; EMPTY >

<IATTLIST %exists.qgname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

<!ELEMENT Y%forall.qname; EMPTY >
<IATTLIST %forall.qgname;
%MATHML .Common.attrib;
%att-definition;
%att-encoding;

<IENTITY % clogicopnary
"Y%and.qgname; | %or.qname; | %xor.gname;" >

<!ELEMENT %and.qgname; EMPTY >

<!ATTLIST %and.gname;
%MATHML . Common.attrib;
%att-definition;
%hatt-encoding;

<!ELEMENT Y%or.qgname; EMPTY >

<!ATTLIST %or.qgname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;

278

<!ELEMENT Y%xor.qgname; EMPTY >

<VATTLIST %xor.gname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;

<!ENTITY % clogicoplary
"Ynot.qgname;" >

<!ELEMENT %not.qgname; EMPTY >

<!ATTLIST %not.gname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

<IENTITY % clogicop2ary
"%implies.gname;" >

<!ELEMENT %implies.qname; EMPTY >

<!ATTLIST %implies.qgname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

<!ENTITY % ccalcop
"%log.qname; | %int.gname; | %diff.qgname; | Ypartialdiff.qname; |
%divergence.qname; | %grad.qname; | %curl.gname; | %laplacian.qgname;" >

<!ELEMENT %divergence.qname; EMPTY >
<IATTLIST %divergence.qgname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;

<!ELEMENT %grad.qname; EMPTY >

<IATTLIST %grad.qgname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

<!ELEMENT Y%curl.qgname; EMPTY >

<IATTLIST Y%curl.qgname;
%MATHML . Common.attrib;
Y%att-definition;

279

%att-encoding;

<!ELEMENT %laplacian.qgname; EMPTY >
<!ATTLIST %laplacian.gname;
%MATHML .Common.attrib;
%att-definition;
%att-encoding;

<!ELEMENT %log.qname; EMPTY >

<IATTLIST %log.qgname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

<!ELEMENT %int.qgname; EMPTY >

<!ATTLIST %int.qgname;
%MATHML . Common .attrib;
Y%att-definition;
hatt-encoding;

<!ELEMENT %diff.qname; EMPTY >

<IATTLIST %diff.qgname;
%MATHML . Common.attrib;
%att-definition;
%hatt-encoding;

<!ELEMENT Y%partialdiff.qname; EMPTY >
<IATTLIST %partialdiff.qgname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;

<!ENTITY % ccalcoplary
"%1ln.qgname;" >

<!ELEMENT %1n.gname; EMPTY >

<IATTLIST %ln.qgname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

<!ENTITY % csetoplary

280

"Ycard.qname;" >

<!ELEMENT %card.qname; EMPTY >

<IATTLIST Y%card.qgname;
%MATHML . Common.attrib;
%att-definition;
%hatt-encoding;

<!ENTITY % csetop2ary
"Ysetdiff.qname;" >

<!ELEMENT Y%setdiff.qname; EMPTY >
<IATTLIST %setdiff.qname;
%MATHML .Common.attrib;
Y%att-definition;
hatt-encoding;

<IENTITY % csetopnary
"funion.qname; | %intersect.qname; | Jcartesianproduct.gname; " >

<!ELEMENT %union.qgname; EMPTY >

<!ATTLIST %union.gname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;

<!ELEMENT %intersect.qgname; EMPTY >
<IATTLIST %intersect.qgname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

<!ELEMENT Y%cartesianproduct.qgname; EMPTY >
<IATTLIST Y%cartesianproduct.gname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;

<IENTITY % cseqop
"Ysum.qgname; | %product.gname; | %limit.qname;" >
<!ELEMENT %sum.qgname; EMPTY >

<!'ATTLIST %sum.qgname;
%MATHML . Common .attrib;

281

Y%att-definition;
%hatt-encoding;

<!ELEMENT Y%product.qname; EMPTY >

<IATTLIST %product.qgname;
%MATHML . Common .attrib;
Yiatt-definition;
hatt-encoding;

<!ELEMENT %1limit.qgname; EMPTY >

<!ATTLIST %limit.gname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;

<!ENTITY % ctrigop

"%sin.qname; | %cos.gname; | %tan.qgname;

| %sec.qname; | JYcsc.qname; | Jcot.gname;

| %sinh.qname; | %cosh.qname; | %tanh.qgname;

| %sech.qname; | %csch.gname; | %coth.qgname;

| %arcsin.qgname; | %arccos.qname; | %arctan.gname;

| %arccosh.qname; | %arccot.qname; | %arccoth.gname;
| %arccsc.qname; | %arccsch.qname; | %arcsec.gname;

| %arcsech.qname; | %arcsinh.qname; | %arctanh.qgname;
">

<!ELEMENT %sin.qgname; EMPTY >

<!ATTLIST %sin.qgname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

<!ELEMENT Y%cos.gname; EMPTY >

<IATTLIST Y%cos.qgname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;

<!ELEMENT %tan.qgname; EMPTY >

<IATTLIST %tan.qgname;
%MATHML . Common.attrib;
Y%att-definition;
%hatt-encoding;

282

<!ELEMENT Y%sec.qname; EMPTY >
<IATTLIST Y%sec.qgname;
%MATHML .Common.attrib;
Y%att-definition;
hatt-encoding;

<!ELEMENT Y%csc.qname; EMPTY >

<IATTLIST %csc.qname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

<!ELEMENT Y%cot.qgname; EMPTY >

<IATTLIST %cot.qgname;
%MATHML . Common.attrib;
Yiatt-definition;
%hatt-encoding;

<!ELEMENT %sinh.qname; EMPTY >

<VATTLIST %sinh.qgname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;

<!ELEMENT Y%cosh.qname; EMPTY >

<IATTLIST %cosh.qgname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

<!ELEMENT Y%tanh.qgname; EMPTY >

<!ATTLIST %tanh.qgname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;

<!ELEMENT %sech.qgname; EMPTY >

<!ATTLIST %sech.qgname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

283

<!ELEMENT Y%csch.qname; EMPTY >
<!ATTLIST Y%csch.gname;
%MATHML .Common.attrib;
Y%att-definition;
hatt-encoding;

<!ELEMENT %coth.qgname; EMPTY >

<IATTLIST %coth.qgname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

<!ELEMENT Y%arcsin.qname; EMPTY >

<I!ATTLIST %arcsin.qgname;
%MATHML . Common.attrib;
Yiatt-definition;
%hatt-encoding;

<!ELEMENT Y%arccos.qname; EMPTY >

<IATTLIST Y%arccos.qgname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;

<!ELEMENT %arctan.gname; EMPTY >

<IATTLIST %arctan.qgname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

<!ELEMENT %arccosh.gname; EMPTY >

<IATTLIST %arccosh.qname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;

<!ELEMENT Y%arccot.qname; EMPTY >

<IATTLIST Y%arccot.qgname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;

284

<!ELEMENT %arccoth.qname; EMPTY >

<!ATTLIST %arccoth.qname;
%MATHML . Common.attrib;
%att-definition;
%hatt-encoding;

<!ELEMENT Y%arccsc.qname; EMPTY >

<IATTLIST %arccsc.qname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

<!ELEMENT %arccsch.qname; EMPTY >

<IATTLIST %arccsch.qgname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

<!ELEMENT Y%arcsec.qname; EMPTY >

<I!ATTLIST %arcsec.qgname;
%MATHML . Common.attrib;
%att-definition;
%hatt-encoding;

<!ELEMENT %arcsech.qname; EMPTY >

<IATTLIST %arcsech.qname;
%MATHML . Common .attrib;
%att-definition;
%att-encoding;

<!ELEMENT %arcsinh.qgname; EMPTY >

<IATTLIST %arcsinh.qname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

<!ELEMENT %arctanh.qname; EMPTY >

<IATTLIST %arctanh.qname;
%MATHML . Common.attrib;
Y%att-definition;

285

%att-encoding;

<!ENTITY % cstatopnary
"Jmean.qgname; | %sdev.gname; |
%variance.qname; | Y%median.qgname; |
%mode .gname;" >

<!ELEMENT %mean.qgname; EMPTY >

<!ATTLIST %mean.qgname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

<!ELEMENT %sdev.qname; EMPTY >

<!ATTLIST %sdev.qgname;
%MATHML . Common .attrib;
Y%att-definition;
hatt-encoding;

<!ELEMENT Y%variance.qname; EMPTY >
<I'ATTLIST %variance.qname;
%MATHML . Common.attrib;
%att-definition;
%hatt-encoding;

<!ELEMENT %median.gname; EMPTY >

<!ATTLIST %median.qgname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;

<!ELEMENT %mode.qname; EMPTY >

<IATTLIST %mode.qgname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

<!ENTITY % cstatopmoment
"Ymoment .qgname;" >

<!ELEMENT %moment.qname; EMPTY >

286

<!ATTLIST %moment.qname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

<IENTITY % clalgoplary
"%determinant.qname; |
%transpose.qgname;" >

<!ELEMENT Y%determinant.qname; EMPTY >
<IATTLIST %determinant.qgname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

<!ELEMENT Y%transpose.qname; EMPTY >
<IATTLIST %transpose.qname;
%MATHML . Common .attrib;
Y%att-definition;
hatt-encoding;

<!ENTITY % clalgop2ary
"Yvectorproduct.qname;
| %scalarproduct.qgname;
| %outerproduct.qgname;" >

<!ELEMENT %vectorproduct.qname; EMPTY >
<IATTLIST %vectorproduct.qgname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

<!ELEMENT Y%scalarproduct.qname; EMPTY >
<IATTLIST Y%scalarproduct.qname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;

<!ELEMENT Y%outerproduct.qname; EMPTY >
<!ATTLIST Y%outerproduct.qname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

287

<!ENTITY % clalgopnary
"Yiselector.qgname;" >

<!ELEMENT Y%selector.qname; EMPTY >
<IATTLIST %selector.qname;
%MATHML . Common .attrib;
Y%att-definition;
hatt-encoding;

<!- Content elements: relations ->

<!ENTITY % cgenrel2ary
"Y%neq.qname; | %factorof.gname;" >

<!ELEMENT Y%neq.qgname; EMPTY >

<!ATTLIST %neq.gname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

<!ELEMENT Y%factorof.gname; EMPTY >
<IATTLIST %factorof.qgname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

<IENTITY % cgenrelnary
"Yeq.qname; | %leq.qname; | %lt.gname; | %geq.gname;
| %gt.qname;| %equivalent.qgname; | %approx.gname;" >

<IELEMENT %eq.qname; EMPTY >

<IATTLIST %eq.qname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

<!ELEMENT %equivalent.gname; EMPTY >
<IATTLIST %equivalent.qgname;
%MATHML . Common.attrib;
Y%att-definition;
%att-encoding;

<!ELEMENT Y%approx.qname; EMPTY >

288

<IATTLIST %approx.qname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

<!ELEMENT %gt.qgname; EMPTY >

<VATTLIST %gt.qname;
%MATHML . Common.attrib;
Y%att-definition;
hatt-encoding;

<!ELEMENT %1t.qgname; EMPTY >

<I'ATTLIST %1t.qname;
%MATHML . Common.attrib;
%att-definition;
%hatt-encoding;

<!ELEMENT Y%geq.qname; EMPTY >

<IATTLIST Y%geq.qname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

<!ELEMENT %leq.gname; EMPTY >

<!ATTLIST %leq.gname;
%MATHML . Common . attrib;
%att-definition;
%att-encoding;

<!ENTITY % csetrel2ary
"%in.gname; | %notin.qname; | %notsubset.qgname;

<!ELEMENT %in.qgname; EMPTY >

<IATTLIST %in.qgname;
%MATHML . Common.attrib;
Yiatt-definition;
hatt-encoding;

<!ELEMENT %notin.qgname; EMPTY >

<IATTLIST %notin.gname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;

| Y%notprsubset.qname;" >

289

<!ELEMENT %notsubset.qname; EMPTY >
<IATTLIST %notsubset.qgname;
%MATHML . Common.attrib;
%att-definition;
%hatt-encoding;

<!ELEMENT %notprsubset.gname; EMPTY >
<IATTLIST %notprsubset.qgname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;

<!ENTITY % csetrelnary
"%subset.qname; | Yprsubset.gname;" >

<!ELEMENT Y%subset.qname; EMPTY >

<IATTLIST %subset.qgname;
%MATHML . Common.attrib;
Y%att-definition;
%hatt-encoding;

<!ELEMENT Y%prsubset.qname; EMPTY >
<!ATTLIST Y%prsubset.qname;
%MATHML . Common .attrib;
Yiatt-definition;
%hatt-encoding;

<!ENTITY % cseqrel2ary
"Ytendsto.qgname;" >

<!ELEMENT %tendsto.qname; EMPTY >
<IATTLIST %tendsto.qname;
%MATHML . Common.attrib;
%att-definition;
%att-encoding;
hatt-type;

<!- Content elements: quantifiers ->
<!ENTITY % cquantifier

"%lowlimit.qgname; | %uplimit.gname; | %bvar.qname;
| %degree.qgname; | %logbase.qname;

290

| Ymomentabout.qname; | %domainofapplication.gname; " >

<!ATTLIST %lowlimit.gname;
%MATHML . Common . attrib;

<IATTLIST %uplimit.qgname;
%MATHML . Common . attrib;

<!ATTLIST %bvar.qgname;
%MATHML . Common . attrib;

<IATTLIST Y%degree.qname;
%MATHML . Common .attrib;

<IATTLIST %logbase.qname;
%MATHML . Common .attrib;

<IATTLIST %momentabout.qgname;
%MATHML . Common.attrib;

<IATTLIST %domainofapplication.qgname;
%MATHML . Common . attrib;

<!- Operator groups ->

<IENTITY % coplary
"Yicfuncoplary; | %carithoplary; | Y%clogicoplary; |
%ccalcoplary; | Y%ctrigop; | %clalgoplary; |
%csetoplary;" >

<!ENTITY % cop2ary
"Yicarithop2ary; | %clogicop2ary;| Y%clalgop2ary; | %csetop2ary;" >

<!ENTITY % copnary
"Y%cfuncopnary; | J%carithopnary; | %clogicopnary; |
%csetopnary; | %cstatopnary; | %clalgopnary;" >
<!ENTITY % copmisc
"Yicarithoproot; | Y%carithoplor2ary; | Y%ccalcop; |

%cseqop; | %cstatopmoment; | Y%clogicopquant;" >

<!- Relation groups ->

2901

<!ENTITY % crel2ary
"Yicgenrel2ary; | Y%csetrel2ary; | Ycseqrellary;" >

<!ENTITY % crelnary
"Jicgenrelnary; | Y%csetrelnary;" >

<!- Content constructs: all ->

<IENTITY % Content

"Yctoken; | Ycspecial; | %cother; | Y%csemantics; | %cOary;
| %cconstructor; | Ycquantifier; | %coplary; | Y%cop2ary;
| %copnary; |%copmisc; | %crel2ary; | %crelnary;" >

<!- Content constructs for substitution in presentation structures ->

<!ENTITY % ContInPres

"%ci.gname; |%csymbol.qname;| Y%cn.qname; | %cOary; |
%apply.qgname; | %fn.qname; |

Jlambda.qgname; | %reln.gname; |

Yicconstructor; |

%semantics.qname; |%declare.qgname;" >

D e ->
<!- Recursive definition for content of expressions. Include
presentation constructs at lowest level so presentation
layout schemata hold presentation or content elements.
Include content constructs at lowest level so content
elements hold PCDATA or presentation elements at leaf
level (for permitted substitutable elements in context)

<IENTITY % ContentExpression
"(%Content; | %PresInCont;)x*" >

<!ENTITY % PresExpression
"(Y%Presentation; | %ContInPres;)x" >

<!ENTITY % MathExpression
"(%PresInCont; | %ContInPres;)*" >

<!- PCDATA or MathML character elements ->
<IENTITY % MathMLCharacters
"#PCDATA | Ymglyph.qgname; " >

<!- Content elements: tokens ->
<!- (may contain embedded presentation constructs) ->

<!ELEMENT Y%ci.qgname; (%MathMLCharacters; | %PresInCont;)* >
<!ELEMENT %csymbol.qname; (7MathMLCharacters; | %PresInCont;)* >
<!ELEMENT Y%cn.qgname; (%MathMLCharacters; | %sep.qname; | %PresInCont;)* >

292

<!- Content elements: special —>

<!ELEMENT %apply.qname; (%ContentExpression;) >
<!ELEMENT Y%reln.qgname; (%ContentExpression;) >
<IELEMENT %lambda.qname; (%ContentExpression;) >

<!- Content elements: other ->

\4

<!ELEMENT Y%condition.gname; (%ContentExpression;)
<!ELEMENT Ydeclare.qgname; (%ContentExpression;)

\4

<!- Content elements: semantics ->

<!ELEMENT %semantics.qgname; (%ContentExpression;) >
<!ENTITY % Annotation.content " (#PCDATA)" >
<!ELEMENT %annotation.qgname; %Annotation.content; >

<IENTITY % Annotation-xml.content "ANY" >
<!ELEMENT %annotation-xml.qname; %Annotation-xml.content; >

<!- Content elements: constructors ->

<IELEMENT %interval.qname; (%ContentExpression;) >
<!ELEMENT Y%set.qname; (%ContentExpression;) >
<IELEMENT %list.qgname; (%ContentExpression;) >
<!ELEMENT Y%vector.qname; (%ContentExpression;) >
<IELEMENT Ymatrix.qname; (%ContentExpression;) >
<IELEMENT Ymatrixrow.qname; (%ContentExpression;) >
<!ELEMENT Ypiecewise.qname; ((%piece.qname;)*, (%otherwise.gname;)?) >
<!ELEMENT Y%piece.qgname; (%ContentExpression;) >
<!ELEMENT %otherwise.qname; (%ContentExpression;) >
<!- Content elements: operator (user-defined) ->
<!ELEMENT %fn.qgname; (%ContentExpression;) >
<!- Content elements: quantifiers ->
<!ELEMENT %lowlimit.qname; (%ContentExpression;) >
<!ELEMENT %uplimit.qgname; (%ContentExpression;) >
<!ELEMENT %bvar.qgname; (%ContentExpression;) >
<IELEMENT %degree.qgname; (%ContentExpression;) >
<!ELEMENT %logbase.qname; (%ContentExpression;) >
<!ELEMENT %momentabout .qgname; (%ContentExpression;) >

<!ELEMENT Y%domainofapplication.qgname; (/,ContentExpression;) >

293

<!- Presentation layout schemata contain tokens,

=->

layout

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<IELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<IELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

and content schemata.

Jmstyle.qname;
Jmerror.qgname;
%mphantom.gname;
Jmrow.gname;
Jmfrac.qname;
%msqrt.qgname;
Jmenclose.qgname;
Jmroot.qgname;
%msub.qgname;
Jmsup.qname;
/msubsup.qname;
Jmmultiscripts.qname;
/munder .gname;
Jmover .qname;
/munderover.qgname;
Jmtable.qname;
%mtr.qgname;
Jmlabeledtr.qname;
%mtd.qgname;
%maction.qgname;
#mfenced.qname;
%mpadded.qgname;

<!- Presentation elements contain PCDATA or malignmark constructs. ->

<!ELEMENT %mi.qname;
%malignmark.qname;)* >
<!ELEMENT %mn.qgname;
%malignmark.qname;)* >
<!ELEMENT %mo .qgname;
%malignmark.qname;)* >
<!ELEMENT %mtext.qgname;
Jmalignmark.qgname;)* >
<!ELEMENT Y%ms.qgname;
%malignmark.qname;)* >

<!- Browser interface definition

(%PresExpression;)
(%PresExpression;)
(%PresExpression;)
(%PresExpression;)
(%PresExpression;)
(%PresExpression;)
(%PresExpression;)
(%PresExpression;)
(%PresExpression;)
(%PresExpression;)
(%PresExpression;)
(%PresExpression;)
(%PresExpression;)
(%PresExpression;)
(%PresExpression;)
(%PresExpression;)
(%PresExpression;)
(%PresExpression;)
(%PresExpression;)
(%PresExpression;)
(%PresExpression;)
(%PresExpression;)

(#MathMLCharacters;
(%MathMLCharacters;
(%MathMLCharacters;
(#MathMLCharacters;

(%MathMLCharacters;

<!- Attributes for top-level element "math" ->

<IENTITY % att-macros

"macros CDATA
<IENTITY % att-mode
"mode CDATA

<!ENTITY % att-display

#IMPLIED" >

#IMPLIED" >

VvV VVVV VYV VVV VYV VYV VYV VYV VYVVYV

294

"display CDATA #IMPLIED" >

<!ENTITY % att-topinfo
"%MATHML . Common.attrib;
Y%att-macros;
Y%iatt-mode;
%att-display;" >

<!- Attributes for browser interface element ->

<!ENTITY % att-baseline

"baseline CDATA #IMPLIED" >
<!ENTITY % att-overflow

"overflow (scroll | elide | truncate | scale) ’scroll’" >
<IENTITY Y% att-altimg

"altimg CDATA #IMPLIED" >
<IENTITY % att-alttext
"alttext CDATA #IMPLIED" >

<!ENTITY % att-browif
"%hatt-type;
%att-name;
%att-height;
%hatt-width;
Y%att-baseline;
Y%att-overflow;
%att-altimg;
%att-alttext;" >

2 ->
<!- The top-level element "math" contains MathML encoded
mathematics. The "math" element has the browser info
attributes iff it is also the browser interface element.

<!ELEMENT %math.qgname; (%MathExpression;) >

<!ATTLIST %math.qgname;
%att-topinfo;
Y%att-browif; >

<!- MathML Character Entitiesc.iiiiiiiiiiiii ittt ->
<!ENTITY % mathml-charent.module "INCLUDE" >

<! [%mathml-charent.module; [

<!- Entity sets from ISO Technical Report 9573-13 ->

<IENTITY % ent-isoamsa

PUBLIC "-//W3C//ENTITIES Added Math Symbols: Arrow Relations for MathML 2.0//EN"
"isoamsa.ent" >

295

%ent-isoamsa;

<IENTITY % ent-isoamsb
PUBLIC "-//W3C//ENTITIES Added Math Symbols: Binary Operators for MathML 2.0//EN"
"isoamsb.ent" >
Yient-isoamsb;

<IENTITY % ent-isoamsc
PUBLIC "-//W3C//ENTITIES Added Math Symbols: Delimiters for MathML 2.0//EN"
"isoamsc.ent" >
%ent-isoamsc;

<!ENTITY % ent-isoamsn
PUBLIC "-//W3C//ENTITIES Added Math Symbols: Negated Relations for MathML 2.0//EN"
"isoamsn.ent" >
%ent-isoamsn;

<!ENTITY % ent-isoamso
PUBLIC "-//W3C//ENTITIES Added Math Symbols: Ordinary for MathML 2.0//EN"
"isoamso.ent" >
%ent-isoamso;

<IENTITY % ent-isoamsr
PUBLIC "-//W3C//ENTITIES Added Math Symbols: Relations for MathML 2.0//EN"
"isoamsr.ent" >
Yient—-isoamsr;

<!ENTITY % ent-isogrk3
PUBLIC "-//W3C//ENTITIES Greek Symbols for MathML 2.0//EN"
"isogrk3.ent" >
%ent-isogrk3;

<!ENTITY % ent-isomfrk
PUBLIC "-//W3C//ENTITIES Math Alphabets: Fraktur for MathML 2.0//EN"
"isomfrk.ent" >
%ent-isomfrk;

<!ENTITY % ent-isomopf
PUBLIC "-//W3C//ENTITIES Math Alphabets: Open Face for MathML 2.0//EN"
"isomopf.ent" >
%ent-isomopf ;

<IENTITY % ent-isomscr
PUBLIC "-//W3C//ENTITIES Math Alphabets: Script for MathML 2.0//EN"
"isomscr.ent" >
Yent-isomscr;

<IENTITY % ent-isotech
PUBLIC "-//W3C//ENTITIES General Technical for MathML 2.0//EN"

296

Yent-isotech;

<!- Entity sets from informative annex to ISO 8879:1986 (SGML)

<!ENTITY %
PUBLIC

Yent-isobox;

<!ENTITY %
PUBLIC

hent-isocyrl;

<!ENTITY Y%
PUBLIC

fent-isocyr2;

<!ENTITY Y
PUBLIC

Yent-isodia;

<!ENTITY Y%
PUBLIC

%ent-isolati;

<!ENTITY %
PUBLIC

Jent-isolat2;

<!ENTITY Y
PUBLIC

Yient-isonum;

<!ENTITY Y
PUBLIC

fent-isopub;

<!- New characters defined by MathML

<!ENTITY Y%

"isotech.ent" >

ent-isobox
"-//W3C//ENTITIES
"isobox.ent" >

ent-isocyrl
"-//W3C//ENTITIES
"isocyrl.ent" >

ent-isocyr2
"-//W3C//ENTITIES
"isocyr2.ent" >

ent-isodia
"-//W3C//ENTITIES
"isodia.ent" >

ent-isolatil
"-//W3C//ENTITIES
"isolatl.ent" >

ent-isolat2
"-//W3C//ENTITIES
"isolat2.ent" >

ent-isonum
"-//W3C//ENTITIES
"isonum.ent" >

ent-isopub
"-//W3C//ENTITIES
"isopub.ent" >

ent-mmlextra

Box and Line Drawing for MathML 2.0//EN"

Russian Cyrillic for MathML 2.0//EN"

Non-Russian

Diacritical

Added Latin

Added Latin

Numeric and

Cyrillic for MathML 2.0//EN"

Marks for MathML 2.0//EN"

1 for MathML 2.0//EN"

2 for MathML 2.0//EN"

Special Graphic for MathML 2.0//EN"

Publishing for MathML 2.0//EN"

PUBLIC "-//W3C//ENTITIES Extra for MathML 2.0//EN"

297

"mmlextra.ent" >
%ent-mmlextra;

<!- MathML aliases for characters defined above ->

<IENTITY % ent-mmlalias
PUBLIC "-//W3C//ENTITIES Aiases for MathML 2.0//EN"
"mmlalias.ent" >
%ent-mmlalias;

<!- end of MathML Character Entity section ->]1>
<!- Revision History:

Initial draft (syntax = XML) 1997-05-09
Stephen Buswell
Revised 1997-05-14
Robert Miner
Revised 1997-06-29 and 1997-07-02
Stephen Buswell
Revised 1997-12-15
Stephen Buswell
Revised 1998-02-08
Stephen Buswell
Revised 1998-04-04
Stephen Buswell
Entities and small revisions 1999-02-21
David Carlisle
Added attribute definitionURL to ci and cn 1999-10-11
Nico Poppelier
Additions for MathML 2 1999-12-16
David Carlisle
Namespace support 2000-01-14
David Carlisle
XHTML Compatibility 2000-02-23
Murray Altheim
New content elements 2000-03-26
David Carlisle
Further revisions for MathML2 CR draft 2000-07-11
David Carlisle
Further revisions for MathML2 CR draft 2000-10-31
David Carlisle

->

<I-end of MathML 2.0 DTD it i et et et iaae e ->
S ->

298

Appendix B

Content Markup Validation Grammar

Informal EBNF grammar for Content Markup structure validation

// Notes

//

// This defines the valid expression trees in content markup
//

// ** it does not define attribute validation -

// ** this has to be done on top

//

// Presentation_tags is a placeholder for a valid

// presentation element start tag or end tag

//

// #PCDATA is the XML parsed character data

//

// symbols beginning with ’_’ for example _mmlarg are internal symbols
// (recursive grammar usually required for recognition)

//

// all-lowercase symbols for example ’ci’ are terminal symbols
// representing MathML content elements

//

// symbols beginning with Uppercase are terminals

// representating other tokens

//

// revised sb 3.nov.97, 16.nov.97 and 22.dec.1997

// revised sb 6.jan.98, 6.Feb.1998 and 4.april.1998

// whitespace definitions including presentation_tags

Presentation_tags ::= "presentation" //placeholder
Space 1= #x09 | #x0A | #xoD | #x20 //tab, 1f, cr, space characters
S ::= (Space | Presentation_tags)* //treat presentation as space

// only for content validation
// characters
Char ::= Space | [#x21 - #xFFFD]
| [#x00010000 - #x7FFFFFFFF] //valid XML chars
// start and end tag functions
// start(\%x) returns a valid start tag for the element \%x
// end(\%x) returns a valid end tag for the element \/x
// empty(\%x) returns a valid empty tag for the element \%x

299

//

// start(ci) = "<cid>"

// end(cn) 1i= "</en>"
// empty(plus) = "<plus/>"

//

// The reason for doing this is to avoid writing a grammar
// for all the attributes. The model below is not complete
// for all possible attribute values.

_start (\%x) pi= "<\%x" (Char - ’>’)* ">"

// returns a valid start tag for the element \Jx

_end (\%x) ::= "<\Jx" Spacex ">"

// returns a valid end tag for the element \%x

_empty (\%x) ii= "<\¥%x" (Char - ’>7)x "/>"

// returns a valid empty tag for the element \Jx

_sg(\%x) S _start (\%x)

// start tag preceded by optional whitespace

_eg(\%x) ::= _end(\%x) S

// end tag followed by optional whitespace

_ey (\%x) ::= 8 _empty(\%x) S

// empty tag preceded and followed by optional whitespace
// mathml content constructs

// allow declare within generic argument type so we can insert it anywhere

_mmlall ::= _container | _relation | _operator | _qualifier | _other
_mmlarg ::= declare*x _container declare*

_container ::= _token | _special | _constructor

_token ::=ci | cn | csymbol

_special ::= apply | lambda | reln | fn

_constructor ::= interval | list | matrix | matrixrow | set | vector
_other ::= condition | declare | sep

_qualifier ::= lowlimit | uplimit | bvar | degree | logbase

// relations

_relation ::= _genrel | _setrel | _seqrel2ary

_genrel ::= _genrel2ary | _genrelnary

_genrel2ary ::= ne

_genrelnary t:=eq | leq | 1t | geq | gt

_setrel ::= _seqrel2ary | _setrelnary

_setrel2ary ::= in | notin | notsubset | notprsubset

_setrelnary ::= subset | prsubset

_seqrel2ary ::= tendsto

//operators

_operator = _funcop | _sepop | _arithop | _calcop

| _seqop | _trigop | _statop | _lalgop
| _logicop | _setop

_funcop ::= _funcoplary | _funcopnary
_funcoplary = inverse | ident
_funcopnary = fn| compose // general user-defined function is n-ary

// arithmetic operators
// (note minus is both lary and 2ary)
_arithop ::= _arithoplary | _arithop2ary | _arithopnary | root

300

_arithoplary abs | conjugate | exp | factorial | minus

_arithop2ary = quotient | divide | minus | power | rem
_arithopnary = plus | times | max | min | gcd

// calculus

_calcop = _calcoplary | log | int | diff | partialdiff
_calcoplary ::=1n

// sequences and series

_seqop ::= sum | product | limit

// trigonometry

_trigop ::=sin | cos | tan | sec | csc | cot | sinh

| cosh | tanh | sech | csch | coth
| arcsin | arccos | arctan
// statistics operators

_statop ::= _statopnary | moment

_statopnary ::= mean | sdev | variance | median | mode

// linear algebra operators

_lalgop ::= _lalgoplary | _lalgopnary

_lalgoplary = determinant | transpose

_lalgopnary = selector

// logical operators

_logicop ::= _logicoplary | _logicopnary | _logicop2ary | _logicopquant

_logicoplary ::= not

_logicop2ary ::= implies

_logicopnary = and | or | xor

_logicopquant = forall | exists

// set theoretic operators

_setop ::= _setop2ary | _setopnary

_setop2ary = setdiff

_setopnary ::= union | intersect

// operator groups

_unaryop ::= _funclary | _arithoplary | _trigop | _lalgoplary
| _calcoplary | _logicoplary

_binaryop ::= _arithop2ary | _setop2ary | _logicop2ary

_naryop ::= _arithopnary | _statopnary | _logicopnary
| _lalgopnary | _setopnary | _funcopnary

_ispop ::= int | sum | product

_diffop ::= diff | partialdiff

_binaryrel ::= _genrel2ary | _setrel2ary | _seqrel2ary

_naryrel ::= _genrelnary | _setrelnary

//separator

sep = _ey(sep)

// leaf tokens and data content of leaf elements
// note _mdata includes Presentation constructs here.
_mdatai ::= (#PCDATA | Presentation_tags)x*

_mdatan = (#PCDATA | sep | Presentation_tags)x*
ci = _sg(ci) _mdatai _eg(ci)
cn = _sg(cn) _mdatan _eg(cn)

// condition - constraints constraints. contains either
// a single reln (relation), or

301

// an apply holding a logical combination of relatiomns, or
// a set (over which the operator should be applied)

condition ::= _sg(condition) reln | apply | set _eg(condition)
// domains for integral, sum , product
_ispdomain ::= (lowlimit uplimit?)

| uplimit

| interval

| condition

// apply construc
apply ::= _sg(apply) _applybody _eg(apply)

_applybody = (_unaryop _mmlarg)
//1-ary ops

| (_binaryop _mmlarg _mmlarg)
//2-ary ops

| (_naryop _mmlargx)
//n-ary ops, enumerated arguments

| (_naryop bvar* condition _mmlarg)
//n-ary ops, condition defines argument list

| (_ispop bvar? _ispdomain? _mmlarg)
//integral, sum, product

| (_diffop bvar* _mmlarg)
//differential ops

| (log logbase? _mmlarg)
//1logs

| (moment degree? _mmlargk)
//statistical moment

| (root degree? _mmlarg)
//radicals - default is square-root

| (1imit bvar* lowlimit? condition? _mmlarg)
//limits

| (_logicopquant bvar+ condition? (reln | apply))
//quantifier with explicit bound variables
// equations and relations - reln uses lisp-like syntax (like apply)
// the bvar and condition are used to construct a "such that" or
// "where" constraint on the relation
reln ::= _sg(reln) _relnbody _eg(reln)
_relnbody (_binaryrel bvar* condition? _mmlarg _mmlarg)

| (_naryrel bvar* condition? _mmlarg*)

// fn construct

fn ::= _sg(fn) _fnbody _eg(fn)

_fnbody ::= Presentation_tags | container

// lambda construc - note at least 1 bvar must be present

lambda = _sg(lambda) _lambdabody _eg(lambda)

_lambdabody = bvar+ _container //multivariate lambda calculus
//declare construct

declare ::= _sg(declare) _declarebody _eg(declare)
_declarebody = ci (fn | constructor)?

// constructors

interval = _sg(interval) _mmlarg _mmlarg _eg(interval)

302

//start, end define interval

set = _sg(set) _lsbody _eg(set)
list ::= _sg(list) _lsbody _eg(list)
_lsbody 1:= _mmlarg* //enumerated arguments
| (bvar* condition _mmlarg) //condition constructs arguments
matrix ::= _sg(matrix) matrixrow* _eg(matrix)
matrixrow ::= _sg(matrixrow) _mmlall* _eg(matrixrow)
//allows matrix of operators
vector ::= _sg(vector) _mmlargx _eg(vector)

//qualifiers - note the contained _mmlarg could be a reln

lowlimit = _sg(lowlimit) _mmlarg _eg(lowlimit)
uplimit = _sg(uplimit) _mmlarg _eg(uplimit)
bvar = _sg(bvar) ci degree? _eg(bvar)
degree = _sg(degree) _mmlarg _eg(degree)
logbase = _sg(logbase) _mmlarg _eg(logbase)

//relations and operators
// (one declaration for each operator and relation element)

_relation = _ey(\Jrelation) //for example <eq/> <1t/>
_operator ::= _ey(\operator) //for example <exp/> <times/>
//the top-level math element

math ::= _sg(math) mmlall* _eg(math)

303

Appendix C

Content Element Definitions

C1l About Content Markup Elements

The primary role of MathML content elements is to provide a mechanism for recording that a particular notational
structure has a particular mathematical meaning. To this end, every content element must have a mathematical defi
tion associated with it in some form. The purpose of this appendix is to prakiielt definitions. (An index to the
definitions is provided later in this document.) Authors may adapt the notation to their own particular needs by using
mechanisms provided to override these default definitions for selected content elements.

The mathematical definitions below are not restricted to any one format. There are several reasons for allowing thi
nearly all derived from the fact that if it is extremely important to allow authors to make use of existing definitions from
the mathematical literature.

1. There is no suitable notation in common use. For example, the mathematical libraries of even the mos
extensive mathematical computation systems in use today capture only a small fraction of the mathematic:
literature and furthermore much of mathematics is not computational.

2. In most cases, the translation of a mathematical definition into a new notation is an inappropriate use of al
author’s energy and time.
3. The task of designing a new machine readable language suitable for recording semantic descriptions is or

that goes substantially beyond the scope of this particular recommendation. It would also overlap substar
tially with the efforts of such groups as the OpenMath Consortium (see also the North American OpenMath
Initiative, and the European OpenMath Consortium).

The key issues for both archival and computational purposes are that there be a definition and that the author have
mechanism to specify which definition is intended for a given instance of a notational construct. This requirement i
important whether or not there is an implementation of a particular concept or object in a mathematical computatio
system. The definition may be as vague as claiming thatFs&yan unknown but differentiable function from the real
numbers to the real numbers, or as complicated as requiring-thatan elaborate function or operation as defined in

a specific research paper. The important thing is that the reader always have a way of determining how the notation
being used.

Cl1 The Default Definitions

An author’s decision to use content elements is a decision to used defined objects. To make this easier, default definitic
are provided. In this way, an author need only provide explicit definitions where the usage differs from the default. Wher
possible the default definitions have naturally been chosen to reflect common usage.

Definitions are overridden in a particular instance by making use ofi¢liénitionURL attribute. The value of this

attribute is a URI (notwithstanding its old-style name) and beyond that its format is unspecified. It may even be the cas
that thedefinitionURL'’S value is just a name invented by the author. In that case it serves to warn the reader (anc
computational systems) that the author is using a private local definition. It may be the URL of a mathematical pape

304

or a reference to a traditional source in which the construct is defined. If the author's mathematical operator matche
exactly an operator in a particular computational system, an appropriate definition might use a Mathddkics
element to establish a correspondence between two encodings. Whatever format is chosen, the only requirement is t
some sort of definition be indicated.

This rest of this appendix provides detailed descriptions of the default semantics associated with each of the MathM
content elements. Since this is exactly the role intended for the encodings under development by the OpenMath Cc
sortium, and one of our goals is to foster cooperation in such standardization efforts we have presented the defal
definitions in a format modeled on OpenMathémtent dictionaries. While the actual details differ somewhat from the
OpenMath specification, the underlying principles are the same.

cC.1.2 The Structure of an MMLdefinition.

In the XML source for this appendix each MathML element is described using an XML vocabulary designed for the
purpose. However, though well adapted to machine processing the XML form of the definitions is difficult to read for
humans. Therefore the text below is composed in a way automatically derived by XSL transformations (and typesettin
in the case of the PDF versions of the MathML specification) from the XML source, but formatted so that it is much
easier to read and comprehend. The conventions employed will be explained just below in the course of going throug
the elements of the XML markup in the XML source. The first example definition, but only that one, will be provided
in both the more legible form and in raw XML, so the difference can be appreciated.

The top element iEMLdefinition. The sub-elements identify the various parts of the description and include:

name PCDATA providing the name of the MathML element.
description A CDATA description of the object that an element represents. This will often reference more traditional
texts or papers or existing papers on the Web.
classification Each MathML element must be classified according to its mathematical role.
punctuation Some elements exist simply as an aid to parsing. For exampleeih@lement is used to
separate th€DATA defining a rational number into two parts in a manner that is easily parsed by an
XML application. These objects are referred tgasctuation.
descriptor Some elements exist simply to modify the properties of an existing element or mathematical
object. For example théeclare construct is used to reset the default attribute values, or to associate
a name with a specific instance of an object. These kinds of elements are referreldsaiasors and
the type of the resulting object is the same as that of element being modified, but with the new attribute
values.
function (operator) The traditional mathematical functions and operators are represented in MathML by
empty XML elements such aslus andsin. Thesefunction definitions are parameterized by their
XML attribute values (for example, they may be of type vector) and are either used as is, for example
when discussing the properties of a particular function or operator, or theyppiied to arguments
using theapply. The latter case is referred to as function application. Functions are often classified
according to how they are used. For exampleghes element is amary operator. This additional
information is captured by the signature. Tdignature of a function (see below) describes how it is
to be used a mathematical function insideagply element. Each combination of types of function
arguments used inside apply gives rise to ampply element of a given type.
constant Mathematical constants are generally represented by empty elements and are distinguished fror
functions by the fact that they are not used as the first argument of an apply. Their signature is simply
the type of the object they represent.
constructor The remaining objects that ‘contain’ sub-elements are all olj@itructors of some sort or
another. They combine the sub-elements into a compound mathematical object such as a constant, s
list, or a function application. For example, thembda elementconstructs a function definition from
a list of variables and an expression. while #yly element constructs fnction application. By

305

function application we mean the result of applying the first element of the apply (the function) to the
zero or more remaining elements (the argumentsjuition application represents an object in the
range of the function. For each given combination of type and order of XML children, the signature of
a constructor indicates the type (and sometimes subtype) of the resulting object.

MMLattribute Some of the XML attributes of a MathML content element have a direct impact on the mathematical
semantics of the object. For example the attribute of thecn element is used to determine what type of
constant (integer, real, etc.) is being constructed. Only those attributes that affect the mathematical propertie
of an object are listed here and typically these also appear explicitly in the signature.

signature The signature is a systematic representation that associates the types of different possible combinations of
tributes and function arguments to type of mathematical object that is constructed. The possible combination
of parameter and argument types (the left-hand side) each result in an object of some type (the right-han
side). In effect, it describes how to resolve operator overloading. For constructors, the left-hand side of the
signature describes the types of the child elements and the right-hand side describes the type of object th
is constructed. For functions, the left-hand side of the signature indicates the types of the parameters ar
arguments that would be expected when it is applied, or used to construct a relation, and the right-hand sic
represents the mathematical type of the object constructed kapthie. Modifiers modify the attributes of
an existing object. For examplesgmbol might become aymbol of type vector. The signature must be able
to record specific attribute values and argument types on the left, and parameterized types on the right.. Tt
syntax used for signatures is of the general form:
[<attribute name>=<attribute-value>](<list of argument types>)

-> <mathematical result type>(<mathematical subtype>)
The MMLattributes, if any, appear in the forrmame>=<value>. They are separated notationally from the

rest of the arguments by square braces. The possible values are usually taken from an enumerated list, and
signature is usually affected by selection of a specific value. For the actual function arguments and name
parameters on the left, the focus is on the mathematical types involved. The function argument types ar
presented in a syntax similar to that used for a DTD, with the one main exception. The types of the namec
parameters appear in the signature<asementname>=<type> in a manner analogous for that used for
attribute values. For example, if the argument is named ¥e4x) then it is represented in the signature by

an equation as in:

[<attribute name>=<attributevalue>] (bvar=symbol,<argument list>) >

<mathematical result type>(<mathematical subtype>)
There is no formal type system in MathML. The type values that are used in the signatures are common matt

ematical types such as integer, rational, real, complex (such as found in the descriptiproof name such

as string or the name of a MathML constructor. Various collections of types sualydsng, matrixtype

are used from time to time. The type namenlpresentation is used to represent any valid MathML presen-
tation object and the namMathMLtype is used to describe the collection of all MathML types. The type
algebraic is used for expressions constructed from one or more symbols through arithmetic operations anc
interval-type refers to the valid types of intervals as defined in chapter 4. The collection of types is not closed.
Users writing their own definitions of new constructs may introduce new types. Depending on the types in-
volved, more than one signature may apply. For example, many arithmetic operations involving integers maj
to integers, but since integers are real numbers, the signature for real numbers also is valid. Generally, tt
signature providing the most information is most appropriate. No mathematical evaluation ever takes plac
in MathML. Every MathML content element either refers to a defined object such as a mathematical function
or it combines such objects in some way to build a new object. For purposes of the signature, the constructe
object represents an object of a certain type parameterized type. For example the result of applyiog
arguments is an expression that represents a sum. The type of the resulting expression depends on the ty,
of the operands, and the values of the MathML attributes.

example Examples of the use of this object in MathML are included in these elements.

306

property This element describes the mathematical properties of such objects. For simple associations of values wi
specific instances of an object, the first child is an instance of the object being defined. The second is
value Or approx (approximation) element that contains a MathML description of this particular value.
More elaborate conditions on the object are expressed using the MathML syntax.

comment These elements contain only PCDATA and can occur as a child of the MMLDefinition at any point.

C.2 Definitions of MathML Content Elements
c.21 Token Elements
C2.1.1 MMLdefinition: cn

Description The cn element is used to encode numerical constants. The mathematical type of number is given as ¢
attribute. The default type is "real”. Numbers such as floating-point, rational and complex, require two parts
for a complete specification. The parts of such a number are separated by an empty sep element.

Many of the commonly occurring numeric constants suchpds have their own elements.
See also Sectioh.4.1.1
Classification constant

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type integer | rational | complex-cartesian | complex-polar | real | floatiregl
point | MathMLtype
base integer between 2 and 36 10

Signature [type=integer](numstring) -> constant(integer)
[base=base-value](numstring) -> constant(integer)
[type=rational](numstring,numstring) -> constant(rational)
[type=complex-cartesian](numstring,numstring) -> constant(complex)
[type=rational](numstring,numstring) -> constant(rational)
[definitionURL=definition](numstring*) -> constant(user-defined)

Property <apply><eq/><cn base="16"> A </cn><cn> 10 </cn></apply>

Property <apply><eq/><cn base="16"> B </cn><cn> 11 </cn></apply>

Property <apply><eq/><cn base="16"> C </cn><cn> 12 </cn></apply>

Property <apply><eq/><cn base="16"> D </cn><cn> 13 </cn></apply>

Property <apply><eq/><cn base="16"> E </cn><cn> 14 </cn></apply>

Property <apply><eq/><cn base="16"> F </cn><cn> 15 </cn></apply>

Example <cn> 245 </cn>

Example <cn type="integer"> 245 </cn>

Example <cn type="integer" base="16"> A </cn>

Example <cn type="rational"> 245 <sep/> 351 </cn>

Example <cn type="complex-cartesian"> 1 <sep/> 2 </cn>

Example <cn> 245 </cn>

Example <apply><eq/>
<cn type="e-notation"> 2 <sep/> 5 </cn>
<apply><times/><cn>2</cn><apply><power/><cn>10</cn><cn>5</cn></apply></apply>
</apply>

307

C.2.1.2 MMLdefinition: ci

Description This element constructs an identifier (symbolic name). The type attribute is used to indicate the type of
object being specified. By default, the type is real.
See also Sectioh.4.1.2

Classification constructor

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type constant | matrix | set | vector | list | MathMLtype real

Signature (stringlmmlpresentation) -> symbol
[type=typename](string|mmlpresentation) -> symbol(typename)

Example <ci> xyz </ci>

Example <ci> type="vector"> v </ci>

C.2.1.3 MMLdefinition: csymbol

Description The csymbol element allows a writer to introduce new objects into MathML. The objects are linked to
external definitions by means of the definitionURL attribute and encoding attribute. The csymbol element
becomes the "name" of the new object. The new objects are typically either constants or functions.

See also Sectioh.4.1.3

Classification constant function

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature [definitionURL=definition](string|mmlpresentation) -> defined_symbol
[type=typename](string|mmlpresentation) -> defined_symbol(typename)
Example <csymbol definitionURL=".../mydefinitionofPi">π</csymbol>

c.2.2 Basic Content Elements
C.2.2.1 MMLdefinition: apply

Description This is the MathML constructor for function application. The first argument is applied to the remaining
arguments. It may be the case that some of the child elements are named elements. (See the signature.)
See also Sectiof.4.2.1

Classification constructor

MMLattribute
Name Value Default
definitionURL a URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (function,anything*) -> apply
Example <apply><plus/>
<ci>x</ci>
<cn>1</cn>
</apply>
Example <apply><sin/>
<ci>x</ci>
</apply>

308

C.2.2.2 MMLdefinition: reln

Description This constructor has been deprecated. All uses of reln are replaced by apply.
This is the MathML 1.0 constructor for expressing a relation between two or more mathematical objects.
The first argument indicates the type of "relation” between the remaining arguments. (See the signature.) N
assumptions are made about the truth value of such a relation. Typically, the relation is used as a compone
in the construction of some logical assertion. Relations may be combined into sets, etc. just like any othe
mathematical object.
See also Sectiof.4.2.2

Classification constructor

MMLattribute
Name Value Default
definitionURL a URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (function,anything*) -> reln

Example

Description No examples of deprecated constructions are provided.

C.2.2.3 MMLdefinition: fn

Description This constructor has been deprecated.
This was the MathML 1.0 constructor for building new functions. Its role was to identify a general MathML
content object as a function in such a way that it could have a definition and be used in a function contex
such as in apply and declare. This is now accomplished through the use of definitionURL and the fact tha
declare and apply allow any content element as their first argument.
See also Sectioh.4.2.3

Classification constructor

MMLattribute
Name Value Default
definitionURL a URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (anything) -> function
[definitionURL=functiondef](anything) ->function

Example

Description No examples of deprecated constructions are provided.

C.2.24 MMLdefinition: interval

Description This is the MathML constructor element for building an interval on the real line. While an interval can be
expressed by combining relations appropriately, they occur here explicitly because of the frequency of thei
use.

See also Sectioh.4.2.4

Classification constructor

MMLattribute
Name Value Default
definitionURL a URI identifying the definition APPENDIX_C
encoding CDATA MathML
type closed | open | open-closed | closed-open closed

309

Signature [type=interval-type](expression,expression) -> interval(interval-type)
Example <apply><interval closure="open"/>
<ci>x</ci>
<cn>1</cn>
</apply>
Example <apply><interval closure="open-closed"/>
<cn>0</cn>
<cn>1</cn>
</apply>

C.2.2.5 MMLdefinition: inverse

Description This MathML element is applied to a function in order to construct a new function that is to be interpreted
as the inverse function of the original function. For a particular function F, inverse(F) composed with F
behaves like the identity map on the domain of F and F composed with inverse(F) should be an identity
function on a suitably restricted subset of the Range of F. The MathML definitionURL attribute should be
used to resolve notational ambiguities, or to restrict the inverse to a particular domain or to make it one-sidec
See also Section.4.2.5

Classification operator

MMLattribute
Name Value Default
definitionURL a URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (function) -> function

[definitionURL=URI](function) -> function(definition)
Property
Description Forall(y suchy in domain(f*(-1)) , f(fA(-1)(y)) =¥y

<apply><forall/>
<bvar><ci>y</ci></bvar>
<bvar><ci type="function">f</ci></bvar>
<condition>
<apply><in/>
<ci>y</ci>
<apply><csymbol definitionURL="domain"><mtext>Domain</mtext></csymbol>
<apply><inverse/><ci type="function">f</ci></apply>
</apply>
</apply>
</condition>
<apply><eq/>
<apply><ci type="function">f</ci>
<apply><apply><inverse/><ci type="function">f</ci></apply>
<ci>y</ci>
</apply>
</apply>
<ci>y</ci>
</apply>
</apply>
Example <apply><inverse/>

310

<sin/>
</apply>
Example <apply><inverse definitionURL="www.example.com/MathML/Content/arcsin"/>
<sin/>
</apply>

C.2.2.6 MMLdefinition: sep

Description This is the MathML infix constructor used to sub-divide PCDATA into separate components. This is used
in the description of a multi-part number such as a rational or a complex number.
See also Section.4.2.6

Classification punctuation

Example <cn type="complex-polar">123<sep/>456</cn>

Example <cn>123</cn>

C.2.2.7 MMLdefinition: condition

Description This is the MathML constructor for building conditions. A condition differs from a relation in how it is
used. A relation is simply an expression, while a condition is used as a predicate to place conditions on boun
variables.

You can build compound conditions by applying operators such as "and" or "or" .
See also Sectioh.4.2.7
Classification constructor

MMLattribute
Name Value Default
definitionURL a URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (apply) -> predicate
Example <condition>
<apply><1lt/>
<apply><power/><ci>x</ci><cn>5</cn></apply>
<cn>3</cn>
</apply>
</condition>

C.2.2.8 MMLdefinition: declare

Description This is the MathML constructor for associating default attribute values and values with mathematical
objects. For example V may be an identifier declared to be a vector (has the attribute of being a vector), or \
may be a name that stands for a particular vector.
The attribute values of the declare statement itself become the default attribute values of the first argumer
of the declare.
If there is a second argument, the first argument becomes an alias for the second argument and it also assun
all the properties of the second argument . For example, a ci identifier v, declared to be the vector (1,2,3
would appear in the type style of a vector, and would have a norm which is the norm of (1,2,3)
See also Section.4.2.8

Classification modifier

311

MMLattribute

Name Value Default
definitionURL a URI identifying the definition APPENDIX_C
encoding CDATA MathML

type MathMLtype none

nargs number of arguments for an object of operator *
occurrence infix | prefix prefix

Signature [(attributename=attributevalue)*](anything) -> [(attributename=attributevalue)*](anything)
[(attributename=attributevalue)*](anything,anything) -> [(attributename=attributevalue)*](anything)
(anything,anything) -> (anything)

Example <declare>

<ci>y</ci>
<apply><plus/><ci>x</ci><cn>3</cn></apply>
</declare>
Example <declare type="vector"> <ci> V </ci> </declare>
Example <declare type="vector">
<ci> V </ci>
<vector><cn> 1 </cn><cn> 2 </cn><cn> 3 </cn></vector>
</declare>

C.2.2.9 MMLdefinition: 1ambda

Description This is the operation of lambda calculus that constructs a function from an expression and a variable
Lambda is an n-ary function, where all but the last argument are bound variables and the last argument is &
expression possibly involving those variables. The lambda function can be viewed as the inverse of functior
application.
For example, Lambda(x, F) is written as \lambda x [F] in the lambda calculus literature. The expression F
may contain x but the full lambda expression itsself is interpreted to be free of x. A computational application
receiving a MathML lambda expression should not evaluate x or test for x. Such an application may apply
the lambda expression as a function to arguments in which case any result that is computed is compute
through parameter substitutions into F.
Note that a lambda expression on an arbitrary function applied to a simple argument is equivalent to tha
arbitrary function.
See also Sectioh.4.2.9

Classification constructor

MMLattribute
Name Value Default
definitionURL a URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (bvar*,anything) -> function

Property

Description Forall(F, lambda(x,F(x)) = F)

<apply><forall/>
<bvar><ci>F</ci></bvar>
<apply><eq/>
<lambda>
<bvar><ci>x</ci></bvar>
<apply><ci>F</ci><ci>x</ci></apply>
</lambda>

312

<ci>F</ci>
</apply>
</apply>
Example <lambda>
<bvar><ci>x</ci></bvar>
<apply><sin/><apply><plus/><ci> x </ci><cn> 3 </cn></apply></apply>
</lambda>

C.2.2.10 MMLdefinition: compose

Description This is the MathML constructor for composing functions. In order for a composition to be meaningful, the
range of the first function should be the domain of the second function, etc. . However, since no evaluatior
takes place in MathML, such a construct can safely be used to make statements such as that f composed w
g is undefined.
The result is a new function whose domain is the domain of the first function and whose range is the range
of the last function and whose definition is equivalent to applying each function to the previous outcome in
turn as in:
f@g)(x)==1(g(x)).
This function is often denoted by a small circle infix operator.
See also Sectioh.4.2.10

Classification function

MMLattribute
Name Value Default
definitionURL a URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (function*) -> function

Property

Description Forall(x, f@g)(x) = f(g(x))

<apply><forall/>
<bvar><ci>x</ci></bvar><bvar><ci>f</ci></bvar><bvar><ci>g</ci></bvar>
<apply><eq/>
<apply><apply><compose/><ci>f</ci><ci>g</ci></apply>
<ci>x</ci>
</apply>
<apply><ci>f</ci><apply><ci>g</ci><ci>x</ci></apply></apply>
</apply>
</apply>
Example
Description The use of fn is deprecated. Use type="function" instead.

<apply><compose/>
<ci type="function"> f </ci>
<ci type="function"> g </ci>
<sin/>

</apply>

313

C.2.2.11 MMLdefinition: ident

Description The ident element represents the identity function. MathML makes no assumption about the function
space in which the identity function resides. Proper interpretation of the domain (and hence range) of the
identity function depends on the context in which it is used.

See also Sectiof.4.2.11

Classification constructor

MMLattribute
Name Value Default
definitionURL a URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature function

Property

Description Forall(x, ident(x) = x)

<apply><forall/>
<bvar><ci>x</ci></bvar>
<apply><eq/>
<apply><ident/><ci>x</ci></apply>
<ci>x</ci>
</apply>
</apply>
Example <apply><eq/>
<apply><compose/>
<ci type="function"> f </ci>
<apply><inverse/><ci type="function"> f </ci>
</apply>
</apply>
<ident/>
</apply>

C.2.2.12 MMLdefinition: domain

Description The domain element denotes the domain of a given function, which is the set of values over which it is
defined.
To override the default semantics for this element, or to associate a more specific definition, use the defini
tionURL and encoding attributes
See also Sectiof.4.2.12

Classification function

MMLattribute
Name Value Default
definitionURL a URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (function) -> set
Example <apply><eq/>
<apply><domain/><ci>f</ci></apply>
<reals/>
</apply>

314

C.2.2.13 MMLdefinition: codomain

Description The codomain (range) element denotes the codomain of a given function, which is a set containing al
values taken by the function. The codomain may contain additional points which are not realized by applying
the the function to elements of the domain.
To override the default semantics for this element, or to associate a more specific definition, use the defini
tionURL and encoding attributes
See also Sectiof.4.2.13

Classification function

MMLattribute
Name Value Default
definitionURL a URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (function) -> set

Property

Description Forall(y, y =f(x) , member(y,codomain(f)))

Example <apply><eq/>
<apply><codomain/><ci>f</ci></apply>
<rationals/>

</apply>

C.2.2.14 MMLdefinition: image

Description The image element denotes the image of a given function, which is the set of values taken by the function
Every point in the image is generated by the function applied to some point of the domain.
To override the default semantics for this element, or to associate a more specific definition, use the defini
tionURL and encoding attributes
See also Section.4.2.14

Classification function

MMLattribute
Name Value Default
definitionURL a URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (function) -> set

Property

Description Forall(x, x in codomain(f) , ThereExists(y,f(y)=x))

Example <apply><eq/>
<apply><image/><sin/></apply>
<interval><cn>-1</cn><cn> 1</cn></interval>
</apply>

C.2.2.15 MMLdefinition: domainofapplication

Description The domainofapplication element denotes the domain over which a given function is being applied. It is
intended to be a more general alternative to spcification of this domain using such quantifier elements a
bvar, lowlimit or condition
To override the default semantics for this element, or to associate a more specific definition, use the defini
tionURL and encoding attributes
See also Sectioh.4.2.15

315

Classification function

MMLattribute
Name Value Default
definitionURL a URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (function) -> set
Example <apply><int/>
<domainofapplication><ci>C</ci></domainofapplication>
<ci>f </ci>
</apply>

C.2.2.16 MMLdefinition: piecewise

Description The piecewise, piece, and otherwise elements are used to support 'piecewise’ declarations of the forr
H(x) = 0 if x less than 0, H(x) = 1 otherwise. The piece and otherwise elements describe evaluation rules
If no rule applies or if more than one rule applies but they give different answers then the expression is
undefined.
To override the default semantics for this element, or to associate a more specific definition, use the defini
tionURL and encoding attributes
See also Sectioh.4.2.16

Classification constructor

MMLattribute
Name Value Default
definitionURL a URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (piece*,otherwise) -> algebraic

Property

Description Forall(x, x in domain(f) , the evaluation rules collectively produce at most one value in codomain(f))

Example <piecewise>
<piece><cn> 0</cn><apply><1lt/><ci> x</ci> <cn> 0</cn></apply></piece>
<otherwise><ci>x</ci></otherwise>
</piecewise>
Example
Description The value of the abs function evaluated at x can be written as:
<piecewise>
<piece>
<apply><minus/><ci>x</ci></apply>
<apply><1lt/><ci> x</ci><cn> 0</cn></apply>
</piece>
<piece>
<cn>0</cn>
<apply><eq/><ci>x</ci><cn>0</cn></apply>
</piece>
<piece>
<ci>x</ci>
<apply><gt/><ci>x</ci><cn>0</cn></apply>
</piece>
</piecewise>

316

C.2.2.17 MMLdefinition: piece

Description The piece element is used to construct the conditionally defined values as part of a piecewise object.
To override the default semantics for this element, or to associate a more specific definition, use the defini
tionURL and encoding attributes

See also .
Classification constructor
MMLattribute
Name Value Default
definitionURL a URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (algebraic,boolean) -> piece
Example <piecewise>
<piece><cn>0</cn><apply><lt/><ci> x</ci> <cn> 0</cn></apply></piece>
<otherwise><ci>x</ci></otherwise>
</piecewise>

C.2.2.18 MMLdefinition: otherwise

Description The otherwise element is used to describe the value of a piecewise construct when none of the conditior
of the associated pieces are satisfied.
To override the default semantics for this element, or to associate a more specific definition, use the defini
tionURL and encoding attributes

See also .
Classification constructor
MMLattribute
Name Value Default
definitionURL a URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (algebraic) -> algebraic
Example <piecewise>
<piece><cn> 0</cn><apply><1lt/><ci> x</ci> <cn> 0</cn></apply></piece>
<otherwise><ci>x</ci></otherwise>
</piecewise>

c.23 Arithmetic Algebra and Logic
C.2.3.1 MMLdefinition: quotient

Description quotient is the binary function used to represent the operation of integer division. quotient(a,b) denotes ¢
such that a = b*g+r, with |r| less than |b| and a*r positive.
See also Sectioh.4.3.1

Classification function

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType integer
Signature (integer, integer) -> integer
Property

Description forall([a,b], b '= 0, a = b*quotient(a,b) + rem(a,b)

317

<apply><forall/>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<condition><apply><neq/><ci>b</ci><cn>0</cn></apply></condition>
<apply><eq/>
<ci>a</ci>
<apply><plus/>
<apply><times/>
<ci>b</ci>
<apply><quotient/><ci>a</ci><ci>b</ci></apply>
</apply>
<apply><rem/><ci>a</ci><ci>b</ci></apply>
</apply>
</apply>
</apply>
Example <apply><quotient/>
<ci> a </ci>
<ci> b </ci>
</apply>
Example <apply>
<quotient/>
<cn>5</cn>
<cn>4</cn>
</apply>

C.2.3.2 MMLdefinition: factorial

Description This is the unary operator used to construct factorials. Factorials are defined by n! = n*(n-1)* ... * 1
See also Sectioh.4.3.2
Classification function

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType integer

Signature (algebraic) -> algebraic
(integer)->integer
Property
Description Forall(n,n\gt 0, n! = n*(n-1)!)
<apply><forall/>
<bvar><ci>n</ci></bvar>
<condition><apply><gt/><ci>n</ci><cn>0</cn></apply></condition>
<apply><eq/>
<apply><factorial/><ci>n</ci></apply>
<apply><times/>
<ci>n</ci>
<apply><factorial/>
<apply><minus/><ci>n</ci><cn>1</cn></apply>
</apply>

318

</apply>
</apply>
</apply>
Property
Description 0! =1
<apply></eq>
<apply><factorial/><cn>0</cn></apply>
<cn>1</cn>
</apply>
Example <apply><factorial/>
<ci>n</ci>
</apply>

C.2.3.3 MMLdefinition: divide

Description This is the binary MathML operator that is used indicate the mathematical operation a "divided by" b.
See also Sectioh.4.3.3
Classification function

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType real

Signature (complex, complex) -> complex
(real, real) -> real
(rational, rational) -> rational
(integer, integer) -> rational

Property

Description Division by Zero error

<apply><forall/>
<bvar><ci>a</ci></bvar>
<apply><eq/>
<apply><divide/><ci> a </ci><ci> 0 </ci>
<notanumber/>
</apply>
</apply>
</apply>
Property
Description Forall(a, al=0,a/a=1)

<apply><forall/>
<bvar><ci>a</ci></bvar>
<condition><apply><neq/><ci>a</ci><cn>0</cn></apply></condition>
<apply><eq/>
<apply><divide/><ci>a</ci><ci>a</ci></apply>
<cn>1</cn>
</apply>
</apply>

319

Example <apply><divide/>
<ci> a </ci>
<ci> b </ci>
</apply>

C.2.34 MMLdefinition: max

Description This is the n-ary operator used to represent the maximum of a set of elements. The elements may be liste
explicitly or they may be described by a condition, e.g., the maximum over all x in the set A.

See also .
Classification function
MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType real

Signature (ordered_set_element *) -> ordered_set_element
(' bvar,condition,anything) -> anything

Property

Description Forall(x in S, max(y in S,y) \geq x)

Example
Description Maximum of a finite listing of elements

<apply><max/><cn>2</cn><cn>3</cn><cn>5</cn></apply>
Example
Description Max(y"3, yin (0,1))

<apply>

<max/>

<bvar><ci>y</ci></bvar>

<condition>
<apply><in/><ci>y</ci><interval><cn>0</cn><cn>1</cn></interval></apply>
</condition>

<apply><power/><ci> y</ci><cn>3</cn></apply>

</apply>

C.2.3.5 MMLdefinition: min

Description This is the n-ary operator used to represent the minimum of a set of elements. The elements may be liste
explicitly or they may be described by a condition, e.g., the minimum over all x in the set A.
The elements must all be comparable if the result is to be well defined.

See also .
Classification function
MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType real

320

Signature (ordered_set_element *) -> ordered_set_element
(' bvar,condition,anything) -> ordered_set_element

Example

Description Minimum of a finite listing of elements

<apply><min/><cn>2</cn><cn>3</cn><cn>5</cn></apply>
Example
Description min(y*2, y in (0,1))

<apply>

<min/>

<bvar><ci>y</ci></bvar>

<condition>
<apply><in/><ci>y</ci><interval><cn>0</cn><cn>1</cn></interval></apply>
</condition>

<apply><power/><ci> y</ci><cn>2</cn></apply>

</apply>

C.2.3.6 MMLdefinition: minus

Description This is the subtraction operator for an additive group.
If one argument is provided this operator constructs the additive inverse of that group element. If two argu-
ments, say a and b, are provided it constructs the mathematical expression a - b.
See also Section.4.3.5

Classification function

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType real

Signature (real) ->real
(real,real) -> real
[type=MathMLtype](MathMLtype) -> MathMLtype
[type=MathMLtype](MathMLtype,MathMLtype) -> MathMLtype
(set,set) -> set
(multiset,multiset)->multiset
Property
Description Forall(x,x-x=0)
<apply><forall/>
<bvar><ci> x </ci></bvar>
<apply><eq/>
<apply><minus/><ci> x </ci><ci> x </ci></apply>
<cn>0</cn>
</apply>
</apply>
Example <apply><minus/>
<cn>3</cn>
<cn>5</cn>
</apply>

321

Example <apply><minus/>
<cn>3</cn>
</apply>

C.2.3.7 MMLdefinition: plus

Description This is the n-ary addition operator of an algebraic structure. If no operands are provided, the expressiol
represents the additive identity. If one operand, a, is provided the expression evaluates to "a". If two or more
operands are provided, the expression represents the (semi) group element corresponding to a left associat
binary pairing of the operands. The meaning of mixed operand types not covered by the signatures show
here are left up to the target system.
To use different type coercion rules different from those indicated by the signatures, use the definitionURL
attribute to identify a new definition.
See also Sectioh.4.3.6

Classification function

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType real

Signature [type=MathMLtype](anything*) -> MathMLtype
(set*)->set
(multiset*)->multiset
(real*)->real
(complex*)->complex
(integer*)->integer
Property
Description an sum of no terms is 0

<apply><eq/>
<apply><plus/></apply>
<cn>0</cn>
</apply>
Property
Description a sum of one term is equal to itsself

<apply><forall/>
<bvar><ci>a</ci></bvar>
<apply><eq/>
<apply><plus/><ci>a</ci></apply>
<cn>a</cn>
</apply>
</apply>
Property
Description Commutivity

<apply><forall/>

<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>

322

<condition>
<apply><and/>
<apply><in/><ci>a</ci><reals/></apply>
<apply><in/><ci>b</ci><reals/></apply>
</apply>
</condition>
<apply><eq/>
<apply><plus/><ci>a</ci><ci>b</ci></apply>
<apply><plus/><ci>b</ci><ci>a</ci></apply>
</apply>
</apply>
Example <apply><plus/>
<cn>3</cn>
</apply>
Example <apply><plus/>
<cn>3</cn>
<cn>5</cn>
</apply>
Example <apply><plus/>
<cn>3</cn>
<cn>5</cn>
<cn>7</cn>
</apply>

C.2.3.8 MMLdefinition: power

Description This is the binary powering operator that is used to construct expressions such as a "to the power of" b. I
particular, it is the operation for which a "to the power of* 2 is equivalent to a * a.
See also Sectioh.4.3.7

Classification function

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType real

Signature (complex, complex) -> complex
(real, real) -> complex
(rational, integer) -> rational
(integer, integer) -> rational
[type=MathMLtype](anything,anything) -> MathMLtype
Property
Description Forall(a,a!=0,a"0=1)

<apply><forall/>
<bvar><ci>a</ci></bvar>
<condition><apply><neq/><ci>a</ci><cn>0</cn></apply></condition>
<apply><eq/>
<apply><power/><ci>a</ci><cn>0</cn></apply>
<cn>1</cn>

323

</apply>
</apply>
Property
Description Forall(a,a1=a)

<apply><forall/>
<bvar><ci>a</ci></bvar>
<apply><eq/>
<apply><power/><ci>a</ci><cn>1</cn></apply>
<ci>a</ci>
</apply>
</apply>
Property
Description Forall(a,1a=1)

<apply><forall/>
<bvar><ci>a</ci></bvar>
<apply><eq/>
<apply><power/><cn>1</cn><ci>a</ci></apply>
<cn>1</cn>
</apply>
</apply>
Example <apply><power/><cn>2</cn><ci>x</ci></apply>
Example <apply><power/><ci> x </ci><cn> 3 </cn></apply>

C.2.3.9 MMLdefinition: rem

Description This is the binary operator used to represent the integer remainder a mod b. For arguments a and b, su
that a = b*q + r with |r| < |b| it represents the value r.
See also Sectioh.4.3.8

Classification function

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType integer

Signature (integer, integer) -> integer
[type=MathMLtype](MathMLtype,MathMLtype)->MathMLtype

Property

Description rem(a, 0) is undefined

Property
Description Forall([a,b],b!=0,a = b*quotient(a,b) + rem(a,b))

<apply><forall/>

<bvar><ci>a</ci></bvar>

<bvar><ci>b</ci></bvar>
<condition><apply><neq/><ci>b</ci><cn>0</cn></apply></condition>
<apply><eq/>

324

<ci>a</ci>
<apply><plus/>
<apply><times/>
<ci>b</ci>
<apply><quotient/><ci>a</ci><ci>b</ci></apply>
</apply>
<apply><rem/>
<ci>a</ci>
<ci>b</ci>
</apply>
</apply>
<apply/>
</apply>
Example <apply><rem/><ci> a </ci><ci> b </ci></apply>

C.2.3.10 MMLdefinition: times

Description This is the n-ary multiplication operator of a ring. If no arguments are supplied then this represents the
multiplicative identity. If one argument is supplied, this represents an expression that would evaluate to tha

single argument.
See also Sectioh.4.3.9
Classification function

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType real

Signature (complex*) -> complex
(real*) -> real
(rational*) -> rational
(integer*) -> integer
Property
Description ForAll([a,b],condition(in(a,b,Commutative)),a*b=b*a)

Property
Description ForAll([a,b,c],Associative,a*(b*c)=(a*b)*c), associativity

Property
Description multiplicative identity

<apply><forall/>
<bvar><ci>a</ci></bvar>
<apply><eq/>
<apply><times/><cn>1</cn><ci>a</ci></apply>
<ci>a</ci>
</apply>
</apply>
Property
Description a*0=0

325

Property
Description Commutative property

<apply><forall/>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<condition>
<apply><and/>
<apply><in/><ci>a</ci><reals/></apply>
<apply><in/><ci>b</ci><reals/></apply>
</apply>
</condition>
<apply><eq/>
<apply><times/><ci>a</ci><ci>b</ci></apply>
<apply><times/><ci>b</ci><ci>a</ci></apply>
</apply>
</apply>

Property

Description a*0=0

<apply><forall/>
<bvar><ci>a</ci></bvar>
<apply><eq/>
<apply><times/><cn>0</cn><ci>a</ci></apply>
<cn>0</cn>
</apply>
</apply>

Example <apply>
<times/>
<ci> a </ci>
<ci> b </ci>
</apply>

C.2.3.11 MMLdefinition: root

Description This is the binary operator used to construct the nth root of an expression. The first argument "a" is the
expression and the second object "n" denotes the root, asin (a) ™ (1/n)
See also Sectiof.4.3.10

Classification function

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type real | complex | principle_branch | MathMLType real
Signature (anything , anything) -> root
Property

Description Forall(bvars(a,n),root(a,n) = a*(1/n))

326

Example
Description nth root of a

<apply><root/>
<ci> a </ci>
<ci> n </ci>
</apply>

C.2.3.12 MMLdefinition: gcd

Description This is the n-ary operator used to construct an expression which represents the greatest common divisor
its arguments. If no argument is provided, the gcd is 1. If one argument is provided, the gcd is that argument
See also Sectioh.4.3.11

Classification function

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType integer

Signature [type=MathMLtype](MathMLtype*) ->MathMLtype
(integer*) -> integer

Property <apply><forall/>
<forall/>
<bvar><ci>x</ci></bvar>
<apply><eq/>
<apply><gcd/>
<ci>x</ci>
<cn>1</cn>
</apply>
<cn>1</cn>
</apply>
</apply>

Example <apply><gcd/>
<cn>12</cn>
<cn>17</cn>
</apply>

Example <apply><gcd/>
<cn>3</cn>
<cn>5</cn>
<cn>7</cn>
</apply>

C.2.3.13 MMLdefinition: and

Description This is the n-ary logical "and" operator. It is used to construct the logical expression which were it to
be evaluated would have a value of "true" when all of its operands have a truth value of "true", and "false"
otherwise.

See also Section.4.3.12

Classification function

327

MMLattribute

Name Value Default

definitionURL URI identifying the definition APPENDIX_C

encoding CDATA MathML

type MathMLType boolean
Signature (boolean*) -> boolean

Property
Description forall(p,(true and p=p)

Property
Description forall([p,q],(p andg=gand p))

Property
Description x and not(x) = false

Example <apply><and/>
<ci>p</ci>
<ci>q</ci>
</apply>

C.2.3.14 MMLdefinition: or

Description The is the n-ary logical "or" operator. The constructed expression has a truth value of true if at least one
of its arguments is true.
See also Section.4.3.13

Classification function

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType boolean

Signature (boolean*) -> boolean
[type="boolean"](symbolic*) -> boolean
Example <apply>
<or/>
<ci> a </ci>
<ci> b </ci>
</apply>

C.2.3.15 MMLdefinition: xor

Description The is the n-ary logical "xor" operator. The constructed expression has a truth value of true if an odd
number of its arguments are true.
See also Section.4.3.14

Classification function

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType boolean

328

Signature (boolean*) -> boolean
[type="boolean"](symboalic*) -> symbolic

Property

Description x xor x = false

Property
Description x xor not(x) = true

Example <apply>
<xor/>
<ci> a </ci>
<ci> b </ci>
</apply>

C.2.3.16 MMLdefinition: not

Description This is the unary logical "not" operator. It negates the truth value of its single argument. e.g., not P is true
when P is false and false when P is true.
See also Sectioh.4.3.15

Classification function

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType boolean

Signature (boolean) -> boolean
[type="boolean"](algebraic) -> boolean
Example <apply>
<not/>
<ci> a </ci>
</apply>

C.2.3.17 MMLdefinition: implies

Description This is the binary "implies" operator. It is used to construct the logical expression "A implies B".
See also Sectioh.4.3.16
Classification function

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType boolean
Signature (boolean,boolean) -> boolean
Property

Description false implies x

Example <apply>
<implies/>
<ci> A </ci>
<ci> B </ci>

329

</apply>

C.2.3.18 MMLdefinition: forall

Description The forall operator is the logical "For all" quantifier. The bound variables, if any, appear first and are
tagged using the bvar element. Next comes an optional condition on the bound variables. The last argumel
is the boolean expression that is asserted to be true for all values of the bound variables that meet the specifi
conditions (if any).

See also Sectioh.4.3.17

Classification function

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType boolean

Signature (bvar*,condition?,apply) -> boolean
(bvar*,condition?,(reln)) -> boolean
Example <apply>
<forall/>
<bvar><ci> x </ci></bvar>
<apply><eq/>
<apply>
<minus/><ci> x </ci><ci> x </ci>
</apply>
<cn>0</cn>
</apply>
</apply>

C.2.3.19 MMLdefinition: exists

Description This is the MathML operator that is used to assert existance, as in "There exists an x such that x is ree
and x is positive."
- The first argument indicates the bound variable,
- The second optional argument places conditions on that bound variable.
- The last argument is the expression that is asserted to be true.
See also Sectioh.4.3.18
Classification function

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType boolean

Signature (element,set) ->boolean
Example <apply><exists/>
<bvar><ci>x</ci></bvar>
<apply><eq/>
<apply><ci>f</ci>
<ci>x</ci>
</apply>
<cn>0</cn>

330

</apply>
</apply>

C.2.3.20 MMLdefinition: abs

Description A unary operator which represents the absolute value of its argument. In the complex case this is ofter
referred to as the modulus.
See also Sectiof.4.3.19

Classification function

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType real

Signature (real)->real
(complex)->real
Property
Description for all x and y, abs(x) + abs(y) >= abs(x+y)

Example <apply><abs/><ci>x</ci></apply>

C.2.3.21 MMLdefinition: conjugate

Description The unary "conjugate" arithmetic operator is used to represent the complex conjugate of its argument.
See also Sectiofh.4.3.20
Classification function

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (algebraic) -> algebraic
(complex)->complex
Example <apply><conjugate/>
<apply><plus/>
<ci> x </ci>
<apply><times/>
<imaginaryi/>
<ci> y </ci>
</apply>
</apply>
</apply>

C.2.3.22 MMLdefinition: arg

Description The unary "arg" operator is used to construct an expression which represents the "argument"” of a comple
number.
See also Sectiofi.4.3.21

Classification function

331

MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

type MathMLType real

Signature (compex)->real
Example <apply><arg/>
<apply><plus/>
<ci> x </ci>
<apply><times/><imaginaryi/><ci>y</ci></apply>
</apply>
</apply>

C.2.3.23 MMLdefinition: real

Description A unary operator used to construct an expression representing the "real" part of a complex number.
See also Sectioh.4.3.22

Classification function

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType real

Signature (complex)->real

Property

Description Forall(x,y, X in R, Y in R, real(x+i*y)=x)

<apply><forall/>
<bvar><ci>x</ci></bvar>
<bvar><ci>y</ci></bvar>
<apply><eq/>
<apply><real/>
<apply><plus/>
<ci> x </ci>
<apply><times/><imaginaryi/><ci>y</ci></apply>
</apply>
</apply>
<ci> x </ci>
</apply>
</apply>
Example <apply><real/>
<apply><plus/>
<ci> x </ci>
<apply><times/><imaginaryi/><ci>y</ci></apply>
</apply>
</apply>

332

C.2.3.24 MMLdefinition: imaginary

Description The unary function used to construct an expression which represents the imaginary part of a comple
number.
See also Sectiof.4.3.23

Classification function

MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType real

Signature (complex)->real

Property

Description forall([x,y],Imaginary(x + i*y) =y)

<apply><forall/>
<bvar><ci>x</ci></bvar>
<bvar><ci>y</ci></bvar>
<apply><eq/>
<apply><imaginary/>
<apply><plus/>
<ci> x </ci>
<apply><times/><imaginaryi/><ci>y</ci></apply>
</apply>
</apply>
<ci> y </ci>
</apply>
</apply>
Example <apply><imaginary/>
<apply><plus/>
<ci> x </ci>
<apply><times/><imaginaryi/><ci>y</ci></apply>
</apply>
</apply>

C.2.3.25 MMLdefinition: 1cm

Description This n-ary operator is used to construct an expression which represents the least common multiple of it
arguments. If no argument is provided, the Icm is 0. If one argument is provided, the lcm is that argument.
The least common multiple of x and 1 is x.
See also Section.4.3.24

Classification function

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType integer

Signature [type=MathMLtype](MathMLtype*) ->MathMLtype
(integer*) -> integer
(algebraic*) -> algebraic

333

Property
Description Forall(x,lcm(x,1)=x)

<apply><forall/>
<bvar><ci>x</ci></bvar>
<apply><eq/>
<apply><lcm/><ci>x</ci><cn>1</cn></apply>
<ci>x</ci>
</apply>
</apply>
Example <apply><lcm/>
<cn>12</cn>
<cn>17</cn>
</apply>
Example <apply><lcm/>
<cn>3</cn>
<cn>5</cn>
<cn>7</cn>
</apply>

C.2.3.26 MMLdefinition: floor

Description The floor element is used to denote the round-down (towards -infinity) operator.
See also Sectioh.4.3.25
Classification function

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType integer

Signature (real) -> integer
[type=MathMLtype](orderedset_element) -> orderedset_element
Property
Description Forall(x,floor(x) <= x)
<apply><forall/>
<bvar><ci>x</ci></bvar>
<apply><leq/>
<apply><floor/>
<ci>x</ci>
</apply>
<ci>x</ci>
</apply>
</apply>
Example <apply> <floor/>
<ci> a </ci>
</apply>

C.2.3.27 MMLdefinition: ceiling

Description The ceiling element is used to denote the round-up (towards +infinity) operator.

334

See also Sectiof.4.3.26
Classification function

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType integer

Signature (real) -> integer

[type=MathMLtype](orderedset_element) -> orderedset_element

Property
Description Forall(x,ceiling(x) >= x)
<apply><forall/>
<bvar><ci>x</ci></bvar>
<apply><geq/>
<apply><ceiling/>
<ci>x</ci>
</apply>
<ci>x</ci>
</apply>
</apply>
Example <apply> <ceiling/>
<ci> a </ci>
</apply>

cC.24 Relations
C.24.1 MMLdefinition: eq

Description This n-ary function is used to indicate that two or more quantities are equal. There must be at least twc

arguments.
See also Sectiofi.4.4.1
Classification function

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (real,real+) -> boolean
(boolean, boolean+) -> boolean
(set,set+) -> set
(multiset,multiset+) -> multiset

Property

Description Symmetric

Property
Description Transitive

Property
Description Reflexive

Example <apply><eq/><cn type="rational">2<sep/>4</cn><cn type="rational">1<sep/>2</cn></apply>

335

Example <apply><eq/><ci type="set">A</ci><ci type="set">B</ci></apply>
Example <apply><eq/><ci type="multiset">A</ci><ci type="multiset">B</ci></apply>

C.2.4.2 MMLdefinition: neq

Description This binary function represents the relation "not equal to" which returns true unless the two arguments are
equal.
See also Section.4.4.2

Classification function

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (real,real) -> boolean
(boolean,boolean)-> boolean
(set,set) -> set
(multiset,multiset) -> multiset

Property

Description Symmetric

Example <apply><neq/><cn>3</cn><cn>4</cn></apply>

C.2.4.3 MMLdefinition: gt

Description This n-ary function represents the relation "greater than" which returns true if each argument in turn is
greater than the one following it. There must be at least two arguments.
See also Section.4.4.3

Classification function

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (real,real+) -> boolean

Property

Description Transitive

Example <apply><gt/><cn>3</cn><cn>2</cn></apply>

C.2.4.4 MMLdefinition: 1t

Description This n-ary function represents the relation "less than" which returns true if each argument in turn is less
than the one following it. There must be at least two arguments.
See also Sectioh.4.4.4

Classification function

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (real,real+) -> boolean

Property

336

Description Transitive

Example <apply><1t/><cn>2</cn><cn>3</cn><cn>4</cn></apply>

C.24.5 MMLdefinition: geq

Description This element represents the n-ary greater than or equal to function. which returns true if each argument i
turn is greater than or equal to the one following it. . There must be at least two arguments.
See also Sectioh.4.4.5

Classification function

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (real,real+) -> boolean

Property

Description Transitive

Property
Description Reflexive

Example <apply><geq/><cn>4</cn><cn>3</cn><cn>3</cn></apply>

C.2.4.6 MMLdefinition: leq

Description This n-ary function represents the relation "less than or equal to" which returns true if each argument in
turn is less or equal to the one following it. There must be at least two arguments.
See also Sectioh.4.4.6

Classification function

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (real,real+) -> boolean

Property

Description Transitive

Property
Description Reflexive

Example <apply><leq/><cn>3</cn><cn>3</cn><cn>4</cn></apply>

C.2.4.7 MMLdefinition: equivalent

Description This element represents the n-ary equivalence function as defined by a partitioning of sets. There must k
at least two arguments.
See also Sectioh.4.4.7

Classification function

337

MMLattribute

Name Value Default

definitionURL URI identifying the definition APPENDIX_C

encoding CDATA MathML
Signature (real,real+) -> boolean

Property
Description Symmetric

Property
Description Transitive

Property
Description Reflexive

Example <apply><equivalent/><ci>a</ci><ci>b</ci></apply>

C.2.4.8 MMLdefinition: approx

Description This element is used to indicate that two or more quantites are approximately equal. If a more precise defi
nition of approximately equal is required the definintionURL should be used to identify a suitable definition..
See also Sectioh.4.4.8

Classification function

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType real

Signature (real,real+) -> boolean
(boolean, boolean+) -> boolean

Property

Description Symmetric

Property
Description Transitive

Property
Description Reflexive

Example <apply><approx/><pi/><cn type="rational">22<sep/>7</cn></apply>

C.2.4.9 MMLdefinition: factorof

Description This is the binary MathML operator that is used indicate the m