
CS242: Object-Oriented Design
and Programming

Program Assignment 5
Part 1 (Linked List Timer Queue) Due Tuesday, March 18th

; 1997
Part 2 (Heap Timer Queue) Due Tuesday, April 1st; 1997)

A Timer Queue is an Abstract Data Type (ADT) that allows applications to manage a set of timers.
Common operations on a Timer Queue include schedule, cancel, and expire. This part of your programming
assignment focuses upon building the following two implementations of a Timer Queue:

� Timer List – An unbounded implementation of Timer Queue using the Ordered List implementation
from your previous assignment.

� Timer Heap – An implementation of Timer Queue using a heap data structure.

The interface for the abstract base class Timer Queue is defined as follows:

class Timer_Queue
// = TITLE
// Provides an interface to timers.
//
// = DESCRIPTION
// This is an abstract base class that provides hook for
// implementing specialized policies such as <Timer_List>
// and <Timer_Heap>.

{
public:
// = Initialization and termination methods.
Timer_Queue (void);
// Default constructor.

virtual ˜Timer_Queue (void);
// Destructor - make virtual for proper destruction of inherited
// classes.

virtual int is_empty (void) const = 0;
// True if queue is empty, else false.

virtual const Time_Value &earliest_time (void) const = 0;
// Returns the time of the earlier node in the Timer_Queue.

virtual int schedule (Event_Handler *event_handler,
const void *arg,
const Time_Value &delay) = 0;

// Schedule an <event_handler> that will expire after <delay> amount
// of time. If it expires then <arg> is passed in as the value to
// the <event_handler>’s <handle_timeout> callback method. This method
// returns a <timer_id> that uniquely identifies the <event_handler>
// in an internal list. This <timer_id> can be used to cancel an
// <event_handler> before it expires. The cancellation ensures that
// <timer_ids> are unique up to values of greater than 2 billion
// timers. As long as timers don’t stay around longer than this
// there should be no problems with accidentally deleting the wrong
// timer. Returns -1 on failure (which is guaranteed never to be a
// valid <timer_id>).

virtual int cancel (int timer_id, const void **arg = 0) = 0;
// Cancel the single <Event_Handler> that matches the <timer_id>

1

// value (which was returned from the <schedule> method). If arg is
// non-NULL then it will be set to point to the ‘‘magic cookie’’
// argument passed in when the <Event_Handler> was registered. This
// makes it possible to free up the memory and avoid memory leaks.
// Returns 1 if cancellation succeeded and 0 if the <timer_id>
// wasn’t found.

virtual int expire (void);
// Run the <handle_timeout> method for all Timers whose values are
// <= <Time_Value::gettimeofday>. Returns the number of Timers
// expired.

};

As shown above, the following are a number of classes associated with the Timer Queue:

class Time_Value
// = TITLE
// Operations on "timeval" structures.

{
public:
// = Useful constants.
static const Time_Value zero;
// Constant "0".

// = Initialization methods.

Time_Value (long sec = 0, long usec = 0);
// Constructor.

Time_Value (const Time_Value &tv);
// Copy constructor.

// = The following are accessor/mutator methods.

long sec (void) const;
// Get seconds.

void sec (long sec);
// Set seconds.

long usec (void) const;
// Get microseconds.

void usec (long usec);
// Set microseconds.

// = Helper method
static Time_Value gettimeofday (void);

// = The following are arithmetic methods for operating on
// Time_Values.

void operator += (const Time_Value &tv);
// Add <tv> to this.

void operator -= (const Time_Value &tv);
// Subtract <tv> to this.

friend Time_Value operator + (const Time_Value &tv1, const Time_Value &tv2);
// Adds two Time_Value objects together, returns the sum.

friend Time_Value operator - (const Time_Value &tv1, const Time_Value &tv2);
// Subtracts two Time_Value objects, returns the difference.

2

friend int operator < (const Time_Value &tv1, const Time_Value &tv2);
// True if tv1 < tv2.

friend int operator > (const Time_Value &tv1, const Time_Value &tv2);
// True if tv1 > tv2.

friend int operator <= (const Time_Value &tv1, const Time_Value &tv2);
// True if tv1 <= tv2.

friend int operator >= (const Time_Value &tv1, const Time_Value &tv2);
// True if tv1 >= tv2.

friend int operator == (const Time_Value &tv1, const Time_Value &tv2);
// True if tv1 == tv2.

friend int operator != (const Time_Value &tv1, const Time_Value &tv2);
// True if tv1 != tv2.

private:
void normalize (void);
// Put the timevalue into a canonical form.

long tv_sec_;
// Seconds.

long tv_usec_;
// Microseconds.

};

class Event_Handler
// = TITLE
// Provides an interface to an Event Handler;

{
public:
virtual int handle_timeout (const Time_Value &,

const void *arg) = 0;
};

The Timer List Implementation

The following class provides a specialization of Timer Queue that uses an Ordered List of absolute
times. Therefore, in the average- and worst-case, scheduling and canceling Event Handler timers isO(N)
(where N is the total number of timers) and expiring timers is O(K) (where K is the total number of timers
that are < the current time of day).

#include "Timer_Queue.h"

class Timer_List : public Timer_Queue
// = TITLE
// Provides a simple implementation of timers using a linked list.

{
public:
// = Initialization and termination methods.
Timer_List (void);
// Default constructor.

virtual ˜Timer_List (void);
// Destructor

virtual int is_empty (void) const;
// True if queue is empty, else false.

3

virtual const Time_Value &earliest_time (void) const;
// Returns the time of the earlier node in the <Timer_List>.

virtual int schedule (Event_Handler *event_handler,
const void *arg,
const Time_Value &delay);

// Schedule an <event_handler> that will expire after <delay> amount
// of time. If it expires then <arg> is passed in as the value to
// the <event_handler>’s <handle_timeout> callback method. This method
// returns a <timer_id> that uniquely identifies the <event_handler>
// in an internal list. This <timer_id> can be used to cancel an
// <event_handler> before it expires. The cancellation ensures that
// <timer_ids> are unique up to values of greater than 2 billion
// timers. As long as timers don’t stay around longer than this
// there should be no problems with accidentally deleting the wrong
// timer. Returns -1 on failure (which is guaranteed never to be a
// valid <timer_id>).

virtual int cancel (int timer_id, const void **arg = 0);
// Cancel the single <Event_Handler> that matches the <timer_id>
// value (which was returned from the <schedule> method). If arg is
// non-NULL then it will be set to point to the ‘‘magic cookie’’
// argument passed in when the <Event_Handler> was registered. This
// makes it possible to free up the memory and avoid memory leaks.
// Returns 1 if cancellation succeeded and 0 if the <timer_id>
// wasn’t found.

private:
// You fill in here.

};

The Timer Heap Implementation

The following class provides another specialization of Timer Queue that uses a Heap of absolute times.
A Heap is an “almost complete, partially ordered binary tree.” Heaps are very efficient since in the average-
and worst-case, scheduling and canceling Event Handler timers isO(logN) (whereN is the total number
of timers) and expiring timers isO(logN) (where N is the total number of timers that are < the current time
of day). Note that this is substantially faster than the Timer List implementation.

Please refer to your handouts for an explanation of how to implement a Timer Heap.

#include "Timer_Queue.h"

class Timer_Heap : public Timer_Queue
// = TITLE
// Provides an optimization implementation of timers using a heap.

{
public:
// = Initialization and termination methods.
Timer_Heap (size_t size);
// Default constructor, which creates a heap with <size> elements.

virtual ˜Timer_Heap (void);
// Destructor

virtual int is_empty (void) const;
// True if queue is empty, else false.

virtual const Time_Value &earliest_time (void) const;
// Returns the time of the earlier node in the <Timer_Heap>.

4

virtual int schedule (Event_Handler *event_handler,
const void *arg,
const Time_Value &delay);

// Schedule an <event_handler> that will expire after <delay> amount
// of time. If it expires then <arg> is passed in as the value to
// the <event_handler>’s <handle_timeout> callback method. This method
// returns a <timer_id> that uniquely identifies the <event_handler>
// in an internal list. This <timer_id> can be used to cancel an
// <event_handler> before it expires. The cancellation ensures that
// <timer_ids> are unique up to values of greater than 2 billion
// timers. As long as timers don’t stay around longer than this
// there should be no problems with accidentally deleting the wrong
// timer. Returns -1 on failure (which is guaranteed never to be a
// valid <timer_id>).

virtual int cancel (int timer_id, const void **arg = 0);
// Cancel the single <Event_Handler> that matches the <timer_id>
// value (which was returned from the <schedule> method). If arg is
// non-NULL then it will be set to point to the ‘‘magic cookie’’
// argument passed in when the <Event_Handler> was registered. This
// makes it possible to free up the memory and avoid memory leaks.
// Returns 1 if cancellation succeeded and 0 if the <timer_id>
// wasn’t found.

private:
// You fill in here.

};

Test Driver Code

The following code implements a test driver to test your Timer Queue implementation:

#include "stdio.h"
#include "stdlib.h"
#include "assert.h"
#include "Timer_List.h"
#include "Timer_Heap.h"

// Number of iterations for the performance tests.
static int max_iterations = 100;

// Default size of the heap.
static int max_heap = 100;

class Example_Handler : public Event_Handler
{
public:
virtual int handle_timeout (const Time_Value &,

const void *arg)
{

assert ((int) arg == 42);
return 0;

}
};

static void
test_functionality (Timer_Queue *tq)
{
Example_Handler eh;

5

assert (tq->is_empty ());
assert (Time_Value::zero == Time_Value (0));
int timer_id1;

timer_id1 = tq->schedule (&eh, (const void *) 1,
Time_Value::gettimeofday ());

assert (timer_id1 != -1);

assert (tq->schedule (&eh, (const void *) 42,
Time_Value::gettimeofday ()) != -1);

assert (tq->schedule (&eh, (const void *) 42,
Time_Value::gettimeofday ()) != -1);

assert (tq->cancel (timer_id1) == 1);
assert (tq->is_empty () == 0);

assert (tq->expire () == 2);

timer_id1 = tq->schedule (&eh, (const void *) 4,
Time_Value::gettimeofday ());

int timer_id2 = tq->schedule (&eh, (const void *) 5,
Time_Value::gettimeofday ());

assert (timer_id1 != -1 && timer_id2 != -1);
assert (tq->is_empty () == 0);
void *arg = 0;
assert (tq->cancel (timer_id2, &arg) == 1);
assert ((int) arg == 5);
assert (tq->cancel (timer_id1, &arg) == 1);
assert ((int) arg == 4);
assert (tq->expire () == 0);

}

struct Timer_Queues
{
Timer_Queue *queue_;
// Pointer to the subclass of <Timer_Queue> that we’re testing.

const char *name_;
// Name of the Queue that we’re testing.

};

static Timer_Queues timer_queues[] =
{
{ new Timer_List, "Timer_List" },
{ 0, "Timer_Heap" },
{ 0, 0 },

};

int
main (int argc, char *argv[])
{
if (argc > 1)

max_iterations = ::atoi (argv[1]);
else if (argv > 2)

max_heap = ::atoi (argv[2]);

timer_queues[1].queue_ = new Timer_Heap (max_heap);

for (int i = 0; timer_queues[i].name_ != 0; i++)
{

fprintf (stderr, "**** starting test of %s\n", timer_queues[i].name_);
test_functionality (timer_queues[i].queue_);
delete timer_queues[i].queue_;

}

6

return 0;
}

Getting Started

You can get the “shells” and Makefile for part one of the program from your account on cec. These files
are stored in /project/adaptive/cs242/assignment-5/. Here’s a script that shows you how to
set everything up and get these files:

% cd ˜/cs242
% mkdir assignment-5
% cd assignment-5
% cp -r /project/adaptive/cs242/assignment-5/* .
% ls
Makefile
timer-test.C
Event_Handler.h
Time_Value.C
Time_Value.h
Timer_Heap.C
Timer_Heap.h
Timer_List.C
Timer_List.h
Timer_Queue.C
Timer_Queue.h
% make

The Makefile and various header files are written for you. All you need to do is edit the *.C files to add
the methods that implement the Timer Queues. Note that you’ll need to copy the Ordered List files from
your previous assignment and add them to the Makefile.

7

