
ANL/MCS-TM-ANL-01/x Rev x

Installation and User’s Guide to MPICH,
a Portable Implementation of MPI

Version 1.2.5
The globus2 device for Grids

by

William Gropp and Ewing Lusk

A
R

G
O

N
NE

NATIONAL LABORA

TO
R

Y

U
N

IVERSITY OF C
HIC
A

G
O

•

•

MATHEMATICS AND
COMPUTER SCIENCE

DIVISION

Contents

Abstract 1

1 Introduction 1
1.1 Features of recent releases . 2
1.2 Choosing the correct device and release . 3
1.3 Citations and References . 4

2 Quick Start 4
2.1 Downloading MPICH . 4
2.2 Configuring, Making, and Installing . 5
2.3 Running examples . 6
2.4 Sample MPI programs . 6

3 Programming Tools 7
3.1 Compiling, linking, and running programs 7

3.1.1 Compiling and Linking without the Scripts 8
3.2 Running programs with mpirun . 9
3.3 mpirun and Globus . 9
3.4 Using mpirun To Construct An RSL Script For You 10

3.4.1 Using mpirun By Supplying Your Own RSL Script 10
3.5 MPMD Programs . 12
3.6 Debugging . 12

3.6.1 The printf Approach . 13
3.6.2 Error handlers . 13
3.6.3 Starting jobs with a debugger . 13
3.6.4 Starting the debugger when an error occurs 13
3.6.5 Attaching a debugger to a running program 14
3.6.6 Debugging MPI programs with TotalView 14

3.7 Log and tracefile tools . 15
3.7.1 Jumpshot . 16

3.8 Execution tracing . 16
3.9 Performance measurements . 16

4 Details 18
4.1 Configure options . 18

4.1.1 MPI and PMPI routines . 18
4.1.2 Configuring MPICH for use with threads 19
4.1.3 Signals . 19

4.2 Computational Grids with the globus2 device 19
4.3 Alternate C Compilers . 20
4.4 Fortran Compilers . 21

4.4.1 What if there is no Fortran compiler? 21
4.4.2 Fortran 90 . 22
4.4.3 Fortran 77 and Fortran 90 . 22
4.4.4 Fortran 90 Modules . 22
4.4.5 Configuring with the Absoft Fortran Compiler 23

iii

4.4.6 Configuring for Multiple Fortran Compilers 23
4.5 C++ . 24
4.6 Using Shared Libraries . 24
4.7 File System Issues . 25

4.7.1 NFS and MPI-IO . 25
4.8 Building MPICH . 26
4.9 Installing MPICH for Others to Use . 27

4.9.1 User commands . 28
4.9.2 Installing documentation . 28
4.9.3 Man pages . 29
4.9.4 Examples . 29

4.10 Computational Grids: the globus2 device 29
4.11 Thorough Testing . 29
4.12 Internationalization . 30

5 Documentation 31

6 In Case of Trouble 32
6.1 Things to try first . 32
6.2 Submitting bug reports . 32
6.3 The Most Common Problems . 33
6.4 Troubleshooting Shared Libraries . 33
6.5 Other Problems . 35
6.6 Problems configuring . 35

6.6.1 General . 35
6.6.2 Linux . 35

6.7 Problems building MPICH . 36
6.7.1 General . 36
6.7.2 Workstation Networks . 37
6.7.3 Cray T3D . 38
6.7.4 SGI . 38
6.7.5 Linux . 39
6.7.6 Compaq ULTRIX and Tru64 . 39

6.8 Problems in testing . 40
6.8.1 General . 40

6.9 Problems compiling or linking Fortran programs 40
6.9.1 General . 40

6.10 Problems Linking C Programs . 41
6.10.1 General . 41
6.10.2 HPUX . 42
6.10.3 LINUX . 42

6.11 Problems starting programs . 43
6.11.1 General . 43
6.11.2 IBM RS6000 . 45
6.11.3 IBM SP . 45

6.12 Programs fail at startup . 46
6.12.1 General . 46
6.12.2 Workstation Networks . 47

iv

6.13 Programs fail after starting . 48
6.13.1 General . 48
6.13.2 HPUX . 49
6.13.3 LINUX . 50

6.14 Trouble with Input and Output . 50
6.14.1 General . 50
6.14.2 Workstation Networks . 50
6.14.3 HP-UX . 51

6.15 Special debugging arguments . 51

Acknowledgments 52

A Frequently Asked Questions 52
A.1 Introduction . 53
A.2 Installing MPICH . 53
A.3 Using MPICH . 53
A.4 Permission Denied . 53
A.5 Notes on getting MPICH running Under Linux 54
A.6 poll: protocol failure during circuit creation 60
A.7 Using SSH . 60
A.8 Mac OS X and hostname . 60
A.9 SIGSEGV . 61
A.10 semop lock failed . 61
A.11 Compiler Switches . 61
A.12 C++ Builds Fail . 61
A.13 Fortran programs give errors about mismatched types 62
A.14 Missing Symbols When Linking . 62
A.15 Warning messages while building MPICH 63
A.16 MPMD (Multiple Program Multiple Data) Programs 63
A.17 Reporting problems and support . 63
A.18 Algorithms used in MPICH . 63
A.19 Jumpshot and X11 . 63

B History of MPICH 64

C File Manifest 64

D Configure Usage 65

E Mpirun Usage 72

F Deprecated Features 75
F.1 Getting Tcl, Tk, and wish . 75
F.2 Obsolete Systems . 77
F.3 More detailed control over compiling and linking 77

References 79

v

Abstract

MPI (Message-Passing Interface) is a standard specification for message-passing li-
braries. MPICH is a portable implementation of the full MPI-1 specification for a wide
variety of parallel and distributed computing environments. MPICH contains, along with
the MPI library itself, a programming environment for working with MPI programs.
The programming environment includes a portable startup mechanism, several profiling
libraries for studying the performance of MPI programs, and an X interface to all of
the tools. This document describes how to install and use the MPICH implementation of
MPI.

This document describes how to obtain, install, and use MPICH [10], the portable imple-
mentation of the MPI Message-Passing Standard. This document describes version 1.2.5.

1 Introduction

MPICH is a freely available implementation of the MPI standard that runs on a wide variety
of systems. The details of the MPICH implementation are described in [10]; related papers
include [7] and [8].

Major Features of MPICH:

• Full MPI 1.2 compliance, including cancel of sends.

• MPMD programs (see Section 3.5) and heterogeneous clusters are supported.

• The MPI-2 standard C++ bindings are available for the MPI-1 functions.

• Both Fortran 77 and Fortran 90 bindings, including both ‘mpif.h’ and an MPI module.

• A Windows NT version is available as open source. The installation and use for this
version is different; this manual covers only the Unix version of MPICH.

• Supports a wide variety of environments, including clusters of SMPs and massively
parallel computers.

• Follows many (but not yet all) of GNU-recommended build and install targets, in-
cluding VPATH.

• Parts of MPI-2 are also supported:

– Most of MPI-IO is supported through the ROMIO implementation (See ‘romio/
README’ for details).

– Support for MPI_INIT_THREAD (but only for MPI_THREAD_SINGLE and MPI_-
THREAD_FUNNELLED).

– Miscellaneous new MPI_Info and MPI_Datatype routines.

• MPICH also includes components of a parallel programming environment, including

– Tracing and logfile tools based on the MPI profiling interface, including a scalable
logfile format (SLOG).

1

– Parallel performance visualization tools (upshot and jumpshot).

– Extensive correctness and performance tests.

– Both large and small application examples.

1.1 Features of recent releases

Version 1.2.5 of MPICH is primarily a bug fix and increased portability release, particularly
for Linux-based clusters.

New and improved in 1.2.5:

• Updated Globus2 device for Globus 2.2 or later

• Imporoved SLOG and Jumpshot

• New collective algorithms

• Better handling of startup in the ch_p4 device.

New and improved in 1.2.4:

• Added support for the POSIX sched_yield call. This significantly increases the per-
formance of the ch_shmem device and ch_p4 device when -comm=shared is chosen,
when there are more total processes (including operating system and other user pro-
cesses) than processors on a node. This is now the default where available. However,
when there are fewer processes than processors, lower latencies can be achieved by
configuring with --disable-yield.

• The option --with-common-prefix=dir can be used to set the directory path for
installing tools such as upshot and jumpshot that are independent of the MPICH
device. For example,

configure --with-device=ch_p4 --prefix=/usr/local/mpich-1.2.4/ch_p4 \
--with-common-prefix=/usr/local/mpich-1.2.4

make
make install
configure --with-device=ch_p4mpd --prefix=/usr/local/mpich-1.2.4/ch-p4mpd \

--with-common-prefix=/usr/local/mpich-1.2.4

• Added CYGWIN_NT to known architectures.

• Added more support for the MPI-2 feature MPI_STATUS_NULL.

• Fixed several bugs in the flow control code that could cause programs to hang.

• Many improvements to the MPICH-NT version.

• A bug in the autoconf macro AC_CHECK_HEADER has been fixed; this caused configure
to conclude that header files were not available even though they were.

2

• Fixes for NETBSD (usc code in ch_p4)

•

New and improved in 1.2.3:

• Reorganized manuals, arranged by device and including a frequently asked questions
section.

• Further improvements to the ch_p4mpd device.

• Improvements to the SMP support in the ch_p4 device, thanks to Pete Wykcoff.

• Support for IA64 systems running Linux and for Mac OS X.

• Support for version 2 of Globus in the globus2 device.

• Many bug fixes and code improvements. See www.mcs.anl.gov/mpi/mpich/r1_2_
3changes.html for a complete list of changes.

New and improved in 1.2.2:

• A greatly improved ch_p4mpd device.

• Improved support for assorted Fortran 77 and Fortran 90 compilers, including compile-
time evaluation of Fortran constants used in the MPICH implementation.

• An improved globus2 device, providing better performance.

• A new bproc mode for the ch_p4 device supports Scyld Beowulfs.

• Many TCP performance improvements for the ch_p4 and ch_p4mpd devices, as well
as

• Many bug fixes and code improvements. See www.mcs.anl.gov/mpi/mpich/r1_2_
2changes.html for a complete list of changes.

1.2 Choosing the correct device and release

MPICH is designed to be ported and optimized for a variety of systems though implemen-
tations of an abstract device interface (ADI). Many different implementations of the ADI
exist; each is called a device.

Workstation Networks, Beowulf Clusters, and Individual Workstations. The most
important devices are ch_p4 and ch_p4mpd. The ch_p4 device is the most general
and supports SMP nodes, MPMD programs, and heterogeneous collections of systems.
The ch_p4mpd device (so far) supports only homogenous clusters of uniprocessors, but
provides for far faster and more scalable startup.

3

www.mcs.anl.gov/mpi/mpich/r1_2_3changes.html
www.mcs.anl.gov/mpi/mpich/r1_2_3changes.html
www.mcs.anl.gov/mpi/mpich/r1_2_2changes.html
www.mcs.anl.gov/mpi/mpich/r1_2_2changes.html

Grids. The globus2 uses Globus (www.globus.org) to provide a grid-enabled implemen-
tation of MPI. This device is appropriate for collections of systems on which Globus
is installed.

Symmetric Multiprocessors. The ch_shmem device is appropriate for a single shared-
memory system, such as a SGI Origin or Sun E10000. This device uses shared memory
to pass messages between processes, and makes use of facilities provided by the oper-
ating system such as System V shared memory or anonymous mmap regions for data
and System V semaphores or OS-specific mutex routines for synchronization. The
ch_lfshmem device is a version of ch_shmem that uses a lock-free approach and that
we developed for the NEC SX-4 [7]. The ch_shmem is appropriate for most systems;
the ch_lfshmem requires special assembly language coding but can be ported to most
systems. Currently, however, the ch_lfshmem supports only the NEC SX-4.

Massively Parallel Processors (MPPs). MPICH was originally developed to provide an
implementation of MPI for many of the massively parallel processors, each of which
had its own, propritary, message-passing system. We still include the devices ch_-
meiko, ch_nx and ch_mpl with MPICH releases, though most of these systems have
now disappeared.

Others. MPICH was designed to enable other groups to use it when developing their own
MPI implementations. Both vendors and research groups have used MPICH as the basis
for their implementation. One important one in the cluster environment is MPICH-GM,
for Myrinet switch-connected clusters; it is available directly from Myricom.

To make it easier to build and use MPICH, customized versions of this manual are con-
structured for each major device.

1.3 Citations and References

The name MPICH is derived from MPI and Chameleon; Chameleon both because MPICH can
run (adapt its color) on a wide range of environments and because the initial implementation
of MPICH used the Chameleon [14] message-passing portability system. MPICH is pronounced
“Em Pee Eye See Aych,” not “Emm Pitch.” The proper references for MPICH are the paper in
the journal Parallel Computing [10] and this manual [9]. BibTeX versions of these citations
are available at www.mcs.anl.gov/mpi/mpich/mpich-prefer-ref.html.

2 Quick Start

Here is a set of steps for setting up and minimally testing MPICH. Details and instructions for
a more thorough tour of MPICH’s features, including installing, validating, benchmarking,
and using the performance evaluation tools, are given in the following sections.

2.1 Downloading MPICH

The first step is to download MPICH and install any necessary patches.

4

www.globus.org
www.mcs.anl.gov/mpi/mpich/mpich-prefer-ref.html

1. The easiest way to get MPICH is to use the web page www.mcs.anl.gov/mpi/mpich/
download.html; you can also use anonymous ftp from ftp.mcs.anl.gov in directory
‘pub/mpi’. Get the file ‘mpich.tar.gz’. (If that file is too big, try getting the pieces
from pub/mpi/mpisplit and catting them together.)

2. Unpack the ‘mpich.tar.gz’ file into a build directory. We recommend using a locally
mounted partition rather than an NFS (network file system) partition. For example,
on many systems, ‘/tmp’ or ‘/sandbox’ are locally mounted. Make sure that there is
enough space available (100MB should be more than enough). To unpack, assuming
that ‘mpich.tar.gz’ has been downloaded into ‘/tmp’, use

% cd /tmp
% tar zxovf mpich.tar.gz

If your tar does not accept the z option, use

% cd /tmp
% gunzip -c mpich.tar.gz | tar zxovf -

3. Apply any patches. Check the web page www.mcs.anl.gov/mpi/mpich/buglist-tbl.
html for any patches that need to be applied. Normally, versions of MPICH that al-
ready have these important patches applied are available; they are indicated by a
fourth number in the release name (e.g., 1.2.2.3). But in some cases, a patch is made
available early. The patch page has instructions on applying the patches.

Now you are ready to build MPICH.

2.2 Configuring, Making, and Installing

Before you can use MPICH, you must configure and make it. The configuration process
analyzes your system and determines the correct options and settings; it also creates the
‘Makefile’s that are used to make MPICH.

1. Decide where you want to install MPICH. This step is not strictly necessary (except
in the case of the ch_p4mpd device); however, installing MPICH (which can be done
without any privilages in a user directory) both makes it easier to manage updates
to MPICH and allows you to reduce the amount disk space that MPICH takes up, since
the installed version contains only the libraries, header files, documentation, and
supporting programs. We recommend an install path that contains the version number
of MPICH. For example, if you are installing MPICH for others to use, and you have
the required access rights, you could choose ‘/usr/local/mpich-1.2.5/’. If you are
installing it just for your own use, you could use something like ‘/home/me/software/
mpich-1.2.5’.

2. Invoke configure with the appropriate prefix:

% ./configure --prefix=/usr/local/mpich-1.2.5 |& tee c.log

5

www.mcs.anl.gov/mpi/mpich/download.html
www.mcs.anl.gov/mpi/mpich/download.html
www.mcs.anl.gov/mpi/mpich/buglist-tbl.html
www.mcs.anl.gov/mpi/mpich/buglist-tbl.html

This will configure MPICH for the default device; this is usually the appropriate choice.
Section 4.1 discusses the options that can be given to configure to customize MPICH.

The output of configure is piped to tee; this program both writes the output to
the file specified by its argument (here ‘c.log’) and to standard output. If you
have trouble with the configure or make step, the file ‘c.log’ will help identify any
problems.

3. Make MPICH:

% make |& tee make.log

This may take a while, depending on the load on your system and on your file server,
it may take anywhere from a few minutes to an hour or more.

2.3 Running examples

1. (Optional) Build and run a simple test program:

% cd examples/basic
% make cpi
% ../../bin/mpirun -np 4 cpi

At this point you have run an MPI program on your system. If you have trouble, see
Section 6.

2. (Optional) Put the distribution through its complete acceptance test (See Section 4.11
for how to do this).

3. (Optional) If you wish to install MPICH in a public place so that others may use it, use

% make install

to install MPICH into the directory specified by the --prefix option to configure.
Installation will consist of an ‘include’, ‘lib’, ‘bin’, ‘sbin’, ‘www’, and ‘man’ directories
and a small ‘examples’ directory. Should you wish to remove the installation, you
can run the script sbin/mpiuninstall.

4. (Optional) At this point you can announce to your users how to compile and run MPI
programs, using the installation you have just built in ‘/usr/local/mpich-1.2.5/’
(or wherever you have installed it). See Section 3 for commands they can use. They
can also copy the ‘Makefile’ in ‘/usr/local/mpich-1.2.5/examples’ and adapt it
for their own use.

2.4 Sample MPI programs

The MPICH distribution contains a variety of sample programs, which are located in the
MPICH source tree. Most of these will work with any MPI implementation, not just MPICH.

6

examples/basic contains a few short programs in Fortran, C, and C++ for testing the
simplest features of MPI.

examples/test contains multiple test directories for the various parts of MPI. Enter “make
testing” in this directory to run our suite of function tests.

examples/perftest Performance benchmarking programs. See the script runmpptest for
information on how to run the benchmarks. These are relatively sophisticated.

mpe/contrib/mandel A Mandelbrot program that uses the MPE graphics package that
comes with mpich. It should work with any other MPI implementation as well, but
we have not tested it. This is a good demo program if you have a fast X server and
not too many processes.

mpe/contrib/mastermind A program for solving the Mastermind puzzle in parallel. It
can use graphics (gmm) or not (mm).

Additional examples from the book Using MPI [11] are available at www.mcs.anl.gov/
mpi/using. Tutorial material on MPI can also be found at www.mcs.anl.gov/mpi.

3 Programming Tools

The MPICH implementation comes with a variety of tools for building, running, debugging,
and analyzing MPI programs. This section details these tools.

3.1 Compiling, linking, and running programs

The MPICH implementation provides four commands for compiling and linking C (mpicc),
C++ (mpiCC), Fortran 77 (mpif77), and Fortran 90 (mpif90) programs.

Use these commands just like the usual C, Fortran 77, C++, or Fortran compilers. For
example,

mpicc -c foo.c
mpif77 -c foo.f
mpiCC -c foo.C
mpif90 -c foo.f

and

mpicc -o foo foo.o
mpif77 -o foo foo.o
mpiCC -o foo foo.o
mpif90 -o foo foo.o

Commands for the linker may include additional libraries. For example, to use routines
from the C math library library, use

7

www.mcs.anl.gov/mpi/using
www.mcs.anl.gov/mpi/using
www.mcs.anl.gov/mpi

mpicc -o foo foo.o -lm

Combining compilation and linking in a single command, as shown here,

mpicc -o foo foo.c
mpif77 -o foo foo.f
mpiCC -o foo foo.C
mpif90 -o foo foo.f

may also be used (on most systems).

Note that while the suffixes .c for C programs and .f for Fortran-77 programs are
standard, there is no consensus for the suffixes for C++ and Fortran-90 programs. The
ones shown here are accepted by many but not all systems. MPICH tries to determine the
accepted suffixes, but may not always be able to.

You can override the choice of compiler by specifying the environment variable MPICH_-
CC, MPICH_F77, MPICH_CCC, or MPICH_F90. However, be warned that this will work only
if the alternate compiler is compatible with the default one (by compatible, we mean that
is uses the same sizes for all datatypes and layouts, and generates object code that can
be used with the MPICH libraries). If you wish to override the linker, use the environment
variables MPICH_CLINKER, MPICH_F77LINKER, MPICH_CCLINKER, or MPICH_F90LINKER.

If you want to see the commands that would be used without actually running them,
add the command line argument -show.

In addition, the following special options are supported for accessing some of the features
of the MPE environment for monitoring MPI calls from within an application:

-mpilog Build version that generates MPE log files.

-mpitrace Build version that generates traces.

-mpianim Build version that generates real-time animation.

These are described in more detail in Section 3.7.

3.1.1 Compiling and Linking without the Scripts

In some cases, it is not possible to use the scripts supplied by MPICH for compiling and
linking programs. For example, another tool may have its own compilation scripts. In this
case, you can use -compile info and -link info to have the MPICH compilation scripts
indicate the compiler flags and linking libraries that are required for correct operation of
the MPICH routines. For example, when using the ch_shmem device on Solaris systems, the
library thread (-lthread) must be linked with the application. If the thread library is not
provided, the application will still link, but essential routines will be replaced with dummy
versions contained within the Solaris C library, causing the application to fail.

For example, to determine the flags used to compile and link C programs, you can use
these commands, whose output for the ch_p4 device on a Linux workstation is shown.

8

% mpicc -compile_info
cc -DUSE_STDARG -DHAVE_STDLIB_H=1 -DHAVE_STRING_H=1 -DHAVE_UNISTD_H=1
-DHAVE_STDARG_H=1 -DUSE_STDARG=1 -DMALLOC_RET_VOID=1
-I/usr/local/mpich/include -c

% mpicc -link_info
cc -DUSE_STDARG -DHAVE_STDLIB_H=1 -DHAVE_STRING_H=1 -DHAVE_UNISTD_H=1
-DHAVE_STDARG_H=1 -DUSE_STDARG=1 -DMALLOC_RET_VOID=1
-L/usr/local/mpich/lib -lmpich

3.2 Running programs with mpirun

To run an MPI program, use the mpirun command, which is located in ‘/usr/local/mpich-1.2.5/bin’.
For almost all systems, you can use the command

mpirun -np 4 a.out

to run the program ‘a.out’ on four processors. The command mpirun -help gives you a
complete list of options, which may also be found in Appendix E.

On exit, mpirun returns the status of one of the processes, usually the process with rank
zero in MPI_COMM_WORLD.

3.3 mpirun and Globus

In the section we describe how to run MPI programs using the MPICH globus2 device in
a Globus-enabled distributed computing environment. It is assumed that (a) Globus has
been installed and the appropriate Globus daemons are running on the machines you wish
to launch your MPI application, (b) you have already acquired your Globus ID and security
credentials, (c) your Globus ID has been registered on all machines, and (d) you have a valid
(unexpired) Globus proxy. See http://www.globus.org for information on those topics.

Every mpirun command under the globus2 device submits a Globus Resource Specifi-
cation Language Script, or simply RSL script, to a Globus-enabled grid of computers. Each
RSL script is composed of one or more RSL subjobs, typically one subjob for each machine
in the computation. You may supply your own RSL script1 explicitly to mpirun (using
the -globusrsl <rslfilename> option) in which case you would not specify any other
options to mpirun, or you may have mpirun construct an RSL script for you based on the
arguments you pass to mpirun and the contents of your machines file (discussed below). In
either case it is important to remember communication between nodes in different subjobs
is always facilitated over TCP/IP and the more efficient vendor-supplied MPI is used only
among nodes within the same subjob.

1See www.globus.org for the syntax and semantics of the Globus Resource Specification Language.

9

http://www.globus.org
www.globus.org

3.4 Using mpirun To Construct An RSL Script For You

You would use this method if you wanted to launch a single executable file, which implies a
set of one or more binary-compatible machines that all share the same filesystem (i.e., they
can all access the executable file).

Using mpirun to construct an RSL script for you requires a machines file. The mpirun
command determines which machines file to use as follows:

1. If a -machinefile <machinefilename> argument is specified on the mpirun com-
mand, it uses that; otherwise,

2. it looks for a file ‘machines’ in the directory in which you typed mpirun; and finally,

3. it looks for ‘/usr/local/mpich/bin/machines’ where ‘/usr/local/mpich’ is the
MPICH installation directory.

If it cannot find a machines file from any of those places then mpirun fails.

The machines file is used to list the computers upon which you wish to run your ap-
plication. Computers are listed by naming the Globus “service” on that machine. For
most applications the default service can be used, which requires specifying only the fully
qualified domain name. Consult your local Globus administrator or the Globus web site
www.globus.org for more information regarding special Globus services. For example,
consider the following pair of binary-compatible machines, {m1,m2}.utech.edu, that have
access to the same filesystem. Here is what a machines file that uses default Globus services
might look like.

"m1.utech.edu" 10
"m2.utech.edu" 5

The number appearing at the end of each line is optional (default=1). It specifies the
maximum number of nodes that can be created in a single RSL subjob on each machine.
mpirun uses the -np specification by “wrapping around” the machines file. For example,
using the machines file above mpirun -np 8 creates an RSL with a single subjob with 8
nodes on m1.utech.edu, while mpirun -np 12 creates two subjobs where the first subjob
has 10 nodes on m1.utech.edu and the second has 2 nodes on m2.utech.edu, and finally
mpirun -np 17 creates three subjobs with 10 nodes on m1.utech.edu followed by 5 nodes
on m2.utech.edu ending with the third a final subjob having two nodes on m1.utech.edu
again. Note that inter-subjob messaging is always communicated over TCP, even if the two
separate subjobs are the same machine.

3.4.1 Using mpirun By Supplying Your Own RSL Script

You would use mpirun supplying your own RSL script if you were submitting to a set of
machines that could not run or access the same executable file (e.g., machines that are not
binary compatible and/or do not share a file system). In this situation, we must currently

10

use something called a Resource Specification Language (RSL) request to specify the exe-
cutable filename for each machine. This technique is very flexible, but rather complex; work
is currently underway to simplify the manner in which these issues are addressed.

The easiest way to learn how to write your own RSL request is to study the one generated
for you by mpirun. Consider the example where we wanted to run an application on a cluster
of workstations. Recall our machines file looked like this:

"m1.utech.edu" 10
"m2.utech.edu" 5

To view the RSL request generated in this situation, without actually launching the program,
we type the following mpirun command:

% mpirun -dumprsl -np 12 myapp 123 456

which produces the following output:

+
(&(resourceManagerContact="m1.utech.edu")

(count=10)
(jobtype=mpi)
(label="subjob 0")
(environment=(GLOBUS_DUROC_SUBJOB_INDEX 0))
(arguments=" 123 456")
(directory=/homes/karonis/MPI/mpich.yukon/mpich/lib/IRIX64/globus)
(executable=/homes/karonis/MPI/mpich.yukon/mpich/lib/IRIX64/globus/myapp)

)
(&(resourceManagerContact="m2.utech.edu")

(count=2)
(jobtype=mpi)
(label="subjob 1")
(environment=(GLOBUS_DUROC_SUBJOB_INDEX 1))
(arguments=" 123 456")
(directory=/homes/karonis/MPI/mpich.yukon/mpich/lib/IRIX64/globus)
(executable=/homes/karonis/MPI/mpich.yukon/mpich/lib/IRIX64/globus/myapp)

)

Note that (jobtype=mpi) may appear only in those subjobs whose machines have vendor-
supplied implementations of MPI. Additional environment variables may be added as in the
example below:

+
(&(resourceManagerContact="m1.utech.edu")

(count=10)
(jobtype=mpi)
(label="subjob 0")
(environment=(GLOBUS_DUROC_SUBJOB_INDEX 0)

(MY_ENV 246))
(arguments=" 123 456")
(directory=/homes/karonis/MPI/mpich.yukon/mpich/lib/IRIX64/globus)

11

(executable=/homes/karonis/MPI/mpich.yukon/mpich/lib/IRIX64/globus/myapp)
)
(&(resourceManagerContact="m2.utech.edu")

(count=2)
(jobtype=mpi)
(label="subjob 1")
(environment=(GLOBUS_DUROC_SUBJOB_INDEX 1))
(arguments=" 123 456")
(directory=/homes/karonis/MPI/mpich.yukon/mpich/lib/IRIX64/globus)
(executable=/homes/karonis/MPI/mpich.yukon/mpich/lib/IRIX64/globus/myapp)

)

After editing your own RSL file you may submit that directly to mpirun as follows:

% mpirun -globusrsl <myrslrequestfile>

Note that when supplying your own RSL it should be the only argument you specify to
mpirun.

RSL is a flexible language capable of doing much more than has been presented here. For
example, it can be used to stage executables and to set environment variables on remote
computers before starting execution. A full description of the language can be found at
http://www.globus.org.

3.5 MPMD Programs

It is possible to run a parallel program with different executables with several of the devices
including the ch_p4, ch_mpl, and globus2 devices. It is currently not possible to do this
with the ch_shmem or ch_p4mpd devices. This style of parallel programming is often called
MPMD for “multiple program multiple data”. In many cases, it is easy to convert a MPMD
program into a single program that uses the rank of the process to invoke a different routine;
doing so makes it easier to start parallel programs and often to debug them. If converting a
MPMD program to a SPMD (single program multiple data, not to be confused with single
instruction multiple data, or SIMD) is not feasible, then you can run MPMD programs
using MPICH. However, you will not be able to use mpirun to start the programs; instead,
you will need to follow the instructions for each device.

3.6 Debugging

Debugging parallel programs is notoriously difficult. Parallel programs are subject not only
to the usual kinds of bugs but also to new kinds having to do with timing and synchro-
nization errors. Often, the program “hangs,” for example when a process is waiting for
a message to arrive that is never sent or is sent with the wrong tag. Parallel bugs often
disappear precisely when you adds code to try to identify the bug, which is particularly
frustrating. In this section we discuss several approaches to parallel debugging.

12

http://www.globus.org

3.6.1 The printf Approach

Just as in sequential debugging, you often wish to trace interesting events in the program by
printing trace messages. Usually you wish to identify a message by the rank of the process
emitting it. This can be done explicitly by putting the rank in the trace message.

3.6.2 Error handlers

The MPI Standard specifies a mechanism for installing one’s own error handler, and specifies
the behavior of two predefined ones, MPI_ERRORS_RETURN and MPI_ERRORS_ARE_FATAL. As
part of the MPE library, we include two other error handlers to facilitate the use of command-
line debuggers such as dbx in debugging MPI programs.

MPE_Errors_call_dbx_in_xterm
MPE_Signals_call_debugger

These error handlers are located in the MPE directory. A configure option (-mpedbg) includes
these error handlers into the regular MPI libraries, and allows the command-line argument
-mpedbg to make MPE_Errors_call_dbx_in_xterm the default error handler (instead of
MPI_ERRORS_ARE_FATAL).

3.6.3 Starting jobs with a debugger

The -dbg=<name of debugger> option to mpirun causes processes to be run under the
control of the chosen debugger. For example, enter

mpirun -dbg=gdb or mpirun -dbg=gdb a.out

invokes the mpirun_dbg.gdb script located in the ‘mpich/bin’ directory. This script cap-
tures the correct arguments, invokes the gdb debugger, and starts the first process under
gdb where possible. There are five debugger scripts; ddd, gdb, xxgdb, ddd, and totalview.
These may need to be edited depending on your system. There is another debugger script
for dbx, but this one will always need to be edited as the debugger commands for dbx
varies between versions. You can also use this option to call another debugger; for ex-
ample, -dbg=mydebug. All you need to do is write a script file, ‘mpirun_dbg.mydebug’,
which follows the format of the included debugger scripts, and place it in the ‘mpich/bin’
directory. More information on using the Totalview debugger with MPICH can be found in
Section 3.6.6.

3.6.4 Starting the debugger when an error occurs

It is often convenient to have a debugger start when a program detects an error. If MPICH
was configured with the option --enable-mpedbg, then adding the command-line option
-mpedbg to the program will cause MPICH to attempt to start a debugger (usually dbx or
gdb) when an error that generates a signal (such as SIGSEGV) occurs. For example,

13

mpirun -np 4 a.out -mpedbg

If you are not sure if your MPICH provides this service, you can use -mpiversion to see if
MPICH was built with the --enable-mpedbg option. This feature may not be available with
all devices.

3.6.5 Attaching a debugger to a running program

On workstation clusters, you can often attach a debugger to a running process. For example,
the debugger dbx often accepts a process id (pid) which you can get by using the ps
command. The form may be either

dbx a.out 1234

or

dbx -pid 1234 a.out

where 1234 is the process id2.

To do this with gdb, start gdb and at its prompt do

file a.out
attach 1234

One can also attach the TotalView debugger to a running program (See Section 3.6.6
below).

3.6.6 Debugging MPI programs with TotalView

TotalView c© [18] is a powerful, commercial-grade, portable debugger for parallel and mul-
tithreaded programs, available from Etnus (http://www.etnus.com/). TotalView under-
stands multiple MPI implementations, including MPICH. By “understand” is meant that if
you have TotalView installed on your system, it is easy to start your MPICH program un-
der the control of TotalView, even if you are running on multiple machines, manage your
processes both collectively and individually through TotalView’s convenient GUI, and even
examine internal MPICH data structures to look at message queues [3]. The general opera-
tion model of TotalView will be familiar to users of command-line-based debuggers such as
gdb or dbx.

Starting an MPICH program under TotalView control. To start a parallel program
under TotalView control, simply add ‘-dbg=totalview’ to your mpirun arguments:

2The unnecessary changes in the command syntax for programs such as dbx contributes to the poor state
of software.

14

http://www.etnus.com/

mpirun -dbg=totalview -np 4 cpi

TotalView will come up and you can start the program by typing ‘G’. A window will
come up asking whether you want to stop processes as they execute MPI Init. You may
find it more convenient to say “no” and instead to set your own breakpoint after MPI Init
(see Section 3.6.6). This way when the process stops it will be on a line in your program
instead of somewhere inside MPI Init.

Attaching to a running program. TotalView can attach to a running MPI program,
which is particularly useful if you suspect that your code has deadlocked. To do this start
TotalView with no arguments, and then press ‘N’ in the root window. This will bring up
a list of the processes that you can attach to. When you dive through the initial MPICH
process in this window TotalView will also acquire all of the other MPICH processes (even if
they are not local). See the TotalView manual for more details of this process.

Debugging with TotalView. You can set breakpoints by clicking in the left margin
on a line number. Most of the TotalView GUI is self-explanatory. You select things with
the left mouse button, bring up an action menu with the middle button, and “dive” into
functions, variables, structures, processes, etc., with the right button. Pressing cntl-? in
any TotalView window brings up help relevant to that window. In the initial TotalView
window it brings up general help. The full documentation (The TotalView User’s Guide)
is available from the Etnus web site.

You switch from viewing one process to the next with the arrow buttons at the top-
right corner of the main window, or by explicitly selecting (left button) a process in the
root window to re-focus an existing window onto that process, or by diving (right button)
through a process in the root window to open a new window for the selected process. All
the keyboard shortcuts for commands are listed in the menu that is attached to the middle
button. The commands are mostly the familiar ones. The special one for MPI is the ‘m’
command, which displays message queues associated with the process.

Note also that if you use the MPI-2 function MPI Comm set name on a communicator,
TotalView will display this name whenever showing information about the communicator,
making it easier to understand which communicator is which.

3.7 Log and tracefile tools

The MPE libraries that are distributed with MPICH contain several libraries for either logging
information about the execution of each MPI call to a file for later analysis or for tracing
each call as it occurs. These libraries may be accessed by simply providing a command
line argument to the compilation scripts; further, this needs only be done when linking the
program. For example, to create a log file of a program such as cpi, the following steps are
needed:

mpicc -c cpi.c
mpicc -o cpi -mpilog cpi.o

15

The log file will be written to a file with the name ‘cpi.clog’ or ‘cpi.slog’, depending on
the value of the environment variable MPE_LOG_FORMAT (clog is the default). The logfile can
be graphically displayed using the Jumpshot program, described in Section 3.7.1.

Another tool of interest is FPMPI [5]; this tool reports a summary of all MPI calls,
providing information about message lenghts, communication patterns.

3.7.1 Jumpshot

Jumpshot is a program for displaying logfiles produced using the MPE logging libraries.
Jumpshot is described in more detail in the MPE Installation and User’s manual [2]. Jump-
shot is a Java program and requires a functioning Java environment. You can view a logfile
such as ‘cpi.clog’ in the example above by using

logviewer cpi.clog

There are several available log formats and logviewer selects the version of jumpshot
appropriate for a particular logfile. See the MPE manual, distributed along with this
manual, for more details.

3.8 Execution tracing

Execution tracing is easily accomplished using the -mpitrace command line argument while
linking:

mpicc -c cpi.c
mpicc -o cpi -mpitrace cpi.o

3.9 Performance measurements

The ‘mpich/examples/perftest’ directory contains a sophisticated tool for measuring la-
tency and bandwidth for MPICH on your system. Simply change to the mpich/examples/
perftest directory and do

make
mpirun -np 2 mpptest -gnuplot > out.gpl

The file ‘out.gpl’ will then contain the necessary gnuplot commands. The file ‘mppout.gpl’
will contain the data. To view the data with gnuplot, use:

gnuplot out.gpl

or use

load ’out.gpl’

16

30.5

31

31.5

32

32.5

33

33.5

34

0 200 400 600 800 1000 1200

tim
e

(u
s)

Size (bytes)

Comm Perf for MPI (shakey.mcs.anl.gov) type blocking

Figure 1: Sample output from mpptest

from within gnuplot. Depending on your environment and version of gnuplot, you may
need to start gnuplot first and issue the command set terminal x11 before executing
‘load ’out.gpl’’. You can use

gnuplot
set term postscript eps
set output "foo.eps"
load ’out.gpl’

to create an Encapsulated Postscript graph such as the one in Figure 1.

The programs mpptest and goptest have a wide variety of capabilities; the option -help
will list them. For example, mpptest can automatically pick message lengths to discover
any sudden changes in behavior and can investigate the ability to overlap communication
with computation. These programs are written using MPI, and may be used with any
MPI implementation, not just MPICH. (See the configure file in the ‘examples/perftest’
directory.) More information is available at http://www.mcs.anl.gov/mpi/mpptest.

Benchmarking can be very tricky. Some common benchmarking errors are discussed
at http://www.mcs.anl.gov/mpi/mpptest/hownot.html. The paper [13] discusses these
issues at more length.

17

http://www.mcs.anl.gov/mpi/mpptest
http://www.mcs.anl.gov/mpi/mpptest/hownot.html

4 Details

This section covers details that you should not normally need. Read this section if you need
more detailed control over configuring, building, installing, or operating MPICH.

4.1 Configure options

The configure script documents itself in the following way. If you type

configure -usage

you will get a complete list of arguments and their meanings; these are also shown in
Appendix D. The most important options are

--prefix=dir The installation prefix. configure understands all of the usual GNU instal-
lation directory arguments, including --libdir and --mandir. We recommend that
all users specify an installation directory with --prefix.

--with-device=devname Set the MPICH device to use. devname must be the name of one
of the directories in the ‘mpid’ directory, such as ch_p4, ch_shmem, globus2, or ch_-
p4mpd.

--enable-g Add the -g option to the compile scripts. This is a prerequisite for using most
debuggers, including dbx, and gdb.

--enable-debug Turn on support for the Totalview c© Debugger. This allows Totalview to
display information on message queues.

--enable-sharedlib Build both static and shared libraries for MPICH. This supports only
a few systems, including those using gcc (e.g., most Linux Beowulf systems).

In addition, configure makes use of environment variables such as MAKE, CC, FC, CFLAGS,
and FFLAGS.

Normally, you should use configure with as few arguments as you can. If you leave all
arguments off, configure will usually guess the correct architecture (arch) unless you are
in a cross-compiling environment, and will usually choose an appropriate device (device)
as well. Where TCP/IP is an appropriate mechanism for communication, the TCP device
(ch_p4) will be chosen by default.

4.1.1 MPI and PMPI routines

The MPI standard requires that each routine be available with both the MPI and PMPI
prefix; for example, MPI_Send and PMPI_Send. MPICH attempts to use weak symbols to
provide this feature; this reduces the size of the MPICH library. You can force MPICH to
make separate libraries for the MPI and PMPI versions by adding the configure option
--disable-weak-symbols:

18

configure --disable-weak-symbols ...

Some MPI routines are implemented in terms of other MPI routines. For example, in
MPICH, MPI_Bcast is implemented using MPI_Send. When weak symbols are used, even the
PMPI versions of the routines are implemented using the MPI (not PMPI) versions. If
you want the PMPI routines to only use the PMPI routines, use --disable-weak-symbols
when configuring MPICH. Note that this behavior may change in later releases.

4.1.2 Configuring MPICH for use with threads

The MPICH implementation of MPI is currently not threadsafe. It may, however, be possible
to use MPICH in a threaded application as long as all MPICH calls are made by a single thread.
An example of this is OpenMP used for loop parallelism, combined with MPI.

4.1.3 Signals

In general, users should avoid using signals with MPI programs. The manual page for
MPI_Init describes the signals that are used by the MPI implementation; these should not
be changed by the user.

Because Unix does not chain signals, there is the possibility that several packages will
attempt to use the same signal, causing the program to fail. For example, by default, the
ch_p4 device uses SIGUSR1; some thread packages also use SIGUSR1.

In a few cases, you can change the signal before calling MPI_Init. In those cases, your
signal handler will be called after the MPICH implementation acts on the signal. For example,
if you want to change the behavior of SIGSEGV to print a message, you can establish such a
signal handler before calling MPI_Init. With devices such as the ch_p4 device that handle
SIGSEGV, this will cause your signal handler to be called after MPICH processes it.

4.2 Computational Grids with the globus2 device

Before configuring for the globus2 device, a version of Globus must already be installed3.
You will need to know the directory where Globus is installed (e.g., /usr/local/globus).
Set the environment GLOBUS_INSTALL_PATH to that directory, for example,

setenv GLOBUS_INSTALL_PATH /usr/local/globus

When configuring for the globus2 device, you may specify one of the Globus flavors
(e.g., mpi, debug or nodebug, threads, 32- or 64-bit, etc.). To see the complete list of all
Globus flavors (not all may be installed on your machine) use

$GLOBUS_INSTALL_PATH/bin/globus-development-path -help

The flavors that are available to you (i.e., installed on your machine) are enumerated as
directories in $GLOBUS_INSTALL_PATH/development. For example, Globus installation on
a Solaris workstation might have the following flavors:

3See http://www.globus.org for instructions regarding acquiring and installing Globus.

19

http://www.globus.org

sparc-sun-solaris2.7_nothreads_standard_debug/
sparc-sun-solaris2.7_pthreads_standard_debug/
sparc-sun-solaris2.7_solaristhreads_standard_debug/

There are two ways to configure for the globus2 device. Each method selects one of the
Globus flavor directories in $GLOBUS_INSTALL_PATH/development. The first method is to
specify the flavor directory explicitly, for example (all on one line):

configure --with-device=globus2:-dir=$GLOBUS_INSTALL_PATH/development/sparc-sun-solaris2.7_nothreads_standard_debug

Optionally, you may specify the flavor directory implicitly,

configure --with-device=globus2:-flavor=nothreads,debug

Finally, you may simply choose the default flavor (returned by
$GLOBUS_INSTALL_PATH/bin/globus-development-path)

configure --with-device=globus2

You must specify -mpi to enable vendor-supplied MPI communication for intra-machine
messaging. In other words, when configuring on machines that provide vendor implemen-
tations of the MPI standard, you must specify -mpi for optimal performance. Failing to
specify -mpi will result in TCP intra-machine communication.

Selecting -debug can be helpful during debugging, but can slow down performance.
-nodebug should be used for debugged production code.

In general, -nothreads should be used (the Globus2 device is not multithreaded). You
should select a threaded flavor only if you intend to link your MPI application with other
modules that require a threaded version of Globus (e.g., you have written a library that
uses Nexus which requires threaded handlers). You should not select a threaded version of
Globus simply because your MPI application is multithreaded.

When Globus was installed, a special ‘Makefile’ was automatically generated just for
MPICH. The MPICH configure uses that file when configuring for the globus2 device. That
special ‘Makefile’ contains virtually all the information MPICH configure needs (include
directory paths, special libaries, the names of C and Fortran compiler and linkers, etc.).

4.3 Alternate C Compilers

More and more systems, particularly clusters, come with multiple compilers. In many
cases, you can build MPICH using just one of these compilers and then allow users to use
their favorite compiler when building their code. In many cases, no extra steps are needed.
Users can simply use the command-line argument -cc or the environment variable MPICH_CC
to specify a different compiler.

20

Unfortunately, this won’t always work. For example, in some cases, different libraries
may be needed by different compilers when linking programs. Some compilers may need dif-
ferent options to support ANSI/ISO C. In particular, support for the longer datatypes such
as long long and long double may rely on runtime library support routines that are spe-
cific to each compiler. To handle all of these cases, For C and C++, you can create a file with
the name ‘mpicc-<compilename>.conf’, e.g., ‘mpicc-gcc.conf’ or ‘mpicc-pgcc.conf’,
that contains any specifications that are needed by the mpicc command. mpiCC uses
‘mpiCC-<name>.conf’. Currently, these files must be created by hand, starting from the file
‘mpichlib.conf’ that is created in the ‘mpich/util’ directory by the MPICH configure.
The simplest way to create each file is to use configure:

setenv CC cc
configure --prefix=/usr/local/mpich-1.2.5
make
make install
cp util/mpichlib.conf /usr/local/mpich-1.2.5/etc/mpicc-cc.conf
setenv CC gcc
configure --prefix=/usr/local/mpich-1.2.5
make
cp util/mpichlib.conf /usr/local/mpich-1.2.5/etc/mpicc-gcc.conf

In this example, the default value of sysconfdir, $prefix/etc, is used.

For example, if MPICH was built with cc as the compiler but a user wanted to use gcc
instead, either the commands

MPICH_CC=gcc
mpicc ...

or

mpicc -config=gcc ...

would case mpicc to load ‘mpich-gcc.conf’ and use the appropriate definitions.

4.4 Fortran Compilers

MPICH provides support for both Fortran 77 and Fortran 90. Because MPICH is implemented
in C, using MPICH from Fortran can sometimes require special options. This section discusses
some of the issues. Note that configure tries to determine the options needed to support
Fortran. You need the information in this section only if you have problems. Section 4.4.6
discusses how to support multiple Fortran compilers (e.g., g77 and pgf77) with a single
MPICH installation.

4.4.1 What if there is no Fortran compiler?

The configure program should discover that there is no Fortran compiler. You can force
configure to not build the Fortran parts of the code with the option --disable-f77. In

21

this case, only the C programs will be built and tested.

4.4.2 Fortran 90

During configuration, a number of Fortran 90-specific arguments can be specified. See the
output of configure -help. In particular, when using the NAG Fortran 90 compiler, you
should specify -f90nag.

4.4.3 Fortran 77 and Fortran 90

Selecting Fortran 90 with Fortran 77 should be done only when the two compilers are
compatible, supporting the same datatypes and calling conventions. In particular, if the
Fortran 90 compiler supports an 8-byte integer type, the Fortran 77 compiler must support
integer*8 (this is needed by the MPI-IO routines for the value of MPI_OFFSET_KIND).
In addition, both compilers must support the same functions for accessing the command
line, and the code for those commands must reside in the same library. If the two Fortran
compilers are not compatible, you should either select the Fortran 90 compiler as both the
Fortran 77 and Fortran 90 compiler (relying on the upward compatibility of Fortran), or
build two separate configurations of MPICH. For example,

setenv FC f90
setenv F90 f90
configure

will use f90 for both Fortran 77 and Fortran 90 programs. In many systems, this will work
well. If there are reasons to have separate Fortran 90 and Fortran 77 builds, then execute
the following commands (where MPICH is to be installed into the directory ‘/usr/local’):

setenv FC f77
configure --disable-f90 -prefix=/usr/local/mpich-1.2.5/f77-nof90
make
make install

setenv FC f90
setenv F90 f90
configure -prefix=/usr/local/mpich-1.2.5/f90
make
make install

This sequence of commands will build and install two versions of MPICH. An alternative
approach that installs only a single version of MPICH is decribed in Section 4.4.6.

4.4.4 Fortran 90 Modules

If configure finds a Fortran 90 compiler, by default MPICH will try to create a Fortran 90
module for MPI. In fact, it will create two versions of an mpi module: one that includes only

22

the MPI routines that do not take “choice” arguments and one that does include choice
argument. A choice argument is an argument that can take any datatype; typically, these
are the buffers in MPI communication routines such as MPI_Send and MPI_Recv.

The two different modules can be accessed with the -nochoice and -choice option to
mpif90. The choice version of the module supports a limited set of datatypes (numeric
scalars and numeric one- and two-dimensional arrays). This is an experimental feature;
please send mail to mpi-bugs@mcs.anl.gov if you have any trouble. Neither of these
modules offer full “extended Fortran support” as defined in the MPI-2 standard.

The reason for having two versions of the MPI module is that it is very difficult to provide
a completely correct module that includes all of the functions with choice arguments. As
it is, on many systems, the size of the Fortran 90 module to handle the routines with
choice arguments will be larger than the entire C version of the MPI library. If you are
uninterested in the Fortran 90 MPI module, or you wish to keep the installed version of
MPICH small, you can turn off the creation of the Fortran 90 MPI module with the configure
option --disable-f90modules.

4.4.5 Configuring with the Absoft Fortran Compiler

The Absoft compiler can be told to generate external symbols that are uppercase, lowercase,
and lowercase with a trailing underscore (the most common case for other Unix Fortran
compilers), or use mixed case (an extension of Fortran, which is only monocase). Each of
these choices requires a separate MPICH configure and build step. MPICH has been tested in
the mode where monocase names are generated; this case is supported because only this
case supports common (and necessary for MPICH) extensions such as getarg and iargc.
By default, MPICH forces the Absoft compiler to use lowercase; this matches most Unix
Fortran compilers. MPICH will find the appropriate versions of getarg and iargc for this
case. Because the examples and the test suite assume that the Fortran compiler is case-
insensitive; the Fortran library produced by MPICH will only work with source code that
uses monocase (either upper or lower) for all MPI calls.

In addition, you may need to use -N90 if you use character data, because the MPICH
Fortran interface expects the calling convention used by virtually all Unix Fortran systems
(Cray UNICOS is handled separately). If you are building shared libraries, you will also
need to set the environment variable FC_SHARED_OPT to none.

Early versions of the Absoft compiler could not handle multiple -I options. If you have
trouble with this, you should get an update from Absoft.

4.4.6 Configuring for Multiple Fortran Compilers

In some environments, there are several different Fortran compilers, all of which define
Fortran datatypes of the same size, and which can be used with the same C libraries. These
compilers may make different choices for Fortran name mappings (e.g., the external format
of the names given to the linker) and use different approaches to access the command
line. This section describes how to configure MPICH to support multiple Fortran compilers.
However, if any of these steps fails, the best approach is to build a separate MPICH installation

23

mpi-bugs@mcs.anl.gov

for each Fortran compiler.

The first step is to configure MPICH with the --with-flibname option. For example, if
one of the compilers is g77, use

setenv FC g77
./configure --with-flibname=mpich-g77 ... other options ...

After you build, test, and install this version of MPICH, you can configure support for
additional Fortran compilers as follows:

1. Change directory to ‘src/fortran’

2. Execute

setenv FC pgf77
./configure --with-mpichconfig --with-flibname=mpich-pgf77
make
make install-alt

To use a particular Fortran compiler, either select it on the mpif77 command line with the
-config=name option (e.g., -config=pgf77) or by selecting a particular mpif77 command
(e.g., mpif77-pgf77).

4.5 C++

The C++ support in MPICH has been provided by Indiana University (formerly the Uni-
versity of Notre Dame), and uses its own configure process (it also supports other MPI
implementations). This version supports only the MPI-1 functions, and does not include
support for the MPI-2 functions such as I/O or the functions for manipulating MPI_Info.
Questions, comments, suggestions, and requests for additional information should be sent to
mpi2cpp-devel@osl.iu.edu. Bug reports should also be sent to mpi-bugs@mcs.anl.gov.
More information is available at the web site http://www.osl.iu.edu/research/mpi2c+
+/.

Use the environment variable CXX to specify an alternate C++ compiler.

4.6 Using Shared Libraries

Shared libraries can help reduce the size of an executable. This is particularly valuable on
clusters of workstations, where the executable must normally be copied over a network to
each machine that is to execute the parallel program. However, there are some practical
problems in using shared libraries; this section discusses some of them and how to solve
most of those problems. Currently, shared libraries are not supported from C++.

In order to build shared libraries for MPICH, you must have configured and built MPICH
with the --enable-sharedlib option. Because each Unix system and in fact each com-
piler uses a different and often incompatible set of options for creating shared objects and

24

mpi2cpp-devel@osl.iu.edu
mpi-bugs@mcs.anl.gov
http://www.osl.iu.edu/research/mpi2c++/
http://www.osl.iu.edu/research/mpi2c++/

libraries, MPICH may not be able to determine the correct options. Currently, MPICH un-
derstands Solaris, GNU gcc (on most platforms, including Linux and Solaris), and IRIX.
Information on building shared libraries on other platforms should be sent to mpi-bugs@
mcs.anl.gov.

Once the shared libraries are built, you must tell the MPICH compilation and linking
commands to use shared libraries (the reason that shared libraries are not the default will
become clear below). You can do this either with the command line option -shlib or by
setting the environment variable MPICH_USE_SHLIB to yes. For example,

mpicc -o cpi -shlib cpi.c

or

setenv MPICH_USE_SHLIB yes
mpicc -o cpi cpi.c

Using the environment variable MPICH_USE_SHLIB allows you to control whether shared
libraries are used without changing the compilation commands; this can be very useful for
projects that use makefiles.

Running a program built with shared libraries can be tricky. If you have trouble,
particular if programs will either not start or start and issue error messages about missing
libraries, see Section 6.4.

4.7 File System Issues

Most users do not need to worry about file systems. However, there are two issues: using
NFS (the Network File System) with MPI-IO and using NFS with some automounters.
These issues are covered in the next two sections.

4.7.1 NFS and MPI-IO

To use MPI-IO multihost on NFS file systems, NFS should be version 3, and the shared
NFS directory must be mounted with the “no attribute caching” (noac) option set (the
directory cannot be automounted). If NFS is not mounted in this manner, the following
error could occur:

MPI_Barrier: Internal MPI error: No such file or directory
File locking messages

In order to reconfigure NFS to handle MPI-IO properly, the following sequence of steps are
needed (root permission required):

1. confirm you are running NFS version 3

25

mpi-bugs@mcs.anl.gov
mpi-bugs@mcs.anl.gov

rpcinfo -p ‘hostname‘ | grep nfs

for example, there should be a ’3’ in the second column
fire >rpcinfo -p fire | grep nfs
100003 3 udp 2049 nfs

2. edit ‘/etc/fstab’ for each NFS directory read/written by MPI-IO on each machine
used for multihost MPI-IO. The following is an example of a correct fstab entry for
/epm1:

root >grep epm1 /etc/fstab
gershwin:/epm1 /rmt/gershwin/epm1 nfs bg,intr,noac 0 0

If the “noac” option is not present, add it and then remount this directory on each of
the machines that will be used to share MPI-IO files.

root >umount /rmt/gershwin/epm1
root >mount /rmt/gershwin/epm1

3. confirm that the directory is mounted noac

root >grep gershwin /etc/mnttab
gershwin:/epm1 /rmt/gershwin/epm1 nfs
noac,acregmin=0,acregmax=0,acdirmin=0,acdirmax=0 0 0 899911504

Turning off of attribute caching may reduce performance of MPI-IO applications as well as
other applications using this directory. The load on the machine where the NFS directory
is hosted will increase.

4.8 Building MPICH

Once configure has determined the features of your system, all you have to do now is

make

This will clean all the directories of previous object files (if any), compile both profiling and
non-profiling versions of the source code, including Romio and the C++ interface, build all
necessary libraries, and link both a sample Fortran program and a sample C program as
a test that everything is working. If anything goes wrong, check Section 6 to see if there
is anything said there about your problem. If not, follow the directions in Section 6.2 for
submitting a bug report. To simplify checking for problems, it is a good idea to use

make |& tee make.log

Specific (non-default) targets can also be made. See the ‘Makefile’ to see what they are.

After running this make, the size of the distribution will be about 45 Megabytes (de-
pending on the particular machine it is being compiled for and the selected options), before
building any of the examples or the extensive test library. The ‘Makefile’s are built for
the various example subdirectories, but the example programs themselves have to be made
“by hand”.

26

4.9 Installing MPICH for Others to Use

This step is optional. However, if you are installing MPICH, you should make sure that you
specified the directory into which MPICH is to be installed when you configure MPICH by using
the -prefix option. For example, if you plan to install MPICH into ‘/usr/local/mpich-1.2.5/’,
then you should configure with the option -prefix=‘/usr/local/mpich-1.2.5/’. If there
is any possibility at all that you will build MPICH for several systems and/or devices, you
should include that information in the prefix. For example, by using

-prefix=‘/usr/local/mpich-1.2.5/solaris/ch p4’,

you can later add

-prefix=‘/usr/local/mpich-1.2.5/solaris/ch p4smp’

for a version that is built with the configure option -comm=shared (suitable for clusters of
symmetric multiprocessors, hence the “smp” in the directory name). Once you have tested
all parts of the MPI distribution (including the tools, particularly upshot and/or nupshot),
you may install MPICH into a publically available directory, and disseminate information for
other users, so that everyone can use the shared installation. To install the libraries and
include files in a publicly available place, change to the top-level MPICH directory, and do

make install

The man pages will have been copied with the installation, so you might want to add
‘/usr/local/mpich-1.2.5/man’ to the default system MANPATH. The man pages can be
conveniently browsed with the mpiman command, found in the mpich/bin directory.

It is possible to specify the directory into which MPICH should be installed after building
MPICH by setting the value of PREFIX when executing the installation step:

make install PREFIX=/usr/local/mpich-1.2.5

However, some features, particularly the ability of Totalview to show MPICH message queues,
will work only if MPICH is configured with the prefix set to the installation directory.

A good way to handle multiple releases of MPICH is to install them into directories
whose names include the version number and then set a link from mpi to that directory.
For example, if the current version is 1.2.5, the installation commands to install into ‘/usr/
local’ are

make install PREFIX=/usr/local/mpi-1.2.5
rm /usr/local/mpi
ln -s /usr/local/mpi-1.2.5 /usr/local/mpi

The script ‘bin/mpiinstall’ provides more control over the installation of MPICH (in
fact, make install just runs this script). For example, you can change the protection

27

of the files when they are installed with the options -mode=nnnn (for regular files) and
-xmode=nnnn (for executables and directories). You can set the directory into which the
man pages will be placed with -manpath=<path>. The option -help shows the full set of
options for mpiinstall.

Installing nupshot can sometimes be troublesome. You can use the switch -nonupshot
to mpiinstall to not install nupshot; alternately, you can use the switch -cpnupshot to
install the copy in ‘mpich/profiling/nupshot’. Normally, mpiinstall builds a new ver-
sion of nupshot to insure that all of the paths are correct (nupshot needs to find files where
it is installed). If you need to “manually” build nupshot for installation, the -cpnupshot
switch will allow you to install that version.

You can test the installation by using the configure in ‘mpich/examples/test’. For
example, if you have installed MPICH into ‘/usr/local/mpich-1.2.5/’ for architecture
solaris and device ch_p4, execute

cd examples/test
./configure -mpichpath=/usr/local/mpich-1.2.5/solaris/ch_p4/bin
make testing

The test codes in the ‘mpich/examples/test’ directory may be used with any implemen-
tation of MPI, not just the MPICH implementation.

4.9.1 User commands

The commands mpirun, mpicc, mpif77, mpiCC, mpif90, and mpiman should be in the user’s
search path. Note that if several architectures and/or MPICH devices are supported, it is
important that the correct directory be added to the user’s path. These are installed into
the ‘bin’ directory. If multiple architectures or devices are being used, be sure that the
installation path distinguishes these. For example, if both the ch_p4 and ch_shmem devices
are built on a Solaris system, set the installation prefix to include these names:

-prefix=‘/usr/local/mpich-1.2.5/solaris/ch_p4’, and

-prefix=‘/usr/local/mpich-1.2.5/solaris/ch_shmem’

respectively. Alternately, set the prefix to ‘/usr/local/mpich-1.2.5/’ and set the execpre-
fix to

‘/usr/local/mpich-1.2.5/solaris/ch_p4’ and

‘/usr/local/mpich-1.2.5/solaris/ch_shmem’

respectively.

4.9.2 Installing documentation

The MPICH implementation comes with several kinds of documentation. Installers are en-
couraged to provide site-specific information, such as the location of the installation (par-
ticularly if it is not in ‘/usr/local/mpich-1.2.5/’).

28

4.9.3 Man pages

A complete set of Unix man pages for the MPICH implementation are in ‘mpich/man’. ‘man/
man1’ contains the commands for compiling, linking, and running MPI programs; ‘man/man3’
contains the MPI routines; ‘man/man4’ contains the MPE routines, and ‘man/man5’ contains
the MPID routines (these are for the low-level part of the MPICH implementation, are not
of interest to users). The command ‘mpich/bin/mpiman’ is a script that can present the
manual pages for MPICH in various forms, using either the terminal-style man,xman, or one
of several HTML browsers.

4.9.4 Examples

Users often prefer working from example ‘Makefile’s and programs. The directory that is
installed in the ‘examples’ directory contains a C and Fortran version of the ‘pi’ program,
along with a ‘Makefile.in’. Other examples there include a simple parallel I/O program
and an MPI program written using the C++ bindings for the MPI functions. Users may
be interested in some of the examples that are in the source tree, also in the ‘examples’
directory.

4.10 Computational Grids: the globus2 device

The globus2 device4 supports the execution of MPI programs on “computational grids”
that may include parallel computers and workstations, and that may span multiple sites.
In such grid environments, different sites may support different security mechanisms and
different process creation mechanisms. The globus2 device hides these low-level details from
you, allowing you to start programs with mpirun as on MPPs and workstation clusters. The
globus2 device also provides other convenient features, such as remote access to files and
executable staging. These features are provided by using services supplied by the Globus
toolkit: see http://www.globus.org for details.

The globus2 device requires that special servers be running on the computers where
processes are to be created. In our discussion of how to use the globus2 device, we assume
that we are using the globus2 device on a collection of machines on which various Globus
servers are installed and running. Such a collection is often referred to as a computational
grid, for example, NASA’s Information Power Grid (IPG). If possible, we recommend that
you use the globus2 device in this environment. If you wish to use the globus2 device
in other situations, please send email to developers@globus.org. Details of how to run
MPI programs using the globus2 device on Globus-enabled computational grids are in
Appendix 3.3.

4.11 Thorough Testing

The ‘examples/test’ directory contains subdirectories of small programs that systemati-
cally test a large subset of the MPI functions. The command

4globus2 replaces the globus device distributed in previous releases of MPICH.

29

http://www.globus.org

make testing

in the MPICH directory will cause these programs to be compiled, linked, executed, and their
output to be compared with the expected output. Linking all these test programs takes up
considerable space, so you might want to do

make clean

in the test directory afterwards. The individual parts of MPI (point-to-point, collective,
topology, etc.) can be tested separately by

make testing

in the separate subdirectories for examples/test.

If you have a problem, first check the troubleshooting guides and the lists of known
problems. If you still need help, send detailed information to mpi-bugs@mcs.anl.gov.

4.12 Internationalization

MPICH has support for providing error messages in different languages. This makes use of
the X/Open message catalog services, which are a standard way of providing multi-language
support. This multi-language support is often called NLS, for National Language Support.
MPICH comes with error messages in US English; additional languages will be provided as
we get the translations (if you wish to provide one, please send mail to mpi-bugs@mcs.anl.
gov). More precisely, MPICH uses an English version that uses the ISO Latin-1 character set
(ISO8859-1). We expect to provide other versions that also use the Latin-1 character set,
subject to getting translations of the messages.

To create a new message catalog, copy the file ‘mpich.En_US.msg’ to ‘mpich.mylanguage.msg’
and translate the entries. The value of ‘mylanguage’ should match the ones used for your
system; for example, ‘mpich.De_DE.msg’ for German. Many systems put their NLS files in
‘/usr/lib/nls/msg’; you can also check the value of the environment variable NLSPATH on
your system. Note that some systems provide the routines and programs to support NLS,
but do not make use of it and do not provide a initial NLSPATH value.

For emacs users, check the Emacs info under “European Display”. The commands

M-x standard-display-european
M-x iso-accents-mode

can be used to input most European languages. You can also load ‘iso-transl’ and use C-x
8 to compose characters (this sets the high bit in the character). MPICH currently does not
support languages that require multi-byte character sets (such as Japanese). However, the
only changes needed are in the file ‘src/env/errmsg.c’; if you are interested in developing
a multi-byte character set version, please let us know.

30

mpi-bugs@mcs.anl.gov
mpi-bugs@mcs.anl.gov
mpi-bugs@mcs.anl.gov

By default, MPICH uses the value of ‘NLSPATH’ to find the message catalogs. If this fails,
it tries ‘MPICHNLSPATH’, and if that fails, it uses English language versions that are coded
into the library.

The catalogs are not, however, installed into these directories. Instead, you will find
them in the library directory for a particular architecture; for example, ‘mpich/rs6000/
lib’.

5 Documentation

This distribution of MPICH comes with complete man pages for the MPI routines, commands
for compiling and linking MPI programs, and the MPE extensions. The command mpiman
in ‘mpich/bin’ is a good interface to the man pages.5 The ‘mpich/www’ directory contains
HTML versions of the man pages for MPI and MPE. The ‘mpich/doc’ directory contains
this Installation and User’s Guide. All documentation is also available on the web at
www.mcs.anl.gov/mpi/mpich/docs.html.

Information about MPI is available from a variety of sources. Some of these, particularly
WWW pages, include pointers to other resources.

• The Standard itself:

– As a Technical report [4].

– As Postscript and HTML at www.mpi-forum.org, for both MPI-1 and MPI-2.

– As a journal article in the Fall 1994 issue of the Journal of Supercomputing
Applications [15] for MPI-1 and as a journal article in the International Journal
of High Performance Computing Applications in 1998.

• MPI Forum discussions

– The MPI Forum email discussions and both current and earlier versions of the
Standard are available from www.netlib.org. MPI-2 discussions are available
at www.mpi-forum.org.

• Books:

– Using MPI: Portable Parallel Programming with the Message-Passing Interface,
Second Edition, by Gropp, Lusk, and Skjellum [11].

– Using MPI-2: Advanced Features of the Message-Passing Interface, by Gropp,
Lusk, and Thakur [12].

– MPI—The Complete Reference: Volume 1, The MPI Core, by Snir, et al. [17].

– MPI—The Complete Reference: Volume 2, The MPI-2 Extensions, by Gropp, et
al. [6].

– Parallel Programming with MPI, by Peter S. Pacheco [16].

• Newsgroup:
5The mpiman command is created by the configure process.

31

www.mcs.anl.gov/mpi/mpich/docs.html
www.mpi-forum.org
www.mpi-forum.org

– comp.parallel.mpi

• Mailing lists:

– mpi-comments@mpi-forum.org: The MPI Forum discussion list.

– mpi-impl@mcs.anl.gov: The implementors’ discussion list.

– mpi-bugs@mcs.anl.gov is the address to which you should report problems with
mpich.

• Implementations available from the web:

– MPICH is available from http://www.mcs.anl.gov/mpi/mpich or by anonymous
ftp from ftp.mcs.anl.gov in the directory ‘pub/mpi/mpich’, file ‘mpich.tar.gz’.

– Links to other implementations are available at www.mcs.anl.gov/mpi/implementations.
html.

• Test code repository:

– ftp://ftp.mcs.anl.gov/pub/mpi/mpi-test

6 In Case of Trouble

This section describes some of the problems that you may run into and some solutions,
along with information on submitting bug reports.

6.1 Things to try first

If something goes wrong, the first thing to do is to check the output of configure or make for
some obvious problem, such as an improperly specified compiler or inadequate disk space.
Next, check the web page www.mcs.anl.gov/mpi/mpich/buglist-tbl.html for any recent
patches that may fix your problem. After that, check Section 6.3 for common problems. If
you still can’t find a solution to your problem, submit a bug report and we will try to help
you.

6.2 Submitting bug reports

Send any problem that you can not solve by checking this section to mpi-bugs@mcs.anl.
gov.

Please include:

• The version of MPICH (e.g., 1.2.5)

• The output of running your program with the -mpiversion argument (e.g., mpirun
-np 1 a.out -mpiversion)

• The output of

32

mpi-bugs@mcs.anl.gov
http://www.mcs.anl.gov/mpi/mpich
www.mcs.anl.gov/mpi/implementations.html
www.mcs.anl.gov/mpi/implementations.html
ftp://ftp.mcs.anl.gov/pub/mpi/mpi-test
www.mcs.anl.gov/mpi/mpich/buglist-tbl.html
mpi-bugs@mcs.anl.gov
mpi-bugs@mcs.anl.gov

uname -a

for your system. If you are on an SGI system, also

hinv

• The files ‘config.log’ and ‘src/fortran/config.log’.

• If the problem is with a script such as configure or mpirun, run the script with the
-echo argument (e.g., mpirun -echo -np 4 a.out).

If you have more than one problem, please send them in separate messages; this simplifies
our handling of problem reports.

The rest of this section contains some information on trouble-shooting MPICH. Some of
these describe problems that are peculiar to some environments and give suggested work-
arounds. Each section is organized in question and answer format, with questions that
relate to more than one environment (workstation, operating system, etc.) first, followed
by questions that are specific to a particular environment. Problems with workstation
clusters are collected together as well. To make it easier to find solutions, the most common
problems are described first.

6.3 The Most Common Problems

This section describes some of the most common problems encountered when building and
using MPICH. See also Section A which covers frequently asked questions, including some
additional problems.

Missing symbols when linking. The most common source of missing symbols is a failure
of the MPICH configure step to determine how to pass command line arguments to
Fortran. Check the output of the configure step for any error messages or warnings
about building the Fortran libraries. If you do not require Fortran, reconfigure MPICH
using the configure option --disable-f77 and remake MPICH. If you need Fortran
and cannot figure out how to make MPICH work with Fortran, send a bug report to
mpi-bugs@mcs.anl.gov.

Another common problem with programs that mix Fortran and C is missing libraries.
The MPICH configure attempts to determine the libraries that are necessary when
linking C with Fortran, but may miss some. There are additional suggestions for this
problem in Section 6.9.

SIGSEGV. Any message that mentions SIGSEGV is refering to a “segmentation violation”
during program execution. This is usually due to an error in the user’s program, such
as an array overwrite or use of an uninitialized variable in referencing storage.

6.4 Troubleshooting Shared Libraries

Shared libraries provide a useful and powerful tool for speeding linking and execution of
programs. However, the implementation of shared libraries in most operating systems leaves
much to be desired. This section covers some of the problems and workarounds for them.

33

mpi-bugs@mcs.anl.gov

Some (most?) systems do not remember where the shared library was found when the
executable was linked!6 Instead, they depend on finding the shared library in either a
default location (such as ‘/lib’) or in a directory specified by an environment variable such
as LD_LIBRARY_PATH or by a command line argument such as -R or -rpath (more on this
below). The MPICH configure tests for this and will report whether an executable built with
shared libraries remembers the location of the libraries. It also attemps to use a compiler
command line argument to force the executable to remember the location of the shared
library.

If you need to set an environment variable to indicate where the MPICH shared libraries
are, you need to ensure that both the process that you run mpirun from and any processes
that mpirun starts gets the enviroment variable. The easiest way to do this is to set the
environment variable within your ‘.cshrc’ (for csh or tcsh users) or ‘.profile’ (for sh and
ksh users) file.

However, setting the environment variable within your startup scripts can cause prob-
lems if you use several different systems. For example, you may have a single ‘.cshrc’ file
that you use with both an SGI (IRIX) and Solaris system. You do not want to set the
LD_LIBRARY_PATH to point the SGI at the Solaris version of the MPICH shared libraries7.
Instead, you would like to set the environment variable before running mpirun:

setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:/usr/local/mpich/lib/shared
mpirun -np 4 cpi

Unfortunately, this won’t always work. Depending on the method that mpirun and MPICH
use to start the processes, the environment variable may not be sent to the new process.
This will cause the program to fail with a message like

ld.so.1: /home/me/cpi: fatal: libpmpich.so.1.0: open failed: No such
file or directory
Killed

Some devices support starting new processes with the current environment; check the
documentation for mpirun (Section 3.2).

An alternative to using LD_LIBRARY_PATH and the secure server is to add an option to the
link command that provides the path to use in searching for shared libraries. Unfortunately,
the option that you would like is “append this directory to the search path” (such as you get
with -L). Instead, many compilers provide only “replace the search path with this path.”8

For example, some compilers allow -Rpath:path:...:path to specify a replacement path.
Thus, if both MPICH and the user provide library search paths with -R, one of the search
paths will be lost. Eventually, mpicc and friends can check for -R options and create a

6There is a reason for this unfortunate choice that has to do with distributing executables linked with
shared libraries. However, the capability to save the location should be provided, at least as an option, by
the linker.

7You can make ‘.cshrc’ check for the kind of system that you are running on and pick the paths
appropriately. This isn’t as flexible as the approach of setting the environment variable from the running
shell.

8Even though the linker may provide the “append to search path” form.

34

unified version, but they currently do not do this. You can, however, provide a complete
search path yourself if your compiler supports an option such as -R.

The preceeding may sound like a lot of effort to go to, and in some ways it is. For large
clusters, however, the effort will be worth it: programs will start faster and more reliably,
because there is less network and file system traffic.

6.5 Other Problems

The following items describe miscellaneous problems that we have encountered. These may
help solve less common problems.

6.6 Problems configuring

6.6.1 General

1. Q: Configure reports that floating point is not commutative! How do I fix it?

A: Check your compiler’s documentation. On RS/6000’s, the -qnomaf (no multiply-
add floating point) option. On some other systems, intermediate results may be stored
in 80-bit registers (Intel CPUs do this); this can also lead to inconsistent rounding.
You may be able to force the compiler to round to 64 bits.

6.6.2 Linux

1. Q: The configure step issues the message:

checking that the compiler f77 runs... no
Fortran compiler returned non-zero return code
Output from test was
f2ctmp_conftest.f:

MAIN main:

A: This is probably caused by a problem in the Fortran compiler in older versions of
Linux. The f77 command in Linux was often a shell script that uses the f2c program
to convert the Fortran program to C, and then compile it with the C compiler. In
many versions of Linux, this script has an error that causes a non-zero return code
even when the compilation is successful.

To fix this problem, you need a corrected f77 script. If you can edit the script yourself,
change the last 3 lines from

case $cOPT in 2) $CC $G -o $OUTF $OFILES -lf2c -lm;; esac
rc=$?
exit $rc

to

35

case $cOPT in 2) $CC $G -o $OUTF $OFILES -lf2c -lm;; esac
rc=$?
trap 0
exit $rc

2. Q: The link test fails on Linux with messages like

overtake.o(.text+0x59): undefined reference to ‘MPI_COMM_WORLD’
overtake.o(.text+0x81): undefined reference to ‘MPI_COMM_WORLD’
...

A: This is probably caused by a problem in the Fortran compiler in Linux. In some
early versions of Linux, the f77 command in Linux is often a shell script that uses
the f2c program to convert the Fortran program to C, and then compile it with the
C compiler. In many versions of Linux, this script has an error that causes a non-zero
return code even when the compilation is successful.

To fix this problem, you need a corrected f77 script. If you can edit the script yourself,
change the last 3 lines from

case $cOPT in 2) $CC $G -o $OUTF $OFILES -lf2c -lm;; esac
rc=$?
exit $rc

to

case $cOPT in 2) $CC $G -o $OUTF $OFILES -lf2c -lm;; esac
rc=$?
trap 0
exit $rc

3. Q: During the configure step, messages like

/homes/me/mpich/configure: 134956160: Permission denied

sometimes appear. What is wrong?

A: This is a bug in the Linux (actually GNU) sh shell. The shell is attempting
to create a file with the name ‘/tmp/t<processid>-sh’ (e.g., ‘/tmp/t11203-sh’),
but was unable to. This may happen if ‘/tmp’ is full; however, it can also happen
when the shell created the same file for another user days before. (You can see this
happen by running configure under strace -f). The only fix is to have your systems
administrator clean old files out of ‘/tmp’.

6.7 Problems building MPICH

6.7.1 General

1. Q: When running make on MPICH, I get this error:

36

ar: write error: No such file or directory
*** Error code 1

I’ve looked, and all the files are accessible and have the proper permissions.

A: Check the amount of space in ‘/tmp’. This error is sometimes generated when
there is insufficient space in ‘/tmp’ to copy the archive (this is a step that ar takes
when updating a library). The command df /tmp will show you how much space is
available. Try to insure that at least twice the size of the library is available.

2. Q: When running make on MPICH, I get errors when executing ranlib.

A: Many systems implement ranlib with the ar command, and they use the ‘/tmp’
directory by default because it “seems” obvious that using ‘/tmp’ would be faster (‘/
tmp’ is often a local disk). Unfortunately, some systems have ridiculously small ‘/tmp’
partitions, making any use of ‘/tmp’ very risky. In some cases, the ar commands used
by MPICH will succeed because they use the l option—this forces ar to use the local
directory instead of ‘/tmp’. The ranlib command, on the other hand, may use ‘/tmp’
and cannot be fixed.

In some cases, you will find that the ranlib command is unnecessary. In these cases,
you can reconfigure with -noranlib. If you must use ranlib, either reduce the space
used in ‘/tmp’ or increase the size of the ‘/tmp’ partition (your system administrator
will need to do this). There should be at least 20–30 MBytes free in ‘/tmp’.

3. Q: When doing the link test, the link fails and does not seem to find any of the MPI
routines:

/homes/me/mpich/IRIX32/ch_p4/bin/mpicc -o overtake overtake.o test.o
ld: WARNING 126: The archive /homes/me/mpich/IRIX32/ch_p4/lib/libmpi.a

defines no global symbols. Ignoring.
ld: WARNING 84: /usr/lib/libsun.a is not used for resolving any symbol.
ld: ERROR 33: Unresolved data symbol "MPI_COMM_WORLD" -- 1st referenced by overtake.o.
ld: ERROR 33: Unresolved text symbol "MPI_Send" -- 1st referenced by overtake.o.
...

A: Check that the ar and ranlib programs are compatible. One site installed the
Gnu ranlib in such a way that it would be used with the vendors ar program, with
which it was incompatible. Use the -noranlib option to configure if this is the case.

6.7.2 Workstation Networks

1. Q: When building MPICH, the make fails with errors like this:

making p4 in directory lib

make libp4.a

cc -Aa -g -I../include -I../../../../include -c p4_globals.c

cc: "/usr/include/netinet/in.h", line 69: error 1000: Unexpected symbol: "u_long".

cc: "/usr/include/netinet/in.h", line 127: error 1000: Unexpected symbol: "u_short".

etc.

A: The problem here is that the system (not MPICH) include files are incompatible
with your choice of compiler. Check to see if cc is aliased (in C shell, do alias cc).

37

If it is, either unalias it or set the environment variable CC to the full path for the
compiler. To get the full path, do

unalias cc
setenv CC ‘which cc‘

and then reconfigure.

6.7.3 Cray T3D

1. Q: When linking I get

mppldr-133 cf77: CAUTION
Unsatisfied external references have been encountered.

Unsatisfied external references
Entry name Modules referencing entry

GETARG (equivalenced to $USX1)
MPIR_GETARG

A: You may have specified the Fortran compiler with the F77 environment variable or
the -fc argument to configure. The MPICH Fortran implemenation of MPI uses a com-
mon Fortran extension, GETARG, to get the command line arguments. Most Fortran
runtime systems support this, but Cray uses call pxfgetarg(i,s,len(s),ierr) in-
stead. You can change the file ‘src/env/farg.f’ manually to call the correct routine
(but note that configure builds a new ‘farg.f’ from ‘farg.f.in’ each time that it is
run).

MPICH now attempts to determine the correct names of the routines to access the
command line. If you find that MPICH fails to determine the names correctly, please
send a bug report to mpi-bugs@mcs.anl.gov.

6.7.4 SGI

1. Q: The build on an SGI Power Challenge fails with

Signal: SIGSEGV in Back End Driver phase.
> ### Error:
> ### Signal SIGSEGV in phase Back End Driver -- processing aborted
> f77 ERROR: /usr/lib64/cmplrs/be died due to signal 4
> f77 ERROR: core dumped
> *** Error code 2 (bu21)
> *** Error code 1 (bu21)
> *** Error code 1 (bu21)

A: Our information is that setting the environment variable SGI_CC to -ansi will fix
this problem.

38

mpi-bugs@mcs.anl.gov

2. Q: The build on an SGI with architecture IRIXN32 fails with

cc: Warning: -c should not be used with ucode -O3 -o32 \
on a single file; use -j instead to get inter-module optimization.

A: Amazingly, the standard -c option is not valid for the SGI compilers when both
-O3 and -n32 are specified. This is a “feature” of the SGI compiler, and there is no
way to work around this for MPICH (other than a massive and non-portable rewrite of
all the ‘Makefile’s). Your only option is to not use the -O3 option.

6.7.5 Linux

1. Q: The link test failed on Linux with

...
cc -o overtake overtake.o test.o -L/usr/local/mpich/LINUX/ch_p4/lib
-lmpi
overtake.o(.text+0x71): undefined reference to ‘MPI_COMM_WORLD’
overtake.o(.text+0x82): undefined reference to ‘MPIR_I_DOUBLE’
overtake.o(.text+0xe1): undefined reference to ‘MPI_COMM_WORLD’
...

A: We have been informed that there is a error in the f77 script in some versions
of Linux which causes this problem. Try either getting a patch for the f77 script or
reconfiguring with -nof77.

2. Q: The build fails for the ch_p4 device when using the Compaq C compiler.

A: There is an incompatibility with the system include files (not the MPICH include
files). If you can modify ‘/usr/include/rpc/xdr.h’, add the following near the top
of that file:

#if defined(__DECC) || defined(__DECCXX)
typedef long int int64_t;
#endif

6.7.6 Compaq ULTRIX and Tru64

1. Q: When trying to build, the make aborts early during the cleaning phase:

amon:MPICH/mpich>make clean
/bin/rm -f *.o *~ nupshot

*** Error code 1

A: This is a bug in the shell support on some Compaq ULTRIX systems. You may
be able to work around this with

setenv PROG_ENV SYSTEM_FIVE

Configuring with -make=s5make may also work.

39

6.8 Problems in testing

The MPICH test suite, in ‘examples/test’, performs a fairly complete test of an MPI imple-
mentation. If there is an error, it usually indicates a problem with the implementation of
MPI; if you encounter such a problem, please report it to mpi-bugs@mcs.anl.gov. However,
there are a few exceptions that are described here.

6.8.1 General

1. Q: The test ‘pt2pt/structf’ fails with

0 - Error in MPI_ADDRESS : Invalid argument: Address of location
given to MPI_ADDRESS does not fit in Fortran integer
[0] Aborting program!

A: This is not an error; it is a gap in the MPI-1 definition that is fixed in MPI-2
(with the routine MPI_Get_address. This indicates that Fortran integers are not
large enough to hold an address. This does indicate that MPI programs written in
Fortran should not use the MPI_Address function on this system.

2. Q: The test ‘env/timers’ fails with

Timer around sleep(1) did not give 1 second; gave 0.399949

A: The low-level software that MPICH uses probably makes use of the SIGALRM signal,
thus denying it to the user’s program. This is not an error (the standard permits
systems to make use of any signals) though it is unfortunate.

6.9 Problems compiling or linking Fortran programs

6.9.1 General

1. Q: When linking the test program, the following message is generated:

f77 -g -o secondf secondf.o -L/usr/local/mpich/lib/sun4/ch_p4 -lmpich
invalid option -L/usr/local/mpich/lib/sun4/ch_p4
ld: -lmpich: No such file or directory

A: This f77 program does not accept the -L command to set the library search path.
Some systems provide a shell script for f77 that is very limited in its abilities. To
work around this, use the full library path instead of the -L option:

f77 -g -o secondf secondf.o /usr/local/mpich/lib/sun4/ch_p4/libmpich.a

As of the MPICH 1.2.0 release, the MPICH configure attempts to find the correct option
for indicating library paths to the Fortran compiler. If you find that the MPICH
configure has made an error, please submit a bug report to mpi-bugs@mcs.anl.gov.

40

mpi-bugs@mcs.anl.gov
mpi-bugs@mcs.anl.gov

2. Q: When linking Fortran programs, I get undefined symbols such as

f77 -c secondf.f
secondf.f:
MAIN main:

f77 -o secondf secondf.o -L/home/mpich/lib/solaris/ch_shmem -lmpich
Undefined first referenced
symbol in file

getdomainname
/home/mpich/lib/solaris/ch_shmem/libmpi .a(shmempriv.o)
ld: fatal: Symbol referencing errors. No output written to secondf

There is no problem with C programs.

A: This means that your C compiler is providing libraries for you that your Fortran
compiler is not providing. Find the option for the C compiler and for the Fortran
compilers that indicate which library files are being used (alternately, you may find an
option such as -dryrun that shows what commands are being used by the compiler).
Build a simple C and Fortran program and compare the libraries used (usually on the
ld command line). Try the ones that are present for the C compiler and missing for
the Fortran compiler. MPICH attempts to determine these libraries for you. If you have
trouble, send a bug report and include the contents of the file ‘mpich/src/fortran/
config.log’.

3. Q: When trying to compile Fortran code with a Fortran 90 or Fortran 95 compiler, I
get error messages like

Error: foo.f, line 30: Inconsistent datatype for argument 1 in MPI_SEND

A: The Fortran language requires that in two calls to the same subroutine, the types
of arguments must be the same. That is, if you called MPI_SEND with a REAL buffer as
the first argument and then called it with an INTEGER buffer as the first argument, a
Fortran compiler can consider this an error. Few Fortran 77 compilers would complain
about this; more Fortran 90 and Fortran 95 compilers check for this. There are two
solutions. One is to use the MPI module (in the “choice” version: use the -choicemod
option for mpif90); the other is to use an option to tell the Fortran 90 compiler to
allow argument mismatches. For example, the argument -mismatch will cause the
NAG Fortran compilers to allow mismatched arguments. Using the MPI module is
the preferred approach.

Fortran 77 users may sometimes see a similar message, particularly with later versions
of g77. The option -Wno-globals will suppress these warning messages.

6.10 Problems Linking C Programs

6.10.1 General

1. Q: When linking programs, I get messages about __builtin_saveregs being unde-
fined.

41

A: You may have a system on which C and Fortran compilers are incompatible (for
example, using gcc and the vendor’s Fortran compiler). If you do not plan to use
Fortran, the easiest fix is to rebuild with the -nof77 option to configure.

You should also look into making your C compiler compatible with your Fortran
compiler. Because this is very dependent on the specific system and compilers that
you are using, you may need to find a local expert who can help you.

The easiest but ugliest possibility is use f2c to convert Fortran to C, then use the C
compiler to compile everything. If you take this route, remember that every Fortran
routine has to be compiled using f2c and the C compiler.

Alternatively, you can use various options (check the man pages for your compilers)
to see what libraries that add when they link. Add those libraries to the link line for
the other compiler. If you find a workable set of libraries, edit the appropriate scripts
(e.g., mpicc) to include the necessary libraries. MPICH attempts to find all the libaries
that you need but is not always successful.

6.10.2 HPUX

1. Q: When linking on HPUX, I get an error like this:

cc -o pgm pgm.o -L/usr/local/mpich/lib/hpux/ch_p4 -lmpich -lm
/bin/ld: Unsatisfied symbols:
sigrelse (code)
sigset (code)
sighold (code)
*** Error code 1

A: You need to add the link option -lV3. The ch_p4 device uses the System V signals
on the HP; these are provided in the ‘V3’ library.

6.10.3 LINUX

1. Q: When linking a Fortran program, I get

Linking:
foo.o(.data+0x0): undefined reference to ‘pmpi_wtime_’

A: This is a bug in the pgf77 compiler (which is itself a workaround for a bug in
the LINUX ld command). You can fix it by either adding -lpmpich to the link
line or modifying the ‘mpif.h’ to remove the external pmpi_wtime, pmpi_wtick
statement.

The MPICH configure attempts to determine if pmpi_wtime and pmpi_wtick can be
declared in ‘mpif.h’ and removes them if there is a problem. If this happens and you
use pmpi_wtime or pmpi_wtick in your program, you will need to declare them as
functions returning double precision values.

42

6.11 Problems starting programs

6.11.1 General

1. Q: When trying to start a program with

mpirun -np 2 cpi

either I get an error message or the program hangs.

A: On some systems such as IBM SPs, there are many mutually exclusive ways to
run parallel programs; each site can pick the approach(es) that it allows. The script
mpirun tries one of the more common methods, but may make the wrong choice. Use
the -v or -t option to mpirun to see how it is trying to run the program, and then
compare this with the site-specific instructions for using your system. You may need
to adapt the code in mpirun to meet your needs. See also the next question.

2. Q: When trying to run a program with, e.g., mpirun -np 4 cpi, I get

usage : mpirun [options] <executable> [<dstnodes>] [-- <args>]

or

mpirun [options] <schema>

A: You have a command named mpirun for a different implementation of MPI in your
path ahead of the MPICH version. Execute the command

which mpirun

to see which command named mpirun was actually found. The fix is to either change
the order of directories in your path to put the MPICH version of mpirun first, or to
define an alias for mpirun that uses an absolute path. For example, in the csh shell,
you might do

alias mpirun /usr/local/mpich/bin/mpirun

to set mpirun to the MPICH version.

3. Q: When I try to run a program on more than one processor, I get an error message

mpirun -np 2 cpi
/home/me/cpi: error in loading shared libraries: libcxa.so.1: cannot open
shared object file: No such file or directory

There is no trouble running on one processor.

A: This means that some shared library used by the system cannot be found on
remote processors. There are two possibilities:

43

(a) The shared libraries are not installed on the remote processor. To fix this, have
your system administrators install the libraries.

(b) The shared libraries are not in the default path. This can happen if the path is
in an environment variable that is set in your current shell but that is not part of
your default or remote shell environment. The fix in this case is harder, because
you must communicate the location of the shared library to the executable (a
major deficiency in most Unix shared-library designs is that executables do not,
by default, remember where a shared library was found when linking). The
simplest fix may be to have your system administrators place the necessary shared
libraries into one of the directories that is searched by default. If this is not
possible, then you will need to help the compiler and linker out.
Many linkers provide a way to specify the search path for shared libraries. The
trick is to (a) pass this command to the linker program and (b) specify all of the
libraries that are needed.
For example, on Linux systems, the linker command to specify the shared library
search path is -rpath path, e.g., -rpath /usr/lib:/usr/local/lib. To pass
this command to the linker through the Intel C compiler icc, the command
-Qoption,link,-rpath,path is used. By default, the Linux linker looks in ‘/
usr/lib’ and the directories specified by the environment variable LD_LIBRARY_-
PATH. Thus, to force the linker to include the path to the shared library, you can
use

mpicc -o cpi cpi -Qoption,link,-rpath,$LD_LIBRARY_PATH:/usr/lib

If this works, then consider editing the value of LDFLAGS in the compiler scripts
(e.g., mpicc) to include this option.
Unfortunately, each compiler has a different way of passing these arguments to
the linker, and each linker has a different set of arguments for specifying the
shared library search path. You will need to check the documentation for your
system to find this options.

4. Q: When attempting to run cpilog I get the following message:

ld.so.1: cpilog: fatal: libX11.so.4: can’t open file: errno 2

A: The X11 version that configure found isn’t properly installed. This is a common
problem with Sun/Solaris systems. One possibility is that your Solaris machines are
running slightly different versions. You can try forcing static linking (-Bstatic on
Solaris).

Alternately, consider adding these lines to your ‘.login’ (assuming C shell):

setenv OPENWINHOME /usr/openwin
setenv LD_LIBRARY_PATH /opt/SUNWspro/lib:/usr/openwin/lib

(you may want to check with your system administrator first to make sure that the
paths are correct for your system). Make sure that you add them before any line like

if ($?USER == 0 || $?prompt == 0) exit

44

5. Q: My program fails when it tries to write to a file.

A: If you opened the file before calling MPI_INIT, the behavior of MPI (not just the
MPICH implementation of MPI) is undefined. In the ch_p4 device, only process zero
(in MPI_COMM_WORLD) will have the file open; the other processes will not have opened
the file. Move the operations that open files and interact with the outside world to
after MPI_INIT (and before MPI_FINALIZE).

6. Q: Programs seem to take forever to start.

A: This can be caused by any of several problems. On systems with dynamically-
linked executables, this can be caused by problems with the file system suddenly
getting requests from many processors for the dynamically-linked parts of the exe-
cutable (this has been measured as a problem with some DFS implementations). You
can try statically linking your application.

6.11.2 IBM RS6000

1. Q: When trying to run on an IBM RS6000 with the ch_p4 device, I got

% mpirun -np 2 cpi
Could not load program /home/me/mpich/examples/basic/cpi
Could not load library libC.a[shr.o]
Error was: No such file or directory

A: This means that MPICH was built with the xlC compiler but that some of the
machines in your ‘util/machines/machines.rs6000’ file do not have xlC installed.
Either install xlC or rebuild MPICH to use another compiler (either xlc or gcc; gcc
has the advantage of never having any licensing restrictions).

6.11.3 IBM SP

1. Q: When starting my program on an IBM SP, I get this:

$ mpirun -np 2 hello
ERROR: 0031-124 Couldn’t allocate nodes for parallel execution. Exiting ...
ERROR: 0031-603 Resource Manager allocation for task: 0, node:
me1.myuniv
.edu, rc = JM_PARTIONCREATIONFAILURE
ERROR: 0031-635 Non-zero status -1 returned from pm_mgr_init

A: This means that either mpirun is trying to start jobs on your SP in a way different
than your installation supports or that there has been a failure in the IBM software
that manages the parallel jobs (all of these error messages are from the IBM poe
command that mpirun uses to start the MPI job). Contact your system administrator
for help in fixing this situation. You system administrator can use

dsh -av "ps aux | egrep -i ’poe|pmd|jmd’"

45

from the control workstation to search for stray IBM POE jobs that can cause this
behavior. The files /tmp/jmd_err on the individual nodes may also contain useful
diagnostic information.

2. Q: When trying to run on an IBM SP, I get the message from mpirun:

ERROR: 0031-214 pmd: chdir </a/user/gamma/home/mpich/examples/basic>
ERROR: 0031-214 pmd: chdir </a/user/gamma/home/mpich/examples/basic>

A: These are messages from tbe IBM system, not from mpirun. They may be caused
by an incompatibility between POE, the automounter (especially the AMD auto-
mounter) and the shell, especially if you are using a shell other than ksh. There is no
good solution; IBM often recommends changing your shell to ksh!

3. Q: When trying to run on an IBM SP, I get this message:

ERROR: 0031-124 Less than 2 nodes available from pool 0

A: This means that the IBM POE/MPL system could not allocate the requested
nodes when you tried to run your program; most likely, someone else was using the
system. You can try to use the environment variables MP_RETRY and MP_RETRYCOUNT
to cause the job to wait until the nodes become available. Use man poe to get more
information.

4. Q: When running on an IBM SP, my job generates the message

Message number 0031-254 not found in Message Catalog.

and then dies.

A: If your user name is eight characters long, you may be experiencing a bug in the
IBM POE environment. The only fix at the time this was written was to use an
account whose user name was seven characters or less. Ask your IBM representative
about PMR 4017X (poe with userids of length eight fails) and the associated APAR
IX56566.

6.12 Programs fail at startup

6.12.1 General

1. Q: With some systems, you might see

/lib/dld.sl: Bind-on-reference call failed
/lib/dld.sl: Invalid argument

(This example is from HP-UX), or

ld.so: libc.so.2: not found

46

(This example is from SunOS 4.1; similar things happen on other systems).

A: The problem here is that your program is using shared libraries, and the libraries
are not available on some of the machines that you are running on. To fix this, relink
your program without the shared libraries. To do this, add the appropriate command-
line options to the link step. For example, for the HP system that produced the errors
above, the fix is to use -Wl,-Bimmediate to the link step. For Solaris, the appropriate
option is -Bstatic.

6.12.2 Workstation Networks

1. Q: I can run programs using a small number of processes, but once I ask for more
than 4–8 processes, I do not get output from all of my processes, and the programs
never finish.

A: We have seen this problem with installations using AFS. The remote shell program,
rsh, supplied with some AFS systems limits the number of jobs that can use standard
output. This seems to prevent some of the processes from exiting as well, causing the
job to hang. There are four possible fixes:

(a) Use a different rsh command. You can probably do this by putting the direc-
tory containing the non-AFS version first in your PATH. This option may not be
available to you, depending on your system. At one site, the non-AFS version
was in ‘/bin/rsh’.

(b) Use the secure server (serv_p4). See the discussion in the Users Guide.

(c) Redirect all standard output to a file. The MPE routine MPE_IO_Stdout_to_-
file may be used to do this.

(d) Get a fixed rsh command. The likely source of the problem is an incorrect usage
of the select system call in the rsh command. If the code is doing something
like

int mask;
mask |= 1 << fd;
select(fd+1, &mask, ...);

instead of

fd_set mask;
FD_SET(fd,&mask);
select(fd+1, &mask, ...);

then the code is incorrect (the select call changed to allow more than 32 file de-
scriptors many years ago, and the rsh program (or programmer!) hasn’t changed
with the times).

A fourth possiblity is to get an AFS version of rsh that fixes this bug. As we are not
running AFS ourselves, we do not know whether such a fix is available.

2. Q: Not all processes start.

47

A: This can happen when using the ch_p4 device and a system that has extremely
small limits on the number of remote shells you can have. Some systems using “Ker-
beros” (a network security package) allow only three or four remote shells; on these
systems, the size of MPI_COMM_WORLD will be limited to the same number (plus one if
you are using the local host).

The only way around this is to try the secure server; this is documented in the MPICH
installation guide. Note that you will have to start the servers “by hand” since the
chp4_servs script uses remote shell to start the servers.

6.13 Programs fail after starting

6.13.1 General

1. Q: I use MPI_Allreduce, and I get different answers depending on the number of
processes I’m using.

A: The MPI collective routines may make use of associativity to achieve better par-
allelism. For example, an

MPI_Allreduce(&in, &out, MPI_DOUBLE, 1, ...);

might compute
(((((((a + b) + c) + d) + e) + f) + g) + h)

or it might compute

((a + b) + (c + d)) + ((e + f) + (g + h)),

where a, b, . . . are the values of in on each of eight processes. These expressions are
equivalent for integers, reals, and other familar objects from mathematics but are not
equivalent for datatypes, such as floating point, used in computers. The association
that MPI uses will depend on the number of processes, thus, you may not get exactly
the same result when you use different numbers of processes. Note that you are not
getting a wrong result, just a different one (most programs assume the arithmetic
operations are associative). All processes do get the same result from a single call to
MPI_Allreduce.

2. Q: My Fortran program fails with a BUS error.

A: The C compiler that MPICH was built with and the Fortran compiler that you are
using have different alignment rules for variables of type like DOUBLE PRECISION. For
example, the GNU C compiler gcc may assume that all doubles are aligned on eight-
byte boundaries, but the Fortran language requires only that DOUBLE PRECISION align
with INTEGERs, which may be four-byte aligned.

There is no good fix. Consider rebuilding MPICH with a C compiler that supports
weaker data alignment rules. Some Fortran compilers will allow you to force eight-
byte alignment for DOUBLE PRECISION (for example, -dalign or -f on some Sun
Fortran compilers); note though that this may break some correct Fortran programs
that exploit Fortran’s storage association rules.

48

Some versions of gcc may support -munaligned-doubles; MPICH should be rebuilt
with this option if you are using gcc, version 2.7 or later. MPICH attemps to detect
and use this option where available.

3. Q: I’m using fork to create a new process, or I’m creating a new thread, and my code
fails.

A: The MPICH implementation is not thread safe and does not support either fork
or the creation of new processes. Note that the MPI specification is thread safe, but
implementations are not required to be thread safe. At this writing, few implemen-
tations are thread-safe, primarily because this reduces the performance of the MPI
implementation (you at least need to check to see if you need a thread lock, actually
getting and releasing the lock is even more expensive).

The MPICH implementation supports the MPI_Init_thread call; with this call, new in
MPI-2, you can find out what level of thread support the MPI implementation sup-
ports. As of version 1.2.0 of MPICH, only MPI_THREAD_SINGLE is supported. We believe
that version 1.2.0 and later support MPI_THREAD_FUNNELED, and some users have used
MPICH in this mode (particularly with OpenMP), but we have not rigourously tested
MPICH for this mode. Future versions of MPICH will support MPI_THREAD_MULTIPLE.

Q: C++ programs execute global destructors (or constructors) more times than ex-
pected. For example:

class Z {
public:
Z() { cerr << "*Z" << endl; }
~Z() { cerr << "+Z" << endl; }

};

Z z;

int main(int argc, char **argv) {
MPI_Init(&argc, &argv);
MPI_Finalize();

}

when running with the ch_p4 device on two processes executes the destructor twice
for each process.

A: The number of processes running before MPI_Init or after MPI_Finalize is not
defined by the MPI standard; you can not rely on any specific behavior. In the ch_p4
case, a new process is forked to handle connection requests; it terminates with the
end of the program.

You can use the threaded listener with the ch_p4 device, or use the ch_p4mpd device
instead. Note, however, that this code is not portable because it relies on behavior
that the MPI standard does not specify.

6.13.2 HPUX

1. Q: My Fortran programs seem to fail with SIGSEGV when running on HP workstations.

49

A: Try compiling and linking the Fortran programs with the option +T. This may be
necessary to make the Fortran environment correctly handle interrupts used by MPICH
to create connections to other processes.

6.13.3 LINUX

1. Q: Processes fail with messages like

p0_1835: p4_error: Found a dead connection while looking for messages: 1

A: What is happening is that the TCP implementation on this platform is deciding
that the connection has “failed” when it really hasn’t. The current MPICH implemen-
tation assumes that the TCP implementation will not close connections and has no
code to reanimate failed connections. Future versions of MPICH will work around this
problem.

In addition, some users have found that the single processor Linux kernel is more
stable than the SMP kernel.

6.14 Trouble with Input and Output

6.14.1 General

1. Q: I want output from printf to appear immediately.

A: This is really a feature of your C and/or Fortran runtime system. For C, consider

setbuf(stdout, (char *)0);

or

setvbuf(stdout, NULL, _IONBF, 0);

6.14.2 Workstation Networks

1. Q: I want standard output (stdout) from each process to go to a different file.

A: MPICH has no built-in way to do this. In fact, it prides itself on gathering the
stdouts for you. You can do one of the following:

(a) Use Unix built-in commands for redirecting stdout from inside your program
(dup2, etc.). The MPE routine MPE_IO_Stdout_to_file, in ‘mpe/src/mpe_-
io.c’, shows one way to do this. Note that in Fortran, the approach of using
dup2 will work only if the Fortran PRINT writes to stdout. This is common but
by no means universal.

(b) Write explicitly to files instead of to stdout (use fprintf instead of printf,
etc.). You can create the file name from the process’s rank. This is the most
portable way.

50

6.14.3 HP-UX

1. Q: When trying to run upshot under HP-UX, I get error messages like

set: Variable name must begin with a letter.

or

upshot: syntax error at line 35: ‘(’ unexpected

A: Your version of HP-UX limits the shell names to very short strings. Upshot is
a program that is executed by the wish shell, and for some reason HP-UX is both
refusing to execute in this shell and then trying to execute the upshot program using
your current shell (e.g., ‘sh’ or ‘csh’), instead of issuing a sensible error message about
the command name being too long. There are two possible fixes:

(a) Add a link with a much shorter name, for example

ln -s /usr/local/tk3.6/bin/wish /usr/local/bin/wish

Then edit the upshot script to use this shorter name instead. This may require
root access, depending on where you put the link.

(b) Create a regular shell program containing the lines

#! /bin/sh
/usr/local/tk3.6/bin/wish -f /usr/local/mpi/bin/upshot

(with the appropriate names for both the ‘wish’ and ‘upshot’ executables).

Also, file a bug report with HP. At the very least, the error message here is wrong;
also, there is no reason to restrict general shell choices (as opposed to login shells).

6.15 Special debugging arguments

These are currently undocumented, and some require configure options to have been spec-
ified (like -mpipktsize and -chmemdebug). The option -mpiversion is useful for finding
out how your installation of MPICH was configured and exactly what version it is. The
options include:

-mpedbg If an error occurs, start xterms attached to the process that generated the error.
Requires the MPICH be configured with -mpedbg and works on only some workstations
systems.

-mpiversion Print out the version and configuration arguements for the MPICH implemen-
tation being used.

These arguments are provided to the program, not to mpirun. For example,

mpirun -np 2 a.out -mpiversion

51

Acknowledgments

The work described in this report has benefited from conversations with and use by a large
number of people. We also thank those that have helped in the implementation of MPICH,
particularly Patrick Bridges and Edward Karrels. Particular thanks goes to Nathan Doss
and Anthony Skjellum for valuable help in the implementation and development of MPICH.
Debbie Swider, who worked with the MPICH group for several years, helped support and
enrich the MPICH implementation. More recent extensive contributions have been made by
Omer Zaki (for Jumpshot). Anthony Chan has helped with SLOG and Jumpshot-3. David
Ashton, who has developed the Windows NT version of MPICH and was supported by a grant
from the Microsoft corporation, has also contributed to MPICH. The C++ bindings have
been contributed by Andrew Lumsdaine and Jeff Squyres of Notre Dame. Rajeev Thakur
of Argonne is responsible for the ROMIO implementation of the MPI-2 I/O functions. The
Globus2 device is due to Nick Karonis of Northern Illinois University and Brian Toonen of
Argonne National Laboratory.

Appendices

A Frequently Asked Questions

• Introduction

• Installing MPICH

• Using MPICH

• Permission Denied

• Notes on getting MPICH running Under Linux

• poll: protocol failure during circuit creation

• Using SSH

• Mac OS X and hostname

• SIGSEGV

• semop lock failed

• Compiler Switches

• C++ Builds Fail

• Fortran programs give errors about mismatched types

• Missing Symbols When Linking

• Warning messages while building MPICH

• MPMD (Multiple Program Multiple Data) Programs

52

• Reporting problems and support

• Algorithms used in MPICH

• Jumpshot and X11

A.1 Introduction

MPICH is a freely available, portable implementation of MPI, the Standard for message-
passing libraries.

A.2 Installing MPICH

Building and installing MPICH often requires only

./configure --prefix=/home/me/mpich
make
make install

where the value of the --prefix argument to configure is the directory in which MPICH
should be installed. See the Installation Guide for more detailed instructions.

A.3 Using MPICH

Information on using MPICH can be found in the Installation and Users’ Guide. There are
versions of this guide for each MPICH device; make sure that you read the one the applies
to your device. You can find out which device is installed by running a simple MPI program
with the option -mpiversion:

mpirun -np 1 a.out -mpiversion

All of the guides are available at http://www.mcs.anl.gov/mpi/mpich/docs.html .

A.4 Permission Denied

Question:
When I use mpirun, I get the message Permission denied, connection reset by peer,
or poll: protocol failure in circuit setup when trying to run MPICH.

Answer:
If you see something like this

% mpirun -np 2 cpi
Permission denied.

53

http://www.mcs.anl.gov/mpi/mpich/docs.html

(or connection reset by peer or poll: protocol failure in circuit setup) when
using the ch p4 device, it probably means that you do not have permission to use rsh to start
processes. The script tstmachines can be used to test this. For example, if the architecture
type (the -arch argument to configure) is sun4, then try

tstmachines sun4

If this fails, then you may need a ‘.rhosts’ or ‘/etc/hosts.equiv’ file (you may need
to see your system administrator) or you may need to use the p4 server. Another possible
problem is the choice of the remote shell program; some systems have several. Check with
your systems administrator about which version of rsh or remsh you should be using.

If your system allows a ‘.rhosts’ file, do the following:

• Create a file .rhosts in your home directory

• Change the protection on it to user read/write only: chmod og-rwx .rhosts.

• Add one line to the .rhosts file for each processor that you want to use. The format is

host username

For example, if your username is doe and you want to user machines a.our.org and
b.our.org, your .rhosts file should contain

a.our.org doe
b.our.org doe

Note the use of fully qualified host names (some systems require this).

On networks where the use of .rhosts files is not allowed, (such as the one in MCS at
Argonne), you should use the p4 server to run on machines that are not trusted by the
machine that you are initiating the job from.

Finally, you may need to use a non-standard rsh command within MPICH. MPICH must be
reconfigured with -rsh=command name, and perhaps also with -rshnol if the remote shell
command does not support the -l argument. Systems using Kerberos and/or AFS may
need this.

A.5 Notes on getting MPICH running Under Linux

Introduction The purpose of this document is to describe the steps necessary to allow
MPICH processes to be started and to communicate with one another. The installation
that we are focusing on is a RedHat 7.2 installation with medium security (the default).
While other distributions will certainly vary, this is a good example of the sorts of problems
that one might run across.

54

There are three methods for starting MPICH processes that are typically used on clusters
today. These are rsh, ssh, and mpd.

We will first describe getting the rsh service working. We will include rlogin in this
process because it is helpful for testing. Next we will describe getting ssh working and
enabling the ssh-agent to allow for logins without password typing. Finally we will discuss
issues related to process communication in MPICH and firewalls.

Enabling rsh By default the rsh server is not installed, and it is necessary for use of the
rsh service in starting MPICH processes. The rsh server, in.rshd, is part of the rsh-server
RPM. This RPM is located on the first disc of the RedHat 7.2 distribution. The rlogin
server, in.rlogind, is also included in this package.

The xinetd server controls the availability of the rsh and rlogin services. This server is
installed by default, but by default rsh and rlogin services are disabled. To enable these
services, you must edit the files ‘/etc/xinetd.d/rsh’ and ‘/etc/xinetd.d/rlogin’. Here
is the rsh file as it looks by default:

default: on
description: The rshd server is the server for the rcmd(3) routine and, \
consequently, for the rsh(1) program. The server provides \
remote execution facilities with authentication based on \
privileged port numbers from trusted hosts.
service shell
{

socket_type = stream
wait = no
user = root
log_on_success += USERID
log_on_failure += USERID
server = /usr/sbin/in.rshd
disable = yes

}

You must enable the service by changing ”disable = yes” to ”disable = no”. The same
must be done to the rlogin config file to enable that service.

At this point the xinetd daemon must be restarted to register these changes:

/etc/rc.d/init.d/xinetd restart

At this point you should receive a ”Permission denied.” if you attempt a command such
as ”rsh localhost hostname” as a non-root user (or as root for that matter).

To allow users to rsh without passwords you need to edit ‘/etc/hosts.equiv’, the
system-wide host file for rsh and rlogin. This file should hold hostnames of machines that
you would like users to be able to start MPICH processes from. For example, simply adding:

55

localhost.localdomain

Should allow users to perform the command ”rsh localhost hostname” successfully. Like-
wise adding other hostnames will allow users on those hosts to rsh to this host.

However, there is another catch! By default (with medium security) packet filtering
is enabled as well, and this will prevent users from remote hosts from connecting to this
machine using the rsh or rlogin services. This packet filter, or firewall, is administered using
the ipchains package (which is installed by default).

The firewall configuration is written out by a program called lokkit at installation time
(I think). The configuration is stored in ‘/etc/sysconfig/ipchains’ and by default looks
like this:

Firewall configuration written by lokkit
Manual customization of this file is not recommended.
Note: ifup-post will punch the current nameservers through the
firewall; such entries will *not* be listed here.
:input ACCEPT
:forward ACCEPT
:output ACCEPT
-A input -s 0/0 67:68 -d 0/0 67:68 -p udp -i eth0 -j ACCEPT
-A input -s 0/0 67:68 -d 0/0 67:68 -p udp -i eth1 -j ACCEPT
-A input -s 0/0 -d 0/0 -i lo -j ACCEPT
-A input -p tcp -s 0/0 -d 0/0 0:1023 -y -j REJECT
-A input -p tcp -s 0/0 -d 0/0 2049 -y -j REJECT
-A input -p udp -s 0/0 -d 0/0 0:1023 -j REJECT
-A input -p udp -s 0/0 -d 0/0 2049 -j REJECT
-A input -p tcp -s 0/0 -d 0/0 6000:6009 -y -j REJECT
-A input -p tcp -s 0/0 -d 0/0 7100 -y -j REJECT

While an in-depth discussion of ipchains rules is outside the context of this document,
it’s worth talking about how this works a bit. First, the rules are applied in order from top
of the list to the bottom of the list. The argument to -j says what to do if a packet matches;
it’s usually either ACCEPT (let the packet in), or REJECT (toss it out). If a packet makes
it through the entire list then the default policy is applied. In this case the default policy
is ACCEPT.

The following line tells the packet filter to allow all localhost (-i lo) traffic to pass
unmolested:

-A input -s 0/0 -d 0/0 -i lo -j ACCEPT

This line blocks all new TCP connections going to ports 0-1023, which is the range of
most services, including rsh/rlogin:

-A input -p tcp -s 0/0 -d 0/0 0:1023 -y -j REJECT

56

We’re going to modify this file to allow rsh and rlogin traffic.

Firewall configuration written by lokkit
Manual customization of this file is not recommended.
Note: ifup-post will punch the current nameservers through the
firewall; such entries will *not* be listed here.
:input ACCEPT
:forward ACCEPT
:output ACCEPT
-A input -s 0/0 67:68 -d 0/0 67:68 -p udp -i eth0 -j ACCEPT
-A input -s 0/0 67:68 -d 0/0 67:68 -p udp -i eth1 -j ACCEPT
-A input -s 0/0 -d 0/0 -i lo -j ACCEPT
#
New rules for rlogin/rsh traffic, incoming or outgoing
#
-A input -p tcp -s 0/0 -d 0/0 513 -b -j ACCEPT
-A input -p tcp -s 0/0 -d 0/0 514 -b -j ACCEPT
#
End of new rules
#
-A input -p tcp -s 0/0 -d 0/0 0:1023 -y -j REJECT
-A input -p tcp -s 0/0 -d 0/0 2049 -y -j REJECT
-A input -p udp -s 0/0 -d 0/0 0:1023 -j REJECT
-A input -p udp -s 0/0 -d 0/0 2049 -j REJECT
-A input -p tcp -s 0/0 -d 0/0 6000:6009 -y -j REJECT
-A input -p tcp -s 0/0 -d 0/0 7100 -y -j REJECT

At this point users on remote systems with accounts on this system should be able to
rsh/rlogin to this machine without using a password.

Enabling ssh Enabling ssh is somewhat easier.

First the ssh server, sshd, must be installed. This is part of the openssh-server RPM.
This RPM is located on the first disc of the RedHat 7.2 distribution.

Once the server is installed, it must be started:

/etc/rc.d/init.d/sshd start

The service will be automatically started on reboot.

At this point ssh on the localhost should work, although a password will still be required.
However, our firewall rules will be preventing connections from other machines.

We again modify ‘/etc/sysconfig/ipchains’, this time to allow ssh traffic in and out.
See the above section for a discussion of what we are doing here.

Firewall configuration written by lokkit

57

Manual customization of this file is not recommended.
Note: ifup-post will punch the current nameservers through the
firewall; such entries will *not* be listed here.
:input ACCEPT
:forward ACCEPT
:output ACCEPT
-A input -s 0/0 67:68 -d 0/0 67:68 -p udp -i eth0 -j ACCEPT
-A input -s 0/0 67:68 -d 0/0 67:68 -p udp -i eth1 -j ACCEPT
-A input -s 0/0 -d 0/0 -i lo -j ACCEPT
#
New rules for ssh traffic, incoming or outgoing
#
-A input -p tcp -s 0/0 -d 0/0 22 -b -j ACCEPT
#
End of new rules
#
-A input -p tcp -s 0/0 -d 0/0 0:1023 -y -j REJECT
-A input -p tcp -s 0/0 -d 0/0 2049 -y -j REJECT
-A input -p udp -s 0/0 -d 0/0 0:1023 -j REJECT
-A input -p udp -s 0/0 -d 0/0 2049 -j REJECT
-A input -p tcp -s 0/0 -d 0/0 6000:6009 -y -j REJECT
-A input -p tcp -s 0/0 -d 0/0 7100 -y -j REJECT

At this point users on remote systems should be able to ssh into the machine, but they
will still need a password.

Users should set up a private/public authentication key pair in order for ssh to operate
without passwords. This process is documented in the installation guide, but a summary
of the steps for RH7.2 will be included here.

First run the ”ssh-keygen -t rsa” application to create the private/public key pair.
By default this will create the files ‘~/.ssh/id_rsa’ and ‘~/.ssh/id_rsa.pub’. Use a
password.

Next place the public key (‘~.ssh/id_rsa.pub’) in the file ‘~/.ssh/authorized_keys’.
If more than one machine is going to be used, then this key must be put in the ‘~/.ssh/
authorized_keys’ file on each machine. The permissions on the .ssh directory should be
set to 700; otherwise the sshd may choose to not accept the keys.

This will allow you to connect using rsa keys rather than simple UNIX passwords. The
next step is to enable an SSH agent so that you do not need to repeatedly type your
password.

The agent is started with ”ssh-agent <cmd>”. Typically <cmd> is $SHELL, so that your
default shell is started. The agent will then handle authentication on your behalf any time
you attempt to use ssh from this shell. To give the ssh-agent your password, type ”ssh-add”.
This will query you for the passphrase that accompanies your rsa key.

Once you have completed this, you will be able to ssh to other systems on which your
key is authorized without typing a password.

58

Interprocess communication MPICH processes use the standard UNIX mechanisms
for allocating ports for intercommunication. Using this mechanism processes are given ports
in the range of 1024–65535.

Unfortunately for us, the default firewall configuration blocks some port ranges that our
MPICH processes might be given to use for communication. This leads to a situation where
MPICH applications will occasionally fail to communicate (when they happen to get the
wrong port value).

We’re going to modify the ipchains configuration file to remove lines disabling ranges of
ports that our processes might use for intercommunication.

The two default rules of interest are the following:

-A input -p tcp -s 0/0 -d 0/0 6000:6009 -y -j REJECT
-A input -p tcp -s 0/0 -d 0/0 7100 -y -j REJECT

The first blocks incoming TCP connections to ports 6000-6009 (often used by X), while
the second blocks incoming TCP connections to port 7100 (often used by the X font server).

We simply remove these rules:

Firewall configuration written by lokkit
Manual customization of this file is not recommended.
Note: ifup-post will punch the current nameservers through the
firewall; such entries will *not* be listed here.
:input ACCEPT
:forward ACCEPT
:output ACCEPT
-A input -s 0/0 67:68 -d 0/0 67:68 -p udp -i eth0 -j ACCEPT
-A input -s 0/0 67:68 -d 0/0 67:68 -p udp -i eth1 -j ACCEPT
-A input -s 0/0 -d 0/0 -i lo -j ACCEPT
-A input -p tcp -s 0/0 -d 0/0 0:1023 -y -j REJECT
-A input -p tcp -s 0/0 -d 0/0 2049 -y -j REJECT
-A input -p udp -s 0/0 -d 0/0 0:1023 -j REJECT
-A input -p udp -s 0/0 -d 0/0 2049 -j REJECT
#
Removed these rules to eliminate chance of MPICH comm. failure
#
-A input -p tcp -s 0/0 -d 0/0 6000:6009 -y -j REJECT
-A input -p tcp -s 0/0 -d 0/0 7100 -y -j REJECT
#
End of removed rules
#

This modification, in conjunction with one to allow process startup, should prepare your
system for MPICH jobs.

59

A.6 poll: protocol failure during circuit creation

You may see this message if you attempt to run too many MPI programs in a short period
of time. For example, in Linux and when using the ch p4 device (without the secure server
or ssh), MPICH uses rsh to start the MPI processes. Depending on the particular Linux
distribution and verison, there may be a limit of as few as 40 processes per minute. When
running the MPICH test suite or starting short parallel jobs from a script, it is possible to
exceed this limit.

To fix this, you can do one of the following:

1. Wait a few seconds between running parallel jobs. You may need to wait up to a
minute.

2. Modify ‘/etc/inetd.conf’ to allow more processes per minute for rsh. For example,
change

shell stream tcp nowait root /etc/tcpd2 in.rshd

to

shell stream tcp nowait.200 root /etc/tcpd2 in.rshd

3. Use the ch p4mpd device or the secure server option of the ch p4 device instead.
Neither of these relies on inetd.

A.7 Using SSH

The secure shell (ssh) may be used with the ch p4 device, but requires careful setup. See
configuring with ssh in the Installation and User’s manual.

Make sure that ssh is set up to not require a password. The command

ssh -n ‘hostname‘ date

should return the date without any prompts for passwords. See the installation manual if
you have problems.

A.8 Mac OS X and hostname

Under Mac OS X, the hostname handling is unusual. The hostname that the hostname
command or the gethostname function return is determined by the name set in the “Shar-
ing preference” pane. If this name contains a space, you may get only the leading part
of the name, upto but not including the first space. This name is stored in the file
/etc/hostconfig. MPICH, for the ch p4 and ch p4mpd device, needs a sensible name
returned by both gethostname and hostname. If you are using a single machine in a
standalone configuration, the easiest option is to change the name of the machine in

60

/etc/hostconfig to localhost (use sudo). If you wish to use another name, you need to
make the name in /etc/hostconfig match the name in the NetInfo database.

Thanks to Victor Eijkhout for this information.

A.9 SIGSEGV

If your program fails with

p4_error: interrupt SIGSEGV

the problem is probably not with MPI. Instead, check for program bugs including

1. Array overwrites or accesses beyond array bounds. Be particularly careful of a[size]
in C, where a is declared as int a[size].

2. Invalid pointers, including null pointers.

3. Missing or mismatched parameters to subroutines or functions. Fortran users should
check that all MPI calls include the integer error return parameter and that any status
variable is dimensioned as an array of size MPI_STATUS_SIZE.

A.10 semop lock failed

When running the ch_p4 device with SMP support (-comm=shared), you may occasionally
see the message

"p1_13043: p4_error: OOPS: semop lock failed"

To fix this, try running the script cleanipcs that is included with MPICH. You can also
use the command ipcs to list the shared memory and semaphore resources that are in use
on a node. This can help you track down resources that are held by a different user that
are preventing your MPI program from running.

A.11 Compiler Switches

Normally, you should let configure determine compiler switches. However, you can use
the configure options -cflags=... and -fflags=... to specify special flags. See also
compiler switches.

A.12 C++ Builds Fail

If the C++ build fails with messages about ambiquities in the definitions, try reconfiguring
and rebuilding with the –without-profiling options to the C++ configure. In later versions
of MPICH, a different C++ interface will be provided that should fix this problem.

61

A.13 Fortran programs give errors about mismatched types

Some Fortran compilers will complain if a subroutine is passed arguments of different types
in the same parameter position. For example, if MPI_Bcast is used with an integer in one
place and a double precision value in another, you may see

Argument #1 of ‘mpi_bcast’ is one type at (2) but is some other type at (1)

This is a strict interpretation of the Fortran standard. To fix this, you will need to tell
the compiler to allow this usage. For the GNU g77 compiler, add the command-line option
-Wno-globals, as in

mpif77 -Wno-globals mycode.f

An alternative is to use a Fortran 90 or Fortran 95 compiler with the MPI module
instead of the ‘mpif.h’ header file.

A.14 Missing Symbols When Linking

If you get errors about missing symbols, such as

mpicc -o overtake overtake.o test.o
ld: 0711-317 ERROR: Undefined symbol: MPIR_F_TRUE
ld: 0711-317 ERROR: Undefined symbol: .MPIR_InitFortranDatatypes
ld: 0711-317 ERROR: Undefined symbol: MPIR_F_FALSE
ld: 0711-317 ERROR: Undefined symbol: .MPIR_InitFortran
ld: 0711-317 ERROR: Undefined symbol: MPIR_I_DCOMPLEX
ld: 0711-317 ERROR: Undefined symbol: .MPIR_Free_Fortran_dtes
ld: 0711-317 ERROR: Undefined symbol: .MPIR_Free_Fortran_keyvals

this usually indicates an error in the make process. For some reason, the Fortran part (which
is where these symbols come from) is particularly fragile. To fix this, try the following steps:

cd src/fortran/src
make clean
make
ar ../../../lib/libmpich.a *.o
ranlib ../../../lib/libmpich.a

If weak symbols are not supported, then in addition, do these additional steps:

make clean
make profile
ar ../../../lib/libpmpich.a *.o
ranlib ../../../lib/libpmpich.a

The problem is that some versions of make have logic errors that cause them to create files
but not to act on them; this causes make to build the object file but then fail to include it
in the archive. The above steps should work around this problem.

62

A.15 Warning messages while building MPICH

Some compilers may generate a large number of warnings of the form

"commreq_free.c", line 70: warning #187: use of "=" where "==" may have been intended

There is nothing wrong with these statements. The compiler is warning about a legal,
but often misused, feature of the C language. The statements have been crafted so that
most compilers recognize that the ”=” was used intentionally; unfortunately, some compilers
insists on warning about this valid use of C and provide no way to indicate to the compiler
that the warning is unnecessary.

A.16 MPMD (Multiple Program Multiple Data) Programs

MPICH, depending on the device, supports MPMD programs. However, the mpirun script
currently does not support MPMD programs. For the ch p4 device, the user must create
a procgroup file and invoke the program that will have rank zero in MPI COMM WORLD with
the command-line option -p4pg filename. See the Installation and User’s Guide for more
information.

A.17 Reporting problems and support

1. First, check the list of known bugs and patches for the problem you are seeing.

2. Also check the troubleshooting guides in the Installation and Users guides.

3. If that doesn’t help, send mail to mpi-bugs@mcs.anl.gov.

A.18 Algorithms used in MPICH

1. Does MPICH use IP Multicast for MPI Bcast?

No. In principle, MPICH could use multicast, but in practice this would be very
difficult. To start with, IP multicast is unreliable; additional code to make it reliable
needs to be added. In fact, there is an effort to provide a reliable multicast, built
ontop of the unreliable multicast. The second problem is that not all systems allow
user programs (or any program) to perform an IP multicast. In fact, that is the
case for the systems that we have been developing on. Thus, we will always need the
point-to-point version. There is a fairly easy way to replace any collective routine in
MPI, but no-one has offered us a multicast-based MPI Bcast yet...

A.19 Jumpshot and X11

Jumpshot relies on the AWT/Swing toolkit to perform its graphics operations. We have
noticed some problems with AWT/Swing and X11 window system support on some PC’s
running Windows. In particular, the combination of SecureCRT and Exceed or SecureCRT

63

and Xfree86 often have problems (sometimes serious, including hangs and crashes). For
now, the only workaround is to use OpenSSH and Xfree86 (with Cygwin) if possible when
using a Windows PC.

B History of MPICH

MPICH was developed during the MPI standards process to provide feedback to the MPI
Forum on implementation and usability issues. With the release of the MPI standard,
MPICH was designed to provide an implementation of the MPI standard that could replace
the proprietary message-passing systems on the massively parallel computers of the day,
such as the Intel Paragon, IBM SP, and TMC CM5. MPICH used an early version of the
abstract device interface (ADI), based on the Chameleon [14] portability system, to provide
a light-weight implementation layer. To enable development on desktop systems, a device
layered on top of the P4 [1] system was used. Over time, other devices were developed;
as systems have vanished (e.g., the TMC CM5 and the Ncube), these devices have been
dropped from our distribution. Because MPICH used P4 for workstation networks, MPICH has
supported both MIMD programming and heterogeneous clusters from the very beginning.

Because MPICH was designed to enable ports to other systems, many parallel computer
vendors and research groups have used MPICH as the basis for their implementation. Many
users are now familar only with the version of MPICH that uses the ch_p4 device for work-
station and Beowulf clusters. However, MPICH continues to support other systems and
continues to serve as a platform for research into MPI implementations.

C File Manifest

This section briefly describes the files and directories at the top level of the MPICH source
tree.

COPYRIGHT Copyright statement. This code is free but not public domain. It is copyrighted
by the University of Chicago and Mississippi State University.

Makefile.in Template for the ‘Makefile’, which will be produced when you run configure.

MPI-2-C++ The C++ system from Notre Dame. It includes the C++ bindings for the
MPI-1 functions.

README Basic information and instructions for configuring.

aclocal.m4 Used for building ‘configure’ from ‘configure.in’; not needed for most in-
stallations. The file ‘aclocal tcl.m4’ is included by ‘aclocal.m4’.

ccbugs Directory for programs that test the C compiler during configuration, to make sure
that it will be able to compile the system.

configure The script that you run to create Makefiles throughout the system.

configure.in Input to autoconf that produces configure.

64

doc Assorted tools for producing documentation, together with this manual.

examples Directory containing further directories of example MPI programs. Of particular
note are basic, with a few small examples to try first, test, with a test suite for
exercising MPICH, and perftest, containing benchmarking code.

include The include files, both user and system.

bin Contains the programs and executable scripts, such as mpicc and mpirun, used to build
and run MPI programs.

man Man pages for MPI, MPE, and internal routines.

mpe The source code for the MPE extensions for logging and X graphics. The contrib
directory contains examples. Best are the mandel and mastermind subdirectories.
The profiling subdirectory contains the profiling subsystem, including a system for
automatically generating the “wrappers” for the MPI profiling interface. MPE also
includes the performance visualization programs, such as jumpshot (see Section 3.7.1).

mpid The source code for the various “devices” that customize MPICH for a particular ma-
chine, operating system, and environment.

romio The ROMIO parallel I/O system, which includes an implementation of most of the
MPI-2 parallel I/O standard.

src The source code for the portable part of MPICH. There are subdirectories for the various
parts of the MPI specification.

util Utility programs and files.

www HTML versions of the man pages.

D Configure Usage

The command configure -help will print out

Configuring with args --help
Configuring MPICH Version 1.2.3 (pre-alpha) of : 2001/08/20 18:08:23
Usage: ./configure [--with-arch=ARCH_TYPE] [--with-comm=COMM_TYPE]

[--with-device=DEVICE]
[--with-mpe] [--without-mpe]
[--disable-f77] [--disable-f90] [--with-f90nag] [--with-f95nag]
[--disable-f90modules]
[--disable-gencat] [--disable-doc]
[--enable-cxx] [--disable-cxx]
[--enable-mpedbg] [--disable-mpedbg]
[--enable-devdebug] [--disable-devdebug]
[--enable-debug] [--disable-debug]
[--enable-traceback] [--disable-traceback]
[--enable-long-long] [--disable-long-long]
[--enable-long-double] [--disable-long-double]
[-prefix=INSTALL_DIR]

65

[-c++[=C++_COMPILER]] [noc++]
[-opt=OPTFLAGS]
[-cc=C_COMPILER] [-fc=FORTRAN_COMPILER]
[-clinker=C_LINKER] [-flinker=FORTRAN_LINKER]
[-c++linker=CC_LINKER]
[-cflags=CFLAGS] [-fflags=FFLAGS] [-c++flags=CCFLAGS]
[-optcc=C_OPTFLAGS] [-optf77=F77_OPTFLAGS]
[-f90=F90_COMPILER] [-f90flags=F90_FLAGS]
[-f90inc=INCLUDE_DIRECTORY_SPEC_FORMAT_FOR_F90]
[-f90linker=F90_LINKER]
[-f90libpath=LIBRARY_PATH_SPEC_FORMAT_FOR_F90]
[-lib=LIBRARY] [-mpilibname=MPINAME]
[-mpe_opts=MPE_OPTS]
[-make=MAKEPGM]
[-memdebug] [-ptrdebug] [-tracing] [-dlast]
[-listener_sig=SIGNAL_NAME]
[-cross]
[-adi_collective]
[-automountfix=AUTOMOUNTFIX]
[-noranlib] [-ar_nolocal]
[-rsh=RSHCOMMAND] [-rshnol]
[-noromio] [-file_system=FILE_SYSTEM]
[-p4_opts=P4_OPTS]

where
ARCH_TYPE = the type of machine that MPI is to be configured for
COMM_TYPE = communications layer or option to be used
DEVICE = communications device to be used
INSTALL_DIR = directory where MPI will be installed (optional)
MPE_OPTS = options to pass to the mpe configure
P4_OPTS = options to pass to the P4 configure (device=ch_p4)
C++_COMPILER = default is to use xlC, g++, or CC (optional)
OPTFLAGS = optimization flags to give the compilers (e.g. -g)
CFLAGS = flags to give C compiler
FFLAGS = flags to give Fortran compiler
MAKEPGM = version of make to use
LENGTH = Length of message at which ADI switches from short

to long message protocol
AUTOMOUNTFIX = Command to fix automounters
RSHCOMMAND = Command to use for remote shell
MPILIBNAME = Name to use instead of mpich in the name of the MPI

library. If set, libMPILIBNAME will be used instead
or libmpich. This can be used on systems with
several different MPI implementations.

FILE_SYSTEM = name of the file system ROMIO is to use. Currently
supported values are nfs, ufs, pfs (Intel),
piofs (IBM), hfs (HP), sfs (NEC), and xfs (SGI).

SIGNAL_NAME = name of the signal for the P4 (device=ch_p4) device to
use to indicate that a new connection is needed. By
default, it is SIGUSR1.

All arguments are optional, but if ’arch’, ’comm’, or ’prefix’ arguments
are provided, there must be only one. ’arch’ must be specified before
’comm’ if they both appear.

66

Packages that may be included with MPICH

--with-device=name - Use the named device for communication. Known
names include ch_p4, ch_mpl, ch_shmem, and globus2.
If not specified, a default is chosen. Special
options for the device are specified after the
device name, separated by a colon. E.g.,
--with-device=globus2:-flavor=mpi,nothreads

--with-romio[=OPTIONS] - Use ROMIO to provide MPI-I/O from MPI-2 (default).
The options include -file_system=FSTYPE, where
fstype can be any combination of nfs, ufs,
pfs (intel), piofs (IBM), hfs (HP), sfs (NEC), and
xfs (SGI), combined with ’+’. If romio is not
included, the Fortran 90 modules cannot be built.

--with-mpe - Build the MPE environment (default)
--with-f90nag - Choose the NAG f90 compiler for Fortran

(preliminary version intended for use *instead*
of a Fortran 77 compiler)

--with-f95nag - Choose the NAG f95 compiler for Fortran
--with-cross=file - Use the file for cross compilation. The file

should contain assignments of the form
CROSS_SIZEOF_INT=4

for each cross compilation variable. The command
egrep ’CROSS_[A-Z_]*=’ configure | sed ’s/=.*//g’

will list each variable.

You can use --without-<featurename> to turn off a feature (except for
device).
Options for device ch_lfshmem:
--with-device=ch_lfshmem[:-usesysv]
The option ’-usesysv’ applies to the ch_shmem device, and causes the device
to attempt and use System V shared memory and semaphore routines, rather
than what would be chosen by default (often mmap or a system-specific method).

Options for device ch_meiko:
--with-device=ch_meiko

Options for device ch_mpl:
--with-device=ch_mpl

Options for device ch_p4:
./configure: ./mpid/ch_p4/setup_ch_p4: Permission denied

Options for device ch_p4mpd:
--with-device=ch_p4mpd[:-listener_sig=SIGNALNAME][-dlast][-socksize=BYTES]

The option ’-listener_sig’ applies to the ch_p4mpd device, and changes the
signal that is used to signal that a new connection should be made. By
default, SIGUSR1 is used.

The option ’-dlast’ causes the p4 device to remember the last few debugging
messages, printing them out only when the job terminates abnormally.

The option ’-socksize’ changes the size of the socket buffers used.

67

Options for device ch_shmem:
--with-device=ch_shmem[:-usesysv]
The option ’-usesysv’ applies to the ch_shmem device, and causes the device
to attempt and use System V shared memory and semaphore routines, rather
than what would be chosen by default (often mmap or a system-specific method).

Options for device globus:
--with-device=globus[:-globusdir=GLOBUSDIR]
’-globusdir=GLOBUS’ allows one to specify the location of an installed
version of Globus. You can acquire Globus from http://www.globus.org ."

Options for device globus2:
*# GLOBUS_INSTALL_PATH must be set

Features that may be included with MPICH

--enable-c++ - Build C++ interfaces to the MPI-1 routines
(default)

--enable-f77 - Build Fortran 77 interfaces to the MPI
routines (default)

--enable-weak-symbols - Use weak symbols for MPI/PMPI routines. This uses
weak symbols, if available, for the profiling
interface (default)

--enable-debug - Enable support for debuggers to access message
queues

--enable-traceback - Enable printing of a call stack when MPI and the
user’s program is built with certain compilers
(currently only some versions of gcc are supported).

--enable-mpedbg - Enable the -mpedbg command-line argument (e.g.,
errors can start an xterm running a debugger).
Only works with some workstation systems.

--enable-sharedlib - Attempt to build shared libraries. Static
--enable-sharedlib=dir libraries are always built. If a directory is

specified, the shared libraries will be placed in
that directory. This can be used to place the
shared libraries in a uniform location in local
disks on a cluster.

--enable-f90modules - Build Fortran 90 module support (default if a
Fortran 90 or 95 compiler is found). If ROMIO
is not built, no Fortran 90 modules will be built.

The following are intended for MPI implementors and debugging of configure
--enable-strict - Try and build MPICH using strict options in Gnu gcc
--enable-echo - Cause configure to echo what it does
--enable-devdebug - Enable debugging code in the ADI.

You can use --disable-<featurename> to turn off a feature.

Notes on configure usage:

The suggestions for GNU configure usage suggest that configure not be used
to build different tools, only controlling some basics of the features
enabled or the packages included. Our use of configure does not follow
these rules because configure is too useful but we need the flexibility

68

that allows the user to produce variations of MPICH.

More notes on command-line parameters:

You can select a different C and Fortran compiler by using the ’-cc’ and
’fc’ switches. The environment variables ’CC’ and ’FC’ can also provide
values for these but their settings may be overridden by the configure
script. Using ’-cc=$CC -fc=$FC’ will force configure to use those
compilers.

The option ’-opt’ allows you to specify optimization options for the
compilers (both C and Fortran). For example, ’-opt=-O’ chooses optimized
code generation on many systems. ’-optcc’ and ’-optf77’ allow you to
specify options for just the C or Fortran compilers. Use -cflags and
-fflags for options not related to optimization.

Note that the ’-opt’ options are not passed to the ’mpicc’, ’mpif77’,
’mpiCC’, and ’mpif90’ scripts. The ’-opt’ options are used only in
building MPICH.

The option ’-lib’ allows you to specify the location of a library that
may be needed by a particular device. Most devices do NOT need this
option; check the installation instructions for those that might.

The option ’-make’ may be used to select an alternate make program. For
example, to make use of VPATH builds (building in one directory with the
source in a different directory), -make=gnumake may be required.

The option ’--disable-short-longs’ may be used to suppress support for
the C types ’long long’ (a common extension) and ’long double’ (ANSI/ISO C)
when they are the same size as ’long’ and ’double’ respectively. Some
systems allow these long C types, but generate a warning message when
they are used; this option may be used to suppress these messages (and
support for these types). ’--disable-long-long’ disables just ’long long’;
’--disable-long-double’ disables just ’long double’.

The option ’-ar_nolocal’ prevents the library archive command from
attempting to use the local directory for temporary space. This option
should be used when (a) there isn’t much space (less than 20 MB)
available in the partition where MPICH resides and (b) there is enough
space in /tmp (or wherever ar places temporary files by default).

The option ’-noranlib’ causes the ’ranlib’ step (needed on some systems
to build an object library) to be skipped. This is particularly useful
on systems where ’ranlib’ is optional (allowed but not needed; because it
is allowed, configure chooses to use it just in case) but can fail (some
’ranlib’s are implemented as scripts using ’ar’; if they don’t use the
local directory, they can fail (destroying the library in the process) if
the temporary directory (usually ’/tmp’) does not have enough space.
This has occured on some OSF systems.

The option ’-rsh’ allows you to select an alternative remote shell
command (by default, configure will use ’rsh’ or ’remsh’ from your
’PATH’). If your remote shell command does not support the ’-l’ option

69

(some AFS versions of ’rsh’ have this bug), also give the option
’-rshnol’. These options are useful only when building a network version
of MPICH (e.g., ’--with-device=ch_p4’).

Special Tuning Options:

There are a number of options for tuning the behavoir of the ADI
(Abstract Device Interface) which is the low-level message-passing
interface. These should NOT be used unless you are sure you know what
you are doing.

The option ’-pkt_size=LENGTH’ allows you to choose the message length at
which the ADI (Abstract Device Interface) switches from its short to long
message format. LENGTH must be positive.

The option ’-adi_collective’ allows the ADI to provide some collective
operations in addition to the basic point-to-point operations.
Currently, most systems do not support this option (it is ignored) and on
the others it has not been extensively tested.

Options for Experts:

The option ’-memdebug’ enables extensive internal memory debugging code.
This should be used only if you are trying to find a memory problem (it
can be used to help find memory problems in user code as well). Running
programs with the option ’-mpidb memdump’ will produce a summary, when
’MPI_Finalize’ is called, of all unfreed memory allocated my MPI. For
example, a user-created datatype that was not later freed would be
reported.

The option ’-tracing’ enables tracing of internal calls. This should be
used only for debugging the MPICH implementation itself.

The option ’-dlast’ enables tracing of the most recent operations performed
by the device. These can be output when a signal (like SIGINT), error,
or call to a special routine occurs. There is a performance penalty for
this option, but it can be very useful for implementors attempting to debug
problems.

Sample Configure Usage:

To make for running on Sun’s running Solaris with ch_p4 as the device,
and with the installation directory equal to the current directory:

./configure --with-device=ch_p4 --with-arch=solaris
make

Known devices are
ch_nx (native Intel NX calls),
ch_mpl (native IBM EUI or MPL calls),
ch_p4 (p4)
ch_p4mpd (p4 with the MPD startup system)
globus2 (Globus: globus_io/vMPI)
ch_meiko (for Meiko CS2, using NX compatibility library),

70

ch_shmem (for shared memory systems, such as SMPs),
ch_lfshmem(for shared memory systems, such as SMPs; uses

lock-free message buffers),
ch_cenju3 (native NEC Cenju-3 calls)

The following devices were supported with ADI-1, but are currently
unsupported. Please contact us if you are interested in helping us
support these devices:

meiko (for Meiko CS2, using elan tport library), and
nx (for Intel Paragon),
t3d (for the Cray T3D, using Cray shmem library).
ch_nc (native nCUBE calls, requires -arch=ncube),
ch_cmmd (native TMC CM-5 CMMD calls)

These are no longer distributed with the MPICH distribution.

Known architectures include (case is important)
alpha (Compaq alpha)
CRAY (CRAY XMP, YMP, C90, J90, T90)
cray_t3d (CRAY T3D)
EWS_UX_V (NEC EWS4800/360AD Series workstation. Untested.)
freebsd (PC clones running FreeBSD)
hpux (HP UX)
intelnx (Intel i860 or Intel Delta)
IRIX (synonym for sgi)
IRIX32 (IRIX with 32bit objects -32)
IRIXN32 (IRIX with -n32)
IRIX64 (IRIX with 64bit objects)
ksr (Kendall Square KSR1 and KSR2)
LINUX (PC clones running LINUX)
LINUX_ALPHA (Linux on Alpha processors)
meiko (Meiko CS2)
netbsd (PC clones running NetBSD)
paragon (Intel Paragon)
rs6000 (AIX for IBM RS6000)
sgi (Silicon Graphics IRIX 4.x, 5.x or 6.x)
sgi5 (Silicon Graphics IRIX 5.x on R4400’s, for the MESHINE)
solaris (Solaris)
solaris86 (Solaris on Intel platforms)
sppux (SPP UX)
sun4 (SUN OS 4.x)
SX_4_float0

(NEC SX-4; Floating point format float0
Conforms IEEE 754 standard.

C: sizeof (int) = 4; sizeof (float) = 4
FORTRAN: sizeof (INTEGER) = 4; sizeof (REAL) = 4)

SX_4_float1
(NEC SX-4; Floating point format float1

IBM floating point format.
C: sizeof (int) = 4; sizeof (float) = 4
FORTRAN: sizeof (INTEGER) = 4; sizeof (REAL) = 4)

SX_4_float2
(NEC SX-4; Floating point format float2

CRAY floating point format.
C: sizeof (int) = 4; sizeof (float) = 8

71

FORTRAN: sizeof (INTEGER) = 8; sizeof (REAL) = 8)
!!! WARNING !!! This version will not run

together with FORTRAN routines.
sizeof (INTEGER) != sizeof (int)

SX_4_float2_int64
(NEC SX-4; Floating point format float2 and

64-bit int’s)
C: sizeof (int) = 8; sizeof (float) = 8
FORTRAN: sizeof (INTEGER) = 8; sizeof (REAL) = 8)

tflops (Intel TFLOPS)
UXPM (UXP/M. Untested.)
uxpv (uxp/v. Untested.)

Others may be recognized.

Special notes:

For SGI (--with-arch=IRIX) multiprocessors running the ch_p4 device, use
-comm=ch_p4 to disable the use of the shared-memory p4 communication
device, and -comm=shared to enable the shared-memory p4 communication
device. The default is to enable the shared-memory communication device.

E Mpirun Usage

The options for mpirun as shown by mpirun -help, are (note that not all options are
supported by all devices). Depending on the specific device, the output of mpirun -help
may differ; the following is for the globus2 device.

mpirun [mpirun_options...] <progname> [options...]

mpirun_options:
-arch <architecture>

specify the architecture (must have matching machines.<arch>
file in /usr/local/mpich/bin/machines) if using the execer

-h This help
-machine <machine name>

use startup procedure for <machine name>
mpirun [mpirun_options...] <progname> [options...]

mpirun_options:
-arch <architecture>

specify the architecture (must have matching machines.<arch>
file in /usr/local/mpich/bin/machines) if using the execer

-h This help
-machine <machine name>

use startup procedure for <machine name>
Currently supported:

paragon
p4

72

sp1
ibmspx
anlspx
sgi_mp
ipsc860
inteldelta
cray_t3d
execer
smp
symm_ptx

-machinefile <machine-file name>
Take the list of possible machines to run on from the
file <machine-file name>. This is a list of all available
machines; use -np <np> to request a specific number of machines.

-np <np>
specify the number of processors to run on

-nodes <nodes>
specify the number of nodes to run on (for SMP systems,
currently only ch_mpl device supports this)

-nolocal
don’t run on the local machine (only works for ch_p4 jobs)

-all-cpus, -allcpus
Use all available CPUs on all the nodes.

-all-local
Run all processes on the master node.

-exclude <list>
Exclude nodes in a colon delimited list.

-map <list>
Use the colon delimited list to specify which rank
runs on which nodes.

-stdin filename
Use filename as the standard input for the program. This
is needed for programs that must be run as batch jobs, such
as some IBM SP systems and Intel Paragons using NQS (see
-paragontype below).
use

-stdin /dev/null
if there is no input and you intend to run the program in the
background. An alternate is to redirect standard input from
/dev/null, as in

mpirun -np 4 a.out < /dev/null
-t Testing - do not actually run, just print what would be

executed
-v Verbose - throw in some comments
-dbg The option ’-dbg’ may be used to select a debugger. For example,

-dbg=gdb invokes the mpirun_dbg.gdb script located in the
’mpich/bin’ directory. This script captures the correct arguments,
invokes the gdb debugger, and starts the first process under gdb
where possible. There are 4 debugger scripts; gdb, xxgdb, ddd,
totalview. These may need to be edited depending on your system.
There is another debugger script for dbx, but this one will always
need to be edited as the debugger commands for dbx varies between
versions. You can also use this option to call another debugger;
for example, -dbg=mydebug. All you need to do is write a script

73

file, ’mpirun_dbg.mydebug’, which follows the format of the
included debugger scripts, and place it in the mpich/bin directory.

-ksq Keep the send queue. This is useful if you expect later
to attach totalview to the running (or deadlocked) job, and
want to see the send queues. (Normally they are not maintained
in a way which is visible to the debugger).

Options for the globus2 device:

With the exception of -h, these are the only mpirun options supported
by the globus device.

-machinefile <machine-file name>
Take the list of possible machines to run on from the
file <machine-file name>

-np <np>
specify the number of processors to run on

-dumprsl - display the RSL string that would have been
used to submit the job. using this option
does not run the job.

-globusrsl <globus-rsl-file name>
<globus-rsl-file name> must contain a Globus RSL
string. When using this option all other mpirun options
are ignored.

Special Options for Batch Environments:

-mvhome Move the executable to the home directory. This
is needed when all file systems are not cross-mounted
Currently only used by anlspx

-mvback files
Move the indicated files back to the current directory.
Needed only when using -mvhome; has no effect otherwise.

-maxtime min
Maximum job run time in minutes. Currently used only
by anlspx. Default value is $max_time minutes.

-nopoll Do not use a polling-mode communication.
Available only on IBM SPs.

Special Options for IBM SP2:

-cac name
CAC for ANL scheduler. Currently used only by anlspx.
If not provided will choose some valid CAC.

74

On exit, mpirun returns a status of zero unless mpirun detected a problem, in which
case it returns a non-zero status.

When using the ch_p4 device, multiple architectures may be handled by giving multiple
-arch and -np arguments. For example, to run a program on 2 sun4s and 3 rs6000s, with
the local machine being a sun4, use

mpirun -arch sun4 -np 2 -arch rs6000 -np 3 program

This assumes that program will run on both architectures. If different executables are
needed, the string ’%a’ will be replaced with the arch name. For example, if the programs
are program.sun4 and program.rs6000, then the command is

mpirun -arch sun4 -np 2 -arch rs6000 -np 3 program.%a

If instead the executables are in different directories; for example, ‘/tmp/me/sun4’ and
‘/tmp/me/rs6000’, then the command is

mpirun -arch sun4 -np 2 -arch rs6000 -np 3 /tmp/me/%a/program

It is important to specify the architecture with -arch before specifying the number of
processors. Also, the first arch command must refer to the processor on which the job will
be started. Specifically, if -nolocal is not specified, then the first -arch must refer to the
processor from which mpirun is running.

F Deprecated Features

During the development of MPICH, various features were developed for the installation and
use of MPICH. Some of these have been superceeded by newer features that are described
above. This section archives the documentation on the deprecated features.

F.1 Getting Tcl, Tk, and wish

These software packages are available by anonymous ftp from ftp.scriptics.com/pub/
tcl/tcl\protect\unhbox\voidb@x\kern.06em\vbox{\hrulewidth.3em}old. They are
needed only for the upshot and nupshot programs; you do not need them in order to
install MPICH. If you cannot find them at ftp.scriptics.com, copies of Tcl and Tk are
available at ftp://ftp.mcs.anl.gov/mpi/tcltk.

You should get tcl7.3.tar.Z and tk3.6.tar.Z (and patch tk3.6p1.patch). Later
versions of both Tcl and Tk are incompatible with these and do not work with nupshot.
The upshot program has been modified to work with either Tk 3.6 or Tk 4.0. Upshot may
work with later versions, but we are no longer tracking the changes to Tcl/Tk.

It is necessary that the wish program be accessible to users; the other parts of Tcl and
Tk do not need to be installed (but make sure that everything that wish itself needs is
installed).

75

ftp.scriptics.com/pub/tcl/tclprotect unhbox voidb@x kern .06emvbox {hrule width.3em}old
ftp.scriptics.com/pub/tcl/tclprotect unhbox voidb@x kern .06emvbox {hrule width.3em}old
ftp://ftp.mcs.anl.gov/mpi/tcltk

To build Tcl and Tk, we recommend the following approach:

1. Fetch the compressed tar files and the patch file into an empty directory, preferably
in a local (not NFS) file system such as ‘/tmp’ (but make sure that you have enough
space in that file system; xxx should be adequate).

2. Unpack the tar files:

gunzip -c tcl7.3.tar.Z | tar xf -
gunzip -c tk3.6.tar.Z | tar xf -

3. Apply the patch to Tk:

cd tk3.6
patch -p 1 < ../tk3.6p1patch
cd ..

(Note that the instructions say to use patch -p; newer versions of patch require an
argument and the correct value in this case is one; other versions of patch will want
-p1 (no space between p and the one).)

4. Configure Tcl. Pick an installation directory that clearly indicates the Tcl and Tk
versions. For example, to build Tcl to install into ‘/usr/local/tcl73tk36’, use

cd tcl7.6
./configure -prefix=/usr/local/tcl73tk36

5. Build and install Tcl. Before you execute the make install step, make sure that the
directory specified in the -prefix argument to configure exists.

mkdir /usr/local/tcl73tk36
make
make install

6. Configure, build, and install Tk. Use the same installation directory for Tk that you
used for Tcl:

cd ../tcl7.6
./configure -prefix=/usr/local/tcl73tk36
make
make install

This will provide you with a Tcl and Tk installation that can be used with the Tcl and Tk
tools provided with MPICH. If you have installed these into a non-standard location (such as
the one used above), you can set the environment variable TCL73TK36_DIR to the location
used as the prefix in the configure commands:

setenv TCL73TK36_DIR /usr/local/tcl73tk36

This will allow MPICH to find these versions of Tcl and Tk. We no longer use or recommend
Tcl/Tk because of the lack of compatibility between versions of Tcl/Tk.

76

F.2 Obsolete Systems

To configure for the Intel Paragon, use

configure --with-device=ch_nx --with-arch=paragon

Two troubleshootings tip for the Paragon are

1. Q: I got the following messages when I tried to build on the Paragon:

PGC-W-0115-Duplicate standard type (init.c: 576)
PGC/Paragon Paragon Rel R5.0: compilation completed with warnings
PGC-W-0115-Duplicate standard type (init.c: 576)
PGC/Paragon Paragon Rel R5.0: compilation completed with warnings

A: This is because the compiler doesn’t handle long long but doesn’t reject it either.
It causes no harm.

2. Q: I get errors compiling or running Fortran programs.

A:

Fortran programs will need to use a absolute path for the ‘mpif.h’ include file, due to
a bug in the if77 compiler (it searches include directories in the wrong order).

A troubleshooting tip for the older Intel i860 system is

1. Q: The link test fails on an Intel i860 with

icc -o overtake overtake.o test.o -L/mpich/lib/intelnx/ -lmpi -lnode
/usr/ipsc/XDEV/i860/bin/ld860: Error: undefined symbol ’_MPI_Keyval_create’
/usr/ipsc/XDEV/i860/bin/ld860: Fatal: no output file created

A: You are probably building MPICH on an old 386 running System V release 2. This
version of Unix has very severe limitations on the length of filenames (more severe
than we are willing to cater to). The specific problem here is that the name of the
file ‘mpich/src/context/keyval_create.c’ is too long for this system, and was not
properly archived. You best bet is to build MPICH on a different, more modern system
(for example, a Sun running SunOS or Solaris).

F.3 More detailed control over compiling and linking

Much of MPICH’s portability is handled throught the careful construction of system-dependant
Makefiles by the configure program. This is fine for installing MPICH, but what can you do
when you are building a new application? For simple applications, the mpicc and mpif77
commands may be the simplest way to build a new application. For more complex codes,
we recommend taking a sample ‘Makefile.in’ file, for example, in ‘mpich/examples/test/
pt2pt’. Modify those parts that are are relavent, such as the EXECS and specific program
targets. To create a ‘Makefile’, just execute

77

mpireconfig Makefile

(mpireconfig is in the same directory as mpirun). This generates a new ‘Makefile’ from
‘Makefile.in’, with the correct parameters for the MPICH that was installed.

78

References

[1] James Boyle, Ralph Butler, Terrence Disz, Barnett Glickfeld, Ewing Lusk, Ross Over-
beek, James Patterson, and Rick Stevens. Portable Programs for Parallel Processors.
Holt, Rinehart, and Winston, New York, NY, 1987.

[2] Anthony Chan, William Gropp, and Ewing Lusk. User’s guide for mpe extensions for
mpi programs. Technical Report ANL-98/xx, Argonne National Laboratory, 1998. The
updated version is at ftp://ftp.mcs.anl.gov/pub/mpi/mpeman.ps.

[3] James Cownie and William Gropp. A standard interface for debugger access to message
queue information in MPI. In Jack Dongarra, Emilio Luque, and Tomàs Margalef,
editors, Recent Advances in Parallel Virtual Machine and Message Passing Interface,
volume 1697 of Lecture Notes in Computer Science, pages 51–58. Springer Verlag, 1999.

[4] Message Passing Interface Forum. MPI: A message-passing interface standard. Com-
puter Science Dept. Technical Report CS-94-230, University of Tennessee, Knoxville,
TN, 1994.

[5] William Gropp, David Gunter, and Valerie Taylor. FPMPI: A fine-tuning performance
profiling library for MPI, November 2001. Poster presented at SC2001.

[6] William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill
Nitzberg, William Saphir, and Marc Snir. MPI—The Complete Reference: Volume
2, The MPI-2 Extensions. MIT Press, Cambridge, MA, 1998.

[7] William Gropp and Ewing Lusk. A high-performance MPI implementation on a shared-
memory vector supercomputer. Parallel Computing, 22(11):1513–1526, January 1997.

[8] William Gropp and Ewing Lusk. Sowing MPICH: A case study in the dissemination of
a portable environment for parallel scientific computing. IJSA, 11(2):103–114, Summer
1997.

[9] William Gropp and Ewing Lusk. Installation and user’s guide for mpich, a portable
implementation of MPI. Technical Report ANL-01/x, Argonne National Laboratory,
2001. The updated version is at ftp://ftp.mcs.anl.gov/pub/mpi/mpichman.ps.

[10] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-
performance, portable implementation of the MPI Message-Passing Interface standard.
Parallel Computing, 22(6):789–828, 1996.

[11] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel
Programming with the Message Passing Interface, 2nd edition. MIT Press, Cambridge,
MA, 1999.

[12] William Gropp, Ewing Lusk, and Rajeev Thakur. Using MPI-2: Advanced Features of
the Message-Passing Interface. MIT Press, Cambridge, MA, 1999.

[13] William D. Gropp and Ewing Lusk. Reproducible measurements of MPI performance
characteristics. In Jack Dongarra, Emilio Luque, and Tomàs Margalef, editors, Recent
Advances in Parallel Virtual Machine and Message Passing Interface, volume 1697 of
Lecture Notes in Computer Science, pages 11–18. Springer Verlag, 1999.

79

[14] William D. Gropp and Barry Smith. Chameleon parallel programming tools users
manual. Technical Report ANL-93/23, Argonne National Laboratory, Argonne, IL,
March 1993.

[15] Message Passing Interface Forum. MPI: A Message-Passing Interface standard. Inter-
national Journal of Supercomputer Applications, 8(3/4):165–414, 1994.

[16] Peter S. Pacheco. Parallel Programming with MPI. Morgan Kaufman, 1997.

[17] Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Jack Don-
garra. MPI—The Complete Reference: Volume 1, The MPI Core, 2nd edition. MIT
Press, Cambridge, MA, 1998.

[18] TotalView Multiprocess Debugger/Analyzer, 2000.
http://www.etnus.com/Products/TotalView.

80

	Abstract
	Introduction
	Features of recent releases
	Choosing the correct device and release
	Citations and References

	Quick Start
	Downloading MPICH
	Configuring, Making, and Installing
	Running examples
	Sample MPI programs

	Programming Tools
	Compiling, linking, and running programs
	Compiling and Linking without the Scripts

	Running programs with mpirun
	mpirun and Globus
	Using mpirun To Construct An RSL Script For You
	Using mpirun By Supplying Your Own RSL Script

	MPMD Programs
	Debugging
	The printf Approach
	Error handlers
	Starting jobs with a debugger
	Starting the debugger when an error occurs
	Attaching a debugger to a running program
	Debugging MPI programs with TotalView

	Log and tracefile tools
	Jumpshot

	Execution tracing
	Performance measurements

	Details
	Configure options
	MPI and PMPI routines
	Configuring MPICH for use with threads
	Signals

	Computational Grids with the globus2 device
	Alternate C Compilers
	Fortran Compilers
	What if there is no Fortran compiler?
	Fortran 90
	Fortran 77 and Fortran 90
	Fortran 90 Modules
	Configuring with the Absoft Fortran Compiler
	Configuring for Multiple Fortran Compilers

	C++
	Using Shared Libraries
	File System Issues
	NFS and MPI-IO

	Building MPICH
	Installing MPICH for Others to Use
	User commands
	Installing documentation
	Man pages
	Examples

	Computational Grids: the globus2 device
	Thorough Testing
	Internationalization

	Documentation
	In Case of Trouble
	Things to try first
	Submitting bug reports
	The Most Common Problems
	Troubleshooting Shared Libraries
	Other Problems
	Problems configuring
	General
	Linux

	Problems building MPICH
	General
	Workstation Networks
	Cray T3D
	SGI
	Linux
	Compaq ULTRIX and Tru64

	Problems in testing
	General

	Problems compiling or linking Fortran programs
	General

	Problems Linking C Programs
	General
	HPUX
	LINUX

	Problems starting programs
	General
	IBM RS6000
	IBM SP

	Programs fail at startup
	General
	Workstation Networks

	Programs fail after starting
	General
	HPUX
	LINUX

	Trouble with Input and Output
	General
	Workstation Networks
	HP-UX

	Special debugging arguments

	Acknowledgments
	Frequently Asked Questions
	Introduction
	Installing MPICH
	Using MPICH
	Permission Denied
	Notes on getting MPICH running Under Linux
	poll: protocol failure during circuit creation
	Using SSH
	Mac OS X and hostname
	SIGSEGV
	semop lock failed
	Compiler Switches
	C++ Builds Fail
	Fortran programs give errors about mismatched types
	Missing Symbols When Linking
	Warning messages while building MPICH
	MPMD (Multiple Program Multiple Data) Programs
	Reporting problems and support
	Algorithms used in MPICH
	Jumpshot and X11

	History of MPICH
	File Manifest
	Configure Usage
	Mpirun Usage
	Deprecated Features
	Getting Tcl, Tk, and wish
	Obsolete Systems
	More detailed control over compiling and linking

	References

