
The ATM Forum
Technical Committee

Network Management

M4 Network View Interface
CORBA Specification

af-nm-0166.000

August 2001

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page ii ATM Forum Technical Committee

CORBA Specification for M4 Interface: Network View

AF-NM-0166.000

© 2001 by The ATM Forum. This specification/document may be reproduced and distributed in whole, but
(except as provided in the next sentence) not in part, for internal and informational use only and not for
commercial distribution. Notwithstanding the foregoing sentence, any protocol implementation conformance
statements (PICS) or implementation conformance statements (ICS) contained in this specification/document
may be separately reproduced and distributed provided that it is reproduced and distributed in whole, but not in
part, for uses other than commercial distribution. All other rights reserved. Except as expressly stated in this
notice, no part of this specification/document may be reproduced or transmitted in any form or by any means,
or stored in any information storage and retrieval system, without the prior written permission of The ATM
Forum.

The information in this publication is believed to be accurate as of its publication date. Such information is
subject to change without notice and The ATM Forum is not responsible for any errors. The ATM Forum does
not assume any responsibility to update or correct any information in this publication. Notwithstanding
anything to the contrary, neither The ATM Forum nor the publisher make any representation or warranty,
expressed or implied, concerning the completeness, accuracy, or applicability of any information contained in
this publication. No liability of any kind shall be assumed by The ATM Forum or the publisher as a result of
reliance upon any information contained in this publication.

The receipt or any use of this document or its contents does not in any way create by implication or otherwise:

• Any express or implied license or right to or under any ATM Forum member company's patent, copyright,
trademark or trade secret rights which are or may be associated with the ideas, techniques, concepts or
expressions contained herein; nor

• Any warranty or representation that any ATM Forum member companies will announce any product(s)
and/or service(s) related thereto, or if such announcements are made, that such announced product(s)
and/or service(s) embody any or all of the ideas, technologies, or concepts contained herein; nor

• Any form of relationship between any ATM Forum member companies and the recipient or user of this
document.

Implementation or use of specific ATM standards or recommendations and ATM Forum specifications will be
voluntary, and no company shall agree or be obliged to implement them by virtue of participation in The ATM
Forum.

The ATM Forum is a non-profit international organization accelerating industry cooperation on ATM
technology. The ATM Forum does not, expressly or otherwise, endorse or promote any specific products or
services.

NOTE: The user's attention is called to the possibility that implementation of the ATM interoperability
specification contained herein may require use of an invention covered by patent rights held by ATM Forum
Member companies or others. By publication of this ATM interoperability specification, no position is taken
by The ATM Forum with respect to validity of any patent claims or of any patent rights related thereto or the
ability to obtain the license to use such rights. ATM Forum Member companies agree to grant licenses under
the relevant patents they own on reasonable and nondiscriminatory terms and conditions to applicants desiring
to obtain such a license. For additional information contact:

The ATM Forum
Presidio of San Francisco
P.O. Box 29920 (mail)
572B Ruger Street (surface)
San Francisco, CA 94129-0920
Tel:+1-415.561.6275
Fax: +1-415.561.6120

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page iii

Acknowledgements

The following people participated in the development of the M4 Network View Interface CORBA Specification:

Rajesh Abbi
Keith Allen
Karen Armington
Beau Atwater
Hani Hawari
An-Ni Huynh
Annette Ihrke
Patrice Lamy
Thomas Meserole
Todd Schumacher
Anirban Sharma
Pawan Saxena
Brian Thorstad
Homayoun Torab
Zhenxin Wang
Kin Wong

Weijing Chen, C. Anthony Cooper, Andrew J. Mayer, Atahan Tuzel, Editors
Roger Kosak, former Chairman of the Network Management Group
Atahan Tuzel, Chairman of the Network Management Group

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page iv ATM Forum Technical Committee

Table of Contents

1 INTRODUCTION ...1

1.1 SCOPE..1
1.2 DEFINITIONS..1
1.3 GRAIN-NEUTRAL APPROACH..2

2 CORBA MODELING AND IDL DEFINITION GUIDELINES ...3

2.1 USE OF THE OMG MESSAGING SERVICE..3

3 SUMMARY OF REQUIRED OBJECT CLASSES ..4

4 CONTAINMENT AND INHERITANCE DIAGRAMS...22

5 CORBA IDL DEFINITIONS ...24

5.1 MODULE ATMF_M4NW ...24
5.2 IMPORTS AND FORWARD DECLARATIONS ...24
5.3 STRUCTURES AND TYPEDEFS ...26
5.4 INTERFACES ...41

5.4.1 AtmBulkOperations ..41
5.4.2 Supporting Iterator Interfaces ..43
5.4.3 AlarmSeverityAssignmentProfile ...44
5.4.4 AtmLink ...45
5.4.5 AtmLinkConn ..49
5.4.6 AtmLinkEnd..50
5.4.7 AtmLinkEndPhy...55
5.4.8 AtmLND...56
5.4.9 AtmNetworkCTP..58
5.4.10 AtmNetworkTTP ..63
5.4.11 AtmRoutingProfile ...65
5.4.12 AtmSNC ...65
5.4.13 AtmSubnetwork..68
5.4.14 AtmNetworkAccessProfile..73
5.4.15 AtmTraficDesc...75
5.4.16 Latest Occurrence Log..82
5.4.17 Network ...82

5.5 MODULE ATMF_M4NW_PM..83
5.6 MODULE CORBA_PM...90

6 SCENARIO DIAGRAMS ...98

REFERENCES ...100

APPENDIX A : CORBA COMMON OBJECT SERVICES REQUIREMENTS.........................101

A.1 NAMING SERVICE ...101
A.2 NOTIFICATION SERVICE ...104
A.3 TELECOM LOG SERVICE ...108
A.4 MESSAGING SERVICE...109
A.5 SECURITY SERVICE ...110

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page v

APPENDIX B : GENERIC NETWORK MANAGEMENT IDL DEFINITIONS111

B.1 GENERIC NETWORK MANAGEMENT CONSTANTS IDL DEFINITIONS (ITU_X721CONST.IDL)111
B.2 GENERIC NETWORK MANAGEMENT IDL DEFINITIONS (NETMGMT.IDL) ..113
B.3 GENERIC NETWORK INFORMATION MODEL CONSTANT IDL DEFINITIONS (ITU_M3100CONST.IDL)....127

APPENDIX C : INTERIM LOG SERVICE IDL DEFINITIONS ..134

APPENDIX D: OBJECT NAMING GUIDELINES ...139

Table of Figures and Tables

TABLE 3-1. M4 NETWORK VIEW LOGICAL MIB TO CORBA IDL MAPPING TABLE ...4
FIGURE 4-1. CONTAINMENT DIAGRAM..22
FIGURE 4-2. INHERITANCE DIAGRAM ..23
FIGURE 6-1. SOME SYNCHRONOUS MESSAGING EXAMPLES...98
FIGURE A-1. EXAMPLE NAMING GRAPH OF MANAGED OBJECTS ..102
FIGURE A-2. ASSIGNING NAMES TO LOCAL ROOT NAMING CONTEXTS...103
FIGURE A-3. MOVING A LOCAL ROOT NAMING CONTEXT AND CONTAINED OBJECTS104
FIGURE A-4. ARCHITECTURE OF THE NOTIFICATION SERVICE ...105
FIGURE A-5. MAPPING NOTIFICATIONS TO STRUCTURED EVENTS ..107
FIGURE A-6. TELECOM LOG SERVICE...108
FIGURE A-7. ASYNCHRONOUS-AWARE ORB..109
TABLE C-1. M4 NETWORK VIEW LOGICAL MIB TO CORBA IDL MAPPING FOR APPENDIX C..........................138
TABLE D-1. OBJECT NAMING GUIDELINES ..139

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 1

1 Introduction
This document specifies a CORBA-based ATM network management interface definition that provides a formal
representation of the information exchanged between a managed system and a managing system. The interface
specification was defined specifically to meet the criteria set forth by ATM Forum “M4 Interface Requirements and
Logical MIB: ATM Network View” version 2 (af-nm-0058.001)[1].

1.1 Scope
This document was developed using the following principles:

• Directly define CORBA IDL from “M4 Interface Requirement and Logical MIB: ATM Network
View (version 2)” [1] using existing CMIP MIB as reference when need. The based CORBA
specification is revision 2.2 February 1998 [3].

• This interface specification not only defines CORBA IDL, but also specifies the recommended usage
of CORBA Common Object Services [4][5][6][7] that would impact IDL definition and system
interoperability.

The requirements specified in the Appendix A and IDL definitions specified in the Appendix B are essential parts of
the “M4 Network View Interface CORBA Specification” and shall have same mandatory status as the main text of
this document. The IDL given in this document has been successfully tested with two commercial compilers. Note
that other work in progress may be relevant, specifically work in T1M1.5 and work in ITU-T Q.19/4.

1.2 Definitions
This section provides for any specific definitions needed in this document.

CORBA Name:
A CORBA name is an ordered sequence of CORBA name components. Each component except the last is
used to name a CORBA naming context. The last component denotes the bound IDL object.

CORBA Name Binding:
A CORBA name to IDL object association is called a CORBA name binding. A CORBA name binding is
always defined relative to a CORBA naming context.

CORBA Name Component:
A CORBA name component consists of two attributes: the ID attribute and the kind attribute. Both the ID
attribute and the kind attribute are represented as IDL strings. Appendix D provides guidelines for the
syntax of the ID attribute of the name component. The kind attribute adds descriptive power to names in a
syntax-independent way, although the naming system does not interpret, assign, or manage kind value in
any way.

CORBA Naming Context:
A CORBA naming context is a CORBA object that contains a set of CORBA name bindings in which each
CORBA name is unique. Different CORBA names can be bound to a CORBA object in the same or
different contexts at the same time.

IDL Object Interface (IOI):
An IDL object interface is a description of a set of attributes and possible operations that a client may
request of an IDL object in a CORBA system. An IDL object satisfies an interface if it can be specified as
the target object in each potential request described by the interface.

IDL Object (IO):
An IDL object is an identifiable, encapsulated entity that provides one or more services that can be
requested by a client in a CORBA system.

IDL(or Interoperable) Object Reference (IOR):
An IOR is a sequence of object-specific protocol profiles, plus a type ID, which unambiguously identifies a
managed object. (See Section 11.6.2 and Glossary of [3]).

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 2 ATM Forum Technical Committee

Managed Object Class (MOC):
The class of all Managed Objects of the same type, e.g., the class of all Connection Termination Points.

Managed Object (MO):
A specific entity for which information may be exchanged over the CORBA interface between the managed
system and the managing system.

1.3 Grain-neutral Approach
In the past CORBA implementations were known to have problems scaling up to very large numbers of objects.
This was one of the problems addressed by the OMG’s CORBA 2.2 release. Even though there are some CORBA
2.2-compliant ORBs available now, it may take other suppliers awhile to implement the new capabilities. To
accommodate the network management system implementers that base their systems on these suppliers, a few
information modeling conventions are proposed that will enable these systems to instantiate only a small number of
objects. The goal of these conventions is to use what would otherwise be considered a “fine-grained” model, but to
make minor changes that will allow managed systems to instantiate only one object per object class. Since the
number of classes implemented in a system will be small, typically well under one hundred, the number of object
instances will be small and pre-CORBA 2.2 scalability concerns should be alleviated. Implementers that prefer may
instantiate many objects per class, making the model granularity neutral, at least from a number-of-instances point
of view.

The following conventions are proposed for use in making fine-grained models implementable with one object per
class:

Name bindings are created for every “fine-grained” instance. That is, there will be no difference in the number of
name bindings for a system that is implemented with “one instance-per-object” and one that is implemented with
“one-instance-per-class.” In the one-instance-per-class implementation, all of the name bindings for objects of the
same class will be bound to the same object reference.

Every object operation includes a parameter passing in the name of the object. In systems implemented with one
instance per object this value will be redundant since that object doesn’t need to be told its name. In one-object-per-
class systems, however, this parameter will identify the actual target for the operation.

Wherever an object reference would be passed across the interface instead a structure containing both the reference
and the object’s name should be passed. In one-instance-per-class systems the reference alone does not really
identify an object. The name is needed, too.

The conventions above are a compromise, not a perfect solution. Putting potentially millions of name bindings in
a Name Service will raise scalability concerns with some, and submitting names to every operation and returning
structures with both names and references is somewhat clumsy. This is, however, a good compromise. It will
enable the volumes of work done to date on network management information modeling to be more easily re-used,
speeding the introduction of CORBA-based network management while addressing the scalability concerns of some
CORBA ORB implementations.

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 3

2 CORBA Modeling and IDL Definition Guidelines
Within the context of this document, recommendations are presented as either requirements denoted by (R),
conditional requirements denoted by (CR), or objectives denoted by (O). In this document, requirements are
considered functions that are necessary for operational compatibility; while objectives are considered features that are
viewed to be desirable but not essential for management system to work. Conditional requirements are functions
that are necessary for operational compatibility of an optional feature such as asynchronous method invocation (i.e.,
If the feature is supported by the managed system, then the CR is a requirement).

Generally, CORBA modeling and IDL definitions for network management shall follow the guidelines listed
below:

(R) GUIDE-1 There shall be one IDL object interface (IOI) per managed object class (MOC).

(R) GUIDE-2 Shall use CORBA Naming Service to represent containment relationship of managed objects.
There shall be one unique CORBA name per managed object. This CORBA name shall bind to an IDL object of
this managed object’s IDL object interface.

(R) GUIDE-3 Each operation method of an IDL object interface shall include a CORBA name relative to the
root context as the first parameter, i.e. op(name, parameters)to unique identify the target managed object.

(R) GUIDE-4 A structure packed with IDL object reference (IOR) and CORBA name relative to the root context
shall be used in place of pure IDL object reference in most case, i.e. for generic IDL object:

struct ObjectID {Object ref; CosNaming::Name name;};
and for interface specific IDL object:

struct <interface name>ID {<interface name> ref; CosNaming::Name name;};
The ref shall not be null IDL object reference in any situation. In few case such as bulk operation getAll...()
the CORBA name only could be used instead of above structure. The choice shall be based on performance.

(R) GUIDE-5 The numbers of IDL objects (IO) in a managed system is implementation dependent as long as all
the IDL object interfaces are accessible by the manager system. IDL definition shall be the same regardless a
particular implementation(“grain-neutral”).

(R) GUIDE-6 Shall use semantics of values to represent optional attributes unless it can not be done so, ex.
short value, then use union to represent optional.

(R) GUIDE-7 Shall use NotSupported CORBA exception to indicate the optional operation. If managed
system does not implement an optional operation, it shall emit the exception back to requester.

(R) GUIDE-8 Shall use const to declare the constant values unless the set of values is quite stable and will
not change in foreseeable future, then shall use enum to declare.

2.1 Use of the OMG Messaging Service
The approach used in this document requires implementation of the OMG Asynchronous Invocation Method
Messaging Service [7].

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 4 ATM Forum Technical Committee

3 Summary of Required Object Classes
Table 3-1 summarizes the set of CORBA IDL object interface that is needed to meet the requirements specified in
ATM Forum “M4 Interface Requirements and Logical MIB: ATM Network View” version 2 (af-nm-0058.001)[1].
The first column of this table lists the logical managed entities defined [1]. The second column lists attributes and
operations associated with the corresponding logical managed entity in column one. The third column lists the IDL
object interface that corresponds to the logical managed entity in column one. The fourth column lists the attributes
and operations associated with the corresponding IDL object interface in column three. Where appropriate,
comments are provided in the fifth column. This table is not intended to exhaustively list every IDL attribute and
operation given in Section 5 of this document.

Table 3-1. M4 Network View Logical MIB to CORBA IDL Mapping Table

M4 Logical MIB
Managed Entity

M4 Logical MIB
Attribute/Operation

CORBA IDL
Object

CORBA IDL
Attribute/Operation

Comment

Network ID Not Supported

Relationship with managed
resources

Containment Relationship

Network

query network for
contained Managed Entities

Network

NO CORBA OPERATION

atmLNDId AtmLNDAllAttr

Signal Identification AtmLNDAllAttr
getCharacteristicInfo

User Label AtmLNDAllAttr
getUserLabel
setUserLabel

NO LOGICAL MIB
ATTRIBUTE MATCH

lndSystemTitle
getSystemTitle

Relationship with vcTTP Containment Relationship
Relationship with vcTrail NO CORBA RELATIONSHIP
Relationship with
vcSubnetwork

Containment Relationship

Relationship with
vcTrailRequest

NO CORBA RELATIONSHIP

query
vcLayerNetworkDomain
for Delimiting vcTTPs

NO CORBA OPERATION

query
vpLayerNetworkDomain
for existing vcTrails

NO CORBA OPERATION

query
vcLayerNetworkDomain
for component
vcSubnetwork

NO CORBA OPERATION

setup vcTrail NO CORBA OPERATION
setup vcTrailRequest NO CORBA OPERATION
addTps to Multipoint Trail NO CORBA OPERATION
release vcTrail NO CORBA OPERATION
make external vcLinkEnd makeLinkEnd
remove external vcLinkEnd NO CORBA OPERATION
setup vcTopologicalLink NO CORBA OPERATION

vcLayerNetworkDomain

release vcTopologicalLink

AtmLND

NO CORBA OPERATION
vcLinkConnection ID
Signal Identification
Directionality
User Label
availability Status

vcLinkConnection

Administrative State

AtmLinkConn

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 5

M4 Logical MIB
Managed Entity

M4 Logical MIB
Attribute/Operation

CORBA IDL
Object

CORBA IDL
Attribute/Operation

Comment

retainedResource
Relationship With
vcTopologicalLink

NO CORBA RELATIONSHIP

Relationship With
vcNetworkCTPs

NO CORBA RELATIONSHIP

query vcLinkConnection for
Containing
vcTopologicalLink

NO CORBA OPERATION

query vcLinkConnection for
terminating
vcNetworkCTPs

NO CORBA OPERATION

vcLinkEnd ID AtmLinkEndAllAttr

Administrative State AtmLinkEndAllAttr
getAdminState
setAdminState

Availability Status AtmLinkEndAllAttr
getAvailabilityStatus

Egress Maximum Assignable
Bandwidth

AtmLinkEndAllAttr
getEgressMaxAssignBW

Ingress Maximum Assignable
Bandwidth

AtmLinkEndAllAttr
getIngressMaxAssignBW

Egress available Bandwidth AtmLinkEndAllAttr
getEgressAvailableBW

Ingress available Bandwidth AtmLinkEndAll
getIngressAvailableBW

User Label AtmLinkEndAllAttr
getUserLabel
setUserLabel

Link TP Type AtmLinkEndAllAttr
getLinkEndType
setLinkEndType

NO LOGICAL MIB
ATTRIBUTE MATCH

AtmLinkEndAllAttr
getCharacteristicInfo

Relationship With
vcTopologicalLink

AtmLinkEndAllAttr
getSupportedLink

Relationship With
vcLogicallLinkTP

NO CORBA RELATIONSHIP

Relationship With
vcSubnetwork

NO CORBA RELATIONSHIP

Relationship With serverTTPs AtmLinkEndAllAttr
getServerTTP
setServerTTP

Relationship With
vcNetworkAccessProfile

AtmLinkEndAllAttr
getNetworkAccessProfile
setNetworkAccessProfile

Relationship With
vcNetworkCTP: existing
Connection Termination
Points

AtmLinkEndAllAttr
getSupportedCTPs
addSupportedCTP
removeSupportedCTP

query vcLinkEnd for
Terminated
vcTopologicalLink

AtmLinkEndAllAttr
getSupportedLink

query vcLinkEnd for
delineated vcSubnetwork

NO CORBA OPERATION

query vcLinkEnd for
associated vpTTP

AtmLinkEndAllAttr
getServerTTP

associate vcLinkEnd with
supporting vpTTP

setServerTTP

vcLinkEnd

vcLinkEnd PVC Trace

AtmLinkEnd

linkPVCTrace
vcLogicalLinkTP ID
Egress Maximum Assignable
Bandwidth
Ingress Maximum Assignable
Bandwidth
Egress available Bandwidth
Ingress available Bandwidth
VCI Range

vcLogicalLinkTP

User Label

NO M4 IDL OBJECT

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 6 ATM Forum Technical Committee

M4 Logical MIB
Managed Entity

M4 Logical MIB
Attribute/Operation

CORBA IDL
Object

CORBA IDL
Attribute/Operation

Comment

Relationship With
vcTopologicalLink
Relationship With vcLinkEnd
Relationship With
vcSubnetwork
Relationship With
vcNetworkAccessProfile
Relationship With
vcNetworkCTP: Existing
Connection Termination
Points
query vcLogicalLinkTP for
terminated
vcTopologicalLink
query vcLogicalLinkTP for
delineated vcSubnetwork
query vcLogicalLinkTP for
associated vcLinkEnds
associate vcLogicalLinkTP
with supporting vcLinkEnd
vcLogicalLinkTP PVC Trace
vcNetworkAccessProfile ID AtmNetworkAccessProfileA

llAttr
total Egress Bandwidth AtmNetworkAccessProfileA

llAttr
getTotalEgressBW
setTotalEgressBW

total Ingress Bandwidth AtmNetworkAccessProfileA
llAttr
getTotalIngressBW
setTotalIngressBW

maximum Number of Active
Connection Allowed

AtmNetworkAccessProfileA
llAttr
getMaxNumActiveVcConn
setMaxNumActiveVcConn

vcNetworkAccessProfile

VPI/VCI Range

AtmNetworkAccess
Profile

AtmNetworkAccess
ProfileFactory

AtmNetworkAccessProfileA
llAttr
getVciRange
setVciRange

vcRoutingProfile ID
connectionTypeSupported
routeDescriptionList
maxHops
Relationship With
vcSubnetwork

 Containment Relationship

vcRoutingProfile

setup vcRoutingProfile

AtmRoutingProfile

NO CORBA OPERATION
Subnetwork ID AtmSubnetworkAllAttr

AtmSubnetworkTopo
getSubnetworkID

Signal Identification AtmSubnetworkAllAttr
getCharacteristicInfo

user Label AtmSubnetworkAllAttr
getUserLabel
setUserLabel

availability Status AtmSubnetworkAllAttr
getAvailabilityStatus

supported by Object List AtmSubnetworkAllAttr
AtmSubnetworkTopo
getSupportedByObjectList
addSupportedByObjects
removeSupportedByObjects
replaceSupportedByObject
List

NO LOGICAL MIB
ATTRIBUTE MATCH

AtmSubnetworkAllAttr
getSystemTitle

vcSubnetwork

Relationship With
vcSubnetworkConnection

AtmSubnetwork

AtmSubnetworkAllAttr
getContainedSNCs

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 7

M4 Logical MIB
Managed Entity

M4 Logical MIB
Attribute/Operation

CORBA IDL
Object

CORBA IDL
Attribute/Operation

Comment

Relationship With
vcSubnetworks

AtmSubnetworkAllAttr
AtmSubnetworkTopo
getComponentSubnetworks
addComponentSubnetwork
removeComponentSubnetwor
k

Relationship With
vcTopologicalLink

AtmSubnetworkAllAttr
AtmSubnetworkTopo
getComponentLinks
addComponentLinks
removeComponentLinks

Relationship With
vcLogicalLinkTP

AtmSubnetworkAllAttr
AtmSubnetworkTopo
getSupportedLinkTPs
addSupportedLinkTP
removeSupportedLinkTP

Relationship With vcLinkEnd AtmSubnetworkAllAttr
AtmSubnetworkTopo

query vcSubnetwork for
existing
vcSubnetworkConnections

AtmSubnetworkAllAttr
getContainedSNCs

query vcSubnetwork for
component vcSubnetworks

AtmSubnetworkAllAttr
AtmSubnetworkTopo
getComponentSubnetworks
addComponentSubnetwork
removeComponentSubnetwor
k

query vcSubnetwork for
vcTopologicalLinks between
its component subnetworks

AtmSubnetworkAllAttr
AtmSubnetworkTopo
getComponentLinks
addComponentLinks
removeComponentLinks

query vcSubnetwork for
Connecting vcLinkEnds or
vcLogicalLinkTPs

AtmSubnetworkAllAttr
AtmSubnetworkTopo
getSupportedLinkTPs
addSupportedLinkTP
removeSupportedLinkTP

setup
vcSubnetworkConnection

setupPtToPtSNCWithCTP
setupPtToPtSNCWithLinkTP
setupPtToMultiSNCWithCTP
setupPtToMultiSNCWithLin
kTP

modify
vcSubnetworkConenction

NO CORBA OPERATION

addTPs to
SunetworkConnection

addTpToMultiSNCWithCTP
addTpToMultiSNCWithLinkT
P
removeTpFromMultiSNC

release
vcSubnetworkConnection

releaseSNC

vcSubnetworkConnectionID AtmSNCAllAttr
Directionality NO CORBA OPERATION
availability Status AtmSNCAllAttr

getAvailabilityStatus
Administrative Status AtmSNCAllAttr

getAdminState
setAdminState

User Label AtmSNCAllAttr
getUserLabel
setUserLabel

restorableIndicator AtmSNCAllAttr
getRestorableIndicator
setRestorableIndicator

retainedResource NO CORBA OPERATION

vcSubnetworkConnection

provisionType

AtmSNC

AtmSNCAllAttr
getProvisionType
setProvisionType

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 8 ATM Forum Technical Committee

M4 Logical MIB
Managed Entity

M4 Logical MIB
Attribute/Operation

CORBA IDL
Object

CORBA IDL
Attribute/Operation

Comment

NO LOGICAL MIB
ATTRIBUTE MATCH

AtmSNCAllAttr
getCharacteristicInfo
getOwnershipName
setOwnershipName
getConnectionType

Relationship With
networkCTPs

AtmSNCAllAttr
getAtpInstance
getZtpList

Relationship With
subnetworkConnections

AtmSNCAllAttr
getComponentSNCList

Relationship With
vcLinkConnections

AtmSNCAllAttr
getComponentLinkConnList

Relationship With
routingProfiles

AtmSNCAllAttr
getRoutingProfile
setRoutingProfile

query
subnetworkConnection for
terminating networkCTPs

AtmSNCAllAttr
getAtpInstance
getZtpList

query
vcSubnetworkConnection
for Component
vcSubnetworkConnections

AtmSNCAllAttr
getComponentSNCList

vcSubnetworkConnection
Connection Trace

traceSNC

vcTopologicalLink ID AtmLinkAllAttr
Signal Identification AtmLinkAllAttr

getCharacteristicInfo
Directionality NO CORBA OPERATION
Operational State AtmLinkAllAttr

getAvailabilityStatus
provisioned Bandwidth NO CORBA OPERATION
available Bandwidth NO CORBA OPERATION
restorationMode AtmLinkAllAttr

getRestorationMode
setRestorationMode

Customer Identification AtmLinkAllAttr
getCustomerID
setCustomerID

Weight AtmLinkAllAttr
getLinkWeight
setLinkWeight

NO LOGICAL MIB
ATTRIBUTE MATCH

AtmLinkAllAttr
getAdminState
setAdminState

Relationship With
linkConnections

AtmLinkAllAttr
getContainedLinkConns

Relationship With
logicalLinkTP

NO CORBA RELATIONSHIP

Relationship With linkEnd AtmLinkAllAttr
getALinkEnd
getZLinkEnd

Relationship With subnetwork AtmLinkAllAttr
getLinkedSubnetworks

Relationship With
vcNetworkAccessProfile

AtmLinkAllAttr
getNetworkAccessProfile
setNetworkAccessProfile

query vcTopologicalLink for
Contained
vcLinkConnections

AtmLinkAllAttr
getContainedLinkConns

query vcTopologicalLink
For Terminating
vcLinkEnds or
vcLogicalLinkTPs

AtmLinkAllAttr
getALinkEnd
getZLinkEnd

query vcTopologicalLink
For Delineated
vcSubnetworks

AtmLinkAllAttr
getLinkedSubnetworks

set up vcLinkConnection setupLinkConnWithCTP
setupLinkConnOnLink

modify vcLinkConnection

vcTopologicalLink

release vcLinkConnection

AtmLink

releaseLinkConn

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 9

M4 Logical MIB
Managed Entity

M4 Logical MIB
Attribute/Operation

CORBA IDL
Object

CORBA IDL
Attribute/Operation

Comment

vcTopologicalLink PVC
Trace
vcTrail ID
signal Identification
Directionality
User Label
Administrative State
availability State
restorable Indicator
retainedResource

Relationship With
vcNetworkTTP
query vcTrail for
terminatingTTPs

vcTrail

vcTrail Connection Trace

NO M4 IDL OBJECT

vpTrailrequest ID
Request Status
requestType
requestCommittedTime

vcTrailRequest

Relationship With vcTrail

NO M4 IDL OBJECT

Signal Identification AtmLNDAllAttr
NO LOGICAL MIB
ATTRIBUTE MATCH

AtmLNDAllAttr
GetCharacteristicInfo

User Label AtmLNDAllAttr
getUserLabel
setUserLabel

NO LOGICAL MIB
ATTRIBUTE MATCH

lndSystemTitle
getSystemTitle

Relationship With vpTTP Containment Relationship
Relationship With vpTrail NO CORBA RELATIONSHIP
Relationship With
vpSubnetwork

Containment Relationship

Relationship With
vpTrailRequest

NO CORBA RELATIONSHIP

query
vpLayerNetworkDomain
for Delimiting vpTTPs

Containment Relationship

query
vpLayerNetworkDomain
for existing vpTrails

NO CORBA OPERATION

query
vpLayerNetworkDomain
for component
vpSubnetwork

Containment Relationship

setup vpTrail NO CORBA OPERATION
setup vpTrailRequest NO CORBA OPERATION
addTps To Multipoint Trail NO CORBA OPERATION
release vpTrail NO CORBA OPERATION
Make External vpLinkEnd makeLinkEnd
Remove External
vpLinkEnd

NO CORBA OPERATION

setup vpTopologicalLink NO CORBA OPERATION

vpLayerNetworkDomain

release vpTopologicalLink

AtmLND

NO CORBA OPERATION
vpLinkConnection ID
Signal Identification
Directionality
User Label
availability Status
Administrative State
retainedResource
Relationship With
vpTopologicalLink
Relationship With
vpNetworkCTPs

vpLinkConnection

query vpLinkConnection for
containing
vpTopologicalLink

AtmLinkConn

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 10 ATM Forum Technical Committee

M4 Logical MIB
Managed Entity

M4 Logical MIB
Attribute/Operation

CORBA IDL
Object

CORBA IDL
Attribute/Operation

Comment

query vpLinkConnection
For terminating
vpNetworkCTPs
vpLinkEnd ID AtmLinkEndAllAttr

Administrative State AtmLinkEndAllAttr
getAdminState
setAdminState

Availability Status AtmLinkEndAllAttr
getAvailabilityStatus

Egress Maximum Assignable
Bandwidth

AtmLinkEndAllAttr
getEgressMaxAssignBW

Ingress Maximum Assignable
Bandwidth

AtmLinkEndAllAttr
getIngressMaxAssignBW

Egress available Bandwidth AtmLinkEndAllAttr
getEgressAvailableBW

Ingress available Bandwidth AtmLinkEndAllAttr
getIngressAvailableBW

User Label AtmLinkEndAllAttr
getUserLabel
setUserLabel

Link TP Type AtmLinkEndAllAttr
getLinkEndType
setLinkEndType

Loopback Location Identifier AtmLinkEndAllAttr
getLoopbackLocID
setLoopbackLocID

ILMI Virtual Identifier AtmLinkEndAllAttr
getIlmiVpiVci
setIlmiVpiVci

Supporting NE Location AtmLinkEndAllAttr
getSupportingNeLoc
setSupportingNeLoc

Supporting Circuit Pack
Location

AtmLinkEndAllAttr
getSupportingPortID
setSupportingPortID

Server TTP Name AtmLinkEndAllAttr
getServerTTP
setServerTTP

Server TTP Characteristic
Information Type

AtmLinkEndAllAttr
getServerTTPCharInfo

Server TTP Port Id AtmLinkEndAllAttr
getServerTTPPortID
setServerTTPPortID

Server TTP Operational State AtmLinkEndAllAttr
getServerTTPOpState

Server TTP Technology
Specific Additional
Information

AtmLinkEndAllAttr
getVendorProfile
addVendorProfile
removeVendorProfile

Cell Scrambling Enable AtmLinkEndAllAttr
getCellScramblingEnabled
setCellScramblingEnabled

Subscriber Address AtmLinkEndAllAttr
getSubscriberAddressList
addSubscriberAddress
removeSubscriberAddress

vpLinkEnd

Prefered Carrier

AtmLinkEnd

AtmLinkEndAllAttr
getPreferredCarrierList
addPreferredCarrier
removePreferredCarrier

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 11

M4 Logical MIB
Managed Entity

M4 Logical MIB
Attribute/Operation

CORBA IDL
Object

CORBA IDL
Attribute/Operation

Comment

NO LOGICAL MIB
ATTRIBUTE MATCH

AtmLinkEndAllAttr
getCharacteristicInfo
getIlmiEstabConnectivity
PollInterval
setIlmiEstabConnectivity
PollInterval
getIlmiCheckConnectivity
PollInterval
setIlmiCheckConnectivity
PollInterval
getIlmiConnectivityPollF
actor
setIlmiConnectivityPollF
actor

Relationship With
vpTopologicalLink

AtmLinkEndAllAttr
getSupportedLink

Relationship With
vpLogicalLinkTP

NO CORBA RELATIONSHIP

Relationship With
vpSubnetwork

NO CORBA RELATIONSHIP

Relationship With serverTTPs AtmLinkEndAllAttr
getServerTTP
setServerTTP

Relationship With
vpNetworkAccessProfile

AtmLinkEndAllAttr
getNetworkAccessProfile
setNetworkAccessProfile

Relationship With
vpNetworkCTP: Existing
Connection Termination
Points

AtmLinkEndAllAttr
getSupportedCTPs
addSupportedCTP
removeSupportedCTP

query vpLinkEnd
forTerminated
vpTopologicalLink

AtmLinkEndAllAttr
getSupportedLink

query vpLinkEnd for
delineated vpSubnetwork

NO CORBA OPERATION

query vpLinkEnd For
associated serverTTP

AtmLinkEndAllAttr
getServerTTP

associate vpLinkEnd with
supporting serverTTP

setServerTTP

vpLinkEnd PVC Trace linkPVCTrace
vpLogicalLinkTP ID
Egress Maximum Assignable
Bandwidth
Ingress Maximum Assignable
Bandwidth
Egress available Bandwidth
Ingress available Bandwidth
VPI Range
User Label
Relationship With
vpTopologicalLink
Relationship With vpLinkEnd
Relationship With
vpSubnetwork
Relationship With
vpNetworkAccessProfile
Relationship With
vpNetworkCTP: Existing
Connection Termination
Points
query vpLogicalLinkTP for
terminated
vpTopologicalLink
query vpLogicalLinkTP for
delineated vpSubnetwork
query vpLogicalLinkTP for
associated vpLinkEnds
associate vpLogicalLinkTP
with supporting vpLinkEnd

vpLogicalLinkTP

vpLogicalLinkTP PVC Trace

NO M4 IDL OBJECT

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 12 ATM Forum Technical Committee

M4 Logical MIB
Managed Entity

M4 Logical MIB
Attribute/Operation

CORBA IDL
Object

CORBA IDL
Attribute/Operation

Comment

vpNetworkAccessProfile ID AtmNetworkAccessProfileA
llAttr

total Egress Bandwidth AtmNetworkAccessProfileA
llAttr
getTotalEgressBW
setTotalEgressBW

total Ingress Bandwidth AtmNetworkAccessProfileA
llAttr
getTotalIngressBW
setTotalIngressBW

maximum Number of Active
Connection Allowed

AtmNetworkAccessProfileA
llAttr
getMaxNumActiveVcConn
setMaxNumActiveVcConn
getMaxNumActiveVpConn
setMaxNumActiveVpConn

vpNetworkAccessProfile

VPI/VCI Range

AtmNetworkAccess
Profile

AtmNetworkAccess
ProfileFactory

AtmNetworkAccessProfileA
llAttr
getVpiRange
setVpiRange

vpRoutingProfile ID
connectionTypeSupported NO CORBA OPERATION
routeDescriptionList NO CORBA OPERATION
maxHops NO CORBA OPERATION
Relationship With
vpSubnetwork

NO CORBA OPERATION

vpRoutingProfile

setup vpRoutingProfile

AtmRoutingProfile

NO CORBA OPERATION
Subnetwork ID AtmSubnetworkAllAttr

AtmSubnetworkTopo
getSubnetworkID

Signal Identification AtmSubnetworkAllAttr
getCharacteristicInfo

user Label AtmSubnetworkAllAttr
getUserLabel
setUserLabel

availability Status AtmSubnetworkAllAttr
getAvailabilityStatus

supported by Object List AtmSubnetworkAllAttr
AtmSubnetworkTopo
getSupportedByObjectList
addSupportedByObjects
removeSupportedByObjects
replaceSupportedByObject
List

NO LOGICAL MIB
ATTRIBUTE MATCH

AtmSubnetworkAllAttr
getSystemTitle

Relationship with
vpSubnetworkConnection

AtmSubnetworkAllAttr
getContainedSNCs

Relationship with
vpSubnetworks

AtmSubnetworkAllAttr
AtmSubnetworkTopo
getComponentSubnetworks
addComponentSubnetwork
removeComponentSubnetwor
k

Relationship with
vpTopologicalLink

AtmSubnetworkAllAttr
AtmSubnetworkTopo
getComponentLinks
addComponentLinks
removeComponentLinks

Relationship with
vpLogicalLinkTP

AtmSubnetworkAllAttr
AtmSubnetworkTopo
getSupportedLinkTPs
addSupportedLinkTP
removeSupportedLinkTP

Relationship with vpLinkEnd AtmSubnetworkAllAttr
AtmSubnetworkTopo
getSupportedLinkTPs
addSupportedLinkTP
removeSupportedLinkTP

vpSubnetwork

query vpSubnetwork for
delimiting vpNetworkCTPs

AtmSubnetwork

AtmSubnetworkAllAttr
AtmSubnetworkTopo

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 13

M4 Logical MIB
Managed Entity

M4 Logical MIB
Attribute/Operation

CORBA IDL
Object

CORBA IDL
Attribute/Operation

Comment

query vpSubnetwork for
existing
vpSubnetworkConnections

AtmSubnetworkAllAttr
getContainedSNCs

query vpSubnetwork for
component vpSubnetworks

AtmSubnetworkAllAttr
AtmSubnetworkTopo
getComponentSubnetworks
addComponentSubnetwork
removeComponentSubnetwor
k

query vpSubnetwork for
vpTopologicalLinks between
its component subnetworks

AtmSubnetworkAllAttr
AtmSubnetworkTopo
getComponentLinks
addComponentLinks
removeComponentLinks

query vpSubnetwork For
Connecting vpLinkEnds or
vpLogicalLinkTPs

AtmSubnetworkAllAttr
AtmSubnetworkTopo
getSupportedLinkTPs
addSupportedLinkTP
removeSupportedLinkTP

setup
vpSubnetworkConnection

setupPtToPtSNCWithCTP
setupPtToPtSNCWithLinkTP
setupPtToMultiSNCWithCTP
setupPtToMultiSNCWithLin
kTP

modify
vpSubnetworkConenction

NO CORBA OPERATION

addTPs to
SunetworkConnection

addTpToMultiSNCWithCTP
addTpToMultiSNCWithLinkT
P
removeTpFromMultiSNC

release
vpSubnetworkConnection

releaseSNC

Directionality AtmSNCAllAttr
availability Status NO CORBA OPERATION
Administrative Status AtmSNCAllAttr

getAvailabilityStatus
User Label AtmSNCAllAttr

getAdminState
setAdminState

restorableIndicator AtmSNCAllAttr
getUserLabel
setUserLabel

retainedResource AtmSNCAllAttr
getRestorableIndicator
setRestorableIndicator

provisionType AtmSNCAllAttr
getProvisionType
setProvisionType

NO LOGICAL MIB
ATTRIBUTE MATCH

AtmSNCAllAttr
getCharacteristicInfo
getOwnershipName
setOwnershipName
getConnectionType

Relationship with
networkCTPs

AtmSNCAllAttr
getAtpInstance
getZtpList

Relationship with
subnetworkConnections

AtmSNCAllAttr
getComponentSNCList

Relationship with
vpLinkConnections

AtmSNCAllAttr
getComponentLinkConnList

Relationship with
routingProfiles

AtmSNCAllAttr
getRoutingProfile
setRoutingProfile

query
subnetworkConnection for
terminating networkCTPs

AtmSNCAllAttr
getAtpInstance
getZtpList

vpSubnetworkConnection

query
vpSubnetworkConnection
for Component
vpSubnetworkConnections

AtmSNC

AtmSNCAllAttr
getComponentSNCList

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 14 ATM Forum Technical Committee

M4 Logical MIB
Managed Entity

M4 Logical MIB
Attribute/Operation

CORBA IDL
Object

CORBA IDL
Attribute/Operation

Comment

vpSubnetworkConnection
Connection Trace

traceSNC

vpTopologicalLink ID AtmLinkAllAttr
Signal Identification AtmLinkAllAttr

getCharacteristicInfo
Directionality NO CORBA OPERATION
Operational State AtmLinkAllAttr

getAvailabilityStatus
provisioned Bandwidth NO CORBA OPERATION
available Bandwidth NO CORBA OPERATION
restorationMode AtmLinkAllAttr

getRestorationMode
setRestorationMode

Customer Identification AtmLinkAllAttr
getCustomerID
setCustomerID

Weight AtmLinkAllAttr
getLinkWeight
setLinkWeight

NO LOGICAL MIB
ATTRIBUTE MATCH

AtmLinkAllAttr
getAdminState
setAdminState

Relationship With
linkConnections

AtmLinkAllAttr
getContainedLinkConns

Relationship with
logicalLinkTP

AtmLinkAllAttr
getALinkEnd
getZLinkEnd

Relationship with linkEnd AtmLinkAllAttr
getLinkedSubnetworks

Relationship with subnetwork AtmLinkAllAttr
getNetworkAccessProfile
setNetworkAccessProfile

Relationship with
vpNetworkAccessProfile

AtmLinkAllAttr
getContainedLinkConns

query vpTopologicalLink for
contained
vpLinkConnections

AtmLinkAllAttr
getALinkEnd
getZLinkEnd

query vpTopologicalLink for
Terminating vpLinkEnds or
vpLogicalLinkTPs

AtmLinkAllAttr
getLinkedSubnetworks

query vpTopologicalLink for
delineated vpSubnetworks

setupLinkConnWithCTP
setupLinkConnOnLink

set up vpLinkConnection NO CORBA OPERATION
modify vpLinkConnection releaseLinkConn
release vpLinkConnection NO CORBA OPERATION

vpTopologicalLink

vpTopologicalLink PVC
Trace

AtmLink

NO CORBA OPERATION

vpTrail ID
signal Identification
Directionality
User Label
Administrative State
availability State
restorable Indicator
retained Resource
Relationship with
vpNetworkTTP
query vpTrail for
terminatingTTPs
vpTrail Connection Trace

vpTrail

vpTrailrequest ID

NO M4 IDL OBJECT

Request Status
requestType
requestCommittedTime

vpTrailRequest

Relationship With vpTrail

NO M4 IDL OBJECT

vcCTP ID AtmNetworkCTPAllAttrvcNetworkCTP
VPI/VCI Value

AtmNetworkCTP
AtmNetworkCTPAllAttr
getNetworkCTPVpiVci

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 15

M4 Logical MIB
Managed Entity

M4 Logical MIB
Attribute/Operation

CORBA IDL
Object

CORBA IDL
Attribute/Operation

Comment

User Label AtmNetworkCTPAllAttr
getUserLabel
setUserLabel

segment endpoint AtmNetworkCTPAllAttr
getSegmentEndpoint
setSegmentEndpoint

Ingress Tagging Indicator AtmNetworkCTPAllAttr
getIngressTaggingInd
setIngressTaggingInd

Egress Tagging Indicator AtmNetworkCTPAllAttr
getEgressTaggingInd
setEgressTaggingInd

PM OAM Method AtmNetworkCTPAllAttr
getPmOamMethod
setPmOamMethod

PM OAM Direction AtmNetworkCTPAllAttr
getPmOamDirection
setPmOamDirection

PM OAM block size AtmNetworkCTPAllAttr
getPmOamBlockSize
setPmOamBlockSize

PM OAM Forward Active AtmNetworkCTPAllAttr
getPmOamForwardActive
setPmOamForwardActive

PM OAM Backward Active AtmNetworkCTPAllAttr
getPmOamBackwardActive
setPmOamBackwardActive

NO LOGICAL MIB
ATTRIBUTE MATCH

getCharacteristicInfo
getAlarmSeverityAssignme
ntProfile
setAlarmSeverityAssignme
ntProfile
getCurrentProblemList

Relationship with
vcNetworkTTP

AtmNetworkCTPAllAttr
getRelatedAtmTTP
setRelatedAtmTTP

Relationship with
subnetworkConnection

AtmNetworkCTPAllAttr
getAssociatedSNCs

Relationship with
trafficDescriptorProfile

AtmNetworkCTPAllAttr
getEgressTrafficDescProf
ile
getIngressTrafficDescPro
file
setTrafficDescProfile

associate vcNetworkCTP
with vcNetworkTTP

NO CORBA OPERATION

query vcNetworkCTP for
associated vcNetworkTTP

AtmNetworkCTPAllAttr

query vcNetworkCTP for
associated
subnetworkConnections

AtmNetworkCTPAllAttr

lookback vcTrail at
vcNetworkCTP

loopbackOamCell

vcTTP ID AtmNetworkTTPAllAttr
availability Status AtmNetworkTTPAllAttr

getAvailabilityStatus
PM OAM Method AtmNetworkTTPAllAttr

getPmOamMethod
setPmOamMethod

PM OAM Direction AtmNetworkTTPAllAttr
getPmOamDirection
setPmOamDirection

PM OAM block size AtmNetworkTTPAllAttr
getPmOamBlockSize
setPmOamBlockSize

vcNetworkTTP

PM OAM Forward Active

AtmNetworkTTP

AtmNetworkTTPAllAttr
getPmOamForwardActive
setPmOamForwardActive

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 16 ATM Forum Technical Committee

M4 Logical MIB
Managed Entity

M4 Logical MIB
Attribute/Operation

CORBA IDL
Object

CORBA IDL
Attribute/Operation

Comment

PM OAM Backward Active AtmNetworkTTPAllAttr
getPmOamBackwardActive
setPmOamBackwardActive

NO LOGICAL MIB
ATTRIBUTE MATCH

AtmNetworkTTPAllAttr
getCharacteristicInfo
getNetworkCTPVpiVci
AlarmSeverityAssignmentP
rofile
setAlarmSeverityAssignme
ntProfile
getCurrentProblemList

Relationship with
vcNetworkCTP

AtmNetworkTTPAllAttr

Relationship with vcTrail AtmNetworkTTPAllAttr
getAssociatedTrail

Relationship with AAL Profile NO CORBA RELATIONSHIP
Relationship with Service
Profile

NO CORBA RELATIONSHIP

query vcNetworkTTP for
associated vcNetworkCTP

getRelatedAtmCTP
setRelatedAtmCTP

query vcTTP For
terminated vcTrail

getAssociatedTrail

loopback vpTrail at vpTTP loopbackOamCell
vpCTP ID AtmNetworkCTPAllAttr
VPI Value AtmNetworkCTPAllAttr

getNetworkCTPVpiVci
User Label AtmNetworkCTPAllAttr

getUserLabel
setUserLabel

segment endpoint AtmNetworkCTPAllAttr
getSegmentEndpoint
setSegmentEndpoint

Ingress Tagging Indicator AtmNetworkCTPAllAttr
getIngressTaggingInd
setIngressTaggingInd

Egress Tagging Indicator AtmNetworkCTPAllAttr
getEgressTaggingInd
setEgressTaggingInd

PM OAM Method AtmNetworkCTPAllAttr
getPmOamMethod
setPmOamMethod

PM OAM Direction AtmNetworkCTPAllAttr
getPmOamDirection
setPmOamDirection

PM OAM block size AtmNetworkCTPAllAttr
getPmOamBlockSize
setPmOamBlockSize

PM OAM Forward Active AtmNetworkCTPAllAttr
getPmOamForwardActive
setPmOamForwardActive

PM OAM Backward Active AtmNetworkCTPAllAttr
getPmOamBackwardActive
setPmOamBackwardActive

NO LOGICAL MIB
ATTRIBUTE MATCH

getCharacteristicInfo
getAlarmSeverityAssignme
ntProfile
setAlarmSeverityAssignme
ntProfile
getCurrentProblemList

Relationship with
vpNetworkTTP

AtmNetworkCTPAllAttr
getRelatedAtmTTP
setRelatedAtmTTP

Relationship with
subnetworkConnection

AtmNetworkCTPAllAttr
getAssociatedSNCs

vpNetworkCTP

Relationship with
trafficDescriptorProfile

AtmNetworkCTP

AtmNetworkCTPAllAttr
getEgressTrafficDescProf
ile
getIngressTrafficDescPro
file
setTrafficDescProfile

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 17

M4 Logical MIB
Managed Entity

M4 Logical MIB
Attribute/Operation

CORBA IDL
Object

CORBA IDL
Attribute/Operation

Comment

associate vpNetworkCTP
with vpNetworkTTP

NO CORBA OPERATION

query vpNetworkCTP for
associated vpNetworkTTP

AtmNetworkCTPAllAttr

query vpNetworkCTP for
associated
subnetworkConnections

AtmNetworkCTPAllAttr

lookback vpTrail at
vpNetworkCTP

loopbackOamCell

vpTTP ID AtmNetworkTTPAllAttr
availability Status AtmNetworkTTPAllAttr

getAvailabilityStatus
PM OAM Method AtmNetworkTTPAllAttr

getPmOamMethod
setPmOamMethod

PM OAM Direction AtmNetworkTTPAllAttr
getPmOamDirection
setPmOamDirection

PM OAM block size AtmNetworkTTPAllAttr
getPmOamBlockSize
setPmOamBlockSize

PM OAM Forward Active AtmNetworkTTPAllAttr
getPmOamForwardActive
setPmOamForwardActive

PM OAM Backward Active AtmNetworkTTPAllAttr
getPmOamBackwardActive
setPmOamBackwardActive

NO LOGICAL MIB
ATTRIBUTE MATCH

AtmNetworkTTPAllAttr
getCharacteristicInfo
getNetworkCTPVpiVci
AlarmSeverityAssignmentP
rofile
setAlarmSeverityAssignme
ntProfile
getCurrentProblemList

Relationship with
vpNetworkCTP

AtmNetworkTTPAllAttr

Relationship with vpTrail AtmNetworkTTPAllAttr
getAssociatedTrail

query vpNetworkTTP for
associated vpNetworkCTP

getRelatedAtmCTP
setRelatedAtmCTP

query vpTTP For
terminated vpTrail

getAssociatedTrail

vpNetworkTTP

loopback vpTrail at vpTTP

AtmNetworkTTP

loopbackOamCell

aal1Profile NO M4 IDL OBJECT
aal3/4Profile NO M4 IDL OBJECT
aal5Profile NO M4 IDL OBJECT
alarmRecord See Appendix C,

Table C-1
alarmSeverityAssignment
Profile

AlarmSeverityAssign
mentProfile

AlarmSeverityAssignmentSetType
getAlarmSeverityAssignmentList
addAlarmSeverityAssignments
removeAlarmSeverityAssignments
setAlarmSeverityAssignmentList

atmCellProtocolMonitorin
gLogRecord

NO M4 IDL OBJECT

cesServiceProfile NO M4 IDL OBJECT
eventForwardingDiscrimi
nator

NO M4 IDL OBJECT

latestOccurrenceLog NO M4 IDL OBJECT
log See Appendix C,

Table C-1
Managed Entity IDtrafficDescriptor

Profile Name

AtmTrafficDesc

AtmTrafficDescABRAllAttr
AtmTrafficDescCBRAllAttr
AtmTrafficDescVBRAllAttr
AtmTrafficDescUBRAllAttr
getProfileName

AtmTrafficDesc is
uninstantiable. See
Note 2 for Table 3-1.

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 18 ATM Forum Technical Committee

M4 Logical MIB
Managed Entity

M4 Logical MIB
Attribute/Operation

CORBA IDL
Object

CORBA IDL
Attribute/Operation

Comment

Service Category AtmTrafficDescABRAllAttr
AtmTrafficDescCBRAllAttr
AtmTrafficDescVBRAllAttr
AtmTrafficDescUBRAllAttr
getServiceCategory

Conformance Definition AtmTrafficDescABRAllAttr
AtmTrafficDescCBRAllAttr
AtmTrafficDescVBRAllAttr
AtmTrafficDescUBRAllAttr
getConformanceDefinition

AtmTrafficDescABR AtmTrafficDescABRAllAttr
getAllAttrABR
getPeakCellRate

See Note 2

AtmTrafficDescCBR AtmTrafficDescCBRAllAttr
getAllAttrCBR
getPeakCellRate

See Note 2

AtmTrafficDescVBR AtmTrafficDescVBRAllAttr
getAllAttrVBR
getPeakCellRate

See Note 2

Peak Cell Rate - Ingress and
Egress

AtmTrafficDescUBR AtmTrafficDescUBRAllAttr
getAllAttrUBR
getPeakCellRate

See Note 2

AtmTrafficDescABR AtmTrafficDescABRAllAttr
getAllAttrABR
getCDVTolerancePCR

AtmTrafficDescCBR AtmTrafficDescCBRAllAttr
getAllAttrCBR
getCDVTolerancePCR

AtmTrafficDescVBR AtmTrafficDescVBRAllAttr
getAllAttrVBR
getCDVTolerancePCR

AtmTrafficDescUBR AtmTrafficDescUBRAllAttr
getAllAttrUBR
getCDVTolerancePCR

Cell Delay Variation
Tolerance in relation to the
PCR - Ingress and Egress

AtmTrafficDescVBR AtmTrafficDescVBRAllAttr
getAllAttrVBR
getCDVToleranceSCR

CDVT-SCR for VBR
if I.371 is supported

Sustainable Cell Rate -
Ingress and Egress

AtmTrafficDescVBR AtmTrafficDescVBRAllAttr
getAllAttrVB
getSustainableCellRate

Maximum Burst Size -
Ingress and Egress

AtmTrafficDescVBR AtmTrafficDescVBRAllAttr
getAllAttrVBR
getMaxBurstSize

Minimum Cell Rate - Ingress
and Egress

AtmTrafficDescABRAllAttr
getAllAttrABR
getMinCellRate

Initial Cell Rate - Ingress and
Egress

AtmTrafficDescABRAllAttr
getAllAttrABR
getInitialCellRate

Transient Buffer Exposure -
Ingress and Egress

AtmTrafficDescABRAllAttr
getAllAttrABR
getTransientBufferExposu
re

Rate Decrease Factor -
Ingress and Egress

AtmTrafficDescABRAllAttr
getAllAttrABR
getRateDecreaseFactor

Rate Increase Factor -
Ingress and Egress

AtmTrafficDescABRAllAttr
getAllAttrABR
getRateIncreaseFactor

Fixed Round Trip Time AtmTrafficDescABRAllAttr
getAllAttrABR
getFixedRoundTripTime

Nrm - Ingress and Egress AtmTrafficDescABRAllAttr
getAllAttrABR
getABRNrm

Trm - Ingress and Egress AtmTrafficDescABRAllAttr
getAllAttrABR
getABRTrm

CDF - Ingress and Egress

AtmTrafficDescABR

AtmTrafficDescABRAllAttr
getAllAttrABR
getABRCDF

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 19

M4 Logical MIB
Managed Entity

M4 Logical MIB
Attribute/Operation

CORBA IDL
Object

CORBA IDL
Attribute/Operation

Comment

ADTF - Ingress and Egress AtmTrafficDescABRAllAttr
getAllAttrABR
getABRADTF

AtmTrafficDescCBR AtmTrafficDescCBRAllAttr
getAllAttrCBR
getCLR

CLR - Ingress and Egress

AtmTrafficDescVBR AtmTrafficDescVBRAllAttr
getAllAttrVBR
getCLR

NOTE: The following logical managed entities and CORBA IDL objects pertain to submodule ATMF_M4NW_PM.
Managed Entity ID CurrentDataID

Administrative State AdministrativeState
Suspect Flag SuspectFlag
Elapsed Time ElapsedTime
Threshold Data ID ThresholdDataID
Number of Suppressed
Intervals

suppressionIndicator

No M4 attribute; from Q.822. OperationalState
No M4 attribute; from Q.822. GranularityPeriod

Attributes from
structs
CurrentDataAttribute
s and
CurrentIntervalData
defined in module
CORBA_PM

Discarded Cells due to
Protocol Errors

NumberDiscCellsProtErr

Received OAM Cells Number RecvOAMCells

Determined by
appropriate value of
PerfParameter

setAdministrativeState
setHistoryRetention
setThresholdDataID
getCurrentDataAttributes

CellProtocolMonCur
rentData

getCurrentIntervalData

Methods inherited
from CurrentData of
module CORBA_PM

atmCellProtocolMonitorin
gCurrentData

No actions have been
defined.

AtmPMBulkOperatio
ns

getCurrentPMBulkData Method inherited
from
PMBulkOperations
of module
CORBA_PM

Managed Entity ID HistoryDataID
Period End Time PeriodEndTime

Suspect Flag SuspectFlag
Number of Suppressed
Intervals

NumIntervals

No M4 attribute; from Q.822. Granularityperiod

Attributes from
structs
HistoryDataAttribute
s and
HistoryIntervalData
defined in module
CORBA_PM

Discarded Cells due to
Protocol Errors

NumberDiscCellsProtErr

Received OAM Cells NumberRecvOAMCells

Determined by
appropriate value of
PerfParameter

getHistoryDataAttributes

CellProtocolMonHist
oryData

getHistoryIntervalData
Methods inherited
from HistoryData of
module CORBA_PM

atmCellProtocolMonitorin
gHistoryData

No actions have been
defined.

AtmPMBulkOperatio
ns

getHistoryPMBulkData Method inherited
from
PMBulkOperations
of module
CORBA_PM

Managed Entity ID CurrentDataID
Administrative State AdministrativeState
Suspect Flag SuspectFlag
Elapsed Time ElapsedTime
Threshold Data ID ThresholdDataID
Number of Suppressed
Intervals

suppressionIndicator

No M4 attribute; from Q.822. OperationalState
No M4 attribute; from Q.822. GranularityPeriod

Attributes from
structs
CurrentDataAttribute
s and
CurrentIntervalData
as defined in module
CORBA_PM

Cells Received NumberCellsRecvd
Cells Transmitted NumberCellsTrnsd

Determined by
appropriate value of
PerfParameter

setAdministrativeState
setHistoryRetention

setThresholdDataID

atmTrafficLoadCurrentD
ata

No actions have been
defined.

AtmTrafficLoadCur
rentData

getCurrentDataAttributes

Methods inherited
from CurrentData of
module CORBA_PM

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 20 ATM Forum Technical Committee

M4 Logical MIB
Managed Entity

M4 Logical MIB
Attribute/Operation

CORBA IDL
Object

CORBA IDL
Attribute/Operation

Comment

getCurrentIntervalData
AtmPMBulkOperatio
ns

getCurrentPMBulkData Method inherited
from
PMBulkOperations
of module
CORBA_PM

Managed Entity ID HistoryDataID
Period End Time PeriodEndTime
Suspect Flag SuspectFlag
Number of Suppressed
Intervals

NumIntervals

No M4 attribute; from Q.822. GranularityPeriod

Attributes from
structs
HistoryDataAttribute
s and
HistoryIntervalData
defined in module
CORBA_PM

Cells Received NumberCellsRecvd
Cells Transmitted NumberCellsTrnsd

Determined by
appropriate value of
PerfParameter

getHistoryDataAttributes

AtmTrafficLoadHist
oryData

getHistoryIntervalData

Methods inherited
from HistoryData of
module CORBA_PM

atmTrafficLoadHistoryDa
ta

No actions have been
defined.

AtmPMBulkOperatio
ns

getHistoryPMBulkData Method inherited
from
PMBulkOpertaions
of module
CORBA_PM

Managed Entity ID CurrentDataID
Administrative State AdministrativeState
Suspect Flag SuspectFlag
Elapsed Time ElapsedTime
Threshold Data ID ThresholdDataID
Number of Supprressed
Intervals

 suppressionIndicator

No M4 attribute; from Q.822. OperationalState
No M4 attribute; from Q.822. GranularityPeriod

Attributes from
structs
CurrentDataAttribute
s and
CurrentIntervalData
defined in module
CORBA_PM

All Cells Discarded TcountAllCellsDisc
Priority Cells Discarded TcountPriorityCellsDisc

Determined by
appropriate value of
PerfParameter

setAdministrativeState
setHistoryRetention
setThresholdDataID
getCurrentDataAttributes

CongDiscardCurrent
Data

getCurrentIntervalData

Methods inherited
from CurrentData of
module CORBA_PM

congestionDiscardCurrent
Data

No actions have been
defined.

AtmPMBulkOperatio
ns

getCurrentPMBulkData Method inherited
from
PMBulkOperations
of module
CORBA_PM

Managed Entity ID HistoryDataID
Period End Time PeriodEndTime
Suspect Flag SuspectFlag
Number of Suppressed
Intervals

NumIntervals

No M4 attribute; from Q.822. GranularityPeriod

Attributes from
structs
HistoryDataAttribute
s and
HistoryIntervalData
defined in module
CORBA_PM

All Cells Discarded TcountAllCellsDisc
Priority Cells Discarded TcountPriorityCellsDisc

Determined by
appropriate value of
PerfParameter

getHistoryDataAttributes

CongDiscardHistory
Data

getHistoryIntervalData

Methods inherited
from HistoryData of
module CORBA_PM

congestionDiscardHistory
Data

No actions have been
defined.

AtmPMBulkOperatio
ns

getHistoryPMBulkData Method inherited
from
PMBulkOperations
of module
CORBA_PM

Managed Entity ID CurrentDataID
Administrative State AdministrativeState
Suspect Flag SuspectFlag

tcAdaptorProtocolMonito
ringCurrentData

Elapsed Time

TcAdaptProtMonCu
rrentData

ElapsedTime

Attributes from
structs
CurrentDataAttribute
s and
CurrentIntervalData

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 21

M4 Logical MIB
Managed Entity

M4 Logical MIB
Attribute/Operation

CORBA IDL
Object

CORBA IDL
Attribute/Operation

Comment

Threshold Data ID ThresholdDataID

Number of Suppressed
Intervals

 suppressionIndicator

No M4 attribute; from Q.822. OperationalState
No M4 attribute; from Q.822. GranularityPeriod

CurrentIntervalData
defined in module
CORBA_PM

Discarded Cells due to HEC
violation

NumberDiscCellsHECViolat Determined by
appropriate value of
PerfParameter

setAdministrativeState
setGranularityPeriod
setThresholdDataID
getCurrentDataAttributes
getCurrentIntervalData

Methods inherited
from CurrentData of
module CORBA_PM

No actions have been
defined.

AtmPMBulkOperatio
ns

getCurrentPMBulkData Method inherited
from
PMBulkOperations
of module
CORBA_PM

Managed Entity ID CurrentDataID

Period End Time PeriodEndTime
Suspect Flag SuspectFlag
Number of Suppressed
Intervals

NumIntervals

No M4 attribute; from Q.822. GranularityPeriod

Attributes from
structs
HistoryDataAttribute
s and
HistoryIntervalData
defined in module
CORBA_PM

Discarded Cells due to HEC
viiolation

NumberDiscCellsHECViolat Determined by
appropriate value of
PerfParameter

getHistoryDataAttributes

TcAdaptProtMonHis
toryData

getHistoryIntervalData

Methods inherited
from HistoryData of
module CORBA_PM

tcAdaptorProtocolMonito
ringHistoryData

No actions have been
defined.

AtmPMBulkOperatio
ns

getHistoryPMBulkData Method inherited
from
PMBulkOperations
of module
CORBA_PM

Managed Entity ID ThresholdDataID

PerfParameterPerformance Parameter and
Threshold Value ThresholdValue

Attributes from
structs
ThresholdDataID
and PerfThreshold
defined in module
CORBA_PM

No actions have been
defined.

AtmThresholdData

getThresholdData
setThresholdData

Methods inherited
from ThresholdData
of module
CORBA_PM

thresholdData

AtmPMBulkOperatio
ns

getAllThresholdDataIDs
getThresholdBulkData
setThresholdBulkData

Methods inherited
from
PMBulkOperations
of module
CORBA_PM

No Logical MIB
counterpart.

AtmCurrentDataFac
tory

IDL-specific object.

NOTES for Table 3-1:
1. All attributes are shown in a non-emphasized type font, and CORBA IDL attributes are shown in Section
5 of this document. Operations are shown in bold type. Logical MIBmanaged Entities and CORBA
IDL Objects are shown in bold type. Relationships are shown in italics.

2. The trafficDescriptor logical MIB managed entity covers the full range of Service Categories as defined in the
ATM Forum's TM Specification 4.0. In this document's IDL, one interface is used for each Service Category. This
approach is taken because CORBA IDL does not permit a convenient method of describing conditionality. Each of
these specialized traffic descriptor interfaces inherits from an uninstantiable parent interface named AtmTrafficDesc
that contains common methods related to objectID, profileName, serviceCategory and conformanceDefinition.

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 22 ATM Forum Technical Committee

4 Containment and Inheritance Diagrams

Figure 4-1. Containment Diagram

Network

Layer Network Domain

 atmSubnetwork

atm
Subnetwork
Connection

atm Network
Access Profile

atm
Traffic
Descriptor
Profile

atm
Routing
Profile

atm
Link
Connection

atm
Link
End

atm
Link

atm
Network
CTP

atm
Network
TTP

Threshold
Data

Legend:

A

 IDL Object

 B A contains B

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 23

Figure 4-2. Inheritance Diagram

ManagedObject, Portal

CurrentData

AtmTrafficDescriptor

AtmTraffic
Descriptor
ABR

AtmTraffic
Descriptor
CBR

AtmTraffic
Descriptor
VBR

AtmTraffic
Descriptor
UBR

CellProtocol
MonCurrent
Data

AtmTraffic
LoadCurrent
Data

TcAdapt
ProtMon
CurrentData

CongDiscard
CurrentData

UpcNpc
Disagreements
CurrentData

Legend:

IDL Object

A B A inherits from B

The following additional IDL
Objects inherit directly from
ManagedObject and Portal:
AtmLink,
AtmLinkConn,
AtmLinkEnd,
AtmLinkEndPhy,
AtmLND,
AtmNetworkCTP,
AtmNetworkTTP,
AtmRoutingProfile,
AtmSNC,
AtmSubnetwork,
AtmNetworkAccessProfile,
ThresholdData,
AlarmSeverityAssignmentProfi
le

AtmTraffic
Descriptor
GFR

PmOam
CurrentData

HistoryData

The following additional IDL
Objects inherit directly from
ManagedObject (only):
AtmBulkOperations,
AtmPMBulkOperations,
AtmTrafficDescFactory,
CurrentDataFactory,
All Iterator Interfaces,
LatestOccurrenceLog,
Network

CellProtocol
MonHistory
Data

AtmTraffic
LoadHistory
Data

CongDiscard
CurrentData

TcAdapt
ProtMon
CurrentData

UpcNpc
Disagreements
HistoryData

PmOam
CurrentData

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 24 ATM Forum Technical Committee

/**

5 CORBA IDL Definitions
*/

#ifndef _atmf_m4nw_idl_
#define _atmf_m4nw_idl_

#include "NetMgmt.idl"

/**
This IDL code is intended to be stored in a file named "atmf_m4nw.idl" located in the search
path of your IDL compiler.

5.1 Module ATMF_M4NW

This IDL provides a set of IDL interfaces for managing an ATM network using the ATM Forum M4
Network View requirements and logical MIB found in AF-NM-0058.001.

All performance management aspects are grouped under a separate sub-module, atmf_m4nw_pm (see
Section 5.5), to facilitate extensions of this IDL.
*/

module atmf_m4nw
{
const string moduleName = "atmf_m4nw";

#ifndef _atm_probable_cause_const_idl_
#define _atm_probable_cause_const_idl_

module atm_probable_cause_const
{

const string moduleName = "atm_probable_cause_const";
const short lCD = 1; // Loss of Cell Delineation
const short pLCPLOF = 2; // PLCP Loss of Frame for DS3
const short pLCPFE = 3; // PLCP Far End Alarm for DS3

/**
This sub-module contains the constant values defined for the ATM Specific ProbableCause UIDs
*/

}; // end of module atm_probable_cause_const
#endif // _atm_probable_cause_const_idl_

/**

5.2 Imports and Forward Declarations
IMPORTS

Types imported from NetMgmt
*/

typedef NetMgmt::AdministrativeState AdministrativeState;
typedef NetMgmt::MOID MOID;
typedef NetMgmt::MOIDList MOIDList;
typedef NetMgmt::Name NameType;
typedef NetMgmt::OperationalState OperationalState;
typedef NetMgmt::UID UID;
typedef NetMgmt::ProbableCause ProbableCauseType;
typedef NetMgmt::GeneralizedTime GeneralizedTime;

/**
Exceptions imported from NetMgmt are DuplicateItem, DuplicateName, ItemNotFound,
NotSupported, ObjectFailure, OutOfRange, and InvalidID.

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 25

Interfaces imported from NetMgmt are ManagedObject, ManagedObjectFactory, Portal, and
NameIterator.

FORWARD DECLARATIONS
*/

interface AlarmSeverityAssignmentProfile;
interface AlarmSeverityAssignmentProfileFactory;
interface AtmBulkOperations;
interface AtmLink;
interface AtmLinkConn;
interface AtmLinkEnd;
interface AtmLinkEndPhy;
interface AtmLND;
interface AtmNetworkAccessProfile;
interface AtmNetworkAccessProfileFactory;
interface AtmNetworkCTP;
interface AtmNetworkTTP;
interface AtmRoutingProfile;
interface AtmSubnetwork;
interface AtmSNC;
interface AtmTrafficDesc;
interface AtmTrafficDescABR;
interface AtmTrafficDescCBR;
interface AtmTrafficDescGFR;
interface AtmTrafficDescUBR;
interface AtmTrafficDescVBR;
interface AtmTrafficDescFactory;
interface Network;
interface LatestOccurrenceLog;
interface SNCAllIterator;
interface TTPIDIterator;
interface TTPAllIterator;
interface LinkIDIterator;
interface LinkAllIterator;
interface LinkEndIDIterator;
interface LinkEndAllIterator;
interface NetworkCTPAllIterator;
interface NetworkAccessProfileIDIterator;
interface NetworkAccessProfileAllIterator;
interface TrafficDescIDIterator;
interface TrafficDescAllIterator;
interface LinkEndPhyIDIterator;
interface LinkEndPhyAllIterator;
interface RoutingProfileIDIterator;
interface RoutingProfileAllIterator;

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 26 ATM Forum Technical Committee

/**

5.3 Structures and Typedefs

*/
typedef UID ProblemCause;
typedef UID CharacteristicInfo;

/**
ABR Nrm
*/

enum ABRNrm
{

noNrm, // no Nrm
nrm2, // 2
nrm4 , // 4
nrm8, // 8
nrm16, // 16
nrm32, // 32
nrm64, // 64
nrm128,// 128
nrm256 // 256

};

/**
ABR Trm
*/

enum ABRTrm
{

noTrm, // no Trm
trm1, // 100 ms
trm2, // 100 * 2^(-1) = 50 ms
trm3, // 100 * 2^(-2) = 25 ms
trm4, // 100 * 2^(-3) = 12.5 ms
trm5, // 100 * 2^(-4) = 6.25 ms
trm6, // 100 * 2^(-5) = 3.125 ms
trm7, // 100 * 2^(-6) = 1.5626 ms
trm8 // 100 * 2^(-7) = 0.78125ms

};

/**
ABR CDF
*/

enum ABRCDF
{

noCDF, // no CDF
cDF0, // 0
cDF1over64, // 1/64
cDF1over32, // 1/32
cDF1over16, // 1/16
cDF1over8, // 1/8
cDF1over4, // 1/4
cDF1over2, // 1/2
cDF1 // 1

};

/**
GFR1 or GFR2
*/

enum GFR1or2
{

GFR1,
GFR2

};

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 27

/**
Alarm Severity Code.
*/

enum AlarmSeverityCodeType
{

alarmSeverityCodeNonalarmed,
alarmSeverityCodeMinor,
alarmSeverityCodeMajor,
alarmSeverityCodeCritical,
alarmSeverityCodeWarning

};

union AlarmSeverityCodeTypeOpt switch (boolean)
{

case TRUE:
AlarmSeverityCodeType val;

};

/**
Alarm Severity Assignment. Each alarm severity assignment structure
identifies a particular problem (with a Unique ID) and then provides the
alarm severity code assigned if that problem is service affecting, not service
affecting, or service independent. This structure is usually part of
an AlarmSeverityAssignmentList.
*/

struct AlarmSeverityAssignmentType
{

ProbableCauseType problem;
AlarmSeverityCodeTypeOpt severityAssignedServiceAffecting;
AlarmSeverityCodeTypeOpt severityAssignedNonServiceAffecting;
AlarmSeverityCodeTypeOpt severityAssignedServiceIndependent;

};

/**
Alarm Severity Assignment Lists provide a listing of all abnormal
conditions that may exist in instances of an object class, and show the
assigned alarm severity information (minor, major etc.) for each condition.
*/

typedef sequence<AlarmSeverityAssignmentType>
AlarmSeverityAssignmentSetType;

/**
Managed objects supporting the AlarmSeverityAssignmentProfile
interface specify the alarm severity assignment for other managed
objects. Instances of this interface are referenced by the
alarmSeverityAssignmentProfilePointer attribute in the managed objects.
*/

struct AlarmSeverityAssignmentProfileAllAttr
{

AlarmSeverityAssignmentSetType
alarmSeverityAssignmentList;
// alarmSeverityAssignmentProfilePackage
// GET-REPLACE, ADD-REMOVE

}; // struct AlarmSeverityAssignmentProfileAllAttr

/** Alarm Status indicates the occurrence of an abnormal condition relating to
an object. Attributes of this type may also function as a summary indicator
of alarm conditions associated with a specific resource. It is used to
indicate the existence of an alarm condition, a pending alarm condition such
as threshold situations, or (when used as a summary indicator) the highest
severity of active alarm conditions. When used as a summary indicator, the
order of severity (from highest to lowest) is: activeReportable-Critical
activeReportable-Major activeReportable-Minor activeReportable-Indeterminate
activeReportable-Warning activePending cleared.
*/

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 28 ATM Forum Technical Committee

enum AlarmStatus
{cleared, activeReportableIndeterminate,

activeReportableWarning, activeReportableMinor,
activeReportableMajor, activeReportableCritical, activePending};

/** Avalibility Type is used in a sequence to indicate the availability
of a resource. Zero or more of these conditions may be indicated.
*/

enum AvailabilityType
{inTest, failed, powerOff, offLine, offDuty, dependency,
degraded, notInstalled, logFull};

/** Availability status is used to indicate the availability of a resource.
It is represented as a sequence of enums because several of the enumerated
conditions may exist at once.
*/

typedef sequence<AvailabilityType> AvailabilityStatus;

/** The current problem structure identifies an existing problem with an
object. It is typically a component of a Current Problem List.
*/

struct CurrentProblem
{

ProbableCauseType problem;
AlarmStatus alarmStatus;

};

/** Current Problem Lists identify the current existing problems, with
severity, associated with a managed object.
*/

typedef sequence<CurrentProblem> CurrentProblemList;

struct LatestOccurrenceLogID
{

NameType name;
LatestOccurrenceLog ref;

};

struct AtmLinkID
{

NameType name;
AtmLinkref;

};

typedef sequence<AtmLinkID> AtmLinkIDList;

struct AtmLinkConnID
{

NameType name;
AtmLinkConn ref;

};

typedef sequence<AtmLinkConnID> AtmLinkConnIDList;

struct AtmLinkEndID
{

NameType name;
AtmLinkEnd ref;

};

typedef sequence<AtmLinkEndID> AtmLinkEndIDList;

struct AtmLinkEndPhyID
{

NameType name;
AtmLinkEndPhy ref;

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 29

};

typedef sequence<AtmLinkEndPhyID> AtmLinkEndPhyIDList;

/**
Link ID or Link TP (Link End) ID
*/

union LinkOrLinkTP switch (boolean)
{

case TRUE:
AtmLinkID atmLinkID;

default:
AtmLinkEndID atmLinkEndID;

};

struct AtmLNDID
{

NameType name;
AtmLND ref;

};

typedef sequence<AtmLNDID> AtmLNDIDList;

struct AtmNetworkAccessProfileID
{

NameType name;
AtmNetworkAccessProfile ref;

};

typedef sequence<AtmNetworkAccessProfileID>
AtmNetworkAccessProfileIDList;

struct AtmNetworkAccessProfileFactoryID
{

NameType name;
AtmNetworkAccessProfileFactory ref;

};

struct AtmNetworkCTPID
{

NameType name;
AtmNetworkCTP ref;

};

typedef sequence<AtmNetworkCTPID> AtmNetworkCTPIDList;

struct AtmNetworkTTPID
{

NameType name;
AtmNetworkTTP ref;

};

typedef sequence<AtmNetworkTTPID> AtmNetworkTTPIDList;

struct AtmRoutingProfileID
{

NameType name;
AtmRoutingProfile ref;

};

typedef sequence<AtmRoutingProfileID> AtmRoutingProfileIDList;

struct AtmSNCID

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 30 ATM Forum Technical Committee

{
NameType name;
AtmSNC ref;

};

typedef sequence<AtmSNCID> AtmSNCIDList;

struct AtmSubnetworkID
{

NameType name;
AtmSubnetwork ref;

};

typedef sequence<AtmSubnetworkID> AtmSubnetworkIDList;

struct AtmTrafficDescID
{

NameType name;
AtmTrafficDescref;

};

typedef sequence<AtmTrafficDescID> AtmTrafficDescIDList;

struct AtmTrafficDescFactoryID
{

NameType name;
AtmTrafficDescFactory ref;

};

/**
TM 4.1 Conformance Definition
*/

enum ConformanceDefinition
{

other,
cBR1,
vBR1,
vBR2,
vBR3,
uBR1,
uBR2,
aBR,
gFR

};

/**
A connection type may be broadcast (point-to-multipoint),
merge (multipoint-to-point), composite (root-to-leaves & leaves-to-root),
multipoint (multipoint-to-multipoint), or pointToPoint (point-to-point)
*/

enum ConnectionType
{

broadcast,
merge,
composite,
multipoint,
pointToPoint

};

/**
Virtual ID - VPI value and VCI value
*/

struct VirtualID
{

unsigned long vpi;
unsigned long vci;

};

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 31

/**
Element resulting from a connection trace
*/

struct ConnTraceElement
{

LinkOrLinkTP linkOrLinkTP;
VirtualID virtualID;

};

/**
List of connection trace results
*/

typedef sequence<ConnTraceElement> ConnTraceList;

/**
ILMI connectivity state
*/

enum IlmiConnectivityState
{

unknown,
connected,
notConnected

};

/**
Link End type
*/

enum LinkEndType
{

uni,
intraNNI,
interNNI,
unconfigured

};

/**
Type of Link trace request
*/

enum LinkTraceType
{

allSubnets,
allInVPLnd,
allInVCLnd,
selectedSubnets

};

/**
Results of Link trace request for a subnetwork
*/

struct LinkTraceSubnetConn
{

AtmSubnetworkID subnetwork;
AtmSNCIDList atmSubnetConns;

};

/**
Results of loopback request
*/

struct LoopbackCellReply
{

boolean loopbackSuccessful;
ProblemCause problemCause;

};

/**
Loopback location code
*/

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 32 ATM Forum Technical Committee

typedef sequence<octet> LoopbackLocationCode;

/**
Loopback Location
*/

struct LoopbackLoc
{

boolean endPoint;
LoopbackLocationCode loopbackLocationCode;

};

/**
An optional admin state may be locked, unlocked, or not specified
*/

enum OptAdministrativeState
{

locked,
unlocked,
noAdminState

};

/**
Optional Boolean
*/

enum OptBoolean
{

false,
true,
notSpecified

};

/**
An optional restorable type may be restorable, nonrestorable, or not specified
*/

enum OptRestorableType
{

restorable,
nonrestorable,
notSpecifiedResType

};

/**
Provision type may be manual or automatic
*/

enum ProvisionType
{

manual,
automatic

};

/**
PM OAM block size
*/

enum PmOamBlockSize
{

bs128,
bs256,
bs512,
bs1024

};

/**
PM OAM cell type for loopback
*/

enum PmOamCellType
{

segment,
endToEnd

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 33

};

/**
PM OAM direction
*/

enum PmOamDirection
{

receive,
transmit,
both

};

/**
PM OAM method
*/

enum PmOamMethod
{

tMN,
oAM,
pmOamNotSupported

};

/**
Port ID, managed element and port required, others optional
*/

struct PortID
{

string managedElement;
string bay;
string shelf;
string drawer;
string slot;
string port;

};

/**
ABR Rate Change Factor
*/

enum RateChangeFactor
{

rCF1over32768,// 1/32768
rCF1over16384,// 1/16384
rCF1over8192, // 1/8192
rCF1over4096, // 1/4096
rCF1over2048, // 1/2048
rCF1over1024, // 1/1024
rCF1over512, // 1/512
rCF1over256, // 1/256
rCF1over128, // 1/128
rCF1over64, // 1/64
rCF1over32, // 1/32
rCF1over16, // 1/16
rCF1over8, // 1/8
rCF1over4, // 1/4
rCF1over2, // 1/2
rCF1 // 1

};

/**
restoration mode
*/

enum RestorationMode
{

unavailable,
availRoutingOnly,
availReRoutingOnly,
availRoutingAndReRouting

};

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 34 ATM Forum Technical Committee

/**
Traffic Service Category
*/

enum ServiceCategory
{

otherSc,
cBRSc,
rtVBRSc,
nrtVBRSc,
aBRSc,
uBRSc,
gFRSc

};

/**
List of Link trace results
*/

typedef sequence<LinkTraceSubnetConn> SNCsBySubnetList;

/**
List of strings
*/

typedef sequence<string> StringList;

/**
VPI or VCI range
*/

struct VpiOrVciRange
{

long lowVID;
long highVID;

};

/**
Description of Z-end TP (CTP) for multipoint request
*/

struct ZtpCompositeCtp
{

AtmNetworkCTPID zTp;
boolean zTpTrailEndPointInd;
AtmTrafficDescID zEgressTrafficDescProfile;

};

/**
List of Z-end TP (CTP) descriptions for multipoint request
*/

typedef sequence<ZtpCompositeCtp> ZtpCompositeCtpList;

/**
Description of Z-end TP (LinkEnd) for multipoint request
*/

struct ZtpCompositeLinkEnd
{

AtmLinkEndID zTp;
VirtualID zTpVirtualID;
boolean zTpTrailEndPointInd;
AtmTrafficDescID zEgressTrafficDescProfile;

};

/**
List of Z-end TP (LinkEnd) descriptions for multipoint request
*/

typedef sequence<ZtpCompositeLinkEnd> ZtpCompositeLinkEndList;

/**
Latest Occurrence Log Definitions
*/

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 35

enum CellHeaderAbnormalityType
{

unassignedVpiVciValue,
outOfRangeVpiVciValue

};

/**
Latest Occurrence Log Entry
*/

struct LatestOccurrenceLogEntry
{

AtmLinkEndID linkEndId;
VirtualID virtualID;
CellHeaderAbnormalityType abnormalityType;
GeneralizedTime timeStamp;

};

/**
List of Latest Occurrence Log Entries
*/

typedef sequence<LatestOccurrenceLogEntry> LatestOccLogList;

/**
All attributes of ATM Link
*/

struct AtmLinkAllAttr
{

AtmLinkID linkID;
CharacteristicInfo linkCharacteristicInfo;
AvailabilityStatus linkAvailabilityStatus;
AdministrativeState linkAdminState;
string linkCustomerID;
AtmLinkEndID linkALinkEnd;
AtmLinkEndID linkZLinkEnd;
AtmNetworkAccessProfileID linkNetworkAccessProfile;
RestorationMode linkRestorationMode;
long linkWeight;
AtmLinkConnIDList linkContainedLinkConns;
AtmSubnetworkIDList linkLinkedSubnetworks;

};

typedef sequence<AtmLinkAllAttr> AtmLinkAllAttrList;

/**
All attributes of ATM Link End
*/

struct AtmLinkEndAllAttr
{

AtmLinkEndID leID;
CharacteristicInfo leCharacteristicInfo;
AvailabilityStatus leAvailabilityStatus;
AdministrativeState leAdminState;
string leUserLabel;
AtmNetworkAccessProfileID leNetworkAccessProfile;
LinkEndType leType;
long leIngressMaxAssignBW;
long leEgressMaxAssignBW;
long leIngressAvailableBW;
long leEgressAvailableBW;
AtmLinkID leSupportedLink;
MOID leServerTTP;
AtmNetworkCTPIDList leSupportedCTPs;
LoopbackLocationCode leLoopbackLocID;
VirtualID leIlmiVpiVci;
long leIlmiEstabConnectivityPollInterval;
long leIlmiCheckConnectivityPollInterval;

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 36 ATM Forum Technical Committee

long leIlmiConnectivityPollFactor;
string leSupportingNeLoc;
PortID leSupportingPortID;
CharacteristicInfo leServerTTPCharInfo;
PortID leServerTTPPortID;
OperationalState leServerTTPOpState;
boolean leCellScramblingEnabled;
StringList leSubscriberAddressList;
StringList lePreferredCarrierList;
MOID leVendorProfile;

};

typedef sequence<AtmLinkEndAllAttr> AtmLinkEndAllAttrList;

/**
All Attributes of ATM Link End Physical
*/

struct AtmLinkEndPhyAllAttr
{

AtmLinkEndPhyID atmLinkEndPhyID;
CharacteristicInfo leCharacteristicInfo;
AvailabilityStatus leAvailabilityStatus;
AdministrativeState leAdminState;
string leUserLabel;
AtmNetworkAccessProfileID leNetworkAccessProfile;
LinkEndType leType;
long leIngressMaxAssignBW;
long leEgressMaxAssignBW;
long leIngressAvailableBW;
long leEgressAvailableBW;
AtmLinkID leSupportedLink;
MOID leServerTTP;
AtmNetworkCTPIDList leSupportedCTPs;
LoopbackLocationCode leLoopbackLocID;
VirtualID leIlmiVpiVci;
long leIlmiEstabConnectivityPollInterval;
long leIlmiCheckConnectivityPollInterval;
long leIlmiConnectivityPollFactor;
string leSupportingNeLoc;
PortID leSupportingPortID;
CharacteristicInfo leServerTTPCharInfo;
PortID leServerTTPPortID;
OperationalState leServerTTPOpState;
boolean leCellScramblingEnabled;
StringList leSubscriberAddressList;
StringList lePreferredCarrierList;
MOID leVendorProfile;

};

typedef sequence<AtmLinkEndPhyAllAttr> AtmLinkEndPhyAllAttrList;

/**
All attributes of ATM Layer Network Domain
*/

struct AtmLNDAllAttr
{

AtmLNDID lndID;
string lndSystemTitle;
CharacteristicInfo lndCharacteristicInfo;
string lndUserLabel;

};

/**
All attributes of ATM Network Access Profile
*/

struct AtmNetworkAccessProfileAllAttr
{

AtmNetworkAccessProfileID napID;

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 37

long napTotalIngressBW;
long napTotalEgressBW;
long napMaxNumActiveVcConn;
long napMaxNumActiveVpConn;
VpiOrVciRange napVpiRange;
VpiOrVciRange napVciRange;

};

typedef sequence<AtmNetworkAccessProfileAllAttr>
AtmNetworkAccessProfileAllAttrList;

/**
All attributes of ATM Network CTP
*/

struct AtmNetworkCTPAllAttr
{

AtmNetworkCTPID nctpID;
CharacteristicInfo nctpCharacteristicInfo;
string nctpUserLabel;
VirtualID nctpNetworkCTPVpiVci;
boolean nctpSegmentEndpoint;
AtmTrafficDescID nctpEgressTrafficDescProfile;
AtmTrafficDescID nctpIngressTrafficDescProfile;
AtmNetworkTTPID nctpRelatedAtmTTP;
AtmSNCIDList nctpAssociatedSNCs;
AlarmSeverityAssignmentProfile nctpAlarmProfile;
CurrentProblemList nctpCurrentProblemList;
OptBoolean nctpIngressTaggingInd;
OptBoolean nctpEgressTaggingInd;
PmOamMethod nctpPmOamMethod;
PmOamDirection nctpPmOamDirection;
PmOamBlockSize nctpPmOamBlockSize;
OptBoolean nctpPmOamForwardActive;
OptBoolean nctpPmOamBackwardActive;

};

typedef sequence<AtmNetworkCTPAllAttr> AtmNetworkCTPAllAttrList;

/**
All attributes of ATM Network TTP
*/

struct AtmNetworkTTPAllAttr
{

AtmNetworkCTPID nttpID;
CharacteristicInfo nttpCharacteristicInfo;
VirtualID nttpNetworkCTPVpiVci;
AvailabilityStatus nttpAvailabilityStatus;
AtmNetworkCTPID nttpRelatedAtmCTP;
MOID nttpAssociatedTrail;
AlarmSeverityAssignmentProfile nttpAlarmProfile;
CurrentProblemList nttpCurrentProblemList;
PmOamMethod nttpPmOamMethod;
PmOamDirection nttpPmOamDirection;
PmOamBlockSize nttpPmOamBlockSize;
OptBoolean nttpPmOamForwardActive;
OptBoolean nttpPmOamBackwardActive;

};

typedef sequence<AtmNetworkTTPAllAttr> AtmNetworkTTPAllAttrList;

/**
All Attributes of ATM Routing Profile
*/

struct AtmRoutingProfileAllAttr
{

AtmRoutingProfileID rpID;
ConnectionType connectionType;
string routeDescriptionList;

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 38 ATM Forum Technical Committee

unsigned short maxHops;
};

typedef sequence<AtmRoutingProfileAllAttr> AtmRoutingProfileAllAttrList;

/**
All attributes of ATM Subnetwork Connection
*/

struct AtmSNCAllAttr
{

AtmSNCID sncID;
CharacteristicInfo sncCharacteristicInfo;
AvailabilityStatus sncAvailabilityStatus;
AdministrativeState sncAdminState;
string sncUserLabel;
string sncOwnershipName;
AtmNetworkCTPID sncAtpInstance;
AtmNetworkCTPIDList sncZtpList;
ConnectionType sncConnectionType;
OptBoolean sncRestorableIndicator;
AtmSNCIDList sncComponentSNCList;
AtmLinkConnIDList sncComponentLinkConnList;
ProvisionType sncProvisionType;
MOID sncRoutingProfile;

};

typedef sequence<AtmSNCAllAttr> AtmSNCAllAttrList;

/**
All attributes of ATM Subnetwork
*/

struct AtmSubnetworkAllAttr
{

AtmSubnetworkID subnetID;
string subnetSystemTitle;
CharacteristicInfo subnetCharacteristicInfo;
AvailabilityStatus subnetAvailabilityStatus;
string subnetUserLabel;
MOIDList subnetSupportedByObjectList;
AtmSNCIDList subnetContainedSNCs;
AtmSubnetworkIDList subnetComponentSubnetworks;
AtmLinkIDList subnetComponentLinks;
AtmLinkEndIDList subnetSupportedLinkTPs;

};

/**
Topology specific attributes of ATM Subnetwork
*/

struct AtmSubnetworkTopo
{

AtmSubnetworkID subnettID;
MOIDList subnettSupportedByObjectList;
AtmSubnetworkIDList subnettComponentSubnetworks;
AtmLinkIDList subnettComponentLinks;
AtmLinkEndIDList subnettSupportedLinkTPs;

};

/**
All attributes of ATM ABR Traffic Descriptor
*/

struct AtmTrafficDescABRAllAttr
{

string aBRProfileName;
ServiceCategory aBRServiceCategory;
ConformanceDefinition aBRconformanceDefinition;
long aBRPeakCellRate;
long aBRCDVTolerancePCR;
long aBRMinCellRate;

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 39

long aBRInitialCellRate;
long aBRTransientBufferExposure;
RateChangeFactor aBRRateDecreaseFactor;
RateChangeFactor aBRRateIncreaseFactor;
long aBRFixedRoundTripTime;
ABRNrm aBRNrm;
ABRTrm aBRTrm;
ABRCDF aBRCDF;
long aBRADTF; // ZERO if not supported

};

/**
All attributes of ATM CBR Traffic Descriptor
*/

struct AtmTrafficDescCBRAllAttr
{

string cBRprofileName;
ServiceCategory cBRServiceCategory;
ConformanceDefinition cBRConformanceDefinition;
long cBRPeakCellRate;
long cBRCDVTolerancePCR;
long cBRCLR;

};

/**
All attributes of ATM VBR Traffic Descriptor
*/

struct AtmTrafficDescVBRAllAttr
{

string vBRProfileName;
ServiceCategory vBRServiceCategory;
ConformanceDefinition vBRConformanceDefinition;
long vBRPeakCellRate;
long vBRCDVTolerancePCR;
long vBRCDVToleranceSCR;

// negative if I.371 not supported
long vBRCLR;
long vBRSustainableCellRate;
long vBRMaxBurstSize;

};

/**
All attributes of ATM UBR Traffic Descriptor
*/

struct AtmTrafficDescUBRAllAttr
{

string uBRProfileName;
ServiceCategory uBRServiceCategory;
ConformanceDefinition uBRConformanceDefinition;
long uBREPeakCellRate;
long uBRECDVTolerancePCR;

};

/**
All attributes of ATM GFR Traffic Descriptor
*/

struct AtmTrafficDescGFRAllAttr
{

string gFRProfileName;
ServiceCategory gFRServiceCategory;
ConformanceDefinition gFRConformanceDefinition;
long peakCellRate;
long cDVTolerancePCR;
long maxFrameSize;
long minCellRate; // for CLP=0
long maxBurstSize;
GFR1or2 gfrOneOrTwo;

};

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 40 ATM Forum Technical Committee

/**
All attributes of ATM Traffic Descriptor Profile
The choice of union has been made based upon consideration of near-term implementation needs.
The ideal solution is to use the CORBA 2.3 valuetype for inheritance data structure.
However, this document is based upon an earlier CORBA version for which valuetype is not
available, but for which the union provides the closest available imitation of data structure
inheritance.
*/

union AtmTrafficDescAllAttr switch (short)
{

case 1:
AtmTrafficDescABRAllAttr trafficDescABRAll;

case 2:
AtmTrafficDescCBRAllAttr trafficDescCBRAll;

case 3:
AtmTrafficDescUBRAllAttr trafficDescUBRAll;

case 4:
AtmTrafficDescVBRAllAttr trafficDescVBRAll;

case 5: AtmTrafficDescGFRAllAttr trafficDescGFRAll;
};

typedef sequence<AtmTrafficDescAllAttr> AtmTrafficDescAllAttrList;

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 41

/**

5.4 Interfaces
INTERFACES

5.4.1 AtmBulkOperations
Operations with names ending in AllAttrlist return a sequence of all attributes for
each of the objects identified by input parameter …IDList. The parameter howMany
specifies the maximum number of instances for which attributes can be returned in a
single message. The returned parameter …Iterator provides an iterator for recovering
instances in excess of howMany.
*/

interface AtmBulkOperations : NetMgmt::ManagedObject
{
void getSNCAllAttrList

(in AtmSNCIDList sncIDList, // empty list implies all AtmSNCs
in unsigned long howMany,
out AtmSNCAllAttrList sncAllList,
out SNCAllIterator sncAllIter)
raises (NetMgmt::ObjectFailure);

/**
Operations with names including ID return a list of all object IDs in each identified
object class. The parameters howMany and . . .iterator are used to regulate the size of
returned messages. See elsewhere in this IDL for methods that return
AtmNetworkCTPIDList (under AtmLinkEnd) and AtmSNCIDList (under AtmSubnetwork).
*/

void getNetworkTTPIDList
(in AtmLNDIDList lndIDList, // empty list implies all ATM LNDs
in unsigned long howMany,
out AtmNetworkTTPIDList ttpIDList,
out TTPIDIterator ttpIDIter)
raises (NetMgmt::ObjectFailure);

void getNetworkTTPAllAttrList
(in AtmNetworkTTPIDList ttpIDList, //empty list implies all AtmNetworkTTP
in unsigned long howMany,
out AtmNetworkTTPAllAttrList ttpAllList,
out TTPAllIterator ttpAllIter)
raises (NetMgmt::ObjectFailure);

void getLinkIDList
(in AtmLNDIDList lndIDList, // empty list implies all ATM LNDs
in unsigned long howMany,
out AtmLinkIDList linkIDList,
out LinkIDIterator linkIDIter)
raises (NetMgmt::ObjectFailure);

void getLinkAllAttrList
(in AtmLinkIDList linkIDList, // empty list implies all AtmLinks
in unsigned long howMany,
out AtmLinkAllAttrList linkAllList,
out LinkAllIterator linkAllIter)
raises (NetMgmt::ObjectFailure);

void getLinkEndIDList
(in AtmLNDIDList lndIDList, // empty list implies all ATM LNDs
in unsigned long howMany,
out AtmLinkEndIDList linkEndIDList,
out LinkEndIDIterator linkEndIDIter)
raises (NetMgmt::ObjectFailure);

void getLinkEndAllAttrList
(in AtmLinkEndIDList linkEndIDList, // empty list implies all AtmLinkEnds

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 42 ATM Forum Technical Committee

in unsigned long howMany,
out AtmLinkEndAllAttrList linkEndAllList,
out LinkEndAllIterator linkEndAllIter)
raises (NetMgmt::ObjectFailure);

void getNetworkCTPAllAttrList
(in AtmNetworkCTPIDList ctpIDList, //empty list implies all AtmNetworkCTP
in unsigned long howMany,
out AtmNetworkCTPAllAttrList netCTPAllList,
out NetworkCTPAllIterator netCTPAllIter)
raises (NetMgmt::ObjectFailure);

void getNetworkAccessProfileIDList
(in AtmLNDIDList lndIDList, // empty list implies all ATM LNDs
in unsigned long howMany,
out AtmNetworkAccessProfileIDList accProIDList,
out NetworkAccessProfileIDIterator accProIDIter)
raises (NetMgmt::ObjectFailure);

void getNetworkAccessProfileAllAttrList
(in AtmNetworkAccessProfileIDList accProIDList, // empty list implies all
in unsigned long howMany,
out AtmNetworkAccessProfileAllAttrList accProAllList,
out NetworkAccessProfileAllIterator accProAllIter)
raises (NetMgmt::ObjectFailure);

void getTrafficDescIDList
(in AtmLNDIDList lndIDList, // empty list implies all ATM LNDs
in unsigned long howMany,
out AtmTrafficDescIDList trafDescIDList,
out TrafficDescIDIterator trafDescIDIter)
raises (NetMgmt::ObjectFailure);

void getTrafficDescAllAttrList
(in AtmTrafficDescIDList trafDescIDList, // empty list implies all
in unsigned long howMany,
out AtmTrafficDescAllAttrList trafDescAllList,
out TrafficDescAllIterator trafDescAllIter)
raises (NetMgmt::ObjectFailure);

void getLinkEndPhyIDList
(in unsigned long howMany,
out AtmLinkEndPhyIDList linkEndPhyIDList, // all AtmLinkEndPhy instances
out LinkEndPhyIDIterator linkEndPhyIDIter)
raises (NetMgmt::ObjectFailure);

void getLinkEndPhyAllAttrList
(in AtmLinkEndPhyIDList linkEndPhyIDList, // empty list implies all
in unsigned long howMany,
out AtmLinkEndPhyAllAttrList linkEndPhyAllList,
out LinkEndPhyAllIterator linkEndPhyAllIter)
raises (NetMgmt::ObjectFailure);

void getRoutingProfileIDList
(in AtmLNDIDList lndIDList, // empty list implies all ATM LNDs
in unsigned long howMany,
out AtmRoutingProfileIDList routProIDList,
out RoutingProfileIDIterator routProIDIter)
raises (NetMgmt::ObjectFailure);

void getRoutingProfileAllAttrList
(in AtmRoutingProfileIDList routProIDList, // empty list implies all
in unsigned long howMany,
out AtmRoutingProfileAllAttrList routProAllList,
out RoutingProfileAllIterator routProAllIter)
raises (NetMgmt::ObjectFailure);

}; // end of interface AtmBulkOperations

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 43

/**

5.4.2 Supporting Iterator Interfaces

The following iterator interfaces provide a means for limiting the length of messages
returned by methods in the AtmBulkOperations interface defined above. Each iterator
interface would invoke its inherited destroy () method for the purpose of resetting or
reinitialization.
*/

interface SNCAllIterator : NetMgmt::ManagedObject
{

boolean nextN
(in unsigned long howMany,
out AtmSNCAllAttrList sncAllList);

};
interface TTPIDIterator : NetMgmt::ManagedObject
{

boolean nextN
(in unsigned long howMany,
out AtmNetworkTTPIDList netTTPIDList);

};
interface TTPAllIterator : NetMgmt::ManagedObject
{

boolean nextN
(in unsigned long howMany,
out AtmNetworkTTPAllAttrList netTTPAllList);

};
interface LinkIDIterator : NetMgmt::ManagedObject
{

boolean nextN
(in unsigned long howMany,
out AtmLinkIDList linkIDList);

};
interface LinkAllIterator : NetMgmt::ManagedObject
{

boolean nextN
(in unsigned long howMany,
out AtmLinkAllAttrList linkAllList);

};
interface LinkEndIDIterator : NetMgmt::ManagedObject
{

boolean nextN
(in unsigned long howMany,
out AtmLinkEndIDList linkEndIDList);

};
interface LinkEndAllIterator : NetMgmt::ManagedObject
{

boolean nextN
(in unsigned long howMany,
out AtmLinkEndAllAttrList linkEndAllList);

};
interface NetworkCTPAllIterator : NetMgmt::ManagedObject
{

boolean nextN
(in unsigned long howMany,
out AtmNetworkCTPAllAttrList netCTPAllList);

};
interface NetworkAccessProfileIDIterator : NetMgmt::ManagedObject
{

boolean nextN
(in unsigned long howMany,
out AtmNetworkAccessProfileIDList accProIDList);

};

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 44 ATM Forum Technical Committee

interface NetworkAccessProfileAllIterator : NetMgmt::ManagedObject
{

boolean nextN
(in unsigned long howMany,
out AtmNetworkAccessProfileAllAttrList accProAllList);

};
interface TrafficDescIDIterator : NetMgmt::ManagedObject
{

boolean nextN
(in unsigned long howMany,
out AtmTrafficDescIDList trafDescIDList);

};
interface TrafficDescAllIterator : NetMgmt::ManagedObject
{

boolean nextN
(in unsigned long howMany,
out AtmTrafficDescAllAttrList trafDescAllList);

};
interface LinkEndPhyIDIterator : NetMgmt::ManagedObject
{

boolean nextN
(in unsigned long howMany,
out AtmLinkEndPhyIDList linkEndPhyIDList);

};
interface LinkEndPhyAllIterator : NetMgmt::ManagedObject
{

boolean nextN
(in unsigned long howMany,
out AtmLinkEndPhyAllAttrList linkEndPhyAllList);

};
interface RoutingProfileIDIterator : NetMgmt::ManagedObject
{

boolean nextN
(in unsigned long howMany,
out AtmRoutingProfileIDList routProIDList);

};
interface RoutingProfileAllIterator : NetMgmt::ManagedObject
{

boolean nextN
(in unsigned long howMany,
out AtmRoutingProfileAllAttrList routProAllList);

};

/**

5.4.3 AlarmSeverityAssignmentProfile
*/

interface AlarmSeverityAssignmentProfile: NetMgmt::ManagedObject, NetMgmt::Portal
{

/**
This method is used to retrieve the object's Alarm Severity Assignment List.
*/

AlarmSeverityAssignmentSetType getAlarmSeverityAssignmentList
(in NameType profileName)
raises (NetMgmt::ObjectFailure);

/**
This method is used to add an alarm to the object's Alarm Severity
Assignment List. An Attribute Value Change notification will be sent if the
object supports it. If an exception is thrown, the object is not changed.
*/

void addAlarmSeverityAssignments
(in NameType profileName,
in AlarmSeverityAssignmentSetType

alarmSeverityAssignmentList)
raises (NetMgmt::ObjectFailure);

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 45

/**
This method is used to remove entries from the object's Alarm Severity
Assignment List. An Attribute Value Change notification will be sent if the
object supports it. If an exception is thrown, the object is not changed.
*/

void removeAlarmSeverityAssignments
(in NameType profileName,
in AlarmSeverityAssignmentSetType

alarmSeverityAssignmentList)
raises (NetMgmt::ObjectFailure);

/**
This method is used to replace all the entries in the object's Alarm
Severity Assignment List with the submitted list. An Attribute Value Change
notification will be sent if the object supports it. If an exception is
thrown, the object is not changed.
*/

void setAlarmSeverityAssignmentList
(in NameType profileName,
in AlarmSeverityAssignmentSetType

alarmSeverityAssignmentList)
raises (NetMgmt::ObjectFailure);

}; // interface AlarmSeverityAssignmentProfile

interface AlarmSeverityAssignmentProfileFactory: NetMgmt::ManagedObject
{

AlarmSeverityAssignmentProfile create
(in NameType profileName,
inout string name, // auto naming if null
in AlarmSeverityAssignmentSetType list)

// alarmSeverityAssignmentProfilePackage
// GET-REPLACE, ADD-REMOVE

raises (NetMgmt::ObjectFailure);

}; // interface AlarmSeverityAssignmentProfileFactory

/**
5.4.4 AtmLink
*/

interface AtmLink : NetMgmt::ManagedObject, NetMgmt::Portal
{

/**
Expect Creation by the EMS.

An atmLink is a topological component used to describe a fixed relationship
between two atmSubnetworks (through the contained atmLinkTP instances) and
represents a topological association along with capacity. Many atmLinks may
exist between a pair of atmSubnetworks, although an atmLink may not exist
between a composite atmSubnetwork and any of its component atmSubnetworks.
An atmLink is terminated by two atmLinkTPs, one in each atmSubnetwork. These
atmLinkTP instances may exist before an instance of atmLink may be created,
otherwise they are created as a result of the setupLinkAction. An instance of
atmLink is created by the managed system or by using the setupLink ACTION.
Overlapping links (and address ranges) are not allowed.

If the availabilityStatus is failed or degraded, the atmLink object shall not
allow new atmLinkConnections to be established.

Supported values for the availabilityStatus are:
- Failed: The atmLink cannot function. All underlying transport connections
have failed.
- Degraded: The atmLink is degraded in some respect. For instance, the
atmLink cannot perform the function of establishing new atmLinkConnections
while it can still accept ACTIONS to tear down existing connections.
- Empty SET (none of the availableStatus conditions exist).

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 46 ATM Forum Technical Committee

The administrativeState is used for administratively locking and unlocking the
atmLink. When unlocked, the atmLink functions normally. When in the locked
state, the atmLink is prohibited from the set-up, modification, or release of
link connections, thus any of these actions shall be rejected. Locking an
atmLink does not automatically lock the contained atmLinkConnections.

The characteristicInformation attribute describes the format of the
characteristic information that the resource carries. The attribute value
is set to vcCI (I.751) for VC Layer atmLinks and vpCI (I.751) for VP Layer
atmLinks.

Note that the related atmNetworkAccessProfile information is also in the
NE-view atmAccessProfile object contained in the tcAdaptorTTPBidirectional or
in the vpTTPBidirectional object. The characteristics described by the
atmNetworkAccessProfile associated with an atmLink shall be consistent with
the atmNetworkAccessProfile of the related atmLinkTPs.

The setupLinkConnection ACTION sets up a point-to-point connection between two
non-connected subnetworkTPs in the each of the linked atmSubnetworks.

The modifyLinkConnection ACTION modifies the QOS and traffic descriptors of a
point-to-point connection between two connected subnetworkTPs in the two
linked atmSubnetworks.

The releaseLinkConnection ACTION releases a point-to-point connection between
subnetworkTPs in each of the linked atmSubnetwork.

Notifications Supported
Attribute Value Change: This notification is used to report changes of the
bandwidth values.

State Change: This notification is used to report changes to the State
attributes of this managed entity. The notification shall identify the state
attribute that changed, its old value, and its new value.

Managed Entity Creation: This notification is used to report the creation of
an instance of this Managed Entity.

Managed Entity Deletion: This notification is used to report the deletion of
an instance of this Managed Entity.
*/

AtmLinkAllAttr getAllAttrLink
(in NameType atmLinkName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
This read-only attribute, set at creation, describes the signal that
is transferred across the link: VP or VC.
*/

CharacteristicInfo getCharacteristicInfo
(in NameType atmLinkName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
This read-only attribute identifies whether or not this instance of
the link managed entity is capable of performing its normal
function (i.e., transport ATM cells).
*/

AvailabilityStatus getAvailabilityStatus
(in NameType atmLinkName)
raises (NetMgmt::ObjectFailure);

AdministrativeState getAdminState
(in NameType atmLinkName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setAdminState
(in NameType atmLinkName,
in AdministrativeState adminState)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 47

/**
This string identifies the customer who may use a private link. If
the value of this attribute is set to NULL, then the link may be
assumed to be a non-private link. Only connections of the customer
identified by the customerID attribute shall be established across a
private link.
*/

string getCustomerID
(in NameType atmLinkName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setCustomerID
(in NameType atmLinkName,
in string customerID)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
A Link that represents a unary link has two logical end points, one
on each subnetwork that it is linking.
*/

AtmLinkEndID getALinkEnd
(in NameType atmLinkName)
raises (NetMgmt::ObjectFailure);

AtmLinkEndID getZLinkEnd
(in NameType atmLinkName)
raises (NetMgmt::ObjectFailure);

/**
Each Link may use one atmNetworkAccessProfile.
*/

AtmNetworkAccessProfileID getNetworkAccessProfile
(in NameType atmLinkName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setNetworkAccessProfile
(in NameType atmLinkName,
in AtmNetworkAccessProfileID networkAccessProfile)
raises (NetMgmt::ObjectFailure, NetMgmt::InvalidID,

NetMgmt::NotSupported);

/**
This read/write attribute is used to configure the restoration mode
of a link as: unavailable for routing and re-routing, available for
routing and not re-routing; available for re-routing and not
routing; or available for both routing and rerouting.
*/

RestorationMode getRestorationMode
(in NameType atmLinkName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setRestorationMode
(in NameType atmLinkName,
in RestorationMode restorationMode)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
This integer value describes the relative weight of using the link.
The specific value of this attribute is determined by the manager
who sets the linkWeight parameter. This attributed takes on a ZERO
value in cases where the link is not assigned a specific weight.
*/

long getLinkWeight
(in NameType atmLinkName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setLinkWeight
(in NameType atmLinkName,
in long provisionedBW)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 48 ATM Forum Technical Committee

A Link is a group of link connections sharing the same extremities.
This relationship involves one and only one instance of the Link
managed entity, and zero or more instances of the linkConnection
managed entity.
*/

AtmLinkConnIDList getContainedLinkConns
(in NameType atmLinkName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
One Link has a relationship with the two and only two subnetworks
that it is linking. A Link cannot exists without the subnetworks
being identified.
*/

AtmSubnetworkIDList getLinkedSubnetworks
(in NameType atmLinkName)
raises (NetMgmt::ObjectFailure);

/**
This operation allows the requester to set-up a
linkConnection between two non-connected networkCTPs of two
subnetworks.
*/

void setupLinkConnWithCTP
(in NameType atmLinkName,
in string userLabel,
in OptRestorableType restorableType,
inout OptAdministrativeState adminState,
in AtmNetworkCTPID aNetworkCTP,
in boolean aTrailEndPointInd,
in AtmTrafficDescID aTozTrafficDescProfile,
in AtmNetworkCTPID zNetworkCTP,
in boolean zTrailEndPointInd,
in AtmTrafficDescID zToaTrafficDescProfile,
in AtmRoutingProfileID routingProfile,
out AtmLinkConnID newLinkConn)
raises (NetMgmt::ObjectFailure,

NetMgmt::NotSupported,
NetMgmt::InvalidID,
NetMgmt::ItemNotFound);

/**
This operation allows the requester to set-up a
linkConnection across the Link between two subnetworks.
*/

void setupLinkConnOnLink
(in NameType atmLinkName,
in string userLabel,
in OptRestorableType restorableType,
inout OptAdministrativeState adminState,
inout VirtualID aVirtualID,
in boolean aTrailEndPointInd,
in AtmTrafficDescID aTozTrafficDescProfile,
inout VirtualID zVirtualID,
in boolean zTrailEndPointInd,
in AtmTrafficDescID zToaTrafficDescProfile,
in AtmRoutingProfileID routingProfile,
out AtmLinkConnID newLinkConn,
out AtmNetworkCTPID aNetworkCTP,
out AtmNetworkCTPID zNetworkCTP)
raises (NetMgmt::ObjectFailure,

NetMgmt::NotSupported,
NetMgmt::InvalidID,
NetMgmt::ItemNotFound);

/**
This operation allows for the release of a linkConnection between two
connected networkCTPs of the two different subnetworks, the linkConnection or

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 49

the networkCTPs involved identified directly.
*/

void releaseLinkConn
(in NameType atmLinkName,
in MOID connectionID) // networkCTP or LinkConn
raises (NetMgmt::ObjectFailure,

NetMgmt::NotSupported,
NetMgmt::InvalidID,
NetMgmt::ItemNotFound);

}; // interface AtmLink

/**

5.4.5 AtmLinkConn
*/

interface AtmLinkConn : NetMgmt::ManagedObject, NetMgmt::Portal
{
}; // interface AtmLinkConn

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 50 ATM Forum Technical Committee

/**

5.4.6 AtmLinkEnd
*/

interface AtmLinkEnd : NetMgmt::ManagedObject, NetMgmt::Portal
{

/**
Expect Creation by the EMS.

This managed entity is used to represent the termination of a pure topological
Link in an ATM network. In the VP LND, a Link End represents an ATM interface
associated with the underlying transport facility.

In addition, interface and server trail related information may be represented
in the ATM Link End. That is, the Link End may be used to represent the
appropriate server trail TP information, removing the need to represent the
server trail TPs across the M4 network view interface.

Notifications Supported
Managed Entity Creation: This notification is used to report the creation of
an instance of this managed entity.

Managed Entity Deletion: This notification is used to report the deletion of
an instance of this managed entity.

Attribute Value Change: This notification is used to report changes to the
attribute changes of this managed entity. The notification shall identify the
attribute that changed, its old value, and its new value. This is used to
provide changes is Availability Status, and serverTTPOperationalState

State Change: This notification is used to report changes to the State
attributes of this managed entity. The notification shall identify the state
attribute that changed, its old value, and its new value.
*/

AtmLinkEndAllAttr getAllAttrLinkEnd
(in NameType atmLinkEndName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

CharacteristicInfo getCharacteristicInfo
(in NameType atmLinkEndName)
raises (NetMgmt::ObjectFailure);

/**
This read-only attribute describes the operational status (working,
degraded, not-working) of the ATM Interface represented by the
LinkEnd.
*/

AvailabilityStatus getAvailabilityStatus
(in NameType atmLinkEndName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
This settable attribute allows for the configuration of the
administrative state of the ATM Interface represented by the
LinkEnd.
*/

AdministrativeState getAdminState
(in NameType atmLinkEndName)
raises (NetMgmt::ObjectFailure);

void setAdminState
(in NameType atmLinkEndName,
in AdministrativeState adminState)
raises (NetMgmt::ObjectFailure);

/**
This string may be used to describe additional information about the
atmLinkEnd, such as a circuit identifier.
*/

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 51

string getUserLabel
(in NameType atmLinkEndName)
raises (NetMgmt::ObjectFailure);

void setUserLabel
(in NameType atmLinkEndName,
in string customerID)
raises (NetMgmt::ObjectFailure);

/**
Each LinkEnd may use one atmNetworkAccessProfile.
*/

AtmNetworkAccessProfileID getNetworkAccessProfile
(in NameType atmLinkEndName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setNetworkAccessProfile
(in NameType atmLinkEndName,
in AtmNetworkAccessProfileID networkAccessProfile)
raises (NetMgmt::ObjectFailure, NetMgmt::InvalidID,

NetMgmt::NotSupported);

/**
Describes the interface type that the atmLinkEnd supports:
UNI, inter-NNI, intra-NNI, or unconfigured.
*/

LinkEndType getLinkEndType
(in NameType atmLinkEndName)
raises (NetMgmt::ObjectFailure);

void setLinkEndType
(in NameType atmLinkEndName,
in LinkEndType linkEndType)
raises (NetMgmt::ObjectFailure);

/**
This read only attribute identifies the maximum amount of bandwidth
assignable on the link in the Ingress direction (inbound or towards
the ATM NE).
*/

long getIngressMaxAssignBW
(in NameType atmLinkEndName)
raises (NetMgmt::ObjectFailure);

/**
This read only attribute identifies the maximum amount of bandwidth
assignable on the link in the Egress direction (outbound or away
from the ATM NE).
*/

long getEgressMaxAssignBW
(in NameType atmLinkEndName)
raises (NetMgmt::ObjectFailure);

/**
This read-only attribute identifies the amount of bandwidth left on the link
in the Ingress direction (inbound or towards the ATM NE).
*/

long getIngressAvailableBW
(in NameType atmLinkEndName)
raises (NetMgmt::ObjectFailure);

/**
This read-only attribute identifies the amount of bandwidth left on
the link in the Egress direction (outbound or away from the ATM NE).
*/

long getEgressAvailableBW
(in NameType atmLinkEndName)
raises (NetMgmt::ObjectFailure);

/**
Each TopologicalLink may be terminated by two instances of the

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 52 ATM Forum Technical Committee

LinkEnd managed entity.
*/

AtmLinkID getSupportedLink
(in NameType atmLinkEndName)
raises (NetMgmt::ObjectFailure);

/**
Each LinkEnd may be supported by one instance of a TTP managed
entity in the serverLayer.
*/

MOID getServerTTP
(in NameType atmLinkEndName)
raises (NetMgmt::ObjectFailure);

void setServerTTP
(in NameType atmLinkEndName,
in MOID serverTTP)
raises (NetMgmt::ObjectFailure);

/**
A list of CTPs within the same layer network domain that are
supported by the LinkEnd. This provides the association between the
LinkEnd (and underlying server trail) and the same layer network
domain CTPs supported at the LinkEnd. That is, a VP vpLinkEnd
identifies the VP CTPs supported at the interface point. In cases
where VP and VC are managed together, this attribute may be used to
list both VP and VC Layer networkCTPs.
*/

AtmNetworkCTPIDList getSupportedCTPs
(in NameType atmLinkEndName)
raises (NetMgmt::ObjectFailure);

void addSupportedCTP
(in NameType atmLinkEndName,
in AtmNetworkCTPID supportedCTP)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported,

NetMgmt::InvalidID, NetMgmt::DuplicateItem);
void removeSupportedCTP

(in NameType atmLinkEndName,
in AtmNetworkCTPID supportedCTP)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported,

NetMgmt::InvalidID, NetMgmt::ItemNotFound);

/**
A code used for OAM cell loopback purposes. Incoming OAM Loopback
cells with a Loopback Location field value that matches the value of
the loopbackLocationIdentifier attribute shall be looped-back over
the interface.
*/

LoopbackLocationCode getLoopbackLocID
(in NameType atmLinkEndName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setLoopbackLocID
(in NameType atmLinkEndName,
in LoopbackLocationCode loopbackloc)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
This optional attribute identifies the VPI/VCI value used over the
UNI to support ILMI.
*/

VirtualID getIlmiVpiVci
(in NameType atmLinkEndName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setIlmiVpiVci
(in NameType atmLinkEndName,
in VirtualID ilmiVpiVci)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

long getIlmiEstabConnectivityPollInterval
(in NameType atmLinkEndName)

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 53

raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);
void setIlmiEstabConnectivityPollInterval

(in NameType atmLinkEndName,
in long ilmiEstabInt)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

long getIlmiCheckConnectivityPollInterval
(in NameType atmLinkEndName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setIlmiCheckConnectivityPollInterval
(in NameType atmLinkEndName,
in long ilmiCheckInt)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

long getIlmiConnectivityPollFactor
(in NameType atmLinkEndName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setIlmiConnectivityPollFactor
(in NameType atmLinkEndName,
in long ilmiPollFactor)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
This parameter identifies the location identifier of the NE that
supports the LinkEnd.
*/

string getSupportingNeLoc
(in NameType atmLinkEndName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setSupportingNeLoc
(in NameType atmLinkEndName,
in string supportingNeLoc)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
This parameter identifies the location identifier of the circuit pack that
supports the LinkEnd.
*/

PortID getSupportingPortID
(in NameType atmLinkEndName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setSupportingPortID
(in NameType atmLinkEndName,
in PortID supportingPortID)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
This optional attribute indicates the type of the Server TTP that is
represented by the vpLinkEnd.
*/

CharacteristicInfo getServerTTPCharInfo
(in NameType atmLinkEndName)
raises (NetMgmt::ObjectFailure);

/**
This optional attribute indicates port id of the Server TTP that is
represented by the vpLinkEnd.
*/

PortID getServerTTPPortID
(in NameType atmLinkEndName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setServerTTPPortID
(in NameType atmLinkEndName,
in PortID serverTTPPortID)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
This optional attribute indicates current operational state of the
Server TTP that is represented by the vpLinkEnd.
*/

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 54 ATM Forum Technical Committee

OperationalState getServerTTPOpState
(in NameType atmLinkEndName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
This optional attribute allows cell scrambling to be activated or
deactivated on the ATM Interface represented by the vpLinkEnd.
*/

boolean getCellScramblingEnabled
(in NameType atmLinkEndName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setCellScramblingEnabled
(in NameType atmLinkEndName,
in boolean cellScramblingEnabled)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
This optional read/write attribute describes the subscriber address
associated with the vpLinkEnd.
*/

StringList getSubscriberAddressList
(in NameType atmLinkEndName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void addSubscriberAddress
(in NameType atmLinkEndName,
in string subscriberAddress)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported,

NetMgmt::DuplicateItem);
void removeSubscriberAddress

(in NameType atmLinkEndName,
in string subscriberAddress)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported,

NetMgmt::ItemNotFound);

/**
This optional read/write attribute provides and identification of
the preferred carrier if it is directly assigned to the vpLinkEnd.
*/

StringList getPreferredCarrierList
(in NameType atmLinkEndName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void addPreferredCarrier
(in NameType atmLinkEndName,
in string subscriberAddress)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported,

NetMgmt::DuplicateItem);
void removePreferredCarrier

(in NameType atmLinkEndName,
in string subscriberAddress)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported,

NetMgmt::ItemNotFound);

/**
Optional pointer to a vendor specific profile.
*/

MOID getVendorProfile
(in NameType atmLinkEndName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void addVendorProfile
(in NameType atmLinkEndName,
in MOID vendorProfile)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported,

NetMgmt::DuplicateItem);
void removeVendorProfile

(in NameType atmLinkEndName,
in MOID vendorProfile)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported,

NetMgmt::ItemNotFound);

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 55

void linkPVCTrace
(in NameType atmLinkEndName,
in LinkTraceType linkTraceType,
in AtmSubnetworkIDList selectedSubnets,
out SNCsBySubnetList traceResults)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported,

NetMgmt::InvalidID, NetMgmt::ItemNotFound);

}; // interface AtmLinkEnd

/**

5.4.7 AtmLinkEndPhy
*/

interface AtmLinkEndPhy : AtmLinkEnd
{

/**
Expect Creation by the EMS.

This subclass of ATM Link End is used to represent the termination of a VP
topological Link in an ATM network and its supporting transport termination.

Server trail related information is represented in the ATM Link End Phy. That
is, the Link End Phy. is used to represent the appropriate server trail TP
information, removing the need to represent the server trail TPs across the
M4 network view interface.

Notifications Supported
Managed Entity Creation: This notification is used to report the creation of
an instance of this managed entity.

Managed Entity Deletion: This notification is used to report the deletion of
an instance of this managed entity.

Attribute Value Change: This notification is used to report changes to the
attribute changes of this managed entity. The notification shall identify the
attribute that changed, its old value, and its new value. This is used to
provide changes is Availability Status, and serverTTPOperationalState

State Change: This notification is used to report changes to the State
attributes of this managed entity. The notification shall identify the state
attribute that changed, its old value, and its new value.

Alarm: This message is used to notify the management system when a failure
has been detected or cleared. The following parameters shall be supplied with
this notification:

- The Nature of the Alarm (i.e., see generic trouble list)
- Specific Problems (optional)
- The ID of the Managed Entity Reporting the Alarm
- The Failed Switch Component or List of Failed

(or Possibly Failed) Components
- Back-up Status (optional)
 This is a Boolean indication as to whether or not the failed

entity has been backed-up.
- Back-up Entity (optional)
 This is the ID of the managed entity providing back-up services
to the failed entity. This parameter shall be NULL when the

value of the "Back-up Status" parameter is false.
- Severity of Failure (critical, major, minor, warning,

indeterminate, and cleared)
- Additional Information (optional)
- Proposed Repair Actions (optional)
- Time and Date Failure was Detected

*/

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 56 ATM Forum Technical Committee

AlarmSeverityAssignmentProfile
getAlarmSeverityAssignmentProfile
(in NameType atmLinkEndName)
raises (NetMgmt::ObjectFailure);

void setAlarmSeverityAssignmentProfile
(in NameType atmLinkEndName,
in AlarmSeverityAssignmentProfile profile)
raises (NetMgmt::ObjectFailure, NetMgmt::InvalidID);

CurrentProblemList getCurrentProblemList
(in NameType atmLinkEndName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

}; // interface AtmLinkEndPhy

/**

5.4.8 AtmLND
*/

interface AtmLND : NetMgmt::ManagedObject, NetMgmt::Portal
{

/**
Expect Creation by the EMS.

The atmLayerNetworkDomain object class represents the part of the VC or VP
Layer which is available to a managing system through the M4 interface.
The atmLayerNetworkDomain corresponds to an administration. An
atmLayerNetworkDomain is defined to support the requirement for independent
layer management of either the VC Layer or the VP Layer. The
atmLayerNetworkDomain object represents part of an administration's portion of
the VC or VP Layer which is available to a managing system through the M4
interface. In this model, an ATM Layer Network Domain is associated with one
and only one top subnetwork, which can be further decomposed. There may be
several Layer Network Domains within a single Network.

An atmLayerNetworkDomain is defined to support the requirement for independent
layer management of the VC and VP Layers.

The userLabel may be used to represent additional information about the layer
network domain. In cases where the vcLayerNetworkDomain is managed by a
different system the systemTitle may be used.

Notifications Supported
Managed Entity Creation: This notification is used to report the creation of
an instance of this managed entity.

Managed Entity Deletion: This notification is used to report the deletion of
an instance of this managed entity.

Attribute Value Change: This notification is used to report changes of the
user label.
*/

AtmLNDAllAttr getAllAttrLND
(in NameType atmLndName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

string getSystemTitle
(in NameType atmLndName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

CharacteristicInfo getCharacteristicInfo
(in NameType atmLndName)
raises (NetMgmt::ObjectFailure);

/**
This read/write attribute identifies the managing organization.
*/

string getUserLabel

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 57

(in NameType atmLndName)
raises (NetMgmt::ObjectFailure);

void setUserLabel
(in NameType atmLndName,
in string userLabel)
raises (NetMgmt::ObjectFailure);

/**
Make Link TP
*/

AtmLinkEndID makeLinkEnd
(in NameType atmLndName,
in NameType linkEndName, // auto named if null
in MOID serverTTP, // server TTP or
in MOID serverInterface, // server interface
in long vpiValue, // if making VC Link TP
in AtmNetworkAccessProfileID accessProfile,
in string userLabel,
in MOID vendorProfile)
raises (NetMgmt::ObjectFailure,

NetMgmt::NotSupported,
NetMgmt::InvalidID,
NetMgmt::ItemNotFound);

// Setup Link Method FFS //
// Remove Link Method FFS //
// Create CTP/TTP Method FFS //
// Remove CTP/TTP Method FFS //

}; // interface AtmLND

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 58 ATM Forum Technical Committee

/**

5.4.9 AtmNetworkCTP
*/

interface AtmNetworkCTP : NetMgmt::ManagedObject, NetMgmt::Portal
{

/**
Expect creation using AtmSubnetwork: setupPtToPtSNCWithLinkTP,
creation using atmVcLND: createNetworkCTP (for VC CTPs), or
creation using atmVpLND: createNetworkCTP (for VP CTPs)

Expect deletion using AtmSubnetwork: releaseSNC

his managed entity is used to represent the termination of a VP or VC
connections on an ATM subnetwork. An instance of the SubnetworkConnection or
of a linkConnection managed entity may be used to relate two instances of the
Network Connection Termination Point managed entity (i.e., for point-to-point
cross connection).

The relatedAtmTTP attribute is used to associate the final CTP of a VCC or VPC
with the same layer Trail Termination Point. Other attributes reflect the
VCI/VPI (depending on network layer), traffic descriptors, and quality of
service class.

The relatedTrafficDescriptors attribute may be used to point to the traffic
descriptor profile at points where ingress and/or egress UPC/NPC functions
are performed or when the relatedAtmTTP attribute points to an instance of the
atmNetworkTTP object class. The object pointed to by the
relatedTrafficDescriptors attribute may also contain QOS information.

The tmnCommunicationsAlarmInformation allows the reporting of communications
alarms associated with the atmNetworkCTP. When an AIS or RDI failure is
detected and alarm reporting is supported, the atmNetworkCTP object shall
generate a communicationsAlarm notification with the probableCause parameter
value set equal to aIS or farEndReceiverFailure, respectively.

The conditional oamCellLoopback provides the method used to request the
termination point to insert an OAM cell for downstream loopback and to report
whether or not the cell was returned within the required time.

Notifications Supported
Alarm: This message is used to notify the management system when a failure
has been detected or cleared. The following parameters shall be supplied with
this notification:

- The Nature of the Alarm (i.e., see generic trouble list)
- Specific Problems (optional)
- The ID of the Managed Entity Reporting the Alarm
- The Failed Switch Component or List of Failed (or Possibly

Failed) Components
- Back-up Status (optional)

This is a Boolean indication as to whether or not the failed
entity has been backed-up.

- Back-up Entity (optional)
This is the ID of the managed entity providing back-up services

to the failed entity. This parameter shall be NULL when the
value of the "Back-up Status" parameter is false.

- Severity of Failure (critical, major, minor, warning,
indeterminate, and cleared)

- Additional Information (optional)
- Proposed Repair Actions (optional)
- Time and Date Failure was Detected

Attribute Value Change: This notification is used to report changes to the
attributes of this managed entity. The notification shall identify the
attribute that changed, its old value, and its new value.

Managed Entity Creation: This notification is used to report the creation of
an instance of this managed entity.

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 59

Managed Entity Deletion: This notification is used to report the deletion of
an instance of this managed entity.
*/

AtmNetworkCTPAllAttr getAllAttrNetworkCTP
(in NameType atmNetworkCTPName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

CharacteristicInfo getCharacteristicInfo
(in NameType atmNetworkCTPName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
User Label may be used to provide a master connection name for each connection
end-point at the edge of the network. This field may identify the
administrative name used by the adjacent carrier
*/

string getUserLabel
(in NameType atmNetworkCTPName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setUserLabel
(in NameType atmNetworkCTPName,
in string userLabel)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
This read-only attribute identifies the VPI/VCI value associated
with the connection being terminated
*/

VirtualID getNetworkCTPVpiVci
(in NameType atmNetworkCTPName)
raises (NetMgmt::ObjectFailure);

/**
This boolean attribute indicates whether the NetworkCTP object
instance has been configured to represent an end-point of a VCC or
VPC Segment
*/

boolean getSegmentEndpoint
(in NameType atmNetworkCTPName)
raises (NetMgmt::ObjectFailure);

void setSegmentEndpoint
(in NameType atmNetworkCTPName,
in boolean segmentEndpoint)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
one instance of the Traffic Descriptor managed entity may
characterize the CTP.
*/

AtmTrafficDescID getEgressTrafficDescProfile
(in NameType atmNetworkCTPName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

AtmTrafficDescID getIngressTrafficDescProfile
(in NameType atmNetworkCTPName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setTrafficDescProfile
(in NameType atmNetworkCTPName,
in AtmTrafficDescID egressTrafficDescProfile,
in AtmTrafficDescID ingressTrafficDescProfile)
raises (NetMgmt::ObjectFailure, NetMgmt::InvalidID,

NetMgmt::NotSupported);

/**
Zero or one instance of the NetworkTTP managed entity may exist for
each instance of a CTP managed entity, depending on if the trail
termination coincides with the CTP
*/

AtmNetworkTTPID getRelatedAtmTTP

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 60 ATM Forum Technical Committee

(in NameType atmNetworkCTPName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setRelatedAtmTTP
(in NameType atmNetworkCTPName,
in AtmNetworkTTPID relatedAtmTTP)
raises (NetMgmt::ObjectFailure, NetMgmt::InvalidID,

NetMgmt::NotSupported);

/**
Zero or more of the NetworkCTP managed entity may exist for each
instance of a subnetworkConnection managed entity
*/

AtmSNCIDList getAssociatedSNCs
(in NameType atmNetworkCTPName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
This operation is used to request that the NetworkCTP insert a
loopback OAM cell into the ATM cell stream, verify its return, and
report the results of the loopback (i.e., passed or failed) back to
the management system. Along with each request will be the location
where the inserted OAM cell shall loop-back and an indication as to
whether a segment or end-to-end OAM cell shall be used. The
Loopback Location Code which indicates where the loopback is to take
place may be used to identify the loopback location. Additionally,
a globally unique default value (e.g., "end-point") may also be used
to perform a loopback at the other end of a VCC or VPC.
*/

LoopbackCellReply loopbackOamCell
(in NameType atmNetworkCTPName,
in LoopbackLoc loopbackLoc,
in PmOamCellType oamCellType)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

AlarmSeverityAssignmentProfile
getAlarmSeverityAssignmentProfile
(in NameType atmNetworkCTPName)
raises (NetMgmt::ObjectFailure);

void setAlarmSeverityAssignmentProfile
(in NameType atmNetworkCTPName,
in AlarmSeverityAssignmentProfile profile)
raises (NetMgmt::ObjectFailure, NetMgmt::InvalidID);

CurrentProblemList getCurrentProblemList
(in NameType atmNetworkCTPName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
This boolean attribute specifies if tagging is being used
on the receive side of an ATM VPC or VCC. A value of true indicates
that tagging is being used. A value of false indicates it is not being used.
*/

boolean getIngressTaggingInd
(in NameType atmNetworkCTPName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setIngressTaggingInd
(in NameType atmNetworkCTPName,
in boolean ingressTagInd)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
This boolean attribute specifies if tagging is being used
on the transmit side of an ATM VPC or VCC. A value of true
indicates that tagging is being used. A value of false indicates it
is not being used.
*/

boolean getEgressTaggingInd
(in NameType atmNetworkCTPName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setEgressTaggingInd

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 61

(in NameType atmNetworkCTPName,
in boolean egressTagInd)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
This optional attribute indicates the method used to setup and
terminate the PM OAM monitoring activity. Valid values are TMN,
OAM, or notSupported. If the value is notSupported, then PM OAM is
not supported on the endpoint
*/

PmOamMethod getPmOamMethod
(in NameType atmNetworkCTPName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setPmOamMethod
(in NameType atmNetworkCTPName,
in PmOamMethod pmOamMethod)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
This optional attribute indicates the desired direction(s) of
transmission to monitor PM OAM. Valid directions are: away from
activator (transmit), towards activator (receive), or both
*/

PmOamDirection getPmOamDirection
(in NameType atmNetworkCTPName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setPmOamDirection
(in NameType atmNetworkCTPName,
in PmOamDirection pmOamDirection)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
This optional attribute indicates the PM OAM nominal block size
choice for both the receive and transmit dirctions
*/

PmOamBlockSize getPmOamBlockSize
(in NameType atmNetworkCTPName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setPmOamBlockSize
(in NameType atmNetworkCTPName,
in PmOamBlockSize pmBlockSize)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
This optional boolean attribute is used to initiate generation of PM
OAM cells in the forward direction by setting the value to true
*/

boolean getPmOamForwardActive
(in NameType atmNetworkCTPName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setPmOamForwardActive
(in NameType atmNetworkCTPName,
in boolean pmForwardActive)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
This optional boolean attribute is used to initiate generation of PM
OAM cells in the backward direction by setting the value to true
*/

boolean getPmOamBackwardActive
(in NameType atmNetworkCTPName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setPmOamBackwardActive
(in NameType atmNetworkCTPName,
in boolean pmBackwardActive)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

}; // interface AtmNetworkCTP

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 62 ATM Forum Technical Committee

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 63

/**

5.4.10 AtmNetworkTTP
*/

interface AtmNetworkTTP : NetMgmt::ManagedObject, NetMgmt::Portal
{

/**
Expect creation using AtmSubnetwork: setupPtToPtSNCWithCTP or
AtmSubnetwork: setupPtToPtSNCWithLinkTP

Expect deletion using AtmSubnetwork: releaseSNC

The atmNetworkTTP object class is used when the Network View only is provided.

The relatedAtmCTP attribute is used to associate the final CTP of a VCC or VPC
with the Trail Termination Point.

The optional method is provided to request the termination point to insert an
OAM cell for downstream loopback and to report whether or not the cell was
returned within the required time.

The availabilityStatus may be used to indicate the availability of the
atmNetworkTTP. Changes in the availabilityStatus are reported using the
attributeValueChangeNotification.

Supported values for the availabilityStatus are:
- Failed: The atmLinkConnection cannot function
- Empty SET (none of the availableStatus conditions exist).

Notifications Supported
Managed Entity Creation: This notification is used to report the creation of
an instance of this managed entity.

Managed Entity Deletion: This notification is used to report the deletion of
an instance of this managed entity.

Attribute Value Change Notification: This notification is used to report
changes to the availability status attribute of this managed entity.
*/

AtmNetworkTTPAllAttr getAllAttrNetworkTTP
(in NameType atmNetworkTTPName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

CharacteristicInfo getCharacteristicInfo
(in NameType atmNetworkTTPName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
This read-only attribute identifies the VPI/VCI value associated
with the trail being terminated.
*/

VirtualID getNetworkCTPVpiVci
(in NameType atmNetworkTTPName)
raises (NetMgmt::ObjectFailure);

/**
This read-only attribute identifies whether or not the managed
entity is capable of performing its normal functions (Failed or no
unavailability condition existing).
*/

AvailabilityStatus getAvailabilityStatus
(in NameType atmNetworkTTPName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
Zero or one instance of the NetworkTTP managed entity may
exist for each instance of a NetworkCTP managed entity MO.
*/

AtmNetworkCTPID getRelatedAtmCTP

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 64 ATM Forum Technical Committee

(in NameType atmNetworkTTPName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setRelatedAtmCTP
(in NameType atmNetworkTTPName,
in AtmNetworkCTPID relatedAtmCTP)
raises (NetMgmt::ObjectFailure, NetMgmt::InvalidID,

NetMgmt::NotSupported);

/**
A Trail is terminated by two vpTTPs
*/

MOID getAssociatedTrail
(in NameType atmNetworkTTPName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

LoopbackCellReply loopbackOamCell
(in NameType atmNetworkTTPName,
in LoopbackLoc loopbackLoc,
in PmOamCellType oamCellType)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

AlarmSeverityAssignmentProfile
getAlarmSeverityAssignmentProfile
(in NameType atmNetworkTTPName)
raises (NetMgmt::ObjectFailure);

void setAlarmSeverityAssignmentProfile
(in NameType atmNetworkTTPName,
in AlarmSeverityAssignmentProfile profile)
raises (NetMgmt::ObjectFailure, NetMgmt::InvalidID);

CurrentProblemList getCurrentProblemList
(in NameType atmNetworkTTPName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
This optional attribute indicates the method used to setup and
terminate the PM OAM monitoring activity. Valid values are TMN,
OAM, or notSupported. If the value is notSupported, then PM OAM is
not supported on the endpoint.
*/

PmOamMethod getPmOamMethod
(in NameType atmNetworkTTPName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setPmOamMethod
(in NameType atmNetworkTTPName,
in PmOamMethod pmOamMethod)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
This optional attribute indicates the desired direction(s) of
transmission to monitor PM OAM. Valid directions are: away from
activator (transmit), towards activator (receive), or both.
*/

PmOamDirection getPmOamDirection
(in NameType atmNetworkTTPName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setPmOamDirection
(in NameType atmNetworkTTPName,
in PmOamDirection pmOamDirection)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
This optional attribute indicates the PM OAM nominal block size
choice for both the receive and transmit dirctions.
*/

PmOamBlockSize getPmOamBlockSize
(in NameType atmNetworkTTPName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setPmOamBlockSize
(in NameType atmNetworkTTPName,
in PmOamBlockSize pmOamBlockSize)

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 65

raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
This optional boolean attribute is used to initiate generation of PM
OAM cells in the forward direction by setting the value to true.
*/

boolean getPmOamForwardActive
(in NameType atmNetworkTTPName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setPmOamForwardActive
(in NameType atmNetworkTTPName,
in boolean pmForwardActive)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
This optional boolean attribute is used to initiate generation of PM
OAM cells in the backward direction by setting the value to true.
*/

boolean getPmOamBackwardActive
(in NameType atmNetworkTTPName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setPmOamBackwardActive
(in NameType atmNetworkTTPName,
in boolean pmBackwardActive)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

}; // interface AtmNetworkTTP

/**

5.4.11 AtmRoutingProfile
*/

interface AtmRoutingProfile : NetMgmt::ManagedObject, NetMgmt::Portal
{
}; // interface AtmRoutingProfile

/**

5.4.12 AtmSNC
*/

interface AtmSNC : NetMgmt::ManagedObject, NetMgmt::Portal
{

/**
Created using AtmSubnetwork: setupPtToPtSNCWithCTP or
AtmSubnetwork: setupPtToPtSNCWithLinkTP

Deleted using AtmSubnetwork: releaseSNC

An atmSubnetworkConnection represents a connection across a subnetwork. An
atmSubnetworkConnection is responsible for transporting cells across a
subnetwork. It is always bidirectional. An instance of
atmSubnetworkConnection is terminated by atmNetworkCTPs.

An instance of this object is created by the managed system or by an action on
the atmSubnetwork object. An atmSubnetworkConnection in a composite
subnetwork is made up of a series of atmSubnetworkConnections and
atmLinkConnections. An atmSubnetworkConnection cannot be created between a
composite subnetwork and one of its component subnetworks.

Supported values for the availabilityStatus are:
- Failed: The atmSubnetworkConnection cannot function
- Empty SET (none of the availableStatus conditions exist).

The administrativeState is used for administratively locking and unlocking the
atmSubnetworkConnection. When unlocked, the atmSubnetworkConnection functions
normally. When in the locked state, the atmSubnetworkConnection is prohibited
from the transport of characteristic information.

For point to point Subnetwork Connections the a-TPInstance and a single entry

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 66 ATM Forum Technical Committee

in the z-TPList are used to indicate the endpoints. Multiple entries in the
z-TPList and the a-TPInstance are used to represent the end points of broadcast
(point-to-multipoint), merge (multipoint-to-point), and composite connections.
The a-TPInstance identifies the primary endpoint. Only the z-TPList is used
identify all end points in a multipoint-to-multipoint connection (there is no
primary end point). In this case the a-TPInstance shall be NULL.

Notifications Supported
State Change: This notification is used to report changes to the State
attributes of this managed entity. The notification shall identify the state
attribute that changed, its old value, and its new value.

Attribute Value Change: This notification is used to report changes of the
user label.

Managed Entity Creation: This notification is used to report the creation of
an instance of this Managed Entity.

Managed Entity Deletion: This notification is used to report the deletion of
an instance of this Managed Entity.
*/

AtmSNCAllAttr getAllAttrSNC
(in NameType atmSNCName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

CharacteristicInfo getCharacteristicInfo
(in NameType atmSNCName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
This read-only attribute identifies whether or not the managed
entity is capable of performing its normal functions (Failed or no
unavailability condition existing).
*/

AvailabilityStatus getAvailabilityStatus
(in NameType atmSNCName)
raises (NetMgmt::ObjectFailure);

/**
This read/write attribute is used to lock and unlock cell flow
through the subnetwork connection.
*/

AdministrativeState getAdminState
(in NameType atmSNCName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setAdminState
(in NameType atmSNCName,
in AdministrativeState adminState)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
This read/write attribute can be used as an administrative handle (e.g.,
circuit ID) for the end-to-end connection
*/

string getUserLabel
(in NameType atmSNCName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setUserLabel
(in NameType atmSNCName,
in string userLabel)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
This read/write attribute can identify ownership of a particular connection.
This ownership field can be used for administration specific use such as
customer, organization, department or people names. This field is useful for
associating multiple connections to a particular customer or organization.
*/

string getOwnershipName

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 67

(in NameType atmSNCName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setOwnershipName
(in NameType atmSNCName,
in string ownershipName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

AtmNetworkCTPID getAtpInstance
(in NameType atmSNCName)
raises (NetMgmt::ObjectFailure);

AtmNetworkCTPIDList getZtpList
(in NameType atmSNCName)
raises (NetMgmt::ObjectFailure);

ConnectionType getConnectionType
(in NameType atmSNCName)
raises (NetMgmt::ObjectFailure);

/**
This read/write attribute is used to configure the connection as
restorable or non-restorable
*/

boolean getRestorableIndicator
(in NameType atmSNCName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setRestorableIndicator
(in NameType atmSNCName,
in boolean restorableIndicator)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
A composite subnetworkConnection is made of multiple linkConnections
(at least one) and inner subnetworkConnections (at least two)
*/

AtmSNCIDList getComponentSNCList
(in NameType atmSNCName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

AtmLinkConnIDList getComponentLinkConnList
(in NameType atmSNCName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
This read/write attribute indicates whether the route for the
associated subnetworkConnection is specified by the administrator
(manual) or determined by the system (automatic) that may include
managing and managed entities of the subnetwork
*/

ProvisionType getProvisionType
(in NameType atmSNCName)
raises (NetMgmt::ObjectFailure);

void setProvisionType
(in NameType atmSNCName,
in ProvisionType provisionType)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
A subnetwork connection may be constrained by a routingProfile
*/

AtmRoutingProfileID getRoutingProfile
(in NameType atmSNCName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setRoutingProfile
(in NameType atmSNCName,
in AtmRoutingProfileID routingProfile)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
This operation determines the path of the SubnetworkConnection and
returns the path at the lowest possible level supported by the
managed system. For example, at the lowest level of subnetwork

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 68 ATM Forum Technical Committee

partitioning. The connection trace returns the virtual id (VPI for
VP LND connections or VPI/VCI for VC LND connections) for each
atmLink or external interface point (linkTP) of the connection. For
VC connections, the trace should be examined at both the VC level as
well as the VP Level, if both LNDs are under the purview of the
managed system. In cases of multipoint connection, the results
should be returned in a breadth first fashion.
*/

ConnTraceList traceSNC
(in NameType atmSNCName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

}; // interface AtmSNC

/**

5.4.13 AtmSubnetwork
*/

interface AtmSubnetwork : NetMgmt::ManagedObject, NetMgmt::Portal
{

/**
Expect Creation by the EMS.

Explicit creation by NMS requires makeSubnetwork method on atmLnd.

An atmSubnetwork is a topological component used for carrying characteristic
information(ATM cells within a layer network). The atmSubnetwork is
delineated by ATM LinkEnds. Subnetworks are used for making subnetwork
connections. An instance of atmSubnetwork may be specific to the VC or VP
layer and is contained in the appropriate vcLayerNetworkDomain or
vpLayerNetworkDomain. A point subnetwork does not contain any visible
subnetwork connections.

The atmSubnetwork object provides an abstraction that allows the establishment
and removal of connections across the atmSubnetwork.

characteristicInformation describes the format of the characteristic
information that the resource carries. This is set to vcCI (I.751) for VC
Layer atmSubnetworks and vpCI (I.751) for VP Layer atmSubnetworks. The
characteristicInformation, where present, for dependent objects shall match
this attribute.

The userLabel may be used to describe the managing organization. In cases
where the atmSubnetwork is managed by a different system the inherited
systemTitle may be used.

The supportedByObjectList points to managed elements that support the
subnetwork. (specific information about these elements is available through
the M4 NE view).

Supported values for the availabilityStatus are:
- Degraded: The atmSubnetwork is degraded in some respect. For instance,
the atmSubnetwork cannot perform the function of establishing new
atmSubnetworkConnections while it can still accept ACTIONS to tear down
existing connections.
- Empty SET (none of the availableStatus conditions exist).

Notifications Supported
Attribute Value Change: This notification is used to report changes of the
user label, and changes to the availability status attribute of this managed
entity.

Managed Entity Creation: This notification is used to report the creation of
an instance of this Managed Entity.

Managed Entity Deletion: This notification is used to report the deletion of
an instance of this Managed Entity.
*/

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 69

AtmSubnetworkAllAttr getAllAttrSubnetwork
(in NameType atmSubnetName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

AtmSubnetworkTopo getSubnetworkTopology
(in NameType atmSubnetName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

AtmSubnetworkID getSubnetworkID
()
raises (NetMgmt::ObjectFailure);
// returns the name of the object

string getSystemTitle
(in NameType atmSubnetName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

CharacteristicInfo getCharacteristicInfo
(in NameType atmSubnetName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
This read-only attribute identifies whether or not the managed
entity is capable of performing its normal functions (Failed,
degraded, or no unavailability condition existing).
*/

AvailabilityStatus getAvailabilityStatus
(in NameType atmSubnetName)
raises (NetMgmt::ObjectFailure);

/**
This read/write attribute identifies the managing organization.
*/

string getUserLabel
(in NameType atmSubnetName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setUserLabel
(in NameType atmSubnetName,
in string userLabel)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
The supportedByObjectList points to managed elements that support
the subnetwork.
*/

MOIDList getSupportedByObjectList
(in NameType atmSubnetName)
raises (NetMgmt::ObjectFailure);

void addSupportedByObjects
(in NameType atmSubnetName,
in MOIDList supportingObjects)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported,

NetMgmt::DuplicateItem);
void removeSupportedByObjects

(in NameType atmSubnetName,
in MOIDList supportingObject)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported,

NetMgmt::ItemNotFound);
void replaceSupportedByObjectList

(in NameType atmSubnetName,
in MOIDList supportingObjects)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
A subnetwork contains zero or more subnetwork connections.
*/

AtmSNCIDList getContainedSNCs
(in NameType atmSubnetName)
raises (NetMgmt::ObjectFailure);

/**

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 70 ATM Forum Technical Committee

A subnetwork may be partitioned into one or more subnetworks
*/

AtmSubnetworkIDList getComponentSubnetworks
(in NameType atmSubnetName)
raises (NetMgmt::ObjectFailure);

void addComponentSubnetwork
(in NameType atmSubnetName,
in AtmSubnetworkID componentSubnetwork)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported,

NetMgmt::DuplicateItem);
void removeComponentSubnetwork

(in NameType atmSubnetName,
in AtmSubnetworkID componentSubnetwork)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported,

NetMgmt::ItemNotFound);

/**
A composite vcSubnetwork contains vcTopologicalLinks between its
component subnetworks.
*/

AtmLinkIDList getComponentLinks
(in NameType atmSubnetName)
raises (NetMgmt::ObjectFailure);

void addComponentLink
(in NameType atmSubnetName,
in AtmLinkID componentLink)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported,

NetMgmt::DuplicateItem);
void removeComponentLink

(in NameType atmSubnetName,
in AtmLinkID componentLink)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported,

NetMgmt::ItemNotFound);

/**
A subnetwork is delineated by zero or more LinkTPs.
*/

AtmLinkEndIDList getSupportedLinkTPs
(in NameType atmSubnetName)
raises (NetMgmt::ObjectFailure);

void addSupportedLinkTP
(in NameType atmSubnetName,
in AtmLinkEndID supportedLinkTP)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported,

NetMgmt::DuplicateItem);
void removeSupportedLinkTP

(in NameType atmSubnetName,
in AtmLinkEndID supportedLinkTP)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported,

NetMgmt::ItemNotFound);

/**
The setupPtToPtSNCWithCTP method sets up a point-to-point
connection between non-connected CTPs in the atmSubnetwork.
*/

void setupPtToPtSNCWithCTP
(in NameType atmSubnetName,
in string userLabel,
in OptRestorableType restorableType,
inout OptAdministrativeState adminState,
in AtmNetworkCTPID aNetworkCTP,
in boolean aTrailEndPointInd,
in AtmTrafficDescID aTozTrafficDescProfile,
in AtmNetworkCTPID zNetworkCTP,
in boolean zTrailEndPointInd,
in AtmTrafficDescID zToaTrafficDescProfile,
in AtmRoutingProfileID routingProfile,
out AtmSNCID newSNC)

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 71

raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported,
NetMgmt::InvalidID, NetMgmt::ItemNotFound);

/**
The setupPtToPtSNCWithLinkTP method sets up a point-to-point
connection between LinkEnds in the atmSubnetwork.
*/

void setupPtToPtSNCWithLinkTP
(in NameType atmSubnetName,
in string userLabel,
in OptRestorableType restorableType,
inout OptAdministrativeState adminState,
in AtmLinkEndID aLinkTP,
inout VirtualID aVirtualID,
in boolean aTrailEndPointInd,
in AtmTrafficDescID aTozTrafficDescProfile,
in AtmLinkEndID zLinkTP,
inout VirtualID zVirtualID,
in boolean zTrailEndPointInd,
in AtmTrafficDescID zToaTrafficDescProfile,
in AtmRoutingProfileID routingProfile,
out AtmSNCID newSNC,
out AtmNetworkCTPID aNetworkCTP,
out AtmNetworkCTPID zNetworkCTP)
raises (NetMgmt::ObjectFailure,

NetMgmt::NotSupported,
NetMgmt::InvalidID,
NetMgmt::ItemNotFound);

/**
The setupPtToMultiSNCWithCTP method sets up a composite point-to-
multipoint connection between non-connected CTPs in the atmSubnetwork.
*/

void setupPtToMultiSNCWithCTP
(in NameType atmSubnetName,
in string userLabel,
in OptRestorableType restorableType,
inout OptAdministrativeState adminState,
in AtmNetworkCTPID aNetworkCTP,
in boolean aTrailEndPointInd,
in AtmTrafficDescID aTozTrafficDescProfile,
in AtmTrafficDescID aIngressTrafficDescProfile,
in ZtpCompositeCtpList ztpCompositeCtpList,
in AtmRoutingProfileID routingProfile,
out AtmSNCID newSNC)
raises (NetMgmt::ObjectFailure,

NetMgmt::NotSupported,
NetMgmt::InvalidID,
NetMgmt::ItemNotFound);

/**
The setupPtToMultiSNCWithLinkTP method sets up a composite point-to-
multipoint connection between LinkEnds in the atmSubnetwork.
*/

void setupPtToMultiSNCWithLinkTP
(in NameType atmSubnetName,
in string userLabel,
in OptRestorableType restorableType,
inout OptAdministrativeState adminState,
in AtmLinkEndID aLinkTP,
inout VirtualID aVirtualID,
in boolean aTrailEndPointInd,
in AtmTrafficDescID aTozTrafficDescProfile,
in AtmTrafficDescID aIngressTrafficDescProfile,
inout ZtpCompositeLinkEndList ztpCompositeLinkEndList,
in AtmRoutingProfileID routingProfile,
out AtmSNCID newSNC,
out AtmNetworkCTPID aNetworkCTP,

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 72 ATM Forum Technical Committee

out AtmNetworkCTPID zNetworkCTP)
raises (NetMgmt::ObjectFailure,

NetMgmt::NotSupported,
NetMgmt::InvalidID,
NetMgmt::ItemNotFound);

/**
The addTpToMultiSNCWithCTP method adds an endpoint to a composite
point-to-multipoint connection in the atmSubnetwork.
*/

void addTpToMultiSNCWithCTP
(in NameType atmSubnetName,
in AtmSNCID modifiedSNC,
in AtmTrafficDescID aTozTrafficDescProfile,
in ZtpCompositeCtp ztpCompositeCtp,
in AtmRoutingProfileID routingProfile)
raises (NetMgmt::ObjectFailure,

NetMgmt::NotSupported,
NetMgmt::InvalidID,
NetMgmt::ItemNotFound);

/**
The addTpToMultiSNCWithLinkTP method adds an endpoint to a
composite point-to-multipoint connection in the atmSubnetwork.
*/

void addTpToMultiSNCWithLinkTP
(in NameType atmSubnetName,
in AtmSNCID modifiedSNC,
in AtmTrafficDescID aTozTrafficDescProfile,
inout ZtpCompositeLinkEnd ztpCompositeLinkEnd,
in AtmRoutingProfileID routingProfile,
out AtmNetworkCTPID zNetworkCTP)
raises (NetMgmt::ObjectFailure,

NetMgmt::NotSupported,
NetMgmt::InvalidID,
NetMgmt::ItemNotFound);

/**
The removeTpFromMultiSNC method removes a TP from a composite
point-to-multipoint connection in the atmSubnetwork.
*/

void removeTpFromMultiSNC
(in NameType atmSubnetName,
in AtmSNCID modifiedSNC,
in AtmNetworkCTPID ztpRemoved)
raises (NetMgmt::ObjectFailure,

NetMgmt::NotSupported,
NetMgmt::InvalidID,
NetMgmt::ItemNotFound);

/**
The releaseSNC method releases a point-to-point or a multipoint connection
between CTPs in the atmSubnetwork.
*/

void releaseSNC
(in NameType atmSubnetName,
in AtmSNCID connectionID)
raises (NetMgmt::ObjectFailure,

NetMgmt::NotSupported,
NetMgmt::InvalidID,
NetMgmt::ItemNotFound);

}; // interface AtmSubnetwork

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 73

/**

5.4.14 AtmNetworkAccessProfile
*/

interface AtmNetworkAccessProfile : NetMgmt::ManagedObject, NetMgmt::Portal
{

/**
Expect Creation by the EMS or by atmLND interface.

An atmNetworkAccessProfile contains information that describe the maximum
ingress and egress bandwidth, along with the range of VPI or VCI values that
are applied to the atmLink or atmLinkEnd object instances that point to it.

Notifications Supported
Managed Entity Creation: This notification is used to report the creation of
an instance of this managed entity.
*/

AtmNetworkAccessProfileAllAttr getAllAttrNetworkAccessProfile
(in NameType atmNetworkAccessProfileName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
This read/write attribute identifies the total aggregate ingress
bandwidth for a link or a linkTP (linkEnd or logicalLinkTP).
*/

long getTotalIngressBW
(in NameType atmNetworkAccessProfileName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setTotalIngressBW
(in NameType atmNetworkAccessProfileName,
in long totalIngressBW)
raises (NetMgmt::ObjectFailure, NetMgmt::OutOfRange,

NetMgmt::NotSupported);

/**
This read/write attribute identifies the total aggregate egress
bandwidth for a link or a linkTP (linkEnd or logicalLinkTP).
*/

long getTotalEgressBW
(in NameType atmNetworkAccessProfileName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setTotalEgressBW
(in NameType atmNetworkAccessProfileName,
in long totalEgressBW)
raises (NetMgmt::ObjectFailure, NetMgmt::OutOfRange,

NetMgmt::NotSupported);

/**
This read/write attribute identifies the maximum number of
concurrently active VC connections that a link or a linkTP (linkEnd
or logicalLinkTP) may support.
*/

long getMaxNumActiveVcConn
(in NameType atmNetworkAccessProfileName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void setMaxNumActiveVcConn
(in NameType atmNetworkAccessProfileName,
in long maxNumActiveVcConn)
raises (NetMgmt::ObjectFailure, NetMgmt::OutOfRange,

NetMgmt::NotSupported);

/**
This read/write attribute identifies the maximum number of
concurrently active VP connections that a link or a linkTP (linkEnd
or logicalLinkTP) may support.
*/

long getMaxNumActiveVpConn
(in NameType atmNetworkAccessProfileName)

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 74 ATM Forum Technical Committee

raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);
void setMaxNumActiveVpConn

(in NameType atmNetworkAccessProfileName,
in long maxNumActiveVpConn)
raises (NetMgmt::ObjectFailure, NetMgmt::OutOfRange,

NetMgmt::NotSupported);

/**
This read/write attribute describes the virtual ID range (VPIs) that
may be used for Connections associated with a link or LinkTP.
*/

VpiOrVciRange getVpiRange
(in NameType atmNetworkAccessProfileName)
raises (NetMgmt::ObjectFailure);

void setVpiRange
(in NameType atmNetworkAccessProfileName,
in VpiOrVciRange vpiRange)
raises (NetMgmt::ObjectFailure, NetMgmt::OutOfRange,

NetMgmt::NotSupported);

/**
This read/write attribute describes the virtual ID range (VCIs) that
may be used for Connections associated with a link or LinkTP.
*/

VpiOrVciRange getVciRange
(in NameType atmNetworkAccessProfileName)
raises (NetMgmt::ObjectFailure);

void setVciRange
(in NameType atmNetworkAccessProfileName,
in VpiOrVciRange vciRange)
raises (NetMgmt::ObjectFailure, NetMgmt::OutOfRange,

NetMgmt::NotSupported);

}; // interface AtmNetworkAccessProfile

interface AtmNetworkAccessProfileFactory : NetMgmt::ManagedObject
{

/**
Expect Creation by the EMS.

Used to create instances of ATM Network Access Profile.
*/

AtmNetworkAccessProfileFactoryID
getAtmNetworkAccessProfileFactoryID
()
raises (NetMgmt::ObjectFailure);
// returns the name of the object

/**
Create ATM Network Access Profile.
*/

AtmNetworkAccessProfileID makeAtmNetworkAccessProfile
(in NameType networkAccessProfileName,
in long totalIngressBW,
in long totalEgressBW,
in long maxNumActiveVcConn,
in long maxNumActiveVpConn,
in VpiOrVciRange vpiRange,
in VpiOrVciRange vciRange)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported,

NetMgmt::InvalidID);

}; // interface AtmNetworkAccessProfileFactory

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 75

/**

5.4.15 AtmTraficDesc
*/

interface AtmTrafficDesc : NetMgmt::ManagedObject, NetMgmt::Portal
{

/**
Expect Creation by the EMS or by Traffic Desc factory interface.

This interface supports ATM Forum TM 4.1.

The interface AtmTrafficDesc is uninstantiable.

An atmTrafficDescriptor provides a superclass for the category specific
traffic parameter subclasses.

Notifications Supported
Managed Entity Creation: This notification is used to report the creation of
an instance of this managed entity.

If profile name is provided,
*/

string getProfileName
(in NameType atmTrafficDescName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

ServiceCategory getServiceCategory
(in NameType atmTrafficDescName)
raises (NetMgmt::ObjectFailure);

ConformanceDefinition getConformanceDefinition
(in NameType atmTrafficDescName)
raises (NetMgmt::ObjectFailure);

}; // interface AtmTrafficDesc

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 76 ATM Forum Technical Committee

interface AtmTrafficDescABR : AtmTrafficDesc
{

/**
Expect Creation by the EMS or by Traffic Desc factory interface.
This interface supports ATM Forum TM 4.1.

An atmTrafficDescriptor contains information that describes the ingress and
egress Traffic descriptors for the ABR category.

Notifications Supported
Managed Entity Creation: This notification is used to report the creation of
an instance of this managed entity.
*/

AtmTrafficDescABRAllAttr getAllAttrABR
(in NameType atmABRTrafficDescName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

long getPeakCellRate
(in NameType atmTrafficDescName)
raises (NetMgmt::ObjectFailure);

// if policing is performed
long getCDVTolerancePCR

(in NameType atmTrafficDescName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

long getMinCellRate
(in NameType atmTrafficDescName) // ABR
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

long getInitialCellRate
(in NameType atmTrafficDescName) // ABR
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

long getTransientBufferExposure
(in NameType atmTrafficDescName) // ABR
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

RateChangeFactor getRateDecreaseFactor
(in NameType atmTrafficDescName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

RateChangeFactor getRateIncreaseFactor
(in NameType atmTrafficDescName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

long getFixedRoundTripTime
(in NameType atmTrafficDescName) // ABR
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

ABRNrm getABRNrm
(in NameType atmTrafficDescName) // ABR-optional
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

ABRTrm getABRTrm
(in NameType atmTrafficDescName) // ABR-optional
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

ABRCDF getABRCDF
(in NameType atmTrafficDescName) // ABR-optional
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

long getABRADTF
(in NameType atmTrafficDescName) // ABR-optional
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 77

}; // interface AtmTrafficDescABR

interface AtmTrafficDescCBR : AtmTrafficDesc
{

/**
Expect Creation by the EMS or by Traffic Desc factory interface
This interface supports ATM Forum TM 4.1

An atmTrafficDescriptor contains information that describes the ingress and
egress Traffic descriptors for the CBR category.

Notifications Supported
Managed Entity Creation: This notification is used to report the creation of
an instance of this managed entity.
*/

AtmTrafficDescCBRAllAttr getAllAttrCBR
(in NameType atmCBRTrafficDescName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

long getPeakCellRate
(in NameType atmTrafficDescName)
raises (NetMgmt::ObjectFailure);

long getCLR
(in NameType atmTrafficDescName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

// if policing is performed
long getCDVTolerancePCR

(in NameType atmTrafficDescName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

}; // interface AtmTrafficDescCBR

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 78 ATM Forum Technical Committee

interface AtmTrafficDescVBR : AtmTrafficDesc
{

/**
Expect Creation by the EMS or by Traffic Desc factory interface.
This interface supports ATM Forum TM 4.1.

An atmTrafficDescriptor contains information that describes the ingress and
egress Traffic descriptors for the VBR category.

Notifications Supported
Managed Entity Creation: This notification is used to report the creation of
an instance of this managed entity.
*/

AtmTrafficDescVBRAllAttr getAllAttrVBR
(in NameType atmVBRTrafficDescName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

long getPeakCellRate
(in NameType atmTrafficDescName)
raises (NetMgmt::ObjectFailure);

long getCLR
(in NameType atmTrafficDescName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

long getSustainableCellRate
(in NameType atmTrafficDescName) // VBR
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

long getMaxBurstSize
(in NameType atmTrafficDescName) // VBR
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
if policing is performed
*/

long getCDVTolerancePCR
(in NameType atmTrafficDescName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

/**
if policing is performed and If I.371 is supported
*/

long getCDVToleranceSCR
(in NameType atmTrafficDescName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

}; // interface AtmTrafficDescVBR

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 79

interface AtmTrafficDescUBR : AtmTrafficDesc
{

/**
Expect Creation by the EMS or by Traffic Desc factory interface.
This interface supports ATM Forum TM 4.1.

An atmTrafficDescriptor contains information that describes the ingress and
egress Traffic descriptors for the UBR category.

Notifications Supported
Managed Entity Creation: This notification is used to report the creation of
an instance of this managed entity.
*/

AtmTrafficDescUBRAllAttr getAllAttrUBR
(in NameType atmUBRTrafficDescName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

long getPeakCellRate
(in NameType atmTrafficDescName)
raises (NetMgmt::ObjectFailure);

// if policing is performed
long getCDVTolerancePCR

(in NameType atmTrafficDescName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

}; // interface AtmTrafficDescUBR

interface AtmTrafficDescGFR : AtmTrafficDesc
{

/**
Expect creation by the EMS or by TrafficDescFactory interface.
This interface supports ATM Forum TM 4.1.

An atmTrafficDescriptor contains information that describes the ingress and egress traffic
descriptors for the GFR category.

Notifications Supported
Managed Entity Creation: This notification is used to report the creation of an instance of
this managed entity.
*/

AtmTrafficDescGFRAllAttr getAllAttrGFR
(in NameType atmGFR1TrafficDescName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

long getPeakCellRate
(in NameType atmTrafficDescName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

long getCDVTolerancePCR //if policing is performed
(in NameType atmTrafficDescName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

long getMaxFrameSize
(in NameType atmTraficDescName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

long getMinCellRate
(in NameType atmTraficDescName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

long getMaxBurstSize
(in NameType atmTraficDescName)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 80 ATM Forum Technical Committee

}; // interface AtmTrafficDescGFR

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 81

interface AtmTrafficDescFactory : NetMgmt::ManagedObject
{

/**
Expect Creation by the EMS.

Used to create instances of ATM Traffic Desc.
*/

AtmTrafficDescFactoryID getTrafficDescFactoryID
()
raises (NetMgmt::ObjectFailure);
// returns the name of the object

/**
Create UBR ATM Traffic Descriptor.
*/

AtmTrafficDescID makeUBRAtmTrafficDesc
(in MOID containerObject,
in string profileName,
in ServiceCategory serviceCategory,
in ConformanceDefinition conformanceDefinition,
in long peakCellRate,
in long cDVTolerancePCR)
raises (NetMgmt::ObjectFailure,

NetMgmt::NotSupported,
NetMgmt::OutOfRange,
NetMgmt::ItemNotFound);

/**
Create CBR ATM Traffic Descriptor.
*/

AtmTrafficDescID makeCBRAtmTrafficDesc
(in MOID containerObject,
in string profileName,
in ServiceCategory serviceCategory,
in ConformanceDefinition conformanceDefinition,
in long peakCellRate,
in long cDVTolerancePCR,
in long cLR)
raises (NetMgmt::ObjectFailure,

NetMgmt::NotSupported,
NetMgmt::OutOfRange,
NetMgmt::ItemNotFound);

/**
Create VBR ATM Traffic Descriptor.
*/

AtmTrafficDescID makeVBRAtmTrafficDesc
(in MOID containerObject,
in string profileName,
in ServiceCategory serviceCategory,
in ConformanceDefinition conformanceDefinition,
in long peakCellRate,
in long cDVTolerancePCR,
in long cDVToleranceSCR,

// negative if I.371 not supported
in long cLR,
in long sustainableCellRate,
in long maxBurstSize)
raises (NetMgmt::ObjectFailure,

NetMgmt::NotSupported,
NetMgmt::OutOfRange,
NetMgmt::ItemNotFound);

/**
Create ABR ATM Traffic Descriptor.
*/

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 82 ATM Forum Technical Committee

AtmTrafficDescID makeABRAtmTrafficDesc
(in MOID containerObject,
in string profileName,
in ServiceCategory serviceCategory,
in ConformanceDefinition conformanceDefinition,
in long peakCellRate,
in long cDVTolerancePCR,
in long minCellRate,
in long initialCellRate,
in long transientBufferExposure,
in RateChangeFactor rateDecreaseFactor,
in RateChangeFactor rateIncreaseFactor,
in long fixedRoundTripTime,
in ABRNrm aBRNrm,
in ABRTrm aBRTrm,
in ABRCDF aBRCDF,
in long aBRADTF) // ZERO if not supported
raises (NetMgmt::ObjectFailure,

NetMgmt::NotSupported,
NetMgmt::OutOfRange,
NetMgmt::ItemNotFound);

/**
Create GFR ATM Traffic Descriptor.
*/

AtmTrafficDescID makeGBRAtmTrafficDesc
(in MOID containerObject,
in string profileName,
in ServiceCategory serviceCategory,
in ConformanceDefinition conformanceDefinition,
in long peakCellRate,
in long cDVTolerancePCR,
in long maxFrameSize,
in long minCellRate, //for CLP=0
in long maxBurstSize,
in GFR1or2 gFR1or2)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported,

NetMgmt::OutOfRange, NetMgmt::ItemNotFound);

}; // interface AtmTrafficDescFactory

/**

5.4.16 Latest Occurrence Log
*/

interface LatestOccurrenceLog : NetMgmt::ManagedObject
{

void getAdminState
(out AdministrativeState adminState)
raises (NetMgmt::ObjectFailure);

void setAdminState
(in AdministrativeState adminState)
raises (NetMgmt::ObjectFailure);

void getLinkEndEntries
(in AtmLinkEndID linkEndID,
out LatestOccLogList latestOccLogList)
raises (NetMgmt::ObjectFailure, NetMgmt::ItemNotFound);

}; // interface LatestOccurrenceLog

/**

5.4.17 Network
*/

interface Network : NetMgmt::ManagedObject
{

/**
Network can be used to contain other objects.

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 83

Expect creation by the EMS.
Deletion of Network by a client is not allowed.
*/

}; // interface Network

/**

5.5 Module ATMF_M4NW_PM

This module defines the interfaces for supporting Performance Management (PM) for ATM.
Further discussion of PM-related managed entities and attributes is provided in Sections
3.17, 3.18, 3.26, 3.26. 3.41, 3.42, 3.90, 3.91 and 3.92 of Reference [2]. All of the
performance management aspects for module atmf_m4nw are grouped into this subordinate module,
atmf_m4nw_pm. Module atmf_m4nw_pm draws upon the technology independent performance
management module corba_pm and adds extensions that are specific to ATM.
*/

#ifndef _atmf_m4nw_pm_idl_
#define _atmf_m4nw_pm_idl_

#include "corba_pm.idl"

module atmf_m4nw_pm
{
const string moduleName = "atmf_m4nw_pm";

/**
IMPORTS

Types imported from corba_pm
*/

typedef corba_pm::PerfParameter PerfParameter;
typedef corba_pm::PerfDataSet PerfDataSet;

/**
Interfaces imported from corba_pm are CurrentData, CurrentDataFactory,
CurrentPMBulkDataIterator, HistoryData, HistoryPMBulkDataIterator, ThresholdData,
ThresholdBulkDataIterator, PMBulkOperations, and PerformanceDataFileGenerator.

FORWARD DECLARATIONS
*/

interface CellProtocolMonCurrentData;
interface AtmTrafficLoadCurrentData;
interface CongDiscardCurrentData;
interface TcAdaptProtMonCurrentData;
interface UpcNpcDisagreementsCurrentData;
interface PmOamCurrentData;
interface AtmCurrentDataFactory;
interface AtmPMBulkOperations;
interface AtmCurrentPMBulkDataIterator;
interface CellProtocolMonHistoryData;
interface AtmTrafficLoadHistoryData;
interface CongDiscardHistoryData;
interface TcAdaptProtMonHistoryData;
interface UpcNpcDisagreementsHistoryData;
interface PmOamHistoryData;
interface AtmHistoryPMBulkDataIterator;
interface AtmThresholdData;
interface AtmThresholdPMBulkDataIterator;
interface AtmPerformanceDataFileGenerator;

/**
Type Definitions

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 84 ATM Forum Technical Committee

ATM Performance Data Set (PerfDataSet) Values
*/

const short cellProtMon = 1; // Cell Protocol Monitoring
const short trafLoad = 2; // Traffic Load
const short congDiscard = 3; // Congestion Discards
const short tcAdaptProtMon = 4; // TC Adaptor Protocol Monitoring
const short UpcNpcDisagreements = 5; // UPC and NPC Disagreements
const short PmOam = 6; // PM OAM Cell Monitoring

/**
ATM Performance Counter (PerfParameter) Values

cellProtMon counters
*/

const short numberDiscCellsProtErr = 1;
 // Count of cells discarded due to protocol errors; thresholded count

const short numberRecvOAMCells = 2;
 // Count of the number of received OAM Cells

/**
trafLoad counters
*/

const short numberCellsRecvd = 3; // Number of cells received

const short numberCellsTrnsd = 4; // Number of cells transmitted

/**
congDiscard counters
*/

const short numberCellsDiscCong = 5;
 // Count of cells discarded due to congestion; thresholded count

const short numberCLP0CellsDisc = 6;
 // Count of high prioritycells discarded due to congestion; thresholded count

/**
tcAdaptProtMon counters
*/

const short numberDiscCellsHECViolat = 7;
 // Count of cells discarded due to HEC Violations; thresholded count

/**
UpcNpcDisagreements counters
*/

const short numberDiscardUpcNpcCells = 8;
 // Number of cells discarded due to policing (UPC/NPC); thresholded count

const short numberSuccessfullyPassedUpcNpcCells = 9;
 // Number of cells marked by UPC/NPC that are passed

const short numberDiscardCLP0UpcNpcCells = 10;
 // Number of CLP=0 cells discarded due to policing; thresholded count

const short numberSuccessfullyPassedCLP0UpcNpcCells = 11;
 // Number of CLP=0 cells marked by UPC/NPC that are passed

/**
PmOam counters
*/

const short numberPmOamLostCells = 12; // Lost cells measured by PM OAM

const short numberPmOamMisinsertedCells = 13;
 // Misinserted cells measured by PM OAM

const short numberPmOamUserCells = 14; // User cells measured by PM OAM

const short numberPmOamFarEndLostCells = 15;

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 85

 // Far-End Lost cells measured by PM OAM

const short numberPmOamFarEndMisinsertedCells = 16;
 // Far End Misinserted cells measured by PM OAM

const short numberPmOamFarEndUserCells = 17;
 // Far End User cells measured by PM OAM

/**
Interfaces and Methods

All of the interfaces in this submodule use only the methods inherited from the
interfaces imported from module corba_pm. Such methods are used together with
the ATM-specific values of PerfDataSet and PerfParameter, which were defined earlier
in this module. These interfaces do not define any additional methods.

CURRENT DATA INTERFACES
*/

interface CellProtocolMonCurrentData : corba_pm::CurrentData
{

/**
Retrieves attributes or current counter values for counters within the cellProtMon grouping,
namely, numberDiscCellsProtErr and numberRecvOAMCells, as indicated by the
appropriate values of PerfDataSet and PerfParameter. Additional inherited methods are
provide for the setting of AdministrativeState, associating threshold data with a
current data instance, resetting counters, activating or deactivating the suppression
of counters having all-zero counts, and activating or deactivating history retention.

A Threshold Crossing Alert is used to notify the management system when any of the
performance parameters exceeds a pre-set threshold described in the associated
ThresholdData object. See the CurrentData interface for a description of the
information supplied in this Threshold Crossing Alert. Similar considerations apply
to the following interfaces.

The containment relationship between an AtmLinkEnd and its associated
CellProtocolMonCurrentData object can be represented in the CORBA Naming
Service, or it may be expressed in the ID of the name component (as
suggested in Appendix D), or it may be found using methods inherited from
interface Portal. Similar considerations apply to the following interfaces.
*/

}; // interface CellProtocolMonCurrentData

interface AtmTrafficLoadCurrentData : corba_pm::CurrentData
{

/**
Retrieves attributes or counter values for counters within the trafLoad grouping,
namely, numberCellsRecvd and numberCellsTrnsd, as indicated by the appropriate values of
PerfDataSet and PerfParameter. Additional inherited methods are provide for supporting
operations as described earlier for CellProtocolMonCurrentData.

The containment relationship between an AtmLinkEnd or AtmNetworkCTP and the associated
AtmTrafficLoadCurrentData object can be represented in the CORBA Naming Service, or it may be
expressed in the ID of the name component (as suggested in Appendix D), or it may be found
using methods inherited from interface Portal.
*/

}; // interface AtmTrafficLoadCurrentData

interface CongDiscardCurrentData : corba_pm::CurrentData
{

/**
Retrieves attributes or current counter values for counters within the congDiscard grouping,
namely, numberCellsDiscCong and numberCLP0CellsDisc, as indicated by the
appropriate values of PerfDataSet and PerfParameter.

The containment relationship between an AtmLinkEnd and its associated CongDiscardCurrentData
object can be represented in the CORBA Naming Service, or it may be expressed in the ID of

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 86 ATM Forum Technical Committee

the name component (as suggested in Appendix D), or it may be found using methods inherited
from interface Portal.
*/

}; // interface CongDiscardCurrentData

interface TcAdaptProtMonCurrentData : corba_pm::CurrentData
{

/**
Retrieves attributes or current counter values for counters within the tcAdaptProtMon
grouping, namely, numberDiscCellsHECViolat, as indicated by the appropriate values of
PerfDataSet and PerfParameter. Additional inherited methods are provide for supporting
operations as described earlier for CellProtocolMonCurrentData.

The containment relationship between an AtmLinkEnd and its associated
TcAdaptProtMonCurrentData object can be represented in the CORBA Naming Service, or it may be
expressed in the ID of the name component (as suggested in Appendix D), or it may be found
using methods inherited from interface Portal.
*/
 }; // interface TcAdaptProtMonCurrentData

interface UpcNpcDisagreementsCurrentData : corba_pm::CurrentData
{

/**
Retrieves attributes or current counter values for counters within the UpcNpcDisagreements
grouping, namely, numberCellsDiscCong, numberSuccessfullyPassedUpcNpcCells,
numberDiscardCLP0UpcNpcCells, and numberSuccessfullyPassedCLP0UpcNpcCells, as indicated by
the appropriate values of PerfDataSet and PerfParameter. Additional inherited methods are
provide for supporting operations as described earlier for CellProtocolMonCurrentData.

The containment relationship between an AtmLinkEnd and its associated
UpcNpcDisagreementsCurrentData object can be represented in the CORBA Naming Service, or it
may be expressed in the ID of the name component (as suggested in Appendix D), or it may be
found using methods inherited from interface Portal.
*/

}; // interface UpcNpcDisagreementsCurrentData

interface PmOamCurrentData : CORBA_PM::CurrentData
{

/**
Retrieves attributes or current counter values for counters within the PmOam grouping,
namely, numberPmOamLostCells, numberPmOamMisinsertedCells, numberPmOamUserCells,
numberPmOamFarEndLostCells, numberPmOamFarEndMisinsertedCells and numberPmOamFarEndUserCells,
as indicated by the appropriate values of PerfDataSet and PerfParameter. Additional
inherited methods are provide for supporting operations as described earlier for
CellProtocolMonCurrentData.

The containment relationship between an AtmLinkEnd and its associated PmOamCurrentData object
can be represented in the CORBA Naming Service, or it may be expressed in the ID of the name
component (as suggested in Appendix D), or it may be found using methods inherited from
interface Portal.
*/

}; // interface PmOamCurrentData

interface AtmCurrentDataFactory : corba_pm::CurrentDataFactory
{

/**
Expect creation by EMS. Used to create specific instances of interfaces inheriting from
corba_pm::CurrentData.
*/

}; // interface AtmCurrentDataFactory

interface AtmPMBulkOperations : corba_pm::PMBulkOperations
{

/**
Provides a method for retrieving in bulk all current data of the types indicated by
the appropriate values of PerfDataSet and PerfParameter, and having a containment

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 87

relation with the objects identified by MOIDList. For specific examples of such performance
parameter types and their containment relationships, see previous comments under CURRENT DATA
INTERFACES.

Under this same interface, a second method is provided for retrieving in bulk all history
data of the types indicated by the appropriate values of PerfDataSet and PerfParameter, and
having a containment relation with the objects identified by MOIDList. For specific examples
of such performance parameter types and their containment relationships, see following
comments under HISTORY DATA INTERFACES.

Under this same interface, additional methods are provided that provide for the bulk
retrieval of ThresholdDataIDs, for the retrieval of PerfThresholdDataList (a list of
threshold instances complete with threshold data values), and for the bulk setting of
ThresholdData values.
*/

}; // interface AtmPMBulkOperations

interface AtmCurrentPMBulkDataIterator : corba_pm::CurrentPMBulkDataIterator
{

/**
Used to support the method under AtmPMBulkOperations for the bulk retrieval of
current data.

}; // interface AtmCurrentPMBulkDataIterator

/**
HISTORY DATA INTERFACES
/*

interface CellProtocolMonHistoryData : corba_pm::HistoryData
{

/**
Retrieves attributes or counter values for NumberDiscCellsProtErr and NumberRecvOAMCells, as
indicated by the appropriate values of PerfParameter.
Contains counter values for counters within the cellProtMon grouping, namely,
numberDiscCellsProtErr and numberRecvOAMCells, as indicated by the appropriate values of
PerfDataSet and PerfParameter. The relevant time period is defined by PeriodStartTime and
PeriodEndTime.

The containment relationship between an AtmLinkEnd and its associated
CellProtocolMonHistoryData object can be represented in the CORBA Naming
Service, or it may be expressed in the ID of the name component (as suggested in Appendix D),
or it may be found using methods inherited from interface Portal. Similar considerations
apply to the following interfaces.
*/

}; // interface CellProtocolMonHistoryData

interface AtmTrafficLoadHistoryData : corba_pm::HistoryData
{

/**
Retrieves attributes or counter values for counters within the trafLoad grouping, namely,
numberCellsRecvd and numberCellsTrnsd, as indicated by the appropriate values of PerfDataSet
and PerfParameter.
The relevant time period is defined by PeriodStartTime and PeriodEndTime.

The containment relationship between an AtmLinkEnd or AtmNetworkCTP and the associated
AtmTrafficLoadHistoryData object can be represented in the CORBA Naming Service, or it may be
expressed in the ID of the name component (as suggested in Appendix D), or it may be found
using methods inherited from interface Portal.
*/

}; // interface AtmTrafficLoadHistoryData

interface CongDiscardHistoryData : corba_pm::HistoryData
{

/*
Retrieves attributes or counter values for counters within the congDiscard grouping,
namely, numberCellsDiscCong and numberCLP0CellsDisc, as indicated by the appropriate values
of PerfDataSet and PerfParameter.
The relevant time period is defined by PeriodStartTime and PeriodEndTime.

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 88 ATM Forum Technical Committee

The containment relationship between an AtmLinkEnd and its associated CongDiscardHistoryData
object can be represented in the CORBA Naming Service, or it may be expressed in the ID of
the name component (as suggested in Appendix D), or it may be found using methods inherited
from interface Portal.
*/

}; // interface CongDiscardHistoryData

interface TcAdaptProtMonHistoryData : corba_pm::HistoryData
{

/**
Retrieves attributes or counter values for counters within the tcAdaptProtMon grouping,
namely, numberDiscCellsHECViolat, as indicated by the appropriate values of PerfDataSet and
PerfParameter.
The relevant time period is defined by PeriodStartTime and PeriodEndTime.

The containment relationship between an AtmLinkEnd and its associated
TcAdaptProtMonHistoryData object can be represented in the CORBA Naming Service, or it may be
expressed in the ID of the name component (as suggested in Appendix D), or it may be found
using methods inherited from interface Portal.
*/

}; // interface TcAdaptProtMonHistoryData

interface UpcNpcDisagreementsHistoryData : corba_pm::HistoryData
{

/**
Retrieves attributes or counter values for counters within the UpcNpcDisagreements grouping,
namely, numberCellsDiscCong, numberSuccessfullyPassedUpcNpcCells,
numberDiscardCLP0UpcNpcCells, and numberSuccessfullyPassedCLP0UpcNpcCells,
as indicated by the appropriate values of PerfDataSet and PerfParameter.
The relevant time period is defined by PeriodStartTime and PeriodEndTime.

The containment relationship between an AtmLinkEnd and its associated
UpcNpcDisagreementsHistoryData object can be represented in the CORBA Naming
Service, or it may be expressed in the ID of the name component (as suggested in Appendix D),
or it may be found using methods inherited from interface Portal.
*/

}; // interface UpcNpcDisagreementsHistoryData

interface PmOamHistoryData : corba_pm::HistoryData
{

/**
Retrieves attributes or counter values for counters within the PmOam grouping, namely,
numberPmOamLostCells, numberPmOamMisinsertedCells, numberPmOamUserCells,
numberPmOamFarEndLostCells, numberPmOamFarEndMisinsertedCells and numberPmOamFarEndUserCells,
as indicated by the appropriate values of PerfDataSet and PerfParameter.
The relevant time period is defined by PeriodStartTime and PeriodEndTime.

The containment relationship between an AtmLinkEnd and its associated PmOamHistoryData object
can be represented in the CORBA Naming Service, or it may be expressed in the ID of the name
component (as suggested in Appendix D), or it may be found using methods inherited from
interface Portal.
*/

}; // interface PmOamHistoryData

/**
Note that the interface AtmCurrentDataFactory includes provision for generating a
HistoryDataIDList at the same time that the corresponding CurrentDataIDList is generated.
Therefore no separate interface for a HistoryDataFactory is provided.
*/

interface AtmHistoryPMBulkDataIterator : corba_pm::HistoryPMBulkDataIterator
{

/**
Used to support the method under AtmPMBulkOperations for the bulk retrieval of history
data. A previous comment under CURRENT DATA has already discussed this method.
*/

}; // interface AtmHistoryPMBulkDataIterator

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 89

/**
ADDITIONAL INTERFACES
*/

interface AtmThresholdData : corba_pm::ThresholdData
{

/**
Provides methods for retrieving and for setting ThresholdData values.
*/

}; // interface AtmThresholdData

interface AtmThresholdPMBulkDataIterator : corba_pm::ThresholdPMBulkDataIterator
{

/**
Used to support methods under AtmPMBulkOperations for the bulk retrieval and the bulk setting
of ThresholdData. A previous comment under CURRENT DATA has already discussed these methods.
*/

}; // interface AtmThresholdPMBulkDataIterator

interface AtmPerformanceDataFileGenerator :
corba_pm::PerformanceDataFileGenerator

{
/**
Provides a method for initiating the generation of a bulk file at the server. The name of
this bulk file is returned to the client, while the bulk file itself can be returned by other
means that may not directly use a CORBA interface.
*/

}; // interface AtmPerformanceDataFileGenerator

}; // end of module atmf_m4nw_pm
#endif // _atmf_m4nw_pm_idl_

}; // end of module atmf_m4nw
#endif // _atmf_m4nw_idl_

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 90 ATM Forum Technical Committee

/**

5.6 Module CORBA_PM
This is a peer module to the module atmf_m4nw. It provides technology independent interfaces
for Performance Management (PM).

This IDL code is intended to be stored in a file named "corba_pm.idl" located in the search
path of your IDL compiler.
*/

#ifndef _corba_pm_idl_
#define _corba_pm_idl_
#include "NetMgmt.idl"

module corba_pm
{
const string moduleName = "corba_pm";

/**
IMPORTS

Types imported from NetMgmt
*/

typedef NetMgmt::MOID MOID;
typedef NetMgmt::MOIDList MOIDList;
typedef NetMgmt::Name Name;
typedef NetMgmt::AdministrativeState AdministrativeState;
typedef NetMgmt::OperationalState OperationalState;
typedef NetMgmt::UID UID;
typedef NetMgmt::GeneralizedTime GeneralizedTime;
typedef NetMgmt::ObjectClass ObjectClass;

/**
Exceptions imported from NetMgmt are DuplicateItem, Duplicatename, ItemNotFound, InvalidID,
NotSupported, ObjectFailure, and MaxMonitorPointsExceeded.

The MaxMonitorPointsExceeded exception indicates that the request could not be serviced
because it exceeded the server's capacity in terms of the maximum number of points that
the server (or its underlying NEs) can simultaneously monitor.

Interfaces imported from NetMgmt are ManagedObject, ManagedObjectFactory, Portal, and NameIterator.

FORWARD DECLARATIONS
*/

interface CurrentData;
interface CurrentDataFactory;
interface CurrentPMBulkDataIterator;
interface HistoryData;
interface HistoryPMBulkDataIterator;
interface ThresholdData;
interface ThresholdPMBulkDataIterator;
interface PMBulkOperations;
interface PerformanceDataFileGenerator;

/**
Type Definitions
*/

typedef unsigned long CounterValue; // Actual counter value
typedef unsigned long ThresholdValue; // Value of threshold
typedef GeneralizedTime ElapsedTime; // Elapsed time of an interval
typedef GeneralizedTime PeriodStartTime; // Start time of an interval
typedef GeneralizedTime PeriodEndTime; // Ending time of an interval
typedef short NumIntervals; // Number of intervals

/**
A UID is a structure that contains a module name and a constant

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 91

value used here to indicate either:
the type of a performance parameter (PerfParameter);
or the type of a grouping of performance parameters (PerfDataSet).
*/

typedef UID PerfParameter;
// The UID representing the type of performance parameter

typedef UID PerfDataSet;
// The UID representing the type of a grouping of performance parameters

typedef sequence<PerfDataSet> PerfDataSetList;
// A list of performance parameter groupings

typedef string FileName; // A file name

/**
PM Parameter Definitions
*/

enum SuspectFlag // Indicates that counters are either reliable or unreliable
{

 reliable, // reliable for the interval
 unreliable // unreliable for the interval

};

enum GranularityPeriod // The period over which PM measurements are aggregated
{

 fifteenMinutes,
 twentyFourHours

};

enum RetrievalType // For bulk retrieval, indicates how intervals should be retrieved
 {
 all, // All intervals should be retrieved
 mostRecent, // Only most recent interval should be retrieved
 between

// Intervals between a specified start time and ending time should be retrieved
};

/**
PM ID Structures

These structs facilitate grain-neutral operation per this document's Section 1.3
in a generic (technology independent) setting.
*/

struct CurrentDataID
{

 NameType name;
 CurrentData ref;

};

typedef sequence<CurrentDataID> CurrentDataIDList;

struct HistoryDataID
{

 NameType name;
 HistoryData ref;

};

typedef sequence<HistoryDataID> HistoryDataIDList;

struct ThresholdDataID
{

 NameType name;
 ThresholdData ref;

};

typedef sequence<ThresholdDataID> ThresholdDataIDList;

/**
PM Data Structures

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 92 ATM Forum Technical Committee

*/
struct PerfCounter
{

 PerfParameter perfParameter; // type of PM parameter
 CounterValue counterValue; // actual counter value

};

typedef sequence<PerfCounter> PerfCounterList; // list of PM counters

struct PerfThreshold
{

 PerfParameter perfParameter; // type of PM parameter
 ThresholdValue thresholdValue; // threshold value

};

typedef sequence<PerfThreshold> PerfThresholdList; // list of thresholds

struct ThresholdBulkData
{

 ThresholdDataID tDataId; // ID of threshold instance
 PerfThresholdList tData; // list of thresholds

};

typedef sequence<ThresholdBulkData> ThresholdBulkDataList;
// List of threshold instances complete with threshold data

struct CurrentDataAttributes // The attributes of a current data instance
{

 CurrentDataID cDataId; // ID of instance
 AdministrativeState adminState; // administrative state
 OperationalState operState; // operational state
 GranularityPeriod granPeriod; // granularity period
 ThresholdDataID threshId; // associated threshold data
 boolean historyRetention;

// historyRetention indicates that history data will be retained
 boolean suppressionIndicator;
/**
suppressionIndicator "true" indicates that intervals with counter value of all zeros will be
suppressed.
*/

};

struct CurrentIntervalData
{

 SuspectFlag suspect;
// The suspect flag indicates that the counters within the interval are not reliable.

 PeriodStartTime startTime; // Start time of period
 ElapsedTime elapsedTime; // Elapsed time of period
 PerfCounterList perfCounterList;

// The perfCounterList is a list of performance counter types and associated values.
};

struct CurrentPMBulkData
{

 CurrentDataAttributes cDataAttributes;
 CurrentIntervalData cData;

};
/**
CurrentPMBulkData provides information about a current data instance
along with its associated counter types and values
*/

typedef sequence<CurrentPMBulkData> CurrentPMBulkDataList;
/**
CurrentPMBulkDataList provides information about a number of current data instances.
It is used for bulk retrieval of current data information.
*/

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 93

struct HistoryDataAttributes // The attributes of a history data instance
{

 HistoryDataID hDataId; // ID of instance
 GranularityPeriod granPeriod; // granularity period

};

struct HistoryIntervalData
{

 SuspectFlag suspect;
// The suspect flag indicates that the counters within the interval are not reliable.

 PeriodStartTime startTime; // Start time of period
 PeriodEndTime endTime; // Ending time of period
 NumIntervals numPrevSuppressedIntervals;

// The number of prior intervals suppressed due to zero count suppression.
 PerfCounterList perfCounterList;

// List of performance counter types and associated values
};

typedef sequence<HistoryIntervalData> HistoryIntervalDataList;
/**
The HistoryIntervalDataList provides information about a number of collection intervals
for a history data instance, including the associated counter values.
*/

struct HistoryPMBulkData
{

 HistoryDataAttributes hDataAttributes;
 HistoryIntervalDataList hIntervalData;

};
/**
HistoryPMBulkData provides information about a history data instance
along with its associated counter types and values
*/

typedef sequence<HistoryPMBulkData> HistoryPMBulkDataList;
/**
The HistoryPMBulkDataList provides information about a number of history data instances.
It is used for bulk retrieval of history data information.
A number of intervals may be represented for each history data instance.

INTERFACES

CurrentData interface
*/

interface CurrentData : NetMgmt::ManagedObject, NetMgmt::Portal
{

/**
The interface CurrentData is uninstantiable. Specific interfaces can inherit methods from
the interface CurrentData.

A threshold crossing alert is used to notify the management system when any of the
performance parameters exceeds a pre-set threshold described in the associated ThresholdData
object. The following information shall be supplied in the Threshold Crossing Alert:
 - The ID of the object reporting the threshold crossing alert (where the ID is the
 (name, ref) pair used for the grain-neutral approach).
 - The type of performance parameter that exceeded the threshold is identified by
 PerfParameter.
*/

 void setAdministrativeState
// sets the Administrative state for a current data instance

(in CurrentDataID cDataId,
in AdministrativeState adminState)
raises (NetMgmt::ObjectFailure, NetMgmt::InvalidID);

 void setThresholdDataID
// associates threshold data with a current data instance

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 94 ATM Forum Technical Committee

(in CurrentDataID cDataId,
in ThresholdDataID threshDataId)
raises (NetMgmt::ObjectFailure, NetMgmt::ItemNotFound,

NetMgmt::InvalidID);

 void resetCounters
// resets the counter values to Zero for a current data instance

(in CurrentDataID cDataid)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported,

NetMgmt::InvalidID);

 void setSuppressionIndicator
// activates or deactivates suppression for a current data instance

(in CurrentDataID cDataid,
in boolean suppressionIndicator)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported,

NetMgmt::InvalidID);

void setHistoryRetention
// activates or deactivates history retention for a current data instance

(in CurrentDataID cDataId,
in boolean retainHistory,
out HistoryDataID hDataId)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported,

NetMgmt::InvalidID);

 void getCurrentDataAttributes
// retrieve attributes for a current data instance

(in CurrentDataID cDataId,
out CurrentDataAttributes cDataAttributes)
raises (NetMgmt::ObjectFailure, NetMgmt::InvalidID);

 void getCurrentIntervalData
// retrieve counter values for a current data instance

(in CurrentDataID cDataId,
out CurrentIntervalData cData)
raises (NetMgmt::ObjectFailure, NetMgmt::ItemNotFound);

}; // interface CurrentData

/**
CurrentDataFactory interface
*/

interface CurrentDataFactory : NetMgmt::ManagedObject
{

/**
Expect creation by the EMS.
Used to create specific instances inheriting from CurrentData.
There should be only a single instance of this object per management system.
*/

 void makeSpecificCurrentData
(in MOID monitoredObject,

// ID of the monitored object
 in PerfDataSetList cDataTypes,

// the PM data sets to be monitored for the monitored object
in boolean historyRetention,

// indicates whether history data will be retained
in GranularityPeriod granPeriod,
out CurrentDataIDList cDataIdList,
out HistoryDataIDList hDataIdList)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported,

NetMgmt::InvalidID, NetMgmt::MaxMonitorPointsExceeded);
}; // interface CurrentDataFactory

/**
HistoryData interface
This interface is uninstantiable.

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 95

*/
interface HistoryData : NetMgmt::ManagedObject, NetMgmt::Portal
{

 void getHistoryDataAttributes
// retrieve attributes for a history data instance

(in HistoryDataID hDataId,
out HistoryDataAttributes hDataAttributes)
raises (NetMgmt::ObjectFailure, NetMgmt::InvalidID);

 void getHistoryIntervalData
// retrieve history interval information for a history data instance

(in HistoryDataID hDataId,
in PeriodStartTime periodStartTime,

 // no value implies the earliest available time
in PeriodEndTime periodEndTime,

 // no value implies the latest available time
in RetrievalType retrievalType,

/**
The RetrievalType indicates:

all – all intervals should be retrieved,
mostRecent – only the most recent interval should be retrieved, or
between – intervals between the specified period start time and period end time

 should be retrieved.
*/

out HistoryIntervalDataList hData)
raises (NetMgmt::ObjectFailure, NetMgmt::ItemNotFound);

}; // interface HistoryData

/**
ThresholdData interface
*/

interface ThresholdData : NetMgmt::ManagedObject, NetMgmt::Portal
{

/**
Expect creation by the EMS.
*/
 void getThresholdData // retrieve attributes for a threshold data instance

(in ThresholdDataID tDataId,
out PerfThresholdList tData)
raises (NetMgmt::ObjectFailure);

 void setThresholdData // set attributes for a threshold data instance
(in ThresholdDataID tDataId,
in PerfThresholdList tData)
raises (NetMgmt::ObjectFailure);

}; // interface ThresholdData

/**
PM Bulk Data Iterator interfaces
*/

interface CurrentPMBulkDataIterator : NetMgmt::ManagedObject
{

/**
Created as a result of a bulk retrieval operation for current data.
Retrieves next chunk of information for a current data iterator.
Returns boolean "false" when there is no further data to send.
*/
 boolean nextN

(in unsigned long howMany,
 out CurrentPMBulkDataList cBulkData);

}; // interface CurrentPMBulkDataIterator

interface HistoryPMBulkDataIterator : NetMgmt::ManagedObject
{

/**

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 96 ATM Forum Technical Committee

Created as a result of a bulk retrieval operation for history data.
Retrieves next chunk of information for a history data iterator.
Returns boolean "false" when there is no further data to send.
*/
 boolean nextN

(in unsigned long howMany,
 out HistoryPMBulkDataList hBulkData);

}; // interface HistoryPMBulkDataIterator

interface ThresholdPMBulkDataIterator : NetMgmt::ManagedObject
{

/**
Created as a result of a bulk retrieval operation for threshold data.
Retrieves next chunk of information for a threshold data iterator.
Returns boolean "false" when there is no further data to send.
*/
 boolean nextN

(in unsigned long howMany,
out ThresholdBulkDataList tBulkData);

}; // interface ThresholdPMBulkDataIterator

/**
PM Bulk Operations interface
*/

interface PMBulkOperations : NetMgmt::ManagedObject
{

/**
Expect creation by the EMS.
Within each of the get...PMBulkData methods, the MOIDList gives a generic approach
for specifying the (list of) objects that act as containers for the PM data to be retrieved.
And for each of these methods, the PerfDataSetList indicates the sets of PM data that
are to be retrieved (i.e., delivered to the client) as a result of the request.
*/
 void getCurrentPMBulkData

(in MOIDList moIdList,
in PerfDataSetList dataTypes,
in unsigned long howMany,
out CurrentPMBulkDataList cBulkData,
out CurrentPMBulkDataIterator cBulkDataIterator)
raises (NetMgmt::ObjectFailure, NetMgmt::InvalidID);

/**
Bulk retrieval of current performance counters contained in objects that are
indicated in the moIdList. Retrieves the counters that are included
within the grouping indicated by dataTypes.
The parameter howMany specifies the maximum number of instances for which
attributes can be returned in a single message. This method returns the first
chunk of PM information with cBulkData, and it also creates an instance
of the CurrentPMBulkDataIterator interface for subsequent chunks of information.
*/

 void getHistoryPMBulkData
(in MOIDList moIIdList,
in PerfDataSetList dataTypes,
in unsigned long howMany,
out HistoryPMBulkDataList hBulkData,
out HistoryPMBulkDataIterator hBulkDataIterator)
raises (NetMgmt::ObjectFailure, NetMgmt::InvalidID);

/**
Bulk retrieval of history performance counters contained in objects that are
indicated in the moIdList. Retrieves the counters that are included
within the grouping indicated by dataTypes.
The parameter howMany specifies the maximum number of instances for which
attributes can be returned in a single message. This method returns the first
chunk of PM information with hBulkData, and it also creates an instance
of the HistoryPMBulkDataIterator interface for subsequent chunks of information.
*/

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 97

 void getAllThresholdDataIDs
// retrieve IDs for all Threshold Data instances

(out ThresholdDataIDList tDataIdList)
raises (NetMgmt::ObjectFailure, NetMgmt::InvalidID);

 void getThresholdBulkData
(in ThresholdDataIDList tDataIdList,
in unsigned long howMany,
out ThresholdBulkDataList tBulkData,
out ThresholdPMBulkDataIterator tBulkDataIterator)
raises (NetMgmt::ObjectFailure, NetMgmt::InvalidID);

/**
Bulk retrieval of Threshold Data information for the instances that are
indicated in the tDataIdList.
The parameter howMany specifies the maximum number of instances for which
attributes can be returned in a single message. This method returns the first chunk of
Threshold Data information with tBulkData, and it also creates an instance
of the ThresholdBulkDataIterator interface for subsequent chunks of information.
*/

 void setThresholdBulkData
// permits bulk setting of threshold values in Threshold Data instances

(in ThresholdBulkDataList tBulkData)
raises (NetMgmt::ObjectFailure, NetMgmt::InvalidID);

}; // PMBulkOperations interface

/**
Performance Data File Generator interface
*/

interface PerformanceDataFileGenerator
{

/**
Expect creation by the EMS.
This method results in the creation of a structured file that
contains bulk performance information. This file may be retrieved
by a data collection system through a number of file transfer
mechanisms. The actual file transfer is outside the scope of CORBA.

Within the generateHistoryData File method, the ObjectClass
represents a generic way to describing the object class that acts
as a container for the PM data to be generated.
Also, the PerfDataSetList identifies the list of perfomance data
counter sets that will be generated as a result of the request.

The RetrievalType indicates:
all – all intervals should be retrieved,
mostRecent – only the most recent interval should be retrieved, or
between – intervals between the specified period start time and period end time

 should be retrieved.
*/
 void generateHistoryDataFile

(in ObjectClass objectType,
 in PerfDataSetList dataTypes,

in RetrievalType retrievalType,
in PeriodStartTime periodStartTime,

// no value implies the earliest available time
in PeriodEndTime periodEndTime,

// no value implies the latest available time
out FileName dataFileName)
raises (NetMgmt::NotSupported, NetMgmt::ObjectFailure);

}; // PerformanceDataFileGenerator interface

}; // end of module corba_pm
#endif // _corba_pm_idl_

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 98 ATM Forum Technical Committee

6 Scenario Diagrams
The scenario diagrams are provided only as examples of how the some IDL object interfaces can be used in different
operational scenarios. This section is for information ONLY.

Figure 6-1 illustrates some representative exchanges of messages between a client (managing system) and a server
(managed system). These messages illustrate four selected methods (or operations), that are defined in Section 5.

Synchronous messaging is assumed in these diagrams. Synchronous messaging implies that the server
automatically returns the output specified by the client's message invoking a particular method (or else throws a
specified exception). Hence with synchronous messaging, there is no need to explicitly illustrate the message that
returns a method's output to the client

Figure 6-1. Some Synchronous Messaging Examples

LEGEND:

X Synchronous Messaging

CLIENT SERVER

X
getNetworkCTPAllList (AtmNetworkCTPIDList, howMany)

XgetAllAttrNetworkCTP (NameType atmNetworkCTPName)

setAlarmSeverityAssignmentProfile (NameType atmNetworkCTPName,
 AlarmSeverityAssignmentProfile) X

boolean nextN (howMany)

• • •
boolean nextN (howMany)

X

X

method (inputs)

getCharacteristicInfo (NameType atmNetworkCTPName) X

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 99

In the first method illustrated in Figure 6-1, the client gets (retrieves) a particular attribute, CharacteristicInfo,
of one managed object, AtmNetworkCTP. This object is specified as the input parameter by its name, NameType
atmNetworkCTPName.

In the second method illustrated in this figure, the client sets (assigns or changes) a particular attribute,
AlarmSeverityAssignmentProfile, of one managed object, AtmNetworkCTP. This object is specified as the
input parameter by its name, NameType atmNetworkCTPName. The second input parameter is the specified value
of AlarmSeverityAssignmentProfile.

In the third method illustrated in this figure, the client gets all of the attributes of one managed object, and these
attributes are contained in the struct AtmNetworkCTPAll. This object is specified as the input parameter by its
name, NameType atmNetworkCTPName.

In the fourth method illustrated in this figure, the client gets all attributes of each managed object in a list, and
these attributes are contained in the sequence of structs, AtmNetworkCTPAllList. This list of objects is specified
as an input parameter by a sequence of structs, AtmNetworkCTPIDList, where each struct in this sequence is an
instance of AtmNetworkCTPID.

In this fourth method, the client fixes the second input parameter howMany to control the length of the returned
message. This method also returns an iterator (see Section 5.4.2) which provides the method boolean nextN for
recovering any additional structs belonging to the sequence AtmNetworkCTPAllList that cannot be returned in the
server's initial responding message because of the message length limitation established by howMany. The client
may repeatedly invoke the method boolean nextN (with its own input parameter howMany) until all elements of
AtmNetworkCTPAllList have been recovered (which is indicated by a boolean nextN invocation returning a
"false" value). This scenario is illustrated in Figure 6-1. Alternatively, the client may terminate this process at any
time by invoking the destroy method for this iterator interface (which is available via inheritance from
ManagedObject).

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 100 ATM Forum Technical Committee

References
[1] ATM Forum, “M4 Interface Requirements and Logical MIB: ATM Network View”, version 2, af-nm-0058.001,
 May 1999.
[2] ATM Forum, “M4 Interface Requirements and Logical MIB: ATM Network Element View,” version 2, af-nm
 0020.001, October 1998.
[3] OMG, “The Common Object Request Broker: Architecture and Specification”, Revision 2.2, February 1998.
[4] OMG, “CORBAservices: Common Object Services Specification”, Updated version, December 1998.
[5] OMG, “Notification Service”, OMG TC Document telecom/98-11-01, November 3, 1998.
[6] OMG, “Telecom Log Service”, OMG TC Document telecom/99-05-01, May 1, 1999.
[7] OMG, “CORBA Messaging”, OMG TC Document orbos/98-05-05, May 18, 1998
[8] ATM Forum, "Traffic management Specification," version 4.1, af-tm-0121.000, March 1999.

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 101

Appendix A: CORBA Common Object Services Requirements

The CORBA ORB provides basic object-to-object interaction capabilities[3]. Additional capabilities are defined as
separate, “Common Object Services.”[4]. The CORBA Common Object Services are general purpose, domain-
independent services that are fundamental for developing CORBA applications composed of distributed objects.
They also provide the basic building blocks for application interoperability. The services are defined with object
interfaces and can be combined in many different ways and put to many uses in different applications. In a specific
domain, CORBA Common Objects can be used to construct higher-level facilities and object frameworks that can
inter-operate across multiple platform environments.

Many of these CORBA Common Object Services have already been implemented and are available as commercial,
off-the-shelf software products. Also, developers working in many industries will likely have experience with them
in the near future. Re-using these Common Object Services instead of defining new ones strictly for the
telecommunications industry or re-implementing the functionality in application-specific code will result in a
quicker, more cost-efficient adoption of CORBA for network management.

The following sub-sections specify required CORBA Common Object Services and recommendations on its use to
ensure interoperability between different network management systems.

A.1 Naming Service
The OMG Naming Service is the CORBA’s directory service, or “white pages”[4]. It allows a client to build a
name-to-object association called a name binding that other clients can then use to find the object. (CORBA object
addresses can be long and difficult for use by humans.) A name binding is always defined relative to a naming
context. A naming context is an object that contains a set of name bindings in which each name is locally unique.
A name binding is a data structure containing two strings and an object reference (address). The “ ID” string is the
identifier for the binding and must be unique within a context. A second string, called “kind” , is also part of the
data structure. Different names can be bound to an object in the same or different contexts at the same time. The
naming context can also be bound to a name in another naming context. Binding contexts in other contexts creates
a naming graph – a directed graph with nodes and labeled edges where nodes are contexts. Given a context in a
naming graph, a sequence of name components (ID-Kind pairs) can reference an object. This sequence of structures,
called a compound name, defines a path in the naming graph that may be navigated to resolve the name and find the
object.

There is no requirement that CORBA name bindings represent a containment relationship between objects, but the
concept of containment is important in network management and needs to be communicated across network
management interfaces. The CORBA Naming Service is the best way to accomplish this. The following
paragraphs define a series of requirements on using the CORBA Naming Service to represent the containment
relationships among managed object instances.

(R) NAME-1 Every managed object shall have one and only one name (DN). The components of the name may
be obtained from multiple federated servers. Although the OMG Naming service supports multiple names per
object, this specification restricts a managed object to using a single name. Support for multiple names is outside
the scope of the specification.

(R) NAME-2 Since a simple name binding cannot identify an object and also contained objects, each managed
object must actually have a corresponding Naming Context. A specially-named binding in each such context will
bind the ID value “Object” with a reference to the actual managed object. (The kind field of this binding will be
null.) Other naming contexts, representing contained managed objects, may also be bound to names in this context.

(R) NAME-3 The ID field of a name binding for a naming context representing a managed object will be
application-dependent, and it may actually have semantic value beyond uniquely identifying a managed object, for a
particular class of objects. For example, an ID value of “7” for an equipment holder object representing a slot in a
shelf may indicate that this object represents the 7th slot in the shelf. Special semantic value attached to IDs will be
documented for each class of managed objects as part of the managed object interface specification. Note that the ID
field is a string.

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 102 ATM Forum Technical Committee

 (R) NAME-4 The kind field of a name binding for a naming context representing a managed object shall be
determined by managed object name binding information. This is information defined as constants in IDL
modules specifically for the purpose of representing possible containment relationships.

The following figure gives an example of name bindings according to the above requirements. In the figure,
CORBA Naming Contexts are represented as folders. The contents of the folders are name bindings. The
convention for representing a name component as a string with the format <ID>.<kind> is used. (Some example
name bindings do not have a pointer shown in the diagram to reduce the complexity of the diagram.) The graph
represents a Network object, named “CentralNet,” that contains a Managed Element object named “Element9” and a
Connection named “R5698.”

MO

CentralNet.Network
NorthernNet.Network
SouthernNet.Network

Object
Element9.ManagedElement
R5968.Connection
A549.Trail

Bay1.Equipment
Version7.Software
Object

Object

MO MO

(The local root
Naming Context)

(Naming Context
for the CentralNet
Managed Object)

(The CentralNet
Network Managed
Object)

(The Element9 ME
Managed Object)

(The R5698
Connection Managed
Object)

(The Naming Context for Element9) (The Naming Context for Connection
R5968)

Figure A-1. Example Naming Graph of Managed Objects

(R) NAME-5 Each managed system shall provide at least one local root naming context. Note on the figure
above that the top-most naming context is referred to as a “local root” naming context. This is the naming context
in which names for the top-most managed objects on the system will be bound, as well as names for certain support
service objects.

A managed system may have multiple local root naming contexts. Since managed objects cannot have multiple
names, they may be bound under only one local root. Support service objects, however, may have names bound
under multiple root naming contexts on the same system. One factor to consider when determining how many local
root naming contexts a managed system will have is if the possibility exists that some of the managed objects
might sometime have to be moved to another system. Moving an entire tree of managed objects, including the
local root naming context, will be simpler than moving a subtree of objects.

 (R) NAME-6 A managed system shall provide a local administrative procedure for assigning a CORBA name to
each local root naming context on the system. All names exchanged across the managed interface will include the
local root context name unless otherwise noted. This includes operation parameters and notifications.

This feature is to enable an administration to make names globally unique. Since the managed system must ensure
that all names are unique relative to the local root naming context, by assigning a globally unique name to the local

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 103

root naming context an administration can ensure that all names on a managed system are unique. The mechanism
used to choose a globally unique name for the local root context is up to the administration. The format of the
name will be the same as used by the CORBA Naming Service, CosNaming::Name. Multiple components are
allowed, but administrations will likely want to keep local root context names short to reduce overhead.

In addition to making names unique, assigning a name to the local root naming context will make it easier for a
managing system to resolve names. This is because the managing system can bind the local root naming contexts
for all the systems it manages into its own local naming service. The name it uses for this binding will be the
same name assigned to the root naming context on the managed system. See Figure A-2 for an example.

A
B
C

Element1:Manag
edElement

Local Root = A

Object

Element1:Manag
edElement

Object

Element1:Manag
edElement

Object

Local Root = B Local Root = C

Managed System X Managed System Y

Managing System

Figure A-2. Assigning Names to Local Root Naming Contexts

The figure shows two element management systems on the bottom. System “X” has two objects of type
ManagedElement, and System “Y” has 1. Each ManagedElement object belongs to its own local root naming
context, which means System X has two local roots and System Y has one. There is also a network management
system, and the local root contexts of both EMSs have been bound into the naming service on this system. This
administration has chosen to assign the unique names “A” and “B” to the local root contexts on System X, and “C”
to the local root context on System Y. References to the local root naming contexts have been bound with these
names in the network management System.

Say the System Y emits a notification concerning its ManagedElement object. The full name of that object
(contained in the notification) will be “C/Element1ManagedElement”. Now let’s say the NMS wants to retrieve
more data from the object. In order to do so, it will have to resolve the name into a CORBA object reference. The
NMS can accomplish this by simply performing a resolve operation using the full name on the local context where
it bound the EMS local root contexts. Because the NMS’ naming service is federated with the EMS naming
services, the NMS’ naming service can automatically forward the resolve operation to the naming service on the
proper EMS, and return the object reference to the NMS application.

It is anticipated that the local root naming context name will be assigned during the initialization of a new system.
Once in operation, it will be extremely difficult if not impossible to change.

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 104 ATM Forum Technical Committee

Once assigned a name, the local root context’s CORBA Interoperable Object Reference (IOR) will have to be bound
to a naming context on the managing system, since up to now it has no idea the new system exists. This means
the managed system will also have to provide a means for accessing the “stringified” IOR of the local root naming
context. This value will then be transferred to the managing system by some means other than the management
interface (e-mail, ftp, etc.). The managing system will require a way to accept this stringified IOR and bind it to a
name on the managing system. As soon as the local root context’s IOR is bound to a name on the managing
system, the managing system can begin discovering the objects on the new system (using the Multiple Object
Operation Service described later) and begin to manage it.

A
B
C

Element1:Manag
edElement

Local Root = A

Object

Element1:Manag
edElement

Object

Element1:Manag
edElement

Object

Local Root = B Local Root = C

Managed System X Managed System Y

Managing System

Figure A-3. Moving a Local Root Naming Context and Contained Objects

Figure A-3 shows how a local root naming context and all of the objects contained below it can be moved to
another system without changing the names of the objects. The only change that might be required would be to
change the object reference bound to the name in the network management system(s). Also, any outstanding
references to moved objects would have to be refreshed. Moving only part of a tree contained below a local root
naming context would require re-naming those objects.

A.2 Notification Service
The CORBA Notification Service supports the asynchronous exchange of event messages between clients using a
subscribe-and-publish paradigm[5]. The Notification Service introduces event channels that broker event messages,
notification suppliers that supply event messages, and notification consumers that consume event messages. The
CORBA Notification Service preserves all of the semantics specified for the CORBA Event Service, allowing for
backward compatibility with Event Service clients. The extended functionality that is important to the network

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 105

management domain is the structured event, event filtering, and QoS (Quality of Service). The figure below depicts
the general architecture of the Notification Service.

Notification
Service
Event

Channel

Supplier

Supplier

Supplier

Consumer

Consumer

Consumer

QoS

QoS QoS

QoS

QoSF

FQoS

F

F

F

F

= FilterF

Figure A-4. Architecture of the Notification Service

(R) NOTIF-1 The Notification Service shall support the push interface model. The managed object interface to
the event channel shall be a push supplier.

(R) NOTIF-2 The managed system shall instantiate the Notification Service event channel object(s) that it will
use. A managed system must instantiate at least one channel and may instantiate more than one. The specification
does not support the creation or deletion of event channels across the management interface. Local administrative
procedures may be provided for this purpose. (Event channels do, however, support the creation and deletion of
filters across the management interface.)

(R) NOTIF-3 The Notification Service shall support structured events. Support for typed events is optional.

(R) NOTIF-4 The form of event messages shall be structured events. The use of typed events is optional. The
message interface between suppliers and consumers shall be defined in IDL as if they were using typed events. This
is done to enable capturing the notification in IDL (which cannot be done for structured events except with
comments) as well as to support typed notifications for applications that wish to use them. Rules for creating
structured notifications based on these typed operations are provided below.

The OMG Notification Service definition does define rules for channels to automatically convert typed notifications
to structured notifications. If the managed system natively creates typed notifications, but the client wishes to
receive structured notifications, these rules shall be followed by the channel. Note, however, that this arrangement
is likely less efficient than both systems using typed events. If the managed system natively creates structured
notifications, it shall do so according to the rules below.

The structured notifications natively created by a managed system will differ slightly from the structured
notifications created by automatic conversion from typed notifications. One reason for this is to make it possible
for a managing system to tell the difference, and accept typed notifications if they are supported by the managed
system. Another is to more efficiently use structured notifications. Managed systems that natively create structured
notifications may exclude optional parameters from those notifications. Because a typed notification is created from
a strongly-typed method invocation, a commercial notification channel that translates this to a structured
notification will include any null values as name-value pairs in the body of the structured event rather than exclude
them. Note that allowing managed systems that natively create structured notifications to exclude optional
parameters makes it unlikely that commercial notification channels will be able to support the automatic conversion
of structured events to typed events.

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 106 ATM Forum Technical Committee

To recap, a managed system shall send notifications either as structured events or typed events. If the managed
system natively creates structured events, it shall do so according to the rules below. Because, for efficiency, these
rules allow managed systems to exclude optional parameters from structured notifications, support for automatic
conversion of these structured notifications to typed notifications by commercial notification channels is not
expected. Thus, the managing system must accept structured events. If the managed system natively creates typed
events, the managing system may rely on the notification channel to automatically convert them to structured events
based on the OMG Notification Service’s rules. Structured notifications rely upon the heavy use of CORBA “any”
data types, however, which can be inefficient. Thus in this case managing system will likely prefer to accept typed
notifications.

(R) NOTIF-5 The suppliers and consumers of structured events shall follow these rules for constructing and
receiving the structured events. (See the figure below which depicts the Notification Structure and how elements
from the IDL notification definition are to be mapped into it):

• The domain_type string in the fixed header of the structured event shall be set to "Telecommunications".
• The type_name string in the fixed header of the structured event shall be set to the scoped

name of the operation defining the notification in IDL, for example,
"itut_x780::Notifications::attributeValueChange".

• The event_name string in the fixed header of the structured event shall be null.
• Optional header fields may be included to support features like Quality of Service as appropriate.
• Each parameter in the operation shall be placed in a name-value pair in the filterable body portion of the

structured event. The fd_name string of this pair shall be set to the name of the parameter and the type placed
in the associated fd_value will be the type specified for the parameter. Using as an example the
equipmentAlarm notification from the IDL presented later in this document, the first fd_name string
would be set to "eventTime" and the first fd_value would contain an ExternalTimeType data type.
Although all notification parameters go in the filterable body of the notification structure, depending on the
data type of the parameter it may be difficult or even impossible to create a useful filter utilizing that parameter.
Filter “matching rules” are based on the capabilities of the channel.

• Parameters that are denoted “optional” may optionally be excluded from the notification structure. If typed
notifications are used, these parameters are included, but will usually have a special null value if not supported.
For types for which there is no special null value (such as integers) a special type consisting of a union between
the base type (such as integer) and the null type is usually defined. These union types may be excluded from
structured notifications when they have a null value, but if they are included, the union type must be used.
This is to enable the same filters to be used for both structured and typed notifications.

• The remainder of the body of the structured event (the non-filterable part) shall be null.
• Parameters named “operation” shall be avoided in notification operations to potentially support the use of typed

notifications. (When converting typed notifications to structured notifications, the parameters of an operation
are automatically placed into a notification structure by the event channel. Unfortunately, the rules developed
for doing this state that the name of the operation used to issue the notification goes not in the header of the
event, but in the body of the of the structure as the first name-value pair. The fd_name string is set to
“operation” and the fd_value is set to a string containing the name of the operation. Using a parameter
named “operation” would then result in a second name-value pair with the name “operation,” and the two could
be confused.)

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 107

domain_type

type_name

event_name

ohf_name1

ohf_name2

…

ohf_namen

fd_name1 =

“eventTime”

fd_name2 =

“source”

…

fd_namen

remainder_of_body

ohf_value1

ohf_value2

ohf_valuen

fd_value1 =

value of
eventTime

fd_value2 =

value of source

fd_valuen

Event Header

Event Body

Fixed Header

Variable Header

Filterable Body
Fields

Remaining Body

“Telecommunications”

<null>

Optional header fields
may be included to
support features like
Quality of Service

void equipmentAlarm (
in ExternalTimeType eventTime,
in NameType source,
in ObjectClassType sourceClass,
…

);

One name-value pair for
each parameter in the
operation goes in the
filterable body.

Figure A-5. Mapping Notifications to Structured Events

(R) NOTIF-6 The Notification Service specification supports filter expressions that are used to determine if the
event is to be forwarded. It also supports filter expressions that “map” values in the notification to parameters used
to impact the operation of the event channel, such as the QoS used in delivering the event. For example, a mapping
filter might be used to map a “severity=major” field from an event (which means nothing to an event channel) to a
QoS parameter “priority=1” (which does mean something to the channel). The Notification Service shall support
event filtering with filter objects that support constraints expressed in the default constraint grammar specified by
the OMG. The Notification Service shall also support mapping filters.

(R) NOTIF-7 The Notification Service reliability QoS shall support EventReliability=Persistent &
ConnectionReliability=Persistent.

Each event is guaranteed to be delivered to all consumers registered to receive it at the time the event was
delivered to the channel, within expiry limits. If the connection between the channel and a consumer is
lost for any reason, the channel will persistently store any events destined for that consumer until each
event time out due to expiry limits, or the consumer once again becomes available and the channel is
subsequently able to deliver the events to all registered consumers. In addition, upon start from a failure
the notification channel will automatically re-establish connections to all clients that were connected to it
at the time the failure occurred.

(R) NOTIF-8 The Notification Service order policy QoS shall allow the events to be delivered in the order of
their arrival, i.e. FIFO. The Notification Service may also optionally support a priority-order QoS in which events
could be buffered in priority order, such that higher priority events will be delivered before lower priority events.

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 108 ATM Forum Technical Committee

(R) NOTIF-9 The Notification Service implementation deployed shall be compliant to the conformance
statements of the OMG Notification Service specification with the exception of the pull interface model.

In a distributed computing environment, such as CORBA interfaces can support, it is possible that updates from
some clients can be overwritten by concurrent (or near-concurrent) updates from other clients unless suitable
safeguards are provided. Even though the Notification Service and the Telecom Log Service provide a basis for
making a client aware that its update has been overwritten, they do not provide a locking mechanism to prevent the
occurence of such overwrites. Consideration of mandatory responses is necesary if reliance is to be placed solely
upon these services.

The OMG Transaction Service [4] provides a comprehensive locking mechanism for preventing the overwriting of
one client's update by the near-concurent update of a different client; and this solution is designed for high
reliability. However, the OMG Transaction Service may not be required in all applications, and its additional
overhead may not be justified.

A.3 Telecom Log
Service

The CORBA Telecom Log Service[6] is a CORBA-based log service that fully supports the ITU-T X.735
recommendation. The log is implemented as an Event Service or Notification Service event channel. The Log
Service supports the following functionality:

• Writing to the log: Events supplied to the log are persistently stored as log records.
• Forwarding from the log: Events supplied to the log are also forwarded to other logs or to any application

that wishes to receive them.
• Log generated events: The log itself will generate events.

Also the Log Service provides functions of log control and management, log record manipulation, log lifecycle
management. Figure A-6 gives a graphic representation of the Log Service.

Figure A-6. Telecom Log Service

Consumer

Consumer

Consumer

Supplier

Supplier

Supplier

F
ilter

F
ilter

Notification
Service

Event Channel

QoS

QoS

QoS QoS

QoS

QoS

Log
Persistent Store

Non-event
Writer

Log Filter

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 109

By manipulating the Log Filter, a managing system is able to control which events are logged and which aren’t, in
exactly the same way it is able to control which events are forwarded and which aren’t. The only exception is the
“Non-event Writer,” which is an application that writes data directly to the log.

(CR) LOG-1 If a CORBA implementation support Telecom Log Service, the Log Service shall support all the
Notification Service requirements.

(R) LOG-2 The Log Record supported by the Log Service shall be the normal struct LogRecord. The
support of struct TypedLogRecord is optional.

(CR) LOG-3 If a CORBA implementation support Telecom Log Service, the Log Service implementation shall
be compliant with the required portion of conformance statement in the OMG Telecom Log Service specification
with the exception of the pull interface model.

A.4 Messaging Service
The CORBA Messaging Service covers three areas: Asynchronous Method Invocation (AMI), Time Independent
Invocation (TII), and Messaging Quality of Service (QoS)[7]. Of the three areas, the AMI has a significant role in
the network management domain because it allows clients to make non-blocking requests on a CORBA object. The
AMI is treated as a client side language mapping issue only. In most cases, server side implementations are not
required to change. In certain situations, such as with a transactional server, the asynchrony of a client does matter
and requires server side changes if it is expected to handle transactional asynchronous requests. Transactional
requests, however, will not be addressed in this document. Figure A-7 depicts the basic concept of the OMG AMI
model.

Async-aware ORB

Sync Client Async Client

Servant

IDL - Stub (sync) Implied-IDL -
Stub (async)

IDL - Skeleton (sync)

Figure A-7. Asynchronous-aware ORB

The AMI specification provides two models of asynchronous requests: callback and polling. In the callback model,
the client passes an object reference for a ReplyHandler object as a parameter when it invokes a two-way
asynchronous operation on a server. When the server responds, the client ORB receives the response and dispatches
it to the appropriate method on the ReplyHandler servant so the client can handle the reply. In other words, the
ORB turns the response into a request on the client’s ReplyHandler. The ReplyHandler is a normal
CORBA object that is implemented by the programmer as with any object implementation. In the polling model,
the client makes the request passing in all the parameters needed for the invocation, and is returned a Poller
object which can be queried to obtain the results of the invocation. This Poller is an instance of a
valuetype, which is a new IDL type introduced by the new Objects-by-Value specification. A valuetype has

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 110 ATM Forum Technical Committee

both data members and methods, which when invoked are just local function calls and not distributed CORBA
operation invocations.

The value of the Asynchronous Method Invocation capability in network management applications is that it enables
managing systems that wish to use asynchronous method calls to inter-operate with managed systems using the
same interface definitions as those used by synchronous clients. No changes are required in the interface definition
or the implementation of the managed system. The following recommendations are proposed for implementations
that that optionally wish to support asynchronous, non-transactional method invocations.

(O) AMI-1 The AMI-aware CORBA implementation shall at least support the callback programming model.

(O) AMI-2 For each operation in an IDL interface, the AMI-aware CORBA implementation shall generate
corresponding asynchronous callback method signatures. These signatures are described in implied-IDL which is
used to generate language-specific operation signatures.

(O) AMI-3 The AMI-aware CORBA ORB shall pass a type-specific ExceptionHolder value instance that
contains the marshaled exceptions as its state to the ReplyHandler when exception replies are returned from the
CORBA object. The AMI-aware IDL compiler would generate a type-specific ExceptionHolder for each IDL
interface.

(O) AMI-4 The AMI-aware IDL compiler shall generate a type-specific reply handler for each IDL interface.
The client will implement and register a reply handler with each asynchronous request and receive a callback when
the reply is returned for that request. This reply handler is derived from the generic
Messaging::ReplyHandler.

A.5 Security Service
A security specification is provided in Reference 4. The possible requirement of a security specification by
implementations of this M4 Network View Interface CORBA Specification will be considered in future releases of
this document.

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 111

Appendix B: Generic Network Management IDL Definitions

B.1 Generic Network Management Constants IDL Definitions (ITU_X721Const.idl)
#ifndef _ITU_X721Const_idl_
#define _ITU_X721Const_idl_

module ITU_X721Const {
const string moduleName = "ITU_X721Const";

/** This module contains the constant values defined for the
ProbableCause UID. These values were borrowed from X.721. */

module ProbableCauseConst {
const string moduleName = "ITU_X721Const::ProbableCauseConst";

const short indeterminate = 0;
const short adapterError = 1;
const short applicationSubsystemFailure = 2;
const short bandwidthReduced = 3;
const short callEstablishmentError = 4;
const short communicationsProtocolError = 5;
const short communicationsSubsystemFailure = 6;
const short configurationOrCustomizationError = 7;
const short congestion = 8;
const short corruptData = 9;
const short cpuCyclesLimitExceeded = 10;
const short dataSetOrModemError = 11;
const short degradedSignal = 12;
const short dTE_DCEInterfaceError = 13;
const short enclosureDoorOpen = 14;
const short equipmentMalfunction = 15;
const short excessiveVibration = 16;
const short fileError = 17;
const short fireDetected = 18;
const short floodDetected = 19;
const short framingError = 20;
const short heatingOrVentilationOrCoolingSystemProblem = 21;
const short humidityUnacceptable = 22;
const short inputOutputDeviceError = 23;
const short inputDeviceError = 24;
const short lANError = 25;
const short leakDetected = 26;
const short localNodeTransmissionError = 27;
const short lossOfFrame = 28;
const short lossOfSignal = 29;
const short materialSupplyExhausted = 30;
const short multiplexerProblem = 31;
const short outOfMemory = 32;
const short ouputDeviceError = 33;
const short performanceDegraded = 34;
const short powerProblem = 35;
const short pressureUnacceptable = 36;
const short processorProblem = 37;
const short pumpFailure = 38;
const short queueSizeExceeded = 39;
const short receiveFailure = 40;
const short receiverFailure = 41;
const short remoteNodeTransmissionError = 42;
const short resourceAtOrNearingCapacity = 43;
const short responseTimeExcessive = 44;
const short retransmissionRateExcessive = 45;
const short softwareError = 46;
const short softwareProgramAbnormallyTerminated = 47;

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 112 ATM Forum Technical Committee

const short softwareProgramError = 48;
const short storageCapacityProblem = 49;
const short temperatureUnacceptable = 50;
const short thresholdCrossed = 51;
const short timingProblem = 52;
const short toxicLeakDetected = 53;
const short transmitFailure = 54;
const short transmitterFailure = 55;
const short underlyingResourceUnavailable = 56;
const short versionMismatch = 57;

}; // end of ProbableCauseConst module

/** This module contains the constant values defined for the
SecurityAlarmCause UID. These values were borrowed from
X.721. */

module SecurityAlarmCauseConst {
const string moduleName = "ITU_X721Const::SecurityAlarmCauseConst";

const short authenticationFailure = 1;
const short breachOfConfidentiality = 2;
const short cableTamper = 3;
const short delayedInformation = 4;
const short denialOfService = 5;
const short duplicateInformation = 6;
const short informationMissing = 7;
const short informationModificationDetected = 8;
const short informationOutOfSequence = 9;
const short intrusionDetection = 10;
const short keyExpired = 11;
const short nonRepudiationFailure = 12;
const short outOfHoursActivity = 13;
const short outOfService = 14;
const short proceduralError = 15;
const short unauthorizedAccessAttempt = 16;
const short unexpectedInformation = 17;
const short unspecifiedReason = 18;

}; // end of SecurityAlarmCauseConst module

/** This module contains the constant values defined for the
Object Error UID. These values were borrowed from cmip.asn1
and many may not be needed. */

module ObjectErrorConst {
const string moduleName = "ITU_X721Const::ObjectErrorConst";

const short accessDenied = 2;
const short classInstanceConflict = 19;
const short complexityLimitation = 20;
const short duplicateManagedObjectInstance = 11;
const short getListError = 7;
const short invalidArgumentValue = 15;
const short invalidAttributeValue = 6;
const short invalidFilter = 4;
const short invalidObjectInstance = 17;
const short invalidOperation = 24;
const short invalidScope = 16;
const short missingAttributeValue = 18;
const short mistypedOperation = 21;
const short noSuchAction = 9;
const short noSuchArgument = 14;
const short noSuchAttribute = 5;
const short noSuchEventType = 13;
const short noSuchInvokeID = 22;

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 113

const short noSuchObjectClass = 0;
const short noSuchObjectInstance = 1;
const short noSuchReferenceObject = 12;
const short operationCancelled = 23;
const short processingFailure = 10;
const short setListError = 8;
const short syncNotSupported = 3;

}; // end of ObjectErrorConst module

}; // end of ITU_X721Const module

#endif // end of ifndef _ITU_X721Const_idl_

B.2 Generic Network Management IDL Definitions (NetMgmt.idl)
#ifndef _NetMgmt_idl_
#define _NetMgmt_idl_
#include <CosNaming.idl>
#include <CosNotifyChannelAdmin.idl>
#include "ITU_X721Const.idl"
#include "ITU_M3100Const.idl"

/** This IDL code is intended to be stored in a file named "NetMgmt.idl" located in the
search path of your IDL compiler. Most comments in this file are formatted to be parsed by
an IDL-to-HTML converter such as idldoc or orbacus hidl. This module provides the fundamental
capabilities for implementing network management interfaces and defines the "managed object"
interface. The interfaces below are modeled after the managed object specifications found in
the CMIP specification document X.721. */

module NetMgmt {
const string moduleName = "NetMgmt";

// Types imported from CosNaming
typedef CosNaming::Name Name;

// Types imported from CosNotifyChannelAdmin
typedef CosNotifyChannelAdmin::EventChannel EventChannel;

interface ManagedObject; // forward declaration
interface Portal; // forward declaration
interface NameIterator; // forward declaration
interface ManagedObjectFactory; // forward declaration
interface Notifications; // forward declaration

/** MO is shorthand for Managed Object. CORBA uses object references of type
"object" to identify objects. These are used instead of ASN.1 object
instances. For network management interfaces, all objects will inherit from
the "ManagedObject" interface. */

typedef ManagedObject MO;

/** MO List is a list of MO references. */

typedef sequence<MO> MOList;

/** MOListList is a two-dimensional list (list of lists) of managed objects. */

typedef sequence<MOList> MOListList;

/** ScopedName is just a string. */

typedef string ScopedName;

/** Scoped Name Lists are simply lists of Scoped Names. */

typedef sequence<ScopedName> ScopedNameList;

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 114 ATM Forum Technical Committee

/** In CORBA, strings containing scoped names are used to identify object
classes (actually, "interfaces"). */

typedef ScopedName ObjectClass;

/** Object Class List is a list of object classes */

typedef sequence<ObjectClass> ObjectClassList;

/** Many times interface specifications need to define standard values to be
passed across the interface. Also, often the scheme used to define these
values needs to be extensible as new interfaces are subclassed, so
enumerations don't work well. CMIP uses OIDs, strings of numbers that are
often appended, in standards. To serve this purpose, the Unique ID is used.
It consists of two parts, a string containing a scoped module name, and an
integer value defined as a constant within that module. These UIDs, and the
ObjectClass type defined above, replace ASN.1 OIDs. It is expected that each
module will contain a constant string named "moduleName" that contains the name
of the module for error-free use by the programmer. A null module name will
indicate a null value for the UID.

Code to interpret a UID might look like the following code snippet:

UID pc; // probable cause
...
if (pc.moduleName == ITU_X721::ProbableCauseConst::moduleName) // string compare

switch (pc.value) {
case ITU_X721::ProbableCauseConst::adapterError:
...
case ITU_X721::ProbableCauseConst::applicationSubsystemFailure:
...
case ITU_X721::ProbableCauseConst::bandwidthReduced:
...
}

else if (pc.moduleName == BasicNet::ProbableCauseConst::moduleName)
switch (pc.value) {
...
}

@member moduleName The scoped module name where values are defined.
@member value The value defined as a constant within the module.
*/

struct UID {
string moduleName; // The scoped module name defining the value
short value; // defined as a constant within the module

};
typedef sequence<UID> UIDList;

/** The Managed Object ID is a structure containing both the name of and
reference to a managed object. It is felt that passing both of these together
across an interface might help to reduce lookups in the name service or calls
to the object to get its name. More importantly, it enables the definition of
interfaces that can be implemented as either coarse or fine. In the coarse
implementations, there will be one instance per class but there will be name
bindings in the naming service as if there were fine-grained objects. All of
the bindings for a single class of objects will reference the same single
instance. All operations on the objects contain the name of the object, so
that the singleton objects can identify the true object being acted upon.

In fine-grained implementations, the name bindings reference separate objects.
In these cases including the object's name in the operations is redundant, but
a reasonable trade-off.
@member ref A reference to the object. Will be null for a null-valued ID.
@member name The fully-qualified Cos name of the object. Will be null for

a null-valued ID.
*/

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 115

struct MOID {
MO ref;
Name moName;

};

/** MOIDList is a list of MOIDs. */

typedef sequence<MOID> MOIDList;

/** MOIDListList is a two-dimensional list of MOIDs. */

typedef sequence<MOIDList> MOIDListList;

/* The following state objects are used in many interfaces and parallel the
state objects in CMIP standards. */

/** Administrative State is read/write. A "locked" object is usually one that
may not be changed or one which is not providing service. Setting the
Admininstrative State of an object to "shuttingDown" begins the shutdown
process for that object. */

enum AdministrativeState {locked, unlocked, shuttingDown};

/** Operational State is read only. It simply reports the current capability
of the object to provide service. */

enum OperationalState {disabled, enabled};

/** Usage state is read only. If "idle," the resource is completely unused.
If "busy," the total capacity of the resource is in use. "Active" is in
between. */

enum UsageState {idle, active, busy};

/** Management Extension is a structure for flexibly reporting information.
It is typically used in the Additional Information field of notifications.
@see href="#AdditionalInformation" AdditionalInformation
@member id identifies the type of information
@member significance not sure what this is for - from X.721
@member any contains the actual information, type will depend on

the value of the id member.
*/

struct ManagementExtension {
UID id; // identifies the type of info
boolean significance; // not sure what this is for
any info; // type will depend on id

};

/** Additional Information is a flexible way to report information that does
not fit into the structure of a notification. It contains a sequence of a
structure called "Management Extension". */

typedef sequence<ManagementExtension> AdditionalInformation;

/** An Attribute Value structure is used to set or retrieve an attribute value
generically, such as in a batch mode. This is complicated somewhat by the fact
that none of the network management interfaces are expected to define CORBA
attributes, but instead CORBA operations to get or set attribute values. So,
a convention similar to the way CORBA attribute accesses are mapped to
programming languages is adopted, where the retrieval of an attribute value
is done with an operation named get<attribute_name> and setting is done with
set<attribute_name>. In this structure, the string attributeName will contain
the <attribute_name> from the object's attribute access operations. The value
part is used to convey the attribute's value.
@member attributeName the name of an operation minus the "get" or "set"

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 116 ATM Forum Technical Committee

@member value containes the value of the attribute, type will depend
on the attributeName. */

struct AttributeValue {
string attributeName;
any value; // type will depend on the attribute

};

/** Attribute Value Lists are used to set or retrieve attributes generically,
in a batch mode. */

typedef sequence<AttributeValue> AttributeList;

/** An Attribute Value Change structure is used in a notification to report an
attribute that has been changed.
@see href="#AttributeValue" AttributeValue
@member attributeName the name of an operation minus the "get" or "set"
@member oldValue the old value, type will depend on the attributeName
@member newValue the new value, type will depend on the attribute Name.*/

struct AttributeValueChange {
string attributeName;
any oldValue; // type will depend on the attribute
any newValue; // type will depend on the attribute

};

/** An Attribute Change List is used to report the attributes that have been
changed in an attribute value change notification. */

typedef sequence<AttributeValueChange> AttributeChangeList;

/** A Correlated Notification is identified by the object that emitted the
notification and the notification id. Both are included in case the
Notification IDs are not unique across objects.
@member source Reference to object that emitted the correlated notification
@member notifID ID of the correlated notification. */

struct CorrelatedNotification {
MOID source;
unsigned long notifID;

};

/** Correlated Notifications are lists of Correlated Notification structures. */

typedef sequence<CorrelatedNotification> CorrelatedNotifications;

/** Generalized time is a basic ASN.1 type. It is usually represented as a
string in computing languages but it has certain, parseable formats. The 3
possible forms are:

1.Local time only. "YYYYMMDDHHMMSS.fff", where the optional fff is
accurate to three decimal places.
2.Universal time (UTC time) only. "YYYYMMDDHHMMSS.fffZ".
3.Difference between local and UTC times. "YYYYMMDDHHMMSS.fff+-HHMM".

The options for representing this in IDL seem to be either a string or the UtcT
structure from the CORBA Time Service. Because UtcT does not seem to make it
possible to differentiate a local time (option 1 above) from a universal time
(option 2 above), a string will be used. */

typedef string GeneralizedTime;

/** External Time is generalized time. */

typedef GeneralizedTime ExternalTime;

/** PerceivedSeverity reports the severity of an alarm. "Indeterminate" is
used when it is not possible to assign one of the other values */

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 117

enum PerceivedSeverity{indeterminate, critical, major, minor, warning, cleared};

/** ProbableCause, in CMIP standards, may be either an integer or GDMO OID, a
dot-notation string. The UID type is used instead. */

typedef UID ProbableCause;

/** Proposed Repair Actions are lists of unique identifiers. */

typedef UIDList ProposedRepairActions;

/** Security Alarm Causes are unique identifiers. */

typedef UID SecurityAlarmCause;

/** Security Alarm Detector can indicate either a mechanism or a specific
object. According to X.721 a choice is made between one or the other, though
it is not clear why. (Actually, X.721 adds a third choice for an AE-title
which has no equivalent here.) Unless otherwise indicated, then, at most one
of the members will be non-null. Two nulls may be sent if the managed system
does not support this property. May want to consider adding Object Class.
@member mechanismthe scheme or function detecting the alarm, may be null
@member object the object detecting the alarm, may be null */

struct SecurityAlarmDetector {
UID mechanism; // may be null
MOID managedObject; // may be null

};

/** Service User
@member id the id of the service user
@member details details about the service user, type will depend on id */

struct ServiceUser {
UID id;
any details; // value will depend on id

};

/** Service Providers share the same representation as Service Users. */

typedef ServiceUser ServiceProvider;

/** Source Indicator is used in many notifications. It identifies whether the
notification is a result of a management operation or something that occurred
on the managed system. */

enum SourceIndicator {resourceOperation, managementOperation, unknown};

/** Specific Problems are lists of unique identifiers. */

typedef UIDList SpecificProblems;

/** The following three typedefs are used in interface Portal. */

typedef Name NameType;

typedef sequence<NameType> NameSetType;

typedef string KindType;

/** Threshold indication describes if the threshold crossed was an upper
threshold or a lower threshold. */

enum ThresholdIndication {upper, lower};

/** Threshold Information indicates some guage or counter attribute passed a
set threshold. The structure differs from X.721 some to simplify the syntax.

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 118 ATM Forum Technical Committee

@member attributeID identifies the attribute that crossed the threshold.
Actually, it is an operation name on an interface minus
the "get" or "set". The interface on which the
operation is defined is included elsewhere in the
notification as ObjectClass. A Null value indicates
the entire structure is null.

@member observedValue attributes that are of type integer will be converted
to floats

@member indication
@member high high and low members are for multi-level thresholds.

for single-level thresholds they will be equal
@member armTime may be null */

struct ThresholdInfo {
string attributeID;
float observedValue;
ThresholdIndication indication;
float high;
float low;
ExternalTime armTIme;

};

/** TrendIndication. The "unknown" value was added to handle cases where this
parameter is optional. */

enum TrendIndication {lessSevere, noChange, moreSevere, unknownTrend};

/** The Alarm Info structure is used to contain information in Alarm
notifications.
@member eventTime Managed system's current time.
@member source Object emitting notification.
@member sourceClass Class of source object.
@member notificationIdentifier A unique identifier for this notification

(optional in X.721 but not here)
@member correlatedNotifications List of correlated notifications. Optional.

Null if not supported.
@member probableCause
@member specificProblems Optional. Null if not supported.
@member perceivedSeverity
@member backedUpStatus "True" if backed up (optional in X.721 but not

here). If object is unsure, value should be
"false".

@member backUpObject Will be null if backedUpStatus is "false"
@member trendIndication Optional. See type for details.
@member thresholdInfo Optional. See type for details.
@member stateChangeDefinition Optional. Null if not supported.
@member monitoredAttributes Optional. Null if not supported.
@member proposedRepairActions Optional. Null if not supported.
@member additionalText Text message. Optional. Null if not supported.
@member additionalInfo Optional. Null if not supported.
*/

struct AlarmInfo {
ExternalTime eventTime;
MOID source;
ObjectClass sourceClass;
unsigned long notificationIdentifier;
CorrelatedNotifications correlatedNotifications;
ProbableCause probableCause;
SpecificProblems specificProblems;
PerceivedSeverityperceivedSeverity;
boolean backedUpStatus;
MOID backUpObject;
TrendIndication trendIndication;
ThresholdInfo thresholdInfo;
AttributeChangeList stateChangeDefinition;
AttributeList monitoredAttributes;

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 119

ProposedRepairActions proposedRepairActions;
string additionalText;
AdditionalInformation additionalInfo;
};

/** The Attribute Value Change Info structure is used to contain information in
Attribute Value Change notifications. (X.721 includes an attribute identifier
list that does not seem necessary.)
@member eventTime Managed system's current time
@member source Object emitting notification
@member sourceClass Class of source object
@member notificationIdentifier A unique identifier for this notification

(optional in X.721 but not here)
@member correlatedNotifications List of correlated notifications. Optional.

Null if not supported.
@member sourceIndicator Cause of event. Optional. Use "unknown" if

not supported.
@member attributeChanges Changed attributes
@member additionalText Text message. Optional. Null if not supported.
@member additionalInfo Optional. Null if not supported.
*/

struct AttributeValueChangeInfo {
ExternalTime eventTime;
MOID source;
ObjectClass sourceClass;
unsigned long notificationIdentifier;
CorrelatedNotifications correlatedNotifications;
SourceIndicator sourceIndicator;
AttributeChangeList attributeChanges;
string additionalText;
AdditionalInformation additionalInfo;
};

/** The Object Info structure is used to contain information in Object
Creation and Deletion notifications. In Object Creation notifications the
"source" parameter should be the new object, not the factory.
@member eventTime Managed system's current time
@member source Object emitting notification
@member sourceClass Class of source object
@member notificationIdentifier A unique identifier for this notification

(optional in X.721 but not here)
@member correlatedNotifications List of correlated notifications. Optional.

Null if not supported.
@member sourceIndicator Cause of event. Optional. Use "unknown" if

not supported.
@member attributeList Attribute values. Optional. Null if not

supported
@member additionalText Text message. Optional. Null if not supported.
@member additionalInfo Optional. Null if not supported.
*/

struct ObjectInfo {
ExternalTime eventTime;
MOID source;
ObjectClass sourceClass;
unsigned long notificationIdentifier;
CorrelatedNotifications correlatedNotifications;
SourceIndicator sourceIndicator;
AttributeList attributeList;
string additionalText;
AdditionalInformation additionalInfo;
};

/** The Relationship Change Info structure is used to contain information in
Relationship Change notifications. (X.721 includes an attribute
identifier list that does not seem necessary.)
@member eventTime Managed system's current time

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 120 ATM Forum Technical Committee

@member source Object emitting notification
@member sourceClass Class of source object
@member notificationIdentifier A unique identifier for this notification

(optional in X.721 but not here)
@member correlatedNotifications List of correlated notifications. Optional.

Null if not supported.
@member sourceIndicator Cause of event. Optional. Use "unknown" if

not supported.
@member relationshipChanges Changed relationship attributes
@member additionalText Text message. Optional. Null if not supported.
@member additionalInfo Optional. Null if not supported.
*/

struct RelationshipChangeInfo {
ExternalTime eventTime;
MOID source;
ObjectClass sourceClass;
unsigned long notificationIdentifier;
CorrelatedNotifications correlatedNotifications;
SourceIndicator sourceIndicator;
AttributeChangeList relationshipChanges;
string additionalText;
AdditionalInformation additionalInfo;
};

/** The Security Alarm Info structure is used to contain information in
Security Alarm notifications.
@member eventTime Managed system's current time
@member source Object emitting notification
@member sourceClass Class of source object
@member notificationIdentifier A unique identifier for this notification

(optional in X.721 but not here)
@member correlatedNotifications List of correlated notifications. Optional.

Null if not supported.
@member securityAlarmCause
@member securityAlarmSeverity Clears allowed. X.721 appears to restrict the

"cleared" value on this alarm but clears
are allowed in this specification.

@member securityAlarmDetector
@member serviceUser
@member serviceProvider
@member additionalText Text message. Optional. Null if not supported.
@member additionalInfo Optional. Null if not supported.
*/

struct SecurityAlarmInfo {
ExternalTime eventTime;
MOID source;
ObjectClass sourceClass;
unsigned long notificationIdentifier;
CorrelatedNotifications correlatedNotifications;
SecurityAlarmCause securityAlarmCause;
PerceivedSeveritysecurityAlarmSeverity;
SecurityAlarmDetector securityAlarmDetector;
ServiceUser serviceUser;
ServiceProvider serviceProvider;
string additionalText;
AdditionalInformation additionalInfo;
};

/** The State Change Info structure is used to contain information in or from
State Change notifications. (X.721 includes an attribute identifier list that
does not seem necessary.)
@member eventTime Managed system's current time
@member source Object emitting notification
@member sourceClass Class of source object
@member notificationIdentifier A unique identifier for this notification

(optional in X.721 but not here)

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 121

@member correlatedNotifications List of correlated notifications. Optional.
Null if not supported.

@member sourceIndicator Cause of event. Optional. Use "unknown" if
not supported.

@member stateChanges Changed state attributes
@member additionalText Text message. Optional. Null if not supported.
@member additionalInfo Optional. Null if not supported.
*/

struct StateChangeInfo {
ExternalTime eventTime;
MOID source;
ObjectClass sourceClass;
unsigned long notificationIdentifier;
CorrelatedNotifications correlatedNotifications;
SourceIndicator sourceIndicator;
AttributeChangeList stateChanges;
string additionalText;
AdditionalInformation additionalInfo;
};

/** Exceptions */

/** Object Error attributes identify the type of error that an object has
experienced and are represented by UIDs. */

typedef UID ObjectError;

/** An ObjectFailure exception means the object implementing the interface
could not process the requested operation.

For now, this exception only returns an error UID and a string explanation.
CMIP standards allow one of the error values that are defined for the error
UID, "processingFailure," to also include additional information. This
additional information takes the form of an "errorID" along with a parameter
of type any that is defined by the value of the errorID. I have not found
where these error IDs are defined. It may be necessary to modify the
ObjectFailure exception to include a structure for this additional information.
Perhaps the "AdditionalInformation" type would work. */

exception ObjectFailure {ObjectError error; string explanation;};

/** A NotSupported exception means the object implementing the interface does
not support the operation. These exception are not throwable on every
operation, only those considered "conditional." */

exception NotSupported {};

/** A ContainedObjects exception means the managed system tried to delete an
object but could not because the object contains other objects and was not
deleted with "deleteContainedObjects" asserted. */

exception ContainedObjects {};

/** A DeleteNotAllowed exception means the managing system tried to delete an
object that it is not allowed to delete. */

exception DeleteNotAllowed {};

/** A DuplicateItem exception means an attempt was made to add a duplicate item
to a list. */

exception DuplicateItem {any item;};

/** An ItemNotFound exception means an attempt was made to access an item that
could not be found on the list.
@param item the item that could not be found. Type will depend on the type
of the list submitted to the operation. */

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 122 ATM Forum Technical Committee

exception ItemNotFound {any item;};

/** A DuplicateName exception means the managed system tried to create an
object with a name matching that of an existing object contained by the same
object under which the new object was to be created. */

exception DuplicateName {};

/** An invalid ID exception means the client included an invalid object ID in
an operation.
@param ID the invalid id */

exception InvalidID {MOID id;};

/** An out of range exception means the client included a parameter with
a value outside the range acceptable for the operation.
*/

exception OutOfRange {};

/**
A MaxMonitorPointsExceeded exception means that the client's request to monitor data at
specified points has exceeded this server's capacity server, in terms of the maximum number
of points that it (or its underlying NEs) can simultaneously monitor.
*/

exception MaxMonitorPointsExceeded {};

/** The Managed Object interface is intended to be the "top" interface from
which all other managed object interfaces inherit. It is a central place to
specify basic functions which all managed objects are expected to support. */

interface ManagedObject {

/** This method returns the fully-qualified name for the object (interface).
This method is used rather than having a "getID" method defined for each
interface, as is done in CMIP specifications. This will ensure that objects
have only a single operation to retrieve names when they are sub-classed.

The response is a sequence of name component structures, starting with a "root"
name define for the domain. (That is, the name of the top-most managed object
on a particular system.) The client may find the ancestors of this object by
removing components from the tail end of this sequence and performing a
resolve operation on the first part of the name. */

Name getName()
raises(ObjectFailure);

/** This method returns a pointer to the Notification Channel used by this
object when it is a producer. Clients interested in receiving notifications
from this object may then subscribe to this service.

Since it looks like the OMG's Event Logging Service will subclass the
notification service, we probably want to make this a pointer to the event
logging service instead. */

EventChannel getEventChannel(in Name name)
raises(ObjectFailure);

/** This method returns a list of all the notifications supported by this
instance. It is included to parallel the CMIP capability to retrieve the
packages supported by an instance. */

ScopedNameList getSupportedNotifications (in Name name)
raises(ObjectFailure);

/** This method may be used to generically get a list of attribute values.

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 123

Any values passed in will be ignored and the values returned will be the
attributes' values. If the list contains attributes not supported by the
instance those
attributes should be deleted from the list on return. */

void getAttributeList(in Name name, inout AttributeList list)
raises(ObjectFailure, NotSupported, ItemNotFound);

/** This method may be used to generically get all of the attributes supported
by an instance. */

AttributeList getAllAttributes(in Name name)
raises(ObjectFailure, NotSupported);

/** This method may be used to generically set a list of attribute values. The
values passed in will be assigned to the attributes and also returned. If
the list contains attributes not supported by the instance those attributes
should be deleted from the list on return. */

void setAttributeList(in Name name, inout AttributeList list)
raises(ObjectFailure, NotSupported, ItemNotFound);

/** This method deletes the object. If deleteContainedObjects is true, the
contained objects will also be deleted. If it is not true and there are
contained objects, the ContainedObjects exception will be thrown and the object
will not be deleted. */

void delete(in Name name, in boolean deleteContainedObjects)
raises(ObjectFailure, DeleteNotAllowed, ContainedObjects);

}; // end of ManagedObject interface

/** This interface defines the generic managed object factory interface. It is
currently empty but is a place holder for capabilities that may need to be
implemented by all managed object factories. One example is inheritance from
CosLifeCycle::GenericFactory. */

interface ManagedObjectFactory {

}; // end of ManagedObjectFactory interface

/** This interface contains the definitions of notifications emitted by many
managed objects.

The use of "typed" notifications is done here so that the notifications can be
documented in IDL and to support typed notifications for those manager and
managing systems that wish to use them. Note that the OMG's Notification
Service supports both structured and typed notifications. It is not clear if
implementations of the Notification Service will support translation between
them. It is expected that the implementation agreement between the managing and
managed system will specify the use of structured or typed notifications.

Notification users wishing to use typed notifications need only support the
interfaces below. Notification publishers and subscribers wishing to use
structured notifications based on the operations defined below should follow
these rules for constructing and reading the notification structure:

The domain_type string in the fixed header of the structure should be set to
"telecommunications".

The event_type string in the fixed header of the structure should be set to
the scoped name of the operation. For example, for the Attribute Value Change
notification defined below this field would be
"ITU_X721::Notifications::attributeValueChange".

The event_name string in the fixed header of the structure should be null.

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 124 ATM Forum Technical Committee

Optional header fields may be included to support features like Quality of
Service as appropriate.

Each parameter in the operation should be placed in a name-value pair in the
filterable body portion of the notification. The fd_name string of this pair
shall be set to the name of the parameter and the type placed in the associated
fd_value will be the type specified for the parameter. For example, for the
Attribute Value Change notification defined below a single name-value pair
would be placed in the filterable data portion of the event. The fd_name
string of this pair would be set to "attributeValueInfo" and fd_value would
contain an AttributeValueInfo structure.

The remainder of the body of the notification (the unfilterable part) should
be null.

Unfortunately, typed notifications are mapped to notification structures
differently, so if one system wants to use typed notifications and the other
structured, the structured notification user must be aware of how the CORBA
Notification Service translates typed notifications to structured
notifications. See the specification for details. In short, however, each of
the parameters in the operations below will be converted into a name-value
pair in the filterable data protion of the structured notification. Also, the
event_type field in the fixed header of the structured notification will be
set to the special value "%TYPED" and the domain_type field will be an empty
string. Finally, a name-value pair will be added as the first element in the
filterable data portion of the notification with the name "operation". The
value associated with this name will be a string with the value set to the
scoped name of the operation used to emit the notification
(e.g. ITU_X721::Notifications::attributeValueChange).

Also, structured notification publishers emitting notifications for typed
notifications users must include all of the parameters listed for each
operation in the filterable data portion of the notification. This is because
if the translation to a typed notification is ambiguous, the notification
channel will not be able to deliver it. While the translation of some
excluded parameters (such as excluded strings to null strings) may be
possible, others (such as enumerated types) are not. Thus, all parameters
must be included.

Parameters named "operation" should be avoided in notification operations to
support the use of typed notifications. While the notification channel should
be able to differentiate the real parameter from the one added based on their
positions in the filterable data list, it could have an impact on filtering as
the default filtering language does not have a way to differentiate parameters
based on position.

Because the scoped operation name is placed in either the event_type string
(when structured notifications are used) or a filterable body name-value pair
with the name "operation" (when typed notifications are used), there is no
"event type" parameter explicitly included in any of the notification
operations defined below. */

interface Notifications {

/** An Attribute Value Change notification is used to report changes to the
attributes of an object such as addition or deletion of members to one or more
set-valued attributes and replacement of the value of one or more attributes.
@param attributeValueChangeInfo structure containing the notification info
*/

oneway void attributeValueChange (
in AttributeValueChangeInfo attributeValueChangeInfo
);

/** A Communications Alarm notification is used to report when an object
detects a communications error.
@param alarmInfo structure containing the notification info

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 125

*/

oneway void communicationsAlarm (
in AlarmInfo alarmInfo

);

/** An Environmental Alarm notification is used to report a problem in the
environment.
@param alarmInfo structure containing the notification info
*/

oneway void environmentalAlarm (
in AlarmInfo alarmInfo

);

/** An Equipment Alarm notification is used to report a failure in the
equipment.
@param alarmInfo structure containing the notification info
*/

oneway void equipmentAlarm (
in AlarmInfo alarmInfo

);

/** An Integrity Violation notifications is used to report that a potential
interruption in information flow has occurred such that information may have
been illegally modified, inserted or deleted.
@param securityAlarmInfo structure containing the notification info
*/

oneway void integrityViolation (
in SecurityAlarmInfo securityAlarmInfo

);

/** An Object Creation notification is used to report the creation of a managed
object to another open system.
@param objectInfostructure containing the notification info
*/

oneway void objectCreation (
in ObjectInfo objectInfo

);

/** An Object Deletion notification is used to report the deletion of a managed
object.
@param objectInfostructure containing the notification info
*/

oneway void objectDeletion (
in ObjectInfo objectInfo

);

/** An Operational Violation notification is used to report that the provision
of the requested service was not possible due to the unavailability,
malfunction or incorrect invocation of the service.
@param securityAlarmInfo structure containing the notification info
*/

oneway void operationalViolation (
in SecurityAlarmInfo securityAlarmInfo

);

/** A Physical Violation notification is used to report that a physical
resource has been violated in a way that indicates a potential security attack.
@param securityAlarmInfo structure containing the notification info
*/

oneway void physicalViolation (

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 126 ATM Forum Technical Committee

in SecurityAlarmInfo securityAlarmInfo
);

/** A Processing Error Alarm notification is used to report a processing
failure in a managed object.
@param alarmInfo structure containing the notification info
*/

oneway void processingErrorAlarm (
in AlarmInfo alarmInfo

);

/** A Quality of Service Alarm notification is used to report a failure in the
quality of service of the managed object.
@param alarmInfo structure containing the notification info
*/

oneway void qualityOfServiceAlarm (
in AlarmInfo alarmInfo

);

/** A Relationship Change notification is used to report the change in the
value of one or more relationship attributes of a managed object, that result
through either internal operation of the managed object or via management
operation.
@param relationshipChangeInfo structure containing the notification info
*/

oneway void relationshipChange (
in RelationshipChangeInfo relationshipChangeInfo

);

/** A Security Service Or Mechanism Violation notification is used to report
that a security attack has been detected by a security service or mechanism.
@param securityAlarmInfo structure containing the notification info
*/

oneway void securityServiceOrMechanismViolation (
in SecurityAlarmInfo securityAlarmInfo

);

/** A State Change notification is used to report the change in the the value
of one or more state attributes of a managed object, that result through either
internal operation of the managed object or via management operation.
@param stateChangeInfo structure containing the notification info
*/

oneway void stateChange (
in StateChangeInfo stateChangeInfo

);

/** A Time Domain Violation notification is used to report that an event has
occurred at an unexpected or prohibited time.
@param securityAlarmInfo structure containing the notification info
*/

oneway void timeDomainViolation (
in SecurityAlarmInfo securityAlarmInfo

);

}; // end of Notifications interface

interface Portal
{
/**
The following defines extra functions needed by portals to accomodate containment
functionality for light objects.
The SuperiorGet operation returns the name of the object containing the current object. If

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 127

the current object is at the local root naming context, an empty string is returned.
*/

NameType superiorGet
(in NameType name)
raises (ObjectFailure, NotSupported);

/**
The ContainedSubordinatesGet operation returns a list of names of the objects that are
contained within the current object. The kind parameter is optional.
*/

NameSetType containedSubordinatesGet
(in NameType name,
in unsigned long howMany,
in KindType kind,
out NameIterator niterator)
raises (ObjectFailure, NotSupported);

};

interface NameIterator : NetMgmt::ManagedObject
{

boolean nextN
(in unsigned long howMany,
out NameSetType nameSet);

};

}; // end of NetMgmt module

#endif // end of ifndef _NetMgmt_idl_

B.3 Generic Network Information Model Constant IDL Definitions
(ITU_M3100Const.idl)

#ifndef _ITU_M3100Const_idl_
#define _ITU_M3100Const_idl_

module ITU_M3100Const {
const string moduleName = "ITU_M3100Const";

/** This module contains constant values identifying information
elements included in the Additional Information parameters of
notifications. */

module AdditionalInformationConst {
const string moduleName = "ITU_M3100::AdditionalInformationConst";

const short alarmEffectOnService = 1;
const short suspectObjectList = 2;
const short userLabel = 3;

}; // end of AdditionalInformationConst module

/** This module contains the constant values defined for the
CharacteristicInfo UID. These values were borrowed from M.3100. */

module CharacteristicInfoConst {
const string moduleName = "ITU_M3100::CharacteristicInfoConst";

/** opticalSPITTP* object instances with stmLevel attribute = 1 */
const short opticalSTM1SPICI = 1;
/** opticalSPITTP* object instances with stmLevel attribute = 4 */
const short opticalSTM4SPICI = 2;
/** opticalSPITTP* object instances with stmLevel attribute = 16 */
const short opticalSTM16SPICI = 3;
/** electricalSPITTP* object instances with stmLevel attribute = 1 */
const short electricalSTM1SPICI = 4;
/** rsCTP* object instances with stmLevel attribute = 1 */
const short rsSTM1SPICI = 5;

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 128 ATM Forum Technical Committee

/** rsCTP* object instances with stmLevel attribute = 4 */
const short rsSTM4SPICI = 6;
/** rsCTP* object instances with stmLevel attribute = 16 */
const short rsSTM16SPICI = 7;
/** msCTP* object instances with stmLevel attribute = 1 */
const short msSTM1SPICI = 8;
/** msCTP* object instances with stmLevel attribute = 4 */
const short msSTM4SPICI = 9;
/** msCTP* object instances with stmLevel attribute = 16 */
const short msSTM16SPICI = 10;
const short au3TU3VC3CI = 11;
const short au4VC4CI = 12;
const short tu11VC11CI = 13;
const short tu12VC12CI = 14;
const short tu2VC2CI = 15;
const short tu12VC11CI = 16;
const short vpCI = 17;
const short vcCI = 18;
const short e0CI = 19;
const short e1CI = 20;
const short e2CI = 21;
const short e3CI = 22;
const short e4CI = 23;

}; // end of CharacteristicInfoConst module

/** This module contains the constant values defined for the General
Error Cause UID. The values were borrowed from the M.3100 corrigendum
General Error Cause type definition. */

module GeneralErrorCauseConst {
const string moduleName = "ITU_M3100::GeneralErrorCauseConst";

/** ObjectInIncompatibleState is used to specify that the object
is in a state provided. */

const short objectInIncompatibleState = 1;

/** NoValidRelatedObject is used to specify related objects that
do not exist in the MIB. */

const short noValidRelatedObject = 2;

/** InvolvedInOffering is used to identify object(s) that are
already involved in a conflicting service offering. */

const short involvedInOffering = 3;

/** ServiceNotSupported is used to indicate that the operation is
attempting to initiate a service that is not supported by the
equipment. */

const short serviceNotSupported = 4;

/** ProvisioningOrderConflict is used to identify that a service
is being provisioned in an order that is not supported by the
equipment. */

const short provisioningOrderConflict = 5;

/** EquipmentFailure is used to indicate that an equipment failure
as occured during the operation. */

const short equipmentFailure = 6;

/** MaxNumberExceeded is used to indicate that requested create
operation cannot be completed as the maximum number of instances

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 129

are reached. */

const short maxNumberExceeded = 7;

/** ContainedObjects is used to indicate that requested delete
operation cannot be completed as there are contained instances.
*/

const short containedObjects = 8;

}; // end of GeneralErrorCauseConst module

/** This module contains the constant values defined for the Information
Rate UID. The values were borrowed from the M.3100 InformationRate type
definition, which defines Information Rate as an integer with the
following defined values. */

module InformationRateConst {
const string moduleName = "ITU_M3100::InformationRateConst";

const short ds1sf = 10;
const short ds1esf = 11;
const short zbtsi = 12;
const short tidm = 14;
const short cept1 = 20;
const short ds1c = 25;
const short ds2 = 30;
const short cept2 = 40;
const short ds3async = 50;
const short ds3sync = 51;
const short ds3cbit = 52;
const short ds3pbit = 53;
const short ds4 = 60;
const short ds4e = 65;
const short cept3 = 70;
const short vc11 = 80;
const short vc12 = 85;
const short vc2 = 90;
const short vc3 = 95;
const short vc4 = 100;
const short stm1 = 110;
const short stm4 = 120;
const short stm16 = 130;

}; // end of InformationRateConst module

/** This module contains the constant values defined for the
InformationTransferCapability UID. These values were borrowed from
M.3100 (M.3100 defines this as an extensible enumerated type, which does
not transfer well to IDL. So, the "UID" approach is used instead.) */

module InformationTransferCapabilityConst {
const string moduleName = "ITU_M3100::InformationTransferCapabilityConst";

const short speech = 0;
const short audio3pt1 = 1;
const short audio7 = 2;
const short audioComb = 3;
const short digitalRestricted56 = 4;
const short digitalUnrestricted64 = 5;

}; // end of the InformationTransferCapabilityConst module

/** This module contains the constant values defined for the Line Coding
UID. The values were borrowed from the M.3100 LineCoding type

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 130 ATM Forum Technical Committee

definition, which defines Line Coding as an integer with the following
defined values. */

module LineCodingConst {
const string moduleName = "ITU_M3100::LineCodingConst";

const short nrz = 0;
const short rz = 1;
const short diphase = 2;
const short bipolar = 3;
const short b6zs = 4;
const short b8zs = 5;
const short b3zs = 6;
const short ami = 7;
const short amizcs = 8;
const short hdb2 = 9;
const short hdb3 = 10;
const short cchan = 11;

}; // end of LineCodingConst module

/** This module contains the constant values defined for the Media Type
UID. The values were borrowed from the M.3100 MediaType type
definition, which defines Media Type as an integer with the following
defined values. */

module MediaTypeConst {
const string moduleName = "ITU_M3100::MediaTypeConst";

const short twistedPairCopper = 0;
const short coaxial = 1;
const short singleModeFiber = 2;
const short multiModeFiber = 3;
const short radio = 4;
const short satellite = 5;

}; // end of MediaTypeConst module

/** This module contains the constant values defined for the
ProbableCause UID. These values were borrowed from M.3100. */

module ProbableCauseConst {
const string moduleName = "ITU_M3100::ProbableCauseConst";

const short indeterminate = 0;

// The following are used with communications alarms.
const short aIS = 1 ;
const short callSetUpFailure = 2;
const short degradedSignal = 3;
const short farEndReceiverFailure = 4;
const short framingError = 5;
const short lossOfFrame = 6;
const short lossOfPointer = 7;
const short lossOfSignal = 8;
const short payloadTypeMismatch = 9;
const short transmissionError = 10;
const short remoteAlarmInterface = 11;
const short excessiveBER = 12;
const short pathTraceMismatch = 13;
const short unavailable = 14;
const short signalLabelMismatch = 15;
const short lossOfMultiFrame = 16;
const short receiveFailure = 17;
const short transmitFailure = 18;
const short modulationFailure = 19;

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 131

const short demodulationFailure = 20;
const short broadcastChannelFailure = 21;
const short connectionEstablishmentError = 22;
const short invalidMessageReceived = 23;
const short localNodeTransmissionError = 24;
const short remoteNodeTransmissionError = 25;
const short routingFailure = 26;

// Values 27-50 are reserved for communications alarm related
// probable causes

// The following are used with equipment alarms.
const short backplaneFailure = 51;
const short dataSetProblem = 52;
const short equipmentIdentifierDuplication = 53;
const short externalIFDeviceProblem = 54;
const short lineCardProblem = 55;
const short multiplexerProblem = 56;
const short neIdentifierDuplication = 57;
const short powerProblem = 58;
const short processorProblem = 59;
const short protectionPathFailure = 60;
const short receiverFailure = 61;
const short replaceableUnitMissing = 62;
const short replaceableUnitTypeMismatch = 63;
const short synchronizationSourceMismatch = 64;
const short terminalProblem = 65;
const short timingProblem = 66;
const short transmitterFailure = 67;
const short trunkCardProblem = 68;
const short replaceableUnitProblem = 69;
/** an equipment alarm to be issued if the system detects that the
real time clock has failed. */
const short realTimeClockFailure = 70;
const short antennaFailure = 71;
const short batteryChargingFailure = 72;
const short diskFailure = 73;
const short frequencyHoppingFailure = 74;
const short iODeviceError = 75;
const short lossOfSynchronisation = 76;
const short lossOfRedundancy = 77;
const short powerSupplyFailure = 78;
const short signalQualityEvaluationFailure = 79;
const short tranceiverFailure = 80;

// Values 81-100 are reserved for equipment alarm related
// probable causes.

// The following are used with environmental alarms.
const short airCompressorFailure = 101;
const short airConditioningFailure = 102;
const short airDryerFailure = 103;
const short batteryDischarging = 104;
const short batteryFailure = 105;
const short commercialPowerFailure = 106;
const short coolingFanFailure = 107;
const short engineFailure = 108;
const short fireDetectorFailure = 109;
const short fuseFailure = 110;
const short generatorFailure = 111;
const short lowBatteryThreshold = 112;
const short pumpFailure = 113;
const short rectifierFailure = 114;
const short rectifierHighVoltage = 115;
const short rectifierLowFVoltage = 116;
const short ventilationsSystemFailure = 117;
const short enclosureDoorOpen = 118;
const short explosiveGas = 119;

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 132 ATM Forum Technical Committee

const short fire = 120;
const short flood = 121;
const short highHumidity = 122;
const short highTemperature = 123;
const short highWind = 124;
const short iceBuildUp = 125;
const short intrusionDetection = 126;
const short lowFuel = 127;
const short lowHumidity = 128;
const short lowCablePressure = 129;
const short lowTemperature = 130;
const short lowWater = 131;
const short smoke = 132;
const short toxicGas = 133;
const short coolingSystemFailure = 134;
const short externalEquipmentFailure = 135;
const short externalPointFailure = 136;

// Values 137-150 are reserved for environmental alarm related
// probable causes.

// The following are used with Processing error alarms.
const short storageCapacityProblem = 151;
const short memoryMismatch = 152;
const short corruptData = 153;
const short outOfCPUCycles = 154;
const short sfwrEnvironmentProblem = 155;
const short sfwrDownloadFailure = 156;

/** A processing error alarm to be issued if the system detects
that it has lost the time in the real time clock but the clock
itself is working. This could happen e.g. during a power cut in a
small NE which does not have battery backup for the real time
clock. */

const short lossOfRealTime = 157;

/** A processing error alarm to be issued after the system has
reinitialised. This will indicate to the management systems that
the view they have of the managed system may no longer be valid.
Usage example: The managed system issues this alarm after a
reinitialization with severity warning to inform the management
system about the event. No clearing notification will be sent. */

const short reinitialized = 158;
const short applicationSubsystemFailure = 159;
const short configurationOrCustomisationError = 160;
const short databaseInconsistency = 161;
const short fileError = 162;
const short outOfMemory = 163;
const short softwareError = 164;
const short timeoutExpired = 165;
const short underlayingResourceUnavailable = 166;
const short versionMismatch = 167;

// Values 168-200 are reserved for processing error alarm related probable
// causes.

const short bandwidthReduced = 201;
const short congestion = 202;
const short excessiveErrorRate = 203;
const short excessiveResponseTime = 204;
const short excessiveRetransmissionRate = 205;
const short reducedLoggingCapability = 206;
const short systemResourcesOverload = 207;

}; // end of ProbableCauseConst module

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 133

/** This module contains the constant values defined for the
ProblemCause UID. These values were borrowed from M.3100. */

module ProblemCauseConst {
const string moduleName = "ITU_M3100::ProblemCauseConst";

/* An additional value, unknown = -1, that is not in M.3100 was
added here because M.3100 defines problem cause as a choice
between an integer (as above) or null, for unknown. Instead of
the null choice, unknown problems will be represented by an
integer value of -1. Since UID values are signed short, -1 is
acceptable. */

const short unknown = -1;
const short noSuchTpInstance = 0;
const short noSuchGtpInstance = 1;
const short noSuchTpPoolInstance = 2;
const short mismatchingTpInstance = 3;
const short mismatchingGtpInstance = 4;
const short partOfGtp = 5;
const short involvedInCrossConnection = 6;
const short memberOfTpPool = 7;
const short alreadyMemberOfGtp = 8;
const short noTpInTpPool = 9;
const short noMoreThanOneTpIsAllowed = 10;
const short noMoreThanTwoTpsAreAllowed = 11;

/** alreadyConnected is used to indicate the two termination
points requested to be cross-connected are already cross-connected
versus involvedInCrossConnection is used to indicate one or more
termination points are cross-connected but not to each other. */

const short alreadyConnected = 12;
const short notAlreadyConnected = 13;

}; // end of ProblemCauseConst module

/** This module contains the constant values defined for the
SignallingCapability UID. These values were borrowed from M.3100
(M.3100 defines this as an extensible enumerated type, which does not
transfer well to IDL. So, the "UID" approach is used instead.) */

module SignallingCapabilityConst {
const string moduleName = "ITU_M3100:SignallingCapabilityConst";

const short isup = 0;
const short isup92 = 1;
const short ccittNo5 = 2;
const short r2 = 3;
const short ccittNo6 = 4;
const short tup = 5;

}; // end of SignallingCapabilityConst module

}; // end of ITU_M3100Const module

#endif // end of ifndef _ITU_M3100Const_idl_

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 134 ATM Forum Technical Committee

Appendix C: Interim Log Service IDL Definitions

The Telecom Log Service is not fully implemented by some ORB vendors, but its functionality is required for the
approach used in this document. Use of the OMG Telecom Log Service is preferred to the use of this Appendix C.
IDL is provided in this appendix for a LogManager module that can be used without a fully implemented log
service. This IDL is intended for use in conjunction with the IDL provided elsewhere in this document.

#ifndef _atmf_logmanager_idl_
#define _atmf_logmanager_idl_

#include "NetMgmt.idl"

module atmf_logmanager
{
const string moduleName = "atmf_logmanager";

/**
Types imported from NetMgmt
*/

typedef NetMgmt::AdministrativeState AdministrativeState;
typedef NetMgmt::MOID MOID;
typedef NetMgmt::MOIDList MOIDList;
typedef NetMgmt::Name NameType;
typedef NetMgmt::OperationalState OperationalState;
typedef NetMgmt::GeneralizedTime GeneralizedTime;

/**
Exceptions imported from NetMgmt are ItemNotFound, NotSupported, and ObjectFailure.
Interfaces imported from Netmgmt are ManagedObject.

Additional typedefs and structs are provided here.
*/

typedef unsigned long AtmNEID;
typedef unsigned short OldStateAttributeValue;
typedef unsigned short NewStateAttributeValue;
typedef boolean BackupStatus;
typedef string SpecificProblems;
typedef string BackupEntity;
typedef string AdditionalText;
typedef string ProposedRepairActions;
typedef GeneralizedTime LoggingTime;
typedef GeneralizedTime FirstLoggingTime;
typedef GeneralizedTime LastLoggingTime;

enum LogRecordType
{

managedEntityCreationLogRecord,
managedEntityDeletionLogRecord,
stateChangeLogRecord,
attributeValueChangeLogRecord,
alarmRecord

};

enum LogFullAction
{

wrap_around,
halt

};
/**
Enumerated parameter values are defined for the genericTroubleDescription corresponding to
the 38 values found in Table 2-7 of [2].
*/

enum GenericTroubleDescription

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 135

{
gtdais, //Alarm Indication Signal
gtdlcd, //Loss of Cell Delineation
gtdlof, //Loss of Frame
gtdlop, //Loss of Pointer
gtdlos, //Loss of Signal
gtdptm, //Payload Type Mismatch
gtdte, //Transmission Error
gtdpath, //Path Trace Mismatch
gtdrdi, //Remote Defect indication
gtdslm, //Signal Label Mismatch
gtdsrsu, //Signaling Route Set Unavailable
gtdbpf, //Back-plane Failure
gtdcee, //Call Establishment Error
gtdcong, //Congestion
gtdeidp, //External Interface Device Problem
gtdlcp, //Line Card Problem
gtdmxp, //Multiplexer Problem
gtdpower, //Power Problem
gtdproc, //Processor Problem
gtdppf, //Protection Path Failure
gtdrecv, //Receiver Failure
gtdunit, //Replaceable Unit Missing
gtdunitp, //Replaceable Unit Problem
gtdunitt, //Replaceable Unit Type Mismatch
gtdtime, //Timing Problem
gtdxmit, //Transmitter failure
gtdtrk, //Trunk Card Problem
gtdstor, //Storage Capacity Problem
gtdmemm, //Memory Mismatch
gtdcrpt, //Corrupt Data
gtdsofte, //Software Environment Problem
gtdsoftd, //Software Download Failure
gtdversn, //Version Mismatch
gtdfan, //Cooling Fan Failure
gtddoor, //Enclosure Door Open
gtdfuse, //Fuse Failure
gtdtemp, //High Temperature
gtdven //Vendor Specific

};

enum Severity
{

critical,
major,
minor,
warning,
indeterminate,
cleared

};

enum StateAttributeType
{

operational_state,
administrative_state

};

typedef NameType LogID;
typedef NameType AlarmRecordID;
typedef NameType ManagedEntityID;
typedef NameType StateChangeLogRecordID;
typedef NameType AttributeValueChangeLogRecordID;
typedef NameType ManagedEntityCreationLogRecordID;
typedef NameType ManagedEntityDeletionLogRecordID;

struct Log
{

LogID logid;

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 136 ATM Forum Technical Committee

AtmNEID neid;
AdministrativeState adminstate;
string discriminatorConstruct;
LogRecordType logrectype;
LogFullAction fullaction;
OperationalState operstate;

};

struct AlarmRecord
{

AlarmRecordID almrid;
LoggingTime time;
ManagedEntityID meid;
GenericTroubleDescription trbldesc;
string specificProblems;
Severity sev;
BackupStatus bcstatus;
BackupEntity bcentity;
AdditionalText addltext;
ProposedRepairActions repairaction;

};

struct StateChangeLogRecord
{

StateChangeLogRecordID sclrid;
LoggingTime time;
ManagedEntityID meid;
StateAttributeType attrtype;
OldStateAttributeValue oldsav;
NewStateAttributeValue newsav;

};

struct AttributeValueChangeLogRecord
{

AttributeValueChangeLogRecordID avclrid;
LoggingTime time;
ManagedEntityID meid;
StateAttributeType attrtype;
OldStateAttributeValue oldsav;
NewStateAttributeValue newsav;

};

struct ManagedEntityCreationLogRecord
{

ManagedEntityCreationLogRecordID meclrid;
LoggingTime time;
ManagedEntityID meid;

};

struct ManagedEntityDeletionLogRecord
{

ManagedEntityDeletionLogRecordID medlrid;
LoggingTime time;
ManagedEntityID meid;

};

typedef sequence<LogID> LogIDList;
typedef sequence<AlarmRecordID> AlarmRecordIDList;
typedef sequence<StateChangeLogRecordID>

StateChangeLogRecordIDList;
typedef sequence<AttributeValueChangeLogRecordID>

AttributeValueChangeLogRecordIDList;
typedef sequence<ManagedEntityCreationLogRecordID>

ManagedEntityCreationLogRecordIDList;
typedef sequence<ManagedEntityDeletionLogRecordID>

ManagedEntityDeletionLogRecordIDList;
typedef sequence<AlarmRecord> AlarmRecordList;
typedef sequence<StateChangeLogRecord> StateChangeLogRecordList;

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 137

typedef sequence<AttributeValueChangeLogRecord>
AttributeValueChangeLogRecordList;

typedef sequence<ManagedEntityCreationLogRecord>
ManagedEntityCreationLogRecordList;

typedef sequence<ManagedEntityDeletionLogRecord>
ManagedEntityDeletionLogRecordList;

interface LogManager : NetMgmt::ManagedObject
{
void getLogIDs

(out LogIDList logIDList)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported);

void getLog
(in LogID logID,
out Log log,
out AlarmRecordIDList arIDLIST,
out StateChangeLogRecordIDList sclrIDList,
out AttributeValueChangeLogRecordIDList avclrIDList,
out ManagedEntityCreationLogRecordIDList meclrIDList,
out ManagedEntityDeletionLogRecordIDList medlrIDList)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported,

NetMgmt::ItemNotFound);
/**
Each of the following five methods returns only those records with LoggingTime between
FirstLoggingTime and LastLoggingTime. If FirstLoggingTime is not specified, then all records
with LoggingTime prior to LastLoggngTime are returned. If LastLogginTime is not specified,
then all records with LoggingTime after FirstLoggingTime are returned.
*/

void getAlarmRecords
(in AlarmRecordIDList arIDList,
in FirstLoggingTime firstlogtime,
in LastLoggingTime lastlogtime,
out AlarmRecordList arList)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported,

NetMgmt::ItemNotFound);

void getStateChangeLogRecords
(in StateChangeLogRecordIDList sclrIDList,
in FirstLoggingTime firstlogtime,
in LastLoggingTime lastlogtime,
out StateChangeLogRecordList sclrList)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported,

NetMgmt::ItemNotFound);

void getAttributeValueChangeLogRecords
(in AttributeValueChangeLogRecordIDList avclrIDList,
in FirstLoggingTime firstlogtime,
in LastLoggingTime lastlogtime,
out AttributeValueChangeLogRecordList avclrList)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported,

NetMgmt::ItemNotFound);

void getManagedEntityCreationLogRecords
(in ManagedEntityCreationLogRecordIDList meclrIDList,
in FirstLoggingTime firstlogtime,
in LastLoggingTime lastlogtime,
out ManagedEntityCreationLogRecordList meclrList)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported,

NetMgmt::ItemNotFound);

void getManagedEntityDeletionLogRecords
(in ManagedEntityDeletionLogRecordIDList medlrIDList,
in FirstLoggingTime firstlogtime,
in LastLoggingTime lastlogtime,
out ManagedEntityDeletionLogRecordList medlrList)
raises (NetMgmt::ObjectFailure, NetMgmt::NotSupported,

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 138 ATM Forum Technical Committee

NetMgmt::ItemNotFound);

}; // interface LogManager

}; // end of module atmf_logmanager
#endif // _atmf_logmanager_idl_

The following table demonstrates the support of relevant M4 Network View Logical MIB objects, specifically
alarmRecord and log, with the IDL objects provided in this appendix. It is similar in nature to Table 3-1.

Table C-1. M4 Network View Logical MIB to CORBA IDL Mapping for Appendix C

M4 Logical MIB
Managed Entity

M4 Logical MIB
Attribute/Operation

CORBA IDL
Object

CORBA IDL
Attribute/Operation

Comment

Managed Entity ID AlarmRecordID
Logging Time LoggingTime
Managed Entity ManagedEntityID
Generic Trouble
Description

GenericTroubleDescri
ption

Specific Problems specificProblems
Severity Severity

Back-up Status BackupStatus
Additional Text AdditionalText
Proposed Repair Actions ProposedRepairAction

s

alarmRecord

No actions have been
defined.

getAlarmRecords

Managed Entity ID LogID

No NE view attribute AtmNEID Needed for NW view
Administrative State AdministrativeState

Discriminator Construct discriminatorConstru
ct

Log Record Types
values are:
Managed Entity Creation
 Log Record,
Managed Entity Deletion
 Log Record,
State Change Log Record,
Attribute Value Change
 Log Record,
Alarm Record

LogRecordTypes Detailed by the following
structs:
ManagedEntityCreationL
ogRecord
ManagedEntityDeletionL
ogRecord
StateChangeLogRecord
AttributeValueChangeLo
gRecord
AlarmRecord

Log Full Action LogFullAction

Operational State OperationalState

log

No actions have been
defined.

LogManager

getLogIDs
getLog

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 139

Appendix D: Object Naming Guidelines
This appendix provides suggested object naming guidelines for the M4 Network View CORBA IDL MIB. Such
guidelines will promote EMS and NMS interoperability. The naming guidelines, in the table below, provide a
name syntax for each CORBA object. The name syntax should be used as the id of the name component of the
object.

Syntax:
"text" – text inside quotation should appear as is
| - means OR
<type> - identifies a type or category
[optional item] – indicates an optional item
{repetitive item} – indicates an item that may appear zero or more times

Defined Types used:
<String> ::= {any_character}
<VP_or_VC > ::= "VP" | "VC"
<NetworkCTPId_or_LinkEndId> ::= "NetworkCTPId=" | "LinkEndId="
<Integer-VPI> ::= <Integer>
<null> - indicates a null string

Note: asterisk "*" is used as a field delimiter.

Table D-1. Object Naming Guidelines

Object Name Syntax (NameComponent.id for object)

ATMF_M4NW:AtmLink "AtmLndLayer="<VP_or_VC>"*"
"ManagedElementId="<String>"*"
"Bay="<String>"*"
"Shelf="<String>"*"
"Slot="<String>"*"
"Port="<String>"*"
"AorZLinkEnd="<String>

ATMF_M4NW:AtmLinkEnd "AtmLndLayer="<VP_or_VC>"*"
"ManagedElementId="<String>"*"
"Bay="<String>"*"
"Shelf="<String>"*"
"Slot="<String>"*"
"Port="<String>"*"
"AtmLinkEndId="<String>

ATMF_M4NW:AtmLinkEndPhy "AtmLndLayer="<VP_or_VC>"*"
"ManagedElementId="<String>"*"
"Bay="<String>"*"

af-nm-0166.000 CORBA Specification for M4 Interface: Network View
August 2001

Page 140 ATM Forum Technical Committee

Object Name Syntax (NameComponent.id for object)

"Shelf="<String>"*"
"Slot="<String>"*"
"Port="<String>"*"
"AtmLinkEndId="<String>

ATMF_M4NW:AtmLND "AtmLndLayer="<VP_or_VC>
ATMF_M4NW:AtmNetworkCTP "AtmLndLayer="<VP_or_VC>"*"

"ManagedElementId="<String>"*"
"Bay="<String>"*"
"Shelf="<String>"*"
"Slot="<String>"*"
"Port="<String>"*"
"AtmLinkEndId="<String>"*"
"ATMNetworkCTPId="<Integer-VPI>["/"<Integer-VCI>]

ATMF_M4NW:AtmNetworkTTP "AtmLndLayer="<VP_or_VC>"*"
"ManagedElementId="<String>"*"
"Bay="<String>"*"
"Shelf="<String>"*"
"Slot="<String>"*"
"Port="<String>"*"
"AtmLinkEndId="<String>"*"
"ATMNetworkTTPId="<Integer-VPI>["/"<Integer-VCI>]

ATMF_M4NW:AtmSNC "AtmLndLayer="<VP_or_VC>"*"
"ManagedElementId="<String>"*"
"Bay="<String>"*"
"Shelf="<String>"*"
"Slot="<String>"*"
"Port="<String>"*"
"AorZLinkEndId="<String>"*"
"AorZNetworkCTPId="<Integer-VPI>["/"<Integer-VCI>]

ATMF_M4NW:AtmSubnetwork "AtmLndLayer="<VP_or_VC>"*"
"SubnetworkId="{"Root" | <String>}

ATMF_M4NW:AtmNetworkAccessProfile "AtmLndLayer="<VP_or_VC>"*"
"SubnetworkId="{<String> | <null>}"*"
"ProfileName="<String>

ATMF_M4NW:AtmNetworkAccessProfile
Factory

"EmsName="<String>"*"
"FactoryName="<String>

ATMF_M4NW:AtmTrafficDesc "AtmLndLayer="<VP_or_VC>"*"
"SubnetworkId="{<String> | <null>}"*"
"ProfileName="<String>

ATMF_M4NW:AtmTrafficDescABR "AtmLndLayer="<VP_or_VC>"*"
"SubnetworkId="{<String> | <null>}"*"
"ProfileName="<String>

ATMF_M4NW:AtmTrafficDescCBR "AtmLndLayer="<VP_or_VC>"*"
"SubnetworkId="{<String> | <null>}"*"
"ProfileName="<String>

ATMF_M4NW:AtmTrafficDescVBR "AtmLndLayer="<VP_or_VC>"*"
"SubnetworkId="{<String> | <null>}"*"
"ProfileName="<String>

ATMF_M4NW:AtmTrafficDescUBR "AtmLndLayer="<VP_or_VC>"*"
"SubnetworkId="{<String> | <null>}"*"
"ProfileName="<String>

ATMF_M4NW:AtmTrafficDescFactory "EmsName="<String>"*"
"FactoryName="<String>

ATMF_M4NW:Network "NetworkName="<String>
ATMF_M4NW: LatestOccurrenceLog "NetworkName="<String>"*"

"LatestOccurrenceLogName="<String>
ATMF_M4NW:CurrentDataFactory "EmsName="<String>"*"

"FactoryName="<String>

CORBA Specification for M4 Interface: Network View af-nm-0166.000
August 2001

ATM Forum Technical Committee Page 141

Object Name Syntax (NameComponent.id for object)

ATMF_M4NW:ThresholdData "EmsName="<String>"*"
"ThresholdDataName="<String>

ATMF_M4NW:
CellProtocolMonCurrentData

"LinkEndId="<String>"*"
"CurrentDataName="<String>

ATMF_M4NW:
CellProtocolMonHistoryData

"LinkEndId="<String>"*"
"HistoryDataName="<String>

ATMF_M4NW:AtmTrafficLoadCurrentData <NetworkCTPId_or_LinkEndId><String>"*"
"CurrentDataName="<String>

ATMF_M4NW:AtmTrafficLoadHistoryData <NetworkCTPId_or_LinkEndId><String>"*"
"HistoryDataName="<String>

ATMF_M4NW:
CongDiscardCurrentData

"LinkEndId="<String>"*"
"CurrentDataName="<String>

ATMF_M4NW:
CongDiscardHistoryData

"LinkEndId="<String>"*"
"HistoryDataName="<String>

ATMF_M4NW:
TcAdaptProtMonCurrentData

"LinkEndId="<String>"*"
"CurrentDataName="<String>

ATMF_M4NW:
TcAdaptProtMonHistoryData

"LinkEndId="<String>"*"
"HistoryDataName="<String>

ATMF_M4NW:
UpcNpcDisagreementsCurrentData

"NetworkCTPId="<String>"*"
"CurrentDataName="<String>

ATMF_M4NW:
UpcNpcDisagreementsHistoryData

"NetworkCTPId="<String>"*"
"HistoryDataName="<String>

ATMF_M4NW: PmOamCurrentData "NetworkCTPId="<String>"*"
"CurrentDataName="<String>

ATMF_M4NW: PmOamHistoryData "NetworkCTPId="<String>"*"
"HistoryDataName="<String>

