PER Compiler Requirements Matrix

(Derived from ASN specification X.691, 2002)

Robert W. Colestock

DigitalNet (KATSIPP contract)

Introduction

This document presents a basic requirements matrix for the Packed Encoding Rules (PER) features of the eSNACC freeware compiler.

Matrix

The matrix is presented as a list of ASN.1 components (e.g. INTEGER) with references to notes that designate the appropriate specification reference.

Release legend: 1.0, Future, NI (Not Implemented), Encode (ONLY); notes are referenced by “()”.

	Description
	Status (Version 1.0)
	Aligned
	Unaligned

	General PER Compiler Requirements
	
	
	

	Indefinite-length(3.6.13) (DECODE ONLY)
	Future
	X
	X

	Fixed-length(3.6.14)
	
	
	

	Fixed-value (3.6.15)
	
	
	

	Textually dependent (3.6.26)
	
	
	

	Simple type (3.6.25)?????RWC????
	
	
	

	Canonical encoding, PER (3.6.4)
	1.0
	X
	X

	Basic encoding, PER (DECODE ONLY)
	1.0 Decode ONLY
	X
	X

	Extensible for PER encoding (3.6.11)
	NI
	NI
	NI

	Outermost type (3.6.21, 10.1.1), always 8 bit aligned
	
	
	

	Relay-safe encoding (3.6.23) ??RWC??Optional?
	NI
	NI
	NI

	Value set assignment type (9.6.5), BER encoded
	
	
	

	PER encoding of a component: preamble/length/content; OR arbitrary number of parts, constructed (9.5.2) (RWC;TBD; ADD TO ALL ASSOCIATED TYPES FOR TESTING)
	
	
	

	PER encoding included in bitstring, octetstring, Open type, external or embedded pdv type, or carrier protocol (10.1.1) (RWC;TBD; ADD TO ALL ASSOCIATED TYPES FOR TESTING)
	
	
	

	PER encoding included, UNALIGNED (10.1.3)
	1.0
	
	X

	PER encoding included, UNALIGNED (10.1.3), empty bit string
	1.0
	
	X

	PER encoding included, ALIGNED (10.1.4)
	1.0
	X
	

	PER encoding included, ALIGNED (10.1.4), empty bit string
	1.0
	X
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	General Constraint Requirements
	
	
	

	Human readable constraints are not PER-visible (9.3.1)
	
	
	

	Variable constraints are not PER-visible (9.3.2)
	
	
	

	All size constraints are PER-visible (9.3.8)
	
	
	

	 SIZE, < 128
	
	
	

	 SIZE, 128 <= X <= 64k
	
	
	

	 SIZE, 64k <= X <= 4G
	
	
	

	Serial constraints with extension, not PER-visible (9.3.18)
	
	
	

	Intersecting constraints of PER-visible parts (9.3.19)
	
	
	

	Intersecting constraints, UNION (9.3.19)
	
	
	

	Intersecting constraints, EXCEPT (9.3.19)
	
	
	

	Type is extensible for PER if derived from ENUMERATED, SEQUENCE, SET, CHOICE (9.3.20)
	NI
	NI
	NI

	
	
	
	

	
	
	
	

	
	
	
	

	Fragmentation Encoding Details (for Integer, Octet String, BitString, All single character strings (e.g. PrintableString, IA5String, NumericString, IGNORE WideCharacterStrings for the time being)
	
	
	

	Integer, non-Constrained, <=16k bytes long
	
	
	

	Integer, non-Constrained, >= 64k bytes long
	
	
	

	OctetString, non-Constrained, <= 16k bytes long
	
	
	

	OctetString, non-Constrained, > 16k, < 32k bytes long
	
	
	

	OctetString, non-Constrained, > 32k, <= 64k bytes long
	
	
	

	OctetString, non-Constrained, > 64k bytes long
	
	
	

	PrintableString, non-Constrained, < 64k bytes long
	
	
	

	PrintableString, Constrained, <= 16k bytes long
	
	
	

	PrintableString, Constrained, > 16k, <= 32k bytes long
	
	
	

	PrintableString, Constrained, > 32k, <= 64k bytes long
	
	
	

	PrintableString, Constrained, > 64k bytes long
	
	
	

	IA5String, non-Constrained, > 64k bytes long
	
	
	

	NumericString, non-Constrained, > 64k bytes long
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	INTEGER
	
	
	

	Unconstrained SIZE/length encoding (NOTE:1)
	1.0
	X
	X

	Normally small non-negative whole number (for SIZE/length) (3.6.18)(10.6)
	
	
	

	Non-negative-binary-integer encoding (3.6.20)
	
	
	

	Semi-constrained whole number (3.6.24)
	
	
	

	Unconstrained whole number (3.6.27)
	
	
	

	Constrained whole number (3.6.7)(10.5), < 256
	1.0
	X
	

	Constrained whole number, = 256 (10.5.7)
	1.0
	X
	

	Constrained whole number, 256 < X < 64k (10.5.7)
	1.0
	X
	

	Constrained whole number, > 64k (10.5.7)
	1.0
	X
	

	Constrained whole number (3.6.7)(10.6)(indexed value)
	1.0
	
	X

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	Bitstring type (15.)
	
	
	

	Fixed length, <= 16 bits
	
	
	

	Fixed length, 16 < X < 64k bits (no length encoding)
	
	
	

	Fixed length, >= 64k bits
	
	
	

	Fixed length, >= 64k bits, fragmented
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	General String Requirements
	
	
	

	Known-multiplier character string type (3.6.16)
	
	
	

	Effective size constraint (for a constrained string type) (3.6.8)
	
	
	

	Effective permitted-alphabet constraint (for a constrained restricted character string type)(3.6.9)
	
	
	

	Effective permitted-alphabet constraint for a constrained type(3.9.11)
	
	
	

	Single value subtype constraints applied to a character string type are not PER-visible (9.3.15)
	
	
	

	Constrained String, Bit-length for data (not length), set to next-up power of 2 (to force byte alignment, perhaps multiple data elements in 1 byte, but always byte aligned in next byte, ONLY for Aligned case)
	
	X
	

	2 Octet Size Limit, bypassing alignment rules (assuming Constrained/Indexed strings can load multiple elements in 2 Octets, ONLY for Aligned case) (27, Note 1)
	
	X
	

	
	
	
	

	Generalized time (9.6.4) BER encoded
	1.0
	X
	X

	Universal time (9.6.4) BER encoded
	1.0
	X
	X

	Object descriptor (9.6.4) BER encoded
	1.0
	X
	X

	Object Identifier (10.1.1) BER encoded
	
	
	

	Real type (14.) BER encoded, length/content
	
	
	

	Constraints are not PER-visible (9.3.14)
	
	
	

	
	
	
	

	Set type (9.6.5) BER encoded
	
	
	

	Open type (10.2)
	NI
	NI
	NI

	Enumerated type (13.), same as constrained integer with no extension marker, indexed
	
	
	

	Enumerated type, same as constrained integer if extension marker, not indexed
	
	
	

	NULL type (17.), ignored when encoding
	
	
	

	Sequence type (18.)
	
	
	

	Sequence type (18.), no OPTIONAL elements
	
	
	

	Sequence type (18.), with OPTIONAL elements
	
	
	

	Sequence type (18. , 18.6), with extensions
	NI
	NI
	NI

	Sequence type (18.), DECODE ONLY, with extensions
	Future
	
	

	Sequence type (18.3), with OPTIONAL elements, sequence > 64k (ignore “ub”/”lb”)
	
	
	

	Sequence type (18.5), with DEFAULT fields (must be missing when encoding)
	
	
	

	Sequence-of type (19.)
	
	
	

	Sequence-of type, no constraints
	
	
	

	Sequence-of type, (19.5) constant length constraint < 64k
	
	
	

	Sequence-of type, (19.5) constant length constraint > 64k
	
	
	

	Sequence-of type, (19.6) variable constraint (“ub” is different from “lb”
	
	
	

	Set type (20.)
	
	
	

	Set type, tagged Choice types
	
	
	

	Set type, untagged Choice types (test ordering logic)
	
	
	

	Set type, non-Choice elements
	
	
	

	Set-of type (21.)
	
	
	

	Set-of type, (21.1) CANONICAL-PER (test ordering logic)
	
	
	

	Set-of type, (21.2) BASIC-PER encoding
	NI
	NI
	NI

	Choice type (22.)
	
	
	

	Choice type, one alternative (no index encoded)
	
	
	

	Choice type, multiple alternatives
	
	
	

	Choice type, extension bit (DECODE ONLY)
	Future
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	OCTET STRING (16.)
	
	
	

	EXTERNAL type , open type (7.9)
	
	
	

	Octetstring, fixed length < 2 octets, not aligned
	
	
	

	Octetstring, fixed length < 64k, (no length encoding)
	
	
	

	Octetstring, fixed length > 64k
	
	
	

	Octetstring, fixed length < 64k, fragmented
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	EXTERNAL (always 8 bit aligned)
	
	
	

	OCTET STRING choice, default (7.9)
	
	
	

	Open Type encoding, if already in PER (7.9)
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	Examples
	
	
	

	Ax ::= IA5String (FROM("AB") | FROM("CD"))

Bx ::= IA5String (SIZE(1..4) | FROM("abc"))

(3.6.8)
	
	
	

	Ax ::= IA5String (FROM("AB") | FROM("CD"))

Bx ::= IA5String (SIZE(1..4) | FROM("abc"))

(3.6.9)
	
	
	

	MY-CLASS ::= CLASS { &name PrintableString, &age INTEGER } WITH SYNTAX{&name , &age}

MyObjectSet MY-CLASS ::= { {"Jack", 7} | {"Jill", 5} }

Bar ::= MY-CLASS.&age ({MyObjectSet})

Foo ::= INTEGER (Bar | 1..100)
(3.6.26)
	
	
	

	A ::= IA5String(SIZE(1..4))(FROM("ABCD",...)) (9.3.18)
	
	
	

	A ::= IA5String (SIZE(1..4) INTERSECTION FROM("ABCD",...))

(9.3.19)
	
	
	

	A ::= IA5String (SIZE (3..6)) -- Length is encoded in a 2-bit bit-field.

B ::= IA5String (SIZE (40000..40254)) -- Length is encoded in an 8-bit bit-field.

C ::= IA5String (SIZE (0..32000)) -- Length is encoded in a 2-octet

-- bit-field (octet-aligned in the ALIGNED variant).

D ::= IA5String (SIZE (64000)) -- Length is not encoded.

(10.9.3.3)
	
	
	

	NOTE – For example, if in the following a value of A is 4 characters long, and that of B is 4 items long:

A ::= IA5String

B ::= SEQUENCE (SIZE (4..123456)) OF INTEGER

both values are encoded with the length octet occupying one octet, and with the most significant set to 0 to indicate that the length is less than or equal to 127:

0 0000100 4 characters/items Length Value

(10.9.3.6)
	
	
	

	Example subtypes, limiting an ASN.1 type:

AtomicNumber ::= INTEGER (1..104)

TouchToneString ::= IA5String

(FROM ("0123456789" | "*" | "#")) (SIZE (1..63))

ParameterList ::= SET SIZE (1..63) OF Parameter

SmallPrime ::= INTEGER (2|3|5|7|11|13|17|19|23|29)
(E.4)
	
	
	

	Example ::= SEQUENCE

{first INTEGER (0..127),

second SEQUENCE

{string OCTET STRING (SIZE(2)),

name PrintableString (SIZE(1..8)) },

third BIT STRING (SIZE (8)) }
(Asn1_Complete, 1.5.)
	
	
	

	INTEGER (0..7)

INTEGER (8..11)
(Asn1_Complete, 1.5.)
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Terms and Definitions

Per-Visible: defines if the ASN.1 specified constraints of a type are used in the encoding rules.

Subtype: value constrained primitive type.

Simple Value: primitive ASN.1 data type.

Composite Value: value built of other Composite Value(s) and primitive data types.

indefinite length case (when referring to numbers): inferring that an explicit length encoding is necessary

semi-constrained (when referring to numbers): lower bound is known, but no upper bound can be determined.

unconstrained whole number: Always encoded as “indefinite length”

Notes

These notes refer to the ASN.1 PER encoding rule specification, X.691.

(1) Unconstrained SIZE/length encoding of PER Integers is performed using the same encoding rules as BER.

3.6.14 fixed-length type:
3.6.15 fixed value:
3.6.16 known-multiplier character string type:

3.6.17 length determinant:
3.6.18 normally small non-negative whole number:
3.6.19 normally small length:
3.6.20 non-negative-binary-integer encoding:
3.6.22 PER-visible constraint:
3.6.25 simple type:
Aligned encoding requirements

Un-aligned encoding requirements

NOTES:::

3.6.4 canonical encoding: A complete encoding of an abstract syntax value obtained by the application of encoding rules that have no implementation-dependent options; such rules result in the definition of a 1-1 mapping between unambiguous and unique bitstrings in the transfer syntax and values in the abstract syntax.
 (RWC; ??? RICH?)
3.6.7 constrained whole number: A whole number which is constrained by PER-visible constraints to lie within a range from "lb" to "ub" with the value "lb" less than or equal to "ub", and the values of "lb" and "ub" as permitted values. NOTE – Constrained whole numbers occur in the encoding which identifies the chosen alternative of a choice type, the length of character, octet and bit string types whose length has been restricted by PER-visible constraints to a maximum length, the count of the number of components in a sequence-of or set-of type that has been restricted by PER-visible constraints to a maximum number of components, the value of an integer type that has been constrained by PER-visible constraints to lie within finite minimum and maximum values, and the value that denotes an enumeration in an enumerated type.
3.6.8 effective size constraint (for a constrained string type):

NOTE 1 – For example, in:

Ax ::= IA5String (FROM("AB") | FROM("CD"))

Bx ::= IA5String (SIZE(1..4) | FROM("abc"))

Ax has an effective permitted-alphabet constraint of "ABCD". Bx has an effective permitted-alphabet constraint that consists of the entire IA5String alphabet since there is no smaller permitted-alphabet constraint that applies to all values of Bx.

NOTE 2 – The effective permitted-alphabet constraint is used only to determine the encoding of characters.
3.6.9 effective permitted-alphabet constraint (for a constrained restricted character string type): A single

permitted-alphabet constraint that could be applied to a built-in known-multiplier character string type and whose effect would be to permit all and only those characters that can be present in at least one character position of any one of the values in the constrained restricted character string type.

NOTE 1 – For example, in:

Ax ::= IA5String (FROM("AB") | FROM("CD"))

Bx ::= IA5String (SIZE(1..4) | FROM("abc"))

Ax has an effective permitted-alphabet constraint of "ABCD". Bx has an effective permitted-alphabet constraint that consists of the entire IA5String alphabet since there is no smaller permitted-alphabet constraint that applies to all values of Bx.

NOTE 2 – The effective permitted-alphabet constraint is used only to determine the encoding of characters.
3.6.11 extensible for PER encoding: (RWC;NOT SUPPORTED)

3.6.13 indefinite-length: (RWC;ONLY SUPPORTED FOR Decoding)

3.6.16 known-multiplier character string type: A restricted character string type where the number of octets in the encoding is a known fixed multiple of the number of characters in the character string for all permitted character string values. The known-multiplier character string types are IA5String, PrintableString, VisibleString, NumericString, UniversalString and BMPString.
3.6.21 outermost type: An ASN.1 type whose encoding is included in a non-ASN.1 carrier or as the value of other ASN.1 constructs (see 10.1.1).

NOTE – PER encodings of an outermost type are always an integral multiple of eight bits.
3.6.23 relay-safe encoding: A complete encoding of an abstract syntax value which can be decoded (including any embedded encodings) without knowledge of the environment in which the encoding was performed. (RWC; NOT SUPPORTED, FUTURE?)
3.6.24 semi-constrained whole number: A whole number which is constrained by PER-visible constraints to exceed or equal some value "lb" with the value "lb" as a permitted value, and which is not a constrained whole number.

NOTE – Semi-constrained whole numbers occur in the encoding of the length of unconstrained (and in some cases constrained) character, octet and bit string types, the count of the number of components in unconstrained (and in some cases constrained) sequence-of and set-of types, and the value of an integer type that has been constrained to exceed some minimum value.
3.6.26 textually dependent: A term used to identify the case where if some reference name is used in evaluating an element set, the value of the element set is considered to be dependent on that reference name, regardless of whether the actual set arithmetic being performed is such that the final value of the element set is independent of the actual element set value assigned to the reference name.
NOTE – For example, the following definition of Foo is textually dependent on Bar even though Bar has no effect on Foos set of values (thus, according to 9.3.5 the constraint on Foo is not PER-visible since Bar is constrained by a table constraint and Foo is textually dependent on Bar).

MY-CLASS ::= CLASS { &name PrintableString, &age INTEGER } WITH SYNTAX{&name , &age}

MyObjectSet MY-CLASS ::= { {"Jack", 7} | {"Jill", 5} }

Bar ::= MY-CLASS.&age ({MyObjectSet})

Foo ::= INTEGER (Bar | 1..100)
3.6.27 unconstrained whole number: A whole number which is not constrained by PER-visible constraints.

NOTE – Unconstrained whole numbers occur only in the encoding of a value of the integer type.
7.2 Without knowledge of the type of the value encoded, it is not possible to determine the structure of the encoding (under any of the PER encoding rule algorithms). In particular, the end of the encoding cannot be determined from the encoding itself without knowledge of the type being encoded.
7.3 PER encodings are always relay-safe provided the abstract values of the types EXTERNAL, EMBEDDED PDV and CHARACTER STRING are constrained to prevent the carriage of OSI presentation context identifiers.
7.6 If a type encoded with BASIC-PER or CANONICAL-PER contains EMBEDDED PDV, CHARACTER STRING or EXTERNAL types, then the outer encoding ceases to be relay-safe unless the transfer syntax used for all the EMBEDDED PDV, CHARACTER STRING and EXTERNAL types is relay safe. If a type encoded with CANONICAL-PER contains EMBEDDED PDV, EXTERNAL or CHARACTER STRING types, then the outer encoding ceases to be canonical unless the transfer syntax used for all the EMBEDDED PDV, EXTERNAL and CHARACTER STRING types is canonical.

NOTE – The character transfer syntaxes supporting all character abstract syntaxes of the form {iso standard 10646 level-1(1)} are canonical. Those supporting {iso standard 10646 level-2(2)} and {iso standard 10646 level-3(3)} are not always canonical. All the above character transfer syntaxes are relay-safe.
7.7 Both BASIC-PER and CANONICAL-PER come in two variants, the ALIGNED variant, and the UNALIGNED variant. In the ALIGNED variant, padding bits are inserted from time to time to restore octet alignment. In the UNALIGNED variant, no padding bits are ever inserted.

7.8 There are no interworking possibilities between the ALIGNED variant and the UNALIGNED variant.

7.9 PER encodings are self-delimiting only with knowledge of the type of the encoded value. Encodings are always a multiple of eight bits. When carried in an EXTERNAL type they shall be carried in the OCTET STRING choice alternative, unless the EXTERNAL type itself is encoded in PER, in which case the value may be encoded as a single ASN.1 type (i.e., an open type). When carried in OSI presentation protocol, the "full encoding" (as defined in ITU-T Rec. X.226 | ISO/IEC 8823-1) with the OCTET STRING choice alternative shall be used.
ITU-T Rec. X.691 (2002 E) 11

9.3 PER-visible constraints

NOTE – The fact that some ASN.1 constraints may not be PER-visible for the purposes of encoding and decoding does not in any way affect the use of such constraints in the handling of errors detected during decoding, nor does it imply that values violating such constraints are allowed to be transmitted by a conforming sender. However, this Recommendation | International Standard makes no use of such constraints in the specification of encodings.

9.3.1 Constraints that are expressed in human-readable text or in ASN.1 comment are not PER-visible.

9.3.2 Variable constraints are not PER-visible (see ITU-T Rec. X.683 | ISO/IEC 8824-4, 10.3 and 10.4).

9.3.3 Table constraints are not PER-visible (see ITU-T Rec. X.682 | ISO/IEC 8824-3).

9.3.4 Component relation constraints (see ITU-T Rec. X.682 | ISO/IEC 8824-3, 10.7) are not PER-visible.

9.3.5 Constraints whose evaluation is textually dependent on a table constraint or a component relation constraint are not PER-visible (see ITU-T Rec. X.682 | ISO/IEC 8824-3).

9.3.6 Constraints on restricted character string types which are not (see ITU-T Rec. X.680 | ISO/IEC 8824-1, clause 37) known-multiplier character string types are not PER-visible (see 3.6.16).

9.3.7 Pattern constraints are not PER-visible.

9.3.8 Subject to the above, all size constraints are PER-visible.

9.3.9 The effective size constraint for a constrained type is a single size constraint such that a size is permitted if and only if there is some value of the constrained type that has that (permitted) size.

9.3.10 Permitted-alphabet constraints on known-multiplier character string types which are not extensible after

application of ITU-T Rec. X.680 | ISO/IEC 8824-1, 48.3 to 48.5, are PER-visible. Permitted-alphabet constraints which are extensible are not PER-visible.

ISO/IEC 8825-2 : 2002 (E)

9.3.11 The effective permitted-alphabet constraint for a constrained type is a single permitted-alphabet constraint which allows a character if and only if there is some value of the constrained type that contains that character. If all characters of the type being constrained can be present in some value of the constrained type, then the effective permitted-alphabet constraint is the set of characters defined for the unconstrained type.

9.3.12 Constraints applied to real types are not PER-visible.

9.3.13 An inner type constraint applied to an unrestricted character string or embbeded-pdv type is PER-visible only when it is used to restrict the value of the syntaxes component to a single value, or when it is used to restrict identification to the fixed alternative (see clauses 25 and 28).

9.3.14 Constraints on the useful types are not PER-visible.

9.3.15 Single value subtype constraints applied to a character string type are not PER-visible.

9.3.16 Subject to the above, all other constraints are PER-visible if and only if they are applied to an integer type or to a known-multiplier character string type.

9.3.17 In general the constraint on a type will consist of individual constraints combined using some or all of set

arithmetic, contained subtype constraints, and serial application of constraints. The following clauses specify the effect if some of the component parts of the total constraint are PER-visible and some are not.

NOTE – See Annex B for further discussion on the effect of combining constraints that individually are PER-visible or not PER-visible.

9.3.18 If a constraint consists of a serial application of constraints, the constraints which are not PER-visible, if any, do not affect PER encodings, but cause the extensibility (and extension additions) present in any earlier constraints to be removed as specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 46.8.

NOTE 1 – If the final constraint in a serial application is not PER-visible, then the type is not extensible for PER-encodings, and is encoded without an extension bit.

NOTE 2 – For example:

A ::= IA5String(SIZE(1..4))(FROM("ABCD",...))

has an effective permitted-alphabet constraint that consists of the entire IA5String alphabet since the extensible permitted-alphabet constraint is not PER-visible. It has nevertheless an effective size constraint which is "SIZE(1..4)". Similarly,

B ::= IA5String(A)

has the same effective size constraint and the same effective permitted-alphabet constraint.

9.3.19 If a constraint that is PER-visible is part of an INTERSECTION construction, then the resulting constraint is PERvisible, and consists of the INTERSECTION of all PER-visible parts (with the non-PER-visible parts ignored). If a constraint which is not PER-visible is part of a UNION construction, then the resulting constraint is not PER-visible. If a constraint has an EXCEPT clause, the EXCEPT and the following value set is completely ignored, whether the value set following the EXCEPT is PER-visible or not.

NOTE – For example:

A ::= IA5String (SIZE(1..4) INTERSECTION FROM("ABCD",...))

has an effective size constraint of 1..4 but the alphabet constraint is not visible because it is extensible.
9.3.20 A type is also extensible for PER encodings (whether subsequently constrained or not) if any of the following occurs:

a) it is derived from an ENUMERATED type (by subtyping, type referencing, or tagging) and there is an extension

marker in the "Enumerations" production; or

b) it is derived from a SEQUENCE type (by subtyping, type referencing, or tagging) and there is an extension

marker in the "ComponentTypeLists" or in the "SequenceType" productions; or

c) it is derived from a SET type (by subtyping, type referencing, or tagging) and there is an extension marker in

the "ComponentTypeLists" or in the "SetType" productions; or

d) it is derived from a CHOICE type (by subtyping, type referencing, or tagging) and there is an extension marker in the "AlternativeTypeLists" production.
9.5.2 The encoding of a component of a data value either:

a) consists of three parts, as shown in Figure 1, which appear in the following order:

1) a preamble (see clauses 18, 20 and 22);

2) a length determinant (see 10.9);

3) contents; or

b) (where the contents are large) consists of an arbitrary number of parts, as shown in Figure 2, of which the first

is a preamble (see clauses 18, 20 and 22) and the following parts are pairs of bit-fields (octet-aligned in the

ALIGNED variant), the first being a length determinant for a fragment of the contents, and the second that

fragment of the contents; the last pair of fields is identified by the length determinant part, as specified in

10.9.

Preamble | Length | Contents | Length | Contents . . .Length | Contents (may be missing)
9.6.4 The following "useful types" shall be encoded as if they had been replaced by their definitions given in ITU-T Rec. X.680 | ISO/IEC 8824-1, clause 41:

– generalized time;

– universal time;

– object descriptor.

Constraints on the useful types are not PER-visible. The restrictions imposed on the encoding of the generalized time and universal time types by ITU-T Rec. X.690 | ISO/IEC 8825-1, 11.7 and 11.8 shall apply here.

9.6.5 A type defined using a value set assignment shall be encoded as if the type had been defined using the production specified in ITU-T Rec. X.690 | ISO/IEC 8825-1, 15.8.
10.1.1 If an ASN.1 type is encoded using any of the encoding rules identified by the object identifiers listed in clause 29.2 (or by direct textual reference to this Recommendation | International Standard), and the encoding is included in:

a) an ASN.1 bitstring or an ASN.1 octetstring (with or without a contents constraint); or

b) an ASN.1 open type; or

c) any part of an ASN.1 external or embedded pdv type; or

d) any carrier protocol that is not defined using ASN.1

then that ASN.1 type is defined as an outermost type for this application, and clause 10.1.2 shall apply to all encodings of its values.

NOTE 1 – This means that all complete PER encodings (for all variants) that are used in this way are always an integral multiple of eight bits.
10.1.2 The field-list produced as a result of applying this Recommendation | International Standard to an abstract value of an outermost type shall be used to produce the complete encoding of that abstract syntax value as follows: each field in the field-list shall be taken in turn and concatenated to the end of the bit string which is to form the complete encoding of the abstract syntax value preceded by additional zero bits for padding as specified below.

10.1.3 In the UNALIGNED variant of these encoding rules, all fields shall be concatenated without padding. If the result of encoding the outermost value is an empty bit string, the bit string shall be replaced with a single octet with all bits set to 0. If it is a non-empty bit string and it is not a multiple of eight bits, (zero to seven) zero bits shall be appended to it to produce a multiple of eight bits.

10.1.4 In the ALIGNED variant of these encoding rules, any bit-fields in the field-list shall be concatenated without padding, and any octet-aligned bit-fields shall be concatenated after (zero to seven) zero bits have been concatenated to make the length of the encoding produced so far a multiple of eight bits. If the result of encoding the outermost value is an empty bit string, the bit string shall be replaced with a single octet with all bits set to 0. If it is a non-empty bit string and it is not a multiple of eight bits, (zero to seven) zero bits shall be appended to it to produce a multiple of eight bits.

NOTE – The encoding of the outermost value is the empty bit string if, for example, the abstract syntax value is of the null type or of an integer type constrained to a single value.

10.1.5 The resulting bit string is the complete encoding of the abstract syntax value of an outermost type.
10.2 Open type fields (RWC; NOT SUPPORTED!!!)
10.5 Encoding of a constrained whole number

NOTE – (Tutorial) This subclause is referenced by other clauses, and itself references earlier clauses for the production of a nonnegative-binary-integer or a 2’s-complement-binary-integer encoding. For the UNALIGNED variant the value is always encoded in the minimum number of bits necessary to represent the range (defined in 10.5.3). The rest of this Note addresses the ALIGNED variant. Where the range is less than or equal to 255, the value encodes into a bit-field of the minimum size for the range. Where the range is exactly 256, the value encodes into a single octet octet-aligned bit-field. Where the range is 257 to 64K, the value encodes into a two octet octet-aligned bit-field. Where the range is greater than 64K, the range is ignored and the value encodes into an octetaligned bit-field which is the minimum number of octets for the value. In this latter case, later procedures (see 10.9) also encode a length field (usually a single octet) to indicate the length of the encoding. For the other cases, the length of the encoding is independent of the value being encoded, and is not explicitly encoded.
10.5.6 In the case of the UNALIGNED variant the value ("n" – "lb") shall be encoded as a non-negative- binary-integer in a bit-field as specified in 10.3 with the minimum number of bits necessary to represent the range.

NOTE – If "range" satisfies the inequality 2m < "range" 2m 1, then the number of bits = m 1. (RWC: THE VALUE IS NOT ENCODED HERE, just the index since the lower bound is known at both encoding and decoding time.)

10.5.7 In the case of the ALIGNED variant the encoding depends on whether:

a) "range" is less than or equal to 255 (the bit-field case);

b) "range" is exactly 256 (the one-octet case);

c) "range" is greater than 256 and less than or equal to 64K (the two-octet case);

d) "range" is greater than 64K (the indefinite length case).

10.5.7.1 (The bit-field case.) If "range" is less than or equal to 255, then invocation of this subclause requires the generation of a bit-field with a number of bits as specified in the table below, and containing the value ("n" – "lb") as a non-negativebinary-integer encoding in a bit-field as specified in 10.3.

"Range" Bit-field size (in bits)

2

1

3, 4

2

5, 6, 7, 8

3

9 to 16

4

17 to 32

5

33 to 64

6

65 to 128
7

129 to 255
8

10.5.7.2 (The one-octet case.) If the range has a value of 256, then the value ("n" – "lb") shall be encoded in a one-octet bitfield (octet-aligned in the ALIGNED variant) as a non-negative-binary-integer as specified in 10.3.

10.5.7.3 (The two-octet case.) If the "range" has a value greater than or equal to 257 and less than or equal to 64K, then the value ("n" – "lb") shall be encoded in a two-octet bit-field (octet-aligned in the ALIGNED variant) as a non-negative-binary integer encoding as specified in 10.3.

10.5.7.4 (The indefinite length case.) Otherwise, the value ("n" – "lb") shall be encoded as a non-negative-binary-integer in a bit-field (octet-aligned in the ALIGNED variant) with the minimum number of octets as specified in 10.3, and the number of octets "len" used in the encoding is used by other clauses that reference this subclause to specify an encoding of the length.

10.6 Encoding of a normally small non-negative whole number

NOTE – (Tutorial) This procedure is used when encoding a non-negative whole number that is expected to be small, but whose size is potentially unlimited due to the presence of an extension marker. An example is a choice index.

10.6.1 If the non-negative whole number, "n", is less than or equal to 63, then a single-bit bit-field shall be appended to the field-list with the bit set to 0, and "n" shall be encoded as a non-negative-binary-integer into a 6-bit bit-field.

10.6.2 If "n" is greater than or equal to 64, a single-bit bit-field with the bit set to 1 shall be appended to the field-list. The value "n" shall then be encoded as a semi-constrained whole number with "lb" equal to 0 and the procedures of 10.9 shall be invoked to add it to the field-list preceded by a length determinant.
10.9.3.3 Where the length determinant is a constrained whole number with "ub" less than 64K, then the field-list shall have appended to it the encoding of the constrained whole number for the length determinant as specified in 10.5. If "n" is nonzero, this shall be followed by the associated field or list of fields, completing these procedures. If "n" is zero there shall be no further addition to the field-list, completing these procedures.

NOTE 1 – For example:

A ::= IA5String (SIZE (3..6)) -- Length is encoded in a 2-bit bit-field.

B ::= IA5String (SIZE (40000..40254)) -- Length is encoded in an 8-bit bit-field.

C ::= IA5String (SIZE (0..32000)) -- Length is encoded in a 2-octet

-- bit-field (octet-aligned in the ALIGNED variant).

D ::= IA5String (SIZE (64000)) -- Length is not encoded.

NOTE 2 – The effect of making no addition in the case of "n" equals zero is that padding to an octet boundary does not occur when these procedures are invoked to add an octet-aligned-bit-field of zero length, unless required by 10.5.
10.9.3.6 If "n" is less than or equal to 127, then "n" shall be encoded as a non-negative-binary-integer (using the procedures of 10.3) into bits 7 (most significant) to 1 (least significant) of a single octet and bit 8 shall be set to zero. This shall be appended to the field-list as a bit-field (octet-aligned in the ALIGNED variant) followed by the associated field or list of fields, completing these procedures.

NOTE – For example, if in the following a value of A is 4 characters long, and that of B is 4 items long:

A ::= IA5String

B ::= SEQUENCE (SIZE (4..123456)) OF INTEGER

both values are encoded with the length octet occupying one octet, and with the most significant set to 0 to indicate that the length is less than or equal to 127:

0 0000100 4 characters/items Length Value

10.9.3.7 If "n" is greater than 127 and less than 16K, then "n" shall be encoded as a non-negative-binary-integer (using the procedures of 10.3) into bit 6 of octet one (most significant) to bit 1 of octet two (least significant) of a two-octet bit-field (octet-aligned in the ALIGNED variant) with bit 8 of the first octet set to 1 and bit 7 of the first octet set to zero. This shall be appended to the field-list followed by the associated field or list of fields, completing these procedures.

NOTE – If in the example of 10.9.3.6 a value of A is 130 characters long, and a value of B is 130 items long, both values are encoded with the length component occupying 2 octets, and with the two most significant bits (bits 8 and 7) of the octet set to 10 to indicate that the length is greater than 127 but less than 16K.

10 000000 10000010 130 characters/items

Length Value

10.9.3.8 If "n" is greater than or equal to 16K, then there shall be appended to the field-list a single octet in a bit-field (octet-aligned in the ALIGNED variant) with bit 8 set to 1 and bit 7 set to 1, and bits 6 to 1 encoding the value 1, 2, 3 or 4 as a non-negative-binary-integer (using the procedures of 10.8). This single octet shall be followed by part of the associated field or list of fields, as specified below.

NOTE – The value of bits 6 to 1 is restricted to 1-4 (instead of the theoretical limits of 0-63) so as to limit the number of items that an implementation has to have knowledge of to a more manageable number (64K instead of 1024K).

10.9.3.8.1 The value of bits 6 to 1 (1 to 4) shall be multiplied by 16K giving a count ("m" say). The choice of the integer in bits 6 to 1 shall be the maximum allowed value such that the associated field or list of fields contains more than or exactly "m" octets, bits, components or characters, as appropriate.

NOTE 1 – The unfragmented form handles lengths up to 16K. The fragmentation therefore provides for lengths up to 64K with a granularity of 16K.

NOTE 2 – If in the example of 10.9.3.6 a value of "B" is 144K 1 (i.e., 64K 64K 16K 1) items long, the value is fragmented, with the two most significant bits (bits 8 and 7) of the first three fragments set to 11 to indicate that one to four blocks each of 16K items follow, and that another length component will follow the last block of each fragment:

11 000100 64K items | 11 000100 64K items | 11 000001 16K items | 0 0000001 1 item

Length Value Length Value Length Value Length Value
11.2 The bit shall be set to 1 for TRUE and 0 for FALSE.

11.3 The bit-field shall be appended to the field-list with no length determinant.
12 Encoding the integer type

NOTE 1 – (Tutorial ALIGNED variant) Ranges which allow the encoding of all values into one octet or less go into a minimum-sized bit-field with no length count. Ranges which allow encoding of all values into two octets go into two octets in an octet-aligned bit-field with no length count. Otherwise, the value is encoded into the minimum number of octets (using non-negative-binary-integer or 2’scomplement-binary-integer encoding as appropriate) and a length determinant is added. In this case, if the integer value can be encoded in less than 127 octets (as an offset from any lower bound that might be determined), and there is no finite upper and lower bound, there is a one-octet length determinant, else the length is encoded in the fewest number of bits needed. Other cases are not of any practical interest, but are specified for completeness.

NOTE 2 – (Tutorial UNALIGNED variant) Constrained integers are encoded in the fewest number of bits necessary to represent the range regardless of its size. Unconstrained integers are encoded as in Note 1.
12.2.6 Otherwise, (the indefinite length case) the procedures of 10.9 shall be invoked to append the field to the field-list preceded by one of the following:

a) A constrained length determinant "len" (as determined by 10.5.7.4) if PER-visible constraints restrict the type with finite upper and lower bounds and, if the type is extensible, the value lies within the range of the extension root. The lower bound "lb" used in the length determinant shall be 1, and the upper bound "ub" shall be the count of the number of octets required to hold the range of the integer value.

NOTE – The encoding of the value "foo INTEGER (256..1234567) ::= 256" would thus be encoded

as 00xxxxxx00000000, where each 'x' represents a zero pad bit that may or may not be present depending on where within the octet the length occurs (e.g. the encoding is 00 xxxxxx 00000000 if the length starts on an octet boundary, and 00 00000000 if it starts with the two least signigicant bits (bits 2 and 1) of an octet).

b) An unconstrained length determinant equal to "len" (as determined by 10.7 and 10.8) if PER-visible

constraints do not restrict the type with finite upper and lower bounds, or if the type is extensible and the value does not lie within the range of the extension root.
13 Encoding the enumerated type

NOTE – (Tutorial) An enumerated type without an extension marker is encoded as if it were a constrained integer whose subtype constraint does not contain an extension marker. This means that an enumerated type will almost always in practice be encoded as a bit-field in the smallest number of bits needed to express every enumeration. In the presence of an extension marker, it is encoded as a normally small non-negative whole number if the value is not in the extension root.
14 Encoding the real type

NOTE – (Tutorial) A real uses the contents octets of CER/DER preceded by a length determinant that will in practice be a single octet.
15 Encoding the bitstring type

NOTE – (Tutorial) Bitstrings constrained to a fixed length less than or equal to 16 bits do not cause octet alignment. Larger bitstrings are octet-aligned in the ALIGNED variant. If the length is fixed by constraints and the upper bound is less than 64K, there is no explicit length encoding, otherwise a length encoding is included which can take any of the forms specified earlier for length encodings, including fragmentation for large bit strings.
16 Encoding the octetstring type

NOTE – Octet strings of fixed length less than or equal to two octets are not octet-aligned. All other octet strings are octet-aligned in the ALIGNED variant. Fixed length octet strings encode with no length octets if they are shorter than 64K. For unconstrained octet strings the length is explicitly encoded (with fragmentation if necessary).
17 Encoding the null type

NOTE – (Tutorial) The null type is essentially a place holder, with practical meaning only in the case of a choice or an optional set or sequence component. Identification of the null in a choice, or its presence as an optional element, is performed in these encoding rules without the need to have octets representing the null. Null values therefore never contribute to the octets of an encoding.
18 Encoding the sequence type

NOTE – (Tutorial) A sequence type begins with a preamble which is a bit-map. If the sequence type has no extension marker, then the bit-map merely records the presence or absence of default and optional components in the type, encoded as a fixed length bit-field. If the sequence type does have an extension marker, then the bit-map is preceded by a single bit that says whether values of extension additions are actually present in the encoding. The preamble is encoded without any length determinant provided it is less than 64K bits long, otherwise a length determinant is encoded to obtain fragmentation. The preamble is followed by the fields that encode each of the components, taken in turn. If there are extension additions, then immediately before the first one is encoded there is the encoding (as a normally small length) of a count of the number of extension additions in the type being encoded, followed by a bitmap equal in length to this count which records the presence or absence of values of each extension addition. This is followed by the encodings of the extension additions as if each one was the value of an open type field.
18.1 If the sequence type has an extension marker, then a single bit shall first be added to the field-list in a bit-field of length one. The bit shall be one if values of extension additions are present in this encoding, and zero otherwise. (This bit is called the "extension bit" in the following text.) If there is no extension marker, there shall be no extension bit added.

18.2 If the sequence type has "n" components in the extension root that are marked OPTIONAL or DEFAULT, then a single bit-field with "n" bits shall be produced for addition to the field-list. The bits of the bit-field shall, taken in order, encode the presence or absence of an encoding of each optional or default component in the sequence type. A bit value of 1 shall encode the presence of the encoding of the component, and a bit value of 0 shall encode the absence of the encoding of the component. The leading bit in the preamble shall encode the presence or absence of the first optional or default component, and the trailing bit shall encode the presence or absence of the last optional or default component.

18.3 If "n" is less than 64K, the bit-field shall be appended to the field-list. If "n" is greater than or equal to 64K, then the procedures of 10.9 shall be invoked to add this bit-field of "n" bits to the field-list, preceded by a length determinant equal to "n" bits as a constrained whole number with "ub" and "lb" both set to "n".

NOTE – In this case, "ub" and "lb" will be ignored by the length procedures. These procedures are invoked here in order to provide fragmentation of a large preamble. The situation is expected to arise only rarely.

18.4 The preamble shall be followed by the field-lists of each of the components of the sequence value which are

present, taken in turn.

18.5 For CANONICAL-PER, encodings of components marked DEFAULT shall always be absent if the value to be encoded is the default value. For BASIC-PER, encodings of components marked DEFAULT shall always be absent if the value to be encoded is the default value of a simple type (see 3.6.25), otherwise it is a sender's option whether or not to encode it.

18.6 (RWC; extensions not supported!)

19 Encoding the sequence-of type
19.5 If the number of components is fixed ("ub" equals "lb") and "ub" is less than 64K, then there shall be no length determinant for the sequence-of, and the fields of each component shall be appended in turn to the field-list of the sequenceof.

19.6 Otherwise, the procedures of 10.9 shall be invoked to add the list of fields generated by the "n" components to the field-list, preceded by a length determinant equal to "n" components as a constrained whole number if "ub" is set, and as a semi-constrained whole number if "ub" is unset. "lb" is as determined above.

NOTE 1 – The fragmentation procedures may apply after 16K, 32K, 48K, or 64K components.

NOTE 2 – The break-points for fragmentation are between fields. The number of bits prior to a break-point are not necessarily a multiple of eight.
20 Encoding the set type

The set type shall have the elements in its "RootComponentTypeList" sorted into the canonical order specified in ITU-T Rec.X.680 | ISO/IEC 8824-1, 8.6 and additionally for the purposes of determining the order in which components are encoded when one or more component is an untagged choice type, each untagged choice type is ordered as though it has a tag equal to that of the smallest tag in the "RootAlternativeTypeList" of that choice type or any untagged choice types nested within. The set elements that occur in the "RootComponentTypeList" shall then be encoded as if it had been declared a sequence type. The set elements that occur in the "ExtensionAdditionList" shall be encoded as though they were components of a sequence type as specified in 18.9 (i.e., they are encoded in the order in which they are defined).

EXAMPLE – In the following which assumes a tagging environment of IMPLICIT TAGS:

A ::= SET

{

 a [3] INTEGER,

 b [1] CHOICE

 {

 c [2] INTEGER,

 d [4] INTEGER

 },

 e CHOICE

 {

 f CHOICE

 {

 g [5] INTEGER,

 h [6] INTEGER

 },

 i CHOICE

 {

 j [0] INTEGER

 }

 }

}

the order in which the components of the set are encoded will always be e, b, a, since the tag [0] sorts lowest, then [1], then [3].

[RWC;MUST be compiler generated order when encoding, specific to individual element tags; special case for untagged Choice(s).]
21 Encoding the set-of type

21.1 For CANONICAL-PER the encoding of the component values of the set-of type shall appear in ascending order, the component encodings being compared as bit strings padded at their trailing ends with as many as seven 0 bits to an octet boundary, and with 0-octets added to the shorter one if necessary to make the length equal to that of the longer one.

NOTE – Any pad bits or pad octets added for the sort do not appear in the actual encoding.

21.2 For BASIC-PER the set-of shall be encoded as if it had been declared a sequence-of type.

22 Encoding the choice type

NOTE – (Tutorial) A choice type is encoded by encoding an index specifying the chosen alternative. This is encoded as for a constrained integer (unless the extension marker is present in the choice type, in which case it is a normally small non-negative whole number) and would therefore typically occupy a fixed length bit-field of the minimum number of bits needed to encode the index. (Although it could in principle be arbitrarily large.) This is followed by the encoding of the chosen alternative, with alternatives that are extension additions encoded as if they were the value of an open type field.

*****Where the choice has only one alternative, there is no encoding for the index.
Additional Notes (from ongoing coding details)

· SIZE constraint is not used in ASN.1 INTEGER type, only value limits.

· When unaligned PER encoding, a restricted string with constraints may be encoded as an index; 0 starts at MIN, up to the specified MAX in a single range limit. If multiple range limits are presented, OR an additional enumerated character, OR “FROM(…)” is specified, then the maximum value is used to determine the number of bits used to encode the data. Otherwise, the index max, not the data max character, is used to encode the data (the decode MUST be aware of this range value to properly reconstruct the decoded data). (REQUIREMENT 27.???)

· When unaligned PER encoding, our eSNACC buffer handling will create intermediate bit buffers, then reconstruct a final bit buffer with all relevant buffers appended, with the beginning data properly aligned. This will pad the final data properly, even though we reverse load the data (in Sequence, SequenceOf, Set, SetOf). (REQUIREMENT 27.???)

FROM X.691

NOTES for Set/SetOf ordering...

9.2 Use of tags to provide a canonical order

This Recommendation | International Standard requires components of a set type and a choice type to be canonically ordered independent of the textual ordering of the components. The canonical order is determined by sorting the outermost tag of each component, as specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 8.6.

[RWC; for our application of the PER compiler, all Set definitions appear to have application level tags. These

appear to be necessary since any non-application specified tags would be removed for PER encoding by default,

even if EXPLICIT TAGS were used.]

X.682 is on page 187 of .pdf file

