
libcurl-multi(3) libcurl multi interface libcurl-multi(3)

NAME
libcurl-multi − how to use the multi interface

DESCRIPTION
This is an overview on how to use the libcurl multi interface in your C programs. There are specific man
pages for each function mentioned in here. There’s also thelibcurl-tutorial(3) man page for a complete
tutorial to programming with libcurl and thelibcurl-easy(3) man page for an overview of the libcurl easy
interface.

All functions in the multi interface are prefixed with curl_multi.

OBJECTIVES
The multi interface offers several abilities that the easy interface doesn’t. They are mainly:

1. Enable a "pull" interface. The application that uses libcurl decides where and when to ask libcurl to
get/send data.

2. Enable multiple simultaneous transfers in the same thread without making it complicated for the applica-
tion.

3. Enable the application to wait for action on its own file descriptors and curl’s file descriptors simultane-
ous easily.

ONE MULTI HANDLE MANY EASY HANDLES
To use the multi interface, you must first create a ’multi handle’ withcurl_multi_init(3). This handle is then
used as input to all further curl_multi_* functions.

Each single transfer is built up with an easy handle. You must create them, and setup the appropriate
options for each easy handle, as outlined in thelibcurl(3) man page, usingcurl_easy_setopt(3).

When the easy handle is setup for a transfer, then instead of usingcurl_easy_perform(3) (as when using the
easy interface for transfers), you should instead add the easy handle to the multi handle using
curl_multi_add_handle(3). The multi handle is sometimes referred to as a ´multi stack´ because of the fact
that it may hold a large amount of easy handles.

Should you change your mind, the easy handle is again removed from the multi stack using
curl_multi_remove_handle(3). Once removed from the multi handle, you can again use other easy interface
functions likecurl_easy_perform(3) on the handle or whatever you think is necessary.

Adding the easy handle to the multi handle does not start the transfer. Remember that one of the main ideas
with this interface is to let your application drive. You drive the transfers by invoking curl_multi_per-
form(3). libcurl will then transfer data if there is anything available to transfer. It’ ll use the callbacks and
ev erything else you have setup in the individual easy handles. It’ll transfer data on all current transfers in
the multi stack that are ready to transfer anything. It may be all, it may be none.

Your application can acquire knowledge from libcurl when it would like to get invoked to transfer data, so
that you don’t hav eto busy-loop and call thatcurl_multi_perform(3) like crazy.curl_multi_fdset(3) offers
an interface using which you can extract fd_sets from libcurl to use in select() or poll() calls in order to get
to know when the transfers in the multi stack might need attention. This also makes it very easy for your
program to wait for input on your own private file descriptors at the same time or perhaps timeout every
now and then, should you want that.

A l ittle note here about the return codes from the multi functions, and especially thecurl_multi_perform(3):
if you receive CURLM_CALL_MULTI_PERFORM, this basically means that you should call
curl_multi_perform(3) again, before you select() on more actions. You don’t hav eto do it immediately, but
the return code means that libcurl may have more data available to return or that there may be more data to

libcurl 7.16.0 3 Feb 2007 1



libcurl-multi(3) libcurl multi interface libcurl-multi(3)

send off before it is "satisfied".

curl_multi_perform(3) stores the number of still running transfers in one of its input arguments, and by
reading that you can figure out when all the transfers in the multi handles are done. ’done’ does not mean
successful. One or more of the transfers may have failed. Tracking when this number changes, you know
when one or more transfers are done.

To get information about completed transfers, to figure out success or not and similar,
curl_multi_info_read(3) should be called. It can return a message about a current or previous transfer.
Repeated invokes of the function get more messages until the message queue is empty. The information you
receive there includes an easy handle pointer which you may use to identify which easy handle the informa-
tion regards.

When a single transfer is completed, the easy handle is still left added to the multi stack. You need to first
remove the easy handle withcurl_multi_remove_handle(3) and then close it withcurl_easy_cleanup(3), or
possibly set new options to it and add it again withcurl_multi_add_handle(3) to start another transfer.

When all transfers in the multi stack are done, cleanup the multi handle withcurl_multi_cleanup(3). Be
careful and please note that youMUST invoke separatecurl_easy_cleanup(3) calls on every single easy
handle to clean them up properly.

If you want to re-use an easy handle that was added to the multi handle for transfer, you must first remove it
from the multi stack and then re-add it again (possibly after having altered some options at your own
choice).

MULTI_SOCKET
Since 7.16.0, thecurl_multi_socket(3) function offers a way for applications to not only avoid being forced
to use select(), but it also offers a much more high-performance API that will make a significant difference
for applications using large numbers of simultaneous connections.

curl_multi_socket_action(3) is then used instead ofcurl_multi_perform(3).

BLOCKING
A few areas in the code are still using blocking code, even when used from the multi interface. While we
certainly want and intend for these to get fixed in the future, you should be aware of the following current
restrictions:

- Name resolves on non-windows unless c-ares is used
- GnuTLS SSL connections
- Active FTP connections
- HTTP proxy CONNECT operations
- SOCKS proxy handshakes
- TFTP transfers
- file:// transfers
- TELNET transfers

libcurl 7.16.0 3 Feb 2007 2


