
Pierre Pronchery

Freelance IT-Security Consultant
DUEKIN Consulting

<pierre.pronchery@duekin.com>

Guillaume Lasmayous

<guigui2@guigui2.net>

Carve your NetBSD

Abstract

After over 20 years of active development [1], NetBSD [2] proves to be a resilient,
attractive, featureful and stable platform for industrial products and research projects alike [3].
The reasons behind the technical and practical merits of the system will not be explored or
debated here; however, there is always space for improvement. This paper (and associated
talk) attempts to identify areas in which gaps may be determined, and presents ways and
ongoing work to address them. The topics covered range from the development model to a
more user-oriented release strategy, through the adoption of key industrial processes. The
EdgeBSD Project is introduced [4] as a platform to experiment with these propositions.
Additionally, user interfaces for both desktop and embedded environments are demonstrated,
thanks to the DeforaOS Project [5].

[1] Initial revision for src/Makefile, http://cvsweb.netbsd.org/bsdweb.cgi
/src/Makefile?rev=1.1&content-type=text/x-cvsweb-markup

[2] The NetBSD Project, http://www.netbsd.org/

[3] What is NetBSD? in the NetBSD Guide, https://www.netbsd.org/docs/guide/en/chap-
intro.html

[4] The EdgeBSD Project, https://www.edgebsd.org/

[5] The DeforaOS Project, https://www.defora.org/

1

Introduction

NetBSD is one of the first Open Source
projects to have adopted a
community-based development model [6].
Established and first released as far back as
1993, it is developed using a "global"
approach to the system, with the kernel and
essential user-land components integrated
together as a whole [7]. This is very
different from the approach observed in the
omnipresent (GNU/)Linux community,
where hundreds of software distributions
respectively collect and integrate myriads of
components together, as found within the
global Open Source Software "bazaar" [8].

The development workflow for NetBSD
reflects this desire of a clean, integrated
platform for the base system and packages.
While generally praised for the quality of
the designs and solutions adopted, it can
also be harmful for the growth and renewal
of its developer base [9]. Moreover, the
centralized source code management tool
behind development, CVS, no longer fits
the distributed approach in increasing use
within the industry [10].

The audience met by the NetBSD
Project in its current form is largely
composed of software developers and
experienced users. While a number of
software and hardware companies ship
products based on NetBSD [11], this is
usually not advertised as such, and few
actively and officially take part of the
development effort (as opposed to
FreeBSD [12] and OpenBSD [13] for
instance). Besides the development model

itself, the reasons identified here include the
arguably rough, "old-school" aspect of the
project releases for prospective users and
developers.

A number of ideas and ways to address
the issues listed are available, with various
costs. Among them, extending releases to
ready-to-flash software images for a range
of devices and purposes is already an
unofficial trend among the developers [14]
(for the Raspberry Pi and BeagleBone for
instance). An alternative installer with a
graphical interface (as opposed to
text-based) may also be welcome. Then,
developers might expect more guidance as
to their work environment, for which new
possibilities are demonstrated. These goals
led to the creation of the EdgeBSD
Project [15], where there is complete
freedom to experiment with these
propositions.

Finally, functional devices with a
modern, featureful user interface running on
NetBSD in a variety of ways and purposes
are introduced. They are based on the
DeforaOS Project [16], which desktop
environment can already be found packaged
in the latest releases of the pkgsrc
project [17]. They range from a typical
desktop environment for users or
developers, to embedded use as an e-book
reader, a tablet [18], or as a telephony
platform [19]. Software and hardware for
the latter two projects was presented at
BSD conferences in 2012 and 2013, and
they are both being actively
maintained [20], with significant progress to
be demonstrated.

2

Development workflow

The development workflow of The
NetBSD Project is handled separately when
it comes to the base system and to package
management. Although being subject to
very different release-engineering policies
and portability constraints, they are very
closely related and a number of issues can
be identified as a result.

Base system

Release-engineering

The NetBSD Project releases new
major versions of the base system based on
a given set of features desired for the
release. A branch is forked from the main
development tree once these features
implemented, for heavier testing and
preparation for the new release. This means
that there is usually no particular deadline
set with regard to when a new version
should be released: it is done when
considered ready.

There are three different kinds of
releases [21]:

major releases: like NetBSD 5.0 or 6.0, as
described above;

stable releases: like NetBSD 5.1 or 6.2,
containing new features backported to
the release branch;

minor releases: like NetBSD 6.0.1 or
6.1.2, containing only essential fixes and
security patches relevant to a stable
release.

Stable branches for the two latest major
releases are always maintained for essential
fixes and security issues. In practice, this
means that a stable branch for an old
major release may be released after a new
major release (for instance, NetBSD 5.2 was
released after NetBSD 6.0). Although a
common practice in the software industry,

this can be confusing to some users.

More importantly, as of January 22nd
2014, there are at least five releases of the
base system which are officially supported:
5.0.2, 5.1.3, 5.2.1, 6.0.3 and 6.1.2. While
potentially useful for system administrators
(who may then choose to follow minor
release updates for stability) the number of
releases available and supported at any
given time can be overwhelming for the
developers of the project and for users
alike.

System sets

The NetBSD system is primarily
shipped and distributed as a collection of
binary sets. They simply consist of
compressed tar archives. Two of them are
essential for a working initial setup ("base"
and "etc"), while the others provide
additional functionality or documentation
accordingly. Instructions and additional
tools (where applicable) to assist the
installation process are provided for each
architecture supported.

Centralized development

The source code for NetBSD has always
been maintained thanks to the CVS Source
Code Management tool (SCM) [22]. CVS is
a client-server based tool, which requires an
active connection to the server to be able to
commit to the repository. In other words it
is a centralized system, requiring developers
to be online to be able to track their own
set of changes. Every developer is allowed
to create and manage an own set of
branches [23]. All branches are public and
their use in CVS is resource-intensive, as it
typically requires modifying the entire
remote repository; as a result, their use is
very limited.

More generally speaking, CVS is no
longer on par with more modern SCM
tools, and regularly criticized for its current
limitations [24]. Moving or renaming files is

3

a cumbersome process in CVS for instance.
As another example, while in theory it is
perfectly possible to use CVS in a
decentralized fashion (using the "cvs
import" command), in practice this is error-
prone, resource intensive and inelegant,
therefore seldom performed.

Package management

In NetBSD, packages are provided by
the pkgsrc project [25]. pkgsrc is a cross-
platform packaging system. Born in 1997 as
a fork of the FreeBSD ports for
NetBSD [26], it has largely diverged since
then and supports over twenty platforms
nowadays [27]. Although NetBSD remains
the primary target platform for pkgsrc, the
project is meant to be maintained
separately and subject to distinct release-
engineering policies.

Source-based approach

Contrary to NetBSD's own release
management, pkgsrc is primarily meant as
a source-based package deployment tool. A
number of reasons behind this choice are
regularly mentioned in the release
notes [28]. Among them, emphasis is placed
on the security aspects of this choice, which
include the verification of the provenance
and integrity of the source code, as well as
that of the compilation environment. We do
not believe these reasons to be accurate,
given the possibility of the presence of
backdoors in the original source code
archives [29] or within the compilers
used [30].

Quarterly releases

Again, the release management for
pkgsrc is opposed to that of the NetBSD
Project. pkgsrc is under constant
development, with stable releases being
tagged exactly four times per year (hence
quarterly releases). After a short freeze
period, used to work on the most essential

build fixes prior to release, the main
development tree is released as-is.

Centralized development

Just like for NetBSD, development of
the pkgsrc project is performed with CVS
as the SCM tool. It is therefore centralized
as well, and hosted by The NetBSD
Foundation on the same servers as
NetBSD [31]. Importantly, being an official
pkgsrc developer requires membership to
The NetBSD Foundation too.

An additional repository for pkgsrc is
available, called "pkgsrc-wip" for "Work In
Progress". Managed by a prominent
NetBSD and pkgsrc developer, Thomas
Klausner (wiz@), this repository is hosted
on SourceForge [32]. Also using CVS as the
SCM tool, it is meant as a staging area for
pkgsrc. Unlike its counterpart, it does not
require membership to The NetBSD
Foundation to be able to contribute.
Packages from this repository are not
included in official releases for pkgsrc
though.

Issues identified

CVS is deprecated

The CVS SCM tool is no longer
actively maintained, with the last preview
version released about seven years ago.
While mature, stable and functional, it is
obsolete by today's standards and often
dismissed by the new generation of software
developers. We believe using CVS today to
be a showstopper for the integration of new
contributors to the NetBSD and pkgsrc
projects for this reason.

Also, because of its centralized
approach, it is very difficult for prospective
developers to work efficiently without being
official developers, and therefore gain the
experience and confidence required to fulfill
the integration process.

4

Migration to a newer SCM tool is a
regular topic on the corresponding NetBSD
mailing-list [33]. While no clear consensus
has been made for a potential new tool, Git
is regularly mentioned in such posts. The
NetBSD wiki proposes a summary of these
passionate discussions [34].

Lost contributions to the system

An indirect consequence of the
centralized contribution management is the
difficulty for external contributors to either
submit significant contributions, or provide
patches conveniently. In the first case in
particular, such contributions have to be
hosted on separate servers and are easily
forgotten or worse, can be definitely
lost [35].

Decentralized SCM tools like Git allow
trivial ways to mirror external contributions
locally, or handle patches conveniently.

Conflicting deployment and security
policies between the base system and
packages

The release policies of the base system
and that of the packages are totally
opposed on the following aspects:

they are not synchronized (for either
releases or end of support)

the base system relies on binaries while
packages are typically built from source.

As a result, it is difficult to run a stable
system or to follow the latest packages. In
the former case, packages are out of date
after three to six months, and then are no
longer supported for security. In the latter
case, it is necessary to either build packages
from source continuously (potentially
re-building all of them regularly because of
dependencies), or to switch releases of
pkgsrc every three to six months, with
many risks of regressions.

Both scenarios are commonplace, and
the situation is worsened for every
additional system (and architecture) the
user is running. The significant amount of
versions available for each major release of
the base system also puts additional burden
on the users.

We believe this situation to be counter-
productive, harmful for the vitality of the
project and dangerous for the security of its
users.

Lack of quality assurance on pkgsrc
releases

Packages in pkgsrc are maintained by
individual developers, each potentially
running a different system with a specific
installed base. There is no way to ensure
that any package will function as expected,
even when installed on official, pristine
binary releases. Pre-release periods for the
pkgsrc project (called "freezes") are focused
on build tests rather than functionality
tests.

Another negative impact of the "freeze"
periods is that it prevents developers to
work on changes forbidden in these periods.
This can also be seen as a consequence of
the technical limitations of the centralized
SCM tool in use, CVS (see the section
called “Centralized development”).

Possibly insecure distribution of sets and
packages

There are additional possibilities for
external attacks, notably while distributing
the repository of patches and checksums via
insecure means. The most common way to
distribute binary sets and packages is
currently via HTTP, BitTorrent,
anonymous FTP or rsync, with most
protocols being unencrypted and easy to
tamper with [36].

Source code is distributed in source
sets, or optionally via separate means.

5

While SSH is supported, the CVS pserver
protocol is still available and also
vulnerable to such attacks.

Fortunately, there is a way to obtain a
list of checksums applicable to the files
officially available, that is also PGP-signed
by NetBSD's Security Officer [37]. It is
however neither straightforward to actually
verify single downloads through this file,
nor is this file actually signing the files
being downloaded. Partial attacks against
the hashing algorithms used might be
enough to fool some users.

Binary signatures long broken

pkgsrc has been claiming to support
signed binary packages since 2001. While
being among the first software distributions
to implement this feature, it was
dysfunctional until recently: an issue with
uninitialized variables let the integrity
checks fail silently (and the package would
then not install, with no error message).
This issue was found and fixed while
working on the EdgeBSD Project [38].

This illustrates the lack of interest of
the project (and its current users) in the
secure binary distribution of packages. Even
though signed packages do not solve every
issue in this regard, we believe they are a
necessary step forward.

Relation to The NetBSD Project

Contributing to the pkgsrc project
currently requires membership to The
NetBSD Foundation. This has a number of
consequences, including legal and political
ones since The NetBSD Foundation is a
legal entity in the United States [39].

Potential contributors may very well
not desire (or not be allowed) to be part of
The NetBSD Foundation, or to be
associated with the NetBSD Project
directly.

Conflicts with respect to other platforms

pkgsrc supports a significant number of
platforms. These platforms do not all have
the same features and API. This is
generally not an issue: not every packages is
required to build or work on each and every
platform, and many issues can be patched
and reported upstream.

However, there are cases where
significant packages evolve at a faster pace
than NetBSD does, and where they only
support APIs which are not yet available in
NetBSD. This situation leads to a dilemma:

either packages are kept in their older
versions, and still support NetBSD while
being obsolete on other platforms,

or on the contrary, the troublesome
packages are updated but they no longer
work on NetBSD, in spite of being the
primary target platform.

This situation is unfortunately
happening already: Xorg as packaged
within pkgsrc (called "modular Xorg") was
kept to an old version for some time, before
being updated to a version requiring
availability of the KMS API (Kernel Mode
Switching). As a consequence, modular
Xorg no longer works on NetBSD, and
running Xorg on NetBSD requires obtaining
X from the base system.

Package options are not binary-friendly

A number of pkgsrc packages support
build-time options, of which default values
depend on pkgsrc's default configuration,
the current platform, and pkgsrc's global
configuration file (/etc/mk.conf) if
available. Packages depending on libraries
built with different options are likely to be
different and incompatible with each other.
This can be troublesome when mixing
official binary packages with packages built
from sources, since the options chosen may
as well differ. The list of options used for

6

the binary packages may not even be
available publicly. This is a commonplace
scenario for users (like when building
packages from wip) and we believe this
harms reliable distribution of binary
packages as well.

Moreover, some options may be
essential to some users while being disabled
by default (like LDAP support for
instance). This also can easily discourage
users from adopting pkgsrc (notably in
corporate environments) since it makes it
then necessary to maintain in-house binary
package repositories. Again, we believe this
to be harming the popularity of the pkgsrc
project, especially in industrial
environments.

This issue was solved differently in the
Debian Project for instance. There,
multiple versions of such packages are
available, and all built automatically from
the same source package. This design has
been ruled out in pkgsrc because of its
original source-based nature, but also
because of the additional amount of work it
would be expected to create while
maintaining such packages [40][41].

Packages are heavy to download and
install

Packages in pkgsrc are typically built
directly from the source archive of a
project, with only one package being built
each time. These packages must therefore
contain the development interface for any
library they may provide for instance. This
usually involves static libraries,
development files, extensive documentation
and additional files and binaries that may
not be relevant in most cases. This means
that packages are often bigger than they
may just have to be.

While this issue can easily be dismissed
on regular desktop and workstation systems
(where the extra resources required may be
negligible), it is not the case on embedded

platforms. This, again, may discourage
some industrial users to consider using
pkgsrc for the software distribution of their
packages.

Redistributable packages do not easily
build unprivileged

While it is absolutely possible (and
easy) to bootstrap pkgsrc to build packages
for unprivileged users, this is not true of
regular redistributable packages. They are
currently expected to be built (or at least
created) with root privileges, which almost
always largely exceeds the privileges
actually necessary for this task.

A workaround for this issue was found
while working on the EdgeBSD Project,
thanks to the fakeroot command from the
sysutils/fakeroot package [42].

First list of suggestions

Switching to a decentralized SCM

As mentioned above in the section
called “CVS is deprecated”, rather than
CVS itself we believe the actual issue when
it comes to the SCM tool to use is whether
it allows external developers to use the
repositories from a project. While a number
of decentralized tools exist and provide
their respective list of features and
advantages, Git is by far the most popular
tool today. Both GitHub and Gitorious are
immensely popular, hosting millions of
repositories [43]. Joyent, one of the largest
industrial users of pkgsrc [44], also has its
pkgsrc repositories hosted on GitHub.

A number of attempts have been made
at providing functional repositories for The
NetBSD Project using different SCM tools.
Joerg Sonnenberger, a prominent NetBSD
developer, is heavily involved in this task
and evaluating alternatives to CVS [45]. His
initial work was based on Git (in 2008) and
then Fossil [46]. Since July 2011, he

7

publishes mirrors for both the src and
pkgsrc source trees on the GitHub platform.

These mirrors have a significant number
of users, with the pkgsrc repository forked
about 50 times on GitHub alone [47].

Provide a public SCM service for any
potential contributor

It should be possible to avoid losing
contributions (as mentioned above in the
section called “Lost contributions to the
system”) by providing a mirror of the
source code repositories, where just about
anyone could publish code as well.

This may cause indirect legal or
security issues, as there would be a
possibility for contributors to upload
tainted code, malicious files or otherwise
inappropriate content (which caused a
premature end to no less than the Google
Code Download Service [48]).

However, the popularity of this
platform should also attract moderators in
sufficient proportions. Additionally, some
SCM tools allow for the efficient access
control and removal of branches (like Git
when combined with Gitolite [49]).

In any case, this service (or the external
branches) should be handled separately
from the main repositories, or clearly
advertized as such.

Long-Term-Support (LTS) branches for
pkgsrc

It appears necessary to maintain a
branch of pkgsrc for both stability and
security. A proposal has already been made
(and declined) to the PMC to keep
maintaining the release corresponding to
the first quarter of every (second) year in
this fashion.

This process is commonplace in major

Open Source projects and software
distributions (like Mozilla ESR and Ubuntu
LTS) but does involve an amount of extra
work, on which ground it was not adopted.
One such additional task is that of
maintaining a separate security
vulnerability list for each LTS branch.

Rolling-release for the stable branches

It would likely help both reduce the
maintenance work, please every type of user
and help acceptance of minor issues to
maintain only two stable releases per major
release. They would consist of:

a branch remaining as close as possible to
the original major release as possible (ie
accepting security and essential fixes
only)

a branch with every security issue, fix or
backported addition deemed fit by the
developer requesting the pull-up and the
release-engineering team, in a rolling-
release fashion (e.g. with updated
binaries always available) and an official
release-worthy tag and binaries for the
latest essential change pushed.

The first choice is mandatory, because
it is the safest way to allow building
packages compatible with every later
addition to the release. It is therefore meant
for bulk builders, and for administrators
requiring absolute stability to the system
while also tracking security fixes.

The second choice would also have the
advantage to more easily provide an update
channel for the major release, and probably
encourage users to use and provide feedback
about the same, updated version. NetBSD
already provides such a channel [50], but it
is not officially available and usually not
mirrored on other servers. There is no
official in-place upgrade tool either,
although a few are available already (like
sysupgrade in pkgsrc [51]).

8

Towards industry standards:
EdgeBSD

EdgeBSD is a young project started in
the second half of 2013 [52] by Pierre
Pronchery, already a NetBSD developer at
the time. It was started as a way to
experiment freely with changing some of
the usual aspects of working with The
NetBSD Project, and hopefully attracting
new developers to its ecosystem.

From portability to usability

The main strength of NetBSD is
certainly how much its developers care for a
clean and intelligible design. This has
eventually allowed the system to be easily
portable, and gained the project a
reputation for portability. Among these
capacities, we would like to emphasize on
the following:

the system is cross-compiled by default,

internal frameworks are carefully
integrated and documented,

hardware-level bus access is abstracted
away for driver developers.

Unfortunately, in spite of these unique
capabilities, improving the system for use
on desktop environments has never gained
much attraction (or, rather,
acceptation [53]).

One of the main reasons behind this
situation is certainly the amount of work
required to track the latest developments of
the broader Open Source desktop
community, as typically driven by the
GNU/Linux class of systems. Most of the
recent developments require major
architectural updates to the system in order
to work (or even compile) optimally, like
KMS (Kernel Mode Switching) with Xorg.
Desktop environments take time to fully
port as well (GNOME 3, XFCE), while

some changes may not be desirable in the
first place (like systemd, another init
system).

It was demonstrated that it is indeed
possible to provide a modern and stable
desktop environment on top of NetBSD, on
desktop and embedded environments
regardless (including tablets [54] or possibly
smartphones [55]). Projects like the
DeforaOS desktop [56] aim at running and
integrating on more systems than just
GNU/Linux.

In fact, EdgeBSD may go as far as
adopting a default desktop environment,
providing both a controlled and maintained
user experience and a reference
implementation for other projects to work
with. Another very important reason for
this is the availability of an Integrated
Development Environment within this
desktop, providing developers with a
known, stable and featureful work
environment that is more easily supported.

One way to help this happen is to
provide prospective users and developers
with ready-to-use system images for a
number of devices and contexts; this is also
a goal of the EdgeBSD Project.

Decentralized development
workflow

Given the increasing popularity of Git
within the industry (as can be seen in the
Android ecosystem) it was decided to use
this SCM tool to host its repositories. As of
today, the initial fork was obtained from
Joerg Sonnenberger's work directly on
GitHub. A recurring issue was found with
this approach: the Git chain of commits is
regularly rewritten.

Incremental updates to the Git
repository format sometimes break the
existing chain of commits and are published
using "forced pushes". In Git, it is typically
impossible to go back in time. This is

9

however common practice among NetBSD
developers through the use of the "cvs
admin" command, usually to improve
commit messages after the fact. In turn,
this may force Git users to perform tedious
manual operation.

This issue is currently being addressed:

given the popularity of the Git mirrors,
NetBSD's PMC - pkgsrc Management
Committee - has disallowed the use of the
"cvs admin" command in the pkgsrc
repository. This should tremendously ease
conversions from now on, although issues
with the "cvs import" command may still
occur.

[1] Initial revision for src/Makefile, http://cvsweb.netbsd.org/bsdweb.cgi
/src/Makefile?rev=1.1&content-type=text/x-cvsweb-markup

[2] The NetBSD Project, http://www.netbsd.org/

[3] What is NetBSD? in the NetBSD Guide, https://www.netbsd.org/docs/guide/en/chap-
intro.html

[4] The EdgeBSD Project, https://www.edgebsd.org/

[5] The DeforaOS Project, https://www.defora.org/

[6] Open Sources: Voices from the Open Source Revolution, http://oreilly.com/catalog
/opensources/book/kirkmck.html

[7] The NetBSD system, https://www.netbsd.org/about/system.html

[8] Linux distribution, https://en.wikipedia.org/wiki/Linux_distribution

[9] NetBSD development model in EdgeBSD at FrOSCon 2013, http://people.defora.org
/~khorben/papers/froscon2013/EdgeBSD.pdf

[10] Criticism in Concurrent Versions System, https://en.wikipedia.org
/wiki/Concurrent_Versions_System#Criticism

[11] Products based on NetBSD, http://www.netbsd.org/gallery/products.html

[12] Who Uses FreeBSD? in the FreeBSD Handbook, http://www.freebsd.org
/doc/en_US.ISO8859-1/books/handbook/nutshell.html#introduction-nutshell-users

[13] Commercial Users in OpenBSD Users, http://www.openbsd.org/users.html

[14] Jared D. McNeill's misc repository on NetBSD's FTP server, http://ftp.netbsd.org
/pub/NetBSD/misc/jmcneill/rpi/

[15] The EdgeBSD Project, https://www.edgebsd.org/

[16] The DeforaOS Project, https://www.defora.org/

[17] The deforaos-desktop meta-package for pkgsrc, http://cvsweb.netbsd.org/bsdweb.cgi/pkgsrc
/meta-pkgs/deforaos-desktop/

10

[18] Touch your NetBSD at EHSM 2012, http://people.defora.org/~khorben/papers/ehsm2012
/Touch%20your%20NetBSD.pdf

[19] Call your NetBSD at BSDCan 2013, http://www.bsdcan.org/2013/schedule/events
/381.en.html

[20] The DeforaOS Open Source Project on Ohloh, http://www.ohloh.net/p/DeforaOS

[21] NetBSD release glossary and graphs, http://www.netbsd.org/releases/release-map.html

[22] Concurrent Versions System on Wikipedia, http://en.wikipedia.org
/wiki/Concurrent_Versions_System

[23] src/doc/BRANCHES, http://cvsweb.netbsd.org/bsdweb.cgi/~checkout~/src/doc
/BRANCHES?content-type=text/plain

[24] Concurrent Versions System on Wikipedia: Criticism, http://en.wikipedia.org
/wiki/Concurrent_Versions_System#Criticism

[25] pkgsrc, http://www.pkgsrc.org/

[26] 10 years of pkgsrc - pkgsrc and the concepts of package management 1997-2007,
https://www.netbsd.org/gallery/10years.html

[27] pkgsrc: The NetBSD Packages Collection, Supported platforms, http://www.netbsd.org
/docs/software/packages.html#platforms

[28] pkgsrc-2013Q4 branched, http://mail-index.netbsd.org/pkgsrc-users/2013/12/31
/msg019107.html

[29] BitchX Trojan Horse Vulnerability, https://www.juniper.net/security/auto/vulnerabilities
/vuln7333.html

[30] Strange Loops: Ken Thompson and the Self-referencing C Compiler,
http://scienceblogs.com/goodmath/2007/04/15/strange-loops-dennis-ritchie-a/

[31] NetBSD CVS Repositories, http://cvsweb.netbsd.org/bsdweb.cgi/

[32] The pkgsrc-wip project, http://pkgsrc-wip.sourceforge.net/

[33] The first step away from CVS on tech-repository, http://mail-index.netbsd.org/tech-
repository/2010/01/06/msg000204.html

[34] tech-repository on the NetBSD Wiki, http://wiki.netbsd.org/mailing-lists/tech-repository/

[35] Rubberhose mirror (at the Internet Archive), http://web.archive.org/web/20110726185300
/http://iq.org/~proff/rubberhose.org/

[36] NetBSD Mirror Sites, http://www.netbsd.org/mirrors/

[37] NetBSD-6.1.3_hashes.asc, ftp://ftp.netbsd.org/pub/NetBSD/security/hashes/NetBSD-
6.1.3_hashes.asc

11

[38] NetBSD Problem Report #48194, http://gnats.netbsd.org/48194

[39] The NetBSD Foundation, Inc., http://www.netbsd.org/foundation/

[40] "New options for freeswitch" thread on the "tech-pkg" mailing-list, http://mail-
index.netbsd.org/tech-pkg/2012/10/17/msg010217.html

[41] "Package split or package options?" thread on the "tech-pkg" mailing-list, http://mail-
index.netbsd.org/tech-pkg/2013/12/04/msg012303.html

[42] "pkgsrc/mksandbox.sh" from the EdgeBSD Project, http://git.edgebsd.org/gitweb
/?p=edgebsd-infrastructure.git;a=blob;f=pkgsrc/mksandbox.sh

[43] 10 million repositories, GitHub, https://github.com/blog/1724-10-million-repositories

[44] Joyent Packages Documentation, http://pkgsrc.joyent.com/

[45] Fossil and NetBSD, http://www.sonnenberger.org/2010/10/24/fossil-and-netbsd/

[46] Fossil, http://www.fossil-scm.org/

[47] The pkgsrc network graph on GitHub, https://github.com/jsonn/pkgsrc/network

[48] A Change to Google Code Download Service, http://google-opensource.blogspot.de/2013/05
/a-change-to-google-code-download-service.html

[49] Gitolite: Hosting git repositories, http://gitolite.com/gitolite/

[50] Daily builds of the netbsd-6 branch on ftp.netbsd.org, http://nyftp.netbsd.org
/pub/NetBSD-daily/netbsd-6/

[51] Introducing sysupgrade for NetBSD, http://julipedia.meroh.net/2012/08/introducing-
sysupgrade.html

[52] "EdgeBSD was introduced at FrOSCon" 2013, https://www.edgebsd.org/edgebsd/news/6
/edgebsd%20was%20introduced%20at%20froscon

[53] Archives for the netbsd-desktop mailing-list, http://mail-index.netbsd.org/netbsd-desktop/

[54] "Touch your NetBSD" presentation at EHSM 2012, http://mail-index.netbsd.org/netbsd-
advocacy/2013/01/13/msg000512.html

[55] "Call your NetBSD" presentation at BSDCan 2013, http://www.bsdcan.org/2013/schedule
/events/381.en.html

[56] "Graphical environment" from DeforaOS, http://www.defora.org/os/wiki
/3426/graphical%20environment

12

