
i

Java Media Players

Version .96, May 27, 1997

Java Media Framework is being developed by
Sun Microsystems, Inc., Silicon Graphics Inc., and Intel Corporation.

Java Application Programming Interfaceii

iii

tes
FAR

foreign

rable,
ctual
ited to
 are

cation
d (iv)
N.

s, Sun
ration
UNIX
ugh X/
 their

)

 1997 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.
All rights reserved.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United Sta
Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and
52.227-19.

The release described in this document may be protected by one or more U.S. patents,
patents, or pending applications.

Sun Microsystems, Inc. (SUN) hereby grants to you a fully paid, nonexclusive, nontransfe
perpetual, worldwide limited license (without the right to sublicense) under SUN's intelle
property rights that are essential to practice this specification. This license allows and is lim
the creation and distribution of clean-room implementations of this specification that (i)
complete implementations of this specification, (ii) pass all test suites relating to this specifi
that are available from SUN, (iii) do not derive from SUN source code or binary materials, an
do not include any SUN binary materials without an appropriate and separate license from SU

Java and JavaScript are trademarks of Sun Microsystems, Inc. Sun, Sun Microsystem
Microsystems Computer Corporation, the Sun logo, the Sun Microsystems Computer Corpo
logo, Java and HotJava are trademarks or registered trademarks of Sun Microsystems, Inc. ®

is a registered trademark in the United States and other countries, exclusively licensed thro
Open Company, Ltd. All other product names mentioned herein are the trademarks of
respective owners.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR
TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE
INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S
DESCRIBED IN THIS PUBLICATION AT ANY TIME

. . 7

. 1

. 2

. . 2

. . 3
 . 4
. . 6
. 8

. 9
11
2
13
13

4

14
14

7

17
17

18

. 19
20
. 21
1

Contents

Preface .

Java Media Players .

1 Overview .

Media Sources .
Players .
Media Events .
Player States .
Calling JMF Methods .

2 Example: Creating an Applet to Play a Media File 9

Overview of PlayerApplet .
PlayerApplet Code Listing .
Initializing the Applet . 1
Controlling the Player .
Responding to Media Events. .

3 Creating and Displaying a Player . 1

Creating a Player .
Displaying a Player and Player Controls.

4 Controlling Media Players . 1

Starting a Player. .
Stopping a Player. .

5 Managing Player States .

Preparing a Player to Start .
Starting and Stopping a Player .
Releasing Player Resources.
Implementing the ControllerListener Interface 2

6 Managing Timing and Synchronization 22

Java Media Players – Version 0.95, January 31, 1997vi

23
23
.24
25
.25

28
28
29

9

30
Setting the Media Time .
Getting the Current Time .
Setting a Player’s Rate .
Getting a Player’s Duration .
Synchronizing Players .

7 Using a Player to Manage and Synchronize other Controllers 27

Adding a Controller .
Managing the Operation of Added Controllers
Removing a Controller .

8 Extending JMF .2

Understanding the Player Factory Architecture.

Appendix A:
Java Media Applet 31

PI)
ecifi-
des

time-

d the
other
 this
g API

t will
e are

ss
nd
d for
Preface

The Java Media Framework (JMF) is an application programming interface (A
for incorporating media data types into Java applications and applets. It is sp
cally designed to take advantage of of Java platform features. The JMF provi
APIs for media players, media capture, and conferencing. This document
describes the Java Media Player APIs and how they can be used to present
based media such as audio and video.

Java Media Players

The 1.0 specification for Java Media Players addresses media display, an
concerns of the application builder in that domain, with an eye towards the
application domains and other levels of developer. There are two parts to
release: a user guide entitled Java Media Players, and the accompanyin
documentation.

Status of Future Releases

Javasoft and its partners are developing new capabilities and features tha
appear in a future release of the JMF specification. The features that w
considering for future releases include:

• Incomplete Players– A JMF Player is self-contained, and provides no acce
to media data. Additional interfaces that provide access to media data a
allow selection of rendering components are in development and intende
a future release.

• Rendering Interfaces– Rendering interfaces for specific audio and video
formats have to be finalized. Additional interfaces for a video or audio
7

Java Media Framework – Version 1.0 Draft May 14, 19978

r
ions.

eric
 data

in
llow

on

l

renderer have not yet been fully developed or documented.

• Capture Semantics– The JMF Player architecture does not yet provide fo
media capture of the kind required for authoring or conferencing applicat

• Data Definitions– Audio and video formats have yet to be finalized. An
overall structure for data manipulation and format negotiation among gen
formats has been defined, but the specific interfaces for audio and video
have not yet been defined.

• CODEC Architecture– An architecture for CODECs needs to be defined
order to provide a common API for using CODECs and a mechanism to a
the installation of additional CODECs into the system.

Contact Information

JavaSoft

To obtain information about the Java Media Framework, see the web site at:

HTTP://www.javasoft.com/products/java-media/mediaplayer

Silicon Graphics

To obtain information about Java Media Framework implementations for Silic
Graphics hardware send mail to:

cosmo-motion-info@sgi.com

Intel Corporation

To obtain information about Java Media Framework Implementations for Inte
hardware, see the web site at:

HTTP://developer.intel.com/ial/jmedia

s

ap-
s and
.

ents
hly
 iden-

port

ore
ols

d
ility
Java Media Player

Sun Microsystems, Inc.
Silicon Graphics Inc.
Intel Corporation

Copyright © 1997 by Sun Microsystems Inc.
All Rights Reserved

The Java Media Framework (JMF) provides APIs for media players, media c
ture, and conferencing. This document describes the Java Media Player API
how they can be used to present time-based media such as audio and video

The JMF API covers a wide range of applications, and addresses the requirem
of developers working at different levels. Interest in JMF can be divided roug
across three application domains and three categories of developer. We have
tified the following application domains:

• Media Display– Encompasses local and network playback of multimedia
data within an application or applet. The focus of JMF in this area is to sup
the delivery of statically stored, synchronized media data, and to allow
integration with the underlying platform’s native environment and Java’s c
packages, such asjava.awt. This area also encompasses streaming protoc
such as RTP. The 1.0 Java Media Player APIs support media display.

• Media Capture– This domain imposes additional requirements above an
beyond those of media display. Support for media capture implies the ab
to record, save, and transfer data through local capture devices, such as
microphones and cameras. A future release of JMF will define classes to
represent renderers, capture devices, capture objects, and media data.
1

Java Media Framework – Version 1.0 Draft May 14, 19972

g,
dia

ayer

w
king

dia
yers

rate
ed
nt is

,
er

 for
va
are

dia
ds,
at use

ent a
d

• Media Conferencing– This application domain encompasses conferencin
computer telephony integration, and simple authoring applications for me
data. A future release of JMF will address media conferencing.

The Java Media Player APIs support three levels of use:

• Client level–a client programmer can create and control a Java Media Pl
for any standard media type by using a few simple method calls.

• Enhancement level–a programmer can modify an existing player to add ne
functionality by replacing selected player parts, such as renderers. By ma
it possible to replace individual player parts, JMF provides a way to add
functionality to a player without building one from scratch.

• Design level–a programmer can add new players to support additional me
formats. New players are created by extending the JMF, allowing new pla
to be used side-by-side with existing players.

By providing three distinct programming levels, JMF makes it easy to incorpo
media in client applications and applets, while maintaining the flexibility need
for more sophisticated applications and platform customization. This docume
intended primarily for client programmers.

1.0 Overview

JMF provides a platform-neutral framework for building media players. It is
designed to support many media content types, including MPEG-1, MPEG-2
QuickTime, AVI, WAV, AU, and MIDI. Using Java Media Players, a programm
can synchronize and present time-based media from diverse sources.

Existing players on desktop computers are heavily dependent on native code
computationally intensive tasks like decompression and rendering. Some Ja
Media Players require native code to support the features of a specific hardw
device or operating system, or to maintain compatibility with existing multime
standards. Since Java accommodates both Java bytecode and native metho
developers and users can choose among different player implementations th
both Java and native objects.

1.1 Media Sources

A Java Media player encapsulates its media source; it is constructed to pres
particular media source, identified by a universal resource locator (URL), an
cannot be reused to present other media streams.

Java Media Players - Players 3

es,
urces
:

he
 type

be
ata.
-on-
port
rce
r

on the
 a file

a new
ontrol
ser
ce.

ading
layer

yer

u to

s.

er’s
as a
Java Media Players can present media data obtained from a variety of sourc
such as local or network files and live broadcasts. JMF categorizes media so
according to whether or not the client is guaranteed to receive all of the data

• Pull Data Source—the client is guaranteed to receive every packet from t
data source, such as a local or network file. Established protocols for this
of data include Hypertext Transfer Protocol (HTTP) and FILE.

• Push Data Source—the data from the media source is not guaranteed to
delivered reliably and clients are expected to recover from gaps in the d
Push data sources include broadcast media, multicast media, and video
demand (VOD). For broadcast data, one protocol is the Real-time Trans
Protocol (RTP), under development by the Internet Engineering Task Fo
(IETF). The MediaBase protocol developed by SGI is a protocol used fo
VOD.

The degree of control that a client program can extend to the user depends
type of media source being presented. For example, a media source such as
can be repositioned, allowing the user to replay the media stream or seek to
location in the stream. A broadcast media source, however, is under server c
and cannot be repositioned. Similarly, a VOD source might support limited u
control, but probably not the degree of control available with a pull data sour

1.2 Players

A player is a software machine that processes a stream of data over time, re
data from a media source and rendering it at a precise time. A Java Media P
implements the methods defined by four interfaces:

• Clock defines the basic timing and synchronization operations that a pla
uses to control the presentation of media data.

• Controller extendsClock to provide methods for obtaining system
resources and preloading data and a listening mechanism that allows yo
receive notification of media events.

• Duration provides a way to determine the duration of the media being
played.

• Player extendsController andClock to support standardized user control
Player also relaxes some of the operational restrictions imposed byClock.

Players share a common model for timekeeping and synchronization. A play
media timerepresents the current position in the media stream. Each player h

Java Media Framework – Version 1.0 Draft May 14, 19974

, its
st use

anel
he

nting
s you

 and

edia-
tions.
your
at the
time base that defines the flow of time for the player. When a player is started
media time is mapped to its time-base time. To be synchronized, players mu
the same time base.

A player’s user interface can include both a visual component and a control-p
component. You can implement a custom user-interface for a player or use t
player’s default control-panel component.

A player must perform a number of operations before it is capable of prese
media. Because some of these operations can be time consuming, JMF allow
to control when they occur by defining the operational states of a player
providing a control mechanism for moving the player between those states.

1.3 Media Events

The JMF event reporting mechanism allows your program to respond to m
driven error conditions, such as out-of-data or resource unavailable condi
The event system also provides an essential notification protocol; when
program calls an asynchronous method on a player, it can only be sure th
operation is complete by listening for the appropriate event.

Two type of JMF objects post events:GainControl objects andController
objects.

A GainControl object posts only one type of event,GainChangeEvent. To
respond to gain changes, you implement theGainChangeListener interface.

A Controller can post a variety of events that are derived fromController-

Event. To receive events from aController such as aPlayer, you implement
theControllerListener interface. The following figure shows the events that
can be posted by aController.

Java Media Players - Media Events 5

, and

ed,

’s
 to

 a
Controller events fall into three categories: change notifications, error events
transition events:

• Change notification events such asRateChangeEvent and
DurationUpdateEvent indicate that some attribute of the player has chang
often in response to a method call. For example, the player posts a
RateChangeEvent when its rate is changed with asetRate call.

• TransitionEvents allow your program to respond to changes in a player
state. A player posts transition events whenever it moves from one state
another. (See Section 1.4 for more information about player states.)

• ControllerErrorEvents are posted by a player when it has encountered
problem and cannot recover. When a player posts aControllerErrorEvent,
it is no longer usable. You can listen forControllerErrorEvent so that your

ControllerEvent

ControllerErrorEvent

DataLostErrorEvent

ResourceUnavailableEvent

DurationUpdateEvent

MediaTimeSetEvent

RateChangeEvent

StopTimeChangeEvent

TransitionEvent

PrefetchCompleteEvent

RealizeCompleteEvent

StartEvent

StopEvent

CachingControlEvent

DeallocateEvent

EndOfMediaEvent

RestartingEvent

StopAtTimeEvent

StopByRequestEvent

InternalErrorEvent

Java Media Framework – Version 1.0 Draft May 14, 19976

he

ow
t

s that
other
urces
r at a

t is to
e
e

program can respond to player malfunctions, minimizing the impact on t
user.

1.4 Player States

A Java Media Player can be in one of six states. TheClock interface defines the
two primary states:Stopped andStarted. Controller breaks the stopped state
down into five standby states:Unrealized, Realizing, Realized, Prefetching, and
Prefetched.

In normal operation, a player steps through each state until it reaches theStarted
state:

• A player in theUnrealized state has been instantiated, but does not yet kn
anything about its media other than its URL. When a media player is firs
created, it isUnrealized.

• Whenrealize is called, a player moves from theUnrealized state into the
Realizing state. ARealizing player is in the process of determining its
resource requirements. During realization, a player acquires the resource
it only needs to acquire once. These might include rendering resources
than exclusive-use resources. (Exclusive-use resources are limited reso
such as particular hardware devices that can only be used by one playe
time; such resources are acquired duringPrefetching.)

• When a player finishes realizing, it moves into theRealized state. ARealized
player knows what resources it needs and something about the media i
present. Because aRealized player knows how to render itself, it can provid
its visual components and controls. Its connections to other objects in th

Unrealized RealizedRealizing PrefetchedPrefetching Started

realize RCE prefetch PFCE

StopEventdeallocate

deallocate, setMediaTime

RCE = RealizeCompleteEvent; PFCE = PrefetchCompleteEvent

StartedStopped

Java Media Players - Player States 7

nt

-use
y.

ffers

ough
dia

sure
r.

a
 the
system are in place, but it does not own any resources that would preve
another player from starting.

• Whenprefetch is called, a player moves from theRealized state into the
Prefetching state. APrefetching player is preparing to present its media.
During this phase, the player can preload its media data, obtain exclusive
resources, and anything else that it must do every time it prepares to pla
Prefetching might have to recur if a player’s media presentation is
repositioned, or if a change in the player’s rate requires that additional bu
be acquired or alternate processing take place.

• When a player finishes prefetching, it moves into thePrefetched state. A
Prefetched player is ready to be started; it is as ready to play as it can be
without actually being started.

• Callingstart puts a player into theStarted state. AStarted player’s time-
base time and media time have been mapped and its clock is running, th
the player might be waiting for a particular time to begin presenting its me
data.

A player postsTransitionEvents as it moves from one state to another. The
controllerListener interface provides a way for your program to determine
what state a player is in and to respond appropriately.

This mechanism allows you to manage player latency by controlling when a
player begins realizing and prefetching. It also provides a way that you can en
that the player is in an appropriate state before calling methods on the playe

1.4.1 Methods Available in Each Player State

To prevent race conditions and deadlocks, not all methods can be called on
player in every state. The following table identifies the restrictions imposed by
JMF. If you call a method that is illegal in a player’s current state, the player
throws an error or exception.

Table 1: Restrictions on Player Methods

Method Unrealized
Player

Realized
Player

Prefetched
Player

Started
Player

getStartLatency NotRealizedError legal legal legal

getTimeBase NotRealizedError legal legal legal

setMediaTime NotRealizedError legal legal legal

Java Media Framework – Version 1.0 Draft May 14, 19978

al in
rol
ition

sing

annot

or
e

you
er

r

1.5 Calling JMF Methods

JMF uses the following convention for errors and exceptions:

• Java Media Errors are thrown when a program calls a method that is illeg
the current context. Errors are thrown in situations where you have cont
over the context and the requested operation could result in a race cond
or deadlock. For example, it is an error to call certain methods on aStarted
player. It is your responsibility to ensure that a player is stopped before u
these methods.

• Java Media Exceptions are thrown when a program calls a method that c
be completed or is not applicable in the current context. Exceptions are
thrown in situations where you do not necessarily have control over the
current context. For example, an exception is thrown if you attempt to
synchronize two players with incompatible time bases. This is not an err
because you could not determine ahead of time that the time bases wer
incompatible. Similarly, if you call a method that is only applicable for a
Started player and the player is stopped, an exception is thrown. Even if
just started the player, it might have already stopped in response to oth
conditions, such as end of media.

setRate NotRealizedError legal legal legal

getVisualComponent NotRealizedError legal legal legal

getControlPanelComponent NotRealizedError legal legal legal

getGainControl NotRealizedError legal legal legal

setStopTime NotRealizedError legal legal StopTimeSetError
if previously set

syncStart NotPrefetchedError NotPrefetchedError legal ClockStartedErro

setTimeBase NotRealizedError legal legal ClockStartedError

deallocate legal legal legal ClockStartedError

addController NotRealizedError legal legal ClockStartedError

removeController NotRealizedError legal legal ClockStartedError

mapToTimeBase ClockStoppedException ClockStoppedException ClockStoppedException legal

Method Unrealized
Player

Realized
Player

Prefetched
Player

Started
Player

Java Media Players - Overview of PlayerApplet 9

l. In
alled
ap-

edia

t rate
 out.

le, a
ce.

eam.

dia
neral
s.

let’s
plica-

po-

r, it
 For a
 Java

’s
Some JMF methods return values that indicate the results of the method cal
some instances, these results might not be what you anticipated when you c
the method; by checking the return value, you can determine what actually h
pened. For example, the return value might indicate:

• What value was actually set. For example, not all players can present m
data at five times the normal rate. If you callsetRate(5.0), the player will
set its rate as close as it can to 5.0 and return the rate it actually set. Tha
might be 5.0, or it might be 1.0; you need to check the return value to find

• That the operation could not be completed. For example, when you call
createPlayer, the method returnsnull if the requested player could not be
created.

• That the information you requested is not currently available. For examp
player might not know its duration until it has played its media stream on
If you callgetDuration on such a player before it has played,getDuration

returnsDURATION_UNKNOWN. If you callgetDuration again after the player
has played, it might be able to return the actual duration of the media str

2.0 Example: Creating an Applet to Play a Media File

The sample programPlayerApplet demonstrates how to create a Java Me
Player and present an MPEG movie from within a Java applet. This is a ge
example that could easily be adapted to present other types of media stream

The player’s visual presentation and its controls are displayed within the app
presentation space in the browser window. If you create a player in a Java ap
tion, you are responsible for creating the window to display the player’s com
nents.

Note: While PlayerApplet illustrates the basic usage of a Java Media Playe
does not perform the error handling necessary in a real applet or application.
more complete sample suitable for use as a template, see “Appendix A:
Media Applet” on page 31.

2.1 Overview of PlayerApplet

TheAPPLET tag is used to invokePlayerApplet in anHTML file. TheWIDTH and
HEIGHT fields of the HTMLAPPLET tag determine the dimensions of the applet
presentation space in the browser window. ThePARAM tag identifies the media file
to be played. For example,PlayerApplet could be invoked with:

Java Media Framework – Version 1.0 Draft May 14, 199710

yer’s
G
eplay
ing
g.
<APPLET CODE=ExampleMedia.PlayerApplet
WIDTH=320 HEIGHT=300>
<PARAM NAME=FILE VALUE="Astrnmy.mpg">
</APPLET>

When an user opens a web page containingPlayerApplet, the applet loads auto-
matically and runs in the specified presentation space, which contains the pla
visual component and default controls. The player starts and plays the MPE
movie once. The user can use the default player controls to stop, restart, or r
the movie. If the page containing the applet is closed while the player is play
the movie, the player automatically stops and frees the resources it was usin

To accomplish this,PlayerApplet extendsApplet and implements theControl-
lerListener interface, defining four methods:

• init—creates a player for the file that was passed in through thePARAM tag
and registersPlayerApplet as a controller listener so that it can observe
media events posted by the player. (PlayerApplet’s controllerUpdate

method is called whenever the player posts an event.)

• start—starts the player whenPlayerApplet is started.

• stop—stops and deallocates the player when thePlayerApplet is stopped.

• controllerUpdate—responds to player events to display the player’s
components.

Java Media Players - PlayerApplet Code Listing 11
2.2 PlayerApplet Code Listing

PlayerApplet.java:
package ExampleMedia

import java.applet.*;
import java.awt.*;
import java.net.*;
import java.media.*;

public class PlayerApplet extends Applet implements
ControllerListener {
 Player player = null;
 public void init() {
 setLayout(new BorderLayout());
 String mediaFile = getParameter(“FILE”);
 try {
 URL mediaURL = new URL(getDocumentBase(),
 mediaFile);
 player = Manager.createPlayer(mediaURL);
 player.addControllerListener(this);
 } catch (Exception e) {
 System.err.println("Got exception "+e);
 }
 }
 public void start() {
 player.start();
 }
 public void stop() {
 player.stop();
 player.deallocate();
 }
 public synchronized void controllerUpdate(ControllerEvent
 event) {
 if (event instanceof RealizeCompleteEvent) {
 Component comp;
 if ((comp = player.getVisualComponent()) != null)
 add ("Center", comp);
 if ((comp = player.getControlPanelComponent()) != null)
 add ("South", comp);
 validate();
 }
 }
}

Java Media Framework – Version 1.0 Draft May 14, 199712

lling

yer
 state
ions
rocess
2.3 Initializing the Applet

When a Java applet starts, itsinit method is invoked automatically. You override
init to prepare your applet to be started.PlayerApplet performs four tasks in
init:

1. Retrieves the applet’s FILE parameter.

2. Uses the FILE parameter to locate the media file and build aURL object that
describes that media file.

3. Creates a player for the media file by callingManager.createPlayer.

4. Registers the applet as a controller listener with the new player by ca
addControllerListener. Registering as a listener causesPlayerApplet’s

controllerUpdate method to be called automatically whenever the pla
posts a media event. The player posts media events whenever its
changes. This mechanism allows you to control the player’s transit
between states and ensure that the player is in a state in which it can p
your requests. (For more information, see “Player States” on page 6.)

public void init() {
 setLayout(new BorderLayout());
 // 1. Get the FILE parameter.
 String mediaFile = getParameter(“FILE”);
 try {
 // 2. Create a URL from the FILE parameter. The URL
class is defined in java.net.
 URL mediaURL = new URL(getDocumentBase(), mediaFile);
 // 3. Create a player with the URL object.
 player = Manager.createPlayer(mediaURL);
 // 4. Add PlayerApplet as a listener on the new player.
 player.addControllerListener(this);
 } catch (Exception e) {
 System.err.println("Got exception "+e);
 }
 }

Java Media Players - Controlling the Player 13

se

layer
ent its
2.4 Controlling the Player

TheApplet class definesstart andstop methods that are called automatically
when the page containing the applet is opened and closed. You override the
methods to define what happens each time your applet starts and stops.

PlayerApplet implementsstart to start the player whenever the applet is
started:

public void start() {
 player.start();
}

Similarly, PlayerApplet overridesstop to stop and deallocate the player:

public void stop() {
 player.stop();
 player.deallocate();
}

Deallocating the player releases any resources that would prevent another p
from being started. For example, if the player uses a hardware device to pres
media,deallocate frees that device so that other players can use it.

2.5 Responding to Media Events

PlayerApplet registers itself as aControllerListener in itsinit method so
that it receives media events from the player. To respond to these events,Player-

Applet implements thecontrollerUpdate method, which is called automati-
cally when the player posts an event.

PlayerApplet responds to one type of event,RealizeCompleteEvent. When the
player posts aRealizeCompleteEvent, PlayerApplet displays the player’s com-
ponents:

public synchronized void controllerUpdate(ControllerEvent
event) {
 if (event instanceof RealizeCompleteEvent) {
 Component comp;
 if ((comp = player.getVisualComponent()) != null)

Java Media Framework – Version 1.0 Draft May 14, 199714

real-
ovide

t

mpo-

 space

an

lient
player
ded

, but

s, its
 add ("Center", comp);
 if ((comp = player.getControlPanelComponent()) != null)
 add ("South", comp);
 validate();
 }

A player’s user-interface components cannot be displayed until the player is
ized; an unrealized player doesn’t know enough about its media stream to pr
access to its user-interface components.PlayerApplet waits for the player to
post aRealizeCompleteEvent and then displays the player’s visual componen
and default control panel by adding them to the applet container. Callingvali-

date triggers the layout manager to update the display to include the new co
nents.

3.0 Creating and Displaying a Player

You create a player indirectly through the mediaManager. To display the player,
you get the player’s components and add them to the applet’s presentation
or application window.

3.1 Creating a Player

When you need a new player, you request it from theManager by calling
createPlayer. TheManager uses the media URL that you specify to create
appropriate player.

This mechanism allows new players to be integrated seamlessly. From the c
perspective, a new player is always created the same way, even though the
might actually be constructed from interchangeable parts or dynamically loa
at runtime.

3.2 Displaying a Player and Player Controls

JMF specifies the timing and rendering model for displaying a media stream
a player’s interface components are actually displayed usingjava.awt, Java’s
core package for screen display. A player can have two types of component
visual component and its control components.

Java Media Players - Displaying a Player and Player Controls 15

om-
such

lled

l the
 but-
djust

r’s

fine
 stan-

f
ontrol
n be
just

hese
3.2.1 Displaying a Player’s Visual Component

The component in which a player displays its media data is called its visual c
ponent. Even an audio player might be associated with a visual component,
as a speaker icon or an animated character.

To display a player’s visual component, you:

1. Get the component by callinggetVisualComponent.

2. Add it to the applet’s presentation space or application window.

You can access the player’s display properties, such as itsx andy coordinates,
through its visual component. The layout of the player components is contro
through the layout manager.

3.2.2 Displaying a Player’s Controls

A player is often associated with a control panel that allows the user to contro
media presentation. For example, a player might be associated with a set of
tons to start, stop, and pause the media stream, and with a slider control to a
the volume.

Every Java Media Player provides a default control panel. To display a playe
default control panel, you get it by callinggetControlPanelComponent and add
it to the applet’s presentation space or application window. If you prefer to de
a custom user-interface, you have access to the interfaces through which the
dard control panel is implemented.

A player’s control-panel component is often a client of two different classes o
objects. For example, to start and stop the player or set its media time, the c
panel calls the player directly. But many players have other properties that ca
managed by the user. For example, a video player might allow the user to ad
brightness and contrast, which are not managed through thePlayer interface.To
handle these types of controls, JMF defines theControl interface.

A media player can have any number ofControl objects that define control
behaviors and have corresponding user interface components. You can get t
controls by callinggetControls on the player. For example, to determine if a
player supports theCachingControl interface and get theCachingControl if it
does, you can callgetControls:

Control[] controls = player.getControls ();

Java Media Framework – Version 1.0 Draft May 14, 199716

t-

e

 the
 reas-
 how
-
e this

wn
ad

to-
bar in
 for (int i = 0; i < controls.length; i++) {
 if (controls[i] instanceof CachingControl) {
 cachingControl = (CachingControl) controls[i];
 }
 }

The controls that are supported by a particular player depends on the player
implementation.

3.2.3 Displaying a Gain Control Component

GainControl extends theControl interface to provide a standard API for adjus
ing audio gain. To get this control, you must callgetPlayerGainControl; get-
Controls does not return a player’sGainControl. GainControl provides
methods for adjusting the audio volume, such assetLevel andsetMute. Like
other controls, theGainControl is associated with a GUI component that can b
added to an applet’s presentation space or an application window

3.2.4 Displaying a Player’s Download Progress

Downloading media data can be a time consuming process. In cases where
user must wait while data is downloaded, a progress bar is often displayed to
sure the user that the download is proceeding and to give some indication of
long the process will take. TheCachingControl interface is a special type of con
trol supported by players that can report their download progress. You can us
interface to display a download progress bar to the user.

You can callgetControls to determine whether or not a player supports the
CachingControl interface. If it does, the player will post aCachingControlEv-
ent whenever the progress bar needs to be updated. If you implement your o
progress bar component, you can listen for this event and update the downlo
progress wheneverCachingControlEvent is posted.

A CachingControl also provides a default progress bar component that is au
matically updated as the download progresses. To use the default progress
an applet:

1. Implement the ControllerListener interface and listen for
CachingControlEvents in controllerUpdate.

2. The first time you receive aCachingControlEvent:

a. CallgetCachingControl on the event to get the caching control.

Java Media Players - Starting a Player 17

s

g a

ee

lling
b. CallgetProgressBar on theCachingControl to get the default progress
bar component.

c. Add the progress bar component to the applet’s presentation space.

3. Each time you receive aCachingControlEvent, check to see if the download
is complete. WhengetContentProgress returns the same value a
getContentLength, remove the progress bar.

4.0 Controlling Media Players

TheClock andPlayer interfaces define the methods for starting and stoppin
player.

4.1 Starting a Player

You typically start a player by callingPlayer.start.Thestart method tells the
player to begin presenting media data as soon as possible. If necessary,start pre-
pares the player to start by performing the realize and prefetch operations. If
start is called on aStarted player, the only effect is that aStartEvent is posted
in acknowledgment of the method call.

Clock defines asyncStart method that can be used for synchronization. S
“Synchronizing Players” on page 25 for more information.

To start a player at a specific point in a media stream:

1. Specify the point in the media stream at which you want to start by ca
setMediaTime.

2. Callstart on the player.

4.2 Stopping a Player

There are three situations in which a player will stop:

• When thestop method is called on the player.

• When the player has reached the specified stop time.

• When the player has run out of media data.

Java Media Framework – Version 1.0 Draft May 14, 199718

ped
hen

t
e.

ops
sitive,
ime. If
s less
edia

nd
r, if
me-
for-

et
r

When a non-broadcast player is stopped, its media time is frozen. If the stop
player is subsequently restarted, media time resumes from the stop time. W
you stop a broadcast player, however, only the receipt of the media data is
stopped, the data continues to be broadcast. When you restart the broadcas
player, the playback will resume wherever the broadcast is at that point in tim

You use thestop method to stop a player immediately. If you callstop on a
Stopped player, the only effect is that aStopByRequestEvent is posted in
acknowledgment of the method call.

4.2.1 Stopping a Player at a Specified Time

You can callsetStopTime to indicate when a player should stop. The player st
when its media time passes the specified stop time. If the player’s rate is po
the player stops when the media time becomes greater or equal to the stop t
the player’s rate is negative, the player stops when the media time become
than or equal to the stop time. The player stops immediately if its current m
time is already beyond the specified stop time.

For example, assume that media time is 5.0 and thesetStopTime is called to set
the stop time to 6.0. If the player’s rate is positive, media time is increasing a
the player will stop when the media time becomes greater than 6.0. Howeve
the player’s rate is negative, it is playing in reverse and the player will stop im
diately because the media time is already beyond the stop time. (For more in
mation about player rates, see “Setting a Player’s Rate” on page 24.)

You can always callsetStopTime on a stopped player. However, you can only s
the stop time on aStarted player if the stop time is not currently set. If the playe
already has a stop time,setStopTime throws an error.

You can callgetStopTime to get the currently scheduled stop time. If the clock
has no scheduled stop time,getStopTime returnsLong.MAX_VALUE. To remove
the stop time so that the player continues until it reaches end-of-media, callset-

StopTime(Long.MAX_VALUE).

5.0 Managing Player States

The transitions between states are controlled with five methods:

• realize

• prefetch

• start

Java Media Players - Preparing a Player to Start 19

a
he

 state
yer’s

ertain
r has
re the
might
ven if
t valid

es

nting
s

 oper-
sly
• deallocate

• stop

By controlling when these methods are called, you can manage the state of
player. For example, you might want to minimize start-latency by preparing t
player to start before you actually start it.

You can implement theControllerListener interface to manage these control
methods in response to changes in the player’s state. Listening for a player’s
transitions is also important in other cases. For example, you cannot get a pla
components until the player has beenRealized. By listening for aRealizeCom-
pleteEvent you can get the components as soon as the player isRealized.

5.1 Preparing a Player to Start

Most media players cannot be started instantly. Before the player can start, c
hardware and software conditions must be met. For example, if the playe
never been started, it might be necessary to allocate buffers in memory to sto
media data. Or if the media data resides on a network device, the player
have to establish a network connection before it can download the data. E
the player has been started before, the buffers might contain data that is no
for the current media position.

5.1.1 Realizing and Prefetching the Player

JMF breaks the process of preparing a player to start into two phases,Realizing
andPrefetching. Realizing and prefetching a player before you start it minimiz
the time it takes the player to begin presenting media whenstart is called and
helps create a highly-responsive interactive experience for the user. Impleme
theControllerListener interface allows you to control when these operation
occur.

You callrealize to move the player into theRealizing state and begin the real-
ization process. You callprefetch to move the player into thePrefetching state
and initiate the prefetching process. “Player States” on page 6 describes the
ations that a player performs in each of these states. You cannot synchronou
move the player directly into theRealized or Prefetched state. When it completes
the operation, the player posts aRealizeCompleteEvent or PrefetchComple-
teEvent.

Java Media Framework – Version 1.0 Draft May 14, 199720

not

at a

lished

yer

di-
hen
ith

,

A player in thePrefetched state is prepared to start and its start-up latency can
be further reduced. However, setting the media time throughsetMediaTime might
return the player to theRealized state, increasing its start-up latency.

Keep in mind that aPrefetched player ties up system resources. Because some
resources, such as sound cards, might only be usable by only one program
time, this might prevent other players from starting.

5.1.2 Determining a Player’s Start-up Latency

To determine how much time is required to start a player, you can callgetStart-

Latency. For players that have a variable start latency, the return value ofget-

StartLatency represents the maximum possible start latency.

The start-up latency reported bygetStartLatency might differ depending on the
player’s current state. For example, after aprefetch operation, the value returned
by getStartLatency is typically smaller.

A player is not guaranteed to start at a specified time unless you have estab
that the start time is feasible by callinggetStartLatency. For some media types,
getStartLatency might be unable to return a useful value.

5.2 Starting and Stopping a Player

Callingstart moves a player into theStarted state. As soon asstart is called,
methods that are only legal for stopped players cannot be called until the pla
has been stopped.

If start is called and the player has not been prefetched,start performs the real-
ize and prefetch operations as needed to move the player into thePrefetched state.
The player posts transition events as it moves through each state.

Whenstop is called on a player, the player is considered to be stopped imme
ately;stop is synchronous. However, a player can also stop asynchronously w
it reaches either the end of its media stream or the stop time previously set w
setStopTime.

When a player stops, it posts aStopEvent. To determine why the player stopped
you must listen for the specific stop events:DeallocateEvent, EndOfMediaE-
vent, RestartingEvent, StopAtTimeEvent, orStopByRequestEvent.

Java Media Players - Releasing Player Resources 21

 min-
n-

rs

er
s

,

ated

ime-
5.3 Releasing Player Resources

Thedeallocate method tells a player to release any exclusive resources and
imize its use of non-exclusive resources. Although buffering and memory ma
agement requirements for players are not specified, most Java Media Playe
allocate buffers that are large by the standards of Java objects. A well-imple-
mented player releases as much internal memory as possible whendeallocate is
called.

The deallocate method can only be called on aStopped player. To avoid
ClockStartedErrors, you should callstop before you calldeallocate. Calling
deallocate on a player in thePrefetching or Prefetched state returns it to the
Realized state. Ifdeallocate is called while the player is realizing, the play
posts adeallocateEvent and returns to theUnrealized state. (Once a player ha
been realized, it can never return to theUnrealized state.)

You generally calldeallocate when the player is not being used. For example
an applet should calldeallocate as part of itsstop method. By callingdeallo-
cate, the program can maintain references to the player, while freeing other
resources for use by the system as a whole. (JMF does not prevent aRealized
player that has formerly beenPrefetched or Started from maintaining information
that would allow it to be started up more quickly in the future.)

5.4 Implementing the ControllerListener Interface

ControllerListener is an asynchronous interface for handling events gener
by Controller objects. By implementing theControllerListener interface and
using the player control methods, you can manage the timing of potentially t
consuming player operations such as prefetching.

To implement theControllerListener interface, you need to:

1. Register your class as a listener by callingaddControllerListener.

2. Implement thecontrollerUpdate method.

When a controller posts an event, it callscontrollerUpdate on each registered
listener. Typically,controllerUpdate is implemented as a series ofif-else

statements of the form:

if(instanceof EventType){
...

Java Media Framework – Version 1.0 Draft May 14, 199722

 as a
ated
 that

-

on.
t

 end,
eam.
the

y that
. The

om a
n by

er
a stop-
} else if (instanceof OtherEventType){
...
}

This filters out the events that you are not interested in. If you have registered
listener with multiple players, you also need to determine which player gener
the event. Controller events come “stamped” with a reference to their source
you can access by callinggetSource.

You should also check the target state by callinggetTargetState before calling
any of the methods that are restricted toStopped players. Ifstart has been called,
the player is considered to be in theStarted state, though it might be posting tran
sition events as it prepares the player to present media.

Some classes of controller event are stamped with additional state informati
For example, theStartEvent andStopEvent classes each define a method tha
allows you to retrieve the media time at which the event occurred.

6.0 Managing Timing and Synchronization

In many cases, instead of playing a single media stream from beginning to
you want to play a portion of the stream or synchronize the playback of a str
The JMFTimeBase andClock interfaces define the mechanism for managing
timing and synchronization of media playback.

A time base represents the flow of time. Atime-base time cannot be transformed
or reset. A Java Media Player uses its time base to keep time in the same wa
a quartz watch uses a crystal that vibrates at a known frequency to keep time
system maintains a master time-base that measures time in nanoseconds fr
specified base time, such as January 1, 1970. The system time-base is drive
the system clock and is accessible through theManager.getSystemTimeBase
method.

A player’smedia time represents a point in time within the stream that the play
is presenting. The media time can be started, stopped, and reset, much like
watch.

A clock defines the mapping between a time base and the media time.

Java Media Players - Setting the Media Time 23

edia
sical
evice

in a
unded;

.

. If
edia
een a

iod of

for 5
A Java Media Player can answer several useful timing queries about the m
source it is presenting. Of course, timing information is subject to the phy
characteristics and limitations of both the media source and of the network d
on which it is stored.

6.1 Setting the Media Time

Setting a player’s media time is equivalent to setting a read position with
media stream. For a media data source such as a file, the media time is bo
the maximum media time is defined by the end of the media stream.

To set the media time you callsetMediaTime, specifying a time in nanoseconds

6.2 Getting the Current Time

Calling getMediaTime returns the player’s current media time in nanoseconds
the player is not presenting media data, this is the point from which m
presentation will commence. There is not a one-to-one correspondence betw
media time and a particular frame. Each frame is presented for a certain per
time, and the media time continues to advance during this period.

For example, imagine you have a slide show player that displays each slide
seconds—the player essentially has a frame rate of 0.2 frames per second.

time-base time

media time

start stop start stop

end of media0

Java Media Framework – Version 1.0 Draft May 14, 199724

ia
yed

ith

se

o a

-base
it of
r. For

e time-

 inter-
epen-

in
If you start the player at time 0.0, while the first “frame” is displayed, the med
time advances from 0.0 to 5.0. If you start at time 2.0, the first frame is displa
for 3 seconds, until time 5.0 is reached.

Media time is measured in nanoseconds because different types of media w
varying frame rates can be presented together.

You can get a player’s current time-base time by getting the player’s time ba
and callinggetRefTime:

myCurrentTBTime = player1.getTimeBase().getRefTime();

When a player is running, you can get the time-base time that corresponds t
particular media time by callingmapToTimeBase.

6.3 Setting a Player’s Rate

The player’s rate determines how media time changes with respect to time
time; it defines how many units a player’s media time advances for every un
time-base time. The player’s rate can be thought of as a temporal scale facto
example, a rate of 2.0 indicates that media time passes twice as fast as th
base time when the player is started.

In theory, a player’s rate could be set to any real number, with negative rates
preted as playing the media in reverse. However, some media formats have d
dencies between frames that make it impossible or impractical to play them
reverse, or at non-standard rates.

5 10 15} }}

frame 1 frame 2 frame 3

getMediaTime

Duration

5

10

15

Java Media Players - Getting a Player’s Duration 25

lly
e of

 will
n-

a-

 of the
ation,

 the

, you
 syn-
m

tire

e
tly. If

r
s can
WhensetRate is called on a player, the method returns the rate that is actua
set, even if it has not changed. Player’s are only guaranteed to support a rat
1.0.

6.4 Getting a Player’s Duration

Since your program might need to determine how long a given media stream
run, all players implement theDuration interface. This interface comprises a si
gle method,getDuration. Duration represents the length of time that a media
object would run for, if played at the default rate of 1.0. A media stream’s dur
tion is accessible only through the player itself. The value returned bygetDura-

tion is an absolute value that represents time in nanoseconds.

If the duration cannot be determined,getDuration returnsDURATION_UNKNOWN.
This can happen if the player has not yet reached a state where the duration
media source is available, or if the media source does not have a defined dur
as in the case of a live broadcast.

6.5 Synchronizing Players

To synchronize the playback of multiple media streams, you can synchronize
players by associating them with the same time base. To do this, you use theget-

TimeBase andsetTimeBase methods defined by theClock interface. For exam-
ple, you could synchronizeplayer1 with player2 by settingplayer1 to use
player2’s time base:

player1.setTimeBase(player2.getTimeBase());

When you synchronize players by associating them with the same time base
must still manage the control of each player individually. Because managing
chronized players in this way can be complicated, JMF provides a mechanis
that allows aPlayer to assume control over anyController. The player manages
the states of the controllers automatically, allowing you to interact with the en
group through a single point of control. For more information, see “Using a
Player to Manage and Synchronize other Controllers” on page 27.

In a few situations, you might want to manage the synchronization of multipl
players yourself so that you can control the rates or media times independen
you do this, you must:

• Register as a listener for each synchronized player.

• Determine which player’s time base is going to be used to drive the othe
players and set the time base for the synchronized players. Not all player

Java Media Framework – Version 1.0 Draft May 14, 199726

ed to

rying

s.

ich
eed to

 need
e

d by
 wait

before

ro-
tarts

ived.
assume a new time base. For example, if one of the players you want to
synchronize has a push data source, that player’s time base must be us
drive the other players.

• Set the rate for all of the players. If a player cannot support the rate you
specify, it returns the rate that was used. (There is no mechanism for que
the rates that a player supports.)

• Synchronize the players’ states. (For example, stop all of the players.)

• Synchronize the operation of the players:

n Set the media time for each player.

n Prefetch all of the players.

n Determine the maximum start latency among the synchronized player

n Start the players by callingsyncStart with a time that takes into account
the maximum latency.

You must listen for transition events for all of the players and keep track of wh
ones have posted events. For example, when you prefetch the players, you n
keep track of which ones have postedPrefetchComplete events so that you can
be sure all of the players are prefetched before callingsyncStart. Similarly,
when you request that the synchronized players stop at a particular time, you
to listen for the stop event posted by each player to determine when all of th
players have actually stopped.

In some situations, you need to be careful about responding to events poste
the synchronized players. To be sure of the players’ states, you might need to
at certain stages for all of the synchronized players to reach the same state
continuing.

For example, assume that you are using one player to drive a group of synch
nized players. A user interacting with that player sets the media time to 10, s
the player, and then changes the media time to 20. You then:

• Pass along the firstsetMediaTime call to all of the synchronized players

• Call prefetch on the players to prepare them to start

• Call stop on the players when the second set media time request is rece

• Call setMediaTime on the players with the new time.

• Restart the prefetching operation.

• When all of the players have been prefetched, start them by calling
syncStart, taking into account their start latencies.

Java Media Players - Synchronizing Players 27

re
blem,

 one
opri-
ugh

er
Con-

by

uld
an

nd

 and
In this case, simply listening forPrefetchComplete events from all of the players
before callingsyncStart isn’t sufficient. You can’t tell whether those events we
posted in response to the first or second prefetch operation. To avoid this pro
you can block when you callstop and wait for all of the players to post stop
events before continuing. This guarantees that the nextPrefetchComplete events
you receive are the ones you are really interested in.

7.0 Using a Player to Manage and Synchronize other
Controllers

Synchronizing players manually usingsyncStart requires that you carefully
manage the states of all of the synchronized players. You must control each
individually, listening for events and calling control methods on them as appr
ate. Even with only a few players, this quickly becomes a difficult task. Thro
thePlayer interface, JMF provides a simpler solution: aPlayer can be used to
manage the operation of anyController.

When you interact with a managingPlayer, your instructions are automatically
passed along to the managed controllers as appropriate. The managing play
takes care of the state management and synchronization for all of the other
trollers.

This mechanism is implemented through thePlayer.addController and
Player.removeController methods. When you calladdController on a
Player, theController you specify is added to the list of controllers managed
the player. Conversely, when you callremoveController, the specifiedControl-
ler is removed from the list of managed controllers.

Typically when you need to synchronize players or other controllers, you sho
use thisaddController mechanism. It is simpler, faster, and less error-prone th
attempting to manage synchronized players individually.

When aPlayer assumes control of aController:

• TheController assumes thePlayer’s time-base.

• ThePlayer’s duration becomes the longer of the controller’s duration a
its own. If multiple controllers are placed under a player’s control, the
player’s duration is the longest of all of their durations.

• The Player’s start latency becomes the longer of the controller’s duration
its own. If multiple controllers are placed under a player’s control, the
player’s start latency is the longest of all of their latencies.

Java Media Framework – Version 1.0 Draft May 14, 199728

fter

s
and
A managingPlayer only posts completion events for asynchronous methods a
every addedController has posted the event. The managingPlayer reposts
other events generated by the managedControllers as appropriate.

7.1 Adding a Controller

You use theController.addController method to add aController to the list
of controllers managed by a particularPlayer. To be added, aController must
be in theRealized state; otherwise, aNotRealizedError is thrown. Two players
cannot be placed under control of each other.

Once aController has been added to aPlayer, do not call methods directly on
the addedController. To control an addedController, you interact with the
managingPlayer.

To haveplayer2 assume control ofplayer1, call:

player2.addController(player1)

7.2 Managing the Operation of Added Controllers

To control the operation of a group of controllers managed by a particularPlayer,
you interact directly with the managingPlayer. Do not call control methods on
the managed controllers directly.

For example, to prepare all of the managedControllers to start, callprefetch
on the managingPlayer. Similarly, when you want to start them, callstart on
the managingPlayer. The managingPlayer makes sure that all of the controller
arePrefetched, determines the maximum start latency among the controllers,
callssyncStart to start them, specifying a time that takes the maximum start
latency into account.

When you call aController method on the managingPlayer, thePlayer propa-
gates the method call to the managedControllers as appropriate. Before calling
aController method on a managedController, thePlayer ensures that the
Controller is in the proper state. The following table shows theController

methods that affect managedControllers.

Function Stopped Player Started Player

setMediaTime InvokessetMediaTime on all man-
aged Controllers.

Stops all managed Controllers, invokes
setMediaTime, and restarts Controllers.

Java Media Players - Removing a Controller 29

 new
 new

ow
7.3 Removing a Controller

You use theController.removeController method to remove aController
from the list of controllers managed by a particularPlayer.

To haveplayer2 release control ofplayer1, call:

player2.removeController(player1)

8.0 Extending JMF

The JMF architecture allows advanced developers to create and integrate
types of controllers and data sources. For example, you might implement a
Player that supports a special media format.

This section introduces the JMF Player Factory architecture and describes h
JMF can be extended.

setRate InvokessetRate on all managed
Controllers. Returns the actual rate
that was supported by all Controllers
and set.

Stops all managed Controllers, invokes
setRate, and restarts Controllers. Re-
turns the actual rate that was supported
by all Controllers and set.

start Ensures all managed Controllers are
Prefetched and invokessyncStart on
each of them, taking into account their
start latencies.

Illegal.

realize Invokesrealize on all managed
Controllers.

Illegal.

prefetch Invokesprefetch on all managed
Controllers.

Illegal.

stop No effect. Invokesstop on all managed Control-
lers.

deallocate Invokesdeallocate on all managed
Controllers.

Invokesdeallocate on all managed
Controllers.

setStopTime InvokessetStopTime on all managed
Controllers. (Player must beReal-
ized.)

InvokessetStopTime on all managed
Controllers. (Can only be set once on a
Started Player.)

syncStart InvokessyncStart on all managed
Controllers. (Player must be
Prefetched.)

Illegal.

Java Media Framework – Version 1.0 Draft May 14, 199730
8.1 Understanding the Player Factory Architecture

1

t

m.
er.

 the
Appendix A:
Java Media Apple

This Java Applet demonstrates proper error checking in a Java Media progra
Like PlayerApplet, it creates a simple media player with a media event listen

When this applet is started, it immediately begins to play the media clip. When
end of media is reached, the clip replays from the beginning.

import java.applet.Applet;
import java.awt.*;
import java.lang.String;
import java.net.URL;
import java.net.MalformedURLException;
import java.io.IOException;
import java.media.*;

/**
 * This is a Java Applet that demonstrates how to create a simple
 * media player with a media event listener. It will play the
 * media clip right away and continuously loop.
 *
 * <!-- Sample HTML
 * <applet code=TypicalPlayerApplet width=320 height=300>
 * <param name=file value="Astrnmy.avi">
 * </applet>
 * -->
 */
public class TypicalPlayerApplet extends Applet implements
ControllerListener {

// media player
31

Java Media Players – Version 0.95, January 31, 199732
 Player player = null;
 // component in which video is playing
 Component visualComponent = null;
 // controls gain, position, start, stop
 Component controlComponent = null;
 // displays progress during download
 Component progressBar = null;
 /**
 * Read the applet file parameter and create the media
 * player.
 */
 public void init() {
 setLayout(new BorderLayout());
 // input file name from html param
 String mediaFile = null;
 // URL for our media file
 URL url = null;
 // URL for doc containing applet
 URL codeBase = getDocumentBase();

 // Get the media filename info.
 // The applet tag should contain the path to the
 // source media file, relative to the html page.

 if ((mediaFile = getParameter("FILE")) == null)
 Fatal("Invalid media file parameter");

 try {
 // Create an url from the file name and the url to the
 // document containing this applet.

 if ((url = new URL(codeBase, mediaFile)) == null)
 Fatal("Can't build URL for " + mediaFile);

 // Create an instance of a player for this media
 if ((player = Manager.createPlayer(url)) == null)
 Fatal("Could not create player for "+url);

 // Add ourselves as a listener for player's events
 player.addControllerListener(this);
 } catch (MalformedURLException e) {
 Fatal("Invalid media file URL!");
 } catch(IOException e) {
 Fatal("IO exception creating player for "+url);
 }

33
 // This applet assumes that its start() calls
 // player.start().This causes the player to become
 // Realized. Once Realized, the Applet will get
 // the visual and control panel components and add
 // them to the Applet. These components are not added
 // during init() because they are long operations that
 // would make us appear unresposive to the user.
 }

 /**
 * Start media file playback. This function is called the
 * first time that the Applet runs and every
 * time the user re-enters the page.
 */
 public void start() {
 // Call start() to prefetch and start the player.
 if (player != null)
 player.start();
 }

 /**
 * Stop media file playback and release resources before
 * leaving the page.
 */
 public void stop() {
 if (player != null){
 player.stop();
 player.deallocate();
 }
 }

 /**
 * This controllerUpdate function must be defined in order
 * to implement a ControllerListener interface. This
 * function will be called whenever there is a media event.
 */
 public synchronized void
 controllerUpdate(ControllerEvent event) {

 // If we're getting messages from a dead player,
 // just leave
 if (player == null)
 return;

 // When the player is Realized, get the visual
 // and control components and add them to the Applet

Java Media Players – Version 0.95, January 31, 199734
 if (event instanceof RealizeCompleteEvent) {

 if ((visualComponent =
 player.getVisualComponent()) != null)
 add("Center", visualComponent);

 if ((controlComponent =
 player.getControlPanelComponent()) != null)
 add("South",controlComponent);

 // force the applet to draw the components
 validate();
 }

 else if (event instanceof CachingControlEvent) {

 // Put a progress bar up when downloading starts,
 // take it down when downloading ends.

 CachingControlEvent e = (CachingControlEvent) event;
 CachingControl cc = e.getCachingControl();
 long cc_progress = e.getContentProgress();
 long cc_length = cc.getContentLength();

 // Add the bar if not already there ...
 if (progressBar == null)
 if ((progressBar =
 cc.getProgressBarComponent()) != null) {
 add("North", progressBar);
 validate();
 }

 // Remove bar when finished ownloading
 if (progressBar != null)
 if (cc_progress == cc_length) {
 remove (progressBar);
 progressBar = null;
 validate();
 }
 }

 else if (event instanceof EndOfMediaEvent) {
 // We've reached the end of the media; rewind and
 // start over
 player.setMediaTime(0);
 player.start();

35
 }

 else if (event instanceof ControllerErrorEvent) {
 // Tell TypicalPlayerApplet.start() to call it a day
 player = null;
 Fatal (((ControllerErrorEvent)event).getMessage());
 }
 }

 void Fatal (String s) {
 // Applications will make various choices about what
 // to do here. We print a message and then exit
 System.err.println("FATAL ERROR: " + s);
 throw new Error(s); // Invoke the uncaught exception
 // handler System.exit() is another
 // choice
 }
}

	Preface
	Java Media Players
	Status of Future Releases
	Contact Information
	JavaSoft
	Silicon Graphics
	Intel Corporation

	Java Media Players
	1.0 Overview
	1.1 Media Sources
	1.2 Players
	1.3 Media Events
	1.4 Player States
	1.5 Calling JMF Methods

	2.0 Example: Creating an Applet to Play a Media Fi...
	2.1 Overview of PlayerApplet
	2.2 PlayerApplet Code Listing
	2.3 Initializing the Applet
	2.4 Controlling the Player
	2.5 Responding to Media Events

	3.0 Creating and Displaying a Player
	3.1 Creating a Player
	3.2 Displaying a Player and Player Controls

	4.0 Controlling Media Players
	4.1 Starting a Player
	4.2 Stopping a Player

	5.0 Managing Player States
	5.1 Preparing a Player to Start
	5.2 Starting and Stopping a Player
	5.3 Releasing Player Resources
	5.4 Implementing the ControllerListener Interface

	6.0 Managing Timing and Synchronization
	6.1 Setting the Media Time
	6.2 Getting the Current Time
	6.3 Setting a Player’s Rate
	6.4 Getting a Player’s Duration
	6.5 Synchronizing Players

	7.0 Using a Player to Manage and Synchronize other...
	7.1 Adding a Controller
	7.2 Managing the Operation of Added Controllers
	7.3 Removing a Controller

	8.0 Extending JMF
	8.1 Understanding the Player Factory Architecture

	Appendix A: Java Media Applet

