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1 Introduction

Algorithms that find a good partitioning of highly unstructuredpghs are critical for developing efficient solutions for
a wide range of problems in many application areas on both serial and paratiputers. For example, large-scale
numerical simulations on parallel computers, such as those based on &niter¢lmethods, require the distribution
of the finite element mesh to the processors. This distribution beudbne so that the number of elements assigned
to each processor is the same, and the number of adjacent elements assignedetot gifbcessors is minimized.
The goal of the first condition is to balance the computations amongrtwessors. The goal of the second condition
is to minimize the communication resulting from the placement of adjacemegits to different processors. Graph
partitioning can be used to successfully satisfy these conditionsdtyrfodeling the finite element mesh by a graph,
and then partitioning it into equal parts.

Graph partitioning algorithms are also used to compute fill-reducidgrongs of sparse matrices. These fill-
reducing orderings are useful when direct methods are used to solve spsiesas of linear equations. A good
ordering of a sparse matrix dramatically reduces both the amount of meamomgll as the time required to solve
the system of equations. Furthermore, the fill-reducing orderingduymed by graph partitioning algorithms are par-
ticularly suited for parallel direct factorization as they lead to high degfemncurrency during the factorization
phase.

Graph partitioning is also used for solving optimization problensry in numerous areas such as design of very
large scale integrated circuits (VLSI), storing and accessing spatial databaglisks, transportation management,

and data mining.



2 Whatis MENS

METIS is a software package for partitioning large irregular graphs, manititg large meshes, and computing fill-
reducing orderings of sparse matrices. The algorithnidemS are based on multilevel graph partitioning described
in [8, 7, 6]. Traditional graph partitioning algorithms computeaatjpion of a graph by operating directly on the
original graph as illustrated in Figure 1(a). These algorithms aemadto slow and/or produce poor quality partitions.

Multilevel partitioning algorithms, on the other hand, take a catgdy different approach [5, 8, 7]. These algo-
rithms, as illustrated in Figure 1(b), reduce the size of the graptolbgpsing vertices and edges, partition the smaller
graph, and then uncoarsen it to construct a partition for the origim@hgtMETIS uses novel approaches to succes-
sively reduce the size of the graph as well as to further refine the partitiang the uncoarsening phase. During
coarseningMENS employs algorithms that make it easier to find a high-quality partdaidhe coarsest graph. During
refinementMETS focuses primarily on the portion of the graph that is close to thetjperboundary. These highly
tuned algorithms allow/EeTiS to quickly produce high-quality partitions for a large variety odigins.

Multilevel partitioning algorithms compute a partition
at the coarsest graph and then refine the solution!

Traditional partitioning algorithms compute
a partition directly on the original graph! / {gj?’
S

() ‘

Initial Partitioning Phase

®
Figure 1: (a) Traditional partitioning algorithms. (b) Multilevel partitioning algorithms.
The advantages &fIETiIS compared to other similar packages are the following:

0 Provides high quality partitions!
Experiments on a large number of graphs arising in various domaingingl finite element methods, linear
programming, VLSI, and transportation show thé#1iS produces partitions that are consistently better than
those produced by other widely used algorithms. The partitionsusestlbyMETIS are consistently 10% to
50% better than those produced by spectral partitioning algorithrdg.[1,

O Itis extremely fast!
Experiments on a wide range of graphs has shownMIgaS§ is one to two orders of magnitude faster than other
widely used partitioning algorithms. Figure 2 shows the amoutitref required to partition a variety of graphs
in 256 parts for two different architectures, an R10000-based SGI Chalkerja Pentium Pro-based personal
computer. Graphs containing up to four million vertices can be paréition 256 parts in well under a minute
on today’s scientific workstations. The run timeMETS is comparable to (or even smaller than) the run time
of some geometric partitioning algorithms that often produce muakevpartitions.

O Provides low fill orderings!
The fill-reducing orderings produced BETS are substantially better than those produced by other widely
used algorithms including multiple minimum degree. For many cladge®blems arising in scientific compu-
tations and linear programminlyIETS is able to reduce the storage and computational requirements of sparse
matrix factorization methods by up to an order of magnitude. Moreovakaumiultiple minimum degree, the
elimination trees produced BYEIS are suited for parallel direct factorization. Furthermore, as Figure £ illu
trates,METIS is able to compute these ordering very fast. Matrices with over two leainttiousand rows can be
reordered in just a few seconds on current generation workstations and PCs



METIS's Partitioning Performance
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Figure 2: The amount of time required by METS to partition various graphs in 256 parts and the amount of time required by MEIS
to compute fill-reducing orderings for various sparse matrices.

The rest of this manual is organized as follows: Section 4 describes thimteséace to the stand-alone programs
provided byMEIS. Section 5 describes the stand-alone library that implements the vailgorithms implemented
in METS. Finally, Section 6 describes the system requirements faviiis package.



3 What is New in This Version

The latest version dfIETIS contains a number of changes over the previous major release (versiomM8ddof these
changes are concentrated on the graph and mesh partitioning routines andthaally affect the sparse matrix re-
ordering routines. Table 1 describes which programs and routindgli8lib have been changed and the new routines
in MeTiSlib. In the rest of this section we briefly describe some of the major changes.

Multi-Constraint Partitioning METS now includes partitioning routines that can be used to partition a graph
the presence of multiple balancing constraints. The idea is that each ragtexvector of weights of sire associated
with it, and the objective of the partitioning algorithm is to mrmrize the edgecut subject to the constraints that each
one of them weights is equally distributed among the domains. For example, ffitstenveight corresponds to the
amount of computation and the second weight corresponds to the amaiataxfe required for each element, then
the partitioning computed by the new algorithms will balance baticttimputation performed in each domain as well
as the amount of memory that it requires. Also, multi-phase (mblgisjgs) computations can use the new partitioning
algorithm to simultaneously balance the computations performed in eade piThe multi-constraint partitioning
algorithms and their applications are further described in [6].

The multi-constraint partitioning algorithm is implemented by tWETIS_mCPartGraphRecursive and
METIS_mCPartGraphKway routines that are based on the multilevel recursive bisection and thaewellk-way
partitioning paradigms, respectively. Also, thmetis and thekmetis programs have been overloaded to invoke the
multi-constraint partitioner when the input graph contains mutiyg@rtex weights (Section 4.5.1 describes how the
format of the input graph file has been extended to allow you to specifiipteuvertex weights).

Minimizing the Total Communication Volume The objective of the traditional graph partitioning problem is
to compute a balancddway partitioning such that the number of edges (or in the case of weighaptis the sum of
their weights) that straddle different partitions is minimized. Whartifioning is used to distribute a graph or a mesh
among the processors of a parallel computer, the objective of minintizingdgecut is only an approximation of the
true communication cost resulting from the partitioning. Desyitd, tfor a wide range of problems, by minimizing
the edgecut, the partitioning algorithms also minimize the commuaitabst reasonably well.

However, there are cases in which a partitioning algorithm can significeedluce the communication cost by
directly minimizing this objective (as opposed to the edgecMEliS now provides theVIETIS_PartGraphVKway
and METIS_WPartGraphVKway routines that directly minimize the communication cost as defined by taé to
communication volume resulted by the partitioning (see Section b&oecise definition of this objective function).
Note that for these routines to provide meaningful partitionitigs,connectivity of the graph should reflect the true
information exchange requirements of the underlying computation.

Minimizing the Maximum Connectivity of the Subdomains The communication cost resulting fromka
way partitioning in general depends on the following factors: (i) ttaeltcommunication volume, (ii) the maximum
amount of data that any particular processor needs to send and receive; ahd (iiiniber of messages a processor
needs to send and receive. The partitioning routines in earlier versidvgli&f concentrated only on the first factor
(by minimizing the edgecut). In this releaddgliS also provides support for minimizing the third factor (which
essentially reduces the number of startups) and indirectly (up to g peihtces the second factor. Experiments have
shown that for most graphs corresponding to finite element meshesewhectease oMETS is able to reduce the
maximum (and total) number of adjacent subdomains considerably—espediely tve graph is partitioned in a
relatively large number of partitions.@, greater than 30). For most 3D finite elements graphs, the maximumarumb
of subdomains for a 50-way partition has been reduced from around 25u0dat6.

This enhancement is provided as a refinement option for both MEETIS_PartGraphKway and
METIS_PartGraphVKway routines, and is the default optionkihetis andMETIS_PartGraphKway.

Reducing the Number of Non-Contiguous Subdomains A k-way partitioning of a contiguous graph can
often lead to some subdomains being assigned non-contiguous garfitime graph. For many problems, the non-



Changes in M ENIS’s stand-alone programs

pmetis It has been over-loaded to invoke the multi-constraint partitionigg-al
rithm when the graph contains multiple vertex weights.

kmetis It has been over-loaded to invoke the multi-constraint partitionigg-al
rithm when the graph contains multiple vertex weights.
The partitioning algorithm has been modified to also minimize the con-
nectivity of the subdomains.
A pre- and post-refinement step is applied that tries to reduce the number
of non-contiguous subdomains.

partnmesh The partitioning algorithm has been modified to also minimize the con-
partdmesh nectivity of the subdomains.

Changes in M ETiSlib’s routines

METIS_PartGraphKway A new refinement algorithm has been added that also minimizes the con-
METIS_WPartGraphKway nectivity of the subdomains. This new algorithm has been made the de-
fault option.

A pre- and post-refinement step is applied that tries to reduce the number
of non-contiguous subdomains.

METIS_PartGraphVKway This is a new set of routines that comput&-avay partitioning whose
METIS_WPartGraphVKway objective is to minimize the total communication volume.

METIS_mCPartGraphRecursive  This is a new set of routines that compute-way partitioning subject to
METIS_mCPartGraphKway multiple balancing constraints.

Table 1: Summary of the changes in MENS and METSIib.

contiguity is a result of the underlying geometry and often leads tebattality partitions. Nevertheless, there are
cases in which the partitioning algorithm is fooled and breaks certain eemMENS now provides support for
eliminating such spurious non-contiguous subdomains.

This support is provided as a default option for bothMHETIS_PartGraphKway andMETIS_PartGraphVKway
routines, and th&metis program.



4 MEIS’s Stand-Alone Programs

METIS provides a variety of programs that can be used to partition graphsjgrartieshes, compute fill-reducing
orderings of sparse matrices, as well as programs to convert meshes irtie gpgpopriate foMENS’s graph parti-
tioning programs.

The rest of this section provides detailed descriptions about the dumaditly of these programs, how to use them,
the format of the input files required by them, and the format of thdymred output files.

4.1 Graph Partitioning Programs

METIS provides two programpnet i s andkmet i s for partitioning an unstructured graph inkocequal size parts.
The partitioning algorithm used hynet i s is based on multilevel recursive bisection described in [8], whereas the
partitioning algorithm used binet i s is based on multilevek-way partitioning described in [7]. Both of these
programs are able to produce high quality partitions. However, dépgod the application, one program may be
preferable than the other. In genetatet i s is preferred when it is necessary to partition graphs into more than eight
partitions. For such casespet i s is considerably faster thggnet i s. On the other handgynet i s is preferable
for partitioning a graph into a small number of partitions.

Bothpneti s andknet i s are invoked by providing two arguments at the command line as follows:

pmetis  GraphFile  Nparts
kmetis GraphFile  Nparts

The first argumenGraphFile is the name of the file that stores the graph (whose format is desarikfeec-
tion 4.5.1), while the second argumeiytarts is the number of partitions that is desired. Bptiet i s andkneti s
can patrtition a graph into an arbitrary number of partitions. Upon sultdes®cution, both programs display statis-
tics regarding the quality of the computed partitioning and the amafuime taken to perform the partitioning. The
actual partitioning is stored in a file nam@&daphFile.part.Nparts, whose format is described in Section 4.6.1.

Figure 3 shows the output gimet i s andknet i s for partitioning a graph into 100 parts. From this figure we
see that both programs initially printinformation about the grapkh as its name, the number of verticegdrtices,
the number of edge#Edge}, and also the number of desired partitio#Bdrty. Next, they print some information
regarding the quality of the partitioning. Specifically, they repbet number of edges being clEdge-Cu} by the
partitioning, as well as the balance of the partitiodingrinally, bothpnet i s andknet i s show the time taken
by the various phases of the algorithm. All times are in seconds. Eopérticular examplepnet i s required a
total of 17.070 seconds, of which 13.850 seconds was taken by thegranifialgorithm itself, and the rest was to
read the graph itself. Similarliknet i s required a total of 6.790 seconds, of which 3.570 seconds was taken by the
partitioning algorithm itself. As you can see from this examgl®et i s is considerably faster thgmet i s, and it
produces a partitioning that is slightly better than that produceah®t i s.

Figure 4 shows the output pfret i s andkmret i s for partitioning a graph into 16 parts subject to three balancing
constraints. Bottpneti s andknet i s have beerover-loadedo invoke the multi-constraint partitioning routines
whenever the input graph file specifies more that one set of vertex we@bitsparing the output of Figure 4 to that
of Figure 3 we see thatwhemet i s andknet i s operate in the multi-constraint mode they display some additional
information regarding the number of constraints and also the balarice obmputed partitioning with respect to each
one of these constraints. In this exampeet i s was able to balance the three constraints within 1%, 3%, and 2%,
respectively. Note that for multi-constraint partitioning, for shnaimber of partitionpret i s outperformskneti s
in terms of partitioning quality. However, for larger number of gantisknet i s achieves better quality and is more
robust in simultaneously balancing the various constraints.

1For ak way partition of a graph witin vertices, letn be the size of the largest part produced bykheay partitioning algorithm. The balance
of the partitioning is defined dem/n, and is essentially the load imbalance induced by non-quarétions.pnet i s produces partitions that are
perfectly balanced at each bisection level, however, sonal $oad imbalance may result due to the loigvels of recursive bisection. In general,
the load imbalance is less than 1kret i s produces partitions that are not perfectly balanced, luathorithm limits the load imbalance to 3%.



pronpt % pnetis brack2. graph 100

*******************************************************************:::\

METIS 4.0 Copyright 1998, Regents of the University of M nnesota

Gaph Informati oOn ------ - oo e
Nane: brack2.graph, #Vertices: 62631, #Edges: 366559, #Parts: 100

Recursive Partitioning... -----------mommmmmm o
100- way Edge- Cut: 37494, Bal ance: 1.00

Timing Information -----------mmmmmm

/O 0. 820
Partitioning: 6.110 (PMVETIS tine)
Tot al : 6. 940

R R R R R R X

pronpt % kneti s brack2. graph 100

R R R R R R X

METIS 4.0 Copyright 1998, Regents of the University of M nnesota

Gaph Informati On ------ - oo e e
Nane: brack2.graph, #Vertices: 62631, #Edges: 366559, #Parts: 100

K-way Partitioning... ----------mmmmmmm oo
100- way Edge- Cut: 37310, Bal ance: 1.03

Timing Information -----------mmmmmm o
/O 0. 820
Partitioning: 1. 750 (KMETIS tinme)
Tot al : 2.570

\\\i******************************************************************ii:/

Figure 3: Output of pret i s and ket i s for graph brack2.graph and a 100-way partition.

4.2 Mesh Partitioning Programs

METS provides two programpar t nmesh andpart dnesh for partitioning meshese(g, those arising in finite
element or finite volume methods) inkeequal size parts. These programs take as input the element node array of the
mesh and compute a partitioning for both its elements and its ndd8ES currently supports four different types of
mesh elements which are triangles, tetrahedra, hexahedra (bricks), andeqeicdsi

These programs first convert the mesh into a graph, and thekinegd s to partition this graph. The difference
between these two programs is tipar t nmesh converts the mesh into a nodal graple.( each node of the mesh
becomes a vertex of the graph), wherpast dnesh converts the mesh into a dual grajpke.( each element becomes
a vertex of the graph). In the casegar t nnesh, the partitioning of the nodal graph is used to derive a partitigpnin
the elements. In the casepdir t dmesh, the partitioning of the dual graph is used to derive a partitionfrthe nodes.
Both of these programs produce partitioning of comparable qualitly,war t nmesh being considerably faster than
part dnesh. However, in some casegar t nmesh may produce partitions that have higher load imbalance than
part dnesh.

Bothpar t nmesh andpar t dnesh are invoked by providing two arguments at the command line as follows:

partnmesh MeshFile  Nparts
partdmesh MeshFile  Nparts

The first argumernileshFile is the name of the file that stores the mesh (whose format is desarniBedtion 4.5.2),
while the second argumeNparts is the number of partitions that is desired. Bp#r t nmesh andpar t dnesh can
partition a mesh into an arbitrary number of partitions. Upon sucdessficution, both programs display statistics
regarding the quality of the computed patrtitioning and the amoutine taken to perform the partitioning. The



pronpt % pneti s nil4. graph3 16 \

R R R R R R EE R

METIS 4.0 Copyright 1998, Regents of the University of M nnesota
Gaph Informati oOn ------ - oo e
Nane: ni4. graph3, #Vertices: 214765, #Edges: 1679018, #Parts: 16

Bal anci ng Constraints: 3

Recursive Partitioning. .. -------mmmmmmmm

16-way Edge- Cut: 74454, Bal ance: 1.01 1.03 1.02
Timng Information -------mmmmmm o
/G 4.310
Partitioning: 28.410 (PMETIS tinme)
Total : 32.830

kkhkkkkhkkhkkhkkhkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkkhkhkhkkhkhkhkkhkhkkhkhkhkhkhkhkhkhhhhkhkhkhkhkhkhkkkkkkkkkkkkk*x*%

pronpt % kneti s nil4. graph3 16

kkhkkhkkkhkkhkkhkkhkkhkkhkhkkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhhhkhkhkhkhkhkkkkkkkkkkkkkk*x*%

METIS 4.0 Copyright 1998, Regents of the University of M nnesota
Gaph Informati On ------ oo e
Narme: nil4. graph3, #Vertices: 214765, #Edges: 1679018, #Parts: 16

Bal anci ng Constraints: 3

K-way Partitioning... --------mmmmm o
16-way Edge- Cut: 71410, Balance: 1.04 1.04 1.04

Timing Information -----------mmmmmmm

/O 4.020
Partitioning: 7.430 (KMETIS tinme)
Tot al : 11. 550

(******************************************************************v

Figure 4: Output of pnet i s and ket i s for a multi-constraint graph with three constraints and a 16-way partition.

actual partitioning is stored in two files namedeshFile.npart.Npartswhich stores the partitioning of the nodes, and
MeshFile.epart.Nparts which stores the partitioning of the elements. The format of thetfmanitng files is described
in Section 4.6.1.

Figure 5 shows the output pfar t nnesh andpar t dmesh for partitioning a mesh with tetrahedron elements into
100 parts. From this figure we see that both programs initiallyt prformation about the mesh, such as its name, the
number of elementstElementy the number of node#Node$, and the type of elements.@, TET). Next, they print
some information regarding the quality of the partitioning. Siealiy, they report the number of edges being cut
(Edge-Cu} by the partitioning, as well as the balance of the partitioning. For bpér t nnesh andpar t dmesh,
the balance is computed with respect to the number of elements. The balameespitct to the number of nodes is
not shown, but it is in general similar to the element balance.

Finally, bothpar t nmesh andpar t dnesh show the time that was taken by the various phases of the algorithm.
All times are in seconds. In this particular example, it t@ak t nmesh 23.370 seconds to partition the mesh into
100 parts. Note that this time includes the time required both tatearishe nodal graph and to partition it. Similarly,
it took par t dnesh 74.560 seconds to partition the same mesh. Again, this time inclbddarie required both to
construct the dual graph and to patrtition it. As you can see from this geapar t nnesh is considerably faster
thanpart dnesh. This is because of two reasons: (i) the time required to construcioidh@ graph is smaller than
the time required to construct the dual graph; (ii) the nodal graptadlsr than the dual graph.

2The edgecut that is reported pgr t nnesh is that of the nodal graph, whereas the edgecut report@aby dnesh is that of the dual graph.
These two edgecuts cannot be compared with each other,yasarespond to partitionings of two totally different ghap

10



Note If you need to compute multiple partitionings of the same mesh, it beagreferable to first use one of
the mesh conversion programs described in Section 4.4 to first convaresiteinto a graph, and then use
ket i s to partition it. By doing this, you pay the cost of converting the imiaso a graph only once.

pronpt % part nmesh 144. mesh 100 \

R R R R R R X

METIS 4.0 Copyright 1998, Regents of the University of M nnesota

Mesh Information -------mmm e
Nare: 144.mesh, #El enents: 905410, #Nodes: 144649, Etype: TET

Partitioning Nodal Graph... -------mmmmmm
100-way Edge-Cut: 105207, Bal ance: 1.03

Timing Information -----------mmmmmm
/O 13. 210

Partitioning: 7.950

R R R R R R R X

pronpt % partdnmesh 144. mesh 100

kkhkkhkkkhkkhkkhkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkkhkkhkkhkhkkhkkhkhkkhkhkhkhkkhkhkhkhkhkhhkhhhkhkhkhkhkhkkkkkkkkkkkk**x%

METIS 4.0 Copyright 1998, Regents of the University of M nnesota

Mesh Information ----------mmmmmm oo
Nane: 144.nmesh, #El enments: 905410, #Nodes: 144649, Etype: TET

Partitioning Dual Graph... ---------------m oo
100- way Edge- Cut: 52474, Bal ance: 1.03

Timng Information -------mmmmmm e

/G 11. 540
Partitioning: 28. 220

(******************************************************************v

Figure 5: Output of par t nmesh and par t dnesh for mesh 744.mesh and a 100-way partition.

4.3 Sparse Matrix Reordering Programs

METIS provides two programgenet i s andonnet i s for computing fill-reducing orderings of sparse matrices.
Both of these programs use multilevel nested dissection to complitesalficing ordering [8]. The nested dissection
paradigm is based on computing a vertex-separator for the the graphpoordésy to the matrix. The nodes in the
separator are moved to the end of the matrix, and a similar process is aggliesively for each one of the other two
parts.

Even though both programs are based on multilevel nested dissectgriffer on how they compute the vertex
separators. Theenet i s program finds a vertex separator by first computing an edge separatorausinljilevel
algorithm, whereas thennet i s program uses the multilevel paradigm to directly find a vertex separéker.or-
derings produced bgnret i s generally incur less fill than those produceddsret i s. In particular, for matrices
arising in linear programming problems the orderings computeaimget i s are significantly better than those pro-
duced byoenet i s. Furthermorepnmet i s utilizes compression techniques to reduce the size of the graph prior to
computing the ordering. Sparse matrices arising in many applicatioaidsrare such that certain rows of the matrix
have the same sparsity pattern. Such matrices can be represented by a mushgsaytl in which all rows with
identical sparsity pattern are represented by just a single vertex whaightvis equal to the number of rows. Such
compression techniques can significantly reduce the size of the graph,wehapelicable, and substantially reduce
the amount of time required bgnnet i s. However, when there is no reduction in graph szenet i s is about
20% to 30% faster thaonmet i s. Furthermore, for large matrices arising in three-dimensional probk@sjuality
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pronpt % oeneti s bcsst k31. graph \

kkhkkhkkkhkkhkkhkkhkkhkkhkkhkhkhkhkkhkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkkhkkhkkhkhkhkkhkkhkhkhkhkhkhkkhkhkhkhkhkhkhkhhkhkhkhkhkhkkkkkkkkkkkkk**x*%

METIS 4.0 Copyright 1998, Regents of the University of M nnesota

Gaph Information -----------mmmmm oo
Name: bcsstk31. graph, #Vertices: 35588, #Edges: 572914

Edge-Based Ordering. .. --------mmmmmmm oo

Nonzeros: 4693428, Operation Count: 1.4356e+09
Timng Information -------mmmmm oo
/O 1.160
Ordering: 7.380 (OCEMETI S tine)
Synbol i ¢ Factorization: 0. 440
Tot al : 8. 980

R R R R R R

pronpt % onnmeti s bcsst k31. graph

R R R R R X

METIS 4.0 Copyright 1998, Regents of the University of M nnesota

Gaph Informati on ------ - o e e
Nane: bcsst k31. graph, #Vertices: 35588, #Edges: 572914

Node-Based Ordering. .. --------mmmmmm oo

Nonzeros: 4330669, Operation Count: 1.1564e+09
Timng Information ------cmmm oo
I/O 1. 080
Ordering: 4. 540 (ONMVETI S tine)
Synbol i ¢ Factorization: 0. 440
Total : 6. 060

\\\iﬁ*****************************************************************ij:/

Figure 6: Output of oenet i s and onmet i s for graph besstk31.graph.

of orderings produced by the two algorithms is quite similar.
Bothoenet i s andonnet i s are invoked by providing one argument at the command line as follows:

oemetis  GraphFile
onmetis  GraphFile

The only argument of these progra@saphFile is the name of the file that stores the sparse matrix in the graph
format described in Section 4.5.1. Upon successful execution, bothgonsglisplay statistics regarding the quality
of the computed orderings and the amount of time taken to performdeeing. The actual ordering is stored in a file
namedGraphFile.iperm, whose format is described in Section 4.6.2.

Figure 6 shows the output oenet i s andonnet i s for computing a fill-reducing ordering of a sample matrix.
From this figure we see that both programs initially print inforimaiabout the graph, such as its name, the number
of vertices #\ertice3, and the number of edgegiEdge3. Next, they print some information regarding the quality of
the ordering. Specifically, they report the number of non-zeros thaegtered in the lower triangular matrix, and the
number of operationsJPC) required to factor the matrix using Cholesky factorization. Note thatler of nonzeros
includes both the original non-zeros and the new non-zeros due tdithEifially, both oermet i s andonneti s
show the time that was taken by the various phases of the algorithntinfds are in seconds. For this particular
example,oenet i s takes a total of 23.290 seconds, of which 17.760 seconds was taken bylémagralgorithm
itself. For the same examptennet i s takes a total of 17.340 seconds, of which 11.810 seconds was taken by the
partitioning algorithm itself. Note that in this casanet i s is faster tharoenet i s, becaus®nneti s was able
to compress the matrix. Also note that the quality of the fill-redgardering produced bgnnet i s is significantly
better than that produced menet i s. In fact, the ordering produced lmnnet i s results in 8% fewer non-zeros
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and 20% fewer operations.

4.4 Auxiliary Programs
4.4.1 Mesh To Graph Conversion

pronpt % nmesh2nodal 144. mesh

*******************************************************************;::\

METIS 4.0 Copyright 1998, Regents of the University of M nnesota

Mesh Information ----------mmmmmm oo
Nare: 144.mesh, #El enents: 905410, #Nodes: 144649, Etype: TET

Forming Nodal Gaph... -------mmmm
Nodal Information: #Vertices: 144649, #Edges: 1074393

Timing Information -----------mmmmmm
/o 15. 290
Nodal Creation: 3. 030

R R R R R R R R X

pronpt % nesh2dual 144. mesh

kkhkkhkkkhkkhkkhkkhkkhkkhkhkhkkhkhkhkkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkkhkkhkkhkkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkkkkkkkkkkkkk**x*%

METIS 4.0 Copyright 1998, Regents of the University of M nnesota

Mesh Information -------mmm e
Nane: 144.nmesh, #El enents: 905410, #Nodes: 144649, Etype: TET

Forming Dual Gaph... ------------mmmm o
Dual Information: #Vertices: 905410, #Edges: 1786484

Timng Information -------mmmmmm o

1/Q 19. 200
Dual Creation: 10. 880

(******************************************************************v

Figure 7: Output of mesh2nodal and mesh2dual for mesh 144.mesh.

METS provides two programsesh2nodal andnesh2dual for converting a mesh into the graph format used
by METIS. In particularmesh2nodal converts the element node array of a mesh into a nodal grapheach node
of the mesh corresponds to a vertex in the graph and two vertices are conbg@adedge if the corresponding
nodes are connected by lines in the mesh. Similashsh2dual converts the element node array of a mesh into
a dual graphj.e., each element of the mesh corresponds to a vertex in the graph and two vemticesinected if
the corresponding elements in the mesh share a face. These mesh-to-gragsicniprograms support meshes with
triangular, tetrahedra, and hexahedra (bricks) elements.

Bothnmesh2nodal andnesh2dual are invoked by providing one argument at the command line as follows:

mesh2nodal MeshFile
mesh2dual MeshFile

The only argument of these programeshFile is the name of the file that stores the mesh (whose format is
described in Section 4.5.2). Upon successful execution, both progigpteydnformation about the generated graphs,
and the amount of time taken to perform the conversion. The actual grafurésl in a file namedvieshFile.ngraph
in the case ofresh2nodal andMeshFile.dgraph in the case ofresh2dual . The format of these graph files are
compatible withMETS and is described in Section 4.5.1.

Figure 7 shows the output aesh2nodal andmesh2dual for generating the nodal and dual graphs of a sample
mesh. Note that the sizes of the generated graphs are different, as theaghlailsgarger than the nodal graph. Also
note that generating the nodal graph is considerably faster than genenatohggtl graph.
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4.4.2 Graph Checker

METIS provide a program callegr aphchk to check whether or not the format of a graph is appropriate for use with
METIS. This program should be used whenever there is any doubt about thatfof any graph file. It is invoked by
providing one argument at the command line as follows:

graphchk GraphFile

whereGraphFileis the name of the file that stores the graph.
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4.5 Input File Formats

The various programs iNMEIS require as input either a file storing a graph or a file storing a mebbk.fdrmat of
these files are described in the following sections.

45.1 Graph File

The primary input of the partitioning and fill-reducing orderinggrams inMEeTS is the graph to be partitioned or
ordered. This graph is stored in a file and is supplied to the variagsg@ms as one of the command line parameters.
A graphG = (V, E) with n vertices andn edges is stored in a plain text file that contains 1 lines (excluding
comment lines). The first line contains information about the size laadype of the graph, while the remaining

lines contain information for each vertex @t Any line that starts with ‘%’ is a comment line and is skipped.

The first line contains either twa( m), three , m, fmt), or four (n, m, fmt, ncon integers. The first two integers
(n, m) are the number of vertices and the number of edges, respectively. Note dedérmining the number of edges
m, an edge between any pair of vertiaeandu is countedonly onceand not twice i¢e., we do not count the edge
(v, u) separately frongu, v)). For example, the graph in Figure 8 contains 11 vertices. The theden {(mt) is used
to specify whether or not the graph has weights associated with its vertgcedges, or both. Table 2 describes the
possible values dimt and their meaning. Note that if the graph is unweighies], (all vertices and edges have the
same weight), then thient parameter can be omitted. Finally, the fourth integeof) is used to specify the number
of weights associated with each vertex of the graph. The value of this paadettrmines whether or nBIEETS will
use the multi-constraint partitioning algorithms described in @i If the vertices of the graph have no weights or
only a single weight, then theconparameter can be omitted. Howevemdonis greater than 0, then the file should
contain the required vertex weights and thit parameter should be set appropriatély. (it should be set to either 10
or11).

fmt | Meaning
0 | The graph has no weights associated with either the edges or the vertices
1 | The graph has weights associated with the edges

10 | The graph has weights associated with the vertices

11 | The graph has weights associated with both the edges & vertices

Table 2: The various possible values for the fmt parameter and their meaning.

The remainingn lines store information about the actual structure of the graph. ticphar, theith line (excluding
comment lines) contains information that is relevant toithevertex. Depending on the value of thrat andncon
parameters, the information stored at each line is somewhat differerite mast general form (whedmt = 11 and
ncon> 1) each line will have the following structure:

wla w25 L wnCOna Ula ela v25 eZa ey vka eK
wherews, wa, ..., wncon are thenconvertex weights associated with this vertex, vz, . . ., vk are the vertices adja-
cent to this vertex, aney, e, . . ., & are the weights of these edges. In the remaining of this section wealieishis

format by a sequence of examples. Note that the vertices are numbereddtartirl (not from 0 as is often done in
C). Furthermore, the vertex-weights must be integers greater or eqoahhereas the edge-weights must be strictly
greater than 0.

The simplest format for a grap® is when the weight of all vertices and the weight of all the edges is the same.
This format is illustrated in Figure 8(a). Note, the optiofmat parameter is skipped in this case.

However, there are cases in which the edge&ihave different weights. This is accommodated as shown in
Figure 8(b). Now, the adjacency list of each vertex contains the weigheaédges in addition to the vertices that is
connected with. 1 hask vertices adjacent to it, then the line foin the graph file contains:2k numbers, each pair
of numbers stores the vertex thats connected to, and the weight of the edge. Note thafrttt@arameter is equal
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Graph File: Graph File:

7 11 7111

532 513221
134 113241
5421 53422212
2367 21326275
136 113362
547 524276

6 4 6645

(@  Unweighted Graph (b)  Weighted Graph

Weights on edges

Graph File:
7

Graph File:
7

NO R WOaN N
o GR N RO
ONR R WER R
AR WWDAWWER
AN WNNNN
No o N AN
ONNN PR R
~ e
aN
PNRNAOR
NNRNR NN R
PRPRPWRNO
ok N R OO
A WWDWWW

(c)  Weighted Graph
Weights both on vertices and edges (d)  Multi-Constraint Graph

Figure 8: Storage format for various type of graphs.

to 1, indicating the fact thab has weights on the edges.

In addition to having weights on the edges, weights on the verticessralldwed, as illustrated in Figure 8(c). In
this case, the value dimtis equal to 11, and each line of the graph file first stores the weight ofettiex, and then
the weighted adjacency list.

Finally, Figure 8(d) illustrates the format of the input file whée vertices of the graph contain multiple weights
(3 in this example). In this case, the valuefioft is equal to 10 (we do not have weights associated with the edges),
and the value ohconis equal to 3 (since we have three sets of vertex-weights). Each life gfraph file stores the
three weights of the vertices followed by the adjacency list.

4.5.2 Mesh File

The primary input of the mesh partitioning programsMdIiS is the mesh to be partitioned. This mesh is stored in
a file in the form of the element node array. A mesh witelements is stored in a plain text file that contains 1

16



lines. The first line contains information about the size and the ¢fplee mesh, while the remaininglines contain
the nodes that make up each element.

The first line contains two integers. The first integer is the nurobetements in the mesh. The second integer
etypeis used to denote the type of elements that the mesh is madetygfiecan either take the values of 1, 2, 3, or 4,
indicating that the mesh consists of either triangles, tetrahedra, herabedks), or quadrilaterals, respectively.

After the first line, the remaining lines store the element node array. In particular for elemdimtei + 1 stores
the nodes that this element is made off. Dependingtygpe each line can either have three integers (in the case of
triangles), four integers (in the case of tetrahedra and quadrilatevaksight integers (in the case of hexahedra). In
the case of triangles and tetrahedra, the ordering of the nodes for each eleeenbtmatter. However, in the case
of hexahedra and quadrilaterals, the nodes for each element should be orderdithgtodhe numbering illustrated
in Figure 9(b). Note that the node numbering starts from 1.

Figure 9 illustrates this format for a small mesh with triangular elesdxote that thetypefield of the mesh file
is set to 1 indicating that the mesh consists of triangular elements.

4 5

E : 8 2 3
N 6
2 3 7
1
U 4 1 a4
2
. 3
Mesh File: 5 1
123
g é g (b) Ordering of nodes
456
563

(a) Sample Mesh File

Figure 9: (a) The file that stores the mesh. (b) The ordering of the nodes in the case of hexahedra and quadrilaterals.

4.6 Output File Formats

The output of MEIS is either a partition or an ordering file, depending on whetglS is used for graph/mesh
partitioning or for sparse matrix ordering. The format of these filesdescribed in the following sections.

4.6.1 Partition File

The partition file of a graph witm vertices consists ofi lines with a single number per line. Thh line of the
file contains the partition number that thih vertex belongs to. Partition numbers start from 0 up to the nuwiber
partitions minus one.

4.6.2 Ordering File

The ordering file of a graph with vertices consists afi lines with a single number per line. Théh line of the

ordering file contains the new order of tith vertex of the graph. The numbering in the ordering file starts o
Note that the ordering file stores what is referred to as the the inversaypation vectoipermof the ordering. Let

A be a matrix and lef\’ be the reordered matrix. The inverse permutation vector mapsthew (column) ofA into

theipernti] row (column) ofA'.
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5 MEIS’s Library Interface

The various programs providedMETS can also be directly accessed from a C or Fortran program by using the stand-
alone libraryMETiSlib. Furthermore MEISlib extends the functionality provided bByETS’s stand-alone programs
in two different ways. First, it allows the user to alter the behaviahe various algorithms iMETS, and second
METiSlib provides additional routines that can be used to partition graphs imtqual-size partitions and compute
partitionings that directly minimize the total communication volume.

In the rest of this section we describe the interface to the routin®&nslib by first describing the various data
structures used to pass information into and get information outeofatitines, followed by a detailed description of
the calling sequence of the various routines.

5.1 Graph Data Structure

All of the graph partitioning and sparse matrix ordering routineslifiSlib take as input the adjacency structure of
the graph and the weights of the vertices and edges (if any).

The adjacency structure of the graph is stored using the compressagestormat (CSR). The CSR format is a
widely used scheme for storing sparse graphs. In this format the adyastencture of a graph with vertices and
m edges is represented using two arragslj andadj ncy. Thexadj array is of sizen + 1 whereas thadj ncy
array is of size & (this is because for each edge between verticasdu we actually store botlw, u) and(u, v)).

The adjacency structure of the graph is stored as follows. Assumagehtex numbering starts from 0 (C style),
then the adjacency list of vertéxis stored in arrayadj ncy starting at indexxadj [i] and ending at (but not
including) indexxadj [ i +1] (i.e,,adj ncy[ xadj [i]] through and includingdj ncy[ xadj [ i +1] - 1] ). That
is, for each vertex, its adjacency list is stored in consecutive locations in the adjyncy, and the arraxadj is
used to point to where it begins and where it ends. Figure 10(Istridites the CSR format for the 15-vertex graph
shown in Figure 10(a).

1011 12 13 1

(a) A sample graph

xadj 0 25811 13 162024283133 36394244

adincy 1502613724839 0610 157112 68123 7 9134814511 6101271113 812149 13

(b CSR format
Figure 10: An example of the CSR format for storing sparse graphs.

The weights of the vertices (if any) are stored in an additional array caligd . If nconis the number of weights
associated with each vertex, the arvaygt containsn x nconelements (recall that is the number of vertices). The
weights of the th vertex are stored inconconsecutive entries starting at locatiewgt [ i * ncon] . Note that if
each vertex has only a single weight, themgt will contain n elements, angwgt [ i] will store the weight of the
i th vertex. The vertex-weights must be integers greater or equal to Zatbthe vertices of the graph have the same
weight (.e., the graph is unweighted), then thegt can be setto NULL.

The weights of the edges (if any) are stored in an additional array edlpdgt . This array containsr elements,
and the weight of edgadj ncy[ j] is stored at locatiomdj wgt [ j] . The edge-weights must be integers greater
than zero. If all the edges of the graph have the same wdighttfie graph is unweighted), then tadj wgt can be
set to NULL.

All of these four arraysxadj, adjncy, vwgt andadjwg? are defined invIEIiSlib to be of of typei dxt ype. By
defaulti dxt ype is set to be equivalent to typent (i.e., the integer datatype of C). Howeveérixt ype can be
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made to be equivalenttosdhort i nt for certain architectures that use 64-bit integers by default. The coanarsi
i dxt ype fromi nt toshort can be done by modifying the fila b/ st ruct . h (instructions are included there).
The same dxt ype is used for the arrays that are used to store the computed partition andtpgon vector.

5.2 Mesh Data Structure

All of the mesh partitioning and mesh conversion routinellifiSlib take as input the element node array of a mesh.
This element node array is stored using an array calletht s. For a mesh witlm elements an#d nodes per element,
the size of theel mt s array isn x k. Note that since the supported elementM#&iS are only triangles, tetrahedra,
hexahedra, and quadrilaterals, the possible valudsdioe 3, 4, 8, and 4, respectively.

The element node array of the mesh is storeelimt s as follows. Assuming that the element numbering starts
from O (C style), then thie nodes that make up elemerdre stored in arragl nmt s starting at index « k and ending
(but not including) indexi + 1) = k. As it was the case with the format of the mesh file described in Sectiod, 4.5
the ordering of the nodes is not important for triangle and tetraleddraents. However, in the case of hexahedra, the
nodes for each element must be ordered according to the numbering illugtr&igdre 9(b).

The array that describes the element node array of the mesh is defikigfi$tib to be of type dxt ype, which
by default is equivalenttont (i.e., integers).

5.3 Partitioning Objectives

The partitioning algorithms iMETiSlib can be used to compute a balan&eday partitioning that minimizes either
the number of edges that straddle partitioedgecut or the total communication voluméotalv). In the rest of this
section we briefly describe these two objectives and provide some sioggast when they should be used.

Minimizing the Edge-Cut Consider a graps = (V, E), and letP be a vector of siz¢V | such thatP[i ] stores
the number of the partition that vertebelongs to. Thedgecubf this partitioning is defined as the number of edges
that straddle partitions. That s, the number of edges) for which P[v] # P[u]. If the graph has weights associated
with the edges, then the edgecut is defined as the sum of the weight of titaekHisg edges.

Minimizing the Total Communication Volume Consider a graps = (V, E), and letP be a vector of size

|V | such thatP[i] stores the number of the partition that veritdoelongs to. LeV}, C V be the subset of interface (or
boarder) vertices. That is, each veriex Vj is connected to at least one vertex that belongs to a different partition.
For each vertex € V, let Nadj[v] be the number of domains other thBfw] that the vertices adjacent tobelong

to. Thetotalv of this partitioning is defined as:

totalv= Y " Nadj[v]. 1)

veVp

Equation 1 corresponds to the total communication volume incurrekebgdrtitioning because each interface vertex
v needs to be sent to all of itdad j[v] partitions.

The above model can be extended to instances in which the amount of datedtatta be sent for each node is
different. In particular, ifw, is the amount of data that needs to be sent for vartétren Equation 1 can be re-written
as:

totalv= Y " w,Nadjlv]. 2)
veVy
METiSlib supports this weighted totalv model by using an array calkeidz e such that the amount of data that needs
to be sent due to thieh vertex is stored insi ze[ i] . Note that the amount of data that needs to be sent is different
from theweightof the vertex. The former corresponds to communication cost whereaaténecbrresponds to the
computational cost.

Note that for partitioning algorithms to correctly minimize theatef the graph should reflect the true information

exchange requirements of the underlying computations. For instaeagy#hgraph of a finite element mesh does not
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correctly model the underlying communication, whereas the nodal graph does

Which one is Better? When partitioning is used to distribute a graph or a mesh amongdoegsors of a parallel
computer, the edgecut is only an approximation of the true communicatitrresulting from the partitioning. On
the other hand, by minimizing the totalv we can directly minimize therall communication cost. Despite of that,
for many graphs the solutions obtained by minimizing the edgecut oimmzing the totalv, are comparable. This
is especially true for graphs corresponding to well-shaped finite elemestien. This is because for these graphs,
the degrees of the various vertices are similar and the objectives of imiminthe edgecut or the totalv behave the
same. On the other hand, if the vertex degrees vary significaatly ¢raphs corresponding to linear programming
matrices), then by minimizing the totalv we can obtain a significant resluatithe total communication volume.

In terms of the amount of time required by these two partitioningctbjes, minimizing the edgecut is faster than

minimizing the totalv. For this reason, the totalv objective shdaddused only for problems in which it actually
reduces the overall communication volume.
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5.4 Graph Partitioning Routines

METIS_PartGraphRecursive (int *n, idxtype *xadj, idxtype *adjncy, idxtype *vwagt, idxtye *adjwgt, int *wgtflag,

Description
It is used to partition a graph intoequal-size parts using multilevel recursive bisection. It provideduhc-
tionality of theprret i s program. The objective of the partitioning is to minimize the edgéasidiescribed in

int *numflag, int *nparts, int *options, int *edgecut, idxtype *mar

Section 5.3).
Parameters
n The number of vertices in the graph.

Note

xadj, adjncy

The adjacency structure of the graph as described in Section 5.1.

vwgt, adjwgt

wagtflag

numflag

nparts

options

edgecut
part

Information about the weights of the vertices and edges as described innfSedtio
Used to indicate if the graph is weighteggtflagcan take the following values:

0 No weights (vwgts and adjwgt are NULL)

1 Weights on the edges only (vwgts = NULL)

2 Weights on the vertices only (adjwgt = NULL)

3 Weights both on vertices and edges.

Used to indicate which numbering scheme is used for the adjacency strattheegraph numflag
can take the following two values:

0 C-style numbering is assumed that starts from O

1 Fortran-style numbering is assumed that starts from 1

The number of parts to partition the graph.

This is an array of 5 integers that is used to pass parameters for the yalnases of the algorithm.
If options[0]=0 then default values are used.ojptions[0]=1, then the remaining four elements of
optionsare interpreted as follows:
options[1] Determines matching type. Possible values are:
1 Random Matching (RM)
2 Heavy-Edge Matching (HEM)
3 Sorted Heavy-Edge Matching (SHEM) (Default)
Experiments has shown that both HEM and SHEM perform quite well.
options[2] Determines the algorithm used during initial partitign Possible values are:
1 Region Growing (Default)
options[3] Determines the algorithm used for refinement. Possiblesalre:
1 Early-Exit Boundary FM refinement (Default)
options[4] Used for debugging purposes. Always set it to O (Default)
Upon successful completion, this variable stores the number of edgesehait by the partition.

This is a vector of siza that upon successful completion stores the partition vector of the gidagh
numbering of this vector starts from either 0 or 1, depending on the wdloumflag

This function should be used to partition a graph into a small nuilgartitions (less than 8). If a large number
of partitions is desired, thRIETIS_PartGraphKway should be used instead, as it is significantly faster.
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METIS_PartGraphKway (int *n, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, idxfye *adjwgt, int *wgtflag,

Description
It is used to partition a graph intk equal-size parts using the multileelway partitioning algorithm. It
provides the functionality of thierret i s program. The objective of the partitioning is to minimize the edgecut
(as described in Section 5.3).

Parameters

Note

n

int *numflag, int *nparts, int *options, int *edgecut, idxtype *par

The number of vertices in the graph.

xadj, adjncy

The adjacency structure of the graph as described in Section 5.1.

vwgt, adjwgt

wagtflag

numflag

nparts
options

edgecut
part

Information about the weights of the vertices and edges as described innfSedtio
Used to indicate if the graph is weighteggtflagcan take the following values:
0 No weights (vwgts and adjwgt are NULL)
1 Weights on the edges only (vwgts = NULL)
2 Weights on the vertices only (adjwgt = NULL)
3 Weights both on vertices and edges.
Used to indicate which numbering scheme is used for the adjacency strattheegraphnumflag
can take the following two values:
0 C-style numbering is assumed that starts from 0
1 Fortran-style numbering is assumed that starts from 1
The number of parts to partition the graph.
This is an array of 5 integers that is used to pass parameters for the yalniases of the algorithm.
If options[0]=0 then default values are used.ojptions[0]=1, then the remaining four elements of
optionsare interpreted as follows:
options[1] Determines the matching type. Possible values are:
1 Random Matching (RM)
2 Heavy-Edge Matching (HEM)
3 Sorted Heavy-Edge Matching (SHEM) (Default)
Experiments has shown that both HEM and SHEM perform quite well.
options[2] Determines the algorithm used during initial partitign Possible values are:
1 Multilevel recursive bisection (Default)
options[3] Determines the algorithm used for refinement. Possiblesalre:
1 Random boundary refinement
2 Greedy boundary refinement
3 Random boundary refinement that also minimizes the connectivity amosglihe
domains (Default)
options[4] Used for debugging purposes. Always set it to O (Default)
Upon successful completion, this variable stores the number of edgeséiait by the partition.

This is a vector of siza that upon successful completion stores the partition vector of the gidagh
numbering of this vector starts from either 0 or 1, depending on the wdlnumflag

This function should be used to partition a graph into a large numibeartitions (greater than 8). If a small
number of partitions is desired, tMETIS_PartGraphRecursive should be used instead, as it produces some-
what better partitions.
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METIS_PartGraphVKway (int *n, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, idxtge *vsize, int *wgtflag,

Description

int *numflag, int *nparts, int *options, int *volume, idxtype gut)

It is used to partition a graph into equal-size parts using the multiledelway partitioning algorithm. The
objective of the partitioning is to minimize the total communicatioiume (as described in Section 5.3).

Parameters
n

The number of vertices in the graph.

xadj, adjncy

The adjacency structure of the graph as described in Sections 5.1 and 5.3.

vwgt, vsize

wagtflag

numflag

nparts

options

volume

part

Information about the weights of the vertices related to the computatidrcommunication as de-
scribed in Section 5.1.

Used to indicate if the graph is weighteggtflagcan take the following values:

0 No weights (vwgts and vsize are NULL)

1 Communication weights only (vwgts = NULL)

2 Computation weights only (vsize = NULL)

3 Both communication and computation weights.

Used to indicate which numbering scheme is used for the adjacency strattheegraphnumflag
can take the following two values:

0 C-style numbering is assumed that starts from 0

1 Fortran-style numbering is assumed that starts from 1

The number of parts to partition the graph.

This is an array of 5 integers that is used to pass parameters for the yalniases of the algorithm.
If options[0]=0 then default values are used.ojptions[0]=1, then the remaining four elements of
optionsare interpreted as follows:
options[1] Determines the matching type. Possible values are:

1 Random Matching (RM)

2 Heavy-Edge Matching (HEM)

3 Sorted Heavy-Edge Matching (SHEM) (Default)

Experiments has shown that both HEM and SHEM perform quite well.
options[2] Determines the algorithm used during initial partitign Possible values are:

1 Multilevel recursive bisection (Default)
options[3] Determines the algorithm used for refinement. Possiblesare:

1 Random boundary refinement (Default)

3 Random boundary refinement that also minimizes the connectivity amosglihe
domains

options[4] Used for debugging purposes. Always set it to O (Default)

Upon successful completion, this variable stores the total commumnicablome requires by the
partition.

This is a vector of siza that upon successful completion stores the partition vector of the gféagh
numbering of this vector starts from either 0 or 1, depending on the wdlnumflag
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METIS_mCPartGraphRecursive (int *n, int *ncon, idxtype *xadj, idxtype *adjncy, idxtype *vgt, idxtype *adjwgt,

Description

int *wgtflag, int *numflag, int *nparts, int *options, int *edgecutixtype *part)

Itis used to partition a graph intoparts such that multiple balancing constraints are satisfied. It usesitie m
constraint multilevel recursive bisection algorithm. It providesfiimctionality of thepmet i s program when

it is used to compute a multi-constraint partitioning. The objeatiithe partitioning is to minimize the edgecut
(as described in Section 5.3).

Parameters
n

ncon

The number of vertices in the graph.
The number of constraints. This should be greater than one and smaltet5h

xadj, adjncy

The adjacency structure of the graph as described in Section 5.1.

vwgt, adjwgt

wagtflag

numflag

nparts

options

Information about the weights of the vertices and edges as described inrSedtioNote that the
weight vector must be supplied and it should be of sirgcon.

Used to indicate if the graph is weighteggtflagcan take the following values:

0 No weights (adjwgt is NULL)

1 Weights on the edges.

Used to indicate which numbering scheme is used for the adjacency strattheegraphnumflag
can take the following two values:

0 C-style numbering is assumed that starts from 0

1 Fortran-style numbering is assumed that starts from 1

The number of parts to partition the graph.

This is an array of 5 integers that is used to pass parameters for the yalniases of the algorithm.
If options[0]=0then default values are used.ojptions[0]=1, then the remaining four elements of
optionsare interpreted as follows:

options[1] Determines the matching type. Possible values are:

Random Matching (RM)

Heavy-Edge Matching (HEM)

Sorted Heavy-Edge Matching (SHEM) (Default)

Sorted Heavy-Edge Matching followed by 1-norm Balanced-edge (SHEBM1
Sorted Heavy-Edge Matching followed byg-norm Balanced-edge (SHEBMIN)
(Default)

7 1-norm Balanced-edge followed by Heavy-Edge Matching (SBHEM1N)

8 oo-norm Balanced-edge followed by Heavy-Edge Matching (SBHEMIN)

Experiments has shown that for simple balancing problems, the scheategvénpri-
ority to heavy edges(g, SHEM, SHEBM1N, SHEBMIN) perform better, and for hard
balancing problems, the schemes that give priority to balanced eelge SBHEM1N,
SBHEMIN) perform better.

options[2] Determines the algorithm used during initial partitign Possible values are:
1 Multi-constraint Greedy Graph Growing
2 Random (Default)

options[3] Determines the algorithm used for refinement. Possiblesalre:

D g1 W NP
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1 Early-Exit Boundary FM refinement (Default)
options[4] Used for debugging purposes. Always set it to O (Default)
edgecut Upon successful completion, this variable stores the number of edgesdiait by the partition.
part This is a vector of siza that upon successful completion stores the partition vector of the gidagh
numbering of this vector starts from either 0 or 1, depending on the wdlnumflag

Note
This function should be used to partition a graph into a small nuiartitions. If a large number of partitions
is desired, theVIETIS_mCPartGraphKway should be used instead, as it produces somewhat better partitions
(both in terms of quality and balance).
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METIS_mCPartGraphKway (int *n, int *ncon, idxtype *xadj, idxtype *adjncy, idxtype *vgt, idxtype *adjwgt,

Description

int *wgtflag, int *numflag, int *nparts, float *ubvec, int *optiongiti*edgecut,
idxtype *part)

Itis used to partition a graph intoparts such that multiple balancing constraints are satisfied. It usesitie m
constraint multilevek-way partitioning algorithm. It provides the functionality of theet i s program when

it is used to compute a multi-constraint partitioning. The objeabifithe partitioning is to minimize the edgecut
(as described in Section 5.3).

Parameters
n

ncon

The number of vertices in the graph.

The number of constraints. This should be greater than one and smatet5h

xadj, adjncy

The adjacency structure of the graph as described in Section 5.1.

vwgt, adjwgt

wagtflag

numflag

nparts

ubvec

options

Information about the weights of the vertices and edges as described inrSedtioNote that the
weight vector must be supplied and it should be of sirgcon.

Used to indicate if the graph is weighteggtflagcan take the following values:

0 No weights (adjwgt is NULL)

1 Weights on the edges.

Used to indicate which numbering scheme is used for the adjacency strattheegraphnumflag
can take the following two values:

0 C-style numbering is assumed that starts from 0

1 Fortran-style numbering is assumed that starts from 1

The number of parts to partition the graph.

This is a vector of siz&con that specifies the load imbalance tolerances for each one ofcthre
constraints. Each tolerance should be greater than 1.0 (preferably greatei0Bgan

This is an array of 5 integers that is used to pass parameters for the yalniases of the algorithm.
If options[0]=0then default values are used.ojptions[0]=1, then the remaining four elements of
optionsare interpreted as follows:

options[1] Determines the matching type. Possible values are:

Random Matching (RM)

Heavy-Edge Matching (HEM)

Sorted Heavy-Edge Matching (SHEM) (Default)

Sorted Heavy-Edge Matching followed by 1-norm Balanced-edge (SHEBM1

Sorted Heavy-Edge Matching followed byg-norm Balanced-edge (SHEBMIN)
(Default)

7 1-norm Balanced-edge followed by Heavy-Edge Matching (SBHEM1N)
8 oo-norm Balanced-edge followed by Heavy-Edge Matching (SBHEMIN)

Experiments has shown that for simple balancing problems, the scheategvehpri-
ority to heavy edges(g, SHEM, SHEBM1N, SHEBMIN) perform better, and for hard
balancing problems, the schemes that give priority to balanced eelge SBHEM1N,
SBHEMIN) perform better.

options[2] Determines the algorithm used during initial partitign Possible values are:

D Ol W N P
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1 Multilevel recursive bisection
2 Relaxed Multilevel recursive bisection (Default)
options[3] Determines the algorithm used for refinement. Possiblesare:
1 Random boundary refinement (Default)
options[4] Used for debugging purposes. Always set it to O (Default)
edgecut Upon successful completion, this variable stores the number of edgesehait by the partition.
part This is a vector of siza that upon successful completion stores the partition vector of the gidagh
numbering of this vector starts from either 0 or 1, depending on thewdlumflag

Note
This function should be used to partition a graph into a large numigartitions (greater than 8). If a small
number of partitions is desired, tiETIS_mCPartGraphRecursive should be used instead, as it produces
somewhat better partitions.
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METIS_WPartGraphRecursive (int *n, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, idxtye *adjwgt, int *wgtflag,

Description

int *numflag, int *nparts, float *tpwgts, int *options, int *edgecidxtype *part)

It is used to partition a graph intlo parts using multilevel recursive bisection. The underlying alforiis
similar to the one used bWIETIS_PartGraphRecursive, but it can be used to compute a partitioning with
prescribed partition weights. For example, it can be used to computesy Pantition such that partition 1 has
50% of the weight, partition 2 has 20% of the weight, and partitio@8 30% of the weight. The objective of
the partitioning is to minimize the edgecut (as described in Section 5.3)

Parameters
n

The number of vertices in the graph.

xadj, adjncy

The adjacency structure of the graph as described in Section 5.1.

vwgt, adjwgt

wagtflag

numflag

nparts

tpwgts

options

edgecut

Information about the weights of the vertices and edges as described innfSedtio
Used to indicate if the graph is weighteggtflagcan take the following values:

0 No weights (vwgts and adjwgt are NULL)

1 Weights on the edges only (vwgts = NULL)

2 Weights on the vertices only (adjwgt = NULL)

3 Weights both on vertices and edges.

Used to indicate which numbering scheme is used for the adjacency strattheegraphnumflag
can take the following two values:

0 C-style numbering is assumed that starts from 0

1 Fortran-style numbering is assumed that starts from 1

The number of parts to partition the graph.

This is an array containingpartsfloating point numbers. For partitiontpwgts[i] stores the fraction
of the total weight that should be assigned to it. For example, fovaypartition the vectapwgts|]
={0.20.2 0.4 0.2will result in partitions 0, 1, and 3 having 20% of the weight andipart 2 having
40% of the weight. Note that the numbergpnvgtsshould add up to 1.0.

This is an array of 5 integers that is used to pass parameters for the alniases of the algorithm.
If options[0]=0 then default values are used.ojptions[0]=1, then the remaining four elements of
optionsare interpreted as follows:
options[1] Determines the matching type. Possible values are:
1 Random Matching (RM)
2 Heavy-Edge Matching (HEM)
3 Sorted Heavy-Edge Matching (SHEM) (Default)
Experiments has shown that both HEM and SHEM perform quite well.
options[2] Determines the algorithm used during initial partitign Possible values are:
1 Region Growing (Default)
options[3] Determines the algorithm used for refinement. Possiblesalre:
1 Early-Exit Boundary FM refinement (Default)
options[4] Used for debugging purposes. Always set it to O (Default)

Upon successful completion, this variable stores the number of edgesehait by the partition.
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part This is a vector of siza that upon successful completion stores the partition vector of the gidagh
numbering of this vector starts from either 0 or 1, depending on the wdloumflag

Note
This function should be used to partition a graph into a small numilygartitions (less than 8). If a large number
of partitions is desired, thRIETIS_WPartGraphKway should be used instead, as it is significantly faster.
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METIS_WPartGraphKway (int *n, idxtype *xadj, idxtype *adjncy, idxtype *vwagt, idxtye *adjwgt, int *wgtflag,

Description

int *numflag, int *nparts, float *tpwgts, int *options, int *edgecidxtype *part)

It is used to partition a graph intlo parts using multilevel recursive bisection. The underlying algoriis
similar to the one used WMETIS_PartGraphKway, but it can be used to compute a partitioning with prescribed
partition weights. For example, it can be used to compute a 3-way parstich that partition 1 has 50% of
the weight, partition 2 has 20% of the weight, and partition 3 has 30%eweight. The objective of the
partitioning is to minimize the edgecut (as described in Section 5.3).

Parameters
n

The number of vertices in the graph.

xadj, adjncy

The adjacency structure of the graph as described in Section 5.1.

vwgt, adjwgt

wagtflag

numflag

nparts
tpwgts

options

Information about the weights of the vertices and edges as described innfSedtio
Used to indicate if the graph is weighteggtflagcan take the following values:

0 No weights (vwgts and adjwgt are NULL)

1 Weights on the edges only (vwgts = NULL)

2 Weights on the vertices only (adjwgt = NULL)

3 Weights both on vertices and edges.

Used to indicate which numbering scheme is used for the adjacency strattheegraphnumflag
can take the following two values:

0 C-style numbering is assumed that starts from O

1 Fortran-style numbering is assumed that starts from 1

The number of parts to partition the graph.

This is an array containingpartsfloating point numbers. For partitiontpwgts[i] stores the fraction
of the total weight that should be assigned to it. For example, favaylpartition the vectapwgts|]
={0.20.2 0.4 0.2will resultin partitions 0, 1, and 3 having 20% of the weight andipiart 2 having
40% of the weight. Note that the numbergpvgtsshould add up to 1.0.

This is an array of 5 integers that is used to pass parameters for the yalniases of the algorithm.
If options[0]=0then default values are used.ojptions[0]=1, then the remaining four elements of
optionsare interpreted as follows:
options[1] Determines the matching type. Possible values are:

1 Random Matching (RM)

2 Heavy-Edge Matching (HEM)

3 Sorted Heavy-Edge Matching (SHEM) (Default)

Experiments has shown that both HEM and SHEM perform quite well.
options[2] Determines the algorithm used during initial partitign Possible values are:

1 Multilevel recursive bisection (Default)
options[3] Determines the algorithm used for refinement. Possiblesalre:

1 Random boundary refinement

2 Greedy boundary refinement

3 Random boundary refinement that also minimizes the connectivity amosglihe
domains (Default)
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options[4] Used for debugging purposes. Always set it to 0 (Default)
edgecut Upon successful completion, this variable stores the number of edgesdiait by the partition.
part This is a vector of siza that upon successful completion stores the partition vector of the gidagh
numbering of this vector starts from either 0 or 1, depending on the wdlnumflag

Note
This function should be used to partition a graph into a large numibeartitions (greater than 8). If a small
number of partitions is desired, tETIS_WPartGraphRecursive should be used instead, as it produces
somewhat better partitions.
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METIS_WPartGraphVKway (int *n, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, idxtge *vsize, int *wgtflag,
int *numflag, int *nparts, float *tpwgts, int *options, int *volue, idxtype *part)

Description
It is used to partition a graph intlo parts using multilevel recursive bisection. The underlying alforiis
similar to the one used WMETIS_PartGraphKway, but it can be used to compute a partitioning with prescribed
partition weights. For example, it can be used to compute a 3-way parstich that partition 1 has 50% of
the weight, partition 2 has 20% of the weight, and partition 3 has 30%eweight. The objective of the
partitioning is to minimize the total communication volume (as désctin Section 5.3).

Parameters

n The number of vertices in the graph.

xadj, adjncy
The adjacency structure of the graph as described in Sections 5.1 and 5.3.

vwgt, vsize
Information about the weights of the vertices related to the computatidrtommunication as de-
scribed in Section 5.1.

wgtflag  Used to indicate if the graph is weightasigtflagcan take the following values:

0 No weights (vwgts and vsize are NULL)
1 Communication weights only (vwgts = NULL)
2 Computation weights only (vsize = NULL)
3 Both communication and computation weights.
numflag Used to indicate which numbering scheme is used for the adjacency strattheegraphnumflag
can take the following two values:
0 C-style numbering is assumed that starts from O
1 Fortran-style numbering is assumed that starts from 1

nparts  The number of parts to partition the graph.

tpwgts  Thisis an array containingpartsfloating point numbers. For partitiantpwgts[i] stores the fraction
of the total weight that should be assigned to it. For example, fovaypartition the vectapwgts|]
={0.20.2 0.4 0.2will result in partitions 0, 1, and 3 having 20% of the weight andipart 2 having
40% of the weight. Note that the numbergpnvgtsshould add up to 1.0.

options This is an array of 5 integers that is used to pass parameters for the vahiases of the algorithm.
If options[0]=0 then default values are used.ojptions[0]=1, then the remaining four elements of
optionsare interpreted as follows:
options[1] Determines the matching type. Possible values are:
1 Random Matching (RM)
2 Heavy-Edge Matching (HEM)
3 Sorted Heavy-Edge Matching (SHEM) (Default)
Experiments has shown that both HEM and SHEM perform quite well.
options[2] Determines the algorithm used during initial partitign Possible values are:
1 Multilevel recursive bisection (Default)
options[3] Determines the algorithm used for refinement. Possiblesare:
1 Random boundary refinement (Default)

3 Random boundary refinement that also minimizes the connectivity amosglihe
domains
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options[4] Used for debugging purposes. Always set it to 0 (Default)

volume Upon successful completion, this variable stores the total commumcatiome required by the
partition.

part This is a vector of siza that upon successful completion stores the partition vector of the gféugh
numbering of this vector starts from either 0 or 1, depending on the wdlnumflag
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5.5 Mesh Partitioning Routines

METIS_PartMeshNodal (int *ne, int *nn, idxtype *elmnts, int *etype, int *numflag, int frarts, int *edgecut,
idxtype *epart, idxtype *npart)

Description
This function is used to partition a mesh ilkequal-size parts. It provides the functionality of treer t nmesh
program.
Parameters
ne The number of elements in the mesh.
nn The number of nodes in the mesh.

elmnts  The element node array storing the mesh as described in Section 5.2.
etype Indicates the type of the elements in the mesthipecan take the following values:

1 The elements are triangles.
2 The elements are tetrahedra.
3 The elements are hexahedra (bricks).
4 The elements are quadrilaterals.
numflag Used to indicate which numbering scheme is used for the element noderarmaffagcan take the
following two values:
0 C-style numbering is assumed that starts from 0
1 Fortran-style numbering is assumed that starts from 1

nparts  The number of parts to partition the mesh.

edgecut Upon successful completion, this variable stores the number of edges¢hait by the partition in
the nodal graph.

epart This is a vector of sizaethat upon successful completion stores the partition vector for the etemen
of the mesh. The numbering of this vector starts from either 0 or 1, diégpgon the value of
numflag

npart This is a vector of sizeanthat upon successful completion stores the partition vector for thesafd
the mesh. The numbering of this vector starts from either O or 1, depgndithe value ofiumflag

Note
This function converts the mesh into a nodal graph and thenMEd3S_PartGraphKway to compute a parti-
tioning of the nodes. This partitioning of nodes is then used to ceng partitioning for the elements. This is
done by assigning each element to the partition in which the majoritg ofides belong to (subject to balance
constraints).
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METIS_PartMeshDual (int *ne, int *nn, idxtype *elmnts, int *etype, int *numflag, int prarts, int *edgecut,

idxtype *epart, idxtype *npart)

Description

This function is used to partition a mesh iltequal-size parts. It provides the functionality of treer t dmresh
program.

Parameters
ne The number of elements in the mesh.
nn The number of nodes in the mesh.

Note

elmnts  The element node array storing the mesh as described in Section 5.2.
etype Indicates the type of the elements in the mestiipecan take the following values:
1 The elements are triangles.
2 The elements are tetrahedra.
3 The elements are hexahedra (bricks).
4 The elements are quadrilaterals.
numflag Used to indicate which numbering scheme is used for the element noderarnaffagcan take the
following two values:
0 C-style numbering is assumed that starts from 0
1 Fortran-style numbering is assumed that starts from 1

nparts  The number of parts to partition the mesh.

edgecut Upon successful completion, this variable stores the number of edges¢hait by the partition in
the dual graph.

epart This is a vector of sizaeethat upon successful completion stores the partition vector for the etemen
of the mesh. The numbering of this vector starts from either 0 or 1, diégpgon the value of
numflag

npart This is a vector of sizeanthat upon successful completion stores the partition vector for thesafd
the mesh. The numbering of this vector starts from either O or 1, depgndithe value ofiumflag

This function converts the mesh into a dual graph and thenM&84S_PartGraphKway to compute a parti-
tioning of the elements. This partitioning of elements is then usedrtgpate a partitioning for the nodes. This
is done by assigning each node to the partition in which the majdiritg mcident elements belong to (subject
to balance constraints).
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5.6 Sparse Matrix Reordering Routines

METIS_EdgeND (int *n, idxtype *xadj, idxtype *adjncy, int *numflag, int *optins, idxtype *perm, idxtype *iperm)

Description

This function computes fill reducing orderings of sparse matrices ubmgnultilevel nested dissection algo-
rithm. It provides the functionality of theenet i s program.

Parameters
n

The number of vertices in the graph.

xadj, adjncy

The adjacency structure of the graph as described in Section 5.1.

numflag Used to indicate which numbering scheme is used for the adjacency strattheegraphnumflag
can take the following two values:
0 C-style numbering is assumed that starts from 0
1 Fortran-style numbering is assumed that starts from 1
options This is an array of 5 integers that is used to pass parameters for the vahiases of the algorithm.
If options[0]=0 then default values are used.ojptions[0]=1, then the remaining four elements of
optionsare interpreted as follows:
options[1] Determined the matching type. Possible values are:
1 Random Matching (RM)
2 Heavy-Edge Matching (HEM)
3 Sorted Heavy-Edge Matching (SHEM) (Default)
Experiments has shown that both HEM and SHEM perform quite well.
options[2] Determines the algorithm used during initial partitign Possible values are:
1 Region Growing (Default)
options[3] Determines the algorithm used for refinement. Possiblesalre:
1 Early-Exit Boundary FM refinement (Default)
options[4] Used for debugging purposes. Always set it to O (Default)
perm, iperm

Note

These are vectors, each of sizeUpon successful completion, they store the fill-reducing permu-
tation and inverse-permutation. L&tbe the original matrix and\' be the permuted matrix. The
arrayspermandipermare defined as follows. Row (columndf A’ is the pernfi ] row (column) of

A, and row (column) of A is the ipernfi] row (column) of A’. The numbering of this vector starts
from either 0 or 1, depending on the valuennimflag

This function computes the vertex separator from the edge separatgrausimimum cover algorithm. This
function should be used only in ordering large graphs arising in Biefelement applications. In general the
METIS_NodeND routine should be preferred, as it produces better orderings.
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METIS_NodeND (int *n, idxtype *xadj, idxtype *adjncy, int *numflag, int *optins, idxtype *perm, idxtype *iperm)

Description

This function computes fill reducing orderings of sparse matrices ubmgnultilevel nested dissection algo-
rithm. It provides the functionality of thenmet i s program.

Parameters
n

The number of vertices in the graph.

xadj, adjncy

numflag

options

The adjacency structure of the graph as described in Section 5.1.

Used to indicate which numbering scheme is used for the adjacency strattheegraph numflag
can take the following two values:
0 C-style numbering is assumed that starts from 0
1 Fortran-style numbering is assumed that starts from 1
This is an array of 8 integers that is used to pass parameters for the ainases of the algorithm.
If options[0]=0then default values are used.olftions[0]=1, then the remaining seven elements of
optionsare interpreted as follows:
options[1] Determines the matching type. Possible values are:

1 Random Matching (RM)

2 Heavy-Edge Matching (HEM)

3 Sorted Heavy-Edge Matching (SHEM) (Default)

Experiments have shown that all three matching schemes perform quitéwgeheral
SHEM is faster and RM is slower, but feel free to experiment with the atfaching
schemes.

options[2] Determines the algorithm used during initial partitign Possible values are:
1 Edge-based region growing (Default)
2 Node-based region growing
options[3] Determines the algorithm used for refinement. Possiblesalre:
1 Two-sided node FM refinement
2 One-sided node FM refinement (Default)

One-sided FM refinement is faster than two-sided, but in some cases wbrsiihe-
ment may produce better orderings. Feel free to experiment with thizopti

options[4] Used for debugging purposes. Always set it to O (Default)

options[5] Used to select whether or not to compress the graph and tacord@cted components
separately. The possible values and their meaning are as follows.

0 Do not try to compress the graph and do not order each connected component
separately.

1 Try to compress the graph. (A compressed graph is actually formed iizhefs
the graph can be reduced by at least 15%) (Default).

2 Order each connected component of the graph separately. This option is partic-
ularly useful when after a few levels of nested dissection, the graph bugaiks
many smaller disconnected subgraphs. This is true for certain types oétrites.

3 Tryto compress the graph and also order each connected component separately.
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options[6] Used to control whether or not the ordering algorithousthremove any vertices with
high degreei(e., dense columns). This is particularly helpful for certain classes of LP
matrices, in which there a few vertices that are connected to many other vertices. B
removing these vertices prior to ordering, the quality and the amduime required
to do the ordering improves. The possible values are as follows:
0 Do not remove any vertices (Default)
X Wherex > 0, instructs the algorithm to remove any vertices whose degree is
greater than @ = X * (average degree). For examplexif= 40, and the average
degree is 5, then the algorithm will remove all vertices with degree grézan 20.
The vertices that are removed are ordered iaest they are automatically placed in
the top-level separator). Good values are often in the range of 60 t§.20® to
20 times more than the average).
options[7] Used to determine how many separators to find at each step of desstection. The
larger the number of separators found at each step, the higher the runtiinetser the
quality is (in general). The default value is 1, unless the graph has begressed by
more than a factor of 2, in which case it becomes 2. Reasonable values aresinghe r
of 1to 5. For most problems, a value of 5 increases the runtime by a fac3o
perm, iperm
These are vectors, each of sizeUpon successful completion, they store the fill-reducing permu-
tation and inverse-permutation. L&tbe the original matrix and\’ be the permuted matrix. The
arrayspermandipermare defined as follows. Row (columndf A’ is the pernfi ] row (column) of
A, and row (column) of A is the ipernfi] row (column) of A’. The numbering of this vector starts
from either O or 1, depending on the valuennimflag

Note
This function computes the vertex separator directly by using a mengfilalgorithm. This function produces
high quality orderings and should be preferred dM&TIS_EdgeND.
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METIS_NodeWND (int *n, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, int *amflag, int *options,
idxtype *perm, idxtype *iperm)

Description
This function computes fill reducing orderings of sparse matrices ubmgnultilevel nested dissection algo-
rithm. Itis similar toMETIS_NodeWND but it assumes that the compression has been already performed prior
to calling this routine. It is particularly suited for ordering verygamatrices in which the compressed matrix
is known a priori.

Parameters
n The number of vertices in the graph.
xadj, adjncy
The adjacency structure of the graph as described in Section 5.1.
vwgt The weight of the vertices.

numflag Used to indicate which numbering scheme is used for the adjacency strattheegraphnumflag
can take the following two values:
0 C-style numbering is assumed that starts from 0
1 Fortran-style numbering is assumed that starts from 1
options This is an array of 5 integers that is used to pass parameters for the vahigses of the algorithm.
If options[0]=0then default values are used.ojptions[0]=1, then the remaining four elements of
optionsare interpreted as follows:
options[1] Determines the matching type. Possible values are:
1 Random Matching (RM)
2 Heavy-Edge Matching (HEM)
3 Sorted Heavy-Edge Matching (SHEM) (Default)
Experiments have shown that all three matching schemes perform quitéwggheral
SHEM is faster and RM is slower, but feel free to experiment with the atfeching
schemes.
options[2] Determines the algorithm used during initial partitign Possible values are:
1 Edge-based region growing (Default)
2 Node-based region growing
options[3] Determines the algorithm used for refinement. Possiblesalre:
1 Two-sided node FM refinement
2 One-sided node FM refinement (Default)
One-sided FM refinement is faster than two-sided, but in some cases twrsithe-
ment may produce better orderings. Feel free to experiment with thizopti
options[4] Used for debugging purposes. Always set it to O (Default)
perm, iperm
These are vectors, each of sizeUpon successful completion, they store the fill-reducing permu-
tation and inverse-permutation. LAtbe the original matrix and\' be the permuted matrix. The
arrayspermandipermare defined as follows. Row (columindf A’ is the pernii ] row (column) of
A, and row (column) of Ais the ipernii] row (column) of A’. The numbering of this vector starts
from either O or 1, depending on the valuennimflag
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5.7 Auxiliary Routines

METIS_MeshToNodal (int *ne, int *nn, idxtype *elmnts, int *etype, int *numflag, idxpe *nxadj, idxtype *nadjncy)

Description
This function is used to convert a mesh into a nodal graph, in a fornitab$ei for MENSIib. It provides the
function of themesh2nodal program.

Parameters

Note

ne
nn

elmnts

etype

numflag

The number of elements in the mesh.

The number of nodes in the mesh.

The element node array storing the mesh as described in Section 5.2.
Indicates the type of the elements in the mestiipecan take the following values:
1 The elements are triangles.

2 The elements are tetrahedra.

3 The elements are hexahedra (bricks).

4 The elements are quadrilaterals.

Used to indicate which numbering scheme is used for the element noderarraffagcan take the
following two values:

0 C-style numbering is assumed that starts from 0

1 Fortran-style numbering is assumed that starts from 1

nxadj, nadjncy

These arrays store the adjacency structure of the nodal graph. The usteprowvide arrays that
are sufficiently large to store the graph. The size of amegdjis nn+1 where the size ofiadjncy
depends on the type of the mesh. For triangular-element and hexahedratetesbasnadjncy
should be at least6nn, for quadrilateral-element meshasdjncyshould be at leastAnn, and for
tetrahedra-element meshaadjncyshould be at least 1:bnn.

The nodal graph is defined as the graph in which each vertex of the graph comiesp a node in the mesh,
and two vertices are connected by an edge if the corresponding nodes a connecteddrgent.
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METIS_MeshToDual (int *ne, int *nn, idxtype *elmnts, int *etype, int *numflag, idxpe *dxadj, idxtype *dadjncy)

Description
This function is used to convert a mesh into a dual graph, in a formetdeifor MEISIib. It provides the
function of themesh2nodal program.

Parameters

Note

ne
nn

elmnts

etype

numflag

The number of elements in the mesh.

The number of nodes in the mesh.

The element node array storing the mesh as described in Section 5.2.
Indicates the type of the elements in the mestiipecan take the following values:
1 The elements are triangles.

2 The elements are tetrahedra.

3 The elements are hexahedra (bricks).

4 The elements are quadrilaterals.

Used to indicate which numbering scheme is used for the element noderarmaffagcan take the
following two values:

0 C-style numbering is assumed that starts from 0

1 Fortran-style numbering is assumed that starts from 1

dxadj, dadjncy

These arrays store the adjacency structure of the dual graph. The ugeprowide arrays that
are sufficiently large to store the graph. The size of acheadjis ne+1 where the size ofladjncy
depends on the type of the mesh. For triangular-element meddudiscyshould be at least 8ne
for tetrahedra-element and quadrilateral-element meslagi§ncyshould be at least 4 ne, and for
hexahedra-element meshdadjncyshould be at least6ne

The dual graph is defined as the graph in which each vertex of the graph comesp@n element in the mesh,
and two vertices are connected by an edge if the corresponding elements share a face.
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METIS_EstimateMemory (int *n, idxtype *xadj, int *adjncy, int *numflag, int *optype, tr*nbytes)

Description
This function is used to estimate the amount of memory that will be bg®4ETS. Even thoughMETIS dynam-
ically allocates the amount of memory that it needs, this function can bel iselfetermining if the amount of
memory in the system is sufficient fMeTS.

Parameters

n The number of vertices in the graph.

xadj, adjncy
The adjacency structure of the graph as described in Section 5.1.

numflag Used to indicate which numbering scheme is used for the element noderarnaffagcan take the
following two values:
0 C-style numbering is assumed that starts from 0
1 Fortran-style numbering is assumed that starts from 1

optype Indicates the operation for which the memory will be estimatgdypecan take the following values:

1 Estimatesthe memory neededKbETIS_PartGraphRecursive andMETIS _WPartGraphRecursive.

2 Estimates the memory needed METIS_PartGraphKway andMETIS_WPartGraphKway.

3 Estimates the memory needed RETIS_EdgeND.

4 Estimates the memory needed METIS_NodeND, but it does not take into account memory
saved due to compression.

nbytes  Upon returnnbytesstores an estimate on the number of bytes M&tS requires.

42



5.8 C and Fortran Support

The various routines iMETiSlib can be called from either C or Fortran programs. Using C WitiiSlib is quite
straightforward (asvEliS is written entirely in C). HowevenlMEISlib fully supports Fortran as well. This support
comes in three forms.

1. All'the scalar arguments in the routines are passed by reference to faéibitd@tan programs.

2. All the routines take a parameter calleamflagindicating whether or not the numbering of the graph or mesh
starts from 0 or 1. In C programs numbering usually starts from @&reds in Fortran programs numbering
starts from 1.

3. MEeTiSlib incorporates alternative names for each of the routines to facilitate gjnkanlibrary with Fortran pro-
grams. In particular, for every functidvigliSlib provides three additional names, one all capital, one all lower
case, and one all lower case withappended to it. For example, fMETIS_PartGraphKway, MEIiSlib pro-
videsMETIS_PARTGRAPHKWAY, metis_partgraphkway, andmetis_partgraphkway_. These extra names
allow the library to be directly linked into Fortran programs on aevienge of architectures including Cray,
SGl, and HP. If you still encounter problems linking with the lilgréat us know so we can include appropriate
support.
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6 System Requirements and Contact Information

The distribution ofMETIS contains a number of files, that total to over 22,000 lines of code. Ititsenwrentirely in
ANSI C, and is portable on most Unix systems that have an ANSI C cemftiie GNU C compiler will do). It has
been extensively tested on AIX, SunOS, Solaris, IRIX, Linux, HP-BED, and Unicos. Instructions on how to build
and installMETS can be found in the file NSTALL of the distribution.

Even thoughMETS contains no known bugs, it does not mean that all of its bugs have beed &od fixed. If you
find any problems, please send emaihtetis@cs.umn.edwith a brief description of the problem you have found.
Also, any future updates tdeTiS will be made available on WWW dittp://www.cs.umn.edu/ "metis
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