Y &
endace

accelerated

Universal Counter API
EDMO04-25

-

EDMO04-25 Universal Counter API

Protection Against Harmful Interference

When present on equipment this manual pertains to, the statement "This device complies with part 15 of the FCC
rules" specifies the equipment has been tested and found to comply with the limits for a Class A digital device,
pursuant to Part 15 of the Federal Communications Commission [FCC] Rules.

These limits are designed to provide reasonable protection against harmful interference when the equipment is
operated in a commercial environment.

This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in
accordance with the instruction manual, may cause harmful interference to radio communications.

Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will
be required to correct the interference at their own expense.

Extra Components and Materials

The product that this manual pertains to may include extra components and materials that are not essential to its
basic operation, but are necessary to ensure compliance to the product standards required by the United States
Federal Communications Commission, and the European EMC Directive. Modification or removal of these
components and/or materials, is liable to cause non compliance to these standards, and in doing so invalidate the
user’s right to operate this equipment in a Class A industrial environment.

Disclaimer

Whilst every effort has been made to ensure accuracy, neither Endace Technology Limited nor any employee of
the company, shall be liable on any ground whatsoever to any party in respect of decisions or actions they may
make as a result of using this information.

Endace Technology Limited has taken great effort to verify the accuracy of this manual, but nothing herein should
be construed as a warranty and Endace shall not be liable for technical or editorial errors or omissions contained
herein.

In accordance with the Endace Technology Limited policy of continuing development, the information contained
herein is subject to change without notice.

Published by:
Endace Technology® Ltd PO Box 19246 Phone: +64 7 839 0540
Level 9 Hamilton 3244 Fax: +64 7 839 0543
85 Alexandra Street New Zealand support@endace.com

http:/ /www.endace.com

International Locations

New Zealand Americas Europe, Middle East & Africa
Endace Technology Ltd Endace Network Systems Inc Endace Europe® Ltd

Building 7, Lambie Drive 14425 Penrose Place Sheraton House

PO Box 76802 Suite 225 Castle Park

Manukau City 2104 Chantilly, VA 20151 Cambridge CB3 0AX

New Zealand United States of America United Kingdom

Phone: +64 9 262 7260 Phone: +1 703 964 3740 Phone: +44 1223 370 176

Fax: +64 9 262 7261 Fax: +1 703 378 0602 Fax: +44 1223 370 040

Copyright 2008 Endace Technology Ltd. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the
Endace Technology Limited.

Endace, the Endace logo, Endace Accelerated, DAG, NinjaBox and NinjaProbe are trademarks or registered
trademarks in New Zealand, or other countries, of Endace Technology Limited. Applied Watch and the Applied
Watch logo are registered trademarks of Applied Watch Technologies LLC in the USA. All other product or
service names are the property of their respective owners. Product and company names used are for identification
purposes only and such use does not imply any agreement between Endace and any named company, or any
sponsorship or endorsement by any named company.

Use of the Endace products described in this document is subject to the Endace Terms of Trade and the Endace
End User License Agreement (EULA).

©2008 Endace Technology Ltd. Confidential - Version 2.1 - July 2008

EDMO04-25 Universal Counter API

Contents

1. Purpose 1
2. Overview 2
GOALS! ..ttt h ettt skttt ettt e bbb ne e 2

3. Description 3
3.1 COMUPONENL ...ttt b et bbbt e bt a bt se b seene s enennas 3
3.2 SUDCOIMPOIIENE ...ttt ettt st a e benea 3
COMMIMANA: ...ttt ettt ettt b sttt b e b e b et st e s et et eb et s ebeae s b e b en et e b emt s ek ese e ebeb et et es et ebebenteteneneasenan 4

4. Function Definitions 5
4.1 Component implemMentation............ccccciiiiiiniirreeeeccec ettt 5
4.2 Printing of counters and statistic TEZISETS............cccceiuiuiiiiiriniiieecceecc e 5
B3 SEIUCEULES ...ttt ettt ettt et ettt ettt s a et s e et a e et eae s et eb e s et en e sa e e e st sa e e es e st e e enesaennenesaennenenaens 6
A3 FUNCLIONS ..ottt ettt ettt ettt sttt s a et s e s et b e s et b e sa et ea e sa e e enesa e e enesa e e enesaeneenesaennenesaens 8
4.3.1 dag_config get_ number_block fUNCHONcceuiiiiiiiiiiiiicc s 8

4.3.2 dag_config get_number_counters funCtion.............ccccovriiriiiiiiiiiiinrcc s 8

4.3.3 dag_config get_number_all_counters functioncccovviiiiiiiiinnniicccccc e 8

4.3.4 dag_config get_counter_id_subfct function ... 9

4.3.5 dag_config get_all_block_id fuUNCHONcceuiiiiiiiiiiiiic e 9

4.3.6 dag_config latch_clear_all funCHON.ccccceiviiiiiiiiiiccc s 9

4.3.7 dag_config latch_clear_block fUNCHON...........coooiuiuiiiiiiiiiiiiicccc s 10

4.3.8 dag_config read_single_block fUNCHONcccoiiiiiiiiniiiiiicccce s 10

4.3.9 dag_config read_all_counters fUNCHOMN...........ccceiiiiiiririiniiiccrc s 10

4.3.10 dag_config_read_single_counter fUnCHONc.ccccuvirrrririeieueucuceiiinrrreseee e 11
Version History 12

©2008 Endace Technology Ltd. Confidential - Version 2.1 - July 2008 i

EDMO04-25 Universal Counter API

1. Purpose

This document describes the implementation of the universal statistics and counters interface
(CSI). This interface facilitates the reading of the various counters and statistic registers of
any type of DAG card. The counters and registers characteristics are printed using command
from dagconfig.

Please be aware that this document is subject to change as additional functionality becomes
available.

©2008 Endace Technology Ltd. Confidential - Version 2.1 - July 2008 1

EDMO04-25 Universal Counter API

2. Overview

The interface covers the DRB space and is implemented by the firmware. The software
implementation considers this interface as a firmware component/module.

CSI(counter statistics interface) enables the automatic identification by software of the
presence of counters or informational bits from a predefined set. Each counter and
information bit in this predefined set will have a set functionality. This will allow different
combinations of counters and functional bits to be used in different cards without the
requirement of additional software.

Each card can have multiple CSI blocks, thus allowing them to be placed in firmware
modules when required and be easily added or removed depending on the requirements of
the image. It also allows different accessing methods to be used depending on the counters.

Goals:
¢ To make an easy translation of the existing firmware module statistics to unified
counter blocks interface. Which can be automatically recognized by the software

e To give both the firmware and software unique counter and deterministic Id's to
prevent name changes and duplications across different cards and images.

e Extend the possibility for customer specific statistics with out software changes

e Extend the possibility for debugging statistics and counters with out need of special
software support.

e Give the option for accumulated counters in near future and to backwards compatible
with the software

Function definitions are described in later chapters of this document.

2 ©2008 Endace Technology Ltd. Confidential - Version 2.1 - July 2008

EDMO04-25 Universal Counter API

3. Description

The main enumeration table will store entry(ies) of type CSI per 'counter statistics interface'
which will point to a CSI block in the DRB address space. The enumeration entry will have
different versions depending on the CSI format (type of data access: direct v0, or indirect v1).

3.1 Component
Each CSI block has a description field indicating;:

the number of counters,
the type of the counters in the block (firmware module based or functional based),
a 'latch and clear' set up.

Global latch and clear can be implemented at later stage through a single write-only DRB
register instantiated in each CSI block.

This CSI block is implemented as a new component in dagconfig with attributes.

Its attributes are:

Counter Statistics Interface type (kUint32AttributeCSIType),

Number of counters in CSI (kUint32AttributeNbCounters),

Latch & Clear set up (kBooleanAttributeLatchClear),

Counter description base address (kUint32AttributeCounterDescBaseAdd),
Counter value base address (kUint32AttributeCounterValueBaseAdd).

The post-initialization function creates the subcomponent(s) counter and initializes their state
structure.

3.2 Subcomponent

Each counter is considered as a sub component of the CSI block component.

Each individual counter will have a 32-bit description entry containing;

The counter ID which is unique and depending on the function is implemented when
applicable,

A sub-function ID which covers multiple streams, filters or interfaces ports,

A “block value” type (counter value or address), this value type determines whether it
is the counter value (0) or the address (1) where the counter value is stored,

A 'Latch and Clear' information,

The size of the counter can be 32 bits or 64 bits,
type of access Indirect or Direct,

Base address of the counter value.

The counter is implemented as a new sub-component of the CSI block component with these
attributes:

Counter ID (kUint32AttributeCounterID),

Sub-function (kUint32AttributeSubFunction),

Value type (kBooleanAttributeValueType),

Latch and Clear information (kBooleanAttributeLatchClear),
Counter size (kUint32AttributeCounterSize),

Type of access (kBooleanAttributeAccess),

Counter value (kUint32AttributeCounterValue),
Sub-function (KUnit32AttributeSubFunctionsType)

©2008 Endace Technology Ltd. Confidential - Version 2.1 - July 2008 3

EDMO04-25 Universal Counter API

The state structure contains:

e the index of the subcomponent,
e the address or offset (from the DRB base) of the description field,
e the address or offset (from the DRB base) of the counter value.

typedef struct

{
uint32_t mindex;

uint32_t mValueOffset;
uint32_t mDescrOffset;
uint32_t* mValueAddress;
uint32_t* mDescrAddress;

} counter_state_t;

A specific function is implemented to read and set up each attribute.

Command:
The command used to print the counters is : dagconfig -u

4 ©2008 Endace Technology Ltd. Confidential - Version 2.1 - July 2008

EDMO04-25 Universal Counter API

4. Function Definitions

4.1 Component implementation
The interface is implemented as a component called “counter_interface” in file
counter_interface_component.c (/lib/libdagconf/components/)

The usual function for a component has been implemented:

<component name>_get_new_component,
<component name>_post_initialize,
<component name>_reset,

<component name>_default,

<component name>_dispose,

<component name>_update_register_base.

4.2 Printing of counters and statistic registers

In order to print the various counters and statistics, a new functions has been created
“print_univ_counters”in file counter_printing.c (tools/dagconfig/)

Others files modified to implement the component:

/tools/dagconfig/process_cmdline.c
/tools/dagconfig/process_cmdline.h
/tools/dagconfig/dagconfig.c
/1ib/1ibdagconf/cards/dagx_impl.c

©2008 Endace Technology Ltd. Confidential - Version 2.1 - July 2008 5

EDMO04-25 Universal Counter API

4.3 Structures

Structure of one counter, dag_counter_value_t:

e dag counter_type_t typelD: indicates the type ID,

e intsize: indicates the size of counter (32 or 64 bits),

e dag subfct_type_t subfct: indicates the type of sub-function,

e intlc: indicates if there is a latch and clear bit to read the register,

e int value_type: indicates whether it is the counter value (0) or the address where the
counter value is stored (1),

e uint64_t value: indicates the counter value,
typedef struct
{
dag_counter_type_t typelD; (see below.)
int size;
dag_subfct_type_t subfct; (see below.)
uint32_t interface_number
int Ic;
int value_type; /* Only available for direct register */
uinté4_t value;
} dag_counter_value_t;

typedef enum

{
kIDSubfctPort = 0x00,
kIDSubfctStream = 0x01,
kIDSubfctFilter = 0x02,
kIDSubfctGeneral = 0x03,

} dag_subfct_type_t;

typedef enum

{
kIDCounterinvalid = 0x0,
kIDCounterRXFrame = 0x01,
k1DCounterRXByte= 0x02,
k1DCounterRXShort = 0x03,
kIDCounterRXLong = 0x04,
kIDCounterRXError = 0x05,
kIDCounterRXFCS = 0x06,
kIDCounterRXAbort = 0x07,
kIDCounterTXFrame = 0x08,
kIDCounterTXByte = 0x09,
kIDCounterDIP4Error = OxOA,
kIDCounterDIP4PIError = 0OxOB,
kIDCounterBurstError = 0x0C,
kIDCounterPlError = 0x0D,
k1DCounterDebug = OxOE,
kIDCounterFilter = OxOF,

kIDCounterBlError = 0x10,
kIDCounterB2Error = 0x11,
kIDCounterB3Error = 0x12,

kIDCounterRXErr = 0x13,
kIDCounterSpaceError = 0x14,

6 ©2008 Endace Technology Ltd. Confidential - Version 2.1 - July 2008

EDMO04-25 Universal Counter API

k1DCounterContWdError = 0x15,
k1DCounterPIContError = 0x16,
kIDCounterTRDip4Error = 0x17,
k1DCounterResvWd = 0x18,
k1DCounterAddrError = 0x19,
k1DCounterOOFPeriod = Ox1A,
k1DCounterNbOOF = 0x1B,
k1DCounterTXOOFPeriod = 0Ox1C,
k1DCounterTXNbOOF = 0Ox1D,
kI1DCounterTXError = Ox1E,
kI1DCounterStatFrError = Ox1F,
kIDCounterDip2Error = 0x20,
k1DCounterPatternError = 0x21,
k1DCounterRXStreamPacket = 0x22,
kIDCounterRXStreamByte = 0x23,
k1DCounterTXStreamPacket = 0x24,
kIDCounterTXStreamByte = 0x25,
kIDCounterPortDrop = 0x26,
kIDCounterStreamDrop = 0x27,
kIDCounterSubStreamDrop = 0x28,
kIDCounterFilterDrop = 0x29,

} dag_counter_type_t;

©2008 Endace Technology Ltd. Confidential - Version 2.1 - July 2008 7

EDMO04-25 Universal Counter API

4.3 Functions

4.3.1 dag_config_get_number_block function

Purpose Return the number of block(s) of this card
Declared In dag_config.h
Prototype uint32_t dag_config_get_number_block(dag_card_ref_t card_ref)
Parameters — card_ref

Reference of the DAG card
Returns Number of block (counter statistic interface) of the DAG card.
Comments

4.3.2 dag_config_get_number_counters function

Purpose Return the number of counter(s) for a particular block
Declared In dag_config.h
Prototype uint32_t dag_config_get_number_counters(dag_card_ref_t card_ref, dag_block_type_t
block_type)
Parameters — card_ref
Reference of the DAG card
— block_type
Type of csi block
Returns Number of statistic counter(s) for the block “block type”
Comments

4.3.3 dag_config_

get_number_all_counters function

Purpose Return the total number of counter(s) of this card
Declared In dag_config.h
Prototype uint32_t dag_config_get_number_counters(dag_card_ref_t card_ref)
Parameters — card_ref
Reference of the DAG card
Returns Number of statistic counter(s) of the DAG card.
Comments

©2008 Endace Technology Ltd. Confidential - Version 2.1 - July 2008

EDMO04-25 Universal Counter API

4.3.4 dag_config_get_counter_id_subfct function

Purpose Return the id and the sub-function of counters in a specific block.
Declared In dag_config.h
Prototype uint32_t dag_config_get_counter_id_subfct(dag card_ref_t card_ref, dag block_type_t
block_type, dag_counter_value_t counter_id[], uint32_t size)
Parameters — card_ref
Reference of the DAG card
— block_type
Type of csi block
— counter_id[]
returned array of dag_counter_value_t structure.
— size
Size of counter_id array.
Returns Number of statistic counter(s) found for the block “block type”.
Comments

4.3.5 dag_config_

get_all_block_id function

Purpose Return all block ids.
Declared In dag_config.h
Prototype uint32_t dag_config_get_all_block_id(dag_card_ref_t card_ref, uint32_t block_id([],
uint32_t size)
Parameters — card_ref
Reference of the DAG card
— block_type
Type of csi block
— block_id[]
returned array of uint32_t. Contains all block ids.
— size
Size of block_id array.
Returns Number of statistic counter(s) found for the block “block type”.
Comments

4.3.6 dag_config_

latch_clear_all function

Purpose Latch and clear all the csi blocks.
Declared In dag_config.h
Prototype void dag_config_latch_clear_all(dag_card_ref_t card_ref)
Parameters — card_ref
Reference of the DAG card
Returns N/A
Comments This function is called by dag_config read_all_counters, dag_config_read_counter and

print_univ_counters (counter_printing.c).

©2008 Endace Technology Ltd. Confidential - Version 2.1 - July 2008

EDMO04-25 Universal Counter API

10

4.3.7 dag_config_latch_clear_block function

Purpose Latch and clear a specific csi block.
Declared In dag_config.h
Prototype void dag_config_latch_clear_all(dag_card_ref_t card_ref, dag block_type_t block_type)
Parameters — card_ref

Reference of the DAG card

— block_type

Type of csi block
Returns N/A
Comments

4.3.8 dag_config

_read_single_block function

Purpose

Return the value of all counters in a specific csi block.

Declared In

dag_config.h

Prototype

uint32_t dag_config_read_single_block(dag card_ref_t card_ref, dag block_type_t
block_type, dag_counter_value_t countersTab[], uint32_t size, int Ic)

Parameters

— card_ref

Reference of the DAG card
— block_type

Type of csi block
— countersTab

Table of counter's structures
— int size

Size of countersTab
—intlc

Latch and clear option (0 = no latch and clear, 1 = latch and clear the block before
reading the values)

Returns

Return the number of counters in the specific csi block

Comments

4.3.9 dag_config_read_all_counters function

Purpose Read all counters of the card and stock their parameters in a table
Declared In dag_config.h
Prototype uint32_t dag_config_read_all_counters(dag_card_ref_t card_ref, dag counter_value_t
countersTabl[], uint32_t size, int Ic)
Parameters — card_ref
Reference of the DAG card
— countersTab
Table of counter's structures
— int size
Size of countersTab
— intlc
Latch and clear option (0 = no latch and clear, 1 = latch and clear the block
before reading the values)
Returns Return the number of counters
Comments

©2008 Endace Technology Ltd. Confidential - Version 2.1 - July 2008

EDMO04-25 Universal Counter API

4.3.10 dag_config_read_single_counter function

Purpose Get the value of single counters on the card
Declared In dag_config.c
Prototype uint64_t dag_config_read_single_counter(dag_card_ref_t card_ref, dag block_type_t
block_type, dag_counter_type_t counter_type, dag_subfct_type_t subfct_type)
Parameters — card_ref
Reference of the DAG card
— block_type
Type of csi block

— counter_type

Type ID of counter
— subfct_type

Type of sub-function

Returns Return the value of a specific counter

Comments

©2008 Endace Technology Ltd. Confidential - Version 2.1 - July 2008 11

EDMO04-25 Universal Counter API

Version History

Revision Data of Description of Change Revision Originator
Change
1.0 4-Jan-07 Initial revision Patricia LERUS
2.0 11-July-08 Updated Subfunction Type. Karthik Sharma.
21 18 July 2008 | Updated to Endace template Sarah Stubbs

©2008 Endace Technology Ltd. Confidential - Version 2.1 - July 2008 13

	 Protection Against Harmful Interference
	Extra Components and Materials
	Disclaimer
	Published by:
	International Locations
	Copyright 2008 Endace Technology Ltd. All rights reserved.
	1. Purpose
	 2. Overview
	Goals:

	 3. Description
	3.1 Component
	3.2 Subcomponent
	Command:

	 4. Function Definitions
	4.1 Component implementation
	4.2 Printing of counters and statistic registers
	 4.3 Structures
	 4.3 Functions
	4.3.1 dag_config_get_number_block function
	4.3.2 dag_config_get_number_counters function
	4.3.3 dag_config_get_number_all_counters function
	 4.3.4 dag_config_get_counter_id_subfct function
	4.3.5 dag_config_get_all_block_id function
	4.3.6 dag_config_latch_clear_all function
	 4.3.7 dag_config_latch_clear_block function
	4.3.8 dag_config_read_single_block function
	4.3.9 dag_config_read_all_counters function
	 4.3.10 dag_config_read_single_counter function

	
	Version History

