
Performance work in the libstdc++-v3 project

Paolo Carlini
SUSE

pcarlini@suse.de

Abstract

The GNU Standard C++ Library v3 is a long
term project aimed at implementing a fully
conforming C++ runtime library, as mandated
by the ISO 14882 Standard. Whereas during
the first years the focus was mostly on fea-
tures, recently, after my appointment as one
of its official maintainers, much more atten-
tion is devoted to performance issues and con-
tributions in the area are particularly encour-
aged and appreciated. In this paper the main
approaches being followed are reviewed (e.g.,
hand-coding, exploitation of glibc extensions,
caching), together with the tools used, and a
number of satisfying results obtained so far,
particularly, in the iostreams and locales chap-
ters. Quantitative comparisons on x86-linux
with the Icc/Dinkumware offer will be also
presented, based on code snippets provided
by the new performance testsuite and distilled
from actual performance PRs. In the final
section, a better integration with the compiler
team is argued for and emphasized.

1 Introduction

Today,circa 2004, the libstdc++-v3 project de-
livers in a typical GCC distribution more than
420000 lines of code, including 1350 regres-
sion testcases and a growing performance test-
suite. Many different architectures, both 32-bit
and 64-bit, are fully supported, on many differ-
ent OSes, from x86 to s390x and from Linux

to Darwin.

The project was started in 1998 and release af-
ter release the “degree of conformance” to the
ISO C++ Standard is becoming very high, with
many features implemented satisfactorily and
quickly stabilizing.

Indeed, an analysis of the 3.4.0 Release Notes
reveals that major changes, that first blush may
seem conformance related (e.g., UTF-8 sup-
port, generic character traits) in fact should be
strictly speaking categorized as QoI improve-
ments.

On the other hand, the users are becoming
rather demanding as far as performance is con-
cerned. Among the possible causes: the good
speed in some areas (e.g., I/O) of the old,
pre-standard, C++ runtime library; new offers,
like Icc/Dinkumware, on the market and eas-
ily available on the widespread x86-linux plat-
form. More generally, does not seem obvious
anymore that library functions that have a C li-
brary counterpart must be necessarily slower:
people want a complete “object oriented” ap-
plication not renouncing to performance.

Also, some new facilities offered by the ISO
Standard are recently gaining larger popular-
ity (e.g., locale) and real world applications are
able to emphasize weaknesses that went un-
noticed to the implementors, naturally caring
more about conformance, in the first place.

The main focus of the work is therefore slowly
changing and the purpose of this paper is dis-



18 • GCC Developers’ Summit

cussing how, using which methods, and ex-
ploiting which instruments. Of course, one
of its main objectives is soliciting feedback
and opening a discussion on such topics. The
first part presents sort-of a chronology of the
most relevant recent achievements1, spanning
the last year or so: it represents also a nice oc-
casion to thank some of the most generous con-
tributors. Then, three items will be discussed
more throughly to convey a few specific, gen-
eral points. In the last part, moving from a re-
cent episode, a better integration with the com-
piler team will be wished.

2 A Chronology

Necessarily, there is a good amount of “fuzzi-
ness” in this type of historical reconstruction:
many important contributions went in only af-
ter a long discussion, or piecewise, during a
few months. Most of the changes presented be-
low are only in 3.4 (and mainline, of course),
but, also due to the above mentioned reasons,
not all the performance related improvements
in the current release branch will be exhaus-
tively listed.

Output of integers For GCC 3.3 Jerry Quinn
rewrote from scratch the code formatting
integer types for output, avoiding going
throughsprintf for performance sake:
probably for the first time, the imple-
mentation interpreted non-trivially one of
those typical “as if” specifications present
in the Standard.

Separate synchedfilebuf In this case, it
could be said that a speed gain has been
obtained as a (very welcome) by product:
Pétur Runólfsson separate synched filebuf

1If not otherwise indicated, all the timings are rel-
ative to a P4-2400 machine, linux2.4, glibc-cvs, -O2,
Icc8.0 Build 20040412Z.

improved remarkably the conformance of
the library in the interactions with C stdio
(e.g., cin/stdin). Anyway, as a matter of
fact, cout.rdbuf()->sputc(’a’)
became for instance about three times
faster.

Numpunct cache After some initial attempts
during GCC 3.3 lifetime, finally GCC 3.4
exploits caching for formatted I/O: this
important issue will be discussed in detail
below. In any case, formatted output of
integer types is now three time faster than
in GCC 3.2.3 (Table 1).

GCC 3.2.3 14.590u 0.010s 0:14.67 99.5%
GCC 3.3.3 4.780u 0.010s 0:04.80 99.7%
GCC 3.4.0 4.160u 0.010s 0:04.19 99.5%
Icc8.0 10.430u 0.020s 0:10.48 99.7%

Table 1: Output of ints from 0 to 9999999 to
/dev/null

Empty string speedup At the beginning of
2003, Nathan Myers, the original author
of v3 basic_string class, noticed that
the multi-processor bus contention can be
reduced by comparing addresses first, and
never touching the reference count of the
empty object. The final patch has been
committed in time for 3.4 and improves
remarkably the performance on single-
processor systems too: Table 2 presents
satisfying timings for a simple snippet
shown in Figure 1.

for (int i = 0; i < 2000; ++i)
std::string a[100000];

Figure 1: Creating and immediately destroying
lots ofstring objects

Non-unified filebuf According to the C++
Standard, aseek is needed in order to
switch from read mode to write mode (and



GCC Developers’ Summit 2004 • 19

GCC 3.3.3 20.890u 0.020s 0:21.01 99.5%
GCC 3.4.0 0.790u 0.000s 0:00.79 100.0%
Icc8.0 17.200u 0.030s 0:17.33 99.4%

Table 2: Execution times for the code dis-
played in Figure 1

vice versa) during I/O. This is a very rea-
sonable requirement, by the way inher-
ited from the C Standard. However, the
old implementation, as a (very puzzling)
QoI feature, had relaxed it: unfortunately,
the upshot was that the get area and put
area pointers had always to be updated
in a lockstep way. Figure 2 compares
GCC 3.3 and GCC 3.4 code forsputc :
the former called_M_out_cur_move
instead of simply bumping the put area
pointer by way ofpbump. Additionally,
the_M_out_buf_size helper was also
needed: as a result the function was not
amenable to inlining anymore. The same
happened of course forsbumpc and else-
where. The performance suffered conse-
quently as Table 3 demonstrates.

GCC 3.3.3 42.440u 0.290s 0:42.91 99.5%
GCC 3.4.0 4.080u 0.300s 0:04.39 99.7%
Icc8.0 11.080u 0.360s 0:11.45 99.9%
‘C’ (unlocked) 6.590u 0.280s 0:06.90 99.5%

Table 3: Char-by-char copy of 1 GB from
/dev/zero to /dev/null

Fixing this required consistent, in-
vasive changes tostreambuf , and
stringbuf but eventually enabled a
much simpler maintenance and paved the
way to the UTF-8 support.

Input of integers The code parsing integers
could be improved rather easily, thanks
to thenumpunct caching mechanism al-
ready in place and functioning well. In-
terestingly, though, in this area the library

sports some design choices not shared by
other implementations (whereas consis-
tent with the letter of the standard!), to be
discussed below.

Table-basedctype In order to obtain fast
time_get and time_put facets (not
suited for caching, due to their special
requirements), and also for free standing
use,ctype functions, such asnarrow ,
widen , and is , are now table-based.
Thanks to a sophisticated solution devised
by Jerry and refined on the discussion list,
for char type it is even avoided the vir-
tual function call cost. The improvement
is more visible forwchar_t , however:
once more, close to an order of magnitude
with respect to the previous generation.

Codecvt rewrite During GCC 3.4 Stage 1
Pétur rewrote thecodecvt facet, obtain-
ing a very good support of encoding-zero
(e.g., UTF-8) locales too. In the process,
he provided a rather complete set of test-
cases. Finally, as will be discussed in the
second part, performance has been also
improved, thus delivering for the first time
both correct and efficient support for a
wide set of locales.

Other string improvements In Item 29 of
his latest book,Effective STL, Scott Mey-
ers proposes an elegant idiom for copy-
ing a text file into astring object (Fig-
ure 3).

string Data(istreambuf_iterator <char >(File),

istreambuf_iterator <char >());

Figure 3: Istreambuf_iterators usage

In order for this proposal to be effective,
the constructor from a pair ofinput_
iterator s must be efficient: a satis-
factorily fix involved redesigning the lat-
ter to exploit a centralized growth fa-



20 • GCC Developers’ Summit

cility, previously not available at con-
struction time. Only in 3.4.1-pre is
present another unrelated improvement,
very simple but appreciable in almost ev-
ery use of thestring class2. It consists
in special-casing single char changes to
avoid the generaltraits::copy and
traits::assign , which end up call-
ing C library functions (Table 4).

GCC 3.3.3 1.150u 0.040s 0:01.19 100.0%
GCC 3.4.0 0.670u 0.070s 0:00.74 100.0%
GCC 3.4.1 pre 0.220u 0.060s 0:00.28 100.0%
V2 0.710u 0.030s 0:00.74 100.0%

Table 4: Ten millions ofstr.append(1,

’x’)

Monetary facets Extending thenumpunct
caching work tomoneypunct turned
out to be easy. However, in the pro-
cess, a few bugs and other opportuni-
ties for performance surfaced. Some are
certainly straightforward (e.g., reordering
operations onstring objects to avoid
reallocations), but, nevertheless, the over-
all effect is quite noticeable. For in-
stance, Table 5 shows the time it takes to
read one million of times a big monetary
amount, i.e., 100,000,000,000.00, from an
istringstream into a long double.

GCC 3.3.3 10.610u 0.020s 0:10.69 99.4%
GCC 3.4.0 4.110u 0.000s 0:04.12 99.7%
GCC 3.4.1 pre 2.910u 0.010s 0:02.93 99.6%
Icc8.0 3.280u 0.000s 0:03.29 99.6%

Table 5: A simplemoney_get benchmark

The difference between GCC 3.4.0 and
3.4.1-pre is entirely due to the just-
mentioned simple tweak to thestring

2Internally to the library too, as will be quantified in
the next item.

class: a similar effect can be measured in
the formatted input of floating point types,
much more used today.

Locale functions Probably, a large number
of applications doesn’t have these func-
tions as a performance bottleneck. On
the other hand, the way names were pro-
cessed used to be rather dumb, due to
the encoding adopted for “simple” named
locales—that is, roughly, having all the
categories named the same, sayde_DE.
As pointed out by library-friend Martin
Sebor, most probably the sections of the
standard having to do with combining
named locales (22.1.1.2, 22.1.1.3) will be
amended: therefore the real challenge was
designing a new encoding ready for the
most likely future changes. Table 6 shows
the time needed to compare ten millions
of times viaoperator== two “simple”
locales.

GCC 3.3.3 13.410u 0.000s 0:13.45 99.7%
GCC 3.4.0 11.640u 0.000s 0:11.67 99.7%
GCC 3.5.0 exp 0.220u 0.000s 0:00.22 99.9%
Icc8.0 0.850u 0.000s 0:00.85 99.9%

Table 6: A simple locale::operator==

benchmark

Getline speedupsA wide ranging debate
ensued to the submission of PR 15002,
with the participation of Matt Austern,
among others. Both thegetline s had
to be improved: the member taking a
char_type* and astreamsize and
the function taking anistream and
a string . An elegant solution, de-
vised by Pétur, could be adopted only
for the former, since it exploitsprotected
streambuf members. It became clear
that, ideally, we should have two different
versions of those functions: the fast ver-
sion, which takes advantage of friendship



GCC Developers’ Summit 2004 • 21

and only works forchar andwchar_t ,
and a slow version that goes through the
public interface. For the moment, pro-
filing revealed that a large speedup could
be achieved by appending to thestring
object a chunk of each line at a time (say,
128 chars), instead of one char at a time.
Table 7 shows timings for reading 600000
lines, each 200 characters, from file, via
getline .

char_type*
GCC 3.3.3 1.700u 0.090s 0:01.80 99.6%
GCC 3.4.0 1.230u 0.070s 0:01.30 100.0%
GCC 3.4.1 pre 0.180u 0.130s 0:00.30 103.3%
Icc8.0 1.410u 0.090s 0:01.50 100.0%
string
GCC 3.3.3 15.560u 0.070s 0:15.69 99.6%
GCC 3.4.0 9.030u 0.160s 0:09.22 99.6%
GCC 3.4.1 pre 1.090u 0.110s 0:01.21 99.1%
Icc8.0 1.910u 0.120s 0:02.04 99.5%

Table 7:Getline benchmarks

3 Telling Stories

3.1 Parsing of integer types and caching

Back in February, in the occasion of some
changes to the monetary facets that were sup-
posed to be completely uncontroversial, a long
exchange started on the discussion list about
the correct way to parse monetary (and nu-
meric) quantities.

In particular, it became evident to everyone that
libstdc++-v3 is probablyalone in closely fol-
lowing the letter of 22.2.2.1.2. Most, if not
all, the other implementations are not using
widen and are not matching characters as pre-
scribed in p8: instead, in order to compute the
value of each specific digitd something equiv-
alent toc = narrow(*beg, ’*’) is first
computed, thend is given byc - ’0’ .

Indeed, this approach has its own virtues:
there is no need for caching (and the re-
lated complexities3) and an efficient table-
basednarrow is sufficient alone to obtain
good performance; moreover, this approach
solves elegantly an issue in the Standard with
the “mysterious”find function mentioned in
p8.

In fact, if the function is interpreted (rather nat-
urally) astraits::find , the serious prob-
lem ensues that anycharT , other than plain
char and wchar_t , needs an appropriate
traits<charT>::find to be available:
the Standard nowhere requires this, still clearly
mandates in Table 52 to make it possible to in-
stantiatenum_get onanycharT type4.

Interestingly, those issues are of course well
known to the LWG members, but often donot
correspond to detailed and well debated DRs.5

Anyway, GCC 3.4 provides for the first time
a generictraits class, which includes in-
deed a generictraits<charT>::find :
this leads to a complete solution characterized
by an excellent performance/conformance bal-
ance. Table 8 below compares the timings for
reading from file ten millions of integers, from
0 to 9999999.

GCC 3.3.3 41.180u 0.020s 0:41.37 99.5%
GCC 3.4.0 5.740u 0.030s 0:05.79 99.6%
Icc8.0 14.220u 0.120s 0:14.41 99.5%
V2 5.930u 0.060s 0:06.00 99.8%
Hammer 18.660u 0.040s 0:18.78 99.5%

Table 8: A simplenum_get benchmark

For 3.4, integer types parsing has been rewrit-

3Only 3.4 finally managed to have it reliably work-
ing, fast, and. . . not leaking memory!

4A POD type.
5Only DR 303 [WP] and DR 427 [Open] are relevant

and both the resolution of the former and the comment
added in Kona to the latter are clearlyagainstpreferring
narrow to widen .



22 • GCC Developers’ Summit

ten, avoidingstrtol , strtoll , and the
other C library functions previously used, in-
stead directly accumulating the result during
the parsing. Therefore, nostring objects
are involved. The hammer-branch entry is also
present in the Table in order to quantify what
could be otherwise achieved within the con-
straints of the 3.3 ABI, basically, by improving
the use of thestring s.

On the current code base,gprof reports that
about 58% of the total time is spent in the pars-
ing loop itself: not much can be done about
this, except, perhaps, avoiding an integer di-
vision, in principle not necessary.Memchr,
called by traits<char>::find , is the
second topmost entry, with about 26%: in the
future, a small ABI change could make possi-
ble detecting in advance the occurrence of triv-
ial widen s, very common indeed, then simply
using d = *beg - widen(’0’) in such
cases:traits::find would not be neces-
sary at all and the QoI would be further im-
proved. All the other entries are below 5%
and __use_cache::operator() is be-
low 1%, a reassuring check.

In any case, barring unexpected strong requests
from the users, much more effort is planned
in the area of parsing and formatting offloat-
ing pointtypes, which probably could be made
about two times faster, but this is another
story. . .

3.2 Codecvt rewrite

As already mentioned, a few months ago be-
came evident that the performance of the most
important codecvt functions, such asin ,
out , and length , was not satisfying: that
represented a major roadblock in the way of
efficient encoded I/O, otherwise made finally
possible by the redesignedfilebuf virtuals.

By the way, this problem was unfortunately no-

ticed onlymonthsafter thecodecvt rewrite,
a sad episode less likely to happen nowa-
days thanks to the new performance testsuite6,
which currently includes 30 testcases and is
quickly growing: most of the tests are distilled
from performance PRs.

Luckily, after some preliminary attempts, only
partially successful, the real fix became obvi-
ous: it involved exploitingmbsnrtowcs and
wcsnrtombs , two glibc extensions that take
an extra parameter with respect to the standard
mbsrtowcs and wcsrtombs . Indeed, ad-
mittedly, in GCC 3.3codecvt was almost
broken but already fast, thanks to the use of
the latter functions. Table 9 is relative to the
conversion of 400000 buffers, 1024 characters
each, in the C locale.

GCC 3.3.3 1.520u 0.000s 0:01.52 100.0%
GCC 3.4.0 1.650u 0.000s 0:01.65 100.0%
Icc8.0 41.670u 0.010s 0:41.85 99.5%

Table 9:Codecvt::in benchmark

The small difference between GCC 3.3.3 and
GCC 3.4.0 is entirely due to the additional call
of memchr (or wmemchr), which is used for
splitting the input (the output, respectively) in
chunks, ending in ’\0’ (or L’\0’, respectively):
each one is then processed bymbsnrtowcs
(wcsnrtombs , respectively).

The numbers obtained with Icc8.0 are typi-
cal of an implementation using for correctness
the singlechar C library functionswcrtomb
and mbrtowc : this is still happening for
libstdc++-v3 too in the so-called “generic” lo-
cale model, which doesn’t have the GNU ex-
tensions available. Discussingcodecvt is
therefore also an opportunity to clarify that the
QoI provided by the library in that model is
sometimes lower than in the GNU model. Im-
proving this situation is feasible but requires

6Established June, 2003.



GCC Developers’ Summit 2004 • 23

more help from people on platforms not based
on glibc, hereby strongly solicited!

4 The Weird Loop, Outlook

An interesting feature of the C++cmath and
complex facilities is the presence of addi-
tional pow overloads forintegerexponent, not
present in the C Standard, that, in principle at
least, enable a wide range of additional op-
portunities for optimization. The library im-
plements those overloads using a function that
computes the power via the well known “Rus-
sian peasant algorithm” (Figure 4) which re-
quires onlyO(log n) multiplications.

template <typename _Tp >

inline _Tp

__cmath_power(_Tp __x, unsigned int __n)

{

_Tp __y = __n % 2 ? __x : 1;

while (__n �= 1)

{

__x = __x ∗ __x;

if (__n % 2)

__y = __y ∗ __x;

}

return __y;

}

Figure 4: Helper function used bypow

As evident from the actual code, the loop is
very simple but nonetheless characterized by a
non-linear induction variable, not handled un-
til a few months ago neither by the old unroller
nor by the new one, present in the lno-branch
and actively developed by Zdenek Dvorak and
others.

“Officially” Zdenek considered non-linear IVs
rare and low priority7, but actually he was just

7See the audit trail of PR 11710.

looking for an interesting example of applica-
tion, nothing more! In a matter offewweeks a
complete framework for canonical IVs creation
was ready and beautifully effective: in it, loops
such as the above can be fully unrolled in case
of a constant__n thus leading to justperfect
assembly.

Besides the technical details of the episode—
who knows, perhaps by the time the lno-branch
is merged the library will not use the very same
algorithm—its lesson seems definitely an invi-
tation to more frequent and strict exchanges be-
tween the library and compiler people.

Acknowledgments

Many thanks go to SUSE for the enthusiastic
support of my work; to Benjamin Kosnik, who
trusted and encouraged me back in 2001 (and
still does!); to Nathan “Less is More” Myers, a
constant source of inspiration; to all my Italian
friends, especially a little smiling hamster (“)



24 • GCC Developers’ Summit

_M_out_buf_size()

{

off_type __ret = 0;

if (_M_out_cur)

if (_M_out_beg == _M_buf)

__ret = (_M_out_beg + _M_buf_size

− _M_out_cur)

else

__ret = _M_out_end − _M_out_cur;

return __ret;

}

_M_out_cur_move(off_type __n)

{

bool __testin = _M_in_cur;

_M_out_cur += __n;

if (__testin && _M_buf_unified)

_M_in_cur += __n;

if (_M_out_cur > _M_out_end)

{

_M_out_end = _M_out_cur;

if (__testin)

_M_in_end += __n;

}

}

sputc(char_type __c)

{

int_type __ret;

if (_M_out_buf_size())

{

∗_M_out_cur = __c;

_M_out_cur_move(1);

__ret = traits_type::to_int_type(__c);

}

else

__ret = this →overflow(

traits_type::to_int_type(__c));

return __ret;

}

(a) GCC 3.3

sputc(char_type __c)

{

int_type __ret;

if (this →pptr() < this →epptr())

{

∗this →pptr() = __c;

this →pbump(1);

__ret = traits_type::to_int_type(__c);

}

else

__ret = this →overflow(

traits_type::to_int_type(__c));

return __ret;

}

(b) GCC 3.4

Figure 2: GCC 3.3 (a) vs GCC 3.4 (b) code forsputc (slightly simplified)


