

Counters and Statistics API
EDM04-25

Counters and Statistics API

 ©2011 Endace Technology Ltd. Confidential - Version 4 - November 2011

Protection Against Harmful
Interference

When present on equipment this document pertains
to, the statement "This device complies with part 15
of the FCC rules" specifies the equipment has been
tested and found to comply with the limits for a Class
A digital device, pursuant to Part 15 of the Federal
Communications Commission [FCC] Rules.

These limits are designed to provide reasonable
protection against harmful interference when the
equipment is operated in a commercial environment.

This equipment generates, uses, and can radiate
radio frequency energy and, if not installed and used
in accordance with the instruction document, may
cause harmful interference to radio communications.

Operation of this equipment in a residential area is
likely to cause harmful interference in which case the
user will be required to correct the interference at
their own expense.

Extra Components and Materials

The product that this manual pertains to may include
extra components and materials that are not essential
to its basic operation, but are necessary to ensure
compliance to the product standards required by the
United States Federal Communications Commission,
and the European EMC Directive. Modification or
removal of these components and/or materials, is
liable to cause non compliance to these standards,

and in doing so invalidate the user’s right to operate
this equipment in a Class A industrial environment.

Disclaimer

Whilst every effort has been made to ensure
accuracy, neither Endace Technology Limited nor any
employee of the company, shall be liable on any
ground whatsoever to any party in respect of
decisions or actions they may make as a result of
using this information.

Endace Technology Limited has taken great effort to
verify the accuracy of this document, but nothing
herein should be construed as a warranty and Endace
shall not be liable for technical or editorial errors or
omissions contained herein.

In accordance with the Endace Technology Limited
policy of continuing development, the information
contained herein is subject to change without notice.

Website

http://www.endace.com

Copyright 2011 Endace Technology
Ltd. All Rights reserved.

No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or
by any means electronic, mechanical, photocopying,
recording, or otherwise, without the prior written
permission of Endace Technology Limited.

Endace, the Endace logos, and DAG, are trademarks
or registered trademarks in New Zealand, or other
countries, of Endace Technology Limited. All other
product or service names are the property of their
respective owners. Product and company names used
are for identification purposes only and such use does
not imply any agreement between Endace and any
named company, or any sponsorship or endorsement
by any named company.

Use of the Endace products described in this
document is subject to the Endace Terms of Trade
and the Endace End User License Agreement (EULA).

 Counters and Statistics API

©2011 Endace Technology Ltd. Confidential - Version 4 - November 2011 i

Contents

Overview 3
Purpose .. 3

Description 5
CSI Blocks ... 5
Counters ... 6

Command .. 6

Structures 7
Counters ... 7

Types of Counters ... 8
Blocks ... 10

Function Descriptions 11
Component Implementation .. 11
Printing of Counters and Statistic Registers ... 11
Functions .. 11

dag_config_get_number_block function .. 11
dag_config_get_number_counters function ... 12
dag_config_get_number_all_counters function .. 12
dag_config_get_counter_id_subfct function ... 12
dag_config_get_all_block_id function .. 13
dag_config_latch_clear_all function .. 13
dag_config_latch_clear_block function .. 13
dag_config_read_single_block function ... 14
dag_config_read_all_counters function ... 14
dag_config_read_single_counter function .. 15

Sample Code 17

Version History 19

 Counters and Statistics API - Overview

©2011 Endace Technology Ltd. Confidential - Version 4 - November 2011 3

Overview
This document describes the implementation of the Counters and Statistics Interface (CSI). This interface facilitates
the reading of the various counters and statistic registers on any type of DAG card. The counters and registers

characteristics are displayed using dagconfig commands.

Please be aware that this document is subject to change as additional functionality becomes available.

The CSI covers the DAG Register Bus (DRB) space and is implemented by the firmware. The software
implementation considers this interface as a firmware component/module.

The CSI enables the automatic identification by software of the presence of counters or informational bits from a
predefined set. Each counter and information bit in this predefined set has a set functionality, allowing different
combinations of counters and functional bits to be used in different DAG cards without the requirement of additional
software.

Purpose
 To make an easy translation of the existing firmware module statistics into the CSI. These counters are then

recognized by the DAG software.

 To give both the firmware and software unique counter and deterministic Id's to prevent name changes and
duplications across different cards and images.

 Allow customers to create specific statistics.

 Give the option for accumulated counters in near future and provide backwards compatibility with the software.

Function definitions are described in later chapters of this document.

 Counters and Statistics API - Description

©2011 Endace Technology Ltd. Confidential - Version 4 - November 2011 5

Description
The main enumeration table stores entry(ies), of type CSI per 'counter statistics interface', which points to a CSI
block in the DRB address space. The enumeration entry has different versions depending on the CSI format (type of
data access: direct v0 or indirect v1).

CSI Blocks
CSI blocks are mapped to a firmware component. Each CSI block has a description field indicating:

 the number of counters,

 the type of the counters in the block (firmware module based or functional based),

 the 'latch and clear' set up.

Global latch and clear can be implemented at later stage through a single write-only DRB register instantiated in each
CSI block.

Each CSI block is implemented in the Configuration and Status API with the following attributes:

 Counter Statistics Interface type (kUint32AttributeCSIType),

 Number of counters in CSI (kUint32AttributeNbCounters),

 Latch & Clear set up (kBooleanAttributeLatchClear),

 Counter description base address (kUint32AttributeCounterDescBaseAdd),

 Counter value base address (kUint32AttributeCounterValueBaseAdd).

The post-initialization function creates the counter(s) and initializes their state structure.

Counters and Statistics API - Description

6 ©2011 Endace Technology Ltd. Confidential - Version 4 - November 2011

Counters
Each counter is mapped to a firmware sub-component and is associated with the CSI block.

Each individual counter has a 32-bit description entry containing:

 The counter ID which is unique and depending on the function is implemented when applicable.

 A sub-function ID which covers multiple streams, filters or interfaces ports.

 A “block value” type (counter value or address). This determines whether it is the counter value (0) or the
address (1) where the counter value is stored.

 The 'Latch and Clear' information.

 The size of the counter, either 32 bits or 64 bits.

 The type of access, either Direct or Indirect.

 The Base address of the counter value.

The counter is implemented in a CSI block with these attributes:

 Counter ID (kUint32AttributeCounterID)

 Sub-function (kUint32AttributeSubFunction)

 Value type (kBooleanAttributeValueType)

 Latch and Clear information (kBooleanAttributeLatchClear)

 Counter size (kUint32AttributeCounterSize)

 Type of access (kBooleanAttributeAccess)

 Counter value (kUint32AttributeCounterValue)

 Sub-function (KUnit32AttributeSubFunctionsType)

The state structure contains:

 the index of the subcomponent,

 the address or offset (from the DRB base) of the description field,

 the address or offset (from the DRB base) of the counter value.

For example:

typedef struct

{

 uint32_t mIndex;

 uint32_t mValueOffset;

 uint32_t mDescrOffset;

 uint32_t* mValueAddress;

 uint32_t* mDescrAddress;

 } counter_state_t;

Command

The command used to display the counters relevant to your DAG card is: dagconfig -u

 Counters and Statistics API - Structures

©2011 Endace Technology Ltd. Confidential - Version 4 - November 2011 7

Structures
This chapter explains the various data structures which are used in the implementation of counters by the
Configuration and Status API.

Counters
The following explains the structure of a counter, dag_counter_value_t.

Looking at the structure below:

 dag_counter_type_t typeID indicates the type ID,

 int size indicates the size of counter (32 or 64 bits),

 dag_subfct_type_t subfct indicates the type of sub-function,

 int lc indicates if there is a latch and clear bit to read the register,

 int value_type indicates whether it is the counter value (0) or the address where the counter value is

stored (1),

 uint64_t value indicates the counter value,

typedef struct

{

 dag_counter_type_t typeID; (see below.)

 int size;

 dag_subfct_type_t subfct; (see below.)

 uint32_t interface_number

 int lc;

 int value_type; /* Only available for direct register */

 uint64_t value;

} dag_counter_value_t;

typedef enum

{

 kIDSubfctPort = 0x00,

 kIDSubfctStream = 0x01,

 kIDSubfctFilter = 0x02,

 kIDSubfctGeneral = 0x03,

} dag_subfct_type_t;

typedef enum

{

 kIDCounterInvalid = 0x0,

 kIDCounterRXFrame = 0x01,

 kIDCounterRXByte= 0x02,

 kIDCounterRXShort = 0x03,

 kIDCounterRXLong = 0x04,

 kIDCounterRXError = 0x05,

 kIDCounterRXFCS = 0x06,

 kIDCounterRXAbort = 0x07,

 kIDCounterTXFrame = 0x08,

 kIDCounterTXByte = 0x09,

 kIDCounterDIP4Error = 0x0A,

 kIDCounterDIP4PlError = 0x0B,

 kIDCounterBurstError = 0x0C,

 kIDCounterPlError = 0x0D,

 kIDCounterDebug = 0x0E,

 kIDCounterFilter = 0x0F,

 kIDCounterB1Error = 0x10,

 kIDCounterB2Error = 0x11,

 kIDCounterB3Error = 0x12,

 kIDCounterRXErr = 0x13,

 kIDCounterSpaceError = 0x14,

Counters and Statistics API - Structures

8 ©2011 Endace Technology Ltd. Confidential - Version 4 - November 2011

 kIDCounterContWdError = 0x15,

 kIDCounterPlContError = 0x16,

 kIDCounterTRDip4Error = 0x17,

 kIDCounterResvWd = 0x18,

 kIDCounterAddrError = 0x19,

 kIDCounterOOFPeriod = 0x1A,

 kIDCounterNbOOF = 0x1B,

 kIDCounterTXOOFPeriod = 0x1C,

 kIDCounterTXNbOOF = 0x1D,

 kIDCounterTXError = 0x1E,

 kIDCounterStatFrError = 0x1F,

 kIDCounterDip2Error = 0x20,

 kIDCounterPatternError = 0x21,

 kIDCounterRXStreamPacket = 0x22,

 kIDCounterRXStreamByte = 0x23,

 kIDCounterTXStreamPacket = 0x24,

 kIDCounterTXStreamByte = 0x25,

 kIDCounterPortDrop = 0x26,

 kIDCounterStreamDrop = 0x27,

 kIDCounterSubStreamDrop = 0x28,

 kIDCounterFilterDrop = 0x29,

} dag_counter_type_t;

Types of Counters

The following is a description of each of the counter types. dag_counter_type_t is the name of the counter, and

typeID is the value of the counter type enumerator.

dag_counter_type_t typeID Description

kIDCounterInvalid 0x0 Error code. Endace internal use only.

kIDCounterRXFrame 0x01 Number of frames received.

kIDCounterRXByte 0x02 Number of bytes received.

kIDCounterRXShort 0x03 Number of frames received which were too short.

kIDCounterRXLong 0x04 Number of frames received which were too long.

kIDCounterRXError 0x05 Number of packets received with errors (typically CRC errors).

kIDCounterRXFCS 0x06 Number of incoming packets with FCS errors.

kIDCounterRXAbort 0x07 Number of incoming packets aborted.

kIDCounterTXFrame 0x08 Number of frames transmitted.

kIDCounterTXByte 0x09 Number of bytes transmitted.

kIDCounterDIP4Error 0x0A Endace internal use only.

kIDCounterDIP4PlError 0x0B Endace internal use only.

kIDCounterBurstError 0x0C Endace internal use only.

kIDCounterPlError 0x0D Endace internal use only.

kIDCounterDebug 0x0E Endace internal use only.

kIDCounterFilter 0x0F Reserved value.

kIDCounterB1Error 0x10 Endace internal use only.

kIDCounterB2Error 0x11 Endace internal use only.

kIDCounterB3Error 0x12 Endace internal use only.

kIDCounterRXErr 0x13 Number of packets received with errors (typically CRC errors).

kIDCounterSpaceError 0x14 Endace internal use only.

kIDCounterContWdError 0x15 Endace internal use only.

kIDCounterPlContError 0x16 Endace internal use only.

kIDCounterTRDip4Error 0x17 Endace internal use only.

kIDCounterResvWd 0x18 Endace internal use only.

kIDCounterAddrError 0x19 Endace internal use only.

kIDCounterOOFPeriod 0x1A Endace internal use only.

kIDCounterNbOOF 0x1B Endace internal use only.

 Counters and Statistics API - Structures

©2011 Endace Technology Ltd. Confidential - Version 4 - November 2011 9

dag_counter_type_t typeID Description

kIDCounterTXOOFPeriod 0x1C Endace internal use only.

kIDCounterTXNbOOF 0x1D Endace internal use only.

kIDCounterTXError 0x1E Endace internal use only.

kIDCounterStatFrError 0x1F Endace internal use only.

kIDCounterDip2Error 0x20 Endace internal use only.

kIDCounterPatternError 0x21 Endace internal use only.

kIDCounterRXStreamPacket 0x22 Number of packets received per stream.

kIDCounterRXStreamByte 0x23 Number of bytes received per stream.

kIDCounterTXStreamPacket 0x24 Number of packets transmitted per stream.

kIDCounterTXStreamByte 0x25 Number of bytes transmitted per stream.

kIDCounterPortDrop 0x26 Packets dropped per port.

kIDCounterStreamDrop 0x27 Packets dropped per stream.

kIDCounterSubStreamDrop 0x28 Unused.

kIDCounterFilterDrop 0x29 Packets dropped by filters.

kIDCounterIdleCell 0x35 Unused.

kIDCounterTxClock 0x36 Unused.

kIDCounterRxClock 0x37 Unused.

kIDCounterDuckOverflow 0x38 Unused.

kIDCounterPhyClockNominal 0x39 Unused.

Counters and Statistics API - Structures

10 ©2011 Endace Technology Ltd. Confidential - Version 4 - November 2011

Blocks
The following explains the structure of a block, dag_block_type_t:

typedef enum

{

 kIDBlockDebug = 0x0,

 kIDBlockEthFramerRx = 0x11,

 kIDBlockEthFramerTx = 0x12,

 kIDBlockEthFramerRxTx = 0x13,

 kIDBlockSonetFramerRx = 0x21,

 kIDBlockSonetFramerTx = 0x22,

 kIDBlockSonetFramerRxTx = 0x23,

 kIDBlockStreamRx = 0x31,

 kIDBlockStreamTx = 0x32,

 kIDBlockStreamRxTx = 0x33,

 kIDBlockStreamDropRx = 0x41,

 kIDBlockStreamDropTx = 0x42,

 kIDBlockStreamDropRxTx = 0x43,

 kIDBlockDropRx = 0x51,

 kIDBlockDropTx = 0x52,

 kIDBlockDropRxTx = 0x53,

 kIDBlockPortDropRx = 0x61,

 kIDBlockPortDropTx = 0x62,

 kIDBlockPortDropRxTx = 0x63,

 kIDBlockFilterRx = 0x71,

 kIDBlockFilterTx = 0x72,

 kIDBlockFilterRxTx = 0x73,

 kIDBlockPatternRx = 0x81,

 kIDBlockPatternTx = 0x82,

 kIDBlockPatternRxTx = 0x83,

 kIDBlockFrontEndFrequencyReferenceRx = 0xa1,

 kIDBlockFrontEndFrequencyReferenceTx = 0xa2,

 kIDBlockFrontEndFrequencyReferenceRxTx = 0xa3

} dag_block_type_t;

 Counters and Statistics API - Function Descriptions

©2011 Endace Technology Ltd. Confidential - Version 4 - November 2011 11

Function Descriptions
This chapter explains the various functions which are exposed by the Configuration and Status API to read the
counters.

Component Implementation
The CSI is implemented as a component called counter_interface in file counter_interface_component.c

located in /lib/libdagconf/components/.

The usual function for a component has been implemented:

<component name>_get_new_component,

<component name>_post_initialize,

<component name>_reset,

<component name>_default,

<component name>_dispose,

<component name>_update_register_base.

Printing of Counters and Statistic Registers
In order to display the various counters and statistics, a new function has been created; print_univ_counters

in file counter_printing.c located in tools/dagconfig/.

Others files modified to implement the component:

/tools/dagconfig/process_cmdline.c

/tools/dagconfig/process_cmdline.h

/tools/dagconfig/dagconfig.c

/lib/libdagconf/cards/dagx_impl.c

Functions

dag_config_get_number_block function

Purpose
Return the number of block(s) of this card

Declared In
dag_config.h

Prototype
uint32_t dag_config_get_number_block(dag_card_ref_t card_ref)

Parameters
→ card_ref

 Reference of the DAG card

Returns
Number of block (counter statistic interface) of the DAG card.

Counters and Statistics API - Function Descriptions

12 ©2011 Endace Technology Ltd. Confidential - Version 4 - November 2011

dag_config_get_number_counters function

Purpose
Return the number of counter(s) for a particular block

Declared In
dag_config.h

Prototype
uint32_t dag_config_get_number_counters(dag_card_ref_t card_ref, dag_block_type_t

block_type)

Parameters
→ card_ref

 Reference of the DAG card

→ block_type

 Type of csi block

Returns
Number of statistic counter(s) for the block “block type”

dag_config_get_number_all_counters function

Purpose
Return the total number of counter(s) of this card

Declared In
dag_config.h

Prototype
uint32_t dag_config_get_number_counters(dag_card_ref_t card_ref)

Parameters
→ card_ref

 Reference of the DAG card

Returns
Number of statistic counter(s) of the DAG card.

dag_config_get_counter_id_subfct function

Purpose
Return the id and the sub-function of counters in a specific block.

Declared In
dag_config.h

Prototype
uint32_t dag_config_get_counter_id_subfct(dag_card_ref_t card_ref, dag_block_type_t

block_type, dag_counter_value_t counter_id[], uint32_t size)

Parameters
→ card_ref

 Reference of the DAG card

→ block_type

 Type of csi block

→ counter_id[]

 returned array of dag_counter_value_t structure.

→ size

 Size of counter_id array.

Returns
Number of statistic counter(s) found for the block “block type”.

 Counters and Statistics API - Function Descriptions

©2011 Endace Technology Ltd. Confidential - Version 4 - November 2011 13

dag_config_get_all_block_id function

Purpose
Return all block ids.

Declared In
dag_config.h

Prototype
uint32_t dag_config_get_all_block_id(dag_card_ref_t card_ref, uint32_t block_id[],

uint32_t size)

Parameters
→ card_ref

 Reference of the DAG card

→ block_type

 Type of csi block

→ block_id[]

 returned array of uint32_t. Contains all block ids.

→ size

 Size of block_id array.

Returns
Number of statistic counter(s) found for the block “block type”.

dag_config_latch_clear_all function

Purpose
Latch and clear all the csi blocks.

Declared In
dag_config.h

Prototype
void dag_config_latch_clear_all(dag_card_ref_t card_ref)

Parameters
→ card_ref

 Reference of the DAG card

Returns
N/A

Comments
This function is called by dag_config_read_all_counters, dag_config_read_counter and
print_univ_counters (counter_printing.c).

dag_config_latch_clear_block function

Purpose
Latch and clear a specific csi block.

Declared In
dag_config.h

Prototype
void dag_config_latch_clear_all(dag_card_ref_t card_ref, dag_block_type_t block_type)

Parameters
→ card_ref

 Reference of the DAG card

→ block_type

 Type of csi block

Returns
N/A

Counters and Statistics API - Function Descriptions

14 ©2011 Endace Technology Ltd. Confidential - Version 4 - November 2011

dag_config_read_single_block function

Purpose
Return the value of all counters in a specific csi block.

Declared In
dag_config.h

Prototype
uint32_t dag_config_read_single_block(dag_card_ref_t card_ref, dag_block_type_t

block_type, dag_counter_value_t countersTab[], uint32_t size, int lc)

Parameters
→ card_ref

 Reference of the DAG card

→ block_type

 Type of csi block

→ countersTab

 Table of counter's structures

→ int size

 Size of countersTab

→ int lc

 Latch and clear option (0 = no latch and clear, 1 = latch and clear the block
before reading the values)

Returns
Return the number of counters in the specific csi block

dag_config_read_all_counters function

Purpose
Read all counters of the card and stock their parameters in a table

Declared In
dag_config.h

Prototype
uint32_t dag_config_read_all_counters(dag_card_ref_t card_ref, dag_counter_value_t

countersTab[], uint32_t size, int lc)

Parameters
→ card_ref

 Reference of the DAG card

→ countersTab

 Table of counter's structures

→ int size

 Size of countersTab

→ int lc

 Latch and clear option (0 = no latch and clear, 1 = latch and clear the block
before reading the values)

Returns
Return the number of counters

 Counters and Statistics API - Function Descriptions

©2011 Endace Technology Ltd. Confidential - Version 4 - November 2011 15

dag_config_read_single_counter function

Purpose
Get the value of single counters on the card

Declared In
dag_config.h

Prototype
uint64_t dag_config_read_single_counter(dag_card_ref_t card_ref, dag_block_type_t

block_type, dag_counter_type_t counter_type, dag_subfct_type_t subfct_type)

Parameters
→ card_ref

 Reference of the DAG card

→ block_type

 Type of csi block

→ counter_type

 Type ID of counter

→ subfct_type

 Type of sub-function

Returns
Return the value of a specific counter

 Counters and Statistics API - Sample Code

©2011 Endace Technology Ltd. Confidential - Version 4 - November 2011 17

Sample Code
The following sample code displays the counters applicable to a specified DAG card.

void print_univ_counters(dag_card_ref_t card)

{

 dag_counter_value_t *counters=NULL;

 uint32_t nb_count = 0;

 uint32_t nb_block = 0;

 int nb_count_s = 0;

 int i, j;

 uint32_t *block_id = NULL;

 char interface_name[10];

 nb_block = dag_config_get_number_block(card);

 nb_count = dag_config_get_number_all_counters(card);

 dag_config_latch_clear_all(card);

 if (nb_block > 0)

 {

 printf("\n**** Number of blocks: %d \nTotal number of counters: %d \n",

nb_block, nb_count);

 block_id = (uint32_t *)malloc(nb_block*sizeof(int32_t));

 for(j = 0; j < nb_block; j++)

 {

 nb_block = dag_config_get_all_block_id(card, block_id, nb_block);

 nb_count_s = dag_config_get_number_counters(card,

(dag_block_type_t)block_id[j]);

 if (nb_count > 0)

 {

 printf("Nb of counter(s) in Block ID \"%s\": %d\n",

id_block_to_string(block_id[j]), nb_count_s);

 counters =

(dag_counter_value_t*)malloc(nb_count*sizeof(dag_counter_value_t));

 nb_count_s = dag_config_read_single_block(card,

(dag_block_type_t)block_id[j], counters, nb_count_s, 0);

 /* print value of counters */

 for (i=0; i < nb_count_s; i++)

 {

 if(counters[i].subfct == 0x00)

 strcpy(interface_name,"Port");

 else if(counters[i].subfct == 0x01)

 strcpy(interface_name,"Stream");

 else if (counters[i].subfct == 0x02)

 strcpy(interface_name,"Filter");

 else if (counters[i].subfct == 0x03)

 strcpy(interface_name,"General");

 printf(" %20s :%10s : %2d : value = %"PRIu64"\n",

id_counter_to_string(counters[i].typeID),

interface_name,counters[i].interface_number,counters[i].value);

 }

 printf("\n");

 free(counters);

 }

 else

 printf("No counters in block %s.\n",

id_block_to_string(block_id[j]));

Counters and Statistics API - Sample Code

18 ©2011 Endace Technology Ltd. Confidential - Version 4 - November 2011

 }

 free(block_id);

 }

 else

 printf("No blocks \n");

}

 Counters and Statistics API - Version History

©2011 Endace Technology Ltd. Confidential - Version 4 - November 2011 19

Version History

Version Date Reason

1 4-Jan-07 Initial revision.

2 11-July-08 Updated Subfunction Type.

2.1 18 July 2008 Updated to Endace template.

3 September 2009 Updated for software release 3.4.1. Updated front matter. Revised
document order. Added Types of Counters. Added Blocks. Minor changes.

4 November 2011 Updated branding.

