
NEW TRENDS�

Computer Typesetting or Electronic

Publishing? New trends in scienti�c

publication

Philip Taylor

Abstract

W ci¡gu ostatnich 15 lat skªad tekstu wspomagany

komputerowo caªkowicie wyeliminowaª stosowanie

tradycyjnych technik drukarskich. Obecnie stoimy

przed jeszcze bardziej radykaln¡ rewolucj¡ techno-

logiczn¡, jak¡ stanowi pojawienie si¦ wydawnictw

elektronicznych (electronic publishing { w skrócie

e.p.).

W przeciwie«stwie do skªadu komputerowego

i tradycyjnego, publikacje elektroniczne w ogóle nie

wykorzystuj¡ papieru, no±nikem informacji staje si¦

ekran komputera.

Potencjalne korzy±ci pªyn¡ce z zastosowania

tej nowej metody publikacji wydaj¡ si¦ oczywi-

ste: znaczna redukcja kosztów i niemal natychmia-

stowa dystrybucja do zainteresowanych odbiorców.

Nie mo»na jednak pomin¡¢ i wad, takich jak: mo»-

liwo±¢ bezprawnego kopiowania, ªatwo±¢ plagiatów

i nielegalnej redystrybucji.

Obie wspomniane metody publikacji ró»ni¡ si¦

w sposób zasadniczy: o ile systemy skªadu tekstu

z góry narzucaj¡ posta¢ ko«cow¡ strony, to systemy

publikacji elektronicznych stwarzaj¡ jej bardziej

niezale»n¡ reprezentacj¦, w której ostateczna forma

zale»y raczej od programu prezentuj¡cego dokument

(tzw. viewera, czy po polsku { przegl¡darki).

W niniejszej pracy omówione s¡ najnowsze

osi¡gni¦cia zarówno w dziedzinie skªadu kompu-

terowego jak i publikacji elektronicznych. Wska-

zuje si¦ równie» na ró»nice tych dwóch metod

rozpowszechniania.

A Brief History of T

E

X

Until about �fteen years ago, typesetting was virtu-

ally ignored by the vast majority of mathematicians,

scientists, and scholars in general: manuscripts were

prepared using a typewriter, the more esoteric sym-

bols (which meant almost all symbols for mathem-

12 GUST, Zeszyt 6 1995

aticians) were laboriously inserted by hand, and the

whole was then simply dispatched to the publisher.

Some time later galleys would be returned, emenda-

tions noted in the margin, and once again the whole

would be sent to the publisher. A similar but shorter

cycle was probably repeated for the page proofs, and

�nally the author's intentions appeared in �nal form

in the �nished book. At no point did the author and

the typesetter communicate directly, and indeed the

former was almost certainly virtually unaware of the

latter's existence.

The typesetter, however, was only too aware

of the author: mathematical copy is traditionally

referred to as `penalty copy' in the printing trade,

since it is notoriously di�cult to set correctly. In

the time that his colleague could set ten pages

of straight text, the mathematical typesetter was

barely able to accomplish a single page, and even

when set he knew that there was every possibility

that it would have to be re-set more than once,

since mathematicians are only too keen to invent

new symbols of their own when no existing symbol

seems entirely appropriate. And since the typesetter

would never have encountered such a symbol before,

he would (quite reasonably) assume that it was

simply a badly drawn version of a symbol with

which he was familiar, and substitute the latter: : :

Needless to say, some of the more aware authors

began experimenting with computer technology as

soon as it became generally accessible, and for a

while the academic world seemed convinced that

if it were possible to get just a couple more sym-

bols onto the daisy-wheel of a Diablo printer, all

would become possible: there were even specialist

companies who would re-mould a daisy-wheel, repla-

cing an apparently unwanted glyph with one which

its owner deemed indispensable. Of course, the ap-

proach was doomed to failure: one can no more set

mathematics with a �xed set of 144 glyphs than can

one with a set of 128, and despite the best e�orts

of all concerned, the daisy-wheel printer was soon

consigned to the scrap bin.

In parallel with this, the dot-matrix printer

manufacturers �rst began to have a signi�cant im-

pact. With a 7� 5 dot matrix, there are potentially

35

X

i=0

�

35

i

�

= 2

35

di�erent characters (a very large number indeed!),

but unfortunately a number of these are virtually



indistinguishable: a single dot at co-ordinates (4; 3)

looks astonishingly like another single dot at at

co-ordinates (4; 4) to even the most astute reader

(I believe that there are 33 034 338 305 distinct

characters, as opposed to a total of 34 359 738 368

characters, where a character is regarded as distinct

if it's not simply the result of sliding another

character horizontally, vertically, or both: this �gure

is based on an analysis by Dr Warren Dicks of the

Autonomous University of Barcelona). Furthermore,

the print quality of a 7� 5 dot matrix printer is so

appallingly bad that no attempt should ever be

made to set a book using one { unfortunately this

well-meant advice was seldom heeded at the time.

Of course, in order to exploit these technolo-

gical revolutions, suitable software had to be writ-

ten, and the Unix world in particular decided to

standardise on ROFF and its derivatives: NROFF,

TROFF and �nally DITROFF all made their mark.

Unfortunately none of the ROFF derivatives ever dir-

ectly supported the typesetting of mathematics, and

so adjunct programs such as EQN and TBL had to be

used to add mathematical functionality. There were

also commercial systems, used to set publications

such as the Transactions of the American Math-

ematical Society , but these were both expensive

and arcane, using a rather non-mnemonic syntax to

represent the possible mathematical constructions.

Fortunately (as is absolutely clear in retro-

spect), at least one eminent mathematician believed

that something better not only could, but should ,

be created; and being not only a mathematician

but a computer scientist, he decided to create it.

His name was Knuth, and his creation was T

E

X.

Yet had it not been for a happy co-incid-

ence, T

E

X might never have been born. At the

time, Knuth was working on his opus magnum ,

a seven-book series entitled The Art of Computer

Programming , and by 1977 the popularity of the

early volumes of this series had proved so great that

Volume 2 had already run to a second edition. Un-

fortunately the timing of this was such that whilst

the �rst edition had been set using traditional hot-

lead technology, the second edition was produced

using one of the �rst phototypesetters [an aside to

readers: throughout this paper I use the term type-

setter to mean both the person performing the task

of setting type, and the equipment used to achieve

that end: I hope that it is always clear from the con-

text which of these two meanings is to be inferred,

1995 GUST, Zeszyt 6 13

since there is no other word which could easily and

felicitously be substituted for either of these usages].

And whilst the new phototypesetter was more than

capable in theory of achieving results as good as, if

not better than, the traditional hot lead device used

previously, the results in practice left a great deal to

be desired. Knuth, as mathematician and computer

scientist, was convinced that the fault lay not in the

technology but in the software used to drive it, and

he decided that rather than see his life's work ap-

pear in second-rate format, he would devote a short

portion of his professional life to developing a suite

of software which would exploit the full potential

of the phototypesetter. Little did he know when he

took this brave decision that it was to take not the

anticipated one year but at least ten, although he

most certainly had a demonstrably working version

within his anticipated time-frame.

The �rst published reference to T

E

X is prob-

ably Mathematical Typography , published as re-

port STAN-CS-78-648 by the Computer Science

Department of Stanford University; in the biblio-

graphy to this, Knuth gives the de�nitive reference

as being Tau Epsilon Chi, a system for technical

text which was at the time \in preparation" and is

now sadly out of print. For those interested in the

subject, the former paper makes fascinating reading,

and the bibliography alone makes it a more than

worthwhile acquisition; it was reproduced in the

Bulletin of the American Mathematical Society ,

in which form it should still be available.

T

E

X was both typical and atypical of programs

of its era: it was typical in that it was completely

script-oriented, pre-dating as it did any widely-used

graphical user interface; it was atypical in that it

was a completely programmable macro program-

ming language, in which there were no reserved

words, and in which even individual characters

could change their semantics on the y. Thus a

T

E

X document consisted both of the text to be

typeset and the commands to accomplish that

typesetting, and only T

E

X itself could unambigu-

ously determine whether any particular element of

the document was to be interpreted as `program' or

`data'.

Despite being created primarily in order to

accomplish one particular end { the typesetting of

Volume 2 of The Art of Computer Programming

{ T

E

X rapidly took on a life of its own, and soon

became the de facto standard for typesetting within



much of Stanford University. Before long its fame

had spread, and by 1980 the T

E

X Users Group

had sprung into existence, with members of the

Steering Committee drawn from far beyond the

restricted domain of Stanford faculty. The American

Mathematical Society were represented on that

Committee, and liaison between the AMS and Knuth

was very close: Knuth assigned the T

E

X logo to the

AMS who then applied for trademark protection to

prevent it being used to describe any unauthorised

modi�cation of T

E

X { unfortunately this application

was rejected because of a prior registration of

TEX (sic) by Honeywell, but despite this lack of

formal registration, Knuth's high pro�le and high

standing ensure that the T

E

X logo (or its non-

typeset equivalent, TeX) is universally recognised

and respected.

Within a couple of years, it became clear that

the initial implementation of T

E

X left something

to be desired, both in terms of functionality and

in terms of portability, and Knuth set out to

redress both by re-implementing T

E

X from scratch.

This time he decided to eschew SAIL (`Stanford

Arti�cial Intelligence Language') as the language of

implementation, and instead to adopt the far more

widely available programming language Pascal. To

further increase its portability, he adopted only a

strict subset of Pascal, encompassing only those

features which he was con�dent could be found

(or easily emulated) on all Pascal implementations;

but he also decided to take this opportunity to

render the program in a form which he termed

`literate': that is, he wanted people to be able

to read the source of T

E

X in the same way that

they might read a book, and to therefore be able

to bene�t by being exposed to a major piece of

software engineering presented in a highly literate

manner. Once again Knuth decided that there were

no adequate tools available for this, and once again

he digressed from the main project by breaking o�

to design and implement the concept of a WEB

program, together with its two adjunct programs

TANGLE and WEAVE.

A WEB program consists of a highly stylised

dialect of Pascal, interspersed by lengthy comments

describing the purpose and function of every ele-

ment and module of the program (I suspect that

Knuth would deny this, and say that a WEB pro-

gram consists of a highly elaborate description of the

workings of the program, interspersed by occasional

14 GUST, Zeszyt 6 1995

fragments of Pascal which implement that function-

ality: and I suspect that he would almost certainly

be right!). By permitting the elements of a Pascal

program to be presented in arbitrary order (as op-

posed to the strict order of presentation required

by the Pascal standard), WEB allows the pro-

grammer the opportunity to present the elements

of a program in a natural and logical order, as

opposed to the arti�cial order imposed by the Pas-

cal design criterion of `e�cient compilability': it is

then the task of TANGLE to paste together these

fragments in the order required by Pascal, and the

task of WEAVE to bring together both the program

fragments and the comment fragments into a form

which can immediately be typeset by T

E

X.

Thus for the �rst time T

E

X became self-refer-

ential: in order to be able to produce the Pascal

code from the WEB source, one needed a working

version of TANGLE; to be able to produce a literate

listing of the WEB source, one needed a working

copy of WEAVE; but both TANGLE and WEAVE are

themselves written in WEB, so to produce a working

TANGLE one needs a working TANGLE, and so ad

in�nitum . Of course `bootstrapping' (as the tech-

nique is generally termed) is well understood in

the Computer Science world, and it was estimated

that the task of `hand compiling' TANGLE from

the WEB source was well within the competence

of `the average implementor': however, I remember

only too clearly the trauma through which a col-

league went when he attempted this bootstrapping

for himself: : :

During the re-implementation, Knuth re-wrote

almost the complete T

E

X program: he had learned

much about its limitations during the �rst couple

of years of use, and by 1982 a completely re-written

T

E

X had emerged. This version of T

E

X (often

referred to as T

E

X82, to di�erentiate it from the

earlier version which analogously became known

as T

E

X78) was rapidly ported to a wide range

of machines, and is quite possibly the most widely

available program in the world today, being available

on every class of system from the smallest PC to

the largest super-computer. Its almost universal

acceptance as the standard package for computer

typesetting is almost certainly the result of a large

set of very positive attributes: the source of the

program, and the vast majority of implementations,

are available either free of charge or at a modest

cost which covers no more than the media on which



they are supplied; the program is virtually bug-free,

a claim which Knuth backed up until very recently

by o�ering a cheque for every bug found, the value

of the cheque doubling each year since the scheme's

inception (he still o�ers a cheque, but the value no

longer doubles, since he estimated that before too

long it might exceed the total Federal reserves: : : );

the program is highly stable (there were virtually

no major changes during the period 1982{90, and

similarly there have been virtually no changes at all

since 1990, nor will there be at any point in the

future); and there are an enormous number of users

throughout the world, most of whom are only too

keen to pass on their expertise to any who need

it, so any real problems resulting from a lack of

experience with T

E

X can be rapidly resolved by a

message to any one of a number of T

E

X-related

mailing lists and news groups (even those without

network access are not cut o�, as the TUG (T

E

X

Users Group) o�ce o�ers telephone support from

03:00 in the morning until late in the evening {

a service which is not restricted to members of

TUG).

So, during the 1980's, T

E

X emerged as the

standard package for computer typesetting: it was

available on almost every conceivable system, device

drivers were written for everything from dot-matrix

printers to 2400 dpi phototypesetters (but not daisy

wheel printers!), and an ever-increasing number of

publications appeared which were either typeset us-

ing T

E

X, or were about T

E

X, or both. Many scienti�c

journals adopted it (or one of its derivatives such

as L

A

T

E

X, which may be thought of as a some-

what restrictive but more user-friendly `front end'

to T

E

X) as the standard format in which papers

were to be prepared. Since an author could very

easily proof a paper using a local implementation

of T

E

X, and since T

E

X was guaranteed to produce

identical results no matter on which system it was

run, the number of iterations between author and

publisher was reduced to the bare minimum, and

all bene�tted. And since T

E

X has been designed

by a mathematician, and since a part of its raison

d'être had been to allow mathematics to be type-

set almost as easily as running text, its take-up by

the mathematical community was if anything even

faster than its take-up by the scienti�c and academic

communities in general.

To give a simple example of why T

E

X is ideally

suited to the typesetting of mathematics, consider

1995 GUST, Zeszyt 6 15

the following set of equations:

�

Z

1

�1

e

�x

2

dx

�

2

=

Z

1

�1

Z

1

�1

e

�(x

2

+y

2

)

dxdy

=

Z

2�

0

Z

1

0

e

�r

2

r dr d�

=

Z

2�

0

�

�

e

�r

2

2

�

�

�

�

r=1

r=0

�

d�

= �: (11)

A mathematician writing this by hand would al-

most certainly start with the left-most element of

the �rst line, proceed from left to right, and altern-

ate between baseline, subscript and superscript ele-

ments as logic dictated; a pure WYSIWYG (`What

you see is what you get') word processor, on the

other hand, would require the typist to analyse

each row of the equations into horizontal strata

(thus the top stratum might contain only 1, 2, 1

and 1, for example) and to enter these stratum

by stratum; since, in general, WYSIWYG systems

do not automatically displace preceding or follow-

ing lines of text horizontally when an intervening

line is shortened or lengthened, the correction of

such equations is tedious and error-prone in the

extreme. More recent, WYSIWYG-like, systems re-

quire a di�erent approach in which the author has

to enter the formula in the order dictated by its

parse-tree; needless to say, this approach too de-

mands more of the author than should reasonably

be expected.

T

E

X allows the mathematician to enter the

formul� in the most natural manner, starting at

the left and �nishing at the right; alignment is

automatically maintained if insertions or deletions

are made, and even the horizontal alignment of the

four primary = signs is performed automatically,

virtually regardless of the length of individual left-

or right elements. To clarify this, here is the exact

T

E

X source which was used to set the table:

$$

\eqalignno

{\biggl(

\int_{-\infty}^\infty e^{-x^2}\,dx

\biggr)^2

&=\int_{-\infty}^\infty

\int_{-\infty}^\infty

e^{-(x^2+y^2)}\,dx\,dy \cr

&=\int_0^{2\pi}\int_0^\infty

e^{-r^2}r\,dr\,d\theta \cr



&=\int_0^{2\pi}

\biggl(

-{e^{-r^2}\over 2}

\bigg \vert_{r=0}^{r=\infty}\,

\biggr)

\,d\theta \cr

&=\pi.&(11)\cr

}

$$

It is worth noting that T

E

X completely ignores any

spaces in mathematical text, since the rules for

typesetting mathematics are complex, and cannot

be expected to be understood by mere mathem-

aticians! Thus the layout of the equations above is

simply for the convenience of the author, and is

completely ignored by T

E

X, which is far more con-

cerned by special characters such as dollars, back-

slashes, braces, underscores, carets and ampersands.

And whilst each of these characters has a distinct

meaning to T

E

X (a dollar symbol, for example, both

introduces and terminates a stretch of mathematical

text), that meaning may at any time be overridden,

and either assigned to a di�erent character or, if not

needed, turned o� completely. So, for example, if

some particular computer lacked a backslash key, it

would be trivial to assign the semantics of backslash

to some other key (say, yen, if a Japanese keyboard

were to be used).

Furthermore, it can be seen that T

E

X is highly

mnemonic in its choice of control sequences (`com-

mands', preceded by a backslash); to pick out just

a few examples, \int represents an integral sign,

\infty an in�nity, \exp the exp operator (repres-

enting the exponential e) and so on. Compound

subscripts and superscripts are presented in logical

order, rather than in order of their appearance ver-

tically on the page; and facilities are provided for

the author to give T

E

X hints about the logical struc-

ture of the expression, so that (for example), \, is

used to set o� di�erentials such as d� from the pre-

ceding text by a little extra white space, thereby

improving both the appearance and the legibility of

the expression.

Thus the attraction of T

E

X for mathematicians

is clear: a highly logical markup language, capable of

being entered from any keyboard; access to a very

wide range of mathematical symbols; professional

standards of layout; widespread acceptability by

journals; and the ability to proof on anything from

16 GUST, Zeszyt 6 1995

a dot-matrix printer to a 600 dpi laser printer. Add

to this the now universal ability to preview the

document on the computer screen (something the

early advocates of T

E

X could only dream of), and

it is hard to explain why any mathematician with

access to a computer would not typeset his papers

using T

E

X!

However, use of T

E

X is restricted neither to

mathematicians nor to North Americans, and at the

T

E

X User Group conference in 1989, an inuential

and voluble group of European T

E

X users ganged

up on Knuth and succeeded in convincing him

that, despite his assertion on the previous day

of the conference that the development of T

E

X

was �nished, there were features missing from the

current implementation which made T

E

X entirely

useless to the majority of the world, since whilst it

behaved perfectly in unaccented languages, it was

grossly de�cient for typesetting any language which

made more than occasional use of diacritics. And

Knuth, recognising the validity of this argument,

agreed that something had to be done.

The result of all this was T

E

X 3: T

E

X82 became

known simply as T

E

X2, and T

E

X 3 became the One

True T

E

X. In practice, this just didn't happen: those

who had no need for the extended diacritic support

o�ered by T

E

X3 simply continued to use T

E

X2,

and for quite a while T

E

X macro writers had to

write very defensive code which �rst checked the

environment before making any assumptions about

(for example) the number of distinct characters

with which T

E

X could internally deal (this was

128 prior to T

E

X3, and 256 thereafter). With the

release of T

E

X3, Knuth made it absolutely clear

that this really did represent the end of the T

E

X

evolutionary line: he had better things to do with

his time, and T

E

X was now frozen (modulo any

essential bug �xes, which he undertook to continue

to make if and only if it could be shewn that

their �xing was essential). Furthermore he made

it equally plain that T

E

X could not be further

evolved by anyone else: he wished to leave for

his children, and for his children's children, and

for all perpetuity, T

E

X as his creation, and not as

his-creation-as-modi�ed-by-someone-else.

In general, the T

E

X world took this in good

part: Knuth is enormously highly respected by those

who use T

E

X, and there were very few who advoc-

ated ignoring his wishes and who were prepared to

suggest modifying T

E

X. But there were also a quite



signi�cant number of T

E

X users, among them the

present author, who felt that if T

E

X did not evolve,

then it would simply die. Not because of any funda-

mental de�ciencies in T

E

X { it is generally accepted

that there are very few { but because the world

had moved on since 1978, and whilst a script-driven

language might have been state-of-the-art then, it

most certainly was not state-of-the-art now. Fur-

thermore, despite increasing the number of distinct

internal characters from 128 to 256, Knuth had done

little if anything to enhance T

E

X to deal with Asian

languages, in which the number of distinct charac-

ters may be measured in thousands if not in tens

of thousands. And �nally, there were those who felt

that there were some areas in which a very sig-

ni�cant increase in functionality could be gained

(particularly from the perspective of the macro pro-

grammer, who is also known as a `format writer'

when the suite of macros provides a complete func-

tional system in its own right) with relatively little

investment in terms of modifying T

E

X.

The implementation of these ideas probably

represents the leading edge of T

E

X technology today:

companies such as Blue Sky have produced in-

stantaneous/incremental T

E

X interpreters, which

are capable of displaying the e�ects of a change

to the source code of a T

E

X document in real time;

Advent Publishing have produced 3B2, which allows

both a graphical and a textual speci�cation of a lay-

out, automatically updating one to reect changes

in the other; John Plaice and Yannis Haralambous

have implemented a 64-bit version of T

E

X which

uses Unicode internally; and the group with which

I am most closely associated (the NTS group, where

NTS stands for `New Typesetting System') have pro-

duced a completely compatible successor to T

E

X,

called e-T

E

X, which adds functionality without com-

promising compatibility (the NTS group also wish

to re-implement T

E

X from scratch, using a modern

rapid-prototyping language such as Prolog or CLOS,

the idea being to allow rapid experimentation with

alternative typesetting algorithms or paradigms).

Whether or not any of these ideas will catch on re-

mains to be seen, although among Apple Macintosh

a�cionados Classic Textures (the Blue Sky product

referred to above) is already highly thought of. One

fundamental question is that of stability: since one

of the great strengths of T

E

X is its stability, how

will the world feel about systems which encompass

T

E

X but which are speci�cally intended to remain

1995 GUST, Zeszyt 6 17

evolutionary and responsive, rather than fossilised

and unyielding? Only time will tell.

What is perhaps worth noting is that all of

these projects have ensured that Knuth's wishes are

honoured not only in the letter but in the spirit:

none seeks to call itself T

E

X (indeed, that of John

Plaice and Yannis Haralambous is called Omega,

which could never be confused with T

E

X), yet all

acknowledge the debt which they owe to Knuth and

to T

E

X: without them, none of these other projects

would ever have seen the light of day.

Parallel Developments

Of course, while T

E

X was evolving, the rest of

the world did not stand still: computer science

continued to develop, and computer networking

moved from the laboratory to the military and

the Universities and ultimately to the whole world.

Line-oriented editors fell by the wayside, and were

replaced by full-screen editors (except in the rather

time-warped world of MS/DOS, which continued

to o�er only EDLIN until comparatively recently).

Script-oriented markup languages such as the ROFF

family referred to earlier were challenged by increas-

ingly sophisticated word-processors, and WYSIWYG

(`What You See is What You Get'), GUI (`Graph-

ical User Interface'), and WIMP (`Windows, Icons,

Menus and Pull-down lists') became the order of

the day.

At about the same time that Knuth was start-

ing work on T

E

X, John Warnock and Martin Newell

re-implemented an earlier language (`the Design

System') as `JaM' (`John and Martin' !) whilst

working at Xerox PARC, and from this cloistered

beginning ultimately emerged both the Interpress

(Xerox printing protocol) and PostScript lan-

guages. Whilst Interpress remained relatively un-

familiar, Adobe PostScript took the comput-

ing world by storm: for the �rst time there was

a de facto page description language, which al-

lowed complex pages to be described algorithmically

(and thus very e�ciently). Although Hewlett Pack-

ard's Printer Control Language (PCL) continued

(and continues) to be both widely supported and

widely emulated, PostScript rapidly established

itself as the standard for high-level printers (by

which I mean laser printers and better), and fairly

quickly printer manufacturers sought to provide

either PostScript interpreters or PostScript



emulators for their high-end products. Unfortu-

nately (for the emulator writers) PostScript is

a complex language, and many of the earlier emula-

tions were de�cient in one or more respects; Adobe,

of course, as designers of the language had far fewer

problems in this respect, although even they re-

leased improved versions of their interpreter as time

went by.

For a long while parts of PostScript remained

a closely guarded secret: the mysterious eexec op-

erator was undocumented, and whilst the Post-

Script manual gave information on the format

of so-called `Type 3' fonts, the equally mysterious

`Type 1' fonts remained undocumented. Of course,

reverse engineering is a well-understood tool, and �-

nally the barriers were broken: descriptions of eexec

started to appear in the press, and ultimately Adobe

themselves relented and gave full documentation of

both eexec and their Type 1 fonts.

Before long, Type 1 fonts established them-

selves as as much a standard for fonts as Post-

Script was a standard for page-description lan-

guages; companies such as Corel started to re-

lease Type 1 fonts of their own, closely modelled

on industry-standard fonts but su�ciently di�er-

ent (at least in name) to avoid accusations of font

piracy (although this latter problem continues to

worry top font designers such as Hermann Zapf

to this day). All the major font foundries started

to o�er their fonts in Type 1 format, and many

gave a commitment to have all of their fonts in

Type 1 format within the foreseeable future. The

so-called `font magic' which enabled early Adobe

fonts to render well even on relatively low resol-

ution devices such as 300 dpi laser printers was

renamed `font hinting', and this too was eventu-

ally documented by Adobe. New features continued

to be added to the PostScript language, and in

1990, Adobe announced a completely new version of

the PostScript language, `PostScript Level 2'.

This new version uni�ed all previous additions to

the language, and added many new features as well,

such as the ability to have compact (binary) rep-

resentations of a PostScript document as well as

the earlier (ASCII) representation; new colour mod-

els were introduced, and support was added for

composite fonts.

PostScript was originally conceived as an

embedded language for printers, but before long

it became clear that a version of PostScript

18 GUST, Zeszyt 6 1995

which could drive a computer screen would be

extremely useful. Adobe created their own ver-

sion of this called `Display PostScript', but in

the meantime L. Peter Deutsch had started work

on a PostScript interpreter of his own, called

`Ghostscript', and fundamental to its functionality

was the ability to drive the screen of any computer

on which it was used (it also contained drivers for a

wide-range of non-PostScript printers, as well as

pseudo-drivers for some of the more popular graph-

ics interchange formats). During 1995 Peter �nally

announced Ghostscript version 3, which provided

almost a complete Level 2 emulation, and whilst

the o�cial Adobe interpreter remained a licensed

(and relatively expensive) product, Ghostscript was

and remains free of charge to those who do not

use it for pro�t-making purposes; a very signi�cant

debt of gratitude is owed by the computer world to

L. Peter Deutsch, both to his skill in writing Ghost-

script and to his generosity in making it so freely

available, and also to the many individuals who

have donated their own drivers and/or enhance-

ments to the Ghostscript project (PS-View, from

Bogusªaw Jackowski and Piotr Pianowski warrants

special mention).

From the ARPAnet to the Web

A few years before Knuth started work on T

E

X,

the American military as personi�ed by [D]ARPA

(the [Defence] Advanced Research Projects Agency),

had initiated a pilot project to link computers

over very wide distances; whilst local computer

links were not uncommon, links across thousands

of miles were unheard of, but [D]ARPA realised

the potential military importance of such links

and therefore initiated a whole series of research

projects aimed at making this a reality. Whilst these

projects initially started in isolation, as soon as the

pilot network was available the project gained a

momentum { indeed, a very existence { of its own,

and the whole development strategy henceforth

was established by discussion across , as well as

about , the network. This network, known as the

ARPAnet for obvious reasons, evolved a mechanism

for distributed discussion and voting known as the

`Request for Comments' (`RFC'), and any new idea

for anything from a protocol to a picnic was likely

to �nd itself the subject of an RFC. From these

RFCs emerged some of the most important de



facto standards on which we still to this day:

TCP (`Transmission Control Protocol'), IP (`Internet

Protocol'), SMTP (`Simple Mail Transfer Protocol')

and so on were all enshrined in the published

versions of the RFCs, and each was allocated a

unique number: electronic mail, for example, was

addressed by and speci�ed in, RFC 822.

Although the American military launched the

networking initiative, it was the American universit-

ies which were actually the primary contributors to

its success, and once the network was well estab-

lished it ceased to be `the ARPAnet' and became

instead `the Internet', the name by which it is

still known today. Strictly speaking, the Internet

is not a network per se , but a network-of-networks;

however, the distinction is of little signi�cance, and

most now regard the Internet simply as the interna-

tional computer network. From its military origins,

where permission-to-connect almost required a per-

sonal interview with a �ve-star general, the Internet

has now become the network to which even the most

humble private citizen may aspire to gain access: In-

ternet service providers have sprung up across much

of the Western world, and connecting to the Inter-

net today requires little more formality than a letter

(and a fairly modest cheque!) to an Internet service

provider, together with the purchase of a equally

modest personal computer and a modem: at the

time of writing, there are Internet connections from

something like 150 countries throughout the world

(the number of actual Internet nodes is far harder

to gauge, but it is already estimated to lie between

�ve and ten million).

Initially the protocols used, and services pro-

vided, on the Internet were very primitive: FTP

(`File Transfer Protocol'), TELNET (remote terminal

access), PING (check if a remote node is alive),

and SMTP were probably the most common, with

FINGER (check if a remote user is logged in) coming

not far behind. But whilst the end-user protocols

were fairly simple, the underlying mechanisms were

not, and the DNS (`Domain Name Service') provided

a quite sophisticated mechanism for a distributed

node lookup protocol. As more experience was

gained, the range of protocols and services increased,

and things such as Usenet News (a distributed

bulletin board) and NFS (`Network File System',

providing remote access to a complete �le system)

were added. Then the information explosion really

took o�, and tools for information retrieval and

1995 GUST, Zeszyt 6 19

display began to proliferate: GOPHER and WAIS

(`Go for', and `Wide Area Information Service,

respectively) were early candidates, shortly followed

by WWW (the `World Wide Web', now usually

shortened to `the Web'). It should be emphasised

that there is no connection between WEB programs

and the World Wide Web; within this document

at least, the former is consistently shewn in upper

case, whilst the latter is consistently shewn in mixed

case.

With the advent of the Web came one major

breakthrough: whereas previously each protocol had

speci�ed its own unique method of identifying a re-

mote resource, WWW brought with it the concept

of the URL (the `Universal Resource Locator'), so

that from within a single program (the `browser'),

almost any Internet resource could be speci�ed.

For example, a remote FTP resource would com-

mence ftp://, a remote GOPHER resource would

be gopher://, and the Web's native resource, HTTP

(`HyperText Transfer Protocol') would commence

http:// (aware readers may appreciate that this is

a slight over-simpli�cation, but the deviations from

reality are essentially very small).

With the Web and URLs came uni�ed browsers:

tools such as MOSAIC which allowed access to a wide

range of Internet resources from a single graphical

front end. Even if a resource had no unique URL,

it was still possible to associate with it an adjunct

renderer which would display it correctly: thus, for

example, although there is no unique URL for an

MPEG �le (`Motion Picture Expert Group': a com-

pact standard for encoding and storing full-motion

video), a correctly con�gured browser such as MO-

SAIC could identify an MPEG resource from its �le

type (the portion of the �le name which follows the

period), and on down-loading such a resource would

then spawn o� an instantiation of the appropriate

renderer, so that down-loading and viewing were

essentially indivisible entities.

Native-mode documents for access over the

Web are coded in a language called HTML (`Hy-

perText Markup Language'): this is a direct deriv-

ative of an earlier (but still current) speci�cation

for a generalised markup language called SGML

(`Standard Generalised Markup Language'), and

a conformant HTML document is also normally a

conformant SGML document, although as is often

the case the converse does not necessarily obtain.

Both HTML and (typical but not all) SGML docu-



ments are characterised by the frequent occurrence

of tags which are enclosed in angle-brackets: they

therefore resemble the `metalinguistic variables' of

a much earlier standard { the BNF (or Backus

Naur/Normal Form) of the original Algol-60 re-

port { although they do not perform the same

function. In an HTML document, each tag spe-

ci�es the nature of the entity to which it refers:

whilst this can be augmented by a speci�cation

of how the entity should appear, in the purest form

only the nature of the entity is speci�ed, and it is left

to the browser to determine how the entity should

appear. This represents a very signi�cant philosoph-

ical breakthrough: no longer need a document be

formatted by its author, the reader then requiring

the technology to resolve that format; instead, using

HTML, a document is simply tagged using high-level

content-oriented markup, and the reader may then

display that document using whatever technology

is available. For example, most Internet systems

are capable of running a browser called LYNX: this

is a purely textual browser, and so it makes no

attempt to represent subtleties of the document;

it simply takes advantage of whatever text-mode

functionality is available to it (for example, em-

boldening or underlining) to display the document

to the best of its ability. Images which would nor-

mally require a graphics mode browser to resolve

are simply displayed as the word IMAGE. On more

sophisticated systems, graphics mode browsers such

as MOSAIC (previously referred to), or the now ubi-

quitous NETSCAPE, can be used: these will exploit

the graphics capability of their platforms to the

full, and are capable of displaying full-colour, and

even motion-picture-insertions, either using inher-

ent functionality or through the medium of ad-

junct software which has been used to customise

the browser.

But an HTML document is far more than just

a passive entity: elements of it can be designated

as `hot spots', and if a hot spot is selected (us-

ing the mouse on a graphical system, or the tab

and/or cursor keys on a line-mode system), a fur-

ther document may be downloaded and displayed

entirely automatically: the document containing the

hot spot and the document referred to by the hot

spot do not need to originate from, or be stored at,

the same site: a document stored at (say) the Uni-

versity of Western Ontario can reference, through

a hot spot, another document stored at (say) the

20 GUST, Zeszyt 6 1995

University of Queensland. Furthermore, although

the discussion so far has been concerned with `doc-

uments', hot spots can in fact be linked to any

Internet resource, provided only that the resource is

speci�able via a URL. Thus a document which was

fetched using HTTP can reference another docu-

ment that can be fetched using only GOPHER; that

document could specify a third document which

is accessible only via FTP: that could contain a

reference to a Usenet Newsgroup; and so on.

Yet even this does not represent the limits of a

Web document: such documents can also be forms ,

with �elds which must be completed by the reader;

when the form is completed, a further hot spot

can transfer it to a remote site, where it will

be interpreted and acted upon. In this way, the

original ARCHIE protocol (ARCHIE is an Internet

tool for locating �les available via anonymous FTP)

has been extended from its traditional usage in

which it is launched from a command line invocation

specifying the �le of interest and some constraints

on the manner of search; with the HTML version

(a.k.a. `Archiplex'), the Archie user invokes his

preferred Web browser to fetch an Archie form

from a convenient server; he then completes the

form, and uses a hot spot to return it to the

Archie server; the latter then locates the �le of

interest, and returns a list of places at which it

can be found, where the list of places is possibly

constrained by options selected on the form by

the user (for example, he may say that he's only

interested in copies of the �le that can be found

within his own domain). The list of hits is then

displayed by the browser, and once again using

the mouse, tab key and/or cursor keys, the user

selects one instance of the �le of interest; the �le

has associated with it a hot spot, so the instant he

selects the �le from the list, a request is issued

to retrieve the �le; assuming that there are no

hiccups, the �le is fetched entirely automatically

and displayed on the originating screen. If the �le

is not displayable for some reason (perhaps it is an

executable image, or something else for which the

concept of `display' is ill-de�ned), the browser will

inform the user and ask if he wishes to save it to a

local disk.

Whilst previous introductions such as GOPHER

and WAIS had a relatively modest impact on overall

use of the Internet, which in general continued to be

used mainly by academics and hackers, the introduc-



tion of HTML and the concept of the Web brought

about a revolution in Internet usage: commercial

companies clamoured to get on-line, governments

put up their own Web pages, and every man and

his dog suddenly appeared to be beset by the need

to create a unique and highly individualistic `home

page' (Web documents are often regarded as be-

ing divided into pages, by analogy with a paper

document, and a `home page' is a (usually brief)

document giving information about the individual

who owns it; many institutions provide facilities

whereby each user can create his or her own home

page without formal approval). The reason for this

sudden change in usage patterns is not hard to ex-

plain: whereas the more traditional Internet tools

such as FTP required a modicum of expertise be-

fore they could be successfully used, the various

Web browsers were intentionally designed to be

`user friendly' from the very outset, and this user

friendliness together with the ability to seamlessly

down-load and display documents in an astonishing

variety of formats without any expertise whatso-

ever resulted in an unprecedented rate of take-up

and an almost universal acceptance. There can be

little doubt that the current near-exponential rise

in Internet registrations and usage results almost

entirely from the concept and ease of use of the

Web.

The Web and Publishing: Unlikely

Bedfellows?

Whilst it might initially seem that the two themes

of this paper represent quite distinct branches of

the evolutionary tree, it did not take long for those

involved in publishing to realise the untapped po-

tential of the Web: even prior to the establishment

of the Web there had been some experimental use

of the Internet for electronic publishing. In partic-

ular, the so-called e-journal EJournal (subtitled

Electronic Journal for Humanists) was a direct

electronic analogue of a more traditional journal,

containing scholarly essays as well as shorter \let-

ters to the editor". However, EJournal uses simply

ASCII text as the communications medium, whilst

the Web potentially allows even greater richness of

medium than any traditionally produced journal,

since unlike a paper journal a Web journal could

contain not only text and static graphics but full

motion video and sound as well.

1995 GUST, Zeszyt 6 21

In July 1994 the American Mathematical So-

ciety launched a project entitled \New Media",

chaired by Frank Quinn of Virginia Tech., to in-

vestigate the possibility of developing a multime-

dium, interactive, hypertextual version of T

E

X: the

brief of the sub-committee established to invest-

igate this was to \co[-]ordinate the development

of a technical authoring tool which will integrate

text, graphics video, non[-]linear documents, hy-

pertext links, and interactive computation. [The]

tool should share the characteristics of the T

E

X

typesetting system which have made it so remark-

ably useful: open �le structures, open and portable

source code, a stable standard core, and an uncom-

promising commitment to the highest quality. [It] is

expected to be an extension of T

E

X.".

The rationale behind this proposal is also inter-

esting: \Educational communities need interactive

texts. Technical communities need hypertext and

non[-]linear document types to tie together complex

or cumulative e�orts. Users of computation need

better ways to document and illustrate programs.

All these capabilities are available now in primit-

ive forms, and authors are pushing ahead. Some

are writing interactive texts using computer math-

ematics programs. Others are experimenting with

hypertext extensions of T

E

X, [WWW] documents,

etc. Commercial publishers are experimenting with

hypertext, CD ROM publication, and linked data-

bases. In a few years we can expect powerful tools

for constructing interactive multimedia documents.

But they may be `accessible' in the same sense that

typesetting was accessible before T

E

X: publishers

will use expensive proprietary systems with closed

�le formats, and authors will use a multitude of free

or inexpensive systems which require professional

resetting to get professional results. Our experience

with T

E

X shows that this fragmentation is undesir-

able and unnecessary. The HyperMath Project is

being organized to avoid it.".

The introductory document for the project

then went on to explain: \The HyperMath Pro-

ject is primarily a framework to co[-]ordinate work

already in progress. Several groups have already in-

corporated simple hypertext links into versions of

T

E

X. The NTS (New Typesetting System) group

is exploring improvements to traditional paper-

and-ink typesetting. Most implementations of T

E

X

have methods for incorporating graphic material,

and there are publicly available packages which do



this. The `Interactive Mathematics Text' project

and many groups in the calculus reform movement

are using Mathematica, Maple, MatLab, and other

programs to write interactive texts. These and sim-

ilar initiatives can be brought together in the de-

velopment of a general tool. But the opportunity

is limited. As development proceeds, the costs of

switching to a common standard increase, and the

bene�ts become less obvious. We should not let this

opportunity pass. The Project will sponsor working

groups and conferences. The working groups will

develop standards and goals, and work on pro-

totypes. Communications among working groups

will be maintained to ensure coherence and uni-

formity. And contacts will be developed between

developers and end-users to ensure that real needs

are being addressed. Working groups are planned

in the following areas: traditional text; non[-]linear

documents (including hypertext); inclusions (graph-

ics, video, and sound); interactivity; and users. The

�rst HyperMath conference is planned for the San

Francisco area in conjunction with the combined

math society meeting early in January, 1995, con-

tingent on funding. The `New Media' subcommittee

of the Publications Policy Committee of the Amer-

ican Mathematical Society will serve as the advisory

board for the HyperMath Project."

This was heady stu�: sadly by September of

the same year it had been abandoned as being \too

ambitious", and replaced by a more incremental

approach, now entitled \non-traditional forms of

publication". Whereas the earlier project had been

predicated on the development and adoption of

enhanced T

E

X, the new project proposed that \the

AMS should adopt the Adobe portable document

format 2.0 as the standard (output) format for

electronic publication of documents". It then went

on to explain that \This does not mean giving up

T

E

X, nor does it solve all T

E

X problems. It is a

proposed replacement for DVI as output, not the

use of T

E

X source in authoring." What did this

mean?

The �rst thing to realise is that by now all

three threads of this paper have �nally come to-

gether: T

E

X, Adobe, and the Web. Whilst Adobe

had been very successful in developing PostScript

as a page-description language, and marketing em-

bedded PostScript interpreters for incorporation

in laser printers and the like, it had been somewhat

less successful in ensuring that DisplayPostScript

22 GUST, Zeszyt 6 1995

became established as another de facto standard.

Indeed, with the advent of Ghostscript, a signi-

�cant future for Display PostScript was by no

means certain, and the proliferation of Web-based

browsers (MOSAIC, NETSCAPE and the like) which

could slave Ghostscript was a further challenge to

Adobe's position in the marketplace. Unlike Adobe's

PostScript interpreters and Display PostScript

systems, Web browsers were (and remain) freely

available: that is, they are literally available free

of charge , even when they are as sophisticated as

NETSCAPE (which is developed and supplied by

a commercial organisation). Whilst Adobe could

maintain its niche as a supplier of PostScript in-

terpreters, it was becoming clear this was a limited,

and possibly even diminishing,market: if Web-based

publication rather than paper-based publication

ever became the norm, the rôle of PostScript

printers and image setters might be seriously chal-

lenged as more and more documents were read

from a computer screen rather than from paper.

It was therefore no great surprise when Adobe

�nally announced (there had been clues previ-

ously, such as their work on so-called `multiple

master fonts' and Carousel) their alternative to

a Web browser as a universal document render-

ing engine: Adobe Acrobat. Just as with the Web

browsers, Adobe Acrobat is available free of charge

(indeed, they send complete CD ROMs containing

a full multi-lingual installation kit at the slightest

provocation). And, rather like NETSCAPE, who seek

to recover the costs of developing their browser by

selling their Web server, Adobe will endeavour to

recover the cost of the development and production

of their Acrobat reader by selling the technology

which is required to produce an Acrobat document

in the �rst place.

And what is an Acrobat document? The very

same thing that the AMS are investigating as a

possible standard for their mathematical publica-

tions: something written in Adobe Portable Docu-

ment Format (PDF). And although in theory one can

develop applications of one's own which will write

PDF, in practice many will elect simply to purchase

Adobe Acrobat (which acts as a pseudo-printer

driver for MicroSoft Windows, Apple Macintosh

or Unix systems), or Adobe Acrobat Pro[fessional]

(which also includes Adobe's \Distiller" to convert

PostScript documents into PDF documents), or

Adobe Acrobat Capture (which uses the TWAIN



protocol for scanners to generate PDF documents

directly from a scanner). Thus despite their appar-

ent generosity in giving away Acrobat free of charge,

Adobe are (of course) really seeking to increase their

market share by encouraging the purchase of other

Adobe products.

HTML or PDF?

With HTML and PDF emerging as the two portable

hypertext exchange standards, organisations (and,

to a lesser extent, individuals) are going to be

forced to make a choice. It may well be that for

some applications the choice will be clear-cut, but

for others there may seem little to choose between

the two. It is therefore worth exploring the basic

di�erences between HTML and PDF, in order to

better allow an informed choice to be made.

HTML, being SGML, is essentially a very high

level, content-oriented, markup language: its forte

is the speci�cation of the content of a document,

and its weakness is the relatively little control that

an HTML author has over the �nal appearance of the

document. Because it is so high level, it is not pos-

sible using the current received wisdom of computer

science to automatically generate HTML from an ar-

bitrary document: if a word-processor, for example,

is used to prepare a document, and if that document

has been created ex nihilo without consideration for

its logical structure, so that only the �nal appear-

ance of the document has been considered, then it is

almost certainly impossible to reverse-engineer the

document to ascertain its logical structure: in these

circumstances HTML would have little option but

to represent it as an indivisible bit-map, thereby ef-

fectively wasting almost all of HTML's functionality.

Despite this restriction, HTML has much to o�er, for

two main reasons: (1) the tools needed to generate it

are already in the public domain, although the inter-

face between those tools and pre-existing software

such as word-processors is unlikely to be available (it

is far more likely that word-processor packages will

start to be shipped with HTML drivers, but their use

may require a major re-think by the user concerning

the the way in which a document is created); and

(2) high-level markup is increasingly recognised as

being the way in which to mark up a document:

as experience of the use of typesetting systems such

as T

E

X/L

A

T

E

X is gained, it becomes ever more clear

that low-level, form-oriented, markup is simply a

1995 GUST, Zeszyt 6 23

dead-end and should rapidly be expunged from the

practices of responsible authors.

PDF, on the other hand, consists essentially

of a strict subset of PostScript with the added

functionality of hypertext: PDF documents can ref-

erence other PDF documents using hot spots, rather

like HTML. According to the PDF blurb (this pa-

per is written before my copy of Adobe Acrobat

Pro has arrived, so what follows must be taken as

speculative at the moment):

� Create electronic documents as easily as print-

ing from existing applications with PDFWriter.

� Protect �les with passwords; control access,

printing, changing the document, adding and

changing notes, copying text and graphics.

� Find exactly what is needed across multiple

PDF �les by searching on keywords, author,

title, subject synonyms, etc.

� Re-use information easily by extracting, copy-

ing, reordering and replacing pages among PDF

�les { with bookmarks, links and notes pre-

served.

� Create custom views into information.

� Add value, set priorities and maintain a dy-

namic information network with links, book-

marks, notes and connections to external ap-

plications and documents.

� Take advantage of third-party plug-ins to add

new features to Acrobat.

� Integrate Acrobat with desktop applications

with Acrobat's support for OLE automation,

Notes F/X, AppleEvents, and more.

Although perhaps it is too soon to compare

HTML and PDF with any real accuracy, it would

seem that at the moment they are intended for,

and best suited for, rather di�erent applications:

HTML documents can either be created ex nihilo

(for those who have no better way, simply cloning

and modifying an existing HTML document is an

excellent way to get started), or by using an HTML

editor (of which there are already several in the

public domain), or by using a package or packages

(for example, a suitable word-processor) for which

an HTML driver already exists. PDF documents may

be created using one of the Adobe tools { Acrobat

Writer, Distiller or Capture { depending on whether

or not the source documents pre-exist. As HTML al-

lows only a degree of control in the formatting and

placement of entities, it is not really suitable for the



presentation of anything other than simple math-

ematics, although HTML 3 demonstrates that the

designers of HTML are aware of many of the lim-

itations of the previous version, and are working

towards a speci�cation which may ultimately al-

low arbitrarily complex formul� to be displayed.

[A comment in the HTML 3 discussion document

reads \Including support for equations and for-

mul� in HTML 3 adds relatively little complexity

to a browser. The proposed format is strongly

inuenced by T

E

X."]. Of course, since HTML al-

lows reference to be made to non-HTML documents,

many of these di�culties can be overcome: an HTML

browser such as NETSCAPE can be con�gured to in-

voke an external renderer if no internal renderer

is suitable for the entity referenced, and in that

way both DVI (from T

E

X) and PostScript docu-

ments can be referenced from, and displayed from

within, an HTML document. Since both DVI and

PostScript are equally suited to the accurate rep-

resentation of mathematical material, there is no

real reason why a mathematical document should

not be displayed from within an HTML framework

by an HTML browser con�gured with a suitable ex-

ternal renderer. PDF, on the other hand, has no

need for external renderers, since its native mode of

operation uses a strict subset of PostScript; in-

deed, Adobe Acrobat is intended to be con�gurable

as an external renderer for HTML browsers such

as NETSCAPE ! By using Adobe's `multiple master'

font technology, Acrobat can generate a reasonable

substitute for any font speci�ed in a PDF document,

even if that font is not available within the system

on which the document is being displayed. It is by no

means unlikely that before very long a DVI-to-PDF

driver will emerge, and in the true tradition of T

E

X

it is also extremely likely that such a driver will be

placed in the public domain; DVI-to-HTML is an un-

likely eventuality, however, since by the time a T

E

X

document has been converted into DVI, too much

information has been lost to allow the high-level

structure of the document to be re-created.

On the other hand, we can certainly envision a

format being created for T

E

X which embeds \spe-

cials in the DVI �le to convey information about the

high-level structure of the source document: since

the user interface would be completely una�ected

by the presence of these specials, such a format

could appear to the user exactly like any of the

present formats or format variants which support

24 GUST, Zeszyt 6 1995

appropriate high-level markup (A

M

S-T

E

X, L

A

T

E

X,

A

M

S-L

A

T

E

X, L

A

M

S-T

E

X, etc.). Such specials could

then be directly mapped into HTML constructs, and

thus a T

E

X-to-HTML route is neither impossible nor

unlikely; indeed, it is surprising that no such ex-

tended format has yet been announced (at least,

to my knowledge). Finally it is worth remembering

that HTML is essentially a distributed markup lan-

guage; it is primarily intended for documents which

need to reference other documents which may be

anywhere on the Internet; PDF, on the other hand,

is essentially Internet-unaware, and whilst it can

transparently reference other documents that are

visible through (say) NFS (or, using ALEX, anonym-

ous FTP), it makes no assumptions that documents

might be anywhere other than the local �lestore or

on a Microsoft-compatible network. [This last sen-

tence is somewhat tentative: in the absence of the

de�nitive PDF speci�cation, it is somewhat di�-

cult to accurately interpret the claim that Adobe

Acrobat allows one to \Add value, set priorit-

ies and maintain a dynamic information network

with links, bookmarks, notes and connections to

external applications and documents', but I suspect

that the `dynamic information network' does not al-

low the transparent referencing of arbitrary Internet

resources, although this may well come in time.]

Computer Typesetting or Electronic

Publishing: Pros and Cons

Computer typeset material, particularly that type-

set using T

E

X or a functionally equivalent system,

represents the �nest in typeset quality that can

be easily accomplished today; where such computer

typesetting software is unavailable, comparable res-

ults can only be accomplished by a skilled profes-

sional using either old-fashioned technology (e.g. hot

lead) or a modern but proprietary system. This is

not to say that the use of a system such as T

E

X guar-

antees professional quality results: there are far too

many counter-examples in existence which demon-

strate that in completely unskilled hands, T

E

X and

comparable systems are capable of generating abso-

lutely appalling results. None the less, in reasonably

skilled hands, and/or using a format package which

prevents the author from making design decisions,

T

E

X is capable of generating results which meet

the highest professional standards, particularly in

the �eld of mathematics where T

E

X essentially



performs as an `expert system'. The disadvantage

of such a system is that in its intermediate form

(DVI), a T

E

X document is not fully portable: a DVI

�le contains references to, but no instances of, fonts;

at the point where the DVI �le is converted into its

�nal form (usually paper, but on-screen preview is

now also ubiquitous), the same fonts which were

used to create the document must be available in

order to render it correctly; in their absence, only

a poor approximation of the intended document is

possible. [It is worth noting that the creator and

the viewer/printer of a T

E

X document need a com-

mon set of fonts, but each needs a quite di�erent

representation of those fonts: the creator needs only

the font metrics , which specify the height, depth

and width of each glyph, and kerning and ligaturing

information for the glyph set; the viewer/printer of

the document can normally get by without the met-

rics, but instead needs the actual glyph set, either

as bitmaps or as outlines.]

Electronic publishing, on the other hand, and

particularly e.p. accomplished through the medium

of HTML, does not place any emphasis on the qual-

ity of the end product: indeed, HTML voluntarily

cedes control over the appearance of the �nal doc-

ument to the browser used to render it, although

there are some placement options which allow the

author a little control over the �nal appearance

(and there are considerably more such options in

HTML 3). Within an HTML document there is no

font information per se (again, this is true only of

current HTML: HTML 3 adds the concept of style

sheets, which will \[...] eventually lead to smart lay-

out under the author's control, with rich magazine

style layouts for full screen viewing, switching to

simpler layouts when the window is shrunk"); in-

stead the document consists of a set of high-level

markup tags, which are mapped by the browser to

a particular font or font variant. Whereas a DVI �le

is a monolithic entity, and makes no reference to

any external resources other than fonts, an HTML

�le is frequently little more than a container for

other HTML �les, and may make reference to an ex-

tremely wide range of resources (further HTML �les,

images, AFS �les, Usenet newsgroups, e-mail ad-

dresses, FTP-accessible �les, etc.) which may be any-

where on the network, and which may themselves

contain further references and so ad in�nitum .

PDF is essentially a reasonable compromise

between the two: the creator of the document

1995 GUST, Zeszyt 6 25

speci�es its appearance, and the PDF reader then

displays that document to the best of its ability: if

the fonts needed to display it properly are embed-

ded, or if they are resident on the target system,

then the document will be displayed exactly as the

author intended; if the fonts are not accessible, then

Adobe's proprietary `multiple master' technology

will be used to interpolate a substitute for the miss-

ing font(s) which allows the original line-breaks,

leading, etc., to be retained. A PDF document may

reference further PDF documents, but these are as-

sumed to be available on the local �lestore; there is

no apparent support for the automated fetching of

remote Internet documents, although the absence of

the PDF documentation at the time of writing makes

analysis of this feature rather more of an informed

guess that a de�nitive statement.

All three formats discussed allow searching to

be conducted; within a DVI �le there is no intrinsic

support for indexing, but it would not be at all

di�cult for a DVI viewer to create a dynamic index

to the document being viewed. Both HTML and PDF

allow fully indexed documents to be referenced.

Publication in the Twenty-First Century

It is no longer possible to assume, as countless

previous generations of scientists have done, that

\publication" involves printing on sheets of pa-

per which are ultimately distributed as a part of

a journal or as a book: increasingly both eco-

nomic and environmental pressures will dictate

that only essential information be committed to

paper, and anything even slightly ephemeral will be

restricted to electronic distribution. At least two de

facto standards have already emerged for electronic

publication: HTML, which originates in the distrib-

uted and anarchic world of the Internet; and PDF,

which originates in the commercial world. At the

time of writing, HTML is the better established, and

two freeware browsers are widely used (MOSAIC and

NETSCAPE), with a third (ARENA), being developed

speci�cally to support HTML 3; for PDF, there is only

one reader currently available (Acrobat), and that

too is classi�ed as freeware. HTML devolves to the

browser most of the decisions concerning the actual

appearance of a document; PDF allows the author

to make most of those decisions, but reserves the

right to substitute interpolated fonts if the genuine

article are not available at the point of rendering.



HTML is essentially a distributed protocol, and will

allow bibliographies to reference cited texts no mat-

ter where they are in the world (so long as they

are on-line), thereby adding truly incalculable value

to the bibliography of a document; PDF, it would

appear, is essentially a local protocol; whilst bib-

liographies could still cite full-text sources, those

sources would need to be available to the system on

which the bibliography is being read.

Many issues remain to be resolved before the

world can truly move to electronic publishing as the

mainstream form: Internet access in every home,

o�ce, library, vehicle, and restaurant will be just

a start. There remains the very contentious is-

sue of copyright: whilst there are usually economic

costs associated with the photo-copying of a prin-

ted document, the costs of copying an electronic

document are virtually nil, and therefore the en-

forcement of copyright for electronic publications is

a major concern. It is highly likely that some form of

encryption and licensing will emerge to prevent the

unauthorised copying and/or re-distribution of elec-

tronic texts. From the psychological and physiolo-

gical point of view, displays will need to become

signi�cantly better (in many senses: weight, resol-

ution, glare, portability, etc.) before the electronic

book completely replaces the printed equivalent: few

of us, going on holiday today, would choose to take

a notebook computer with a CD ROM containing

the complete works of Shakespeare in preference

to a couple of (disposable) paperbacks: : : Although

originally developed as front ends for the genera-

tion of printed material, typesetting systems such

as T

E

X will almost certainly have a major rôle to

play as front ends for electronic publishing, since

(for example) the linear representation of mathem-

atical formul� is equally convenient and applicable

whether one's mathematics are eventually to ap-

pear on paper or on a computer screen. Within

ten years, HTML and PDF will appear pass�e : new

standards emerge faster than most of us can keep

up, and today's technology is tomorrow's door-prop.

But the future of the book (or even the newspaper)

as the normal means of communication is surely as

doomed as that of the petrol-driven car as the nor-

mal means of conveyance; the �rst to guess exactly

what form the replacement will take may become

as rich as today's newspaper magnates and publish-

ing house principals; or perhaps the converse will

occur, and the Internet will �nally cause the col-

26 GUST, Zeszyt 6 1995

lapse of the publishing empires, as academics and

authors suddenly realise that they are no longer be-

holden to the few. Self-publishing may become the

norm, or peer review may take on an entirely di�er-

ent form; perhaps a two-tier hierarchy of electronic

publishing will emerge, with unrefereed papers be-

ing available via each academic's home page whilst

those that have survived the refereeing process will

be available from prestigious and highly accredited

archives. What is certain is that almost all of the

readers of this paper will �nd out for themselves

what the future holds, at least as regards computer

typesetting and electronic publishing: the future is

just around the corner, and approaching at an ever

increasing speed.

Addendum

Within the last forty-eight hours, I have learned of

two new facts which signi�cantly impinge on the

material above: NETSCAPE have licensed the use

of PDF technology from Adobe, which will allow

them to incorporate a PDF renderer within their

HTML browser, and Michel Goossens & Sebastian

Rahtz have demonstrated the feasibility of using

Adobe's `multiple master' fonts from with T

E

X;

further details of the latter, including very useful

information on multiple master fonts, are given in

the Baskerville issue cited in the Bibliography.

Acknowledgements.

I would like to thank Professor Adam Jakubowski and

Jerzy Ludwichowski for making it possible for me to

present this paper, to El»bieta Kuczy«ska and Bogumiªa

Rykaczewska-Wiorogórska (University of Warszawa) for

kindly providing two alternative translations of the ab-

stract into Polish, and to Professors Adam Jakubowski

and Andrzej Jonscher for providing reverse translations

into English to enable me to check the accuracy of

the initial translation. I would like to thank Dr War-

ren Dicks of the Autonomous University of Barcelona

for his analysis of the problem of the number of visu-

ally distinguishable con�gurations of an m � n matrix,

as used to establish the number of distinct characters

which can be generated by a 7 � 5 dot matrix printer.

I would like to thank Dr Frank Quinn of Virginia Tech.

and the American Mathematical Society for granting

me permission to reproduce extracts from their docu-

ments on \The New Media" and \Non-traditional forms

of publication", and �nally I would like to thank Bar-

bara Beeton of that same Society for allowing herself

to be persuaded to review the paper before publication

and for her many helpful comments; needless to say, any

errors which remain are solely my responsibility.



Bibliography

I have not given formal references in the text, since

I feel that they are inappropriate in a paper of

this nature; however, the following short list of

publications may be of interest to those who wish

to pursue further the topics discussed here.

Mathematical Typography by Donald E. Knuth,

Bulletin of the American Mathematical

Society (new series) 1 (March 1979), 337{372.

[Reprinted as part 1 of T

E

X and METAFONT:

New Directions in Typesetting

(Providence, R.I: American Mathematical

Society, and Bedford, Mass: Digital Press,

1979).]

Tau Epsilon Chi, a system for technical text by

Donald E. Knuth, Stanford Computer Science

Report 675 (Stanford, California, September

1978), 198 pp. [Reprinted as part 2 of T

E

X and

METAFONT , the book cited above.]

The WEB system of structured documentation by

Donald E. Knuth, Stanford Computer Science

Report 980 (Stanford, California, September

1983), 206 pp.

Literate programming by Donald E. Knuth, The

Computer Journal 27 (1984), 97{111.

Using Adobe Type 1 Multiple Master fonts with

T

E

X by Michel Goossens and Sebastian Rahtz,

Baskerville Vol. 5, No. 3 (UK T

E

X Users'

Group, June 1995, ISSN 1354-5930), 4{8.

HTTP: A Protocol for Networked Information

http://www.w3.org/WWW/Protocols/HTTP/

HTTP2.html

A Quick Review of HTML 3.0

http://www.w3.org/hypertext/WWW/Arena/

tour/start.html

HyperText Markup Language Speci�cation

Version 3.0 http://www.hpl.hp.co.uk/people/

dsr/html3/CoverPage/html

Document Type De�nition for the HyperText

Markup Language (HTML DTD)

http://www.w3.org/hypertext/WWW/MarkUp/

html3-dtd.txt

Adobe Acrobat http://www.adobe.com/Acrobat/

Acrobat0.html

� Philip Taylor

P.Taylor@Vms.Rhbnc.Ac.Uk

1995 GUST, Zeszyt 6 27

Te ÿkwiatko-gwiazdki" to przykªady gra�ki

METAFONT-owej wygenerowane za pomoc¡

pakietu makr MF-PS (Bogusªaw Jackowski

et al.). Zwró¢cie uwag¦ na obecno±¢ �gur

jednokre±lnych.

Pakiet zawieraj¡cy powy»sze przykªady jest

dost¦pny w archiwum GUST-u:

ftp.pg.gda.pl:

/pub/TeX/GUST/contrib/MF-PS


