
1993 GUST, Zeszyt 1 31

Od przyjacióª ¢

Syntactic Sugar

Kees van der Laan

�

Abstract

A plea is made for being honest with T

E

X and

not imposing alien structures upon it, otherwise

than via compatible extensions, or via (non-T

E

X)

user interfaces to suit the publisher, the author,

or the typist. This will facilitate the process

to get (complex) publications out e�ectively, and

typographically of high-quality.

Keywords (nested) loop, switch, array addressing,

plain T

E

X, macro writing, education.

Introduction

T

E

X is a formatter and also a programming lan-

guage. T

E

X is di�erent from current high-level pro-

gramming languages, but very powerful. A class on

its own, and therefore unusual, and unfamiliar.

Because of T

E

X being di�erent, macro writers pro-

pose to harnass T

E

X into a more familiar system,

by imposing syntaxes borrowed from various suc-

cessful high-level programming languages. In do-

ing so, injustice to T

E

X's nature might result, and

users might become intimidated, because of the

di�cult|at least unusual|encodingused to achieve

the aim. The more so when functional equivalents

are already there, although perhaps hidden, and not

tagged by familiar names. This is demonstrated with

examples about the loop, the switch, array address-

ing, optional and keyword parameters.

Furthermore, T

E

X encodings are sometimes pecu-

liar, di�erent from the familiar algorithms, possibly

because macro writers are captivated by the mouth

processing capabilities of T

E

X. Users who don't care

so much about T

E

X's programming power, but who

are attracted by the typesetting quality, which can

be obtained with T

E

X as formatter, can be led astray

when in search for a particular functionality they

stumble upon unusual encodings. They might con-

clude that T

E

X is too di�cult, too error-prone and

more things like that and ee towards Wordwhat-

ever, or embrace Desk Top Publishing systems.

�

This is an abridged version of the paper

submitted to EuroT

E

X'93

The way out is education, next to the provision

of compatible, well-documented and supported user

interfaces, which don't act like syntactic sugar, by

neglecting, or hiding, the already available func-

tional equivalents. Neither the publication of encod-

ings, nor the provision of encodings via �le servers

or archives|although a nice supporting feature for

the T

E

X-ies|is enough. The quality, compatibility

and the simplicity of the (generic) macros should be

warranted too.

It is not the aim of this paper to revitalize a pro-

gramming languages notation war, but to stimulate

awareness, and exchange ideas.

Loops

D

E

K's loop, T

E

Xbook p.219, implements the ow

-

?

pretst

?

�

�

H

H

H

H

�

�

tst

posttst

?

`\else'

with syntax

\loophpretsti\iftsthposttsti\repeat.

Special cases result when hpretsti, or hposttsti is

empty. The former is equivalent to for example

PASCAL's while : : :do : : : , and the latter to

repeat: : :until. With this awareness, I consider

the variants as proposed by for example Pittman,

[22], and Spivak, [26], as syntactic sugar.

If \ifcase... is used, then we have for hposttsti

several parallel paths, of which one|determined

dynamically|will be traversed. Provide and choose

your path! What do you mean by traversing the

\else-path?

Why another loop?

Kabelschacht, [10], and Spivak, [26], favour a loop

which allows the use of \else.

1

I have some

objections to Kabelschacht's claim that his loop is

a generalization of plain's loop.

First, it is not a generalization, just a clever, but

variant, implementation of the loop ow chart.

1

Their loops are equivalent to the general form

of the loop with the execution of an extra part after

the loop.

32 GUST, Zeszyt 1 1993

Second, it is not compatible with plain's loop. His

exit path is via the \then branch (or via any of the

\or-s, when \ifcase is used), and not via the \else

branch.

The reason, I can think of, for introducing another

loop, while the most general form has been

implemented already, is the existence of commands

like \ifvoid, and \ifeof, and the absence of

their negatives \ifnvoid, respectively \ifneof.

In those cases we like to continue the loop via

the \else branch. For the latter case this means

to continue the loop when the �le is not ended.

This can be attained via modifying the loop, of

course, but I consider it simpler to use a \newif

parameter, better known as `boolean' or `logical' in

other programming languages. With the \newif

parameter, \ifneof, the loop test for an end of

�le|functionally :\ifeof|can be obtained via

\ifeof\neoffalse\else\neoftrue\fi\ifneof

For an example of use, see the Sort It Out

subsection. Related to the above encoding of the

logical :, are the encodings of the logical and, ^,

and or, _, via

Functional code T

E

X encoding

:\if... \if...\notfalse\else

\nottrue\fi\ifnot

\if...^\if... \andtrue\if...\if...

\else\andfalse

\else\andfalse\fi\fi

\ifand

\if..._\if... \ortrue

\if...\else\if...\else

\orfalse\fi\fi \ifor

with the \newif-s: \ifnot, \ifand, and \ifor.

Nesting of loops

Pittman, [22], argued that there is a need for other

loop encodings.

`Recently, I encountered an application that

required a set of nested loops and local-only

assignments and de�nitions.

T

E

X's \loop...\repeat construction proved

to be inadequate because of the requirement

that the inner loop be grouped.'

If we take his (multiplication) table|I like to

classify these as deterministic tables, because the

data as such are not typed in|to be representative,

then below a variant encoding is given, which does

not need Pittman's double looping. The table is

typographically a trie, but it is all about how

the deterministic data are encoded. My approach

is to consider it primarily as a table, which it is

after all. Within the table the rows and columns

are generated, via recursion, and not via the \loop.

Furthermore, I prefer to treat rules, a frame, a

header and row stubs as separate items to be

added to the table proper, [15]. The creation of

local quantities is a general T

E

X aspect. I too

like the idea of a hidden counter, and the next

best T

E

X solution via the local counter. The local

versus global creation of counters is a matter of

taste, although very convenient now and then. The

creation of local quantities is tacitly discouraged by

D

E

K's implementation, because there is no explicit

garbage collector implemented and therefore no

memory savings can be gained. The only thing

that remains is protection against programming

mistakes, which is indeed important.

Pittman's table, focused at the essential issue of

generating the elements, can be obtained via

$$\vbox{\halign{&\ \hfil#\hfil\strut\cr

\rows}}$$

with

\newcount\rcnt\newcount\ccnt\newcount\tnum

\newcount\mrow\newcount\mcol \mrow2 \mcol3

\def\rows{\global\advance\rcnt1

\global\ccnt0\cols\ifnum\rcnt=\mrow\swor

\fi\rs\rows}

\def\swor#1\rows{\fi\crcr}

\def\cols{\global\advance\ccnt1

\tnum\rcnt\multiply\tnum\ccnt\the\tnum

\ifnum\ccnt=\mcol\sloc\fi\cs\cols}

\def\sloc#1\cols{\fi}

\def\rs{\cr}\def\cs{&}

The result is

1 2 3

2 4 6

The termination of the recursion is unusual. It is

similar to the mechanism used on page 379 of the

T

E

Xbook, in the macro \deleterightmost. The lat-

ter T

E

Xnique is elaborated in [4], and [16].

The above shows how to generate in T

E

X determinis-

tic tables, where the table entries in other program-

ming languages are generally generated via nested

loops. One can apply this to other deterministic

math tables|trigonometric tables for example|

but then we need more advanced arithmetic facil-

ities in T

E

X (or inputting the data calculated by

1993 GUST, Zeszyt 1 33

other tools), not to mention the appropriate map-

ping of tables which extend the page boundaries.

For a more complete encoding see Table Diversions,

[15]. The idea is that rules and a frame be com-

manded via \ruled, and \framed. The header via

an appropriate de�nition of \header, �, the indi-

cation that we deal with a multiplication table, in

\first, and the row stubs via de�nition of the row

stub list. All independent and separate from the ta-

ble proper part.

A better example of a nested loop is for example the

encoding of bubble sort as given in [17].

Loops and novices

Novice T

E

Xies �nd D

E

K's loop unusual, so they

sugar it into the more familiar while, repeat, or

for constructs, encouraged to do so by exercises

as part of courseware. From the functionality view-

point, there is no need for another loop notation.

With respect to the for loop, I personally like the

idea of a hidden counter, [13], and [22]. The hid-

den counter has been used in an additional way to

plain's loop in for example [13] (via \preloop and

\postloop), and will not be repeated here. This way

of doing is a matter of taste, which does not harm,

nor hinder, because it is a compatible extension.

And, : : : for the nesting of loops we need scope

braces, because of the parameter separator \repeat.

If braces are omitted, the �rst \repeat is mistaken

for the outer one, with the result that the text of the

outer loop will not become the �rst \body. The good

way is, to make the inner \repeat invisible at the

�rst loop level, by enclosing the inner loop in braces.

With non-explicit nesting|for example the inner

loop is the replacement text of a macro|we still

need scope braces, because otherwise the \body of

the outer loop will be silently rede�ned by the body

of the inner loop.

The point I like to get accross is, that there is

no real need for another loop encoding. Syntactic

sugar? Yes!

Switches, is there a need?

Apart from the \ifcase... construct, T

E

X seems

to lack a multiple branching facility with symbolic

names. Fine, [4], introduced therefore

\def\fruit#1{\switch\if#1\is

a \apple

b \banana

c \cherry

d \date \end}

I have 2, or rather 3, remarks to the above.

First, the `switch'-functionality is already there.

Second, Fine's implementation is based upon

`It is clear that \switchmust go through the

alternatives one after another, reproducing

the test: : : '

Well, : : : going through the alternatives one after

another is not necessary.

Third, his example, borrowed from Schwarz, [24],

can be solved more elegantly without using a

`switch' or nested \if-s at all, as shown below.

The �rst two aspects are related. Fine's functionality

can be obtained via

\def\fruit#1{\csname fruit#1\endcsname}

%with

\def\fruita{\apple}

\def\fruitb{\banana} %et cetera

With for example:

\def\apple{{\bf apple}},

\fruit a

yields

apple.

And what about the `else' part? Thanks to \csname,

\relax will return when the control sequence has

not yet been de�ned. So, if nothing has to happen

we are �ne. In the other situations one could de�ne

\def\fruitelse{...}, and make the else fruits

refer to it, for example \def\fruity{\fruitelse},

\def\fruitz{\fruitelse}, etc. When the set is

really uncountable we are in trouble, but I don't

know of such situations. And, : : : the �ve letters

`fruit' are there only to enhance uniqueness of the

names.

As example J. Fine gives the problem, treated by

Schwarz, [24], to print vowels in bold face.

2

The problem can be split into two parts. First, the

general part of going character by character through

a string, and second, to decide whether the character

at hand is a vowel or not.

For the �rst part use for example, \dolist,

T

E

Xbook Exercise 11.5, or \fifo, [16].

\def\fifo#1{\ifx\ofif#1\ofif\fi#1\fifo}

\def\ofif#1\fifo{\fi}

2

A bit misplaced example because the actions in

the branches don't di�er, except for the non-vowel

part.

34 GUST, Zeszyt 1 1993

For the second part, combine the vowels into a

string, aeiou, and the problem is reduced to the

question hchari 2 aeiou? Earlier, I used the

latter approach when searching for a card in a

bridge hand, [12].

3

That was well-hidden under

several piles of cards, I presume? Recently, I have

used the same method for recognizing accents

and control sequences in a word, [17]. Anyway,

searching for a letter in a string can be based upon

\atest, T

E

Xbook, p.375, or one might bene�t from

\ismember, p.379. I composed the following

\newif\iffound

\def\loc#1#2{%locate #1 in #2

\def\locate##1#1##2\end{\ifx\empty##2%

\empty\foundfalse\else\foundtrue\fi}

\locate#2.#1\end}

Then

\fifo Audacious\ofif

yields

Audacious, with

\def\process#1{\uppercase{\loc#1}%

{AEIOU}\iffound{\bf#1}\else#1\fi}

\def\fifo#1{\ifx\ofif#1\ofif\fi

\process#1\fifo}

Note that en-passant we also accounted for upper-

case vowels. By the way, did you �gure out why

a period|a free symbol|was inserted between the

arguments for \locate? It is not needed in this

example.

4

Due to the period one can test for sub-

strings: string

1

2 string

2

? Because, fstring

1

2

string

2

g ^ fstring

2

2 string

1

g) fstring

1

=

string

2

g, we also have the possibility to test for

equality of strings, via \loc. Happily, there exists

the following straightforward, and T

E

X-speci�c, way

of testing for equality of strings

\def\eq#1#2{\def\st{#1}\def\nd{#2}

\ifx\st\nd\eqtrue\else\eqfalse\fi}

For lexicographic comparison, see [17], [16].

Knuth's switches

Don Knuth needed switches is his manmac macros|

\syntaxswitch,\xrefswitch etc.|T

E

Xbook,p.424.

He has implemented the functionality via nested

\if-s. My approach can be used there too, but

3

The macro there was called \strip.

4

If omitted the �nd of `bb' in `ab' goes wrong:

abbb vs. ab.bb, will be searched.

with some care with respect to { token in \next

(read: some catcode adaptations). For example

5

\ea\def\csname sw[\endcsname{[-branch}

\ea\def\csname sw|\endcsname{bar-branche}

%etc. then

\def\next{[}\csname sw\next\endcsname, and

\def\next{|}\csname sw\next\endcsname

yields: [-branch, and bar-branche.

For manmac see the T

E

Xbook, p. 412{425, and the

discussion [19].

Array addressing

Related to the switch, or the old computed goto as

it was called in FORTRAN, is array addressing.

In T

E

X this can be done via the use of \csname.

An array element, for example elements identi�ed

among others in PASCAL by a[1] or a[apple], can

be denoted in T

E

X via the control sequences

\csname a1\endcsname

%respectively

\csname aapple\endcsname

For practical purposes this accessing, or should we

say `reading,' has to be augmented with macros for

writing, as given in [5], and [7]. Writing to an array

element can be done via

\def\a#1#2{\ea\def\csname a#1%

\endcsname{#2}}\a{1}{Contents}

yields Contents, after the above.

The point I like to make is, that `array addressing'|

also called table lookup by some authors|is already

there, although unusual and a bit hidden, but, : : :we

are used to things like strong type-checking, isn't?

Once we can do array addressing we can encode all

kind of algorithms, which make use of the array data

structure. What about sorting? See the Sort It

Out subsection, for a glimpse, and the in depth

treatment, [17], with O(n logn) algorithms, and

application to glossary and index sorting.

Conclusion

It is hoped that authors who can't resist the chal-

lenge to impose syntaxes from successful program-

ming languages upon T

E

X, also encode the desired

functionality in T

E

X's peculiar way, and contrast

this with their proposed improvements. The novice,

the layman and his peers will bene�t from it.

The di�culties caused by T

E

X's unusual encoding

5

\ea { an abbreviation for \expandafter

1993 GUST, Zeszyt 1 35

mechanisms, can best be solved via education, and

not via imposing structures from other languages.

The latter will entail confusion, because of all those

varieties. Furthermore, it is opposed to the Reduced

Instruction Set idea, which I like. For me it is similar

to the axioms-and-theorems structure in math, with

a minimal number of axions, all mutual orthogonal.

Publishing houses, user groups, and macro writers

are encouraged to develop and maintain `user inter-

faces,' which do justice to T

E

X's nature, and don't

increase the complexity of T

E

X's components. Good

examples are: TUGboat's sty �les, AMS-L

A

T

E

X &

A

M

S-T

E

X, and L

A

M

S-T

E

X, and not to forget good

old manmac! Macro-T

E

X and lxiii

6

are promising.

File servers and archives are welcomed, but the com-

patibility, the simplicity and in general the quality,

must be warranted too. Not to mention pleasant

documentation and up-to-date-ness.

My wishful thinking is to have intelligent local archi-

ves, which have in store what is locally generally

needed, and know about what is available elsewhere.

The delivery should be transparent, and indepen-

dent whether it comes from elsewhere or was in

store.

References

[1] Beebe, N.H.F (1991): The TUGlib server.

MAPS 91.2, 117{123.

[2] Beeton, B.N, R. Whitney (1989):

TUGboat 10, no. (3), 378{385.

[3] Eijkhout, V (1991): T

E

X by Topic. A-W.

[4] Fine, J (1992): Some basic control macros for

T

E

X. TUGboat 13, no. (1), 75{83.

[5] Greene, A. M (1989): T

E

Xreation|Playing

games with T

E

X's mind. TUG89.

TUGboat 10, no. (4), 691{705.

[6] Hendrickson, A (1989): MacroT

E

X.

[7] Hendrickson, A (1990): Getting T

E

Xnical:

Insights into T

E

X macro writing techniques.

TUGboat 11, no. (3), 359{370.

[8] Je�reys, A (1990): Lists in T

E

X's mouth.

TUGboat 11, no. (2), 237{244.

[9] Jensen, K, N. Wirth (1975): PASCAL

user manual and report. Springer-Verlag.

TUGboat 11, no. (2), 237{244.

[10] Kabelschacht, A (1987): \expandafter

vs. \let and \def in conditionals and a

6

The L

A

T

E

X3 project.

generalization of plain's \loop. TUGboat 8,

no. (2), 184{185.

[11] Knuth, D.E (1984): The T

E

Xbook, A-W.

[12] Laan, C.G van der (1990): Typesetting Bridge

via T

E

X. TUGboat 11, no. (2), 265{276.

[13] Laan, C.G van der (1992a): Tower of Hanoi,

revisited. TUGboat 13, no. (1), 91{94.

[14] Laan, C.G van der (1992b): FIFO & LIFO

incognito. EuroT

E

X '92, 225{234. Also

MAPS92.1. An elaborated version is FIFO &

LIFO sing the BLUes.

[15] Laan, C.G van der (1992c): Table Diversions.

EuroT

E

X '92, 191{211. A little adapted in

MAPS92.2.

[16] Laan, C.G van der (1992d): FIFO & LIFO

sing the BLUes. MAPS92.2, 139{144. (To

appear TUGboat, 14, 1.)

[17] Laan, C.G van der (1993a): Sorting in BLUe.

MAPS93.1. (21p. Heap sort encoding is

released in MAPS92.2.)

[18] Laan, C.G van der (1993b): Typesetting

number sequences. MAPS93.1. (4p.)

[19] Laan, C.G van der (1993c): Manmac BLUes.

MAPS93.1. (In progress in the same series:

AMS BLUes, and TUGboat BLUes.)

[20] Lamport, L (1986): L

A

T

E

X, user's guide &

reference manual. A-W.

[21] Maus, S (1991): An expansion power lemma.

TUGboat 12, no. (2), 277.

[22] Pittman, J.E (1988): Loopy.T

E

X. TUGboat 9,

no. (3), 289{291.

[23] Salomon, D (1992): NTG's Advanced T

E

X

course: Insights & Hindsights. MAPS 92

Special. 254p.

[24] Schwarz, N (1987): Einf�uhrung in T

E

X, A-W.

[25] Siebenmann, L (1992): Elementary Text

Processing and Parsing in T

E

X. TUGboat 13,

no. (1), 62{73.

[26] Spivak, M.D (1987): LA

M

S-T

E

X.

T

E

Xplorators.

[27] Youngen, R.E (1992): T

E

X-based production

at AMS. MAPS92.2. 7p.

Kees van der Laan jest prezesem pr¦»nej, holen-

derskiej grupy u»ytkowników T

E

X-a (NTG), z któ-

r¡ GUST utrzymuje ±cisªy kontakt.

