21. Integration with external systems

Kea provides optional support for a variety of external systems, such as RADIUS, NETCONF, YANG, and GSS-TSIG. The following sections describe how to compile Kea with those additional capabilities and how to configure them.

21.1. YANG/NETCONF

21.1.1. Overview

The Network Configuration Protocol, or NETCONF, is a network management protocol defined in RFC 4741. It uses YANG modeling language, defined in RFC 6020, to provide a uniform way of handling configuration syntax of varied networking devices. Kea provides optional support for a YANG/NETCONF interface with the kea-netconf agent.

21.1.2. Installing NETCONF

To get its NETCONF capabilities, Kea uses libyang v1.0.240 and sysrepo v1.4.140. Use packages if they are provided on your system. There is always the alternative method of building from sources which should work on all popular OSs:

21.1.2.1. Installing libyang From Sources

$ git clone https://github.com/CESNET/libyang.git
$ cd libyang
$ git checkout v1.0.240
$ mkdir build
$ cd build
$ cmake .. -DGEN_CPP_BINDINGS=ON -DGEN_LANGUAGE_BINDINGS=ON -DGEN_PYTHON_BINDINGS=OFF
$ make
$ make install  # without sudo if you're doing development and want to run unit tests

21.1.2.2. Installing sysrepo From Sources

$ git clone https://github.com/sysrepo/sysrepo.git
$ cd sysrepo
$ git checkout v1.4.140
$ mkdir build
$ cd build
$ cmake .. -DGEN_CPP_BINDINGS=ON -DGEN_LANGUAGE_BINDINGS=ON -DGEN_PYTHON_BINDINGS=OFF
$ make
$ make install  # without sudo if you're doing development and want to run unit tests

21.1.3. Quick Sysrepo Overview

This section offers a rather brief overview of a subset of available functions in Sysrepo. For more complete information, see the Sysrepo homepage.

In YANG, configurations and state data are described in the YANG syntax in module files named: "module-name"[@"revision"].yang

The revision part is optional and has YYYY-MM-DD format. An alternate XML syntax YIN is defined but less user-friendly. Top-level modules are named in Kea models (a short version of schema models).

There are two major modules that Kea is able to support: kea-dhcp4-server and kea-dhcp6-server. While there is an active effort in the DHC working group at IETF to develop a DHCPv6 YANG model, a similar initiative in the past for DHCPv4 failed. Therefore, Kea uses its own dedicated models for DHCPv4 and DHCPv6 but partially supports the IETF model for DHCPv6.

All of the models have extra modules as dependencies. The dependency modules are also provided in src/share/yang/modules in sources and in share/kea/yang/modules in the installation directory.

To install modules from sources, do the following to install all modules:

$ ./src/share/yang/modules/utils/reinstall.sh

OR if you installed sysrepo in a custom path:

$ ./src/share/yang/modules/utils/reinstall.sh -s /path/to/sysrepo

If you want to individually install all modules:

$ cd ./src/share/yang/modules
$ sysrepoctl -i ./ietf-dhcpv6-server*.yang
$ sysrepoctl -i ./kea-dhcp4-server*.yang
$ sysrepoctl -i ./kea-dhcp6-server*.yang
...

The installation should look similar to the following:

$ ./src/share/yang/modules/utils/reinstall.sh
[INF]: Libyang internal module "yang" was installed.
[INF]: File "ietf-datastores@2018-02-14.yang" was installed.
[INF]: Sysrepo internal dependency module "ietf-datastores" was installed.
[INF]: File "ietf-yang-library@2019-01-04.yang" was installed.
[INF]: Sysrepo internal module "ietf-yang-library" was installed.
[INF]: File "sysrepo-monitoring@2021-01-15.yang" was installed.
[INF]: Sysrepo internal module "sysrepo-monitoring" was installed.
[INF]: File "sysrepo-plugind@2020-12-10.yang" was installed.
[INF]: Sysrepo internal module "sysrepo-plugind" was installed.
[INF]: File "ietf-netconf@2011-06-01.yang" was installed.
[INF]: Sysrepo internal dependency module "ietf-netconf" was installed.
[INF]: File "ietf-netconf-with-defaults@2011-06-01.yang" was installed.
[INF]: Sysrepo internal module "ietf-netconf-with-defaults" was installed.
[INF]: File "ietf-netconf-notifications@2012-02-06.yang" was installed.
[INF]: Sysrepo internal module "ietf-netconf-notifications" was installed.
[INF]: File "ietf-origin@2018-02-14.yang" was installed.
[INF]: Sysrepo internal module "ietf-origin" was installed.
[INF]: Connection 20 created.
[INF]: Module "keatest-module" scheduled for installation.
[INF]: Applying scheduled changes.
[INF]: File "keatest-module@2018-11-20.yang" was installed.
[INF]: Module "keatest-module" was installed.
[INF]: Scheduled changes applied.
[INF]: Connection 21 created.
[INF]: Module "ietf-interfaces" scheduled for installation.
[INF]: Applying scheduled changes.
[INF]: File "ietf-interfaces@2018-02-20.yang" was installed.
[INF]: Module "ietf-interfaces" was installed.
[INF]: Scheduled changes applied.
[INF]: Connection 22 created.
[INF]: Module "ietf-dhcpv6-client" scheduled for installation.
[INF]: File "ietf-dhcpv6-options@2018-09-04.yang" was installed.
[INF]: File "ietf-dhcpv6-types@2018-09-04.yang" was installed.
[INF]: Applying scheduled changes.
[INF]: File "ietf-dhcpv6-client@2018-09-04.yang" was installed.
[INF]: Module "ietf-dhcpv6-client" was installed.
[INF]: Scheduled changes applied.
[INF]: Connection 23 created.
[INF]: Module "ietf-dhcpv6-relay" scheduled for installation.
[INF]: Applying scheduled changes.
[INF]: File "ietf-dhcpv6-relay@2018-09-04.yang" was installed.
[INF]: Module "ietf-dhcpv6-relay" was installed.
[INF]: Scheduled changes applied.
[INF]: Connection 24 created.
[INF]: Module "ietf-dhcpv6-server" scheduled for installation.
[INF]: Applying scheduled changes.
[INF]: File "ietf-dhcpv6-server@2018-09-04.yang" was installed.
[INF]: Module "ietf-dhcpv6-server" was installed.
[INF]: Scheduled changes applied.
[INF]: Connection 25 created.
[INF]: Module "ietf-yang-types" scheduled for installation.
[INF]: Applying scheduled changes.
[INF]: Module "ietf-yang-types" was installed.
[INF]: Scheduled changes applied.
[INF]: Connection 26 created.
[INF]: Module "ietf-dhcpv6-options" scheduled for installation.
[INF]: Applying scheduled changes.
[INF]: Module "ietf-dhcpv6-options" was installed.
[INF]: Scheduled changes applied.
[INF]: Connection 27 created.
[INF]: Module "ietf-dhcpv6-types" scheduled for installation.
[INF]: Applying scheduled changes.
[INF]: Module "ietf-dhcpv6-types" was installed.
[INF]: Scheduled changes applied.
[INF]: Connection 28 created.
[INF]: Module "ietf-inet-types" scheduled for installation.
[INF]: Applying scheduled changes.
[INF]: Module "ietf-inet-types" was installed.
[INF]: Scheduled changes applied.
[INF]: Connection 29 created.
[INF]: Module "kea-types" scheduled for installation.
[INF]: Applying scheduled changes.
[INF]: File "kea-types@2019-08-12.yang" was installed.
[INF]: Module "kea-types" was installed.
[INF]: Scheduled changes applied.
[INF]: Connection 30 created.
[INF]: Module "kea-dhcp-types" scheduled for installation.
[INF]: Applying scheduled changes.
[INF]: File "kea-dhcp-types@2019-08-12.yang" was installed.
[INF]: Module "kea-dhcp-types" was installed.
[INF]: Scheduled changes applied.
[INF]: Connection 31 created.
[INF]: Module "kea-dhcp-ddns" scheduled for installation.
[INF]: Applying scheduled changes.
[INF]: File "kea-dhcp-ddns@2019-08-12.yang" was installed.
[INF]: Module "kea-dhcp-ddns" was installed.
[INF]: Scheduled changes applied.
[INF]: Connection 32 created.
[INF]: Module "kea-ctrl-agent" scheduled for installation.
[INF]: Applying scheduled changes.
[INF]: File "kea-ctrl-agent@2019-08-12.yang" was installed.
[INF]: Module "kea-ctrl-agent" was installed.
[INF]: Scheduled changes applied.
[INF]: Connection 33 created.
[INF]: Module "kea-dhcp4-server" scheduled for installation.
[INF]: Applying scheduled changes.
[INF]: File "kea-dhcp4-server@2019-08-12.yang" was installed.
[INF]: Module "kea-dhcp4-server" was installed.
[INF]: Scheduled changes applied.
[INF]: Connection 34 created.
[INF]: Module "kea-dhcp6-server" scheduled for installation.

It is possible to confirm whether the models are imported correctly. To list the currently installed YANG modules:

$ sysrepoctl -l

After installation the result should be similar to this:

Sysrepo repository: /etc/sysrepo

Module Name                | Revision   | Flags | Owner         | Permissions | Submodules | Features
-----------------------------------------------------------------------------------------------------
ietf-datastores            | 2018-02-14 | I     | user:user     | 664         |            |
ietf-dhcpv6-client         | 2018-09-04 | I     | user:user     | 600         |            |
ietf-dhcpv6-options        | 2018-09-04 | I     | user:user     | 600         |            |
ietf-dhcpv6-relay          | 2018-09-04 | I     | user:user     | 600         |            |
ietf-dhcpv6-server         | 2018-09-04 | I     | user:user     | 600         |            |
ietf-dhcpv6-types          | 2018-09-04 | I     | user:user     | 600         |            |
ietf-inet-types            | 2013-07-15 | I     | user:user     | 664         |            |
ietf-interfaces            | 2018-02-20 | I     | user:user     | 600         |            |
ietf-netconf               | 2011-06-01 | I     | user:user     | 664         |            |
ietf-netconf-notifications | 2012-02-06 | I     | user:user     | 664         |            |
ietf-netconf-with-defaults | 2011-06-01 | I     | user:user     | 664         |            |
ietf-origin                | 2018-02-14 | I     | user:user     | 664         |            |
ietf-yang-library          | 2019-01-04 | I     | user:user     | 664         |            |
ietf-yang-metadata         | 2016-08-05 | i     |               |             |            |
ietf-yang-types            | 2013-07-15 | I     | user:user     | 664         |            |
kea-ctrl-agent             | 2019-08-12 | I     | user:user     | 600         |            |
kea-dhcp-ddns              | 2019-08-12 | I     | user:user     | 600         |            |
kea-dhcp-types             | 2019-08-12 | I     | user:user     | 600         |            |
kea-dhcp4-server           | 2019-08-12 | I     | user:user     | 600         |            |
kea-dhcp6-server           | 2019-08-12 | I     | user:user     | 600         |            |
kea-types                  | 2019-08-12 | I     | user:user     | 600         |            |
keatest-module             | 2018-11-20 | I     | user:user     | 600         |            |
sysrepo-monitoring         | 2021-01-15 | I     | user:user     | 600         |            |
sysrepo-plugind            | 2020-12-10 | I     | user:user     | 664         |            |
yang                       | 2017-02-20 | I     | user:user     | 664         |            |

Flags meaning: I - Installed/i - Imported; R - Replay support; N - New/X - Removed/U - Updated; F - Feature changes
Features: ! - Means that the feature is effectively disabled because of its false if-feature(s)

To reinstall a module, if the revision YANG entry was bumped, simply installing it will update it automatically. Otherwise, it must first be uninstalled:

$ sysrepoctl -u kea-dhcp4-server

If the module is used (i.e. imported) by other modules, it can be uninstalled only after the dependant modules have been uninstalled first. Installation and uninstallation must be done in dependency order and reverse-dependency order accordingly.

21.1.4. Supported YANG Models

The only currently supported models are kea-dhcp4-server and kea-dhcp6-server. There is partial support for ietf-dhcpv6-server, but the primary focus of testing has been on Kea DHCP servers. Several other models (kea-dhcp-ddns and kea-ctrl-agent) are currently not supported.

21.1.5. Using the NETCONF Agent

The NETCONF agent follows this algorithm:

  • For each managed server, get the initial configuration from the server through the control socket.
  • Open a connection with the Sysrepo environment and establish two sessions with the startup and running datastores.
  • Check that used (not essential) and required (essential) modules are installed in the Sysrepo repository at the right revision. If an essential module - that is, a module where the configuration schema for a managed server is defined - is not installed, raise a fatal error.
  • For each managed server, get the YANG configuration from the startup datastore, translate it to JSON, and load it onto the server being configured.
  • For each managed server, subscribe a module change callback using its model name.
  • When a running configuration is changed, try to validate or load the updated configuration via the callback to the managed server.

21.1.6. Configuration

The behavior described in Using the NETCONF Agent is controlled by a few configuration flags, which can be set in the global scope or in a specific managed-server scope. In the second case, the value defined in the managed-server scope takes precedence. These flags are:

  • boot-update - controls the initial configuration phase; when true (the default), the initial configuration retrieved from the classic Kea server JSON configuration file is loaded first, and then the startup YANG model is loaded. This setting lets administrators define a control socket in the local JSON file and then download the configuration from YANG. When set to false, this phase is skipped.
  • subscribe-changes - controls the module change subscription; when true (the default), a module change callback is subscribed, but when false the phase is skipped and running configuration updates are disabled. When set to true, the running datastore is used to subscribe for changes.
  • validate-changes - controls how Kea monitors changes in the Sysrepo configuration. Sysrepo offers two stages where Kea can interact: validation and application. At the validation (or SR_EV_CHANGE event, in the Sysrepo naming convention) stage, Kea retrieves the newly committed configuration and verifies it. If the configuration is incorrect for any reason, the Kea servers reject it and the error is propagated back to the Sysrepo, which then returns an error. This step only takes place if validate-changes is set to true. In the application (or SR_EV_UPDATE event in the Sysrepo naming convention) stage, the actual configuration is applied. At this stage Kea can receive the configuration, but it is too late to signal back any errors as the configuration has already been committed.

The idea behind the initial configuration phase is to boot Kea servers with a minimal configuration which includes only a control socket, making them manageable. For instance, for the DHCPv4 server:

{
    "Dhcp4": {
        "control-socket": {
           "socket-name": "/tmp/kea-dhcp4-ctrl.sock",
           "socket-type": "unix"
        }
    }
}

With module change subscriptions enabled, the kea-netconf daemon will monitor any configuration changes as they appear in the Sysrepo. Such changes can be done using the sysrepocfg tool or remotely using any NETCONF client. For details, please see the Sysrepo documentation or A Step-by-Step NETCONF Agent Operation Example. Those tools can be used to modify YANG configurations in the running datastore. Note that committed configurations are only updated in the running datastore; to keep them between server reboots they must be copied to the startup datastore.

When module changes are tracked (using subscribe-changes set to true) and the running configuration has changed (e.g. using sysrepocfg or any NETCONF client), the callback validates the modified configuration (if validate-changes was not set to false) and runs a second time to apply the new configuration. If the validation fails, the callback is still called again but with an SR_EV_ABORT (vs. SR_EV_DONE) event with rollback changes.

The returned code of the callback on an SR_EV_DONE event is ignored, as it is too late to refuse a bad configuration.

There are four ways in which a modified YANG configuration could possibly be incorrect:

  1. It can be non-compliant with the schema, e.g. an unknown entry, missing a mandatory entry, a value with a bad type, or not matching a constraint.
  2. It can fail to be translated from YANG to JSON, e.g. an invalid user context.
  3. It can fail Kea server sanity checks, e.g. an out-of-subnet-pool range or an unsupported database type.
  4. The syntax may be correct and pass server sanity checks but the configuration fails to run, e.g. the configuration specifies database credentials but the database refuses the connection.

The first case is handled by Sysrepo. The second and third cases are handled by kea-netconf in the validation phase (if not disabled by setting validate-changes to true). The last case causes the application phase to fail without a sensible report to Sysrepo.

The managed Kea servers or agents are described in the managed-servers section. Each sub-section begins by the service name: dhcp4, dhcp6, d2 (the DHCP-DDNS server does not support the control channel feature yet), and ca (the control agent).

Each managed server entry contains optionally:

  • boot-update, subscribe-changes, and validate-changes - control flags.
  • model - specifies the YANG model / module name. For each service, the default is the corresponding Kea YANG model, e.g. for "dhcp4" it is "kea-dhcp4-server".
  • control-socket - specifies the control socket for managing the service configuration.

A control socket is specified by:

  • socket-type - the socket type is either stdout, unix, or http. stdout is the default; it is not really a socket, but it allows kea-netconf to run in debugging mode where everything is printed on stdout, and it can also be used to redirect commands easily. unix is the standard direct server control channel, which uses UNIX sockets, and http uses a control agent, which accepts HTTP connections.
  • socket-name - the local socket name for the unix socket type (default empty string).
  • socket-url - the HTTP URL for the http socket type (default http://127.0.0.1:8000/).

User contexts can store arbitrary data as long as they are in valid JSON syntax and their top-level element is a map (i.e. the data must be enclosed in curly brackets). They are accepted at the NETCONF entry, i.e. below the top-level, managed-service entry, and control-socket entry scopes.

Hooks libraries can be loaded by the NETCONF agent just as with other servers or agents; however, currently no hook points are defined. The hooks-libraries list contains the list of hooks libraries that should be loaded by kea-netconf, along with their configuration information specified with parameters.

Please consult Logging for details on how to configure logging. The name of the NETCONF agent’s main logger is kea-netconf, as given in the example above.

21.1.7. A kea-netconf Configuration Example

The following example demonstrates the basic NETCONF configuration. More examples are available in the doc/examples/netconf directory in the Kea sources.

// This is a simple example of a configuration for the NETCONF agent.
// This server provides a YANG interface for all Kea servers and the agent.
{
    "Netconf":
    {
        // Control flags can be defined in the global scope or
        // in a managed server scope. Precedences are:
        // - use the default value (true)
        // - use the global value
        // - use the local value.
        // So this overwrites the default value:
        "boot-update": false,

        // This map specifies how each server is managed. For each server there
        // is a name of the YANG model to be used and the control channel.
        //
        // Currently three control channel types are supported:
        // "stdout" which outputs the configuration on the standard output,
        // "unix" which uses the local control channel supported by the
        // "dhcp4" and "dhcp6" servers ("d2" support is not yet available),
        // and "http" which uses the Control Agent "ca" to manage itself or
        // to forward commands to "dhcp4" or "dhcp6".
        "managed-servers":
        {
            // This is how kea-netconf can communicate with the DHCPv4 server.
            "dhcp4":
            {
                "comment": "DHCP4 server",
                "model": "kea-dhcp4-server",
                "control-socket":
                {
                    "socket-type": "unix",
                    "socket-name": "/tmp/kea4-ctrl-socket"
                }
            },

            // DHCPv6 parameters.
            "dhcp6":
            {
                "model": "kea-dhcp6-server",
                "control-socket":
                {
                    "socket-type": "unix",
                    "socket-name": "/tmp/kea6-ctrl-socket"
                }
            },

            // Currently the DHCP-DDNS (nicknamed D2) server does not support
            // a command channel.
            "d2":
            {
                "model": "kea-dhcp-ddns",
                "control-socket":
                {
                    "socket-type": "stdout",
                    "user-context": { "in-use": false }
                }
            },

            // Of course the Control Agent (CA) supports HTTP.
            "ca":
            {
                "model": "kea-ctrl-agent",
                "control-socket":
                {
                    "socket-type": "http",
                    "socket-url": "http://127.0.0.1:8000/"
                }
            }
        },

        // kea-netconf is able to load hooks libraries that augment its operation.
        // Currently there are no hook points defined in kea-netconf
        // processing.
        "hooks-libraries": [
            // The hooks libraries list may contain more than one library.
            {
                // The only necessary parameter is the library filename.
                "library": "/opt/local/netconf-commands.so",

                // Some libraries may support parameters. Make sure you
                // type this section carefully, as kea-netconf does not
                // validate it (because the format is library-specific).
                "parameters": {
                    "param1": "foo"
                }
            }
        ],

        // Similar to other Kea components, NETCONF also uses logging.
        "loggers": [
            {
                "name": "kea-netconf",
                "output_options": [
                    {
                        "output": "/var/log/kea-netconf.log",
                        // Several additional parameters are possible in
                        // addition to the typical output.
                        // Flush determines whether logger flushes output
                        //  to a file.
                        // Maxsize determines maximum filesize before
                        // the file is being rotated.
                        // Maxver specifies the maximum number of
                        //  rotated files being kept.
                        "flush": true,
                        "maxsize": 204800,
                        "maxver": 4
                    }
                ],
                "severity": "INFO",
                "debuglevel": 0
            }
        ]
    }
}

21.1.8. Starting and Stopping the NETCONF Agent

kea-netconf accepts the following command-line switches:

  • -c file - specifies the configuration file.
  • -d - specifies whether the agent logging should be switched to debug/verbose mode. In verbose mode, the logging severity and debuglevel specified in the configuration file are ignored and “debug” severity and the maximum debuglevel (99) are assumed. The flag is convenient for temporarily switching the server into maximum verbosity, e.g. when debugging.
  • -t file - specifies the configuration file to be tested. Kea-netconf attempts to load it and conducts sanity checks; note that certain checks are possible only while running the actual server. The actual status is reported with exit code (0 = configuration looks ok, 1 = error encountered). Kea will print out log messages to standard output and error to standard error when testing configuration.
  • -v - displays the version of kea-netconf and exits.
  • -V - displays the extended version information for kea-netconf and exits. The listing includes the versions of the libraries dynamically linked to Kea.
  • -W - displays the Kea configuration report and exits. The report is a copy of the config.report file produced by ./configure; it is embedded in the executable binary.

21.1.9. A Step-by-Step NETCONF Agent Operation Example

Note

Copies of example configurations presented within this section can be found in the Kea source code, under doc/examples/netconf/kea-dhcp6-operations.

21.1.9.1. Setup of NETCONF Agent Operation Example

The test box has an Ethernet interface named eth1. On some systems it is possible to rename interfaces, for instance on a Linux with an ens38 interface:

# ip link set down dev ens38
# ip link set name eth1 dev ens38
# ip link set up dev eth1

The interface must have an address in the test prefix:

# ip -6 addr add 2001:db8::1/64 dev eth1

The Kea DHCPv6 server must be launched with the configuration specifying a control socket used to receive control commands. The kea-netconf process uses this socket to communicate with the DHCPv6 server, i.e. it pushes translated configurations to that server using control commands. The following is the example control socket specification for the Kea DHCPv6 server:

{
    "Dhcp6": {
        "control-socket": {
           "socket-name": "/tmp/kea-dhcp6-ctrl.sock",
           "socket-type": "unix"
        }
    }
}

In order to launch the Kea DHCPv6 server using the configuration contained within the boot.json file, run:

# kea-dhcp6 -d -c boot.json

The current configuration of the server can be fetched via control socket by running:

# echo '{ "command": "config-get" }' | socat UNIX:/tmp/kea-dhcp6-ctrl.sock '-,ignoreeof'

The following is the example netconf.json configuration for kea-netconf, to manage the Kea DHCPv6 server:

{
  "Netconf": {
    "loggers": [
      {
        "debuglevel": 99,
        "name": "kea-netconf",
        "output_options": [
          {
            "output": "stderr"
          }
        ],
        "severity": "DEBUG"
      }
    ],
    "managed-servers": {
      "dhcp6": {
        "control-socket": {
          "socket-name": "/tmp/kea-dhcp6-ctrl.sock",
          "socket-type": "unix"
        }
      }
    }
  }
}

Note that in production there should not be a need to log at the DEBUG level.

The Kea NETCONF agent is launched by:

# kea-netconf -d -c netconf.json

Now that both kea-netconf and kea-dhcp6 are running, it is possible to populate updates to the configuration to the DHCPv6 server. The following is the configuration extracted from startup.xml:

<config xmlns="urn:ietf:params:xml:ns:yang:kea-dhcp6-server">
  <subnet6>
    <id>1</id>
    <pool>
      <start-address>2001:db8::1:0</start-address>
      <end-address>2001:db8::1:ffff</end-address>
      <prefix>2001:db8::1:0/112</prefix>
    </pool>
    <subnet>2001:db8::/64</subnet>
  </subnet6>
  <interfaces-config>
    <interfaces>eth1</interfaces>
  </interfaces-config>
  <control-socket>
    <socket-name>/tmp/kea-dhcp6-ctrl.sock</socket-name>
    <socket-type>unix</socket-type>
  </control-socket>
</config>

To populate this new configuration:

$ sysrepocfg -d startup -f xml -m kea-dhcp6-server --edit=startup.xml

kea-netconf pushes the configuration found in the Sysrepo startup datastore to all Kea servers during its initialization phase, after it subscribes to module changes in the Sysrepo running datastore. This action copies the configuration from the startup datastore to the running datastore and enables the running datastore, making it available.

Changes to the running datastore are applied after validation to the Kea servers. Note that they are not by default copied back to the startup datastore, i.e. changes are not permanent.

21.1.9.2. Error Handling in NETCONF Operation Example

There are four classes of issues with the configurations applied via NETCONF:

  1. The configuration does not comply with the YANG schema.
  2. The configuration cannot be translated from YANG to the Kea JSON.
  3. The configuration is rejected by the Kea server.
  4. The configuration was validated by the Kea server but cannot be applied.

In the first case, consider the following BAD-schema.xml configuration file:

<config xmlns="urn:ietf:params:xml:ns:yang:kea-dhcp6-server">
  <subnet4>
    <id>1</id>
    <pool>
      <start-address>2001:db8::1:0</start-address>
      <end-address>2001:db8::1:ffff</end-address>
      <prefix>2001:db8::1:0/112</prefix>
    </pool>
    <subnet>2001:db8::/64</subnet>
  </subnet6>
  <interfaces-config>
    <interfaces>eth1</interfaces>
  </interfaces-config>
  <control-socket>
    <socket-name>/tmp/kea-dhcp6-ctrl.sock</socket-name>
    <socket-type>unix</socket-type>
  </control-socket>
</config>

It is directly rejected by sysrepocfg:

$ sysrepocfg -d running -f xml -m kea-dhcp6-server --edit=BAD-schema.xml

In the second case, the configuration is rejected by kea-netconf. For example, consider this BAD-translator.xml file:

<config xmlns="urn:ietf:params:xml:ns:yang:kea-dhcp6-server">
  <subnet6>
    <id>1</id>
    <pool>
      <start-address>2001:db8::1:0</start-address>
      <end-address>2001:db8::1:ffff</end-address>
      <prefix>2001:db8::1:0/112</prefix>
    </pool>
    <subnet>2001:db8::/64</subnet>
  </subnet6>
  <interfaces-config>
    <interfaces>eth1</interfaces>
  </interfaces-config>
  <control-socket>
    <socket-name>/tmp/kea-dhcp6-ctrl.sock</socket-name>
    <socket-type>unix</socket-type>
  </control-socket>
  <user-context>bad</user-context>
</config>

In the third case, the configuration is presented to the Kea DHCPv6 server and fails to validate as in this BAD-config.xml file:

<config xmlns="urn:ietf:params:xml:ns:yang:kea-dhcp6-server">
  <subnet6>
    <id>1</id>
    <pool>
      <start-address>2001:db8:1::0</start-address>
      <end-address>2001:db8:1::ffff</end-address>
      <prefix>2001:db8:1::0/112</prefix>
    </pool>
    <subnet>2001:db8::/64</subnet>
  </subnet6>
  <interfaces-config>
    <interfaces>eth1</interfaces>
  </interfaces-config>
  <control-socket>
    <socket-name>/tmp/kea-dhcp6-ctrl.sock</socket-name>
    <socket-type>unix</socket-type>
  </control-socket>
</config>

In the last case, the misconfiguration is detected too late and the change must be reverted in Sysrepo, e.g. using the startup datastore as a backup.

21.1.9.3. NETCONF Operation Example with Two Pools

This example adds a second pool to the initial (i.e. startup) configuration in the twopools.xml file:

<config xmlns="urn:ietf:params:xml:ns:yang:kea-dhcp6-server">
  <subnet6>
    <id>1</id>
    <pool>
      <start-address>2001:db8::1:0</start-address>
      <end-address>2001:db8::1:ffff</end-address>
      <prefix>2001:db8::1:0/112</prefix>
    </pool>
    <pool>
      <start-address>2001:db8::2:0</start-address>
      <end-address>2001:db8::2:ffff</end-address>
      <prefix>2001:db8::2:0/112</prefix>
    </pool>
    <subnet>2001:db8::/64</subnet>
  </subnet6>
  <interfaces-config>
    <interfaces>eth1</interfaces>
  </interfaces-config>
  <control-socket>
    <socket-name>/tmp/kea-dhcp6-ctrl.sock</socket-name>
    <socket-type>unix</socket-type>
  </control-socket>
</config>

This configuration is installed by:

$ sysrepocfg -d running -f xml -m kea-dhcp6-server --edit=twopools.xml

21.1.9.4. NETCONF Operation Example with Two Subnets

This example specifies two subnets in the twosubnets.xml file:

<config xmlns="urn:ietf:params:xml:ns:yang:kea-dhcp6-server">
  <subnet6>
    <id>1</id>
    <pool>
      <start-address>2001:db8:1::</start-address>
      <end-address>2001:db8:1::ffff</end-address>
      <prefix>2001:db8:1::/112</prefix>
    </pool>
    <subnet>2001:db8:1::/64</subnet>
  </subnet6>
  <subnet6>
    <id>2</id>
    <pool>
      <start-address>2001:db8:2::</start-address>
      <end-address>2001:db8:2::ffff</end-address>
      <prefix>2001:db8:2::/112</prefix>
    </pool>
    <subnet>2001:db8:2::/64</subnet>
  </subnet6>
  <interfaces-config>
    <interfaces>eth1</interfaces>
  </interfaces-config>
  <control-socket>
    <socket-name>/tmp/kea-dhcp6-ctrl.sock</socket-name>
    <socket-type>unix</socket-type>
  </control-socket>
</config>

This configuration is installed by:

$ sysrepocfg -d running -f xml -m kea-dhcp6-server --edit=twosubnets.xml

21.1.9.5. NETCONF Operation Example with Logging

This example adds a logger entry to the initial (i.e. startup) configuration in the logging.xml file:

<config xmlns="urn:ietf:params:xml:ns:yang:kea-dhcp6-server">
  <interfaces-config>
    <interfaces>eth1</interfaces>
  </interfaces-config>
  <subnet6>
    <id>1</id>
    <pool>
      <start-address>2001:db8::1:0</start-address>
      <end-address>2001:db8::1:ffff</end-address>
      <prefix>2001:db8::1:0/112</prefix>
    </pool>
    <subnet>2001:db8::/64</subnet>
  </subnet6>
  <control-socket>
    <socket-name>/tmp/kea-dhcp6-ctrl.sock</socket-name>
    <socket-type>unix</socket-type>
  </control-socket>
  <logger>
    <name>kea-dhcp6</name>
    <output-option>
      <output>stderr</output>
    </output-option>
    <debuglevel>99</debuglevel>
    <severity>DEBUG</severity>
  </logger>
</config>

The corresponding Kea configuration in JSON is:

{
  "Dhcp6": {
    "control-socket": {
      "socket-name": "/tmp/kea-dhcp6-ctrl.sock",
      "socket-type": "unix"
    },
    "interfaces-config": {
      "interfaces": [ "eth1" ]
    },
    "subnet6": [
      {
        "id": 1,
        "pools": [
          {
            "pool": "2001:db8::1:0/112"
          }
        ],
        "subnet": "2001:db8::/64"
      }
    ],
    "loggers": [
      {
        "name": "kea-dhcp6",
        "output_options": [
          {
            "output": "stderr"
          }
        ],
        "severity": "DEBUG",
        "debuglevel": 99
      }
   ]
 }
}

Finally, any of the previous examples can be replayed by using sysrepocfg in edit mode as follows:

$ sysrepocfg -d running -f xml -m kea-dhcp6-server --edit

or by using a NETCONF client like netopeer2-cli from the Netopeer2 NETCONF Toolset.

21.1.9.6. Migrating YANG data from sysrepo v0.x to v1.x

Start the migration after turning off kea-netconf to make sure that backups done for both datastores are done at the same configuration state and no change happens between exporting them.

Unfortunately, sysrepo v0.x does not support import/export of all YANG modules. This was added in sysrepo v1.x. You will need to do per-module backup. It’s probably for the best, for isolating potential failures and preventing them from affecting all your modules.

With sysrepo v0.x:

$ sysrepocfg --datastore running --export=save.xml --format=xml kea-dhcp6-server
$ sysrepocfg --datastore startup --export=save.xml --format=xml kea-dhcp6-server

Install sysrepo v1.x and then:

$ sysrepocfg --datastore running --edit=save.xml
$ sysrepocfg --datastore startup --edit=save.xml

Module name and format are optional for v1.x, they are detected automatically. In case of trouble, they can be provided with the --format xml and --module kea-dhcp6-server flags.

If you upgraded after a long time, there might also be changes to the YANG modules themselves. In that case the backups will need some minor massaging. But this will be a dilligence that will have to be carried out occasionally and completely independent of sysrepo upgrades.

21.2. GSS-TSIG

Note

This capability is a work in progress.

21.2.1. GSS-TSIG Overview

Kea provides a support for DNS updates, which can be protected using Transaction Signatures (or TSIG). This protection is often adequate. However, some systems, in particular Active Directory (AD) on Microsoft Windows systems, chose to adopt more complex GSS-TSIG approach that offers additional capabilities as using negotiated dynamic keys.

Kea provides the support of GSS-TSIG to protect DNS updates sent by the Kea DHCP-DDNS (aka D2) server in a premium hook, called gss_tsig. The GSS-TSIG is defined in RFC 3645. The GSS-TSIG protocol itself is an implementation of generic GSS-API v2 services, defined in RFC 2743.

Many protocols are involved in this mechanism:

  • Kerberos 5 RFC 4120 which provides the security framework;
  • GSS-API (Generic Security Services Application Program Interface) RFC 2743 for the API, RFC 2744 for C bindings and RFC 4121 for the application to Kerberos 5;
  • SPNEGO (Simple and Protected GSS-API Negotiation Mechanism) RFC 4178 for the negotiation;
  • DNS update RFC 2136;
  • TSIG (Secret Key Transaction Authentication for DNS) RFC 8945 which protects DNS exchanges;
  • Secure Domain Name System (DNS) Dynamic Update RFC 3007 which is the application of TSIG to the DNS update protection;
  • TKEY (Secret Key Establishment for DNS) RFC 2930 which establishes secret keys for TSIG by transmitting crypto payloads between DNS parties;
  • GSS-TSIG RFC 3645 which is the application of GSS-API to TSIG.

To summarize, GSS-API for Kerberos 5 with SPNEGO and TKEY are used to negotiate a security context between the Kea D2 server and a DNS server:

../_images/tkey.svg

The security context is then used by GSS-TSIG to protect updates:

../_images/update.svg

The Kea implementation of GSS-TSIG uses a GSS-API for Kerberos 5 with SPNEGO library. Two implementations meet this criteria: MIT Kerberos 5 and Heimdal.

21.2.2. GSS-TSIG Compilation

The following procedure was tested on Ubuntu 20.10 and 21.04. Similar approach can be applied to other systems.

  1. Obtain the kea sources and premium packages, extract kea sources, then extract premium packages into premium/ directory within Kea source tree.
  2. Run autoreconf:
autoreconf -i
  1. Make sure ./configure --help shows the --with-gssapi option.
  2. Install either MIT (libkrb5-dev) or Heimdal (heimdal-dev) library, for instance:
sudo apt install libkrb5-dev
  1. Run configure with the --with-gssapi option:
./configure --with-gssapi

The --with-gssapi requires krb5-config tool to be present. This tool is provided by both MIT Kerberos 5 and Heimdal, on some systems where both Kerberos 5 and Heimdal are installed it is a symbolic link to one of them. If it’s not in your standard location, you may specify it with --with-gssapi=/path/to/krb5-config. It is strongly recommended to use default installation locations as provided by packages.

The ./configure script should complete with a successful GSS-API detection, similar to this:

GSS-API support:
  GSSAPI_CFLAGS:         -isystem /usr/include/mit-krb5
  GSSAPI_LIBS:           -L/usr/lib/x86_64-linux-gnu/mit-krb5 -Wl,-Bsymbolic-functions -Wl,-z,relro -lgssapi_krb5 -lkrb5 -lk5crypto -lcom_err
  1. Compile as usual make -jX where X is the number of CPU cores available.
  2. After compilation, the gss_tsig hook is available in the premium/src/hooks/d2/gss_tsig directory. It can be loaded by the DHCP-DDNS (D2) daemon.

The gss_tsig was developed using the MIT Kerberos 5 implementation but Heimdal is supported too. Note that Heimdal is picky about security sensitive file permissions and is known to emit an unclear error message. It is a good idea to keep these files as plain, with one link and and no access for the group or other users.

The krb5-config script should provide an --all option which identifies the implementation: in any report about the GSS-TSIG report please add the result of the --all option of the krb5-config used to configure Kea.

21.2.3. GSS-TSIG Deployment

Before using GSS-TSIG, a GSS-TSIG capable DNS server, such as BIND 9 or alternatively Microsoft Active Directory, must be deployed. Other GSS-TSIG capable implementations may work, but were not tested.

21.2.3.1. Kerberos 5 Setup

To be done. One critical detail: there are two kinds of key tables (keytab files): the system one used by servers and client tables used by clients. For Kerberos 5 Kea is a client.

21.2.3.2. Bind 9 with GSS-TSIG Configuration

To be done.

21.2.3.3. Microsoft Active Directory Setup

To be done.

21.2.4. Using GSS-TSIG

There is a number of steps required to enable the GSS-TSIG mechanism:

  1. the gss_tsig hook library has to be loaded by the D2 server
  2. the GSS-TSIG capable DNS servers have to be specified with their parameters

An excerpt from D2 server is provided below. More examples are available in the doc/examples/ddns directory in the Kea sources.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
 {
 "DhcpDdns": {
     // The following parameters are used to receive NCRs (NameChangeRequests)
     // from the local Kea DHCP server. Make sure your kea-dhcp4 and kea-dhcp6
     // matches this.
     "ip-address": "127.0.0.1",
     "port": 53001,
     "dns-server-timeout" : 1000,

     // Forward zone: secure.example.org. It uses GSS-TSIG. It is served
     // by two DNS servers, which listen for DDNS requests at 192.0.2.1
     // and 192.0.2.2.
     "forward-ddns":
     {
         "ddns-domains":
         [
             // DdnsDomain for zone "secure.example.org."
             {
                 "name": "secure.example.org.",
                 "comment": "DdnsDomain example",
                 "dns-servers":
                 [
                     { // This server has an entry in gss/servers and
                       // thus will use GSS-TSIG.
                         "ip-address": "192.0.2.1"
                     },
                     { // This server also has an entry there, so will
                       // use GSS-TSIG, too.
                         "ip-address": "192.0.2.2"
                     }
                 ]
             }
         ]
     },

     // Reverse zone: we want to update the reverse zone "2.0.192.in-addr.arpa".
     "reverse-ddns":
     {
         "ddns-domains":
         [
             {
                 "name": "2.0.192.in-addr.arpa.",
                 "dns-servers":
                 [
                     {
                         // There is GSS-TSIG definition for this server (see
                         // DhcpDdns/gss-tsig/servers), so it will use
                         // Krb/GSS-TSIG.
                         "ip-address": "192.0.2.1"
                     }
                 ]
             }
         ]
     },

     // Need to add gss-tsig hook here
     "hooks-libraries": [
     {
         "library": "/opt/lib/libdhcp_gss_tsig.so",
         "parameters": {
             // This section governs the GSS-TSIG integration. Each server
             // mentioned in forward-ddns and/or reverse-ddns needs to have
             // an entry here to be able to use GSS-TSIG defaults (optional,
             // if specified they apply to all the GSS-TSIG servers, unless
             // overwritten on specific server level).

             "server-principal": "DNS/server.example.org@EXAMPLE.ORG",
             "client-principal": "DHCP/admin.example.org@EXAMPLE.ORG",
             "client-keytab": "FILE:/etc/krb5.keytab", // toplevel only
             "credentials-cache": "FILE:/etc/ccache", // toplevel only
             "tkey-lifetime": 3600,
             "tkey-protocol": "TCP",

             // The list of GSS-TSIG capable servers
             "servers": [
                 {
                     // First server (identification is required)
                     "domain-names": [ ], // if not specified or empty, will
                                          // match all domains that want to
                                          // use this IP+port pair
                     "ip-address": "192.0.2.1",
                     "port": 53,
                     "server-principal": "DNS/server1.example.org@EXAMPLE.ORG",
                     "client-principal": "DHCP/admin1.example.org@EXAMPLE.ORG",
                     "tkey-lifetime": 86400, // 24h
                     "tkey-protocol": "TCP"
                 },
                 {
                     // The second server (it has most of the parameters missing
                     // as those are using the defaults specified above)
                     "ip-address": "192.0.2.2",
                     "port": 5300
                 }
             ]
         }
     }
     ]

     // Additional parameters, such as logging, control socket and
     // others omited for clarity.
 }

 }

This configuration file contains a number of extra elements.

First, a list of forward and/or reverse domains with related DNS servers identified by their IP+port pairs is defined. If port is not specified, the default of 53 is assumed. This is similar to basic mode with no authentication or authentication done using TSIG keys, with the exception that static TSIG keys are not referenced by name.

Second, the libdhcp_gss_tsig.so library has to be specified on the hooks-libraries list. This hook takes many parameters. The most important one is servers, which is a list of GSS-TSIG capable servers. If there are several servers and they share some characteristics, the values can be specified in parameters scope as defaults. In the example above, the defaults that apply to all servers unless otherwise specified on per server scope, are defined in lines 63 through 68. The defaults can be skipped if there is only one server defined or all servers have different values.

The parameters have the following meaning:

  • client-keytab specifies the Kerberos client key table. For instance, FILE:<filename> can be used to point to a specific file. This parameter can be specified only once, in the parameters scope, and is the equivalent of setting the KRB5_CLIENT_KTNAME environment variable.
  • credentials-cache specifies the Kerberos credentials cache. For instance FILE:<filename> can be used to point to a file or if using a directory which supports more than one principal DIR:<directory-path>. This parameter can be specified only once, in the parameters scope, and is the equivalent of setting the KRB5CCNAME environment variable.
  • server-principal is the Kerberos principal name of the DNS server that will receive updates. In plain words, this is the DNS server’s name in the Kerberos system. This parameter is mandatory. It uses the typical Kerberos notation: <SERVICE-NAME>/<server-domain-name>@<REALM>.
  • client-principal is the Kerberos principal name of the Kea D2 service. It is optional. It uses the typical Kerberos notation: <SERVICE-NAME>/<server-domain-name>@<REALM>.
  • tkey-protocol determines which protocol is used to establish the security context with the DNS servers. Currently the only supported values are TCP (the default) and UDP.
  • tkey-lifetime determines the lifetime of GSS-TSIG keys in the TKEY protocol, expressed in seconds. Default value is 3600 (one hour).