� TITLE * MERGEFORMAT �J-Write Component Library User Manual�

Issue 2.2

Fax:	(UK) 01962 735581�	(Int.) +44 1962 735581

EMail:	sales@mwassocs.demon.co.uk

WWW:	http://www.demon.co.uk/mwa-soft

MWA Software�P.O. Box 37�Alresford�SO24 9ZF�England

�

�COPYRIGHT

The copyright in this work is vested in McCallum Whyman Associates Ltd and the document is issued for the purpose only for which it is supplied. It must not be reproduced in whole or in part or used for tendering or manufacturing purposes except under an agreement or with the consent in writing of McCallum Whyman Associates Ltd and then only on the condition that this notice is included in any such reproduction.

	© Copyright McCallum Whyman Associates Ltd (1996)

MWA Software is a Trading Name of McCallum Whyman Associates Ltd (Registered in England, Registration No. 2624328)

All Trademarks acknowledged.

�List of Contents

� TOC \o "1-3" �1. Introduction	� GOTOBUTTON _Toc372293254 � PAGEREF _Toc372293254 �1��

2. Installing and Removing the Component Library	� GOTOBUTTON _Toc372293255 � PAGEREF _Toc372293255 �3��

2.1 Installation	� GOTOBUTTON _Toc372293256 � PAGEREF _Toc372293256 �3��

2.2 Installing the J-Write Components Help File	� GOTOBUTTON _Toc372293257 � PAGEREF _Toc372293257 �5��

2.3 Removing the J-Write Component Library	� GOTOBUTTON _Toc372293258 � PAGEREF _Toc372293258 �5��

3. The Architecture of the Component Library	� GOTOBUTTON _Toc372293259 � PAGEREF _Toc372293259 �7��

3.1 Document Components	� GOTOBUTTON _Toc372293260 � PAGEREF _Toc372293260 �8��

3.1.1 TTextBuffer	� GOTOBUTTON _Toc372293261 � PAGEREF _Toc372293261 �8��

3.1.2 TLinesBuffer	� GOTOBUTTON _Toc372293262 � PAGEREF _Toc372293262 �8��

3.1.3 TTextStream	� GOTOBUTTON _Toc372293263 � PAGEREF _Toc372293263 �10��

3.1.4 TStreamSegment	� GOTOBUTTON _Toc372293264 � PAGEREF _Toc372293264 �10��

3.1.5 TSegmentList	� GOTOBUTTON _Toc372293265 � PAGEREF _Toc372293265 �11��

3.1.6 TVirtualStreamList	� GOTOBUTTON _Toc372293266 � PAGEREF _Toc372293266 �11��

3.1.7 TFreeList	� GOTOBUTTON _Toc372293267 � PAGEREF _Toc372293267 �11��

3.1.8 TAllocatedSegment	� GOTOBUTTON _Toc372293268 � PAGEREF _Toc372293268 �12��

3.1.9 TMemoryBuffer	� GOTOBUTTON _Toc372293269 � PAGEREF _Toc372293269 �12��

3.1.10 TEditStream	� GOTOBUTTON _Toc372293270 � PAGEREF _Toc372293270 �12��

3.1.11 TUndoInfo	� GOTOBUTTON _Toc372293271 � PAGEREF _Toc372293271 �13��

3.1.12 TUndoList	� GOTOBUTTON _Toc372293272 � PAGEREF _Toc372293272 �13��

3.2 Viewer Components	� GOTOBUTTON _Toc372293273 � PAGEREF _Toc372293273 �14��

3.2.1 TFlickerFreeControl	� GOTOBUTTON _Toc372293274 � PAGEREF _Toc372293274 �14��

3.2.2 TLinesViewer	� GOTOBUTTON _Toc372293275 � PAGEREF _Toc372293275 �14��

3.2.3 TWinScrollBar	� GOTOBUTTON _Toc372293276 � PAGEREF _Toc372293276 �16��

3.2.4 TKeyManager	� GOTOBUTTON _Toc372293277 � PAGEREF _Toc372293277 �16��

3.2.5 TTextViewer	� GOTOBUTTON _Toc372293278 � PAGEREF _Toc372293278 �16��

3.2.6 TStreamViewer	� GOTOBUTTON _Toc372293279 � PAGEREF _Toc372293279 �18��

3.2.7 TFileViewer	� GOTOBUTTON _Toc372293280 � PAGEREF _Toc372293280 �18��

3.2.8 TBigEditor	� GOTOBUTTON _Toc372293281 � PAGEREF _Toc372293281 �18��

3.2.9 TStreamEditor	� GOTOBUTTON _Toc372293282 � PAGEREF _Toc372293282 �18��

3.2.10 TFileEditor	� GOTOBUTTON _Toc372293283 � PAGEREF _Toc372293283 �18��

3.2.11 TJWDBEdit	� GOTOBUTTON _Toc372293284 � PAGEREF _Toc372293284 �19��

3.2.12 TBigMemo	� GOTOBUTTON _Toc372293285 � PAGEREF _Toc372293285 �20��

3.3 EMail Extensions	� GOTOBUTTON _Toc372293286 � PAGEREF _Toc372293286 �20��

3.3.1 TSumCheck	� GOTOBUTTON _Toc372293287 � PAGEREF _Toc372293287 �20��

3.3.2 TUUBase	� GOTOBUTTON _Toc372293288 � PAGEREF _Toc372293288 �21��

3.3.3 TUUEncode	� GOTOBUTTON _Toc372293289 � PAGEREF _Toc372293289 �21��

3.3.4 TUUDecode	� GOTOBUTTON _Toc372293290 � PAGEREF _Toc372293290 �21��

3.3.5 TMailEditor	� GOTOBUTTON _Toc372293291 � PAGEREF _Toc372293291 �21��

3.4 Progress Meter	� GOTOBUTTON _Toc372293292 � PAGEREF _Toc372293292 �23��

3.5 Units	� GOTOBUTTON _Toc372293293 � PAGEREF _Toc372293293 �23��

3.5.1 TextBuff	� GOTOBUTTON _Toc372293294 � PAGEREF _Toc372293294 �23��

3.5.2 FileView	� GOTOBUTTON _Toc372293295 � PAGEREF _Toc372293295 �23��

3.5.3 UUEncode	� GOTOBUTTON _Toc372293296 � PAGEREF _Toc372293296 �24��

3.5.4 MailEdit	� GOTOBUTTON _Toc372293297 � PAGEREF _Toc372293297 �24��

3.5.5 JWRun	� GOTOBUTTON _Toc372293298 � PAGEREF _Toc372293298 �24��

3.5.6 KeyEdit	� GOTOBUTTON _Toc372293299 � PAGEREF _Toc372293299 �24��

4. Using the J-Write Components	� GOTOBUTTON _Toc372293300 � PAGEREF _Toc372293300 �25��

4.1 The MDIEdit Example Application	� GOTOBUTTON _Toc372293301 � PAGEREF _Toc372293301 �25��

4.1.1 Creating The MDIEdit Application	� GOTOBUTTON _Toc372293302 � PAGEREF _Toc372293302 �25��

4.1.2 File|New and File|Open	� GOTOBUTTON _Toc372293303 � PAGEREF _Toc372293303 �25��

4.1.3 The Child Form’s Menu	� GOTOBUTTON _Toc372293304 � PAGEREF _Toc372293304 �25��

4.1.4 File|Save and File|SaveAs	� GOTOBUTTON _Toc372293305 � PAGEREF _Toc372293305 �26��

4.1.5 Search and Replace	� GOTOBUTTON _Toc372293306 � PAGEREF _Toc372293306 �27��

4.1.6 The Speed Buttons	� GOTOBUTTON _Toc372293307 � PAGEREF _Toc372293307 �28��

4.1.7 Enabling Menu Items and Speed Buttons	� GOTOBUTTON _Toc372293308 � PAGEREF _Toc372293308 �28��

4.1.8 Reporting Progress	� GOTOBUTTON _Toc372293309 � PAGEREF _Toc372293309 �28��

4.1.9 Position Information	� GOTOBUTTON _Toc372293310 � PAGEREF _Toc372293310 �29��

4.1.10 Printer Setup	� GOTOBUTTON _Toc372293311 � PAGEREF _Toc372293311 �29��

4.1.11 Handling Bookmarks	� GOTOBUTTON _Toc372293312 � PAGEREF _Toc372293312 �30��

4.2 The DBDemo Application	� GOTOBUTTON _Toc372293313 � PAGEREF _Toc372293313 �30��

4.2.1 Building the Application	� GOTOBUTTON _Toc372293314 � PAGEREF _Toc372293314 �30��

4.2.2 Running the Application	� GOTOBUTTON _Toc372293315 � PAGEREF _Toc372293315 �31��

4.3 Programmatic Access to J-Write Components	� GOTOBUTTON _Toc372293316 � PAGEREF _Toc372293316 �31��

4.3.1 Direct Text Editing	� GOTOBUTTON _Toc372293317 � PAGEREF _Toc372293317 �31��

4.3.2 The Keyboard Response Methods	� GOTOBUTTON _Toc372293318 � PAGEREF _Toc372293318 �32��

5. Reference Manual	� GOTOBUTTON _Toc372293319 � PAGEREF _Toc372293319 �35��

5.1 Public Properties	� GOTOBUTTON _Toc372293320 � PAGEREF _Toc372293320 �35��

5.1.1 ActualCharWidth	� GOTOBUTTON _Toc372293321 � PAGEREF _Toc372293321 �35��

5.1.2 AltCopyKey	� GOTOBUTTON _Toc372293322 � PAGEREF _Toc372293322 �35��

5.1.3 AltCutKey	� GOTOBUTTON _Toc372293323 � PAGEREF _Toc372293323 �35��

5.1.4 AltPasteKey	� GOTOBUTTON _Toc372293324 � PAGEREF _Toc372293324 �35��

5.1.5 AssumedShiftState	� GOTOBUTTON _Toc372293325 � PAGEREF _Toc372293325 �36��

5.1.6 AutoDisplay	� GOTOBUTTON _Toc372293326 � PAGEREF _Toc372293326 �36��

5.1.7 AutoIdle	� GOTOBUTTON _Toc372293327 � PAGEREF _Toc372293327 �36��

5.1.8 AutoScroll	� GOTOBUTTON _Toc372293328 � PAGEREF _Toc372293328 �36��

5.1.9 BackSpaceKey	� GOTOBUTTON _Toc372293329 � PAGEREF _Toc372293329 �36��

5.1.10 BackupFile	� GOTOBUTTON _Toc372293330 � PAGEREF _Toc372293330 �37��

5.1.11 BookMark	� GOTOBUTTON _Toc372293331 � PAGEREF _Toc372293331 �37��

5.1.12 BottomPrinterMargin	� GOTOBUTTON _Toc372293332 � PAGEREF _Toc372293332 �37��

5.1.13 BusyCursor	� GOTOBUTTON _Toc372293333 � PAGEREF _Toc372293333 �37��

5.1.14 CancelKey	� GOTOBUTTON _Toc372293334 � PAGEREF _Toc372293334 �37��

5.1.15 Canvas	� GOTOBUTTON _Toc372293335 � PAGEREF _Toc372293335 �37��

5.1.16 Caret	� GOTOBUTTON _Toc372293336 � PAGEREF _Toc372293336 �38��

5.1.17 CaretPos	� GOTOBUTTON _Toc372293337 � PAGEREF _Toc372293337 �38��

5.1.18 CharHeight	� GOTOBUTTON _Toc372293338 � PAGEREF _Toc372293338 �38��

5.1.19 CharNumber	� GOTOBUTTON _Toc372293339 � PAGEREF _Toc372293339 �38��

5.1.20 ClickSize	� GOTOBUTTON _Toc372293340 � PAGEREF _Toc372293340 �38��

5.1.21 CopyKey	� GOTOBUTTON _Toc372293341 � PAGEREF _Toc372293341 �39��

5.1.22 CutKey	� GOTOBUTTON _Toc372293342 � PAGEREF _Toc372293342 �39��

5.1.23 DataField	� GOTOBUTTON _Toc372293343 � PAGEREF _Toc372293343 �39��

5.1.24 DataSource	� GOTOBUTTON _Toc372293344 � PAGEREF _Toc372293344 �39��

5.1.25 DeleteKey	� GOTOBUTTON _Toc372293345 � PAGEREF _Toc372293345 �39��

5.1.26 DeleteLineKey	� GOTOBUTTON _Toc372293346 � PAGEREF _Toc372293346 �39��

5.1.27 DeleteWordKey	� GOTOBUTTON _Toc372293347 � PAGEREF _Toc372293347 �40��

5.1.28 DelLineEndKey	� GOTOBUTTON _Toc372293348 � PAGEREF _Toc372293348 �40��

5.1.29 DelLineStartKey	� GOTOBUTTON _Toc372293349 � PAGEREF _Toc372293349 �40��

5.1.30 DisplayCharWidth	� GOTOBUTTON _Toc372293350 � PAGEREF _Toc372293350 �40��

5.1.31 DoubleClickMode	� GOTOBUTTON _Toc372293351 � PAGEREF _Toc372293351 �40��

5.1.32 DragMargin	� GOTOBUTTON _Toc372293352 � PAGEREF _Toc372293352 �40��

5.1.33 EditCancelKey	� GOTOBUTTON _Toc372293353 � PAGEREF _Toc372293353 �41��

5.1.34 EffectiveLineNumber	� GOTOBUTTON _Toc372293354 � PAGEREF _Toc372293354 �41��

5.1.35 Error	� GOTOBUTTON _Toc372293355 � PAGEREF _Toc372293355 �41��

5.1.36 EstimatedLineNumber	� GOTOBUTTON _Toc372293356 � PAGEREF _Toc372293356 �41��

5.1.37 FileLocking	� GOTOBUTTON _Toc372293357 � PAGEREF _Toc372293357 �41��

5.1.38 FileName	� GOTOBUTTON _Toc372293358 � PAGEREF _Toc372293358 �42��

5.1.39 FileName	� GOTOBUTTON _Toc372293359 � PAGEREF _Toc372293359 �42��

5.1.40 HardPageBreakStyle	� GOTOBUTTON _Toc372293360 � PAGEREF _Toc372293360 �42��

5.1.41 HorzScrollBar	� GOTOBUTTON _Toc372293361 � PAGEREF _Toc372293361 �42��

5.1.42 InsertKey	� GOTOBUTTON _Toc372293362 � PAGEREF _Toc372293362 �42��

5.1.43 InsertOn	� GOTOBUTTON _Toc372293363 � PAGEREF _Toc372293363 �42��

5.1.44 KeepBookmarks	� GOTOBUTTON _Toc372293364 � PAGEREF _Toc372293364 �43��

5.1.45 LastPageBreak	� GOTOBUTTON _Toc372293365 � PAGEREF _Toc372293365 �43��

5.1.46 LastLine	� GOTOBUTTON _Toc372293366 � PAGEREF _Toc372293366 �43��

5.1.47 LeftArrowKey	� GOTOBUTTON _Toc372293367 � PAGEREF _Toc372293367 �43��

5.1.48 LeftMargin	� GOTOBUTTON _Toc372293368 � PAGEREF _Toc372293368 �43��

5.1.49 LeftPrinterMargin	� GOTOBUTTON _Toc372293369 � PAGEREF _Toc372293369 �43��

5.1.50 Limit	� GOTOBUTTON _Toc372293370 � PAGEREF _Toc372293370 �44��

5.1.51 LineDownKey	� GOTOBUTTON _Toc372293371 � PAGEREF _Toc372293371 �44��

5.1.52 LineEndKey	� GOTOBUTTON _Toc372293372 � PAGEREF _Toc372293372 �44��

5.1.53 LineLength	� GOTOBUTTON _Toc372293373 � PAGEREF _Toc372293373 �44��

5.1.54 LineNumber	� GOTOBUTTON _Toc372293374 � PAGEREF _Toc372293374 �44��

5.1.55 LineNumberMode	� GOTOBUTTON _Toc372293375 � PAGEREF _Toc372293375 �45��

5.1.56 LineStartKey	� GOTOBUTTON _Toc372293376 � PAGEREF _Toc372293376 �45��

5.1.57 LineUpKey	� GOTOBUTTON _Toc372293377 � PAGEREF _Toc372293377 �45��

5.1.58 LineWidth	� GOTOBUTTON _Toc372293378 � PAGEREF _Toc372293378 �45��

5.1.59 MailQuote	� GOTOBUTTON _Toc372293379 � PAGEREF _Toc372293379 �45��

5.1.60 MaxLineLength	� GOTOBUTTON _Toc372293380 � PAGEREF _Toc372293380 �45��

5.1.61 MaxUndoLevels	� GOTOBUTTON _Toc372293381 � PAGEREF _Toc372293381 �46��

5.1.62 MaxUndoLevels	� GOTOBUTTON _Toc372293382 � PAGEREF _Toc372293382 �46��

5.1.63 MaxTextSize	� GOTOBUTTON _Toc372293383 � PAGEREF _Toc372293383 �46��

5.1.64 MaxWidth	� GOTOBUTTON _Toc372293384 � PAGEREF _Toc372293384 �46��

5.1.65 Mode	� GOTOBUTTON _Toc372293385 � PAGEREF _Toc372293385 �46��

5.1.66 Mode	� GOTOBUTTON _Toc372293386 � PAGEREF _Toc372293386 �47��

5.1.67 Modified	� GOTOBUTTON _Toc372293387 � PAGEREF _Toc372293387 �47��

5.1.68 Modified	� GOTOBUTTON _Toc372293388 � PAGEREF _Toc372293388 �47��

5.1.69 NewLineKey	� GOTOBUTTON _Toc372293389 � PAGEREF _Toc372293389 �47��

5.1.70 NumberOfPages	� GOTOBUTTON _Toc372293390 � PAGEREF _Toc372293390 �47��

5.1.71 OEMConvert	� GOTOBUTTON _Toc372293391 � PAGEREF _Toc372293391 �48��

5.1.72 OEMConvert	� GOTOBUTTON _Toc372293392 � PAGEREF _Toc372293392 �48��

5.1.73 OutputDevice	� GOTOBUTTON _Toc372293393 � PAGEREF _Toc372293393 �48��

5.1.74 PageBreakCount	� GOTOBUTTON _Toc372293394 � PAGEREF _Toc372293394 �48��

5.1.75 PageDownKey	� GOTOBUTTON _Toc372293395 � PAGEREF _Toc372293395 �48��

5.1.76 PageNumber	� GOTOBUTTON _Toc372293396 � PAGEREF _Toc372293396 �49��

5.1.77 PageSize	� GOTOBUTTON _Toc372293397 � PAGEREF _Toc372293397 �49��

5.1.78 PageUpKey	� GOTOBUTTON _Toc372293398 � PAGEREF _Toc372293398 �49��

5.1.79 PasteKey	� GOTOBUTTON _Toc372293399 � PAGEREF _Toc372293399 �49��

5.1.80 PercentDone	� GOTOBUTTON _Toc372293400 � PAGEREF _Toc372293400 �49��

5.1.81 Position	� GOTOBUTTON _Toc372293401 � PAGEREF _Toc372293401 �49��

5.1.82 PrinterCharWidth	� GOTOBUTTON _Toc372293402 � PAGEREF _Toc372293402 �50��

5.1.83 PrinterFooterMargin	� GOTOBUTTON _Toc372293403 � PAGEREF _Toc372293403 �50��

5.1.84 PrinterHeaderMargin	� GOTOBUTTON _Toc372293404 � PAGEREF _Toc372293404 �50��

5.1.85 QuickKey	� GOTOBUTTON _Toc372293405 � PAGEREF _Toc372293405 �50��

5.1.86 ReadOnly	� GOTOBUTTON _Toc372293406 � PAGEREF _Toc372293406 �50��

5.1.87 RedoCount	� GOTOBUTTON _Toc372293407 � PAGEREF _Toc372293407 �51��

5.1.88 RedoKey	� GOTOBUTTON _Toc372293408 � PAGEREF _Toc372293408 �51��

5.1.89 RightArrowKey	� GOTOBUTTON _Toc372293409 � PAGEREF _Toc372293409 �51��

5.1.90 RightMargin	� GOTOBUTTON _Toc372293410 � PAGEREF _Toc372293410 �51��

5.1.91 RightPrinterMargin	� GOTOBUTTON _Toc372293411 � PAGEREF _Toc372293411 �51��

5.1.92 SaveMode	� GOTOBUTTON _Toc372293412 � PAGEREF _Toc372293412 �51��

5.1.93 ScrollDownKey	� GOTOBUTTON _Toc372293413 � PAGEREF _Toc372293413 �52��

5.1.94 ScrollUpKey	� GOTOBUTTON _Toc372293414 � PAGEREF _Toc372293414 �52��

5.1.95 SelectAfterPaste	� GOTOBUTTON _Toc372293415 � PAGEREF _Toc372293415 �52��

5.1.96 SelectionSize	� GOTOBUTTON _Toc372293416 � PAGEREF _Toc372293416 �52��

5.1.97 ShowLineBreaks	� GOTOBUTTON _Toc372293417 � PAGEREF _Toc372293417 �52��

5.1.98 ShowPageBreaks	� GOTOBUTTON _Toc372293418 � PAGEREF _Toc372293418 �53��

5.1.99 Size	� GOTOBUTTON _Toc372293419 � PAGEREF _Toc372293419 �53��

5.1.100 Size	� GOTOBUTTON _Toc372293420 � PAGEREF _Toc372293420 �53��

5.1.101 SoftPageBreakStyle	� GOTOBUTTON _Toc372293421 � PAGEREF _Toc372293421 �53��

5.1.102 SourceStream	� GOTOBUTTON _Toc372293422 � PAGEREF _Toc372293422 �53��

5.1.103 SourceStream	� GOTOBUTTON _Toc372293423 � PAGEREF _Toc372293423 �53��

5.1.104 SourceStream	� GOTOBUTTON _Toc372293424 � PAGEREF _Toc372293424 �54��

5.1.105 State	� GOTOBUTTON _Toc372293425 � PAGEREF _Toc372293425 �54��

5.1.106 Stream	� GOTOBUTTON _Toc372293426 � PAGEREF _Toc372293426 �54��

5.1.107 TabCount	� GOTOBUTTON _Toc372293427 � PAGEREF _Toc372293427 �54��

5.1.108 TabStops[]	� GOTOBUTTON _Toc372293428 � PAGEREF _Toc372293428 �54��

5.1.109 Text	� GOTOBUTTON _Toc372293429 � PAGEREF _Toc372293429 �55��

5.1.110 Text[]	� GOTOBUTTON _Toc372293430 � PAGEREF _Toc372293430 �55��

5.1.111 TextEndKey	� GOTOBUTTON _Toc372293431 � PAGEREF _Toc372293431 �55��

5.1.112 TextSize	� GOTOBUTTON _Toc372293432 � PAGEREF _Toc372293432 �55��

5.1.113 TextStartKey	� GOTOBUTTON _Toc372293433 � PAGEREF _Toc372293433 �55��

5.1.114 TopPrinterMargin	� GOTOBUTTON _Toc372293434 � PAGEREF _Toc372293434 �55��

5.1.115 Tracking	� GOTOBUTTON _Toc372293435 � PAGEREF _Toc372293435 �56��

5.1.116 TripleClickForParagraph	� GOTOBUTTON _Toc372293436 � PAGEREF _Toc372293436 �56��

5.1.117 UndoCount	� GOTOBUTTON _Toc372293437 � PAGEREF _Toc372293437 �56��

5.1.118 UndoKey	� GOTOBUTTON _Toc372293438 � PAGEREF _Toc372293438 �56��

5.1.119 Valid	� GOTOBUTTON _Toc372293439 � PAGEREF _Toc372293439 �56��

5.1.120 VertScrollBar	� GOTOBUTTON _Toc372293440 � PAGEREF _Toc372293440 �56��

5.1.121 Visible	� GOTOBUTTON _Toc372293441 � PAGEREF _Toc372293441 �57��

5.1.122 WantTabs	� GOTOBUTTON _Toc372293442 � PAGEREF _Toc372293442 �57��

5.1.123 WordLeftKey	� GOTOBUTTON _Toc372293443 � PAGEREF _Toc372293443 �57��

5.1.124 WordRightKey	� GOTOBUTTON _Toc372293444 � PAGEREF _Toc372293444 �57��

5.1.125 WPMode	� GOTOBUTTON _Toc372293445 � PAGEREF _Toc372293445 �57��

5.1.126 WrapMode	� GOTOBUTTON _Toc372293446 � PAGEREF _Toc372293446 �57��

5.1.127 ZoomFactor	� GOTOBUTTON _Toc372293447 � PAGEREF _Toc372293447 �58��

5.2 Events	� GOTOBUTTON _Toc372293448 � PAGEREF _Toc372293448 �58��

5.2.1 OnAbortRequest	� GOTOBUTTON _Toc372293449 � PAGEREF _Toc372293449 �58��

5.2.2 OnAfterUndo	� GOTOBUTTON _Toc372293450 � PAGEREF _Toc372293450 �58��

5.2.3 OnBeforeUndo	� GOTOBUTTON _Toc372293451 � PAGEREF _Toc372293451 �58��

5.2.4 OnBlockDecode	� GOTOBUTTON _Toc372293452 � PAGEREF _Toc372293452 �59��

5.2.5 OnBlockEncode	� GOTOBUTTON _Toc372293453 � PAGEREF _Toc372293453 �59��

5.2.6 OnCaretMoved	� GOTOBUTTON _Toc372293454 � PAGEREF _Toc372293454 �59��

5.2.7 OnChange	� GOTOBUTTON _Toc372293455 � PAGEREF _Toc372293455 �59��

5.2.8 OnChange	� GOTOBUTTON _Toc372293456 � PAGEREF _Toc372293456 �59��

5.2.9 OnChange	� GOTOBUTTON _Toc372293457 � PAGEREF _Toc372293457 �59��

5.2.10 OnEditCancel	� GOTOBUTTON _Toc372293458 � PAGEREF _Toc372293458 �60��

5.2.11 OnEndDecode	� GOTOBUTTON _Toc372293459 � PAGEREF _Toc372293459 �60��

5.2.12 OnEnter	� GOTOBUTTON _Toc372293460 � PAGEREF _Toc372293460 �60��

5.2.13 OnExit	� GOTOBUTTON _Toc372293461 � PAGEREF _Toc372293461 �60��

5.2.14 OnKeyCode	� GOTOBUTTON _Toc372293462 � PAGEREF _Toc372293462 �60��

5.2.15 OnModified	� GOTOBUTTON _Toc372293463 � PAGEREF _Toc372293463 �60��

5.2.16 OnNewFileName	� GOTOBUTTON _Toc372293464 � PAGEREF _Toc372293464 �61��

5.2.17 OnPagePrint	� GOTOBUTTON _Toc372293465 � PAGEREF _Toc372293465 �61��

5.2.18 OnProgressEvent	� GOTOBUTTON _Toc372293466 � PAGEREF _Toc372293466 �61��

5.2.19 OnReplaceAll	� GOTOBUTTON _Toc372293467 � PAGEREF _Toc372293467 �61��

5.2.20 OnSaveModePrompt	� GOTOBUTTON _Toc372293468 � PAGEREF _Toc372293468 �61��

5.2.21 OnSaveModified	� GOTOBUTTON _Toc372293469 � PAGEREF _Toc372293469 �62��

5.2.22 OnSaveNewFile	� GOTOBUTTON _Toc372293470 � PAGEREF _Toc372293470 �62��

5.2.23 OnSaveUndo	� GOTOBUTTON _Toc372293471 � PAGEREF _Toc372293471 �62��

5.2.24 OnSaveUndo	� GOTOBUTTON _Toc372293472 � PAGEREF _Toc372293472 �62��

5.2.25 OnScroll	� GOTOBUTTON _Toc372293473 � PAGEREF _Toc372293473 �62��

5.2.26 OnSearchStatus	� GOTOBUTTON _Toc372293474 � PAGEREF _Toc372293474 �63��

5.2.27 OnStartDecode	� GOTOBUTTON _Toc372293475 � PAGEREF _Toc372293475 �63��

5.2.28 OnStateChange	� GOTOBUTTON _Toc372293476 � PAGEREF _Toc372293476 �63��

5.2.29 OnUndo	� GOTOBUTTON _Toc372293477 � PAGEREF _Toc372293477 �63��

5.2.30 OnUndo	� GOTOBUTTON _Toc372293478 � PAGEREF _Toc372293478 �63��

5.2.31 OnUndoChange	� GOTOBUTTON _Toc372293479 � PAGEREF _Toc372293479 �63��

5.2.32 OnUndoChange	� GOTOBUTTON _Toc372293480 � PAGEREF _Toc372293480 �64��

5.2.33 OnWrapModeChange	� GOTOBUTTON _Toc372293481 � PAGEREF _Toc372293481 �64��

5.2.34 OnWriteProtect	� GOTOBUTTON _Toc372293482 � PAGEREF _Toc372293482 �64��

5.3 Public Procedures	� GOTOBUTTON _Toc372293483 � PAGEREF _Toc372293483 �64��

5.3.1 AddBuffer	� GOTOBUTTON _Toc372293484 � PAGEREF _Toc372293484 �64��

5.3.2 AddLine	� GOTOBUTTON _Toc372293485 � PAGEREF _Toc372293485 �64��

5.3.3 AllocBookMark	� GOTOBUTTON _Toc372293486 � PAGEREF _Toc372293486 �65��

5.3.4 Append	� GOTOBUTTON _Toc372293487 � PAGEREF _Toc372293487 �65��

5.3.5 AtPageBreak	� GOTOBUTTON _Toc372293488 � PAGEREF _Toc372293488 �65��

5.3.6 AppendString	� GOTOBUTTON _Toc372293489 � PAGEREF _Toc372293489 �65��

5.3.7 BackSpace	� GOTOBUTTON _Toc372293490 � PAGEREF _Toc372293490 �65��

5.3.8 CancelSelection	� GOTOBUTTON _Toc372293491 � PAGEREF _Toc372293491 �65��

5.3.9 Capitalise	� GOTOBUTTON _Toc372293492 � PAGEREF _Toc372293492 �66��

5.3.10 CharLeft	� GOTOBUTTON _Toc372293493 � PAGEREF _Toc372293493 �66��

5.3.11 CharRight	� GOTOBUTTON _Toc372293494 � PAGEREF _Toc372293494 �66��

5.3.12 Clear	� GOTOBUTTON _Toc372293495 � PAGEREF _Toc372293495 �66��

5.3.13 Clear	� GOTOBUTTON _Toc372293496 � PAGEREF _Toc372293496 �66��

5.3.14 ClearLastUndoLink	� GOTOBUTTON _Toc372293497 � PAGEREF _Toc372293497 �67��

5.3.15 ClearTransactionBoundary	� GOTOBUTTON _Toc372293498 � PAGEREF _Toc372293498 �67��

5.3.16 Close	� GOTOBUTTON _Toc372293499 � PAGEREF _Toc372293499 �67��

5.3.17 Copy	� GOTOBUTTON _Toc372293500 � PAGEREF _Toc372293500 �67��

5.3.18 Copy	� GOTOBUTTON _Toc372293501 � PAGEREF _Toc372293501 �67��

5.3.19 CopyOf	� GOTOBUTTON _Toc372293502 � PAGEREF _Toc372293502 �68��

5.3.20 CopyText	� GOTOBUTTON _Toc372293503 � PAGEREF _Toc372293503 �68��

5.3.21 CopyToClipBoard	� GOTOBUTTON _Toc372293504 � PAGEREF _Toc372293504 �68��

5.3.22 CopyToMem	� GOTOBUTTON _Toc372293505 � PAGEREF _Toc372293505 �68��

5.3.23 CopyToStream	� GOTOBUTTON _Toc372293506 � PAGEREF _Toc372293506 �68��

5.3.24 CopyToStream	� GOTOBUTTON _Toc372293507 � PAGEREF _Toc372293507 �68��

5.3.25 Cut	� GOTOBUTTON _Toc372293508 � PAGEREF _Toc372293508 �69��

5.3.26 CutToClipBoard	� GOTOBUTTON _Toc372293509 � PAGEREF _Toc372293509 �69��

5.3.27 DeAllocate	� GOTOBUTTON _Toc372293510 � PAGEREF _Toc372293510 �69��

5.3.28 Delete	� GOTOBUTTON _Toc372293511 � PAGEREF _Toc372293511 �69��

5.3.29 DeleteBookMark	� GOTOBUTTON _Toc372293512 � PAGEREF _Toc372293512 �69��

5.3.30 DeleteChar	� GOTOBUTTON _Toc372293513 � PAGEREF _Toc372293513 �69��

5.3.31 DeleteColumnText	� GOTOBUTTON _Toc372293514 � PAGEREF _Toc372293514 �70��

5.3.32 DeleteLine	� GOTOBUTTON _Toc372293515 � PAGEREF _Toc372293515 �70��

5.3.33 DeleteLineEnd	� GOTOBUTTON _Toc372293516 � PAGEREF _Toc372293516 �70��

5.3.34 DeleteLineStart	� GOTOBUTTON _Toc372293517 � PAGEREF _Toc372293517 �70��

5.3.35 DeleteSelection	� GOTOBUTTON _Toc372293518 � PAGEREF _Toc372293518 �71��

5.3.36 DeleteText	� GOTOBUTTON _Toc372293519 � PAGEREF _Toc372293519 �71��

5.3.37 DeleteWord	� GOTOBUTTON _Toc372293520 � PAGEREF _Toc372293520 �71��

5.3.38 EndOfLine	� GOTOBUTTON _Toc372293521 � PAGEREF _Toc372293521 �71��

5.3.39 EndOftext	� GOTOBUTTON _Toc372293522 � PAGEREF _Toc372293522 �71��

5.3.40 ExtendSelection	� GOTOBUTTON _Toc372293523 � PAGEREF _Toc372293523 �72��

5.3.41 Find	� GOTOBUTTON _Toc372293524 � PAGEREF _Toc372293524 �72��

5.3.42 FindNext	� GOTOBUTTON _Toc372293525 � PAGEREF _Toc372293525 �73��

5.3.43 FlowText	� GOTOBUTTON _Toc372293526 � PAGEREF _Toc372293526 �73��

5.3.44 GetBookMarkHandle	� GOTOBUTTON _Toc372293527 � PAGEREF _Toc372293527 �73��

5.3.45 GetCharAt	� GOTOBUTTON _Toc372293528 � PAGEREF _Toc372293528 �73��

5.3.46 GetDistanceBetween	� GOTOBUTTON _Toc372293529 � PAGEREF _Toc372293529 �74��

5.3.47 GetInitialFindStr	� GOTOBUTTON _Toc372293530 � PAGEREF _Toc372293530 �74��

5.3.48 GetNextLine	� GOTOBUTTON _Toc372293531 � PAGEREF _Toc372293531 �74��

5.3.49 GetSelection	� GOTOBUTTON _Toc372293532 � PAGEREF _Toc372293532 �75��

5.3.50 GetStartOfParagraph	� GOTOBUTTON _Toc372293533 � PAGEREF _Toc372293533 �75��

5.3.51 GetString	� GOTOBUTTON _Toc372293534 � PAGEREF _Toc372293534 �75��

5.3.52 GetString	� GOTOBUTTON _Toc372293535 � PAGEREF _Toc372293535 �75��

5.3.53 GetSum	� GOTOBUTTON _Toc372293536 � PAGEREF _Toc372293536 �75��

5.3.54 GetQuoteString	� GOTOBUTTON _Toc372293537 � PAGEREF _Toc372293537 �76��

5.3.55 GetUndoList	� GOTOBUTTON _Toc372293538 � PAGEREF _Toc372293538 �76��

5.3.56 GotoBookMark	� GOTOBUTTON _Toc372293539 � PAGEREF _Toc372293539 �76��

5.3.57 GotoLineNumber	� GOTOBUTTON _Toc372293540 � PAGEREF _Toc372293540 �76��

5.3.58 HandleOnIdle	� GOTOBUTTON _Toc372293541 � PAGEREF _Toc372293541 �76��

5.3.59 HandlePrinterChange	� GOTOBUTTON _Toc372293542 � PAGEREF _Toc372293542 �77��

5.3.60 Insert	� GOTOBUTTON _Toc372293543 � PAGEREF _Toc372293543 �77��

5.3.61 Insert	� GOTOBUTTON _Toc372293544 � PAGEREF _Toc372293544 �77��

5.3.62 InsertAfter	� GOTOBUTTON _Toc372293545 � PAGEREF _Toc372293545 �77��

5.3.63 InsertChar	� GOTOBUTTON _Toc372293546 � PAGEREF _Toc372293546 �77��

5.3.64 InsertCompressedFile	� GOTOBUTTON _Toc372293547 � PAGEREF _Toc372293547 �77��

5.3.65 InsertDateTime	� GOTOBUTTON _Toc372293548 � PAGEREF _Toc372293548 �78��

5.3.66 InsertEOL	� GOTOBUTTON _Toc372293549 � PAGEREF _Toc372293549 �78��

5.3.67 InsertFile	� GOTOBUTTON _Toc372293550 � PAGEREF _Toc372293550 �78��

5.3.68 InsertListAfter	� GOTOBUTTON _Toc372293551 � PAGEREF _Toc372293551 �78��

5.3.69 InsertMem	� GOTOBUTTON _Toc372293552 � PAGEREF _Toc372293552 �79��

5.3.70 InsertQuoteFile	� GOTOBUTTON _Toc372293553 � PAGEREF _Toc372293553 �79��

5.3.71 InsertSegmentList	� GOTOBUTTON _Toc372293554 � PAGEREF _Toc372293554 �79��

5.3.72 InsertSpaces	� GOTOBUTTON _Toc372293555 � PAGEREF _Toc372293555 �79��

5.3.73 InsertString	� GOTOBUTTON _Toc372293556 � PAGEREF _Toc372293556 �79��

5.3.74 InsertString	� GOTOBUTTON _Toc372293557 � PAGEREF _Toc372293557 �79��

5.3.75 IsEditable	� GOTOBUTTON _Toc372293558 � PAGEREF _Toc372293558 �80��

5.3.76 IsLinked	� GOTOBUTTON _Toc372293559 � PAGEREF _Toc372293559 �80��

5.3.77 IsSelectionMode	� GOTOBUTTON _Toc372293560 � PAGEREF _Toc372293560 �80��

5.3.78 LineBreakAt	� GOTOBUTTON _Toc372293561 � PAGEREF _Toc372293561 �80��

5.3.79 LineDown	� GOTOBUTTON _Toc372293562 � PAGEREF _Toc372293562 �80��

5.3.80 LineUp	� GOTOBUTTON _Toc372293563 � PAGEREF _Toc372293563 �80��

5.3.81 LoadFromStream	� GOTOBUTTON _Toc372293564 � PAGEREF _Toc372293564 �81��

5.3.82 Merge	� GOTOBUTTON _Toc372293565 � PAGEREF _Toc372293565 �81��

5.3.83 PageUp	� GOTOBUTTON _Toc372293566 � PAGEREF _Toc372293566 �81��

5.3.84 PageDown	� GOTOBUTTON _Toc372293567 � PAGEREF _Toc372293567 �81��

5.3.85 PasteFromClipBoard	� GOTOBUTTON _Toc372293568 � PAGEREF _Toc372293568 �81��

5.3.86 PasteQuoteFromClipboard	� GOTOBUTTON _Toc372293569 � PAGEREF _Toc372293569 �82��

5.3.87 PopUndoStack	� GOTOBUTTON _Toc372293570 � PAGEREF _Toc372293570 �82��

5.3.88 Prepend	� GOTOBUTTON _Toc372293571 � PAGEREF _Toc372293571 �82��

5.3.89 Print	� GOTOBUTTON _Toc372293572 � PAGEREF _Toc372293572 �82��

5.3.90 PushUndoStack	� GOTOBUTTON _Toc372293573 � PAGEREF _Toc372293573 �82��

5.3.91 QueryUndo	� GOTOBUTTON _Toc372293574 � PAGEREF _Toc372293574 �83��

5.3.92 Read	� GOTOBUTTON _Toc372293575 � PAGEREF _Toc372293575 �83��

5.3.93 Read	� GOTOBUTTON _Toc372293576 � PAGEREF _Toc372293576 �83��

5.3.94 Redo	� GOTOBUTTON _Toc372293577 � PAGEREF _Toc372293577 �83��

5.3.95 Redo	� GOTOBUTTON _Toc372293578 � PAGEREF _Toc372293578 �83��

5.3.96 ReformatQuotedText	� GOTOBUTTON _Toc372293579 � PAGEREF _Toc372293579 �83��

5.3.97 Refresh	� GOTOBUTTON _Toc372293580 � PAGEREF _Toc372293580 �84��

5.3.98 Replace	� GOTOBUTTON _Toc372293581 � PAGEREF _Toc372293581 �84��

5.3.99 ReplaceChar	� GOTOBUTTON _Toc372293582 � PAGEREF _Toc372293582 �84��

5.3.100 Reset	� GOTOBUTTON _Toc372293583 � PAGEREF _Toc372293583 �85��

5.3.101 RunDosProgram	� GOTOBUTTON _Toc372293584 � PAGEREF _Toc372293584 �85��

5.3.102 Save	� GOTOBUTTON _Toc372293585 � PAGEREF _Toc372293585 �85��

5.3.103 SaveAs	� GOTOBUTTON _Toc372293586 � PAGEREF _Toc372293586 �85��

5.3.104 SaveBuf	� GOTOBUTTON _Toc372293587 � PAGEREF _Toc372293587 �85��

5.3.105 SaveInsertInfo	� GOTOBUTTON _Toc372293588 � PAGEREF _Toc372293588 �85��

5.3.106 SaveSelection	� GOTOBUTTON _Toc372293589 � PAGEREF _Toc372293589 �86��

5.3.107 SaveUndo	� GOTOBUTTON _Toc372293590 � PAGEREF _Toc372293590 �86��

5.3.108 ScrollMessage	� GOTOBUTTON _Toc372293591 � PAGEREF _Toc372293591 �86��

5.3.109 ScrollUp	� GOTOBUTTON _Toc372293592 � PAGEREF _Toc372293592 �86��

5.3.110 ScrollDown	� GOTOBUTTON _Toc372293593 � PAGEREF _Toc372293593 �87��

5.3.111 Search	� GOTOBUTTON _Toc372293594 � PAGEREF _Toc372293594 �87��

5.3.112 Seek	� GOTOBUTTON _Toc372293595 � PAGEREF _Toc372293595 �87��

5.3.113 SelectAll	� GOTOBUTTON _Toc372293596 � PAGEREF _Toc372293596 �87��

5.3.114 SetTransactionBoundary	� GOTOBUTTON _Toc372293597 � PAGEREF _Toc372293597 �87��

5.3.115 SkipBackOverLineBreak	� GOTOBUTTON _Toc372293598 � PAGEREF _Toc372293598 �88��

5.3.116 Split	� GOTOBUTTON _Toc372293599 � PAGEREF _Toc372293599 �88��

5.3.117 StartOfLine	� GOTOBUTTON _Toc372293600 � PAGEREF _Toc372293600 �88��

5.3.118 StartOftext	� GOTOBUTTON _Toc372293601 � PAGEREF _Toc372293601 �88��

5.3.119 TabbedTextOut	� GOTOBUTTON _Toc372293602 � PAGEREF _Toc372293602 �88��

5.3.120 TextOut	� GOTOBUTTON _Toc372293603 � PAGEREF _Toc372293603 �89��

5.3.121 ToggleInsertMode	� GOTOBUTTON _Toc372293604 � PAGEREF _Toc372293604 �89��

5.3.122 ToggleWrapMode	� GOTOBUTTON _Toc372293605 � PAGEREF _Toc372293605 �89��

5.3.123 TranslateKey	� GOTOBUTTON _Toc372293606 � PAGEREF _Toc372293606 �89��

5.3.124 Undo	� GOTOBUTTON _Toc372293607 � PAGEREF _Toc372293607 �89��

5.3.125 Undo	� GOTOBUTTON _Toc372293608 � PAGEREF _Toc372293608 �89��

5.3.126 UUDecode	� GOTOBUTTON _Toc372293609 � PAGEREF _Toc372293609 �90��

5.3.127 UUDecode	� GOTOBUTTON _Toc372293610 � PAGEREF _Toc372293610 �90��

5.3.128 UUEncode	� GOTOBUTTON _Toc372293611 � PAGEREF _Toc372293611 �90��

5.3.129 UUEncodeFile	� GOTOBUTTON _Toc372293612 � PAGEREF _Toc372293612 �90��

5.3.130 WordLeft	� GOTOBUTTON _Toc372293613 � PAGEREF _Toc372293613 �90��

5.3.131 WordRight	� GOTOBUTTON _Toc372293614 � PAGEREF _Toc372293614 �91��

5.3.132 WidthOf	� GOTOBUTTON _Toc372293615 � PAGEREF _Toc372293615 �91��

5.4 Type Definitions	� GOTOBUTTON _Toc372293616 � PAGEREF _Toc372293616 �91��

5.4.1 TAbortEvent	� GOTOBUTTON _Toc372293617 � PAGEREF _Toc372293617 �91��

5.4.2 TDoubleClickModes	� GOTOBUTTON _Toc372293618 � PAGEREF _Toc372293618 �91��

5.4.3 TEditCancelEvent	� GOTOBUTTON _Toc372293619 � PAGEREF _Toc372293619 �91��

5.4.4 TKeyDefinition	� GOTOBUTTON _Toc372293620 � PAGEREF _Toc372293620 �91��

5.4.5 TKeyEventHandler	� GOTOBUTTON _Toc372293621 � PAGEREF _Toc372293621 �92��

5.4.6 TLineNumberModes	� GOTOBUTTON _Toc372293622 � PAGEREF _Toc372293622 �92��

5.4.7 TlbModes	� GOTOBUTTON _Toc372293623 � PAGEREF _Toc372293623 �92��

5.4.8 TLongPoint	� GOTOBUTTON _Toc372293624 � PAGEREF _Toc372293624 �92��

5.4.9 TOutputDevice	� GOTOBUTTON _Toc372293625 � PAGEREF _Toc372293625 �92��

5.4.10 TPageBreakDisplayModes	� GOTOBUTTON _Toc372293626 � PAGEREF _Toc372293626 �93��

5.4.11 TPrinterMargin	� GOTOBUTTON _Toc372293627 � PAGEREF _Toc372293627 �93��

5.4.12 TPrintEvent	� GOTOBUTTON _Toc372293628 � PAGEREF _Toc372293628 �93��

5.4.13 TProgressEvent	� GOTOBUTTON _Toc372293629 � PAGEREF _Toc372293629 �93��

5.4.14 TReplaceAllEvent	� GOTOBUTTON _Toc372293630 � PAGEREF _Toc372293630 �93��

5.4.15 TSaveMode	� GOTOBUTTON _Toc372293631 � PAGEREF _Toc372293631 �93��

5.4.16 TSaveModifiedEvent	� GOTOBUTTON _Toc372293632 � PAGEREF _Toc372293632 �93��

5.4.17 TSavePromptEvent	� GOTOBUTTON _Toc372293633 � PAGEREF _Toc372293633 �94��

5.4.18 TSaveUndoEvent	� GOTOBUTTON _Toc372293634 � PAGEREF _Toc372293634 �94��

5.4.19 TScrollBarModes	� GOTOBUTTON _Toc372293635 � PAGEREF _Toc372293635 �94��

5.4.20 TSearchStatus	� GOTOBUTTON _Toc372293636 � PAGEREF _Toc372293636 �94��

5.4.21 TSelModes	� GOTOBUTTON _Toc372293637 � PAGEREF _Toc372293637 �94��

5.4.22 TUdStates	� GOTOBUTTON _Toc372293638 � PAGEREF _Toc372293638 �94��

5.4.23 TUndoSaveUndoEvent	� GOTOBUTTON _Toc372293639 � PAGEREF _Toc372293639 �94��

5.4.24 TUndoEvent	� GOTOBUTTON _Toc372293640 � PAGEREF _Toc372293640 �94��

5.4.25 TUndoUndoEvent	� GOTOBUTTON _Toc372293641 � PAGEREF _Toc372293641 �94��

5.4.26 TUUDecodeEvent	� GOTOBUTTON _Toc372293642 � PAGEREF _Toc372293642 �95��

5.4.27 TUUEndDecodeEvent	� GOTOBUTTON _Toc372293643 � PAGEREF _Toc372293643 �95��

5.4.28 TUUErrors	� GOTOBUTTON _Toc372293644 � PAGEREF _Toc372293644 �95��

5.4.29 TWrapMode	� GOTOBUTTON _Toc372293645 � PAGEREF _Toc372293645 �95��

5.4.30 TValidText	� GOTOBUTTON _Toc372293646 � PAGEREF _Toc372293646 �95��

5.4.31 TViewerState	� GOTOBUTTON _Toc372293647 � PAGEREF _Toc372293647 �95��

5.4.32 TViewerStates	� GOTOBUTTON _Toc372293648 � PAGEREF _Toc372293648 �96��

�

�Introduction

Welcome to the J-Write Component Library. The J-Write components are a powerful add-on to the Delphi Visual Component Library, and provide a comprehensive set of text viewing and editing classes. This User Manual describes:

How to install or remove the J-Write Component Library

The Architecture of the Component Library, and

The Example Application provided with the Component Library.

A reference manual for all publicly declared Properties, Events and Methods, is also provided. It is assumed that the reader is familiar with Borland Delphi and the use of a DOS/Windows computer.

The J-Write components have been designed to provide a powerful set of Delphi components to support the viewing, printing and editing of text files. Such files occur everywhere on most modern computer systems. They may contain network logs, configuration information, or technical papers, such as Internet RFCs.

Speed and effectively unlimited file sizes are major design goals of the J-Write Components. The J-Write components can access any file whose size may be expressed within a 32-bit signed number and. moreover, the time taken to move around a file and to edit it is independent of the size of the file. Fast search and replace functions complete the basic function set.

Word wrap is comprehensively supported, with four separate word wrap algorithms (on line breaks only, on window boundaries, on printer page width and after a set number of characters). Tab stops can also be set (in logical inches). The components can also recognise hard page breaks and calculate where soft page breaks occur. In addition, any ANSI font (including True Type) can be used.

There is full keyboard and Mouse support. All Edit Keys are configurable by using the Delphi Object Inspector, and the Mouse may be used to select text, and to drag and drop selected text to any other part of a file.

Text files are now commonly used for EMail, and the J-Write Components include support for the features necessary when processing EMail. There are uuEncode and Decode engines, and text merging facilities including support for prefixing every merged in line with a common text prefix - this may be used to quote from earlier EMails. There is even support for calling an external DOS compression utility in order to compress a file prior to it being uuencoded and merged into a file being edited.

If you are evaluating the J-Write Component Library then we hope that it proves useful to you. Remember that the source code of all the components is also available.

If you are a registered user of J-Write, then thank you for choosing J-Write. We hope that you will find it a useful set of components in your Delphi applications.

New in Version 2.0

The most significant addition to the J-Write component library, is a Data Aware version of the TBigEditor component - TJWDBEdit. This combines all the advantages of Data Aware components with the text editing capabilities of the J-Write editor. TJWDBEdit works with both BLOB fields and ordinary text fields, and an example application is provided in the Examples subdirectory. This is the DBDemo example. See page � PAGEREF _Ref363023236 �19� for more information.

In addition to this, there have been many new features added and bugs fixed. In most cases, these new features have been requested by users and have been provided to make J-Write much more in tune with what you, the user, wants.

The new features for version 2.0 include:

Automatic Handling of the Idle Loop

Block Selection of text

Bookmarks

Controlled File Locking

Mail Reformatting

New Properties for ReadOnly and MaxTextSize

Optional Save Backup

Page Numbering

Page or File Relative Line Numbers

Programmatic Access to Text

Save Selection to File

Special Characters in Find/Replace

Window Margins

Zoom In/Out

These new features are described in Appendix A. The bugs fixed in this release are given in Appendix B.

Version 2.0 is fully backwards compatible with Version 1.0 as regards the features documented in this manual.

New in Version 2.2

Version 2.2 adds a TBigMemo class. This is a descendant of TBigEditor that clones the methods, events and properties of the Delphi TMemo. It may therefore be used as a drop in replacement for TMemo in many applications where the 32KB limit of TMemo is unacceptable.

�Installing and Removing the Component Library

Note: if you are upgrading from version 1.0, it is recommended that you first remove the component library according to the procedures specified in the version 1.0 Manual or Help file. You may then install the version 2.0 component library according to the procedures specified below. If you are using a version of Delphi earlier than version 1.5, then it is recommended that you quit and reload Delphi between first removing the J-Write component library version 1.0 and then installing version 2.0. This is because some Delphi installations may crash if the component library is rebuilt more than once without reloading Delphi.

Installation

The following instructions describe how to install the J-Write components and help file into the Delphi Desktop. Note that the procedures are slightly different depending on whether you are using the shareware version or the registered version that was installed by J-Write.

If you are installing the Shareware version of the J-Write Component Library:

The Shareware version of the J-Write component library is supplied in a single (.zip) archive. This must first be expanded into a directory created to hold the J-Write components. For example, you may have installed Delphi in the directory C:\DELPHI and you wish to keep the J-Write components in a subdirectory (JWRITE) of the Delphi directory. You should therefore start by creating the directory C:\DELPHI\JWRITE and then expand the J-Write archive into that directory. Note that you should preserve the archived directory structure when expanding the archive. For example, if you are using pkunzip to expand the archive, then you should using the “-d” switch when running pkunzip. Assuming that the J-Write archive is in the root directory of the C: drive, the following DOS script may be used to expand the J-Write components:

C:�cd \DELPHI�md JWRITE�cd JWRITE�pkunzip -d C:\JCMPT020.ZIP

You may now proceed to install the J-Write components under Delphi, as follows:

Backup your 'COMPLIB.DCL' file. You will find this file in the 'BIN' subdirectory, in your Delphi directory. For example, if you have installed Delphi in "C:\DELPHI", then you will need to take a backup of 'C:\DELPHI\BIN\COMPLIB.DCL'. If for any reason, the installation fails, you will need to restore a working version COMPLIB.DCL from this backup.

Start Delphi and select "Install Components" from the "Options" menu. The "Install Components" Dialog box will now appear.

Append the path of the J-Write components directory to the "Search Path". You will need to separate this path name from the existing search path by a semi-colon. For example, if the J-Write components were installed in C:\DELPHI\JWRITE, then add ";C:\DELPHI\JWRITE" to the end of the existing search path.

Click on the "Add" button, and browse for the J-Write components directory. Select the "JWLIB.DCU" file.

Click on "OK". The component library should now be rebuilt. Once this is complete, then you will have a new tab on the component palette called “J Write. This contains all components in the J-Write component library. A property editor will also have been installed for changing the edit keys.

You may now merge the J-Write component library help keywords with the Delphi Help System. These procedures are described in � REF _Ref351201105 \n �2.2�.

Finally, you may wish also to add the J-Write Components Help File to the Delphi program group.

Under Windows 3.1, you may do this by selecting File|New when the Delphi program group is active. You need to create a new Program Item, and then enter the name of the help file (e.g. C:\DELPHI\JWRITE\JCOMPNT.HLP) as the command line.

Under Windows 95, you should again select the Delphi Program Group in Windows Exploring, and, making sure that no icons are selected, select the File|New menu item and create a new shortcut. Enter the command line as the path to the help file (e.g. C:\DELPHI\JWRITE\JCOMPNT.HLP).

If you are installing the register version of the J-Write Component Library:

The J-Write installation program will have copied the .dcu and other component files to the directory specified at installation time. However, these must then be separately installed on the Delphi desktop, as described below. We recommend that if you have previously installed the Shareware version then you first remove this version using the instructions given in � REF _Ref350928807 \n �2.2�, and then install the registered user version.

Backup your 'COMPLIB.DCL' file. You will find this file in the 'BIN' subdirectory, in your Delphi directory. For example, if you have installed Delphi in "C:\DELPHI", then you will need to take a backup of 'C:\DELPHI\BIN\COMPLIB.DCL'.

Start Delphi and select "Install Components" from the "Options" menu. The "Install Components" Dialog box will now appear.

Append the path of the J-Write components directory to the "Search Path". You will need to separate this path name from the existing search path by a semi-colon. For example, if the J-Write components were installed in "C:\JWRITE\COMPNTS", then add ";C:\JWRITE\COMPNTS" to the end of the existing search path.

Click on the "Add" button, and browse for the J-Write components directory. Select the "JWLIB.DCU" file.

Click on "OK". The component library should now be rebuilt. Once this is complete, then you will have a new tab on the component palette called “J Write. This contains all components in the J-Write component library. A property editor will also have been installed for changing the edit keys.

You may now merge the J-Write component library help keywords with the Delphi Help System. These procedures are described in � REF _Ref351201105 \n �2.2�.

Finally, you may wish also to add the J-Write Components Help File to the Delphi program group.

Under Windows 3.1, you may do this by selecting File|New when the Delphi program group is active. You need to create a new Program Item, and then enter the name of the help file (e.g. C:\DELPHI\JWRITE\JCOMPNT.HLP) as the command line.

Under Windows 95, you should again select the Delphi Program Group in Windows Exploring, and, making sure that no icons are selected, select the File|New menu item and create a new shortcut. Enter the command line as the path to the help file (e.g. C:\DELPHI\JWRITE\JCOMPNT.HLP).

Installing the J-Write Components Help File

First close Delphi and then take a backup of the ‘DELPHI.HDX’ file. This is located in the BIN subdirectory, in your Delphi directory. For example, if you have installed Delphi in "C:\DELPHI", then you will need to take a backup of 'C:\DELPHI\BIN\DELPHI.HDX'. If the help index installation procedure fails, then you may restore the help index from its backup.

Now run the “HelpInst” program located in the Delphi program group. Use File|Open to open ‘DELPHI.HDX.

Select Keywords|Add Keyword File, and select the ‘JCOMPNTS.KWF’ file from the directory in which you installed the J-Write component library.

Save the new index using File|Save.

Once the J-Write Keyword index has been installed you can search for J-Write classes, properties, etc., from the Delphi IDE, using Help|Topic Search. They are now part of the same list of keywords, as are Delphi’s own VCL. Note that the first time you try to access a J-Write class, etc. using the Topic Search, you may find that you have to browse for the help file. This is contained in the directory in which you installed the J-Write Component Library. Thereafter, there should be no need to browse for this file again.

Removing the J-Write Component Library

If you longer wish to use the J-Write Components, then you should perform the following before deleting the J-Write components from your system.

Backup your 'COMPLIB.DCL' file. You will find this file in the 'BIN' subdirectory, in your Delphi directory. For example, if you have installed Delphi in "C:\DELPHI", then you will need to take a backup of 'C:\DELPHI\BIN\COMPLIB.DCL'.

Start Delphi and select "Install Components" from the "Options" menu. The "Install Components" Dialog box will now appear.

Select JWLib from the list of installed units, and click on the Remove button.

Remove the J-Write components directory from the Search Path.

Finally, click on OK and the component library will be rebuilt less the J-Write Components.

Exit Delphi and run the HelpInst utility from the Delphi Program Group to remove the J-Write help files by removing ‘JCOMPNTS.KWF’ from the list of ‘DELPHI.HDX’ keyword files, and delete the J-Write Components Help File icon from the Delphi program group, if present.

�The Architecture of the Component Library

The J-Write components have been designed as a set of integrated object classes following a Document/Viewer model. That is, there is one set of object classes that is responsible for managing text data, and another set responsible for rendering text oriented data within a window. This separation of function allows for a clear division between the background functions that manipulate text and the foreground functions that display it on the screen.

The Document Object Classes follow a hierarchy that starts with an abstract model of a text storage class (TTextBuffer), where each character is individually indexed by a longint index. A pointer may be obtained for any such integer, and that pointer may itself be modified by pointer arithmetic to point to any other character in the text storage, within a limited range. This abstract model is then refined (TLinesBuffer) by adding parsing methods that permit the text store to be organised into lines of text, and finally refined into a usable object class (TTextStream), with the addition of methods that map the abstract text store onto a single stream. This object class is itself satisfactory for read only access to text files. However, to allow for editing of text files, this object class is then further refined (TEditStream) to permit the additional of “deltas” to the text, including undo and redo facilities. This final object class supports a text file editor.

The Viewer Object Classes descend from the Delphi VCL TCustomControl. This is first refined (TFlickerFreeControl) to permit flicker free updating of a window - very important for an edit control - and then refined again (TLinesViewer) to create an abstract class supporting the rendering of line oriented text onto a window using a Delphi Canvas. This abstract class is then refined in order to marry it within the document classes (TTextViewer). The refined class is a further abstract class that supports the rendering or line oriented text held in a text storage class, as discussed above. The first usable object class (TStreamViewer) is then derived from this class by a simple refinement whereby the companion text storage object is created as one that holds a single text stream; this allows a further simple refinement to create a text file viewer class (TFileViewer). A separate refinement of TTextViewer creates an abstract editor class (TBigEditor). This is then similarly refined to that above, whereby the companion text storage object is created as an editing text storage class (TStreamEditor), creating the full text editor (TFileEditor). A separate refinement then creates the Data Aware version of TBigEditor (TJWDBEdit).

The J-Write Component Library adds to this basic text editing hierarchy with a “bolt-on” uuencode/decode engine, which operates on text storage classes (TUUEncoder and TUUDecoder). A further refinement of the text editor (TMailEditor) is created to use this engine and to include some other useful extensions for EMail.

The current component library is completed by a simple progress bar (TProgressBar), derived from the flicker free control class.

Document Components

� REF _Ref348434481 * MERGEFORMAT �Figure 3-1� shows the Document object class hierarchy. The TTextBuffer descendants are available as components in their own right and therefore descend from Tcomponent. However, the remaining classes do not have properties that are accessible through the Delphi object inspector, and thus TObject is the preferred ancestor of these classes. The exception is TUndoList, which has TList as its ancestor.

TTextBuffer

TTextBuffer provides an abstract text storage class, and presents an idealised view of a text buffer for use by TLinesViewer descendants, including TBigEditor. To the using class, the text is presented as an array of characters “Text”, indexed by a longint. A longint index is not possible for normal object Pascal arrays, as object Pascal does not support the Huge Memory model.

“Text” is a publicly available property and returns a PChar to the indexed character. Pointer arithmetic may be performed on the returned value, as long as the result is within the range given by the “Valid” property. Valid holds the PChar values of the first and last pointers in the valid range. Pointer arithmetic on a PChar returned from Text that results in a pointer greater than or less than the valid range, will give a pointer to an undefined memory area. Note: for example, valid describes the memory segment holding the character at Text[index].

TTextBuffer is an abstract object that does not define how the PChar returned by Text[] is determined. This is the subject of descendant classes (e.g. from memory, streams, etc). The required text may be made available by getting a pointer to the appropriate memory block, or it may be a pointer into a buffer after the required text is read from a stream.

�

Figure � STYLEREF 1 \n �3�-� SEQ Figure * ARABIC \r 1 �1� Document Components Hierarchy

TLinesBuffer

TLinesBuffer is a descendant of TTextBuffer that includes additional functionality for parsing the text buffer into lines of text. As such, it simply adds additional methods to the TTextBuffer base class. The value of TLinesBuffer is that it separates out the functionality specific to parsing text into lines from the abstract text storage model. The user can then be clear as to what belongs where.

The parsing methods are critical for performance and are therefore written using Delphi’s built-in assembler. There are hand optimised functions for:

locating the previous hard line break (single LF, FF or CR/LF�) to a given point in the text;

determining the end of a line, relative to a given start point; and

searching the text for a given string.

The greatest complexity is in determining the end of a line. This is because four different line wrap modes are supported:

On Hard line breaks only�There is no set maximum length to the line, and end of line is only declared at end of text or when the next LF, FF or CR/LF is found.��After n characters�End of line is declared after a specified number of characters, if a hard line break or end of text does not occur first. The line is truncated to end at the end of the last whole word.��After the display width of the line exceeds a limit�This limit is either the width of the window, or the printable width of paper in the current printer. The former is used to provide word wrap on window boundaries, and the latter for printing and for word wrap on printer page width (WYSIWYG). Again, the line is truncated to end at the end of the last whole word.��The above is further complicated by tab characters and the support of configurable tab settings at specific points, measured in logical inches from the start of the line.

To support the above, two conventional terms are introduced in this manual to describe the metric associated with a line. These are “width” and “length”, where the width of a line is the number of pixels it occupies on the display device, and the length of a line is the number of characters in it, including unexpanded tab characters.

All line parsing is performed by a single method “ScanForEol”. This method scans the text from a defined start point until either a hard line break is found, end of text, or the line width exceeds a given limit. A line width of zero conventionally means that there is no width limit on the line. This method calculates the display width of each line and expands tabs. To do this, it has to be provided with a font metric table, and a table of tab positions in pixels.

The need for font metric information implies a closer relationship between the viewer class and the text storage class than would have been preferred, but this is inevitable. In fact, in this set of components, the TLinesBuffer is given a pointer to the viewer’s Canvas object. It can therefore make direct enquiries on the font metric information necessary for creating the font metric table and tab position table. Given that access to the Canvas is anyway necessary, the TLinesBuffer also includes methods to draw text directly onto the Canvas at the direction of the viewer object. The benefit of including such methods in the TLinesBuffer, is then that the problem of dealing with a limited window on to the text storage, as provide by the TTextBuffer ancestor, is then localised within the TLinesBuffer, and the viewer class then only needs to deal in lines of text, with no worry about how they are stored.

Note that swapping the Canvas pointer to the current Printer Canvas, readily changes the rendering medium to the printer.

The low level parsing methods are then accessed though higher level methods. For example, GetNextLine is used to return the metrics of the line of text starting at a specified position. GetStartofParagraph is used to locate the position of the preceding hard line break, and GetDistanceBetween and GetCharAt are used respectively to determine the number of pixels between two characters on the same line, and to find the character, so many pixels from another character on the same line.

Finally, it should be noted that the line scanning algorithm does not provide a means to limit a line by the number of characters in it. Even though an “after n characters” line wrap mode is required, word wrap after a limited number of characters is not a realistic option for the low level parsing routine. This is due to the fact that tab settings are expressed in inches and not characters, and hence tab expansion cannot be readily related to a set number of characters. Instead, word wrap after n characters must be simulated in the viewer class by multiplying n by the average character width in pixels. With a fixed pitch font this always gives the correct result. With a variable pitch font, there is a risk of the occasional early word wrap, but as the display width is rarely an exact number of characters, in any font, and that word wrap always truncates a line anyway, this effect is very unlikely to be visible to the user.

TTextStream

The abstract object TLinesBuffer only added to TTextBuffer’s functionality in respect of how text could be manipulated, but did nothing in respect of how the text is stored and accessed. TTextStream deals with this by providing a single stream as the text storage element. This can be any descendant of TStream, and the stream is viewed as read only. TTextStream is the text storage element for a viewer class that does not permit data to be edited, and includes a buffer to hold text read from the stream.

TStreamSegment

The J-Write components are intended to support a fast editor of effectively unlimited size text files. Bearing this in mind, it is not realistic to simply modify a stream in situ. The overhead of doing so is too great. Instead, in order to support a text storage class that provides for an editable stream, it is necessary to create a means to store “deltas” to a stream, which can then be applied once the user wants to actually save the edited text, - and which could be discarded if the edited text was not wanted. The TStreamSegment Class provides the basis for such deltas.

A TStreamSegment object describes an area or segment of a stream. It includes a reference to the stream and the offset and length of the segment, and supports a method to read all or part of the stream segment into a buffer.

A TStreamSegment object is also designed to be a member of a doubly linked list. It includes methods for manipulating itself as a member of the list, such that:

one segment can be split into two segments, each describing two contiguous parts of the original stream segment, and as adjacent list members, and

two adjacent segments on the same list can be merged into a single segment, if they describe contiguous segments on the same stream.

It is thereby possible to construct a list of TStreamSegments that includes both elements of an original stream and “deltas” inserted between the two parts of a split segment. It is also possible to remove segments from the list to support deletions, or to restore removed segments, as in an undo operation.

Note that TStreamSegment also provides a virtual method “DeAllocate” in order to Free an object. This is provided to allow for changed semantics of the Free method in descendant objects, and is always used instead of Free for “disposing” of such an object.

TSegmentList

A TSegmentList object is used to reference and manipulate a list of TStreamSegment objects. It has a “size”, which is the total size of all its constituent TStreamSegments, and provides methods to manipulate the list. For example, to insert segments and to remove them.

TVirtualStreamList

Although a TSegmentList has methods to manipulate a list, it provides no semantics as to a list’s use. TVirtualStreamList imposes one possible set of semantics. That is, the list’s segments together describe a “virtual stream”. Like a real TStream descendant, such a stream has a size and may be viewed as comprising an ordered set of bytes. The user can “seek” to any position within the virtual stream, and then “read” a contiguous series of bytes from that point in the stream.

However, unlike a TStream descendant, this class provides no “write” method. Instead, it provides methods to insert a TStreamSegment or segments, and to cut out the TStreamSegments that describe part of the virtual stream - if necessary splitting existing segments in order to do this. A TVirtualStream therefore provides the functionality necessary to edit a stream by applying deltas rather than manipulating the stream itself.

In practice, a TVirtualStream object starts with a single segment list, that segment describing the whole of a single stream. It is then possible to remove (delete) part of that stream, by cutting out an area of the virtual stream. This is achieved by splitting the original segment into three, and removing the middle one. This cut out segment may be saved and later re-inserted by an undo operation. The insert would recognise that the re-inserted segment is contiguous with its neighbours and merge them together. None of this changes the original stream, only when the virtual stream is copied to a new stream in a later “save” operation are the changes in effect applied.

Similarly, text may be inserted by simply putting it in a new stream segment and inserting this into the virtual stream, at the appropriate position.

TFreeList

New text inserted into a virtual stream has to be held on a proper TStream descendent. This cannot be the original stream, so another stream has to be created and managed for this purpose. The TFreeList class is defined for this purpose. This is another descendent of TSegmentList, but with different semantics to TVirtualStreamList.

The segments on a TFreeList describe the unallocated parts of a stream, A “FreePtr” is also provided to identify the point on the stream from which new allocations can take place.

A TFreeList object satisfies requests for stream segments of a given size by searching its segment list for a segment of the required size or greater. If one is found, then it is split to create a segment of the correct size, which is then allocated to the requester. If none is found, then the FreePtr is increased and a segment of the appropriate size created from the end of the stream.

A single “SaveBuf” method supports a single step allocation of a segment and the writing of data to that segment. It is therefore not possible to allocate a segment without also initialising it.

TAllocatedSegment

Segments allocated from a TFreeList have a different semantic from normal segments when it comes to freeing the segment. In this case, the segment of the free list should be deallocated and the segment returned to the list.

TAllocatedSegment is a descendant class of TStreamSegment which additionally knows the TFreeList from which it was allocated and supports a refined “DeAllocate” method that returns it to the appropriate free list instead of disposing of the object. Such a segment is only disposed of when its TFreeList is disposed of.

TMemoryBuffer

TMemoryBuffer simply refines TFreeList by making the stream from which allocations are made, a TMemoryStream. Inserted text is therefore held in a single memory buffer.

TEditStream

The TEditStream class is a descendant class of TTextStream and adds to the TStream descendant of TTextStream with a TVirtualStream. The original single stream is then described by a single initial segment on the virtual stream. A TMemoryBuffer is also created to hold inserted text.

TEditStream supports Insert, Delete and Replace operations on text it manipulates. It is a text storage class with TTextBuffer as its ancestor. It provides methods for the corresponding Insert, Delete and Replace abstract methods of TTextBuffer.

Insert, Delete and Replace operations are typically carried out by modifying the text current held in the buffer created by TTextStream. Only when they affect text not held in the buffer, or when a different parts of the buffer affected are the changes flushed out to the virtual stream. For example, insertion of a single character simply updates the buffer. Only when the insertion point overflows the buffer or changes to a new part of the buffer, are the inserted characters copied to a TMemoryBuffer segment and inserted into the virtual file.

TEditStream also supports an Undo Operation. This typically undoes the most recent insert or delete operation, returning the buffer to its previous state. However, for the purposes of the undo operation, consecutive inserts and deletes at the same position in the buffer, are combined together into single operations. This is both to aid efficiency and usability - for example, when a user types in a line of text, they naturally expect an Undo operation to remove the entire line from the most recent cursor movement or delete operation.

Every Undo may also itself be reversed by a separate Redo operation. Note that the Redo list is flushed after every insert or delete.

Five events support the Undo operation: OnBeforeUndo, OnAfterUndo, OnSaveUndo, OnUndo and OnUndoChange.

TUndoInfo

Text cut out from a virtual stream is described by segments which can be saved for use in a later undo operation. The TUndoInfo class provides a means to save such segments, and is another TSegmentList descendent.

A TUndoInfo objects holds a list of segments describing a contiguous area of a virtual stream and which are the result of one or more cut operations. In addition to a TSegmentList, this class holds the offset in the virtual stream at which the cut took place, and the size of any text that replaced the cut out segments at the same point. It also includes state information from the corresponding Viewer object, in order that a properly synchronised undo operation may take place. It is also possible for a TUndoInfo object to have an empty segment list - for example, if it describes an insert operation with no corresponding deletion of text.

TUndoList

It is generally necessary to keep several undo operations in the order that the operations occurred. The TUndoList class supports this, and a TUndoList object is created by each TEditStream in order to hold its undo transactions.

TUndoList is a TList descendant, with the list organised into a push down stack. TUndoInfo objects may be inserted at the top of the stack, and are read from the top of the stack, whenever an undo operation is requested. The number of objects on the list may be limited and if this limit is exceeded then the object at the bottom of the stack is discarded, this always keeping the most recent list of undo operations.

TUndoInfo objects also keep state information from the Viewer object, and to enable this information to be accessed when an undo operation is saved, and restored when the undo is performed; event handlers are provided to support the necessary linkage with the Viewer object.

In some cases, several separate undo operations have to be linked together for a single undo. For example, a “Replace All” operation results in many modifications in a text stream, and the expected semantic of undo is to undo all these changes in one go. TUndoInfo objects therefore have a “linked” flag that may be set to indicate that they are part of a linked chain of undo operations. Such linked operations are also treated as a single operation when calculating the number of transactions on the stack, thus avoiding the possibility of discarding part of a linked set of undo operations, when the number of transactions on the stack exceeds the limit.

There is also a clear symmetry between undo and redo. When an undo operation is performed, the cut out segments, together with the size of the restored segments, forms a new TUndoInfo object, which is then added to the redo list. This is another TUndoList object created by TEditStream. However, unlike the undo list, the redo list is always cleared once the text stream is modified again, thereby avoiding a corruption of the text.

Viewer Components

� REF _Ref348522099 * MERGEFORMAT �Figure 3-2� shows the class hierarchy for the J-Write document viewer classes. Most classes are all derived from the Delphi VCL TCustomControl class and therefore share the common properties and methods of all Delphi controls. TWinScrollBar encapsulates functionality associated with a control’s scroll bars, and TKeyManager maintains the relationship between edit keys and response methods.

Published properties from all these classes, excepting TKeyManager, may be accessed through the Delphi Object Inspector at design time.

TFlickerFreeControl

TFlickerFreeControl is, as its name suggests, a descendent of TCustomControl, modified to support flicker free drawing on its Canvas.

This trick is performed by intercepting the WM_EraseBkgnd message and deferring its effect until the WM_Paint message is received. Further, drawing is done on a memory DC, with its contents BitBlt'ed to the real DC only when update is complete. This results in a small amount of additional overhead, but a much crisper display.

TLinesViewer

TLinesViewer is an abstract class that provides the core functionality for rendering line oriented text onto the Canvas of a custom control. TLinesViewer is itself a descendent of TFlickerFreeControl, and takes advantage of the crisp display that this gives.

TLinesViewer assumes a text model, whereby the text is structured into lines. Each line has a sequence number, starting from zero, and has a “length” in characters and a “width” in pixels. The largest possible line number is given by the LastLine property. All lines are displayed in the current Font, as defined by the control’s Font property. TLinesViewer can both display these lines of text on the control’ Canvas, or print them onto the current Printer.

�

Figure � STYLEREF 1 \n �3�-� SEQ Figure * ARABIC �2� Document Viewer Class Hierarchy

Typically, there will be more lines of text to display than there are lines on the screen. TLinesViewer handles this by maintaining information on the current view presented to the user, in the form of two variables: DeltaY, which is the line number of the first line displayed by the control, and DeltaX, which is the pixel offset into each line of the leftmost pixel displayed. The CaretPos property also keeps track of where the Caret is displayed, as the relative pixel and line co-ordinates of the Caret.

TLinesViewer supports Caret movement using both the keyboard and the mouse. Text can also be selected by holding down the shift key while moving the Caret, or by “dragging” with the mouse. Selected text can then be copied to the clipboard.

TLinesViewer methods also support free text searching for the next occurrence of a string (of up to 256 characters) in either direction, the positioning of the Caret on any line number, and for the saving of the text to a file.

TLinesViewer also maintains a State property. This is a set of possible states and is used by a using application to update menu item enable/disable state and a status line. An OnStateChange event reports a change in the current state.

For reporting progress on lengthy operations, TLinesViewer has a structured set of methods for entering a busy mode (hour glass cursor displayed), exiting a busy mode, and reporting progress. Together with the OnProgressEvent Handler and State information, this readily enables the support of progress bars and other means to report progress.

TWinScrollBar

Delphi already provides two different encapsulations of the windows scroll bar. One provides for support of a scroll bar control, while the other supports a TScrollBox’s scrollbar. However, neither is a satisfactory basis for the encapsulation of TLinesViewer’s scroll bar.

TWinScrollBar supports a scaled scroll bar which provides for position and range expressed as longints. It also supports both dragging the scrollbar thumb and moving the thumb to a new position, in the sense of whether the display is updated while the thumb is dragged or at the end of the drag operation.

From Version 2.2, TWinScrollBar includes a Mode property. In preceding versions the scroll bar is displayed automatically when needed. With Mode set to its default value (sbAutomatic) this is what still happens, and the Visible property reflects the current state. However, if Mode is set to sbManual, then whether or not the scroll bar is displayed depends upon the value of Visible. This may be set at design time through the Object Inspector, or at run-time.

TKeyManager

A design goal for TLinesViewer is to enable all cursor movement and other keys to be configurable at design time using the Delphi Object Inspector. This is in addition to shortcut keys that might be set through the menus. The keystrokes themselves are readily intercepted by the KeyDown method, but there remains the problem of relating keystrokes to methods, when those keystrokes themselves are defined by properties. This problem is solved by TKeyManager.

TKeyManager is a TList descendant that holds a list of records that relate defined keystrokes to the methods that implement the corresponding functions. The list is ordered by keycode and searched using a binary chop search method. An “OnKeyCode” property is provided in order to update the list. This is an indexed property with the index being a keycode and the value of the property being a method. Assigning a method to this property has the semantic that this method is called in response to the keycode used as the index. Assigning a nil value removes the keycode from the list.

Keycode values are the standard windows virtual key codes, modified by kbControl, kbShift and kbQuickKey modifiers (added to the keycode value). The semantics of these modifiers is that, for example, if kbControl is added to the virtual key code, then the control key must be pressed down when the keystroke is received in order for the method to be called. kbShift has a similar semantic with the Shift key. kbQuick is for two keystroke function keys, a Quick Key (determined by the QuickKey property) followed by another keystroke. If the kbQuickKey modifier is used then the semantic is that the method is called only if the keystroke was immediately preceded by the defined QuickKey.

In use, the TranslateKey method is called every time a wm_KeyDown message is received. If the keystroke is in the list then the corresponding method is called.

A property editor is provided to allow Keystroke values and appropriate modifiers to be readily maintained from the Delphi Object Inspector.

TTextViewer

TLinesViewer has only an abstract model of the text it displays. TTextViewer refines TLinesViewer such that this text is stored in a TLinesBuffer container. In order to do this, TTextViewer has to match the TLinesViewer concept of a set of lines, each with a unique line number, to the TLinesBuffer model of text parsed into unnumbered lines. TTextViewer also manages the different word wrap modes.

When trying to find a given line, one possible mode of operation for TTextViewer would be to simply start at the first line, or the last known position, and just work its way through the lines in the TLinesBuffer, until the required line was found. This is satisfactory for small files, but quickly becomes inefficient for large files, and so this approach is only done when the user wants to explicitly go to a given line number.

Instead, TTextViewer optimises the search for a given line number by the following algorithm:

If the required line is within two screens of the last known position, then it simply works its way through the TLinesBuffer to find the required line.

On the other hand, if the required line is further way then the offset of the start of this line is estimated, and the viewer synchronised with the line nearest this estimated position. The operation is further optimised by recognising jumps to the first and last line, and synchronising with the first and last line in the TLinesBuffer respectively.

This technique works very well as, in practice, the only time a jump is made to a line number which has to be estimated is when the scroll bar thumb is moved, and the user does not then accurately know which line should be displayed anyway. The same approach is also used to synchronise the viewer to a given offset in the file. For example, to view the result of a search operation.

The drawback of this approach is that there is an uncertainty over which line number is actually being displayed. This uncertainty is accepted temporarily for performance reasons. However, to determine the actual line number following this kind of jump, a background process is started to progress through the text from the last known line number until the current line is found. The correct line number is then accurately known.

This background process is performed during application idle time. The HandleOnIdle method performs this task and must be assigned to the TApplication OnIdle property, or called from a method that is assigned to this property. Whenever this method is called, it checks to see if the current line is estimated and then proceeds to locate the line accurately. In order so as not to interfere with foreground processing, this method works through no more than 100 lines at a time, and may be called many times before its work is done.

TTextViewer carries out its task by maintaining a “thumb”, locating a known line in the TLinesViewer. This “thumb” takes the form of the offset of this line (LinePos), the offset of the immediately preceding line (PrevLinePos) and the next line (NextLinePos). It also keeps the length of the current line and its width, and the estimated/known line number for this line. Most of the methods of TTextViewer are really concerned with relating this “thumb” to a line as seen by TLinesViewer.

Similarly, TTextViewer also calculates the position of soft page breaks. Normally, this is done by simply counting the number of lines of each page. However, the algorithm is complicated by Hard Page Breaks that may be inserted anywhere in a text file. When scrolling down a file, a hard page break simply resets the line counter. However, when scrolling up a file, the preceding page break cannot be estimated. TTextViewer always keeps track of a preceding page break in order to optimise its work, but, when necessary, will re-compute the location of soft page breaks by re-running the background process that calculates line numbers accurately.

From version 2.2, TTextViewer responds to the wm_GetText and wm_GetTextLength messages and thus supports the Text property inherited from TWinControl.

TStreamViewer

TStreamViewer is a simple refinement of TTextViewer, where the TLinesBuffer the TTextViewer uses, is created as a TTextStream i.e. this class supports the viewing of text sourced from any TStream descendant.

TFileViewer

TFileViewer goes one stage further and defines the stream to be a TFileStream. It provides a FileName property, and the semantics of assigning a filename to this property, is that the named file is opened, becomes the stream accessible though the TTextStream, and viewed through the TTextViewer. Any currently open file is closed.

TBigEditor

TBigEditor provides an alternative refinement to TTextViewer that leads towards a file editor. TBigEditor adds methods that support the editing of text in the viewer. Methods provide for insertion of characters, line breaks, and text pasted from the Clipboard. They provide for the deletion of selected text and a single character, and “Drag and Drop” editing with the mouse is also supported. TBigEditor also includes the necessary event handlers to support the Undo/Redo mechanism provided by TEditStream, and provides methods to flow the text into paragraphs, capitalise words, and to support search/replace.

The TLinesViewer KeyManager is also used in order to support additional Edit Keys.

Note that the insertion/deletion of characters is optimised, both by directly updating the “thumb” maintained by TTextViewer, and by drawing directly on the Canvas rather than using the windows paint message. This is necessary to work at full typing speed on a low speed processor (e.g 386sx).

From version 2.2, TBigEditor supports the wm_SetText message in support of the Text property inherited from TWinControl.

TStreamEditor

TStreamEditor is a simple refinement of TBigEditor, which creates the TLinesBuffer referenced, as a TEditStream, thereby providing for the editing of any text stream.

TFileEditor

TFileEditor’s relationship with TStreamEditor, is like that between TFileViewer and TStreamViewer. TFileEditor refines TStreamEditor to create the stream as a TFileStream, thereby providing a file editor. Initially, this is an untitled file. The editor can also be cleared to this initial state, at any time, by calling the Clear method.

Additionally, TFileEditor provides a method to save the file currently being edited, replacing the current file, and renaming it with a .bak extension. To support file saving, TFileEditor also provides three Events:

OnSaveModified: this is called when an attempt is made to clear the current contents of the file editor (e.g. when the Clear method is called, or when the FileName property is assigned to a new file name), and when that contents has been modified. This gives an opportunity for the user to be prompted to save the file, lose the edits, or to cancel the request to clear the file editor.

OnSaveNewFile: this is called when the save method is called for an untitled file. It gives the user a chance to specify a file name and to save the file, or to cancel the save.

OnNewFileName: this is called whenever the file name changes, or is cleared. It gives an opportunity for (e.g.) a window caption to be changed in line with the name of the file currently being edited.

TJWDBEdit

TJWDBEdit is a Data Aware version of TBigEditor. As such, it may be used just like any other Data Aware Control linked to a field in a database, and provides for the both viewing and editing of a text or a BLOB field. In the latter case, there are, of course no restrictions on the field size. All of TBigEditor’s features are available to TJWDBEdit, including search/replace, zoom and printing. The text in a TJWDBEdit control may also be saved to a file, using the SaveAs or SaveSelection methods.

The derivation of TJWDBEdit is simple enough. A private TFieldDataLink object is included in the TJWDBEdit class definition, and this provides most of the data aware capabilities. TJWDBEdit is provided with published properties for the DataSource and the DataField, and these are reflected straight through to the TFieldDataLink like named properties. The ReadOnly property is similarly redirected to the TFieldDataLink, and the inherited TBigEditor ReadOnly property itself is set depending on the ReadOnly status of the TFieldDataLink. If the field is a text type, then the inherited MaxTextSize is set to the size of the field, otherwise there is no limit.

The TFieldDataLink events “OnDataChange” and “OnUpdateData” are handled by TJWDBEdit methods. In the former case, a change in the data results in the field value being loaded into the text buffer; the text is now available for editing if not read only. In the latter case, the event is handled by saving the edited text back into the linked field.

Automatic editing of text is supported. As soon as a change is made, the change in the editor’s state to “Modified” is recognised, and the field is put into Edit Mode. Whenever the editor loses the focus, any changes are reported to the TFieldDataLink by calling its UpdateRecord method.

An EditCancel key is provided to enable edits to be abandoned and the field to revert to its original state. This operates in association with the OnEditCancel event, which allows for an event handler to confirm the cancel.

Generally, idle time handling should not be a concern for the use of this control, as AutoIdle defaults to true in TJWDBEdit, and this should be appropriate for most cases.

Finally, TJWDBEdit provides two new properties. An AutoDisplay property determines if text is automatically loaded from Blob fields whenever a change is reported. A Text property provides access to the edited text as a single string. However, in most cases, this latter property is probably only useful in the 32-bit version, due to the limited length of strings in 16-bit programs.

TBigMemo

TBigMemo is a clone of the Delphi TMemo component. It is a descendant of TBigEditor, and defines all the methods, events and properties that you would expect to find with TMemo. In some cases, these already exist (e.g. Clear), while others, such as the Lines property require additional methods in order to load the editor from a TStrings source. You should be able to use it as a drop in replacement for TMemo. However, please note that it is a clone and not a descendant. You therefore cannot use a TBigMemo object in a call to a procedure that expects a TMemo object. Similarly, you cannot assign a TBigMemo object to a variable that expects a TMemo.

The source for TBigMemo is provided as example code with the Shareware release. It supports all the methods, events and properties defined for TBigEditor, plus those specified in the Delphi documentation for TMemo.

EMail Extensions

The EMail extensions comprise the uuencode and decode engines and the TMailEditor class. The object classes for EMail Extensions are shown in � REF _Ref348932798 * MERGEFORMAT �Figure 3-3�.

�

Figure � STYLEREF 1 \n �3�-� SEQ Figure * ARABIC �3� Mail Extensions Object Hierarchy

TSumCheck

Often, uuencoded files are provided with an error detecting sum check on both the uuencoded text and the original binary data. This sum check is generated using the Unix sum utility. This mechanism is support by the J-Write EMail extensions through the TSumCheck class.

A TSumCheck object supports a single accumulator and byte count, that can be updated either by adding a line of text, or a block of data. Two methods are provided to support each of these approaches, respectively. A Clear method is also provided to reset the accumulator, and a GetSum method is used to obtain the formatted result of the checksum computation. The format is the same as generated by the Unix sum utility.

In use, a TSumCheck object is used either to generate a checksum on uuencoded text or on the binary data. Therefore, for a given object instance, only the Addline or the AddBlock methods are used.

TUUBase

TUUBase provides the common aspects of both the uuencode and the uudecode engines. These are concerned with the creation/deletion of two TSumCheck objects to support error checksums on the uuencoded text and the original binary data respectively.

TUUEncode

TUUEncode supports a single public method “UUEncodeFile”. A File name and TTextBuffer object are parameters to this method. The method encodes the contents of the file using the uuencode algorithm, and inserts the lines of encoded text into the TTextBuffer, starting at the indicated offset.

The algorithm is table driven and the actual encoding is performed using Delphi’s built-in assembler. The OnBlockEncode event is provided to report progress in encoding the file.

TUUDecode

TUUDecode supports the decoding of one or more uuencoded files held in a TLinesBuffer. It provides a single public method “UUDecode” which has a TLinesBuffer and offset into the TLinesBuffer as its parameters. Starting at the indicated offset, the method passes through the lines of text looking for the header of a uuencoded file. When one is found, the OnStartDecode event is called.

The OnStartDecode event gives the user a chance to change the filename into which the file will be saved. By default, this is the file name given in the uuencode header and it will be saved in the current directory. This event also allows the user to instruct the decoder to ignore a uuencoded file and to continue looking for another uuencode header.

The OnEndDecode event is called following completion of the decode process and reports the outcome.

The OnBlockDecode event is provided to report progress in both decoding files and in passing through the TLinesBuffer looking for uuencode headers.

TMailEditor

TMailEditor adds to TFileEditor support for the EMail Extensions. These are:

File Merging

uuencode and decode

Paste or insert text with mail quotes

Interface to a DOS compression utility.

File Merging

The TMailEditor InsertFile method can be used to insert text files at any offset into the file. On request, the InsertFile method will also call the Windows OemToAnsi conversion API, in order to convert DOS text files to windows text files. This will be necessary if the file uses the extended DOS character set.

The TMailEditor InsertQuoteFile method may be used to insert text files as above, but also to prefix each line by the text string held in the MailQuote Property. This is a general requirement for replying to EMails. This operation is performed by creating a temporary TTextViewer container to hold the input text file, and using this to read the text line by line, prefixing each line by the MailQuotes prior to inserting it into the file.

Binary files can also be inserted into a text file by uuencoding them, so that they are represented by lines of text. They can then be sent as text only EMails. The TMailEditor UUEncode method supports this, and creates a temporary TUUEncoder object to perform the uuEncode and insert operation.

UUDecode

TMailEditor may also be used to decode text files that contain uuencoded binary files. The TMailEditor UUDecode method may be called to perform the decode operation and creates a temporary TUUDecoder object to perform this operation. The OnStartDecode event may also be used to redirect a decoded file to the appropriate directory, or even to change the file name or to ignore a uuencoded file. The OnEndDecode event may be used to report the conclusion, success or failure, of each decode.

The UUDecode method will decode multiple uuencoded files, encoded into the same text file, and can cope with files encoded into multiple sections.

Paste Quote

The PasteQuoteFromClipboard method is very similar to the InsertQuoteFile method, except that the source of the text is the clipboard rather than a file. A temporary TEditStream is created to support the method and the contents of the clipboard inserted into it. The subsequent actions are then identical to InsertQuoteFile.

File Compression

The uuencoding algorithm expands files by 30% and it can therefore be very costly to send a large file by EMail. There is every incentive to compress files prior to uuencoding them and this is supported by TMailEditor.

The InsertCompressedFile method is used to compress, uuencode and insert a file into the file being edited. It requires as parameters the name of the file, the normal file extension used by the compression algorithm that will be applied, and a DOS command line to run the DOS compression utility that will perform the actual compression. The command line should be as you would type it in, in response to DOS command line prompt, including any options switches that need to be set. The difference is that where the name of the (output) compressed file name would be entered, the two character symbol “&Z” must be used, and where the (input) file name would be entered, the two character symbol “&F” must be used. The InsertCompressedFile method replaces these symbols with the file names that it uses.

The method works by first compressing the input file into a temporary file and then uuencoding and inserting in to the text file being edited, the contents of the temporary file. The temporary file is then deleted. The DOS compression utility is invoked using the RunDOSProgram function provided by the JWRUN unit. This unit is responsible for invoking a DOS program, communicating with it and obtaining the programs completion code.

The JWRUN unit may also be compiled using Turbo Pascal to create the JWRUN.EXE program. This is used as a shell to execute the required DOS Program and communicates with the calling Windows program through a temporary file.

Note that the J-Write component library does not contain a compression utility. It has been designed to work with industry standard compression utilities, such as pkzip and lha, and these must be obtained separately.

Progress Meter

TProgressMeter is a simple control that provides a progress bar and percentage done indicator. It is derived from TFlickerFreeControl in order to ensure a crisp display.

The Progress Meter comprises a rectangular window in which a percentage count is displayed centrally. The actual value displayed is taken from the PercentDone Property which must be a number between zero and one hundred. Every time the value of this property changes, the display is updated.

In addition to drawing the text representing the percentage done, a proportion of the pixels in the control’s window are also inverted. Starting from the left hand side a rectangular area is calculated that is the same height as the control and has a width that is exactly the percentage of the width of the control as is given by the value of the PercentDone property. It is the pixels in this rectangle that are inverted. The result is a bar that appears to grow as the percentage done increases until it covers the whole window once 100% is reached.

Units

The J-Write Component Library comprises the following units.

TextBuff

This unit comprises the text container classes and the support classes used to maintain virtual streams. TextBuff defines:

TAllocatedSegment�TStreamSegment��TEditStream�TTextBuffer��TFreeList�TTextStream��TLinesViewer�TUndoInfo��TMemoryBuffer�TUndoList��TSegmentList�TVirtualStreamList��

FileView

This unit contains the document viewer classes and the progress meter class, comprising:

TBigEditor�TLinesViewer��TFileEditor�TStreamEditor��TFileViewer�TStreamViewer��TFlickerFreeControl�TTextViewer��TKeyManager�TWinScrollBar��

UUEncode

This unit contains the classes providing the “bolt-on” uuencode and decode engines, comprsing:

TSumCheck�TUUDecode��TUUBase�TUUEncode��

MailEdit

This unit contains the TFileEditor descendant TMailEditor, which provides support for the EMail Extensions.

JWRun

This unit may be compiled with either Turbo Pascal to create a real mode DOS program, or with Delphi to create a Delphi unit. In the latter case, the unit provides the "RunDOSProgram" function, which may be called to run a DOS program in a separate DOS box, with the calling windows application suspended until it completes. The DOS completion code is return.

When compiled with Turbo Pascal, the JWRun program is created. This is a wrapper program that is invoked by the RunDOSProgram utility function to execute a DOS program and return the program's exit code.

KeyEdit

This module provides a property editor for the TKeyDefinition type defined in the FileView unit.

�Using the J-Write Components

Two example applications - MDIEdit and DBDemo - are provided with the J-Write Component Library. Once the J-Write components have been installed, these applications can be built and used to understand how the J-Write components work. This chapter describes how the example applications were built.

The MDIEdit Example Application

Creating The MDIEdit Application

MDIEdit is based on the Delphi MDI Application template and to re-create this application, you should start by using the Project Expert to create a basic MDI application. Using the Project Manager, the MDI Child form may then be displayed, and the J-Write FileEditor component dragged onto this form in the normal way. By default, the alignment of the FileEditor is alClient and hence it will immediately expand to fill the entire form. Note that you should typically set the Form’s “ActiveControl” property to the name of the FileEditor, and this is essential if there are other components on the form such as status panels and speed button panels.

Work may then start on re-arranging the menus to work properly with the File Editor. In the example application, the Edit menu has been removed from the main form and the File menu reduced to the New, Open and Exit items only.

File|New and File|Open

The response methods for these two menu items should be changed to reflect the way the FileEditor works. When a FileEditor component is created, the edit window is by default initialised to an un-named file, and hence there is no work in this case to be done. When opening a named file all that additionally needs to be done is to set the FileName property to the pathname of the file to be opened.

In the example application, the response method for the File|New menu item needs to do no more than to set the Caption for the newly created child form to a suitable NONAMEn title, while the response method for the File|Open menu item needs to have an assignment statement added to assign the file name returned from the OpenDialog to the FileEditor’s FileName property.

The Child Form’s Menu

A menu for the child form may now be created by dragging the menu component from the palette, on to the form. This should have its “AutoMerge” property set to true so that his menu is merged with the main form’s menu when the child form is active. The GroupIndex properties of the Main Form’s “Windows” and “Help” menus should also be set to a high number (80 and 90 are used respectively in the example), so that the child form’s menu can be merged in before these.

The File, Edit, Search and Options menus shown in the example may now be created. The File menu should be given a GroupIndex of zero, so that it replaces the Main Form’s File menu, and the other menus given a GroupIndex intermediate between zero and that given to the MainForm’s Window menu. The response methods for the child menu items may now be set up.

Most of these are straightforward. For example, the child menu’s File|New and File|Open menu items are simply redirected to the corresponding methods of the Main Form. The Edit|Cut, Edit|Copy, etc. response methods simply call the corresponding method of the FileEditor.

The response methods for Search|Goto Line and Options|Max Line Length are slightly more complex as these methods use an InputQuery to get the required line number and maximum line length from the user. Options|Font and Options|Colour have a similar structure but use the standard Font and Colour Dialogs instead of InputQuery.

File|Save and File|SaveAs

The response method for File|Save simply calls the FileEditor Save method, while File|SaveAs first uses the SaveDialog standard dialog to get the file name to save the file under and then calls the FileEditor’s SaveAs method. However, for these methods to work effectively, some event handlers also need to be defined.

The OnCloseQuery Event

Firstly, The MDI Child Form’s OnCloseQuery event should be set up to ensure that the user is prompted to save a modified file before the editor is closed. However, the response method does not have to do this directly. All it needs to do is to call the FileEditor’s Clear method, and a give a positive response to the query if the vsModified state bit in the FileEditor’s State property is then clear.

The OnSaveModified Event

The FileEditor’s OnSaveModified event handler is where the user should be prompted to save a modified file. This is called by the Clear method if the text has been modified, and is similarly also called if the FileName property is changed (i.e. a new file is to be loaded into the edit window). This event provides a general method for prompting the user to save a file.

The OnSaveModified event handler may prompt the user using a simply MessageDlg and must return the result using the TModalResult codes (mrYes, mrNo or mrCancel). In the first case, the Save method will then be called to save the file. In the second case, the vsModified state is simply turned off, allowing the edit window to be cleared, while, in the last case, the method that called the event handler is abandoned.

Of course, calling the Save method either implicitly in the above case, or explicitly as with the File|Save response method, is not always sufficient to save a file. If the filename is already known then Save will replace the existing file on the disk, renaming the old version with a .bak extension. However, if the filename is unknown (i.e. the FileName property is empty), then it is necessary to prompt the user for a filename. This requirement is satisfied by the OnSaveNewFile event.

The OnSaveNewFile Event

The response method for this event is as simple as possible. It is typically the same response method as for the File|SaveAs menu item. The event is called when the FileEditor is unable to complete a Save operation because the FileName is empty and File|SaveAs is essentially what is now required: the SaveDialog should be displayed to prompt the user for a filename, and then SaveAs method called to effect the save.

The OnNewFileName Event

This OnNewFileName Event supports a change of FileName (e.g. as a result of the SaveAs method) and is called whenever the value of the FileName property changes. The example application makes a typical use of this event by changing the Form’s Caption in response to the change of FileName.

The OnSaveModePrompt Event

The last event supporting file saving is the OnSaveModePrompt Event. The J-Write FileEditor is capable of saving the text buffer either as it is, or with line breaks inserted where line wrap occurs. The save algorithm is determined by the SaveMode property. However, before the actual save takes place, the OnSaveModePrompt event is called. This gives a chance for the save mode to be modified to meet local requirements.

The example application provides a typical response method for this event. Firstly, if the WrapMode property is set to opNone i.e. no line wrap, then the response method returns the save mode as the smParagraph mode. This saves the text as paragraph text i.e. as it is. This is clearly sensible if there is no line wrap. If the current SaveMode is smPrompt then the user is prompted for the required save mode, otherwise the SaveMode is returned unchanged.

Other response methods may be defined depending on local requirements.

Search and Replace

The FindDialog and ReplaceDialog standard dialogs are used to support search and replace in the example application, and their use follows a standard pattern.

The FindDialog and ReplaceDialog Execute methods are called from the response methods for the Search|Find and Search|Replace menu items respectively. Note that in each case, the initial find text is set up using the FileEditor’s GetInitialFindStr method. This returns the word under the Caret, if any, and enables searches to be quickly set up for the next occurrence of a given word.

The FindDialog and ReplaceDialog objects themselves have event handlers which are called when the Find and Replace buttons are clicked. The OnFind response method is in common to both and simply calls the FileEditor’s Find method. Note that this method returns false if the search fails and such an outcome is reported by a MessageDlg.

The ReplaceDialog’s OnReplace event also requires a response method. This simply calls the FileEditor’s Replace Method in order to carry out the replace operation. This method then searches for the next occurrence of the FindStr and like the Find method can return false if this search fails. Again this reported by a MessageDlg.

To support the ReplaceAll Operation (which is invoked through the corresponding search option bit), the FileEditor provides an OnReplaceAll event. This is called on completion of a ReplaceAll and reports how many items were replaced. In the example application, a response method is provided to report the replace count to the user.

The Speed Buttons

Speed buttons typically call the same response methods as do the corresponding menu items. However, in an MDI application this is more complicated as some of the response methods are defined in the Child Form, whilst the speed buttons are defined by the Main Form.

The technique used here for such speed buttons makes an underlying assumption that the Child Form is always a TMDIChild (at least when the button is enable); cast the ActiveChild Property of the Main Form to TMDIChild, and then to call the response method.

Word Wrap Speed Buttons

In the example application, the rightmost group of speed buttons work together to both indicate the current wrap mode and to provide a mechanism for quickly changing the word wrap mode. They are defined as forming a common group, by setting their GroupIndex Property to a common non-zero integer, so that one button is down and the others are in their up state. The button that is down indicates the word wrap mode, and clicking on another button changes to the corresponding mode.

To meet this requirement, it is necessary to provide a simple response method for each button, which sets the FileEditor’s WrapMode to the required value. However, there is a complication, as with all speed button’s, there is an assumption that the ActiveChild is a TMDIChild object.

To avoid problems that might occur if this assumption is invalid, event handlers are set up for the FileEditor’s OnEnter and OnExit events. These events are called, respectively, when the FileEditor gets and loses the focus. In the OnEnter response method, the group of speed buttons is enabled, in the OnExit response method, they are disabled. This ensures that the buttons can only be used when a TMDIChild is the active control.

Enabling Menu Items and Speed Buttons

Generally, menu items and speed buttons depend not only on a TMDIChild having the focus, but also on the state of the editor. The FileEditor’s OnStateChange event is provided for this purpose of setting the proper enabled state of the relevant menu items and speed buttons.

The OnStateChange event is called whenever the FileEditor’s state flags change, or, very conveniently, when the FileEditor gets or loses the focus. In the example application, the response method for this event queries the current state and sets each menu items’ and speed buttons’ enabled state as appropriate. This response method is also responsible for setting the insert mode and modified status items on the Main Form’s status line, as these information fields are also dependent on the FileEditor’s state.

Reporting Progress

Several operations performed by the FileEditor can take a long time. This includes searching large files and the uuencoding and decoding functions of the Mail Editor variant. A progress bar is available to provide the user with an indication of progress. This is included in the J-Write component library and may be found on the “Additional” component palette. In the example application, a Progress Bar is included on the Main Form’s status bar, in the rightmost panel.

The Progress Bar is normally invisible. It needs only to be made visible when a lengthy operation is in progress and, in the FileEditor, such an operation is synonymous with the vsBusy state bit being set. The visible status of the Progress Bar is therefore readily determined as part of the response method to the OnStateChange event.

The FileEditor’s OnProgressEvent is used to report incremental changes in the progress of a lengthy operation and, for example, reports how many characters have been searched out of the total to be searched. In the example application, the OnProgressEvent response method simply updates the progress bar in order to give the user an indication of progress.

During lengthy operations, the windows message queue is still serviced (the FileEditor is a good citizen!) and a check is made for the CancelKey (usually set to Esc). If this is found (i.e. the user has pressed Esc) then the operation is cancelled. However, the user is given a chance to confirm the cancel through the OnAbortRequest event. This event is called when the CancelKey is found and a TModalResult code (mrYes or mrNo) must be returned. If this is mrYes then the operation is cancelled, otherwise it continues. In the example application, a MessageDlg is used to prompt the user.

Position Information

The other piece of status information reported by the example application is the current Caret position in line number, character number, co-ordinates. The FileEditor’s OnCaretMoved event is called when the FileEditor receives the focus and whenever the Caret position changes. This event may therefore be used to generate status line information reporting the current Caret position of the active child form, and this is how it is used in the example application.

However, it should be noted that with large files, the FileEditor will estimate the current line number when a random jump is made into the file. This gives a very fast response, but requires a background “idle time” process to calculate the actual line number. In the example application, this situation is recognised by the response method for the OnCaretMoved event, and while the line number is estimated, a set of question marks is displayed. Once the line number has been properly calculated, OnCaretMoved is again called, enabling the proper line number to be indicated.

Of course to enable this to occur, the background process has to be set up. The FileEditor provides a HandleOnIdle method which needs to be assigned to the Application’s OnIdle event and, once this is done, background calculation is automatic. In an SDI Application, this assignment can be done when the form is created. However, in an MDI Application, each MDI child has its own HandleOnIdle method and child forms may come and go during the lifetime of the task.

In the example application, this situation is handled by setting the AutoIdle property to true. The editor them automatically handles the management of the idle event handler. AutoIdle ensures that while a form has the focus, background calculation can take place and there is never a chance that a form can be destroyed while its HandleOnIdle method is still referenced by Application.OnIdle. Clearly, more complicated strategies are possible to enable background processing when the form does not have the focus, but this simple approach is satisfactory for most cases.

Printer Setup

The example application also includes a Printer Setup Dialog. This is readily activated by calling its Execute method in the response method for the File|Print Setup dialog box. However, changing the current printer can affect a FileEditor object. This is because, if it is calculating word wrap on the page width of the current printer, then a change the current printer needs to be recognised by the FileEditor, so that the effective page width is changed.

TFileEditor provides a method (HandlePrinterChange) which may be called to alert the editor to a possible change in the current printer, and which will force it to re-compute the current page width. After the Printer Setup Dialog executes, the response method in the example application calls the HandlePrinterChange method for every active MDI child, thus ensuring that every instance of the FileEditor recognises the printer change. Note also that a check is made to ensure that an MDI Child Form is a TMDIChild (i.e. contains a FileEditor) before the method is invoked.

Handling Bookmarks

The J-Write Viewer components provide a simple bookmark mechanism. The AllocBookmark method may be used to get a handle to a bookmark, and GotoBookmark may then be used to re-focus the viewer on a so allocated bookmark handle. The Viewer uses textbuffer methods to ensure that the bookmark position is kept at the same character regards of insertions and deletions around it. To make this mechanism useable, the example application provides two dialogs: AddBookmarkDlg and GotoDialog.

The AddBookmarkDlg keeps track of bookmarks and relates them to a meaningful name. The names are kept in a TStrings object, that is the Items property of a TComboBox. Whenever the dialog is invoked, it suggests a name for the new bookmark and places this in the combo box’s edit control. When the Add button is pressed, whatever text is now in the edit control is entered as a new member of the string list. An object is also created and add to the list in the same entry as the string. This object includes the bookmark allocated by the viewer and a pointer to the viewer that allocated it. AddBookmarkDlg also keeps track of the entry number of the last created bookmark and allows existing bookmarks to be deleted.

Jumping to the most recently created bookmark is simple. AddBookmarkDlg provides a GotoLastBookmark method which does just that. This method gets the object associated with the most recent entry in the combo box’s items list, brings the identified viewer’s form to the front, and calls its GotoBookmark method to jump to that bookmark.

The GotoDialog provides the means to go to any bookmark, or to any page or line number. This is a complex dialog that is best understood by inspecting the code. Note that if the Goto button is used, the dialog stays on top, permitting the user to navigate through several bookmarks before closing the dialog.

The DBDemo Application

The DBDemo application is a simple SDI application for demonstrating the use of the TJWDBEdit data aware control. A sample database is provided (example.db), which comprises information about version 2.0 of J-Write.

Building the Application

A basic SDI template is used with a button bar, a status bar, and a simple menu consisting solely of a File menu, with Exit, SaveAs, Save Selection and Print items. On the button bar is a standard TDBEdit, plus a number of speed buttons for print, cut and paste, line wrap and zoom. The status bar includes a TDBNavigator for finding your way through the database records, and a panel to display line and page information. The remainder of the form is covered by a TJWDBEdit control.

Table and Datasource components are provided. The TDBEdit control is linked to the table’s “subject” field and the TJWDBEdit is linked to the “Description” field. In order to make the application as portable as possible, the Table’s Database property is initialised at run-time to the directory containing the program .exe. It is therefore assumed that the database table (example.db) is in the same directory as the program, which will be the case if the installation instructions are followed.

Note that in commonly with most Delphi database applications, the FormClose event handler checks the table to see if it is in the edit or insert states and posts the record if so. This avoids data loss on form close.

Running the Application

When the application runs, it should show the first record in the database. The Database navigator may then be used to navigate through the database. The records may be amended. Note that CTRL+Z is used to cancel any unwanted edits before the field is updated.

Programmatic Access to J-Write Components

J-Write is a text editor and in normal use responds to keyboard and mouse commands. However, it is also possible to access the same functionality using Delphi. There are two sets of methods that allow such access. The first group support direct editing of the text, while the second group are the keyboard response methods that normally respond to the user’s keystrokes and these are supported by the AssumedShiftState property.

Direct Text Editing

The following methods support direct text editing:

AppendString�DeleteSelection�DeleteText��GetString�GetSelection�InsertString��

Between them, these methods support access to text, insertion of text and deletion of text.

GetString allows you to randomly access any text string starting at a given line and character number, and of any length up to the end of the file - although in the sixteen bit version strings are limited by Dephi to a maximum of 255 characters. Please note that J-Write will always located the exact line number rather than jump to its estimated position, and, on a large file, this may take a noticeable time if the current selection is a long way from this line. CR/LF characters will also be included in the returned string if they are encountered.

GetSelection allows you to obtain the current selection text, if any, as a string. If not text is selected then an empty string is returned. If the selection is column mode, then the text is returned as a series of strings separated by CR/LF sequences.

DeleteText allows you to delete a number of text characters including CR/LF line separators from a given Line and Character Number. Note that if you attempt to delete beyond the end of the file, an exception will be raised.

DeleteSelection allows you to delete the current selection, if any.

InsertString allows you to insert a string at the current insertion point. Note that you can always change the insertion point using the EffectiveLineNumber and CharNumber properties.

AppendString allows you to append a string to the end of the file.

You can combine these methods with other methods to create your own macros. For example, to capitalise every occurrence of the word “BOLD”. You can use the following code:

if Find(nil,”BOLD”,[frDown]) then

repeat

 repeat

 capitalise;

 S := GetSelection;

 until S[2] in [‘A’..’B’]; {look at second character to be

 sure that whole word is uppercase}

until not FindNext(nil);

The Keyboard Response Methods

As their name suggests, the keyboard response methods are usually called in response to a editing key being pressed. The key used to invoke which method is specified through the object inspector. The property names should be self-evident - for example, the LeftArrowKey property defines the key that invokes the CharLeft method andn defaults to the keyboard’s left arrow key. This can be changed to any key and in combination with the Shift, Control and Alt keys, by invoking the property editor provided with J-Write.

It is also possible to intercept any keystroke before J-Write checks to see what method should be called, by defining an event handler for the OnKeyDown event. Note that if you don’t want the response method defined by the Object Inspector to be invoked then you should change the value of the “key” parameter to #0, or whatever keystroke you want it to be interpreted as.

All keystrokes that do not correspond to a keyboard response method result in the InsertChar method being called. This inserts the character at the current insertion point, or overwrites the next character position, according to the value of the InsertOn property. As above you can intercept any keystroke before the InsertChar method is called by defining an event handler for the OnKeyPress event.

The full set of response methods is:

Backspace�DeleteWord�Redo��CancelSelection�EndOfLine�ScrollDown��Capitalise�EndOftext�ScrollUp��CharLeft�Extendselection�SelectAll��CharRight�InsertChar�StartOfLine��CopyToClipBoard�InsertEOL�StartOftext��CutToClipBoard�LineDown�ToggleInsertMode��DeleteChar�LineUp�Undo��DeleteLine�PageDown�WordLeft��DeleteLineEnd�PageUp�WordRight��DeleteLineStart�PasteFromClipBoard���

In most cases, the function is self-evident, and the function is described in the reference section of this manual.

Many of these methods are affected by the state of the shift keys (shoft and Alt). If the shift key is held down while the method is called, then the section is extended from the current position to wherever the insertion point is moved to. Similarly, if the Alt key is held down then the selection is extended, but in column mode.

Clearly, if the method is called directly, then there is no guarantee that the user will hold down the Shift or Alt keys at the appropriate points. To overcome this, J-Write defines the AssumedShiftState property. The type of this property is TShiftState and may be set to the empty state or [ssShift] or [ssAlt]. If it is non-empty then the value of this property overrides the actual shift key state. It may therefore be used to emulate the effect of the shift keys. For example:

AssumedShiftState := [ssShift];

StartOfText;

AssumedShiftState := [];

extends the current selection to the start of the file.

�Reference Manual

This chapter provides the definitions for each property, event and method made publicly available by the J-Write Components. In each the syntax is given, followed by a list of the classes to which the item applies. Notes on usage then follow.

Public Properties

ActualCharWidth

Property ActualCharWidth: integer��Applies to:�TLinesBuffer, TTextStream, TEditStream��This is the average character width in pixels on the current printing device.

AltCopyKey

Property AltCopyKey: TKeyDefinition��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the Virtual Key Code plus modifiers for the alternative copy to clipboard key.

AltCutKey

Property AltCutKey: TKeyDefinition��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the Virtual Key Code plus modifiers for the alternative key to cut out the current selection, if any, and copy it to the clipboard.

AltPasteKey

Property AltPasteKey: TKeyDefinition��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the Virtual Key Code plus modifiers for the key to paste the current contents of the clipboard in the cf_text format, if any, and insert it at the current caret position, replacing the current selection, if any. Note that the paste operation always inserts text and does not overwrite text other than the current selection.

AssumedShiftState

Property AssumedShiftState: TShiftState��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��Normally, this property is empty. If it is non-empty then whenever of the keystroke response methods (e.g. EndOfLine) is called, it behaves as if the corresponding shift key is down. For example:

AssumedShiftState := [ssShift];

EndOfLine

AssumedShiftState := [];

While result in the caret moving to the end of the current line and the text between its current position and line end while be selected. i.e. the same result as if the user had pressed Shift+End.

AutoDisplay

property AutoDisplay: Boolean��Applies to:�TJWDBEdit��When true, any change to the underlying field results in the edit text being updated to reflect the change to the field text.

AutoIdle

Property AutoIdle: boolean��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��When AutoIdle is set to true, the viewer automatically installs the HandleOnIdle event handler asn Applications.OnIdle, when it receives the focus and, similarly, removes it when it loses the focus. Any previous Idle handler is re-installed on losing the focus, and called during idle processing by HandleOnIdle.

AutoScroll

Property AutoScroll: boolean��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��Autoscrolling takes place when text is selected with the mouse and the mouse cursor is dragged outside of the text window. In such a situation, as long as the left mouse button continues to be held down, the text window will keep scrolling until the mouse cursor re-enters the text window. If AutoScroll is set to false, then the text window only scrolls while the mouse is moved.

BackSpaceKey

Property BackSpaceKey: TKeyDefinition��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the Virtual Key Code plus modifiers for the key to perform the backspace operation.

BackupFile

Property BackupFiles: boolean��Applies to:�TFileEditor, TMailEditor��If true then a backup is taken on save.

BookMark

Property BookMark[Index: integer]: longint��Applies to:�TTextBuffer, TLinesBuffer, TTextStream, TEditStream��This is an indexed property returning the actual position in the buffer of the indexed bookmark. Read only and only accessible at run time. The index must be a handle allocated by a call to GetBookmarkHandle.

BottomPrinterMargin

Property BottomPrinterMargin: TPrinterMargin��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��The size of the bottom printer margin in inches.

BusyCursor

Property BusyCursor: integer��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the Cursor used when the viewer is in the busy state.

CancelKey

Property CancelKey: TKeyDefinition��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the Virtual Key Code plus modifiers for the key to remove (deselect) the current selection.

Canvas

Property Canvas: TCanvas��Applies to:�TLinesBuffer, TTextStream, TEditStream��This is the current device canvas. Used to generate the font width tables, and tabstop tables and for text output.

Caret

Property Caret: HBitmap��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��The Bitmap or selector for the Caret.

CaretPos

Property CaretPos: TLongPoint��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the position on the screen of the Caret. In the X-direction, this is a pixel co-ordinate. In the Y-Direction, it is a line number. Note that prior to version 2.2, the pixel number and line number were relative to the screen, they are now relative to the leftmost character in the line and the first line of the file, respectively.

CharHeight

Property CharHeight: integer��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the character height allowed for under the current Font and is the height of each line in pixels.

CharNumber

Property CharNumber: longint��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the character on the current line immediately preceded by the Caret.

ClickSize

Property ClickSize: integer��Applies to:�TWinScrollBar��The clicksize is the amount by which the Position property is changed when the arrows at either end of the scroll bar are clicked.

CopyKey

Property CopyKey: TKeyDefinition��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the Virtual Key Code plus modifiers for the copy to clipboard key.

CutKey

Property CutKey: TKeyDefinition��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the Virtual Key Code plus modifiers for the key to cut out the current selection, if any, and copy it to the clipboard.

DataField

property DataField: string��Applies to:�TJWDBEdit��This the name of the field to which the control is linked.

DataSource

property DataSource: TDataSource��Applies to:�TJWDBEdit��This property identifies the data source from which the control gets its data.

DeleteKey

Property DeleteKey: TKeyDefinition��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the Virtual Key Code plus modifiers for the key to delete either the current selection, if any, or the character immeidately after the caret.

DeleteLineKey

Property DeleteLineKey: TKeyDefinition��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the Virtual Key Code plus modifiers for the key to delete the line on which the caret is placed.

DeleteWordKey

Property DeleteWordKey: TKeyDefinition��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the Virtual Key Code plus modifiers for the key to delete the current word, if any, on which the caret is placed.

DelLineEndKey

Property DelLineEndKey: TKeyDefinition��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the Virtual Key Code plus modifiers for the key to delete all text from the current caret position, or start of selection, if text is selected, to the end of the current line.

DelLineStartKey

Property DelLineStartKey: TKeyDefinition��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the Virtual Key Code plus modifiers for the key to delete all text from the start of the current line to the current caret position, or end of selection if text is selected.

DisplayCharWidth

Property DisplayCharWidth: integer��Applies to:�TLinesBuffer, TTextStream, TEditStream��This is the average character width in pixels on the current display device.

DoubleClickMode

property DoubleClickMode: TDoubleClickModes��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��When set to dcWordOnly, then a double click with the left mouse button selects the current word only. When set to dcWordAndSpaces, then a double click with the left mouse button selects the current word and the white space characters to the right.

DragMargin

Property DragMargin: boolean��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��When true, the left and right margins can be dragged with the Mouse.

EditCancelKey

property EditCancelKey: TKeyDefinition��Applies to:�TJWDBEdit��This is the Virtual Key Code plus modifiers for the key to revert the edit text to the text current stored in the field

EffectiveLineNumber

Property EffectiveLineNumber: longint��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This property is used to obtain and set accurate position data. On read, the linenumber is returned less any "virtual lines" introduced in order to display page breaks. This is unlike LineNumber which includes such virtual lines in its count.

On write, the current line is moved line by line to gain an accurate positioning. Again, this is unlike LineNumber, which estiamtes where the line should be and jumps. The semantics of the property are also dependent on the LineNumberMode property.

Error

Property Error: TUUErrors��Applies to:�TUUDecoder��This property contains the current error status code.

EstimatedLineNumber

Property EstimatedLineNumber: boolean��Applies to:�TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��When true this implies that the value of the LineNumber property inherited from TLinesViewer is an estimate and may change once it has been calculated exactly.

FileLocking

Property FileLocking: boolean��Applies to:�TFileEditor, TMailEditor��If true then files opened for editing are opened for exclusive access.

FileName

Property FileName: String��Applies to:�TFileViewer��This property contains the name of the file being viewed. To view a different file, simply assign a new value to this property.

FileName

Property FileName: String��Applies to:�TFileEditor, TMailEditor��This property contains the name of the file being edited. To edit a different file, simply assign a new value to this property. If the current file is modified then the OnSaveModifed event applies.

HardPageBreakStyle

Property HardPageBreakStyle: TPenStyle��Applies to:�TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This property determines the style used for the line used to represent a hard page break.

HorzScrollBar

Property HorzScrollBar: TWinScrollBar��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��The TWinScrollBar that encapsulates the TLinesViewer's horizontal scrollbar.

InsertKey

Property InsertKey: TKeyDefinition��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the Virtual Key Code plus modifiers for the key to toggle the insert mode.

InsertOn

Property InsertOn: boolean��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This property holds the current insert mode. When true, new text is inserted at the current insertion point. When false, new text overwrites existing text.

KeepBookmarks

Property KeepBookMarks: boolean��Applies to:�TTExxtBuffer, TLinesBuffer, TTextStream, TEditStream��When this property is set to true, bookmarks are not cleared when the buffer is reset. This is useful if the buffer is to be reloaded with the same text.

LastPageBreak

Property LastPageBreak: longint��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��The line number on which the last hard page break can be found. Returns zero if no preceding hard page break.

LastLine

Property LastLine: longint��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��The line number of the last line in the text.

LeftArrowKey

Property LeftArrowKey: TKeyDefinition��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the Virtual Key Code plus modifiers for the key to move the caret one character to the left.

LeftMargin

Property LeftMargin: integer��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This holds the left margin of the window in pixels. Text is not written in this margin area, which is also taken into account when determining the writeable area of the window. Note that the left margin may be scrolled off to the left of the window.

LeftPrinterMargin

Property LeftPrinterMargin: TPrinterMargin��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��The size of the left printer margin in inches.

Limit

Property Limit: longint��Applies to:�TWinScrollBar��The limit is the maximum value the Position property can take. Zero is always the minimum value.

LineDownKey

Property LineDownKey: TKeyDefinition��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the Virtual Key Code plus modifiers for the key to move the caret one line down.

LineEndKey

Property LineEndKey: TKeyDefinition��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the Virtual Key Code plus modifiers for the key to move the caret to the rightmost position on the current line.

LineLength

Property LineLength: longint��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the length of the current line in characters.

LineNumber

Property LineNumber: longint��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the number of the "current line" i.e. the line on which the caret is currently placed. Note that if you assign a value to this property, the position of this line will be estimated and a jump made to the approximate position. Use the EffectiveLineNumber property to go to an exact line.

LineNumberMode

Property LineNumberMode: TLineNumberModes��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This property may be set to lnFileRelative, in which case the EffectiveLineNumber is relative to the start of the file, or to lnPageRelative, in which case the EffectiveLineNumber is relative to the top of the current Page.

LineStartKey

Property LineStartKey: TKeyDefinition��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the Virtual Key Code plus modifiers for the key to move the caret to the leftmost position on the current line.

LineUpKey

Property LineUpKey: TKeyDefinition��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the Virtual Key Code plus modifiers for the key to move the caret one line up.

LineWidth

Property LineWidth: longint��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the width in pixels of the current line.

MailQuote

Property MailQuote: string��Applies to:�TMailEditor��This is the Mail Quote string used for the Paste from the clipboard/insert text files operations, when it is required to precede each line of the inserted text with a "Mail Quotes" string.

MaxLineLength

Property MaxLineLength: integer��Applies to:�TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��When word wrap on a specified number of characters is selected, the value of this property is used as the maximum number of characters permitted to be in a line.

MaxUndoLevels

Property MaxUndoLevels: integer��Applies to:�TUndoList��This is the maximum number of undo transactions retained on the list, as a number between zero and maxint. If this is exceeded then the oldest transactions are deleted until the list is withn MaxUndoLevels.

MaxUndoLevels

Property MaxUndoLevels: integer��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor, TEditStream��This is the maximum number of undo/redo transactions retained on the list. If this is exceeded then the oldest transactions are deleted until the list is withn MaxUndoLevels.

MaxTextSize

Property MaxTextSize: longint��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor, TEditStream, TTextBuffer, TLinesBuffer, TTextStream, TEditStream��This property specifies the maximum size that the buffer can grow to. If set to zero then there is no limit. Note that no check is made when the property changes to see if the existing buffer size is greater than MaxTextSize.

MaxWidth

Property MaxWidth: longint��Applies to:�TLinesBuffer, TTextStream, TEditStream��This is the longest width (in pixels) a line is permitted to have before word wrap is applied. Zero implies no limit.

Mode

Property Mode: TlbModes��Applies to:�TLinesBuffer, TTextStream, TEditStream��This is used for interpretation of MaxWidth.

Mode

Property Mode: TScrollBarModes��Applies to:�TWinScrollBar��Set to sbAutomatic (default) when scroll bars are to be displayed when required. Set to sbManual when scroll bars are to be displayed according to value of Visible property as set at design or run time.

Modified

Property Modified: boolean��Applies to:�TTextBuffer, TLinesBuffer, TTextStream, TEditStream��Set to true by a descendant class when the text buffer has been modified.

Modified

Property Modified: boolean��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��Run-time only and set to true when the text buffer has been modified. It may be set to false at run time and has the effect of clearing the modified state.

NewLineKey

Property NewLineKey: TKeyDefinition��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the Virtual Key Code plus modifiers for the key to insert a line break.

NumberOfPages

Property NumberOfPages: integer��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the number of pages of printable text contained in the current buffer. Note that this is not guaranteed to be accurate if the background line counting is still going on. If an accurate result is required, for example, before displaying the maximum number of pages to print in the Print Dialog, the following code should be used before checking the value of this property:

var done: boolean;

.....

Repeat <name of editor object>.HandleOnIdle(nil,done) Until done;

This will then ensure that the background line count has been completed.

OEMConvert

property OEMConvert: boolean��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��Set this property to true if you want the TLinesViewer descendant to assume that each file it opens uses the DOS (OEM) character set. Where necessary, the character codes will be converted to Windows (ANSI) character codes when the file is read in. This property is implemented by TTextViewer as a pass through to the underlying buffer.

OEMConvert

property OEMConvert: boolean��Applies to:�TTextBuffer, TLinesBuffer, TTextStream, TEditStream��When this property is true, the text is converted from the DOS (OEM) character set to the Windows (ANSI) character set whenever the text buffer is read from the underlying stream.

OutputDevice

Property OutputDevice: TOutputDevice��Applies to:�TLinesBuffer, TTextStream, TEditStream��Set to odDisplay to use the display canvas as the output device, and set to odPrinter to use the current Printer.

PageBreakCount

Property PageBreakCount: integer��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��The number of hard page breaks before the current page - includes a page break at the top of the current page, if any.

PageDownKey

Property PageDownKey: TKeyDefinition��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the Virtual Key Code plus modifiers for the key to move the caret down by the number of lines on the screen.

PageNumber

Property PageNumber: integer��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��The current Page Number.

PageSize

Property PageSize: integer��Applies to:�TWinScrollBar��The page size is the amount by which the Position property is changed when the scrollbar is clicked either side of the thumb.

PageUpKey

Property PageUpKey: TKeyDefinition��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the Virtual Key Code plus modifiers for the key to move the caret up by the number of lines on the screen.

PasteKey

Property PasteKey: TKeyDefinition��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the Virtual Key Code plus modifiers for the key to paste the current contents of the clipboard in the cf_text format, if any, and insert it at the current caret position, replacing the current selection, if any. Note that the paste operation always inserts text and does not overwrite text other than the current selection.

PercentDone

Property PercentDone: integer��Applies to:�TProgressMeter��This is the percentage done. Setting this to a value between 0 and 100 updates the progress bar to show the percentage done in figures and inverts a corresponding proportion of the progress bar to give a graphical indication of progress.

Position

Property Position: longint��Applies to:�TWinScrollBar��The Position property reflects the current position of the Thumb. Assigning a value to Position within the valid range, explicitly changes the position of the scroll bar thumb and causes the OnScroll event to be called in order to change the view to correspond to the new position.

PrinterCharWidth

Property PrinterCharWidth: integer��Applies to:�TLinesBuffer, TTextStream, TEditStream��This is the average character width in pixels on the current printer device.

PrinterFooterMargin

Property PrinterFooterMargin: TPrinterMargin��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��The distance between the page footer and the bottom of the page in inches.

PrinterHeaderMargin

Property PrinterHeaderMargin: TPrinterMargin��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��The distance between the page header and the top of the page in inches.

QuickKey

Property QuickKey: TKeyDefinition��Applies to:�TKeyManager,TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the virtual key code plus modifiers for the Quick Key.

ReadOnly

Property ReadOnly: boolean��Applies to:�TEditStream, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��When true, buffer is read only. Note that the OnWriteProtect event is generated when a write is attempted to a Read Only buffer.

RedoCount

Property RedoCount: integer��Applies to:�TEditStream��This is the current number of redo transactions.

RedoKey

Property RedoKey: TKeyDefinition��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the Virtual Key Code plus modifiers for the key to redo the undo last operation.

RightArrowKey

Property RightArrowKey: TKeyDefinition��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the Virtual Key Code plus modifiers for the key to move the caret one character to the right.

RightMargin

Property RightMargin: integer��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This holds the right margin of the window in pixels, when the wrap mode is opWrapScreenWidth. Text is not written in this margin area, which is also taken into account when determining the writeable area of the window

RightPrinterMargin

Property RightPrinterMargin: TPrinterMargin��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��The size of the right printer margin in inches.

SaveMode

Property SaveMode: TSaveMode��Applies to:�TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This property defines whether the text is saved as paragraph text (i.e. as it is in the text buffer); as Line oriented text (i.e. with line breaks inserted between each line displayed on the screen; or whether the user is prompted for the appropriate save mode (see the OnSaveModePrompt event).

ScrollDownKey

Property ScrollDownKey: TKeyDefinition��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the Virtual Key Code plus modifiers for the key to scroll down the screen by one line.

ScrollUpKey

Property ScrollUpKey: TKeyDefinition��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the Virtual Key Code plus modifiers for the key to scroll up the screen by one line.

SelectAfterPaste

Property SelectAfterPaste: boolean��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��If true (default) then following a paste operation, the pasted in text is selected. If false, then no text is selected following a paste operation.

SelectionSize

Property SelectionSize: longint��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��Read only and returns the number of characters in the current selection, if any.

ShowLineBreaks

Property ShowLineBreaks: boolean��Applies to:�TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��When true, line breaks are shown using the '¶' character, and the end of text is shown using the '¤' character. Hard page breaks are shown as a solid line across the viewable area.

ShowPageBreaks

Property ShowPageBreaks: TPageBreakDisplayModes��Applies to:�TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��The property determines when soft page breaks are shown. They may be never shown, always shown, or only shown when the word wrap mode is set to wrap on printer page width.

Size

Property Size: longint��Applies to:�TTextBuffer, TLinesBuffer, TTextStream, TEditStream��This is a longint holding the current size of the text buffer. Note: Text[Size-1] is the last character in the Text buffer.

Size

Property Size: longint��Applies to:�TSegmentList, TFreeList, TVirtualStreamList, TUndoInfo��This is the total size of all of the segments in the list.

SoftPageBreakStyle

Property SoftPageBreakStyle: TPenStyle��Applies to:�TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This property determines the style used for the line used to represent a soft page break.

SourceStream

Property SourceStream: TStream��Applies to:�TStreamViewer, TFileViewer��This property has the current stream as its value. To view a different stream, simply assign a new stream object to the property. Note that the stream is freed when the viewer is closed or a new stream assigned to this property.

SourceStream

Property SourceStream: TStream��Applies to:�TStreamEditor, TFileEditor, TMailEditor��This property has the current stream as its value. To edit a different stream, simply assign a new stream object to the property. Note that the stream is freed when the viewer is closed or a new stream assigned to this property.

SourceStream

Property SourceStream: TStream��Applies to:�TTextStream, TEditStream��This is the stream which is presented by the TTextViewer as line oriented text.

State

Property State: TViewerStates��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This property is the current set of TLinesViewer states and may be used when displaying status information and determining the state of menu items.

Stream

Property Stream: TStream��Applies to:�TFreeList, TVirtualStreamList, TUndoInfo��This read only property is the stream from which allocations are made. It may be a memory or a disk stream.

TabCount

Property TabCount: integer��Applies to:�TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor,TLinesBuffer, TTextStream, TEditStream��This property specifies the number of tab stops defined in the TapStop indexed property.

TabStops[]

Property TabStops[n: integer]��Applies to:�TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor, TLinesBuffer, TTextStream, TEditStream��This indexed property contains the defined tab stops in inches. The index must be in the range 0..TabCount-1, and the tab stops must be defined in order of increasing value.

Text

Property Text: string��Applies to:�TJWDBEdit��This property provides access to the edit text.

Text[]

Property Text[Pos: longint]: PChar��Applies to:�TTextBuffer, TLinesBuffer, TTextStream, TEditStream��This read only property is indexed by a longint and returns PChar to character in the idealised text buffer indexed by Pos.

TextEndKey

Property TextEndKey: TKeyDefinition��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the Virtual Key Code plus modifiers for the key to move the caret to the last line.

TextSize

Property TextSize: longint��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��The number of characters in the text including any line separator characters.

TextStartKey

Property TextStartKey: TKeyDefinition��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the Virtual Key Code plus modifiers for the key to move the caret to the first line.

TopPrinterMargin

Property TopPrinterMargin: TPrinterMargin��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��The size of the top printer margin in inches.

Tracking

Property Tracking: boolean��Applies to:�TWinScrollBar��If Tracking is true then the scroll bar reacts to the thumb being dragged by updating the Position property and calling the OnScroll event. If false, then any reaction is deferred until the drag is finished and the mouse button creases to be pressed down.

TripleClickForParagraph

property TripleClickForParagraph: boolean��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TStreamEditor, TFileEditor, TMailEditor��If true then a triple click with the left mouse button selects the current paragraph. If false then a triple click selects the current line, whilst a quadruple click will select the current paragraph.

UndoCount

Property UndoCount: integer��Applies to:�TEditStream��This is the current number of undo transactions.

UndoKey

Property UndoKey: TKeyDefinition��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the Virtual Key Code plus modifiers for the key to undo the last operation.

Valid

Property Valid: TValidText��Applies to:�TTextBuffer, TLinesBuffer, TTextStream, TEditStream��This is a record holding two PChars: “First” and “Last” giving inclusive range of the current valid pointers to the idealised text buffer.

VertScrollBar

Property VertScrollBar: TWinScrollBar��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��The TWinScrollBar that encapsulates the TLinesViewer's vertical scrollbar.

Visible

Property Visible: boolean��Applies to:�TWinScrollBar��This property reflects the current Visible state of the scroll bar. This can be changed explicitly. However, the Visible state is always re-computed every time Limit is changed, such that Visible is set to true if and only if Limit is greater than the PageSize.

WantTabs

Property WantTabs: boolean��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��If true then tabs are available for use as editing keys. This property may be set to false if the editor is used as a control in a dialog box, and the tab character is to be used to move the focus between controls. The TabStop property is usually also set to true in this case.

WordLeftKey

Property WordLeftKey: TKeyDefinition��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the Virtual Key Code plus modifiers for the key to move the caret one word to the left.

WordRightKey

Property WordRightkey: TKeyDefinition��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the Virtual Key Code plus modifiers for the key to move the caret one word to the right.

WPMode

Property WPMode: boolean��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��When true the Caret wraps round from the last character on one line to the first character on the next line, and cannot be placed in the white space to the right of the end of a line. When false, the Caret can enter the white space and does not wrap around.

WrapMode

Property WrapMode: TWrapModes��Applies to:�TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This property determines how the text is organised into lines (i.e. wrapped to fit on the screen). Either no word wrap is displayed (i.e. lines may overflow the screen until a had line break is encountered); word wrap is on window boundaries; word wrap is after a specified number of characters (see the MaxLineLength property); or word wrap is on printer page width.

ZoomFactor

Property ZoomFactor: integer��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��Increases or decreases effective font size by 2**Zoomfactor. Note negative numbers imply a decrease.

Events

OnAbortRequest

Property OnAbortRequest: TAbortEvent��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This event is called to enable the user to confirm a request to abort a busy state operation. The abort is requested by pressing the excape key which is regularly checked during this state. When the event returns, the result is checked to see if the user really does want to abort. A response of mrYes confirms the abort, mrNo requests continue. If this event handler is not defined then the result is assumed to be mrYes.

OnAfterUndo

Property OnAfterUndo: TNotifyEvent��Applies to:�TEditStream��This event handler is called immediately after an Undo Transaction has taken place, and allows for re-synchronisation of the viewer after the change.

OnBeforeUndo

Property OnBeforeUndo: TBeforeUndoEvent��Applies to:�TEditStream��This event handler is called immediately before an Undo Transaction takes places and allows the viewer to synchronise with the undo operation.

OnBlockDecode

Property OnBlockDecode: TProgressEvent��Applies to:�TUUDecoder��This event provides a notification of progress through a text buffer during a uudecode operation. It may be used, for example, to update a progress indicator.

OnBlockEncode

Property OnBlockEncode: TProgressEvent��Applies to:�TUUEncoder��This event provides a notification of progress through a text buffer during a uuencode operation. It may be used, for example, to update a progress indicator.

OnCaretMoved

Property OnCaretMoved: TNotifyEvent��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This event is called to report a change in the position of the caret and may be used to provide status line information on the caret co-ordinates.

OnChange

Property OnChange: TNotifyEvent��Applies to:�TWinScrollBar��This event occurs whenever the scroll bar state changes, including the Visible state.

OnChange

Property OnChange: TNotifyEvent��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This event is called whenever text changes in the underlying text container.

OnChange

Property OnChange: TNotifyEvent��Applies to:�TTextBuffer, TLinesBuffer, TTextStream, TEditStream��This event is called to report that text in a text buffer has been changed.

OnEditCancel

property OnEditCancel: TEditCancelEvent��Applies to:�TJWDBEdit��This event is called whenever the EditCancel key is pressed and allows for a confirmation of the edit cancel to be requested. The event handler sets the Confirmed parameter to true on return if the edit is to be cancelled.

OnEndDecode

Property OnEndDecode: TUUEndDecodeEvent��Applies to:�TUUDecoder, TMailEditor��This event provides a notification of the completion of a uuDecode operation and reports the result of the operation. The user may thus be informed as to whether the decode operation was successful.

OnEnter

Property OnEnter: TNotifyEvent��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This event is called whenever the TLinesViewer gets the focus.

OnExit

Property OnExit: TNotifyEvent��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This event is called whenever the TlinesViewer loses the focus.

OnKeyCode

Property OnkeyCode[const KeyDef: TKeyDefinition]: 		TKeyEventHandler��Applies to:�TKeyManager��This is a write only indexed property. The index is a virtual key code plus any modifiers required, and the assigned value is the handler for that key code. Assiging a value of nil removes the key code from the list maintained by TKeyManger.

OnModified

Property OnModified: TNotifyEvent��Applies to:�TTextBuffer, TLinesBuffer, TTextStream, TEditStream��Event handler for change to modified status.

OnNewFileName

Property OnNewFileName: TNotifyEvent��Applies to:�TFileEditor��This event provides a notification of a change in the filename property. It may, for example, be used to set the window caption.

OnPagePrint

Property OnPagePrint: TPrintEvent��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This event is called every time a page is printed and may be used to report the number of pages printed.

OnProgressEvent

Property OnProgressEvent: TProgressEvent��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This event is called to report progress during a lengthy operation and while in the busy state. It may be used to update a progress bar.

OnReplaceAll

Property OnReplaceAll: TReplaceAllEvent��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This event is called to report the completion of a Replace All action. It may be used to report the number of items replaced.

OnSaveModePrompt

OnSaveModePrompt: TSavePromptEvent��Applies to:�TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This event is called when the file is saved and gives a chance for the user to override the current save mode when appropriate. This event is most useful when SaveMode is set to prompt the user for the appropriate save mode, and should then return the save mode as paragraph or line oriented text. In this case, this event provides a mechanism for an appropriate prompt to be displayed to the user and for them to indicate the preferred save mode. If no event handler is defined and the SaveMode is set to prompt the user, then save as line oriented text is assumed.

OnSaveModified

Property OnSaveModified: TSaveModifiedEvent��Applies to:�TFileEditor, TMailEditor��This event occurs when the clear method is called, or a new filename assigned, and the file currently being edited has been modified. It should return an indication of the action to take as either mrYes (save the file by calling the Save method), mrNo (don't save the file), or mrCancel (abandon the Clear or change in file. This event permits a simple dialog box to be displayed, prompting the user to save the file, with Yes/No/Cancel as the options.

OnSaveNewFile

Property OnSaveNewFile: TNotifyEvent��Applies to:�TFileEditor, TMailEditor��This event provides a notification that the Save method has been called when the FileName property is empty, or when the SaveAs method has been called with an empty filename parameter. The event handler should prompt the user for the filename under which to save the file, and then call SaveAs again in order to perform the save. If no event handler is defined then the save operation fails. This event should always be handled as it is the mechanism by which an untitled file is saved and the user prompted for a filename.

OnSaveUndo

Property OnSaveUndo: TUndoSaveUndoEvent��Applies to:�TUndoList��This event handler is called when a new undo operation is created. It is expected to return the current viewer state information to be saved with the undo operation.

OnSaveUndo

Property OnSaveUndo: TSaveUndoEvent��Applies to:�TEditStream��This event handler is used to report that Undo information is about to be saved. Parameters may be used to return the current selection and modification status for saving with the Undo information.

OnScroll

Property OnScroll: TNotifyEvent��Applies to:�TWinScrollBar��This event is occurs whenever the Position of the thumb is changed.

OnSearchStatus

Property OnSearchStatus: TSearchStatus��Applies to:�TLinesBuffer, TTextStream, TEditStream��This event reports progress on a long search

OnStartDecode

Property OnStartDecode: TUUDecodeEvent��Applies to:�TUUDecoder, TMailEditor��This event provides a notification of when a uuDecode header has been found in the text (when the uuDecode method has been called) and gives the user the opportunity to change the filename/location for the uudecoded file, or to skip the uudecode.

OnStateChange

Property OnStateChange: TNotifyEvent��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��The TLinesViewer maintains a State variable (a Set) which includes state information for editors as well as Viewers, and may be set by descendant classes, as well as TLinesViewer. Whenever the State variable is updated, this event handler is called. It may, for example, be used to update menu items and/or a status line.

OnUndo

Property OnUndo: TUndoUndoEvent��Applies to:�TUndoList��This event handler is called when an undo operation is performed and notifies the handler of the viewer state that is to be restored.

OnUndo

Property OnUndo: TUndoEvent��Applies to:�TEditStream��This event handler is used to report the Undo operation. Parameters of call report the selection status and modification status at the time that the undo information was saved, and the number of undo records remaining

OnUndoChange

Property OnUndoChange: TNotifyEvent��Applies to:�TUndoList��This event handler is called when the undo transaction count changes. It may be used to change status information, e.g. the state of menu items.

OnUndoChange

Property OnUndoChange: TNotifyEvent��Applies to:�TEditStream��This event handler is called when the undo transaction count changes. It may be used to change status information, e.g. the state of menu items.

OnWrapModeChange

Property OnWrapModeChange: TNotifyEvent��Applies to:�TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This event provides a notification of a change in the current wrap mode and may be used to (e.g.) update a status bar.

OnWriteProtect

Property OnWriteProtect: TNotifyEvent��Applies to:�TEditStream, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��Called when a write protect event occurs i.e. ReadOnly true and Delete or Insert called. If this event handler is not installed, then an EInternalError exception is raised when a write protect error occurs.

Public Procedures

AddBuffer

procedure AddBuffer(var Buffer; BufLen: Word);��Applies to:�TSumCheck��This method adds the binary values of each byte in the buffer to the sum check.

AddLine

procedure AddLine(const S: String);��Applies to:�TSumCheck��This method adds the ASCII values of the characters in S to the sumcheck, adding an assumed LF separator to the end of the string.

AllocBookMark

function AllocBookMark: integer; virtual;��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This method is called in order to get a bookmark to the current caret position. The returned bookmark may be used in a later call to GotoBookMark in order to focus the view at this bookmark. Note that bookmarks are invariant with respect to insertion/deletion.

Append

procedure Append(P: TStreamSegment);��Applies to:�TSegmentList, TFreeList, TVirtualStreamList, TUndoInfo��This method appends P to the end of the TSegmentList.

AtPageBreak

function AtPageBreak(Pos: longint): boolean;��Applies to:�TLinesBuffer, TTextStream, TEditStream��This method returns true if the character at Pos is a Form Feed.

AppendString

procedure AppendString(const S: string);��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This method will append the string S to the end of the text currently being edited. The editor is then focused on the inserted text.

BackSpace

procedure BackSpace;��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This method moves the caret back one character and then deletes the next character. The exception is if the caret is at the start of the line when it wraps back to the end of the preceding line. Note that a check is made to see if preceding line was wrapped or ended in a real CR/LF. In the former case, the caret is stepped back passed the last character on the line, in the latter case, the caret is placed at the end of the line to ensure that the line break is deleted.

CancelSelection

procedure CancelSelection;��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the keyboard response method for the escape key. If any text is selected, then the effect of this method is to remove the selection..

Capitalise

procedure Capitalise;��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This method is used to capitalise either the current word (i.e. the word on which the caret is located) or all words in the selection. If the first word is already capitalised then all words are converted to all upper case. If the second letter is already upper case, then all are converted to lower case. Note that the Ansilower and upper functions are used to ensure international character set support.

CharLeft

procedure CharLeft;��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the keyboard response method for the left arrow key and moves the caret one place to the left. If the caret is at the left margin, the it is moved to t he end of the previous line.

CharRight

procedure CharRight;��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the keyboard response method for the right arrow key and moves the caret one place to the right. If the caret is at the rightmost position in the line then it is moved to the start of the next line if WPMode is true, otherwise it continues to move one character to the right and into the white space at the end of the line. Note that if a character is inserted whilst the caraet is positioned to the right of the end of the line, space characters are inserted in order to position that character where the caret is positioned.

Clear

procedure Clear; virtual;��Applies to:�TSegmentList, TFreeList, TVirtualStreamList, TUndoInfo��This method deallocates all segments on the TSegmentList and re-initialises the list to the initial state.

Clear

procedure Clear;��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This methods resets the editor to the initial state. The OnSaveModified event will be called if the editor contains modified text.

ClearLastUndoLink

procedure ClearLastUndoLink; virtual;��Applies to:�TTextBuffer, TLinesBuffer, TTextStream, TEditStream��This method forces the undo operation at the top of the undo stack to be a separate undo transaction from any undo operations saved afterwards. Note that the method is defined as an abstract method by TTextBuffer and overridden by TEditStream.

ClearTransactionBoundary

procedure ClearTransactionBoundary;��Applies to:�TUndoList��The "Linked" field in each member of an undo list is used to indicate the boundary between undo transactions. When true, it implies that this undo operation is linked to the one that precedes it in the list (i.e. nearer top of stack) and should be processed in the same undo operation. This method removes a transaction boundary and effectively joins the current undo operation to whatever undo operation is later added to the top of the stack.

Close

procedure Close;��Applies to:�TLinesViewer��This method closes the window by sending it a wm_close message

Copy

constructor copy(P: TStreamSegment);��Applies to:�TStreamSegment��The Copy constructor creates a new object which is a copy of P.

Copy

constructor copy(P: TAllocatedSegment);��Applies to:�TAllocatedSegment��The Copy constructor creates a new object which is a copy of P.

CopyOf

function copyOf: TStreamSegment; virtual;��Applies to:�TStreamSegment, TAllocatedSegment��This is a virtual method and creates a copy of the the object using its copy constructor. Note that every descendant object that defines a copy constructor overrides this method to call its own copy constructor.

CopyText

procedure CopyText(Dest: pointer; Pos, Length: longint);��Applies to:� TTextBuffer, TLinesBuffer, TTextStream, TEditStream��This method copies 'Length' characters starting at Pos from the text buffer to a memory block pointed to by 'Dest'. This memory block may be a huge memory block i.e. exceeding 64KB. Note that the method is defined as an abstract method by TTextBuffer and overridden by TTextStream and TEditStream.

CopyToClipBoard

procedure CopyToClipBoard; virtual;��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��Copies the current selection to a memory area and passes it to the clipboard

CopyToMem

procedure CopyToMem(Mem: THandle; Pos, Length: longint);��Applies to:� TTextBuffer, TLinesBuffer, TTextStream, TEditStream��This method copies Length characters of text at position Pos to the memory segment Mem.

CopyToStream

procedure CopyToStream(S: TStream; Pos, Length: longint); virtual;��Applies to:� TTextBuffer, TLinesBuffer, TTextStream, TEditStream��This method copies 'Length' characters from the Text Buffer, starting at Pos to the stream S. Note that the method is defined as an abstract method by TTextBuffer and overridden by TTextStream.

CopyToStream

procedure CopyToStream(S: TStream; Count: Longint);��Applies to:�TVirtualStreamList��This method copies 'Length' characters from the virtual stream, starting at Pos to the stream S.

Cut

function Cut(Length: Longint): TSegmentList;��Applies to:�TVirtualStreamList��This method cuts out a region of 'Length' characters from the virtual stream, starting at the current position, and returns the cut out stream segments as a TSegmentlist, reflecting their order in the stream.

CutToClipBoard

procedure CutToClipBoard;��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This method copies the current selection to the clipboard and then deletes it. Note that an exception will occur (and hence the deletion skipped if the copy fails).

DeAllocate

procedure DeAllocate(List: TSegmentList); virtual;��Applies to:�TStreamSegment, TAllocatedSegment��This method is called when a segment is deallocated from a list. By default the segment is freed, However, the method is overridden by TAllocatedSegment to return the segment to its freelist.

Delete

procedure Delete(Pos, Count: longint); virtual; ��Applies to:�TTextBuffer, TLinesBuffer, TTextStream, TEditStream��This method is called to delete "count" characters from the Text Buffer, starting at Pos. Note that the method is defined as an abstract method by TTextBuffer and overridden by TEditStream.

DeleteBookMark

procedure DeleteBookMark(Handle: integer);��Applies to:�TTextBuffer, TLinesBuffer, TTextStream, TEditStream��Deletes the indicated bookmark from the list. If this is the last list member then the list is also compacted.

DeleteChar

procedure DeleteChar;��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This method deletes the character at the current cursor position or the current selection, if text is selected.

Deletion of a single character may take place at

a hard line break, when the number of lines in the file will decrease by one unless the hard line break is replaced by a soft line break.

a soft line break, when line wrap may occur.

or in the middle or start of a line, when again, line wrap may occur. In this case, deletion of a word break character may result in word wrap in the preceding line.

DeleteColumnText

function DeleteColumnText(ReplaceStr: string; linkUndo: boolean): longint;��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This function is only valid when the selection mode is smColumn and is called to delete the currently selected text. Additionally, if ReplaceStr is not null, the text deleted on each line of the selection is replaced by the ReplaceStr. DeleteColumnText may be used as part of more complex operations (e.g. drag and drop of block selections) and the LinkUndo parameter is used to support such operations. If LinkUndo is true, then the current undo transaction is left open when the function completes and any subsequent edit becomes part of the same transaction. If LinkUndo is set to false then DeleteColumnText becomes a distinct undo transaction.

DeleteLine

procedure DeleteLine;��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This method deletes all characters on the current line (as given by the LineNumber property), including the line break, if any.

DeleteLineEnd

procedure DeleteLineEnd;��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This method deletes all characters from the caret position to the end of the line, including selected text, if any.

DeleteLineStart

procedure DeleteLineStart;��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This method deletes all characters from the caret position to the start of the line, including selected text, if any.

DeleteSelection

procedure DeleteSelection;��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This method deletes all text in the current selection, if any.

DeleteText

procedure DeleteText(ALineNumber, ACharNumber, DeleteCount: longint);��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This method deletes DeleteCount characters starting at the specified character on the specified line. An exception will be raised if an attempt is made to delete beyond the end of the text.

DeleteWord

procedure DeleteWord;��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This method deletes the word at the current caret position, if any.

EndOfLine

procedure EndOfLine��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the keyboard response method for the End key and moves the caret to the end of the current line.

EndOftext

procedure EndOftext��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the keyboard response method for CTRL+END and moves the caret to the end of the text.

ExtendSelection

procedure ExtendSelection��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is method is called by all the keyboard response methods to extend the current selection to wherever the caret has been moved. It checks the Shift and Alt keys to determine if normal or column mode is selected. If there is no current selection, then the appropriate selection mode is set and the current insertion point becomes the anchor point for selected text. If there is already a current selection then the selection is extended from the anchor point to wherever the caret is positioned. For example, to select all text from the current position to some arbitrary point (x,y), use the following code:

CancelSelection; {clears current selection}

AssumedShiftState := [ssShift];

ExtendSelection;

LineNumber := y;

CharNumber := x;

ExtendSelection;

AssumedShiftState := [];

Find

function Find(Sender: TFindDialog; const AFindStr: String; �				SearchOptions: TFindOptions): boolean;��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��Find is used in conjunction with TFindDialog to search the text for a string of characters. The string to search for is given by AFindStr, and the search options selected by the user, in SearchOptions. Sender should either be set to nil, if a TFindDialog is not used as the dialog box, to should be set to the TFindDialog object.

You may include the following special characters AFindStr:

^t	The Tab Character

^p	Hard Line Break

^l	Hard Page Break

Tabs, line and Page breaks may therefore be included in search. Note that if you need to use the “^” character in search or replacement text, then this must be entered as “^^” in order to avoid confusion.

From version 2.2, you can also specify a character code by its decimal code, within AFindStr. This is represented by a ^ followed by three decimal characters, left padded with zeroes. For example “^032” is a single space.

Find returns true if successful, and false otherwise.

Example:

procedure TMDIChild.FindDialog1Find(Sender: Tobject);�begin�	With Sender As TFindDialog Do�	If not FileEditor1.Find(TFindDialog(Sender),FindText,Options)�		Then MessageDlg('Text not Found',mtError,[mbOK],0)�end;

FindNext

function FindNext(Sender:TFindDialog): boolean; virtual;��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��FindNext is called to repeat the previous Find operation, if any. It is typically called as the result of a menu selection, in which case the Sender is usually set to nil.

FlowText

procedure FlowText;��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This method removes all single Line Breaks from the current selection, or from the Caret position to end of text, if no selection. Double line breaks are left intact. The result is text organised into paragraphs rather than lines.

GetBookMarkHandle

function GetBookMarkHandle(Pos: longint): integer;��Applies to:�TTextBuffer, TLinesBuffer, TTextStream, TEditStream��Allocates a bookmark handle to refer to the text at Pos. This handle will then continue to refer to the same character, even if text is inserted/deleted. The Bookmarks property may then be used to get the current offset within the buffer of the allocated bookmark.

The allocated bookmark may subsequently be deleted by a call to DeleteBookmark.

GetCharAt

function GetCharAt(var Pos: longint; Distance: longint; var ActualOffset: longint): boolean;��Applies to:�TLinesBuffer, TTextStream, TEditStream��This method is used to find the character at a given pixel offset from another character on the same line. The pixel offset is always that of the display device, not the printer.

On input, Pos is the index of the starting character, and Distance is the number of pixels away from that point of the character to be located.

Returns:�true, then ActualOffset holds the actual number of pixels between the two characters and Pos is adjusted to index the identified character.���false, if Pos is not a valid index.��GetDistanceBetween

function GetDistanceBetween(StartPos, EndPos: longint): longint;��Applies to:�TLinesBuffer, TTextStream, TEditStream��This method works out the distance between StartPos and EndPos on the current canvas, and returns the result, in pixels. If StartPos >= EndPos then the distance is always zero. Result is always bounded by MaxWidth (in pixels). Distance includes the character indicated by startpos and all characters up to but not including EndPos. The pixel offset is always that of the display device, not the printer.

GetInitialFindStr

function GetInitialFindStr: string; virtual;��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��GetInitialFindStr returns the word under the caret, if any. This method is typically used prior to executing a TFindDialog box, in order to initialise the find string to the word under the caret.

Example:

procedure TMDIChild.Find1Click(Sender: Tobject);�begin�	FindDialog1.FindText := FileEditor1.GetInitialFindStr;�	FindDialog1.Execute�end;

GetNextLine

function GetNextLine(var Pos: longint; var LineWidth: longint; �				var LineLength: longint): boolean;��Applies to:�TLinesBuffer, TTextStream, TEditStream��This method scans the buffer starting at “Pos” looking for the next end of line. The function returns true if found, or false if already at the end of the text buffer. If successful, the value of “Pos” on return is the position of the next line in the Text array. One return, LineLength is number of characters in line TextWidth is display width of line - interpretation depends on Mode.

On Entry:�Pos is index of start position��On Return:�If true, Pos is index of start of next Line���	LineLength is number of characters in line���	LineWidth is display width of line���If false, already at end of text buffer��GetSelection

function TTextViewer.GetSelection: string;��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This method returns the current selection, if any, as a string. Note: in the 16-bit version, the string is limited to 255 characters.

GetStartOfParagraph

Procedure GetStartOfParagraph(var Pos: longint);��Applies to:�TLinesBuffer, TTextStream, TEditStream��This method scans back from Pos for the start of the previous line i.e. the character following the preceding LF character. If Pos is immediately preceded by a CR/LF or a LF, then this is skipped. On return, Pos is set to the character index of the first character of the line. Note: if Pos is zero on entry, then this method is a no-op.

On Entry�Pos = start index��On Return:�Pos is index of next character after preceding LF, or start of text buffer (i.e. 0).��GetString

function GetString(ALineNumber, ACharNumber: longint; Length: integer): string;��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This public method provides programmatic access to the text held by a viewer. On return, it returns a string of the specified length, starting at the specified linenumber and character number. Note: in the 16-bit version, the string is limited to 255 characters.

GetString

function GetString(Pos: longint; Length: integer): string;��Applies to:�TLinesBuffer, TTextStream, TEditStream��This method returns the string of length “Length” at “Pos”. Note: the returned string may be shorter if end of text buffer is encountered.

GetSum

function GetSum: String;��Applies to:�TSumCheck��This method returns the current sum check values as a formatted string. This will be identical to the result obtained from the Unix 'sum' utility.

GetQuoteString

function GetQuoteString: string;��Applies to:� TMailEditor��Returns the quote string, if any, at the start of the current line. The quote string is any sequence of characters, terminated by a string of special characters.

GetUndoList

function GetUndoList: TUndoInfo;��Applies to:�TUndoList��This method returns the TUndoIndo object at the top of the undo stack. Note that it also calls the OnUndo event, as the semantic of this call is to initiate an undo operation.

GotoBookMark

procedure GotoBookMark(BookMark: integer); virtual��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This method is called to focus the viewer at the requested bookmark. The bookmark must have been obtained by a call to AllocBookmark.

Note that an invalid bookmark simply causes a message beep.

GotoLineNumber

procedure GotoLineNumber(LineNo: Longint);virtual;��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This method is intended to be called from a user dialog box to position the cursor explicitly on the line number given by LineNo. Note that this method uses line numbers relative to zero i.e. line 0 is the first line.

HandleOnIdle

procedure HandleOnIdle(Sender: TObject; var Done: Boolean);��Applies to:� TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This method is intended to be called during a TApplication Idle procedure and is used to support background calculation of the number of lines in the text, and the current line number when it is estimated.

HandlePrinterChange

procedure HandlePrinterChange(Sender: TObject);��Applies to:�TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This method is called by a user to notify the TTextViewer than the Printer has changed. The various metrics that depend upon the current printer are then updated. Note that this is defined as a TNotifyEvent so that it may be used as the handler for a notification event.

Insert

procedure Insert(const buf; Pos: longint; Count: longint); virtual; ��Applies to:� TTextBuffer, TLinesBuffer, TTextStream, TEditStream��Inserts count characters from buf into the text stream at Pos. Note that the method is defined as an abstract method by TTextBuffer and overridden by TEditStream.

Insert

Procedure Insert(P: TStreamSegment);��Applies to:�TVirtualStreamList��This method inserts a single TStreamSegment into the list at the current position.

InsertAfter

procedure InsertAfter(P, NewRec: TStreamSegment);��Applies to:�TSegmentList, TFreeList, TVirtualStreamList, TUndoInfo��This method inserts a File segment (NewRec) into the list after P. If P = nil then NewRec is inserted at head of list.

InsertChar

procedure InsertChar(C: Char);��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This method inserts the character ‘C’ at the current insertion point, or replaces the current selection, or the current character if in overwrite mode. Note that this method is optimised to provide a short path for character insertion. It therefore does its own checking for the need to update the object’s state variables, and which parts of the screen need to be redrawn.

InsertCompressedFile

function InsertCompressedFile(CommandLine: String;�		 const Extension, FileName: string): TEncodeResult;��Applies to:�TMailEditor��This method is called to insert the contents of a named file at the current insertion point. Before being inserted, the file is compressed using a specified compression utility and the result uuencoded. The pathname of the file is given in 'FileName', and the DOS command line to invoke the compression utility is given in 'CommandLine'. The extension to be used for the compressed file (replaces the current extension of 'FileName', is given by 'Extension'. Note that 'CommandLine' must include the strings &Z and &F. These are replaced by the name of the temporary file to hold the compressed data, and the name of the input file, respectively.

e.g. if pkzip is the compression utility, then a typical command line will be:

	pkzip &Z &F

InsertDateTime

procedure InsertDateTime(DateTime: TDateTime);��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This method inserts the specified date and time at the current insertion point, in the format determined by international settings. The method is provided to ensure the J-Write editor is a complete replacement for Notepad.

InsertEOL

procedure InsertEOL;��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This method inserts a line break at the current caret position.

InsertFile

procedure InsertFile(const FileName: String; �					ConvertToANSI: boolean);��Applies to:�TMailEditor��This method is called to insert the contents of the text file 'FileName' at the current insertion point. If 'ConvertToANSI' is true then the text is assumed to be in the OEM (DOS) character set and converted to the ANSI character set when it is inserted.

InsertListAfter

procedure InsertListAfter(P: TStreamSegment; List: TSegmentList);��Applies to:�TSegmentList, TFreeList, TVirtualStreamList, TUndoInfo��This method inserts the members of ‘List’ after P in the current list. If P = nil then the List is inserted at start. Note that List is always freed when this method completes.

InsertMem

function InsertMem(M: THandle; Pos: longint): longint; virtual;��Applies to:�TTextBuffer, TLinesBuffer, TTextStream, TEditStream��This method is defined as an abstract method by TTextBuffer and overridden by TEditStream. The semantic is that the contents of the memory segment 'M' are inserted into the Text Buffer at 'Pos'. Note that 'M' is NOT disposed of by this method, but may be disposed of by the caller if it is no longer needed.

InsertQuoteFile

procedure InsertQuoteFile(const FileName: String);��Applies to:�TMailEditor��This methods inserts the content of the text file given by 'FileName', and inserts the current MailQuote string (as given by the property of the same name), at the beginning of each line.

InsertSegmentList

procedure InsertSegmentList(P: TSegmentList);��Applies to:�TVirtualStreamList��This method is like Insert, except that a whole segment list is inserted into the virtual stream.

InsertSpaces

procedure InsertSpaces(Pos,Count: longint);��Applies to:�TTextBuffer, TLinesBuffer, TTextStream, TEditStream��This method inserts 'Count' spaces at text buffer position 'Pos'.

InsertString

procedure InsertString(const S: string; Pos: longint);��Applies to:�TTextBuffer, TLinesBuffer, TTextStream, TEditStream��This methods inserts the string 'S' at text buffer position 'Pos'.

InsertString

procedure InsertString(const S: String);��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This method inserts the string S at the current insertion point, as given by (LineNumber, CharNumber), and then re-focuses the editor at the end of the inserted text.

IsEditable

function IsEditable: boolean; virtual;��Applies to:�TTextBuffer, TLinesBuffer, TTextStream, TEditStream��By default, this method returns false, implying that the object does not support the editing methods (e.g. Insert, Delete, etc.). This is overridden by descendants that do support these methods and enables a user to dynamically determine if these methods are supported.

IsLinked

function IsLinked: boolean;��Applies to:�TUndoList��Returns true if the undo operation at the top of the stack has the "linked" flag set. This implies that it is linked to the previous Undo transaction. When performing an Undo Transaction, the user should iteratively call GetUndoList to initiate and perform undo operations until IsLinked returns false.

IsSelectionMode

function IsSelectionMode(ASelMode: TSelModes): boolean��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TStreamEditor, TFileEditor, TMailEditor��This method may be used to query the viewer and determine if the selection mode is current the same as ASelMode. The function returns true if the selection mode is ASelMode and false otherwise.

LineBreakAt

function LineBreakAt(Pos: longint): boolean;��Applies to:�TTextBuffer, TLinesBuffer, TTextStream, TEditStream��This method is used to determine if a hard line break is present at position ‘Pos’, and returns true if Pos indexes a CR/LF, LF or FF..

LineDown

Procedure LineDown��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the keyboard response method for the down arrow key.

LineUp

procedure LineUp��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the keyboard response method for the up arrow key.

LoadFromStream

procedure LoadFromStream(AStream: TStream)��Applies to:�TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This method provides an alternative way to load a viewer or editor from any TStream descendant. This method copies from the stream rather than keeping a reference to it (see TStreamViewer and TStreamEditor). This is slower, especially with large amounts of text, but does mean that the viewer/editor has an independent copy of the text.

Merge

function Merge(P: TStreamSegment): boolean;��Applies to:�TStreamSegment, TAllocatedSegment��This method attempts to merge P with this file segment. Merging is successful if they are on the same stream and describe adjacent segements in the stream. If successful. true is return, the file segment is updated, and P is disposed of.

PageUp

procedure PageUp��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the keyboard response method for the Page Up key.

PageDown

procedure PageDown��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the keyboard response method for the page down key.

PasteFromClipBoard

procedure PasteFromClipBoard;��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��If the current clipboard selection is in text format, then it is inserted into the file at the current caret position.

PasteQuoteFromClipboard

procedure PasteQuoteFromClipboard;��Applies to:�TMailEditor��This method inserts the content of the clipboard (if in cf_text format) at the current insertion point, and inserts the current MailQuote string (as given by the property of the same name), at the beginning of each line.

PopUndoStack

function PopUndoStack: TUndoInfo;��Applies to:�TUndoList��This method removes the topmost UndoInfo object, and returns the object as the function value.

Prepend

procedure Prepend(P: TStreamSegment);��Applies to:�TSegmentList, TFreeList, TVirtualStreamList, TUndoInfo��This method inserts P at head of the TSegmentlist.

Print

procedure Print(PageTitle, Caption: string; PageNumbers: boolean; �			WrapToPage: boolean; PrintRange: TPrintRange;			FromPage, ToPage: integer);��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This method prints all lines of text on the current printer. If title is not empty, then this is printed at the top of each page. If PageNumbers is true, then page numbers are printed at the bottom of each page. If WrapToPage is true then word wrap is set to Wrap on Printer Page Width prior to printing. Otherwise the current word wrap mode is used, which may result in text overflowing the page. Caption is used as the name of the print job.

PrintRange determines whether all the text is printed, the current selection, or the range of pages given by FromPage to ToPage.

PushUndoStack

procedure PushUndoStack(AUndoPos: Longint);��Applies to:�TUndoList��This method creates a new Undo Info object and puts in on the "top" of the Undo List. If the list size exceeds maxUndoLevels, then the oldest entry is disposed of.

The input parameter AUndoPos is taken as defining the position in the text buffer at which the undo transaction is located. Other editor state information is determined by calling the OnSaveUndo event.

QueryUndo

function QueryUndo(var AUndoPos, AUndoSize, �				AInsertSize: longint): boolean;��Applies to:�TUndoList��This method is called to determine the information held by the undoinfo object at the top of the stack, without initiating an undo operation. Returns false if stack empty.

Read

function Read(var Buf; From, Count: longint): longint;��Applies to:�TStreamSegment, TAllocatedSegment��This method is used to read an area of the file segment into Buf.

Read

function Read(var Buf; Count: longint): longint;��Applies to:�TVirtualStreamList��This method reads Count characters into 'buf' starting from the current position in the virtual stream.

Redo

procedure Redo;��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This method is called to perform the most recent redo operation. This reverses a preceding Undo operation.

Redo

function Redo:longint; virtual; ��Applies to:�TTextBuffer, TLinesBuffer, TTextStream, TEditStream��This method is called to carry out the most recent Redo Operation, and returns the position at which the redo took place.

ReformatQuotedText

procedure ReformatQuotedText(OldQuoteStr, NewQuoteStr: string);��Applies to:�TMailEditor��This method is called to reformat the entire file, or selection. OldQuoteStr identifies the mail quotes currently used, and NewQuoteStr provides those that are to be used in the reformatted text. NewQuoteStr may be empty, in which case, existing mail quotes are removed.

The text is flowed into lines, terminated with a CR/LF, with old mail quotes removed and new quotes added as long as an OldQuoteStr had been removed after the last hard line break encounter.

Refresh

procedure Refresh;��Applies to:�TWinScrollBar��Refresh updates the “Visible” state of the scrollbar. The Scroll Bar is made visible, if and only if the Limit property > PageSize - 1

Replace

function Replace(Sender: TFindDialog; const FindStr, �			ReplaceStr: string; �			SearchOptions: TFindOptions): boolean;��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This method is called to perform a replace operation, and is normally used in conjunction with the TReplaceDialog standard dialog. The function will replace the next occurrence of FindStr with the contents of ReplaceStr, according to the SearchOptions.

You may include the following special characters in either FindStr or ReplaceStr:

^t	The Tab Character

^p	Hard Line Break

^l	Hard Page Break

Tabs, line and Page breaks may therefore be included in search criteria and inserted into the text as replacement text. Note that if you need to use the “^” character in search or replacement text, then this must be entered as “^^” in order to avoid confusion.

Example:

procedure TMDIChild.ReplaceDialog1Find(Sender: Tobject);�begin�	With Sender As TReplaceDialog Do�		If not FileEditor1.Replace(TFindDialog(Sender), �					FindText, ReplaceText,Options) Then�			MessageDlg('Text not found',mtError,[mbOK],0)�end;

ReplaceChar

procedure ReplaceChar(Pos: longint; c: char); virtual;��Applies to:�TTextBuffer, TLinesBuffer, TTextStream, TEditStream��This method replaces the character in the text buffer at position 'Pos' with the character 'c'. The replacement is recorded as an undo transaction. Note that the method is defined as an abstract method by TTextBuffer and overridden by TEditStream.

Reset

procedure Reset; virtual; ��Applies to:�TTextBuffer, TLinesBuffer, TTextStream, TEditStream��Reset is called to clear down the buffer and restore it to its initial state.

RunDosProgram

function RunDosProgram(const CommandLine: string): boolean;��Applies to:�JWRUN Module��This function is called to run a DOS program. The program is run synchronously (i.e. the function waits for the program to complete) in a separate virtual machine. The function returns true if program complete without errors.

Save

procedure Save;��Applies to:�TFileEditor, TMailEditor��This method saves the current contents of the editor. If a named file is being edited, then the file is renamed with the “.bak” extension, and replaced with the saved text. Otherwise, a new file is created.

SaveAs

procedure SaveAs(const AFileName: String); virtual;��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This method saves the text to the file given by AFileName.

SaveBuf

function SaveBuf(const Buf; Count: longint): TStreamSegment;��Applies to:�TFreeList��This method is used to save Count bytes in Buf to a TStreamSegment allocated from the freelist. The function returns the allocated TStreamSegment if successful, and otherwise returns nil.

SaveInsertInfo

procedure SaveInsertInfo(Pos, InsertCount: longint);��Applies to:�TUndoList��This method saves insert information into the current Undo operation. The semantic is that the method records the 'InsertCount' characters have been inserted at position 'Pos' in the text buffer. If 'Pos' is not the current undo position, then a new Undo operation is created at the top of the stack, recording 'Pos' as the undo position.

SaveSelection

procedure SaveSelection(const Filename: String);��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This method saves the current selection, if any, to the file given by FileName. If this file already exists, it will be over-written.

SaveUndo

procedure SaveUndo(List: TSegmentList; Pos: longint);��Applies to:�TUndoList��This method saves characters deleted from the text buffer into the current Undo operation. The semantic is that the TSegmentList 'List' has been 'Cut' out of the text buffer at position 'Pos'. If 'Pos' is the current Undo position and the insert count for this undo operation is zero, then 'List' is appended to the current list of deleted text segments. Otherwise a new Undo operation is created at the top of the stack, recording 'Pos' as the undo position.

ScrollMessage

procedure ScrollMessage(Msg: TWMScroll);��Applies to:�TWinScrollBar��This method must be called from owning control in response to a wm_vscroll or a wm_hscroll message directed to a window’s scrollbar, in order to process scroll bar events. The method parameter is set to the current message.

Example:

procedure TLinesViewer.WMHScroll(var Msg: TWMScroll);�Begin�	If Msg.ScrollBar = 0 Then HorzScrollBar.ScrollMessage(Msg)�	Else inherited�End;

ScrollUp

procedure ScrollUp��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the keyboard response method for the CTRL+ up arrow key.

ScrollDown

procedure ScrollDown��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the keyboard response method for the CTRL+ down arrow key.

Search

function Search(var Pos: longint; const FindStr: String; �				SearchOptions: TFindOptions):boolean;��Applies to:�TLinesBuffer, TTextStream, TEditStream��This method is used to scan the text buffer starting at “Pos”, for the string “FindStr”. Depending on the SearchOptions, the search may be forwards, or backwards (if search backwards is true), for whole words only or any occurrence of the string, and case sensitive or case blind (case blind true). If successful, function returns true, and “Pos” contains the index of the found string. If unsuccessful, then function returns false.

Seek

Procedure Seek(At: longint);��Applies to:�TVirtualStreamList��This method is used to set the current position to 'At'. The internal pointer 'Current' is set to the TStreamSegment in which At is located, and Offset is set to the difference between the offset of the current segment and 'At'.

SelectAll

procedure SelectAll;��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This method selects all text currently being viewed/edited.

SetTransactionBoundary

procedure SetTransactionBoundary;��Applies to:�TUndoList��This method is the reverse of ClearTransactionBoundary, and is used to ensure that the undo operation at the top of the stack starts a new undo transaction.

For example, when the editor performs a multiple set of operations (e.g. replace all) it is not known until after the last operation was performed, that it was the operation. The technique is therefore to set each corresponding undo operation as linked to the next, and when it is determined that the operation is complete, to call this method to unlink the operation on the top of the stack and thereby create an undo transaction boundary.

SkipBackOverLineBreak

function SkipBackOverLineBreak(Pos: longint): longint;��Applies to:�TTextBuffer, TLinesBuffer, TTextStream, TEditStream��This method skipd back passed a line break that immediately precedes Pos, if any. On return, the function value is the position of the last character in the preceding line. If 'Pos' is not preceded by a line break then the function returns 'Pos'.

Split

function Split(At: longint): TStreamSegment;��Applies to:�TStreamSegment, TAllocatedSegment��This method is used to split a TStreamSegment in two, at offset "At". The function returns the file segment at "At".

StartOfLine

procedure StartOfLine��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the keyboard response method for the Home key.

StartOftext

procedure StartOftext��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the keyboard response method for the CTRL+Home key.

TabbedTextOut

procedure TabbedTextOut(X,Y: integer; Pos, Length: longint; �					TabOrigin: integer);��Applies to:�TLinesBuffer, TTextStream, TEditStream��This method is called to draw the text string starting at Pos, and of the specified 'Length', on the current Canvas at position (X,Y), expanding tabs as required. The TabOrigin defines the offset from which the tab stops are computed.

TextOut

procedure TextOut(X,Y: integer; Pos, Length: longint);��Applies to:�TLinesBuffer, TTextStream, TEditStream��This method is called to draw the text string starting at Pos, and of the specified 'Length', on the current Canvas at position (X,Y).

ToggleInsertMode

procedure ToggleInsertMode;��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This method toggles the insert mode from insert to overwrite mode, and back again.

ToggleWrapMode

procedure ToggleWrapMode;��Applies to:�TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This method changes the value of the WrapMode property to the next in the enumerated type, wrapping round to the first, if the current value is the last.

TranslateKey

function TranslateKey(KeyCode: word; Shift: TShiftState): boolean;��Applies to:�TKeyManager��This method is called by a control in response to a wm_keydown message. The method searches the list of entries for a corresponding key handler. If one is found then it is called and the function returns true, otherwise it returns false.

Undo

function Undo: longint; virtual;��Applies to:�TTextBuffer, TLinesBuffer, TTextStream, TEditStream��Undoes the last edit, or chain of edits. The function returns the position of the earliest undo operation. Note that the method is defined as an abstract method by TTextBuffer and overridden by TEditStream.

Undo

procedure Undo;��Applies to:�TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This method is called to perform the most recent undo operation. The preceding deletion/insertion is thereby reversed.

UUDecode

procedure UUDecode;��Applies to:�TMailEditor��This method scans the current file, starting at the beginning, for uuencoded files, decoding their contents if required. To intercept the decision to decode a file, and control where it is stored, use the 'OnStartDecode' event. To report the completion of each decode, use the 'OnEndDecode' event.

UUDecode

function UUDecode(Buffer: TLinesBuffer; Pos: longint): boolean;��Applies to:�TUUDecoder��This method is called to run the decoder on the TLinesbuffer from Pos onwards. UUdecoded file(s) are stored in the files according to their name, unless overridden by the response to the OnStartDecodeEvent.

UUEncode

function UUEncode(const FileName, Name: string): TEncodeResult;��Applies to:�TMailEditor��This method is called to uuencode the contents of the file given by 'FileName', and inserted the encoded result at the current insertion point. Note that the uuencoded file header includes the name of the encoded file. This does not necessarily have to be the same as the name of the file being uuencoded and is anyway given by 'Name'.

UUEncodeFile

function UUEncodeFile(const FileName,Name : String; Buffer: �		TTextBuffer; Pos: longint; var Cancelled: boolean): �		longint;��Applies to:�TUUEncoder��This method encodes the file given by FileName, into Buffer, starting at Pos. On Return, the function returns the number of characters encoded into the Buffer.

WordLeft

procedure WordLeft��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the keyboard response method for the CTRL+left arrow key.

WordRight

procedure WordRight��Applies to:�TLinesViewer, TTextViewer, TStreamViewer, TFileViewer, TBigEditor, TBigMemo, TJWDBEdit, TStreamEditor, TFileEditor, TMailEditor��This is the keyboard response method for the CTRL+right arrow key.

WidthOf

function WidthOf(c: char):integer;��Applies to:�TLinesBuffer, TTextStream, TEditStream��This method returns the width of the ‘c’ in pixels using the display device and the current font.

Type Definitions

TAbortEvent

TAbortEvent = Procedure(Sender: TLinesViewer; var Response: Word) of object;

The Response should be either mrYes, or mrNo, as defined by the TModalResult type.

TDoubleClickModes

TDoubleClickModes =

dcWordOnly�{Selects word characters only}��dcWordAndSpaces);�{selects word and white space to the right}��TEditCancelEvent

TEditCancelEvent = procedure(Sender: TObject; var Confirmed: boolean) of object;

Confirmed should be set to true in order to confirm that the edit is to be cancelled.

TKeyDefinition

TKeyDefinition = 0..$1000;

TKeyDefinition is the type used for all edit keys and holds the Virtual Key Code for the edit key, which may be modified by adding to the Virtual Key Code one of the following kbXXXX codes:

kbControl = $0100; {Offset for control key in Key Definition}

kbShift = $0200; {Offset for Shift key in Key Definition}

kbQuickKey = $0400; {Offset for Quick Key in Key Definition}

kbAltKey = $0800; {Offset for Alt Key in Key Definition}

The semantics of a modified virtual key code is that TKeyManager requires the Virtual key to be in combination with the associated shift key and/or preceded by the Quick Key (two key stroke function keys) in order to invoke the associated key code handler.

For example, to set up the KeyManager to use CNTL+Y to delete a line, use the following code in a TLinesViewer method:

FKeyManager.OnKeyCode[ord(‘Y’) or kbControl] := DeleteLine

Note that in practice a more sophisticated method than the above is used in order to make it easy to define edit key codes as properties - see the FileView.Pas source file for further details

TKeyEventHandler

TKeyEventHandler = Procedure of object;

TLineNumberModes

TLineNumberModes = (�lnFileRelative,�Effective line numbers are from top of file}���lPageRelative);�Effective line numbers are from top of page}��TlbModes

TlbModes =�(lbDisplay,�{Use display device for calculating line widths}���lbPrinter);�{User printer for calculating line widths}��The TlbModes type is used to determine the way a TLinesBuffer determines the width of a line in pixels. This may be either display device relative or printer relative.

TLongPoint

TLongPoint = Record �����X,�{horizontal position in characters}���Y: longint�{vertical position in lines of text}��End;����This is a Longint version of TPoint.

TOutputDevice

TOutputDevice = 	(odDisplay, {Output to display device}�			 odPrinter); {Output to printer device}

Used by the OutputDevice property to determine whether the printer or the display canvas is to be used.

TPageBreakDisplayModes

TPageBreakDisplayModes =�(pbNever,	{Soft page breaks not shown}� pbAlways,	{Soft page breaks always shown}� pbWYSIWYG);	{Soft Page breaks shown when wrap on printer page �	 width}

The TPageBreakDisplayModes type is used by the ShowPageBreaks property to determine when soft page breaks are shown by a TTextViewer

TPrinterMargin

TPrinterMargin = Real;

The TPrinterMargin type is used for a printer margin specified in inches.

TPrintEvent

TPrintEvent =�Procedure(Sender: TLinesViewer;	{the object}�PageNum,	{now printing page number}�TotalPages: longint)	{total pages in document}�of object;

TProgressEvent

TProgressEvent = �Procedure(Sender: TLinesViewer;	{the object}�Done,	{Chars processed so far}�Total:Longint;	{out of chars to process}�var Cancel: boolean)	{set to true on return in�	 order to abort process}�of object;

TReplaceAllEvent

TReplaceAllEvent = Procedure(Sender: TObject; Count: integer) of Object;

TSaveMode

TSaveMode =�(smParagraph,�{save text as paragraphs}���smLineBreaks,�{save text with hard line breaks}���smPrompt);�{prompt for save mode}��The TSaveMode type is used by a TLinesViewer to determine how the text is to be saved to a file.

TSaveModifiedEvent

TSaveModifiedEvent = procedure(Sender: TObject; var SaveRequest: TModalResult) of object;

The SaveRequest response should be either mrYes, mrNo or mrCancel, as defined by the TModalResult type.

TSavePromptEvent

TSavePromptEvent = procedure(Sender: TObject; var Mode: TSaveMode) of object;

TSaveUndoEvent

TSaveUndoEvent = Procedure(var CaretPos, SelStart, SelEnd: longint; var SelMode: TSelModes;�var Linked: boolean) of object;

TScrollBarModes

TScrollBarModes =	(sbAutomatic	{scrollbars displayed on demand}�sbManual	{scrollbars displayed according to initial setting of Visible 		property}

TSearchStatus

TSearchStatus = Procedure (Done: longint; �var Cancelled: boolean) of object;

TSelModes

TSelModes = ({Selection Modes}�smNone,	{no selection}�smDouble,	{Selection in double click mode}�smExtend);	{Selection using shift key}

TUdStates

TUdStates =�(udInit,	{Initial State}� udDecoding,	{Decoding a file}� udSectionBreak,	{Unexpected Section break found}� udSectionChecked, 	{Section text checksum found}� udEnd,	{End of encoded text found}� udEndSectionChecked,	{Last section text checksum found}� uuCancelled, 	{Cancelled by user}� udFileChecked);	{File binary checksum found}

TUndoSaveUndoEvent

TUndoSaveUndoEvent = Procedure(var Modified: boolean;�var CaretPos, SelStart, SelEnd: longint;�var SelMode: TSelModes; var Linked: boolean) of object;

TUndoEvent

TUndoEvent = �Procedure(CaretPos, SelStart, SelEnd: longint;�SelMode: TSelModes) of object;

TUndoUndoEvent

TUndoUndoEvent = Procedure(Modified: boolean; �CaretPos, SelStart, SelEnd: longint;�SelMode: TSelModes) of object;

TUUDecodeEvent

TUUDecodeEvent = procedure(Sender: TUUDecoder; �var FileName: string; var Cancel: boolean) of object;

TUUEndDecodeEvent

TUUEndDecodeEvent =�procedure(Sender: TUUDecoder;�State: TUdStates;	{Current State of Decoder}�Error: TUUErrors;	{Error Status}�const FileName: string)	{Name of decoded file}�of object;

TUUErrors

TUUErrors =�(uuNoError,	{Decode completes with no error}�uuUserError,	{Decode interrupted by user}�uuNoSpace,	{Line longer than specifed maximum}�uuLineError,	{Line shorter than indicated length}�uuFileSumCheck,	{Decode completes with a binary sum �	 check error}�uuSectionSumCheck,	{Section decode completes with a text�	 sum check error}�uuBadCharacter);	{Illegal character in encoded text}

The TUUError type is used to indicate the result of a uudecode operation (see OnEndDecode event).

TWrapMode

TWrapModes = (opNone,	{Line wrap on Cr/LF only}�opWrapScreenWidth,	{wraps lines at right edge of window}�opAbsoluteWrap,	{wraps lines at absolute character count}�opPrinter);	{wraps lines according to printer width i.e. WYSIWYG}

TValidText

TValidText = Record�First,	{Pointer to first valid address in buffer}�Last: PChar	{Pointer to last valid address in buffer}

End;

TViewerState

TViewerState =�(vsEmpty,	{Set when there is no text to view/edit}�vsSelection,	{Set when text is selected}�vsSearchString,	{Set when a search string is available �	 for FindNext}�vsInsertOn,	{Set when an editor is in insert mode}�vsMouseDown,	{Set when the Left Mouse button is held �	 down during selection}�vsDragging,	{Set when the Left Mouse button is held �	 down during dragging}�vsBusy,	{Set when the Hour Glass Cursor is �	 visible}�vsDropping,	{Set while dragged text is being �	 inserted into the text}�vsModified,	{Set after an editor has changed the �	 text and reset when saved}�vsUndoAvailable,	{Set when an Undo operation can be �	 performed}�vsRedoAvailable,	{Set when a Redo operation can be �	 performed}�vsPasteAvailable,	{Set when CF_Text is in the Windows �	 ClipBoard}�vsCopying,	{Set during a copy to clipboard �	 operation}�vsPrinting,	{set during a print operation}�vsGotoLine,	{set during a search for a specified �	 line number}�vsSearching);	{set during a search operation}

TViewerStates

TViewerStates = Set of TViewerState;

�Appendix A - New Features for Version 2.2

New In Version 2.2

TBigMemo

This version adds a new component - TBigMemo - that is a drop in replacement for the Delphi TMemo. All the properties and public methods of TMemo are cloned by TBigMemo so you should be able to use it wherever you use TMemo, but with the added advantage of fast access to almost unlimited size text files and all the other methods and properties that TBigEditor provides. The source code to the new BigMemo unit is provided in this release as example code along with an example application in the example/tbigmemo subdirectory.

Improved Text Handling

This version also includes an improved algorithm for handling moving around the text in large files. This should avoid the problems that sometimes arose with large amounts of selected text that could cause the beginning or end of the selection to drift, or the display to jump around occasionally.

New Windows Message Support

TBigEditor now also responds to the wm_GetText, wm_GetTextLength and wm_SetText messages. It therefore fully supports the Text property inherited from TWinControl. Users of TJWDBEdit will also be pleased to note that there is now no longer a risk of other controls intercepting characters meant for it. This is because TBigEditor now responds correctly to the windows wm_GetDlgCode message.

New LoadFromStream Method

TTextViewer now includes a LoadFromStream method that provides an alternative way to load a viewer or editor from any TStream descendant, that copies from the stream rather than keeping a reference to it (see TStreamViewer and TStreamEditor). This is slower, especially with large amounts of text, but does mean that the viewer/editor has an independent copy of the text.

Changes to CaretPos

Please note that the semantics of the CaretPos property have changed. See the online help or reference section for more information.

Improvements to Find Method

You can now include character codes represented by their decimal codes in text searches. See the Find method description for further information.

New OEMConvert Property

Both document viewer and storage classes now have an OEMConvert property. When set to true, any text read from the input file or stream is assumed to be in the OEM (DOS) character set and automatically converted to the Windows (ANSI) character set.

Word Selection Changes

The new DoubleClickMode property can now be used to determine whether a double click with the mouse left button selects the current word only (as in 2.1) or the word plus white space characters to the right of the word.

Triple and Quadruple Click Support

Triple and Quadruple Mouse clicks are now supported, and work in association with the TripleClickForParagraph property. If TripleClickForParagraph is false then a triple click selects the current line, while a quadruple click selects the current paragraph. If TripleClickForParagraph is true, then a triple click selects the current paragraph (as in MS Word).

New In Version 2.1

This version fixes a bug in the 16-bit which could result in a General Protection Fault when searching long files. The component Library also includes additional methods to support programmatic access to text including access to all keyboard response methods. These are now documented in the Online help and User Manual. A new AutoScroll Property also provides support for selection of text with the mouse.

New In Version 2.0

Automatic Handling of the Idle Loop

The J-Write components are able to provide fast access to large files because much of the work of organising the file into lines of text is done in a background idle loop. In version 2.0, this workload becomes more significant still, with the improvements to the page numbering, and it becomes even more important to ensure that the idle loop runs correctly. Furthermore, the introduction of a data aware version of the text editor, makes it much more likely that J-Write components will be used in situations where they will need to share idle time with other J-Write components, or with other user functions.

In order to simplify this task, version 2.0 adds the AutoIdle property to TLinesViewer. If this property is set to true, then whenever the editor gets the focus, it will install its own HandleOnIdle method as the application’s OnIdle handler, whilst saving any existing OnIdle event handler. Whenever HandleOnIdle is called, it will also call any such saved event handler after having done its work.

Later, when the editor loses the focus, it will restore Application.OnIdle to its previous value.

Applications, such as those that follow the SDI model, and where there is only a single user of the Application.OnIdle event, should still set Application.OnIdle to the editor’s HandleOnIdle method when the main form is created, and set AutoIdle to false. This ensures that the idle loop is free to run all the time, and not just when the editor has the focus.

Block Selection of text

With Block Selection, you can now select a rectangular area of text by dragging the mouse while holding down both the left mouse button and the ALT key. You can also perform the same task by holding down the ALT key while moving the caret while using the cursor movement keys.

Once a block of text has been selected, it may be deleted, using the delete key, dragged and dropped with the mouse, or copied/cut to the clipboard to be pasted back in elsewhere.

Bookmarks

A bookmark is simply a named pointer into the text. This pointer is kept pointed at the same text, even when text is inserted or deleted, and may be used to jump back to the identified location from anywhere in the file. Up to 16,383 bookmarks can be defined.

In TLinesViewer descdendants, the AllocBookmark method is used to add a bookmark, and the GotoBookmark method is used to refocus the viewer on a previously defined bookmark.

This is supported by TTextBuffer descendants, which now include DeleteBookMark and GetBookMarkHandle methods, and the BookMark and KeepBookMarks properties in support of this feature.

Controlled File Locking

You may specify whether a file is to be locked while it is edited, or available for reading/writing. The TFileEditor FileLocking property is defined for this purpose.

If the FileLocking property is set to true, then files are locked while they are being edited. Otherwise, they are unlocked and may be read or written to by other applications.

You should note that if file locking is not selected, it is possible to update the file in another application, then save it again in J-Write and overwrite the file saved by the other application.

Mail Reformatting

Mail reformatting is used to tidy up text introduced by Mail Quotes. The text is reformatted by flowing it into proper lines of text, organised where appropriate into paragraphs, and each reformatted line may again be prefixed by a mail quote.

Either the current selection is reformatted, or, if no text is selected, all text from the current caret position onwards is reformatted. The TMailEditor ReformatQuotedText method supports this feature.

New Properties for ReadOnly and MaxTextSize

There are now properties that can make the text editing components (TBigEditor descendants) ReadOnly, and which can limit the size of the text being edited.

To make the edited text read only, set the ReadOnly property to true. If the user then tries to edit the text, the OnWriteProtect event will be called and appropriate action taken. Note that if this handler is not defined, an exception wll be raised instead.

To limit the size of the edited text, set the MaxTextSize to the required limit. Once the size of the edited text reaches this limit, no more input text will be accepted. Setting MaxTextSize to zero is equivalent to no effective limit.

Optional Save Backup

You may specify whether a backup (.bak) file is to be created when a file is saved. This feature is supported by the TFileEditor BackupFiles property.

If the BackupFiles property is set to true, then a backup is always created when a file is saved, otherwise it is not.

Page Numbering

J-Write maintains both the current page number, and the total number of pages in the file; the number of lines on a page being determined by the current printer. The PageNumber property holds the current page number, and the current line number may be accessed using the EffectiveLineNumber property. Note that the LineNumber property is not necessarily identical in value to the EffectiveLineNumber. This is because the LineNumber count includes hard page breaks as lines, while the EffectiveLineNumber ignores them. LineNumber counts hard page breaks as lines because this is how they appear on the screen.

Note that the Application.OnIdle event must be set to the viewers HandleOnIdle method for this feautre to work properly, as much of the processing of hard page breaks is handled in the idle loop.

Page or File Relative Line Numbers

The current line number displayed on the status line may be either page relative, or file relative. This is supported by the LineNumberMode property.

Programmatic Access to Text

A set of public methods now provide access to the edited from external functions. These new methods are InsertString, AppendString, GetSelection, GetString and DeleteText. These are in addition to public methods, such as DeleteSelection, which already exist.

Save Selection to File

You may save the current selection to a file. This is achieved by calling the TLinesViewer method SaveSelection.

Special Characters in Find/Replace

You may include the following special characters in either the text to search for or the replacement text:

^t	The Tab Character

^p	Hard Line Break

^l	Hard Page Break

Tabs, line and Page breaks may therefore be included in search criteria and inserted into the text as replacement text. Note that if you need to use the “^” character in search or replacement text, then this must be entered as “^^” in order to avoid confusion.

Window Margins

The text displayed in the edit window may be given a variable width Left Margin and, in Wrap to Window Mode only, a variable width Right Margin. No text is displayed in either margin, and the cursor changes to an arrow when over a margin. However, text may still be selected while the cursor is in a margin, by simply dragging the cursor while the left mouse button is held down.

The margin size may be changed by using the mouse to “drag” the margin to a new position.

When the cursor is over the exact point at which the margin is defined, it changes to a "horizontal split" cursor. When this cursor is displayed, if you hold down the left mouse button, the margin is then displayed as a dotted vertical line. Holding down this button and dragging the cursor will then change the margin, and the text will automatically flow to the new margin.

This feature is supported by the LeftMargin, RightMargin and DragMargins properties of TLinesViewer.

Zoom In/Out

The J-Write edit window may be zoomed in or out to increase or decrease magnification of the text. To Zoom the text, select either the View|Zoom In or View|Zoom Out menu items, or the corresponding speed buttons.

The edit window is zoomed in powers of two (e.g, it is magnified first to x2, then x4, x8, and so on). The effect of zooming the window is to change the effective font size so that more or less of the text may be seen, in either a bigger or a smaller font. However, the relative line width stays the same, and so there is no change to the line wrapping. Files printed while zoomed are also printed using the proper (un-zoomed) font.

This feature is supported by the ZoomFactor property of TLinesViewer.

�Appendix B Bug List

Bugs fixed in Version 2.2

Remove erroneous call to set the focus to the parent when leaving busy state.

Avoid problem when holding down shift key while clicking with mouse button which results in text selected from previous anchor point

SelectionSize property now returns correct selection size when in column mode.

Access Violation when deleting column text and text from right to left should no longer occur

Keep selected text correct with flow text.

Ensure that LastLine and current line parameters correctly updated after inserting a hard line break.

Ensure that viewer gets the focus back after printing.

Avoid jump when changing the MaxLength property.

Change of semantic for lines consisting only of a page - they now have a zero length.

Correct problems due to not responding to wm_GetDlgCode i.e. other controls may intercept characters even when TBigEditor has the focus.

Correct error in calculating number of pages to print that resulted in one too many pages being printed for “print all”.

Ensure selection stays the same when wrap mode changes.

When charleft or charRight called and text is selected, and the shift key is not down then selection is now reset and text cursor positioned at start or end of selection.

Make sure SelStart/SelEnd updated when drag'n' drop into whitespace above the selection.

Avoid incorrect page number when deleting text and leaving a soft line break at end of file.

Calls to Redo and Undo are now ignored when nothing to do.

Deletion at end of text should no longer result in false line at EOF.

The text cursor is now positioned correctly when inserting text before a tab character and the line is completely updated when overtyping a tab.

Double clicking on a word now also selects the white space characters to the right of the word.

Capitalisation of words in a proportional font now re-positions the caret appropriately.

On both forwards and backwards search, version 2.1 was occasionally failing to find a target word, when that word was split across an internal buffer. This is now fixed.

There is no longer a risk of file save causing the display window to "drift" to another area of the text.

Bugs fixed in Version 2.1

There should no longer be a risk of a General Protection Fault in the sixteen bit version when searching large files.

Fix incorrect text selection bug when selecting text and cursor drops below the line.

Initiate Selection process if shift key down when scrollbar message received.

Undo with column mode now shows correct selection.

Restore fast jump after search.

Ensure that selection is set accurately when selecting with the mouse.

Bugs fixed in Version 2.0

Partially obscured last lines are now scrolled up as soon as the caret enters such a line.

Movement of the scroll bar thumb after a large jump should no longer be noticed.

It should now not be possible to place the insertion point after the last line following a font change or window re-size.

The focus should now stay on the same line following a file save, window re-size or font change.

Print Selection should no longer lock the editor when the selection does not start on the first page.

A workaround is now included for the WinFAX printer driver bug that reports a failure to provide font information - i.e. use of WinFAX should now work without any visible problems.

The focus should now not “jump” after a long search or scroll bar move.

An Undo operation near the end of the file should no longer scroll up the screen by one line.

UUEncode should now give the correct checksum for the encoded text.

Page breaks should now be properly calculated.

Drag and drop of text should now not introduce spurious characters at the end of text.

� Following standard convetions, CR, LF and FF refer to the ASCII control characters Carriage Return, Line Feed and Form Feed, respectively.

� TITLE * MERGEFORMAT �J-Write Component Library User Manual�

�PAGE �104�

� REF IssueNo * MERGEFORMAT �Issue 2.2�

�PAGE �101�

� REF IssueNo * MERGEFORMAT �Issue 2.2�

� TITLE * MERGEFORMAT �J-Write Component Library User Manual�

� STYLEREF "Heading 1" * MERGEFORMAT �Reference Manual�

� TITLE * MERGEFORMAT �J-Write Component Library User Manual�

� STYLEREF Appendix * MERGEFORMAT �Appendix B Bug List�

