
Documentation and implementation

January 15, 2008

The main files of the package are listed below

• z=evalArgy(x,y,p): x, y are scalars (or row vectors of the same length) with the
coordinates of a point (or a set of points) where we will evaluate the basis functions;
p is a 2× 3 matrix that determines the triangle. Its jth column are the coordinates
of the jth vertex. The only output argument (z) is a 21 × k matrix k being the
length of x or y, where the ith row is the values of the ith element of the basis at
the points given by x, y.

• [dx,dy]=evalGradArgy(x,y,p) returns in dx,dy the values of the x− and y−

derivatives of the elements of the local basis of the Argyris element at (x, y). All
the input and output arguments follow the convention above.

• [dxx,dxy,dyy]=evalHessArgy(x,y,p) evaluates the second derivatives of the ele-
ments of the Argyris basis at (x, y).

We have some auxiliary routines used in the computations:

• [C,B,b,Th]=changeOfBasis(p) computes C, B, b and Θ, the matrices (and vector)
involved in the changes of coordinates between the reference triangle and the triangle
given by p.

• [zx,zy]=khat2k(x,y,B,b) returns in (zx,zy) the image of points by the linear
map (x, y)⊤ 7→ B(x, y)⊤ + b. In our computations, B and b are the coefficients of

the transformation mapping K̂ to K. [zx,zy]=k2khat(x,y,B,b) computes images
with the inverse mapping. As before, x and y can be row vectors.

There is a data file

• coefRef.dat: in this file it is saved a 21 × 21 matrix. The ith row contains the
coefficients in the monomial basis of the ith element of the Argyris basis in the
reference triangle.

This matrix is used by the main routines evalArgy, evalGradArgy, evalHessArgy.
These functions proceed to check at the beginning of the code the existence of the variable
coefRef. In case that it has not been declared, the file coefRef.dat is loaded and
stored in a global variable of the same name. Then coefRef is now defined and becomes
accessible for the all the routines from now on. Therefore, the file coefRef.dat is loaded
only once per session.

Finally, we have the routine

1



• coefRef=reference: returns the array coefRef with the coefficients of the Argyris
basis on the reference triangle. This function can be used also to compute the
Argyris basis on a user-chosen triangle. It requires the symbolic toolbox.

In practise, there is no need to execute this file since the matrix coefRef is available as
a data file. We have included it here for the sake of completeness.

In the remainder of the section we give some details about the implementation of this
package, starting with the function changeOfBasis. The computation of B, b and Θ is
straightforward and is made in an internal function called afftrans. The bulk of the code
is devoted to the computation of C. We distinguish three parts. The first part defines
some geometric quantities

v=[p(:,2)- p(:,1), p(:,3)-p(:,1), p(:,3)-p(:,2)];

[B,b,Th]=afftrans(p);

sides=diag([norm(v(:,1)),norm(v(:,2)),norm(v(:,3))]);

aux=sides^(-2)*[0 1; -1 0; -1/sqrt(2) -1/sqrt(2)]*B’; % see (3)

R=[0 -1; 1 0];

Next we construct the matrix D:

f=dot(aux’,v);

g=dot(aux’,R*v);

D=blkdiag(eye(3),B’,B’,B’,Th,Th,Th,[diag(g) diag(f)]);

Note the use of the Matlab command dot to compute fα and gα by doing the dot product
between the columns of appropriate matrices. The command blkdiag is finally employed
to assembly the matrix D.

The construction of the matrix E is done similarly

E=zeros(24,21);

E(1:21,:)=blkdiag(eye(18),sides);

E(22:24,1:3)= 15/8*[-1 1 0; -1 0 1; 0 -1 1];

E(22:24,4:9)=-7/16*[v(:,1)’ v(:,1)’ 0 0;

v(:,2)’ 0 0 v(:,2)’;...

0 0 v(:,3)’ v(:,3)’];

w=[v(1,:).^2; 2*v(1,:).*v(2,:); v(2,:).^2]’;

E(22:24,10:18)=1/32*[-w(1,:) w(1,:) 0 0 0;.

-w(2,:) 0 0 0 w(2,:);...

0 0 0 -w(3,:) w(3,:)];

The program finishes by computing C

C=D*E;

Function evalArgy performs the evaluation of the Argyris basis in the triangle specified
by p. This is done in the following lines

2



[C,B,b]=changeOfBasis(p);

[x,y]=k2khat(x,y,B,b);

z=monomials(x,y);

z=C’*coefRef*z;

The point (x, y) is mapped first into the reference triangle and next the elements of
the monomial basis are evaluated at this point (note that the ith row of coefRef*z

corresponds to N̂i(x, y)). The change of basis, and therefore the evaluation of the local
basis Ni(x, y) in the user-specified triangle, is carried out by the left multiplication by C’.

This code can be vectorized just by allowing both x,y to be row vectors of the same
length. If k is the length of x, y, z, becomes a 21 × k matrix in all the occurrences.

To compute the first derivatives we use the chain rule (recall that the gradient is seen
columnwise)

(∇Nj(x))⊤ =
n∑

i=1

cij(∇N̂i)
⊤
◦ F−1(x)B−1

The following lines, which belong to the function evalGradArgy, evaluate the gradient

[C,B,b]=changeOfBasis(p);

[x,y]=k2khat(x,y,B,b);

k=length(x);

mx=derx(x,y);

my=dery(x,y);

grads=zeros(21,2*k);

grads(:)=[mx(:) my(:)]/B;

grads=C’*coefRef*grads;

dx=grads(:,1:k);

dy=grads(:,k+1:2*k);

Functions derx, dery return a column vector with the derivatives of the monomial basis
evaluated at (x, y). The columnwise access to the elements of a matrix in Matlab is used
here to set grads in such a way that after running the six first lines, grads has in the first
k columns ∂x(mi ◦F−1)(xj, yj) (here mi denotes the ith element of the basis of monomials

and F the affine mapping from K̂ onto K) whereas ∂y(mi ◦F−1)(xj, yj) are stored in the
last k columns. Finally, left multiplication by coefRef and C’ makes the change of basis.

The evaluation of the second derivatives, which is done in evalHessArgy, is imple-
mented in the same manner:

[C,B,b,Th]=changeOfBasis(p);

[x,y]=k2khat(x,y,B,b);

k=length(x);

mxx=derxx(x,y);

mxy=derxy(x,y);

myy=deryy(x,y);

hessian=zeros(21,3*k);

hessian(:)=[mxx(:) mxy(:) myy(:)]/Th’;

hessian=C’*coefRef*hessian;

3



dxx=hessian(:,1:k);

dxy=hessian(:,k+1:2*k);

dyy=hessian(:,2*k+1:3*k);

4


