libcurl-multi(3) libcurl multi interface libcurl-multi(3)

NAME

libcurl-multi — haw to use the multi interface

DESCRIPTION

This is an werview on how to use the libcurl multi integfce in your C programs. There are specific man
pages for each function mentioned in here. Thedlsb thelibcurl-tutorial(3) man page for a complete
tutorial to programming with libcurl and tHibcurl-easy(3) man page for anverview of the libcurl easy
interface.

All functions in the multi interface are prefixed with curl_multi.

OBJECTIVES

The multi interface offers geral abilities that the easy interface do¢sThey are mainly:

1. Enable a "pull" integfice. The application that uses libcurl decides where and when to ask libcurl to
get/send data.

2. Enable multiple simultaneous transfers in the same thread without making it complicated for the applica-
tion.

3. Enable the application toait for action on its own file descriptors and auflle descriptors simultane-
ous easily.

4. Enable eent-based handling and scaling transfers up to and beyond thousands of parallel connections.

ONE MULTI HANDLE MANY EASY HANDLES

libcurl

To use the multi interface, you must first create a 'multi handle’ with multi_init(3). This handle is then
used as input to all further curl_multi_* functions.

With a multi handle and the multi intade you can do gnamount of simultaneous transfers in parallel.

Each single transfer is built up around an easy handle. You must create the easy handles you need, and set-
up the appropriate options for each easy handle, as outlined idibthel(3) man page, using

curl_easy setopt(3).

There are tw flavaurs of the multi intedce, the select() oriented one and thenebased one we called
multi_soclet. You will benefit from reading through the description of both versions to full understand ho
they work and differentiate. \&gart out with the select() oriented version.

When an easy handle is setup for a tranttien instead of usingurl_easy perform(3) like when using the
easy interdice for transfers, you should add the easy handle to the multi handieusitinulti_add _han-
die(3). The multi handle is sometimes referred to as a “multi stack” because atttlieat it may hold a
large amount of easy handles.

Should you change your mind, the easy handle is againvedmfsom the multi stack using
curl_multi_remove_handle(3). Once remweed from the multi handle, you canaig use other easy intade
functions likecurl_easy perform(3) on the handle or whater you think is necessary.

Adding the easy handle to the multi handle does not start the traRefeember that one of the main ideas
with this interface is to let your application \@i You drive the transfers by iroking curl_multi_per-
form(3). libcurl will then transfer data if there is anythinggitable to transferlt’'ll use the callbacks and
evaything else you ha tup in the individual easy handles. It'll transfer data on all current transfers in
the multi stack that are ready to transfer anything. It may be all, it may be none. Whenrtibieg more

to do for nav, it returns back to the calling application.

Your application can acquire knowledge from libcurl when it would tik get invoked to transfer data, so
that you dort haveto busy-loop and call thaurl_multi_perform(3) like aazy.curl_multi_fdset(3) offers

19Sep 2014 1



libcurl-multi(3) libcurl multi interface libcurl-multi(3)

an interface using which you carteact fd_sets from libcurl to use in select() or poll() calls in order to get
to knav when the transfers in the multi stack might need attention. This alsesnitakery easy for your
program to wait for input on your own pate file descriptors at the same time or perhaps timeauy e
now and then, should you want thatrl_multi_timeout(3) also helps you with providing a suitable timeout
period for your select() call.

curl_multi_perform(3) stores the number of still running transfers in one of its inmuraents, and by
reading that you can figure out when all the transfers in the multi handles are done. 'done’ does not mean
successful. One or more of the transfers mase Hailed. Tracking when this number changes, yowkno

when one or more transfers are done.

To ¢et information about completed transfers, to figure out success or not and ,similar
curl_multi_info_read(3) should be called. It can return a message about a current or previous .transfer
Repeated wokes o the function get more messages until the message queue is Engpiiyformation you

receve there includes an easy handle pointer which you may use to identify which easy handle the informa-
tion regards.

When a single transfer is completed, the easy handle is still left added to the multi stanked to first
remove the easy handle witturl_multi_remove _handle(3) and then close it witburl_easy cleanup(3), or
possibly set n& options to it and add it again witurl_multi_add_handle(3) to start another transfer.

When all transfers in the multi stack are done, cleanup the multi handleuslitimulti_cleanup(3). Be
careful and please note that yBUJST invoke eparatecurl_easy cleanup(3) calls on gery single easy
handle to clean them up properly.

If you want to re-use an easy handle thaswadded to the multi handle for transj@u must first remee it
from the multi stack and then re-add itaag (possibly after having altered some options at your o
choice).

MULTI_SOCKET
curl_multi_socket_action(3) function offers a way for applications to not onloia being forced to use
select(), but it also &rs a much more high-performance API that will maksgnificant difference for
applications using large numbers of simultaneous connections.

curl_multi_socket_action(3) is then used instead ofirl_multi_perform(3).

When using this API, you add easy handles to the multi handle just as with the normal multi interface. Then
you also set tw callbacks with the CURLMOPT_SOCKETFUNCTION and CURLMOPT_TIMERFUNC-
TION options tocurl_multi_setopt(3). They are two callback functions that libcurl will call with informa-

tion about what sockets to wait fand for what actiity, and what the current timeout time is - if that
expires libcurl should be notified.

The multi_socket API is designed to inform your application about whictetotkcurl is currently using
and for what activities (read and/or write) on those sockets your application is expected to wait for.

Your application must maksaure to receie dl sockets informed about in the CURLMOPT_SOCKET
FUNCTION callback and maksaure it reacts on the \ggn activity on them. When a socket has theepi
activity, you callcurl_multi_socket_action(3) specifying which socket and action there are.

The CURLMOPT_TIMERFUNCTION callback is called to set a timeout. When that timeout expires, your
application should call theurl_multi_socket_action(3) function saying it was due to a timeout.

This API is typically used with anvent-driven underlying functionality (lile libevent, libev, kqueue, epoll

or similar) which which the application "subscribes" on socket changes. Thigs adloplications and
libcurl to much better scale upnd and beyond thousands of simultaneous transfers without losing

libcurl 19Sep 2014 2



libcurl-multi(3) libcurl multi interface libcurl-multi(3)

performance.

When youve aded your initial set of handles, you catlurl_multi_socket action(3) with
CURL_SOCKET_TIMEOUT set in the sockfd argument, and y@e&t callbacks call that sets you up and

you then continue to catlurl_multi_socket _action(3) accordingly when you get acity on the sockts
you've been asked to wait on, or if the timeout timer expires.

You can pollcurl_multi_info_read(3) to see if ap transfer has completed, as it then has a message saying
so.

BLOCKING

A few aeas in the code are still using blocking codenevhen used from the multi interface. While we

certainly want and intend for these to get fixed in the future, you shoulevare af the following current
restrictions:

- Name resolves unless the c-ares or threaded-resolver backends are used
- NSS SSL connections

- HTTP proxy CONNECT operations
- SOCKS proxy handshakes

- file:// transfers

- TELNET transfers

SEE ALSO
libcurl-errors(3), libcurl-easy(3), libcurl(3)

libcurl 19Sep 2014



