

Configuration and Status API Overview
EDM04-34

EDM04-34v3 Configuration & Status API Overview

 ©2011 Endace Technology Ltd. Confidential - Version 3 - November 2011

Protection Against Harmful
Interference

When present on equipment this document pertains
to, the statement "This device complies with part 15
of the FCC rules" specifies the equipment has been
tested and found to comply with the limits for a Class
A digital device, pursuant to Part 15 of the Federal
Communications Commission [FCC] Rules.

These limits are designed to provide reasonable
protection against harmful interference when the
equipment is operated in a commercial environment.

This equipment generates, uses, and can radiate
radio frequency energy and, if not installed and used
in accordance with the instruction document, may
cause harmful interference to radio communications.

Operation of this equipment in a residential area is
likely to cause harmful interference in which case the
user will be required to correct the interference at
their own expense.

Extra Components and Materials

The product that this manual pertains to may include
extra components and materials that are not essential
to its basic operation, but are necessary to ensure
compliance to the product standards required by the
United States Federal Communications Commission,
and the European EMC Directive. Modification or
removal of these components and/or materials, is
liable to cause non compliance to these standards,

and in doing so invalidate the user’s right to operate
this equipment in a Class A industrial environment.

Disclaimer

Whilst every effort has been made to ensure
accuracy, neither Endace Technology Limited nor any
employee of the company, shall be liable on any
ground whatsoever to any party in respect of
decisions or actions they may make as a result of
using this information.

Endace Technology Limited has taken great effort to
verify the accuracy of this document, but nothing
herein should be construed as a warranty and Endace
shall not be liable for technical or editorial errors or
omissions contained herein.

In accordance with the Endace Technology Limited
policy of continuing development, the information
contained herein is subject to change without notice.

Website

http://www.endace.com

Copyright 2011 Endace Technology
Ltd. All Rights reserved.

No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or
by any means electronic, mechanical, photocopying,
recording, or otherwise, without the prior written
permission of Endace Technology Limited.

Endace, the Endace logos, and DAG, are trademarks
or registered trademarks in New Zealand, or other
countries, of Endace Technology Limited. All other
product or service names are the property of their
respective owners. Product and company names used
are for identification purposes only and such use does
not imply any agreement between Endace and any
named company, or any sponsorship or endorsement
by any named company.

Use of the Endace products described in this
document is subject to the Endace Terms of Trade
and the Endace End User License Agreement (EULA).

 EDM04-34v3 Configuration & Status API Overview

©2011 Endace Technology Ltd. Confidential - Version 3 - November 2011 i

Contents

Introduction 3
Overview ... 3
Version ... 3
Purpose .. 3
Thread Safety .. 3
Support ... 4

Endace Website .. 4
Reporting Problems ... 4

API Overview 5
Overview ... 5
Components .. 5
Card Configuration ... 5

Attribute Reference ... 5
Attribute Value ... 5
Attribute Type .. 6

Using the API .. 7
Pre-requisites ... 7
Header Files ... 7

Components and Attributes 9
Overview ... 9
Displaying a DAG Card's Components and Attributes ... 9
Example Program ... 11

Functions 13
Overview ... 13
Card Configuration Functions .. 13
Component Functions ... 13
Attribute Accessor Functions ... 14
Modifier Functions .. 14
Firmware Functions .. 14

Data Structures and Constants 15

Version History 17

 EDM04-34v3 Configuration & Status API Overview - Introduction

©2011 Endace Technology Ltd. Confidential - Version 3 - November 2011 3

Introduction

Overview
The Endace Configuration and Status Application Programming Interface (API) enable developers to configure the
components and associated attributes of an Endace Data Acquisition and Generation (DAG) card.

It allows third-party developers to perform the following tasks from within their own application software:

 Reset a DAG card.

 Load firmware images onto a DAG card.

 Set and retrieve the hardware configuration.

 Retrieve status and statistics information.

Version
The information in this document is up to date as of DAG software version 3.4.2. Please see the release notes for

your software version for a list of supported DAG cards and operating systems.

Purpose
The purpose of this Overview is to:

 Provide general information about the Configuration & Status API.

 Describe the use of components and attributes associated with DAG cards by the API.

 Describe the types of functions provided by the API.

 Describe the use of data structures and constants by the API functions.

Thread Safety
Note:

The routines described in this Programming Guide are not thread safe or re-entrant. If you are using multiple
threads, Endace strongly recommends that you use wrapper functions to serialize access to the Endace supplied
routines.

EDM04-34v3 Configuration & Status API Overview - Introduction

4 ©2011 Endace Technology Ltd. Confidential - Version 3 - November 2011

Support

Endace Website

In the event that you experience problems with any Endace supplied hardware, or software, it is recommended that
you visit the Endace website at http://www.endace.com. This website includes a Support page which offers a range
of online assistance options including a Public Knowledge Base. It also allows you to submit a problem report online
via the Online Case Submission link.

If you have a support contract with Endace you have access to the secure support website. Use your support logon
details to gain access. This contains the latest versions of software, device drivers, firmware, user manuals, and
release notes.

For more information about the Endace Support Package, or how to obtain (or change) your secure support website
login details, please contact sales@endace.com.

If you are unable to resolve a problem using the information on the website, you can email Endace Technical Support
at support@endace.com for further assistance.

Reporting Problems
When reporting a problem please supply as much information as possible. The more information you supply the
quicker Endace Technical Support are able to effectively respond to you. Although the exact information available
may be limited by the type of problem you are experiencing, you should try to supply the following:

 DAG card model and serial number.

 DAG software version in use as returned by rpm –q dag-base

 System log messages generated when DAG device driver is loaded. These can be collected from command

dmesg, or from log file /var/log/syslog.

 Output of daginf.

 Firmware versions from dagrom –x

 Card configuration as reported by: dagconfig

 Network link statistics reported by: dagconfig –sei

 Network link configuration from the router where available.

 Contents of any scripts in use.

 Complete output of session where error occurred including any error messages from DAG tools. The

typescript Unix utility may be useful for this.

 A small section of captured packet traces illustrating the problem.

 EDM04-34v3 Configuration & Status API Overview - API Overview

©2011 Endace Technology Ltd. Confidential - Version 3 - November 2011 5

API Overview

Overview
Each DAG card consists of multiple processing modules, each of which can have several configurations. In order to
bring a module into a required configuration, control data must be written into registers inside the DAG card. The
Configuration and Status API provides a high-level method of accessing these registers and allows the user to control
the behavior of the DAG cards within their C or C++ programs.

Components
The model of a DAG card reported by the API is a hierarchical tree of components where each component
corresponds to a functional block such as packet processor, PCI burst manager, physical interface, or hardware
monitor. The top component in the tree is called the root component which contains a reference to the attached DAG
card and subcomponents.

Card Configuration

Attribute Reference
Before a DAG card's components configuration can be modified it is necessary to:

1. obtain a reference to the DAG card,

2. obtain a reference to the desired component, and

3. obtain a reference to the component's attribute

that you wish to change.

The attribute reference can then be used to retrieve and modify the attribute value.

For example, to see if a particular port is active, first obtain a reference to the DAG card, then a reference to the port
component, and finally a reference to the active attribute.

Alternatively, you can directly access the attribute on a DAG card:

1. obtain a reference to the DAG card, then

2. obtain the reference to the attribute by specifying its code and index in the DAG card.

Attribute Value

Reading the value returned by the attribute reference provides information about the attribute status. Writing a value
to the attribute reference configures the attribute status.

A sample program is shown in Example Program (page 11).

EDM04-34v3 Configuration & Status API Overview - API Overview

6 ©2011 Endace Technology Ltd. Confidential - Version 3 - November 2011

Attribute Type
There are two types of attributes associated with components on DAG cards.

1. Configuration attributes: used to represent configuration information.

2. Status attributes: used to represent status and statistics information.

The dag_config_get_attribute_config_status function may be used to identify if an attribute is marked as

a status or configuration attribute. More information is available on this function in dag_config.h.

Configuration Attribute

Configuration attributes represent properties of the DAG card that can be modified. They include such items as:

 POS or ATM mode for SONET DAG cards

 Auto-negotiation mode on/off for Ethernet DAG cards

 Variable or fixed-length packet capture

 Snap length for packet capture

 Amount of memory allocated to each receive and transmit stream

Status Attribute

Status attributes represent the card properties that are read-only and can not be modified. They include such items
as:

 Physical layer error indicators.

 PCI bus speed.

 Number of frames that failed the Frame Checksum.

 Number of receive and transmit streams supported by the firmware.

Note:
The precise set of attributes and components presented by the API depends on the model of DAG card and the
capabilities of the loaded firmware image(s) see Displaying a DAG Card's Components and Attributes (page 9).

 EDM04-34v3 Configuration & Status API Overview - API Overview

©2011 Endace Technology Ltd. Confidential - Version 3 - November 2011 7

Using the API

Pre-requisites

This document assumes the user has experience of the C programming language and is familiar with the operating
systems and distribution installed.

Header Files

In order to use the Configuration & Status API the following header files must be included:

 dag_config.h

Contains routines that relate to the card as a whole e.g. getting an initial reference to the card, loading
firmware, finding a component by name, as well as routines that retrieve and set values on attributes.

 dag_component.h

Contains routines that operate on components, e.g. getting the root component, getting subcomponents, getting
attributes of a component.

 dag_component_codes.h

Contains the codes used to reference components. e.g. kComponentStream

 dag_attribute_codes.h

Contains the codes used to refer to attributes and enumerated types for attributes that have a restricted range
of valid values. e.g. kBooleanAttributeVarlen

Alternatively, include the file dag_config_api.h which includes the four header files listed above.

FreeBSD/Linux

On FreeBSD or Linux operating systems the header files are installed in /usr/local/include by default. Library

files are installed in /usr/local/lib by default.

These locations can be changed when running the configure script.

Windows

On Windows operating systems the header files are installed in <Program Files>\Endace\dag-

x.y.z\include. Stub library files are installed in <Program Files>\Endace\dag-

x.y.z\lib\windows\VCproject\Release and Runtime library files are installed in <System>.

Note:
The phrases in <> are standard system locations and may vary from machine to machine.

 EDM04-34v3 Configuration & Status API Overview - Components and Attributes

©2011 Endace Technology Ltd. Confidential - Version 3 - November 2011 9

Components and Attributes

Overview
The model of a DAG card reported by the API is a hierarchical tree of components. The top component in the tree is
called the root component which contains a reference to the attached DAG card and subcomponents.

Each subcomponent of the root has a set of attributes associated with it which defines the configuration of the
module at any point in time. Changing the value of the component attributes directly changes the behavior of the
corresponding modules.

Note:
Not all components and attributes are common to all DAG Cards.

Displaying a DAG Card's Components and Attributes
To display a list of a DAG card's components and attributes, run this command at a prompt:

dagconfig -T -v2

Below is an example output of this command, taken from a DAG 4.5G4 card. The DAG card's components

(card_info, gpp and pbm in the example below) and its associated attributes (user_fw, factory_fw, etc.) are

displayed.

Notes:

 The output file is in CSV (comma-separated value) format which allows you to import the data into an Excel
spreadsheet for easier use.

 Some output has been omitted for simplicity.

Component: name= card_info, code=41(kComponentCardInfo), description= <undescribed> ,

Attributes: count= 8,

Attribute: name , type , value , description

 user_fw , status , edag45g4pci_dso_v2_3 2vp30ff1152 2008/04/03 20:43:33 , User

firmware

 factory_fw , status , edag45g4pci_dso_v2_3 2vp30ff1152 2008/04/03 20:43:33 , Factory

firmware

 active_fw , status , factory , active firmware

 serial_id , status , 3007076 , Card Serial ID

 copro_type , status , Not Supported , Co-processor type

 pci_info , status , 0000:05:01.0 , Physical slot information

 pci_device_code, status , 0x454e , PCI device code

 board_rev , status , 2 , Board revision.

Component: name= gpp, code=11(kComponentGpp), description= The size reduced gpp. ,

Attributes: count= 12,

Attribute: name , type , value , description

 snap_length , config , 10240 , Get/set the snaplength. Accepts any value, but the

value will be rounded to a multiple of the ERF record alignment.

 varlen , config , on , Enable or disable variable length capture

 interface_count, status , 4 , Number of interfaces in the card.

 align64 , config , on , Align/pad the received ERF record to the next 64-bit

boundary.

 drop_count0 , status , 0 , A count of the packets dropped on a port

 drop_count1 , status , 0 , A count of the packets dropped on a port

 drop_count2 , status , 0 , A count of the packets dropped on a port

 drop_count3 , status , 0 , A count of the packets dropped on a port

 active0 , config , on , Enable/Disable Port0

 active1 , config , on , Enable/Disable Port1

 active2 , config , on , Enable/Disable Port2

 active3 , config , on , Enable/Disable Port3

Component: name= pbm, code=24(kComponentPbm), description= The PCI Burst Manager ,

Attributes: count= 6,

Attribute: name , type , value , description

 pci_bus_speed , status , 133MHz , A number representing the PCI bus speed

 buffer_size , status , 32 , The size of the buffer allocated to the DAG card.

EDM04-34v3 Configuration & Status API Overview - Components and Attributes

10 ©2011 Endace Technology Ltd. Confidential - Version 3 - November 2011

 tx_stream_count , status , 1 , The number of transmit streams

 rx_stream_count , status , 2 , The number of receive streams.

 overlap , config , off , Share the memory hole between the receive and

transmit streams.

 drop , config , off , If on dropping of packets occurs at the individual

stream that has filled up. If off dropping occurs at the gpp.

 EDM04-34v3 Configuration & Status API Overview - Components and Attributes

©2011 Endace Technology Ltd. Confidential - Version 3 - November 2011 11

Example Program
The following program illustrates how to use the Configuration & Status API. The program performs the following
actions:

 Executes the DAG card's default configuration routine

 Counts the number of ports on the DAG card

 Finds the line rate attribute of each port, and

 Sets the line rate to 100Mbps.

For the sake of clarity, the error-handling code has been omitted from this example.

Notes:

 This example is only applicable to DAG cards capable of 100Mbps line rates, please refer to your DAG Card User
Guide for more information.

 The line rate being set at the new value is dependant on the DAG card communicating with the SFP.

#include "dag_config_api.h"

#include <stdio.h>

#include <stdlib.h>

int main(int argc, const char* argv[])

{

 dag_card_ref_t card_ref = NULL;

 dag_component_t root_component = NULL;

 uint32_t count;

 uint32_t i;

 /* Get a reference to the card. */

 card_ref = dag_config_init("/dev/dag0");

 /* Get a reference to the root component. */

 root_component = dag_config_get_root_component(card_ref);

 /* Configure the card to default state. */

 dag_config_default(card_ref);

 /* Count the ports on the card. */

 count = dag_component_get_subcomponent_count_of_type(root_component,

kComponentPort);

 for (i = 0; i < count; i++)

 {

 dag_component_t port = NULL;

 attr_uuid_t line_rate_uuid = 0;

 uint32_t val = kLineRateEthernet100;

 dag_err_t err_status = 0;

 /* Get a reference to the port. */

 port = dag_component_get_subcomponent(root_component,

kComponentPort, i);

 /* Get a reference to the line rate attribute of the port. */

 line_rate_uuid = dag_component_get_config_attribute_uuid(port,

kUint32AttributeLineRate);

 /* Set the value of the attribute. */

 dag_config_set_uint32_attribute(card_ref, line_rate_uuid, val);

 }

 /* Dispose of the card. */

 dag_config_dispose(card_ref);

 return EXIT_SUCCESS;

}

 EDM04-34v3 Configuration & Status API Overview - Functions

©2011 Endace Technology Ltd. Confidential - Version 3 - November 2011 13

Functions

Overview
This chapter describes:

 the purpose of the different functions,

 where to find the functions available, and

 the common designators (parameter names) which are used by each function type.

The Configuration and Status API contains five types of functions:

 Card configuration functions

 Component functions

 Attribute accessor functions

 Modifier functions

 Firmware functions.

Card Configuration Functions
Card configuration functions directly configure the DAG card. The DAG card configuration functions are located in

dag_config.h.

The following designators are used in DAG card configuration functions:

Designator Description

card Refers to a DAG card.

uuid An attribute identifier.

component Refers to a component.

device name The name of the DAG card. In Linux this should look like

/dev/dag0 and in Windows like dag0.

String The value for the string in attribute form.

attr_code The code of the attribute to retrieve.

attr_index The index of the attribute to retrieve. Index starts from 0.

Component Functions
Component functions refer to functions which configure or retrieve components on the DAG card. The component
functions are located in dag_component.h.

The following designators are used in component functions:

Designator Description

attribute The code of the attribute to retrieve.

component Refers to a component.

component code See the card specific chapters earlier in this programming guide
for a list of valid component codes.

index The index of the attribute to return.

name The name of the sub-component to return.

code The desired sub-component to count.

EDM04-34v3 Configuration & Status API Overview - Functions

14 ©2011 Endace Technology Ltd. Confidential - Version 3 - November 2011

Attribute Accessor Functions
Attribute accessor functions retrieve the value of an attribute. The only difference between the functions is the type

of value they return. The accessor functions are located in dag_config.h.

The following designators are used in accessor functions:

Designator Description

card Refers to a DAG card.

uuid An attribute identifier.

component Refers to a component.

Modifier Functions
The modifier functions assign a value to an attribute. The only difference between them is the type of value they

assign. The modifier functions are located in dag_config.h.

The following designators are used in modifier functions:

Designator Description

card Refers to a DAG card.

uuid An attribute identifier.

value The value to assign to the attribute.

The following values are returned by modifier functions:

 kDagErrInvalidCardRef is returned if the card reference is invalid.

 kDagErrNone is returned on success.

Firmware Functions
The firmware functions load or read firmware on a DAG card. The functions all return the same following function:
kDagErrNone. The firmware functions are located in dag_config.h.

The following designators are used in firmware functions:

Designator Description

name The name of the device.

card ref A valid pointer to a dag_ref_t.

filename The name of the image to load.

whch_pp The index starting from 0 of the packet processor to load.

buffer A buffer to hold the SWID read from the DAG card. It should be
at least 128 bytes.

length The size of the buffer in bytes.

key The key to match the key in the ROM. If this key does not
match, the Software ID (SWID) write will fail.

 EDM04-34v3 Configuration & Status API Overview - Data Structures and Constants

©2011 Endace Technology Ltd. Confidential - Version 3 - November 2011 15

Data Structures and Constants
Data Structures are used by the API functions to refer to modules on the DAG card.

Attribute accessor data structures are declared in dag_attribute_codes.h, component data structures are

declared in dag_component_codes.h and other data structures are declared in dag_config.h.

 EDM04-34v3 Configuration & Status API Overview - Version History

©2011 Endace Technology Ltd. Confidential - Version 3 - November 2011 17

Version History

Version Date Reason

1 September 2009 First release.

2 November 2009 Updated Displaying DAG cards components and attributes section

3 November 2011 Updated branding.

