AFTSurvivalRegressionModel

class pyspark.ml.regression.AFTSurvivalRegressionModel(java_model=None)[source]

Model fitted by AFTSurvivalRegression.

New in version 1.6.0.

Methods

clear(param)

Clears a param from the param map if it has been explicitly set.

copy([extra])

Creates a copy of this instance with the same uid and some extra params.

explainParam(param)

Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.

explainParams()

Returns the documentation of all params with their optionally default values and user-supplied values.

extractParamMap([extra])

Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.

getAggregationDepth()

Gets the value of aggregationDepth or its default value.

getCensorCol()

Gets the value of censorCol or its default value.

getFeaturesCol()

Gets the value of featuresCol or its default value.

getFitIntercept()

Gets the value of fitIntercept or its default value.

getLabelCol()

Gets the value of labelCol or its default value.

getMaxBlockSizeInMB()

Gets the value of maxBlockSizeInMB or its default value.

getMaxIter()

Gets the value of maxIter or its default value.

getOrDefault(param)

Gets the value of a param in the user-supplied param map or its default value.

getParam(paramName)

Gets a param by its name.

getPredictionCol()

Gets the value of predictionCol or its default value.

getQuantileProbabilities()

Gets the value of quantileProbabilities or its default value.

getQuantilesCol()

Gets the value of quantilesCol or its default value.

getTol()

Gets the value of tol or its default value.

hasDefault(param)

Checks whether a param has a default value.

hasParam(paramName)

Tests whether this instance contains a param with a given (string) name.

isDefined(param)

Checks whether a param is explicitly set by user or has a default value.

isSet(param)

Checks whether a param is explicitly set by user.

load(path)

Reads an ML instance from the input path, a shortcut of read().load(path).

predict(value)

Predict label for the given features.

predictQuantiles(features)

Predicted Quantiles

read()

Returns an MLReader instance for this class.

save(path)

Save this ML instance to the given path, a shortcut of ‘write().save(path)’.

set(param, value)

Sets a parameter in the embedded param map.

setFeaturesCol(value)

Sets the value of featuresCol.

setPredictionCol(value)

Sets the value of predictionCol.

setQuantileProbabilities(value)

Sets the value of quantileProbabilities.

setQuantilesCol(value)

Sets the value of quantilesCol.

transform(dataset[, params])

Transforms the input dataset with optional parameters.

write()

Returns an MLWriter instance for this ML instance.

Attributes

aggregationDepth

censorCol

coefficients

Model coefficients.

featuresCol

fitIntercept

intercept

Model intercept.

labelCol

maxBlockSizeInMB

maxIter

numFeatures

Returns the number of features the model was trained on.

params

Returns all params ordered by name.

predictionCol

quantileProbabilities

quantilesCol

scale

Model scale parameter.

tol

Methods Documentation

clear(param)

Clears a param from the param map if it has been explicitly set.

copy(extra=None)

Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.

Parameters:
extradict, optional

Extra parameters to copy to the new instance

Returns:
JavaParams

Copy of this instance

explainParam(param)

Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.

explainParams()

Returns the documentation of all params with their optionally default values and user-supplied values.

extractParamMap(extra=None)

Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.

Parameters:
extradict, optional

extra param values

Returns:
dict

merged param map

getAggregationDepth()

Gets the value of aggregationDepth or its default value.

getCensorCol()

Gets the value of censorCol or its default value.

New in version 1.6.0.

getFeaturesCol()

Gets the value of featuresCol or its default value.

getFitIntercept()

Gets the value of fitIntercept or its default value.

getLabelCol()

Gets the value of labelCol or its default value.

getMaxBlockSizeInMB()

Gets the value of maxBlockSizeInMB or its default value.

getMaxIter()

Gets the value of maxIter or its default value.

getOrDefault(param)

Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.

getParam(paramName)

Gets a param by its name.

getPredictionCol()

Gets the value of predictionCol or its default value.

getQuantileProbabilities()

Gets the value of quantileProbabilities or its default value.

New in version 1.6.0.

getQuantilesCol()

Gets the value of quantilesCol or its default value.

New in version 1.6.0.

getTol()

Gets the value of tol or its default value.

hasDefault(param)

Checks whether a param has a default value.

hasParam(paramName)

Tests whether this instance contains a param with a given (string) name.

isDefined(param)

Checks whether a param is explicitly set by user or has a default value.

isSet(param)

Checks whether a param is explicitly set by user.

classmethod load(path)

Reads an ML instance from the input path, a shortcut of read().load(path).

predict(value)

Predict label for the given features.

New in version 3.0.0.

predictQuantiles(features)[source]

Predicted Quantiles

New in version 2.0.0.

classmethod read()

Returns an MLReader instance for this class.

save(path)

Save this ML instance to the given path, a shortcut of ‘write().save(path)’.

set(param, value)

Sets a parameter in the embedded param map.

setFeaturesCol(value)

Sets the value of featuresCol.

New in version 3.0.0.

setPredictionCol(value)

Sets the value of predictionCol.

New in version 3.0.0.

setQuantileProbabilities(value)[source]

Sets the value of quantileProbabilities.

New in version 3.0.0.

setQuantilesCol(value)[source]

Sets the value of quantilesCol.

New in version 3.0.0.

transform(dataset, params=None)

Transforms the input dataset with optional parameters.

New in version 1.3.0.

Parameters:
datasetpyspark.sql.DataFrame

input dataset

paramsdict, optional

an optional param map that overrides embedded params.

Returns:
pyspark.sql.DataFrame

transformed dataset

write()

Returns an MLWriter instance for this ML instance.

Attributes Documentation

aggregationDepth = Param(parent='undefined', name='aggregationDepth', doc='suggested depth for treeAggregate (>= 2).')
censorCol = Param(parent='undefined', name='censorCol', doc='censor column name. The value of this column could be 0 or 1. If the value is 1, it means the event has occurred i.e. uncensored; otherwise censored.')
coefficients

Model coefficients.

New in version 2.0.0.

featuresCol = Param(parent='undefined', name='featuresCol', doc='features column name.')
fitIntercept = Param(parent='undefined', name='fitIntercept', doc='whether to fit an intercept term.')
intercept

Model intercept.

New in version 1.6.0.

labelCol = Param(parent='undefined', name='labelCol', doc='label column name.')
maxBlockSizeInMB = Param(parent='undefined', name='maxBlockSizeInMB', doc='maximum memory in MB for stacking input data into blocks. Data is stacked within partitions. If more than remaining data size in a partition then it is adjusted to the data size. Default 0.0 represents choosing optimal value, depends on specific algorithm. Must be >= 0.')
maxIter = Param(parent='undefined', name='maxIter', doc='max number of iterations (>= 0).')
numFeatures

Returns the number of features the model was trained on. If unknown, returns -1

New in version 2.1.0.

params

Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.

predictionCol = Param(parent='undefined', name='predictionCol', doc='prediction column name.')
quantileProbabilities = Param(parent='undefined', name='quantileProbabilities', doc='quantile probabilities array. Values of the quantile probabilities array should be in the range (0, 1) and the array should be non-empty.')
quantilesCol = Param(parent='undefined', name='quantilesCol', doc='quantiles column name. This column will output quantiles of corresponding quantileProbabilities if it is set.')
scale

Model scale parameter.

New in version 1.6.0.

tol = Param(parent='undefined', name='tol', doc='the convergence tolerance for iterative algorithms (>= 0).')