
 Grammar Writer’s Workbench

Ronald M. Kaplan and John T. Maxwell III

Version 3.1, November, 1996

Copyright 1993, 1994, 1995, 1996 by Xerox Corporation
All rights reserved.

2

3

Table of Contents

Introduction Intro

New in this release
History of changes

I. Entering a new grammar

1. Named linguistic specifications Names

2. Syntactic rules Rules
2.1. Typing rules: Punctuation and format
2.2. Installing rules into the internal database
2.3. Editing rules: Menus, visiting, and showing
2.4. Keeping alternative formulations
2.5. Deleting a rule
2.6. Which window? Left vs. Middle click

3. Lexical entries Lex
3.1. Typing in

 3.2. Starting with an existing entry
3.3. Analyzing sentences
3.4. Accessing lexical entries

4. Morphological information Morph
4.1. Interpreting the morphology table
4.2. Affixes in the lexicon
4.3. More morphology rules
4.4. Irregular forms

5. Templates Templates
5.1. Defining and invoking templates
5.2. Displaying the template lattice

6. Saving grammars on permanent files Cleanup
6.1. TEdit PUT and GET
6.2. The File Manager: Cleanup
6.3. Files? and Load
6.4. Manipulating managed files

7. Encoding and typing of special characters Keyboards
7.1. Virtual keyboards
7.2. TEdit abbreviations
7.3. Projection designators

8. Exiting: How to leave Medley

II. Grammar testing and debugging Debugging

1. Display of linguistic representations

2. Debugging with c-structure and chart

3. F-structure debugging
3.1. Inconsistency

4

3.2. Incoherence
3.3. Incompleteness and determinacy
3.4. Resolution of functional uncertainties

4. Projections

5. Changing default analysis modes

III. Grammatical notations

1. Regular predicates for c-structure rules CS-Notation

2. Empty strings and empty nodes

3. Regular abbreviations
3.1. Meta-categories
3.2. Regular-expression macros
3.3. Phantom nodes

4. The functional description language FS-Notation
4.1. Designators
4.2. Propositions
4.3. Boolean combinations

5. Functional templates and lexical rules

6. Configurations Config

IV. Windows and Menus Windows

1. Rule windows

2. Lexicon windows

3. Template windows

4. Configuration windows

5. Morphology windows

6. The Sentence Input window

7. The LFG logo window

8. The C-structure window

9. The F-structure window

10. Other projection windows

11. The description window

12. The chart window

13. Printing and including display objects

5

References

Appendix: Editing Text with TEdit

6

7

Introduction

The LFG Grammar-writer’s Workbench is a computational environment that assists in writing
and debugging Lexical Functional Grammars (Kaplan & Bresnan, 1982). It provides linguists
with a facility for writing syntactic rules, lexical entries, and simple morphological rules, and
for testing and editing them. The system applies these specifications to sentences or other
strings and then provides the following analytic information:

Constituent-structures — whether or not they have valid f-structures.

The chart — containing all complete or incomplete bracketings of the input string
that the grammar allows

Functional-structures — including display of inconsistencies, incompletenesses, and
incoherencies

Functional-descriptions — the instantiated equations corresponding to particular
c-structure nodes or particular f-structures

The system was originally written in the early 1980’s, but it has evolved since then and also
implements some of the later additions to the LFG formalism. It includes functional
uncertainty (Kaplan & Zaenen, 1989b), functional precedence (Kaplan & Zaenen, 1989a),
generalization over sets (Kaplan & Maxwell, 1988), and a rich notation for expressing
c-structure patterns. The system allows correspondences between multiple levels of linguistic
representation to be defined, as described by Kaplan (1987) and Halvorsen and Kaplan (1988).
As a simple application of this capability, the system can display the properties of a semantic
representation that is characterized and associated with a string by lexical and syntactic
schemata. Parameterized macros and templates are supported so that common constituent and
functional patterns can be expressed as independent generalizations.

The system provides a powerful interface for defining and manipulating linguistic rules
and representations. After installing a collection of syntactic rules and lexical entries into the
Grammar-writer’s Workbench (henceforth GWB), you can see whether those items are
sufficient to analyze sentences or phrases in the language in question. You can also easily mix
and match different sets of linguistic specifications as you experiment with different versions of
particular rules and lexical entries, whether you have written them yourself or they have been
provided by other users of the system.

GWB also supports other activities that surround the business of grammar development.
It can keep track of a number of editing tasks, essentially making available to the user an
entire desktop’s worth of memos, files, diagrams, versions of the paper being written about the
grammar being developed, as well as the files of an entire working group. System output such
as c-structures and f-structures can be copied into papers, and sentences from a paper can be
used as input to the parser.

The Grammar Writer’s Workbench is implemented in the Medley Lisp programming
environement. This descendant of the original Xerox Interlisp-D system is now available from
Venue Corporation. Medley runs on the original Xerox AI workstations and on a wide variety
of Unix workstations (Sun, DEC, IBM, MIPS, HP, etc.) and on certain PC compatible platforms
running MS-DOS. GWB and this document try to be self-contained, so that a linguist can

8

Introduction

successfully use the system without detailed knowledge of the programming environment.
However, it may be helpful to obtain some familiarity with Medley’s window, menu, mouse, and
editing conventions from the more general Medley documentation.

The first chapter of this manual is tutorial in nature. It guides you through the process of
entering a new grammar into GWB. It also describes how to use the system to parse sentences
or other strings, to evaluate and edit your linguistic descriptions, and finally to save a grammar
on a file for use in a later session. It assumes some familiarity with the Medley display
facilities (window and mouse manipulation, etc), file management, and the TEdit text-editor, as
well as the linguistic principles of Lexical Functional Grammar. All the editing windows used
in GWB, for defining, displaying and modifying syntactic rules, lexical entries, morphological
rules, templates, configurations, and other linguistic specifications, make use of the TEdit
system. A brief description of basic TEdit operations is included as an Appendix at the end of
this manual; it will be helpful to read that description if you are not already familiar with TEdit
keyboard conventions.

If you follow through the first chapter, you will enter a grammar that can analyze simple
sentences such as The girl walks. Not very impressive, but going through that procedure
should give you the mechanics you need to enter grammars that are substantially more
complex. Chapter II continues the tutorial with a more complicated grammar, showing in more
detail how GWB can help you understand the properties of a given grammar and aid you in
identifying and correcting its defects; this is the process of grammar debugging. The later
chapters are less tutorial in nature. Chapter III gives formal characterizations of the notations
used for the various linguistic specifications. Chapter IV provides reference material on the
various windows and menus that are used to interact with the system.

Although GWB tries to insulate you from the details of the underlying Medley
programming environment, various exceptional circumstances can arise that interrupt the
normal operation of the system. For example, the system might run out of some critical
resource such as stack space or memory, it might lose connections to important network
services, or it might be unable to locate files, fonts, or printers that you specify. Typically in
such situations a special “help” or “break” window will appear on the screen with some
indication of the source of the problem. If you are familiar with Lisp and with the Medley
system, you may know how to enter commands in this window that will repair the problem.
Then, by typing OK followed by a carriage return, you can allow the troubled computation to
proceed. If you do not know how to make the repair, you can simply type STOP and a carriage
return. This will abort the broken computation, close the break window, and return you to the
usual mode of operation described in the coming chapters.

We would like to acknowledge the contributions that Kris Halvorsen, Atty Mullins, Kelly
Roach, and Michael Wescoat have made to the facilities that exist in this system. We are also
indebted to Carol Kiparsky for drafting a precursor to this reference manual.

New in this release. . .

The Grammar Writer’s Workbench continues to evolve, partly in response to independent
developments in LFG theory and partly in response to linguistic and practical issues that
emerge from use of the system. You can help improve the system and this manual by sending
e-mail with bug reports, comments, and suggestions to kaplan@parc.xerox.com. This manual is
revised at each release to clarify and expand the discussion of various points, and also so that it
continues to describe the current state of the system. Here we call attention to the most
significant changes in order to help users who are upgrading from previous versions.

9

Introduction

A short section has been added to the manual describing how to exit from Medley.
(Section I.8)

The rule, lexicon, and template menus contain a new item, Find Symbol, that helps you
find occurrences of particular symols used as feature values.

The lexicon menu also contains a second new item, Find Root, that helps you keep track
of dependencies among irregular morphological forms. (Sections I.3.4)

The display of all active templates now has the same format as the display of individual
templates. (Section I.5.2)

The local name %stem has been given a special, built-in meaning as a reference to the
headword of the lexical entry in which it is encountered. This can simplify the invokation
of lexically-invoked templates. (Section III.4.1)

A new notation has been introduced for instantiated symbols so that they are clearly
distinguished from semantic forms. (Section III.4.1)

Attributes can be declared as “nondistributive” so that they will not be distributed across
the elements of a set. (Sections III.4.1 and III.6)

History of changes

Below is a record of changes that were introduced in previous releases of the manual and
system:

A section has been added to the tutorial chapter that introduces the use of templates for
sharing functional specifications, and a graphical display has been provided to show the
“inheritance” relationships of template references. (Section I.5 and IV.3)

The Executive in GWB’s initial configuration is now an Interlisp executive, so that all
symbols will be in the Interlisp package by default. (Section I.6.4)

Words that closely resemble other words can be defined more conveniently, using the
“like” feature in a Lexicon Window. (Section I.3.2)

The “bottom” element of the f-structure lattice is now seen as a bona fide entity in the
f-structure ontology, representing the complete absence of information. As a consequence,
certain constraints are no longer regarded as indeterminate and hence unacceptable.
(Section II.3.3)

GWB recognizes that certain existential constraints and the completeness condition for
certain structures are globally unsatisfiable because the required features are not
instantiated anywhere on a given tree. (Section II.3.3)

Macro and template parameters can be marked as optional, so that a single definition can
be used in more flexible ways. (Sections III.3.2 and especially III.5)

A c-structure rule can be referenced as a macro invocation, in which case that invocation is
treated as a meta-category substitution. The invocation gives rise to a “phantom” node in
that there is no distinct subtree corresponding to the rule-expansion. (Sections III.3.3 and
IV.6)

Instantiated symbols provide a new kind of designator to describe unique syntactic feature
values. (Section III.4.1)

Local names, symbols prefixed by %, can be used as designators so that it is convenient to
refer to the same entity several times in the schemata associated with a particular
category or lexical entry. (Section III.4.1)

10

Introduction

New designators * and M* have been introduced to denote a matching c-structure node
and its mother. This permits projections in addition to f-structure to be put in
correspondence with c-structure nodes. (Section III.4.1)

The f-description language has been extended with a new predicate CAT that imposes
constraints on the “category” of a functional or other abstract structure by restricting the
categories of the c-structure nodes to which that structure corresponds. (Section III.4.2)

The SYMBOLSINLINE configuration parameter controls the display of f-structures. (Section
III.6)

The display of f-structures and other projections has been improved: A single f-structure
with alternative further projections now appears only once in the f-structure window
rather than being displayed once for each of its further-projection alternatives. Also,
subsidiary structures that are common to many different surrounding structures are only
displayed once in full; other appearances are marked with a reference to the first
occurrence. (Section II.1)

Typing CTRL-F in editing windows shows how macro and template invocations are
expanded. (Sections III.3 and III.5 and Chapter IV)

Typing CTRL-S in Sentence Input and editing windows causes selected item to be “shown”.
(Section I.2.3 and Chapter IV)

The menu of the Sentence Input Window has two new items. Print Structures causes the
structures resulting from the analysis of a set of sentences to be printed on a file where
they can be accessed by other programs. Show phantom nodes toggles a switch that
determines whether phantom nodes are to be interpreted as ordinary categories and thus
made visible in the c-structure for easier debugging. (Section IV.6)

11

Introduction

Chapter I

Entering a New Grammar

This chapter presents a tutorial introduction to the procedures for typing in syntactic rules,
lexical entries, and morphological rules, the linguistic specifications that are necessary for
sentence analysis. It also tells you how to create a new configuration, the repository for
information about the rules, lexical entries and other information that make up a consistent
sentence analysis environment. We begin with a brief discussion of the tedious but necessary
matter of how you must refer to your linguistic specifications once you have entered them into
the system.

1. Named linguistic specifications

The Grammar Writer’s Workbench keeps track of and operates on a variety of different kinds of
linguistic specifications: c-structure rules, lexical entries, tables for morphological analysis,
different abbreviatory conventions, and other kinds of specifications that might be introduced
as the theory and system evolve. At any one time the user may be working with (and the
system may contain in its internal database) many different versions of a given rule or lexical
entry. There may be several experimental versions of an S rule for English, for example, or a
different S rule for each of several languages that are currently under investigation. The
system must treat these different versions in different ways. Only one of them can be active
when the system analyzes a sentence, you must be able to examine and edit one of them
independently of the others, and you must be able to store them and retrieve them from
different files.

Thus, at the outset, before you begin to write any grammatical descriptions, you must
have some sense of the naming conventions by which you can refer to the linguistic
specifications that you enter into the system. When instructing GWB to manipulate a
particular rule or lexical entry, it is not sufficient merely to indicate the category or word you
intend. You must identify the exact version you intend by using its unique name. Each
linguistic specification in GWB has a name or handle by which you refer to it when calling for
the system to manipulate it in some way. The name of an item is composed of three parts, its
version, its language, and its item-identifier, and these are represented as an ordered triple
enclosed in parentheses. Thus, the S rule in the Toy version of English has the name (TOY
ENGLISH S) and this identifies a completely different rule than the names (BASIC ENGLISH
S), (TOY DUTCH S), or (TOY ENGLISH NP). Similarly, the lexical entry for walk in the
standard English lexicon might have the unique name (STANDARD ENGLISH walk).

All the rules or lexical entries in a given version-language can be identified by providing a
list of their individual names, repeating the version and language separately for each:

12

Chapter I: Entering a new grammar

(TOY ENGLISH S) (TOY ENGLISH VP) (TOY ENGLISH NP)

To avoid this redundancy, GWB allows a simple abbreviation for a set of names. The first
item-identifier in a name can be followed by other item-identifers. The abbreviatory name is
understood as specifying all of the items within the common version and language. With this
convention the compact specification (TOY ENGLISH S VP NP) is equivalent to the longer name
specification above.

An even more concise form is allowed if you want to refer to all the items in a particular
version-language. These can be indicated by simply omitting the item-name entirely, as in
(TOY ENGLISH). If this form is used, for example, to indicate what rules should be stored on a
file or which rules should be activated for use in sentence analysis, it denotes all the rules in
that version-language that exist at the time the form is first used, and also any new rules in
that version-language that are later introduced to the system. In other words, the exact set of
items that a language-version pair refers to will change over time as you develop and extend
your grammar.

You will use these naming conventions quite frequently as you enter, modify, and test
your linguistic descriptions. Let’s start by entering some syntactic rules for a simple version of
English, called TOY ENGLISH.

2. Syntactic rules

2.1. Typing rules: punctuation and format

Rules are entered into GWB’s internal database by typing in to the Rule Window. This is a
TEdit window and all the common text-editing commands and operations described in the
Medley Reference Manual and summarized here in the Appendix can be applied to modify the
text of rules that you type into it. It differs from an ordinary window that you might use to edit
a paper you are writing in two small but important ways. First, certain control characters have
been assigned special LFG and Rule-related functions. These are entered by typing a character
while holding down the CTRL key. Second, the normal TEdit menu, which has commands for
getting and putting files and formatting text in various ways, does not appear on the screen
when you click the left or middle mouse button in the black title-bar at the top of the window.
Instead, you will see a menu with commands specialized to the rule-editing task.

You can start to enter a new rule simply by clicking in the Rule Window so that the
blinking input caret moves to that window and then typing the text of the rule. But you can
use the rule-window menu to get a little initial guidance in this process. If you left- or
middle-click in the title bar of the rule window, you will see the menu with special rule
commands:

13

2. Rules

The items Find Attribute, Find Symbol, Find Template, Find Category, and Edit Rule
permit you to select rules for editing according to different criteria. Clicking the Edit Rule
command, for example, will bring up a menu of rule-categories that are known in the current
sentence analysis environment:

In this case, there are no rules defined, so there is only a special item named New in the menu.
If you left-click the New item, GWB will fill in a little text in the rule window and then it will
move the input-caret into that window:

The caret will be blinking at the point where subsequent type-in will appear, at the beginning
of the line of hyphens. The Version and Language are the two parts of the rule’s name that
were introduced above. You should begin by replacing the Version Language place-holder
strings in the window by the version and language that you want your new rule to belong to.
Since the caret is positioned just after those place-holder strings, you can simply type CTRL-W
twice to backspace over those words and type in the version/language that you want (say TOY
ENGLISH). You are then ready to enter the rule itself, above the line of hyphens. As you will
see, the hyphens serve to terminate a sequence of rules belong to one version/language.

The format for a single simple rule is the following:

 Category --> Category1: Schemata1;
Category2: Schemata2;
 Etc.

The notation for the rule is closely related to the conventional appearance of LFG rules in
published papers, but it includes a little more punctuation so that GWB can clearly understand
the different aspects of the rule. (GWB’s notation is also more expressive in many ways, as
detailed in Chapter III.) Compare the appearance of a Lexical Functional Grammar rule you
might write on paper and the way you type it into GWB. You might write a simple S rule like
this:

 S → NP
(↑ SUBJ)=↓

(↓ CASE)=NOM

 VP
↑=↓

In this conventional notation, the association between categories and schemata is marked by
their spatial arrangement: schemata are written immediately below their associated
categories. This two-dimensional layout is difficult to type and also difficult for GWB to
interpret. Thus rules are typed in to GWB linearly, using punctuation marks to indicate how
categories and schemata are grouped:

S --> NP:(↑ SUBJ)=↓ (↓ CASE)=NOM; VP:↑=↓.

Keyboard notes: The down-arrow can be typed in using the ! key. It may appear
on the screen as you type it as ↓, if a “virtual keyboard” file is available for your
workstation (see Section 7). Similarly, on keyboards without an explicit
up-arrow key the up-arrow can be typed in with a caret ^. The assignment of
keys while typing to an LFG editing window can be examined by clicking
Keyboard in the right-button command menu and displaying the LFG virtual
keyboard. On some keyboards the arrows on the number-pad can also be used to

14

Chapter I: Entering a new grammar

enter up-arrow and down-arrow. Similarly, the rewriting arrow in rules can be
typed in either as --> or by using the right-arrow key. Section 7 provides a full
description of the various ways in which special characters may be typed in.

In GWB, schemata come after a colon following a category. The punctuation is crucial.
The system understands that (↑ SUBJ)=↓ is a schema attached to the NP only because of the
colon which precedes it. The semicolon acts as a “close colon”; it informs the system that you
have finished with the schemata for one category and the next symbol will be a new category.
The final period in the rule says, “This is the end of the S rule. If anything follows, it must be
the beginning of a new rule.” Any string of alphanumeric characters can serve as a category
name, and a few punctuation marks such as ’ (single-quote) are also allowed. A category name
may not contain punctuation marks that are also used as operators in the regular-predicate
notation that more complex rules are written in (see Chapter III).

Apart from these system-specific items, the usual paper-and-pencil punctuation for
rule-writing is used. The right side of a rule can be a regular expression of category/equation
pairs, with parentheses indicating optional elements, Kleene star (*) to say that zero or more
repetitions of a regular expression are allowed, vertical bar (|) to separate disjuncts within
curly brackets ({,}) surrounding the whole disjunction. Symbols and categories must be
separated from each other by white-space, which can be indicated by any number of spaces,
carriage-returns, or tabs.

Now you have clicked NEW in the Edit Rule menu to indicate you are about to write a rule
for a new category, and you have named the version/language that the rule will belong to. The
input caret is blinking in the Rule Window just after TOY ENGLISH and before the line of four
hyphens. Type in a first stab at a rule for Sentence (making sure that at least one space or
carriage return separates its category from the word ENGLISH):

 S --> NP VP.

The daughter categories, NP and VP, need some schemata. To indicate that the NP is the subject
and is in the nominative case, point just after the NP, click Left to move the caret there, and
type:

:(↑ SUBJ)=↓ (↓ CASE)=NOM;

Don’t forget the colon and semicolon. The VP is the head of the S, so it should be followed by

:↑=↓;

(This annotation is optional. If there is no equation mentioning ↓ associated with a category,
then GWB assumes that ↑=↓). Type this in before the period and the rule for sentence becomes

S --> NP: (↑ SUBJ)=↓ (↓ CASE)=NOM; VP: ↑=↓.

As mentioned, the semi-colon is used to indicate where the annotations for a particular category
end. But it is not needed after the annotations on the VP since the closing period is sufficient to
show where the annotations end. Nor is it needed after a simple category name unembellished
by a colon and schemata, or where there is some other punctuation mark (such as a Kleene
star) that is unmistakably not part of a schema.

2.2. Installing rules into the internal database

The next step is to notify GWB that you have finished formulating the rule, and that the rule
should be “installed”, that is, added to GWB’s internal store of rules. If your rule’s name had

15

2. Rules

been specified as part of the current analysis configuration (Section 6), it would also be
activated at this time for use in analyzing sentences.

To install a rule, type CTRL-X in the rule window. This instructs the system first to
analyze the rule to insure correct notation, and then to install it. The window is cleared and
the rule is reprinted as the system understood it, in its canonical form, a process known as
“pretty-printing”. After you have typed CTRL-X, the window looks like this:

Another control character, CTRL-C (for Cancel), lets you tell the system to forget
about what you’ve typed, but not installed, in a particular window. It aborts the
edit, moving the caret back to the Sentence Input window and making the edit
window available for re-use. Try this out: Type the erroneous S-->NP: (↑
OBJ)=↓. In the same window, type CTRL-C. The text is still visible, but the
system will erase it the next time you Left-click a category, if this window is
used for the new edit.

This prettyprinting feature puts the rule in a standard, nicely tabulated format. You don’t have
to worry about alignment as you type the rule. Moreover, as you get used to the system’s
canonical alignment of rule elements, it helps you to tell whether you typed in what you
intended to, for example, that you didn’t leave a category out of a parenthetic grouping that you
really intended to be optional.

When CTRL-X is typed, GWB verifies that the form of the rule makes sense, and adds it to
the rules of TOY ENGLISH. If you now invoke the Edit Rule command from the menu in the
rule window’s title bar, you will see your new category in the menu of rules that can be edited,
plus a new menu item labeled All that allows you to look at all of the rules at once:

The arrow to the right of the All item is the standard indication that a submenu of further
selections exists. Selections from that submenu can be made by clicking the mouse on All and
then sliding off to the right, in the direction of the arrow. The submenu you see when you do
this has two items, Abbreviations and Rules, that can be used to restrict what is brought up
in the window for editing. If you select Rules, you will see all the node-defining rules (at this
point, just S). The Abbreviations item brings up the definitions only for categorial
abbreviations that you might have specified (at this point, none); these are the meta-categories
and regular macros described in Chapter III.

2.3. Editing Rules: Menus, visiting, and showing

Once a rule is installed there are a number of ways to display it for inspection and to make it
available for editing:

Pop-up Menu: In addition to clicking the Edit Rule menu item in the rule window, you can
select that item in the menu that appears when you click left or middle in the LFG Icon
Window (in the upper right corner of the screen) or when you click left in the Sentence Input

16

Chapter I: Entering a new grammar

Window (upper left corner). This will produce a menu of the rules that attention is currently
focused on (those that are active for sentence analysis, if any, or those in the version you are
working on if other versions do not yet exist). Click with left or middle while the cursor is over
the category of the rule that you wish to edit to get the definition for that rule displayed in the
rule window. You can also display and edit rules that are not currently in focus. If you slide
the mouse to the right (following the little triangle) after clicking on the Edit Rule menu,
another menu containing the version/language identifiers for all currently existing rules will
pop up (now just TOY ENGLISH). Clicking on one of these will display a menu of the categories
that exist in the chosen version/language and you can then choose the one you want.

The Edit Rule menu item allows you to edit rules if you have their categories in mind.
The other items in the Rule Window menu, Find Attribute, Find Symbol, Find Template,
and Find Category give access to collections of rules that have certain specified properties. If
you select Find Attribute instead of Edit Rule, a menu of all the symbols that appear as an
attribute (the name of a function or feature) in the schemata of some rule (among either the
rules currently in focus or, as with Edit Rule, in a particular language/version that is first
selected by sliding off the Find Attribute item). Having just installed the TOY ENGLISH S
rule, the attribute menu that pops up is

When you select a particular attribute (for example, SUBJ) all the rules that mention that
attribute will be displayed for editing in the window. Similarly, if you choose Find Symbol, a
you will see a menu of symbols that are used as feature values, and the Find Category menu
shows a menu of categories. When you choose an item from these menus, all the rules that
include the chosen item in their right-hand sides will be displayed. The Find Template item
gives access to all the rules that invoke a particular template. Templates are notational devices
for abbreviating identical or similar schemata found on different rules or lexical items. They
are introduced in Section I.5 and considered more fully in Section III.5. As described in
Chapter III, they can give the effect of lexical rules of the sort that Kaplan and Bresnan (1982)
discuss. The Edit Template menu item is provided as a convenient way of bringing up a
window in which to define new templates or edit old ones. Finally, the top TEdit Menu item
brings up the normal TEdit text editing menu for situations when its text formatting or
file-manipulation commands may be of use (see the Appendix).

Visiting: Instead of using the menus, you can type in the name of the rules you want to edit,
using the CTRL-V (for “visit”) command. If you type CTRL-V while the caret is blinking in a
rule window, you will be prompted for the name of a rule you want to see and edit. If you then
type the name of a rule followed by a carriage return, GWB will print the rule in the current
window. You may do this in a clear window, or one which already has rules in it. Uninstalled
changes will vanish. CTRL-V, like sliding off the Edit Rule menu, also allows you to visit rules
that are not currently in focus. (If you want a rule that isn’t in focus, you must use the full
name of the rule, e.g. TEST ENGLISH S. You only have access to rules that currently reside in
GWB’s internal database, either because they were edited and installed by CTRL-X or loaded
from a file they were previous saved on (see Section 6)). Visiting a rule means being able to see
and edit it, not necessarily to make it active for parsing. A rule is active only if it is mentioned
in the current sentence analysis configuration (Chapter II).

Showing: If you want to view or edit a currently active rule and its name is visible as part of
another rule, there is a quicker way of getting access to it. Click with the mouse to make the

17

2. Rules

type-in caret blink on the name of the item, and then type CTRL-S (for “show”). The current
definition of the item will appear in a clear window if one is available, otherwise you will be
prompted to give the region of a new window. CTRL-S will also cause lexical entries and
templates to be shown.

Attached Menu: To get a persistent menu of the rules currently in focus, select the Edit
Rule command from the command menu of a rule window, but without releasing the mouse.
Then hold down the SHIFT key on the keyboard and release the mouse while the SHIFT is
down. A menu will be attached to the top of the rule window with a list of the rules in focus:

Clicking a category name with either the left or middle button lets you edit that rule. To
remove the menu, click in the menu’s title-bar (the black part labeled “Rules”) with the right
button to see the window-command menu, and move the cursor until it is over the Close
command. Release the mouse button.

Format practice: Let’s play around a bit with the rule format. First, left-click the S item in
the rule menu to bring the S rule back into the rule window (from now on we will assume that
you have a permanent menu attached to the rule window.). Now remove the semicolon after
the NOM symbol and type CTRL-X. This is the result:

Without the semicolon, the system assumes that what follows NOM is part of a functional
schema, not a new category. So it treats each successive item as a designator in the
f-description language. The VP can only be construed as an existential constraint on a symbol,
and GWB, knowing that this does not make sense (because symbols always exist), notifies you
that you have made an error.

Now, correct the rule by re-inserting the semicolon and then delete the colon after NP.
This time GWB prints:

18

Chapter I: Entering a new grammar

Without the colon in this case, GWB does not interpret what follows NP as a schema. It figures
that ↑ is a category name, and it complains because ↑ cannot be used in that way. You can
revert to the original correct form by re-insert the colon and type CTRL-X, but since GWB does
not modify its internal database when it detects a notational error, you can also retrieve the
original form by typing CTRL-C to inform GWB that you want to cancel the changes you have
made and then selecting S again from the rule menu.

Our next rule, for VP, needs a verb, an optional object noun phrase, and the possibility of
any number of prepositional phrases, including none at all. We express this by means of the
Kleene star, *. Click New and type in

 VP --> V (NP) PP*.

This gives the desired pattern of categories, but we also need some schemata to define the
functional structures associated with these nodes. Since V is the head, and NP the object, the
rule with the appropriate category-schemata pairs should read:

VP --> V: ↑=↓;

 (NP: (↑ OBJ)=↓ (↓ CASE)=ACC;)

 PP*: (↑ (↓ PCASE))=↓;.

Add the appropriate schemata to each category in the rule and install the rule. Note that you
can omit the semi-colon after the schemata for the NP and PP since the parentheses and final
period are sufficient for GWB to infer where the schemata end. Also note that the schemata
after the PP* applies to each of the zero or more PPs that may occur, with ↓ instantiated
differently for each PP.

Finally, type in and install a rule for simple noun phrases. The determiner and head both
contribute all their features to the f-structure of the whole phrase, so they should each have an
↑=↓ schema. Relying on the convention that this schema is inferred by default if ↓ is not
mentioned on a category, the rule can be written without any functional annotations at all:

NP --> (DET) N.

Caution: Be consistent in use of case when you type in categories and symbol
designators. DET is not the same as Det to GWB and Case is not the same as
CASE. If you have one of these in a rule and the other in a lexical entry, GWB
will assume they are different categories and an analysis will fail for what may
seem like a mysterious reason.

You can click New and enter the NP rule in a clear window, or, since editing windows can
include several rules at the same time, you can enter the NP rule before or after the text of the
VP rule currently displayed and type CTRL-X.

Now you have installed a few grammar rules. GWB has responded by updating the menu
of rules, which makes it easy to access the current definition of rules and to try out new
variations. Say you want to modify the NP rule to make the determiner obligatory. Click NP in
the rule menu, and the current NP rule will be displayed in a rule window, available for editing.
Delete the parentheses before and after DET. Type CTRL-X. Whatever changes you make in

19

2. Rules

the right-hand side of the rule will be installed, and will constitute the rule that will be printed
instead of the previous one when NP is selected from the menu.

 2.4. Keeping alternative formulations

By now, you probably realize that when you use CTRL-X on successive edits of the same rule,
the system replaces the previous version and saves only the current edit. The previous versions
are simply gone without a trace.

If you want to keep alternative versions for later reference, one strategy is to designate a
separate TEdit window (obtainable by clicking the TEdit item in the menu that pops up when
you click the right button in the background region of the screen) for archival storage of old
rules and make a habit of copying each version of a rule into the archive window before you
re-use the edit window, or as soon as you have installed a rule. A rule saved in this way is easy
to copy back into a Rule Window if you decide to resurrect it.

Instead of saving previous versions of a rule in a separate TEdit window, you might copy
them to a different version of English, say TRINKET, before you edit the TOY version. To copy
the NP rule to the TRINKET version, bring it up into an editing window, change TOY to TRINKET
and type CTRL-X. You can then modify the TOY version but be able to retrieve its original
formulation by visiting (CTRL-V) TRINKET ENGLISH NP or choosing it from the slide-off Edit
Rule menu. You can restore TOY ENGLISH to its original form by changing TRINKET back to
TOY and typing CTRL-X.

2.5. Deleting a rule

Suppose you install a rule (for example: NP2-->AP NP.) and later decide you don’t want it after
all. You can delete or erase a rule by bringing it up for editing, deleting its entire right side,
and installing the empty rule with CTRL-X. For this example, having installed the undesired
rule, you should click NP2 in the category menu with the left mouse button. In the Rule
Window, delete what follows the arrow but leave the period which marks the end of the rule.
Select the text to be deleted by clicking the left button before AP and the right button after the
NP. The text to be deleted is highlighted in black:

Type the key marked DEL or DELETE to remove the highlighted text and then type CTRL-X.
Voilà, the category menu is free of NP2. In other words, if you delete the entire right hand side
of the rule, up to but not including the period, the rule itself is deleted from GWB’s internal
database and also from the active analysis environment. Leaving the period in is crucial when
there is more than one rule in a window. This method for deletion applies to lexical entries as
well: if the body of a lexical entry is completely empty, the word is taken out of the lexicon.

2.6. Which window?

If you summon a rule with a rule menu, which window will it be displayed in?

If you click with the middle button on a category or attribute, the system will
prompt you for a region on the screen to set up a brand new rule window,
leaving existing editing processes untouched.

20

Chapter I: Entering a new grammar

If you click with the left button, the system will try to re-use an existing
window. Any Rule Window with text in it may be cleared and re-used as long as
it does not contain an un-installed change. There is no risk of losing material in
this way because whatever has been installed can be retrieved by clicking in the
category menu. If the text in the window has been edited but you haven’t
installed the changes with CTRL-X, a left-click will get you a prompt for a new
window, just like a middle click. A window will also be re-used if you have
aborted the edit in it with CTRL-C. Only if all windows have uninstalled,
uncanceled changes will the system prompt for a new one.

Try this out:

 Left-click NP

Left-click S

Middle-click VP

Make a change in the S rule. Do not install the change.

Left-click NP

Install the change in the S rule

Left-click VP

Make a change in VP. Do not install the change.

Left-click NP

CTRL-C in VP window

Left-click S

If you try to CLOSE a window with uninstalled changes in it, GWB will ask you to confirm
that you really want to flush the changes before it closes the window and forgets your edits.
The cursor changes to a picture of a mouse with the left button dark. Clicking the left mouse
button confirms that you wish to close. To prevent the window from closing, click the right or
middle button. These conventions also apply to the QUIT command in standard Medley TEdit
menu.

3. Lexical entries

Lexical entries are similar to rules in terms of punctuation, installation, visiting, and editing.
There are also corresponding menus: each lexicon window has a command menu that includes
Find Attribute, Find Template, Find Category, and Edit Lex items. Invoking the Edit
Lex command will produce a menu of the lexical items that are currently in focus (as with
rules, those that are active for sentence analysis, if any, or those in the version you are working
on if other versions do not yet exist). As with rule editing, this menu will be permanently
attached to a lexicon window if the SHIFT key is down when the Edit Lex command is selected.

3.1. Typing in

Before you can use your rules to analyze a sentence, you have to define a few words—a toy
lexicon. Go to the lexicon menu and left-click the New item. The caret will start blinking in the

21

3. Lexicon

lexicon window, which will contain a version/language line and another line with the word New
followed by a period.

Here is the implicit template for the lexicon window:

VERSION LANGUAGE
word Category1 Morphcode1 Schemata1;

Category2 Morphcode2 Schemata2;
 Etc.

Morphcodes encode information about the morphological paradigm that the word belongs to,
including inflectional information about irregular forms, and are described in Section 4. The
schemata in lexical entries are identical in form and interpretation to the schemata that appear
in c-structure rules, although they are not preceded by a colon.

Begin the TOY ENGLISH lexicon by entering the definition for walk. That is, enter TOY
ENGLISH as the version/language. Then replace the word New with the word walk and type in
the category V, the morphcode * (which you will later revise), and the schema

(↑ PRED)=’WALK<(↑ SUBJ)>’

The quote marks enclose the semantic form, as in pencil-and-paper entries. This form indicates
that the predicate WALK takes one grammatical argument, a subject. The predicate in a
semantic form must be a designator in the f-description language, usually a symbol without
internal spaces. So if you wish to wax more descriptive, you can separate the words in the
predicate with hyphens (for example, you might use KEEP-TABS for the idiomatic sense of
keep). Like rules, lexical entries end with a period. Install the entry using CTRL-X. The
window will be cleared and the “pretty” form of the entry will be printed:

Again as with rules, the dashes are supplied by the system to mark the end of a set (in this case
only one) of lexical entries in a single version/language.

Notice that the word walk is entered in lower-case, as it would appear in ordinary text.
When analyzing words in an input sentence, GWB first attempts to match lexicon headings
against the characters just as they appear in the input. If that fails it tries converting an initial
capital (for example, at the beginning of the sentence) to lower-case or an all upper-case string
to lower-case with or without an initial capital. Because of this procedure, the entry above will
be retrieved for the input words Walk and WALK as well as walk. If a word is acceptable only in
all upper-case (e.g. IBM) or only with an initial capital (e.g. the English proper noun Sam), then
it should be entered in the lexicon with the necessary upper-case letters. GWB takes the
sequence of characters up to the next white-space as the spelling of the word. If for some
reason you want to include a space in the spelling of a word, it must be “escaped” by preceding
it with the backquote character (‘). If you want backquote itself to be literally in the name of a
word, then it must also be escaped in a double-backquote sequence.

Of course walk can also be used as a noun. To express this alternative, insert the
following before the final period:

; N * (↑ PRED) = ’A-WALK’ CTRL-X

22

Chapter I: Entering a new grammar

Here too, the semi-colon ends a category specification. In rules, a sequence of categories means
that they all must appear in the c-structure in that order. In lexical entries, a sequence of
categories may be thought of as a disjunction since each indicates a possible interpretation of a
homophonous word. The parser will try out each interpretation independently. Note that this
is the only way that you can express a disjunction of lexical categories in GWB; the following
specification, with the disjunction brackets around the categories and morphcodes, does not
work:

walk { V * (↑ PRED)=’WALK<(↑ SUBJ)>’
| N * (↑ PRED) = ’A-WALK’}.

When you type CTRL-X to install a lexical entry, GWB checks the format and punctuation
of your definition to see if it makes sense. If you have made, for example, a punctuation error
that results in an ill-formed or nonsensical definition, GWB will inform you of that fact just as
it does for errors in the format of rules. To see what happens, try deleting TOY and typing
CTRL-X. This causes GWB to take English as a version name and walk as a language and
attempt to make sense of the rest, resulting in an error:

GWB attempted to fit the symbols it found in the lexical entry for walk into the fields of the
template above, and failed. Now restore the lexical entry: either add TOY back as the version,
select walk from the Edit Lex menu, or type CTRL-V and its name (TOY ENGLISH walk) to
visit it.

3.2. Starting with an existing entry

It is easier to write lexical entries (and rules as well) if you use an existing entry as a starting
point and “edit an old one into a new one” by replacing selected elements of the starting entry
with something new of the same type. (Note that the old entry will not be changed by this
process since you will always change the heading-word.) Bring up the entry for walk and edit
it into one for girl by erasing the text from the V category to the semicolon, changing the word
walk to girl and also changing the predicate A-WALK to GIRL. Then type CTRL-X. The result
will look like this:

Now let’s consider a transitive verb. Edit the verb definition of walk into kick by replacing

walk with kick

’WALK with ’KICK

(↑ SUBJ) with (↑ SUBJ)(↑ OBJ)

and deleting the N part of the entry. Here’s the result:

23

3. Lexicon

kick V * (↑ PRED)=’KICK<(↑ SUBJ)(↑ OBJ)>’.

This is a verb which can also be used without an object, as in “Horses sometimes kick”. It
might seem natural to express this fact by surrounding (↑ OBJ) with brackets or parentheses to
indicate optionality, but GWB does not accept this notation. Instead, you must disjoin two
largely similar schemata as follows:

{(↑ PRED)=’KICK<(↑ SUBJ)(↑ OBJ)>’
|(↑ PRED)=’KICK<(↑ SUBJ)>’}.

Note also that disjunction only applies at the level of equations; you can’t say

 (↑ PRED) = {’KICK<(↑ SUBJ)(↑ OBJ)>’
|’KICK<(↑ SUBJ)>’}.

Often the definition of a new word will be exactly like an existing word, except for a
systematic change to the semantic relation of the predicate. For example, the word halt
belongs to the same inflectional paradigm as kick and is also optionally transitive. We could
construct its definition by bringing the definition for kick into an edit window, changing kick
to halt and replacing the two occurrences of KICK with HALT. GWB provides a short cut, the
“like” feature, that automates some of these edits. Instead of bringing an existing word into the
window to start editing, you can simply assert that a new word is like an already existing one:

halt like kick.
stroll like walk.

These are not proper definitions, but when you type CTRL-X, GWB will construct proper
definitions by systematically modifying existing definitions of the indicated words. In
particular, any string that matches the existing word in its definition will be replaced by the
new word. The match is done in a case-insensitive way, so that kick matches kick, Kick, or
KICK, and the corresponding replacements will preserve the case-pattern of the match, giving
halt, Halt, or HALT. Thus, after typing CTRL-X, the newly constructed definitions will appear
in the window:

halt V * { (↑ PRED)=’HALT<(↑ SUBJ)(↑ OBJ)>’
 |(↑ PRED)=’HALT<(↑ SUBJ)>’}.

stroll V * (↑ PRED)=’STROLL<(↑ SUBJ)>’
N * (↑ PRED) = ’A-WALK’.

These definitions are very nearly correct; all that is needed is to change A-WALK to A-STROLL.
This was not done automatically because the matching routine operates on whole symbols
(A-WALK), not on substrings they might contain.

Our inventory of words will need a determiner, so enter a definition for the:

 the DET * (↑ DEF)=+.

the is not a predicate in our toy lexicon, just an entity that has a positive value for the feature
of definiteness, however that might be interpreted.

3.3. Analyzing sentences

You have perhaps entered enough rules and lexical entries to analyze (or parse) The girl
walks. At the top of the screen is a window titled Sentence Input Window where you can use
Tedit commands to enter and edit sentences to be analyzed. Click in this window and type

The girl walks [without a period, since your grammar doesn’t allow for punctuation]

24

Chapter I: Entering a new grammar

Now type CTRL-X, which in this window has the effect of invoking the sentence analyzer or
parser. GWB cannot operate at this point, however, because you have not yet told it which
rules in its internal database you want to be active during the analysis of this sentence.
Remember you have entered both TOY and TRINKET versions of ENGLISH, and it is not obvious
which rules you want to parse with. You indicate which rules, lexical entries, and other
linguistic specifications you intend to be active for a particular analysis by installing a
“configuration”. Configurations, as described in Chapter III, provide very detailed control over
the information in the internal database that will be active in the current sentence analysis
environment. GWB can help you get started by constructing a configuration that includes rules
and lexical entries from a single version/language and default values for a number of other
parameters (the root category of the grammar, the governable functions for coherence checking,
and so on). Thus, when you type CTRL-X, the following menu appears on the screen:

This menu lists the version/languages of the rules you have previously entered. If you click the
TOY ENGLISH item, a configuration will be created and installed for the rules and lexical entries
in that version, with standard default values for the other configuration parameters. The
TRINKET ENGLISH rules will remain in the internal database, perhaps to be activated when you
create and install another configuration.

When the new configuration is installed, the title of the sentence input window changes to
give the active configuration’s name (configurations also are identified by version/language
pairs) and the root category specified in that configuration (which has S as a default value).
Then GWB proceeds with the analysis of your sentence. It inserts S: in front of the string to
record what category it has taken to be the root for this analysis. It then attempts to analyze
the words of the string and apply the grammar to them. In this case it cannot find a lexical
entry for walks. It reports this in the prompt region above the Sentence Input Window, which
now looks like:

The caret resumes flashing at the end of the string. GWB doesn’t know that walks is the
plural of walk because we haven’t specified any morphology for the current analysis
environment.

The next section describes a rudimentary mechanism for expressing systematic
morphological variations, at least for simple suffixing languages like English. But for the
moment, let’s enter walks as a separate word. First use Edit Lex in the Lexicon Window
menu to get to the definition for walk. Now append an s on walk and, at the same time, you
might as well give the schemata for person, number, and tense:

walks V * (↑ PRED)=’WALK<(↑ SUBJ)>’
(↑ SUBJ NUMBER)=SINGULAR
(↑ SUBJ PERSON)=3
(↑ TENSE)=PRESENT.

Type CTRL-X to install this entry and then try the parse again. To reparse a sentence that

25

3. Lexicon

already exists in the sentence input window, make sure that the caret is blinking anywhere on
the line with the sentence (perhaps by moving the mouse and clicking left) and type CTRL-X.
When you try it with the newly installed definition for walks, the analysis succeeds. The
number of solutions and the time it took to perform the analysis, are displayed in the prompt
window and are also recorded for future reference in parentheses at the end of the sentence:

The system also records the number of tasks, a measure of the number of steps GWB required
to perform all the constituent structure computations. The c-structure and f-structure for the
sentence also appear in their windows:

The terminal nodes in the c-structure act like the items in the lexicon menu. Click The in the
tree. Its lexical entry appears in a lexicon window. Which window it appears in is determined
by whether you click with the left or middle mouse button, as with Rule Windows. You can also
get easy access to the rules whose categories appear in the tree by clicking on the nonterminal
nodes while holding down the CTRL key.

It is worthwhile examining the configuration that GWB constructed for you to get a
preview of the information that these specifications contain. Press the left button in the
title-bar of the sentence input window and release it over the Edit Config item in the menu
that appears. This will cause a configuration-editing window to open up with the just-created
TOY ENGLISH configuration displayed in it:

26

Chapter I: Entering a new grammar

You can see that the rules and lexical entries will be drawn from TOY ENGLISH, that S is the
root category of the grammar, and that SUBJ, OBJ, etc. are the governable grammatical
relations. The details of these and other properties of a configuration are described in Chapter
III.

3.4. Accessing lexical entries

Lexical entries are examined, edited, and deleted according to essentially the same protocol
that applies to rules. Like rules, any lexical entries in GWB’s database can be visited by using
CTRL-V. Go to an unused Lexicon Window and type CTRL-V. GWB will prompt you for entries
to visit. Type TOY ENGLISH girl kick the, followed by a carriage return. Out comes a nicely
formatted list of entries. But if you type in TOY ENGLISH mouse, which hasn’t been defined in
the lexicon, the system prompts you for a new entry by displaying

mouse .

This is the way an undefined word appears, and you can enter its definition by simply adding
the desired information between the word and the final period. On the other hand, just as with
rules, you can delete an existing entry by leaving only white-space between the word and the
terminating period. Note that you must be careful to leave at least one space before the period:
a period before white space, as in Mr., is interpreted as part of the word, perhaps indicating an
abbreviation.

As you have seen, lexical entries are also accessible from the Lexicon Window menu,
which pops up when you click the left button in the title-bar of a lexicon-editing window. In
addition to Edit Lex, this menu has Find Attribute, Find Symbol, Find Template, Find
Morphcode, Find Category, Find Root, and Edit Template items, each with a slide-off to
give access to inactive version/languages:

27

3. Lexicon

The Edit Lex item brings up a menu of all lexical entries either currently active or
defined in the selected version/language. If there are too many of them to fit easily in a single
menu, the first word in an alphabetical group will appear with a slide-off triangle, and the other
words can be reached by sliding the mouse to the right to bring up a secondary menu. This is
illustrated by the following menus for a larger lexicon:

The word kick does not appear in the top-level menu for this lexicon, but it is ordered
alphabetically between keep and like. Thus it can be found in the submenu obained by
sliding to the right of keep. If there had been a larger number of words beginning with k, some
of the items in this secondary menu would themselves have slide-off arrows to provide for
further choices. In this way all the words in even a fairly large lexicon can be accessed through
a relatively small number of menu selections.

The Find Attribute lexical menu item is very similar to that item in the rule menu.
When it is selected a menu of all the attributes that appear in any lexical entry pops up, and
clicking on one of them causes all the lexical entries that utilize that attribute to be displayed.
Find Symbol selects the lexical items that use a particular symbol as a feature value, and Find
Template selects items that mention a particular template. Find Category gives access to
the lexical entries within a selected lexical category (Prep, N, etc.). Find Morphcodes gives
access to the lexical entries that mention a particular morphology code as described in Section
4. Find Root shows you all the words that serve as a root or affix in the morphological analysis
of other irregular forms (also described in Section 4); selecting a root or affix brings into the
editing window all the entries that refer to it. Finally, clicking on the Edit Template item will
open a window for editing or defining a template specification; a template window is not among
the windows initially on the screen.

28

Chapter I: Entering a new grammar

4. Morphological information

So far your grammar of English contains no indication that for each regular noun or verb
defined in the lexicon there are several systematically related words. GWB provides a simple
facility called a morphology table (“Morphtable”) to relate these words and make it unnecessary
to enter them each separately in the lexicon. Morphtables are limited in their power and are
useful mainly for simple suffixing languages like English, but they may offer a little help even
for morphologically more complex languages. Now you can type in a morphtable for TOY
ENGLISH and see how it works.

4.1. Interpreting the morphology table

Go to the LFG Icon Window or the Sentence Input Window, and select the Edit Morph menu
item. This will produce an empty version/language menu of morphology tables that can be
edited. Select New. GWB will respond by prompting for a region for a morphology window.
Since there is so far no morphtable for TOY ENGLISH, the window opens with only the language
and version in it. A morphology table contains a list of rules of the form

(Takeoff Addon (Cat1 Morphcode Affix NewCategory)
(Cat2 Morphcode Affix NewCategory)
...)

(A few examples of morphology rules can be obtained by selecting the Morphology tables
item in the menu that pops up when you slide off the Examples item in the Sentence Input
Window menu.)

The Takeoff slot contains a string of characters (possibly the empty string "") and so does
the Addon. Following the Addon is one or more category specifications consisting of these
elements: Cat1 stands for a category name. Morphcode specifies what inflectional paradigm a
root must belong to for this rule to apply. Affix stands for the name of a special lexical entry
containing the resulting features associated with the inflection that this rule identifies; these
entries are described below. NewCategory allows for a category change in derivational
morphology (e.g., adding -ly changes an adjective to an adverb).

In the lexical entries above you typed in * where a morphcode was called for. Go back to
the entry for girl and replace the asterisk with the morphcode S, to indicate that the plural
form takes -s. Then in the morphology window type in the following morphtable entry,
according to the template above.

(s "" (N S -NPL))

The NewCategory indicator, which is optional, has been omitted. This specification is an
instruction to GWB which says:

If Takeoff appears at the end
of a word girls

take the Takeoff off girl

and put the Addon on
to get a potential root girl + "" = girl

Look up the root in the lexicon. girl N S . . .

If it has a definition for Cat1 (N) yes

29

4. Morphology

and that definition has the morphcode S yes

Then girls can be analyzed as
the morphological combination girl + -NPL

In the same spirit you can introduce rules for the other common spelling variations of English
noun inflections. The rule

(es "" (N ES -NPL))

provides an appropriate analysis for words like churches and the rule

(ies y (N ES -NPL))

handles the morphographemic variation in words like entries. Note that the characters in
the Takeoff and Addon are all in lower-case, as they normally appear in text and in the
headings of lexical entries. As with rules and lexical entries, GWB reads and internalizes the
information in the Morphology Window only when you type the CTRL-X command in that
window. A previously installed morphtable can be retrieved for inspection or further editing by
choosing its version/language from the menu that pops up after selecting the Edit Morph item
from the menus associated with the LFG Window, the Sentence Input Window, or an existing
Morphology Window.

4.2. Affixes in the lexicon

What is -NPL? It is an item to be defined in the lexicon, like girl. Its category is AFF to
indicate that it is an affix. Type into a lexicon window and install the entry for this affix:

The person/number schemata in this lexical entry will be added to the schemata for the N sense
of girl to make up the lexical entry for girls. Thus the plural features do not have to be
specified redundantly throughout the lexicon. The AFF morphcode * says that this item does
not itself undergo any morphological process, i.e., it has no affixes. It is conventional to precede
the names of suffixes with a dash, to distinguish them from ordinary words.

Now if you type The girls walk in the sentence input window, the system will be able to
correctly analyze the sentence. Left-click on girls in the c-structure window to inspect its
lexical definition. GWB shows its morphological decomposition in the lexicon window by
printing:

30

Chapter I: Entering a new grammar

You can also examine the morphological analysis of particular words without having to create
and analyze a sentence that contains them. If you click in a lexicon window and type CTRL-V,
you will be prompted to enter a word to visit. If you type in a single word (for example, girls),
you will see the same morphological decomposition that would appear if you clicked on that
word at the bottom of a c-structure tree.

4.3. More morphology rules

We can continue filling out the morphtable, for example, by adding a rule for the -ed past-tense
suffix of regular verbs like walk:

(ed "" (V S-ED -VPAST))

Changing the V morphcode for walk from * to S-ED should enable the system to analyze The
girls walked. However, when you install the modified morphtable and lexical entry by
typing CTRL-X’s and then type this sentence, the system responds with the message

I don’t know the word: -VPAST [aborted]

If a word is decomposed by the morphtable into a pair of morphemes, the system requires that
the affix as well as the root be defined in the current lexicon. It does not assume from the
absence of an affix definition that you intended the affix to supply no inflectional features. In
this case, the following disjunctive definition for -VPAST is appropriate:

-VPAST AFF * {(↑ TENSE)=PAST | (↑ PARTICIPLE)=PAST}.

Again ask for a parse of the same sentence, and this time it works.

You must provide another morphology rule to interpret a final -s on a verb as a marker of
a third person singular verb. The following rule encodes this information:

(s "" (V S-ED -V3SG))

However, this can be collapsed with the other specification for the takeoff S:

(s "" (N S -NPL)
(V S-ED -V3SG))

Of course, the inflectional schemata for -V3SG must be entered as a separate item:

-V3SG AFF * (↑ TENSE)=PRESENT
(↑ PERSON)=3
(↑ NUMBER)=SINGULAR.

Now you can change the verbal morphcode for walk from * to S-ED, and remove walks from
the lexicon (by deleting all the material between the word and the final period and type
CTRL-X). When you attempt to analyze The girl walks, the appropriate definition for walks
will be constructed automatically from the definition for walk, the s morphology rule, and the
entry for -V3SG.

This mini-grammar also requires morphological rules and affix lexical entries for the other
elements of the regular noun and verb paradigms, for example, for the -ING verbal suffix.
Rules for the zero suffixes for nouns and verbs with empty strings for both the takeoff and
addon should also be added:

("" "" (N S -NSG)
(V S-ED -VINF))

The affix entries for the zero morphemes (e.g. -NSG, -VINF) permit the inflectional features for
singular nouns and infinitive verbs to be factored out of individual lexical entries:

31

4. Morphology

-NSG AFF * (↑ PERSON)=3
 (↑ NUMBER)=SINGULAR.

-VINF AFF * { (↑ INF)=+
 |(↑ TENSE)=PRESENT
 ~[(↑ SUBJ NUMBER)=SINGULAR
 (↑ SUBJ PERSON)=3]}.

According to the -VINF entry, a root verb is either an infinitive or, if the subject is not
third-person singular, a present tense form. The tilde is GWB’s negation symbol, and
square-brackets are used to group a set of conjoined schemata together. Of course, the same
zero-morpheme rule applies for the morphcode classes representing all the English inflectional
paradigms. The rules for all the different morphcodes can be collapsed into a single rule that
includes a parenthesized list of morphcodes instead of just a single one:

("" "" (N (S ES) -NSG)
(V (S-ED ES-ED) -VINF))

GWB’s current morphological analyzer has one other capability that makes it easy to
describe words where the final character of the root is doubled in forming some of the
inflectional variants. The gemination pattern for p in the paradigm stop, stopped, stopping
could be handled by explicit rules such as

(pped p (V S-ED -VPAST))
(pping p (V S-ED -VING))

but this strategy would, redundantly, require one ed rule for each of the consonants p, d, b and
so on that enter into this kind of pattern. Instead, this collection of rules can be collapsed into
the following specification:

 (#ed "" (V S-ED -VPAST))

GWB gives a special interpretation to a number sign (#) at the beginning of a takeoff. The #
matches any character provided that it is the same as the character in the word that precedes
it. Thus, #ed in this rule matches the ped suffix in stopped but not in hoped. When this rule
applies to stopped, the ped will be taken off and replaced by the empty string to produce the
desired root form.

As a final illustration, we provide a category-changing rule of derivational morphology, the
rule that relates adverbs ending in -ly to a corresponding adjective (suddenly to sudden).
The NewCategory component of a rule can be used to encode this rudimentary kind of
derivation:

(ly "" (ADJ * -ADV ADV))

This indicates that an ADV results when an ADJ with a * morphcode is obtained by removing ly
from a word, and that the schemata in the -ADV lexical entry are to be conjoined with those of
the adjectival stem to form the schemata for the derived form.

4.4. Irregular forms

The rules in the morphology table thus permit the redundancy of systematic inflectional
suffixes to be removed from individual lexical entries. GWB also allows redundancies to be
factored out of irregular inflections, forms whose morphographemic variations do not conform to
any of the common patterns. For example, the verb go has irregular past tense and past
participle forms (went and gone). The inflectional features of these forms cannot be supplied
by general rules, but they do share root features with go and with the more regular

32

Chapter I: Entering a new grammar

third-person singular goes and present participle going. All forms of go have at least the
same PRED semantic form and perhaps other features as well.

Schemata can be shared among the various forms of a word by placing them in a separate,
distinct lexical entry under a special morphcode ROOT. You can enter the root schemata
common to the various forms of go can be entered in the lexicon under the stem go-:

go- V ROOT (↑ PRED)=’GO<(↑ SUBJ)>’.

This is in some sense a pseudo-lexical entry, much like the entries for the various affix
schemata, since the heading of the entry is not something that is expected to appear by itself in
a sentence. Spelling the heading with a hyphen at the end is a useful convention for marking
this fact and also for indicating that these are features for a root that is to be completed by the
addition of features typically associated with some suffix.

The individual forms of go can then refer to these root features by specifying go- in a
special morphcode format. The entries for gone, for example, can be entered as

gone V @go- (↑ PARTICIPLE)=PAST.

The @ in the morphcode indicates that gone is a verb whose schemata are the result of
conjoining the V-ROOT schemata of go- with the idiosyncratic participle schema for this
inflectional form. The past-tense form can be defined in a similar manner:

went V @go- (↑ TENSE)=PAST.

The infinitive and third-singular forms could also be defined in this way, with their inflectional
schemata listed explicitly. But these schemata are not idiosyncratic at all—they are identical
to the schemata of the normal inflectional affixes -VINF and -V3SG that were defined above.
This commonality can be represented by including the names of the inflectional affixes in the @
morphcode without listing any additional distinctive schemata:

go V @(go- -VINF).

goes V @(go- -V3SG).

The parenthetic morphcode permits the morphological analysis of these words to be given
explicitly, indicating that their schemata come from the go- root and the normal inflectional
affixes.

Entries of this type can be used to relate all the forms of a given stem to common lexical
material defined in a special stem entry, conventionally spelled with a trailing hyphen, and to
the schemata associated with independently specified inflectional affixes. Each of the forms
requires a separate lexical entry, and clearly this cannot be avoided for a verb like be that has
completely idiosyncratic inflectional realizations. But many stems have only a few forms that
do not conform to a regular paradigm. In English, for example, the third-person singular and
present-participle forms are almost always regular; only the past and past participles show
idiosyncratic variation. The morphtable mechanism can be used to express this sort of
subregularity and thus avoid the need for explicit specification of forms like goes and going
(and also the citation form go, given that it is related to the stem go- in a conventionally
systematic way). This is accomplished by providing a more discriminating morphcode in the
stem and also morphtable entries to interpret the subregularity represented by that morphcode.
Thus, the fact that go and do take the standard -es and -ing suffixes can be indicated by
changing the ROOT morphcode in their stem entries to a new code ES-ING:

go- V ES-ING (↑ PRED)=’GO<(↑ SUBJ)>’.

do- V ES-ING (↑ PRED)=’DO<(↑ SUBJ)>(↑ XCOMP)’.

33

4. Morphology

The interpretation of this morphcode is then provided by additional morphtable entries:

(es - (V ES-ING -V3SG))
(ing - (V ES-ING -VING))
("" - (V ES-ING -VINF))

The first line allows the es suffixes in goes and does to be replaced with hyphens to produce
the stem forms go- and do-. Since these are marked with the morphcode called for in the table
entry, this analysis results in the appropriate third-singular schemata. The second entry
identifies going and doing as the present participles of go- and do-, respectively, and the
third line accounts for the base forms go and do. Rules such as these make it unnecessary to
have separate entries for regular forms of irregular verbs. Only the stem and its truly irregular
variants must be specified. The truly irregular forms are defined just as before:

gone V @go- (↑ PARTICIPLE)=PAST.

went V @go- (↑ TENSE)=PAST.

When a ROOT morphcode is not present in the stem entry to identify the intended root
schemata, the system extracts the schemata associated with any single morphcode for the
indicated category that does exist in the root entry (ES-ING in the go- example).

This mechanism for expressing subregularities can be used even when an irregular form
has the same shape as a separate regular form, as is the case for the past and past-participle
forms of hit. The infinitive can be derived from the stem hit- by virtue of a morphtable entry
for the subregular gemination morphcode S-#ING:

(#ing - (V S-#ING -VING))

But hit would also have its own lexical entry, providing explicitly only for the
past/past-participle inflection:

hit- V S-#ING (↑ PRED)=’HIT<(↑ SUBJ)(↑ OBJ)>’.

hit V @(hit- -VPAST).

The result of the morphtable analysis will be taken as an alternative to the explicit entry to
provide an ambiguous representation for hit.

The several ways of specifying the morphological decomposition of a single word can be
combined to characterize complex homophonous forms. The word saw, for example, can be a
verb in two senses, either as the irregular past of see or the regular root of saw. It can also be
a common noun. All these possibilities are expressed in the following lexical entries:

saw V {@see- (↑ TENSE)=PAST;
 S-ED (↑ PRED)=’SAW-WOOD<(↑ SUBJ)(↑ OBJ)>’}

N S (↑ PRED)=’SAW’.

see- V ROOT (↑ PRED)=’SEE<(↑ SUBJ)(↑ OBJ)>’.

These entries illustrate how curly-brackets with a semicolon separator can be used to represent
alternative morphcode-schemata combinations.

As you can see, the combination of ROOT and @ references can define complicated
dependencies between the definitions of various items. The Find Root item in the Lexicon
window menu helps you keep track of those dependencies.

34

Chapter I: Entering a new grammar

5. Templates

Putting schemata in the lexical entry for an affix factors those specifications out from all the
word-forms that take that affix, and thus enables morphologically-related generalizations to be
stated across broad classes of lexical items. GWB provides a further means for expressing
functional generalizations that are not obviously correlated with inflectional morphology. You
can incorporate a collection of schemata into the definition of a named “template”, and then use
the name of the template in place of those schemata in lexical entries or in c-structure rules.
The specifications of individual lexical entries or rules can thus be streamlined, with the
template definition representing the common properties that are shared by all the items that
mention (or “invoke”) it.

5.1. Defining and invoking templates

To see how a template can express a generalization, consider the requirement shared by all
Englih common nouns that their singular forms must appear with an explicit determiner. This
requirement could be imposed in the lexical entry for girl by adding the following disjunction:

{(↑ NUM)=SG (↑ DEF)|(↑ NUM)=PL}

to produce the extended entry:

girl N S (↑ PRED)=’GIRL’
{ (↑ NUM)=SG
 (↑ DEF)
 |(↑ NUM)=PL}.

The new disjunction asserts that either the number is singular and some value exists for the
feature DEF, or the number is plural. This same disjunction could also appear in the definitions
of all other common nouns, but instead we incorporate it into the definition of a CN (for
Common Noun) template. A template is defined and edited in a Template Edit window.
Although template windows are not visible in GWB’s initial screen configuration, the title-bar
menus of most of the other windows contain an Edit Template item that can be used to make
a template window appear. If you select the Edit Template item from, say, the Sentence
Input Window, another menu will pop up with the single item New. If you release the mouse
over that item, you will be asked for the region of a new template window. GWB will initialize
that window by inserting TOY ENGLISH as the default version and language for the template
you are about to define:

As usual, use the left button to position the input caret before the line of hyphens and type in
the following definition for the CN template:

CN = {(↑ NUM)=SG (↑ DEF)|(↑ NUM)=PL}.

When you type CTRL-X to install the template, the definition will be reprinted in the usual
indented format:

35

5. Templates

This definition of the CN template has now been entered into GWB’s internal database, and it
has also been activated so that it can be invoked in various lexical entries. The template was
activated because when GWB earlier constructed the default TOY ENGLISH configuration, it
anticipated that you would eventually define and want to make use of some (TOY ENGLISH)
templates. As you can see by looking at the configuration display above in Section 3.3,
(TOY ENGLISH) is specified in the TEMPLATES part of the configuration.

The lexical entry for girl now can be simplified by making use of the CN template. Bring
the entry into a Lexicon Window and add @CN in place of the explicit disjunction. The entry will
now be shortened to

girl N S (↑ PRED)=’GIRL’
@CN.

This shows that a template can be invoked in a position where an ordinary schema might
otherwise appear simply by writing the name of the template preceded by the character @. You
can see the schemata that this invocation is equivalent to by clicking the mouse over the name
of the template and typing CTRL-F (for Functional template). A new “Template expansion”
window will appear on the screen to show the schemata that result from expanding that
invocation of CN:

Other common nouns can also share the schemata included in the template definition. By
defining boy like girl, for example, you will obtain the following lexical entry:

boy N S (↑ PRED)=’BOY’
@CN.

If at some point in the future you want to extend or modify the common noun requirements, you
can edit just the definition of the template and the change will take effect for all the lexical
entries that invoke it.

The template mechanism can be used to simplify somewhat further the entries for all
common nouns. In addition to the determiner/number interaction already expressed in the CN
template, all common nouns also include a schema defining their particular PRED. By providing
the semantic predicate as a “parameter” of the common-noun template, you can also factor from
individual entries the details of even the PRED specification. Go back to the Template Window
containing the CN definition. (If it is no longer on the screen, you can bring it up by choosing CN

36

Chapter I: Entering a new grammar

from the menu that now appears when you select an Edit Template item; alternatively, you
can click to place the type-in caret over the CN characters in one of the lexicon windows and
then type CTRL-S (for Show)).

You need to indicate that the predicate is going to be provided as a parameter at each
invocation of the template, and that the given predicate is then to appear in the semantic-form
of a PRED schema. You must specify a parameter-name, say P, to stand for the predicate that
will be supplied each time, and use that in a generalized PRED schema. You specify that P is
the parameter name by including it in parentheses between the template name and the
following equal sign. You then add the generalized PRED schema to the body of the template
definition. The result is the following definition:

CN(P) = (↑ PRED)=’P’
{(↑ NUM)=SG
 (↑ DEF)
|(↑ NUM)=PL}.

Having installed this definition, you must then change all of the common-noun entries so that
they no longer specify their idioscyncratic PRED schema and instead supply their particular
predicate as an argument to the CN template. The entries for girl and boy simplify to

girl N S @(CN GIRL).
boy N S @(CN BOY).

When a parameterized template is invoked, the template name and the values for its
parameters are enclosed in parentheses after the @. You can see the effect of this
parameterization by again clicking on one of the template invocations and typing CTRL-F. The
template expansion window will show how GWB interprets the invocation:

Section 5 of Chapter III provides a complete description of how parameterized templates are
defined and invoked, including a discussion of how they can implement the lexical redundancy
rules originally proposed by Kaplan and Bresnan (1982). Section III.4.1 describes a special
designator, %stem, that can be used to simplify template invocations in lexical entries.

5.2. Displaying the template lattice

A template can be invoked in any position where an ordinary schema might otherwise appear.
Templates can thus be invoked in lexical entries, as you have just seen, as well as from the
functional annotations on c-structure rules. It is also possible for the invocation of one template
to appear in the definition of another one, so that the effect of the first one is included whenever
the second one is invoked. The pattern of inter-template references typically forms a hierarchy
that can encode and organize families of linguistic generalizations. Templates in GWB can
thus play the same explanatory role that inheritance of typed feature structures plays in
Head-Driven Phrase Structure Grammar (Pollard & Sag, 1994). This is true even though
templates are purely abbreviatory devices and do not require the deep mathematical analysis
that type inheritance seems to call for. To assist in understanding the template-reference

37

5. Templates

relations in a complicated system of definitions, GWB provides a simple facility for displaying
the lattice of template invocations.

You should define a few more templates with more interesting reference relationships in
order to experiment with the lattice display. Begin by defining templates just for the PRED
schemata of intransitive and transitive verbs and another template that invokes these to
provide for verbs that are optionally transitive:

INTRANS(P) = (↑ PRED)=’P<(↑ SUBJ)>’.
TRANS(P) = (↑ PRED)=’P<(↑ SUBJ)(↑ OBJ)’.
OPTTRANS(P) = {@(INTRANS P)|@(TRANS P)}.

After typing CTRL-X to install these, click in the title-bar of either the Sentence Input Window
or a Template Window and select the Template Lattice menu item. A menu of the currently
active templates will pop up:

 If you choose the OPTTRANS item, you will be shown the pattern of references as seen from that
template’s point of view:

Each node of the graph represents one of the active templates. Templates to the right in the
graph invoke (and thus inherit information) from templates that they are linked to and that
appear further to the left. Thus, this graph shows that OPTTRANS invokes both INTRANS and
TRANS and, since there are no nodes to its right, that OPTRANS is currently not invoked by any
other template. The OPTTRANS node has a black border to indicate that it is the focus of this
particular graph. Active templates that are not related to OPTRANS, such as CN, are not shown
in this display.

Selecting the All item at the bottom of the menu results in a larger graph showing the
relationships for all the active templates. This is illustrated in the window below, which shows
a more complicated configuration of template references:

38

Chapter I: Entering a new grammar

This shows the lattices for all active templates arranged vertically in alphabetical order. At the
bottom you see the simple lattice for OPTTRANS, with the further elaboration that TRANS now
invokes the PASS template, providing for the passive alternation. The DITRANS template also
invokes PASS, as can be seen from the DITRANS lattice. The lattice focused on PASS shows in a
single place that PASS has two consumers. Finally, the isolated node for the CN template
indicates that it neither invokes nor is invoked by any other template—it is currently
referenced only by lexical entries.

Of course, the graphs for still more complicated template systems will not all be visible at
the same time in the window. You can use the window’s left and bottom scroll bars to navigate
among the different regions of the graph, or you can reshape the window to make it bigger.
You can also use the mouse to pick out particular lattices and have them displayed in separate
windows. The nodes in a template lattice are mouse-sensitive: clicking on a node will display
in a separate window the lattice that has the new selected node as its focus. Thus if you click
middle or left on one of the OPTTRANS nodes in the All graph, you will be prompted for a new
window region and then see in the new window just the graph showing paths from the
OPTTRANS perspective. You can also click on nodes in such a single-lattice window, but in this
case the effect depends on which mouse button you use to make your selection. If you select a
node, say TRANS, with the left button, the lattice in the window will be replaced by the TRANS
graph. But if you click with the middle button, the TRANS graph will be shown in a new
window. This arrangement permits you to view several different graphs at the same time, and
a sequence of node selections enables you to quickly explore various parts of the lattice without
scrolling. Finally, if you come to a template whose definition you want to see or edit, you can
bring it into a template editing window by holding down the CTRL key while clicking on one of
its representative nodes. The CTRL-select convention is also used in the c-structure window to
bring up a rule editor for a particular category.

6. Saving grammars on permanent files

The rules, lexical entries, morphology table, and templates that you have defined have been
installed into GWB’s internal database. They can be retrieved from this database for editing or
activated for sentence analysis. However, this database exists only in your workstation’s
current memory. If you turn off your machine or leave GWB (for example, rebooting your
machine or invoking Medley’s LOGOUT command), all of your specifications will be forgotten. To
preserve your grammar for future use, you must transfer it to a file on some permanent storage
device—your workstation’s hard disk, or perhaps a floppy disk or file server. The naming

39

6. Saving

conventions for files may depend on the operating system or network environment you are
running in, and for the most part you can use those conventions inside Medley. Medley also
supports its own internal conventions and attempts to translate automatically between
different file-name patterns. The examples in this section will use the internal convention
whereby a file-name is an atom or string of the form

{device/host}<directory>subdirectory>...>name.extension;version
Thus, the name {DSK}<LFG>ENGLISH>TOYGRAM;5 denotes a file on the ENGLISH subdirectory
of the LFG directory of the DSK device, the workstation’s disk. The CORE device holds files
internal to Medley’s virtual memory and are thus not suitable for long term storage. Files
created on the LPT device will be sent to a printer rather than saved; printing can also be
accomplished by selecting the Hardcopy item in window and background command menus.

On Unix and MS-DOS systems Medley allows for a few more file-naming options. The
device DSK denotes the workstation’s root-directory. On Unix, other hosts on the network can
then be referenced as if they were separate directories; on MS-DOS systems other devices are
accessed using the standard device-letter conventions. Directories and subdirectories can also
be separated by / instead of < and >. From Medley’s point of view, file names on DSK are
case-insensitive and have version numbers. If you search for a file created by Medley using
Unix tools outside of Medley, you must be sure that case and version numbers match
appropriately. The device {UNIX} is also provided as a variant of DSK with the property that
its filenames conform exactly to the standard Unix conventions.

6.1. Tedit PUT and GET

The most straightforward way to create files containing your grammatical specifications is to
use TEdit’s PUT command. To save some rules, for instance, first bring them into a Rule
Window, as if you were going to edit them. Then click the mouse in the window’s title-bar to
bring up the rule-editing menu and select the TEdit Menu to get the TEdit command menu.
This has the normal PUT, GET, and other commands described in the TEdit documention.
Select PUT and type in a name (e.g. TOYRULES) for the file that you want the rules to be saved
in. The file will be created on the directory you are current connected to and your rules will be
transferred into it. Later, perhaps in a subsequent session, you can use the TEdit GET
command (again, bring up the normal TEdit command menu by selecting the TEdit Menu item)
to bring those rules back into an empty rule window and reinstall them into GWB’s internal
database by type CTRL-X. This procedure can be applied to lexical items, configurations, or
other specifications by invoking the PUT and GET commands on windows of the appropriate
type.

While this is the simplest way of saving your grammar, it is not the best method to use as
you develop more complex arrangements of versions and languages. One difficulty is that the
TEdit files created in this way can only contain one kind of specification. Your TOY ENGLISH
rules and lexical entries must be saved on separate files, since they are displayed in windows
with different CTRL-X behaviors. It is all too easy to lose track of where you have saved
compatible sets of rules and lexical entries. A second difficulty with this method is that it
requires you to remember exactly which files need to be updated as you introduce new rules or
modify old ones. If you forget about one of the improvements you have made and do not
explicitly PUT it back to a permanent file, the results of your efforts will be lost.

These difficulties are not unique to the problem of keeping track of and saving
grammatical specifications. The same issues arise in any complex computing environment
where the various programs and data structures modified during the course of a session must
be preserved in permanent file storage. Medley comes with an elaborate facility for

40

Chapter I: Entering a new grammar

automatically doing the bookkeeping that protects programmers from making these kinds of
mistakes. GWB extends the Medley facility, called the File Manager (or File Package in earlier
releases) so that it offers the same degree of protection to grammar writers. The File Manager
is described in great detail in the Medley Reference Manual. The following paragraphs outline
the simple File Manager scenarios that will typically come up during grammar development.

6.2. The File Manager: Cleanup

GWB notifies the File Manager whenever you install a new rule, lexical entry, etc. or modify
and reinstall a previously existing one. The File Manager keeps track of this information in its
own special data structures. You can issue commands to the File Manager either to see a list of
the changes you have made but not yet transferred to permanent files or to cause the necessary
transfers to take place nearly automatically. GWB makes the most common File Manager
commands available as sub-items in the LFG Logo menu. File Manager commands can also be
typed in to a Lisp Executive Window, obtained, if one is not already on the screen, by selecting
the EXEC item in the right-button background menu.

Click left in the LFG Logo window to bring up its menu, move the cursor to the File
Manager item, and slide the mouse to the right. A submenu will appear with items labeled
Cleanup, Files?, and Load. Releasing the button over the Cleanup item starts the
procedures necessary to move your recent internal changes to permanent storage locations.
The Files? item informs you of the current state of the changes you have made, indicating
what actions would be needed to get to the “clean” state in which your permanent files are
consistent with the information in the internal database. The Load command is used to bring
previously saved grammars back into the internal database.

Your goal now is to save the rules and lexical entries you have been working on, so
Cleanup is the appropriate choice. When you release the mouse button over Cleanup, a new
window opens in the middle of the screen. This is where your interactions with the File
Manager will take place. The File Manager first enumerates the names of all the rules, lexical
entries, morphology tables, and configurations that you have installed but not yet associated
with a permanent file. With the TOY ENGLISH and TRINKET ENGLISH grammars you have
defined, the window will look like this:

After listing the various items, the File Manager has asked you whether you want to make
those associations, that is, to assign a file name to each of the items. If you answer N (for No) to
this question, it will leave these items in their unassigned condition to be asked about again the
next time you select Cleanup or Files?. If you answer Y (Yes), the File Manager will print
each item in turn and blink the input caret while it waits for you to specify an assignment.
Let’s suppose that you want to store all the TOY ENGLISH items to the file named TOYGRAM on
your currently directory, {DSK}<LFG>ENGLISH>, but that the TRINKET ENGLISH NP rule is to
be stored in TRINKETGRAM on another directory named {DSK}<MYFILES>ENGLISH>. After

41

6. Saving

typing Y to the question, GWB will identify the kind of item it will first ask about (morphology
tables) and then print its name:

(morphology tables)
(TOY ENGLISH)

It then waits for you to indicate the name of the file you want the TOY ENGLISH morphology
table to be stored on. The most straightforward response you can give is simply to type the
name of the desired file, TOYGRAM, terminated by a carriage return. Since this is a file
previously unknown to GWB, it asks you to confirm that you really do intend a new file to be
created, that you haven’t simply mistyped another name. The dialog, with your responses
underlined, looks like this:

want to say where the above go ? Yes
(morphology tables)
(TOY ENGLISH) File name: TOYGRAM
create new file TOYGRAM ?

You confirm by typing Y again, and GWB proceeds to the next item. Notice that the name you
enter is the so-called “root” name of the file, a single string without spaces or other punctuation
(unlike a version/language pairs that GWB uses in its internal database). Also, the root name
is without any identification of the storage device or directory that you want the file eventually
to reside on. At this point you are merely setting up the associations between items and file
names. The storage device is determined a little bit later, when the file is actually written out.

The next items to be processed are the lexical entries. Again, a line identifying the kind of
item is displayed, followed by the name of the first one:

want to say where the above go ? Yes
(morphology tables)
(TOY ENGLISH) File name: TOYGRAM
create new file TOYGRAM ? Yes
(lexical entries)
(TOY ENGLISH went)

At this point you can again type TOYGRAM, or you can type the LINEFEED key (LF on some
keyboards or CTRL-J for keyboards without a separate line-feed key) to indicate that you want
this item to be assigned to the same file as the last one. If you type LF, GWB will print
TOYGRAM to indicate its interpretation of your response. This is the first TOY ENGLISH lexical
entry you have been asked about, and since it is almost always the case that you will want all
entries in a given version and language to be stored on the same file, GWB prints another line
to inform you that it is making that assumption:

want to say where the above go ? Yes
(morphology tables)
(TOY ENGLISH) File name: TOYGRAM
create new file TOYGRAM ? Yes
(lexical entries)
(TOY ENGLISH went) <LF> TOYGRAM
Note: All TOY ENGLISH lexentries will go on TOYGRAM

This indicates that GWB is associating all existing TOY ENGLISH lexical entries with the
TOYGRAM file and also any TOY ENGLISH lexical entries that you might define at a later time. It
then begins to ask you about c-structure rules:

42

Chapter I: Entering a new grammar

(lexical entries)
(TOY ENGLISH went) TOYGRAM
Note: All TOY ENGLISH lexentries will go on TOYGRAM
(rules)
(TOY ENGLISH VP)

Here again you can type LINEFEED to continue with TOYGRAM, and you are again informed that
all TOY ENGLISH rules will be assigned to that file. You will next be asked about the TRINKET
ENGLISH NP rule. Since this one is supposed to go on a different file, TRINKETGRAM, you must
spell out its name completely and then confirm that you also want it to be created as a new file.
Finally, you will be asked about the TOY ENGLISH configuration. You cannot use the LINEFEED
abbreviation to assign this to TOYGRAM, because TRINKETGRAM has become the most recently
entered file name. You must retype TOYGRAM in its entirety:

(rules)
(TOY ENGLISH VP) <LF> TOYGRAM
Do you want all TOY ENGLISH rules to go on TOYGRAM? Yes
(TRINKET ENGLISH NP) TRINKETGRAM
create new file TRINKETGRAM ? Yes
Note: All TRINKET ENGLISH rules will go on TRINKETGRAM
(configurations)
(TOY ENGLISH) File name: TOYGRAM

This completes the process of associating your newly defined items with file names.
During this process, GWB did not actually transfer your grammar to the files that you
indicated. What it did was to construct and modify a “table of contents” for each of those files, a
set of instructions or commands to be executed now, when the assignments are complete. At
this point the cleanup continues by actually transferring the information, or, in Medley
parlance, by “dumping” the files. It will make files with the names you specified, placing them
on your default storage device and directory, the one you are currently “connected” to.

A connected directory was established for you when you started the session based on the
value of the Interlisp variable LOGINHOST/DIR. This will be {DSK} unless you constructed a
personal initialization file (or “Greet-file”) that changes the start-up value of this variable. It
may be somewhat confusing, but note that LOGINHOST/DIR is not necessarily the same as the
Unix or DOS working directory from which you started GWB. While you are using GWB, you
can at any time change the currently connected directory by means of the CD or CONN
commands in the Lisp Executive Window: if you are connected to {DSK} or one of its
subdirectories, for example, typing CD <LFG>ENGLISH> will change your connected directory to
{DSK}<LFG>ENGLISH>. In general the host or device of the new connected directory is the
same as the previous one unless you explicitly provide a new host in the command
(CD {CORE}<DIR1>). The CD and CONN commands interpret many of the relative directory
addressing conventions of the Unix and DOS operating systems. If you are connected to
{DSK}<LFG>ENGLISH>, then CD ../FRENCH will leave you connected to
{DSK}<LFG>FRENCH>.

Suppose now that you are currently connected to the <LFG>ENGLISH> directory on your
workstation’s local disk {DSK}. GWB will assume that this is where you want the new files
made, but will ask you for confirmation. It chooses TRINKETGRAM to ask about first:

(configurations)
(TOY ENGLISH) File name: TOYGRAM
Make TOYGRAM on {DSK}<LFG>ENGLISH> ?

43

6. Saving

Type Y as your confirmation, and GWB will make the file for you, printing out a number of
messages about the file as it is constructed. When it is finished with TOYGRAM, it prints the full
name of the file it has created (including a version number). It then moves on to the next file,
asking whether TRINKETGRAM should also go on {DSK}<LFG>ENGLISH>. Since you want
TRINKETGRAM to be stored on the directory <MYDIR>ENGLISH> instead, don’t confirm with Yes
but type C and then <MYDIR>ENGLISH>:

Make TOYGRAM on {DSK}<LFG>ENGLISH> ? Connect to directory <MYDIR>ENGLISH>

This changes your connected directory conveniently, without requiring a separate CD command
in the Executive Window. The file will be made on the new connected directory, and GWB will
report back in the window when it has finished. At this point your cleanup is complete—all the
grammars in the internal database now also reside on permanent storage. If you want to
remove the File Manager window from the screen, right-click in it and select the Close
command from the window command menu.

We have described one straightforward path through the Cleanup dialog, ignoring some
other possible scenarios. For example, suppose that you want the File Manager to simply forget
about some item that you defined either accidentally or for temporary experimentation, without
assigning it to a permanent file. When it asks about that item, you can respond with a closing
square bracket], which is interpreted as an assignment to “Nowhere”. The square-bracket is
used in this arcane notation because it is non-alphabetic and therefore cannot be confused with
a character in a real file name. If you want the File Manager to skip an item, leaving it
unassigned until a later dialog, you can respond by typing a space character to indicate “no
action”. If you want to assign an item to the same file that another item of the same type
belongs to but you don’t remember that file’s name, you can type @ plus the name of the other
item, and the File Manager will determine the name of the file for you. You can also respond
with ? to see a helpful summary of the complete list of possible responses, including some that
are described fully in the Medley Reference Manual:

[-- prettyprint the item to terminal and then ask again
{line-feed} - same as previous response
{space} - no action
] - nowhere, item is marked as a dummy
(list name)
@ other-item -- put the item near the other item
a file name

If you change your mind while you are making an assignment, you can type CTRL-Q to restart
the response to that item. At any time you can type CTRL-D to terminate the dialog entirely
(but the assignments you have already made will remain in effect).

When all the assignments are done and the File Manager asks you to confirm the location
that a file will be dumped on, you have another option besides confirming the default location or
connecting to another directory. You can enter No, which indicates to the File Manager that
you do not want the file to be dumped at this time. The File Manager will skip over that file
but remember that modified definitions are associated with it and have not yet been dumped.
You will be told that the file needs dumping whenever you use Files? to interrogate the File
Manager, and you will be asked again where it should be dumped every time you execute the
Cleanup command, until it is finally written out to some storage device.

This example has also dealt only with newly defined items and newly created files. If you
edit an item that was previously assigned and dumped to a file, the File Manager notes that the
information assigned to the file has been modified so the file needs to be dumped again.

44

Chapter I: Entering a new grammar

Cleanup in this case does not request a new assignment, asking only for confirmation of the
directory that the file is to be made on. If there are no newly defined items and no changes for
a file, Cleanup will take no action on it. Thus, it is always safe (and wise) to invoke Cleanup
at the end of every session, to avoid losing any stray, unsaved rules, lexical items, or templates.

6.3. Files? and Load

The major function of the Cleanup command is to move all recently modified information to
permanent files. It enters the interactive assignment dialog described above only if there are
items unassigned to files, and then it proceeds to dump all necessary files. The Files?
command, also available by sliding the mouse to the right of the File Manager menu item,
allows you merely to interrogate the current state of your modifications and their
file-assignments, without making any new assignments or transferring any information to files.
In effect, it executes only the first part of the Cleanup sequence. If you select Files? instead
of Cleanup, you will be told the names of already existing files that contain items that you have
recently modified and which therefore need to be—and would be by Cleanup—dumped. If
there are also unassigned items, you will be asked whether you want to begin the assignment
dialog. This gives you the opportunity to associate items with files while your filing strategy is
fresh in your mind, but postpones actually creating the files until later, when your
modifications have reached a consistent state.

The Load command is the opposite of Cleanup: it is used to bring previously saved
grammars back into GWB’s internal database. When you slide off the File Manager item and
select Load, you will be asked in the File Manager window to supply the name of the file you
want loaded:

Name of file to load:

If, in a subsequent session with GWB, you want to restore the grammar you saved on
{DSK}<LFG>ENGLISH>TOYGRAM, you would respond by typing that file-name and a
carriage-return. If you are currently connected to {DSK}<LFG>ENGLISH>, then you need only
type TOYGRAM to uniquely identify the file. Either way, the loading process will begin to copy
the grammar on the file into the internal database. During this process, messages will be
printed in the File Manager window, telling you the name of the file, the time it was created,
and perhaps a brief indication of what it contains. If the messages reach the bottom of the
window, the system may turn the window from white to black and suspend the loading process.
It is waiting for you to confirm that you have seen the messages already in the window before it
scrolls them away to make room for the remaining messages to be displayed. You can give this
confirmation by typing any key (e.g., the space bar), and the loading process will resume. When
the file has been loaded, the message Done will appear in the File Manager window. The
information in the file is now available through the standard menus for editting. If the names
of any loaded items are included in the active configuration, those items will become part of the
active sentence analysis environment. And any configurations that were loaded are now
available for activation, through the Change Config menu item described in Chapter II.

6.4. Manipulating managed files

The files created by the File Manager are ordinary Lisp source files of the sort that typically
contain the definitions of Lisp functions, variables, and other program data structures. Medley
provides a large number of tools besides Cleanup, Files?, and Load for manipulating these files
and the items that are associated with them. These tools are accessed primarily by invoking
particular Interlisp functions in an executive window (usually a thin window overlapping with
the Sentence Input Window). For example, entering

45

6. Saving

(WHEREIS ’(TOY ENGLISH S) ’RULES)

at the Executive will print TOYGRAM, the name of the file that that particular rule has been
assigned to. The atom RULES in this example is the file-manager “type” of the item you are
interested in; other GWB-specific types are LEXENTRIES, CONFIGS, TEMPLATES, and
MORPHTABLES, and these must be given to direct the operation of the various functions. Thus,
to find out what file the lexical entry (TOY ENGLISH walk) is assigned to, you can enter
(WHEREIS ’(TOY ENGLISH walk) ’LEXENTRIES).

A few other File Manager functions are worth mentioning. You can associate items with a
file directly and then causes it to be dumped, without going through the FILES? and CLEANUP
dialogues. This is accomplished by the Interlisp function FILE. FILE takes the root name you
want to give to a new file and then a sequence of commands that describe what it is supposed to
contain. A command is a parenthesized expression beginning with the type of the items (RULES
etc.) and followed by the names of the particular items. Try entering the following into the
Executive Window:

(FILE DISCUSS (RULES (TOY ENGLISH S VP) (TRINKET ENGLISH NP))
(LEXENTRIES (TOY ENGLISH girl)))

This will create a new file named DISCUSS that will contain the S and VP rules from TOY
ENGLISH, the NP rule from TRINKET ENGLISH and the TOY ENGLISH lexical entry for girl.
These items will still belong to the files you originally assigned them to, but this selection of
items will also belong to this additional file. When you make changes to these items, you will
be told that the original files TOYGRAM and TRINKETGRAM need to be dumped, as well as the
new file DISCUSS. If you provide FILE with only the name of an existing file and no other
commands, it will merely dump the items you have already associated with that file.

The Interlisp function DELFROMFILE can be used to break the association between a
particular rule, lexical entry, etc. and the files that it is assigned to, DELDEF acts to delete the
item in addition to deleting its file assignment (this effect is also achieved by erasing in an
editing window the characters that make up the items definition). MOVETOFILE can be used to
remove an item from one file and assign it to another in a single step. Each of these functions
takes two arguments, the name of the item (or items) plus the type of the item . Thus,
(DELDEF ’(TOY ENGLISH NP) ’RULES) will remove the definition of that rule from GWB’s
internal database. The functions that operate on files can also take as an optional third
argument the root name of the file that you want to remove the item from. This is useful if an
item has become associated with two different files and you only want to eliminate it from one
of them. Remember that these functions do not actually change the disk file; they change the
specification of its contents. The file itself reflects these changes only after it has subsequently
been dumped (e.g. via CLEANUP).

The Medley structure editor (SEdit) can also be applied to make idiosyncratic changes to
the data structure that records the items assigned to a particular file. This is accomplished by
invoking the DC command (for Display-edit the Commands) on the root name of the file: Typing
DC TOYGRAM will bring up an SEdit window showing the list of commands describing what
information is contained in that file (provided that the file has first been loaded so that its
contents exist in GWB’s memory):

46

Chapter I: Entering a new grammar

SEdit provides a simple mouse and menu editor for changing these structures, using many of
the same conventions as TEdit. Unlike TEdit, the mouse is used to select symbols and
structures (parenthesized lists), not characters, words, and lines, and double-clicking causes the
selection to move up to the next enclosing level of structure. Clicking LEFT or MIDDLE in the
title bar of the window will bring up a menu listing a number of basic SEdit commands. As one
application, you can use SEdit to merge the contents of two files together: DC both files to get
their commands in separate editing windows, then add the commands of the first one to the end
of the commands of the second one. Point and click LEFT where you want the additional
commands to show up in the second file’s command list, then hold the SHIFT or COPY key while
you select commands from the first window. Release the SHIFT key when your selection is
complete. At the end of the edit, type CTRL-X to exit the SEditwindows or simply use the
Close item in the window’s right-button title-bar menu. Changes to the file’s contents will
appear the next time you dump the file.

The many other capabilities of the File Manager and of SEdit will probably not be needed
for straightforward linguistic uses of GWB, so they will not be further described here. The
Medley Reference Manual should be consulted for a full discussion of these facilities.

7. Encoding and typing of special characters

The formal notations of rules, lexical entries, and other specifications include special characters
that are not found on standard keyboards, and the words for languages other than English
typically include accents, characters, or entire alphabets that are not usually available.
Internal to GWB, these characters are currently represented by the unique 16-bit codes defined
in the Xerox Character Encoding Standard [Xerox Systems Institute, 1987]. The first 256 codes
of this specification are identical to the ISO 646 character standard, a superset of conventional
ASCII that includes most of the characters used for Western European languages. The Xerox
encoding is honored by the Classic, Modern, and Terminal font families for both display
purposes, although some character images may not exist for some fonts and sizes. The internal
character encoding is likely to be of little interest to you, unless you are writing your own Lisp
programs to operate on GWB’s internal data structures.

The correspondence between the internal encoding and the external encoding of characters
for printers and on files is probably much more important, since those representations may be
interpreted by other devices and by other programming systems. When GWB formats
information for transmission to a printer, it converts from the internal encoding to the encoding
used by that particular printing device. Xerox Interpress printers also use the Xerox encoding
standard, so their conversion is transparent. Conversion software for PostScript printing is
provided by a Medley Library package that is included in GWB, and the library also contains
converters for a number of less popular printers. However, not all characters and alphabets in
the Xerox character set are available for Postscript and other printers, and you may have to do
some tailoring to your local printing conventions.

When GWB reads and writes information to character-oriented files, it also uses the Xerox
encoding standard as a default. Methods for converting to and from other commonly used

47

7. Special characters

standards (ISO8859/1, Unicode, IBM-PC, etc.) are under development; these will permit files
created by non-Xerox software to be converted to the Xerox standard as GWB reads them and
converted from the Xerox standard as GWB writes them.

7.1. Virtual keyboards

You have already seen that some special characters in rules and lexical entries can be entered
by typing substitute characters that appear on standard keyboards; these are converted to their
proper internal encodings when CTRL-X is typed to cause the items to be read and redisplayed.
Thus, ! and ^ may be typed for ↓ and ↑, respectively, and -> may be used instead of the
right-arrow → in rewriting rules. GWB also includes the Virtual Keyboards package from the
Medley Library to provide a more systematic and convenient way of entering unconventional
characters. The features of the Virtual Keyboards package most important to GWB are
outlined below; a full technical description can be found in the Medley Library documentation.

The Virtual Keyboards package allows you to change the behavior of the keyboard that is
physically attached to your computer so that it simulates a keyboard with different key-labels
(hence making yours a “virtual” version of that other keyboard). It also allows you to display
images of other keyboards on your screen and use them as menus for “typing” occasional special
characters. For example, one of the virtual keyboards installed in GWB is the LFG keyboard.
This defines a slightly modified default keyboard behavior that governs typing in to an LFG
rule or lexicon window. This keyboard has the following image as laid out for the Sun Type 4
physical keyboard:

This indicates that, when this keyboard is active, typing the shift-4 combination transmits the
set-membership character ∈ rather than the usual dollar-sign, and shift-1 transmits the
down-arrow. When this keyboard is displayed on the screen, whether or not it is active, the
set-membership can be "typed" in by holding the shift-key down on the physical keyboard and
clicking the mouse over the image of the 4 key.

Whether or not the location of keys and shifts on a virtual keyboard conforms to the layout
of your physical keyboard depends on whether or not a "keyboard configuration" file that
describes your physical keyboard is available to GWB. Keyboard configuration files currently
exist for the various Xerox work-stations, for the Sun Type 3 and Type 4 keyboards,and for
conventional IBM-PC keyboards; other configuration files can be created by using the Keyboard
Editor package in the Medley library. When a file describing your actual keyboard is not
available, the Virtual Keyboard package is not able to modify the behavior of your physical
keyboard, and it displays keyboards according to the Sun 4 layout pictured above.

48

Chapter I: Entering a new grammar

The display and activation of virtual keyboards is controlled by the Keyboard item that
appears in both the window and background right-button menus. Clicking on this item in
either menu brings up a menu of currently defined keyboards, for example:

Selecting one of these keyboard-names causes the behavior of that virtual keyboard to be
"switched" in to the physical keyboard, thus modifying the characters that are transmitted
when keys are pressed. The European keyboard has the various accented Roman characters
found in many Western European languages, while the French, German, and Spanish
keyboards have layouts that are found on typical keyboards in the corresponding countries.
The Greek keyboard has the full Greek alphabet and is useful not only for typing strings in that
language but also for entering LFG projection designators. The Logic, Math, and Office
keyboards have a variety of special technical symbols. The Default keyboard reestablishes the
behavior shown on the physical key caps, and of course, the Quit menu item (or releasing the
mouse button outside the menu) allows you to exit without making a keyboard selection.

When the Keyboard item is chosen from the right-button menu in a window, the effect is
to change the keyboard behavior for any typing directed towards that window. Different
windows can have different keyboards installed, and whenever you click to change type-in from
one window to another, the keyboard behavior will automatically change. When the Keyboard
item is chosen from the right-button menu in the background, the effect is to change the
systems default keyboard, the one that is installed automatically when a window is created that
does not have an otherwise specified keyboard. In particular, new Executive, TEdit, and
graphics windows will be initialized with this keyboard. LFG rule- and lexicon-editing windows
are always initialized with the LFG keyboard, however, and the keyboard for the Sentence
Input window is determined by the INPUTKEYBOARD specified in the currently installed parsing
configuration (the default keyboard is used if the configuration does not include such a
specification).

7.2. TEdit abbreviations

The TEdit text editor provides an abbreviation facility that offers another method for entering
certain predefined special characters. These characters have been assigned names that are
made up of ordinary Ascii characters. They can be entered in a TEdit window (which includes
LFG rule and lexicon windows, the Sentence Input window. and any of your own text-editing
windows, but not the Lisp Executive window) by typing the name of the character and then
pressing the Expand key on the keyboard. The name you typed will be removed and replaced
by the desired character. The LFG characters and the names by which they can be entered are
as follows:

49

7. Special characters

∈ mem or $
→ ra or ->
↓ da or !
↑ ua or ^
← la or <-

Thus, the set-membership symbol can be entered by typing the sequence mem and pressing
Expand. The location of the key that represents the Expand function varies among different
keyboard types but can be discovered either from Medley system documentation or by
experimentation. On a Sun Type 3 keyboard, it is the key labeled Right that is immediately to
the right of the space bar. The abbreviation facility is implemented by means of the Lisp
variable TEDIT.ABBREVS, which is described in the TEdit documentation (and included in the
Appendix). As you have seen, the character-names in the right-hand column may be used in
the appropriate rule and lexical entry contexts without using the Expand key; the characters
are expanded automatically when CTRL-X is pressed (Note that in Text as opposed to
LFG-editing TEdit windows, CTRL-X is also just a synonym for Expand; in LFG windows it
instead initiates the process of internalizing your linguistic specifications).

7.3. Projection designators

As discussed in Chapter III, projections or structural correspondences are named by characters
in the Greek alphabet, which the Xerox Character Encoding Standard assigns to 16-bit codes in
the range 9728 to 9983 (decimal). Although these can be entered by means of the Greek virtual
keyboard as indicated above, the system provides a more direct way of specifying them in
contexts where a projection designator makes sense. Any Greek character can be entered
simply by typing its common Ascii name. Thus, you can enter lower-case σ by typing sigma or
SIGMA, τ by tau or TAU. You can enter an upper-case Greek letter by capitalizing only the first
letter of its name (Sigma for Σ). There are also one-letter abbreviations for most of the
characters, but only when a double-colon is provided to explicitly mark that letter as
designating a projection. Thus the sequence t::s::↑ would be interpreted as τσ↑. Each of the
following lower-case letters can be entered by the first character of its name: alpha, beta,
gamma, delta, epsilon, zeta, iota, kappa, lambda, mu, nu, xi, omicron, pi, rho, sigma, tau,
upsilon, and chi. In addition, eta, phi, and omega can be abbreviated by h, f, and w respectively
(the letters e, p, and o are used for other characters). The upper-case version of a character can
be entered by upper-casing its lower-case abbreviation.

8. Exiting: How to leave Medley

When you have reached the end of your GWB session, you can leave Medley by invoking the
Lisp function EXIT. Click in the Executive window and type in (EXIT). After a few seconds,
GWB will disappear from your screen, and your system will return to the point at which you
originally entered Medley. Before exiting, GWB first checks to see if you have any unsaved
changes, and if so, asks you whether you want to first dump those items or whether you want to
exit anyway. If you exit without saving, your changes will be lost forever. If you are sure in
advance that you have no interest in your changes, you can invoke EXIT with a parameter
FAST, as in (EXIT FAST), and Medley will not ask you about changes.

If you are running Medley under another window system (e.g. X-Windows), you can also
terminate your session by using the “quit” or “kill” command usually provided as a menu option
for the window containing the GWB display. This is equivalent to a “fast” exit-–there will be no
checking for unsaved changes.

50

Chapter I: Entering a new grammar

51

Chapter II

Grammar Testing and Debugging

You have now learned how to enter a grammar into the system and how to apply it in the
analysis of strings typed into the Sentence Input window. It is likely for a simple grammar that
all the rules are correct and that they are compatible with the lexical entries and morphological
rules you have specified. But that is less likely to be true as your grammars become more
complex and cover a larger fragment of a natural language. GWB’s grammar-debugging
facilities can help you explore the linguistic consequences of your grammatical formulations so
that you can detect and correct both conceptual errors and errors of specification. You will be
better able to see how to do this by using a grammar slightly less limited than TOY ENGLISH.
The file DEMOENGLISH, which is supplied along with the GWB software, contains a grammar
more suitable for experimenting with the system’s testing and debugging facilities. This
grammar contains rules, lexical entries. a morphology table, and some templates. It also
contains several configurations, including a DEMO ENGLISH configuration that collects all these
specifications together into a single active analysis environment.

You can load the grammar in this file into GWB’s internal database by using the File
Manager LOAD command. As described in Section 6.3 of Chapter I, click in the LFG Logo
window to bring up the LFG command menu, and slide the mouse to the right of the File
Manager item. Release the button over the LOAD command and when the File Manager
window appears, type {DSK}<LFG>ENGLISH>DEMOENGLISH (or some other name if
DEMOENGLISH resides elsewhere in your file system) to indicate the name of the file to load into
the internal database. Confirm with a carriage return to start the loading process. When the
file is loaded, the system will print Done in the File Manager window.

Once the file is loaded, you must activate the DEMO ENGLISH configuration before you can
experiment with the new grammar. Left-click in the title-bar of the Sentence Input window,
select the Change Config menu item, and then click on DEMO ENGLISH in the list of choices
that are displayed to you. The new configuration will replace the TOY ENGLISH configuration
that was previously active, and the title of the Sentence Input window changes accordingly.
The strings you then type in the Sentence Input window will be analyzed with respect to the
new grammar.

Request a parse by typing the following string into the Sentence Input window:

The girl devours a banana [CTRL-X]

At this point the parser uses the rules, lexicon, and morphology of the DEMO ENGLISH
configuration to analyze the sentence. Before it begins the analysis, it first modifies the input
window by prefixing the characters S: at the front of the sentence. This marks the fact that the

52

Chapter II: Grammar testing and debugging

top-level parsing category for this analysis defaults to the category S, which is defined in the
DEMO ENGLISH configuration as the root category of this grammar. The parsing category
determines which rules to apply in a particular analysis (only those necessary to build
constituents of that type) and what kind of structures to show in the c-structure window. You
will see below how to override the default root category when you temporarily want to focus on
the rules for other types of constituents.

1. Display of linguistic representations

The analysis of the sentence is completed in a few seconds, and summary information
indicating the number of f-structure solutions, the computing time, and the size of the chart in
tasks is printed in the prompt region above the Sentence Input window and, for future
reference, is appended to the sentence inside the window. Grammatical structures discovered
for the sentence appear in the C-structure and F-structure windows.

The title bar of the C-Structure window tells you how many c-structures the current
grammar yields and the number of c-structures that are displayed. For this simple sentence
there is one c-structure whose f-structure contraints have at least one valid solution, and no
c-structures with only invalid solutions. The single valid c-structure is displayed in the
window:

There is also only a single f-structure for this c-structure, shown in the F-structure window:

53

1. Linguistic representations

The title-bar of the F-structure window also indicates the number of solutions displayed in the
window, and the first line gives some summary statistics indicating the number of solutions
that satisfy LFG’s consistency, completeness, and coherence conditions. For this example, the
single solution meets all the grammaticality conditions and is displayed immediately below the
summary line.

The f-structure is displayed as an attribute-value matrix in standard LFG format, with
the brackets annotated by identifying indices. The arguments in the semantic-form value of the
PRED attribute are abbreviated representations for the full f-structures with the same index
number shown below. Thus, [20:GIRL] shows that the first argument of DEVOUR is f-structure
20, which is also the value of the SUBJ attribute. GIRL, the relation in the semantic-form PRED
of f-structure 20, is included in the abbreviation to make it easier to interpret. In this display
the symbol-valued features are shown on a single line separated by commas so that more
information can be shown in a given amount of screen space; the parameter SYMBOLSINLINE
can be changed, as described in Section III.6, to obtain the conventional arrangement in which
each symbol-valued feature appears on its own line.

The numeric indices play the role of the variables f1, f2, etc. that are sometimes used to
annotate f-structures in published presentations of LFG. These indices serve to correlate the
units of the f-structure with the c-structure nodes they correspond to. Each c-structure node
that the parser discovers is assigned a unique node-number, whether or not it forms part of a
valid S c-structure. Initially, these numbers are not shown in the c-structure display, in order
to avoid cluttering the tree. But clicking on the NODE NUMBERS menu item attached to the top
of the c-structure window will cause the tree to be redrawn with visible node-numbers:

54

Chapter II: Grammar testing and debugging

Comparing these node-numbers with the indices on the f-structure, it is now easy to see that
the outermost f-structure corresponds not only to the root S node, but also to the VP and V
nodes. This reflects the many-to-one nature of the c-structure to f-structure correspondence,
and also formalizes the intuition that the V is head of the VP and the VP is head of the sentence.
You can click again on the NODE NUMBERS item to turn off the node-number display.

The displays in the C-Structure and F-Structure windows give access to additional
information about the analysis. The nodes of the c-structure act as menu items. When you
click the left button on the S node, for example, another window opens in the middle of the
screen and shows the functional description associated with that node:

The functional description is the union of all the equations instantiated in the subtree that that
node dominates. If all the equations are not visible in the window, you can reshape the window
or use its left or bottom scroll-bars to move the equations around. The metavariables ↑ and ↓
from the rule and lexicon schemata are replaced by the appropriate f-structure variables
(displayed as an f followed by a corresponding node-number). This display also indicates what
elements of the f-descriptions are derived by expansion of functional templates: @(CN GIRL)
shows that GIRL is a parameter to the CN (common-noun) template whose expansion results in
the equations indented after the colon (see Chapter III, Section 4).

55

1. Linguistic representations

By selecting nonterminal nodes lower in the tree, you can examine information from
smaller parts of the sentence. If you select a preterminal lexical category, for example, you can
focus just on lexical template expansions. Selecting a terminal node (a word) does not show the
instantiated lexical schemata, since instantiating them only trivially modifies the lexical
information. Instead, clicking on a word brings the stem and affixes of that word into a lexicon
window, thus indicating its morphological analysis and also permitting the relevant entries to
be examined and perhaps edited. The currently active lexical entries for words in the sentence
are thus immediately available, without requiring further specification of language and version.
Similarly, the rules for the categories in the tree can also be accessed by holding the CTRL
(EDIT or PROPS on some keyboards) key down when selecting the node. For both lexical
entries and rules, GWB will try to reuse an existing editing window if you click with the left
button; if you click with the middle button, it will always prompt for a new window.

Selecting a node with the left button (without CTRL) shows the functional description for a
subtree. Clicking with the middle button has another useful effect: it causes the f-structure
solutions for that node’s description to be displayed in the F-structure window. If you
middle-click the VP node, for example, you will see the f-structure determined by the schemata
in the rules and lexical entries just for that subtree:

This resembles the f-structure for the dominating S node but some details of the SUBJ
f-structure are missing. The PERSON and NUM are included, because they are supplied from the
verbal inflection, but the PRED does not appear because it is not defined within the VP subtree.
The solution is not considered incomplete, however, because it is still possible for the predicate
to be filled higher up. If you middle-click on the root S, the original outermost f-structure will
be displayed, with the SUBJ completed.

In general, there can be a large number of alternative trees over a given string, some of
which are valid and some of which are invalid. In an attempt to make the linguistic
representations easier to comprehend and navigate, GWB does not display automatically the
complete collection of alternative trees. Instead, it chooses from among the set of valid trees, if
any, one particular tree to show as the initial c-structure display, and that tree’s f-structure
solutions are shown in the f-structure window. Nodes at which there are alternative subtree
expansions are indicated by dashed lines leading to their daughters. You can use the mouse to
indicate that you want to examine those alternatives as well. Enter the sentence The girl in
the park with the telescope devours a banana. This sentence has two different
c-structures, depending on how the prepositional phrases are attached. After typing CTRL-X,
you will the following c-structure display:

56

Chapter II: Grammar testing and debugging

The title reports that there are two valid c-structures with only one currently displayed. The
dashed lines indicate the location of the alternative subtree expansion. If you want to examine
the other tree, you can click the left or right buttons in the region of the dashed lines, between
the NP:94 node and its line of daughters. A black rectangle will appear; releasing the button
over that rectangle will cause the alternative tree to be added to the c-structure window.

You may need to scroll the window horizontally, using the bottom scroll-bar, to see all of the
alternative tree. You can click on its nodes with left or middle to see its associated f-structure
displays. If a sentence has both valid and invalid trees (this one does not), clicking +INVALID
at the top of the window may cause some lines from a node to be converted from solid to dashed.
This signals that only invalid trees have alternative subtrees concealed at that node and only
those will be displayed by clicking and releasing the mouse in the black rectangle.

The solutions displayed in the F-structure window represent not only the f-structures
themselves but also, by virtue of the node numbers, the c-structure to f-structure mapping φ for
all the nodes in the subtree whose root you have selected. Typically that mapping is presented
in its entirety by the numbers annotated to a single f-structure, but that is not the case when
the f-structures corresponding to some nodes are not connected to the f-structure of the root. In
that case, the single root f-structure will be followed in the display by the disconnected
f-structures corresponding to other nodes. You can see this display by analyzing the sentence I
handed it to John. You will see the following c-structure and f-structure displays:

57

1. Linguistic representations

The PP category in the VP rule has the annotation (↑ (↓ PCASE))=(↓ OBJ) for the oblique
argument. This makes the OBJ of the PP f-structure serve as the OBL-TO of the S f-structure,
but asserts no connection for the f-structure corresponding to the PP node itself. This
f-structure is therefore shown as a separate item in the solution display, with the appropriate
identity link for its object.

The solutions in the F-structure window also act as menu items. If you select a solution
with the left button, its particular f-description is shown in the description window. In general,
the description for a specific solution is derived from but is not the same as the description
associated with the node it corresponds to. The difference shows up when the node’s
f-description (obtained by left-clicking the node) contains disjunctions of equations, for example,
the active/passive alternatives marked by the vertical bars you can see by scrolling the
f-description of the S node (left-click on the node). Conceptually, the solutions at a node are
found by multiplying the different branches of its disjunctive f-description into an equivalent
disjunctive normal form. This consists of a single outer disjunction whose alternatives are sets
of simply conjoined equations. Potentially, a separate solution will appear in the f-structure
window for each of these alternative conjunction-sets. The description you see when you
left-click on a particular solution is the set of conjoined equations that that solution satisfies,
ignoring the alternative equations that are displayed when the node is selected but which
correspond to other solutions. Thus, if you left-click on the single f-structure for the S node,
only the equations for the active interpretation will appear in the description window:

58

Chapter II: Grammar testing and debugging

GWB uses special techniques (see, for example, Maxwell and Kaplan, 1993) to identify the
nodes in a tree at which particular conjunction-sets in the disjunctive normal form become
unsatisfiable, and it tries to confine the presentation of unsatisfactory solutions just to the
nodes where they first go bad. These strategies also help in making the linguistic
representations more comprehensible, but sometimes the results are surprising. To illustrate
one effect, enter the sentence A sheep devoured a banana. This produces a single c-structure
with a single f-structure solution. If you click on sheep in the c-structure window, you will see
a disjunctive specification (as opposed to simply an underspecification) for the NUM attribute:

sheep N IRR @(CN SHEEP)
{ (↑ NUM)=SG
 |(↑ NUM)=PL}
(↑ PERSON)=3.

And if you middle-click on the N dominating sheep, you will see the disjunction reflected in two
f-structure solutions:

However, when you click on the higher NP node to see the solutions for the f-description at that
node, only the SG solution appears. The plural specification on the noun is incompatible with
the singular feature of the indefinite article. That inconsistency is detected as the article and
noun are being combined, and solutions for all conjunction-sets containing that inconsistency
are not presented at higher nodes. Thus, you may need to middle-click on several nodes in the
lower part of the tree, not just the root, in order to examine the effects of all disjunctive
possibilities.

F-structure solutions also act as menu items for middle-button selection. If the grammar
defines additional projection structures to be in correspondence with the f-structure, then the

59

1. Linguistic representations

middle button can be used to inspect these, as discussed in Section 4 below. The DEMO ENGLISH
grammar defines no further projections, so middle clicking on its f-structures has no effect.

2. Debugging with c-structure and chart

If you want to see c-structures for which no corresponding functional structure is valid, click the
button +INVALID above the c-structure window. If the window is not large enough for all the
trees to be visible at once, you can use the window-command menu (click the right button in the
window’s title) to enlarge the window or click the mouse in the horizontal or vertical scroll-bars
to slide the sequence of trees across the window. If you want to compare two trees, you can
either shift-select one of the trees into a TEdit window (this is also useful for writing papers), or
you can use the background menu to make a snapshot of one of the trees (see Chapter IV,
Section 13 for details).

Above the C-Structure Window, left-click CHART to see the various constituents (both
complete and partial) that are compatible with the grammar, whether or not they are
successfully included in a complete S spanning the string. The parser looks up the words in the
lexicon and assigns to each word the names of the categories it belongs to. Then it finds all
possible constituents that could be constructed out of each string of categories given the
currently active rules. Many of these will be ruled out at the c-structure level because they are
not part of any root constituent spanning the whole string. Constituents that are ruled out
because they are not part of any root can be viewed by clicking +DETACHED on the menu at the
top of the chart window.

The chart is a parse forest, so each constituent displayed in the chart represents all of the
different subtree structures that can be used to construct that constituent. When you left-click
a node in the chart, all of its subtrees with valid functional structures are displayed in the
c-structure window.

Now type into the Sentence Input Window

He sleeps [CTRL-X]

The title bar of the C-Structure Window says “No S c-structures”, indicating that something is
wrong at the c-structure level, that there is no way of constructing a root S that completely
spans the string. Click the CHART button if it is not already black.

60

Chapter II: Grammar testing and debugging

Notice first that in this chart all the lines are dotted. Dotted lines are used in chart displays to
represent detached constituents, those that are not components of any spanning root. Usually,
detached constituents are not shown unless you specifically request them by selecting
+DETACHED in the chart window menu. But GWB automatically selects this option when there
are no spanning roots; otherwise, the chart display would initially be empty and uninformative.
Next notice that there are no S or VP constituents—the words in this string did not completely
satisfy the requirements of either the S or VP rules. Click the +PARTIAL menu item at the top
of the chart to see the partial constituents:

The partial constituents, with labels prefixed by “/”, represent partial matches of the c-structure
patterns for the various rules. The /S:13 constituent indicates that the word He between
string positions 1 and 2 provides evidence to satisfy the beginning of a path through the S rule.
If you left-click on the /S:13, the C-Structure Window will show the subtrees that enable that
partial match:

61

2. C-structures and chart

Here the /S:13 dominates a complete NP but needs a fully satisfactory VP immediately to the
right of the NP to extend the match; such a VP does not exist. By middle-clicking on the /S:13
node in the C-Structure Window you will see that the NP corresponds to the SUBJ of the partial
S’s f-structure. Even though no complete (unslashed) VP is present, the /VP:18 constituent
indicates that a VP was started over the word sleeps. If you click on the /VP:18 constituent,
you will see a tree for /VP:18 plus the categories required to extend it further:

The NP indicates that the /VP:18 constituent requires an NP to its right. If you left-click on
that NP symbol, the F-Description Window will show the schemata from the VP grammar rule
that introduces that particular NP:

From this we can see that the required NP contributes an object to the sentence, and thus, that
our grammar erroneously allows only for transitive verbs. If you look at the VP rule in the Rule
Window (click on the /VP node with the CTRL key down), you will see that this is the case: the
grammar requires that every VP have an NP object. Add parentheses around the NP and its
constraints, type CTRL-X in the Rule Window to install the change, and try parsing the
sentence again (simply type another CTRL-X, since the type-in cursor automatically moved back
to the Sentence Input Window). Now you will see a valid c-structure with the proper
f-structure. A complete spanning S now appears in the chart, and a slash no longer marks the
VP:18 as partial. Indeed, if you left-click on VP:18, you will see that it now has many more
extension possibilities:

With the object NP no longer obligatory, the other constituents to the right of the object are now
permitted. There are two NP’s in the column of next categories; by left-clicking you can see
that they differ in their functional annotations. Also, the * at the top of the column marks the
fact that the VP can be considered complete as it now stands: the rule permits but does not
require the incorporation of other nodes.

62

Chapter II: Grammar testing and debugging

The menu above the Chart Window offers several other selections to control exactly which
constituents are displayed. The usual mode of operation is to display only complete or full
constituents that have validly satisfied f-descriptions and which are attached to the subtree of
some spanning root node—when at least one such constituent exists. If there is no spanning
root, then the full valid detached constituents are shown. You can ask for partial constituents
to be included, as you have seen, by selecting +PARTIAL and constituents without valid
f-structures by selecting +INVALID. If the chart becomes too cluttered and you want to focus on
only partial constituents, you can cause the full constituents to be suppressed by selecting
-FULL (the label is -FULL here instead of -COMPLETE to avoid confusion with the functional
notion of completeness). Finally, you can select BOTTOM UP to cause GWB to display
constituents that would be recognized by a bottom-up parsing algorithm, that is, that satisfy
the requirements of some c-structure rule even though they are not discovered in the usual
search for constituents that can be part of a root category starting at the left-end of the string.
This permits you to examine constituents towards the right end of the string that may
otherwise be concealed by unsatisfactory sequences further to the left.

3. F-structure debugging

Well-formed constituent structures are filtered through the functional well-formedness
conditions. By default, the system automatically displays one c-structure tree for which the
functional description of the root node is consistent and is satisfied by at least one complete and
coherent f-structure. If none of the c-structures are valid in this way, then the +INVALID
button at the top of the c-structure is automatically selected, and one of the invalid trees is
chosen for display. Thus, if you analyze the string A boys looked at the girl in the park,
you will see the following c-structure window:

63

3. F-structure debugging

The box around the NP node indicates that it is the lowest node in the tree where the
f-description becomes unsatisfactory. That is, the DET and N subtrees both have satisfiable
f-descriptions, but when the f-descriptions of those two nodes are combined together according
to the assertions in the NP rule, the resulting formula no longer has well-formed solutions. This
being the case, GWB does not bother to compute or solve the f-description for the higher S node,
and the f-structure window is left completely empty to signal that nothing has been computed.
As before, the dashed lines in the tree indicate that there is at least one other way (also invalid)
of constructing a VP over that interval of the string, and you can click under under the VP to ask
that the alternatives there be displayed.

The boxed nodes in the tree along with the empty f-structure window may be enough
information to confirm that your grammar correctly classifies unacceptable strings as
ungrammatical. In some cases, however, it may be important to examine the analysis results
in more detail to make sure that the bad strings are bad for the right reasons. A detailed
inspection of invalid results may also be useful in locating errors in your grammar or lexicon
that mark as ungrammatical a string that you expect to be accepted. Although it usually does
not display them, GWB allows you to make specific requests to see structures that are invalid
for different reasons.

 3.1. Inconsistency

For example, suppose you wanted to see more of the details of the boxed NP’s f-structure
analysis. If you click on that NP with the middle button, the F-structure Window changes to
indicate that there is one solution to the f-description at that node (that is, the disjunctive
normal form of the f-description has only one conjunctive subformula) but that it is
inconsistent. Above the f-structure window, left-click INCONSISTENT to see the f-structure. The
button reverses and the faulty structure is displayed with the inconsistency highlighted
white-on-black and the mutually unsatisfiable constraints printed at the top.

Left-click anywhere inside that f-structure to see the complete f-description, now with any
inconsistent equations highlighted.

64

Chapter II: Grammar testing and debugging

3.2. Incoherence

If you enter He sleeps the airport [CTRL-X], you will see only an invalid tree in the
C-structure Window with dashes marking that the top node has two alternative subtrees. If
you click under the S, those trees will be shown:

Again, the boxes around the VP’s indicate indicate where the solutions have gone bad: The
functional requirements for all nodes below the VP’s are satisfactory, but there was no way of
combining the solutions for their daughters to make valid solutions for the VP’s. Middle-click
on VP:62 to display its f-structures. The f-structure window indicates that there is one
solution, but it is incoherent. Click on the INCOHERENT button in the f-structure window to see
the incoherent solution. Notice that OBJ2 has been highlighted to show that it is the
ungoverned attribute. You can middle-click on VP:64 also to find out what is wrong with its
f-structure.

Middle-clicking on the S nodes provides no interesting functional information. Those are above
the boxed VP’s, and these are already known to be bad in irredeemable ways. GWB does not
bother to propagate the incorrect results into higher structures, to avoid excessive computation,
although it is sometimes that an expected structure is not displayed.

65

3. F-structure debugging

The Coherence Condition as enforced by GWB is slightly different than the condition
defined originally by Kaplan and Bresnan (1982). According to the original definition, an
f-structure is regarded as incoherent if a governable grammatical function is not sanctioned by
a local predicate. Experience has suggested a refinement to this definition, and GWB marks a
governable function as incoherent if a local predicate exists and it does not sanction the
function. For example, this allows an f-structure corresponding to a preposition-phrase to have
an OBJ even though the preposition itself serves as a semantically vacuous case-marker.

3.3. Incompleteness and determinacy

Now type The girl devours [CTRL-X] into the Sentence Input Window.

This sentence has no solution because it is incomplete, i.e. it is missing an object. Usually
incompleteness is detected at the top-level S, when it is known that there is no more
information to be had. However, in this case the sentence is marked bad at the V:6
constituent. GWB conducted a global analysis and determined that the attribute OBJ is not
assigned by any of the schemata instantiated from the grammar rules or lexical entries for this
tree, implying that the verb’s subcategorization frame can never be satisfied, and that it is
therefore pointless to solve any equations at the VP level or above. This global analysis permits
better localization of the source of the difficulty—it enables the box to be drawn at the V instead
of the S. It also allows GWB to prune incompletenesses early, producing a substantial
improvement in performance. If we click on V:6 and then select the INCOMPLETE menu item,
we can see the bad solutions. In this case there are three, but we will only look at the third one:

The solution is marked incomplete on the first line. The second line gives more detail, showing
that the PRED of the OBJ, required by DEVOUR, is missing. The [Global] tag indicates that
this was determined in a global analysis. The SUBJ PRED is also missing at this level but is not
noted as a source of incompleteness. The global analysis recognized that it might be supplied
from information outside of the V subtree, just as for the VP f-structure we examined in Section
1.

66

Chapter II: Grammar testing and debugging

The f-structure ontology as proposed by Kaplan and Bresnan (1982) did not include a
“bottom” element to represent the complete absence of information about the value of an
attribute. F-descriptions containing statements of the form (↑ SUBJ)=(↑ OBJ) would give
rise to unacceptable solutions if there were no other specification for either the SUBJ or the OBJ.
The f-description would be indeterminate, since there was no single smallest element to serve
as the common value. However, GWB does include a bottom element in the f-structure
subsumption lattice, and that element provides for unique minimal solutions for f-descriptions
of this sort. If an attribute has bottom as its value, then neither the attribute nor the value is
shown in the f-structure display, just as if no assertion about the attribute had been made.
This arrangement is particularly convenient when relating elements of different projections: a
general statement can be made to map f-structure adjuncts to semantic-structure modifiers, for
example, and the f-description will be acceptable even when the particular f-structure has no
adjunct.

3.4. Resolution of functional uncertainties

Expressions of functional uncertainty can be used in GWB to encode constraints on various
sorts of nonlocal f-structure dependencies. The following NP rule, for example, uses this
mechanism to specify the possible within-clause function of a relative clause head:

NP → { (DET) AP*:↓∈(↑ ADJ); N
 |NP S’:↑=(↓ TOPIC POSS*)
 (↓ TOPIC)=(↓ {XCOMP|COMP}* {SUBJ|OBJ})
 ↓∈(↑ RELMOD)}.

The schema ↑=(↓ TOPIC POSS*) identifies the complete NP f-structure with the bottom of a
(possibly empty) chain of possessives inside the TOPIC, and (↓ TOPIC) =

(↓ {XCOMP|COMP}* {SUBJ|OBJ}) then indicates that the entire TOPIC may serve as a SUBJ
or OBJ possibly in some internal complement structure. Looking at an f-structure with many
attributes and values at many different levels of embedding, it is not always obvious that a
given uncertainty has been resolved in the way you intend. The EXPANDED item in the menu
above the F-structure Window changes the display of the f-structure to show you how
uncertainties have been instantiated. Type the following into the Sentence Input Window:

The girl who John telephoned slept [CTRL-X]

The c-structure and f-structure will appear, and you will see that GIRL shows up not only as the
subject of SLEEP but also as the object of TELEPHONE. This is the result we expect, since we
believe that OBJ is the only string in the language {XCOMP|COMP}* {SUBJ|OBJ} that permits
all other functional requirements to be satisfied. We can confirm that this is what happened by
clicking on EXPANDED. The f-structure is redisplayed with the important difference that it now
shows how functional uncertainties were expanded:

67

3. F-structure debugging

In an expanded display attributes such as OBJ are highlighted to indicate that they lie on the
path of a functional uncertainty.

4. Projections

The Grammar Writer’s Workbench allows the grammar writer to define projections other than
the φ (c-structure to f-structure) correspondence. New projections are usually used to describe
major sub-systems of linguistic theory. For instance, there could be a σ projection to handle the
semantics, a ρ projection to encode selectional restrictions, and a δ projection for a discourse
structure. Other uses for projections have been proposed, such as a τ projection that defines the
translation of an f-structure into some other language (Kaplan et al., 1989; Kaplan and
Wedekind, 1993).

To see an example of how projections can be used, go to the Sentence Input Window and
click in the title bar with the left mouse button to get its menu. Select the Change Config
menu item and then select SIGDEMO ENGLISH from the menu that pops up. This will install a
new configuration, activating new rules and templates. The title bar of the Sentence Input
Window reflects the change, indicating that the default root category is different for this
configuration and also that the σ (semantic) projection is defined as well as the usual
c-structure-to-f-structure projection:

 You can examine this configuration using the Edit Config menu item:

68

Chapter II: Grammar testing and debugging

This shares its lexical entries with the DEMO ENGLISH configuration, and it also inherits its
rules and templates from the DEMO ENGLISH versions. These are overriden, however, by any
specifications belonging to SIGDEMO ENGLISH and SELECTION ENGLISH. SIGDEMO ENGLISH
contains a VP rule corrected to allow the object to be optional, and an NP rule that establishes a
semantic relation between the NP head and the relative pronoun. The major differences are to
be found in the SIGDEMO ENGLISH templates. They override almost all the original ones to
indicate how the σ projection maps f-structures associated with preterminal nodes into their
semantic structures. This configuration also gives highest priority to the XSIGDEMO ENGLISH
versions of rules, lexeical entries, and templates. No such items exist at the start, so these are
vacuous specifications. But including them in the configuration provides a convenient home for
experimental versions of various items that can be tested and evaluated without confusing
them with the more stable versions in SIGDEMO. Finally, this configuration introduces a new
root category ROOT that permits punctuation marks optionally to follow the top-level S.

Now analyze the sentence The girl devours a banana [CTRL-X]. The c-structure
window and the f-structure window have essentially the same information as before. However,
if you now click in the f-structure window with the middle button, a new window will open with
the semantic structure for the sentence:

69

4. Projections

The semantic structure window is very similar to the f-structure window. Clicking in it with
the left button produces the semantic structure’s description, just as with f-structures.

If there are projections defined on semantic structures, then middle-clicking in the semantic
structure window will let you access them, just like in the f-structure window.

If there is more than one projection defined for f-structures, then clicking on an f-structure
with the middle button will produce a menu that lets you choose which of its projections you
want to view. The numerical indexes in this display identify the f-structure elements that the σ
projection maps to the associated semantic structure units.

Currently, one thing makes debugging with other projections tricky, however: An
f-structure solution will sometimes be marked incomplete or inconsistent when there is nothing
wrong with the f-structure itself. Instead, one of its projections is incomplete or inconsistent,
and the Grammar Writer’s Workbench does not distinguish between the different projections
when determining that a solution is bad.

5. Changing default analysis modes

We usually think in terms of parsing sentences, and S is thus commonly specified as the ROOT
component of the configuration. Even though S is the root category for the grammar as a
whole, you may wish to focus on some other category, say NP, while you are developing and
debugging its rules and lexical entries. This means you can test the NP subgrammar without
typing in complete sentences, and GWB will not spend as much time exploring grammatical
possibilities that are irrelevant to your current concerns. Also, GWB will automatically display
in the C-Structure Window any trees spanning the string that are labeled with the current
parse category.

You can use any category in the active grammar as the current parsing category by
selecting the Parse Cat item in either the left-button pop-up menu for the Sentence Input
Window or the left or middle menu in the LFG Logo Window. This will give you a menu of
categories that can be designated as the current parsing category. If you make a change, the
title of the LFG Input Window will be modified to show the new parse category. From now on,
any new strings will have the new parse category prepended to them. (Sentences that already
have a parse category prepended will continue to parse according to that parse category.) It is
also possible to change the parse category for a single input by explicitly typing the desired
category in the input window. Thus, if NP is the current parse category, you can tell GWB to

70

Chapter II: Grammar testing and debugging

parse a particular string as an S by typing S: at the front:
S: The girl devours the banana [CTRL-X]

will parse as an S no matter what the current parse category is set to.

71

Chapter III

Grammatical Notations

The examples in Chapter I illustrate how the Grammar Writer’s Workbench faithfully
implements the original LFG formalism as presented by Kaplan and Bresnan (1982). The
right-hand sides of c-structure rules denote arbitrary regular languages by means of
expressions using the basic operations of concatenation, disjunction or union, and Kleene
closure. The primitive terms of these expressions are either simple categories or categories
annotated with Boolean combinations of functional schemata. The individual schemata involve
the equality, set-membership, and existential predicates, applying them to designators
constructed from the metavariables ↑ and ↓ and simple function-applications. GWB also
implements a number of extensions to the original LFG formalism. It provides a notation much
richer than standard regular expressions for specifying the regular languages of c-structure
rule expansions. Functional specifications can make use of new formal devices such as
functional uncertainty (Kaplan and Maxwell, 1988a; Kaplan and Zaenen, 1989b), functional
precedence (Kaplan and Zaenen, 1989a), and multiple projections that relate f-structure to
other levels of linguistic representation (Kaplan, 1987; Halvorsen and Kaplan, 1988). There are
also a number of abbreviatory devices to help in stating both c- and f-structure generalizations.
This chapter supplements the tutorial material in Chapter I by providing a technical
description of the full set of notational conventions that are supported by the Grammar Writer’s
Workbench.

1. Regular predicates for c-structure rules

The daughter string of a c-structure node in LFG must belong to the regular language specified
in the right-hand side of the relevant c-structure rule. Since every regular language can be
specified by a regular expression applying only the operations of concatenation, union, and
Kleene closure to primitive terms, a simple regular expression notation would be sufficient to
characterize all and only the node expansions that are permitted by lexical-functional theory.
But the rich mathematical properties of the regular languages offer many other possibilities for
expressing linguistic generalizations without any increase in formal power or change to the set
of acceptable trees. Many of these expressive possibilities are made available in GWB’s
c-structure rule notation. GWB allows c-structure expansions to be specified by means of
Boolean combinations of “regular predicates” over primitive terms. Since the regular languages
are closed under the operations of union, intersection, and complementation, Boolean
combinations will be regular if each of the predicates itself only denotes a regular language.
Despite their overall expressiveness, the predicates described below all have this characteristic.

72

Chapter III: Grammatical Notations

An LFG c-structure rule in GWB is a specification of the form
M → p.

where M is the mother category whose expansion is defined by this rule and p is a regular
predicate that determines the (regular) set of possible daughter strings for M. In the rule
S → NP VP, for example, S is the mother category and NP VP is a predicate of concatenation.
The set of regular predicates is constructed recursively from primitive terms as described
below. A primitive term is a string-element predicate that may or may not be annotated with
functional schemata.

category symbol [string elements]
e
?

A category symbol is a sequence of characters that matches nodes labeled with that
sequence. Any alphanumeric character is allowed in the sequence, and punctuation
marks (such as {, |, &, space...) that have any of the special meanings described
below may also be included provided they are preceded by the back-quote character ‘.
Back-quote thus serves as an escape character for the regular predicate notation,
making it possible to mention ordinary punctuation marks in a grammar.

The symbol e is the default “epsilon” symbol for an LFG grammar: the predicate e
matches against the empty string of categories. In combination with the union
operator described below, this offers one way of expressing optionality. For certain
kinds of grammars, such as a grammar over phonological segments, it may be
convenient to let the letter e stand for the ordinary category with that label, and to
use some other symbol (for example, eps or 0) as the epsilon symbol. The epsilon
symbol can be changed by means of the EPSILON component of a configuration.

The symbol ? denotes the disjunction of all categories that appear anywhere else in a
rule. Thus, the following two (nonsense) rules are equivalent:

NP → DET ? A N.

NP → DET {DET | A | N} A N.

The ability to denote the complete set of categories may not seem particularly useful
in isolation, but it is a powerful notational tool when intersected with other
predicates. For example, the intersection

[?* NP ?*] & [?* VP ?*]

is an intuitive way of denoting the set of strings containing at least one NP and one
VP in either order and separated by any number of categories drawn from NP, VP,
and other ones mentioned elsewhere in the rule.

element [primitive terms]
element : schemata ;

The unadorned string elements just introduced are primitive terms of the regular
predicate notation. Every string element can also be annotated with a set of
functional schemata. These are attached with a colon and terminated by a
semi-colon (the semi-colon may be omitted when a punctuation mark that terminates
some enclosing predicate is present). When a term with schemata is matched in a
daughter string, the schemata are instantiated and added to the f-description.

Attaching schemata to an e that is disjunctive with some other predicate permits
functional requirements to be imposed in trees that do not satisfy that other
predicate. For example, the disjunctive predicate

73

1. Regular predicates

{NP:(↑ SUBJ)=↓; | e: (↑ SUBJ PRED)=’PRO’;}

defines the subject to be a dummy pronoun if an overt subject NP does not appear.
Since there is no node beneath the epsilon and hence no lexical information, ↓ has no
meaning in a schema attached to e and such a schema is therefore disallowed.

GWB supports the special abbreviatory convention that Kaplan and Bresnan
proposed for non-epsilon terms that either have no schemata attached or whose
schemata do not contain the daughter metavariable ↓. If such a term appears in a
positive context, that is, not in the scope of any of the complementation predicates
described below, then it is interpreted as if the schema ↑=↓were attached to it. The
term VP:(↑ TENSE) ↑=↓; is thus equivalent to the abbreviated VP:(↑ TENSE);. In
the unmarked case mother and daughter f-structures are simply identified with each
other. This permits the specification of head relations to be suppressed so that the
assignment of particular grammatical functions can stand out.

The full set of regular predicates is constructed from this base of primitive terms. In the
following recursive description the symbols p and pi denote arbitrary regular predicates.

p1 p2 ... pn [concatenation]
The concatenation predicate is expressed by a sequence of predicates separated by
white-space (spaces, tabs, carriage returns). This predicate is satisfied by an ordered
sequence of substrings satisfying each of the predicates p1, p2, ... pn in turn. You

may interchangeably use spaces or carriage returns to separate the concatenated
predicates as you type them in, but as you have seen, GWB always arranges the
items vertically when it displays them for editting.

p * [iteration or repetition]
p +
p#n
p#n#m

p * denotes the Kleene closure of p : it is satisfied by zero or more substrings each of
which satisfies p. p+ is satisfied by a sequence of one or more substrings satisfying p.

The predicates with # involve a specified number of repetitions. p#n is satisfied by
the concatenation of exactly n substrings satisfying p, where n is a natural number.
The predicate NP#2, for example, requires exactly two adjacent NP’s to appear.
p#n#m is satisfied by an expression that has at least n but not more than m
repetitions of p. m is either a natural number greater than n or else it is the symbol
*, indicating an unspecified upper bound. Thus, NP#3#5 requires 3, 4, or 5 NP’s in a
row, while NP#3#* requires 3 or more NP’s. Note that NP* and NP#0#* are
equivalent as are NP+ and NP#1#*. As a special convenience, repetition factors are
allowed to appear between a categorial symbol and the colon that introduces its
schemata. For example, PP*:(↑ (↓ PCASE))=(↓ OBJ); is accepted as a variant
form of PP:(↑ (↓ PCASE))=(↓ OBJ);*.

[p] [grouping]
Square brackets are used merely to explicitly mark that the components of p are to
be treated as a unit with respect to other enclosing predicates. This is useful when
the normal precedence conventions would associate these components in an
unintended way or when you are unsure exactly what the normal precedence
conventions would do. It is always safe to include brackets; if the brackets turn out

74

Chapter III: Grammatical Notations

to be unnecessary the system will delete them when the rule is printed out for editing
or when it is printed on a permanent file.

{ p1 | p2 | ... | pn } [disjunction or union]
This predicate is satisfied by any string meeting the conditions of at least one of the
individual pi predicates.

(p) [optionality]
This predicate indicates that a substring satisfying p may or may not be present.
The predicate (p) is equivalent to the disjunction { p | e } and the repetition p#0#1.

p1 & p2 [conjunction or intersection]
This predicate is satisfied by any string meeting the conditions of both p1 and p2.

~p [negation or complementation]
This predicate is satisfied by any string that does not satisfy the predicate p. For
example, the predicate ~[NP:(↑ SUBJ)=↓; VP] will match any string of nodes
provided that it does not consist of a subject NP followed by a VP. The meaning of
complementation is quite obvious when the predicate p contains no functional
annotations: it denotes just the set of all strings not in the regular language
specified by p. When schemata are attached, the predicate denotes the complement
of the set of strings whose categorial requirements and associated schemata are both
satisfied. This includes all the node-sequences that belong to the unannotated
complement (such as VP NP, NP NP VP, VP NP NP) but also includes all strings
that satisfy

NP:(↑ SUBJ)~=↓; VP

The f-structures defined by an annotated complementation predicate may have
unexpected properties because of the nonconstructive meaning that LFG assigns to
negative functional schemata. Also to avoid confusion, in the scope of a
complementation predicate terms without ↓-containing schemata are not interpreted
as containing ↑=↓.

p1 – p2 [relative complementation]
This predicate is satisfied by any string that satisfies p1 but does not satisfy p2. It is

exactly equivalent to p1 & ~p2 . As an equivalence going the other way, note that ~p

denotes the same strings as ?*–p. Note that the schemata in p2 may be assigned

negative, nonconstructive meanings and any intended ↑=↓ interpretations must be
stated explicitly.

\ p [term complementation]
The term complement is any single category-schemata combination that does not
satisfy the requirements of p. This is the same as ?–p in contrast to the ?*– p of the
usual complement. The term-complement of an unannotated category is simply the
disjunction of all the other categories that appear in the same rule: \NP is the
disjunction {VP|AP} if VP and AP are mentioned elsewhere in the rule. Given De
Morgan’s laws, the predicate \NP:(↑ SUBJ)=↓; is equivalent to the disjunction
{ NP:(↑ SUBJ)~=↓| VP | AP }. Note also that \p* is equivalent to ~[?* p ?*] in

75

1. Regular predicates

the special case where p is a primitive term. As for the other complementation
predicates, any ↑=↓ interpretations intended in p must be stated explicitly.

p1 / p2 [ignore or insert]
This predicate denotes strings that satisfy p1 when substrings satisfying p2 are freely

removed or ignored. Alternatively, it denotes strings formed from the language of p1
by arbitrarily inserting strings from the language of p2. For example, the following

rule expresses the generalization that adverbs can be freely inserted after the object
of English VP’s:

VP → V (NP:(↑ OBJ)=↓)
[(NP:(↑ OBJ2)=↓) PP*:(↑ XCOMP)=↓] / ADV:↓∈(↑ ADJ).

Without this special notation, an ADV* with its schemata would have to be repeated
several times and the generalization would be lost.

p1 < p2 [linear precedence]
p1 > p2

These predicates impose a linear ordering on strings. p1 < p2 is satisfied by any

string in which there is no substring satisfying p1 in front of a substring satisfying

p2. This is equivalent to ~[?* p2 ?* p1 ?*], which reduces to [\p2]*[\p1]* if p1 are p2
are primitive terms. The opposite ordering restriction is expressed by the p1 > p2
predicate. Thus the rule

S → [NP:(↑ SUBJ)=↓, VP] & NP<VP.

is equivalent to the more familiar rule

S → NP:(↑ SUBJ)=↓; VP.

but expresses a different set of generalizations. Since the linear precedence
predicates are defined in terms of complementation, the general caveats about
schemata in negative contexts apply.

p1 , p2 [shuffle]
This predicate is satisfied by any string that can be formed by “shuffling” together
the elements of strings satisfying p1 and p2. That is, the elements that satisfy p1
must come in their p1-determined relative order and similarly for the elements

satisfying p2, but elements satisfying those two predicates can be freely intermixed

(provided they maintain their prescribed relative order). Thus, [A B],[X Y] is
satisfied by any of the strings

A B X Y A X B Y
A X Y B X A B Y
X A Y B X Y A B

As other examples, NP:(↑ SUBJ)=↓, VP is satisfied by strings containing one subject
NP and one VP in either order, and NP#2#4,VP#3 would be satisfied by strings
containing three VP’s intermixed with between two and four NP’s. GWB’s shuffle
predicate provides a regular generalization of the immediate-dominance
specifications of other syntactic theories, such as GPSG (Gazdar et al., 1985).

76

Chapter III: Grammatical Notations

" any string of characters " [comment]
Character strings enclosed in double-quotes are treated as invisible comments and
assigned no other interpretation. They may appear anywhere inside a regular
predicate expression except between the characters of what you intend to be an
atomic category symbol. This allows you to embed justifications, explanations, or
other annotations at the most appropriate positions.

When these predicates are put together in a complicated formula, the meaning of the
combined expression depends on the relative scope that is assigned to the different operators.
If you are ever in doubt about the relative scope of operators, you can always include grouping
brackets to make your intended meaning clear; unnecessary brackets will be eliminated when
GWB prints or displays the expression. Without explicit grouping brackets, the precedence of
operators is determined by a simple set of conventions. With one exception, a potential scope
ambiguity between most of the operators (* + # ~ – \ / , < >) is resolved so that the left-hand
operator has wider scope than the right-hand one. Thus the expressions in the first column
receive the interpretation notated more explicitly by the entries in the second:

A<B–C A<[B–C]
A–B<C A–[B<C]
A/B* A/[B*]
~A, B ~[A, B]

The one exception to this general principle involves combinations of the term complement and
iteration operators. Since the term complement of an iteration makes no sense, an expression
such as \A* is more conveniently interpreted as [\A]* instead of \[A*]. The operators listed
above all bind more tightly than the intersection and concatenation operators, so that A<B&C
is interpreted as [A<B]&C and A/B C is interpreted as [A/B] C. Potential ambiguities between
intersection and concatenation are resolved in favor of a tighter binding for the intersection
operator. Thus, A&B C is interpreted as [A&B] C. The notations used for the remaining
operators (optionality, grouping, and union) is such that their interpretation relative to each
other and to other operators is always unambiguous.

When a c-structure rule is activated, GWB translates its right-side regular predicate into
a deterministic, minimal-state finite-state automaton. In gaining an understanding of the
significance of various predicate combinations, it may sometimes be helpful to examine the
structure of this underlying automaton. If the Interlisp function PPRN (for Pretty-Print Rule
Network) is applied to the name of the category, GWB will print a description of the states and
arcs of the corresponding automaton. For example, if the currently active sentence rule is

S → (NP: (↑ SUBJ)=↓)
 VP: (↑ TENSE).

Typing (PPRN ’S) in an Interlisp Executive window will result in the following display:

[NAME = S
 Closed sigma = {NP VP}
 Deterministic Minimized]

START: State S.0
 NP to S.1
 (↑ SUBJ)=↓
 VP to S.2
 (↑ TENSE)

77

1. Regular predicates

State S.1
 VP to S.2
 (↑ TENSE)

State S.2 [final]

This indicates that state S.0 is the initial state of the automaton and has two transitions, a
subject NP leading to state S.1 and a VP leading to the final state S.2. The VP transition
appears at both states S.0 and S.1 because the NP is optional in the rule. PPRN can be given
the name of an open file as a second argument, in which case the text will be printed to that file
instead of to the Executive Window. If instead of an open file, the atom TEDIT is provided (e.g.
(PPRN ’S ’TEDIT)), you will be prompted for a TEdit window and the text will be printed
there. This option permits you to scroll back and forth and to add your own annotations before
saving the text of the rule-network on a file.

2. Empty strings and empty nodes

Apart from their use in expressing various kinds of generalizations, the epsilon and optionality
regular predicates in certain arrangements permit the right-side of a c-structure rule to be
satisfied by an empty string of daughters. Such empty nodes or traces are used in many
syntactic theories (particularly Government Binding theory) to code in phrase-structure trees
the positions of null anaphors, the extraction sites of long-distance dependencies, and other
kinds of coindexing conspiracies. The original LFG theory of long-distance dependencies
(Kaplan and Bresnan, 1982) was also based on c-structure epsilons appearing in certain control
domains. Kaplan and Zaenen (1989b) criticized the motivation for the c-structure approach to
extraction phenomena. They proposed the formal device of functional uncertainty as the basis
of a linguistically superior account that is much more compatible with LFG’s general functional
orientation. This approach deals directly with functional assignments and does not rely on
empty nodes or traces as surrogate phrasal coding devices for implicit functional identities.
The functional approach thus permits empty nodes to be banished from c-structure trees
without losing any linguistic generalizations. In the absence of empty nodes the possible
phrase-structure trees for a sentence are much more strongly constrained by the actual words
of the string.

GWB implements the modern, functional uncertainty approach to long-distance
dependencies (see Section 4 below), and by default it also maintains a prohibition against
empty c-structure nodes. Thus, the regular predicate notation allows you to use optionality or
unannotated epsilons (e’s) to factor phrasal generalizations in the right sides of rules, and the
normal interpretation of the notation might therefore allow a rule to be satisfied by the empty
string. GWB disallows that possibility by imposing a special interpretation: any rule of the
form M → p is interpreted by default as the rule M → [p – e]. For example, suppose that a
language permits NP’s to be realized with or without noun heads as described by the rule
NP → (DET) A* (N) and that sentences are defined by the rule S → NP VP. GWB would not
assign a c-structure to the string Walks the dog, since it treats the rule as requiring that at
least one of DET, A, or N be present.

The default interpretation is more subtle when the predicate contains an e annotated with
functional schemata, as in the rule

S → {NP:(↑ SUBJ)=↓| e: (↑ SUBJ PRED)=’PRO’} VP.

78

Chapter III: Grammatical Notations

This installs a pronominal subject in the case where an NP is not present in the string. GWB
achieves the intended effect of this specification without producing a c-structure containing an
empty e node by shifting the schemata to a non-empty node either to the left or right of the e.
In essence, GWB treats this rule as the equivalent but more redundant

S → {NP:(↑ SUBJ)=↓; VP| VP: (↑ SUBJ PRED)=’PRO’}.

Given the convention of subtracting e’s from every right-side predicate, there is always at least
one non-empty node to the left or the right of an e that its schemata can be transferred to.
Since schemata containing ↓ cannot be associated with e predicates, these schemata can be
shifted to non-empty categories without changing their meaning.

GWB also makes it possible to explore alternative theories in which empty nodes play a
more explicit role in c-structure representations, even though these are not in good style
according to current LFG standards. The default behavior with respect to empty nodes is
controlled by two parameters that can be set in the PARAMETERS section of an analysis
configuration (see Section 6 below). Setting the parameter ALLOWEMPTYNODES to TRUE
suppresses the default behavior of subtracting the empty string from the right hand side of
every rule. If this is done, GWB will interpret the NP rule above as allowing empty NP nodes
and the string Walks the dog would be assigned the following c-structure:

dog

N

the

DET

NP

walks

V

VPNP

S

The second parameter, PRESERVEEPSILONS, affects the treatment of e’s that appear explicitly
in rules. If this parameter is set to TRUE, then schemata will not be shifted from e’s, e
transitions will be preserved in the underlying finite-state automaton, and the resulting
c-structures will be displayed with explicit e nodes. Given the S rule above, the string Throw
the ball would be assigned the following c-structure:

ball

N

the

DET

NP

throw

V

VPe

S

79

2. Empty strings and nodes

The f-structure corresponding to this c-structure will have a pronominal subject.

3. Regular abbreviations

There may be several reasons for introducing a category and a c-structure rule that defines the
realization of its daughters. Depending on your theoretical stance, the existence of a node in
c-structure tree may be motivated by phonological or intonational evidence that you intend
c-structure arrangements to account for, or by a universal theory of category/function
correspondences as suggested by Bresnan (1982a). But it may also be the case that a category
and c-structure rule is introduced for grammar-internal reasons, as a means of collecting in one
place a specification of complex category sequences that would otherwise be replicated in
several different rules. The purpose of such a category is to help in expressing generalizations
that hold across several different grammatical constructions, but this may have the undesired
side-effect of cluttering up the c-structure trees with nodes that have no extrinsic justification.
GWB provides separate notational devices, meta-categories and c-structure macros, that permit
the factoring of recurring grammatical patterns without forcing an unmotivated elaboration of
linguistic representations.

3.1. Meta-categories

A meta-category permits certain kinds of cross-categorial generalizations to be expressed. In
English, for example, the open-complement function XCOMP may be associated with any of the
constituents AP, PP, NP, or VP’, and we might write the VP rule as

VP → V
(NP:(↑ OBJ)=↓)
(NP:(↑ OBJ2)=↓)
({ AP:(↑ XCOMP)=↓
|PP:(↑ XCOMP)=↓
|NP:(↑ XCOMP)=↓
|VP’:(↑ XCOMP)=↓}).

and expect to see trees such as

leader

N

a

Det

NP

John

NP

consider

V

VP

We could bring out the common functional association by introducing a new ordinary category
XP:

VP → V
(NP:(↑ OBJ)=↓)
(NP:(↑ OBJ2)=↓)
(XP:(↑ XCOMP)=↓).

XP → {AP|PP|NP|VP’}.

but then the XP would show up as an extra, presumably unwanted and otherwise unmotivated,
node in the tree:

80

Chapter III: Grammatical Notations

leader

N

a

Det

NP

XP

John

NP

consider

V

VP

If instead we specify XP as a meta-category, the abbreviated version of the VP rule would still
produce the original tree. A meta-category is distinguished from an ordinary category by a very
small change in the rule that defines its regular-predicate expansion: we separate the left and
right sides by an equal-sign instead of a rewriting arrow:

XP = {AP|PP|NP|VP’}.

Rules that reference the category symbol XP, such as the VP rule, are not modified when, by
virtue of this simple change to its expansion, XP is converted from an ordinary category to a
meta-category.

As another meta-category example we might consider the VP category itself. The status of
VP as a constituent in all languages has been the subject of much linguistic debate. The
arguments for the existence of such a constituent, at least in languages like English, are mostly
transformational in nature, having to do with movements, copies, and deletions of common
constituent patterns under the assumption that transformational rules only operate on single
nodes. The same facts can be accounted for in LFG by letting VP be an ordinary category that
appears in the predicates that define several other rules, as in these S and VP’ rules:

S → NP:(↑ SUBJ)=↓; VP.

VP’ → (to) VP.

But the VP does not correspond to a distinct functional unit, and the generalizations about
surface constituent patterns can equally well be expressed by defining VP as a meta-category:

VP = V
(NP:(↑ OBJ)=↓)
(NP:(↑ OBJ2)=↓)
(XP:(↑ XCOMP)=↓).

This will give rise to flatter c-structures than the ordinary VP rule would provide, but the
surface strings and f-structures will be exactly the same.

In general, a symbol M is defined to be a meta-category by a statement of the form

M = p.

where p is an arbitrary regular predicate. Any other rule that mentions M is interpreted as
requiring the appearance of substrings satisyfing p in all positions where a node labeled M
would otherwise be required. Unless ALLOWEMPTYNODES is TRUE, the empty string is not
included as a substitution for M, even if p provides for it.

Any schemata attached to occurrences of M (such as (↑ XCOMP)=↓ in the VP rule) are
attached instead to every node required by p. Thus, converting a category from ordinary to
meta (merely by switching → to =) does not normally change the sentences recognized by the

81

3. Regular abbreviations

grammar nor the f-structures assigned to them. However, distributing the schemata across all
the nodes may produce unexpected results if the schemata contain ↓ and p contains sequences
instead of unit-length terms: the ↓ will denote a different f-structure at every node, and this
may lead to unintended inconsistencies. For example, if VP is defined as a meta-category, the
term VP:↑=↓; appearing in the S rule will have the presumably undesired effect of identifying
the S f-structure with the OBJ, OBJ2, and XCOMP f-structures.

Meta-categories are implemented by expanding the rules in which they appear, and this
process would not terminate for meta-categories that are self-recursive either directly or
indirectly. When GWB encounters such a recursive expansion, it prints a warning message in
the Prompt Window and substitutes the empty regular language ~?* instead of p for the
recursive appearance of M. This terminates the expansion.

3.2. Regular-expression macros

Meta-categories stand for what may be thought of as single units of c-structure; regular macros,
on the other hand, expand to arbitrary regular predicates with no intuition that they
correspond to singleton nodes. The cross-categorial treatment of constitutent coordination
offers a good example. As described by Kaplan and Maxwell (1988b), the f-structure element
corresponding to a coordination construction is the set of f-structures corresponding to the
coordinated nodes. This holds independent of the categories involved. Thus, the verb
coordination slipped and fell is assigned the following c-structure and f-structure:

fell

V

and

CONJ

slipped

V

V
slip<(↑ SUBJ)>PRED
PASTTENSE

fall<(↑ SUBJ)>PRED
PASTTENSE

This configuration can be specified by introducing a rule that provides an alternative to lexical
specification for characterizing a V:

V → V: ↓∈↑; CONJ V: ↓∈↑.

But adjectives, nouns, prepositions, and phrasal categories such as VP and AP can also be
coordinated in just the same way. We can factor out the general pattern by defining a regular
macro:

COORD(CAT) = CAT: ↓∈↑; CONJ CAT: ↓∈↑.

This defines COORD as the name of a regular macro with one formal parameter, CAT. We can
now write

V → @(COORD V).

as the formal equivalent of the rule above. The @ marks the invocation of the regular macro
COORD and specifies that in this instance its parameter CAT is to be realized as V. The effect is
first to substitute V for CAT wherever it appears in the regular expression that expands COORD,
and then to substitute the result in place of @(COORD V) in the V rule. But we can now also
invoke the COORD macro in other rules:

A → @(COORD A).

P → @(COORD P).

82

Chapter III: Grammatical Notations

VP → { V
(NP:(↑ OBJ)=↓)
(NP:(↑ OBJ2)=↓)
(XP:(↑ XCOMP)=↓)

|@(COORD VP)}.

etc.

The expansions will be different in each case, because of the differing realizations of the formal
parameter. This example illustrates two of the features that distinguish regular macros from
meta-categories: Their invocations are explicitly marked with the special character @, and they
may have formal parameters whose realizations are specified in the invocation. In an
invocation the name of the macro and the realizations of any formal parameters are grouped
together in parentheses. In the definition of the macro, the names of the formal parameters are
given in parentheses between the macro name and the equal-sign.

As another macro example, consider a strategy for creating an ID/LP-style c-structure
grammar in GWB. You might start by factoring the S rule into an ID component and an LP
component:

S → [NP:(↑ SUBJ)=↓, VP] & NP<VP.

But you might then want to view the linear-precedence predicate of this rule as an instance of a
more general set of conditions it shares with a number of other rules. You could define this
condition as a regular macro and then reference it by name in all the appropriate rules:

LP = NP<{VP|AP|PP|VP’} & {V|A|N|P}<{VP|AP|NP|PP|VP’}.

The first clause of the LP predicate asserts that NP’s come before other phrasal categories, and
the second indicates that the language is head-initial. This particular macro has no formal
parameters, so there are no parentheses in its definition. Also, parentheses can therefore be
omitted from its invocations, as in the following rules:

S → [NP:(↑ SUBJ)=↓, VP] & @LP.

VP → [V, NP:(↑ OBJ)=↓, NP:(↑ OBJ2)=↓, XP:(↑ XCOMP)=↓] & @LP.

 etc.

The @ at each invocation is thus the only indication that LP is a regular macro and not a
meta-category. The macro invocations enable the linear-precedence constraints named by LP to
be shared by these and other rules. The constraints are imposed (by intersection) as further
conditions on the immediate-dominance specifications. In this example, clearly, the macro
expansion has no interpretation as a single node.

A regular macro M is defined by a statements of either of the forms

M = p.

M (param1 param2 ... paramn) = p.

Where p is a regular predicate. The first form is exactly the same as for the definition of a
meta-category; the interpretation as either a macro or meta-category is determined at each
invocation by whether or not it is marked with an @. The second form provides for some
number n of formal parameters, where each parami is a symbol that presumably appears

somewhere in p. The ith realization at a particular invocation is systematically substituted for
the symbol parami everywhere in p. Any parami symbol in the parameter list can be followed

by a question-mark (for example, CAT?). This indicates your intention to omit a realization for
that particular parameter (and presumably all other parameters to its right) in some

83

3. Regular abbreviations

invocations, and to have the predicate p be treated for that invocation as if every appearance of
that parameter name had simply been treated as a comment. The question-mark suppresses
the printing of the warning message that is normally provided when there is a mismatch
between the number of realizations and the number of parameters.

 An invocation of the macro M appearing in another rule (or macro or meta-category
definition) is a regular-predicate term of either of the forms

@M

@(M real1 real2 ... realn)

The first is appropriate for a macro with no realizations. The realization expressions reali in

the second form are themselves arbitrary regular predicates, perhaps with attached schemata.
Those expressions will be substituted in place of the corresponding parami symbols in the

predicate defining M. As with meta-categories, a warning message will be printed and the
empty regular language ~?* will be substituted if a cyclic expansion of M is detected.
Furthermore, unless a parameter name in the macro definition is followed by a question-mark,
a warning message will also be printed when a rule containing an invocation is activated and
the number of realizations is not the same as the number of parameters specified in the
definition for M.

Because regular macros do not correspond to categories, their expansions are treated
somewhat differently. First, the empty-string expansion of a regular macro is retained whether
or not ALLOWEMPTYNODES is TRUE. Second, given the intuition that a regular macro expands to
an arbitrary regular predicate and not a singleton node, it makes no sense to distribute
schemata attached to the macro invocation to all the terms in the expansion. Indeed, it makes
little sense to attach schemata to the macro invocation at all, but for convenience, we allow
them to be attached but give them the following distinctive interpretation: Any macro
invocation of the forms

@M: schemata;

@(M real1 real2 ... realn): schemata;

are interpreted, respectively, as the sequences

@M e: schemata;

@(M real1 real2 ... realn) e: schemata;

That is, the schemata are interpreted as if they were attached to an epsilon symbol that is
concatenated with the macro-expansion predicate. On this interpretation, schemata containing
↓ have no meaning and are therefore disallowed. Since this e is implicit in the interpretation of
the macro invocation and does not actually appear in the grammar, it is not preserved even
when the parameter PRESERVEEPSILONS is TRUE.

3.3. Phantom nodes

In some circumstances there may be motivation to treat a given pattern of c-structure nodes as
the daughter sequence of a single mother node, while in other situations there may be no
reason to isolate that pattern of nodes as a separate subtree. In the first case the pattern would
appear as the right-side of an ordinary rewrite rule, while for the second case the pattern might
appear as a meta-category definition. We used the English VP above to illustrate how a
meta-category definition enables a pattern of nodes to occur in several c-structure positions
without necessarily giving rise to a distinct constituent. The meta-category enables the
c-structure generalizations to be factored out of other rules without introducing otherwise

84

Chapter III: Grammatical Notations

uninteresting nodes in the tree. Returning to that example, we also note that English VP’s can
be coordinated, and a separate node does seem necessary for the coordination construction so
that the f-structure of each conjunct can be referred to as a separate unit. GWB allows a single
VP specification to be used in these two different ways. The VP is defined as an ordinary
rewrite rule, not as a meta-category, as in the following example:

VP → { V
(NP:(↑ OBJ)=↓)
(NP:(↑ OBJ2)=↓)
(XP:(↑ XCOMP)=↓)

|@(COORD VP VP)}.

The VP references in the COORD macro invocation will result in the appearance of explicit VP
constituents in this construction. In the situations where there is no need or desire to have a
separate VP node and the VP would be better treated as a meta-category, that effect can be
achieved by referring to the VP as if it were a macro without parameters. Thus the VP
references in the following rules will not result in separate constituents in the c-structure:

S → NP:(↑ SUBJ)=↓; @VP.

VP’ → (to) @VP.

In general, when a category defined by a rewriting rule is referenced as a macro, GWB treats
that invocation as if it were a reference to a meta-category defined by the right-side of the rule.
The conventions for interpreting schemata attached to meta-categories are applied to each such
invocation. We say that such an invocation of a rewriting rule gives rise to a phantom node, to
distinguish this kind of reference from its use as an ordinary phrasal expansion. Since it is
sometimes difficult to debug a grammar when the phantom nodes do not appear in the tree,
GWB allows you to indicate that you prefer temporarily for phantom nodes be included in the
c-structure. This is done by selecting the Show phantom nodes item in the menu of the
Sentence Input Window, as discussed in Section IV.6.

4. The functional description language

The schemata that appear in c-structure rules and in lexical entries are written in GWB’s
functional description language. Except for the absence of bounded-domination metavariables,
this is an extension of the notation presented by Kaplan and Bresnan (1982) and is used to
express conditions that the f-structures and other projections corresponding to particular nodes
must satisfy. Explicit projection symbols may be used in codescriptive statements that
characterize structures representing different aspects of linguistic organization. The
f-description language includes designators that denote symbols, semantic forms, f-structures,
and other projection structures. Properties of those entities are asserted by propositions
constructed from a small number of predicates and relations applied to those designators, and
those propositions are combined together by the usual Boolean operators.

4.1. Designators

Designators are terms in the description language that stand for elements in the structures
representing different projections. They are defined recursively in the following way:

symbol [attribute and value symbols]
A symbol is a sequence of characters that are not separated by white-space (spaces,
carriage returns, tabs) or by other delimiters in the f-description language
(parentheses, brackets, predicate and relation symbols). A symbol

85

4. Functional description language

character-sequence denotes the unique symbol with that name. The symbol may be
an attribute in the f-structure (a feature or grammatical-function name) or in some
other attribute-value structure, it may be the value of some attribute, or, in some
cases, it may be both. The symbol OBL-GOAL, for example, may be both a
grammatical function and the value of an attribute such as PCASE. LFG differs from
many “unification-based” grammatical formalisms in that attributes and values are
not necessarily disjoint. Symbols may also appear in special structures such as
semantic forms, where they also retain their uniqueness property.

symbol_ [instantiated symbols]
Kaplan and Bresnan (1982) used the single-quote notation to denote semantic forms,
as described below. These entities were used to formalize several different aspects of
the interaction between the syntactic and semantic components, including a notion of
individuation or unique instantiation. Further experience and understanding has
suggested that unique instantiation is a formal device with motivation for purely
syntactic features, and GWB therefore provides for instantiated feature values that
carry no semantic entailments. An instantiated syntactic feature value is indicated
by suffixing the underscore character _ to the name of an ordinary symbol. The
notation is intended to suggest the attachment of an indexing subscript.

Equalities of two ordinary symbols with the same spelling, such as NOM=NOM, are
always true. In constrast, instantiated symbols, even those with identical spellings,
are taken to denote distinct objects, so that equations such as OBL-ON_=OBL-ON_ are
never satisfied. For feature values that are ordinary symbols, the existential
constraints in the f-description language can be used to discriminate between the
absence of any defining equation and the presence of at least one but possibly several
such equations. If instantiated symbols are involved, the truth value of a Boolean
formula can further discriminate between the appearance of exactly one defining
equation as opposed to more than one.

As an illustration, suppose that the case-marking feature of a preposition is specified
as an ordinary symbol, for example, by the schema (↑ PCASE)=OBL-ON in the lexical
entry for on. This will give rise to the proper functional configuration for a sentence
like John relied on Bill. If the within-clause role of a fronted prepositional phrase is
determined by functional uncertainty, the proper result will also emerge for the
question On whom did John rely? The ungrammatical On whom did John rely on
Bill? will be rejected because the conflicting nominal predicates will both be assigned
to the oblique-object grammatical function. But the equally ungrammatical On
whom did John rely on? will not be disallowed because it involves doubling of only
the semantically empty features of the preposition. Changing the PCASE value to an
instantiated symbol via (↑ PCASE)=OBL-ON_ will rule this out because of a clash
between the two instantiations of OBL-ON_.

An instantiated symbol is interpreted as the corresponding ordinary symbol when it
appears as an f-structure attribute, so that (↑ ON-OBJ) and (↑ ON-OBJ_) are exactly
equivalent. The change of PCASE to an instantiated value thus still allows the proper
assembly of an oblique object according to the schema (↑ (↓ PCASE))=(↓ OBJ). An
instantiated symbol is also treated as the corresponding ordinary symbol when it is
used as a value in constraining as opposed to defining schemata. The existential
constraint (↓ PCASE) will be satisfied if the PCASE value is ON-OBJ_, and so will the
constraining equation (↓ PCASE)=c OBL-ON.

86

Chapter III: Grammatical Notations

Note that an equality between two designators for the same instantiation of an
instantiated symbol will be true, as in the conjunction of (↑ PCASE)=ON-OBJ_ and
(↑ PCASE)=(↑ PCASE).

When an instantiated symbol is presented in an f-structure display, the underscore is
replaced by a numeric subscript so that different references to the same instantiated
symbol are easy to recognize.

’function’ [semantic forms]
’function<a1... ak>’
’function<a1... ak>n1 ... nl’

A semantic form is an expression enclosed in single-quotes. It makes visible in the
syntax only those aspects of semantic representation that interact in some way with
syntactic properties. In particular, it defines the mapping between a predicate’s
governed grammatical relations and the particular argument positions of the
semantic relation denoted by the function designator. Also, as discussed by Kaplan
and Bresnan (1982), a semantic form acts like an instantiated symbol, carrying in
this case a notion of semantic individuation: two semantic forms are taken to denote
distinct semantic entities (and hence equality never holds between them) even if they
are specified by identical expressions. The entities denoted by a semantic form may
have other significant semantic properties, such as various kinds of scoping and
entailment relations, but those have no syntactic consequences.

Included within the quotes of a semantic form is a designator for a semantic function,
optional designators for one or more thematic argument functions a1... ak enclosed in

angle brackets, and optional designators for one or more nonthematic grammatical
functions n1 ... nl appearing after the brackets. The function is typically a symbol

designating an atomic semantic relation (e.g. ’GIRL’, ’WALK<(↑ SUBJ)>’), but other
types of designators are also allowed. For example, ’(↓ PRED)<(↑ SUBJ)>’ might
denote the semantic entity corresponding to a predicate nominal, constructed by
applying a common-noun meaning (↓ PRED) to a single argument provided by a
subject.

The thematic and nonthematic grammatical-function designators will typically be
function-application expressions such as (↑ SUBJ), (↑ OBJ), etc. (which, for
convenience, may be typed simply as SUBJ and OBJ). The attribute names in these
expression denote governable grammatical functions, and thus they should match
one of the GOVERNABLERELATIONS patterns specified in the active configuration (see
Section 6). The special symbol NULL may also appear and can be used to encode the
fact that a particular semantic argument has no surface manifestation. The symbol
NULL thus serves as the null function Ø discussed by Bresnan (1982b).

GWB’s implementation of LFG’s completeness and coherence conditions depends on
the thematic and nonthematic grammatical-functional designators. An f-structure is
incomplete if it has a semantic-form PRED value with a ai or ni designating a

grammatical function not locally present in the f-structure. An f-structure is
incoherent if it contains a local semantic-form PRED value and a governable
grammatical function (as specified by the GOVERNABLERELATIONS patterns of the
current configuration) and that function is not sanctioned by one of the ai or ni in the

PRED value (as noted in Section 3.2 of Chapter II, this is slightly different than the
condition originally proposed by Kaplan and Bresnan, 1982). The distinction

87

4. Functional description language

between the thematic and nonthematic designators (and the bracket-external
notation for nonthematics) follows Bresnan (1982a): the thematic functions are
mapped to arguments of the sematic relation and thus must satisfy its selectional
restrictions. The nonthematic functions are purely syntactic and may be filled, for
example, by semantically empty expletives. The equi predicate persuade thus differs
from the raising predicate expect only in how grammatical functions are allocated to
the thematic and nonthematic sets:

’PERSUADE<(↑ SUBJ) (↑ OBJ) (↑ COMP)>’
’EXPECT<(↑ SUBJ) (↑ COMP)> (↑ OBJ)’

GWB enforces this formal distinction by also marking f-structures as incomplete if a
thematic function is present but does not have a semantic-form PRED value. No
additional requirements are imposed on the values of nonthematic functions.

As described below, the individual components of a semantic form may be referenced
in functional descriptions by use of the special attributes FN, ARG1, ARG2..., NOTARG1,
NOTARG1, ...

↑ [f-structure metavariables]
↓

These designators denote the f-structures corresponding to nodes of the c-structure
via the c-structure to f-structure correspondence φ. The φ correspondence, or
projection, was introduced as a fundamental organizing mechanism by Kaplan and
Bresnan (1982), but its role in interpreting the f-structure metavariables was not
formally elaborated. ↓ was instantiated to the f-structure corresponding to the
current node (the node matching the category-symbol containing the ↓ annotation)
and ↑ was instantiated as the f-structure corresponding to the mother of the current
node. These notions were formalized more carefully in Kaplan (1987, 1989, 1995): If
* denotes the node matching a given category symbol annotated with schemata
containing ↓, then that ↓ is taken as a convenient abbreviation for φ*, the result of
applying the projection φ to the matching node. If M denotes the function that takes a
c-structure node into its mother, then ↑ is interpreted as a convenient abbreviation
for φM*. Defining the f-structure metavariables explicitly in terms of φ makes it
easier to formalize relations such as functional precedence, which are based on the
inverse of the φ correspondence. As discussed at the end of this section, GWB also
supports * and M* as designators of the matching node and its mother, and this
allows for correspondences that map from c-structure nodes to information structures
other than the f-structure.

(d r) [function application and uncertainty]
A parenthetic expression stands for the result of applying the monadic function
denoted by the designator d to an argument specified by r, a regular predicate over
designators. In the common case, d is an f-structure metavariable and r is merely a
symbol designator such as SUBJ, OBJ, CASE, or PERSON that specifes the name of a
grammatical function or feature. The designator (↑ PERSON) thus denotes the value
of the attribute PERSON in the f-structure corresponding to the current node’s
mother. In the somewhat more general case, r is a sequence of symbol designators,
as in (↑ SUBJ PERSON). As defined by Kaplan and Bresnan (1982), this denotes the
result of applying the function denoted by (↑ SUBJ) to the argument PERSON. In the
most general case, r is an arbitrary regular predicate describing an arbitrary regular

88

Chapter III: Grammatical Notations

language. Kaplan and Zaenen (1989b) assign an existential meaning in this
situation:

(d r)=v iff either
d=v and the empty string belongs to the language denoted by r, or
there is a symbol s such that ((d s) Suffix(s, r))=v

where Suffix(s, r) is the regular language { y | sy ∈ r }
The indeterminacy about exactly which symbol is chosen at each point in the
unfolding of this recursive definition is what gives rise to the intuition of “functional
uncertainty”. GWB solves propositions involving functional uncertainty according to
the algorithm described by Kaplan and Maxwell (1988a).

The regular predicates that can be combined in r are drawn from the set of regular
operators that make up the c-structure description language, described in Section 1
above. For example, the designator

(↑ COMP* GF − VCOMP)

denotes the infinite regular set whose strings begin with zero or more COMP’s and end
with any grammatical function other than VCOMP. Note, however, that in
uncertainty predicates the relative complementation hyphen must be surrounded
with white space; this permits the hyphen to be included as a character in the middle
of names such as OBL-TO. The basic terms of these functional regular predicates are
designators denoting grammatical function and feature names. Typically, these will
be primitive symbol designators, as in the example above, but expressions that
denote such symbols are also allowed:

(↑ (↓ PCASE))

(↑ COMP* {SUBJ|OBJ|(↓ PCASE)})

Of course, the set of constraints will be unsatisfiable if other propositions require the
designator in an uncertainty language to denote something other than a symbol (e.g.
a semantic form or f-structure).

Functional predicates share the same epsilon symbol (e by default) as c-structure
predicates. They may also make use of regular predicate abbreviations defined along
with c-structure rules and abbreviations in c-structure Rule windows. Thus, you can
include definitions such as

COMPFNS = {COMP|XCOMP}.
TERMFNS = {SUBJ|OBJ|OBJ2}.

and then make use of an uncertainty such as (↑ COMPFNS* TERMFNS). There is no
difference between metacategories and macros in functional regular predicates, since
there are no schemata to be distributed differentially and there is no special
treatment of epsilons to worry about.

For convenience, three special symbols come as predefined abbreviations:
GGF stands for the set of governable grammatical functions, those functions in

the current grammar and lexicon that match the patterns specified in the
GOVERNABLERELATIONS component of the active configuration.

SGF stands for the set of semantic functions, those functions in the current
grammar and lexicon that match the patterns specified in the
SEMANTICFUNCTIONS component of the active configuration. Typically
these will include ADJUNCT and MODIFIER functions. They are not

89

4. Functional description language

governed, but the f-structure is incomplete if their values do not have
semantic-form PREDs.

GF stands for the universe of grammatical functions, the union of GGF and SGF.
This set is also what ? denotes in functional regular predicates.

As originally presented by Kaplan and Bresnan (1982), it would be inconsistent for
the designator d to denote anything other than an f-structure. GWB implements a
modified form of the extension described by Kaplan and Maxwell (1989a) that gives
meaning to the case when d designates a set. They proposed that if d designates a
set, then (d r) denotes the entity (g r), where g is the generalization of all the
elements in the set d. This permits a natural account of how features and functions
distribute across the conjuncts in a constituent coordination construction. GWB
provides for this behavior only for attributes that are not specified in the
configuration as “nondistributive” (see Section 6 of this chapter). If r is a
nondistributive attribute, then d is interpreted as if it is an ordinary f-structure
containing a value for attribute r. In effect, d will have a mix of set and f-structure
properties. This modification allows certain features, such as the identity of the
conjunction, to be expressed directly in the f-structure, whereas the original Kaplan
and Maxwell formulation forced the conjunction out of the f-structure and into
another projection.

GWB implements another extension that permits reference to the components of a
semantic form. If d denotes a semantic form, then the designator (d FN) denotes its
function component, (d ARG1), (d ARG2), ... denote its a1, a2, ... argument

components, and (d NOTARG1), (d NOTARG2), ... denote its n1, n2 nonthematic

function components. Thus you can insure that some noun phrase is realized as a
pronoun by asserting (↑ PRED FN)=PRO. Asserting (↑ PRED)=’PRO’ would not have
this effect, because of the instantiation of semantic forms (’PRO’=’PRO’ is always
false).

%symbol [local names]
A local name can be used as a variable whose scope is limited to the schemata
associated with a particular category or lexical item. This makes it convenient to
make repeated references to a single entity. For example, suppose that the PERSON,
NUMBER , and GENDER features of a noun are grouped together in the value of an AGR
attribute. A given lexical entry might assert that

(↑ AGR PERSON)=3
(↑ AGR NUMBER)=PL
(↑ AGR GENDER)=FEM

but these feature equations can be shortened by means of a local name %A that
captures the value of the AGR feature:

(↑ AGR)=%A
(%A NUMBER)=PL
(%A PERSON)=3
(%A GENDER)=FEM

In this example the local name helps to abbreviate constraints whose effect could also
be achieved in the usual more cumbersome way. When a functional uncertainty is
involved, however, a local name can make it possible to express conditions that would
otherwise be unstatable. Suppose that the three agreement requirements are to be

90

Chapter III: Grammatical Notations

asserted on the value at the end of a functional uncertainty, not on the value of ↑.
The schemata

(↑ COMPFNS* TERMFNS AGR PERSON)=3
(↑ COMPFNS* TERMFNS AGR NUMBER)=PL
(↑ COMPFNS* TERMFNS AGR GENDER)=FEM

would not have the desired effect. Each of the uncertainties is treated separately and
can be instantiated by different strings drawn from the regular sets. Thus, the first
schema might assert the person of a complement’s object while the second asserts the
number of a different structure, the second complement’s subject. A local name can
be used not only to shorten the specification but also to insure that all three
requirements are imposed on the same structure:

(↑ COMPFNS* TERMFNS AGR)=%A
(%A NUMBER)=PL
(%A PERSON)=3
(%A GENDER)=FEM

The uncertainty may still be resolved by the choice of different strings, and this may
result in a disjunction of different assignments for %A. However, as desired, all three
requirements will be imposed simultaneously on each such assignment.

%stem [reference to stem]
%stem is a local name with a special, built-in meaning. When it appears in a lexical
entry or in a template invoked by a lexical entry, it is taken to denote a symbol whose
name is the headword of the entry. Thus, %stem denotes the symbol walk when it
appears in the definition of walk or in a template that walk invokes. If the
template INTRANS is defined as

INTRANS(P) = (↑ PRED)=’P<(↑ SUBJ)>’

then the particular predicate must be specified in each invokation, as in
@(INTRANS WALK). An alternative is to define INTRANS with no arguments, as in

INTRANS = (↑ PRED)=’%stem<(↑ SUBJ)>’

With this definition, the simpler invokation @INTRANS in the entry for walk will
produce (↑ PRED)=’walk<(↑ SUBJ)>’ but (↑ PRED)=’fall<(↑ SUBJ)>’ in the
entry for fall. A %stem reference can thus be used to eliminate redundant
specifications in many lexical entries. However, as this example illustrates, the
spelling of the %stem reference will be exactly identical to the spelling of the
headword, including the same pattern of upper and lower casing.

p d [projection-value designators]
The correspondence φ between c-structure and f-structure was the only projection
discussed by Kaplan and Bresnan (1982). Subsequent work, especially Kaplan (1987,
1989), Halvorsen and Kaplan (1988), and Kaplan et al. (1989), presents a more
general view of abstract structures representing different aspects of lingusitic
organization and of piecewise correspondences relating the elements of those
structures. These piecewise correspondences permit abstract structures to be
described in terms of the elements and relations of more concrete ones. GWB
provides a simple notation for specifying the projection functions that map between

91

4. Functional description language

different kinds of structures. The notation allows projection to be composed with
each other, thus enabling the statement of codescriptive constraints.

In GWB a projection designator p is simply a character in the Greek alphabet portion
of the Xerox Character Encoding Standard. Thus σ, δ, τ , etc. might all be used to
denote different projection correspondences. Section 7 of Chapter I discusses the
character encoding used internally by GWB and describes various methods for typing
in projection designators. These include using Medley’s Virtual Keyboards facility,
invoking TEdit’s abbreviation-expansion mechanism, or entering the ASCII name of
the projection followed by a double colon.

If d is a designator of an element in one structure, then p d designates the element
corresponding to d through the p projection. For example, if σ denotes the semantic
projection, then σ↑ is the semantic structure corresponding to the ↑ f-structure, and
σ(↑ SUBJ) is the semantic structure corresponding to ↑’s subject. If ρ denotes the
correspondence between, say, units of semantic structure and a structure that
represents their referents, then ρσ(↑ SUBJ) stands for the referent of the semantic
structure corresponding to the SUBJ of ↑. Composition of projections is thus
indicated by simple concatenation of projection designators, with a leftward
projection applying to the element denoted by the designator to its right.

It is worth noting the difference between the conceptual principles embodied in LFG’s
projection architecture and the use of the distinctive attributes in other grammatical
formalisms to represent different kinds of linguistic information in a single structure.
Projections are aimed at separating and modularizing different aspects of linguistic
organization, so that systems with relatively little interaction can be treated as
different kinds of entities. Thus, apart from the explicit difference in notation, GWB
displays different projections as separate structures in different windows. Also, for
certain operations projections have behavior that is formally different from the
values of ordinary attributes. Projection (but not attribute) inverses are used to
define functional precedence and other predicates (see below and Zaenen & Kaplan,
1995), and generalization takes place over set-valued attributes but not projections,
as described by Kaplan and Maxwell (1988b) and implemented in GWB.

* [c-structure metavariables]
M*

These designators can appear in schemata to denote, respectively, the node matching
the associated category and the mother of that node. The f-structure metavariables ↓
and ↑ are thus exactly equivalent to the specifications φ* and φM*, where φ is the
f-structure-to-c-structure correspondence. GWB will accept either notation but it will
normalize to the abbreviatory arrows when any schemata are printed out. These
node designators make it possible to put information structures other than
f-structures into correspondence with c-structure nodes. These alternative
projections may be kept separate when corresponding f-structures are identified, and
they may be equated when the nodes’ f-structures are distinct. For example, defining
a µ projection to represent the morphosyntactic features of particular nodes can
permit various morphological agreement requirements to be enforced without
constraining the functional dependencies encoded in the f-structure. If English
past-participles carry the schema (µM* PARTICIPLE)=PAST, the perfect auxiliary
have can insure that its morphological complement is of the right type by the schema
(µM* MCOMP PARTICIPLE)=c PAST. In µ-structure the features of the embedded
verb would be grouped hierarchically under the MCOMP attribute even though the

92

Chapter III: Grammatical Notations

f-structure is arguably flat (by means of the schemata (µM* MCOMP)=µ* and ↑=↓
associated with the lower VP category).

4.2. Propositions

Propositions are elementary formulas in the functional description language that assert
properties of f-structures and other projections. These propositions are true or false of a model
consisting of a structure and an assignment of the variables in the proposition to the elements
of that structure. The formulas involve a fixed set of predicates and relations as detailed below.
These predicates and relations are asserted of arbitrary designators d1, d2, and d.

TRUE [truth values]
FALSE

These are the truth-value constants that provide a grounding for the logical system.
They do not commonly appear in grammatical specifications, but they may arise in
the course of grammatical analysis and show up in some of GWB’s output displays.
They may also be useful in the invocation of functional templates as described in
Section 5.

d1 = d2 [equality]
d1 =c d2

The equality predicates are true if d1 and d2 denote exactly the same entity. The

difference between the defining equality and the constraining equality =c is that the
latter is true only if the equality is implied by all the defining propositions in the
functional description. Technically, this is a slightly stronger condition than the one
given in Kaplan and Bresnan (1982) because it requires that the constraining
equality be true of all extensions of the minimal model, whereas Kaplan and Bresnan
only imposed the constraint on the minimal model alone. The letter c (which may be
in upper or lower case) must appear immediately next to the =, with no intervening
white-space. If d2 is a symbol designator, there must be white-space between it and

the preceding c. Thus, (↑ SPECIES)=COW is interpreted as a defining equation
involving the symbol COW. The proposition must be written as (↑ SPECIES)=C OW to
obtain a constraining equality on the symbol OW.

d1 ∈ d2 [set membership]
d1 ∈c d2

The membership predicate is true if d2 denotes a set and d1 denotes one of its

elements. The suffix c again distinguishes between defining and constraining
assertions. Techniques for typing the set-membership symbol are discussed in
Chapter I, Section 7.

d [existential constraint]
A designator standing by itself is true if the designator has a denotation in the
minimal structure satisfying the defining propositions in the f-description. It makes
no sense to assert an existential constraint of a symbol or semantic-form designator,
since these always have a denotation. GWB therefore issues an error message when
it encounters such a constraint. This is usually symptomatic either of a conceptual
confusion or of a notational mistake elsewhere in the f-description.

93

4. Functional description language

d1 < d2 [functional and abstract precedence constraints]
d1 > d2

These propositions assert abstract ordering relations between the entities denoted by
d1 and d2. Based on the inverse of structural correspondences, they generalize to

other projections the f-precedence relation <f discussed by Kaplan and Zaenen

(1989a) and Zaenen and Kaplan (1995). If d1 and d2 denote f-structure elements,

then d1 < d2 is true if and only if all the nodes that φ maps to d1 precede in the

c-structure all the nodes that φ maps to d2. Kaplan and Zaenen express the

f-precdence condition more formally in terms of the inverse of the structural
correspondence and <c , the usual precedence relation among c-structure nodes:

d1 <f d2 iff for all n1 ∈ φ−1(d1) and n2 ∈ φ−1(d2), n1 <c n2
If d1 or d2 involves a composition of other correspondences and thus denotes

elements in other abstract structures, that combination of correspondences is
similarly inverted to produce a set of nodes whose c-precedence can be tested. Thus
GWB determines whether τσ(↑ SUBJ) < τσ(↑ OBJ) is true in the following way. It
first finds the two elements of τ-structure that the two designators denote and
identifies all the elements of σ-structure that map to those τ elements. It then finds
all the f-structure units that map to those σ elements and all the nodes that map to
those f-structure units. Finally, it compares the c-structure orderings of nodes in
those two sets. Note that the same operators < and > are used with quite different
effects both for the linear precedence predicate in c-structure rules and for abstract
precedence in functional descriptions.

The second abstract precedence relation > is provided as a convenient alternative to
<: the proposition d1 > d2 is equivalent to d2 < d1. Note that in GWB both of these

are taken as constraining relations, not defining ones; in effect, they carry an implicit
“c” constraint marker. They are applied only to structures and correspondences that
already satisfy all the defining propositions of the f-description; GWB does not
attempt to modify or extend structures or correspondences in order to make these
assertions hold.

#CAT[d categories] [functional and abstract category constraints]
The CAT predicate is a formal extension to the published LFG notation that is also
defined in terms of the inverses of structural correspondences. A CAT proposition is
satisfied if the entity denoted by the designator d is a projection of at least one node
whose category is in categories. If d denotes an f-structure, then

#CAT[d categories] iff there is some n ∈ φ−1(d) such that
category(n) ∈ categories.

As with abstract precedence, if d involves a composition of other correspondences and
thus denotes an element in some other abstract structure, that combination of
correspondences is similarly inverted to produce a set of nodes whose categories can
be tested.

The CAT predicate permits constraints to be imposed on the categories of the nodes
that map to an f-structure without actually copying a category feature into the
f-structure (or doing it surreptitiously as Kaplan and Bresnan (1982) did when they
used grammatical-function names like VCOMP, ACOMP, and PCOMP). Asserting
contraints by means of this correspondence-based predicate maintains the essential

94

Chapter III: Grammatical Notations

modularity of c-structure and f-structure properties while still allowing for limited
and controlled interactions to be expressed.

The d argument is an ordinary designator (e.g. (↑ XCOMP) or σ↑). The categories
argument is a collection of atomic category labels enclosed in set-brackets. For
example, the proposition

#CAT[(↑ XCOMP) {NP’ AP}]

might be included in the English lexical entry for become to indicate that the XCOMP
of become must correspond to some node labeled either NP’ or AP. This would
disallow strings like “The girl became to go” and “The girl became in the park”, even
though the VP rule might allow VP’, AP, NP’, and PP all to be associated with the
category-independent XCOMP function. If the XCOMP is assigned to the top of an ↑=↓

head chain, then the constraint can also be stated in terms of just the lexical category
labels:

#CAT[(↑ XCOMP) {N A}]

If only a single category is specified as the categories argument, the set-brackets may
be omitted. Thus the proposition

#CAT[(↑ XCOMP) V]

can appear in the lexical entry of verbs that take only verbal complements.

One advantage of a CAT specification over a VCOMP, ... NCOMP arrangement is that a
predicate such as consider that allows any kind of complement requires no marking
at all instead of being four ways ambiguous.

d1 << d2 [subsumption]
d1 >> d2

These propositions provide explicit grammatical access to the subsumption ordering
of f-structures and other abstract structures. The subsumption ordering corresponds
to a notion of information inclusion, in the sense that one structure (the subsumer)
subsumes another if the second (the subsumee) contains at least the information
found in the first. Thus, d1 << d2 is true if and only if the structure denoted by the

subsumee d2 contains all the attributes of the subsumer d1 structure, and on each of

the common attributes, its value in d1 is either equal to or subsumes its value in d2.

Subsumption provides for asymmetric propagation of information. If you assert that
(↑ OBJ NUM)=1 and (↑ SUBJ)<<(↑ OBJ), this does not establish a value for
(↑ SUBJ NUM): an existential constraint on the subject’s number would not be
satisfied. On the other hand, if you instead assert that (↑ SUBJ NUM)=1 along with
the subsumption, the number value will be propagated “upwards” to the OBJ and
would be inconsistent with any incompatible value independently asserted of the
object’s number. For convenience, d1 >> d2 is equivalent to d2 << d1.

Subsumption should be used with a degree of caution. When other propositions
assert certain internal equalities in the subsumer, the f-description as a whole may
be undecidable and GWB’s sentence analysis procedure may not terminate. There
have been proposals for restricted versions of subsumption that avoid the
mathematical pitfalls, but the linguistic significance of these restrictions is not yet
understood. Experience with the current relation in actual grammars may help to

95

4. Functional description language

sharpen the issues and lead to theoretical refinements as well as improvements in
GWB’s implementation.

" any string of characters " [comment]
Just as in the regular predicate language, character strings enclosed in double-quotes
are treated as invisible comments and assigned no other interpretation in the
functional description language. They permit you to add explanatory notes at any
position in a formula where a proposition is allowed.

4.3. Boolean combinations

The elementary propositions just described can be put together in Boolean combinations to
make up the schemata that are attached to c-structure categories and appear in lexical entries.
In some cases there are special rules of interpretation for the Boolean operators having to do
with the defining/constraining distinction in LFG theory. The possible schemata are specified
recursively as follows:

p [elementary propositions]

All of the elementary propositions described above can serve as schemata.

s1 s2 ... sn [conjunction]
A sequence of schemata combined with no other operator (but separated by
white-space as needed) is interpreted conjunctively. The sequence is true if and only
if all of the individual schemata are true.

[s] [grouping]
Square brackets are used merely to explicitly mark that the components of s are to be
treated as a unit with respect to other enclosing operators. This is especially useful
in defining the scope of negation and in demarcating the values supplied for template
substitution.

{ s1 | s2 | ... | sn } [disjunction]
A disjunction is satisfied if and only if at least one of the si is satisfied. If the si are

defining as opposed to constraining schemata, GWB will attempt to construct
separate minimal models for each of them, perhaps giving rise to ambiguous
grammatical interpretations. If the si are constraining, then the disjunction will be

true if at least one of the disjuncts is true of an independently defined structure;
alternative interpretations will not be created.

By the usual rules of logic a disjunction would reduce to TRUE if one of its disjuncts is
TRUE. This reduction does not go through in LFG, however, because of the
defining/constraining distinction. Consider the formula {(↑ TENSE)=PAST | TRUE}
which might be used to indicate that a sentence is or is not marked as past tense. If
this is reduced to TRUE and hence ignored, the minimal f-structure solution will have
no TENSE feature at all (assuming that TENSE is not elsewhere defined). But then
that structure will fail to satisfy an existential constraint (↑ TENSE) occurring
elsewhere in the f-description, which is not the intended result. Thus, GWB does not
perform this reduction. Instead it operates on even TRUE-containing disjunctions,
always attempting to find minimal solutions for each of the disjuncts taken
separately.

96

Chapter III: Grammatical Notations

{ s } [optionality]
This is true whether or not the s is satisfied. It is a short-hand equivalent for the
disjunction { s | TRUE }, and as just explained, GWB attempts to find one minimal
solution that satisfies an f-description containing s instead of the optionality and also
one not containing s.

~s [negation]
A formula ~s is true of a model if s itself is false. Negation in LFG serves as a filter
on the minimal structures satisfying the positive defining propositions in the
f-description. GWB does not try to extend structures (for example, by adding
conflicting features) so that a negative condition is satisfied. This means that certain
conventional logical equivalences do not hold in LFG. It is thus not the case that
~[~s1 ~s2] characterizes the same structures as {s1 | s2}, as De Morgan’s laws would

suggest. With the first specification, the minimal model for all other propositions
must satisfy one of s1 or s2. Solutions for the second specification may include two

different extensions of that minimal model, one satisfying s1 and one satisfying s2.

As another consequence, functional uncertainties in the scope of LFG’s
nonconstructive negation are decidable, whereas it is known that uncertainties in the
scope of classical negation are not (Baader et al., 1991; Keller, 1991).

If s is an elementary proposition, the negation operator ~ may be placed as a prefix
on the relation symbol: for example, ~(↑ SUBJ)=↓ may be written instead as
(↑ SUBJ)~=↓. Also, note that the negation operator binds more tightly than
conjunction: ~(↑ TENSE) (↑ CASE) is interpreted as [~(↑ TENSE)] (↑ CASE) instead
of ~[(↑ TENSE) (↑ CASE)].

5. Functional templates and lexical rules

One of the hallmarks of Lexical Functional Grammar is its use of lexical redundancy rules to
express generalizations that hold across large families of lexical entries. Bresnan (1982c)
discusses the motivation for a passive redundancy rule, and Kaplan and Bresnan (1982)
present a simple formalism for encoding such relation-changing lexical rules. Lexical rules map
lexical entries to lexical entries by either adding new schemata or by systematically modifying
the designators appearing in existing schemata. The result is an entry that stands as a
disjunctive alternative to the original. The passive rule, for example, applies to transitive verb
entries. It introduces a schema insuring that the verb is in its past-participle form, it modifies
existing schemata by converting object designators to subject designators, and it also changes
existing subject designators, either converting them to oblique agent designators or else
deleting them. Using GWB’s notation for disjunction and the NULL symbol to indicate the
absence of a grammatical function, the Kaplan/Bresnan passive rule would be written as

(↑ PARTICIPLE)=c PAST
(↑ OBJ)→(↑ SUBJ)
{ (↑ SUBJ)→(↑ OBL-AG) | (↑ SUBJ)→NULL }

The rewriting arrow → is the special operator that indicates how designators are to be
systematically modified. Suppose this rule is applied to the functional annotation
(↑ PRED)=’kick<(↑ SUBJ)(↑ OBJ>)’ for the simple transitive verb kick. The result would
be the alternative passive entries

(↑ PARTICIPLE)=c PAST (↑ PARTICIPLE)=c PAST
(↑ PRED)=’kick<(↑ OBL-AG)(↑ SUBJ)>’ (↑ PRED)=’kick<NULL (↑ SUBJ)>’

97

5. Functional templates and lexical rules

Note the importance of rewriting the complex designator (↑ SUBJ) and not just the
grammatical-function name SUBJ as the simpler SUBJ→OBL-AG would do. This would have the
unintended effect of also changing the embedded SUBJ in a functional-control equation, so that
the schema (↑ XCOMP SUBJ)=(↑ OBJ) for a raising verb would be transformed to
(↑ XCOMP OBL-AG)=(↑ SUBJ).

The early LFG literature was quite precise in its discussion of the effects of lexical
redundancy rules, but it was much less clear about the circumstances that would trigger the
application of those rules. The presence or absence of particular grammatical functions is one
of the conditioning factors, but it is not sufficient. The verbs cost and weigh are well-known
examples in English of words that take subjects and objects but do not passivize, and donate is
a commonly used example of a ditransitive verb that does not undergo dative-shift. The
existence of lexical exceptions to seemingly general syntactic variations was taken to support
the claim that these phenomena were lexical in nature. However, it also called for some way of
either explicitly marking exactly when particular rules can apply or predicting their application
from other lexical properties.

The early literature assumed, mostly tacitly, that lexical items would be annotated with
some set of morphosyntactic features, and that these, together with some default marking
conventions, would govern the application of rules. A complete and formally coherent notation
for this purpose was never proposed, and theoretical work in this area has shifted away from
the marking approach. More recent work in Lexical Mapping Theory (Bresnan & Kanerva,
1989) has attempted to develop general principles for predicting lexico-syntactic variations from
the semantic properties of the lexical predicates and a skeletal assignment of grammatical
functions to particular semantic arguments. This is a much more interesting and promising
approach, but it has not yet reached the stage where precise formal mechanisms have been
defined and justified. Thus, in the absence of clear theoretical guidance, GWB provides its own
abbreviatory conventions for expressing common f-description patterns that are shared by
many lexical items and for marking lexical entries to indicate how they participate in those
generalizations.

Redundancies in the f-description language are encoded by means of functional templates.
These are like regular-predicate macros in that they permit the name assigned to a complex
formula to be used in place of that formula in larger expressions. Repeating the example used
in Section I.5, we know that all English common nouns have the general pattern of syntactic
specifications illustrated by the following entries for airport and girl:

airport N S (↑ PRED)=’airport’
{ (↑ NUM)=SG (↑ SPEC)
 |(↑ NUM)=PL}.

girl N S (↑ PRED)=’girl’
{ (↑ NUM)=SG (↑ SPEC)
 |(↑ NUM)=PL}.

Each of these provides the appropriate 0-place semantic relation and also asserts that a
singular noun must appear with a specifier elsewhere in the sentence. A parameterized
functional template (defined in a Template Window) can express the common specification:

CN(P) = (↑ PRED)=’P’
{ (↑ NUM)=SG (↑ SPEC)
 |(↑ NUM)=PL}.

The individual lexical entries for airport, girl, and all other common nouns can then be
abbreviated to a simple invocation of the template:

98

Chapter III: Grammatical Notations

airport N S @(CN airport).

girl N S @(CN girl).

Just like a regular-predicate macro, a template invocation is marked by an @, followed by a
parenthetic expression that gives the name of the template and a sequence of values to be
substituted for the formal parameters in the template definition. In this case the single
parameter is P, and it is replaced by airport and girl, respectively, to produce the formulas
in the original lexical entries. If all common nouns are marked in this way, they would all be
affected by any change to the template definition. For example, the extended definition

CN(P) = (↑ PRED)=’P’
(σ↑ REL)=P
{ (↑ NUM)=SG (↑ SPEC)
 |(↑ NUM)=PL}.

with the added schema (σ↑ REL)=P would make all common nouns also assert P as the value
of a relation attribute in the σ structure.

Template invocations thus serve as the notation in GWB by which individual lexical items
are marked to indicate the lexical classes they belong to, and template definitions characterize
the behavior of items in those classes. Transitive verbs might all be marked by the template
invocation @(TRANS v), where v is the name of the particular predicate, and intransitive verbs
might be marked @(INTRANS v), where these templates are defined as:

TRANS(P) = (↑ PRED)=’P<(↑ SUBJ) (↑ OBJ)>’.

INTRANS(P) = (↑ PRED)=’P<(↑ SUBJ)>’.

Many verbs would invoke just one of these macros, but verbs that can be either transitive or
intransitive would invoke both of them disjunctively:

stop V S-ED { @(TRANS stop) | @(INTRANS stop) }.

This illustrates the fact that template invocations may appear in the position of any proposition
in the f-description language, so that the formulas they stand for can be combined by the usual
Boolean operators.

The definition of a template can be any Boolean combination of schemata containing
formal-parameter symbols in positions where schemata or symbols might otherwise appear.
The definition can also include other template invocations. Thus, the fact that most transitive
and ditransitive verbs can also be passivized can be encoded in the definitions

TRANS(P) = @(PASS (↑ PRED)=’P<(↑ SUBJ) (↑ OBJ)>’).

DITRANS(P) = @(PASS (↑ PRED)=’P<(↑ SUBJ) (↑ OBJ) (↑ OBJ2)>’).

The passive template can then be defined to specify the systematic rewriting of designators, in
accordance with the original lexical redundancy rule described above. This might have the
following form:

PASS(SCHEMATA) = {SCHEMATA | SCHEMATA (↑ PARTICIPLE)=c PAST
(↑ OBJ)→(↑ SUBJ)
{ (↑ SUBJ)→(↑ OBL-AG)
|(↑ SUBJ)→NULL}}.

The single parameter for this template can be a Boolean combination of schemata; in the case of
TRANS and DITRANS, it is instantiated as a single PRED schema. The result after substituting
this schema and expanding the template will be a disjunction with three branches. One
disjunct will contain an isolated copy of the original schema, one will contain the agentive

99

5. Functional templates and lexical rules

passive alternative, and the third will contain the agent-deletion passive. The passive
alternations are created by rewriting designators according to the → specifications.

A designator rewrite is an expression of the form
match → result

where match and result are arbitrary designators. A designator rewrite can only appear in a
position appropriate for a proposition and only in a template definition. A template definition
containing such a specification is interpreted in the following way. First, the parameters of the
template invocation are substituted for the formal parameters to give a parameter-free Boolean
formula. The resulting formula is then converted to disjunctive normal form, a formula
consisting of a top-level disjunction each of whose disjuncts is a conjunction of propositions and
designator rewrites. Finally, the designator rewrites are removed from each disjunct and
applied to the schemata remaining in the disjunct to systematically change any designators
matching the match of a rewrite into the corresponding result. If the match for one rewrite is a
subexpression of the match for another, the result corresponding to the larger match will be
installed.

These three steps can be illustrated by the expansion of the template invocation @(TRANS
kick). The symbol kick is first substituted for P in the TRANS definition to give the formula

@(PASS (↑ PRED)=’kick<(↑ SUBJ) (↑ OBJ)>’)

Next, the PRED schema is substituted for SCHEMATA in the definition of PASS, producing

{ (↑ PRED)=’kick<(↑ SUBJ) (↑ OBJ)>’
 |(↑ PRED)=’kick<(↑ SUBJ) (↑ OBJ)>’
 (↑ PARTICIPLE)=c PAST

(↑ OBJ)→(↑ SUBJ)
{ (↑ SUBJ)→(↑ OBL-AG)
|(↑ SUBJ)→NULL}}

The inner disjunction is promoted to the top level to give the disjunctive normal form

{ (↑ PRED)=’kick<(↑ SUBJ) (↑ OBJ)>’

 |(↑ PRED)=’kick<(↑ SUBJ) (↑ OBJ)>’
 (↑ PARTICIPLE)=c PAST
 (↑ OBJ)→(↑ SUBJ)
 (↑ SUBJ)→(↑ OBL-AG)

 |(↑ PRED)=’kick<(↑ SUBJ) (↑ OBJ)>’
 (↑ PARTICIPLE)=c PAST
 (↑ OBJ)→(↑ SUBJ)
 (↑ SUBJ)→NULL }

The designator rewrites are then executed within their disjunct scopes to produce the final
result:

{ (↑ PRED)=’kick<(↑ SUBJ) (↑ OBJ)>’

 |(↑ PRED)=’kick<(↑ OBL-AG) (↑ SUBJ)>’
 (↑ PARTICIPLE)=c PAST

 |(↑ PRED)=’kick<NULL (↑ SUBJ)>’
 (↑ PARTICIPLE)=c PAST }

The same process would be carried out in the expansion of the DITRANS template, with the
result containing the appropriate three-place PRED schemata. A variant of the DITRANS
template could be defined that would first invoke a DATIVE template to disjunctively rewrite

100

Chapter III: Grammatical Notations

the OBJ and OBJ2 designators before offering them to the PASS. The result would allow for all
appropriate dative/passive combinations. Presumably verbs like give but not donate would
invoke this dative variant.

Another aspect of template interpretation is illustrated by the specification of functional
control verbs. The verb expect can take a simple object alone (I expected Mary), a
that-complement alone (I expected that Mary would go), or an infinitival complement with or
without a that-complement (I expected to go; I expected Mary to go). The complement
complexities for verbs in this class can be isolated into a template RAISEOBJ, so that expect
can be defined as

expect V S-ED { @(TRANS expect) | @(RAISEOBJ expect) }.

The RAISEOBJ provides a basic PRED schema for the that-complement configuration,
substituting this for the formal parameter of an FCONTROL template:

RAISEOBJ(P) = @(FCONTROL (↑ PRED)=’P<(↑ SUBJ) (↑ COMP)>’).

The interesting specifications appear in the definition of the FCONTROL template. This
template will result in a set of three alternatives, one with just the original schema COMP and
the others specify either OBJ or SUBJ control of a XCOMP:

FCONTROL(SCHEMATA) = SCHEMATA {(↑ COMP)→(↑ XCOMP)
{ (↑ XCOMP SUBJ)=(↑ OBJ)
|(↑ XCOMP SUBJ)=(↑ SUBJ)}}.

In this definition, instead of putting SCHEMATA in two branches of a disjunction as we did in the
PASS template above, we use the equivalent but more succinct form of conjoining the original
SCHEMATA to an optional specificaton of the infinitival variations. The result of @(RAISEOBJ
expect) after substitution, DNF expansion, and designator rewriting is the three-way
disjunction

{ (↑ PRED)=’expect<(↑ SUBJ) (↑ COMP)>’

 |(↑ PRED)=’expect<(↑ SUBJ) (↑ XCOMP)>’
 (↑ XCOMP SUBJ)=(↑ OBJ)

 |(↑ PRED)=’expect<(↑ SUBJ) (↑ XCOMP)>’
 (↑ XCOMP SUBJ)=(↑ SUBJ) }

The middle object-control disjunct is not acceptable in its present form, since it calls for the
governable OBJ function while at the same time asserting that the local PRED semantic form
does not permit an object. To avoid such unintended incoherences, GWB carries out one further
step in the template expansion process: If a disjunct contains a PRED-defining schema and a
schema introducing a governable function not allowed by that semantic form, the semantic form
is modified to permit the new function as a nonthematic grammatical relation. Thus, the PRED
schema in the middle disjunction is changed to the more appropriate

(↑ PRED)=’expect<(↑ SUBJ) (↑ XCOMP)>(↑ OBJ)’

Of course, RAISEOBJ can be composed with PASS to provide for the passive/raising occurrences
of verbs like expect.

These examples have focussed on the use of templates to eliminate redundancies across
lexical entries. But templates can also be used in the annotations on syntactic rules, as one
way of factoring out collections of schemata that are common to several different constructions.
In some cases it may even be advantageous for a template to be used in both a lexical entry and
a grammatical rule. For example, suppose that a template BE has been defined to include the

101

5. Functional templates and lexical rules

complex pattern of constraints that make up the definition of the verb be. These constraints
express, among other things, how the various forms of be interact with participles to form
passives and progressives. It has often been noted that reduced relative clauses and other
constructions seem to honor these same constraints, and this is what motivated early proposals
for transformations such as the “WH-IS” deletion rule that removes a deep-structure be. The
shared constraints that such a transformation provided can be obtained in LFG simply by
placing the invocation @BE in the c-structure rule that describes the surface pattern of reduced
relative clauses.

To summarize, a functional template T is defined in a Template window by statements of
either of the forms

T = s.
T (param1 param2 ... paramn) = s.

Where s is a Boolean combination of schemata and designator rewrites. The second form
provides for some number n of formal parameters, where each parami is a symbol that

presumably appears in s in the position of either a proposition or a designator. The ith
realization at a particular invocation is systematically substituted for the symbol parami
everywhere in s.

 An invocation of a template T appears in the position of a proposition in some other
lexical or in the annotation of a category in a grammatical rule. It is a term of either of the
forms

@T

@(T real1 real2 ... realn)

The first form is appropriate for a template with no realizations. The realization expressions
reali in the second form are themselves arbitrary schemata and designators. When an

invocation is expanded, those expressions are first substituted in place of the corresponding
parami symbols in the definition of T. Second, if there are designator rewrites in the result of

performing any necessary substitutions, it is converted to disjunctive normal form and the
rewrites are executed. Third, any nonthematic function adjustments are carried out. The
formula that emerges from this expansion process takes the place of the template invocation.
As templates mutually invoke each other in complex patterns of composition, the possibility
arises, just as for metacategories and macros, that a template will lead back to itself in a
self-recursive cycle. A warning message will be printed in the Prompt Window if this situation
is detected, and the expansion will be terminated by substituting the constant FALSE for the
self-recursive invocation.

Usually a warning message will also be printed in the Prompt Window when a template
invocation is expanded and the number of realization specifications is either greater than or
less than the number of parameters specified in the template definition. This often indicates
that a mistake has been made, but sometimes it is convenient to omit a realization on purpose.
If realizations corresponding to some number of right-most parameters are not provided in an
invocation, the template expansion is constructed as if all instances of those parameter names
in the template body were simply not present. Just as with regular macro definitions (Section
2.1), you can attach a question-mark to a parameter name to indicate that you intend to omit
the corresponding realization in some invocation, and this will cause the warning message to be
suppressed. An illustration of the value of this feature is provided by the RHO ENGLISH
configuration in the DEMOENGLISH file we discussed in Chapter II. The ρ projection in this
configuration contains selectional features that predicates can use to impose restrictions on the

102

Chapter III: Grammatical Notations

types of their arguments. The predicate devour, for instance, might require that its first
argument be animate, and certain nouns such as Susan, dog, and girl might be marked as
such. The ANIM template is defined in SELECTION ENGLISH as

 ANIM(ARG?) = (ρ↑ ARG ANIM)=+ @(PHYSOBJ ARG).

This marks the restriction structure with the positive ANIM feature and also expresses the fact
that only physical objects can be animate. The lexical entry for devour contains the invocation
@(ANIM ARG1) to indicate that its first argument must be animate, while the lexical entry for
kill would specify that @(ANIM ARG2). The nouns like girl that have animacy as an
inherent feature can share the constraints specified in this definition simply by omitting the
ARG specification in the template invocation. The parameter name ARG would be treated as a
comment, so that @ANIM would in effect expand to

(ρ↑ ANIM)=+ @(PHYSOBJ)

This asserts that the selection structure corresponding to the f-structure containing girl must
itself have the ANIM feature with value +. The question-mark indicates to GWB that this is an
intended use of this template and no warning message is produced. Of course, the same effect
can be achieved by means of two versions of the animacy template, one taking argument
specification and one not; the question-mark convention allows statements about animacy to be
localized in a single definition.

GWB’s functional templates provide a well-defined and carefully implemented mechanism
for capturing generalizations that would otherwise be distributed throughout the lexicon and
grammar. Mutual invocation, parameter substitution, and designator rewriting can be
combined in rich and powerful ways to represent a broad range of common patterns. Direct
marking and Boolean specifications are perhaps not as elegant as the principles that might
emerge from further theoretical efforts in LFG. But they do allow, given the current state of
the art, for the precise control of lexical and syntactic behavior that explicit computational tests
of large-scale grammars require.

6. Configuration components

A configuration identifies all the linguistic specifications that make up an active analysis
environment and specifies other parameters that affect the behavior of the system when that
environment is installed. The Sentence Input Windows and the LFG Window menus both have
Edit Config items for creating a window for display and editing of configurations. They also
have Change Config items for installing one of the configurations defined in GWB’s internal
database. You select the desired configuration from the menu of the available ones that pops
up when you select Change Config.

A configuration has a version/language name just like any other linguistic specification.
This name is used to identify the configuration for various system operations (installing it,
saving it on a permanent file, etc.). The name appears at the top of the configuration editing
window and is then followed by a sequence of component specifications each of which is a pair
consisting of a component-name and a value terminated with a period. The component names
are simple strings without punctuation or white space. Values can either be singletons or
sequences, depending on the component. The general format is illustrated by the following
example:

103

6. Configuration components

The following list describes the components that make up a configuration and the way they
affect system behavior when the configuration is installed. Some of the components have
default values which GWB fills in as starting points when a new configuration is created.

RULES: A list of names that specifies the grammatical rules that are active in this
configuration. The rules are installed in the order in which they are specified, so that
the last name has priority over the names that precede it.

ROOTCAT: The default root category for the grammar. Defaults to S (for Sentence).
Unless otherwise indicated, when a string is typed in, GWB will attempt to find a tree
rooted in this category.

LEXENTRIES: A list of names that specifies the lexical entries that are active in this
configuration. Like rules, lexical entries are installed in the order that they are
specified, so that the last name has priority over all the names before it.

TEMPLATES: An ordered list naming the templates that will be active in this
configuration.

MORPHTABLES: A list of names that specifies the morphological tables that are active in
this configuration. A morphtable name can only have two parts: the version and the
language (such as (TEST ENGLISH)). This means that there can only be one
morphological table per version-language pair (although there can be more than one
name specified in a configuration).

GOVERNABLERELATIONS: The attributes that are defined to be “governable” in the LFG
sense: an f-structure will be marked as incoherent if it contains a value for a
governable relation that is not subcategorized by the lcoal PRED. These attributes are
specified as a list of elements, such as SUBJ OBJ OBJ2 COMP. The list can also contain

104

Chapter III: Grammatical Notations

patterns in the regular predicate notation, with the interpretation that all attributes
that match a pattern are also governable. Unlike c-structure rules and expressions of
functional uncertainty, the terms of these regular predicates are individual characters,
and adjacent characters in the pattern are interpreted as matching a corresponding
sequence in an attribute name. Also, the question mark sign (?) stands for any single
letter, and the hyphen (-) is interpreted literally, not as an indicator of relative
complementation. Thus, ?COMP matches any attribute that has 5 letters ending in
COMP, and OBL-?* matches any attribute that begins with OBL- and has zero or more
characters following. If no value is specified for this component, then GWB will use the
default value SUBJ OBJ OBJ2 OBL-?* POSS COMP ?COMP.

SEMANTICFUNCTIONS: A list of attributes that are not “governable” in the LFG sense yet
are always associated with predicates. For instance, ADJ, RELMOD, TOPIC, and FOCUS
might all be labeled semantic functions. If you declare an attribute to be “semantic”,
then GWB will mark an f-structure as incoherent if that attribute appears in an
f-structure without a local PRED, and the f-structure value of such an attribute will be
marked incomplete if it does not contain its own PRED. The default value for this
component is ADJ XADJ. The semantic functions may also be specified in terms of
regular-predicate patterns.

NONDISTRIBUTIVE: A list of attributes which, when asserted of a set, are not distributed
across the elements of a set but rather are taken as properties of the set itself (see
Section 4 of this chapter). Thus by registering ADJ, XADJ, and CONJ as nondistributive,
their values will not be distributed across the individual conjuncts of a coordination
construction. Instead, they will show up as attribute values of the set itself, which will
thus have a mix of f-structure and set properties. Regular-predicate patterns can also
be used to specify the nondistributive function.

PROJECTIONS: Projections are denoted in functional schemata by characters in the Greek
alphabet (perhaps entered using the Greek virtual keyboard). The PROJECTIONS
component of a configuration enables you to declare the projections you expect to use
and to associate descriptive labels with the projection symbols that will appear in
window titles and other system messages. The value of this component is a set of
projection-descriptors, one for each projection. A projection-descriptor is a parethesized
list of the form (projection-symbol label attribute-ordering), such as

(σ Semantic (REL ARG1 ARG2 ARG3))
The attribute-ordering is an optional parenthesized list of attribute names that
determines the order in which attributes will be presented when a structure in that
projection is displayed. Thus, this declaration indicates that the σ projection is labeled
as the Semantic projection and that the attributes REL, ARG1, ARG2, and ARG3 will be
presented in that order. Other attributes not specified in the attribute-ordering will be
ordered according to the abstract precedence relation implicitly defined for values in
that projection. As discussed for example by Kaplan and Zaenen (1989a) and Zaenen
and Kaplan (1995), this is determined by inverting all the correspondences that lead to
that projection from the concretely ordered c-structure.

Your grammar, lexical entries, and templates may contain schemata that refer to
projections not declared in the configuration. Those schemata will simply be ignored in
any grammatical processing. This makes it convenient to share entries and templates
from a grammar with a more elaborate projection configuration than the one you are
working on, or to exclude consideration of some projections while you focus on others.

105

6. Configuration components

EPSILON: The symbol in c-structure rules and expressions of functional uncertainty that
GWB interprets as the empty string (epsilon). The default epsilon symbol is e.

PARAMETERS: This optional component provides a general escape-hatch for setting
arbitrary Lisp variables that you might want to take on specific values only when a
particular configuration is active. The value of this component is a list of variable-value
pairs, each of which is enclosed in parentheses. The variable in each pair will be set to
the specified value when the configuration is installed, and it will be restored to its
pre-existing default value when the configuration is deactivated. You can modify the
default value of a variable by means of the usual Lisp mechanisms, for example, by
setting its value with a SETQ in your Medley initialization file or by entering a SETQ
expression in an Interlisp Executive Window. The default value will be in force for all
configurations that do not override it through an explicit parameter specification.

To illustrate, the Lisp variables CSTRUCTUREMOTHERD and CSTRUCTUREPERSONALD (in
the Interlisp package) control the way the c-structure trees are layed out. The mother
variable determines the vertical distance between nodes in the tree and the personal
variable controls the minimal horizontal space surrounding each node. The distance in
each case is determined by multiplying these variables by the height of the font used for
c-structure nonterminal node labels. Initially, these variables are set to 1.5 and .4,
respectively. If the rules selected by a particular configuration tend to produce long
non-branching vertical chains, the trees will be more compact if these values are
changed. This can be accomplished by including the line

PARAMETERS (CSTRUCTUREMOTHERD 1.0) (CSTRUCTUREPERSONALD .3).

in the configuration. If you prefer more compact trees in every configuration, you can
instead change the default values by entering the expressions

(SETQ CSTRUCTUREMOTHERD 1.0)
(SETQ CSTRUCTUREPERSONALD .3)

in either your personal initialization file or in an Executive Window.

Here is a list of other parameters that affect the system’s behavior:

CSTRUCTUREFONT: This defines the font or fontclass that is used for the labels
of nonterminal c-structure nodes. It is initalized to the fixed-pitched
TERMINAL font. The LEXICALFONT is always used for terminal node labels.

ALLOWEMPTYNODES: As discussed in Section 2 of this Chapter, the empty string
will not be subtracted from c-structure regular predicates if this parameter is
explicitly set to TRUE.

PRESERVEEPSILONS: Also as discussed in Section 2, explicit epsilon symbols in
c-structure rules will be preserved and appear as distinct tree nodes if this
parameter is set to TRUE.

ASCIIONLY: Normally, special operators and projection symbols in the rule and
f-description languages will be printed in edit windows and on permanent
files using their (possibly 16-bit) encodings in the Xerox Character Encoding
standard. This may make it difficult to apply other text editors to grammar
and lexicon files, to send them in mail messages, or to load them into other
processing systems. If the parameter ASCIIONLY is set to TRUE, these
symbols will be printed using characters drawn only from the standard 7-bit
ASCII character set. In particular, they will be rendered as the ASCII
characters, described in Section 7 of Chapter I, by which they can be entered

106

Chapter III: Grammatical Notations

into the GWB editing windows. Files created in this mode can still be loaded
back into GWB.

SYMBOLSINLINE: This parameter affects the display of f-structures.
Symbol-valued attributes usually appear on separate lines in an f-structure
display, just like features with more complex values. F-structures with many
simple grammatical features (case, number, person) can thus become quite
large vertically. The integer-valued SYMBOLSINLINE parameter can be used
to reduce the vertical size of the display. If the number of symbol-valued
features in an f-structure is greater than SYMBOLSINLINE, those features
will be displayed on a single line separated by commas. The default value of
SYMBOLSINLINE is 4.

INPUTKEYBOARD: The keyboard used in the input window for typing in new sentences
(see Chapter I, Section 7). This must be the name of a Virtual Keyboard listed when
the Keyboards menu item is selected. If you specify a particular keyboard as the input
keyboard, then you can toggle back and forth between it and the usual LFG keyboard
with CTRL-K.

LEXICALFONT: The font used to print lexical items wherever they appear. The lexical
font is installed in the Sentence Input window when the configuration is activated, it is
use to print lexical items in Lexicon editing windows, and it is used to display the
terminal nodes in c-structure trees. If a lexical font is not specified, Medley’s current
DEFAULTFONT will be used. The Classic font family is the one with the most complete
collection of Xerox Character Encoding characters (see Chapter I, Section 7) and will
probably give the best results for Western European, Greek, and Cyrillic alphabets.

TESTFILE: During the course of a session, the Sentence Input window fills up with
strings that have been entered and the summary statistics of their analysis. Whenever
GWB recognizes that you are leaving a configuration, you will be asked whether you
want to save the current contents of the Sentence Input window on a file whose name is
provided as the value of the TESTFILE component. Similarly, whenever you install a
configuration, the Sentence Input window will be initialized to the previously saved
contents of this file. In this way, the GWB helps you maintain a permanent record of
the strings you have analyzed, allowing you easily to reanalyze those sentence as your
grammar and lexical entries evolve.

107

Chapter IV

Windows and Menus

This chapter takes you on a tour of the Grammar Writer’s Workbench window by window and
menu by menu. It is intended to serve as a reference for the different windows used by the
GWB. As such, it may repeat some of the material encountered in previous chapters, but that
information may be easier to find here and is presented with a little more detail.

Most of the windows in the system fall into one of two groups: edit windows and display
windows. There is a different type of edit window for each of the following: rules, lexical
entries, configurations, templates, and morphology tables. All of the edit windows are TEdit
windows with additional menus and commands. If you click in the title bar of an edit window
with the middle button you will get the standard TEdit menu. If you click with the left button
you will get a special LFG menu specific to that type of edit window. Many of the menu items
appear in more than one menu, so that there are only a dozen or so distinct menu items.
Online documentation for each menu item can be obtained by sliding the mouse over the menu
item (so that it inverts) and then waiting for a few seconds. The documentation will be printed
in the prompt window at the upper left of your screen.

Many of the menu items do nothing more than create other menus of things to edit or
invoke. When this is the case, there are several options for determining the system’s behavior.
If the SHIFT key is held down when the menu is created, then the menu will be attached to a
window of the appropriate type, most likely the window that the menu came from. If the CTRL
key is held down when the menu is created, then a fixed but unattached menu will be created,
and you will be prompted to position the menu where you want it on the screen. If no key is
held down, then a pop-up menu is created that will disappear once something is selected or the
selection is aborted by clicking outside of the menu.

Sometimes a menu item that only creates menus will have a sub-menu of version/language
names to its right. This allows you to choose the version/language that you want to draw from
for the items in the menu to be created. If no language version is chosen, then a menu will be
created of the items that are currently active.

Whenever you select an item to edit, you also have the option of reusing an existing
window or opening a new one. If you select the item with the middle button held down, then a
new edit window will be created. If you select the item with the left mouse button held down,
then an existing window will be reused, if possible. First priority is given to the window that
the menu is attached to, if it is available. If there are no edit windows of this type, or if all of
the windows have modified but uninstalled items, then you will be prompted to indicate the
location of a new edit window.

108

Chapter IV: Windows and Menus

Another way to obtain an item to edit is by “visiting” it. To visit an item, type CTRL-V in
an edit window, and then type the name of the item. The name can either be a short name (e.g.
NP) or a fully qualified name (e.g. DEMO ENGLISH NP VP). If you give just the prefix of a fully
qualified name (e.g. (DEMO ENGLISH)), then the system will fetch all of the items with that
prefix.

You can also obtain an item by “showing” it. If you type CTRL-S when the cursor is
blinking on a particular designator in an editing window or in the Sentence Input Window, edit
windows will be opened for all currently active items with the indicated name. Thus, if you are
pointing at something that is both a c-structure category and also the name of an f-structure
template, both a rule-editing window and template-editing window will be opened. If you point
at a word in the Sentence Input Window and type CTRL-S, the current lexical entry for that
word will be shown in a lexicon window.

No matter how you obtained an item, when you are done editing it, you can install your
changes by typing CTRL-X. You can cancel your changes by typing CTRL-C. This will not
change the content of the edit window, but will clear the “dirty” bit so that the window can be
reused to edit other items.

The display windows for the c-structure, chart, and various projections use fixed menus
attached to the top of the window. These windows also let you obtain more information about
the items that are displayed in the window by clicking on the displayed objects with various
combinations of SHIFT and CTRL.

1. Rule windows

A rule window lets you edit grammatical rules. Click in the title bar of a rule window with the
left or middle mouse button to obtain its menu. The menu has the following items:

Edit Rule — Creates a menu of rules to edit. A sub-menu to the right allows you to choose
which language the rules are drawn from. If no language is specified, then a menu of the active
rules is created.

Find Category — Creates a menu of terminal and non-terminal categories to search for. The
categories are determined by scanning the right-hand sides of all relevant rules, the ones that
are currently active or the rules in a particular version/language if you slide off to the right.
When a category in the menu is selected, then all of the rules that include that category on
their right hand side are displayed.

Find Attribute — Creates a menu of attributes to search for (e.g. SUBJ, NUM, etc.). The
attributes are determined by scanning the right-hand sides of all relevant rules. When an
attribute in the menu is selected, then all of the rules that use that attribute in their right hand
side schemata are displayed.

Find Symbol — Creates a menu of symbols that are used as feature values (e.g. SG, NOM, etc.).
The symbols are determined by scanning the right-hand sides of all relevant rules. When a
symbol in the menu is selected, then all of the rules that use that symbol are displayed.

Find Template — Creates a menu of templates to search for. The templates are determined by
scanning the right-hand sides of all relevant rules. When a template in the menu is selected,
then all of the rules that invoke that template are displayed.

Edit Template — Creates a menu of templates to edit, as described in Section 3.

109

Edit Windows

Tedit Menu — Brings up the normal TEdit text-editing menu containing items for putting and
getting files and for formatting text.

2. Lexicon windows

A lexicon window lets you edit lexical entries. Typing CTRL-K in this window toggles the
keyboard between the lexical keyboard of your active configuration (good for typing in the head
words of the entries) and the standard LFG keyboard (good for typing in the categories and
schemata). Click in the title bar of a lexicon window with the left or middle mouse button to
obtain its menu. As described in Section I.3, you can define a lexical entry by typing in the full
text of its definition, by retrieving another entry as the start of a sequence of edits, or by
specifying that the new word is “like” an old one to get automatic assistance in constructing the
new definition. A lexicon window menu has the following items:

Edit Lex — Creates a menu of lexical entries to edit. The menu is hierarchical, with the top
level having one entry for each letter that a word in the lexicon begins with, and the sub-menus
either having one entry for each letter at that level or all of the remaining words, if the number
is small. If the SHIFT key is held down, then the menu is attached on the right side of a lexicon
window.

Find Category — Creates a menu of terminal categories to search for. The categories are
determined by scanning the lexical entries that are currently active. When a category in the
menu is selected, then all of the lexical entries that have that category are displayed.

Find Attribute — Creates a menu of attributes to search for (e.g. SUBJ, NUM, etc.). The
attributes are determined by scanning the definitions of the relevant lexical entries (currently
active or in a version selected by sliding to the right). When an attribute in the menu is
selected, then all of the lexical entries that use that attribute in their definition are displayed.

Find Symbol — Creates a menu of symbols that are used as feature values (e.g. SG, NOM, etc.).
The symbols are determined by scanning the relevant lexical entries. When a symbol in the
menu is selected, then all of the lexical entries that use that symbol are displayed.

Find Template — Creates a menu of templates to search for. The templates are determined by
scanning the definitions of the relevant lexical entries. When a template in the menu is
selected, then all of the lexical entries that use that template in their definition are displayed.

Find Morphcodes — Creates a menu of words that serve as a root or affix in the morphological
analysis of other irregular forms. When a word in the menu is selected, then all of the lexical
entries are displayed whose definitions somehow depend on the selected root or affix.

Find Root — Creates a menu of morphology codes to search for. The morphology codes are
determined by scanning the definitions of the relevant lexical entries. When a code in the menu
is selected, then all of the lexical entries that use that code in their definition are displayed.

Edit Template — Creates a menu of templates to edit. See section 3 for more detail.

Tedit Menu — Brings up the normal TEdit text-editing menu.

110

Chapter IV: Windows and Menus

3. Template windows

A template window lets you edit templates. Click in the title bar of a template window with the
left or middle mouse button to obtain its menu. The menu has the following items:

Edit Template — Creates a menu of templates to edit. A sub-menu to the right allows you to
choose which language the templates are drawn from. If no language is specified, then a menu
of the active templates is created.

Template Lattice — Creates a menu of the currently active templates so that you can select the
focus for a graphical display of the hierarchy of active template references. If you select All,
you will see a lattice showing references among all the currently active templates. As
illustrated in Section 1.5, templates to the right invoke (and thus inherit information) from
templates they are linked to that appear further to the left. There is a separate node in this
graph for each reference to a given template; this avoids the complexity and clutter of lines that
would otherwise connect to a single occurrence representing that template. The separate nodes
for a multiply-referenced template have a dotted border to indicate that other nodes
representing that template appear elsewhere in the graph.

If you select a particular template from the menu, the display will show the reference hierarchy
from the selected template’s point of view. Again, templates shown on the left are referenced by
templates shown further to the right. The selected template has a solid border to indicate that
it is the focus. A graph focussing on one template is simpler than the All lattice so that it is
useful to show linking lines to a single node representing a multiply-referenced item. Thus, by
focussing on a template that the All lattice shows with a dotted border, you will see a smaller
graph with all the details of that template’s relationships made explicit.

The nodes in a template lattice are mouse-sensitive: clicking on a node will display a new
lattice with the new selected node taken as the focus. The new graph will appear in a new
window if you are selecting from the All graph or if you click with the middle button.
Otherwise, the new graph will replace the old one. Following the conventions of the c-structure
display, if you click while holding down the CTRL key, a window for editing the selected
template will appear.

Find Attribute — Creates a menu of attributes to search for (e.g. SUBJ, NUM, etc.). The
attributes are determined by scanning the definitions of the relevant templates (currently
active or in a version selected by sliding to the right). When an attribute in the menu is
selected, then all of the templates that use that attribute are displayed.

Find Symbol — Creates a menu of symbols that are used as feature values (e.g. SG, NOM, etc.).
The symbols are determined by scanning the relevant templates. When a symbol in the menu
is selected, then all of the templates that use that symbol are displayed.

Find Template — Creates a menu of templates that are referenced by other templates. The
templates are determined by scanning the definitions of all relevant templates. When a
template in the menu is selected, then all of the templates that use that template are displayed.

Tedit Menu — Brings up the normal TEdit text-editing menu.

111

Edit Windows

4. Configuration windows

A configuration window lets you edit a configuration. Click in the title bar of a configuration
window with the left or middle mouse button to obtain its menu. The menu has the following
items:

Edit Config — Opens an edit window on a configuration. A sub-menu to the right allows you to
choose which configuration. If none is chosen, it defaults to the active configuration.

Change Config — Creates a menu of configurations. If one of the configurations in the menu is
selected, then that configuration is installed as the active one.

Parse Cat — Creates a menu of possible parse categories from the set of active rules. Selecting
a category makes it become the default parse category.

Edit Rule — Creates a menu of grammatical rules to edit. See section 1 for more detail.

Edit Lex — Creates a menu of lexical entries to edit. See section 2 for more detail.

Edit Template — Creates a menu of templates to edit. See section 3 for more detail.

Tedit Menu — Brings up the normal TEdit text-editing menu.

5. Morphology windows

A morphology window lets you edit a morphology table. Click in the title bar of a morphology
window with the left mouse button to obtain its menu. The menu has only one item:

Edit Morph — Opens an edit window on a morphology table. A sub-menu to the right allows
you to choose which morphology table. If none is chosen, it defaults to the active morphology
table.

Tedit Menu — Brings up the normal TEdit text-editing menu.

6. The Sentence Input window

The Sentence Input window lets you enter sentences to be parsed. The title bar displays the
name of the current configuration followed by the default parse category. If a string is typed in
followed by a CTRL-X, the string will be parsed and the results displayed in the display
windows. In addition, the system will display the number of solutions, the parse time, and the
number of tasks in the message area above the title bar and will optionally append this
information after the sentence, depending on the setting of the logging parameter (see Logging
Parameters below). If you prepend the input with a category followed by a colon (e.g. NP:), then
that becomes the parse category for just this input. To remind yourself of your own
grammatical intuitions, you may also prefix an input string with * or ?; those marks will be
stripped off before the string is analyzed.

In some situations the analysis of the input sentence cannot be carried out. This is the
case when the input contains words that are undefined and cannot be morphologically analyzed
or when the grammar or lexicon refers to undefined templates, macros, or meta-categories. In
any of these cases, an appropriate message will be displayed in the prompt window attached to

112

Chapter IV: Windows and Menus

the Sentence Input Window, followed by the message [aborted]. If you wish to pursue the
analysis, you must define the missing items in an appropriate editing window. GWB makes
this process a little bit easier when the missing items are unknown lexical entries: If you type
CTRL-L when the caret is in the input window, a lexicon-editing window will be activated and
initialized to contain the set of missing words from the last attempted analysis. It is possible
but, we hope, unlikely that you will see an [aborted] message without an explanatory
comment. This is a sign of an error in GWB’s internal algorithms; please inform us of the
situation in which this arises.

This is the input window’s title-bar menu:

The items have the following interpretations:

Tedit Menu — Brings up the normal TEdit text-editing menu.

Change Config — Displays a menu of configurations. If one of the configurations in the menu is
selected, then that configuration is installed as the active one.

Edit Config — Opens an edit window on a configuration. See Section 4 for more detail.

Edit Morph — Opens an edit window on a morphology table.

Edit Rule — Creates a menu of rules to edit. See Section 1 for more detail.

Edit Lex — Creates a menu of words to edit. See Section 2 for more detail.

Edit Template — Creates a menu of templates to edit. See Section 3 for more detail.

Template Lattice — Creates a menu of currently active templates so that you can select the
focus for a graphical display of the hierarchy of template references. See Section 3 for more
detail.

Parse Cat — Displays a menu of possible parse categories. Selecting a category makes it
become the default parse category.

Check Words — Applies the tokenizing, morphological analysis, and lexical look up procedures
to the words in the strings selected in the Sentence Input Window and determines which words
are not recognized by the current morphology and lexicon. When all of the strings have been
checked, a summary of the results is printed in the prompt window attached to the Sentence
Input Window. This summary indicates how many strings were checked, how many had at
least one unknown word, and how many different unknown words were encountered in all the
strings. Typing CTRL-L while the cursor is in the Sentence Input Window will cause those
unknown words to appear in a Lexicon Editing Window. Check Words is useful in prescanning
a list of sentences in order to build up a complete set of lexical entries prior to syntactic
analysis.

113

Edit Windows

Check Sentences — Parses all of the strings that are selected, and checks that the number of
solutions matches the number already present, if any, after each string. Strings can be selected
by clicking the left button of the mouse anywhere in the first sentence and then clicking the
right button anywhere in the last sentence (you can scroll in between, as long as you don’t click
the mouse anywhere else). When all of the sentences have been checked, a TEdit window opens
with the results in it. Each sentence will have its new parse result appended at the end. A
parse result is in the form of a triple:

(number-of-solutions number-of-seconds number-of-tasks)
If there is a mismatch between the old number of solutions and the new, then MISMATCH is
printed after the sentence. At the end is a summary of the total number of mismatches plus
some performance information. The sentences with their parse results can be copied into the
input window and tested again, if so desired. Lines in the selection that do not begin with a
parse category (a category followed by a colon) are skipped over. This permits you to freely
intersperse comments among your test sentences. If a particular string contains unknown
words, that fact is also indicated in the results window and no further processing is carried out
on that string. A list of all the unknown words encountered across all sentences is appended at
the end of the window.

Print Structures — This causes strings in the current selection that are prefixed by a parse
category to be analyzed, like Check Sentences. In this case, however, the grammatical
structures are printed to a file and in a format that can serve as input for other programs that
you might write to carry out addditional phases of a language-processing application. When
you select the Print Structures items, you will be asked to supply the name of the output file.
As the analysis moves from sentence to sentence, progress is reported in the prompt region
attached to the Sentence Input Window.

The first line of the output file records the current time and date. The rest of the file consists of
one record, enclosed in square brackets, for each analyzed sentence. A sentence record has the
following format:

["sentence" result (analysis1 analysis2 ...)]

The words of the sentence are enclosed in double-quotes, and they are followed by a
parenthesized result-triple. This is followed by a sequence of subrecords, one for each analysis
of the sentence. Each analysis is a parenthesized list of the form

(c-structure proj1 proj2 ...)

The c-structure is a labeled bracketing where each constituent is represented by a
parenthesized list beginning with its category label and followed by its daughter constituents.
A colon is used to attach a node label and a node number, and parentheses at the leaves of the
tree are omitted. Thus, the tree

(NP:20 (DET:2 the) (N:3 girl))

would appear as (NP:20 (DET:2 the)(N:3 girl)). Each of the proji represents a different

projection from the c-structure; typically the f-structure will be the only one, but some
grammars may use the * and M* notations to define other c-structure projections. A projection
record is a parenthesized list of the form

(projname (ptop p1 p2...) proj1 proj2 ...)

The projection name is the ASCII representation of the projection, for example, f for the
f-structure, as described in Section I.7.3. The ptop is the unit of the projection that corresponds
to the top-most unit of the structure (node or prior projection) that it corresponds to. The p1 p2
are additional units of this projection, if any, that are not accessible from the top-most one.

114

Chapter IV: Windows and Menus

Finally, the list of projection units is followed by a sequence of other records for further
projections (for example, a semantic projection from the f-structure).

A particular attribute-value structure is printed as a list of ordered pairs, with each pair
enclosed in parentheses. A special pseudo-attribute VARS can appear at the beginning of an
attribute-value structure. Its value is a list of integers: positive integers indicate which node
or less abstract entity this structure corresponds to, while negative integers indicate
coreference or token-identities within this particular projection.

Logging Parameters — The sub-menu at the right of this menu item lets you choose how you
want parse results to be logged in the input window. A parse result is a triple of the form

(number-of-solutions number-of-seconds number-of-tasks)
The sub-menu has the following items:

Log All Results — Every time you parse a sentence, append a new parse result after all
of the preexisting parse results.

Log First Result — Only log the parse result if one is not already there. (This is the
default behavior of the system.)

Log Last Result — Replace all of the existing parse results with the most recent one.

Don’t Log Anything — Turn off logging.

Examples — Gives access to a small number of rules, lexical entries, or morphology table
entries that illustrate some aspects of the notation.

Show phantom nodes — Normally, when an ordinary c-structure rule is referenced as a macro
invocation in a referring rule, it is treated as a meta-category so that the c-structure contains
no distinct subree corresponding to it. Instead, as noted in Section III.3.3, its right-side
expansion is merged into the referring rule’s expansion. Although this produces the intended
configurations of c-structure nodes, it may increase the difficulty of grammar debugging, since
the grammar specification responsible for a given arrangement is not explicitly marked in the
tree. Clicking Show phantom nodes toggles an internal switch and causes these phantom-node
invocations to be treated as if they were ordinary rule references. This means that the
corresponding nodes will appear explicitly in the tree. At the same time, the menu item
changes to Hide phantom nodes, indicating that another click will cause the system to revert to
its normal behavior. In principle this switch should only affect the display of the tree and
otherwise have no impact on the number or kinds of analyses that are produced. This is not
always the case, however, because the restriction against nonbranching dominance chains may
have different consequences depending on whether or not the node is a phantom or not. Thus,
this feature should be used with caution: it is often helpful in debugging but sometimes can
lead to confusing results.

7. The LFG logo window

In the upper right corner of your screen there is a small window with LFG printed in large
letters. This is the logo for the Grammar Writer’s Workbench, and in addition to being
decorative, it provides a root menu for the system. The menu appears if you click in the window
with either the left or the middle mouse button. If you accidentally close the logo window, a
menu item is added to the system background menu that lets you set up the LFG windows
again. (The background menu can be obtained by clicking in the background with the right
mouse button.) Here is a discription of the items in the root menu:

115

Edit Windows

Set Up LFG Windows — Kills all of the current LFG windows and then recreates them in their
canonical positions. This is useful in cleaning up the screen when it has gotten into a funny
state (for example, if Unix or DOS operating system messages have overwritten parts of the
Medley screen).

Set Up Input Window — Recreates just the input window.

Kill LFG Windows — Clears the screen of LFG windows, adding to the system background
menu an item that can be selected at a later time to recreate the LFG windows .

LFG Manual — This menu item appears if the files for this manual exist in your file system on
a directory whose name is the value of the Lisp variable IL:LFGMANUALDIR . Selecting this
item creates a menu of files in the GWB manual for browing with TEdit. The Contents entry
gives a mapping between the contents of the manual and the files they are stored on. If you
hold down the shift key when selecting this, then the menu is attached to the left of the logo
window.

File Manager — Invokes the File Manager (see Chapter I, Section 6). The sub-menu allows you
to choose between CLEANUP, FILES? and LOAD. The default is CLEANUP.

Change Config — Creates a menu of configurations. If one of the configurations in the menu is
selected, then that configuration is installed as the active one.

Edit Rule — Creates a menu of rules to edit. See section 1 for more detail.

Edit Lex — Creates a menu of words to edit. See section 2 for more detail.

Edit Template — Creates a menu of templates to edit. See section 3 for more detail.

Edit Config — Opens an edit window on a configuration. See section 4 for more detail.

Edit Morph — Opens an edit window on a morphology table.

8. The C-structure window

Whenever a sentence is parsed, the c-structures are displayed in the c-structure window. The
title bar shows the total number of valid and invalid c-structures, plus the number actually
displayed. If the trees do not fit in the window, more of them can be made visible by vertical or
horizontal scrolling. A vertical scrollbar appears to the left of the window when you move the
mouse slowly past the left edge. A horizontal scrollbar appears at the bottom of the window
when you move the mouse slowly past the bottom edge. Invalid c-structures are only displayed
if the +INVALID button is on; this is turned on automatically if no valid trees can be found.
Invalid trees are distinguished from valid trees by the fact that at least one node in each invalid
tree is boxed:

116

Chapter IV: Windows and Menus

The boxing indicates the lowest point in the tree where the functional constraints could no
longer be satisfied (e.g., node 17 above).

Sometimes a node in a tree will be linked to its daughters with dashed lines instead of
solid lines:

The dashed lines indicate that the VP node can expand to more than one subtree. GWB has
chosen one of these subtrees to display, keeping the others in reserve until you specifically
request that the alternatives be presented. You can ask for the full set of expansions at that
node by clicking with left or middle where the dashed lines are, in the region between the node
and its daughters. The window will be redrawn, with the dashed lines for that node replaced by
solid lines, and with trees containing the alternative expansions of that node added to the
display. A tree may have more than one node with dashed lines, so you may have to make more
than one selection in order to see the complete set of trees. This display strategy is intended to
avoid situations where the window is cluttered with an enormous number of trees that do not
provide much useful information.

Additional properties of the nodes in the c-structure can be obtained by clicking the mouse
on the ones that you are interested in. If you click on a node with the left button, then all of the
constraints associated with that node are displayed in the description window to the left of the
f-structure window. If you click on a node with the middle button, then all of the f-structures
associated with that node are displayed in the f-structure window. If you hold down the CTRL
key while clicking, then the rule associated with that node is displayed in a rule window. If you
click on a word at the bottom of the tree, then an edit window is opened on its definition.

The NODE NUMBERS button determines whether or not the identifying numbers are
displayed with the nodes. These numbers are also used in the f-structure window and other
projection windows; they let you correlate c-structure nodes with their corresponding
f-structures.

The CHART button determines whether or not the chart is displayed. See section 12 for
more details on the chart.

117

Display Windows

The horizontal/vertical layout of the tree displays is controlled by three parameters,
CSTRUCTUREMOTHERD, CSTRUCTUREPERSONALD, and CSTRUCTUREFONT. These are described
in Chapter III, Section 6. They can be set as parameters in a particular configuration, for
example, if a given grammar generates trees of an unusual geometry. As with other
configuration parameters, global defaults can also be changed by setting the underlying Lisp
variables in the Interlisp package.

9. The F-structure window

The f-structure window displays the features structures associated with some constituent. The
name of the constituent and the number of feature structures displayed is printed in the title
bar. Immediately under the title bar is displayed the number of solutions plus how many of
them are consistent, complete and coherent. If the feature structures do not fit in the window,
then it is possible to see more of them by using the scrollbars that appear to the left and at the
bottom of the window when you slowly move the mouse past these edges from inside the
window.

The INCONSISTENT, INCOMPLETE, and INCOHERENT buttons at the top of the f-structure
window control which feature structures are displayed. If none of the buttons are on, then only
good solutions are displayed. Turning buttons on adds to the number of features structures
displayed. For instance, if the INCONSISTENT button is on, then any solutions that are
inconsistent but not incomplete or incoherent are displayed in addition to the good solutions. If
the INCONSISTENT and the INCOMPLETE buttons are on, then any solutions that are
inconsistent and/or incomplete but not incoherent are displayed in addition to the good
solutions. A solution is considered “incomplete” only if it is not possible for it to be completed.
Thus a VP feature structure with a missing subject is not considered incomplete because there
is still the possibility that the subject may be filled in at a higher level. Most incomplete
solutions show up at the top of the tree; however some solutions are marked incomplete lower
down in the tree because the desired feature is known not to appear anywhere in the sentence.
Such globally incomplete solutions are discussed in Section 3.3 of Chapter II.

The EXPANDED button displays information about the functional uncertainties. Any
attribute that a functional uncertainty passes through will be highlighted by being printed in
bold. In addition, any functional uncertainties that are suppressed because they include an
empty string and so do not interact with other attributes will be highlighted.

The SYMBOLSINLINE parameter controls whether several symbol-valued attributes are
displayed on a single line, usually making the f-structure smaller, or whether they are shown in
the more typical vertical arrangement. SYMBOLSINLINE can be specified as a configuration
parameter, as discussed in Section III.6.

If you click on an f-structure with the left mouse button, then the constraints that describe
it (but not any of its projections) will be displayed. If you click on it with the middle button,

118

Chapter IV: Windows and Menus

then a projection of that f-structure will be displayed, if any. If there is more than one
projection, then you will be given a menu of projections to choose from.

10. Other projection windows

There can be as many projection windows as there are distinct projections. The only way to get
a projection window is to click in some other window on a structure that is in the domain of that
projection. The projection windows are very similar to the f-structure window, except that
there is no local control of which solutions are displayed. If you are looking at a projection and
you want to see its inconsistent solutions, then you have to go back to the f-structure window
and look for a solution that is marked inconsistent but has no inconsistencies in it. Then you
must follow that solution to the projection you are interested in to see whether it is inconsistent
there.

If you click on a projection structure with the left button, then the constraints that it
satisfies will be displayed in the description window. If you click on a structure with the middle
button, then a projection of that structure will be displayed, if any. If there is more than one
projection, then you will be given a menu of projections to choose from. Projection windows also
have an EXPANDED button to control the highlighting of uncertainty paths at that level of
representation, and the structure display is also controlled by the SYMBOLSINLINE parameter.

11. The description window

The description window displays the constraints associated with some object. The type of the
object is indicated in the title bar. If the object is a tree structure node from the c-structure
window, then all of the constraints that have been collected from all of the sub-trees will be
displayed, including all of the constraints for all of the different projections. Otherwise, only
the constraints associated with a particular solution and a particular projection are displayed.
If there are any template invocations in the constraints, then those invocations are printed
followed by their expansions. The description window can be scrolled using the scroll bars that
appear at the left and bottom edges of the window when you slide the mouse slowly past them.

12. The chart window

The chart window displays the constituents in the chart. The display of this window is tied to
the CHART button of the c-structure window menu. The chart window is not visible on the
screen unless the CHART button of the c-structure window is selected. Deselecting the CHART
button will close the chart window, and closing the chart window (by using the right-button
menu) will cause the CHART button to be deselected. If the chart doesn’t fit in the window, then
it can be scrolled using the scrollbars that appear on the left and bottom edges when you move
the mouse slowly past them. Whether or not the constituents have identifiers attached to them
is determined by the state of the NODE NUMBERS button on the c-structure window.

119

Display Windows

The buttons on the top determine which constituents are displayed. The BOTTOM UP
button adds the constituents that would have been displayed if the chart had been produced
bottom up instead of top down. The +PARTIAL button adds the partial constituents. A partial
constituent represents an intermediate step in the process of matching a rule. Thus, the rule
S → NP:(↑ SUBJ)=↓; VP allows for a partial constituent that covers an NP but does not
incorporate a VP. This partial constituent is labeled with /S and spans the NP. The slash
indicates that the constituent by itself is incomplete. The -FULL button suppresses the display
of full (non-partial) constituents. The +INVALID button adds the invalid constituents to the
display. Constituents can be invalid either because they only have bad solutions (in which case
they are boxed) or because one of their daughters has no good solutions (in which case they are
not boxed, but some constituent in every one of their alternative subtrees will be boxed).

The +DETACHED button adds the detached constituents. Detached constituents are those
that are not part of any rooted tree. They are visibly distinguished from the others by the fact
that they are represented by dotted lines instead of solid lines:

If you click on a word in the chart window, then an edit window is opened on its definition.
If you click on a constituent in the chart window, then its trees will be displayed in the
c-structure window. If you click on a constituent while the +PARTIAL button is on, then each
tree will be followed by a column of category names that represents the possible continuations
of that constituent considered as a partial (that is, some constituents that look like they are
complete can be continued, and so can be considered partials).

If a * is at the top of the column, then nothing more is needed to complete the constituent. If
you click on one of the categories, then the constraints that annotate the rule-element for that

120

Chapter IV: Windows and Menus

category are displayed in the description window. This is useful for understanding whether a
continuation is, say, an object NP instead of a second object.

If the chart window is on the screen when you begin the analysis of a new sentence, the
window will be cleared in preparation for displaying the chart for the new analysis. However, if
the analysis produces a large number of constituents (greater than the value of the Lisp
variable IL:KEEPCHARTWINDOWLIMIT), then the new chart will not be automatically displayed
and the chart window will be closed instead. This is to prevent GWB from spending the time to
lay out a large display that may be of little interest to you. If a desired chart display has been
suppressed, you can explicitly ask for it to be shown by selecting the c-structure CHART button
again. The initial value of IL:KEEPCHARTWINDOWLIMIT is 150. You can raise or lower its
value by executing (SETQ IL:KEEPCHARTWINDOWLIMIT newvalue) in an Executive Window or
in your Medley initialization file. If you set the value to IL:ALWAYS instead of a number, a
visible chart window will always be retained. If you set it to IL:NEVER, it will be closed before
each new analysis.

13. Printing and including display objects

There are several ways of getting display objects out of windows for printing or including in a
document. If, for example, you simply want to take what you see in the f-structure window and
send it to a printer, you can select the Hardcopy command in the menu that comes up when
you click with the right button in the window. This will automatically send the image to your
“default printer”, which you must set up in your site initialization file. Thus, if MYPRINTER is
the name of your postscript printer, you would say

(SETQ IL:DEFAULTPRINTINGHOST ’(MYPRINTER))

in your initialization file or in an executive window. This will cause the system to create a
postscript file and then execute a platform-specific procedure for sending the file to the printer
with that name. On a Unix platform, for example, the shell command lpr is invoked to
transmit the file. GWB can also create files in the Interpress format and transmit them to
Xerox printers.

Alternatively, you can slide to the right off of the Hardcopy menu item, and you will be
given a choice as to whether you want the image to be printed on some other printer, or
whether you want it to be put on a postscript file in your file system, which you can then send
to the printer (or ftp to someone else) at a later time. You make up the name of the file, but you
probably should give it the extension .ps to make sure that it is identified as postscript.

You may also want to take c-structures, f-structures, f-descriptions, or the chart out of
their windows and put them into a TEdit file, along with other information, comments,
discussion, etc. To do that, you have to open a TEdit window (e.g., use the TEdit item in the
right-buttton background menu). Then, with the type-in caret blinking in the TEdit window at
the position where you want the insertion to appear, hold down the SHIFT key and point at a
tree or f-structure, and click the left button. The tree or f-structure should now appear in your
TEdit document (you may have to scroll or reshape the window to make it visible). If you hold

121

Display Windows

the SHIFT key and click in the f-description window, you can transfer the set of constraints into
the TEdit document as editable text. When you release the mouse key, a menu will pop up to
ask you whether or not you want an Ascii-only version of the equations. This format is best if
the document is to be sent as a plain-text file (for example, as Email) to a non-Medley
environment, since it translates all the mathematical symbols and projection designators into
charaters and strings in the 127-character U.S. Ascii encoding. When you have finished
composing your document, you can print the it by using the hardcopy item in the menu that
comes up when you click with the right-button in that window’s title bar. You can also save the
TEdit file for future use. Plain-text files can be exported to other computing environments.

Finally, you can make snapshots of any portion of the screen by using the Snap command
on the background menu. This will create a bitmap of whatever portion of the screen that you
want. This is useful for temporarily saving a tree or f-structure for comparison with other trees
or f-structures. It is possible to include snapshots in a TEdit document by putting the type-in
caret in a TEdit window, and then clicking the right mouse button in the background while
holding down the SHIFT key. This will produce a Snap menu item. Select this item and then
indicate what part of the screen you want copied. When you are done, the bitmap will appear
in the TEdit document where the caret was (again, you may have to reshape or scroll the
window to get it to appear). You can edit this bitmap using the menu that appears when you
click in it with the left or middle mouse button.

122

Chapter IV: Windows and Menus

123

Display Windows

References

Baader, F., Bürckert, H-J., Nebel, B., Nutt, W., and Smolka, G. (1991) On the expressivity of
feature logics with negation, functional uncertainty, and sort equations. Research Report
RR-91-01, DFKI, Kaiserslautern, Germany.

Bresnan, J. (1982a) Control and complementation. In J. Bresnan (ed.), The mental
representation of grammatical relations. Cambridge: MIT Press, 1982, 282–390.

Bresnan, J. (1982b) The passive in lexical theory. In J. Bresnan (ed.), The mental
representation of grammatical relations. Cambridge: MIT Press, 1982, 3–86.

Bresnan, J. (1982c) Polyadicity. In J. Bresnan (ed.), The mental representation of grammatical
relations. Cambridge: MIT Press, 1982, 149–172.

Bresnan, J. and Kanerva, J. (1989) Locative inversion in Chichewa: a case study of
factorization in grammar. Linguistic Inquiry 20 (1), 1-50.

Dalrymple, M., Kaplan, R., Maxwell, J., & Zaenen, A. (eds.), Formal issues in
Lexical-Functional Grammar. Stanford: CSLI Publications, 1995.

Gazdar, G., Klein, E., Pullum, G., and Sag, I. (1985) Generalized phrase structure grammar.
Cambridge: Harvard University Press.

Halvorsen, P.-K. & R. Kaplan. (1988) Projection and semantic description in Lexical-Functional
Grammar. Proceedings of the International Conference on Fifth Generation Computer
Systems, Tokyo, November 1116-1122. Also appears in Dalrymple et al., 1995, 279-292.

Kaplan, R. (1987) Three seductions of computational psycholinguistics. In P. Whitelock, H.
Somers, P. Bennett, R. Johnson, and M. Wood, Linguistic Theory and Computer
Applications. London: Academic Press, 149–188. Also appears in Dalrymple et al., 1995,
339-367.

Kaplan, R. (1989) The formal architecture of lexical-functional grammar. Journal of
Information Science and Engineering 5, 305-322, 1989. Also appeared in Proceedings of
ROCLING II, Taipei, Republic of China, 3–18. Also appears in Dalrymple et al., 1995,
7-27.

Kaplan, R. & Bresnan, J. Lexical-functional grammar: A formal system for grammatical
representation. In J. Bresnan (ed.), The mental representation of grammatical relations.
Cambridge: MIT Press, 1982, 173–281. Also appears in Dalrymple et al., 1995, 29-130.

Kaplan, R. & Maxwell, J. (1988a) An algorithm for functional uncertainty. Proceedings of
COLING 88, Budapest, 297–302. Also appears in Dalrymple et al., 1995, 177-197.

Kaplan, R. & Maxwell, J. (1988b) Constituent coordination in Lexical-Functional Grammar.
Proceedings of COLING 88, Budapest, 303–305. Also appears in Dalrymple et al., 1995,
199-210.

Kaplan, R. & Maxwell, J. (1993) The interface between phrasal and functional constraints.
Computational Linguistics 19, 571-590. Also appears in Dalrymple et al., 1995, 403-429.

Kaplan, R. & Wedekind, J. (1993) Restriction and correspondence-based translation.
Proceedings of the Sixth Conference of the Association for Computational Linguistics
European Chapter, Utrecht, 404-411.

124

 References

Kaplan, R. & Zaenen, A. (1989a) Functional precedence and constituent structure. Proceedings
of ROCLING II, Taipei, Republic of China, 19–40.

Kaplan, R. & Zaenen, A (1989b). Long-distance dependencies, constituent structure, and
functional uncertainty. In M. Baltin and A. Kroch (eds.), Alternative conceptions of phrase
structure. Chicago: The University of Chicago Press, 17–42. Also appears in Dalrymple et
al., 1995, 137-165.

Kaplan, R., Netter, K., Wedekind, J., & Zaenen, A. (1989) Translation by structural
correspondences. Proceedings of the 4th Conference of the Association for Computational
Linguistics European Chapter, University of Manchester Institute of Science and
Technology, 272–281. Also appears in Dalrymple et al., 1995, 311-329.

Keller, B. (1991) Feature logics, infinitary descriptions and the logical treatment of grammar.
Cognitive Science Research Report 205, University of Sussex.

Maxwell, J. & Kaplan, R. (1991) A method for disjunctive constraint satisfaction. In M.
Tomita (ed.), Current issues in parsing technology. Boston: Kluwer Academic Publishers,
173-190. Also appears in Dalrymple et al., 1995, 381-401.

Pollard, C. & Sag, I. (1994). Head-driven phrase structure grammar. Chicago: The University
of Chicago Press.

Xerox Systems Institute (1987) Character code standard. Xerox Corporation, document XNSS
058710.

Zaenen, A. and Kaplan, R. (1995) Formal devices for linguistic generalizations: West Germanic
word order in LFG. In Dalrymple et al., 1995, 215-239.

125

1. Regular predicates

Appendix

Editing Text with TEdit

[This appendix is excerpted from Chapter 3 of The TEdit User’s Guide, copyright 1993 by
Venue. It is reprinted by permission. Please see that document for a full discussion of TEdit
capabilities.]

This chapter describes basic text editing, such as how to enter, select, delete, move, and
copy text. It also tells you how to create and use blanks to be filled in later; how to
undo and redo edit operations; and how to type special characters. Finally, this chapter
shows you how to work with graphic images.

Entering Text

The blinking caret () in the TEdit window is called the type-in point. Medley has only
one type-in point active at a time; if the caret is not in a TEdit window, you move it
there by moving the cursor into the window and pressing any mouse button. Whatever
text you type will appear at the caret.

TEdit automatically breaks text between words and sends the overflow to the next line.
Don’t hit carriage return at the end of each line; use one only when you want to begin a
new paragraph or insert blank space in addition to that provided by line and paragraph
leading.

To type a carriage return without causing a paragraph break, hold down the meta key
while you type the carriage return. This is called a meta-return.

Selecting Text

To change text you have typed in, you first mark where you want the change made by
making a selection; then use one of TEdit’s commands to actually make the change.

You can make only one selection at a time. Most TEdit formatting operations act on the
currently-selected text, called the current selection. You can tell when text is selected

126

Appendix: Editing Text with TEdit

because it is underlined or highlighted (inverse video). The current selection usually has
a caret flashing at one end (see figure 6).

Figure 6. Selected Text. A TEdit window showing some text highlighted as a delete
selection.

When you begin typing, “bitmap editor” is deleted and replaced by the text you type

Units of Text Selection

You select text by pointing with the cursor, then pressing one of the mouse’s buttons.
The left button always selects the smallest units of text. In the text-editing region, it
selects the character you’re pointing at; in the line bar, it selects the single line you’re
pointing at.

The middle button selects larger units. In the text-editing region, it selects the word
the cursor is over. TEdit sees a word as a contiguous collection of letters and numbers,
punctuation marks, special symbols (such as percent sign), or of white space characters
(such space or tab). When you select a word with the middle button, TEdit starts with
the character the mouse is over and scans left and right until it finds a word
boundary—a change from one of the four types of “words” to another.

In the line bar, the middle button selects the paragraph the cursor is next to. To TEdit,
a paragraph consists of all the text between two carriage returns and includes the
second carriage return. (If you have typed a meta-carriage return as described above, it
is part of the paragraph rather than terminating it.)

The right button always extends a selection. If you select a place in the text with the
left or middle button, move the cursor somewhere else, and press the right button, all
the text between the two points is selected. If the existing selection is a whole word,
line, or paragraph, the extended selection will also consist of whole words, lines, or
paragraphs.

There are also special ways of selecting text that carry an implicit command with them.
These are described below in the sections on deleting, moving, and copying text.

You can select all the text in a document by choosing the All command in the Expanded
menu (see Chapter 4, The TEdit Menu). The All command is especially useful for
general formatting operations, such as changing the typeface for an entire document.

Deleting Text

There are five ways to delete text from a TEdit window:

127

1. Selecting the text, then pressing the DELETE key.

2. Extending a selection with the right button will cause the selection to be highlighted.
When you type any new text the highlighted selection is deleted; i.e., you do not have
to use the DELETE key. If you are replacing text, this method is very efficient.

3. If you hold down the CONTROL key while selecting text, the text (which is
highlighted) will be deleted when you release the key. You can abort a
control-selection by holding down any mouse button, releasing the CONTROL key,
then releasing the mouse button.

4. You can delete text one character at a time by pressing the backspace key (or
CONTROL-A); the character to the left of the caret will disappear.

5. You can delete text one word at a time by pressing CONTROL-W, which deletes the
word just before the caret.

Moving Text

To move text, put the caret where you want the text moved to. Then select the text to
be moved while holding down the MOVE key (or the CONTROL and SHIFT keys). The
text to be moved will be highlighted. When you release the key(s), the text will be
moved to the location of the caret and deleted from its original location. You can use
this method to move text within a TEdit window or to move it from one window to
another. To abort a move, hold down any mouse button, release the MOVE (or
CONTROL and SHIFT) key(s), then release the mouse button.

Copying Text

If you want to copy text, first put the caret where you want the text copied to. Then
hold down the COPY or SHIFT key while selecting the text to be copied. This copy
source is marked with a dashed underline. When you release the COPY (or SHIFT) key,
the text will be copied to the location of the caret. You can copy text within a TEdit
window or from one window to another. You can abort a copy by holding down any
mouse button, releasing the COPY key, then releasing the mouse button.

Marking Fields to Be Filled In

TEdit’s next feature enables you to easily create forms with blanks (called fields) to fill
in, then move forward from one field to another (see figure 7). You mark an area as a
field by enclosing it in double reverse angle brackets, like this:

>>text to replace<<.

To locate the first field after the caret, press the NEXT key. TEdit will highlight the
area as the current selection; whatever you type will replace the angle brackets and any
text they contain. You can sequentially locate the other fields by pressing NEXT.

128

Appendix: Editing Text with TEdit

Figure 7. TEdit’s Field Filling Feature. A portion of a form letter written using the
TEdit next feature

Undoing an Edit Operation

TEdit allows you to undo your most recent edit operation, which is handy when you
have done something like select a large area of text to copy and then press the DELETE
key instead of the COPY key. You can undo an operation by pressing the UNDO key
immediately afterwards. Undo is itself undoable, so you can never back up more than a
single operation.

Redoing an Edit Operation

To redo your most recent edit command on the current selection, press the AGAIN key
immediately afterwards.c For example, if you insert some text, then place the caret
elsewhere, pressing AGAIN will insert a copy of the text in the new place also. If the
last command was a deletion, pressing AGAIN will delete the currently selected text; if
it was a font change, the same change will be applied to the current selection.

Typing Special Characters

TEdit has 20 abbreviations that enable you to type special characters that are not
available on your workstation keyboard. (You can also add your own as described in
Chapter 8, TEdit’s Programmatic Interface).

To produce the special characters you:

1. Type in the abbreviation for the desired character.

2. Expand the abbreviation by selecting it and pressing the EXPAND key. A
single-character abbreviation is automatically selected right after you type it in; just
press the EXPAND key.

3. To expand a multi-character abbreviation, you must explicitly select it before
pressing EXPAND.

After you press EXPAND, the abbreviation will be replaced by its expansion. The
abbreviations and their expansions are:

129

Table 1. TEdit’s abbreviations and their expanded characters

Abbreviation Expanded character name Expansion Character

 " Open double quotation mark “
~ Close double quotation mark ”
‘ Open single quotation mark ‘
’ Close single quotation mark ’
b Bullet •
c Copyright sign
m Em-dash (used to separate text phrases) —
n En-dash (used to indicate inclusive numbers, as in “pages 3–6”)

–
d Dagger †
D Double dagger ‡
s Section sign §

1/2 Built-up fraction 1⁄2
1/4 Built-up fraction 1⁄4
2/3 Built-up fraction 2⁄3
3/4 Built-up fraction 3⁄4

DATE The current date October 15, 1985
>>DATE<< The current date October 15, 1985

p Pilcrow (proofreader’s paragraph mark) ¶
t Trademark

tm Trademark
r Registered trademark

 1/3 Built-up fraction 1⁄3
x Times sign ×
/ Division sign ÷

o (oh) Degrees sign °
L Pound sterling sign £
Y Yen sign ¥
+ Plus-or-minus sign ±

^(shift-6) Up arrow (NS character) ↑
ua Up arrow (NS character) ↑
| Down arrow (NS character) ↓
da Down arrow (NS character) ↓
<- Left arrow (NS character) ←
la Left arrow (NS character) ←

_ (underscore) Left arrow (NS character) ←
-> Right arrow (NS character) →
ra Right arrow (NS character) →
= Two-way arrows (NS characters) ⇔

Working With Graphic Images

It’s easy to add graphic images like rules, bitmaps, graphs, and drawings to your
documents. Rules are created with HRule and graphs with Grapher, both described in
the Medley Library Manual. Bitmaps of parts of the screen are created with
“SHIFT-snap” and edited with EditBitMap (see the Medley Library Manual). Drawings
are created with Sketch and are fully discussed in the Sketch Reference Manual.

130

Appendix: Editing Text with TEdit

Once you have created a graphic image, you can copy or move it into a TEdit document
just as you would copy or move text from one TEdit window to another. TEdit sees each
graphic image as a single character, which means it can be selected, copied, moved, and
deleted like any other character. You can use the Paragraph Looks menu to center a
graphic image or line it up; it will qualify as a single paragraph if you insert a carriage
return before and after it.

When you scroll a TEdit window, the graphic image will move all at once, sometimes
leaving unexpected blanks until you haven’t scrolled far enough for the entire image to
appear in the window. If the image still does not appear, try enlarging your window.
The image will be saved when you save the TEdit file, and will be printed when you
hardcopy the document.

Putting Bitmaps Into TEdit Files—SHIFT-snap

An easy way to put bitmaps into your TEdit files is to use the SHIFT-snap facility. To
activate the facility, which is loaded when you load TEdit, you:

1. Make sure the caret is in the TEdit window and at the position where you want the
bitmap placed.

2. Move the cursor into the screen background.

3. Hold down the SHIFT key.

4. Press the right mouse button. A small box containing the word “snap” will appear
at the cursor (see figure 8). Once the box appears you can release the SHIFT key.

Figure 8. The “snap box.” On the left as it appears when first called and on the
right as it appears after you move the cursor into the box

5. Move the cursor into the box; “SNAP” becomes highlighted (see figure 8).

6. Release the mouse button. The cursor changes shape into the expanding box cursor
().

7. Press the left button. The cursor changes to a box that appears reinforced at one
corner; the “reinforced” corner is the control point that follows the direction of the
mouse’s movement.

8. Move the mouse so that the area of the screen that you want to take the
SHIFT-snap of is within the box. You can take a SHIFT-snap of anything that’s on
the screen. If you need to shift the control point to another corner press and hold
the right mouse button while continuing to hold down the left button. The cursor
changes shape to a forceps (). Move the forceps to the new control corner and
release the right button. The control point is moved to that corner.

9. Release the left button. A bitmap picture of the area contained in the box is placed
in your TEdit window at the point of the caret. If the bitmap doesn’t appear, it may
be too large to be displayed in the available window space; either scroll the window
or make the window larger.

10. Once the bitmap is in your TEdit file, if you move the cursor into it and press the
left mouse button, the bitmap editor menu appears. See the EDITBM Library
module for details.

131

