
design/RealWorl.pdf

Developing Developing
Real-World Real-World

AppletsApplets
Patrick ChanPatrick Chan

• Memory Size

• Code Size

• Execution Time

• Load Time

Applets vs. Applications

• Smaller
– 1 Kbyte ~ 1 second

• Fewer
– 1 File ~ 3 seconds

• Tease

Applet Strategy

12

1

Image Strip

getImage(url, “duke.gif”)Applet

http://www.xeo.com

Image Strip (review)

drawImage(image, x, y)Graphics

Image Strip (review)

Image Strip (review)

1) Set Clipping Rectangle

clipRect(x, y, width, height)Graphics

Image Strip

Image Strip

2) Draw Image

drawImage(strip, x-fx, y-fy)Graphics

x,y

fx,fy

void drawFrame(Graphics g, Image strip,
int dx, int dy,
int sx, sy, int width, int height) {

 g.clipRect(dx, dy, width, height);
 g.drawImage(strip, dx-sx, dy-sy, this);
}

Image Strip

Transparency

Transparency

-2 K

Transparency

Transparency

60 KBytes 10 KBytes

Transparency

Image Compression (review)

GIF JPEG

• bit patterns

• detail

• more solid colors
• less colors

• less quality

Double Buffering

Double Buffering

createImage(width, height)Applet

Double Buffering

getGraphics()Image

Graphics

Double Buffering

drawImage(image, x, y)Graphics

Graphics

Double Buffering

drawImage(image, x, y)Graphics

Double Buffering

Double Buffering

public void init() {
...

 buf = createImage(width, height);
 bufG = buf.getGraphics();

...
}

public void paint(Graphics g) {
...

 bufG.drawImage(image, x, y, this);
...

 g.drawImage(buf, 0, 0, this);
...

}

getAudioClip(url, “dance.au”)Applet

http://www.xeo.com

Audio (review)

Audio (review)

play()
loop()
stop()

AudioClip

Audio (review)

public void init() {
...

 clip = getAudioClip(url, “dance.au”);
...

}

public void start() {
...

 clip.play();
...

}

public void init() {
...

 clip = getAudioClip(url, “dance.au”);
...

}

public void start() {
...

 clip.play();
...

}

Audio (review)

Audio

clip =
getAudioClip()

public void init() {
...

 start thread
...

}

public void start() {
...

 if (clip != null) clip.play();
...

}

Applet Parameters (review)

<param name=message value=“HELLO WORLD”>

HELLO WORLD

getParameter(paramName)Applet

<param name=messages

value=“HELLO WORLD|TRY JAVA”>

HELLO WORLD

TRY JAVA™

blink

separator

Applet Parameters

<param name=sep value=“#”>

<param name=messages

value=“HELLO WORLD#TRY JAVA”>

HELLO WORLD

TRY JAVA™

blink

Applet Parameters

<param name=messages

value=“HELLO WORLD|TRY JAVA”>

<param name=colors

value=“green|red”>

HELLO WORLD

TRY JAVA™

blink

Applet Parameters

<param name=message1

value=“HELLO WORLD|green|yellow”>

<param name=message2

value=“TRY JAVA|red|white”>

HELLO WORLD

TRY JAVA™

blink

Applet Parameters

<param name=message1 value=“HELLO WORLD|green|yellow”>

<param name=message2 value=“TRY JAVA|red|white”>

for (int i=1; ; i++) {

 p = getParameter(“message”+i);

 if (p == null) break;

...

}

Applet Parameters

<param name=file value=“InputFile”>

HELLO WORLD

 bgColor=green

 textColor=yellow

 font=Courier

 fontSize=14

TRY JAVA

 bgColor=red

 textColor=white

InputFile:

Applet Parameters

<param name=file value=“InputFile”>

URL(url, filename)
getContent()

URL

Applet Parameters

String getContent(String url) {
URL url = new URL(null, url);

 return (String)url.getContent();
}

Applet Parameters

Parsing Parameters

(string, delimiters)StringTokenizer

(inputstream)StreamTokenizer

StringTokenizer

1stParam*2ndParam

1stParam * 2ndParam

token delimiter token

(string, “*”)StringTokenizer

StringTokenizer

// Get parameter
p = getParameter(“p”);

// Create StringTokenizer
st = new StringTokenizer(p, “*”));

// Create storage
strs = new String[st.countTokens()];

// Get tokens
for (int i=0; i<s1trs.length; i++) {

 strings[i] = st.nextToken();
}

“pat chan” 3.14 + pi //comment

“pat chan”

3.14

()StreamTokenizer

quoted string

+

pi

number

character

word

StringTokenizer

 // Create URL
 url = new URL(null,“http://www.xeo.com/InFile”);

 // Create InputStream
 is = url.openStream();

 // Create StreamTokenizer
 st = new StringTokenizer(is);

 // Get tokens
 st.nextToken();

StringTokenizer

Client / Server

Server
Applet

Server
Applet socket

Client / Server

HTTP
Server

Applet

CGI

Client / Server

Name=Patrick+Chan&Email=chan%40xeo%2e.com

Patrick ChanName:

chan@xeo.comEmail:

encode(string)URLEncoder

Client / Server (review)

Name=Patrick+Chan&Email=chan%40xeo%2e.com

URL ?

HTTP
CGI

GET PUT

Client / Server (review)

String getData(String params) {
 URL url = new URL(

“http://www.xeo.com/cgi-bin?”+params);

 return (String)url.getContent()
}

URL(url, filename)
getContent()

URL

Client / Server - GET

xeo.comSocket

(hostname, 80)Socket

Client / Server - PUT

xeo.comSocket

getOutputStream()Socket

Client / Server - PUT

POST /cgi-bin/script.pl HTTP/1.0
Content-type: application/x-www-form-urlencoded
Content-length: 100

<parameters>

xeo.comSocket

writeBytes(string)DataOutputStream

Client / Server - PUT

xeo.comSocket

getInputStream()Socket

Client / Server - PUT

xeo.comSocket

results

readLine()DataInputStream

Client / Server - PUT

String getData(String params) {
 String line, result;

 // Create sockets and streams
 Socket s = new Socket("techweb.cnet.com", 80);
 DataOutputStream os = new DataOutputStream(s.getOutputStream());
 DataInputStream is = new DataInputStream(s.getInputStream());

 // Deliver parameters
 os.writeBytes("POST /cgi-bin/script.pl HTTP/1.0\r\n");
 os.writeBytes("Content-type: application/x-www-form-urlencoded\r\n");
 os.writeBytes("Content-length: "+params.length()+"\r\n");
 os.writeBytes("\r\n");
 os.writeBytes(params);

 // Read results
 while ((line = is.readLine()) != null)
 result += line + “\n”;
 return result;

}

Client / Server - PUT

Delay Code Loading

Applet
SecondClass

Delay Code Loading (review)

public class A extends Applet {
 SecondClass sc;
 ...
 void m() {
 if (sc == null) { ... }
 }
}

class SecondClass {
 ...
}

• new SecondClass()

• SecondClass.staticMethod()

• if (object instanceof SecondClass)

Delay Code Loading (review)

sc =
new SecondClass()

public void init() {
...

 start thread
...

}

public void update(Graphics g) {
 if (sc == null) {
 // tease
 ...
 } else {
 // use sc
 ...
 }
}

Delay Code Loading

java™ -verbose sun.applet.AppletViewer index.html

Delay Code Loading

Font Sizes

Windows95 MacOS

™

™

™

™

new Font(name, style, size)Font

getFontMetrics(font)Component

getHeight(image, x, y)FontMetrics

Font Font Font Font Font Font

X height

width

Font Sizes (review)

TimesRoman 26
TimesRoman 25
TimesRoman 24
TimesRoman 23
TimesRoman 22
TimesRoman 21
TimesRoman 20
TimesRoman 19
TimesRoman 18
TimesRoman 17
TimesRoman 16
TimesRoman 15
TimesRoman 14
TimesRoman 13

26 pixels high

Font Sizes

?

Font Sizes

Font getFont(int height) {
 Font f;
 FontMetrics fm;
 int i = height;

 do {
 f = new Font("Helvetica", PLAIN, i--);
 fm = getFontMetrics(f);
 } while (fm.getHeight() > height);
 return f;
}

Time (review)

repaint()Applet

sleep(milliseconds)Thread

Time

• AppletViewer - 30 ms

• Netscape - 55 ms

sleep(milliseconds)Thread

repaint()

sleep(adjDelay)

currentTimeMillis()System

currentTimeMillis()System

adjDelay = delay

? delay

Time

Time (simplified)

int delay;
public void run() {
 int adjDelay = delay;
 long t1 = System.currentTimeMillis();

 while (<condition>) {
 Thread.sleep(adjDelay);
 long t2 = System.currentTimeMillis();
 if (t2-t1 > delay)
 adjDelay = Math.max(33, adjDelay-1);
 else
 ++adjDelay;
 t1 = t2;
 }
}

Applet Protection

<param name=copyright

value=“SuperApp, Patrick Chan © 1996 All
 Rights Reserved. www.xeo.com”>

if (!getParameter(“copyright”).equals(“...”) {
 throw (new Exception(“copyright violation”));
}

<param name=copyright

value=“SuperApp, Patrick Chan © 1996 All
 Rights Reserved. www.xeo.com”>

copyright = getParameter(“copyright”);

//System.out.println(copyright.hashCode());

if (copyright != -4323493993) {
 throw (new Exception(“copyright violation”));
}

Applet Protection

applet:Hangman

Query:

AltaVista

Miscellaneous

• No MediaTracker

• Use Optimizer (~20% smaller)

• Use CODEBASE

design/NetApps.pdf

Pavani DiwanjiPavani Diwanji
David BrownDavid Brown

JavaSoftJavaSoft

Network-basedNetwork-based
ApplicationsApplications

Networking in Java™

• Introduction

• Datagrams, Multicast

• TCP: Socket, ServerSocket

• Issues, Gotchas

• URL, URLConnection

• Protocol Handlers

• Q & A

InetAddress

• InetAddress Object: address, family

• Name service methods
– getByName

– getAllByName (multihomed hosts)

• Cache the name, address mapping

Datagrams

• Packet oriented: send and receive

• No connection setup/teardown overhead

• Datagrams can get lost in the internet

• Reliability does not come for free

–Latency: retransmissions

–Bandwidth: duplicates,
forward error correction

• Example- Video: a frame is lost!

java.net.DatagramPacket

• Represents datagram packet

–Data buffer, packet length,
IP address, port

• Sender creates a DatagramPacket with the
data, length, destination IP address and
port number

DatagramPacket (cont.)

• On receiving side: application allocates a
byte buffer for receiving the packet and
passes it to the DatagramPacket constructor

• Receiving buffer can be reused over
multiple datagram receives

DatagramSocket

Class DatagramSocket {

public DatagramSocket();

 public DatagramSocket(int port);

public void send(DatagramPacket p);

 public void synchronized recieve(DatagramPacket p);

 ...

}

Simple Datagram Client

import java.net.DatagramSocket;

import java.net.DatagramPacket;

class DatagramClient {

 …
 DatagramSocket s = new DatagramSocket();

 DatagramPacket dp = formatPacket(destinationHost,
port);

 s.send(dp);

 ...

 s.close();

}

•

• import java.net.DatagramSocket;

• import java.net.DatagramPacket;

• class DatagramServer {
...
DatagramSocket s = new DatagramSocket();
System.out.println(“Server receiving on port: “+
s.getLocalPort())
DatagramPacket dp = new DatagramPacket(buf, length);
s.receive(dp);
...
s.close();
}

Simple Datagram Server

IP Multicast

• Deliver a packet to a set of destinations

• Destination set is identified by a single
group address. Membership can change
over time

• More efficient than unicasting seperate
copies to all destinations

• Logical/location independent addressing

• RFC’s 966, 1112

IP Multicast (cont.)

• Addressing

– Range: 224.x.x.x - 239.x.x.x

– Addresses assigned by hand!

• Scoped Multicasting

– time-to-live (TTL) field

– TTL=0: same host

– TTL=1: same subnet

– TTL=255: unrestricted

Useful Multicast Examples

• Querying a distributed file store, when the
actual location of data is unknown

• Location Service: locate objects on the net

• Sending video over the internet: MBONE

• Real-time networked games

Multicast Class in Java

• sun.net.MulticastSocket

• Extends java.net.DatagramSocket

• New methods:

– joinGroup(InetAddress mcast);

– leaveGroup(InetAddress mcast);

– send(DatagramPacket dp, byte ttl);

Simple Multicast Example

import sun.net.MulticastSocket;

class VideoReceiver {

// listen to the video on the MBONE

InetAddress receivers = InetAddress.getByName(“224.1.2.3”);

MulticastSocket mcast = new MulticastSocket();

mcast.joinGroup(receivers);

….

mcast.receive(packet); // Receive multicast packet

….

mcast.leaveGroup(receivers); // clean up when finished

mcast.close();

}

TCP Socket Classes

• Socket: Client Endpoint for doing TCP
based communication

• ServerSocket: Server endpoint for doing
TCP based communication

• SocketImpl: Site-specific implementation
of sockets (e.g. SOCKS, Kona)

• PlainSocketImpl: used by default

Socket, ServerSocket

• Connect to destination by:
– Constructing a socket given the InetAddress and port.

• read/write done through:
– Socket.getInputStream(), Socket.getOutputStream()

• ServerSocket.accept():
– Blocks until a client asks to connect
– Returns a new client socket handle

Keep in Mind

• Java Applets!= Java Applications

• Applets are restricted in what they can do.

• Security manager in the browser restricts
who Applets are allowed to talk to:
checkConnect, checkAccept, checkListen...

• No restrictions, though on Network based
Applications: write native code to do
whatever they want!

Issues…

• SecurityManager Checks in
datagram and multicast receive:
– Can getting data hurt?

• Multicast Security
– Group address-based

– TTL-based

Issues…

• Name service is not secure!

• Firewalls, Proxies: a necessary evil?
– Firewalls only let HTTP traffic through.

– Name resolution within firewall
• Can resolve an external hostname

• Cannot resolve an external hostname

Issues…

• Stamp where the applets came from,
and never call the name service again!

• Where did the applet come from, if
proxy is in the picture?

Applet Host

network
Proxy Client Host

Firewall

Gotchas…

• Timers: ms level granularity, relative.

–Need finer grained (us) timers

–Absolute timers

• No Poll/Select

• Setting socket options

Gotchas…

• Timeouts on read/write not available

• Use of synchronized buffered streams

• PrintStream eats exceptions! Check
explictly for errors

Conclusions

• Sample Code Examples:
– http://www.javasoft.com/people/pavani

• Questions?

David BrownDavid Brown
JavaSoftJavaSoft

Network-basedNetwork-based
Applications: Applications:

 Extending Extending
java.net.URL*java.net.URL*

The Classes

• URL

• URLStreamHandler

• URLConnection

• URLStreamHandlerFactory

Why Extend the URL Classes?

• Your own web protocols

• Your own content handling

• Link legacy servers to web

• Simple, small, powerful

• Leverage Java™

• More resources than applets

java.net.URL

• Constructed from String

new URL(“http://www.javasoft.com”);

• Knows its own URLStreamHandler

• Data members:
String protocol; String host;
int port; String file;
URLStreamHandler handler;

URLStreamHandler

• Abstract class

• One for each URL protocol

• Create URLConnection given a URL
URLConnection openConnection(URL);

• Parse a URL in protocol-specific way

• Unparse a URL back to String
String toExternalForm(URL u);

URLConnection

• Abstract class

• No public constructor

• Instantiable only by StreamHandler

• Can dynamically plug in
content handlers
protected URLConnection(URL u);

String getContentType();

ContentHandler getContentHandler();

setContentHandlerFactory();

URLStreamHandlerFactory

• One way to add protocol handlers

• Interface – one method:
URLStreamHandler
createURLStreamHandler(String protocol);

• Set the Factory in class URL:
URL.setURLStreamHandlerFactory()

CGI POST by URLConnection

• HttpURLConnection can POST
URL url = new URL(“http://java.sun.com/cgi-bin/reverse”);

URLConnection conn = url.openConnection();

PrintStream ps = new PrintStream(conn.getOutputStream());

ps.println(“string=StringToReverse”);

ds = new DataInputStream(conn.getInputStream());

String result = ds.readLine();

/* result should be “esreveRoTgnirtS” */

• Applets can connect home from
behind firewall

Restrictions/Gotcha’s

• Only certain sequences of
I/O allowed

• Interpreted as POST:
get output [write output], get input [read input]

get output [write output]

• Interpreted as GET:
get input [read input]

Restrictions/Gotcha’s

• Disallowed:
get input [read input], get output [write output],

• HttpURLConnection has state

• Why? HTTP 1.0 vs 1.1

• No KEEPALIVE/persistent
connections

Simple Example: Finger Protocol

Finger data for “brown@monkey”:

Login Name TTY Idle When

brown Dave Brown console 0:18 Wed 18:53

Finger data for “pavani@sai”:

Login Name TTY Idle When

pavani Pavani Diwanji console 0:13 Tue 9:54

• A protocol for fingering users

• URL finger:brown@monkey,pavani@sai

• Produces output like:

The (web) Finger Protocol

browser

URLConnection

“finger”

network

host

host

host

Gather data from multiple connections

response

URLConnection

URL url

getContent()

URL

openConnection()

URLStreamHandler
handler

FingerURLConnection

getContent()

gather finger data;

format HTML-style;

return output;

• Contains

• Instantiates

URLStreamHandler

openConnection(URL)

FingerHandler

openConnection(URL)

 Legend:

• Abstract class

• Abstract method()

• Concrete class

• Concrete method()

• Pseudo-code

• Inheritance

Class Relationships

Step 1: Create a New URL

• finger:joe@dinosaur,brown@monkey

• Is there a “finger” protocol handler?

• Ask the handler to parse the URL

• Default does usual HTTP parsing: <
protocol>://<host>/<file>

Step 2: Connect the URL

• URL.openConnection():

• Type of URLConnection delegated to
URL’s handler

• Here’s the extensiblity:
– Data gathering done by an instance of

FingerURLConnection

– Format raw data for browser viewing

• URLConnection defines ~53
methods

• Only override 4:

• FingerURLConnection(URL)

• String getContentType():
return “text/html”;

What Must URLConnection Do?

• Object getContent():
Create a StringBuffer;
for each entry in list {

Connect to host;
finger user;
append finger result to StringBuffer
(with HTML formatting);

}
return new String(StringBuffer);

• InputStream getInputStream():
return new
StringBufferInputStream((String)getContent(
));

What Must URLConnection Do?

Interesting Protocols

• Newsgroup binary formatter
listen:alt.binaries.sounds.birds

• Meta search engine
search://yahoo,lycos,webcrawler/java AND
protocol

• Filter protocol - filtered HTML

• Database queries

jdbc://<query-string>

Sample Code Available

• http://www.javasoft.com/people/
brown

• Questions/Flames?

• brown@monkey.eng.sun.com

design/HumFace.pdf

Human Human
Interface Interface
DesignDesign

Annette Wagner,Annette Wagner,
Human Interface Human Interface

HumanHuman

Overview

• The User’s Viewpoint

• A Page-Based

 Human Interface Model

• Designing Human Interfaces
with Applets

• Lessons Learned

Terminology

• Human interface pages

• Task-oriented human
interface design

The User’s Viewpoint

• The desktop metaphor was
developed around the user
tasks of editing and creating
information

The User’s Viewpoint

• How does the user’s
mental model of
what they are doing
change when they
are in the context of
a browser?

 Is It a Desktop?

• Do the rules from the traditional
desktop/windows/dialogs human
interface model still apply?

Is It Something Else?

• There are aspects of the web and
browsers that inherently change
the rules from the desktop world

A Page-Based Model

• What is a page-based human
interface model?

• Everything is a page

A Page-Based Model

• Lessens window management
chores

• More task oriented

Window Management:
Desktop

• Desktop applications have:
– Multiple windows for documents,

palettes, toolbars, error notices, help,
and dialogs

– Which often open over other windows,
obscuring important information

Window Management:
Page-based

• No technical requirement to
implement something as a dialog
or a window

• Page behavior can be tuned to the
task the user is doing

Guideline:
Replace current page

• Replace the current page with the
HI task when the current page is
not needed for context

Guideline:
Open separate window

• Open the HI task in a separate
window when the current page is
needed for reference

Guideline:
Add to current page

• Add the HI task to the current
page when the the user needs both
new and current HI elements to
complete the task

Designing with Applets

• What is the role of applets in the
page-based human interface
model?

Applets = User Tasks

• Break up the user’s task into
common operations

• Create one applet for each operation

Dialog

Dialog to Applets

1
2

3

4

Using Applets: Benefits

• Results in the creation of a
collection of applets that represent
common user operations

• Which are now accessible to non-
programmers through HTML

Using Applets: Help

• Context-sensitive Help text on
human interface pages

Lessons Learned

• User testing
and feedback

Lessons Learned:Guidelines

• HI tasks do not get added to the
History list

• Any HI task can be opened into a
separate window

Lessons Learned: Dialogs

• Dialogs don’t scroll

• Does Back = Cancel?

Conclusion

• Browsing, not editing

• Everything is a page

• Applets = user tasks

Q&A

design/AuthScri.pdf

JambaJamba
““Pour on the Pour on the

Jamba Hold the Jamba Hold the
ProgrammingProgramming””

Jim ArsenaultJim Arsenault
Aimtech Corp.Aimtech Corp.

About Aimtech

• Leading vendor of cross-platform
multimedia authoring tools

• 10 years experience in authoring

• IconAuthor winner of April ’96 PC
Magazines Editor’s Choice Award

What is Jamba?

a) A city in Africa

b) “To celebrate life” in Swahili

c) Aimtech’s new Java™ authoring tool

d) All of the above

Jamba’s Mission

• Allow creative professionals and
webmasters to use the power of
Java™ to create interactive web sites
and network enabled applications

• Go beyond the limitations of HTML

• No programming required
(anyone can Java)

Jamba’s Main Features

• Ease of use

• Multimedia

• Interactivity

• Built for the Internet

• Extensibility

Ease of Use

• Familiar, Win ’95 interface

• No programming or scripting

• Objects and properties

• Interactivity defined in “Can Do” and
“To Do” lists

• Templates, backgrounds and
clip media

Multimedia

• Audio

• Graphics

• Text

• Animation

• Effects

Interactivity

• All standard controls (buttons, lists,
text fields…)

• Custom Jamba controls (graphic,
text, timers…)

• Rich set of events (click, double-click,
enter, leave, alarm…)

Built for the Internet

• CGI object allows communication
with server

• Browser object allows Jamba apps to
interact with browser

• Preload content (graphics, audio, text)

• Jamba apps never block

Extensibility

• Extend objects with custom Java code

• Add new objects, effects, file
handlers…(open API’s)

• Interact with JavaScript via
(LiveConnect)

Jamba for Programmers?

• Extensibility allows rapid
development of custom applications

• Programmers can focus on unique
features inheriting all multimedia and
interactive capabilities of Jamba

• Interface designers can quickly create,
modify, and experiment with interface

Jamba Architecture

• Authoring tool written in MFC using
ActiveX controls for objects

• Authoring tool can be extended with
new ActiveX controls

• Player written in Java with open API’s

Why ActiveX

• Robust, feature rich & familiar
authoring tool

• Support Microsoft’s Internet
technology offering (ActiveX in Q4)

• Jamba supports Java, Java supports
OLE!

Platform Support

• Authoring on Windows 95

• Playback in all web browsers
supporting Java

Jamba Availability

• Download beta version from
www.aimtech.com on June 3

For More Information

• Visit Aimtech in exhibition hall at
Booth #14

• Visit our web site (www.aimtech.com)

design/AbWin1.pdf

1

2

Creating Rich Creating Rich
GUIsGUIs

in Java™in Java™

 Amy Fowler Amy Fowler
Staff EngineerStaff Engineer
 JavaSoft JavaSoft

3

Tutorial Overview

• Toolkit principles & architecture

• GUI layout management

• Building custom components

• AWT futures

4

Toolkit Principles &
Architecture: Overview

• Toolkit design principles

• AWT architecture

• The peer model

5

Toolkit Design Principles

• Platform independent API

• Native look and feel

• Flexibility & extensibility

• Well defined porting interface

6

AWT Architecture

Components

Peer interfaces G
ra

ph
ic

s

Im
ag

e

Fo
nt

M
et

ri
cs

Fo
nt

C
ol

or

Mac
Peers

M
ac

G
ra

ph
ic

s
M

ac
Im

ag
e

M
ac

F
on

tM
et

ri
cs

Motif
Peers

X
11

G
ra

ph
ic

s
X

11
Im

ag
e

X
11

F
on

tM
et

ri
cs

native C code native code

Win32
Peers

W
in

32
G

ra
ph

ic
s

W
in

32
Im

ag
e

W
in

32
F

on
tM

et
ri

cs
native C++ code

Motif
Xt

X11

Toolbox
macos

MFC
GDI win32

X server

Platform-independent API

7

The Peer Model

• Means for supporting multiple coexisting
implementations

• Peer encapsulates native widget in
platform-independent class

Button ButtonPeer

Win32ButtonPeer MotifButtonPeer MacButtonPeer

mybuttonmybutton

JavaButtonPeer

mybuttonwin32button javabuttonmybuttonmacbuttonmybuttonmotifbutton

8

Why Peers?

• Allows flexibility in implementation

• Pure “factory” approach precludes
subclassing

• Enforces API consistency

• Eases source management

9

What You Need to
Know About Peers

• Components maintain state regardless of
peer existence

• Limitations when subclassing

• Some operations depend on peers

10

Operations
Depending on Peers

• Getting component’s natural size

• Laying-out containers

• Rendering components
– getGraphics()

• Requesting, migrating focus
– requestFocus()

– nextFocus()

11

Peer Life Cycle

• Peer created when… (addNotify())
– Component added to container AND

container’s peer already created

– Encompassing window packed or shown

• Peer destroyed when… (removeNotify())
– Component removed from container

– Component reparented

– Component destroyed

12

class myFrame extends Frame {
 public myFrame() {
 super(“My Frame”);
 Button b1 = new Button(“boo”);
 add(b1);
 pack();
 show();
 }
 public boolean action(Event e, Object arg) {
 if (arg.equals(“boo”)) {

Button b2 = new Button(“hoo”);
add(b2);
return true;

 }
 return false;

 }

Peer Life Cycle Example

creates peers
for both frame and
button

creates peer for
button

13

GUI Layout Management:
Overview

• Nature of dynamic layout

• Importance of dynamic layout for Java

• AWT Layout Model

• Insets

• The GridBag de-mystified

14

Nature of Dynamic Layout

• Component positioning not fixed point
locations

• Component sizing determined at runtime

• GUI layout responds well to dynamic
changes
– Internal: component’s geometry changes

– External: user resizes window

15

Importance of Dynamic
Layout for Java™

• Cross-platform differences
– Native components

– Font metrics

• Future, unanticipated Java™-
based platforms

• Localization

16

AWT Layout Model

• Container layout delegated to
LayoutManager

Layout Manager

BorderLayout

GridLayout

FlowLayout CardLayout

GridBagLayout

MyLayout

17

Layout Validation Model

• Components marked “invalid” when:
– State change affects geometry

– Container has child added or removed

• Validation automatic when window
packed or shown

• Visible components marked invalid are
not automatically validated

18

Validation Example

public boolean action(Event e, Object arg) {
 if (arg.equals(“Change Font”)) {
 button1.setFont(newfont);
 button2.setFont(newfont);
 label.setFont(newfont);
 field.setFont(newfont);

 validate();
 return true;

 }
 ...

Batches all layout
calculations to a single
pass

19

Insets

• Attribute which defines border geometry
– (top, left, bottom, right)

• Defined for containers
– Windows: defines window decoration

geometry

– Panels: can be used to render borders

20

Insets for Windows

AWT’s overall
window geometry

Visible portion of
window within
“Insets” borderBorder

Insets (20, 10, 10, 10)

0,0

10,20

21

The GridBag De-Mystified!

• Extremely flexible and powerful

• Supports constraint-based model

• API is more complex
– Learn model before API

22

GridBag Model

• Provides dynamic grid of cells

• Component constraints define dynamic
positioning and resizing within grid
– Upper-Left position

– Number of cells to span (=display area)

– Gravity/fill within display area

– Percentage of resize absorption

– Internal/external padding within display area

23

Constraints:
Display Area

• gridx, gridy, gridwidth, gridheight

A B

C

D

E

A
B
C
D
E

gridx gridy gridwidth gridheight
0 0 1 1
1 0 2 1
0 1 2 2
2 1 1 1
2 2 1 1

0 1 2

0

1

2

24

Constraints:
Gravity/Fill

• anchor

• fill

NW N NE

W

SW

center E

S SE

BOTH HORIZONTAL

VERTICAL NONE

25

Constraints:
Resize Absorption

• weightx, weighty
A B

C

A
B
C
D

weightx weighty x∆ y∆
 0.0 0.0 0% 0%
 1.0 0.0 100% 0%
 1.0 1.0 50% 100%
 1.0 1.0 50% 100%

A B

C
D

D

after resize...

26

Constraints:
Internal/External Padding

• insets

• ipadx, ipady

20

20

20

20

35

1515

25

A B
A
B

Insets

(20, 20, 20, 20)
(25, 15, 35, 15)

Button
10

1212

10

ipadx ipady

 12 10

27

GridBag Tips

• Use paper/pencil first draw grid!

• Use gridx, gridy, gridwidth, gridheight
– Ignore GridBagConstraints.RELATIVE

• Create convenience method to make
constraint-setting easier

28

GridBag Example

GridBagLayout gridbag = new GridBagLayout();

void addComponent(Component comp,int gridx,int gridy,
int gridw,int gridh){

 GridBagConstraints c = new GridBagConstraints();
 c.gridx = gridx;
 c.gridy = gridy;
 c.gridwidth = gridw;
 c.gridheight = gridh;
 gridbag.setConstraints(comp, c);
 add(comp);
} Constraint-setting

convenience method

29

GridBag Example (cont.)

public GBPanel extends Panel() {
 setLayout(gridbag);

 addComponent(new Label(“name:”), 0, 0, 1, 1);
 addComponent(new TextField(12), 1, 0, 2, 1);
 addComponent(new TextArea(32,10), 0, 1, 2, 2);
 addComponent(new Checkbox(“Yes?”), 2, 1, 1, 1);
 addComponent(new List(), 2, 2, 1, 1);

 }

30

Building Custom
Components: Overview

• The Formula

• Simple example

• Issues to ponder

31

The Formula

• Subclass from Canvas or Panel

• For Look, override:
– paint(), update()

– minimumSize(), preferredSize()

• For Feel, override:
– handleEvent()

32

Design For Re-use

• Doc comments (Javadoc!)

• Implement get/set methods

• Exception handling up front

• Design for extensibility
– Field access

33

Simple Example:
Separator

public class Separator extends Canvas {
 public final static int HORIZONTAL = 0;
 public final static int VERTICAL = 1;

 int orientation;
 Dimension sepSize;

 public Separator(int len,int thickness,int orient)
 orientation = orient;

 if (orient == HORIZONTAL) {
 sepSize = new Dimension(len, thickness);
 } else { // VERTICAL

sepSize = new Dimension(thickness, len);
 }

 }

34

Example:
Get/Set Methods

 public int getOrientation() {
 return orientation;
 }
 public void setOrientation(int orient) {

 if (orient > VERTICAL || orient < HORIZONTAL) {
throw new IllegalArgumentException(

“illegal orientation”);
 }
 if (orientation != orient) {

orientation = orient;
sepDim = new Dimension(

sepDim.height, sepDim.width);
invalidate();
// no validate or repaint here!

 }
 }

35

Example: Sizing

 public Dimension preferredSize() {
 return sepDim;
 }

 public Dimension minimumSize() {
 return sepDim;

 }

36

Example: Painting

 public void paint(Graphics g) {
 int x1, y1, x2, y2;
 Rectangle bbox = bounds();
 Color c = getBackground();
 Color brighter = c.brighter();
 Color darker = c.darker();

 if (orientation == HORIZONTAL) {
x1 = 0;
x2 = bbox.width - 1;
y1 = y2 = bbox.height/2 - 1;

 } else { // VERTICAL
x1 = x2 = bbox.width/2 - 1;
y1 = 0;
y2 = bbox.height - 1;

 }

Query for state
dynamically

37

Example: Painting (cont.)

 // draw the separator

 g.setColor(darker);
 g.drawLine(x1, y1, x2, y2);

 g.setColor(brighter);
 if (orientation == HORIZONTAL) {

g.drawLine(x1, y1+1, x2, y2+1);
 } else { // VERTICAL

g.drawLine(x1+1, y1, x2+1, y2);
 }

 }

} // END Separator

38

 Issues with
Custom Components

• Look & feel trade-off
– Portable vs. truly native

• Difficult to override look of
native components

• Reinventing the wheel

39

AWT Futures:
Overview

• Quality/performance

• Filling in the gaps

• Building infrastructure

• Enabling visual tools

40

Futures:
Quality & Performance

• Win32 re-write

• Repaint/layout algorithm improvements

• Hooks for performance-monitoring
and testing

• More bug fixing

41

Futures:
Filling in the Gaps

• More components
– Pop-up menu, image button, …

• Rich 2D rendering model

• Bunch of little stuff
– Menu accelerators

– Cursors per component

– Desktop color model

– …

42

Futures:
Building Infrastructure

• Internationalization

• Printing

• Data Transfer
– Clipboard

– Drag & Drop

• Light-weight component framework

43

Futures:
Enabling Visual Tools

• Delegation-based event model

• Normalization of get/set methods

• Reflection

• Persistence

44

Tutorial Summary

• Understand basic AWT principles
– Peers aren’t always your enemy

• Learn, exploit, extend AWT’s powerful
layout mechanisms

• Be creative – AWT makes it easy to
build new things!

• AWT evolving to enable richer
graphical applications

45

Questions ?

design/AbWin2.pdf

Rendering Rendering
with Java™with Java™

Jim GrahamJim Graham
Staff EngineerStaff Engineer

JavaSoftJavaSoft

Overview

• AWT paint/update callback model

• Graphics rendering

• Image rendering and manipulation
– Basic image fetching and drawing

– Off-screen images for double buffering

– Advanced image filtering and manipulation

• Futures: Java Media 2D API

AWT Callback Overview

• AWT calls paint() asynchronously

• call repaint() to redraw a Component

• AWT calls update() on demand

AWT event
dispatcher

DamagePlatform
window
system

Applet or
Component

paint()

repaint()

Animating Applet
or Component

update()

Component callback: paint()

public void paint(Graphics g);

• Asynchronously called when:
– Component first becomes visible

– Display damage occurs (visibility changes)

• Background will already be cleared

• Clip area is set to damaged area

Component Method: repaint()

public void repaint();

public void repaint(x,y,w,h);

public void repaint(t,x,y,w,h);

• Schedules a call to update() within t
milliseconds

• Multiple repaint areas are collapsed

Component callback: update()

public void update(Graphics g);

• Called in response to calls to repaint()

• Background will not be cleared

• Clip area is set to requested repaint area

• Default implementation clears the
background and calls paint()

Callback Thread Model

• paint() and update() methods are
called from the AWT Callback Thread

• Perform rendering and return quickly

• No unnecessary calculations

• No embedded animation iterations:
for (y = 0; y < size().height; y += 10) {

Thread.sleep(100);

g.drawLine(x, y, x+10, y);

}

Why use repaint()?

• Allows collapsing of multiple updates
– Better mouse tracking

– Multiple asynchronous calculation threads

• Enables model/view controller paradigm
– Independent tracking of calculations and

screen updating

– One repaint may generate multiple updates

Graphics Overview

• Graphics object and attributes

• Coordinate System

• Rendering functions

• XOR mode behavior

Graphics Object

• Obtained for particular Component:
public Graphics getGraphics();

• Constructed automatically
– Passed to update() and paint() as an

argument

– Already initialized with Component’s color,
font, and clip region for area to be drawn

Graphics Attributes

• Rectangular clip area
– Set smaller with clipRect()

– Get with getClipRect()

• Current Color

• Current Font

• XOR (alternation) color

Coordinate System

• Integer coordinates fall between pixels

• Fill operations fill inside a path
– wxh object covers wxh pixels

• Draw operations stroke along a path
– Pen hangs down and to the right

– wxh object covers (w+1)x(h+1) pixels

Coordinate System Diagram

7x7 filled rectangle

Path

7x7 drawn rectangle

Path

Pen

Basic Rendering Operations

drawLine(x1, y1, x2, y2);

draw/fillRect(x, y, w, h);

draw/fillRoundRect(x, y, w, h, arcw, arch);

draw/fill3DRect(x, y, w, h, raised);

draw/fillOval(x, y, w, h);

draw/fillArc(x, y, w, h, ang1, ang2);

draw/fillPolygon(Polygon);

draw/fillPolygon(xPts[], yPts[], numPts);

Other Rendering Operations

• Text:
drawString(String, x, y);

drawChars(chars[], start, len, x, y);

• Images:
drawImage(image, x, y, obs);

drawImage(image, x, y, bg, obs);

drawImage(image, x, y, w, h, obs);

drawImage(image, x, y, w, h, bg, obs);

XOR Rendering Mode

• Specify a color to alternate the
foreground with:
// Alternate foreground with Black

setXORMode(Color.black);

// Set foreground color to Green

setColor(Color.green);

// Rendering on Green produces Black

// Rendering on Black produces Green

XOR Example

g.setColor(Color.black);

g.fillRect(0, 0, 400, 80);

g.setColor(Color.green);

g.fillRect(0, 80, 400, 80);

g.setXORMode(Color.black);

g.setColor(Color.green);

g.fillRect(40, 40, 80, 80);

g.setColor(Color.red);

g.fillRect(160, 40, 80, 80);

g.drawImage(img, 280, 40, this);

Image Overview

• Image fetching and drawing

• Off-screen images for double buffering

• Image filtering and manipulation
– Creating your own images

– Filtering existing images

• http://java.sun.com/people/flar/images.html

• http://www.gamelan.com/

Drawing Images

• Get an image handle with getImage()

• Images are loaded asynchronously

• Data loaded on demand when calling:
– getWidth() or getHeight()
– drawImage()

– getProperty()

ImageObserver Interface

• Observer is notified via callback as data
becomes available:
– Size information

– Properties

– More pixels converted for drawing

• Component implements ImageObserver

Double Buffering

• Component method:
public Image createImage(int w, int h);

• Returns an image you can draw into
Image img = createImage(w, h);

Graphics g2 = img.getGraphics();

• Copy results to screen like any image
g.drawImage(img, x, y, this);

ImageProducer Interface

• Create new images with:
public Image createImage(ImageProducer p);

• All images have an ImageProducer
ImageProducer p = img.getSource();

• Recreate image data on demand

• Consumers contact the producer to retrieve
the information

Standard ImageProducers

• Built-in classes handle most common
image needs:
– MemoryImageSource

– FilteredImageSource

– URLImageSource (internal)

– OffscreenImageSource (internal)

ImageConsumer Interface

• ImageConsumer interface defines how
producers deliver image data

• Consumers register with a producer
using the ImageProducer interface

• Data is delivered asynchronously after a
consumer is registered

Standard ImageConsumers

• The image rendering system utilizes
ImageConsumer classes to store pixels:
– ImageRepresentation (internal)

• One object per rendered size

– ImageInfoGrabber (internal)
• Intercepts width, height, properties

ImageConsumer Utilities

• The AWT provides utility classes that
implement ImageConsumer
– PixelGrabber

• Used to retrieve pixels asynchronously from
any image

– ImageFilter

• Acts as ImageConsumer for one image and
ImageProducer for another

Producer/Consumer
Interactions

• Consumer registers with producer:
producer.startProduction(consumer);

• Then producer delivers the data:
consumer.setDimensions(w, h);
consumer.setHints(…);
consumer.setColorModel(cm);
for (int y = 0; y < h; y++) {

// … Calculate row y …
consumer.setPixels(0, y, w, 1,
cm, pix, 0, w);

}

ColorModel Class

• Each setPixels() call has a ColorModel

• Defines mapping from pixels to colors
public int getRGB(int pixel);

– No assumptions made about pixel format

• Abstract ColorModel class
– Subclass defines methods to extract red,

green, blue and alpha components

Standard ColorModels

• Two ColorModel classes handle most
common pixel formats
– IndexColorModel

• 8-bit indexed colormap
– DirectColorModel

• Masks specify RGB and alpha components

• Pixel conversion code recognizes and
optimizes conversion of these models

ImageProducer Example

int w = 80;
int h = 80;
int pix[] = new int[w * h];
for (int y = 0; y < h; y++) {

for (int x = 0; x < w; x++) {
pix[y * w + x] =

Color.HSBtoRGB(x * 1.0f / w, 1.0f, 1.0f);
}

}
ImageProducer prod =

new MemoryImageSource(w, h, pix, 0, w);
Image img = createImage(prod);

ImageConsumer Example

int[] pixels = new int[w * h];
PixelGrabber pg =

new PixelGrabber(img, x, y, w, h,
pixels, 0, w);

try {pg.grabPixels();}
catch (InterruptedException e) {return;}

for (int j = 0; j < h; j++) {
for (int i = 0; i < w; i++) {

handlesinglepixel(x+i, y+j,
pixels[j * w + i]);

}
}

IndexColorModel Example

byte red[] = { 0, 255, 0, 0, 255 };

byte grn[] = { 0, 0, 255, 0, 255 };

byte blu[] = { 0, 0, 0, 255, 255 };

cm = new IndexColorModel

(8, 5, red, grn, blu);

// AARRGGBB

cm.getRGB(0); // => 0xff000000

cm.getRGB(2); // => 0xff00ff00

cm.getRGB(10); // => 0x00000000

DirectColorModel Example

cm = new DirectColorModel

(16, 0x001f, 0x03e0, 0x7c00, 0x8000);

// AARRGGBB

cm.getRGB(0xffff); // => 0xffffffff

cm.getRGB(0x801f); // => 0xffff0000

cm.getRGB(0x83e0); // => 0xff00ff00

cm.getRGB(0xfc00); // => 0xff0000ff

cm.getRGB(0x001f); // => 0x00ff0000

cm.getRGB(0x0); // => 0x00000000

ImageFilter Class

• ImageFilter implements ImageConsumer
– ImageFilter performs “null filter”

– Subclass to modify data as it is delivered

• Used with FilteredImageSource
– Manages list of consumers

– Associates copy of ImageFilter
with consumer

– Registers filter with original ImageProducer

ImageFilter Diagram

ImageProducer
(from source image)

Source Image
(unfiltered)

Filtered Image

ImageProducer
(FilteredImageSource)

ImageFilter
(copy of)

(2. clone)

(1. addConsumer)

ImageConsumer
(contacts filtered image)

(3. addConsumer)

ImageFilter

ImageConsumer data

Method call

Object reference

ImageFilter Example

class RedBlueSwapFilter extends RGBImageFilter {
public RedBlueSwapFilter() {

// filter colormaps faster than pixels
canFilterIndexColorModel = true;

}
public int filterRGB(int x, int y, int rgb) {

// AARRGGBB
return (((rgb & 0xff00ff00)) |

((rgb & 0x00ff0000) >> 16) |
((rgb & 0x000000ff) << 16));

}
}

Futures:
JavaMedia 2D API

• Collaborative effort with key partners
– Adobe, SunSoft, and JavaSoft

• Rich rendering model

• Extensible paths & transforms

• Exposed layout images

Futures:
Java Media Rendering

• 2D affine (and custom) transforms

• Line/Bezier (and custom) paths

• Solid, gradient (and custom) fills

• Wide strokes with join and cap attributes

• Alpha blend (and custom) compositors

• Advanced text layout

Futures:
Java Media 2D Extensibility

• Base abstract transform and path classes
– Implementations must satisfy certain basic

functionality to work with the renderer

• Specific standard optimized classes
– AffineTransform and BezierPath

recognized and optimized by the renderer

Futures:
Java Media images

• New image subclass with exposed layout
– ImageDescriptor defines memory layout

– Satisfy current ImageProducer interface

• Extended ColorModels
– Non-RGB color spaces

– ICC profiles (color matching)

– Default color space is RGB709

Questions?

design/RealTime.pdf

Designing Designing
Realtime Realtime

Interactive Interactive
ServicesServices

with Java™with Java™
Nova SpivackNova Spivack

Co-Founder, Executive VPCo-Founder, Executive VP
EarthWebEarthWeb

Alex ChaffeeAlex Chaffee
Dir. Software EngineeringDir. Software Engineering

EarthWebEarthWeb

Srini VasanSrini Vasan
Business DevelopmentBusiness Development

TIBCOTIBCO

Introduction

• What this talk is about
– Designing realtime interactive services

with Java™-based technology

– We will focus on:
• Interactive web site enhancements

• Realtime data streaming

• Publish/subscribe data streaming

• Multi-user interactivity

Who We Are

• EarthWeb
– Gamelan and now...Gamelan Direct!

– High-end sites

– Java™-powered software

• TIBCO
– Publish/Subscribe data technology

– Software products and systems

– New Internet tools

Web Site Enhancements

• Definition: “Web site enhancement”

• Examples
– SiteMap, Dictionary

• Technical overviews

• Challenges & Solutions

• Discussion

Basic Data Streaming

• Definition: “Realtime data streaming”

• Examples
– NewsBar, SiteMonitor

• Technical overviews

• Challenges & Solutions

• Discussion

Advanced Data Streaming

• Definition: “Publish/Subscribe
data streaming”

• Examples

• Technical overview

• Challenges & Solutions

• Discussion

Multi-User Interactivity

• Definition: “Multi-user interactivity”

• Example
– EarthWeb Chat Network

• Technical overview

• Challenges & Solutions

• Discussion

General Issues

• Predictions for the future

• What is needed to make developing
realtime interactive sites with Java™-
based technology easier

• Where to find resources for your Java™-
powered work...

Questions and Answers

Additional Slides

• Can be found at EarthWeb’s site:

• On the Resources & Information page
– http://earthweb.com

design/PrivLab.pdf

Herb JellinekHerb Jellinek
Steve ByrneSteve Byrne

Network-basedNetwork-based
ApplicationsApplications

What is HotJava, Anyway?

• Web browser written entirely in
Java™-based language

• Toolkit for building Web-aware
applications

• Dessert topping

• Floor wax

What is HotJava, Anyway?
History

• HotJava alpha3 (1994-5)
– Java™-based proof of concept

– dynamic Web content (applets)

– Didn’t have:
• Real security

• A well-defined Applet API

What is HotJava, Anyway?
History

• HotJava 1.0 (1996)
– Completely new implementation

– Modular architecture
• Customizable without source code

• Multi-threaded for higher interactivity

• State of the art: HTML 2.0+, applets,
installable handlers

What is HotJava, Anyway?
The Future

• HotJava toolkit (1996-): class libraries
for building web-aware applications
– HTML parsing

– Document editing, formatting,
presentation (MVC-based)

– Web navigation

– Communications

What’s a “Private-Label
Browser,” Then?

• What would you like it to be?

Why a Customized Browser?

• Horizontal applications
– Corporate branding

– eg: on-line services, ISPs

• Vertical applications/intranets
– eg: medical imaging, securities trading

• Embedded applications
– eg: Java™-powered terminals,

data-entry stations

Can Customize to Suit...

• A group of people
– Common look & feel; pages for a

company, department, group

• A task or set of tasks
– Remove extraneous options, add common

• An individual
– Disabilities, general preferences

Customization Resources

• Can do a lot with no programming!
– Need text editor, paint program

• Use source code, docs as reference
– Write “drop-in” components

• Use source code as toolkit
– No limits!

Customizing HotJava
Without Programming

• Messages

• Colors

• Menus

• Images

• User interface pages

• Miscellaneous settings

Customizing HotJava
Without Programming

• Interactive examples
– Title

Customizing HotJava:
Changing the Browser’s Title

Edit properties file
Change this:

hotjava.title=HotJava(tm)

To this:
hotjava.title=Herb’s Browser

Done! – on all platforms

Customizing HotJava
Without Programming

• Interactive examples
– Title

– Background color

Customizing HotJava:
Changing the Background Color

Edit properties file
Change this:

hotjava.background=0xB5B5B5

To this:
hotjava.background=0xC0FF80

Customizing HotJava
Without Programming

• Interactive examples
– Title

– Background color

– Menus

Customizing HotJava:
Adding a Menu

Add forms menu def’n to properties:
formsMenu=Forms\

|go http://srv/claim.html=Claim\

|go http://srv/bill.html=Billing\

|go http://srv/pay.html=Disburse

Customizing HotJava:
Adding a Menu

Then add menu def’n to menu bar:

 browsemenubar=\

 filemenu:editmenu:gotomenu:\

 formsMenu:helpmenu

Notice: removed options (optionsmenu)

Customizing HotJava
Without Programming

• Interactive examples
– Title

– Background color

– Menus

– Buttons

Customizing HotJava:
Changing the Toolbar Buttons

Buttons are named:
 back, forward, home, reload,

stop, errors

Button properties to be changed are:
 up, down, disabled, width, height

Example: button.home.up=home.gif

Customizing HotJava
Without Programming

• Interactive examples:
– Title

– Background color

– Menus

– Buttons

– User-interface pages:
• remove HotJavaApplet, change graphics

Customizing HotJava:
Changing a UI Page

Allow changing some proxies only

Modify preferences-proxies.html:
 Delete

– CachingProxyApplet

– GopherProxyApplet

– SocksProxyApplet

Customizing HotJava
With Drop-in Components

• Requires no changes to source code

• Add new features to built-in pages

• HotJava™-powered applet: connects
browser
to UI
– Subclass to add new features, then

– Embed applets in new built-in pages

• New protocols, content types

Customizing HotJava
With Source Code

• Add:
– New HTML tags, UI gadgets

• Change:
– Browser, security mgr., page layout,…

• Remove:
– Non-critical features

Customizing HotJava
With Source Code

• In short: Go wild!

Customizing HotJava
With Source Code

• Interactive example:
Add a clock (okay, so that’s not so wild)

Private-Label Browsers
In Conclusion

• HotJava is highly customizable

• Can be customized for
– Vertical,

– Horizontal, or

– Personal applications

Private-Label Browsers
In Conclusion

• Without source code, can be
customized
– Once for all platforms

– By non-programmers

– Programmers: protocol, content handlers

Private-Label Browsers
In Conclusion

• With source code can be more radical

• Consider as toolkit

• Add:
– Tags

– Drop-in components

– More!

design/DesLibs.pdf

Designing Your Own Class Libraries

Designing Designing
Your Own Your Own

Class Class
LibrariesLibraries

Patrick SchmitzPatrick Schmitz
ToolsmithToolsmith

Dimension XDimension X

Dimension X and Java™

• Our background and experience

• Our interest in Java™-
based technology

Overview

• Using packages

• Packages and scope rules

• Using native extensions

• Applications vs. Applets

• Case study – Liquid Motion

Design Issues –
Using Packages

• Why use packages?

• How much goes into a package?

• Package naming

Why Use Packages?

• To reduce namespace clutter

• For design clarity

• For project sharing

• For authoring vs.
publishing distinctions

How Much Goes
Into a Package?

• Design scope of a package

• Sub-packages and misc packages

Package Naming

• Corporate root names

• Standard package naming

• Versions and naming

Packages and Scope

• Scope support in the Java™ language

• Cross-package scope challenges –
when you need a friend

• Interfaces vs. callbacks

Scope Support in Java™

• Public, and what it is good for

• Protected, and why it should
be pervasive

• Private, and when to use it.

• Default (package) scope – it’s utility
(and dangers)

Cross-Package
Scope Challenges

• Breaking encapsulation

• Efficiency considerations

• Sub-packages and scope

• Alternatives to friends in Java™

Interfaces vs. Callbacks

• Using interfaces in design

• Update wrapper objects

Using Native Extensions

• The temptations and the pitfalls

• Platform issues

• Architecture and design of
extension classes

Applications vs.
Applets in Design

• Applet class design issues

• Application class design issues

• Extensible architectures

• Delivery mechanisms, licensing issues

Applet Design Issues

• Size matters!

• Class count and zip loaders

• ID stamping and caching

Application Design Issues

• User interface complexity

• Platform dependence

• Debug and release versions

• Integration with an applet

Extensible Architectures

• Dynamic loading

• Using the Class class

• Cross-package plug-in sets.

Delivery Mechanisms,
Licensing Issues

• Applications and the runtime of the
Java™ language

• Java™ in the OS is coming!

• Application vs. Applet licenses.

Case Study – Liquid Motion

• The class hierarchy

• The applet and the application

• Lessons learned

design/MTApps.pdf

MultithreadedMultithreaded
ApplicationsApplications

Thomas BallThomas Ball
Staff EngineerStaff Engineer

JavaSoftJavaSoft

Why Threads?

• Time wasted blocking on system calls

• Can’t interrupt calculations easily

• Difficult to manage multiple job tasks

• Difficult to use multiple processors

Threads...

• Are lightweight subprocesses

• Have separate execution paths

• Can share data

• Have a separate lifecycle

• Are scheduled

Java™ Threads

• Simplified model
– Harder to hurt yourself

• Integrated in the Java™ language

• Platform-independent use

• System classes all thread-safe

Thread Basics

• Concurrent execution

• Scheduling
– Preemption vs. cooperation

– Time-slicing

• Priorities
– wait(), sleep() and yield()

Thread Lifecycle

• New
– Created, but not started

• Runnable
– Started, but not necessarily running

• suspend() and resume()

• Dead
– run() finished, or stop() called

Synchronization

• Prevents concurrent access to shared
resources:
Teller A Teller B

Gets balance Gets balance

Adds $100 Subtracts $100

Stores balance Stores balance

Balance equals?

• The above is a “race condition”

Monitors

• From Mesa/Cedar, C.F. Hoare

• Allows thread re-entry

• One per object with synchronized
methods

• Usage automated through
synchronized keyword
– synchronized methods or blocks

Monitors (cont.)

public class Teller {
int balance = 0;
boolean smile = false;
synchronized void credit(int cash) {

balance += cash;
smile = (balance > 10000);

}
synchronized void debit(int cash) {

balance -= cash;
 smile = (balance > 10000);
}

}

Monitors (cont.)

• Language integration encourages use
– Little extra to learn

– Compiler, runtime checking

• Language integration reduces bugs
– Monitor guaranteed to be exited properly

– No reference counting problems

Creating Threads

• Write the class with a run() method
– Either subclass Thread or

– Implement Runnable

• Create an instance
– If subclass, use new <subclass>

and call start()

– If Runnable, use new Thread()

Killing Threads

• Exit the run() method, or

• Call <thread obj>.stop()
– Won’t die while blocked

We’re Done, Right?

• But what about:
– Inter-thread communication

– Performance

– Deadlocks

– Race conditions

– Native code access

Inter-thread Communication

• Roll-your-own events

• wait(), notify(), notifyAll()

• Synchronized objects

Example: SimpleQueue

class SimpleQueue {

synchronized boolean nextEvent() {

try {
wait();

} catch (InterruptedException e) {

return false;

}

return true;

}

}

Example:
SimpleQueue Client

public static void main(String[] args) {

SimpleQueue theQ = new SimpleQueue();

MySubTask task = new MySubTask(theQ);

task.start();

while (theQ.nextEvent() {

System.out.println(“got event”);

}

}

Synchronized Objects

class StaticQueue {
static theQ;
static boolean nextEvent() {

synchronized (theQ) {
try {

theQ.wait();
}catch (InterruptedException e){

return false;
}

}
return true;

}
}

Performance

• Synchronized method calls are slow:
– Method call: 1.0

– Synchronized method call: 6.6

– Already-locked method call: 6.1

• So only synchronize methods which
access shared instance or static data

Deadlocks

• Definition: two threads wait forever for
the other to release a lock the other
has locked

• Example: dining philosophers
• Diagnostic: thread and monitor dump

– Control-\ on Solaris
– Control-Pause on Win32
– Debug menu on Mac

Thread Dump

"Screen Updater" (CONDVAR_WAIT) prio=5

 java.lang.Object.wait(Object.java:152)

 sun.awt.ScreenUpdater.nextEntry(where)

"AWT-Win32" (RUNNABLE) prio=5

 sun.awt.win32.MToolkit.run()

 java.lang.Thread.run(CONDVAR_WAIT)

"thread applet-TicTacToe.class" () prio=5

 java.lang.Object.wait()

 sun.applet.AppletPanel.getNextEvent()

Monitor Cache Dump

unknown key (key=0x75a0f0): <unowned>

sun.applet.AppletViewerPanel@1396FA0/
143D140 (key=0x1396fa0): <unowned>
waiters = 1

sun.awt.ScreenUpdater@1397630/143EBD8 (key=
0x1397630): <unowned> waiters = 1

sun.awt.win32.MToolkit@1397250/143DB40
(key=0x1397250): "AWT-Win32"

Race Conditions

• Symptoms:
– Bugs on one platform, not on another

– Bugs when run remotely

– Bugs when run with debugger
• Single-stepping may cause round-robining

• Any non-synchronized shared data can
display a race condition

Race Conditions (cont.)

• Design/code review:
– definitely synchronize static data access

– probably synchronize method data access

• Don’t rely on thread priorities
– I/O blocks thread simulators (Mac, etc.)

– I/O doesn’t block native threads (Win32)

Native Code Access

• obj_monitor(Object)

• monitorEnter(), monitorExit()
– monitorEnter(obj_monitor(Object))

• monitorNotify(), monitorNotifyAll()

• monitorWait()
– monitorWait(obj_monitor(Object),100)

Native Access Code (cont.)

• Java™ code:
synchronized (myObj) {

<block>
}

• in C:
monitorEnter(obj_monitor(myObj));
<block>
monitorExit(obj_monitor(myObj));

• Must call monitorExit() on all exits

Questions?

design/3D.pdf

Larry McDunnaLarry McDunna
Mike McCueMike McCue
Chris LaurelChris Laurel
Scott FraizeScott Fraize

DesigningDesigning
With 3D:With 3D:

Java NVRMLJava NVRML

design/DistComp.pdf

Distributed Distributed
Computing Computing

andand
PersistencePersistence

Jim WaldoJim Waldo
Sr. Staff EngineerSr. Staff Engineer

JavaSoftJavaSoft

Distribution and Persistence

• Objects existing over space and time
– Objects over space = distribution

– Objects over time = persistence

• Outside the language environment

• Introduces new failure modes

• Usually treated separately

Preserving and
Reconstituting Objects

• Simplest form possible

• Allows reconstituting a copy

• System includes default
implementation

• Custom implementations possible

ObjectStreams

• Self-identifying byte streams

• Utilize Java™ Stream abstraction

• Preserve object by writing to a stream

• Reconstitute by reading from a stream

Some Technical Details

• Identification by structure

• All objects in a graph serialized

• Multiple references and
cycles preserved

Example

• Write out an object
 FileOutputStream f = new

FileOutputStream(“tmp”);
ObjectOutput s = new
 ObjectOutputStream(f);
s.writeObject(“Today”);
s.writeObject(new Date());
s.flush();

Example

• Now read it back
FileInputStream in = new

FileInputStream(“tmp”);
ObjectInputStream s = new

ObjectInputStream(in);
String today =

(String)s.readObject();
Date date =

(Date)s.readObject();

Extending for
“Special” Objects

• writeObject and readObject
methods

• Objects can refuse to be serialized
– Mark fields as transient

– Throw exception

– Default is NOT to serialize

Distributed Objects

• Method calls across VM boundaries

• Remote procedure call extended
to Java™

• Leverage the universality of the
Java™ virtual language

Preserving the
Java Object Model

• Distributed objects are
Java™-based objects

• Distributed interfaces are
Java™-based interfaces

• Object references carry their true type

• Method invocation may fail in
new ways

Taking
Discontinuity Seriously

• No global knowledge

• Partial failure

• No central administration

• No temporal ordering

Unify and Simplify:
JavaSpaces

• Network repository for
grouped objects

• Continuous over time and space

• Unifies persistence and
communication

• Wormholes between VMs

Object Sequences

• Ordered sets of Java™-based objects

• Basic entity for persistence
and communication

• Can contain any object extending
Object

Methods on
Object Sequences

• put()into a JavaSpace

• get() from a JavaSpace

• remove() from a JavaSpace

Templates

• Object sequences with Null values

• Used in get() and remove()
methods

• Associative lookup based on value

Transactions

• Discontinuities made atomic

• Required for reliability

• Span multiple operations
in a JavaSpace

• Span multiple JavaSpaces

Two Phase Commit

• JavaSpaces act as managers

• Participants defined by an Interface
join()
prepare()
commit()
abort()
ping()

Replication

• Avoid a single failure point

• Policies via consistency guarantees

• Unexplored design space
– Clear at the edges

– Fuzzy everywhere else

Schedules

• Currently an AD project

• Early access sometime this summer

• Products within the next 12 months

Further Information

• Watch

http://chatsubo.javasoft.com/

design/MultEnv.pdf

Multiuser Multiuser
EnvironmentEnvironment

Social-oriented Online Social-oriented Online
System: Requirements, System: Requirements,

Examples, FuturesExamples, Futures

Douglas CrockfordDouglas Crockford
Electric CommunitiesElectric Communities

Cupertino, CaliforniaCupertino, California

Java™-based Names

• Java™ and other Java™-based names
and logos are trademarks of
Sun Microsystems, Inc., and refer to
Sun’s family of Java™-branded
products and services.

Electric Communities

Lucasfilm’s Habitat (1985)

• First graphic,
online community

• Avatars

• Commodore 64
– 64K RAM

– 300 baud modem

– 1MHz 6502

– Slow floppy disk

Lucasfilm’s Habitat

• Habitat provided an acceptable level
of social interaction for tens of
thousands of members

• How did we do it?

• Object oriented protocols

Lucasfilm’s Habitat

• Habitats are excellent places to learn
about the sociology of online
communities

• You can’t dictate human behavior

• Systems must adapt to evolving
social context

AMiX
American Information Exchange

• Information marketplace

• Buyers and sellers of information

• Static and dynamic information

AMiX Electronic Commerce

• Order entry & credit card payment

• Contracting, dispute resolution,
reputation system

• Social environment

• Mediation services

WorldsAway

• Designed for Fujitsu

• Based on the original
1985 design

• Available through
CompuServe

Experience

• Only three graphic virtual
communities have generated revenue
on an ongoing basis

• We designed all three

• Human-centered design

Social Systems

• Recreation, commerce, collaboration,
education, support

• 60’s: Timesharing
– Chat

– Games

– Document exchange

• Engelbart at SRI

Architecture for
Social Networking

• 70’s: mainframes and minis

• 80’s: standalone PCs
– The dark ages of social computing

– X-Modem

– Email eclipsed by fax

• 90’s: networked PCs

The Internet

• The greatest value of the Internet was
and always will be a medium in which
individuals could interact with each
other for their mutual benefit.

People in Cyberspace

• The challenge is to give people a
reason to go there

• Content is just one of the currencies
on the Net

• The most important currency is the
relationships between people

Rights

• Right to assemble and speak

• Right to protect individual privacy

• Right to trade with anyone

• Right to meet our neighbors

• Right to meet people in other places

• Without the danger of viruses, trojan
horses, and other security threats

Scalable

• Scalable social systems are hard
to make

• Sociological issues

• Technological issues
– The Java™-based platform is great as far

as it goes, but lacks features needed for
scalable, distributed systems

Distributed Programming

• Remote procedure call

• Remote message invocation

• Not well-suited to social mediation

Social Oriented
Distributed Programming

• Interaction between people

• Social environments have a much
greater emphasis on communication

• Dynamic

Four Requirements

• Communications

• Concurrency

• Security

• Optimistic computation

The E Extensions

E is Java™- powered

• The best of two powerful
programming paradigms

• E is implemented as a compiler,
runtime, and class libraries

• It was not possible to add this level
functionality by simply adding classes

E: Communications

• The EObject
– No public methods

– Message passing
• Real messages, not polymorphic

subroutine calls

• One way

• Immediate, asynchronous, optimistic,
non-blocking

EObject <- message_name
(parameters);

• Messages can be sent to EObjects
on the same machine or across
the network

• You can test eclasses in a single
machine, and then use them in a
networked configuration with no
recoding or recompilation

Message Passing

• Message passing is a natural way to
work with networks

• The programming model matches the
communications model

Automatic
Connection Management

• No sockets

• No streams

• No threads

• No low-level protocols

• Just EObjects and messages

References

• If you have a reference to an EObject,
you can send a message to it

• Sources of references
– Initialization

– Creation of EObjects

– Messages

• References cannot be forged:
Capabilities

Virtual Networks

• By propagating EObjects, it is easy to
build and maintain virtual networks

• Foundation for communities

Distributed
Garbage Collection

• Keeps EObjects alive that are
referenced only from the network

• Reclaims those EObjects when they
become unreferenced

• Reclaims unreferenced distributed
cyclical structures

E: Concurrency

• EObjects are active objects

• High levels of concurrency without
threads and synchronization

• No blocking or suspension

• Mutual exclusion can be assured by
encapsulating critical data in EObjects

Processing Loop
For an EObject:

• Receive message

• Execute Emethod, which may
– Change internal state

– Create objects

– Send messages to EObjects

– Call methods of Java™ objects

• Repeat

Deadlock Avoidance

• The worst kinds of bugs

• Realtime interactions between
objects, possibly affected by
interactions with other machines

• These failures can be intermittent,
often unreproducible, and are
extremely difficult to debug

E: Security

• Meaningful relationships depend
on trust

• Commerce depends on trust

• Secure systems really are necessary

• We need a better balance between
power and safety

Trust Management

• The E Trust Manager provides for the
signing of classes and packages,
providing a tamper-proof seal
identifying the source of the software
and proof that it has not been altered
or extended

Trust Management

• The central question that the E Trust
Manager is concerned with is not
“Can this class be trusted?,” but
“What can this class be trusted with?”

• E supports the creation of execution
environments which are highly
dynamic and highly restrictive in the
interfaces provided to alien software

Trust Management

• Under the E Trust Manager, classes
will be loaded only if they are trusted
to use the classes they require

• We do this by issuing “class
capabilities” relying on positive
assertions of trust

Trust Management

• Claims of the form that “Class A can
be trusted with Class B” can be made
by the maker of Class A or Class B,
but that claim is recognized only if the
source of the claim is trusted

• The scheme is fine-grained, flexible,
extensible, and delegatable

Capability Semantics

• Object

• Class

• Message

E: Optimistic Computation

• Inherent delays in the network

• When people wait, they get irritable

• Latency is not going to get better

• Optimistic Computation is a tool for
dealing with latency

Optimistic Computation

• Assume that everything is going to
work and keep going

• This tends to increase parallelism,
balance loads, and reduce
cumulative latency

• Cumulative latency is a major killer
of distributed applications

Flexible Sequencing

Latency Compensation

• Reduce cumulative time spend
waiting for network-based delivery

Communication Avoidance

• Dynamic routing

• The most effective way of making the
network seem faster is to use it less

Channels

• A special object which can receive
messages and then forward them on

• The sender does not need to know
where the message ultimately will go

• The channel can begin receiving and
collecting messages before it is given
the forwarding address

Channels

• Every channel has a component object
called a distributor

–distributor <- forward
(reference);

• Channels can simplify program
design by reducing the need and
complexity of message naming

Channels Can
Reduce Latency

• Futures

• In many cases, computation involving
time-distant results can proceed even
if the results are not yet known

• Messages can be sent to EObjects
before they are created

• References not-yet-created to
EObjects can be sent

Trading Table
Demonstration

• Metaphor for a more general model of
net commerce

• Objects have a sense of ownership

• Ownership can be transferred using
the trading machine object

Trading Table
Demonstration

• Simple virtual space shared by
three computers

• There is no central server

• Pretty easy to write using E

• Available at
– http://www.communities.com/

E

• Electric Communities developed E for
its own use

• We wish to share it with you

• E will be used as the implementation
language for global marketplace

E Is Available Now

• http://www.communities.com/

You are Such a Lovely
Audience

• We’d like to take you home with us

• We’d love to take you home

The End

design/I18n.pdf

Internationali-Internationali-
zationzation

Asmus FreytagAsmus Freytag

Overview

• Background

• Requirements

• Approaches
– Character Encoding (internal/external)

– Locale Support

– AWT: Input, Fonts, Localizing Applets

– HotJava

• Delivery Stages

Background

• Users have easy access to documents
worldwide, in any character set

• Servers can be accessed by users from
anywhere, speaking any language

• Software can no longer be targeted to
a single national market

˜ The Internet pushes the envelope on
 Internationalization

User Requirements

• Display text data from any source

• Run localized apps/applets
– Access localized web pages and applets

by language

Programmer Requirements

• Create internationalized Apps/Applets

• Localize Apps/Applets easily

Char Data Type and
Identifiers

• Java’s character data type is Unicode™

• Identifiers: any Unicode letter or digit
– Currently spec'd as Unicode 1.1

– Will be Unicode 2.0 as of JDK 1.1

• Remove limitations:
– Current limit: 0000-00FF in PrintStream

• Deprecate:
– Small # of APIs assume ‘byte[]’ as text

Character Encoding

• External data are not all in Unicode

• Class CharacterEncoding
– Conversion functions for most common

character sets

• Extensible

• Add: Character code conversion in
– DataInputStream.readChar

– DataOutputStream.writeChars

 Locale

• Flexible locale model

• NOT global, but object-oriented

• Hierarchy of services rooted in Class
LocaleDependent

• Allows definition of generic locale
dependent services

• AWT Components carry locale
designation

 Fonts

• Currently only Latin 1 fonts.

• Abstract font names for native fonts:
– For font name "Serif", Java runtime will try

to use Serif type platform fonts for all
Unicode glyphs.

– If the glyph is not available, Java will
display a substitute character.

• Future: provide combining fonts APIs

Input Method

• Java will support native Input Methods
via native widgets used by awt.

• Future: access via Java specific rich text
widgets, possibly API

• Future: support for platform indepen-
dent input method desirable

User Interface Localization

• Original java UI approach wraps code
and localizable data
– Very flexible, but broken for localization.

• Short term: use property sheets

• Long term: JavaSoft is working with
licensees to define a common, sharable
serialization of classes, so GUI builders
can support localization tools

HotJava

• HotJava strings and messages are kept
in property files

• Currently displays HTML or
documents encoded in ISO 8859-1

• HotJava 1.0 will be based on JDK 1.1
and leverage new i18n features to
support display of multilingual text

• HotJava will support localized applets

 Staged Release

• Java i8n features will be released in
stages

• '1.1' :
– CharacterSet support and Locale Model

– Initial input and font support

• Future: UI localization, rich text, etc..

 Summary

• Minimal subset immediatly

• Rich support later in stages

• Working with licensees to define and
implement support

• Thank you. Any Questions?

