pyspark.pandas.notnull#
- pyspark.pandas.notnull(obj)#
Detect existing (non-missing) values.
Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. NA values, such as None or
numpy.NaN
, get mapped to False values.- Returns
- bool or array-like of bool
Mask of bool values for each element that indicates whether an element is not an NA value.
See also
isna
Detect missing values for an array-like object.
Series.notna
Boolean inverse of Series.isna.
DataFrame.notnull
Boolean inverse of DataFrame.isnull.
Index.notna
Boolean inverse of Index.isna.
Index.notnull
Boolean inverse of Index.isnull.
Examples
Show which entries in a DataFrame are not NA.
>>> df = ps.DataFrame({'age': [5, 6, np.NaN], ... 'born': [pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... 'name': ['Alfred', 'Batman', ''], ... 'toy': [None, 'Batmobile', 'Joker']}) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker
>>> df.notnull() age born name toy 0 True False True False 1 True True True True 2 False True True True
Show which entries in a Series are not NA.
>>> ser = ps.Series([5, 6, np.NaN]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64
>>> ps.notna(ser) 0 True 1 True 2 False dtype: bool
>>> ps.notna(ser.index) True