
WEB O

Literate plain source is available!

W lodek Bzyl

Abstract

Based on the Norman Ramsey noweb system a new literate

tool for T

E

X language was made. The new system was applied

for creation of literate plain source. Although the resulting

�le is principally plain.tex code interleaved with document-

ation, borrowed mainly from The T

E

Xbook, it presents the whole

code from a di�erent perspective. The documentation is organ-

ized around the macros as they appear in the plain.tex �le

rather than around the topics as in The T

E

Xbook. This means

that the typeset plain.dvi is not a user manual, even though

many notions are explained there.

Introduction

When it was introduced, literate programming was

synonymous with WEB, a system for writing literate

Pascal programs. Since then many di�erent WEBs,

each aiming at a particular programming language

or small group of related languages, have been

created. Each WEB is constructed of two separate

parts, one called TANGLE, the other WEAVE. Typically

each part consists of just one program performing

many tasks| it expands macros, prettyprints code,

generates and sorts an index, etc. This makes

adaptation of the existing WEB to another language

extremely di�cult.

Another approach to literate programming is

presented by Norman Ramsey, the author of noweb.

He designed and realized the TANGLE/WEAVE pair as

unix pipes. By extending and/or replacing parts

of pipes with programs, written in awk, icon,

flex, perl, c, T

E

X, Metafont, a new tool

could be created with relatively small e�ort. For

example, with noweb, it was possible to create a

simple T

E

X-WEB system by writing an awk script

and new T

E

X format.

WEB for everyone?

WEB is a powerful tool. The strength of literate

programs lies in their ability to produce high-quality

typeset documentation. The strength of literate

programming lies in allowing you to write code

1995 GUST, Zeszyt 6 51

where you are telling humans what the computer

should do, instead of telling computer what should

be done. Obviously we are more e�cient and precise

when communicating with humans than computers.

Thus literate programs are more easily written and

maintained than ordinary ones.

WEB is a complex tool. A literate program consists

of pieces of documentation and named chunks

containing code and references to other chunks.

The pieces are arranged in an order which helps

to explain and understand the program as a whole.

The WEB system consists of two processors: TANGLE

and WEAVE.

TANGLE is used to extract a program by

replacing one named chunk by its de�nition. The

process of replacement is recursive. It continues

until no named chunks remain. From one WEB source

many programs could be extracted this is achieved

by presenting TANGLE with di�erent chunks.

WEAVE is used to convert WEB markup into T

E

X

markup as described and coded in a separate format

�le. It handles numerous typographical details of

typeset documentation and provides support for

typical tasks as cross-referencing, preparation of

indexes, bibliography. Formats for long and short

documents will be di�erent. To typeset a converted

�le you will need T

E

X running on your system.

Errors can creep into T

E

X code. Getting T

E

X code

working with other formats could end with a short

trip into the T

E

X language this will be needed if

you plan your literate program to form part of an

article, a report, or a book.

We learn by reading: why not read `literate

books'? There are a few such books already and

more will appear. We learn by writing too: why

not try one of the existing tools? The c/c++/

fortran programmer could try cweb or fweb.

Programmers writing in other languages could

check the CTAN directory /tex-archive/web

for other possible tools. If your language is not

on the list, or you are not able to express yourself

within the style o�ered, then you are welcome to join

the province of those who build their own tools. This

territory is growing fast due to the e�orts of Norman

Ramsey, who established a base for creating simple

and extensible literate tools.

Presenting a new tool: T

E

X-WEB

Norman Ramsey was the �rst to attempt to

create a generic literate tool, not aimed at a

particular language. Such a tool would of itself

be useless because of its generality| the key to

the usefulness of noweb lies in its extensibility. The

tasks for TANGLE and WEAVE were divided among

stand-alone programs. To simplify tangling and

weaving a front end was introduced. It performs

a kind of lexical analysis of the source, a task

previously performed by both processors separately.

The front end provided with noweb is called markup

because it marks each line of source as line

of text, as beginning/end of code/documentation,

as de�nition/use of named chunks, etc.

�

WEAVE

markup foo.tw | awk -f web2tex.awk > foo.tex

With markup as its front end, WEAVE was build as

a pipeline where awk driven by web2tex.awk script

reads a marked source line by line and performs

actions depending on the line type. Most of the

time it inserts a bunch of T

E

X macros, for example

inserting index macros.

The format tweb.sty provides support

for cross references, indexes, and multicolumn

output. There you �nd macros \chapter,

\[sub[sub]]section, \paragraph,

�

\printcon-

tents, \title.

TANGLE

markup foo.tw | nt > foo.sty

markup foo.tw | nt -R'Chunk B' > foo.sty

markup foo.tw | mnt 'Chunk B' 'Chunk A'

Here we have several possibilities. We can extract

code beginning from the chunk named `<<*>>', or

from `Chunk B' (see template �le below). Finally,

`Chunk A' and `Chunk B' could be simultaneously

extracted to the �les with the same names.

T

E

X

tex foo.tex

makeindex -s dnd.ist -o foo.dnd foo.ddx

makeindex -s und.ist -o foo.und foo.udx

makeindex -s chn.ist -o foo.chn foo.chk

tex foo.tex

�: There is unmarkup which works in the opposite

way. I also borrowed two more programs: nt (tangle)

and mnt (multiple tangle) from noweb.

�: These macros should not be overused. Usually

the chunk name alone is a better choice.

52 GUST, Zeszyt 6 1995

Indexes are sorted by makeindex. Three very short

style �les are provided due to di�erent formatting of

indexes.MSDOS makeindx breaks on large indexes.

Sample Makefile. To ease work with tools a simple

Makefile is provided. Write make on the command

line, press the Enter key, and the following lines will

appear on a terminal:

Tangling: make foo.sty

Texing: make foo.dvi

Weaving: make foo.tex

Making archive: make archive

Cleaning: make clean or veryclean

Since there are many di�erent conventions for where

to store �les in a �le system, four variables are

de�ned in the Makefile: SCRIPTDIR|the place for

web2awk.awk and other scripts (defaults to BIN);

INDEXDIR|the place for index styles (defaults

to IDXSTY); MAKEINDEX|the name of makeindex

program (defaults to makeindex); NOWEBDIR|

the place where the programs: markup, nt, mnt are

stored (defaults to /usr/local/lib/noweb).

Template of T

E

X-WEB source.

The structure of a T

E

X-WEB �le is shown in the

example below.

File name: foo.tw

\title{foo.tw -- template file}

\printcontents % if you want TOC

@

The skeleton of the file foo.tw

<<*>>=

<<Chunk A>>

<<Chunk B>>

@

Documentation for Chunk A.

<<Chunk A>>=

T

E

X code / references to other chunks

@

Documentation for Chunk B.

<<Chunk B>>=

T

E

X code / references to other chunks

Documentation chunks begin with the line that

starts with @ followed by space or newline. Code

chunks begin with <<Chunk name>>= on a line by

itself. Chunks are terminated by the beginning of

another chunk or end of �le.

Making changes/updates. The change �le mechan-

ism is not needed in the case of the T

E

X language.

Change �les are used to incorporate system de-

pendent code into a source �le, but T

E

X code

is already system independent: T

E

X code could

only be `format dependent'. Another feature of

the format �le is that it evolves with time, but

the intermediate versions are used for preparation

of books, articles etc. All these versions and con�g-

urations must be kept well organized, otherwise you

are bound to be lost. The Revision Control System

rcs is an appropriate tool to assist with these tasks.

With rcs it is possible, with small overhead, to pre-

serve all the revisions which evolved from a given

text document, to merge changes made by others,

to compare di�erent versions, keep a log of changes.

rcs

ci foo.tw check-in latest version

co foo.tw check-out lastest version

co -r rev foo.tw

rlog foo.tw

rcsdiff -r rev foo.tw

rcsmerge -r later rev -r earlier rev foo.tw

When the �rst command is executed foo.tw

is stored in a group �le (with default name

foo.tw,v on unix machines, or foo.tw% on

MSDOS) as a new revision. For each deposited

revision ci prompts for a log message. The �le

foo.tw is deleted unless you say ci -l foo.tw.

The message \ci error: no lock set by login"

means that rcs was con�gured with the `strict

locking feature' enabled. Locking prevents clashes

between di�erent users' modi�cations if several are

working on the same �le. This feature is disabled

with rcs -U foo.tw; it is unnecessary if only the

owner of the �le is expected to deposit revisions into

it.

The next two commands are used to extract

the latest, or the speci�ed, revision from the group

�le. rlog is used to print log messages. Di�erent

revisions of a document may be compared using

rcsdiff. The command rcsdiff foo.tw compares

the latest revision with the contents of the working

�le. The di�erences themselves are found by

the program diff; if you do not like diff's

default output, change it by passing appropriate

switches to rcsdiff. The last command undoes

the changes between revisions; the �le foo.tw will

1995 GUST, Zeszyt 6 53

be overwritten. rcsmerge incorporates changes

between two revisions into the working �le. A

similar e�ect could be achieved with a stand-alone

program called merge. If �les being compared are

mine, older, yours then with the command

merge mine older yours

merge tries to add to mine the result of subtracting

older from yours; if overlap occurs, i.e., both �les

mine and yours have changes to the same segment of

lines in older, then merge delimits the alternatives

with

<<<<<<< mine

lines in mine

=======

lines in yours

>>>>>>> yours

and writes above to mine. Now it is up to you which

set of changes you adopt. merge -p ... sends the

result of merging to the standard output.

To keep the working directory uncluttered, all

rcs �les are usually stored in the subdirectory with

the name RCS. rcs commands look �rst into this

directory when searching for �les.

Concluding remarks

It seems that the T

E

X language constitutes a

good starting point for exploring the idea of

literate programming. The system is simple, because

many features present in other WEBs are not needed.

The system is extensible, which means that it is

possible to try di�erent styles and features. And

�nally, programs written in T

E

X are not too

long| plain.tex is about 1000 lines of code|

which means that you can print the documentation

of real programs yourself and share it with others.

For those convinced by the analysis above, the

literate source of plain.tex has been submitted to

the CTAN archives, in directory web/tweb; please

read it and enjoy.

� W lodek Bzyl

matwb@univ.gda.pl

Ps. od redaktora: Omawiany materiaª dost¦pny jest

w archiwum GUST w katalogu

GUST/contrib/BachoTeX95/W_Bzyl/

Znajdziecie tam równie» plaindvi.zip czyli gotowy do

wydruku plain.tex z komentarzami (b. przydatny).

Na marginesie: szkoda, »e brak opisu plain w j¦zyku

polskim, jak zrobili to np. Rosjanie (StaW).

