
Document Object Model (DOM) Level 3 Views and
Formatting Specification

Version 1.0

W3C Working Draft 15 November 2000
This version:

http://www.w3.org/TR/2000/WD-DOM-Level-3-Views-20001115
(PostScript file , PDF file , plain text , ZIP file)

Latest version:
http://www.w3.org/TR/DOM-Level-3-Views

Editors:
Ray Whitmer, Netscape Communications Corporation

Copyright © 2000 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability , trademark, document
use and software licensing rules apply.

Abstract
This specification defines the Document Object Model Views and Formatting Level 3, a platform- and
language-neutral interface that allows programs and scripts to dynamically access and update the content,
structure and style of documents. The Document Object Model Views and Formatting Level 3 builds on
the Document Object Model Views Level 2.

Status of this document
This section describes the status of this document at the time of its publication. Other documents may
supersede this document. The latest status of this document series is maintained at the W3C.

This specification is a very early version of the Views and Formatting API. This document is not
guarantee to be part of the DOM Level 3 specification since the Working Group is waiting for more
experience and experimentation before going further.

It is a W3C Working Draft for review by W3C members and other interested parties and may act as a
starting point for the future DOM Working Group if such a Group is approved by the W3C Director. It is
a draft document and may be updated, replaced, or obsoleted by other documents at any time. It is
inappropriate to use W3C Working Drafts as reference material or to cite them as other than "work in

1

Document Object Model (DOM) Level 3 Views and Formatting Specification

http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/TR/DOM-Level-3-Views
http://www.w3.org/TR/2000/WD-DOM-Level-3-Views-20001115/DOM3-Views.zip
http://www.w3.org/TR/2000/WD-DOM-Level-3-Views-20001115/DOM3-Views.txt
http://www.w3.org/TR/2000/WD-DOM-Level-3-Views-20001115/DOM3-Views.pdf
http://www.w3.org/TR/2000/WD-DOM-Level-3-Views-20001115/DOM3-Views.ps
http://www.w3.org/TR/2000/WD-DOM-Level-3-Views-20001115
http://www.w3.org/

progress".

Comments and experiences on this document are invited and are to be sent to the public mailing list
www-dom@w3.org. The DOM Working Group will respond in the mailing list. An archive is available at
http://lists.w3.org/Archives/Public/www-dom/.

This document has been produced as part of the W3C DOM Activity . The authors of this document are
the DOM WG members. Different modules of the Document Object Model have different editors.

A list of current W3C Recommendations and other technical documents can be found at
http://www.w3.org/TR.

Table of contents
................ 3Expanded Table of Contents
................... 5Copyright Notice

........... 91. Document Object Model Views and Formatting

................ 33Appendix A: IDL Definitions

.............. 39Appendix B: Java Language Binding

............ 47Appendix C: ECMA Script Language Binding

.................... 55References

..................... 57Index

2

Table of contents

http://www.w3.org/TR/
http://www.w3.org/DOM/Activity.html
http://lists.w3.org/Archives/Public/www-dom/

Expanded Table of Contents
................ 3Expanded Table of Contents
................... 5Copyright Notice
........... 5W3C Document Copyright Notice and License
........... 6W3C Software Copyright Notice and License

........... 91. Document Object Model Views and Formatting

.................. 91.1. Overview

................. 91.1.1. Issues

................. 101.1.2. Segments

.................. 101.1.3. View

........... 101.1.4. Generic and Medium-Specific APIs

.......... 111.2. Formal Interface Definition for a Generic View

.......... 251.3. Formal Interface Definition for a Visual View

................ 33Appendix A: IDL Definitions

.............. 39Appendix B: Java Language Binding

............ 47Appendix C: ECMA Script Language Binding

.................... 55References

................ 551. Normative references

..................... 57Index

3

Expanded Table of Contents

4

Expanded Table of Contents

Copyright Notice
Copyright © 2000 World Wide Web Consortium, (Massachusetts Institute of Technology, Institut
National de Recherche en Informatique et en Automatique, Keio University). All Rights Reserved.

This document is published under the W3C Document Copyright Notice and License [p.5] . The bindings
within this document are published under the W3C Software Copyright Notice and License [p.6] . The
software license requires "Notice of any changes or modifications to the W3C files, including the date
changes were made." Consequently, modified versions of the DOM bindings must document that they do
not conform to the W3C standard; in the case of the IDL definitions, the pragma prefix can no longer be
’w3c.org’; in the case of the Java language binding, the package names can no longer be in the ’org.w3c’
package.

W3C Document Copyright Notice and License
Note: This section is a copy of the W3C Document Notice and License and could be found at
http://www.w3.org/Consortium/Legal/copyright-documents-19990405.

Copyright © 1994-2000 World Wide Web Consortium, (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique et en Automatique, Keio University). All Rights
Reserved.

http://www.w3.org/Consortium/Legal/

Public documents on the W3C site are provided by the copyright holders under the following license. The
software or Document Type Definitions (DTDs) associated with W3C specifications are governed by the
Software Notice. By using and/or copying this document, or the W3C document from which this
statement is linked, you (the licensee) agree that you have read, understood, and will comply with the
following terms and conditions:

Permission to use, copy, and distribute the contents of this document, or the W3C document from which
this statement is linked, in any medium for any purpose and without fee or royalty is hereby granted,
provided that you include the following on ALL copies of the document, or portions thereof, that you use:

1. A link or URL to the original W3C document.
2. The pre-existing copyright notice of the original author, or if it doesn’t exist, a notice of the form:

"Copyright © [$date-of-document] World Wide Web Consortium, (Massachusetts Institute of
Technology, Institut National de Recherche en Informatique et en Automatique, Keio University).
All Rights Reserved. http://www.w3.org/Consortium/Legal/" (Hypertext is preferred, but a textual
representation is permitted.)

3. If it exists, the STATUS of the W3C document.

When space permits, inclusion of the full text of this NOTICE should be provided. We request that
authorship attribution be provided in any software, documents, or other items or products that you create
pursuant to the implementation of the contents of this document, or any portion thereof.

5

Copyright Notice

http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-software.html
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/

No right to create modifications or derivatives of W3C documents is granted pursuant to this license.
However, if additional requirements (documented in the Copyright FAQ) are satisfied, the right to create
modifications or derivatives is sometimes granted by the W3C to individuals complying with those
requirements.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
this document or its contents without specific, written prior permission. Title to copyright in this
document will at all times remain with copyright holders.

W3C Software Copyright Notice and License
Note: This section is a copy of the W3C Software Copyright Notice and License and could be found at
http://www.w3.org/Consortium/Legal/copyright-software-19980720

Copyright © 1994-2000 World Wide Web Consortium, (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique et en Automatique, Keio University). All Rights
Reserved.

http://www.w3.org/Consortium/Legal/

This W3C work (including software, documents, or other related items) is being provided by the copyright
holders under the following license. By obtaining, using and/or copying this work, you (the licensee)
agree that you have read, understood, and will comply with the following terms and conditions:

Permission to use, copy, and modify this software and its documentation, with or without modification,
for any purpose and without fee or royalty is hereby granted, provided that you include the following on
ALL copies of the software and documentation or portions thereof, including modifications, that you
make:

1. The full text of this NOTICE in a location viewable to users of the redistributed or derivative work.
2. Any pre-existing intellectual property disclaimers. If none exist, then a notice of the following form:

"Copyright © [$date-of-software] World Wide Web Consortium, (Massachusetts Institute of
Technology, Institut National de Recherche en Informatique et en Automatique, Keio University).
All Rights Reserved. http://www.w3.org/Consortium/Legal/."

6

W3C Software Copyright Notice and License

http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Legal/IPR-FAQ.html

3. Notice of any changes or modifications to the W3C files, including the date changes were made. (We
recommend you provide URIs to the location from which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT
HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR
DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
the software without specific, written prior permission. Title to copyright in this software and any
associated documentation will at all times remain with copyright holders.

7

W3C Software Copyright Notice and License

8

W3C Software Copyright Notice and License

1. Document Object Model Views and Formatting
Editors

Ray Whitmer, Netscape Communications Corp

1.1. Overview
This chapter describes the optional DOM Level 3 Views and Formatting feature. A DOM application can
use the hasFeature method of the DOMImplementation interface to determine whether this feature
is supported or not. The feature string for generic interfaces is "ViewsAndFormatting". The feature string
for visual properties and interfaces is "VisualViewsAndFormatting". The additional feature strings will be
used to identify support specific to other media,

DOM implementations frequently create views of the document content available through DOM APIs.
Such views present content in different ways using various processing, styling, and presentation systems.
While a strong separation is typically maintained between content and the view, DOM applications may
need to correlate characteristics such as position within a visual view with specific content presented
within the view in order to augment and interact with the presentation.

This API allows a DOM application access to a view’s computed layout and presentation. This feature
functions independently from any specific styling system that may have been applied. An implementation
of this API must be able to maintain a correspondence between specific content and its presentation within
the view, however the presentation was computed. Presentation state such as selection or scrolling may be
manipulatable though this interface, but state which is computed or supplied from the content must be
manipulated through the content.

Two versions of the API have been supplied, which are redundant in their functionality. The DOM WG
has not decided which of the two is better, or if both are needed. The generic API, described first, is more
robust because the specifics are contained in identifying strings passed to general mechanisms. The
medium-specific APIs, described last, directly expose the attributes of the medium on the interface, which
provides a flatter, simpler model for the user, but one which is less able to adapt to new or extended media
types or different uses.

1.1.1. Issues

Issue VF-Issue-1:
There are not enough examples in this document.

Issue VF-Issue-2:
We need to comprehensively look at typical presentations and decide the initial segments, properties,
orders, and lookup criteria we want to support, at least in the visual case. We also need to see if we
think that Visual needs to be further subclassed. We are clearly lacking things, but how many
segment types and properties do we need to reasonably meet requirements for level 3?

Issue VF-Issue-3:
How should we represent types such as colors, fonts, and so on. How much time we can spend
defining reporting value types or supporting arbitrary display value types. CSS style properties have
done significant work in these areas, but it is not clear that their work is applicable for this view

9

1. Document Object Model Views and Formatting

model, due to differences between stylistic intent and computed results.
Issue VF-Issue-4:

What types of events should we support: keyboard, mouse, selection, repaint, layout, properties, etc.
Is it reasonable to support these at the view level, without exposing the lower layers of the
presentation? Can we wait for a future version of the spec? We need compelling use cases for the
first release.

Issue VF-Issue-5:
Is it reasonable to expose computed content? Should this be done by creating appropriate
DocumentFragments? How does this figure into the ordering of the segments, since segments which
present computed content instead of other content have less natural order. We need compelling use
cases for the first release.

Issue VF-Issue-6:
What about case insensitivity when comparing string values? Should it be an option, the rule, or
automatic?

1.1.2. Segments

A Segment [p.15] is a distinct part of a view. Each Segment is privately owned and maintained by the
containing view, which may destroy or reconstruct it at any time. Each Segment has a type related to the
presentation medium and the function of that part of the presentation. Additional properties specific to the
segment type contain information about that part of the view and identify the corresponding content, if
any. Segments may also contain embedded segments where appropriate to the structure of the
presentation.

A Segment [p.15] is not expected to have any particular structure beyond its properties, any contained
segments, and dependency on the content it presents. Containment of one segment within another does not
change the fact that properties such as offsets are relative to the entire view so that they may be matched,
applied, and compared from anywhere within the view.

The actual segments or parts of the view are not directly available to the DOM application, but this API
provides generic Segment [p.15] objects which can more-generally find and return items of the actual
parts of the view.

1.1.3. View

A View [p.12] is the root of a presentation, owned and maintained by a Document. A view formats the
contents of a document into a particular type of presentation. A view may contain general properties of the
view, resource segments, and segments representing the content of a document, prepared for presentation.

A Segment [p.15] object specifies the actual criteria of segments to match, and captures items of each
matched segment.

10

1.1.2. Segments

1.1.4. Generic and Medium-Specific APIs

The generic API provides access to variety of view and segment types by way of a medium-specific table
of strings used to identify properties of medium-specific segment types:

// Find all selected runs of characters in the view at least half an inch from the edges.

View v = (View)((DocumentView)document).getDefaultView();
Segment q = v.createSegment();
q.setOrder("Content");
MatchSet m = q.createMatchSet(m.SET_ALL);
int hu = v.getIntegerProperty("HorizontalDPI");
int vu = v.getIntegerProperty("VerticalDPI");
n.addMatch(q.createMatchString(m.IS_EQUAL, "Type", "VisualCharacterRun");
m.addMatch(q.createMatchInteger(m.INT_FOLLOWS_OR_EQUALS, "LeftOffset", hu/2));
m.addMatch(q.createMatchInteger(m.INT_FOLLOWS_OR_EQUALS, "RightOffset", hu/2));
m.addMatch(q.createMatchInteger(m.INT_FOLLOWS_OR_EQUALS, "TopOffset", vu/2));
m.addMatch(q.createMatchInteger(m.INT_FOLLOWS_OR_EQUALS, "RightOffset", vu/2));
m.addMatch(q.createMatchBoolean(m.IS_EQUAL, "Selected", true);
q.setCriteria(m);
ContentItem start = q.createContentItem("StartContent");
ContentItem end = q.createContentItem("EndContent");
q.addItem(start);
q.addItem(end);
v.matchFirstSegment(q, 0);
while (q.getExists())
{
 // ... do Something with range from start to end...
 q.getNext();
}

Medium-specific APIs are flatter and easier to use, but usually sacrifice capabilities of the more-general
API.

// Find all selected runs of characters in the view at least half an inch from the edges.

VisualView v = (VisualView)((DocumentView)document).getDefaultView();
int hu = v.getHorizontalDPI();
int vu = v.getVerticalDPI();
CharacterRun cr = v.createCharacterRun();
cr.setMatchInside(true);
cr.setMatchX(hu / 2);
cr.setMatchY(vu / 2);
cr.setMatchXR(v.getWidth() - hu);
cr.setMatchYR(v.getHeight() - vu);
cr.setMatchSelected(true);
v.matchSegment(cr);
while (cr.getExists())
{
 // ... do Something with range from start to end...
 cr.getNext();
}

11

1.1.4. Generic and Medium-Specific APIs

1.2. Formal Interface Definition for a Generic View
This is the verbose, general-purpose mechanism that can handle all properties of all media types. This
relies on a separate table of segment types and the associated properties and property types, because it is a
single API.

Interface View (introduced in DOM Level 3)

View is used as the root Segment [p.15] , as well as providing additional global functionality such
as selection.

IDL Definition

// Introduced in DOM Level 3:
interface View {
 void select(in Node boundary,
 in unsigned long offset,
 in boolean extend,
 in boolean add);
 Segment createSegment();
 boolean matchFirstSegment(inout Segment todo)
 raises(DOMException);
 long getIntegerProperty(in DOMString name)
 raises(DOMException);
 DOMString getStringProperty(in DOMString name)
 raises(DOMException);
 boolean getBooleanProperty(in boolean name)
 raises(DOMException);
 Node getContentPropertyNode(in DOMString name)
 raises(DOMException);
 unsigned long getContentPropertyOffset(in DOMString name)
 raises(DOMException);
};

Methods
createSegment

Creates a segment that can be used to obtain segment items from the view.
Return Value

Segment
[p.15]

A new segment object, that can be set up to obtain information
about the view.

No Parameters
No Exceptions

getBooleanProperty
Returns the value of a boolean property of the segment, used by Match [p.20] es and
Item [p.23] s.
Parameters

12

1.2. Formal Interface Definition for a Generic View

name of type boolean
The name of the boolean property of the segment to be retrieved.

Return Value

boolean The value of the named property of the Segment [p.15] .

Exceptions

DOMException NOT_SUPPORTED_ERR: Raised if the named property does not
exist on the view or is not a boolean.

getContentPropertyNode
Returns the Node value of a content property of the segment, used by Match [p.20] es and
Item [p.23] s.
Parameters
name of type DOMString

The name of the content property of the segment to be retrieved.
Return Value

Node The Node value of the named property of the Segment [p.15] .

Exceptions

DOMException NOT_SUPPORTED_ERR: Raised if the named property does not
exist on the view or is not content.

getContentPropertyOffset
Returns the offset value of a content property of the segment, used by Match [p.20] es and
Item [p.23] s.
Parameters
name of type DOMString

The name of the content property of the segment to be retrieved.
Return Value

unsigned long The offset value of the named property of the Segment [p.15] .

Exceptions

DOMException NOT_SUPPORTED_ERR: Raised if the named property does not
exist on the view or is not content.

13

1.2. Formal Interface Definition for a Generic View

getIntegerProperty
Returns the value of an integer property of the segment, used by Match [p.20] es and
Item [p.23] s.
Parameters
name of type DOMString

The name of the integer property of the segment to be retrieved.
Return Value

long The value of the named property of the Segment [p.15] .

Exceptions

DOMException NOT_SUPPORTED_ERR: Raised if the named property does not
exist on the view or is not an integer.

getStringProperty
Returns the value of a string property of the segment, used by Match [p.20] es and Item
[p.23] s.
Parameters
name of type DOMString

The name of the string property of the segment to be retrieved.
Return Value

DOMString The value of the named property of the Segment [p.15] .

Exceptions

DOMException NOT_SUPPORTED_ERR: Raised if the named property does not
exist on the view or is not a string.

matchFirstSegment
Executes a Segment [p.15] against all nested Segments, fetchingItem [p.23] s
associated the requested match number, if it exists.
Parameters
todo of type Segment [p.15]

The Segment to match within the view.
Return Value

boolean true if the desired match number was found, otherwise false.

Exceptions

14

1.2. Formal Interface Definition for a Generic View

DOMException NOT_SUPPORTED_ERR: If the segment request could not be
interpreted.

select
Selects a new region of the document or adds to the existing selection.
Parameters
boundary of type Node

The Node at which to create or extend the selection.
offset of type unsigned long

The offset within the node at which to create or extend the selection.
extend of type boolean

If false, sets a selection anchor. If true, extends the selection with respect to the
most-recently-set anchor.

add of type boolean
If false, clears any existing selection. If true adds a new region to existing selection
regions.

No Return Value
No Exceptions

Interface Segment (introduced in DOM Level 3)

Segment is used to retrieve specific items from specific segments. Segments may be nested as a
match and may be repeatedly applied for traversing multiple matching segments.

Note: Types and names of properties of segments of Visual media types

 Integer TopOffset
 Integer BottomOffset
 Integer LeftOffset
 Integer RightOffset
 Integer Width
 Integer Height
 Boolean Visible
 Boolean Selected
 Integer ForegroundColor
 Integer BackgroundColor
 String FontName
 String FontHeight
 String FontBaseline
 String FontSpace Width
 String FontMaximum Width

Segment types

 // Display info and root (the default segment)
 Display
 // An area that objects or text lines flow in
 // or are anchored to
 Frame
 // A single character
 Character
 // Sequentially-appearing characters

15

1.2. Formal Interface Definition for a Generic View

 // with identical properties
 CharacterRun
 FormField {Text | Label | Button | Menu ...}
 Embedded Object
 Image

Possible properties of specific types:

 (Image) String URL
 (Image) Boolean isLoaded
 (Image) Integer ScalingFactor
 (Button) Boolean isPressed
 (Frame) Boolean isScrollable

IDL Definition

// Introduced in DOM Level 3:
interface Segment : Match {
 attribute Match criteria;
 attribute DOMString order;
 void addItem(in Item add);
 MatchString createMatchString(in unsigned short test,
 in DOMString name,
 in DOMString value);
 MatchInteger createMatchInteger(in unsigned short test,
 in DOMString name,
 in long value);
 MatchBoolean createMatchBoolean(in unsigned short test,
 in DOMString name,
 in boolean value);
 MatchContent createMatchContent(in unsigned short test,
 in DOMString name,
 in unsigned long offset,
 in Node node);
 MatchSet createMatchSet(in unsigned short test);
 StringItem createStringItem(in DOMString name);
 IntegerItem createIntegerItem(in DOMString name);
 BooleanItem createBooleanItem(in DOMString name);
 ContentItem createContentItem(in DOMString name);
 void getItem(in unsigned long index);
 boolean getNext();
};

Attributes
criteria of type Match [p.20]

The criteria Match [p.20] of a Segment, specified during creation, controls which
Segments will match.
After setting this attribute, the results of any related call to getNext are unpredictable
until the segment has been requested again by calling matchFirstSegment.

order of type DOMString
The order string of a Segment, specified during creation, controls the order in which
matching segments will be returned. If this attribute is not specified, the order defaults to
an implementation-specific order.
After setting this attribute, the results of any related call to getNext are unpredictable

16

1.2. Formal Interface Definition for a Generic View

until the segment has been requested again by calling matchFirstSegment.
Methods

addItem
Adds a specific Item [p.23] to the Segment.
Parameters
add of type Item [p.23]

The Item to be added.
After adding a result, the results of any related call to getNext are unpredictable
until the segment has been requested again by calling matchFirstSegment.

No Return Value
No Exceptions

createBooleanItem
Creates an item for a segment that can receive a boolean value.
Parameters
name of type DOMString

The name of a boolean property to be received.
Return Value

BooleanItem [p.24] The requested BooleanItem.

No Exceptions
createContentItem

Creates an item for a segment that can receive a content value.
Parameters
name of type DOMString

The name of a content property to be received.
Return Value

ContentItem [p.24] The requested ContentItem.

No Exceptions
createIntegerItem

Creates an item for a segment that can receive an integral value.
Parameters
name of type DOMString

The name of an integral property to be received.
Return Value

IntegerItem [p.24] The requested IntegerItem.

No Exceptions
createMatchBoolean

Creates a match for a boolean value, which can be used to specify a criterium to find
desired segments.
Parameters

17

1.2. Formal Interface Definition for a Generic View

test of type unsigned short
The match test desired.

name of type DOMString
The name of a boolean property to be compared against.

value of type boolean
The boolean value to be compared against.

Return Value

MatchBoolean [p.21] The requested MatchBoolean.

No Exceptions
createMatchContent

Creates a match for a content value, which can be used to specify a criterium to find
desired segments.
Parameters
test of type unsigned short

The match test desired.
name of type DOMString

The name of an integer property to be compared against.
offset of type unsigned long

The offset of the content value to be compared against.
node of type Node

The Node of the content value to be compared against.
Return Value

MatchContent [p.22] The requested MatchContent.

No Exceptions
createMatchInteger

Creates a match for an integral value, which can be used to specify a criterium to find
desired segments.
Parameters
test of type unsigned short

The match test desired.
name of type DOMString

The name of an integer property to be compared against.
value of type long

The integer value to be compared against.
Return Value

MatchInteger [p.21] The requested MatchInteger.

No Exceptions

18

1.2. Formal Interface Definition for a Generic View

createMatchSet
Creates a match for an set of matches, which can be used to specify a criterium to find
desired segments.
Parameters
test of type unsigned short

The match test desired.
Return Value

MatchSet [p.22] The requested MatchSet.

No Exceptions
createMatchString

Creates a match for a string value, which can be used to specify a criterium to find desired
segments.
Parameters
test of type unsigned short

The match test desired.
name of type DOMString

The name of a string property to be compared against.
value of type DOMString

The string value to be compared against.
Return Value

MatchString [p.21] The requested MatchString.

No Exceptions
createStringItem

Creates an item for a segment that can receive a string value.
Parameters
name of type DOMString

The name of a string property to be received.
Return Value

StringItem [p.23] The requested StringItem.

No Exceptions
getItem

Returns a specific Item [p.23] , of the list specified during the creation of the Segment,
which is to be fetched during Segment execution, or returns null if the specified index
does not correspond to a Item.
Parameters
index of type unsigned long

The index of the Item [p.23] to be retrieved.
No Return Value
No Exceptions

19

1.2. Formal Interface Definition for a Generic View

getNext
Fetches the results of the next matching Segment, if any.
Return Value

boolean true if another match, otherwise false (same value as exists).

No Parameters
No Exceptions

Interface Match (introduced in DOM Level 3)

The Match identifies Segment [p.15] s of which a Segment should fetch the Item [p.23] s.

IDL Definition

// Introduced in DOM Level 3:
interface Match {

 // MatchTestGroup
 const unsigned short IS_EQUAL = 0;
 const unsigned short IS_NOT_EQUAL = 1;
 const unsigned short INT_PRECEDES = 2;
 const unsigned short INT_PRECEDES_OR_EQUALS = 3;
 const unsigned short INT_FOLLOWS = 4;
 const unsigned short INT_FOLLOWS_OR_EQUALS = 5;
 const unsigned short STR_STARTS_WITH = 6;
 const unsigned short STR_ENDS_WITH = 7;
 const unsigned short STR_CONTAINS = 8;
 const unsigned short SET_ANY = 9;
 const unsigned short SET_ALL = 10;
 const unsigned short SET_NOT_ANY = 11;
 const unsigned short SET_NOT_ALL = 12;

 readonly attribute unsigned short test;
};

Definition group MatchTestGroup
Defined Constants

INT_FOLLOWS
INT_FOLLOWS_OR_EQUALS
INT_PRECEDES
INT_PRECEDES_OR_EQUALS
IS_EQUAL
IS_NOT_EQUAL
SET_ALL
SET_ANY
SET_NOT_ALL
SET_NOT_ANY
STR_CONTAINS

20

1.2. Formal Interface Definition for a Generic View

STR_ENDS_WITH
STR_STARTS_WITH

Attributes
test of type unsigned short, readonly

The test value of a Match, specified during creation, controls the test to be applied.
Interface MatchString (introduced in DOM level 3)

The MatchString identifies Segment [p.15] s where a string property matches a specific value.

IDL Definition

// Introduced in DOM level 3:
interface MatchString : Match {
 readonly attribute DOMString name;
 readonly attribute DOMString value;
};

Attributes
name of type DOMString, readonly

The name of a string property of each Segment [p.15] to be compared against, which is
specified during construction.

value of type DOMString, readonly
The string value to be compared against, which is specified during construction.

Interface MatchInteger (introduced in DOM level 3)

The MatchInteger identifies Segment [p.15] s where an integer property matches a specific
value.

IDL Definition

// Introduced in DOM level 3:
interface MatchInteger : Match {
 readonly attribute DOMString name;
 readonly attribute long value;
};

Attributes
name of type DOMString, readonly

The name of an integer property of each Segment [p.15] to be compared against, which is
specified during construction.

value of type long, readonly
The integer value to be compared against, which is specified during construction.

Interface MatchBoolean (introduced in DOM level 3)

The MatchBoolean identifies Segment [p.15] s where a boolean property matches a specific
value.

IDL Definition

21

1.2. Formal Interface Definition for a Generic View

// Introduced in DOM level 3:
interface MatchBoolean : Match {
 readonly attribute DOMString name;
 readonly attribute boolean value;
};

Attributes
name of type DOMString, readonly

The name of an boolean property of each Segment [p.15] to be compared against, which
is specified during construction.

value of type boolean, readonly
The boolean value to be compared against, which is specified during construction.

Interface MatchContent (introduced in DOM level 3)

The MatchContent identifies Segment [p.15] s where a content property matches a specific
value.

IDL Definition

// Introduced in DOM level 3:
interface MatchContent : Match {
 readonly attribute DOMString name;
 readonly attribute Node node;
 readonly attribute unsigned long offset;
};

Attributes
name of type DOMString, readonly

The name of an content property of each Segment [p.15] to be compared against, which is
specified during construction.

node of type Node, readonly
The Node value to be compared against, which is specified during construction.

offset of type unsigned long, readonly
The offset value to be compared against, which is specified during construction.

Interface MatchSet (introduced in DOM level 3)

The MatchSet identifies Segment [p.15] s where a set of matches evaluate in a specified way.

IDL Definition

// Introduced in DOM level 3:
interface MatchSet : Match {
 readonly attribute Node node;
 void addMatch(in Match add);
 Match getMatch(in unsigned long index);
};

Attributes
node of type Node, readonly

The Node value to be compared against, which is specified during construction.

22

1.2. Formal Interface Definition for a Generic View

Methods
addMatch

Adds a specific Match [p.20] to the set.
Parameters
add of type Match [p.20]

The Match to be added.
After adding a match, the results of any related call to getNext are unpredictable
until the segment has been requested again by calling matchFirstSegment.

No Return Value
No Exceptions

getMatch
Returns a specific Match [p.20] , of the set, which is to be matched during MatchSet
evaluation, or returns null if the specified index does not correspond to a Match.
Parameters
index of type unsigned long

The index of the Match [p.20] to be retrieved.
Return Value

Match [p.20] The requested match, if any, or null.

No Exceptions
Interface Item (introduced in DOM Level 3)

The Item represents information to be fetched by a Segment [p.15] .

IDL Definition

// Introduced in DOM Level 3:
interface Item {
 readonly attribute boolean exists;
 readonly attribute DOMString name;
};

Attributes
exists of type boolean, readonly

The exists boolean of a Segment [p.15] , initially set to false during creation, is set
after an attempt to fetch the values of a Item to indicate whether or not the required data
was present. A true value indicates that it was.

name of type DOMString, readonly
The name of a property of the matched Segment [p.15] to be fetched, which is specified
during construction.

Interface StringItem (introduced in DOM Level 3)

The StringItem represents a string property to be fetched by a Segment [p.15] .

IDL Definition

23

1.2. Formal Interface Definition for a Generic View

// Introduced in DOM Level 3:
interface StringItem : Item {
 readonly attribute DOMString value;
};

Attributes
value of type DOMString, readonly

The string value returned by the Segment [p.15] , which is undefined if exists is false.
Interface IntegerItem (introduced in DOM Level 3)

The IntegerItem represents an integer property to be fetched by a Segment [p.15] .

IDL Definition

// Introduced in DOM Level 3:
interface IntegerItem : Item {
 readonly attribute long value;
};

Attributes
value of type long, readonly

The integer value returned by the Segment [p.15] , which is undefined if exists is
false.

Interface BooleanItem (introduced in DOM Level 3)

The BooleanItem represents a boolean property to be fetched by a Segment [p.15] .

IDL Definition

// Introduced in DOM Level 3:
interface BooleanItem : Item {
 attribute boolean value;
};

Attributes
value of type boolean

The boolean value returned by the Segment [p.15] , which is undefined if exists is
false.

Interface ContentItem (introduced in DOM Level 3)

The ContentItem represents a content property to be fetched by a Segment [p.15] .

IDL Definition

// Introduced in DOM Level 3:
interface ContentItem : Item {
 attribute Node node;
 attribute unsigned long offset;
};

24

1.2. Formal Interface Definition for a Generic View

Attributes
node of type Node

The Node value returned by the Segment [p.15] , which is undefined if exists is false.
offset of type unsigned long

The offset value returned by the Segment [p.15] , which is undefined if exists is false.

1.3. Formal Interface Definition for a Visual View
This is the flatter mechanism that handles only one specific medium, in this case, visual. This does not
rely on a table of property names, because all supported criteria and properties are attributes of the
interfaces.

Interface VisualView

Presents a flatter model of a visual view.

IDL Definition

interface VisualView {
 readonly attribute DOMString fontScheme;
 readonly attribute unsigned long width;
 readonly attribute unsigned long height;
 readonly attribute unsigned long horizontalDPI;
 readonly attribute unsigned long verticalDPI;
 VisualCharacter createVisualCharacter();
 VisualCharacterRun createVisualCharacterRun();
 VisualFrame createVisualFrame();
 VisualImage createVisualImage();
 VisualFormButton createVisualFormButton();
 VisualFormField createVisualFormField();
 void select(in Node boundary,
 in unsigned long offset,
 in boolean extend,
 in boolean add);
 void matchSegment(in VisualResource segment);
};

Attributes
fontScheme of type DOMString, readonly

A string identifying the type of fonts on the system so that font name strings may be
properly interpreted.

height of type unsigned long, readonly
The height, in vertical units, of the view.

horizontalDPI of type unsigned long, readonly
The number of horizontal dots per inch in the view, used to interpret horizontal values.

verticalDPI of type unsigned long, readonly
The number of vertical dots per inch in the view, used to interpret vertical values.

width of type unsigned long, readonly
The width, in horizontal units, of the view.

25

1.3. Formal Interface Definition for a Visual View

Methods
createVisualCharacter

Creates a visual character to match and return information on a single visual character of
the view.
Return Value

VisualCharacter [p.31] The requested VisualCharacter.

No Parameters
No Exceptions

createVisualCharacterRun
Creates a visual character run to match and return information on a run of similar ajdacent
visual characters of the view.
This will match the largest character run that meets the specified criteria, is not
contiguously displayed on the view and has homogeneous display properties.
Return Value

VisualCharacterRun [p.31] The requested VisualCharacterRun.

No Parameters
No Exceptions

createVisualFormButton
Creates a visual form button to match and return information on a form button of the view.
Return Value

VisualFormButton [p.32] The requested VisualFormButton.

No Parameters
No Exceptions

createVisualFormField
Creates a visual form field to match and return information on a form field of the view.
Return Value

VisualFormField [p.32] The requested VisualFormField.

No Parameters
No Exceptions

createVisualFrame
Creates a visual frame to match and return information on a frame of the view.
Return Value

VisualFrame [p.32] The requested VisualFrame.

26

1.3. Formal Interface Definition for a Visual View

No Parameters
No Exceptions

createVisualImage
Creates a visual image to match and return information on an image of the view.
Return Value

VisualImage [p.32] The requested VisualImage.

No Parameters
No Exceptions

matchSegment
Parameters
segment of type VisualResource [p.27]
No Return Value
No Exceptions

select
Parameters
boundary of type Node
offset of type unsigned long
extend of type boolean
add of type boolean
No Return Value
No Exceptions

Interface VisualResource

Visual segments allow things within a visual view to be accessed.

IDL Definition

interface VisualResource {
};

Interface VisualFont

Visual font resources contain match criteria and result attributes for getting information about fonts
available to a view.

IDL Definition

interface VisualFont : VisualResource {
 attribute DOMString matchFontName;
 readonly attribute boolean exists;
 readonly attribute DOMString fontName;
 boolean getNext();
};

Attributes

27

1.3. Formal Interface Definition for a Visual View

exists of type boolean, readonly
Returns true result if the desired font was located, or false if it was not. If this value is set to
false, no other results are set. If this value is set to true, all other results are set.

fontName of type DOMString, readonly
When a font is matched, the name of the font is returned here.

matchFontName of type DOMString
May be set to cause fonts with the corresponding name to be matched.

Methods
getNext

Fetches the results of the next matching VisualFont, if any.
Return Value

boolean

No Parameters
No Exceptions

Interface VisualSegment

Visual segments contain match criteria attributes and result attributes common to visual views of a
document. When this structure is created, all booleans are set to false, all integral values are set to 0,
and all strings and object references are set to null. Match criteria are then set. After setting match
criteria, matchSegment is called passing this segment or another segment that references this
segment, which finds a matching segment and sets result attributes.

IDL Definition

interface VisualSegment : VisualResource {
 attribute boolean matchPosition;
 attribute boolean matchInside;
 attribute boolean matchContaining;
 attribute long matchX;
 attribute long matchY;
 attribute long matchXR;
 attribute long matchYR;
 attribute boolean matchContent;
 attribute boolean matchRange;
 attribute Node matchNode;
 attribute unsigned long matchOffset;
 attribute Node matchNodeR;
 attribute unsigned long matchOffsetR;
 attribute boolean matchContainsSelected;
 attribute boolean matchContainsVisible;
 readonly attribute boolean exists;
 readonly attribute Node startNode;
 readonly attribute unsigned long startOffset;
 readonly attribute Node endNode;
 readonly attribute unsigned long endOffset;
 readonly attribute long topOffset;
 readonly attribute long bottomOffset;
 readonly attribute long leftOffset;
 readonly attribute long rightOffset;

28

1.3. Formal Interface Definition for a Visual View

 readonly attribute unsigned long width;
 readonly attribute unsigned long height;
 readonly attribute boolean selected;
 readonly attribute boolean visible;
 readonly attribute unsigned long foregroundColor;
 readonly attribute unsigned long backgroundColor;
 readonly attribute DOMString fontName;
 readonly attribute DOMString fontHeight;
 boolean getNext();
};

Attributes
backgroundColor of type unsigned long, readonly

Whenever a segment is matched, this is set to the integral value of the background color of
that segment, or transparent if there is no background color. The 32 bits of this value are
divided into the following 8-bit sub-fields, from most significant to least significant: alpha,
red, green, blue. The color fields range from 0 for no intensity to 255 to indicate the
contribution of each color. The alpha field ranges from 0 for transparent to 255 for
completely opaque. For a transparent alpha value of 0, the color fields are be normalized to
0 as well.

bottomOffset of type long, readonly
Whenever a segment is matched, this is set to the bottom offset of the segment within the
view, specified in vertical view units.

endNode of type Node, readonly
Whenever a segment is matched, this is set to the last node presented by the matched
segment or null if the segment does not present any specific document content.

endOffset of type unsigned long, readonly
Whenever a segment is matched, this is set to first offset not presented within the last node
presented by the matched segment or 0 if the segment does not present any specific
document content.

exists of type boolean, readonly
Returns true result if the desired segment was located, or false if it was not. If this value is
set to false, no other results are set. If this value is set to true, all other results are set.

fontHeight of type DOMString, readonly
fontName of type DOMString, readonly

The font name is a view-specific designation of the font name.
foregroundColor of type unsigned long, readonly

Whenever a segment is matched, this is set to the integral value of the foreground color of
that segment, or transparent if there is no foreground color. The 32 bits of this value are
divided into the following 8-bit sub-fields, from most significant to least significant: alpha,
red, green, blue. The color fields range from 0 for no intensity to 255 to indicate the
contribution of each color. The alpha field ranges from 0 for transparent to 255 for
completely opaque. For complete transparency, the color fields will be normalized to 0 as
well.

height of type unsigned long, readonly
Whenever a segment is matched, this is set to the width of the segment within the view,
specified in vertical view units.

29

1.3. Formal Interface Definition for a Visual View

leftOffset of type long, readonly
Whenever a segment is matched, this is set to the left offset of the segment within the view,
specified in horizontal view units.

matchContaining of type boolean
May be set to cause the corresponding segment to be matched only if it contains the
specified rectangular region bounded by matchX, matchY, matchXR, and matchYR.

matchContainsSelected of type boolean
May be set to cause the corresponding segment to only be matched if the content being
presented contains a cursor or part of a selected region.

matchContainsVisible of type boolean
May be set to cause the corresponding segment to only be matched if the segment being
presented contains some part that is visible.

matchContent of type boolean
May be set to cause the corresponding segment to only be matched if it presents the
matchNode content, offset by matchOffset.

matchInside of type boolean
May be set to cause the corresponding segment to be matched only if it is inside the
specified rectangular region bounded by matchX, matchY, matchXR, and matchYR.

matchNode of type Node
The node, or first node in a range to use to match segments which present specified
content.
If matching content is enabled, but this is set to null, then only segments that are not
associated with content will be matched.

matchNodeR of type Node
The second node in a range to use to match segments which present specified content.
If matching a content range is enabled, but this is set to null, then only segments that are
not associated with content will be matched.

matchOffset of type unsigned long
The offset, or first offset in a range to use to match segments which present specified
content.

matchOffsetR of type unsigned long
The offset, or first offset in a range to use to match segments which present specified
content.

matchPosition of type boolean
May be set to cause the corresponding segment to be matched only if it contains the
specified matchX and matchY positions.

matchRange of type boolean
May be set to cause the corresponding segment to only be matched if the content it presents
is within the range of content between Node matchNode offset matchOffset and
Node matchNodeR offset matchOffsetR.

matchX of type long
An integral X coordinate, specified in horizontal view units, that may be used to match a
point or region.

matchXR of type long
An integral X coordinate, specified in horizontal view units, that may be used to match a
region.

30

1.3. Formal Interface Definition for a Visual View

matchY of type long
An integral Y coordinate, specified in vertical view units, that may be used to match a point
or region.

matchYR of type long
An integral Y coordinate, specified in vertical view units, that may be used to match a
region.

rightOffset of type long, readonly
Whenever a segment is matched, this is set to the right offset of the segment within the
view, specified in horizontal view units.

selected of type boolean, readonly
Whenever a segment is matched, this is set to true if the segment presents the content with
the cursor or selected content, otherwise, this is set to false.

startNode of type Node, readonly
Whenever a segment is matched, this is set to the first node presented by the matched
segment or null if the segment does not present any specific document content.

startOffset of type unsigned long, readonly
Whenever a segment is matched, this is set to the first offset presented within the first node
presented by the matched segment or 0 if the segment does not present any specific
document content.

topOffset of type long, readonly
Whenever a segment is matched, this is set to the top offset of the segment within the view,
specified in vertical view units.

visible of type boolean, readonly
Whenever a segment is matched, this is set to true if the segment contains some part that is
visible, otherwise, this is set to false.

width of type unsigned long, readonly
Whenever a segment is matched, this is set to the width of the segment within the view,
specified in horizontal view units.

Methods
getNext

Fetches the results of the next matching VisualResource [p.27] , if any.
Return Value

boolean

No Parameters
No Exceptions

Interface VisualCharacter
IDL Definition

interface VisualCharacter : VisualSegment {
};

Interface VisualCharacterRun
IDL Definition

31

1.3. Formal Interface Definition for a Visual View

interface VisualCharacterRun : VisualSegment {
};

Interface VisualFrame
IDL Definition

interface VisualFrame : VisualSegment {
 readonly attribute VisualSegment embedded;
};

Attributes
embedded of type VisualSegment [p.28] , readonly

May be set to contain embedded visual segments inside the frame. If this value is set, the
embedded segment serves as a conditional for the frame while receiving the results of the
embedded segment that was matched.

Interface VisualImage
IDL Definition

interface VisualImage : VisualSegment {
 readonly attribute DOMString imageURL;
 readonly attribute boolean isLoaded;
};

Attributes
imageURL of type DOMString, readonly
isLoaded of type boolean, readonly

Interface VisualFormButton
IDL Definition

interface VisualFormButton : VisualSegment {
 readonly attribute boolean isPressed;
};

Attributes
isPressed of type boolean, readonly

Interface VisualFormField
IDL Definition

interface VisualFormField : VisualSegment {
 readonly attribute DOMString formValue;
};

Attributes
formValue of type DOMString, readonly

32

1.3. Formal Interface Definition for a Visual View

Appendix A: IDL Definitions
This appendix contains the complete OMG IDL [OMGIDL] for the Level 3 Document Object Views and
Formatting definitions.

The IDL files are also available as:
http://www.w3.org/TR/2000/WD-DOM-Level-3-Views-20001115/idl.zip

views.idl:
// File: views.idl

#ifndef _VIEWS_IDL_
#define _VIEWS_IDL_

#include "dom.idl"

#pragma prefix "dom.w3c.org"
module views
{

 typedef dom::Node Node;
 typedef dom::DOMString DOMString;

 interface Segment;
 interface VisualResource;
 interface VisualCharacter;
 interface VisualCharacterRun;
 interface VisualFrame;
 interface VisualImage;
 interface VisualFormButton;
 interface VisualFormField;

 // Introduced in DOM Level 3:
 interface View {
 void select(in Node boundary,
 in unsigned long offset,
 in boolean extend,
 in boolean add);
 Segment createSegment();
 boolean matchFirstSegment(inout Segment todo)
 raises(dom::DOMException);
 long getIntegerProperty(in DOMString name)
 raises(dom::DOMException);
 DOMString getStringProperty(in DOMString name)
 raises(dom::DOMException);
 boolean getBooleanProperty(in boolean name)
 raises(dom::DOMException);
 Node getContentPropertyNode(in DOMString name)
 raises(dom::DOMException);
 unsigned long getContentPropertyOffset(in DOMString name)
 raises(dom::DOMException);
 };

33

Appendix A: IDL Definitions

 // Introduced in DOM Level 3:
 interface Match {

 // MatchTestGroup
 const unsigned short IS_EQUAL = 0;
 const unsigned short IS_NOT_EQUAL = 1;
 const unsigned short INT_PRECEDES = 2;
 const unsigned short INT_PRECEDES_OR_EQUALS = 3;
 const unsigned short INT_FOLLOWS = 4;
 const unsigned short INT_FOLLOWS_OR_EQUALS = 5;
 const unsigned short STR_STARTS_WITH = 6;
 const unsigned short STR_ENDS_WITH = 7;
 const unsigned short STR_CONTAINS = 8;
 const unsigned short SET_ANY = 9;
 const unsigned short SET_ALL = 10;
 const unsigned short SET_NOT_ANY = 11;
 const unsigned short SET_NOT_ALL = 12;

 readonly attribute unsigned short test;
 };

 // Introduced in DOM level 3:
 interface MatchString : Match {
 readonly attribute DOMString name;
 readonly attribute DOMString value;
 };

 // Introduced in DOM level 3:
 interface MatchInteger : Match {
 readonly attribute DOMString name;
 readonly attribute long value;
 };

 // Introduced in DOM level 3:
 interface MatchBoolean : Match {
 readonly attribute DOMString name;
 readonly attribute boolean value;
 };

 // Introduced in DOM level 3:
 interface MatchContent : Match {
 readonly attribute DOMString name;
 readonly attribute Node node;
 readonly attribute unsigned long offset;
 };

 // Introduced in DOM level 3:
 interface MatchSet : Match {
 readonly attribute Node node;
 void addMatch(in Match add);
 Match getMatch(in unsigned long index);
 };

 // Introduced in DOM Level 3:
 interface Item {
 readonly attribute boolean exists;
 readonly attribute DOMString name;

34

views.idl:

 };

 // Introduced in DOM Level 3:
 interface StringItem : Item {
 readonly attribute DOMString value;
 };

 // Introduced in DOM Level 3:
 interface IntegerItem : Item {
 readonly attribute long value;
 };

 // Introduced in DOM Level 3:
 interface BooleanItem : Item {
 attribute boolean value;
 };

 // Introduced in DOM Level 3:
 interface ContentItem : Item {
 attribute Node node;
 attribute unsigned long offset;
 };

 interface VisualView {
 readonly attribute DOMString fontScheme;
 readonly attribute unsigned long width;
 readonly attribute unsigned long height;
 readonly attribute unsigned long horizontalDPI;
 readonly attribute unsigned long verticalDPI;
 VisualCharacter createVisualCharacter();
 VisualCharacterRun createVisualCharacterRun();
 VisualFrame createVisualFrame();
 VisualImage createVisualImage();
 VisualFormButton createVisualFormButton();
 VisualFormField createVisualFormField();
 void select(in Node boundary,
 in unsigned long offset,
 in boolean extend,
 in boolean add);
 void matchSegment(in VisualResource segment);
 };

 interface VisualResource {
 };

 interface VisualFont : VisualResource {
 attribute DOMString matchFontName;
 readonly attribute boolean exists;
 readonly attribute DOMString fontName;
 boolean getNext();
 };

 interface VisualSegment : VisualResource {
 attribute boolean matchPosition;
 attribute boolean matchInside;
 attribute boolean matchContaining;
 attribute long matchX;

35

views.idl:

 attribute long matchY;
 attribute long matchXR;
 attribute long matchYR;
 attribute boolean matchContent;
 attribute boolean matchRange;
 attribute Node matchNode;
 attribute unsigned long matchOffset;
 attribute Node matchNodeR;
 attribute unsigned long matchOffsetR;
 attribute boolean matchContainsSelected;
 attribute boolean matchContainsVisible;
 readonly attribute boolean exists;
 readonly attribute Node startNode;
 readonly attribute unsigned long startOffset;
 readonly attribute Node endNode;
 readonly attribute unsigned long endOffset;
 readonly attribute long topOffset;
 readonly attribute long bottomOffset;
 readonly attribute long leftOffset;
 readonly attribute long rightOffset;
 readonly attribute unsigned long width;
 readonly attribute unsigned long height;
 readonly attribute boolean selected;
 readonly attribute boolean visible;
 readonly attribute unsigned long foregroundColor;
 readonly attribute unsigned long backgroundColor;
 readonly attribute DOMString fontName;
 readonly attribute DOMString fontHeight;
 boolean getNext();
 };

 interface VisualCharacter : VisualSegment {
 };

 interface VisualCharacterRun : VisualSegment {
 };

 interface VisualFrame : VisualSegment {
 readonly attribute VisualSegment embedded;
 };

 interface VisualImage : VisualSegment {
 readonly attribute DOMString imageURL;
 readonly attribute boolean isLoaded;
 };

 interface VisualFormButton : VisualSegment {
 readonly attribute boolean isPressed;
 };

 interface VisualFormField : VisualSegment {
 readonly attribute DOMString formValue;
 };

 // Introduced in DOM Level 3:
 interface Segment : Match {
 attribute Match criteria;

36

views.idl:

 attribute DOMString order;
 void addItem(in Item add);
 MatchString createMatchString(in unsigned short test,
 in DOMString name,
 in DOMString value);
 MatchInteger createMatchInteger(in unsigned short test,
 in DOMString name,
 in long value);
 MatchBoolean createMatchBoolean(in unsigned short test,
 in DOMString name,
 in boolean value);
 MatchContent createMatchContent(in unsigned short test,
 in DOMString name,
 in unsigned long offset,
 in Node node);
 MatchSet createMatchSet(in unsigned short test);
 StringItem createStringItem(in DOMString name);
 IntegerItem createIntegerItem(in DOMString name);
 BooleanItem createBooleanItem(in DOMString name);
 ContentItem createContentItem(in DOMString name);
 void getItem(in unsigned long index);
 boolean getNext();
 };
};

#endif // _VIEWS_IDL_

37

views.idl:

38

views.idl:

Appendix B: Java Language Binding
This appendix contains the complete Java [Java] bindings for the Level 3 Document Object Views and
Formatting.

The Java files are also available as
http://www.w3.org/TR/2000/WD-DOM-Level-3-Views-20001115/java-binding.zip

org/w3c/dom/views/View.java:
package org.w3c.dom.views;

import org.w3c.dom.Node;
import org.w3c.dom.DOMException;

public interface View {
 public void select(Node boundary,
 int offset,
 boolean extend,
 boolean add);

 public Segment createSegment();

 public boolean matchFirstSegment(Segment todo)
 throws DOMException;

 public int getIntegerProperty(String name)
 throws DOMException;

 public String getStringProperty(String name)
 throws DOMException;

 public boolean getBooleanProperty(boolean name)
 throws DOMException;

 public Node getContentPropertyNode(String name)
 throws DOMException;

 public int getContentPropertyOffset(String name)
 throws DOMException;

}

org/w3c/dom/views/Segment.java:
package org.w3c.dom.views;

import org.w3c.dom.Node;

public interface Segment extends Match {
 public Match getCriteria();
 public void setCriteria(Match criteria);

 public String getOrder();

39

Appendix B: Java Language Binding

 public void setOrder(String order);

 public void addItem(Item add);

 public MatchString createMatchString(short test,
 String name,
 String value);

 public MatchInteger createMatchInteger(short test,
 String name,
 int value);

 public MatchBoolean createMatchBoolean(short test,
 String name,
 boolean value);

 public MatchContent createMatchContent(short test,
 String name,
 int offset,
 Node node);

 public MatchSet createMatchSet(short test);

 public StringItem createStringItem(String name);

 public IntegerItem createIntegerItem(String name);

 public BooleanItem createBooleanItem(String name);

 public ContentItem createContentItem(String name);

 public void getItem(int index);

 public boolean getNext();

}

org/w3c/dom/views/Match.java:
package org.w3c.dom.views;

public interface Match {
 // MatchTestGroup
 public static final short IS_EQUAL = 0;
 public static final short IS_NOT_EQUAL = 1;
 public static final short INT_PRECEDES = 2;
 public static final short INT_PRECEDES_OR_EQUALS = 3;
 public static final short INT_FOLLOWS = 4;
 public static final short INT_FOLLOWS_OR_EQUALS = 5;
 public static final short STR_STARTS_WITH = 6;
 public static final short STR_ENDS_WITH = 7;
 public static final short STR_CONTAINS = 8;
 public static final short SET_ANY = 9;
 public static final short SET_ALL = 10;
 public static final short SET_NOT_ANY = 11;
 public static final short SET_NOT_ALL = 12;

40

org/w3c/dom/views/Match.java:

 public short getTest();

}

org/w3c/dom/views/MatchString.java:
package org.w3c.dom.views;

public interface MatchString extends Match {
 public String getName();

 public String getValue();

}

org/w3c/dom/views/MatchInteger.java:
package org.w3c.dom.views;

public interface MatchInteger extends Match {
 public String getName();

 public int getValue();

}

org/w3c/dom/views/MatchBoolean.java:
package org.w3c.dom.views;

public interface MatchBoolean extends Match {
 public String getName();

 public boolean getValue();

}

org/w3c/dom/views/MatchContent.java:
package org.w3c.dom.views;

import org.w3c.dom.Node;

public interface MatchContent extends Match {
 public String getName();

 public Node getNode();

 public int getOffset();

}

41

org/w3c/dom/views/MatchString.java:

org/w3c/dom/views/MatchSet.java:
package org.w3c.dom.views;

import org.w3c.dom.Node;

public interface MatchSet extends Match {
 public Node getNode();

 public void addMatch(Match add);

 public Match getMatch(int index);

}

org/w3c/dom/views/Item.java:
package org.w3c.dom.views;

public interface Item {
 public boolean getExists();

 public String getName();

}

org/w3c/dom/views/StringItem.java:
package org.w3c.dom.views;

public interface StringItem extends Item {
 public String getValue();

}

org/w3c/dom/views/IntegerItem.java:
package org.w3c.dom.views;

public interface IntegerItem extends Item {
 public int getValue();

}

org/w3c/dom/views/BooleanItem.java:
package org.w3c.dom.views;

public interface BooleanItem extends Item {
 public boolean getValue();
 public void setValue(boolean value);

}

42

org/w3c/dom/views/MatchSet.java:

org/w3c/dom/views/ContentItem.java:
package org.w3c.dom.views;

import org.w3c.dom.Node;

public interface ContentItem extends Item {
 public Node getNode();
 public void setNode(Node node);

 public int getOffset();
 public void setOffset(int offset);

}

org/w3c/dom/views/VisualView.java:
package org.w3c.dom.views;

import org.w3c.dom.Node;

public interface VisualView {
 public String getFontScheme();

 public int getWidth();

 public int getHeight();

 public int getHorizontalDPI();

 public int getVerticalDPI();

 public VisualCharacter createVisualCharacter();

 public VisualCharacterRun createVisualCharacterRun();

 public VisualFrame createVisualFrame();

 public VisualImage createVisualImage();

 public VisualFormButton createVisualFormButton();

 public VisualFormField createVisualFormField();

 public void select(Node boundary,
 int offset,
 boolean extend,
 boolean add);

 public void matchSegment(VisualResource segment);

}

43

org/w3c/dom/views/ContentItem.java:

org/w3c/dom/views/VisualResource.java:
package org.w3c.dom.views;

public interface VisualResource {
}

org/w3c/dom/views/VisualFont.java:
package org.w3c.dom.views;

public interface VisualFont extends VisualResource {
 public String getMatchFontName();
 public void setMatchFontName(String matchFontName);

 public boolean getExists();

 public String getFontName();

 public boolean getNext();

}

org/w3c/dom/views/VisualSegment.java:
package org.w3c.dom.views;

import org.w3c.dom.Node;

public interface VisualSegment extends VisualResource {
 public boolean getMatchPosition();
 public void setMatchPosition(boolean matchPosition);

 public boolean getMatchInside();
 public void setMatchInside(boolean matchInside);

 public boolean getMatchContaining();
 public void setMatchContaining(boolean matchContaining);

 public int getMatchX();
 public void setMatchX(int matchX);

 public int getMatchY();
 public void setMatchY(int matchY);

 public int getMatchXR();
 public void setMatchXR(int matchXR);

 public int getMatchYR();
 public void setMatchYR(int matchYR);

 public boolean getMatchContent();
 public void setMatchContent(boolean matchContent);

 public boolean getMatchRange();

44

org/w3c/dom/views/VisualResource.java:

 public void setMatchRange(boolean matchRange);

 public Node getMatchNode();
 public void setMatchNode(Node matchNode);

 public int getMatchOffset();
 public void setMatchOffset(int matchOffset);

 public Node getMatchNodeR();
 public void setMatchNodeR(Node matchNodeR);

 public int getMatchOffsetR();
 public void setMatchOffsetR(int matchOffsetR);

 public boolean getMatchContainsSelected();
 public void setMatchContainsSelected(boolean matchContainsSelected);

 public boolean getMatchContainsVisible();
 public void setMatchContainsVisible(boolean matchContainsVisible);

 public boolean getExists();

 public Node getStartNode();

 public int getStartOffset();

 public Node getEndNode();

 public int getEndOffset();

 public int getTopOffset();

 public int getBottomOffset();

 public int getLeftOffset();

 public int getRightOffset();

 public int getWidth();

 public int getHeight();

 public boolean getSelected();

 public boolean getVisible();

 public int getForegroundColor();

 public int getBackgroundColor();

 public String getFontName();

 public String getFontHeight();

 public boolean getNext();

}

45

org/w3c/dom/views/VisualSegment.java:

org/w3c/dom/views/VisualCharacter.java:
package org.w3c.dom.views;

public interface VisualCharacter extends VisualSegment {
}

org/w3c/dom/views/VisualCharacterRun.java:
package org.w3c.dom.views;

public interface VisualCharacterRun extends VisualSegment {
}

org/w3c/dom/views/VisualFrame.java:
package org.w3c.dom.views;

public interface VisualFrame extends VisualSegment {
 public VisualSegment getEmbedded();

}

org/w3c/dom/views/VisualImage.java:
package org.w3c.dom.views;

public interface VisualImage extends VisualSegment {
 public String getImageURL();

 public boolean getIsLoaded();

}

org/w3c/dom/views/VisualFormButton.java:
package org.w3c.dom.views;

public interface VisualFormButton extends VisualSegment {
 public boolean getIsPressed();

}

org/w3c/dom/views/VisualFormField.java:
package org.w3c.dom.views;

public interface VisualFormField extends VisualSegment {
 public String getFormValue();

}

46

org/w3c/dom/views/VisualCharacter.java:

Appendix C: ECMA Script Language Binding
This appendix contains the complete ECMA Script [ECMAScript] binding for the Level 3 Document
Object Model Views and Formatting definitions.

Object View
The View object has the following methods:

select(boundary, offset, extend, add)
This method has no return value.
The boundary parameter is a Node object.
The offset parameter is of type Number.
The extend parameter is of type Boolean.
The add parameter is of type Boolean.

createSegment()
This method returns a Segment object.

matchFirstSegment(todo)
This method returns a Boolean.
The todo parameter is a Segment object.
This method can raise a DOMException object.

getIntegerProperty(name)
This method returns a long object.
The name parameter is of type String.
This method can raise a DOMException object.

getStringProperty(name)
This method returns a String.
The name parameter is of type String.
This method can raise a DOMException object.

getBooleanProperty(name)
This method returns a Boolean.
The name parameter is of type Boolean.
This method can raise a DOMException object.

getContentPropertyNode(name)
This method returns a Node object.
The name parameter is of type String.
This method can raise a DOMException object.

getContentPropertyOffset(name)
This method returns a Number.
The name parameter is of type String.
This method can raise a DOMException object.

Object Segment
Segment has the all the properties and methods of the Match object as well as the properties and
methods defined below.
The Segment object has the following properties:

criteria
This property is a Match object.

47

Appendix C: ECMA Script Language Binding

order
This property is of type String.

The Segment object has the following methods:
addItem(add)

This method has no return value.
The add parameter is a Item object.

createMatchString(test, name, value)
This method returns a MatchString object.
The test parameter is of type Number.
The name parameter is of type String.
The value parameter is of type String.

createMatchInteger(test, name, value)
This method returns a MatchInteger object.
The test parameter is of type Number.
The name parameter is of type String.
The value parameter is a long object.

createMatchBoolean(test, name, value)
This method returns a MatchBoolean object.
The test parameter is of type Number.
The name parameter is of type String.
The value parameter is of type Boolean.

createMatchContent(test, name, offset, node)
This method returns a MatchContent object.
The test parameter is of type Number.
The name parameter is of type String.
The offset parameter is of type Number.
The node parameter is a Node object.

createMatchSet(test)
This method returns a MatchSet object.
The test parameter is of type Number.

createStringItem(name)
This method returns a StringItem object.
The name parameter is of type String.

createIntegerItem(name)
This method returns a IntegerItem object.
The name parameter is of type String.

createBooleanItem(name)
This method returns a BooleanItem object.
The name parameter is of type String.

createContentItem(name)
This method returns a ContentItem object.
The name parameter is of type String.

getItem(index)
This method has no return value.
The index parameter is of type Number.

48

Appendix C: ECMA Script Language Binding

getNext()
This method returns a Boolean.

Prototype Object Match
The Match class has the following constants:

Match.IS_EQUAL
This constant is of type Number and its value is 0.

Match.IS_NOT_EQUAL
This constant is of type Number and its value is 1.

Match.INT_PRECEDES
This constant is of type Number and its value is 2.

Match.INT_PRECEDES_OR_EQUALS
This constant is of type Number and its value is 3.

Match.INT_FOLLOWS
This constant is of type Number and its value is 4.

Match.INT_FOLLOWS_OR_EQUALS
This constant is of type Number and its value is 5.

Match.STR_STARTS_WITH
This constant is of type Number and its value is 6.

Match.STR_ENDS_WITH
This constant is of type Number and its value is 7.

Match.STR_CONTAINS
This constant is of type Number and its value is 8.

Match.SET_ANY
This constant is of type Number and its value is 9.

Match.SET_ALL
This constant is of type Number and its value is 10.

Match.SET_NOT_ANY
This constant is of type Number and its value is 11.

Match.SET_NOT_ALL
This constant is of type Number and its value is 12.

Object Match
The Match object has the following properties:

test
This read-only property is of type Number.

Object MatchString
MatchString has the all the properties and methods of the Match object as well as the properties and
methods defined below.
The MatchString object has the following properties:

name
This read-only property is of type String.

value
This read-only property is of type String.

Object MatchInteger
MatchInteger has the all the properties and methods of the Match object as well as the properties
and methods defined below.

49

Appendix C: ECMA Script Language Binding

The MatchInteger object has the following properties:
name

This read-only property is of type String.
value

This read-only property is a long object.
Object MatchBoolean

MatchBoolean has the all the properties and methods of the Match object as well as the properties
and methods defined below.
The MatchBoolean object has the following properties:

name
This read-only property is of type String.

value
This read-only property is of type Boolean.

Object MatchContent
MatchContent has the all the properties and methods of the Match object as well as the properties
and methods defined below.
The MatchContent object has the following properties:

name
This read-only property is of type String.

node
This read-only property is a Node object.

offset
This read-only property is of type Number.

Object MatchSet
MatchSet has the all the properties and methods of the Match object as well as the properties and
methods defined below.
The MatchSet object has the following properties:

node
This read-only property is a Node object.

The MatchSet object has the following methods:
addMatch(add)

This method has no return value.
The add parameter is a Match object.

getMatch(index)
This method returns a Match object.
The index parameter is of type Number.

Object Item
The Item object has the following properties:

exists
This read-only property is of type Boolean.

name
This read-only property is of type String.

Object StringItem
StringItem has the all the properties and methods of the Item object as well as the properties and
methods defined below.

50

Appendix C: ECMA Script Language Binding

The StringItem object has the following properties:
value

This read-only property is of type String.
Object IntegerItem

IntegerItem has the all the properties and methods of the Item object as well as the properties and
methods defined below.
The IntegerItem object has the following properties:

value
This read-only property is a long object.

Object BooleanItem
BooleanItem has the all the properties and methods of the Item object as well as the properties and
methods defined below.
The BooleanItem object has the following properties:

value
This property is of type Boolean.

Object ContentItem
ContentItem has the all the properties and methods of the Item object as well as the properties and
methods defined below.
The ContentItem object has the following properties:

node
This property is a Node object.

offset
This property is of type Number.

Object VisualView
The VisualView object has the following properties:

fontScheme
This read-only property is of type String.

width
This read-only property is of type Number.

height
This read-only property is of type Number.

horizontalDPI
This read-only property is of type Number.

verticalDPI
This read-only property is of type Number.

The VisualView object has the following methods:
createVisualCharacter()

This method returns a VisualCharacter object.
createVisualCharacterRun()

This method returns a VisualCharacterRun object.
createVisualFrame()

This method returns a VisualFrame object.
createVisualImage()

This method returns a VisualImage object.
createVisualFormButton()

This method returns a VisualFormButton object.

51

Appendix C: ECMA Script Language Binding

createVisualFormField()
This method returns a VisualFormField object.

select(boundary, offset, extend, add)
This method has no return value.
The boundary parameter is a Node object.
The offset parameter is of type Number.
The extend parameter is of type Boolean.
The add parameter is of type Boolean.

matchSegment(segment)
This method has no return value.
The segment parameter is a VisualResource object.

Object VisualResource
Object VisualFont

VisualFont has the all the properties and methods of the VisualResource object as well as the
properties and methods defined below.
The VisualFont object has the following properties:

matchFontName
This property is of type String.

exists
This read-only property is of type Boolean.

fontName
This read-only property is of type String.

The VisualFont object has the following methods:
getNext()

This method returns a Boolean.
Object VisualSegment

VisualSegment has the all the properties and methods of the VisualResource object as well as the
properties and methods defined below.
The VisualSegment object has the following properties:

matchPosition
This property is of type Boolean.

matchInside
This property is of type Boolean.

matchContaining
This property is of type Boolean.

matchX
This property is a long object.

matchY
This property is a long object.

matchXR
This property is a long object.

matchYR
This property is a long object.

matchContent
This property is of type Boolean.

52

Appendix C: ECMA Script Language Binding

matchRange
This property is of type Boolean.

matchNode
This property is a Node object.

matchOffset
This property is of type Number.

matchNodeR
This property is a Node object.

matchOffsetR
This property is of type Number.

matchContainsSelected
This property is of type Boolean.

matchContainsVisible
This property is of type Boolean.

exists
This read-only property is of type Boolean.

startNode
This read-only property is a Node object.

startOffset
This read-only property is of type Number.

endNode
This read-only property is a Node object.

endOffset
This read-only property is of type Number.

topOffset
This read-only property is a long object.

bottomOffset
This read-only property is a long object.

leftOffset
This read-only property is a long object.

rightOffset
This read-only property is a long object.

width
This read-only property is of type Number.

height
This read-only property is of type Number.

selected
This read-only property is of type Boolean.

visible
This read-only property is of type Boolean.

foregroundColor
This read-only property is of type Number.

backgroundColor
This read-only property is of type Number.

fontName
This read-only property is of type String.

53

Appendix C: ECMA Script Language Binding

fontHeight
This read-only property is of type String.

The VisualSegment object has the following methods:
getNext()

This method returns a Boolean.
Object VisualCharacter

VisualCharacter has the all the properties and methods of the VisualSegment object as well as the
properties and methods defined below.

Object VisualCharacterRun
VisualCharacterRun has the all the properties and methods of the VisualSegment object as well as
the properties and methods defined below.

Object VisualFrame
VisualFrame has the all the properties and methods of the VisualSegment object as well as the
properties and methods defined below.
The VisualFrame object has the following properties:

embedded
This read-only property is a VisualSegment object.

Object VisualImage
VisualImage has the all the properties and methods of the VisualSegment object as well as the
properties and methods defined below.
The VisualImage object has the following properties:

imageURL
This read-only property is of type String.

isLoaded
This read-only property is of type Boolean.

Object VisualFormButton
VisualFormButton has the all the properties and methods of the VisualSegment object as well as
the properties and methods defined below.
The VisualFormButton object has the following properties:

isPressed
This read-only property is of type Boolean.

Object VisualFormField
VisualFormField has the all the properties and methods of the VisualSegment object as well as the
properties and methods defined below.
The VisualFormField object has the following properties:

formValue
This read-only property is of type String.

54

Appendix C: ECMA Script Language Binding

References
For the latest version of any W3C specification please consult the list of W3C Technical Reports available
at http://www.w3.org/TR.

D.1: Normative references
ECMAScript

ECMA (European Computer Manufacturers Association) ECMAScript Language Specification.
Available at http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM

Java
Sun Microsystems Inc. The Java Language Specification, James Gosling, Bill Joy, and Guy Steele,
September 1996. Available at http://java.sun.com/docs/books/jls

OMGIDL
OMG (Object Management Group) IDL (Interface Definition Language) defined in The Common
Object Request Broker: Architecture and Specification, version 2.3.1, October 1999. Available at
http://sisyphus.omg.org/technology/documents/formal/corba_2.htm

55

References

http://sisyphus.omg.org/technology/documents/formal/corba_2.htm
http://sisyphus.omg.org/technology/documents/formal/corba_2.htm
http://java.sun.com/docs/books/jls
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM
http://www.w3.org/TR

56

D.1: Normative references

Index
addItem addMatch

backgroundColor BooleanItem bottomOffset

ContentItem createBooleanItem createContentItem

createIntegerItem createMatchBoolean createMatchContent

createMatchInteger createMatchSet createMatchString

createSegment createStringItem createVisualCharacter

createVisualCharacterRun createVisualFormButton createVisualFormField

createVisualFrame createVisualImage criteria

ECMAScript embedded endNode

endOffset exists 23, 28, 29

fontHeight fontName 28, 29 fontScheme

foregroundColor formValue

getBooleanProperty getContentPropertyNode getContentPropertyOffset

getIntegerProperty getItem getMatch

getNext 20, 28, 31 getStringProperty

height 25, 29 horizontalDPI

imageURL INT_FOLLOWS INT_FOLLOWS_OR_EQUALS

INT_PRECEDES INT_PRECEDES_OR_EQUALS IntegerItem

IS_EQUAL IS_NOT_EQUAL isLoaded

57

Index

isPressed Item

Java

leftOffset

Match MatchBoolean matchContaining

matchContainsSelected matchContainsVisible MatchContent 22, 30

matchFirstSegment matchFontName matchInside

MatchInteger matchNode matchNodeR

matchOffset matchOffsetR matchPosition

matchRange matchSegment MatchSet

MatchString matchX matchXR

matchY matchYR

name 21, 21, 22, 22, 23 node 22, 22, 25

offset 22, 25 OMGIDL order

rightOffset

Segment select 15, 27 selected

SET_ALL SET_ANY SET_NOT_ALL

SET_NOT_ANY startNode startOffset

STR_CONTAINS STR_ENDS_WITH STR_STARTS_WITH

StringItem

test topOffset

58

Index

value 21, 21, 22, 24, 24, 24 verticalDPI View

visible VisualCharacter VisualCharacterRun

VisualFont VisualFormButton VisualFormField

VisualFrame VisualImage VisualResource

VisualSegment VisualView

width 25, 31

59

Index

	Document Object Model †DOM‡ Level 3 Views and Formatting Specification
	Version 1.0
	W3C Working Draft 15 November 2000
	Abstract
	Status of this document
	Table of contents

	Expanded Table of Contents
	Copyright Notice
	W3C Document Copyright Notice and License
	W3C Software Copyright Notice and License

	1. Document Object Model Views and Formatting
	1.1. Overview
	1.1.1. Issues
	1.1.2. Segments
	1.1.3. View
	1.1.4. Generic and Medium-Specific APIs

	1.2. Formal Interface Definition for a Generic View
	1.3. Formal Interface Definition for a Visual View

	Appendix A: IDL Definitions
	
	views.idl:

	Appendix B: Java Language Binding
	
	org/w3c/dom/views/View.java:
	org/w3c/dom/views/Segment.java:
	org/w3c/dom/views/Match.java:
	org/w3c/dom/views/MatchString.java:
	org/w3c/dom/views/MatchInteger.java:
	org/w3c/dom/views/MatchBoolean.java:
	org/w3c/dom/views/MatchContent.java:
	org/w3c/dom/views/MatchSet.java:
	org/w3c/dom/views/Item.java:
	org/w3c/dom/views/StringItem.java:
	org/w3c/dom/views/IntegerItem.java:
	org/w3c/dom/views/BooleanItem.java:
	org/w3c/dom/views/ContentItem.java:
	org/w3c/dom/views/VisualView.java:
	org/w3c/dom/views/VisualResource.java:
	org/w3c/dom/views/VisualFont.java:
	org/w3c/dom/views/VisualSegment.java:
	org/w3c/dom/views/VisualCharacter.java:
	org/w3c/dom/views/VisualCharacterRun.java:
	org/w3c/dom/views/VisualFrame.java:
	org/w3c/dom/views/VisualImage.java:
	org/w3c/dom/views/VisualFormButton.java:
	org/w3c/dom/views/VisualFormField.java:

	Appendix C: ECMA Script Language Binding
	References
	D.1: Normative references

	Index

