A7
AN

endace

accelerated

Coprocessor IP Filter Software

User Manual

EDM02-02

— ~

www.endace.com

EDMO02-02 Coprocessor IP Filter Software Manual

Copyright © 2005.
Published by:

Endace Measurement Systems® Ltd
Building 7

17 Lambie Drive

PO Box 76802

Manukau City 1702

New Zealand

Phone: +64 9 262 7260

Fax: +64 9 262 7261
support@endace.com
www.endace.com

International Locations

New Zealand Americas Europe, Middle East & Africa
Endace Technology® Ltd Endace USA® Ltd Endace Europe® Ltd

Level 9 Suite 220 Sheraton House

85 Alexandra Street 11495 Sunset Hill Road Castle Park

PO Box 19246 Reston Cambridge CB3 0AX
Hamilton 2001 Virginia 20190 United Kingdom

New Zealand United States of America Phone: ++44 1223 370 176
Phone: +64 7 839 0540 Phone: ++1 703 382 0155 Fax: ++44 1223 370 040
Fax: +64 7 839 0543 Fax: ++1 703 382 0155 support@endace.com
support@endace.com support@endace.com www.endace.com
www.endace.com www.endace.com

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by any means electronic, mechanical, photocopying, recording, or otherwise, without the prior
written permission of the publisher. Prepared in Hamilton, New Zealand.

Copyright, all rights reserved. Revision 6: March 2006

mailto:support@endace.com
http://www.endace.com/
mailto:support@endace.com
http://www.endace.com/
mailto:support@endace.com
http://www.endace.com/
mailto:support@endace.com
http://www.endace.com/

EDMO02-02 Coprocessor IP Filter Software Manual

Conventions Used in this Document

e Command-line examples suitable for entering at command prompts are displayed in
mono-space courier font.

The hash # symbol at start of a line represents the prompt and is not entered as part of

the command. Results generated by example command-lines are also displayed in
mono-space courier font.

¢ Information relating to functions not implemented in this beta version of this product
are underlined

Copyright, all rights reserved. Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

Table of Contents

LLO PREFACE. ... oottt sttt ettt et e b et e e Reese e s e et e b e tenreeteereereene e 1
1.1 Software Manual PUIPOSEcouiiiiiiiiiiisie e 1
1.2 Installation REQUITEMENTS..........c.ciuiiieiieie ettt sre e 2

2.0 INSTALLING ENDACE FILTER SOFTWARE.......cocoiiiiiiitiiieee e 3
2.1 Install Endace Filter SOTIWAIE..........ccoiiiiiiiiree s 4
2.2 Build Endace Filter Tools for LINUX/FIreeBSDccccoeiiiiiiiiiieiesee e 4
2.3 PErfOrM SEIT-TEST ... bbb 5
2.4 Configuring DAG Cards and COPIrOCESSONeeiuereerieeriereesieesieseesieesiesseesseessessessseeseas 6

2.4.1 Configure DAG 3.8 Card and COPrOCESSOccuveveireerieeiesreesieaeesieessesseesseessesseesees 7
2.4.2 Configure DAG 4.3S Card and COPrOCESSOFcccuurvereeiiereeiiieiesieesieeseessessieeseesees 9
2.4.3 Configure DAG 4.3GE Card and COPIrOCESSOIcoveieerreeeeaeerieeeeseesseaeeseeneens 11

3.0 FILTER LOADER OPERATIONcoooiiiiieiiitree e 14

3.1 Simple to COMPIEX FIILEIS ...oc.veiieceece et 15
3.1.1 Simple Filter EXAMPIEcouoeiiee e s 16
3.1.2 Less Simple Filter EXAMPIEcoveiiiieiiec e 17
3.1.3 Complex Filter EXAmMPIEc.ooiiiiiiie e s 17
3.1 4 Filtering 0N TCP FIagS.....ccveieeieiieiiieie ettt sre e nne s 18
3.1.5 Interface-spPecifiC FIITErSc.oiiiiieie e 18
3.1.6 Packet-steering Filters Optional FEAtUre...........ccceiverieiieieeie e 19

3.2 Filter Loader Command-line Options and FIags...........ccccoveiiiiiiniinie e, 20

3.3 ——mapping Command Line Option Effect on Endace Record Format 22

4.0 SNORT RULE COMPILER.......coiit it 24

4.1 Snort Rule Compiler EXAMPIES.........ccviiiiieiieie ettt 24
4.1.1 Simple SNOrt RUIE OULPUL........coiiieieee e 25
4.1.2 Less Simple Snort RUIe QULPUL...........coviiieiiiic e 25
4.1.3 Complex SNOrt RUIE OULPUL.........coveiiiiiiiiiieeee e 26

4.2 Snort Grammar SPECITICALION..........c.eiviiieic e 27

4.3 SNOrt Grammar VariabIeSccviiiiieiieie et nres 28
4.3.1 Simple Snort Grammar Variable USEccccceiieiieie i 28
4.3.2 Snort Grammar Less Simple Variable USe.........cccooooiiiiiiiiie, 28
4.3.3 Snort Grammar Complex Variable USE...........ccovveviiieiieiecie e 29

4.4 Snort Command-line Options and FIags ... 30

5.0 TCPDUMP RULE COMPILERcooiiiiiiect st 32

5.1 Tcpdump Rule Compiler EXAMPIEScc.ooiiiiiiiiieieee s 32
5.1.1 Tcpdump Rule Compiler Simple Rule Example 1c.cccoooveiiiiieieiieieec e 33
5.1.2 Tcpdump Rule Compiler Simple Rule Example 2 ... 34
5.1.3 Tcpdump Rule Compiler Less Simple Rule Example 1.........cccoovviviiieieiciciiennnn 35
5.1.4 Tcpdump Rule Compiler Less Simple Rule Example 2 ... 36
5.1.5 Tcpdump Rule Compiler Complex Rule EXamplecccoovevieiiiieiieiecic e 37

5.2 Tcpdump Rule Compiler Grammar SPecCifiCations...........ccocvvvririiieiieienese s 39

5.3 Tcpdump Grammar Command-line Options and Flags..........c.cccvvveveiie i, 43

Copyright, all rights reserved. i Revision 6:March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

Copyright, all rights reserved. ii Revision 6:March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

1.0 PREFACE

Introduction The Endace Filter software package enables IP packets to be filtered based
on:

Ingress interface

Protocol [IP, ICMP, IGRP, TCP, UDP]

Source and destination IP address

TCP and UDP source and destination port number
TCP flags

The filter software package includes:

e Xilinx images for the DAG 3.8, DAG 4.3S, and DAG 4.3GE cards and
Coprocessor

e Support for SC256 and SC128 Co-Processors

e Snort Rule Compiler application for turning Snort-like rules into filters

e Tcpdump Rule Compiler application for turning tcpdump-like rules
into filters

e Filter Loader application for loading filters onto the Coprocessor

1.1 Software Manual Purpose

Description The purpose of the installation manual for the Endace Filter Software
package is to identify and explain:

Installing Endace Filter software
Filter Loader operation

Snort Rule Compiler operation
Tcpdump Rule Compiler operation

Copyright, all rights reserved. 1 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual
1.2 Installation Requirements

Description The requirements for installing the Endace Filter software are:

e A DAG 3.8, 4.3S or 4.3GE card with an Endace Coprocessor fitted

e For Linux and FreeBSD, version 2.5.6.1 of the DAG software or
higher. Customers with a current support contract can download this
from the secure Endace website:

https://www.endace.com/dag-2.5.6.1.tar.qz

e For Windows:

https://www.endace.com/dag-2.5.6.1-windows.zip

libpcap 0.9.4 libpcap 0.9.4 or higher, required for capture using libpcap which can be
downloaded from the following locations:

For Linux and FreeBSD:

http://www.tcpdump.org

For Windows:

http://endace.com/OpenSource wincap.htm

Copyright, all rights reserved. 2 Revision 6: March 2006

https://www.endace.com/dag-2.5.6.1.tar.gz
https://www.endace.com/dag-2.5.6.1-windows.zip
http://www.tcpdump.org/
http://endace.com/OpenSource_wincap.htm

EDMO02-02 Coprocessor IP Filter Software Manual

2.0 INSTALLING ENDACE FILTER SOFTWARE

Introduction The Snort Rule Compiler, Tcpdump Rule Compiler and Filter Loader are
used to program the filtering capabilities of the Coprocessor, with a
libpcap or native DAG API application dealing with the received packets.

The installation process also involves building Endace Filter Tools for
Linux/FreeBSD. The process is not followed for Windows.

Figure Figure 1-1 shows the Endace filter operation.
Snort Rules Tcpdump Rules
Snort Rule Tcpdump Rule
Compiler Compiler
Filters Filters
| ¥ |

Filters —p» Filter Loader

Figure 1-1. Endace Filter Operation.

In this chapter ~ This chapter covers the following sections of information.

Install Endace Filter Software

Build Endace Filter Tools for Linux/FreeBSD
Perform Self-test

Configuring DAG Cards and Coprocessor

Copyright, all rights reserved. 3 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

2.1 Install Endace Filter Software

Description

Procedure

Step 1.

Step 2.

Installing the Endace Filter software involves installation of the base DAG
software distribution and then the Endace Filter software distribution.

In the following examples, all software is installed into the home directory
of the superuser, root.

For the installation, Step 1 below is for Linux/FreeBSD. Step 2 is for
Windows.

Follow these steps to install the Endace Filter software.
Install DAG Software for Linux/FreeBSD
Install the dag-2.5.6.1.tar.gz tarball.

Change the working directory to be the parent directory of the DAG software
tree.

dag@endace:# cd /root

dag@endace:# Is -1
drwxr-xr-x 9 root root 4096 Mar 17 14:49 dag-2.5.6.1

Install DAG Software for Windows
Install the dag-2.5.6.1-windows.msi.

Use the document EDMO04.02 Endace Windows Software User Manual to
assist with this Step.

2.2 Build Endace Filter Tools for Linux/FreeBSD

Description

The Filter Loader, Snort Rule Compiler and Tcpdump Rule Compiler are
built using the standard configure script from within the dag-2.5.6.1
directory:

Contact support@endace . com for help with problems that occur in
building the tools.

NOTE: The following procedure does not apply for a Windows installation.

Continued on next page

Copyright, all rights reserved. 4 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

2.2 Build Endace Filter Tools for Linux/FreeBSD, continued
Procedure Follow these steps to build the Endace filter tools for Linux/FreeBSD.
Step 1. Build Tools

Using a standard configure script from within the dag-2.5.6.1 directory:

dag@endace:# ./configure
dag@endace:# make

After building, the tools are created as:

dag-2.5.6.1/Ffiltering/filter_loader/filter_loader
dag-2.5.6.1/filtering/snort_compiler/snort_compiler
dag-2.5.6.1/Ffiltering/tcpdump_compiler/tcpdump_compiler

Step 2. Install Tools
By default, these tools can be installed to Zusr/local/bin using:
dag@endace:# make install

NOTE: The install directory can be set using:
--prefix command-line argument to the configure script

For more information about available options, run the configure script:
dag@endace:# _/configure —help

2.3 Perform Self-test

Description The Tcpdump Rule Compiler comes with a self-test script that can be used
to verify the basic functionality of the binary.

Procedure Follow this step to perform the self-test.

Stepl. Run test

Viathe run_tests.sh script inthe dag-2.5.6.1/Filtering/
tcpdump_compi ler directory:

dag@endace:# cd dag-2.5.6.1/Ffiltering/tcpdump_compiler

dag@endace:# ./run_tests.sh

The following message is displayed indicating all 32 tests succeeded:

End of tests

Copyright, all rights reserved. 5 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

2.4 Configuring DAG Cards and Coprocessor

Description

How to tell if
you have a
SC128 or
SC256
Co-Processor

Standard
feature

In this section

The DAG card and Coprocessor configuration feedback provided by a
local system may vary from that shown in the following steps.

When changing the filters on the Coprocessor, there is a delay before the
new filters take effect. For example, the first few hundred packets after
the change are filtered according to the previous filter set.

Please note that there are different Co-Processor firmware images for the
SC128 and SC256 Co-Processors.

You can tell the difference between a SC128 and SC256 Co-Processor by
checking the output of the daginf command

SC128 Co-Processor

qall:~# daginf

id 0

model DAG 3.8S

device 0x3800

phy addr 369098752

buf size 134217728 (128MB)
iom size 65536 (64kB)
copro SC128

SC256 Co-Processor

qa3:~# daginf

id 0

model DAG 4.3S

device 0x4300

phy addr 780140544

buf size 134217728 (128MB)
iom size 65536 (64kB)
copro SC256 Rev C

The filters can be configured so that packets are placed into two memory
buffers, with each memory buffer capable of being read by a separate
process.

If one of the reading processes blocks for a sufficient period of time it is
possible for both processes to see packet loss, as opposed to only the
blocked process seeing packet loss.

This section covers the following topics of information.

Configure DAG 3.8 Card and Coprocessor
Configure DAG 4.3S Card and Coprocessor
Configure DAG 4.3GE Card and Coprocessor

Copyright, all rights reserved. 6 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

2.4.1 Configure DAG 3.8 Card and Coprocessor

Description To configure the DAG 3.8S card and coprocessor, the DAG card filter
image and coprocessor image are loaded, followed by configuring the
card. The DAG 3.8S supports the SC128 Coprocessor only.

Procedure Follow these steps to configure a DAG 3.8S card and Coprocessor.

Step 1. Load DAG card filter image.
The Endace Filter firmware image for the DAG card is loaded by:

dag@endace:# dagrom -d dag0 -rpvy -f dag-2.5.6.1/xilinx/dag38s-ipf.bit

dagrom: verbose: ROM version 0, base 0x0158

dagrom: verbose: cfi_identify 546: Detected 8-bit device

dagrom: verbose: CFl: Vendor AMD/Fujitsu, interface async x8 only, size 0x15
dagrom: verbose: ROM.0 Am29LV017D 16MBit.

dagrom: verbose: Size of image (bytes) : 469202

dagrom: verbose: read O0x0007f000 Oxff

dagrom: verbose: prog required

dagrom: verbose: dag0 dev 0x3800 pos O got idx 9

dagrom: verbose: erase blitz start...

dagrom: verbose: erase blitz accepted...

dagrom: verbose: erase blitz complete

dagrom: verbose: write 0x00072000 0x17

dagrom: verbose: read O0x0007f000 Oxff

dagrom: verbose: verify ok

current:edag38spci_cpl-ipf v2 2 2v1000fg456 2005/08/18 12:24:05 *
stable: edag38spci_erf v2 13 2v1000fg456 2005/04/21 16:18:14
Card Serial: 3351

Step 2. Load Coprocessor Image
The Endace Filter firmware images for the Coprocessor are loaded by:

dag@endace:# dagld -d dag0 -x dag-2.5.6.1/xilinx/dag38pp-
terf._bit:dag-2.5.6.1/xilinx/copro-ipf38s.bit

Waiting for Xilinxl (dag38spp_erf v2 8 2s300eft256) to
program. ..

FPGA Initialized.

Starting to program

File loaded.

Done.

Waiting for Xilinx2 (eclOgcp_ipf v2 2 2v2000ff896) to
program. ..

FPGA Initialized.

Starting to program

File loaded.
Done.

Copyright, all rights reserved. 7 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual
Step 3. Configure DAG card.

A reasonable initial configuration for OC-12c operation is obtained with the
following arguments to dagthree:

dag@endace:# dagthree —d dag0 default ocl2 slen=1540

linkA PoS noreset 0C12c noltO fcl noeql enablea
1inkB PoS noreset 0C12c noltO fcl noeql enableb
sonetA noscramble slave

sonetB noscramble slave

posA nocrc pscramble

posB nocrc pscramble

packet varlen slen=1540 align64

packetA drop=0

packetB drop=0

ipf nodrop steer=streamO

pcix 66MHz 64-bit buf=128MiB rxstreams=2 txstreams=0
mem=64:0:64:0

Copyright, all rights reserved. 8 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

2.4.2 Configure DAG 4.3S Card and Coprocessor

Description To configure the DAG 4.3S card and coprocessor, the DAG card filter image
and coprocessor image are loaded, followed by configuring the card. Please
note the DAG 4.3S has different Coprocessor firmware images for the SC128
and SC256 Co-Processors.

Procedure Follow these steps to configure a DAG 4.3S card and Coprocessor.

Step 1. Load DAG card filter image.

The Endace Filter firmware image for the DAG card is loaded by:

dag@endace:# dagrom -d dag0 —-rpvy -f dag-2.5.6.1/xilinx/dag43s-
ipf.bit

dagrom:
dagrom:
dagrom:

verbose:
verbose:
verbose:

size 0x15

dagrom:
dagrom:
dagrom:
dagrom:
dagrom:
dagrom:
dagrom:
dagrom:
dagrom:
dagrom:
dagrom:

verbose:
verbose:
verbose:
verbose:
verbose:
verbose:
verbose:
verbose:
verbose:
verbose:
verbose:

ROM version 0, base 0x0158
cfi_identify 546: Detected 8-bit device
CFI: Vendor AMD/Fujitsu, interface async x8 only,

ROM.0 Am29LV017D 16MBit.

Size of image (bytes) : 469199
read O0x0007f000 Oxff

prog required

dag0 dev 0x4300 pos O got idx 14
erase blitz start...

erase blitz accepted...

erase blitz complete

write 0x00072000 Oxaf

read O0x0007f000 Oxff

verify ok

current: edag43spcix_ipf_v2_ 3 2v1000ff896 2005/11/17 15:51:05 *
edag43spcix_erf v2 12 2v1000ff896 2004/04/13 14:53:33

stable:
Card Serial:

3864

Step 2. Load Coprocessor Image

Copyright, all rights reserved.

9 Revision 6: March 2006

Step 3.

EDMO02-02 Coprocessor IP Filter Software Manual
The Endace Filter firmware image for the Coprocessor is loaded by:

For the SC128 Co-Processor

dag@endace:# dagld -d dag0 —x dag-2.5.6.1/xilinx/copro-
ipf43s.bit

Waiting for Xilinxl (eclOgcp_ipf32 cp_v2 1 2v2000ff896) to
program ...

FPGA Initialized.

Starting to program

File loaded.
Done.

For the SC256 Co-Processor

dag@endace:# dagld -d dag0 —x dag-2.5.6.1/xilinx/copro2-
ipf43s.bit

Waiting for Xilinxl (ec20gcp_ipf32_cp_v2_5 2v2000ff896) to program

FPGA Initialized.
Starting to program

File loaded.
Done.

Configure DAG card.
A reasonable initial configuration is obtained with the following arguments:

dag@endace:~/end# dagfour -d dag0 default slen=1540

light nolaser

link noreset 0C48c nofcl noeql
sonet master scramble
POS crc32 nocrcstrip short=16 long=1536 discard pscramble

rxpkts txpkts

packet varlen slen=1540 align64

packetA drop=0

ipf nodrop steer=colour

pcix 133MHz 64-bit buf=128MiB rxstreams=2 txstreams=0
mem=64:0:64:0

Copyright, all rights reserved. 10 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

2.4.3 Configure DAG 4.3GE Card and Coprocessor

Description

Procedure

Step 1.

To configure the DAG 4.3GE card and coprocessor, the DAG card filter image

and coprocessor image are loaded, followed by configuring the card.

Follow these steps to configure a DAG 4.3GE card and Coprocessor.

Please note the DAG 4.3GE has different Coprocessor firmware images for the
SC128 and SC256 Co-Processors.

Load DAG card filter image.

The Endace Filter firmware image for the DAG card is loaded by:

dag@endace:# dagrom -d dag0 -rpvy -f dag-2.5.6.1/xilinx/dag43ge-ipf.bit

dagrom:
dagrom:
dagrom:
dagrom:
dagrom:
dagrom:
dagrom:
dagrom:
dagrom:
dagrom:
dagrom:
dagrom:
dagrom:
dagrom:
dagrom:
dagrom:
dagrom:
dagrom:
dagrom:
dagrom:
dagrom:
current:
stable:

Card Serial:

Step 2.

Copyright, all rights reserved.

verbose:
verbose:
verbose:
verbose:
verbose:
verbose:
verbose:
verbose:
verbose:
verbose:
verbose:
verbose:
verbose:
verbose:
verbose:
verbose:
verbose:
verbose:
verbose:
verbose:
verbose:

ROM version 0, base 0x0158
cfi_identify 548: Detected 8-bit device
CFl: Vendor AMD/Fujitsu, interface async x8 only, size 0x15
ROM.0O Am29LV017D 16MBit.
romid 456

base 344

rom_version 0O

device_code 0x430e

ident Am29LV017D 16MBit
size 1048576

sector 65536

bstart 0

bsize 524288

tstart 524288

tsize 524288

pstart O

psize O

mpu_id -1

mpu_rom O

read O0x0007F000 OxFf
reprog ok

edag43epci_ipf_v2_4 2v1000ff896 2005/11/16 16:55:24 *
edag43epci_erf_v2_11 2v1000ff896 2005/04/21 16:22:35
4001

Load Coprocessor Image

The Endace Filter firmware image for the Coprocessor is loaded by:

11 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

For the SC128 Co-Processor

dag@endace:# dagld -d dag0 -x dag-2.5.6.1/xilinx/copro-ipf43ge.bit

Waiting for Xilinxl (eclOgcp_ipf v2 2 2v2000ff896) to program...
FPGA Initialized.
Starting to program

File loaded.
Done.

For the SC256 Co-Processor

dag@endace:# dagld -d dag0 —x dag-2.5.6.1/xilinx/copro2-ipf43ge.bit

Waiting for Xilinxl (ec20gcp_ipf32 cp_v2 5 2v2000ff896) to program ...
FPGA Initialized.

Starting to program

File loaded. T

Done.

Step 3. Configure DAG card.

A reasonable initial configuration is obtained with the following arguments to
dagfour:

dag@endace:# dagfour —d dag0 default slen=1540

linkA nonic noeql rxpkts txpkts crc long=1518 enablea
1inkB nonic noeql rxpkts txpkts crc long=1518 enableb
packet varlen slen=1540 align64

packetA drop=0

packetB drop=0

ipf nodrop steer=steam0

pcix 133MHz 64-bit buf=128MiB rxstreams=2 txstreams=0
mem=64:0:64:0

Copyright, all rights reserved. 12 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

Copyright, all rights reserved. 13 Revision 6: March 2006

Introduction

Table

Standard
feature

In this chapter

EDMO02-02 Coprocessor IP Filter Software Manual

3.0 FILTER LOADER OPERATION

The Filter Loader loads a set of filters from a text file or standard input into
a Coprocessor-equipped DAG card running Endace Filter firmware.

The filter set can be written by hand, generated from Snort-style rules by the
Snort Rule Compiler application, or generated from tcpdump-style rules by
the Tcpdump Rule Compiler application.

A DAG card running Endace Filter firmware can support up to two filter
sets per interface, one active and one inactive.

When a new filter set is loaded the Filter Loader can restart the card and
make the new filter set active. Or, the Filter Loader can load the new filter
set in an inactive state and instruct the card to atomically switch the active
and inactive filter sets. This allows the filter set to be dynamically modified
with zero packet loss.

Table 3-1 shows the size of the filter sets for different card configurations.

Interfaces Hot-Swap Ability | Filters Per Set
1 No 16384

1 Yes 8192

2 No 8192

2 Yes 4096

Table 3-1. Size of Filter Sets for Different Card Configurations.

This Endace Filter module version includes the ability to steer packets to
one of two memory buffers. These memory buffers are referred to as red
and blue in the filter rules, and are accessed through the DAG API as
receive streams 0 and 2 respectively.

For example, for a DAG card located at dago, the memory buffer
containing the red packets can be referred to as dag0:0 when using the
standard DAG utilities. Similarly, the memory buffer containing the blue
packets can be referred to as dag0:2 when using the standard DAG
utilities.

This chapter covers the following sections of information.

e Simple to Complex Filters

e Filter Loader Command-line Options and Flags

e -—-mapping Command Line Option Effect on Endace Record
Format

Copyright, all rights reserved. 14 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

3.1 Simple to Complex Filters

Description Filters are simple, one-line specifications used to describe characteristics
of packets considered to be a "match”, together with an action to take for
matching packets. Two actions currently supported are:

accept a packet. Accepted packets are passed to the host computer
where they can be received using libpcap [2] or the
native DAG API and further processed in software,

reject a packet. Dropped packets are not sent to the host, saving
valuable CPU cycles for analyzing the packets that
are of most interest.

Filters are loaded into the Coprocessor in the order they are presented, and
the ultimate filter should be a catch-all accept or reject filter. Endace
Filter supports filtering on:

Ingress interface

Protocol [ICMP, IGRP, RawIP/TCP or UDP]
Source and destination IP addresses

TCP and UDP source and destination port numbers
TCP flags

IP addresses, port numbers, and TCP flags in the filter entries can take
values 0, 1 and "don’t care", which is represented by a dash (*-*). The
classification of the packet is an integer in the range 0, 16383 written into
the ERF, as described in the ERF Record table within Section 3.3 —
mapping Command Line Option Effect on Endace Record Format.

To retrieve the classification, these bytes are considered as a single 16-bit
quantity in network byte order, with the classification being the most
significant 14 bits. The least significant 2 bits encode the memory buffer
into which the packet was steered, as shown below:

1 = buffer one 3 = both buffers
2 = buffer two 0 = neither buffer

Within the filter examples in the following sections of information, filter
lines have been wrapped to fit on the printed page. Filters actually
presented to the Filter Loader must be written one per line.

In this section This section covers the following topics of information.

Simple Filter Example

Less Simple Filter Example

Complex Filter Example

Filtering on TCP Flags
Interface-specific Filters
Packet-steering Filters Optional Feature

Copyright, all rights reserved. 15 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

3.1.1 Simple Filter Example

Description The simple filter example in Table 3-2 captures TCP packets with a source
IP address of 192.168.0.1 sent from any source port to the IP address
192.168.0.2 on port 80.

Table Table 3-2 shows a typical simple filter example.
1 accept tcp src-ip {11000000101010000000000000000001} src-port {---—-———————————— 3}
dst-ip {11000000101010000000000000000010} dst-port {0000000001010000}%
0 reject all src-ip {---———------"-"--""""""—— } src-port {-———----———————— }
dst-ip {----------——--———— } dst-port {-—-—-——-----—————- }

Table 3-2. Typical Simple Filter Example.
In the Table 3-2 example the second filter uses the keyword <all” in
place of a specific protocol to reject packets that do not match the first
filter.

The initial integer is a tag that can be used by packet-sniffing software to
determine which filter caused the packet to be accepted.

Because a snap length has not been specified for filter 1, the effective snap
length for packets that match the first filter will be determined by:

(@) The argument to the command-line option --snap, if given;
(b) The default snap length otherwise [65536].

Because an interface has not been specified for the filters, they will be
applied to the interface specified by:

(@) The argument to the command-line option --iface, if given;
(b) The default interface otherwise (0).

The snap length and interface explanation applies to all examples in this
section of information.

Copyright, all rights reserved. 16 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

3.1.2 Less Simple Filter Example

Description

Table

1 accept

0 reject

tcp

all

The less simple filter example in Table 3-3 captures TCP packets with a
source IP address in the subnet 192.168.0.0/16 and any source port to the
IP address 192.168.0.2 on ports 80 or 81.

Traffic to/from an entire subnet can be captured by a single filter through
the use of "don’t care” entries.

Table 3-3 shows a less simple filter example.

src-ip {1100000010101000----————=——————— } src-port {------——mmmm— }
dst-ip {11000000101010000000000000000010} dst-port {000000000101000-}
src-ip {-----—"-"-"H-"-"-"—— } src-port {---———--—--———— }
dst-ip {-------—-——1--"-1-"-"--"-—— } dst-port { ________________ }

Table 3-3. Less Simple Filter Example.

3.1.3 Complex Filter Example

Description

Table

2 reject
2 reject
1 accept

0 reject

tcp
tcp
tcp

all

The complex filter example in Table 3-4 captures TCP packets with a
source IP address in the subnet 192.168.0.0/16 and any source port to the
IP address 192.168.1.2 on ports 80 or 81, except for packets to or from the
IP address 192.168.1.1.

The filters are evaluated in order. In the Table 3-4 example below,
packets with a source IP address of 192.168.1.1 for the first filter, or
destination IP address of 192.168.1.1 for the second filter, are discarded
before reaching the third filter.

Table 3-4 shows a complex filter example.

src-ip {11000000101010000000000100000001} src-port {---———-—-————————- }
dst-ip {-~---------—"--"-"-"-""-"-"-- } dst-port {-————------————- ¥
src-ip {--—-—————— } src-port {---————————————— }
dst-ip {11000000101010000000000100000001} dst-port {------—-———--——- ¥
src-ip {1100000010101000------———=—————— } src-port {-———--------——— }
dst-ip {11000000101010000000000100000010} dst-port {000000000101000-}
src-ip {-———————— 3} src-port {---————————————— }
dst-ip {---------m } dst-port {--—————————————- }

Table 3-4. Complex Filter Example.

Copyright, all rights reserved. 17 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

3.1.4 Filtering on TCP Flags

Description The TCP flags filter example in Table 3-5 captures TCP packets from any
source to any destination that have the SYN flag set.

The tcp-Fflags field may be present for non-TCP rules, in which case it is
ignored, as for the second filter below.

If the tcp-Flags field is not present for a TCP rule, then it is considered
to be all "don’t care™ entries.

Table Table 3-5 shows the TCP flags filter example.
1 accept tcp src-ip {---——-——————————— } src-port {-————-—-———————- }

dst-ip {---—————————————— — — —— } dst-port {---————————————- } tcp-flags {------ 1-3}
0 reject all src-ip {--———-----"--"-"-"-""""""""--— } src-port {-————-—-———————-

dst-ip {---———-----—————— } dst-port {--————————————— } tcp-flags {-—-—--—--- }

Table 3-5. Filtering on TCP Flags Example.

3.1.5 Interface-specific Filters

Description The interface-specific filters example in Table 3-6 captures TCP packets
from 192.168.0.1 to 192.168.0.2 on interface 0, and TCP packets from
192.168.0.3 t0 192.168.0.4 on interface 1.

If an interface is specified for any filter, then an interface must be
specified for all filters. The Filter Loader will either apply all filters to the
interface given by the command-line option --iface, or it will apply the
filters to the interfaces specified on a per-filter basis as in the Table 3-6
example below.

To minimize potential for confusion, the Filter Loader reports an error if
these two modes of operation are mixed, such as attempting to load a filter
file in which some filters have per-filter interfaces and others do not.

To have a default reject filter in place, it is included once for each

interface.

Table Table 3-6 shows an interface-specific filters example.
2 accept tcp src-ip {11000000101010000000000000000001} src-port {---————————————- }

dst-ip {11000000101010000000000000000010} dst-port {0000000001010000} iface O
1 accept tcp src-ip {11000000101010000000000000000011} src-port {-----———————————- }

dst-ip {11000000101010000000000000000100} dst-port {0000000001010000} iface 1
0 reject all src-ip {-~--—--—-—-"----"-"-"-"-"-"-"-""""""""""--— } src-port {-——————-———————— }

dst-ip {-———---———— } dst-port {~—-----—----——— } iface O
0 reject all src-ip {---———----"-"-"-""""""""""""°"°-°-----— } src-port {-————----——————- }

dst-ip {------—--—--"-"-"-"-"-""""""" } dst-port {--——-——--——————- } iface 1

Table 3-6. Interface-specific Filters Example.

Copyright, all rights reserved. 18 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

3.1.6 Packet-steering Filters Optional Feature

Description The packet steering filter example in Table 3-7 sends all TCP packets to
the red memory buffer, such as receive stream 0, and all UDP packets to
the blue memory buffer, such as receive stream 2.

It is possible to have a packet sent to both memory buffers by including
both the red and blue keywords.

When a memory buffer is not specified for an accept rule, packets
matching the rule will be sent to the red memory buffer, receive stream 0.

Table Table 3-7 shows a packet steering filters example.
1 accept red tcp src-ip {--—-—-—-—--"-"-"-"-"""""""""—— } src-port {-——————————————- }
dst-ip {----------——--"-"-"-""""-""-"" } dst-port {-———------—————- }
2 accept blue udp src-ip {--——————————— } src-port {~——----——-mm— }
dst-ip {----------mmmmm } dst-port {--———-------———- }
0 reject alt src-ip {-------------\ } src-port {-——————-———————- }
dst-ip {---------—-—-"-"-"-"-"-""-"--- } dst-port {-——-——---———————— }

Table 3-7. Packet Steering Filters Example.

Copyright, all rights reserved. 19 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

3.2 Filter Loader Command-line Options and Flags

Description There are a number of command-line flags and options recognised by the

Filter Loader.

Command-line The following table explains the short and long options command-line flags.

flags.

Short Long
Option Option

-d --device

-l --linktype

-m --mapping

- --infile

--initialise

--init-ports

--init-ifaces

Explanation

Followed by device name of the DAG card to
configure, such as dago.

Followed by the type of link being monitored.
Valid options are ‘ethernet” and ‘pos4’.

Where to place the packet classification in the
received packets. Valid values are:

“color’, “colour’ ‘rxerror’, ‘lentr’, “flags’, ‘entire’,
‘hdlcheader’ (PoS links only), and ‘padoffset’
(Ethernet links only). Also ‘padoffset0’,
‘hdlcheader0’, and “colour0’.

Mapping that end with 0 send all ERF records to
receive stream 0. For example dag 0:0

Followed by an input file name which contains
Snort-like rules, one per line. If this option is not
present the rules are read from standard input.

If this flag is present then the Coprocessor is
initialised before filters are loaded.

If this flag is not present, then the filters will be
hot-swapped with the currently active filters.

Followed by the number of interfaces. This value
is used to configure the Coprocessor by dividing
the filters into sets that apply to each interface.

The default is 1.

This option can only be specified when the
—initialise flag is present.

Copyright, all rights reserved.

Continued on next page

20 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

3.2 Filter Loader Command-line Options and Flags, continued

Command-line flags. (continued)

Short
Option

-?

Copyright, all rights reserved.

Long
Option
--init-rulesets

--port
--iface

--snap

--usage
--help

--version

Explanation

Followed by the number of rulesets per interface.
This value is used to configure the Coprocessor by
dividing the filters into rulesets that apply to each
interface.

The default is 1.

This option can only be specified when the
—initialise flag is present.

Followed by the identifier for the interface that the
rules should apply to, suchas o or 1.

If no interface is specified then the filters are
applied to all interfaces, unless the filters file
specifies per-filter interfaces with the “iface’
command.

Followed by the number of bytes to be captured
from the payload of the packet. This option sets a
default snap-length for filters which do not
explicitly contain a snap-length.

If this option is not present then filters which do

not explicitly contain a snap-length will capture
entire packets.

If this flag is present the Filter Loader displays a
help message and then exits.

Display version information.

21 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

3.3 ——mapping Command Line Option Effect on Endace Record

Format
Description The --mapping command line option recognized by the Filter Loader can
have a number of effects on the ERF record. These can include setting of
the RX error bit for packets, writing of classifications, the results register
being written into the ERF Record payload, and setting destination streams.
ERF Record The effect of the --mapping filter loader command line option is shown in
the following table.
Name Effect on ERF Record ERF Type[s] Link Force
Received Stream0
rXerror The RX error bit is set for packets that | TYPE_ETH Both No
would be dropped.
TYPE_HDLC_POS
color The 16-bit color [14-bit classification TYPE_COLOR_ETH Both No
and 2-bit destination stream field] is
colour written into the color field of the ERF TYPE_COLOR_HDLC_POS
record.
lentr
padoffset The color is written into the pad and TYPE_ETH Eth No
offset bytes of the Ethernet ERF record.
hdlcheader | The color is written into the first two TYPE_HDLC_POS PoS No
bytes of the four-byte HDLC header.
entire The results register is written into the TYPE_ETH Both No
ERF Record payload.
TYPE_HDLC_POS
color0 As for ‘color’, but all packets are sent TYPE_COLOR_ETH Both Yes
to stream 0. This includes those packets
colour0 that would normally have been TYPE_COLOR_HDLC_POS
dropped, which have a destination
stream of 0.
padoffset0 | As for ‘padoffset’, but all packets are TYPE_ETH Eth Yes
sent to stream 0. This includes those
packets that would normally have been
dropped, which will have a destination
stream of 0.
hdlcheader0 | As for ‘hdicheader’, but all packets are | TYPE_HDLC_POS PoS Yes
sent to stream 0. This includes those
packets that would normally have been
dropped, which have a destination
stream of 0.

Copyright, all rights reserved. 22

Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

Copyright, all rights reserved. 23 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

4.0 SNORT RULE COMPILER
Introduction The Snort Rule Compiler forms part of the Endace Filter system.

Snort is an Open Source Network Intrusion Detection System [NIDS]
controlled by a set of pattern/action rules residing in a configuration file of
a specific format.

The Snort Rule Compiler takes rules from a text file or passed in via
standard input and produces a set of filters that correspond to those rules.
This set of filters can then be loaded into a Coprocessor-equipped DAG
card running Endace firmware by the Filter Loader application.

Rules are specified using a Snort-like syntax that specifies the protocol
[ICMP, IP, TCP or UDP], source/destination IP addresses and source
destination ports for TCP and UDP.

The actual filter lines produced by the Snort Rule Compiler are written
one per line. The examples in this chapter of information are wrapped for
printing purposes.

In this chapter ~ This chapter covers the following sections of information.

Snort Rule Compiler Examples

Snort Grammar Specification

Snort Grammar Variables

Snort Grammar Variable Examples
Snort Command-line Options and Flags

4.1 Snort Rule Compiler Examples

Description Using user-defined rules from a compiler, Snort examines all packets
going through a specific network that it is set up to monitor and alerts
when it finds specific predefined patterns that could be malicious.

The Snort rules can range from the simple and less simple through to more
complex ones.

In this section This section covers the following topics of information.

e Simple Snort Rule Output
e Less Simple Snort Rule Output
e Complex Snort Rule Output

Copyright, all rights reserved. 24 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

4.1.1 Simple Snort Rule Output

Description The simple Snort rule shown in Table 4-1 results in the output from the
Snort Rule Compiler. The Snort Rule Compiler expresses both
destination ports by using a "don’t care™ entry in the destination port.

The second filter is present because a default filter is always added to
accept or reject packets that do not match any other rules. Unless the
command-line flag --accept is given, the default filter will reject packets.

Table Table 4-1 shows a simple Snort rule output.
Rule:
accept tcp 192.168.1.1 any -> 192.168.1.2 80:81
Output:
Filter file created by snort_compiler at Tue Mar 16 16:47:49 2004.
2 accept tcp src-ip {11000000101010000000000100000001} src-port {--—-—---—————————— }
dst-ip {11000000101010000000000100000010} dst-port {000000000101000-}
0 reject ip src-ip {-———----"""""—————————— } src-port {-————----——————- }
dst-ip {----------———-————— } dst-port {---—————-———————- }

Table 4-1. Simple Snort Rule Output.

4.1.2 Less Simple Snort Rule Output

Description In the less simple Snort rule shown in Table 4-2, the Snort Rule Compiler
was able to combine the 192.168.1.1 and 192.168.3.1 source IP addresses
into a single filter with a "don’t care" entry.

Table Table 4-2. A less simple Snort rule output.
Rule:

accept tcp [192.168.1.1,192.168.2.1,192.168.3.1] any -> 192.168.1.2 80

Output:
Filter file created by snort_compiler at Wed Mar 17 11:51:27 2004.
2 accept tcp src-ip {1100000010101000000000-100000001} src-port {--——-—--—————————— }
dst-ip {11000000101010000000000100000010} dst-port {0000000001010000}
2 accept tcp src-ip {11000000101010000000001000000001} src-port {--———---————————-— }
dst-ip {11000000101010000000000100000010} dst-port {0000000001010000}
0 reject ip src-ip {---———--—---"-"-"-"-""""""""""""-"-"--— } src-port {-——————-———————- }
dst-ip {----------——---"—--"-"-"-- } dst-port {-————-----—————- ¥

Table 4-2. Less Simple Snort Rule Output.

Copyright, all rights reserved. 25 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

4.1.3 Complex Snort Rule Output

Description

Table

Rule:

The complex Snort rule output shown in Table 4-3 can be read as "accept
the headers and first 50 bytes of payload for all TCP traffic destined for
host 192.168.1.24 on ports 80 to 90 inclusive that does not have a source
IP address from the subnets 10.0.0.0/8 and 127.0.0.0/16".

The output expands to 58 filters with one default rule plus nineteen source
IP addresses combined with three destination port numbers. The last seven
filters for the complex rule output are shown in Table 4-3.

The Snort Rule Compiler encoded the eleven destination port numbers as
three entries covering ports 80-87 with three "don’t care™ bits, 88—-89 with
one "don’t care" bit, and 90.

Table 4-3 shows a complex Snort rule output.

accept tcp ![10.0.0.0/8,127.0.0.0/16] any -> 192.168.1.24/32 80:90 snap 50

Output:

---2 accept
2 accept
2 accept
2 accept
2 accept
2 accept

0 reject

tcp
tcp
tcp
tcp
tcp

tcp

src-ip {0111111101---————-—————————————— } src-port {-———--—————————- }

dst-ip {11000000101010000000000100011000} dst-port {0000000001010---} snap 50
src-ip {0111111101--———————————————————— } src-port {--—————————————- ¥

dst-ip {11000000101010000000000100011000} dst-port {000000000101100-} snap 50
src-ip {0111111101--———————————————————— } src-port {--—————-————————- ¥

dst-ip {11000000101010000000000100011000} dst-port {0000000001011010} snap 50
src-ip {011111111--————————————————————— } src-port {-————-—--——————— }

dst-ip {11000000101010000000000100011000} dst-port {0000000001010---} snap 50
src-ip {01111111]--————————————————————— } src-port {-———————————— }

dst-ip {11000000101010000000000100011000} dst-port {000000000101100-} snap 50
src-ip {011111111---———————————————————— } src-port {-————-—————————- }

dst-ip {11000000101010000000000100011000} dst-port {0000000001011010} snap 50

ip src-ip {-——--------———------——— } src-port {-——————————————- }

dst-ip {--————-—— } dst-port {---————————————— } snap 50

Table 4-3. Complex Snort Rule Output.

Copyright, all rights reserved. 26 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

4.2 Snort Grammar Specification

Description A formal specification for the grammar is:

Pipe character (|) indicates choice

Speech marks (™) indicate literal data

Braces ({}) indicate optional elements

em-dash (--) indicates a range

Literal exclamation marks (1) used in a rule indicate a logical negation

rule::= keyword protocol source direction target snaplength {body}

keyword ::= "accept" | "reject"
protocol ::="tcp™ | "udp™ | "ip" | "icmp"
direction ::= "> | "<>"

snaplength ::= 0-65535

source ::= source_ip source_port
target ::= target_ip target_port

source_ip ::=ip_address
target_ip ::= ip_address

ip_address ::= {"1"} ip_set

ip_set ::=single_ip_address | "["single_ip_address "," ip_set™]"
single_ip_address ::= octet "." octet "." octet "." octet { "/" mask }
octet ::= 0-255

mask ::= 1-32

source port ::

"} port_range
target_port :: "}

port_range

= {"!

= {"!

port_range ::=single_port | ":" single_port | single_port ":"
| single_port ":" single_port

single_port ::= 1-65535

Body ::="(" ASCII_text™)"

At this stage the body of the rule is optional, and if present has no effect.

Copyright, all rights reserved. 27 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

4.3 Snort Grammar Variables

Description

In this section

The Snort grammar supports use of variables for IP addresses and ports.
Variables are defined before they are used.

variable_definition ::= "var" variable_name (ip_variable | port_variable)

ip_variable ::= {"1"} ip_address
port_variable ::= {"1"} port_range

Once defined, an IP address variable can be used by prepending its name
with a dollar sign "$" wherever an IP address is expected. A port variable
can be used wherever a port is expected, including in a subsequent
variable definition.

This section covers the following topics of information.

e Simple Snort Grammar Variable Use
e Snort Grammar Less Simple Variable Use
e Snort Grammar Complex Variable Use

4.3.1 Simple Snort Grammar Variable Use

Description

Table

The simple Snort grammar variable example in Table 4-4 is used to assign
a meaningful name to a port number, which helps make the rule intention
clear.

Table 4-4 shows simple Snort grammar variable use.
var SSH_PORT 22

accept tcp 192.168.0.0/16 any -> 192.168.0.1/32 $SSH_PORT

Table 4-4. Simple Snort Grammar Variable Use.

4.3.2 Snort Grammar Less Simple Variable Use

Description

Table

The less simple Snort grammar variable use example in Table 4-5 shows
all external IP addresses are defined by taking the complement, logical
negation, of the easily defined internal IP address space.

Table 4-5 shows less simple Snort grammar variable use.

var INTERNAL_NETWORK 192.168.0.0/16
var EXTERNAL_NETWORK I$INTERNAL_NETWORK

reject tcp $EXTERNAL_NETWORK any -> $INTERNAL_NETWORK 22

Table 4-5. Less Simple Snort Grammar Variable Use.

Copyright, all rights reserved. 28 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

4.3.3 Snort Grammar Complex Variable Use

Description The Snort grammar complex variable use example in Table 4-6 is of
several variables used to make the rules both independent of specific IP
addresses and more readable.

Table Table 4-6 shows a complex Snort grammar variable use.

Set up some variables.

var MY_HOST 192.168.1.24

var NOT_MY_HOST 1192.168.1.24

var INTERNAL_NETWORK 192.168.0.0/16

var EXTERNAL_NETWORK I$INTERNAL_NETWORK
var SSH_PORT 22

var PROXY_PORTS 80:81

Test rules to exercise the parser.

accept ip $INTERNAL_NETWORK any -> $MY_HOST any
accept icmp $INTERNAL_NETWORK any -> $MY_HOST any
accept tcp $INTERNAL_NETWORK any -> $MY_HOST any
accept udp $INTERNAL_NETWORK any -> $MY_HOST any
reject ip $INTERNAL_NETWORK any -> $MY_HOST any
reject icmp $INTERNAL_NETWORK any -> $MY_HOST any
reject tcp $INTERNAL_NETWORK any -> $MY_HOST any
reject udp $INTERNAL_NETWORK any -> $MY_HOST any

Port numbers and negations.

accept ip SINTERNAL_NETWORK $SSH_PORT -> $MY_HOST $PROXY_PORTS
accept ip $INTERNAL_NETWORK !$SSH_PORT -> $MY_HOST $PROXY_PORTS
accept ip $INTERNAL_NETWORK $SSH_PORT -> $MY_HOST I$PROXY_PORTS

Table 4-6. Complex Snort Grammar Variable Use.

Copyright, all rights reserved. 29 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

4.4 Snort Command-line Options and Flags

Description There are a number of command-line flags and options recognised by the

Snort Rule Compiler.

Command-line The following table explains the short and long option command-line flags

flags. recognized by the Snort Rule Compiler.
Short Long Explanation
Option Option
-i --infile Followed by an input file name which contains

-2

Copyright, all rights reserved.

--outfile

--accept

--reject

--snap

--help

Snort-like rules, one per line. If this option is not
present the rules are read from standard input.

Followed by name of output file to be written with
filters, one per line. If this option is not present the
output filters are written to standard output.

If the specified file exists, it will be overwritten,
otherwise it will be created.

If this flag is present the default filter added to the
end of the output will accept all packets.

If this flag is present the default filter added to the
end of the output will reject all packets.

This is the default.

Followed by the number of bytes to be captured
from the payload of the packet.

This option sets a default snap-length for filters
created from the rules which do not explicitly
contain a snap-length.

If this option is not present then rules which do not

explicitly contain a snap-length will produce filters
that capture entire packets.

If this flag is present the Snort Rule Compiler
displays a help message and then exits.

30 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

Copyright, all rights reserved. 31 Revision 6: March 2006

Introduction

In this chapter

EDMO02-02 Coprocessor IP Filter Software Manual

5.0 TCPDUMP RULE COMPILER

The Tcpdump Rule Compiler application forms part of the Endace Filter
system.

The Tcpdump Rule Compiler takes a single tcpdump rule contained in a
text file or passed in via standard input and produces a set of filters that
correspond to that rule.

This chapter covers the following sections of information.

e Tcpdump Rule Compiler Examples
e Tcpdump Rule Compiler Grammar Specifications
e Tcpdump Grammar Command-line Options and Flags

5.1 Tcpdump Rule Compiler Examples

Description

A rule is specified using a tcpdump-like syntax [2] that specifies
combinations of:

* Protocol [ICMP, IGRP, Raw/IP, TCP or UDP]
* Source and destination IP addresses

» TCP and UDP source and destination ports

* TCP flags [TCP]

In addition to explicitly specified rules, the compiler adds default rules for
each protocol [ICMP, IGRP, TCP, UDP, IP] according to the following
scheme:

1. Foreach Layer 4 protocol (ICMP, IGRP, TCP and UDP), if any
rules were specified then a default rule will be added that has the
opposite ‘sense’ to those rules. For example, if TCP rules are given
that reject specific packets (“tcp and not port 80”) then a default rule
will be added that accepts all other TCP packets.

2. The default rule for each Layer 4 protocol is added to the filters so
that it is applied after all specific filters for that protocol.

3. Afinal accept/reject rule is added according to the settings given on
the command-no command-line flag is given then this final filter will
reject all packets.)

4. If the default rule for a Layer 4 protocol has the same sense
(accept/reject) as the final catch-all rule, then it is omitted.

Continued on next page

Copyright, all rights reserved. 32 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

5.1 Tcpdump Rule Compiler Examples, continued
In this section This section covers the following topics of information.

Tcpdump Rule Compiler Simple Rule Example 1
Tcpdump Rule Compiler Simple Rule Example 2
Tcpdump Rule Compiler Less Simple Rule Example 1
Tcpdump Rule Compiler Less Simple Rule Example 2
Tcpdump Rule Compiler Complex Rule Example

5.1.1 Tcpdump Rule Compiler Simple Rule Example 1

Description Given the simple tcpdump rule in Table 5-1, only rules involving TCP
potentially have values in the tcp-flags fields, and only rules involving
TCP or UDP potentially have values in the src-port and dst-port
fields.

In the following example in Table 5-1, because the port was not qualified
with a src or dst prefix, two filters have been created. One catches port
80 in the source port of a TCP packet, the other catches port 80 in the
destination port of a TCP packet.

The third filter is the default TCP filter. Because there was a TCP rule that
excluded packets, the compiler has added a default TCP filter that accepts
all other TCP packets.

The final filter in Table 5-1 is present because a default filter is always
added to accept or reject packets that do not match any other rules. Unless
the command-line option --accept is given, the default filter will reject
packets.

For all Tcpdump Rule Compiler examples in the following sections of
information, filter lines are wrapped to fit on the printed page.

The actual filters produced by the Tcpdump Rule Compiler are written one
per line.

Continued on next page

Copyright, all rights reserved. 33 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

5.1.1 Tcpdump Rule Compiler Simple Rule Example 1 continued

Table Table 5-1 shows a simple rule output of the Tcpdump Rule Compiler.
Rule:
ip and
(
tcp and
(
not (port 80)
)
Output:
Filter file created by ./tcpdump_compiler at Thu Jul 15 08:35:13 2004.
1 reject tcp src-ip {--—-—-—-—-----"-"""""""————————— } src-port {0000000001010000}
dst-ip {---------——------- } dst-port {-———--—-----————- } tcp-flags {-—------ }
2 reject tcp src-ip {--—-—-—-—------""""-——————— } src-port {-—————--———————- }
dst-ip {---------——----- - } dst-port {0000000001010000} tcp-flags {-------- }
3 accept tcp src-ip {--—-—-—----""-"-"-"""""""————— } src-port {-————---———————- 3}
dst-ip {-----------——\ - - } dst-port {-——-—-—-—----—————- } tcp-flags {--—---—--—- }
4 reject ip src-ip {--————————————— } src-port {-———--—-——m—m—- }
dst-ip {------——-—mmmmmm } dst-port {-—-—--—--—-m—- } tcp-flags {-------—- }

Table 5-1. Tcpdump Simple Rule Output.

5.1.2 Tcpdump Rule Compiler Simple Rule Example 2

Description Given another simple rule Tcpdump Rule Compiler example in Table 5-2,
because the port was not qualified with a src or dst prefix, filters have
been created to catch both destination and source ports.

The third filter is the default TCP filter. Because there was a TCP rule that
excluded packets, the compiler has added a default TCP filter that accepts
all other TCP packets.

Table Table 5-2 shows a second example of a tcpdump simple rule output.
Rule:
ip and
(
tcp and
(
not (port 80 and (tcp[13] & 2 = 0))
)
Output:
1 reject tcp src-ip {-———-———— - } src-port {0000000001010000}
dst-ip {---—-—--—---"-"-——-— — —, — —— } dst-port {--—-—-----—--———- } tcp-flags {------ 0-}
2 reject tcp src-ip {--——------————— } src-port {--—-———————————— }
dst-ip {---—-—--—---"-"-——-—- — —,— — — } dst-port {0000000001010000} tcp-flags {------ 0-}
3 accept tcp src-ip {----—-—--——-———— } src-port {--—-———-———————— ¥
dst-ip {---—-—----"-"-"-""""——— } dst-port {-—-—-----—————— } tep-flags {------—-—- }
4 reject ip src-ip {-————-—--—————— } src-port {--————-———————— ¥
dst-ip {---—-—--—--"-"-"-""""——— } dst-port {-—-—-----—————— } tcp-flags {-------—- }

Table 5-2. Second Example of Tcpdump Simple Rule Output.

Copyright, all rights reserved. 34 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

5.1.3 Tcpdump Rule Compiler Less Simple Rule Example 1

Description Given the Tcpdump Rule Compiler example of a less simple rule in Table
5-3, because neither the port nor host was not qualified with a src or dst
prefix, eight filters have been created for each combination of the port and
two hosts.

The ninth filter is the default TCP filter. Because there was a TCP rule
that excluded packets, the compiler has added a default TCP filter that
accepts all other TCP packets.

Table Table 5-3 shows a Tcpdump Rule Compiler less simple rule output.
Rule:
ip and
(
tcp and
(
not(port 80 and host (127.0.0.1 or 192.168.0.1))
)
)
Output:

Filter file created by ./tcpdump_compiler at Thu Jul 15 08:42:53 2004.

1 reject tcp src-ip {11000000101010000000000000000001} src-port {-----—-————————- }

dst-ip {---—-—----"-"-"-""""———— } dst-port {0000000001010000} tcp-flags {-------- }
2 reject tcp src-ip {11000000101010000000000000000001} src-port {0000000001010000}

dst-ip {---—-—----"-"-"-""""——— } dst-port {-—-—-----—————— } tcp-flags {------—-—- }
3 reject tcp src-ip {----—-—---"-"-"-"-"""""""""""""""°---— } src-port {0000000001010000}

dst-ip {11000000101010000000000000000001} dst-port {-------—————————— } tcp-flags {-——————- 3
4 reject tcp src-ip {--———-—---"-"--————————————————— } src-port {-—————-————————— }

dst-ip {11000000101010000000000000000001} dst-port {0000000001010000} tcp-flags {-------- }
5 reject tcp src-ip {01111111000000000000000000000001} src-port {----—--——-——————-— }

dst-ip {---------——------ - } dst-port {0000000001010000} tcp-flags {-------- }
6 reject tcp src-ip {01111111000000000000000000000001} src-port {0000000001010000}

dst-ip {~—————————— } dst-port {---——————————m—- } tcp-flags {-------- }
7 reject tcp src-ip {~———-—————mmmmm } src-port {0000000001010000}

dst-ip {01111111000000000000000000000001} dst-port {-------—-—————-- } tcp-flags {-------- ¥
8 reject tcp src-ip {~———————————mmmmmmm } src-port {--————————mmnn }

dst-ip {01111111000000000000000000000001} dst-port {0000000001010000} tcp-flags {-------- ¥
9 accept tcp src-ip {-—--—-—-————— } src-port {--——-————————————— }

dst-ip {--- --} dst-port {-- -} tcp-flags {-------- }
10 reject ip src-ip {-——————— - } src-port {--——-————————————— }

dst-ip {---—-—-----"-"-———-—. . —,— — — } dst-port {--—-—-----——-———- } tcp-flags {-------—- }

Table 5-3. Tcpdump Rule Compiler Less Simple Rule Output.

Copyright, all rights reserved. 35 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

5.1.4 Tcpdump Rule Compiler Less Simple Rule Example 2

Description Given the Tcpdump Rule Compiler example of a less simple rule in Table
5-4, because neither the port nor host were qualified with a src or dst
prefix, filters have been created to catch all combinations of port and host.
The ninth filter is the default TCP filter. As there is a TCP rule excluding
packets, the compiler added a default TCP filter that accepts all other TCP
packets.

The tenth and eleventh filters are included because of the second clause in
the tcpdump rule that specifically excluded IGRP and TCP packets. This

implies that UDP and ICMP packets should be captured, so accept filters

have been created for these protocols.

Table Table 5-4. Tcpdump Rule Compiler less simple rule output.

Rule:

ip and

(

tcp and not

(

port 1234 and host (192.168.0.1 or 192.168.0.2)

)
or
(

ip and not igrp and not tcp

Output:

Filter file created by ./tcpdump_compiler at Thu Jul 15 08:44:22 2004.

1

2

8

9

10 accept udp

11 accept icmp

reject
reject
reject
reject
reject
reject
reject
reject

accept

tcp
tcp
tcp
tcp
tcp
tcp
tcp
tcp

tcp

12 reject ip

src-ip {11000000101010000000000000000010} src-port {-----—————————— 3
dst-ip {--———-—————————— } dst-port {0000010011010010} tcp-flags {-------- 3}
src-ip {11000000101010000000000000000010} src-port {0000010011010010}

dst-ip {------——-—mmmm e } dst-port {---—-—-————————- } tcp-flags {-------- }
src-ip {------—-—m—mmm e } src-port {0000010011010010}

dst-ip {11000000101010000000000000000010} dst-port {-------—-———-——- } tcp-flags {-------- }
src-ip {------—-—m—mmm e } src-port {-——————————————- }

dst-ip {11000000101010000000000000000010} dst-port {0000010011010010} tcp-flags {-------- ¥
src-ip {11000000101010000000000000000001} src-port {----—--—————————— ¥

dst-ip {------——-—-———— —-. — —— } dst-port {0000010011010010} tcp-flags {-------- }
src-ip {11000000101010000000000000000001} src-port {0000010011010010}

dst-ip {---———————— } dst-port {---————————————- } tcp-flags {-----—--- }
src-ip {---————————— - } src-port {0000010011010010}

dst-ip {11000000101010000000000000000001} dst-port {-------——————--—- } tcp-flags {-----—--- }
src-ip {--——-———————— - } src-port {-————---———————- }

dst-ip {11000000101010000000000000000001} dst-port {0000010011010010} tcp-flags {---—-—---- }
src-ip {--—————————— } src-port {-—————-————————- }

dst-ip {---————---—————— } dst-port {---———————————— } tcp-flags {-—-—--—--- }
src-ip {---————————— } src-port {-—————-————————- }

dst-ip {----———------"--————— } dst-port {-—————-————————- } tcp-flags {-----—--—- 3}
src-ip {--—————————— } src-port {-—————-————————- }

dst-ip {-~-------——-------- - } dst-port {-——--—-----—————- } tcp-flags {----————- 3}
src-ip {----———-——---"—-"--"--"-"-"- } src-port {—————----——————-

dst-ip {---------—-—-—----"-"---- } dst-port {--—-————-—-——————— } tcp-flags {---——-—-—- }

Table-5-4. Tcpdump Rule Compiler Less Simple Rule Output.

Copyright, all rights reserved. 36 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

5.1.5 Tcpdump Rule Compiler Complex Rule Example

Description The complex rule in Table 5-5 is the result of reading "accept all TCP
packets except those involving port 80 and host 127.0.0.80, or port 81 and
host 127.0.0.81, and reject all UDP packets except those involving either
port 3128 or port 8080".

Given the Tcpdump Rule Compiler complex rule example in Table 5-5,
because neither the ports nor hosts were qualified with a src or dst
prefix, filters have been created for each combination.

The ninth filter is the default TCP filter. Because there was a TCP rule
that excluded packets, the compiler has added a default TCP filter that
accepts all other TCP packets.

The fourteenth filter is the final catch-all filter. Because there was a UDP
rule that included packets, the usual default UDP filter would have
rejected UDP packets not matched by rules ten through thirteen. However,
in this case the final catch-all filter rejects all packets and the default UDP
filter was superfluous.

Continued on next page

Copyright, all rights reserved. 37 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

5.1.5 Tcpdump Rule Compiler Complex Rule Example ,continued

Description (continued)

Table Table 5-5 Tcpdump Rule Compiler complex rule output.
Rule:
ip and

(
tcp and

(

not (port (80) and host 127.0.0.80)

and not (port 81 and host (127.0.0.81))
or udp and

port (3128 or 8080)

)
)
Output:
Filter Tile created by ./tcpdump_compiler at Thu Jul 15 08:45:21 2004.

1 reject tcp src-ip {01111111000000000000000001010000} src-port {-------————————— 3}
dst-ip {--—————-———— } dst-port {0000000001010000} tcp-flags {-------- 3}

2 reject tcp src-ip {01111111000000000000000001010000} src-port {0000000001010000}
dst-ip {-—————————— =~ } dst-port {--——————————————— } tcp-flags {----—--- 3}

3 reject tcp src-ip {-———————— 3} src-port {0000000001010000}
dst-ip {01111111000000000000000001010000} dst-port {----——-————————-— } tcp-flags {-------—- 3}

4 reject tcp src-ip {-————————— 3} src-port {-——————-———————- 3}
dst-ip {01111111000000000000000001010000} dst-port {0000000001010000} tcp-flags {-------—- }

5 reject tcp src-ip {01111111000000000000000001010001} src-port {---—--—-——-———————- 3}
dst-ip {--—————————————— } dst-port {0000000001010001} tcp-flags {-------- 3}

6 reject tcp src-ip {01111111000000000000000001010001} src-port {0000000001010001}
dst-ip {-~-------———----- - } dst-port {-—-—--—-----—————- } tcp-flags {---—-——-—-—- 3}

7 reject tcp src-ip {---—-—-—-—---"--"""""-""———— } src-port {0000000001010001}
dst-ip {01111111000000000000000001010001} dst-port {------—————————— } tcp-flags {———————- }

8 reject tcp src-ip {-~--—-—-—-—-----"""""""""""-"—— } src-port {-—————--—-—————- }
dst-ip {01111111000000000000000001010001} dst-port {0000000001010001} tcp-flags {-------—- }

9 accept tcp src-ip {---—-———————— - } src-port {-———--————-m—m—- }
dst-ip {------——-—mmmmm e } dst-port {--—-———--———————- } tcp-flags {-------- }

10 accept udp src-ip {---—-———————————m——m } src-port {0001111110010000}
dst-ip {------—-—m—mmmm e } dst-port {--——-—--—-———————- } tcp-flags {-------- }

11 accept udp src-ip {---—————————————m } src-port {-———-——-——m—m—- }
dst-ip {------—-—m—mmmm e } dst-port {0001111110010000} tcp-flags {-------- }

12 accept udp src-ip {---—-——-——————————— } src-port {0000110000111000}
dst-ip {------——-—-————- —. — — } dst-port {--—-——---———————- } tcp-flags {-----—--- }

13 accept udp src-ip {---—-——-———————— - } src-port {-————-—-———————-
st-ip {-—-—-——-—--————————— —— —— } dst-port {0000110000111000} tcp-flags {-------- }

14 reject ip src-ip {---——-———————— } src-port {-————-—-———————-
st-ip {-—-—-——-———— - } dst-port {---————————————- } tcp-flags {-------- }

Table 5-5. Tcpdump Rule Compiler Complex Rule Output.

Copyright, all rights reserved. 38 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

5.2 Tcpdump Rule Compiler Grammar Specifications

Description A formal specification for the Tcpdump Rule Compiler grammar is:

A pipe character (|) indicates choice
Speech marks (™) indicate literal data
Braces ({}) indicate optional elements
em-dash (--) indicates a range

Literal exclamation mark (!) is used in a rule to indicate a logical
negation

Grammar The following list describes the Tcpdump Rule Compiler grammar.

Tcpdump Rule Compiler Grammar
rule ::="ip" "and" protocol_list
| "ip™ "and" protocol_reject_list
| rule "or" rule
| (" rule ™)"

protocol_reject_list ::=single_protocol_reject
| single_protocol_reject "and" protocol_reject_list
| "(*" protocol_reject_list ")

single_protocol_reject ::= "not" "udp”
| "not" "tcp”
| "not” "igrp"
| (" single_protocol_reject)"

protocol list ::= protocol_tree
| protocol_tree "or" protocol_list
| (" protocol_list)"
protocol tree ::= "tcp" tcp_tree
| "udp™ udp_tree
| "icmp™ icmp_tree
| "ip™ "and" protocol_reject_list
| "("* protocol_tree ")"

Continued on next page

Copyright, all rights reserved. 39 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

5.2 Tcpdump Rule Compiler Grammar Specifications, continued
Tcpdump Rule Compiler Grammar (continued)

Tcpdump Rule Compiler Grammar
icmp_tree ::=
| "and" icmp_tree
| (" icmp_tree)"

udp_tree ::=
| "not" udp_reject_tree
| udp_accept_tree
| "and" udp_tree
| "(" udp_tree)"

udp_reject tree ::= udp_expression
| udp_expression "and" "not" udp_reject_tree

udp_accept tree ::= udp expression
| udp_expression "or" udp_accept_tree

udp expression ::= udp clause
| udp_expression "and" udp_expression
| "(" udp_expression)"

udp clause ::= port_primitive
| host_primitive

tcp tree 1=
| "not" tcp_reject_tree
| tcp_accept_tree
| "and" tcp_tree
| (" tcp_tree)"

tcp reject tree ::= tcp expression
| tcp_expression "and" "not" tcp_reject_tree

tcp accept tree ::= tcp expression
| tcp_expression "or" tcp_accept_tree

tcp expression (= tcp_clause
| Il(ll th_and_EXpI’ESSion ll)ll
| ll(ll th_OI’_eXpI’eSSiOI'I ||)||

Continued on next page

Copyright, all rights reserved. 40 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

5.2 Tcpdump Rule Compiler Grammar Specifications, continued

Tcpdump Rule Compiler Grammar (continued)

Tcpdump Rule Compiler Grammar
tcp_and-expression ;= tcp_expression
| tcp_expression "and" tcp_expression
| "(" tcp_or_expression "or" tcp_or_expression)"
| "not" tcp_clause

tcp_or_expression ::= tcp_expression
| tcp_or_expression "or" tcp_or_expression
| "(" tcp_and_expression "and" tcp_and_expression ")"
| "not” tcp_clause

tcp_clause ::= port_primitive
| host_primitive
| tcp_flags_primitive

qualifiers ::=
| "src"
| "dst

host_primitive ::= qualifiers host_keyword host_list
| qualifiers host keyword "(** host list "and" host list "')"
| "(" qualifiers host_keyword host_list "and™ qualifiers_host
keyword_host list)"

host keyword ::=

| "host"
| llnetll

host list ::= single_host
| single_host "or" host_list
| "(" host_list ")"
single host ::= hostname
| netname?2
| netname3
| (" single_host)"
hostname ::= "1--255.0--255.0--255.0--255"
netname?2 ::= "1--255.0--255"
netname3 ::= "1--255.0--255.0--255"

Continued on next page

Copyright, all rights reserved. 41 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

5.2 Tcpdump Rule Compiler Grammar Specifications, continued
Tcpdump Rule Compiler Grammar (continued)

Tcpdump Rule Compiler Grammar
port_primitive ::= qualifiers "port"” port_list
| qualifiers "port” "(" port_list "and" port_list ")"
| "(" port_primitive)"

port_list ::= number
| number "or" port_list
| ll(ll port_list Il)ll

number ::= "0--65535"
| "(" "0--65535")"

tcp_flags primitive ::="tcp[13]" "&" number tcp_flags_relop
number
| "(" tcp_flags_primitive)"

tcp_flags_relop ::="="

Copyright, all rights reserved. 42 Revision 6: March 2006

EDMO02-02 Coprocessor IP Filter Software Manual

5.3 Tcpdump Grammar Command-line Options and Flags

Description There are a number of command-line flags and options recognised by the
Tcpdump Rule Compiler.

The Tcpdump Rule Compiler performs little optimization on the generated
filters, and so the number of filters created may be greater than strictly

necessary.

For example, in some cases it may be possible to combine filters that
differ only in a few bit locations by using "don’t care" entries in those
locations. An optimization pass will be included in a future revision.

Command-line The following table explains the short option and long option command-line

flags. flags recognized by the Tcpdump Rule Compiler.
Short Long Explanation
Option Option
-i --infile Followed by an input file name which contains a

-0 --outfile

-a --accept

-r --reject

-S --obfuscate
-h --usage

-? --help

Copyright, all rights reserved.

single tcpdump-like rule. If this option is not present
the rules are read from standard input.

Followed by name of output file to be written with
filters, one per line. If this option is not present the
output filters are written to standard output.

If the specified file exists, it will be overwritten,
otherwise it will be created.

If this flag is present the default filter added to the
end of the output will accept all packets.

If this flag is present the default filter added to the
end of the output will reject all packets.

This is the default.

If this flag is present then the IP addresses and port
numbers in the input rule will be obfuscated before
the rule is processed. The result of the obfuscation is
written to the file obfuscated_rule N.txt in the
current working directory, where N is the first
positive integer that makes the filename unique.

This enables the obfuscated filters to be compared to
an obfuscated rule for accuracy.

If this flag is present the Tcpdump Rule Compiler
displays a help message and then exits.

43 Revision 6: March 2006

