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0.1 Installation

Extract the contents of the file Polynomial.zip into a directory of your choice,
e.g. Polynomial-path. This newly created directory should now be added to the
MATLAB path. This can be done temporarly (for one MATLAB session) by
executing

>> addpath (genpath(’Polynomial-path/Polynomial_1.0’))

on the MATLAB command line. The package can also be added to the MAT-
LAB path permanently via File/Set Path... and Add with Subfolders....
The Polynomial package is now ready for use.

0.2 Introduction

This section describes the structure of the software library. It consists of a Mat-
lab m-file, Polynomial.m, containing the datum definition of the class, the decla-
ration of its member functions and operator-overloadings, and of several m-files
containing the member functions and the nonmember functions used by those.
An object of the Polynomial class possesses a piece of private data, BernsCoeff,
the constructor function Polynomial, the public member functions disp, char,
getDegree, getCoeff, double, degreeElevation, degreeReduction, Eval,
diff, integral, integrate, plot and subsref, and the overloading of the op-
erators + (function plus), − (function minus), ∗ (function mtimes), / (function
mrdivide) and ∧ (function mpower). In addition, the software library also con-
tains the usual functions Vs, Casteljau, CompVs, Horner, TwoSum, TwoProduct,
DivRem, Split, powerDC, bd, interpolation and monomial2Bernstein, imple-
mented each of them in its corresponding m-file, which are used, directly or
indirectly, by member functions of the class.

In our software library we provide five different ways of constructing a poly-
nomial in Bernstein form. In contrast to other object oriented languages like
C++, Matlab does not allow to overload the constructor of a class with dif-
ferent input/output arguments. So we have to put the five different ways of
constructing a polynomial in Bernstein form into a unique constructor. We
have done it by using the possiblity of accepting any number of input argu-
ments of a function in Matlab with varargin Matlab variable. The first of
the five ways, Polynomial(), is the default constructor, which builds up the
zero degree polynomial equal to zero for any value of the domain parameter.
The copy constructor, invoked by using Polynomial(poly) where poly is al-
ready an existing object of the polynomial class, returns a copy of the poly

object. In the third way of constructing a polynomial, the user of the library
provides a vector coeff = (c0, . . . , cn) with the coefficients of the polynomial
respect to the Bernstein basis straightforwardly, p(t) =

∑n
i=0 cib

n
i (t), by us-

ing Polynomial(coeff,’c’), where ’c’ means control polygon. In Section 3
of the paper we present the mathematical foundations for the two nontrivial
ways of constructing polynomials in the Bernstein form, that is, from the inter-
polation conditions (Polynomial(t,p)) and from the monomial representation
(Polynomial(c,’m’) or Polynomial(c)). The design and implementation of
the constructor of the class and the nonmember functions interpolation, bd
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and monomial2Bernstein are presented. Section 4 of the paper includes a com-
pensated version of the VS algorithm together with a dynamic error estimate.
Finally, the design and implementation of an adaptative evaluation algorithm
Eval, based in the evaluation algorithms Vs, Casteljau and CompVs, is shown
in Section 5 of the paper.

For completeness and usefulness we have included in the software library
some other functions. The public member function getDegree(obj) returns the
degree of the object obj of the Polynomial class. Taking into account that the
class data BernsCoeff is private, the public member functions getCoeff(obj)
and double(obj) return a vector with the coefficients of the object obj re-
spect to the Bernstein basis. We have implemented a private member function
char(obj), which creates a formatted display of the Polynomial object obj as
a linear combination of the basis of Bernstein polynomials of the correspond-
ing degree. This formatted display is used by the member function disp(obj),
which determines how Matlab displays a Polynomial object obj on the com-
mand line. The member function subsref(obj) enables you to specify a value
for the independent variable as a subscript, access the BernsCoeff property
with dot notation, and call methods with dot notation. In the public member
function plot we overload the usual function in order to plot objects of the
Polynomial class. A polynomial of a certain degree n can always be repre-
sented exactly as a polynomial of a higher degree. Degree elevation is necessary
for the addition and substraction of polynomials of different degrees in Bern-
stein form. The usual method to carry out this degree elevation for polynomials
is shown in [1] and [4], for example. Nevertheless, recently in [3] Sánchez-
Reyes has shown the advantages of performing the degree elevation by using
convolution (conv function in Matlab). So we have implemented the public
member function degreeElevation(obj,k), which performs an elevation of k
degrees of the Polynomial object obj by using conv. The differentation and
integration of polynomials in Bernstein form are simple operations, which only
involve linear combinations of the Bernstein coefficients of the corresponding

polynomial. The formulas for computing p′(x),
∫
p(x) dx and

∫ 1

0
p(x) dx can

be seen in [2], and the public member functions diff(obj), integrate(obj)
and integral(obj) implement them, respectively. The public member func-
tions plus(obj1,obj2) and minus(obj1,obj2) implement the usual addition
and subtraction of polynomials, overloading the corresponding operators. First,
when necessary, the degree of one of the two polynomials is elevated by using
degreeElevation(obj,k) with an adequate k. The public member functions
mtimes(obj1,obj2) and mpower(obj,k) implement the operators ∗ and ∧. In
contrast to the usual form, implemented in [4], here we also use, like in the case
of function degreeElevation, Matlab convolution function conv, which is more
efficient as pointed out in [3].

In the following two sections we show how to use the software package.
However, all the following explanations an commands can be followed in an
interactive way through invoking script manual (file manual.m).

0.3 Constructing objects of the class

The Polynomial class provides a mold to construct polynomials represented in
the basis formed by the Bernstein basis of degree n given by bni (x) =

(
n
i

)
xi(1−
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x)n−i. There are five different ways of constructing an object of this class:

1. The default constructor, by using Polynomial(), creates the zero degree
polynomial whose value is zero at any point

>> poly1 = Polynomial()

poly1 =

0

2. If p(x) =
∑n

i=0 aix
i then, by using Polynomial([a_0,a_1,...,a_n])

or Polynomial([a_0,a_1,...,a_n],’m’), we contruct this polynomial
represented in the basis formed by the Bernstein polynomials of degree n.
So, for the polynomial p(t) = 1 + 2x + 3x2 it would be

>> poly2 = Polynomial([1,2,3])

poly2 =

bin(2,0)*(1-x)^2 + 2*bin(2,1)*x*(1-x) + 6*bin(2,2)*x^2

or

>> poly2 = Polynomial([1,2,3],’m’)

poly2 =

bin(2,0)*(1-x)^2 + 2*bin(2,1)*x*(1-x) + 6*bin(2,2)*x^2

3. Given the interpolation conditions p(xi) = qi, i = 0, 1, . . . , n, we can con-
struct the interpolating polynomial represented in the corresponding Bern-
stein basis by using Polynomial([x_0,x_1,...,x_n],[q_0,q_1,...,q_n]).
For example,

>> poly3 = Polynomial([0.25,0.5,0.75],[1,-2,3])

poly3 =

12*bin(2,0)*(1-x)^2 - 18*bin(2,1)*x*(1-x) + 16*bin(2,2)*x^2

creates the polynomial of degree 2 represented in the Bernstein basis
(b20, b

2
1, b

2
2) satisfying the conditions p(0.25) = 1, p(0.5) = −2 and p(0.75) =

3.

4. If the coefficients ci of the polynomial with respect to the basis formed by
the Bernstein polynomial are known (p(t) =

∑n
i=0 cib

n
i (x)), the the poly-

nomial can be constructed by using Polynomial([c_0,c_1,...,c_n],’c’).
For example,

>> poly4 = Polynomial(0:1:3,’c’)

poly4 =

bin(3,1)*x(1-x)^2 + 2*bin(3,2)*x^2(1-x) + 3*bin(3,3)*x^3

5. Finally, the copy constructor:
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>> poly5 = poly2

poly5 =

bin(2,0)*(1-x)^2 + 2*bin(2,1)*x*(1-x) + 6*bin(2,2)*x^2

or

>> poly5 = Polynomial(poly2)

poly5 =

bin(2,0)*(1-x)^2 + 2*bin(2,1)*x*(1-x) + 6*bin(2,2)*x^2

0.4 Using the methods of the class

1. getDegree returns the apparent degree of the polynomial

>> poly5.getDegree()

ans =

2

>> poly4.getDegree()

ans =

3

2. getCoeff and double return the coefficients of the polynomial respect to
the Bernstein basis

>> poly5.getCoeff()

ans =

1 2 6

>> poly4.double()

ans =

0 1 2 3

3. A polynomial represented in a Bernstein basis can also be represented in a
Bernstein basis of greated degree. degreeElevation performs this degree
elevation. For example the code

>> poly5 = poly5.degreeElevation(2)

poly5 =

bin(4,0)*(1-x)^4 + 1.5*bin(4,1)*x(1-x)^3

+ 2.5*bin(4,2)*x^2(1-x)^2 + 4*bin(4,3)*x^3(1-x) + 6*bin(4,4)*x^4

returns the degree 2 polynomial poly5 represented in the Bernstein basis
of degree 4 (=2+2).

4. Although a polynomial is represented in a Bernstain basis of a certain
n degree, the true degree of the polynomial can be lower. The method
degreeReduction checks the true degree of a polynomial and returns the
same polynomial represented in the Bernstein basis of the lowest possible
degree. For example,
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>> poly5 = poly5.degreeReduction()

poly5 =

bin(2,0)*(1-x)^2 + 2*bin(2,1)*x*(1-x) + 6*bin(2,2)*x^2

5. The usual arithmetic operations can be performed with the usual operators
+ (sum), − (substraction), ∗ (product), / (division) and ∧ (power). Let
us see some examples:

>> poly2+poly4

ans =

bin(3,0)*(1-x)^3 + 2.6667*bin(3,1)*x(1-x)^2

+ 5.3333*bin(3,2)*x^2(1-x) + 9*bin(3,3)*x^3

>> poly2-poly4

ans =

bin(3,0)*(1-x)^3 + 0.66667*bin(3,1)*x(1-x)^2

+ 1.3333*bin(3,2)*x^2(1-x) + 3*bin(3,3)*x^3

>> poly2*poly4

ans =

0.6*bin(5,1)*x(1-x)^4 + 1.8*bin(5,2)*x^2(1-x)^3

+ 4.5*bin(5,3)*x^3(1-x)^2 + 9.6*bin(5,4)*x^4(1-x)

+ 18*bin(5,5)*x^5

>> [q,r] = poly2/poly4

q =

0.66667*bin(1,0)*(1-x) + 1.6667*bin(1,1)*x

r =

1

>> poly6=poly4*q+r

poly6 =

bin(4,0)*(1-x)^4 + 1.5*bin(4,1)*x(1-x)^3

+ 2.5*bin(4,2)*x^2(1-x)^2 + 4*bin(4,3)*x^3(1-x)

+ 6*bin(4,4)*x^4

>> poly6.degreeReduction()

ans =

bin(2,0)*(1-x)^2 + 2*bin(2,1)*x*(1-x) + 6*bin(2,2)*x^2
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>> poly2

poly2 =

bin(2,0)*(1-x)^2 + 2*bin(2,1)*x*(1-x) + 6*bin(2,2)*x^2

>> poly2^2

ans =

bin(4,0)*(1-x)^4 + 2*bin(4,1)*x(1-x)^3

+ 4.6667*bin(4,2)*x^2(1-x)^2 + 12*bin(4,3)*x^3(1-x)

+ 36*bin(4,4)*x^4

6. The method Eval evaluates a polynomial. It can be invoked in two differ-
ent ways: Eval(x) and Eval(x,prec). The first one evaluates the poly-
nomial at the points in x with a default pretended percision of 10e − 12,
whereas the second one performs the same evaluation with the pretended
precision prec. Let us see some examples:

>> format short e

>> poly4.Eval([0:0.25:1])

ans =

0 7.5000e-01 1.5000e+00 2.2500e+00 3.0000e+00

NaN 9.3675e-16 7.7716e-16 6.1062e-16 4.4409e-16

0 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00

>> poly4.Eval([0:0.25:1],5*1e-16)

ans =

0 7.5000e-01 1.5000e+00 2.2500e+00 3.0000e+00

NaN 2.2204e-16 2.2204e-16 2.2204e-16 4.4409e-16

0 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00

As we can observe, the method returns for the 1 × 4 vector of points a
3 × 4 matrix, where the first row are consists of the evaluations of the
polynomial at the corresponding points in x, the second row provides,
when possible, upper bounds of the relative error for the evaluation, and
the third row consists of flags (1 means that relative error is lower than
prec, 0 means that either relative error is not less than prec or it is not
known about). If x is a column vector we obtain the traspose matrix:

>> poly4.Eval([0;0.25;0.5;0.75;1])

ans =

0 NaN 0
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7.5000e-01 9.3675e-16 1.0000e+00

1.5000e+00 7.7716e-16 1.0000e+00

2.2500e+00 6.1062e-16 1.0000e+00

3.0000e+00 4.4409e-16 1.0000e+00

The same evaluation can be performed with obj(x) or obj(x,prec):

>> poly4(0:0.25:1)

ans =

0 7.5000e-01 1.5000e+00 2.2500e+00 3.0000e+00

NaN 9.3675e-16 7.7716e-16 6.1062e-16 4.4409e-16

0 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00

>> poly4(0:0.25:1,5*1e-16)

ans =

0 7.5000e-01 1.5000e+00 2.2500e+00 3.0000e+00

NaN 2.2204e-16 2.2204e-16 2.2204e-16 4.4409e-16

0 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00

7. diff returns the derivate of a polynomial. For example,

>> poly7 = poly4.diff()

poly7 =

3*bin(2,0)*(1-x)^2 + 3*bin(2,1)*x*(1-x) + 3*bin(2,2)*x^2

8. integrate returns the indefinite integral of a polynomial.

>> poly7.integrate()

ans =

bin(3,1)*x(1-x)^2 + 2*bin(3,2)*x^2(1-x) + 3*bin(3,3)*x^3

9. integral returns the definite integral of a polynomial in the interval [0, 1]:

>> poly7.integral()

ans =

3

10. The method plot display a graphic of the polynomial in [0, 1]. This
method can be invoked in two ways: plot() or plot(step). The first
one, makes the graphic taking a mesh of the interval [0, 1] with step 0.01,
whereas the second one takes a mesh with step step. Let us see a couple
of examples:
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>> poly5.plot()

obtaining the graphic shown in Figure 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

y = bin(2,0)*(1−x)
2
 + 2*bin(2,1)*x*(1−x) + 6*bin(2,2)*x

2

X

Y

Figure 1: Example 1

and

>> poly5.plot(0.25)

obtaining the graphic shown in Figure 2

0.5 Test scripts

In order to test the usefulness of the software package we have included three
scripts: test1, test2 and test3 in the files test1.m, test2.m and test3.m,
respectively.
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Figure 2: Example 2
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