�

EasyCODE

Techn. SW Documentation

Parser Interface

EasyCODE Version 6.xE, 06-20-1996

© Copyright Siemens AG Österreich (Siemens in Austria) PSE

Table of Contents

� VERZEICHNIS \o �1. Parser DLL	� GEHEZU _Toc316791052 � SEITENREF _Toc316791052 �4��

2. Functionality	� GEHEZU _Toc316791053 � SEITENREF _Toc316791053 �5��

3. Functions	� GEHEZU _Toc316791054 � SEITENREF _Toc316791054 �7��

3.1. easy_parse	� GEHEZU _Toc316791055 � SEITENREF _Toc316791055 �7��

3.2. write_element	� GEHEZU _Toc316791056 � SEITENREF _Toc316791056 �9��

3.3. write_level_start	� GEHEZU _Toc316791057 � SEITENREF _Toc316791057 �10��

3.4. write_level_end	� GEHEZU _Toc316791058 � SEITENREF _Toc316791058 �12��

3.5. write_tree_start	� GEHEZU _Toc316791059 � SEITENREF _Toc316791059 �12��

3.6. write_tree_end	� GEHEZU _Toc316791060 � SEITENREF _Toc316791060 �13��

3.7. parse_error	� GEHEZU _Toc316791061 � SEITENREF _Toc316791061 �13��

3.8. write_debug	� GEHEZU _Toc316791062 � SEITENREF _Toc316791062 �14��

3.9. config_dialog	� GEHEZU _Toc316791063 � SEITENREF _Toc316791063 �14��

4. Error Messages	� GEHEZU _Toc316791064 � SEITENREF _Toc316791064 �15��

5. Debugging	� GEHEZU _Toc316791065 � SEITENREF _Toc316791065 �16��

6. Parser Configuration	� GEHEZU _Toc316791066 � SEITENREF _Toc316791066 �17��

7. Constructs	� GEHEZU _Toc316791067 � SEITENREF _Toc316791067 �18��

7.1. Notation	� GEHEZU _Toc316791068 � SEITENREF _Toc316791068 �18��

7.2. List of Constructs	� GEHEZU _Toc316791069 � SEITENREF _Toc316791069 �18��

1. DUMMY	� GEHEZU _Toc316791070 � SEITENREF _Toc316791070 �18��

2. BS2	� GEHEZU _Toc316791071 � SEITENREF _Toc316791071 �18��

3. IF	� GEHEZU _Toc316791072 � SEITENREF _Toc316791072 �19��

4. WHILE	� GEHEZU _Toc316791073 � SEITENREF _Toc316791073 �19��

5. CYCLE	� GEHEZU _Toc316791074 � SEITENREF _Toc316791074 �19��

6. BREAK	� GEHEZU _Toc316791075 � SEITENREF _Toc316791075 �19��

7. CASE	� GEHEZU _Toc316791076 � SEITENREF _Toc316791076 �20��

8. CASEBRANCH	� GEHEZU _Toc316791077 � SEITENREF _Toc316791077 �20��

9. AND	� GEHEZU _Toc316791078 � SEITENREF _Toc316791078 �20��

10. OR	� GEHEZU _Toc316791079 � SEITENREF _Toc316791079 �20��

11. NOT	� GEHEZU _Toc316791080 � SEITENREF _Toc316791080 �20��

12. COND	� GEHEZU _Toc316791081 � SEITENREF _Toc316791081 �20��

13. BLOCK	� GEHEZU _Toc316791082 � SEITENREF _Toc316791082 �21��

14. LEVEL	� GEHEZU _Toc316791083 � SEITENREF _Toc316791083 �21��

15. COMMENT	� GEHEZU _Toc316791084 � SEITENREF _Toc316791084 �21��

16. SWITCH	� GEHEZU _Toc316791085 � SEITENREF _Toc316791085 �22��

17. SWITCHBRANCH	� GEHEZU _Toc316791086 � SEITENREF _Toc316791086 �22��

18. FOR	� GEHEZU _Toc316791087 � SEITENREF _Toc316791087 �22��

19. REPEAT	� GEHEZU _Toc316791088 � SEITENREF _Toc316791088 �22��

20. CALL	� GEHEZU _Toc316791089 � SEITENREF _Toc316791089 �22��

21. WHEN	� GEHEZU _Toc316791090 � SEITENREF _Toc316791090 �22��

22. EXIT	� GEHEZU _Toc316791091 � SEITENREF _Toc316791091 �22��

23. DETACH	� GEHEZU _Toc316791092 � SEITENREF _Toc316791092 �23��

24. LEAVE	� GEHEZU _Toc316791093 � SEITENREF _Toc316791093 �23��

25. IFERROR	� GEHEZU _Toc316791094 � SEITENREF _Toc316791094 �23��

26. AGBLOCK (Action block)	� GEHEZU _Toc316791095 � SEITENREF _Toc316791095 �23��

27. JETPROC	� GEHEZU _Toc316791096 � SEITENREF _Toc316791096 �23��

28. ISP (FREE FORMAT)	� GEHEZU _Toc316791097 � SEITENREF _Toc316791097 �23��

29. C_SWITCH	� GEHEZU _Toc316791098 � SEITENREF _Toc316791098 �23��

30. C_CASE	� GEHEZU _Toc316791099 � SEITENREF _Toc316791099 �24��

31. DEFAULT	� GEHEZU _Toc316791100 � SEITENREF _Toc316791100 �24��

32. RETURN	� GEHEZU _Toc316791101 � SEITENREF _Toc316791101 �24��

33. VARIABLE	� GEHEZU _Toc316791102 � SEITENREF _Toc316791102 �24��

34. COB_PROGRAMM	� GEHEZU _Toc316791103 � SEITENREF _Toc316791103 �24��

35. COB_SECTION	� GEHEZU _Toc316791104 � SEITENREF _Toc316791104 �24��

36. COB_PARAGRAPH	� GEHEZU _Toc316791105 � SEITENREF _Toc316791105 �24��

37. COB_INLINE (Inline Perform)	� GEHEZU _Toc316791106 � SEITENREF _Toc316791106 �24��

38. COB_TIMES (Perform Times)	� GEHEZU _Toc316791107 � SEITENREF _Toc316791107 �25��

39. COB_VARYINGAFTER (Perform varying after)	� GEHEZU _Toc316791108 � SEITENREF _Toc316791108 �25��

40. COB_EXITPER (Exit perform)	� GEHEZU _Toc316791109 � SEITENREF _Toc316791109 �25��

41. COB_EXITTEST	� GEHEZU _Toc316791110 � SEITENREF _Toc316791110 �25��

42. COB_EXITPROG (Exit program)	� GEHEZU _Toc316791111 � SEITENREF _Toc316791111 �25��

43. COB_CALL	� GEHEZU _Toc316791112 � SEITENREF _Toc316791112 �25��

44. COB_EXCEPTION	� GEHEZU _Toc316791113 � SEITENREF _Toc316791113 �25��

45. COB_EVALUATE	� GEHEZU _Toc316791114 � SEITENREF _Toc316791114 �26��

46. COB_SEARCH	� GEHEZU _Toc316791115 � SEITENREF _Toc316791115 �26��

47. ENTRY	� GEHEZU _Toc316791116 � SEITENREF _Toc316791116 �26��

48. PROC	� GEHEZU _Toc316791117 � SEITENREF _Toc316791117 �26��

49. AUSWAHL	� GEHEZU _Toc316791118 � SEITENREF _Toc316791118 �26��

50. WIEDER	� GEHEZU _Toc316791119 � SEITENREF _Toc316791119 �26��

51. RAHMEN	� GEHEZU _Toc316791120 � SEITENREF _Toc316791120 �26��

52. PET_BLOCK	� GEHEZU _Toc316791121 � SEITENREF _Toc316791121 �27��

53. PET_AGBLOCK	� GEHEZU _Toc316791122 � SEITENREF _Toc316791122 �27��

54. PET_JUMPRESTART	� GEHEZU _Toc316791123 � SEITENREF _Toc316791123 �27��

55. PET_FOR	� GEHEZU _Toc316791124 � SEITENREF _Toc316791124 �27��

56. PET_WHILE	� GEHEZU _Toc316791125 � SEITENREF _Toc316791125 �27��

57. PET_REPEAT	� GEHEZU _Toc316791126 � SEITENREF _Toc316791126 �27��

58. PET_IF	� GEHEZU _Toc316791127 � SEITENREF _Toc316791127 �27��

59. PET_ELSE	� GEHEZU _Toc316791128 � SEITENREF _Toc316791128 �27��

60. PET_IFCMDERROR	� GEHEZU _Toc316791129 � SEITENREF _Toc316791129 �28��

61. PET_IFBLOCKERROR	� GEHEZU _Toc316791130 � SEITENREF _Toc316791130 �28��

62. XOR	� GEHEZU _Toc316791131 � SEITENREF _Toc316791131 �28��

63. PET_PROC	� GEHEZU _Toc316791132 � SEITENREF _Toc316791132 �28��

64. PET_IFBRANCH	� GEHEZU _Toc316791133 � SEITENREF _Toc316791133 �28��

65. CLASS	� GEHEZU _Toc316791134 � SEITENREF _Toc316791134 �28��

66. PRIVATE	� GEHEZU _Toc316791135 � SEITENREF _Toc316791135 �28��

67. PUBLIC	� GEHEZU _Toc316791136 � SEITENREF _Toc316791136 �29��

68. PROTECTED	� GEHEZU _Toc316791137 � SEITENREF _Toc316791137 �29��

69. PROG_AUFRUF	� GEHEZU _Toc316791138 � SEITENREF _Toc316791138 �29��

70. BTMITTEL	� GEHEZU _Toc316791139 � SEITENREF _Toc316791139 �29��

71. VARIANTE	� GEHEZU _Toc316791140 � SEITENREF _Toc316791140 �29��

72. ASS_THRU	� GEHEZU _Toc316791141 � SEITENREF _Toc316791141 �29��

73. ASS_CYCLE	� GEHEZU _Toc316791142 � SEITENREF _Toc316791142 �30��

74. ASS_CASE	� GEHEZU _Toc316791143 � SEITENREF _Toc316791143 �30��

75. ASS_EXIT	� GEHEZU _Toc316791144 � SEITENREF _Toc316791144 �30��

76. PET_INTPROC	� GEHEZU _Toc316791145 � SEITENREF _Toc316791145 �30��

77. FUNC	� GEHEZU _Toc316791146 � SEITENREF _Toc316791146 �30��

8. Use of Constructs	� GEHEZU _Toc316791147 � SEITENREF _Toc316791147 �31��

SPX	� GEHEZU _Toc316791148 � SEITENREF _Toc316791148 �31��

DS	� GEHEZU _Toc316791149 � SEITENREF _Toc316791149 �31��

COB	� GEHEZU _Toc316791150 � SEITENREF _Toc316791150 �32��

CPP	� GEHEZU _Toc316791151 � SEITENREF _Toc316791151 �32��

9. File-Specific Information	� GEHEZU _Toc316791152 � SEITENREF _Toc316791152 �33��

9.1. Short Info	� GEHEZU _Toc316791153 � SEITENREF _Toc316791153 �33��

9.2. IF Layout	� GEHEZU _Toc316791154 � SEITENREF _Toc316791154 �33��

9.3. Segment Numbers	� GEHEZU _Toc316791155 � SEITENREF _Toc316791155 �33��

9.4. Line Numbers	� GEHEZU _Toc316791156 � SEITENREF _Toc316791156 �33��

9.5. Screen Font	� GEHEZU _Toc316791157 � SEITENREF _Toc316791157 �33��

9.6. Printer Font	� GEHEZU _Toc316791158 � SEITENREF _Toc316791158 �34��

9.7. Highest Level-ID	� GEHEZU _Toc316791159 � SEITENREF _Toc316791159 �34��

10. Examples	� GEHEZU _Toc316791160 � SEITENREF _Toc316791160 �35��

Example 1.	� GEHEZU _Toc316791161 � SEITENREF _Toc316791161 �35��

Source	� GEHEZU _Toc316791162 � SEITENREF _Toc316791162 �35��

Function calls	� GEHEZU _Toc316791163 � SEITENREF _Toc316791163 �35��

Structure Diagram	� GEHEZU _Toc316791164 � SEITENREF _Toc316791164 �36��

Example 2.	� GEHEZU _Toc316791165 � SEITENREF _Toc316791165 �36��

Source	� GEHEZU _Toc316791166 � SEITENREF _Toc316791166 �36��

Function calls	� GEHEZU _Toc316791167 � SEITENREF _Toc316791167 �36��

Structure Diagram	� GEHEZU _Toc316791168 � SEITENREF _Toc316791168 �37��

Example 3	� GEHEZU _Toc316791169 � SEITENREF _Toc316791169 �37��

Source	� GEHEZU _Toc316791170 � SEITENREF _Toc316791170 �37��

Function calls	� GEHEZU _Toc316791171 � SEITENREF _Toc316791171 �38��

Structure Diagram	� GEHEZU _Toc316791172 � SEITENREF _Toc316791172 �39��

Index	� GEHEZU _Toc316791173 � SEITENREF _Toc316791173 �40��

�

�AUTONRDEZ �	Parser DLL�XE "Parser DLL"�

EasyCODE V3.51 and higher versions allow you to have existing source code analyzed�XE "Source code:analysis"� by a DLL. This parser DLL is used when a file which does not have EasyCODE format is selected to be opened in EasyCODE. This means that source code or any other file which does not have EasyCODE format can be processed by the parser DLL.

The parser DLL is used for reading the file (from now on referred to as source) and telling EasyCODE which constructs are contained in the source. To communicate with EasyCODE, the parser DLL uses function calls containing as parameters the construct type and the text contained in the constructs. On the basis of this information, EasyCODE will build up an internal representation of the source and display it on the screen.

In EasyCODE V3.51, the parser interface is available in the components DS, SPX and COB. In version V4.0 and higher versions, this interface is available in all components and used for the import function.

The name of the parser DLL is specified in the INI file�XE "INI file"� (SPX: in the configuration file�XE "Configuration file"�):

[Settings]�Parser=parser.dll

If this entry does not exist, the default names EASY-BNF.DLL and EASY-PAR.DLL will be used for DS and for COB, respectively.

In SPX, the entry is added to the configuration file in the following section:

[ParseOptions]�Parser=parser.dll

In SPX, there is no default value. If the entry does not exist, the parser will not be called, and the source will be rejected as not having EasyCODE format.

EasyCODE will search for the DLL in the module directory. You may, however, also enter a full path name.

�AUTONRDEZ �	Functionality�XE "Functionality"�

The parser DLL is activated by the point of entry easy_parse. A pointer to a structure containing further information is specified as a parameter. This information includes a reference to the source file to be analyzed as well as pointers to callback functions which can be called by the parser.

The source file is read by the parser. If the latter detects constructs supported by EasyCODE (see chapter Constructs), then callback functions will be called. By calling the callback functions, the parser creates a file in an internal format which EasyCODE is able to display on the screen. The parser must be able to interpret source files coded in compliance with both DOS �XE "DOS source files"�and Unix �XE "Unix source files"�conventions (CR/LF or just LF; ^Z optional); at any rate, the DOS convention for generating line breaks (CR/LF) must be used for all strings delivered at the parser interface. This means that the parser must expand single LFs to CR/LF combinations, if required.

The following callback functions are provided for writing the internal file format�:

write_tree_start�write_tree_end�write_element�write_level_start�write_level_end

The calling sequence of the callback functions must comply with certain conventions:

The entire structure diagram consists of a sequence of constructs. This sequence is called TREE�XE "TREE"�. A TREE begins with write_tree_start and ends with write_tree_end.

Every construct is introduced by write_element. Since a construct may contain other constructs, write_element is followed by a certain number of TREEs (depending on the construct)..

A special feature of the construct is the segment�XE "Segment"� (level). A segment begins with write_level_start and ends with write_level_end. The contents of the segment is enclosed between these two entries as a sequence of constructs (TREE). If the segment is empty, write_level_start is immediately followed by write_level_end.

Text between the keywords of the constructs is delivered as a comment construct�XE "Comment construct"��.

Text sent to EasyCODE must not contain any tabs�. Every text must be ANSI�XE "ANSI"��XE "Character set"� coded. Line breaks are indicated by \r\n. The maximum number of characters within text including the terminating \0 must not exceed MAX_TEXT_SIZE characters.

The following grammar� conventions apply:

FILE ::= write_tree_start LEVEL write_tree_end

LEVEL ::= write_level_start TREE write_level_end

LEVEL ::= write_level_start write_level_end

TREE ::= write_tree_start (ELEMENT)+ write_tree_end

ELEMENT ::= LEVEL

ELEMENT ::= write_element (TREE)*

The number of TREEs following write_element depends on elementTyp.

The entire file consists of a TREE containing one single construct, a LEVEL, which is referred to as the top level. The level comment of the top level is displayed in the header of the structure diagram.

A simple example:

Source:

A:=0;

B:=5;

Calls: (sequences of pseudocode parameters are not complete!)

write_tree_start(node_level_typ, edge_rumpf,...)�write_level_start(...)	TOP LEVEL�write_tree_start(level_typ, edge_rumpf, ...)�write_element(node_comment_typ, "A:=0")	COMMENT�write_element(node_comment_typ, "B:=5")	COMMENT�write_tree_end()�write_level_end(...)�write_tree_end()	TOP LEVEL ENDE

�AUTONRDEZ �	Functions�XE "Functions"�

For definitions concerning the interface, see C-Include File 'parse.h'.

�AUTONRDEZ �	easy_parse�XE "easy_parse"�

Purpose:

The parser DLL provides the easy_parse function which is called by EasyCODE. The name of the easy_parse function must be exported by the parser DLL.

Definition:

int FAR PASCAL easy_parse�				(�				LP_PARSER_DATA parser_data�);�

Parameters:

parser_data	...	The interface data are delivered in a structure. parser_data is a FAR Pointer to this structure.

typedef struct�{� int interfaceVersion;� HWND hWnd;� char komponente [4];� int hSourceFile;� LPBUFFILE hFile;� char envFileDir [_MAX_PATH];� char configFileName [_MAX_PATH];� LP_WRITE_ELEMENT lp_write_element;� LP_WRITE_LEVEL_START_V2 lp_write_level_start;� LP_WRITE_LEVEL_END lp_write_level_end;� LP_WRITE_TREE_START lp_write_tree_start;� LP_WRITE_TREE_END lp_write_tree_end;� LP_PARSE_ERROR lp_parse_error;� LP_WRITE_DEBUG lp_write_debug;� LPSTR lp_stack_bottom;� BOOL FAR *bECSource;� unsigned FAR *lpNumErrors;� unsigned FAR *lpNumWarnings;� char spxConfigFileName [_MAX_PATH];	(EasyCODE V4.0 + higher,�	PARSE_VERSION >=2)� BOOL bOemSource;	(EasyCODE V4.0 + higher�	PARSE_VERSION >=3�} PARSER_DATA;��typedef PARSER_DATA FAR * LP_PARSER_DATA;

interfaceVersion	...	Version of the interface. The current version number is defined by the PARSE_VERSION macro in parse.h. With each modification of the interface, the version number will be increased by 1, so that a parser will be able to find out whether it is called by an EasyCODE version supporting an older or newer version of the interface.

hWnd	...	The Window handle of the calling window.

komponente	...	Component identifier of the calling EasyCODE application. The string consists of a maximum of 3 characters. ('SP', 'SPX', ‘C’, 'CPP', 'COB', 'DS'). This ensures that the parser will be called by a suitable component only. The COB parser, for example, may not be used for SPX.

hSourceFile	...	DOS handle of the source file. Before the file is delivered, it is opened with O_BINARY. The run time function read() (or _read in MSC7 or lread from the SDK - we recommend the one from the SDK) should be used for reading the file. After the parser run, the file must not be closed.

hFile	...	Handle of the file in internal EasyCODE format. This is a pointer to an internal EasyCODE structure, which is used for buffering write accesses. This is the reference given to the interface functions for writing the EasyCODE format. This file handle may not be used by the parser for direct reading or writing.

envFileDir	...	Full path name of the EasyCODE module directory. This path name may be used for loading modules for the parser or for finding files required by the parser (e.g. file for error messages). The path name ends with '\'..

configFileName	...	Pathname of a file which may be used for reading data concerning the parser configuration. In SPX, this is the SPX configuration file, in all other components, the INI file. �In version V4.0 of EasyCODE and V2 of the interface or higher versions, this field contains the name of the INI file even in SPX. The name of the SPX configuration file is specified in the spxConfigFileName field.

lp_write_element,

lp_write_level_start,

lp_write_level_end,

lp_write_tree_start,

lp_write_tree_end,

lp_parse_error

lp_write_debug	...	FAR pointer to callback functions used for writing the EasyCODE file format and for communicating with the user. The callback functions are provided by EasyCODE. For a description of the functions see below.

lp_stack_bottom	...	FAR pointer to the address of the pseudo variable 'end' from the C run time system. The pointer marks the end of the data area and the beginning of the stack area in the EasyCODE data segment. Since the DLL also uses the EasyCODE stack, this pointer may be used for avoiding a stack overflow of the parser. The stack available to the parser is about 20K.

bECSource	...	Return parameter. Pointer to a variable which must be TRUE, if an EC-generated source is read. The variable must be set by the parser, as soon as this fact is known. It may even be used in the EasyCODE callback functions (e.g. parse_error()) . Not available in the current version 4.0.

lpNumErrors	...	Return parameter. Pointer to a variable in which the parser must return the number of errors that occurred during file analysis.

lpNumWarnings	...	Return parameter. Pointer to a variable in which the parser must return the number of warnings that occurred during file analysis. A problem detected by the parser during file analysis must either be classified as a warning or as an error. The message must be delivered to the user via the parse_error callback function.

spxConfigFileName	...	Available in EasyCODE V4.0 and interfaceVersion 2 and higher versions. In SPX, this field contains the name of the SPX configuration file, in all other components, it contains the empty string.

bOemSource	...	Available in EasyCODE V4.0 and interfaceVersion 3 and higher versions. Determines whether the source file complies with the OEM character set. If this parameter is TRUE, the parser must convert text to the ANSI�XE "ANSI"��XE "character set"��XE "OEM"� character set and deliver ANSI text to EasyCODE.�If this field does not yet exist, the value must be assumed TRUE.

Return value:

A value defined by the following macros:

PARSE_OK	...	If the analyzing procedure was successfully completed. No warnings or errors occurred.

PARSE_WARN	...	Only warnings, but no errors occurred. In this case, the structure diagram will be displayed. If the callback function calls did not result in creating a correct and complete structure diagram, this return value must not be specified, since the structure diagram could not be displayed correctly.

PARSE_ERRORS	...	Errors occurred. The structure diagram will not be displayed.

PARSE_STACK	...	The parser stopped because of stack overflow. The warning comes from EasyCODE.

PARSE_REENTER...	The parser DLL has already been called. If the DLL is not reentrant�, it can reject any further call with this return value. The warning comes from EasyCODE.

PARSE_MEMORY...	Lack of memory during parser execution. The warning comes from EasyCODE.

Callback functions are provided by EasyCODE.

�AUTONRDEZ �	write_element�XE "write_element"�

Purpose:

To write a construct.

Definition:

int FAR PASCAL write_element�				(�				LPBUFFILE hFile,�				int zeile,�				enum parse_node_typ elementTyp,�				COBSTRING string1,�				COBSTRING string2,�				COBSTRING string3,�				int par1,�				int par2�);

�
Parameters:

hFile	...	The hFile delivered when easy_parse is called

zeile	...	Line number to be assigned to the construct

77elementTyp	...	Type of the construct.

string1 .. 3	...	Used for delivering the required text. The meaning of these strings depends on the construct type. Parameters that are not required must be set to 0 or text=NULL.

par1 .. 2	...	Used for delivering numerical information. The meaning of these strings depends on the construct type. Parameters that are not required must be set to 0.

Return value:

 0	Ok

-1	Error. Analysis should be cancelled.

COBSTRING is a structure used for delivering strings.

typedef struct �{�LPSTR text;�int zeile;�int spalte;�} COBSTRING;

text	...	Delivered text. The text may consist of several lines, with the line breaks indicated by '\r\n'. Text delivered to EasyCODE must not contain any tabs. Every text must be ANSI�XE "ANSI"��XE "character set"� coded. The text including the terminating \0 must not exceed a maximum of MAX_TEXT_SIZE characters.

zeile	...	Line number to be assigned to the first line in the text.

spalte	...	Column number to be assigned to the first character in the text. Every new line will begin in column 1.

The neutral form of the Cobstring (NULL-Cobstring) with text = NULL, zeile = spalte = 0 is used in case the Cobstring parameter is not necessary.

�AUTONRDEZ �	write_level_start�XE "write_level_start"�

Purpose:

Beginning of a new level (segment). Level�XE "level"�s allow you to divide a structure diagram into segments, so that some elements will not be visible. These elements will be displayed as separate structure diagrams. This results in a hierarchical structure of the structure diagram.

This hierarchical structure is absolutely necessary for large structure diagrams, because otherwise, the maximum size� of a segment� would be exceeded. Therefore, the source code should automatically and in a reasonable way be divided into segments during file analysis. Every function may, for instance, become a separate segment. The function name may be used as a segment comment. If the parser is able to distinguish between sources generated by EasyCODE and "native" sources, only "native" sources should be pushed down automatically, while the segment information generated by EasyCODE should be observed when it comes to EasyCODE sources.

Every write_level_start call requires a corresponding write_level_end call, which ends the segment.

Definition:

int FAR PASCAL write_level_start�				(�				LPBUFFILE hFile,�				int zeile,�				COBSTRING ebenenKommentar,�				LONG FAR * posOfLevel,�				DWORD levelID,�				COBSTRING entryName�);

Parameters:

hFile	...	The hFile delivered when easy_parse is called

zeile	...	Line number to be assigned to the segment

ebenenKommentar	...	Text for the segment comment�. If no comment exists, a NULL-Cobstring must be delivered. Within the zeile structure element, the line number from the source file of the first line of the comment or level must be specified.

posOfLevel	...	Return parameter. The value of this variable is delivered by EasyCODE and must be stored for the corresponding WRITE_LEVEL_END call.

levelID	...	ID of the level. Level-IDs are used when OLE is concerned.�If the level-IDs are to be delivered by the parser, all level-IDs must differ from each other in order to ensure that EasyCODE will run correctly. The maximum of all level-IDs must be delivered as the file-specific information 'node_lastlevelid'.�If there are no level-IDs in the source or if they are not analyzed by the parser, then this parameter must be set to 0 for all calls. In this case, the file-specific information 'node_lastlevelid' must not be delivered.

entryName	...	Is used for COL only and specifies the name of the entry indicating the segment. In all other components, this parameter must be a NULL-Cobstring.

Return value:

 0	Ok

-1	Error. Analysis should be cancelled.

�
�AUTONRDEZ �	write_level_end�XE "write_level_end"�

Purpose:

Indicates the end of a segment.

Definition:

int FAR PASCAL write_level_end�				(�				LPBUFFILE hFile,�				LONG posOfLevel, �				LONG posSource,�				LONG lengthSource,�				int zeilen�);

Parameters:

hFile	...	The hFile delivered when easy_parse is called

posOfLevel	...	The value corresponding to the write_level_start call is delivered here.

posSource	...	Position of the beginning of the segment in the source. This parameter must be set to 0.

lengthSource	...	Length of the segment in the source. This parameter must be set to 0.

zeilen	...	Number of lines contained in the segment in the source. This parameter must be set to 0.

Return value:

 0	Ok

-1	Error. Analysis should be cancelled.

�AUTONRDEZ �	write_tree_start�XE "write_tree_start"�

Purpose:

Indicates the beginning of a TREE. Every write_tree_start call requires a corresponding write_tree_end call which ends the TREE.

Definition:

int FAR PASCAL write_tree_start�				(�				LPBUFFILE hFile,�				enum parse_node_typ predTyp,�				enum parse_edge_typ edge�);

Parameters:

hFile	...	The hFile delivered when easy_parse is called.

predTyp	...	Type of the construct containing the TREE.

edge	...	Edge of predTyp containing the TREE.

Return value:

 0	Ok

-1	Error. Analysis should be cancelled.

Comment:

The predTyp and edge parameters are dealt with in a similar way as in the DUMMY construct. The values to be applied are specified there. For the top TREE, the values node_level_typ and edge_rumpf are specified.

�AUTONRDEZ �	write_tree_end�XE "write_tree_end"�

Purpose:

Indicates the end of a TREE.

Definition:

int FAR write_tree_end�				(�				LPBUFFILE hFile�);

Parameters:

hFile	...	The hFile delivered when easy_parse is called

Return value:

 0	Ok

-1	Error. Analysis should be cancelled.

�AUTONRDEZ �	parse_error�XE "parse_error"�

Purpose:

Output of an error message. Error messages or warnings occurring during file analysis will be delivered to EasyCODE with this function.

Definition:

typedef int FAR PASCAL parse_error�				(�				int zeile,�				LPSTR fehlerText,�				BOOL wiederAufsetzen�);

Parameters:

zeile	...	Line number in the source in which the error occurred

fehlerText	...	Text of the error, ANSI coded, line breaks with "\r\n" are permitted. At the end of the text, there should be no line break. The text must be terminated with '\0', its lenght is restricted to 64K.

wiederAufsetzen	...	TRUE, if the analysis may be continued

Return value:

 0	continue analysis �-1	cancel analysis

Comment:

The error text must contain all necessary information, even the line number, in the form of text. The error text is written to a file and remains unchanged.

If user interaction is possible when the text is displayed to the user (this is not the case in EasyCODE V4.0), and if the user wants to cancel the parser run, the function will return with the return value -1.

�
�AUTONRDEZ �	write_debug�XE "write_debug"�

Purpose:

To write debug text into the debug file.

Definition:

int FAR PASCAL write_debug�				(�				LPSTR debugText�);

Parameters:

debugText	...	Text which is to be written. The text is written into a debug file together with internal EasyCODE debug text. The text must be ANSI coded and may contain several lines. Its length is restricted to 64K. After the text, a line break '\r\n' will be written into the debug file.

Return value:

 0	continue analysis �-1	cancel analysis

Comment:

For details on the debug file, see chapter "Debugging".

�AUTONRDEZ �	config_dialog

Purpose:

The parser DLL provides the config_dialog function, which can be called by EasyCODE.

The function should open a dialog window, in which parser-specific options may be configurated.

Definition:

int FAR PASCAL CONFIG_DIALOG� (� HWND hWnd,� LPSTR envFileDir,� LPSTR configFileName,� LPSTR spxConfigFileName�);

Parameters:

hWnd	...	The Window handle of the calling EasyCODE window

envFileDir	...	Full pathname of the EasyCODE module directory. This path name may be used for loading modules for the parser or for finding files required by the parser to ensure its correct function (e.g.: file for error messages). The path name ends with '\'.�The path name is identical with the one delivered with easy_parse.

configFileName	...	see easy_parse

spxConfigFileName	...	see easy_parse (V4.0 only)

Return value:

not defined

Comment:

The name of the function ("config_dialog") must be exported by the parser DLL.

If no application exists for this function, the name must not be exported.

For details see chapter "Parser Configuration".

�AUTONRDEZ �	Error Messages�XE "Error messages"�

Error messages and warnings�XE "warnings"� are delivered to EasyCODE with the parse_error callback function. The delivered text should contain the line number, the type of the error and the error text, e.g.:

(561): Error: 'else' without 'if' �(565): Warning: Unexpected EasyCODE comment

The error text is written to an error file�XE "error file"� by EasyCODE, and a line break is added. Internally, the parser must count the number of errors and warnings that occurred and return them as return parameters lpNumErrors and lpNumWarnings. If at the end of the parser run one of the return parameters is greater than 0 and an error file exists, this error file will be displayed by EasyCODE in an editor. According to the number of errors and warnings, the return value of the parser must be specified. If the return value is PARSE_OK or PARSE_WARN, the structure diagram will be displayed.

Messages must be classified as warnings or as errors in such a way that warnings will not affect the graphic representation of the structure diagram. If a correct display of the source code in the structure diagram cannot be ensured or if the parser did not complete its run, then PARSE_ERROR must be returned as the return value of easy_parse.

�AUTONRDEZ �	Debugging�XE "Debugging"�

By adding an entry to the INI file (SPX: configuration file), you may specify a file to which debug text is to be written during the parser run.

For SPX in the configuration file:

[ParseOptions]�ParserDebugFile=<filename>

For all other components in the INI file:

[Settings]�ParserDebugFile=<filename>

The EasyCODE callback functions add corresponding entries to this file specifying the name of the callback function and parameters. You may write your own text by calling the parse_debug function.

If no ParserDebugFile has been defined or if it cannot be opened, parse_debug calls will be ignored.

�AUTONRDEZ �	Parser Configuration�XE "Parser configuration"�

With the config_dialog function, the parser DLL may provide another point of entry allowing parser configuration. Parser configuration can be necessary for switching on or off certain syntax extensions or dialects by way of options, in the same way as in a compiler.

EasyCODE calls the config_dialog function, when the user selects it with the help of the EasyCODE user interface. The function should then load the parser options from the file named configFileName, display it for modification in a dialog window and then save it again in the file. The parser DLL cannot assume that it will remain loaded until the easy_parse function is called. Therefore the configuration data cannot be stored until the parser is actually called. Before the parser run, the configuration data must also be loaded from configFileName.

The appearance of the dialog box, the format, in which the configuration data are stored in configFileName and the type of the configuration data depend on the parser DLL and can therefore not be defined here. At any rate, this information should be written to a separate parser-specific section, the name of which is designed as follows:

[<filename>.<ext> <ver>]

<filename> indicates the base name, <text> the extension of the parser filename and <ver> an internal parser version number for interpreting the entries, e.g.

[CLIPPER.DLL V1]

If there is no way of configurating a parser DLL, the parser DLL should not export a function named config_dialog. The EasyCODE user interface will not provide a way of configurating the parser.

In EasyCODE version V3.51, there is no way of calling this point of entry in EasyCODE.

In version V4.0, this possibility is not implemented.

�AUTONRDEZ �	Constructs�XE "Constructs"�

�AUTONRDEZ �	Notation

<numerical value of construct type>. name of construct �elementTyp = <construct type>�par1 = <symbolic name> (type)�string1 = <symbolic name>�TREE 	<symbolic name>	 <edge type>

For every construct, write_element is called with the construct type as a parameter.

The parameters par1-2 and string1-3 required for the write_element function are specified for every construct. The parameters are assigned symbolic names which will then be used for the description. Parameters that have not been specified must be set to 0.

The parameters are followed by a number of TREEs. Each tree is followed by the corresponding edge type which must be specified in case of write_tree_start or a dummy in the TREE.

Please note that the following edge types require certain constructs:

edge_text		Must be followed by a single comment or a dummy.

edge_bedingung	Must be followed by a condition construct (AND, OR, NOT, XOR), a list of comments or a dummy.

If these requirements are not fulfilled, this may result in structure diagrams which cannot be created by EasyCODE and which may show unpredictable behavior when edited with EasyCODE.

�AUTONRDEZ �	List of Constructs

1. DUMMY�XE "DUMMY"�

elementTyp = node_dummy_typ

par1 = pred_typ	(enum parse_node_typ)�par2 = follows_as	(enum parse_edge_typ)

Parameters:

pred_typ	...	Construct type of the construct on a higher level

follows_as	...	Edge of the construct on a higher level, to which the dummy construct belongs.

Comment:

The dummy construct is a special construct. It is always used when the TREE would otherwise be empty, because there is no corresponding entry in the source. If the ELSE branch of an IF is empty, the TREE for the edge edge_else must contain exactly one dummy construct including the parameters par1=node_if_typ and par2=edge_else.

Between the write_tree_start and write_tree_end calls, there must always be a write_element call.

2. BS2�XE "BS2"�

elementTyp = node_bs2_typ

par1 = bs2_typ	(enum bs2_typ)

string1 = info_string

�
Parameters:

par1	...	Specifies the subtype of the action:��sdfcommand_typ		...	SDF Command�sdfstatement_typ		...	SDF Statement

info_string	...	The entire information concerning the action is stored by the parser in an info string. This string is analyzed in detail by EasyCODE. For this purpose, the parser interface calls the InfoToJet function, which creates a JET structure from the basic type specified by par1 and the info string. The JET structure will then be written to the TMP file and released again by the parser interface.

		For a description of the info strings see Appendix A of the documentation concerning the ETF file format (ETF.RTF file in the installation directory).

		Since the info string is checked by the application and not by the parser DLL, error messages will also come from the application. To allow the application to display error messages containing reasonable information about the exact location of the invalid info string within the ETF file, the line number of the first line of the info string must be specified in the zeile structure element of the info string.

3. IF�XE "IF"�

elementTyp = node_if_typ

string1 = label	(COL only)

TREE Condition	edge_bedingung�TREE Then branch	edge_then�TREE Else branch	edge_else

Parameters:

label	...	Labels may occur in several constructs. They are mainly required for COL and may otherwise be set to a NULL-Cobstring.

4. WHILE�XE "WHILE"�

elementTyp = node_while_typ

string1 = label (COL only)

TREE Condition	edge_bedingung

TREE Body		edge_rumpf

5. CYCLE�XE "CYCLE"�

elementTyp = node_cycle_typ

string1 = label	(COL only)

TREE	Body	edge_rumpf

6. BREAK�XE "BREAK"�

elementTyp = node_break_typ

TREE	Condition	edge_bedingung

�
7. CASE�XE "CASE"�

elementTyp = node_case_typ

string1 = label	(COL only)

TREE	Branch list	edge_zweigliste�TREE	Ofrest		edge_ofrest

Comment:

analogous to SWITCH/SWITCHBRANCH, but with CASE/CASEBRANCH.

8. CASEBRANCH�XE "CASEBRANCH"�

elementTyp = node_casebranch_typ

string1 = label	(COL only)

TREE	Condition	edge_bedingung�TREE	Alternative	edge_alternative

9. AND�XE "AND"�

elementTyp = node_and_typ

TREE	Operands	edge_bedingung

Comment:

The logical operands AND, OR, XOR (not NOT) may have several digits, so that for instance an AND may have three operands. The three operands will then be arranged sequentially in the following TREE.

10. OR�XE "OR"�

elementTyp = node_or_typ

TREE	Operands	edge_bedingung

Comment:

See AND.

11. NOT�XE "NOT"�

elementTyp = node_not_typ

TREE	Operand	edge_bedingung

Comment:

NOT may have only one operand. The TREE may therefore contain only one construct.

12. COND�XE "COND"�

node_cond_typ

string1 = info_string

Parameters:

info_string	...	The entire information concerning Cond is stored by the parser in an info string. This string will then be analyzed in detail by EasyCODE. �See also BS2.

		For a description of the info strings see Appendix A of the documentation concerning the ETF file format (ETF.RTF file in the installation directory).

�
13. BLOCK�XE "BLOCK"�

elementTyp = node_block_typ

string1 = label	(COL only)

TREE	Header		edge_text�TREE	Body		edge_rumpf

14. LEVEL�XE "LEVEL"�

elementTyp = node_level_typ

write_level_start(...)�TREE	edge_rumpf�write_level_end(...)

Comment:

This construct represents a segment. It must not be written in combination with write_element, but the write_level_start and write_level_end functions must be called. Between these two functions, there will be the body of the level.

15. COMMENT�XE "COMMENT"�

node_comment_typ

par1 = offset	(int)				(COB only, otherwise 0)�par2 = typ		(enum anweisungs_type)	(COB only, otherwise 0)�string1 = text

Parameter:

offset	...	Specifies the number of blanks that have to be inserted at the beginning of each line of text, so that the column position will be correct.

typ	...	Specifies whether the construct will be used as an ordinary text construct (id_comment) or as a statement before (pre_division) or within a COBOL-Division (id_division, env_division, data_division, proc_division).

Comment:

This construct contains general text. It is used for statements, conditions and most other types of text. Several lines may be combined in the text. The maximum size of MAX_TEXT_SIZE characters must, however, not be exceeded.

If the construct is used for statements, the text may be divided into several statements in order to avoid maximum size or to structure text more clearly. The text may not be divided when the edge types edge_text, edge_klausel, edge_param, edge_anweisung, edge_max, edge_fuss or edge_bedingung (in those components that do not support AND/OR/NOT) are concerned, since in these TREEs only one comment construct is allowed. If the text exceeds the maximum size, an error message will appear, because the structure diagram cannot be displayed..

The offset and typ parameters will be used in COB only. In all other components, they must be set to 0.

�
16. SWITCH�XE "SWITCH"�

elementTyp = node_switch_typ

string1 = label	(COL only)

TREE	Variable	edge_text�TREE	Branch list	edge_zweigliste�TREE	Ofrest		edge_ofrest

Comment:

The branch list TREE must contain a sequence of Switchbranch constructs.

The Ofrest TREE must contain exactly one Switchbranch construct. If the value TREE of this Switchbranch construct will not be used (e.g. in EasyCODE(SP)), a dummy must be inserted into this value TREE.

17. SWITCHBRANCH�XE "SWITCHBRANCH"�

elementTyp = node_switchbranch_typ

string1 = label	(COL only)

TREE	Value		edge_text�TREE	Alternative	edge_alternative

18. FOR�XE "FOR"�

elementTyp = node_for_typ

TREE	Expression	edge_text�TREE	Body		edge_rumpf

19. REPEAT�XE "REPEAT"�

elementTyp = node_repeat_typ

for COB:�TREE	Condition	edge_bedingung�TREE	Body		edge_rumpf

other components:�TREE	Body		edge_rumpf�TREE	Condition	edge_bedingung

Comment:

In the COB component, the Condition and Body TREEs have been exchanged.

20. CALL�XE "CALL"�

elementTyp = node_call_typ

TREE	Call	edge_text

21. WHEN�XE "WHEN"�

elementTyp = node_when_typ

TREE	Condition	edge_bedingung�TREE	Label		edge_text

22. EXIT�XE "EXIT"�

elementTyp = node_exit_typ

Comment:

This construct does not require any parameters or subTREEs.

�
23. DETACH�XE "DETACH"�

elementTyp = node_detach_typ

Comment:

This construct does not require any parameters or subTREEs.

24. LEAVE�XE "LEAVE"�

elementTyp = node_leave_typ

TREE	Label	edge_text

25. IFERROR�XE "IFERROR"�

elementTyp = node_iferror_typ

TREE	Then branch	edge_then�TREE	Else branch	edge_else

26. AGBLOCK�XE "AGBLOCK"� (Action block�XE "Action block"�)

elementTyp = node_agblock_typ

TREE	Header		edge_text�TREE	Body		edge_rumpf�TREE	Abnormal	edge_abnorm

27. JETPROC�XE "JETPROC"�

elementTyp = node_jetproc_typ

string1 = info_string

TREE	Header		edge_kopf�TREE	Body		edge_rumpf�TREE	Abnormal	edge_abnorm

Parameters:

info_string	...	The entire information concerning Jetproc is stored in an info string by the parser. This string will then be analyzed in detail by EasyCODE.�See also BS2.

		For a description of the info strings see Appendix A of the documentation concerning the ETF file format (ETF.RTF file in the installation directory).

28. ISP�XE "ISP"� (FREE FORMAT�XE "FREE FORMAT"�)

elementTyp = node_isp_typ

string1 = text

Parameters:

text	...	existing text

29. C_SWITCH�XE "C_SWITCH"�

elementTyp = node_c_switch_typ

TREE	Expression	edge_text�TREE	Branch list 	edge_zweigliste

Comment:

The TREE branch list must contain a sequence of no or up to several Switchbranch constructs and no or one default construct.

30. C_CASE�XE "C_CASE"�

elementTyp = node_c_case_typ

TREE	Value		edge_text�TREE	Alternative	edge_alternative

31. DEFAULT�XE "DEFAULT"�

elementTyp = node_default_typ

TREE	Alternative	edge_alternative

32. RETURN�XE "RETURN"�

elementTyp = node_return_typ

TREE	Expression	edge_text

33. VARIABLE�XE "VARIABLE"�

elementTyp = node_variable_typ

string1 = info_string

TREE	Variant		edge_rumpf

Parameters:

info_string	...	The entire information concerning VARIABLE is stored by the parser in an info string. This string will be analyzed in detail by EasyCODE.�See also BS2.

		For a description of the info strings see Appendix A of the documentation concerning the ETF file format (ETF.RTF file in the installation directory).

34. COB_PROGRAMM�XE "COB_PROGRAMM"�

elementTyp = node_cob_programm_typ

TREE	Id		edge_kopf�TREE	Env		edge_env�TREE	Data		edge_data�TREE	Param		edge_param�TREE	Body		edge_rumpf

Comment:

This construct is used for the frame of a COBOL program in COB. Param contains the parameters after USING.

35. COB_SECTION�XE "COB_SECTION"�

elementTyp = node_cob_section_typ

TREE	Name	edge_text�TREE	Bdoy	edge_rumpf

36. COB_PARAGRAPH�XE "COB_PARAGRAPH"�

elementTyp = node_cob_paragraph_typ

TREE	Name	edge_text�TREE	Body	edge_rumpf

37. COB_INLINE�XE "COB_INLINE"� (Inline Perform�XE "Inline Perform"�)

elementTyp = node_cob_inline_typ

TREE	Body	edge_rumpf

38. COB_TIMES�XE "COB_TIMES"� (Perform Times�XE "Perform Times"�)

elementTyp = node_cob_times_typ

TREE	Expression	edge_text�TREE	Body		edge_rumpf

39. COB_VARYINGAFTER�XE "COB_VARYINGAFTER"� (Perform varying after�XE "Perform varying after"�)

elementTyp = node_cob_varyingafter_typ

TREE	Expression	edge_text�TREE	Body		edge_rumpf

40. COB_EXITPER�XE "COB_EXITPER"� (Exit perform�XE "Exit perform"�)

elementTyp = node_cob_exitper_typ

Comment:

This construct does not require any parameters or subTREEs.

41. COB_EXITTEST�XE "COB_EXITTEST"�

elementTyp = node_cob_exittest_typ

Comment:

This construct does not require any parameters or subTREEs.

42. COB_EXITPROG�XE "COB_EXITPROG"� (Exit program�XE "Exit program"�)

elementTyp = node_exitprog_typ

Comment:

This construct does not require any parameters or subTREEs.

43. COB_CALL�XE "COB_CALL"�

elementTyp = node_cob_call_typ

TREE	Call		edge_text�TREE	Parameter	edge_param

44. COB_EXCEPTION�XE "COB_EXCEPTION"�

elementTyp = node_cob_exception_typ

TREE	Clause		edge_klausel�TREE	Statement	edge_anweisung�TREE	Then branch	edge_then�TREE	Else branch	edge_else

Comment:

This construct is used for Exceptions in COB. The statement TREE may contain one single statement in the form of a comment construct or one single Cob_Call construct.

The clause TREE may contain only one single comment construct.

�
45. COB_EVALUATE�XE "COB_EVALUATE"�

elementTyp = node_cob_evaluate_typ

TREE	Expression	edge_text�TREE	When list	edge_zweigliste�TREE	Other	edge_rumpf

Comment:

The When list TREE must contain a sequence of one or more Switchbranch constructs.�The Other TREE contains the TREE for the OTHER branch.

46. COB_SEARCH�XE "COB_SEARCH"�

elementTyp = node_cob_search_typ

TREE	Table		edge_text�TREE	At-End		edge_rumpf�TREE	When list	edge_zweigliste

Comment:

The When list TREE must contain a sequence of one or several Casebranch constructs.�The At-End TREE contains the TREE for the At-End branch.

47. ENTRY�XE "ENTRY"�

elementTyp = node_entry_typ

TREE	Name		edge_text�TREE	Parameter	edge_param

48. PROC�XE "PROC"�

elementTyp = node_proc_typ

TREE	Header		edge_text�TREE	Body		edge_rumpf

49. AUSWAHL�XE "AUSWAHL"�

elementTyp = node_auswahl_typ

TREE	Branch list	edge_zweigliste

Comment:

The Branch list TREE must contain a sequence of one or several default constructs.

50. WIEDER�XE "WIEDER"�

elementTyp = node_wieder_typ

TREE	Min	edge_text�TREE	Body	edge_rumpf�TREE	Max	edge_max

Comment:

The Max TREE as well as the Min TREE may contain exactly one comment or dummy construct.

51. RAHMEN�XE "RAHMEN"�

elementTyp = node_rahmen_typ

TREE	Header		edge_text�TREE	Body		edge_rumpf�TREE	Footer		edge_fuss

Comment:

The Footer TREE as well as the Header TREE may contain exactly one comment or dummy construct.

52. PET_BLOCK�XE "PET_BLOCK"�

elementTyp = node_pet_block_typ

string1 = label

TREE	Clause		edge_klausel�TREE	Body		edge_rumpf

53. PET_AGBLOCK�XE "PET_AGBLOCK"�

elementTyp = node_pet_agblock_typ

string1 = label

TREE	Clause		edge_klausel�TREE	Header		edge_text�TREE	Body		edge_rumpf�TREE	Abnormal	edge_abnorm

54. PET_JUMPRESTART�XE "PET_JUMPRESTART"�

elementTyp = node_pet_jumprestart_typ

Comment:

No parameters, no subtrees.

55. PET_FOR�XE "PET_FOR"�

elementTyp = node_pet_for_typ

string1 = label

TREE	Expression	edge_isp�TREE	Body		edge_rumpf

56. PET_WHILE�XE "PET_WHILE"�

elementTyp = node_pet_while_typ

string1 = label

TREE	Condition	edge_bedingung�TREE	Body		edge_rumpf

57. PET_REPEAT�XE "PET_REPEAT"�

elementTyp = node_pet_repeat_typ

string1 = label

TREE	Body		edge_rumpf�TREE	Condition	edge_bedingung

58. PET_IF�XE "PET_IF"�

elementTyp = node_pet_if_typ

string1 = label

TREE	Branch list	edge_zweigliste

Comment:

The Branch list TREE must contain a sequence of 1 to n Pet_Ifbranch and 0 to 1 Pet_Else constructs, with a Pet_Else being the last construct in the sequence.

59. PET_ELSE�XE "PET_ELSE"�

elementTyp = node_pet_else_typ

TREE	Alternative	edge_alternative

60. PET_IFCMDERROR�XE "PET_IFCMDERROR"�

elementTyp = node_pet_ifcmderror_typ

TREE	Branch list	edge_zweigliste

Comment:

The Branch list TREE must contain a sequence of one or two Pet_Else constructs. The first Pet_Else construct will be used as a Then branch.

61. PET_IFBLOCKERROR�XE "PET_IFBLOCKERROR"�

elementTyp = node_pet_ifblockerror_typ

string1 = label

TREE	Branch list	edge_zweigliste

Comment:

The Branch list TREE must contain a sequence of one or two Pet_Else constructs. The first Pet_Else construct will be used as a Then branch.

62. XOR�XE "XOR"�

elementTyp = node_xor_typ

TREE	Operands	edge_bedingung

Comment: See AND

63. PET_PROC�XE "PET_PROC"�

elementTyp = node_pet_proc_typ

TREE	Option		edge_petoption�TREE	Param		edge_petparam�TREE	Internal Proc.	edge_intproc�TREE	Body		edge_rumpf�TREE	Abnormal	edge_abnorm

64. PET_IFBRANCH�XE "PET_IFBRANCH"�

elementTyp = node_pet_ifbranch_typ

TREE	Condition	edge_bedingung�TREE	Alternative	edge_alternative

65. CLASS�XE "CLASS"�

elementTyp = node_class_typ

TREE	Header		edge_text�TREE	Body		edge_rumpf�TREE	Footer		edge_fuss

Comment:

The Footer TREE as well as the Header TREE may contain exactly one comment or dummy construct..

66. PRIVATE�XE "PRIVATE"�

elementTyp = node_private_typ

Comment:

This construct does not require any parameters or subTREEs. It may occur only in the body of a class construct.

�
67. PUBLIC�XE "PUBLIC"�

elementTyp = node_public_typ

Comment:

This construct does not require any parameters or subTREEs. It may occur only in the body of a class construct.

68. PROTECTED�XE "PROTECTED"�

elementTyp = node_protected_typ

Comment:

This construct does not require any parameters or subTREEs. It may occur only in the body of a class construct.

69. PROG_AUFRUF�XE "PROG_AUFRUF"�

elementTyp = node_prog_aufruf_typ

string1 = info_string

Parameters:

info_string	...	All information concerning this construct will be packed into an info string by the parser. This string will be analyzed in detail by EasyCODE.

		For a description of the info strings see Appendix A of the documentation concerning the ETF file format (ETF.RTF file in the installation directory).

70. BTMITTEL�XE "BTMITTEL"�

elementTyp = node_btmittel_typ

string1 = info_string

Parameters:

info_string	...	All information concerning this construct will be packed into an info string by the parser. This string will be analyzed in detail by EasyCODE.

		For a description of the info strings see Appendix A of the documentation concerning the ETF file format (ETF.RTF file in the installation directory).

71. VARIANTE�XE "VARIANTE"�

elementTyp = node_variante_typ

string1 = info_string

Parameters:

info_string	...	All information concerning this construct will be packed into an info string by the parser. This string will be analyzed in detail by EasyCODE.

		For a description of the info strings see Appendix A of the documentation concerning the ETF file format (ETF.RTF file in the installation directory).

72. ASS_THRU�XE "ASS_THRU"�

elementTyp = node_ass_thru_typ

string1 = label

TREE	Expression	edge_text�TREE	Body	edge_rumpf

73. ASS_CYCLE�XE "ASS_CYCLE"�

elementTyp = node_ass_cycle_typ

string1 = label

TREE	Reg	edge_text�TREE	Body	edge_rumpf

74. ASS_CASE�XE "ASS_CASE"�

elementTyp = node_ass_case_typ

string1 = label

TREE	Reg	edge_text�TREE	Branch list	edge_zweigliste

75. ASS_EXIT�XE "ASS_EXIT"�

elementTyp = node_ass_exit_typ

string1 = label

TREE	Param	edge_text

76. PET_INTPROC�XE "PET_INTPROC"�

elementTyp = node_pet_intproc_typ

TREE	Header		edge_text�TREE	Option		edge_petoption�TREE	Param		edge_petparam�TREE	Body		edge_rumpf�TREE	Abnormal	edge_abnorm

77. FUNC�XE "FUNC"�

elementTyp = node_func_typ

TREE	Header	edge_text�TREE	Body	edge_rumpf

�AUTONRDEZ �	Use of Constructs �XE "Use of constructs "�

Each of the various EasyCODE components provides only some of the constructs. The write_element calls must be restricted to the available constructs, since otherwise unpredictable errors may occur.�

In the following tables, the menu items available in the Insert menus of the individual EasyCODE components are assigned to the corresponding constructs.

 SPX�XE "SP, SPX - use of constructs"�

Construct in the Insert menu�
Internal construct name�
�
Statement�
Comment�
�
IF-THEN-ELSE�
If�
�
SWITCH�
Case�
�
WHEN�
Casebranch�
�
CASE�
Switch�
�
OF�
Switchbranch�
�
FOR�
For�
�
WHILE�
While�
�
REPEAT�
Repeat�
�
LOOP�
Cycle�
�
EXIT�
Break�
�
Procedure�
Proc�
�
Procedure call�
Call�
�
Function�
Func�
�
Block�
Block�
�
Frame�
Rahmen�
�
AND�
And�
�
OR�
Or�
�
NOT�
Not�
�
Condition�
Comment��
�
DS�XE "DS - use of constructs"�

Construct in the Insert menu�
Internal construct name�
�
Object�
Proc�
�
Data element�
Comment�
�
Iteration�
Wieder�
�
Option�
Wieder�
�
Selection�
Auswahl�
�
Alternative�
Default�
�
�
COB�XE "COB - use of constructs"�

Construct in the Insert menu�
Internal construct name�
�
Statement�
Comment�
�
Exception�
COB_Exception�
�
Cobol program�
COB_Programm�
�
SECTION�
COB_Section�
�
PARAGRAPH�
COB_Paragraph�
�
PERFORM > Inline�
COB_Inline�
�
PERFORM > Outline�
Call�
�
PERFORM > TIMES�
COB_Times�
�
PERFORM > TEST BEFORE�
While�
�
PERFORM > TEST AFTER�
Repeat�
�
PERFORM > BEFORE VARYING�
For�
�
PERFORM > AFTER VARYING�
COB_Varyingafter�
�
IF-THEN-ELSE�
If�
�
EVALUATE�
COB_Evaluate�
�
WHEN expression�
Switchbranch�
�
SEARCH�
COB_Search�
�
WHEN condition�
Casebranch�
�
CALL�
COB_Call�
�
ENTRY�
Entry�
�
GOBACK�
Detach�
�
EXIT�
Exit�
�
EXIT > PERFORM�
COB_Exitper�
�
EXIT > TO TEST�
COB_Exittest�
�
EXIT > PROGRAM�
COB_Exitprog�
�
CPP�XE "CPP - use of constructs"�

Construct in the Insert menu�
Internal construct name�
�
Statement�
Comment�
�
if�
If�
�
switch�
C_Switch�
�
case�
C_Case�
�
default�
Default�
�
for�
For�
�
while�
While�
�
do while�
Repeat�
�
Class�
Class�
�
private�
Private�
�
public�
Public�
�
protected�
Protected�
�
Function�
Proc�
�
Block�
Block�
�
break�
Exit�
�
continue�
Detach�
�
return�
Return�
�
 �AUTONRDEZ �	File-Specific Information �XE "File-specific information"�

This section deals with information concerning the graphic representation of the structure diagram, such as fonts or the IF layout. This information is saved together with the EasyCODE file and will be restored when the file is opened again.

This information can also be saved in the source and restored during file analysis. Like a construct, the information is returned by the write_element function, with special types being used not corresponding to a construct. The EasyCODE settings are only modified after a write_element call with the corresponding information and a successful file analysis. The write_element calls with these types may occur at any time.

�AUTONRDEZ �	Short Info�XE "Short info"�

elementTyp = node_kurzinfo

string1 = text

Parameters:

text	...	Text for the short info. The same restrictions apply as those applying to all other types of text delivered via parser interface.

Comment:

The short info is a short text describing the file contents. It can be entered into the Save as dialog window and will be displayed in the Open dialog window when EasyCODE files are selected.

�AUTONRDEZ �	IF Layout �XE "IF layout"�

elementTyp = node_if

par1 = vertical	(BOOL)

Parameters:

vertical	...	TRUE, if the vertical layout of an IF is required.

�AUTONRDEZ �	Segment Numbers�XE "Segment numbers"�

elementTyp = node_levelnumbers

par1 = on	(BOOL)

Parameters:

on	...	TRUE, if segment numbers are to be displayed

�AUTONRDEZ �	Line Numbers�XE "Line numbers"�

elementTyp = node_linenumbers

par1 = on	(BOOL)

Parameters:

on	...	TRUE, if line numbers are to be displayed

�AUTONRDEZ �	Screen Font�XE "Screen font"�

elementTyp = node_screenfont

string1 = info_string

Parameters:

info_string	...	One-line text describing the screen font. The format of the text is the same as that of the line in the INI file, when the font settings are saved.

Comment:

The format of the info_string consists of a sequence of LOGFONT and CHOOSEFONT structure elements in the form of text, which are separated by a comma. For the definitions of the structures, see the SDK documentation. The following list is displayed in several lines, so that it is easier to survey. The info_string must, however, not contain any line breaks.

LOGFONT.lfFaceName,�CHOOSEFONT.lpszStyle,�CHOOSEFONT.iPointSize,�CHOOSEFONT.nFontType,�LOGFONT.lfHeight,�LOGFONT.lfWidth,�LOGFONT.lfWeight,�LOGFONT.lfItalic,�LOGFONT.lfEscapement,�LOGFONT.lfOrientation,�LOGFONT.lfUnderline,�LOGFONT.lfStrikeOut,�LOGFONT.lfCharSet,�LOGFONT.lfOutPrecision,�LOGFONT.lfClipPrecision,�LOGFONT.lfQuality,�LOGFONT.lfPitchAndFamily

�AUTONRDEZ �	Printer Font�XE "Printer font"�

elementTyp = node_printerfont

string1 = info_string

Parameters:

info_string	...	One-line text describing the printer font. The format of the text is the same as that of the line in the INI file, when the font settings are saved.

Comment:

See Screen Font.

�AUTONRDEZ �	Highest Level-ID �XE "Highest level-ID"�

elementTyp = node_lastlevelid

string1 = levelid

Parameters:

levelid	...	Highest level-ID occurring in the source in text form.

Comment:

Every segment has an individual ID required for OLE. This ID is specified with write_level_start. To be able to assign other IDs, EasyCODE must know the last ID.

If level-IDs are specified with write_level_start, the highest level-ID must be delivered with node_lastlevelid anytime during the parser run. Usually, the highest level-ID is stored in the source.

If the level-IDs are set to 0 at write_level_start, the highest level-ID must not be delivered with node_lastlevelid during the parser run.

Since the level-ID is of the DWORD type, it will be converted to text form and delivered as string1.

�AUTONRDEZ �	Examples�XE "Examples"�

The following examples illustrate the correct sequence of function calls. The examples 1 and 2 were created with a Clipper parser, example 3 was created with a BNF parser. For every source code, the corresponding functions and the corresponding structure diagram are shown.

EasyCODE counts every write_tree_start and write_tree_end in the open TREEs. The counting begins with 0 and is increased by 1 each time a write_tree_start is encountered and reduced by 1 each time a write_tree_end is encountered. The result will be displayed below the line containing the corresponding function call, so that it is easier to find corresponding function calls.

Analogously, every write_level_start and write_level_end is counted and the result displayed.

Example 1.

Source

IF a=5� a=0�ENDIF

Function calls

+++ write_tree_start (predTyp=node_level_typ edge=edge_rumpf)�0�>>> write_level_start (line=0, levelID=0, �0 (posOfLevel receives 38)�+++ write_tree_start (node_level_typ, edge_rumpf)�1 �... write_element (type=node_if_typ,line=1� par1=0, par2=0)�+++ write_tree_start (predTyp=node_if_typ edge=edge_bedingung)�2 �... write_element (type=node_comment_typ,line=1� par1=0, par2=0� string1="a=5")�+++ write_tree_end()�2 �+++ write_tree_start (predTyp=node_if_typ edge=edge_then)�2 �... write_element (type=node_comment_typ, line=2� par1=0, par2=0� string1="a=0")�+++ write_tree_end()�2 �+++ write_tree_start (predTyp=node_if_typ edge=edge_else)�2 �... write_element (type=node_dummy_typ, line=3� par1=node_if_typ, par2=edge_else)�+++ write_tree_end()�2 �+++ write_tree_end()�1 �>>> write_level_end (posOfLevel=38, posSource=0�0 lengthSource=0, lines=3)�+++ write_tree_end()�0

Structure Diagram

�EINBETTEN easyspx \s���

Example 2.

Source

DO CASE� CASE a=0� Statement 1� CASE a=1� Statement 2� OTHERWISE� Statement 3�ENDCASE

Function calls

+++ write_tree_start (predTyp=node_level_typ edge=edge_rumpf)�0 �>>> write_level_start (line=0, levelID=0, �0 posOfLevel receives 38)�+++ write_tree_start (predTyp=node_level_typ edge=edge_rumpf)�1 �... write_element (type=node_case_typ, line=2� par1=0, par2=0)�+++ write_tree_start (predTyp=node_case_typ edge=edge_zweigliste)�2 �... write_element (type=node_casebranch_typ, line=2� par1=0, par2=0)�+++ write_tree_start (predTyp=node_casebranch_typ� edge=edge_bedingung)�3 �... write_element (type=node_comment_typ, line=2� par1=0, par2=0� string1="a=0")�+++ write_tree_end()�3 �+++ write_tree_start (predTyp=node_casebranch_typ� edge=edge_alternative)�3 �... write_element (type=node_comment_typ, line=3� par1=0, par2=0� string1="Statement 1")�+++ write_tree_end()�3 �... write_element (type=node_casebranch_typ, line=4� par1=0, par2=0)�+++ write_tree_start (predTyp=node_casebranch_typ� edge=edge_bedingung)�3 �... write_element (type=node_comment_typ, line=4� par1=0, par2=0� string1="a=1")�+++ write_tree_end()�3 �+++ write_tree_start (predTyp=node_casebranch_typ� edge=edge_alternative)�3 �... write_element (type=node_comment_typ, line=6� par1=0, par2=0� string1="Statement 2")�+++ write_tree_end()�3 �+++ write_tree_end()�2 �+++ write_tree_start (predTyp=node_case_typ edge=edge_ofrest)�2 �... write_element (type=node_casebranch_typ, line=6� par1=0, par2=0)�+++ write_tree_start (predTyp=node_casebranch_typ� edge=edge_bedingung)�3 �... write_element (type=node_dummy_typ, line=6� par1=node_casebranch_typ, par2=edge_bedingung)�+++ write_tree_end()�3 �+++ write_tree_start (predTyp=node_casebranch_typ� edge=edge_alternative)�3 �... write_element (type=node_comment_typ, line=7� par1=0, par2=0� string1="Statement 3")�+++ write_tree_end()�3 �+++ write_tree_end()�2 �+++ write_tree_end()�1 �>>> write_level_end (posOfLevel=38, posSource=0�0 lengthSource=0, lines=8)�+++ write_tree_end()�0

Structure Diagram

�EINBETTEN easyspx \s���

Example 3

Source

* EasyCODE(DS) (1�*�* Customer file *�* EasyCODE(DS) (2�Orders *�1{Article number}15�* EasyCODE(DS)) *�* Article file *�* EasyCODE(DS)) *

This is an example from EasyCODE(DS). The "*EasyCODE(DS) ("comment line marks a new segment. The top level segment is also indicated by this line.

Function calls

+++ write_tree_start (predTyp=node_level_typ edge=edge_rumpf)�0 �>>> write_level_start (line=2, levelID=1, �0 posOfLevel receives 38)�+++ write_tree_start (predTyp=node_level_typ edge=edge_rumpf)�1 �... write_element (type=node_comment_typ, line=3� par1=0, par2=0� string1="* Customer file*")�>>> write_level_start (line=5, levelID=2, �1 posOfLevel receives 80� ebenenKommentar.line=5� text="Orders")�+++ write_tree_start (predTyp=node_level_typ edge=edge_rumpf)�2 �... write_element (type=node_wieder_typ, line=6� par1=0, par2=0)�+++ write_tree_start (predTyp=node_wieder_typ edge=edge_text)�3 �... write_element (type=node_comment_typ, line=6� par1=0, par2=0� string1="1")�+++ write_tree_end()�3 �+++ write_tree_start (predTyp=node_wieder_typ edge=edge_rumpf)�3 �... write_element (type=node_comment_typ, line=6� par1=0, par2=0� string1="Article number")�+++ write_tree_end()�3 �+++ write_tree_start (predTyp=node_wieder_typ edge=edge_max)�3 �... write_element (type=node_comment_typ, line=6� par1=0, par2=0� string1="15")�+++ write_tree_end()�3 �+++ write_tree_end()�2 �>>> write_level_end (posOfLevel=80, posSource=0�1 lengthSource=0, lines=0)�... write_element (type=node_comment_typ, line=8� par1=0, par2=0� string1="* Article file*")�+++ write_tree_end()�1 �>>> write_level_end (posOfLevel=38, posSource=0�0 lengthSource=0, lines=0)�+++ write_tree_end()�0

Structure Diagram

��

�
Index

� INDEX \e "	" \h "A" \c "2" ��
A

Action block	23

AGBLOCK	23

AND	20

ANSI	5; 9; 10

ASS_CASE	30

ASS_CYCLE	30

ASS_EXIT	30

ASS_THRU	29

AUSWAHL	26

B

BLOCK	21

BREAK	19

BS2	18

BTMITTEL	29

C

C_CASE	24

C_SWITCH	23

CALL	22

CASE	20

CASEBRANCH	20

Character set	5; 9; 10

CLASS	28

COB - use of constructs	32

COB_CALL	25

COB_EVALUATE	26

COB_EXCEPTION	25

COB_EXITPER	25

COB_EXITPROG	25

COB_EXITTEST	25

COB_INLINE	24

COB_PARAGRAPH	24

COB_PROGRAMM	24

COB_SEARCH	26

COB_SECTION	24

COB_TIMES	25

COB_VARYINGAFTER	25

COMMENT	21

Comment construct	5

COND	20

Configuration file	4

Constructs	18

CPP - use of constructs	32

CYCLE	19

D

Debugging	16

DEFAULT	24

DETACH	23

DOS source files	5

DS - use of constructs	31

DUMMY	18

E

easy_parse	7

ENTRY	26

error file	15

Error messages	15

Examples	35

EXIT	22

Exit perform	25

Exit program	25

F

File-specific information	33

FOR	22

FREE FORMAT	23

FUNC	30

Functionality	5

Functions	7

H

Highest level-ID	34

I

IF	19

IF layout	33

IFERROR	23

INI file	4

Inline Perform	24

ISP	23

J

JETPROC	23

L

LEAVE	23

level	10; 21

Line numbers	33

N

NOT	20

O

OEM	9

OR	20

P

parse_error	13

Parser configuration	17

Parser DLL	4

Perform Times	25

Perform varying after	25

PET_AGBLOCK	27

PET_BLOCK	27

PET_ELSE	27

PET_FOR	27

PET_IF	27

PET_IFBLOCKERROR	28

PET_IFBRANCH	28

PET_IFCMDERROR	28

PET_INTPROC	30

PET_JUMPRESTART	27

PET_PROC	28

PET_REPEAT	27

PET_WHILE	27

Printer font	34

PRIVATE	28

PROC	26

PROG_AUFRUF	29

PROTECTED	29

PUBLIC	29

R

RAHMEN	26

REPEAT	22

RETURN	24

S

Screen font	33

Segment	5

Segment numbers	33

Short info	33

Source code

analysis	4

SP, SPX - use of constructs	31

SWITCH	22

SWITCHBRANCH	22

T

TREE	5

U

Unix source files	5

Use of constructs	31

V

VARIABLE	24

VARIANTE	29

W

warnings	15

WHEN	22

WHILE	19

WIEDER	26

write_debug	14

write_element	9

write_level_end	12

write_level_start	10

write_tree_end	13

write_tree_start	12

X

XOR	28

�
�

�This internal file format is represented by a tree, therefore the functions are named write_tree_start etc.

�A more suitable name for this construct would be text construct.

�Therefore the parser DLL must replace existing TABs with the corresponding number of blanks.

�* means 0 or more repetitions, + means 1 or more repetitions.

�In Windows, this is the case if the DLL uses global variables (in their own data segment) and takes no further steps (such as assigning global variables to calling programs or the like), since in Windows, a DLL will always be loaded only once. In Windows NT, this problem has been eliminated (DLLs may be DATA MULTIPLE).

�The maximum size of a segment depends on the resolution of the output device and the selected font. The structure diagram to be displayed may comprise about 32000 pixels in width and height.

�The top level of a structure diagram is also displayed as a segment.

� Makeshift solution for import DLL: In the case of EasyCODE(COB), the Offset for the level comment will be delivered in the component column of the COBSTRING. This should be changed in case a new COBOL parser should become available.

�In some cases, EasyCODE components may also display constructs not available in the component concerned, but not all constructs were implemented in all components.

�When a condition is inserted, a dummy will be inserted, which will become a comment when edited.

Parser Interface	� FVREF "Überschrift 1" * FORMATVERBINDEN �Functions�

Technical Documentation	 �SEITE * ARABISCH�7�

