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Abstract

We propose a generalized sound recognition system that uses
reduced-dimension log-spectral features and a minimum
entropy hidden Markov model classifier. The proposed
system addresses the major challenges of generalized sound
recognition—namely, selecting robust acoustic features and
finding models that perform well across diverse sound types.
To test the generality of the methods, we sought sound classes
consisting of time-localized events, sequences, textures and
mixed scenes. In other words, no assumptions on signal
composition were imposed on the corpus.

Comparison between the proposed system and conventional
maximum likelihood training showed that minimum entropy
models yielded superior performance in a 20-class recognition
experiment. The experiment tested discrimination between
speech, non-speech utterances, environmental sounds, general
sound effects, animal sounds, musical instruments and
commercial music recordings.

1. Introduction

1.1. Generalized Sound Recognition

There are many uses for generalized sound recognition in
audio applications. For example, robust speech / non-speech
classifiers may be used to enhance the performance of
automatic speech recognition systems, and classifiers that
recognize ambient acoustic sources may provide signal-to-
noise ratio estimates for missing-feature methods.
Additionally, audio and video recordings may be indexed and
searched using the classifiers and model state-variables
utilized for fast query-by-example retrieval tasks from large
general audio databases.

1.2. Previous Work

With each type of classifier comes the task of finding robust
features that yield classifications with high accuracy on novel
data sets. Previous work on non-speech audio classification
has addressed recognition of audio sources using ad-hoc
collections of features that are tested and fine-tuned to a
specific classification task.

Such audio classification systems generally employ front-
end processing to encode salient acoustic information; such as
fundamental frequency, attack time and spectral centroid.
These features are often subjected to further analysis to find
an optimal set for a given task such as speech/music
discrimination, musical instrument identification and sound
effects recognition, [1][2][3]. Whilst each of these systems
performs satisfactorily in their own right, they do not

generalize beyond their intended applications due to the prior
assumptions on the structure and composition of the input
signals. For example, fundamental frequency assumes
periodicity and, along with the spectral centroid, also assumes
that the observable signal was produced by a single source.

Here, we are concerned with general methods that can be
uniformly applied to diverse source classification tasks with
accurate performance, which is the goal of generalized sound
recognition (GSR).  An acceptable criterion for GSR
performance is >90% recognition for a multi-way classifier
tested on novel data.

2. Maximally Informative Features

Machine learning systems are dependent upon the choice of
representation of the input data. A common starting point for
audio analysis is frequency-domain conversion using basis
functions. The complex exponentials used by the Fourier
transform form such a basis and yield complete
representations of spectral magnitude information. The
advantage of this complete spectral basis approach is that no
assumptions are made on signal composition.

However, this representation consists of many dimensions
and yields a high degree of correlation in the data. This
renders much of the data redundant and therefore requires
greater effort to be expended in parameter inference for
statistical models. In many cases the redundancy also creates
problems with numerical stability during training and
adversely affects model performance during recognition.

To understand why such representations are problematic
consider that higher dimensional populations of samples are
more sparsely distributed across each dimension. This
encourages over-fitting of the available data points, thus
decreasing the reliability of density estimates. In contrast, a
low dimensional representation of the same population yields
a more densely sampled distribution from which parameters
are more accurately inferred.

2.1.1. Independent Subspace Analysis

To address the problems of dimensionality and redundancy,
whilst keeping the benefits of complete spectral
representations, we use projection to low-dimensional
subspaces via reduced-rank spectral basis functions. It is
assumed that much of the information in the data occupies a
subspace, or manifold, that is embedded in the larger spectral
data space. A number of methods exist that yield maximally
informative subspaces multivariate data; such as, local-linear
embedding, non-linear principal components analysis,
projection pursuit and independent component analysis. It has
been shown that these algorithms form a family of closely



related algorithms that use information maximization to find
salient components of multivariate data, [4][5][6].

We use independent subspace analysis (ISA) for
extracting statistically independent reduced-rank features
from spectral coefficients. ISA has previously been used for
scene analysis and source separation from single-channel
mixtures, [7]. The singular value decomposition (SVD) is
used to estimate a new basis for the data, and the right
singular basis functions are cropped to yield fewer basis
functions that are then passed to independent component
analysis (ICA). The SVD transformation produces de-
correlated, reduced-rank features and the ICA transformation
imposes the additional constraint of minimum mutual
information between the marginal components of the output
features. The resulting representation consists of the complete
data projected onto a lower-dimensional subspace with
marginal distributions that are as statistically independent as
possible.

2.1.2. Independent Subspace Extraction

To extract reduced-rank spectral features a log-ferquency
power spectrum was initially computed with a hamming
window of length 20ms advanced at 10ms intervals.
Frequency channels were logarithmically spaced in ¼-octave
bands spaced between 62.5Hz and 8kHz. The resulting log-
frequency power spectrum was converted to a decibel scale
and each spectral vector was constrained to unit L2-norm,
thus yielding spectral shape coefficients. The full-rank
features for each frame l, consisted of both the L2-norm gain
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where N was the number of spectral coefficients and M
was the frame count. The next step was to extract a subspace
using the singular value decomposition. To yield a
statistically independent basis we used a reduced-rank set of
SVD basis functions and applied a linear transformation W
obtained by independent component analysis, see Figure 1.
The resulting features were the product of the full-rank
observation matrix X , the dimension-reduced SVD basis
functions ρV  and the ICA transformation matrix W
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The proportion of information retained for reduced-rank
features of dimension ρ  is given by:
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where N is the total number of SVD basis functions and

iσ are the singular values.

Figure 1. Block diagram of independent subspace
feature extraction.
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To see how the representation affects classification we
trained two HMM classifiers; one using the complete spectral
information as given by Equations (1) and (2), and the other
using the reduced-rank form of Equation (3). Table 1 shows
results for the classifiers tested on musical instrument
classification. The HMMs trained with the reduced rank form
of spectral data performed significantly better than the HMMs
trained using full-rank spectra. Analysis of variance indicates
that the results are significant with p < .00018. The details of
classifier training and testing are discussed in the rest of the
paper.

Table 1 Performance statistics of 7-class classifier
trained on direct spectra and reduced-rank spectra.

Direct
Spectra

Reduced-Rank
Spectra

Class # Hit # Miss # Hit # Miss
Flute 1 3 4 0
Piano 5 0 5 0
Cello 5 1 5 1
Cor Anglais 1 3 4 0
Guitar 0 3 3 0
Trumpet 4 1 5 0
Violin 4 2 6 0
Totals 20 13 32 1
Performance 60.61% 92.65%

3. Minimum Entropy HMMs

3.1. HMM Classifiers

Hidden Markov models consist of three components; an
initial state distribution )( 1 iqPi ==  with { }Nqt K1∈ , a

state transition matrix )|( 1 iqjqPA ttij === −  and the

observation density function )|()( jqPb tj == yy  for each

state. Continuous HMMs set )(yjb  to a multivariate

Gaussian distribution with mean
j
and covariance matrix

,jK  giving { }jjjB K,=  for each state. We use the



notation { }jjjj BA πθ ,,=  to identify the parameters for

hidden Markov model j.

Classification proceeds using the viterbi algorithm which
estimates the most likely state sequence { }MqqqQ ,,, 21 L=
given observed data { }MyyyY ,,, 21 L=  and model

parameters 
jθ . The output is a sequence of states and a

likelihood that measures the probability of each model given
the observed data. The HMM classifier chooses the model
with the maximum likelihood score, amongst L competing
models
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3.2. HMM Parameter Inference

To infer a model from data, we seek parameters that maximize
the probability of the posterior distribution given the training
data for a class. To do this we invoke Baye’s rule
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where the likelihood )|( θyP  measures the accuracy in

modeling the data, and the prior )(θP  measures the

consistency of the model with our background knowledge.
Conventional HMMs use maximum likelihood estimation
with uniform priors. However, we often possess knowledge
that should lead us to prefer some model configurations to
others, thus we assume a prior on the likely form of the
model. But what is this background knowledge and how can it
be quantified?

3.3. Maximum Structure Priors

Brand [8,9] proposed an elegant way to include background
knowledge about structured data. The goal is to maximize the
information content of the model such that those parameters
with low probability are forced to zero in favor of parameters
with high probabilities. In Bayesean terms, parameters that do
not reduce the uncertainty are improbable, thus only those
parameters that reduce the entropy of the model should be
considered.

For multinomial parameters consisting of N conditional
probabilities { }Nθθ L,1= the entropic prior is
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substituting the entropic prior into Equation (6) yields
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The maximum a-posteriori estimate for the parameters is
obtained by setting the derivative of the log-posterior term to
zero which yields
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where λ is a Lagrange multiplier to ensure that
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i i 1θ . This equation corresponds to the E-step in

expectation maximization (EM). The M-step is given by
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where W is the Lambert W function, a multi-valued
inverse function satisfying xexW xW =)()( . Each row of the

transition matrix of an HMM is a multinomial, as is the initial
state distribution, thus they can be estimated with the above
formulae by iterating between the E-step and the M-step.

The entropic prior for Gaussian distributions is

( ) 2/1
KK� ∝eP . The maximum a-posteriori (MAP)

estimate of these parameters is obtained by setting the
gradient of the log posterior to zero and an approximate
solution is derived
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where Z = T – T0 is a function of the temperature for
deterministic annealing. T is the current temperature and T0
the initial temperature in the annealing schedule.

To illustrate the utility of minimum entropy priors, Figure
2 shows the difference between conventional and minimum
entropy models trained on the same set of speech data. The
structure of the entropic model appears somewhat sparser and
easier to interpret than that of the conventionally trained
model.

Figure 2. Conventional and minimum entropy HMMs
viewed from two dimensions of speech data. Gaussian
states are represented by ellipses and transition
probabilities are represented by line thickness.

Speech: Conventional Training

Speech: Entropic Training



4. Results

We trained a collection of 20 hidden Markov models for
diverse sound classes using both conventional maximum
likelihood estimation and maximum a-posteriori training with
minimum entropy priors. The data corpus consisted of 1000
sounds taken from various sources including the “TIMIT”
speech database, the “Pro Sonus” musical instrument sample
library, the “Sound Ideas” general sound effects library and
several hours of music recordings from commercial compact
discs.

The duration of the sound sequences was between 1 and
60 seconds with no restrictions on segmentation boundaries.
The data was divided by a 70%/30% split into training and
testing sets. For some sound classes the split was random. For
others, such as speech classes, care was taken to make sure
that no speaker appeared in both the training and testing sets.

For each class, a reduced-rank basis was extracted from
log-spectral gain and shape coefficients as described in
§2.1.2. The full-rank training data matrix was projected
against the basis functions to yield a 10-dimensional
observation matrix that was used for HMM training. For
conventional training, the state means were initialized using
the k-means algorithm with randomly generated full
covariance matrices. For minimum entropy training, the state
means were initialized by distributing them uniformly across
the data and the covariances were initialized with the full data
covariance.

To test the classifiers, the novel data was presented to
each HMM and the model with the highest likelihood was
selected using Equation 5. The results of classification for the
two sets of HMMs are shown in Table 2.

Correct classifications are counted as Hits, and incorrect
classifications are indicated as Misses. The performance for
each classifier was measured as the percentage of correct
classifications for the entire set of 275 test sequences. The
results indicate that both models performed well for such a
diverse set of classes; however, the models trained with
minimum entropy priors yielded significantly better results
overall; analysis of variance indicated that the results are
significant with p < 0.0388.

5. Conclusions

We have shown that reduced-rank spectral data and HMM
classifiers with minimum entropy priors yield multi-way
classifiers that perform significantly better than
conventionally trained HMM classifiers for generalized sound
recognition problems.

In future work, we will evaluate the effects of hierarchical
and factorial model combinations and investigate applications
of these architectures to mixtures of sound classes. The results
reported herein indicate some promise for such extensions.

Table 2 Recognition results for conventional and
minimum entropy 20-way HMM classifies.

Conventional
Training

Entropic
Training

Class # Hit # Miss # Hit # Miss
Speech:Female 39 1 39 1
Speech:Male 69 1 68 2
Music 12 0 12 0
Bird Calls 9 6 12 3
Applause 6 0 5 1
DogBarks 14 1 15 0
Explosions 6 1 7 0
FootSteps 11 0 10 1
Glass Smash 8 5 12 1
Gunshots 13 0 12 1
Shoe Squeaks 2 2 4 0
Laughter 13 5 17 1
Telephones 14 4 12 6
Flute 2 2 4 0
Piano 3 2 5 0
Cello 5 1 6 0
Cor Anglais 2 2 4 0
Guitar 1 2 3 0
Trumpet 3 2 4 1
Violin 6 0 5 1
Totals 238 37 256 19
Performance 86.55% 93.09%

6. References

[1] Wold, E., Blum, T., Keislar, D., and Wheaton, J.,
Content-based classification, search and retrieval of
audio. IEEE Multimedia, pp.27-36, Fall 1996.

[2] Martin, K. D. and Kim, Y. E., Musical instrument
identification: a pattern-recognition approach. In Proc.
136th Meeting of the Acoustical Society of America, VA,
1998.

[3] Zhang, T. and Kuo, C., Content-based classification and
retrieval of audio. Proc. Conference on Advanced Signal
Processing Algorithms, Architectures and
Implementations VIII, San Diego, CA, 1998.

[4] Bell, A. J. and Sejnowski, T.J. An information-
maximization approach to blind separation and blind
deconvolution. Neural Computation, 7:1129-1159, 1995.

[5] Cardoso, J.F. and Laheld, B.H., Equivariant adaptive
source separation. IEEE Trans. On Signal Processing,
4:112-114, 1996.

[6] Hyvarinen, A., Fast and robust fixed-point algorithms for
independent component analysis. IEEE Trans. On Neural
Networks, 10(3):626-634, 1999.

[7] Casey, M.A., and Westner, A., Separation of mixed audio
sources by independent subspace analysis. Proceedings
of the International Computer Music Conference, ICMA,
Berlin, 2000.

[8] Brand, M., Pattern discovery via entropy minimization.
In Proceedings, Uncertainty’99. Society of Artificial
intelligence and Statistics #7, FL, 1999.

[9] Brand, M., Structure discovery in conditional probability
models via an entropic prior and parameter extinction.
Neural Comput., vol. 11, no. 5, pp. 1155-1183, 1999.


