

DAG Programming Guide
EDM04-19

EDM04-19v19 DAG_Programming_Guide

 ©2007 - 2010 Endace Technology Ltd. Confidential - Version 19 - June 2010

Protection Against Harmful Interference
When present on equipment this manual pertains to,
the statement "This device complies with part 15 of
the FCC rules" specifies the equipment has been
tested and found to comply with the limits for a Class
A digital device, pursuant to Part 15 of the Federal
Communications Commission [FCC] Rules.

These limits are designed to provide reasonable
protection against harmful interference when the
equipment is operated in a commercial environment.

This equipment generates, uses, and can radiate
radio frequency energy and, if not installed and used
in accordance with the instruction manual, may cause
harmful interference to radio communications.

Operation of this equipment in a residential area is
likely to cause harmful interference in which case the
user will be required to correct the interference at
their own expense.

Extra Components and Materials
The product that this manual pertains to may include
extra components and materials that are not essential
to its basic operation, but are necessary to ensure
compliance to the product standards required by the
United States Federal Communications Commission,
and the European EMC Directive. Modification or
removal of these components and/or materials, is
liable to cause non compliance to these standards,
and in doing so invalidate the user’s right to operate
this equipment in a Class A industrial environment.

Disclaimer
Whilst every effort has been made to ensure
accuracy, neither Endace Technology Limited nor any
employee of the company, shall be liable on any
ground whatsoever to any party in respect of
decisions or actions they may make as a result of
using this information.

Endace Technology Limited has taken great effort to
verify the accuracy of this manual, but nothing herein
should be construed as a warranty and Endace shall
not be liable for technical or editorial errors or
omissions contained herein.

In accordance with the Endace Technology Limited
policy of continuing development, the information
contained herein is subject to change without notice.

Website
http://www.endace.com

Copyright 2007 - 2010 Endace Technology
Ltd. All Rights reserved
No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or
by any means electronic, mechanical, photocopying,
recording, or otherwise, without the prior written
permission of the Endace Technology Limited.

Endace, the Endace logos, and DAG, are trademarks
or registered trademarks in New Zealand, or other
countries, of Endace Technology Limited. All other
product or service names are the property of their
respective owners. Product and company names used
are for identification purposes only and such use does
not imply any agreement between Endace and any
named company, or any sponsorship or endorsement
by any named company.

Use of the Endace products described in this
document is subject to the Endace Terms of Trade
and the Endace End User License Agreement (EULA).

 EDM04-19v19 DAG_Programming_Guide

©2007 - 2010 Endace Technology Ltd. Confidential - Version 19 - June 2010 i

Contents
Introduction 1
Purpose .. 1
Related Documents ... 1

Collecting network data 3
Providing network packet information ... 3

Capture data .. 3
libpcap library .. 3
Native C language .. 3

DAG card functionality ... 4
Overview ... 4
PCI burst manager ... 4

C Application Programming Interface 5
Receive model .. 6

dag_advance_stream .. 6
dag_rx_stream_next_record.. 6

Transmit model ... 7
dag_tx_get_stream_space .. 7
dag_tx_stream_copy_bytes ... 7

dagapi h Header file .. 8
dag_open .. 8
dag_close .. 8
dag_configure .. 9
dag_attach_stream ... 10
dag_attach_stream_protection .. 11
dag_detach_stream .. 11
dag_set_mode ... 11
dag_start_stream ... 12
dag_stop_stream ... 12
dag_get_stream_poll .. 13
dag_set_stream_poll .. 14
dag_get_stream_buffer_size ... 14
dag_get_stream_buffer_virt_base_address .. 14
dag_get_stream_phy_buffer_address .. 14
dag_get_stream_buffer_level .. 15
dag_get_stream_last_buffer_level ... 15
dag_rx_get_stream_count .. 15
dag_tx_get_stream_count .. 16
dag_tx_get_stream_space .. 16
dag_tx_stream_commit_bytes ... 17
dag_tx_stream-copy_bytes ... 17
dag_rx_stream_next_record.. 18
dag_rx_stream_next_inline ... 19
dag_advance_stream .. 21
dag_get_last_error ... 22
dag_set_param .. 22
dag_info .. 22
dag_iom .. 22
dag_get_erf_types ... 23
dag_get_stream_erf_types.. 23
dag_set_ stream_erf_types ... 23
dag_get_interface_count .. 24
dag_parse_name .. 24

EDM04-19v19 DAG_Programming_Guide

ii ©2007 - 2010 Endace Technology Ltd. Confidential - Version 19 - June 2010

dag_getname.. 24
Deprecated functions ... 25

dag_mmap ... 25
dag_start .. 25
dag_stop .. 25
dag_offset .. 26
dag_get_pollparams .. 26
dag_set_pollparams .. 26

Example usage 27
Single record receive .. 27
Multiple copy receive .. 28
Zero copy transmit ... 30
Copy with transmit ... 31

Version History 33

 EDM04-19v19 DAG_Programming_Guide - Introduction

©2007 - 2010 Endace Technology Ltd. Confidential - Version 19 - June 2010 1

Introduction
DAG cards are a series of high performance PCI cards designed for packet capture on IP networks.
Packet and cell transmission is also supported on some cards.

Various DAG card versions have been produced to support different physical layer interfaces. There are
methods for accessing the DAG cards for both passive packet capture and for packet transmission.

Purpose
The purpose of this DAG Programming Guide is to identify and explain:

• Collecting Network Data (page 3)
• The C Application Program Interface (page 5)
• Examples of Usage (page 27)

Related Documents
The DAG cards produce trace files in its own native format called ERF (Extensible Record Format). The
ERF type depends upon the type of connection you are using to capture data.

The following document provides additional information relating to ERF formats. This document is
available on the Endace website at https://support.endace.com/.

• EDM11-01 ERF types

This document is applicable to the DAG software release 4.0.0 or greater.

Also refer to the Doxygen output on the DAG Documentation and Software CD.

 EDM04-19v19 DAG_Programming_Guide - Collecting network data

©2007 - 2010 Endace Technology Ltd. Confidential - Version 19 - June 2010 3

Collecting network data

Providing network packet information
Collecting network data is based on providing network packet information and the DAG card functions. In
passive capture mode all DAG cards reflect the arrival of a packet, or ATM cell, as a record within a large
circular memory buffer provided by the PC host computer system.
An Extensible Record Format [ERF] record consists of a fixed size header that includes a high precision
time stamp followed by data. This is a portion, or all, of the original packet present on the network link
under observation and a small number of optional padding bytes to enforce alignment.
There are three methods of using DAG cards in order to provide network packet information:

Capture data
The first method is using the provided utility program dagsnap as a simple way to capture network data.

dagsnap can write a file to disk containing the packet records in sequential order as presented by the
DAG card. Such a trace file may later be processed by an analysis package.

If no output filename is specified, dagsnap will write to stdout, allowing the data to be piped into an
analysis package that reads from its stdin.

Although simple to prototype, this is not a high performance interface since all network trace data must
pass through the UNIX pipe causing multiple memory copies and creating a bottleneck in the CPU-
memory path. PC-based computer systems can achieve between 400 – 1000 Mbytes/sec read/write
performance when accessing non-cached data in main memory. When data is copied twice (or more) the
effective throughput lowers to a bandwidth comparable to Gigabit Ethernet.

libpcap library
The libpcap library available from www.tcpdump.org (http://www.tcpdump.org) now includes direct
support for DAG cards. This allows any program written for the libpcap API to capture directly from DAG
cards.

The DAG card is not a NIC (network interface card) and a more efficient, memory-mapped access is
provided than is possible using NIC cards and drivers. This allows libpcap applications zero-copy access to
packet headers and contents.

Native C language
The third and most efficient method for retrieving network data is the native C language API. The C
language API offers the highest performance by providing a low-overhead zero-copy memory-mapped
interface to the DAG card. This API is described in detail in the C Application Programming Interface
(page 5) section in this manual.

http://www.tcpdump.org/�

EDM04-19v19 DAG_Programming_Guide - Collecting network data

4 ©2007 - 2010 Endace Technology Ltd. Confidential - Version 19 - June 2010

DAG card functionality

Overview
DAG cards consist of:

• Line interface hardware
• A physical layer
• A packet processor that timestamps packet arrivals using the DAG Universal Clock Kit [DUCK] and

creates the packet records
• An optional processing element
• The PCI Burst Manager [PBM] which writes packet records over the PCI bus into the host computer.
The physical layer interface is configured using external tools, such as the dagthree program for the
DAG 3.6 series. These tools report and set all physical layer attributes such as SONET scrambling and
loopback. They are designed to be easily scriptable, and should be called at least once before the
measurement software is run.
The packet processor controls such things as the ERF record length, and padding options. These packet
processor options are also configurable with external tools.

PCI burst manager
The PCI burst manager does not require user configuration apart from controls to start and stop the
measurement of network data and the allocation of memory between streams.
A large memory space is reserved per card at boot time by the dagmem driver. This memory space can
then be divided into one or more large circular buffers, called streams. Receive streams use even
identifiers, 0, 2, 4 for example, while transmit streams use odd identifiers 1, 3, 5 for example.

A particular firmware set for a DAG card will have a maximum number of transmit and receive streams
that it can support. The traditional receive-only DAG firmware application that is supplied with all DAG
cards supports a single receive stream (0), and no transmit streams. Firmware that supports other
stream configurations is available under separate licenses.

During receive operations the PCI burst manager receives packet records from the packet processor, and
writes them into a receive stream buffer in host PC memory via Bus Mastering DMA. The PCI burst
manager provides an indication to the driver of where it has filled the buffer to, the producer pointer, and
will cease writing when the buffer is full. When the buffer becomes full, records are lost until the
condition is cleared. Lost packets are counted and reported both in and out-of-band, described later.

The DAG API manages the consumer pointer, moving it forward as packet records are consumed by user
programs in order to clear more space in the circular buffer. During transmit operations the user writes
packets to be transmitted into a transmit stream buffer, which is also a large circular buffer in PC
memory. The buffer pointers are then updated to reflect the new data available for transmission.
The PCI burst manager reads the data from the stream via Bus Mastering DMA and sends it to the
physical layer for transmission.

 EDM04-19v19 DAG_Programming_Guide - C Application Programming Interface

©2007 - 2010 Endace Technology Ltd. Confidential - Version 19 - June 2010 5

C Application Programming Interface
The programmer’s interface to the DAG cards is exposed via a static or shared C library, libdag.

While it is possible to make operating system calls directly to the DAG device driver, this is discouraged
as the kernel driver interface is subject to change without notice. The use of this library also aids
portability.

The API provides data capture and transmission functionality. Functions include:

• Card open
• Buffer memory mapping
• Buffer pointer handling
• Packet record reception
• Packet record transmission
• Steam Status
• Inline forwarding of packets (on transmit-capable DAG cards)
• Card close
Functions not currently provided by the API include:

• Card reset
• Xilinx image loading
• Hardware configuration
These may be addressed through the provided utilities, dagreset, dagld, dagrom, dagconfig,
dagclock. The public interface to libdag is defined in the header file dagapi.h.

dagthree, dagfour, dagsix are deprecated and replaced with dagconfig.

EDM04-19v19 DAG_Programming_Guide - C Application Programming Interface

6 ©2007 - 2010 Endace Technology Ltd. Confidential - Version 19 - June 2010

Receive model
The C API provides support for packet transmission, and the concept of multiple buffers per DAG card,
called streams. Each stream consists of a buffer which can be used for either receiving or transmitting
ERF packet records. Each stream can be addressed individually, with each receive stream presenting
similar functionality to the traditional single buffer API.

 Capture on each stream can be started and stopped independently, but the streams cannot be
considered fully independent as some operations such as resets are available only globally.

There are two access methods available for receive streams:

dag_advance_stream
The dag_advance_stream (page 21) function operates similarly to the dag_offset (page 26)
(deprecated) function from API v1.2. It provides a pair of record aligned pointers into the stream buffer.
The bottom pointer indicates where the next record begins.
The top pointer indicates the upper limit of available data. The user then steps through the records using
the record length field from the ERF header until they reach the top pointer. They then pass in the top
pointer as the new bottom pointer, freeing the processed space in the buffer. When
dag_advance_stream returns it will indicate the boundaries of a new block of data.
The dag_advance_stream method is the most efficient interface, as it can pass large blocks of records to
the user with a single call.
However it does require the user to parse through the buffer content in order to process each record . A
simpler interface, dag_rx_stream_next_record (page 18) is also provided.

dag_rx_stream_next_record
The dag_rx_stream_next_record (page 18) function can be used in place of the dag_advance_stream
(page 21) call. This function can simply be called repeatedly, each time returning a pointer to the
beginning of the next available ERF packet record.

Buffer pointer management, freeing buffer space, and stepping through the available records are all
implemented by the library. The disadvantage is that a function call on every packet is less efficient than
the block oriented dag_advance_stream method, with approximately 10% higher overhead.

 EDM04-19v19 DAG_Programming_Guide - C Application Programming Interface

©2007 - 2010 Endace Technology Ltd. Confidential - Version 19 - June 2010 7

Transmit model
Packet transmission is accomplished via transmit streams. Two access methods are provided for packet
transmission:

dag_tx_get_stream_space
If the user application can construct its packet in a provided buffer, the user can call
dag_tx_get_stream_space (page 16) to get a pointer into the stream buffer at which it can directly
write one or more ERF records.

The user then calls dag_tx_stream_commit_bytes (page 17) to commit the appropriate number of bytes
for transmission. This process is repeated to send further packets.

dag_tx_stream_copy_bytes
If the user wishes to transmit ERF packet records that are already present in memory in a user buffer,
then dag_tx_stream_copy_bytes (page 17) is called.

This call will copy the ERF records from the user buffer into the DAG stream buffer and commit them for
transmission. It is not necessary to call dag_tx_get_stream_space (page 16). This method is less
efficient as the ERF records must be copied at least once by the CPU from the user buffer to the stream
buffer.

ERF records must be 64-bit aligned for transmission.

EDM04-19v19 DAG_Programming_Guide - C Application Programming Interface

8 ©2007 - 2010 Endace Technology Ltd. Confidential - Version 19 - June 2010

dagapi h Header file
The C header file contains functions for the DAG application programming interface:

dag_open
Purpose
The dag_open function is used in place of the system open function. The function is as follows:

int dag_open(char *dagname);

Function
It is passed a string containing the DAG device node, "dag0", for example and returns a valid UNIX file
descriptor if successful.

If an error occurs it returns -1 with errno set as follows:

• ENOMEM (out of memory)
• ENFILE (too many open files for process)
• EIO (fatal internal error)
• ENODEV (the DAG card does not support packet capture)
• Error codes as for ioctl(2), mmap(2).

dag_close
Purpose
The dag_close close function terminates the access to a given DAG device represented by dagfd. The
function is as follows:

int dag_close(int dagfd);

Function
The function returns zero if successful, otherwise it returns -1 with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)

• Error codes as for close(2)

 EDM04-19v19 DAG_Programming_Guide - C Application Programming Interface

©2007 - 2010 Endace Technology Ltd. Confidential - Version 19 - June 2010 9

dag_configure
Purpose
The dag_configure function allows user control over all parameters required to configure a card for a
measurement session to be carried out. The function is as follows:

int dag_configure(int dagfd, char *params);

Function
The params parameter is a string of configuration words separated by white space. Most configuration
parameters will be identical to the ones used by the configuration tool.

Options
The following options are implemented by dag_configure:

dag_configure Description

slen=<N> Set packet capture length to N bytes. N will be rounded down to nearest multiple of four.
Packets longer than N bytes will be truncated to N.

varlen Set capture record mode to variable length. Packets shorter than slen will produce short
records.

novarlen Set capture record mode to fixed length. Packets shorter than slen will be padded to slen.
fixed Same as novarlen.
ncells=<N> Only for ATM capture mode on the DAG 3.5. N is 0-15, and specifies the number of cells to

return from the start of each AAL5 frame. The DAG 3.5 is capable of tracking the state of
many VPI/VCIs at once. If N is 0 all cells are captured, including OAM and RM cells which are
dropped otherwise.

(no)lcells Only for ATM capture mode on the DAG 3.5, where ncells>0. If set, the last cell of the AAL5
frame containing the AAL5 trailer will always be captured.
For example if ncells=3 and lcell is set, the first, second, third, and seventh cells will be
captured from a seven cell AAL5 frame.

The function returns zero if successful, otherwise it returns -1 with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)

• EINVAL (params contained an invalid token)

• EIO (fatal internal error)
• ENODEV (no such device)
• Error codes as for lseek(2), read(2), fork(2), execvp(2), execlp(2), execve(2),

wait(2)

EDM04-19v19 DAG_Programming_Guide - C Application Programming Interface

10 ©2007 - 2010 Endace Technology Ltd. Confidential - Version 19 - June 2010

dag_attach_stream
Purpose
The dag_attach_stream function provides the user access to a particular receive or transmit data
stream on a DAG card. The function is as follows:

int dag_attach_stream(int dagfd, int stream_num,
uint32_t flags, uint32_t extra_window_size);

Function
It performs per-stream locking, and memory mapping functions. The DAG descriptor dagfd is provided
by dag_open (page 8). The stream_num is an integer in the range 0 to MAX_INTERFACES that indicates
which stream to attach to. There are currently no flags defined.

To avoid seeing a packet record wrap over from the top of the circular buffer, a portion of the circular
buffer is mapped into memory twice. This allows a record that would otherwise be split across the buffer
boundary to appear contiguous. Traditionally the entire buffer is mapped twice.

For example, a physical 32MB buffer space would be mapped into user-space twice, consuming 64MB of
that process’s virtual memory. This permits operation of the circular buffer with no restriction on how
often buffer space must be cleared. When extra_window_size has the special value 0, this behavior is
maintained. This can consume significant quantities of process virtual memory however when large
physical buffers are used, such as 512MB. The extra_window_size parameter can be used to specify
the size of the second buffer mapping. For example, with a 32MB physical buffer and
extra_window_size set to 4MB, only 36MB of process virtual memory is used.

When using the dag_advance_stream (page 21) access method if extra_window_size is non-zero, the
user must never process more than extra_window_size before calling dag_advance_stream again.
This allows dag_advance_stream to normalize the buffer pointers into the lower buffer mapping before
the top of the second buffer mapping is reached.

When using the dag_rx_stream_next_record (page 18) access method, extra_window_size must be
at least as large as the maximum size packet possible on the link medium. For efficiency
extra_window_size should be at least several megabytes, 4MB is a reasonable default.

When attaching a stream for transmission, extra_window_size must be set equal to or greater than the
maximum sized block of data that is to be transmitted at once. For backwards compatibility, or if a user is
unsure, the extra_window_size is set to zero.

Setting the extra_window_size does not affect the physical memory consumption. Setting the
extra_window_size only conserves the process virtual memory. Endace recommends setting the
extra_window_size to zero unless process virtual memory is at a premium.

The function returns zero if successful, otherwise MAP_FAILED is returned with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)

• EACCES (stream is locked by another process)
• EINVAL (stream_num is invalid or extra_window_size is too large)

• ENOMEM (stream has no memory allocated)
• ENODEV (the DAG does not support packet capture)
• EIO (fatal internal error)
• Error codes as for ioctl(2), malloc(2), mmap(2)

Obsoletes
The dag_attach_stream function obsoletes dag_mmap (page 25).

 EDM04-19v19 DAG_Programming_Guide - C Application Programming Interface

©2007 - 2010 Endace Technology Ltd. Confidential - Version 19 - June 2010 11

dag_attach_stream_protection
Purpose
The dag_attach_stream_protection function reserves a stream on a DAG card and maps its memory
buffer into the processes address space. The function is as follows:

int dag_attach_stream_protection(int dagfd, int stream_num, uint32_t flags,
uint32_t extra_window_size, int protection);

Function
The function returns zero if successful, otherwise it returns -1 with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)

• EINVAL (stream_num is invalid)

• Error codes as for dag_attach_stream (page 10).

dag_detach_stream
Purpose
The dag_detach_stream function releases a stream on a DAG card. The function is as follows:

int dag_detach_stream(int dagfd, int stream_num)

Function
The per-stream lock is released, allowing other processes to attach to the stream, and the stream buffer
is unmapped from user space. It should be called when the stream is no longer required by the
application.

The function returns zero if successful, otherwise it returns MAP_FAILED with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)

• EINVAL (stream_num is invalid)

• Error codes as for ioctl(2)

dag_set_mode
Purpose
The dag_set_mode function sets the mode of RX and TX. Normal mode is set for normal DAG card usage
and reverse mode is set for usage with vDAG. The function is as follows:

int dag_set_mode(int dagfd, int stream_num, uint32_t mode);

Function
The function returns zero if successful, otherwise it returns -1 with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)

• EINVAL (stream_num is invalid)

• Error codes as for ioctl(2)

EDM04-19v19 DAG_Programming_Guide - C Application Programming Interface

12 ©2007 - 2010 Endace Technology Ltd. Confidential - Version 19 - June 2010

dag_start_stream
Purpose
The dag_start_stream function starts a stream on a DAG card. The function prototype is

int dag_start_stream(int dagfd, int stream_num);

Function
The stream must be attached before it can be started. The function returns zero if successful, otherwise
it returns -1 with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)

• EBUSY (the stream is already started)
• ENODEV (the DAG does not support packet capture)
• EINVAL (stream_num is not attached)

• EIO (fatal internal error)
• ETIMEDOUT (communication with card failed)
• Error codes as for ioctl(2)

Obsoletes
The dag_start_stream function obsoletes dag_start (page 25) (deprecated).

dag_stop_stream
Purpose
The dag_stop_stream function stops the packet capture session. The function is as follows:

int dag_stop_stream(int dagfd, int stream_num);

Function
The function returns zero if successful, otherwise it returns -1 with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)

• EINVAL (stream_num is not attached or stream_num is not started)

• ENODEV (the DAG does not support packet capture)

Obsoletes
The dag_stop_stream function obsoletes dag_stop (page 25) (deprecated).

 EDM04-19v19 DAG_Programming_Guide - C Application Programming Interface

©2007 - 2010 Endace Technology Ltd. Confidential - Version 19 - June 2010 13

dag_get_stream_poll
Purpose
The dag_get_stream_poll function reads the polling parameters in use for a particular stream. The
parameters are used in the function prototype:

int dag_get_stream_poll(int dagfd, int stream_num, uint32_t *mindata, struct
timeval *maxwait, struct timeval *poll);

Function
The DAG drivers avoid interrupts due to the associated overheads, using polling methods instead. The
amount of data that must be received before a call to dag_advance_stream (page 21) or
dag_rx_stream_next_record (page 18) will return is given by mindata. This defaults to 16 bytes, the
size of an ERF record header.

If mindata is zero, the receive functions will return immediately if no data is available, allowing non-
blocking behavior.

The maxwait parameter is the maximum amount of time the receive functions should wait before
returning. This overrides the mindata parameter, so that even if mindata is non-zero, the call will return
with 0 bytes available after maxwait time. By default the maxwait parameter is set to the special value
zero which means that it is disabled. This means that the receive calls will block indefinitely for mindata
bytes.

If mindata bytes are not available when the receive function is first called, the library will sleep for poll
time before checking for more data. This sleep avoids excessive polling traffic to the DAG card that may
waste bus bandwidth, and frees the CPU for other processes.

Each time the library wakes from a poll sleep, the timeout as set by maxwait is checked, and the function
will return if maxwait is exceeded. The default value of poll is 10ms, implying a maximum of 100 polls
per second when no data is available. The value of poll should always be less than or equal to the value
of maxwait, as the minimum sleep time is poll.

The poll sleep is implemented in user space using the POSIX.1b nanosleep(2) function. The current
implementation of this call in Linux is based on the normal kernel timer mechanism, which has a
resolution of 1/HZ, or 10ms on Linux/i386. This means that values of maxwait and poll less than 10ms
will result in additional delay up to 10ms.

If the application uses a real time scheduler such as SCHED_FIFO or SCHED_RR, then sleep values up to
2ms will be performed as busy-waits. This allows for faster and more accurate polling, but will lead to
high CPU utilization due to busy-waiting rather than releasing the CPU to the scheduler.

 The function returns zero if successful, otherwise it returns -1 with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)

• EINVAL (stream_num is not attached)

Obsoletes
The dag_get_stream_poll function obsoletes dag_get_pollparams (page 26) (deprecated).

EDM04-19v19 DAG_Programming_Guide - C Application Programming Interface

14 ©2007 - 2010 Endace Technology Ltd. Confidential - Version 19 - June 2010

dag_set_stream_poll
Purpose
The dag_set_stream_poll function is used to configure the polling parameters for an individual stream
when the defaults are not sufficient. The function is as follows:

int dag_set_stream_poll(int dagfd, int stream_num, uint32_t mindata, struct timeval
*maxwait, struct timeval *poll);

Function
The dag_set_stream_poll parameters are as detailed above for the dag_get_stream_poll (page 13)
function.

All the parameters must be supplied in each call. The function returns zero if successful, otherwise it
returns -1 with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)

• EINVAL (stream_num is not attached)

Obsoletes
The dag_set_stream_poll function obsoletes dag_set_pollparams (page 26) (deprecated).

dag_get_stream_buffer_size
Purpose
The dag_get_stream_buffer_size function returns the size of the stream buffer in bytes if successful.
The function is as follows:

int dag_get_stream_buffer_size(int dagfd, int stream_num);

Function
The stream must be attached in order to determine the size of its buffer. On failure it returns -1 with
errno set as follows:

• EBADF (dagfd is an invalid file descriptor)

dag_get_stream_buffer_virt_base_address
Purpose
The dag_get_stream_buffer_virt_base_address function reads the virtual base address of the stream
buffer. The function is as follows:

void* dag_get_stream_buffer_virt_base_address(int dagfd, int stream_num);

Function
The function returns the virtual base address of the stream if successful, otherwise it returns
-1 with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)

• EINVAL (stream_num is not attached)

dag_get_stream_phy_buffer_address
Purpose
The dag_get_stream_phy_buffer_address function returns the physical address of the stream buffer.
The function is as follows:

int dag_get_stream_phy_buffer_address(int dagfd, int stream_num);

Function
The function returns the physical address of the stream if successful, otherwise it returns -1 with errno
set as follows:

• EBADF (dagfd is an invalid file descriptor)

• EINVAL (stream_num is not attached)

 EDM04-19v19 DAG_Programming_Guide - C Application Programming Interface

©2007 - 2010 Endace Technology Ltd. Confidential - Version 19 - June 2010 15

dag_get_stream_buffer_level
Purpose
The dag_get_stream_buffer_level function returns the number of bytes currently outstanding in the
stream buffer. The function is as follows:

int dag_get_stream_buffer_level(int dagfd, int stream_num);

Function
For transmit streams this is the number of bytes that have been committed by the user but have not yet
been transmitted. Space allocated using dag_tx_get_stream_space (page 16) which has not been
committed for transmission is not counted.

 For receive streams this is the number of bytes of data available to the user for reading. This does
include bytes that the user may have read but has not yet freed by calling dag_advance_stream (page
21) or dag_rx_stream_next_record (page 18).

The dag_rx_stream_next_record routine may not free buffer space occupied by previously read
packets immediately for efficiency reasons.

The dag_rx_stream_next_record call reads hardware registers on the DAG card, so each call will
generate bus transactions. If polled at high rates this could potentially interfere with data capture or
transmission operations.

On failure it returns -1 with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)

• EINVAL (stream_num is not attached)

dag_get_stream_last_buffer_level
Purpose
The dag_get_stream_last_buffer_level function reads the last buffer level. The function is as
follows:

int dag_get_stream_last_buffer_level(int dagfd, int stream_num);

Function
The function returns the last buffer level if successful, otherwise it returns -1 with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)

• EINVAL (stream_num is not attached)

dag_rx_get_stream_count
Purpose
The dag_rx_get_stream_count function returns the number of receive streams supported by the DAG
with the current firmware load. The function is as follows:

int dag_rx_get_stream_count(int dagfd);

Function
This does not imply that all of the streams have memory allocated to their buffers. The DAG may support
a greater or lesser number of streams with different firmware.

The function returns the number of receive streams if successful, otherwise it returns -1 with errno set
as follows:

• EBADF (dagfd is an invalid file descriptor)

EDM04-19v19 DAG_Programming_Guide - C Application Programming Interface

16 ©2007 - 2010 Endace Technology Ltd. Confidential - Version 19 - June 2010

dag_tx_get_stream_count
Purpose
The dag_tx_get_stream_count function returns the number of transmit streams supported by the DAG
card with the current firmware load. The function is as follows:

int dag_tx_get_stream_count(int dagfd);

Function
This does not imply that all of the streams have memory allocated to their buffers. The DAG card may
support a greater or lesser number of streams with different firmware.

The function returns the number of transmit streams if successful, otherwise it returns -1 with errno set
as follows:

• EBADF (dagfd is an invalid file descriptor)

dag_tx_get_stream_space
Purpose
The dag_tx_get_stream_space function provides a pointer to size bytes of available space for the
indicated stream. The function is as follows:

void *dag_tx_get_stream_space(int dagfd, int stream_num, uint32_t size);

Function
It is necessary to acquire a pointer into the stream buffer at which to write the records to be transmitted.
When packet transmission is being performed using the zero-copy, the dag_tx_get_stream_space
function blocks the transmission until the requested space is available.

While polling for space to become available, it will sleep in poll time increments as set with
dag_set_stream_poll (page 14), freeing the CPU for other processes.

The function returns a pointer to the requested space if successful, otherwise it returns NULL with errno
set as follows:

• EBADF (dagfd is an invalid file descriptor)

• ENOTTY (stream_num is not a transmit stream)

• EINVAL (stream_num is not attached)

• ENOMEM (stream_num has no memory allocated)

 EDM04-19v19 DAG_Programming_Guide - C Application Programming Interface

©2007 - 2010 Endace Technology Ltd. Confidential - Version 19 - June 2010 17

dag_tx_stream_commit_bytes
Purpose
The dag_tx_get_stream_commit_bytes function provides a pointer to size bytes of available space for
the indicated stream. The function is as follows:

void *dag_tx_stream_commit_bytes(int dagfd, int stream_num, uint32_t size);

Function
In order to transmit data the first step for the user is to get a pointer to write to using
dag_tx_get_stream_space (page 16), then write their data at that location, and finally call
dag_tx_stream_commit_bytes (page 17) to indicate that the data can be sent.

No pointer to the bytes to be sent is required, as the API holds this internally. The parameter size is the
number of bytes that can be sent, this may be less than or equal to the size requested in the previous
call to dag_tx_get_stream_space, but must not be greater.

This function returns a pointer to the end of the transmitted block, but no data can be written at this
location until dag_tx_get_stream_space has been called again to ensure buffer space is available.

The function returns a pointer to the end of the transmitted block if successful, otherwise it returns NULL
with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)

• EINVAL (stream_num is not attached or size is larger than the stream buffer size)

• ENOMEM (stream_num has no memory allocated)

• ENOTTY (stream_num is not a transmit stream)

dag_tx_stream-copy_bytes
Purpose
The dag_tx_get_stream_copy_bytes function is used to transmit packets where the packet records are
already present in a user buffer. The function is as follows:

int dag_tx_stream_copy_bytes(int dagfd, int stream_num, void * orig, uint32_t
size);

Function
The records are copied from the user buffer into the stream buffer when space is available, and
committed for transmission. No other functions need be called when using this method, but it is less
efficient as the packet records must be copied by the CPU.

The pointer orig indicates the location of the user buffer to be copied, while size contains the number
of bytes to be copied and sent. The buffer to be sent does not have to be record aligned, but if the buffer
contains only the start of a packet record, that packet will not be transmitted from the DAG until the
remainder of the record is supplied.

This call will block until space is available in the transmit stream buffer for all of the supplied data to be
sent. The function returns the number of bytes successfully written if successful, otherwise it returns -1
with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)

• EINVAL (stream_num is not attached or size is larger than the stream buffer size)

• ENOMEM (stream_num has no memory allocated)

• ENOTTY (stream_num is not a transmit stream)

EDM04-19v19 DAG_Programming_Guide - C Application Programming Interface

18 ©2007 - 2010 Endace Technology Ltd. Confidential - Version 19 - June 2010

dag_rx_stream_next_record
Purpose
The dag_rx_stream_next_record function is used for receiving ERF records individually, rather than the
block oriented approach of dag_advance_stream(). The function is as follows:

void *dag_rx_stream_next_record(int dagfd, int stream_num);

Function
This is a simpler approach and may ease porting, but due to the function call per packet the overhead
may be 10% higher. The two methods should not be mixed on a single stream while the stream is
started. The function uses the stream poll parameters described under dag_get_stream_poll(). These
parameters define the blocking or non-blocking behavior, as well as the optional timeout and poll period.

If not configured with dag_set_stream_poll (page 14) the default stream parameters will cause
dag_rx_stream_next_record (page 18) to block when no data is available.

The function returns a pointer to a single ERF record if successful (the ERF header contains an rlen field
that specifies the size of the record). Otherwise it returns NULL with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)

• EINVAL (stream_num is not attached or size is larger than the stream buffer size)

• ENOMEM (stream_num has no memory allocated)

• ENOTTY (stream_num is not a receive stream)

• EIO (ERF record has an invalid ERF type)
• EAGAIN (timeouts are enabled and a timeout occurs when no data is available)
• Error codes as for dag_advance_stream (page 21).

 EDM04-19v19 DAG_Programming_Guide - C Application Programming Interface

©2007 - 2010 Endace Technology Ltd. Confidential - Version 19 - June 2010 19

dag_rx_stream_next_inline
Purpose
The dag_rx_stream_next_inline function is used for processing packets inline. It is the inline version
of dag_rx_stream_next_record (page 18). The function is as follows:

void* dag_rx_stream_next_inline (int dagfd, int rx_stream_num, int tx_stream_num

Function
The function can only be used with a DAG card that is capable of transmitting packets and configured
with the overlap option to set up the memory buffers for inline operation:

dagconfig –d dagN default overlap

The dagfwddemo program included in the tools directory of the DAG software release demonstrates the
inline capabilities of a DAG card and serves as a fully-functional example for programmers.

dagfwddemo applies a user-defined BSD Packet Filter [BPF] expression to each packet received and only
retransmits the packets that pass the filter.

Two streams are attached and started before this routine is used. One stream is for receive and the
other for transmit. The main loop of an inline packet processing application using
dag_rx_stream_next_record (page 18) will look similar to the following code:

while (keep_processing())
{
uint8_t* record = dag_rx_stream_next inline(uDagfd, RX_STREAM, TX_STREAM);
uint32_t bytes_to_commit;

process(record);
bytes_to_commit = ntohs(((dag_record_t *)record)
->rlen);

dag_tx_stream_commit_bytes(uDagfd, TX_STREAM,
bytes_to_commit);
}

Process Routine
The process routine has up to three functions to perform:

Function Routine

1: Determine action for packet Make application-specific determination about whether the packet is to
be dropped or retransmitted.

2: Set packet to drop.

If the packet is to be dropped then the rx error bit in the ERF header
flags byte must be set to 1.

3: Adjust iface field. If the packet is to be transmitted out to the opposite interface from
which it arrived, then the iface field in the ERF header flags must be
adjusted.

Interface Transmits
Some DAG card firmware has the capability to automatically rewrite the interface field in the ERF header
so that packets received on interface 0 are transmitted via interface 1 and vice versa.

If the DAG card has been configured to rewrite the interface field then the software does not need to
perform step 3: Adjust iface field described above.

EDM04-19v19 DAG_Programming_Guide - C Application Programming Interface

20 ©2007 - 2010 Endace Technology Ltd. Confidential - Version 19 - June 2010

Record Size
dag_rx_stream_next_inline returns a pointer to a single ERF record if successful, the ERF header
contains an rlen field that specifies the size of the record. Otherwise it returns NULL with errno set as
follows:

• EBADF (dagfd is an invalid file descriptor).

• ENOTTY (one of the stream numbers is invalid).
• EINVAL (one of the streams is not attached).
• EIO (the ERF record has an invalid ERF type. EIO is usually a fatal error and the capture session

must be stopped).

 EDM04-19v19 DAG_Programming_Guide - C Application Programming Interface

©2007 - 2010 Endace Technology Ltd. Confidential - Version 19 - June 2010 21

dag_advance_stream
Purpose
The dag_advance_stream function is used when receiving ERF records. The function is as follows:

void *dag_advance_stream(int dagfd, int stream_num, void **bottom);

Function
Since it can return more than one record to the user at a time, it can be more efficient than using
dag_rx_stream_next_record (page 18). It operates by returning a pair of pointers into the stream
buffer, which is mapped into the user process space in the dag_attach_stream (page 10) call. The
bottom parameter is a pointer to a void pointer. On the first call the void pointer can be NULL. On
subsequent calls, this should contain the address that the user has completed processing up to. The
function can change the value of the bottom pointer to renormalize the circular buffer, so it is doubly
referenced. The return value is a pointer to the top of the available buffer space. For example:

void *bottom=NULL, *top=NULL;
top = dag_advance_stream(dagfd, 0, &bottom);

Assuming the buffer is mapped into user space at 10000, bottom will now contain 10000, and if 10000
bytes were received top would contain 20000. Processing can now begin for ERF records, starting at
bottom (10000) and continue until you reach top (20000).

If the first 5000 bytes are processed and it is then decided to call dag_advance_stream again, the call
would be:

bottom = bottom + 5000;
top = dag_advance_stream(dagfd, 0, &bottom);

After this call bottom may still contain 15000, but top may be 25000 if a further 5000 bytes were
received while the initial 5000 bytes are being processed. If the circular buffer needs to be normalized,
then bottom can have a lower value after calling dag_advance_stream than what was passed in. The
process is always started from bottom. After calling dag_advance_stream the top pointer will always
have a higher value than the bottom pointer. Example code is provided below in section: Multiple copy
receive (page 28).

The function uses the stream poll parameters described under dag_get_stream_poll (page 13). These
parameters define the blocking or non-blocking behavior, as well as the optional timeout and poll period.
If not configured with dag_set_stream_poll (page 14) the default stream parameters will cause
dag_advance_stream to block when no data is available.

The function returns a pointer to the top of the available buffer space if successful, otherwise it returns
NULL with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)

• EINVAL (stream_num is not attached)

• ENOMEM (stream_num has no memory allocated)

• EIO (fatal internal error)
EIO is usually a fatal internal error and the capture session must be stopped and minimally restarted.

Obsoletes
The dag_advance_stream function obsoletes dag_offset (page 26).

EDM04-19v19 DAG_Programming_Guide - C Application Programming Interface

22 ©2007 - 2010 Endace Technology Ltd. Confidential - Version 19 - June 2010

dag_get_last_error
Purpose
The dag_get_last_error function returns the last errno from the DAG API. The function is as follows:

int dag_get_last_error(void);

Function
dag_get_last_error returns the error code of the last error.

dag_set_param
Purpose
The dag_set_param function enables or disables flush padding records for the DSMU module. The
function is as follows:

int dag_set_param(int dagfd, int stream_num, uint32_t param, void* value);

Function
The param parameter is the DAG_FLUSH_RECORDS attribute to be set, the value parameter is a pointer
to the value the parameter should be given. The dag_set_param function returns 0 if the parameter is
set successfully, otherwise the function returns -1 with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)

• EINVAL (stream_num is not attached or size is larger than the stream buffer size)

• EIO (fatal internal error)

dag_info
Purpose
The dag_info function returns the daginf_t from a DAG device. The function is as follows:

daginf_t* dag_info(int dagfd);

Function
dag_info returns daginf_t if the DAG device is found successfully, otherwise the function returns -1
with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)

dag_iom
Purpose
The dag_iom function returns the IO memory point for a DAG device. The function is as follows:

uint8_t* dag_iom(int dagfd);

Function
dag_iom returns the IO memory pointer if the DAG device is found successfully, otherwise the function
returns -1 with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)

 EDM04-19v19 DAG_Programming_Guide - C Application Programming Interface

©2007 - 2010 Endace Technology Ltd. Confidential - Version 19 - June 2010 23

dag_get_erf_types
Purpose
The dag_get_erf_types function returns the number of ERF types that can be received on the specified
DAG device. The function is as follows:

int dag_get_erf_types(int dagfd, uint8_t* erfs, int size);

Function
The erfs parameter is an array of bytes supplied by the user. The parameter size must be at least
TYPE_MAX, as this allows all ERF types to be announced, Endace recommends setting this size at 255.
The dag_get_erf_types function returns the number of ERF types detected if successful, otherwise the
function returns -1 with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)

• EINVAL (stream_num is not attached)

• EIO (fatal internal error)

dag_get_stream_erf_types
Purpose
The dag_get_stream_erf_types function returns a list of ERF types that can be received from a stream
on the specified DAG device. The function is as follows:

int dag_get_stream_erf_types(int dagfd, int stream_num, uint8_t* erfs, int size);

Function
The erfs parameter is an array of bytes supplied by the user. The parameter size must be at least
TYPE_MAX, as this allows all ERF types to be announced, Endace recommends setting this size at 255.
The dag_get_stream_erf_types function returns a 0 terminated list of ERF types found if successful,
otherwise the function returns -1 with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)

• EINVAL (stream_num is not attached)

• EIO (fatal internal error)

dag_set_ stream_erf_types
Purpose
The dag_set_stream_erf_types function sets a list of ERF types to a virtual transmit stream. The
function is as follows:

int dag_set_stream_erf_types(int dagfd, int stream_num, uint8_t* erfs);

Function
The dag_set_stream_erf_types function returns the number of ERF types set on the virtual transmit
stream if successful, otherwise the function returns -1 with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)

• EINVAL (stream_num is not attached)

EDM04-19v19 DAG_Programming_Guide - C Application Programming Interface

24 ©2007 - 2010 Endace Technology Ltd. Confidential - Version 19 - June 2010

dag_get_interface_count
Purpose
The dag_get_interface_count function returns the number of interfaces on the specified card. The
function is as follows:

uint8_t dag_get_interface_count(int dagfd);

Function
This function works for DAG cards with a single GPP. The dag_get_interface_count function returns
the number of interfaces if successful, otherwise the function returns -1 with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)

• EIO (fatal internal error)

dag_parse_name
Purpose
The dag_parse_name function is a general helper function which takes a user-supplied string specifying a
DAG device and stream and returns:

• The canonical version of the name ("/dev/dag0")
• The length of the buffer
• The stream number
The function is as follows:

int dag_parse_name(const char* name, char* buffer, int buflen, int* stream_number);

Function
The name parameter is a user supplied string specifying a DAG device and stream, the buffer parameter
is the canonical version of the name returned and buflen is the length of buffer of the streams buffer.
The dag_parse_name function returns 0 if successful, otherwise -1 with errno set appropriately.

dag_getname
Purpose
The dag_getname function gets a device name, when given a valid file descriptor. The function is as
follows:

char* dag_getname(int dagfd);

Function
The dag_getname function returns the name of the device as a string if successful, otherwise a null
string, with errno set appropriately.

 EDM04-19v19 DAG_Programming_Guide - C Application Programming Interface

©2007 - 2010 Endace Technology Ltd. Confidential - Version 19 - June 2010 25

Deprecated functions
The following functions are provided in dagapi.h for backwards code compatibility only and should not
be used in new projects.

• dag_mmap

• dag_start

• dag_stop

• dag_offset

• dag_getpollparams

• dag_setpollparams

dag_mmap
Purpose
The dag_mmap function returns an address in user space which corresponds to the base of the circular
packet buffer as utilized by the DAG card dagfd. The function is as follows:

void *dag_mmap(int dagfd);

Function
This buffer pointer is used as the base address to locate valid network capture data as indicated by the
offset pointer. On error the function will report MAP_FAILED with errno set accordingly.

Obsoleted by
The dag_mmap function is made obsolete by dag_attach_stream (page 10).

dag_start
Purpose
The dag_start function starts a measurement session on the nominated DAG. The function is as follows:

int dag_start(int dagfd);

Function
The function returns -1 on error with an indication in errno, otherwise zero is returned.

Obsoleted by
The dag_start function is made obsolete by dag_start_stream (page 12).

dag_stop
Purpose
The dag_stop function stops a measurement session on the nominated DAG. The function is as follows:

int dag_stop(int dagfd);

Obsoleted by
dag_stop_stream (page 12).

EDM04-19v19 DAG_Programming_Guide - C Application Programming Interface

26 ©2007 - 2010 Endace Technology Ltd. Confidential - Version 19 - June 2010

dag_offset
Purpose
The dag_offset function returns the first address beyond the most recently written packet record in the
circular buffer. The function is as follows:

int dag_offset(int dagfd, int *oldoffset, int flags);

Function
oldoffset is the address of the previous offset as returned by the card or any other address the
application wishes to be acknowledged as having completed the processing at.

The function hides the details of data wrapping across the end of the large memory buffer and updates
the location pointed at by oldoffset.

All data between *oldoffset and the offset value as returned can be considered valid network
measurement data.

 The flags defined are:

• DAGF_NONBLOCK. This flag causes dag_offset to be non-blocking, otherwise the function blocks
until at least one record is available.

Obsoleted by
The dag_offset function is made obsolete by dag_advance_stream (page 21).

dag_get_pollparams
Purpose
The dag_getpollparams function reads the polling parameters in use. The function is as follows:

void dag_getpollparams(int *mindatap, struct timeval *maxwait, struct timeval
*poll);

Function
The parameters are used in dag_offset (page 26).

Obsoleted by
The dag_getpollparams function is made obsolete by dag_get_stream_poll (page 13).

dag_set_pollparams
Purpose
The dag_setpollparams function sets the polling parameters in use. The function is as follows:

void dag_setpollparams(int mindata, struct timeval *maxwait, struct timeval *poll);

Function
The parameters are used in dag_offset().

Obsoleted by
The dag_setpollparams function is made obsolete by dag_set_stream_poll (page 14).

 EDM04-19v19 DAG_Programming_Guide - Example usage

©2007 - 2010 Endace Technology Ltd. Confidential - Version 19 - June 2010 27

Example usage
The following functional examples for programming with the API library are based on the dagsnap or
dagbits application programs for network monitoring, and dagflood for packet transmission.

Single record receive
Purpose
The dag_rx_stream_next_record (page 18) used to process captured network packets one at a time
from stream 0.

Example
In this example the extra_window_size parameter of dag_attach_stream (page 10) is set to 4MB to
reduce the total amount of memory mapped to user space. The dag_rx_stream_next_record function
handles this internally.

/* open DAG, configure, and attach to stream 0 (receive) */
if((dagfd = dag_open("/dev/dag0")) < 0)
 panic("dag_open %s: %s\n", dagname, strerror(errno));

if(dag_configure(dagfd, "slen=1536") < 0)
 panic("dag_configure %s: %s\n", dagname, strerror(errno));

if(dag_attach_stream(dagfd, 0, 0, 4*1024*1024) < 0)
 panic("dag_attach %s: %s\n", dagname, strerror(errno));

if(dag_start_stream(dagfd, 0) < 0)
 panic("dag_start %s: %s\n", dagname, strerror(errno));
/* Initialise DAG Polling parameters. */
timerclear(&maxwait);
maxwait.tv_usec = 100 * 1000; /* 100ms timeout */
timerclear(&poll);
poll.tv_usec = 10 * 1000; /* 10ms poll interval */

/* 32kB minimum data to return */
dag_set_stream_poll(dagfd, 0, 32*1024, &maxwait, &poll);
while(run) {
 rec = (dag_record_t*)dag_rx_stream_next_record(dagfd, 0);
 if (rec) {
 len = ntohs(rec->rlen);
 /* User processing here */
 process_packet(rec, len);
} else { /* rec == NULL */
 if (errno != EAGAIN)
 panic("dag_get_next_record: %s\n",
strerror(errno));
 }
}
/* finished; stop capture, detach from stream and close */
dag_stop_stream(dagfd, 0);
dag_detach_stream(dagfd, 0);
dag_close(dagfd);

EDM04-19v19 DAG_Programming_Guide - Example usage

28 ©2007 - 2010 Endace Technology Ltd. Confidential - Version 19 - June 2010

Multiple copy receive
Purpose
Using dag_advance_stream (page 21) to process multiple captured network packets per call from stream
0.

Example
In this example the extra_window_size parameter of dag_attach_stream (page 10) is set to 4MB to
reduce the total amount of memory mapped to user space.

The user must not read more than 4MB of data before calling dag_advance_stream again in the
dag_advance_stream. Reading more than 4MB of data may cause segmentation faults. An alternative is
to set extra_window_size to zero, in which case all the data that dag_advance_stream provides can be
processed.

/* open DAG, configure, and attach to stream 0 (receive) */
if((dagfd = dag_open("/dev/dag0")) < 0)

if(dag_configure(dagfd, "slen=1536") < 0)
 panic("dag_configure %s: %s\n", dagname, strerror(errno));

if(dag_attach_stream(dagfd, 0, 0, 4*1024*1024) < 0)
 panic("dag_attach %s: %s\n", dagname, strerror(errno));

if(dag_start_stream(dagfd, 0) < 0)
 panic("dag_start %s: %s\n", dagname, strerror(errno));

/* Initialise DAG Polling parameters. */
timerclear(&maxwait);
maxwait.tv_usec = 100 * 1000; /* 100ms timeout */
timerclear(&poll);
poll.tv_usec = 10 * 1000; /* 10ms poll interval */

/* 32kB minimum data to return */
dag_set_stream_poll(dagfd, 0, 32*1024, &maxwait, &poll);

while(run) {
 processed = 0;
 if((top = dag_advance_stream(dagfd, 0, &bottom)) == NULL)
 panic("dag_advance_stream %s: %s\n", dagname,
strerror(errno));
 diff = top - bottom;
 if (diff == 0)
 continue;

/* If more than say 4MB of data has been processed, then go back to main loop and
call dag_advance_stream again. This allows the space in the stream buffer occupied
by that 4MB of processed records to be released */
 while((run) &&
 ((top-bottom)>dag_record_size) &&
 ((processed+dag_record_size)<4*1024*1024)) {
 rec = (dag_record_t*)bottom;
 len = ntohs(rec->rlen);

 EDM04-19v19 DAG_Programming_Guide - Example usage

©2007 - 2010 Endace Technology Ltd. Confidential - Version 19 - June 2010 29

/* break if the whole record is not available */
 if((top-bottom) < len)
 break;
/* break if processing this record would go over our 4MB limit */
 if((processed+len)>4*1024*1024)
 break;
 /* User processing here */
 process_packet(rec, len);

/* increment bottom pointer to next packet in block */
 bottom += len;

/* increment count of data processed since last dag_advance_stream() call */
processed += len;
 }
 }
/* finished; stop capture, detach from stream and close */
dag_stop_stream(dagfd, 0);
dag_detach_stream(dagfd, 0);
dag_close(dagfd);

EDM04-19v19 DAG_Programming_Guide - Example usage

30 ©2007 - 2010 Endace Technology Ltd. Confidential - Version 19 - June 2010

Zero copy transmit
Purpose
Using packet transmission allows users to request space in the transmit stream buffer, and then directly
create their packet in the stream buffer memory, avoiding copies.

Example
Another use would be reading one or more packet records from storage and writing them directly into
the stream buffer, avoiding an intermediate copy.

When requesting buffer space the maximum is requested that is intended to be used. Committing to less
than was requested is permitted.

In the following example it is assumed the user constructs a single ERF record. There is no requirement
for the data supplied to be record aligned and the user may write more than one ERF record.

/* open DAG and attach to stream 1 (transmit) */
if((dagfd = dag_open("/dev/dag0")) < 0)
 panic("dag_open %s: %s\n", dagname, strerror(errno));

if(dag_attach_stream(dagfd, 1, 0, maximum_size) < 0)
 panic("dag_attach %s: %s\n", dagname, strerror(errno));

if(dag_start_stream(dagfd, 1) < 0)
 panic("dag_start %s: %s\n", dagname, strerror(errno));

while (run) {
 /* This will block until space is available */
 if((record=dag_tx_get_stream_space(dagfd, 1, maximum_size))
== NULL) {
panic("dag_tx_get_stream_space %s: %s\n", dagname, strerror(errno));
 }

 /* user constructs packet here at *record */
 actual_size = construct_packet(record, maximum_size);
 if(dag_tx_stream_commit_bytes(dagfd, 1, actual_size) == NULL)
panic("dag_tx_stream_commit_bytes %s: %s\n", dagname, strerror(errno));
}
/* finished; stop stream, detach from stream and close */
dag_stop_stream(dagfd, 1);
dag_detach_stream(dagfd, 1);
dag_close(dagfd);

 EDM04-19v19 DAG_Programming_Guide - Example usage

©2007 - 2010 Endace Technology Ltd. Confidential - Version 19 - June 2010 31

Copy with transmit
Purpose
The transmit with copy method can be used where the ERF packet record to be transmitted is already
present in a user buffer and must be copied into the stream buffer for transmission.

Function
In the following example it is assumed the user provides a buffer containing an ERF record.

There is no requirement for the buffer supplied to be record aligned and it may contain more than one
ERF record.

/* open DAG and attach to stream 1 (transmit) */
if((dagfd = dag_open("/dev/dag0")) < 0)
 panic("dag_open %s: %s\n", dagname, strerror(errno));

if(dag_attach_stream(dagfd, 1, 0, maximum_size) < 0)
 panic("dag_attach %s: %s\n", dagname, strerror(errno));

if(dag_start_stream(dagfd, 1) < 0)
 panic("dag_start %s: %s\n", dagname, strerror(errno));

while (run) {
 /* user has ERF record at *record to transmit */
 record = acquire_packet_from_somewhere(&size);

 if(dag_tx_stream_copy_bytes(dagfd, 1, record, size) == NULL)
panic("dag_ tx_stream_copy_bytes %s: %s\n", dagname, strerror(errno));
}

/* wait until the tx stream has drained before continuing */
dag_tx_stream_commit_bytes(dagfd,1,dag_get_stream_buffer_size(dagfd,1)-8);

/* finished; stop stream, detach from stream and close */
dag_stop_stream(dagfd, 1);
dag_detach_stream(dagfd, 1);
dag_close(dagfd);

 EDM04-19v19 DAG_Programming_Guide - Version History

©2007 - 2010 Endace Technology Ltd. Confidential - Version 19 - June 2010 33

Version History

Version Date Reason

1-11 Previous versions.

12 June 2006 New version release.
14 September 2007 New template and removal of some sections.
15 January 2008 Added information regarding extra_window_asize segmentation fault.
16 November 2008 Updated front matter. Minor formatting changes. Corrected use of

dag_tx_get_stream_space().
Added details about version numbering change.

17 August 2009 Updated for 3.4.1.
18 August 2009 Corrected dag_rx_stream_next_inline(). Minor grammatical

corrections. Updated for software release 3.4.1. Updated front matter.
19 June 2010 Rebranded. Imported into AuthorIT. General updates. Added cross

references. Removed Version numbering section.

	Protection Against Harmful Interference
	Extra Components and Materials
	Disclaimer
	Website
	Copyright 2007 - 2010 Endace Technology Ltd. All Rights reserved
	Introduction
	Purpose
	Related Documents

	Collecting network data
	Providing network packet information
	Capture data
	libpcap library
	Native C language

	DAG card functionality
	Overview
	PCI burst manager

	C Application Programming Interface
	Receive model
	dag_advance_stream
	dag_rx_stream_next_record

	Transmit model
	dag_tx_get_stream_space
	dag_tx_stream_copy_bytes

	dagapi h Header file
	dag_open
	dag_close
	dag_configure
	dag_attach_stream
	dag_attach_stream_protection
	dag_detach_stream
	dag_set_mode
	dag_start_stream
	dag_stop_stream
	dag_get_stream_poll
	dag_set_stream_poll
	dag_get_stream_buffer_size
	dag_get_stream_buffer_virt_base_address
	dag_get_stream_phy_buffer_address
	dag_get_stream_buffer_level
	dag_get_stream_last_buffer_level
	dag_rx_get_stream_count
	dag_tx_get_stream_count
	dag_tx_get_stream_space
	dag_tx_stream_commit_bytes
	dag_tx_stream-copy_bytes
	dag_rx_stream_next_record
	dag_rx_stream_next_inline
	dag_advance_stream
	dag_get_last_error
	dag_set_param
	dag_info
	dag_iom
	dag_get_erf_types
	dag_get_stream_erf_types
	dag_set_ stream_erf_types
	dag_get_interface_count
	dag_parse_name
	dag_getname

	Deprecated functions
	dag_mmap
	dag_start
	dag_stop
	dag_offset
	dag_get_pollparams
	dag_set_pollparams

	Example usage
	Single record receive
	Multiple copy receive
	Zero copy transmit
	Copy with transmit

	Version History

