
uit
he
-
-
ta
ol
er.
d
ary
e
gh
s-
st
the
en
a
ply

u-
od
ply
e

A Designer-Customizable Design Environment
for Analog/Mixed-Signal Circuit Design

M. S. Toth
2268 S. 12th St.

Allentown, PA 18103
(610) 709-1239

mst@agere.com

R. V. Booth
1247 S. Cedar Crest Blvd.

Allentown, PA 18103
(610) 709-2324

rvbooth@agere.com

y.
as
ed
s.

-
d
n
e,
ity

r
lue
n

ys
lly

t
le,

y
n
ndi-
1. Introduction

Analog/Mixed-Signal (AMS) circuit design is an iterative
process involving changes to component values, circ
topology and other aspects of a particular design, with t
goal of achieving all of the required specifications. Mod
ern circuit design is typically supported by a suite of com
puter tools for schematic entry, circuit simulation, and da
analysis software. Many vendors supply integrated to
platforms where various software tools are linked togeth
While these platforms do supply much of the require
design support, there are many times when it is necess
to work outside of the platforms with other tools. Thes
platforms also enforce a certain design style, althou
there are usually some limited possibilities for user-cu
tomization. The iterative aspect of AMS design almo
requires that customization features be used to shorten
work required for common tasks. Once a design has be
completed, it must be exercised (by simulation) in
detailed way across processing, temperature, and sup
variations, in order to flush out problems that might act
ally appear in the field. Often a designer acquires a go
idea about which particular process/temperature/sup
condition is the most problematic only after some of th
initial work with the design. After this initial phase, it is
most efficient to continue design at this worst-case con
e
it

e-
nd
s a
re
l/
a
o

-

-

s
in

.
t-
le,

a

gn
he
n
ing
ts,
er,
is
as
tion. Finally, a prominent feature of the design world i
that each designer tackles problems in different ways:
different order, with different tools, with different styles
All of these aspects of AMS design point to a possibly be
ter solution than the standard vendor platforms: a flexib
customizable, and extensible environment, where
designer designs the platform himself.

For netlist-driven design, some of the most frequent desi
operations are: creating a netlist after modifications to t
design, modifying the netlist to reflect an optical shrink i
processing, designing the computer experiments, runn
computer simulations, plotting results, analyzing resul
and using the results to improve the design. In this pap
we describe a Tcl/Tk-based design environment, which
used to control and integrate the various design tools,
well as provide additional analysis and plotting capabilit
The design environment is called Camelot, and h
demonstrably improved designer efficiency, shorten
design time, and improved product robustnes

2. Analog/Mixed-Signal Circuit Design Tools

At the core of AMS circuit design is a transistor-level ana
log circuit simulator. At Agere, that tool is Celerity, name
for its designed-in transient simulation speed. In additio
to Celerity’s superior simulation speed, convergenc
accuracy and analysis features, is its extensibility. Celer
is based on the Tcl/Tk extension language1 - it is a Tcl/Tk
extension.1 The Tcl/Tk extension language was used fo
Celerity because it provided a robust and easy way to g
together portions of the tool, and it provided customizatio
and extension capability.

For schematic capture and netlist creation, Agere emplo
several tools. Schema is one of these; developed origina
at Bell Laboratories, it is still widely employed at Agere. I
is GUI-based, and is extensively user-customizab
although this capability is somewhat complex.

For waveform viewing and manipulation, Agere widel
employs AdvPlot, which was developed in conjunctio
with Celerity (and its predecessor, Advice). AdvPlot ca
be programmed and driven by scripts, allowing it to b
controlled in a very useful non-GUI manner. In addition,
provides numerous waveform analysis options.

Camelot was originally developed as a tool for devic
characterization, device model parameter-extraction, a
data analysis tool. It has also been extensively used a
platform for designing the compact-models which a
embedded in Celerity. Just like Celerity, Camelot is a Tc
Tk extension. This common background provided
straight-forward communications path between the tw

1. Effective Tcl/Tk Programming : Writing Better Pro-
grams in Tcl and Tk (Addison-Wesley Professional Com
puting Series) by Mark Harrison, Michael J. McLennan
Paperback - 432 pages (November 25, 1997) Addison
Wesley Pub Co; ISBN: 0201634740

- 2 -

pt
n)
m-
in
u-

ty

r-
e
m-
e.

ve
ing
k-
ing

e-
e

ept
d

ced
It
it
fi-
us
u-
a-
is
u-

s is
by a
la-
sed

r-
it
at-
ge
er

n
as
re
e-

u-
n
of
rt-
t.
s,
ss
n
sis

e
i-

is
es
at

ters,
is
In

CelerityCamelot advplot

Library Panel Analysis Panel Circuit Netlist

(Schema)
Schematic-Capture

Circuit TCL
script

advplot fileadvplot script

Designer

Camelot start-up
script

Figure 1: Camelot/Celerity Design Environment

ce
the

s,
ary
so
is
it
he

CL

at
t-
tools, based on a TCP/IP extension to Tcl/Tk.

Celerity’s user-interface is command-line based: a prom
is displayed, the user types in a (interactive/simulatio
command, and a carriage-return signifies the end of a co
mand. Camelot also provides a command-line interface,
addition to other use modes: script-sourcing, script-exec
tion, custom graphical-user interface. The GUI capabili
is provided by Tcl/Tk, and since Celerity is a Tcl/Tk
extension this ability has always been available: early ve
sions of Celerity included a basic GUI interface, but th
developers found that it was not as popular as the co
mand-line interface, and its development did not continu

Camelot is used to control Celerity by starting up a sla
process, issuing commands to the simulator, and receiv
the results for post-processing. Since Camelot is Tcl/T
based, a wide range of commands are available, includ
such programming control structures aswhile , for ,
and foreach . Within a control loop, for example, one
might change various circuit component values and ex
cute simulation commands. Celerity does itself provid
limited looping capability by a special.LOOP simulation
command. However, the parameters which can be sw
are limited, nested loops are difficult to implement, an
interrupts can put the tool in an undefined state.

In this paper, we describe a customized designer-produ
design environment which was enabled by Camelot.
consists of several Tcl/Tk scripts which help the circu
designer control the simulator and view results in an ef
cient way. Using this interface, the designer can foc
more of his attention on circuit design rather than manip
lation of the simulator and the plotting package. Compil
tion and post-processing of simulation results
straightforward. Processing case-combinations and sim
lation temperature are mouse-selectable. Each analysi
defined as needed and once defined, can be triggered
GUI-button. The analyses which are designed at simu
tion time are stored in a single database which can be u
and modified later.

A major feature of this design environment is that it is ci
cuit-specific, in recognition of the fact that every circu
has unique simulation needs. While vendor-supplied pl
forms attempt to provide all design resources in one lar
system, a circuit-specific platform is much simpler, easi
to navigate, and easier to maintain.

3. Camelot/Celerity Design Environment

Figure 1. is a schematic of the Camelot/Celerity desig
environment. In the figure, software tools are pictured
ellipse, files are pictured as rectangles, GUI-panels a
pictured as rounded boxes. At the center of the arrang
ment is the Camelot/Celerity interface: a two-way comm
nications pipe where Camelot issues simulatio
commands to Celerity and Celerity returns the results
the command back. To initialize the environment, a sta
up script is sourced immediately after invoking Camelo
This script provides procedures which initialize variable
and create the two GUI panels: one for selection of proce
libraries and temperature, and the other for simulatio
analyses. The start-up script also provides generic analy
commands.

A typical design project involves numerous cycles of th
following sequence: a circuit is initially designed or mod
fied using the schematic capture tool, and a new netlist
then created. The netlist is read into Celerity after librari
for the models are specified. Assuming no errors occur
this stage, the designer sets necessary circuit parame
such as input voltages and currents. Then an analysis
performed, and results are viewed or post-processed.
manual form, these cycles can easily get out of hand, sin
interactive commands are changing the parameters of
circuit. Even in batch script form, it is difficult to maintain
a database of analyses.

The Camelot/Celerity interface automatically maintain
in script form, the series of operations which are necess
to perform all of the various analyses. The interface al
allows interactive changes to the circuit since Celerity
always running and available. This interactivity makes
possible to sweep almost any circuit parameter t
designer is interested in.

The database of analyses is shown as the Circuit T
Script in Figure 1. It is specific to the circuit which is
under investigation, and must be written by the designer
the time of the investigation. Writing the script is straigh

- 3 -

-
ic-
e-
re
a

al
be
ent
is

t
d.
ire
uit
re
s

ss-
forward, and at the beginning of the investigation, an initi
Circuit script can be created by procedure, so that hand c
ing is minimized.

An example screen is shown in Figure 2. The circuit analys
panel has 15 different analysis commands in the form o
button. The first time this panel is created it contains thr
analyses: operating point, small signal analysis, and no
voltages. Additional analyses are added by the designer
needed. Selecting one with the mouse executes the anal
for a temperature and library file shown in the library pane
More than one library can be selected at one time. If mo
than one library is selected, the analysis requested is done
each library and the results are collected in one output fi
which is then viewed automatically by the plotting packag

For each of the three default analyses, results are displa
in a new window, as shown in Figure 4 for the default Ope
ating Point analysis. The print button sends the text direc
to the printer.
Ci
Pa

Shell

Schematic
Entry

Figure 2: Screen Shot of C
al
od-

is
f a
ee
de

, as
ysis
l.
re
for
le

e.

yed
r-
tly

4. Methodology

Figure 3 shows a typical design flow during iterative fine
tuning. First, the schematic is modified using the schemat
capture tool. After editing the schematic, a new netlist is cr
ated. At this stage additional modifications to the netlist a
often required. For example, the circuit may be designed in
parent technology but ultimately fabricated in an optic
shrink of the technology. For design, this mapping can
accomplished by altering dimensions of devices in the par
technology. At Agere, additional tools are available for th
purpose.

To read the circuit into the simulator, the library files mus
first be specified, then a read-in simulator command invoke
Errors in read-in caused by errors in the schematic requ
returning to the schematic modification step. Once a circ
is correctly read into the simulator, simulator commands a
issued from a simulation script. The script usually include
the simulation command to read in the netlist. Post-proce
rcuit Analysis
nel

Library Panel

Plotting Package

amelot/Celerity Environment

- 4 -

g
e-
g

s
se
e

s to
es
tch
on

cl/

for
r.
be
of

ve-
as
of

re-

ific
he

it
ar

Modify/Create
Schematic

Create Netlist

Modify Netlist

Read circuit into
Simulator

Run simulation
script or enter commands
by hand

post-process
results

View Results
read-in
errors occured

steps contained in
TCL command file

Figure 3: Design Flow
ing can also be included in the script.

Viewing results involves starting the plotting tool, readin
the file into the plotter, and selecting the desired wav
form. A script is also possible to use with the plottin
package in many cases.

In the Camelot/Celerity design environment, all five step
shown in the dotted box are triggered by a single mou
click. The Tcl/Tk command file which is used to condens
Figure 4: Screen Shot after perfo
these steps into one is the only script the designer need
maintain and use for all his analyses. Different analys
such as noise, and distortion, are managed in a swi
statement. This makes it easier to maintain simulati
scripts.

Figure 5 shows how these steps are performed in the T
Tk command script. Theview procedure in Step 5 is a
pre-defined Camelot procedure which creates a script
the AdvPlot plotting package and then runs the plotte
The name of the desired waveform can be set as can
seen in Step 3. Setting the variable “name” to the name
the signal causes the plotting package to display this wa
form automatically. It is easy to add these procedures
needed. In this way the system evolves to fit the needs
the designer.

The post-processing code shown in Figure 5 is used to c
ate a plot of distortion vs. frequency, shown in Figure 6.

5. Using the interface

To reduce the overhead required to create a circuit-spec
simulation environment, the designer can make use of t
makeproc utility procedure. This procedure creates a
starting command script, suitable for beginning the circu
characterization. Once the command script for a particul
Operating Point
Information

Print text to
printer (set by
LPRINTER)

rming Operating Point Analysis

- 5 -

catch {exec ttcad shrink -o 1 tamp.adv}

Step 1: Modifying the netlist for an optical shr ink

rd tamp.pl.adv.shrunk "${libpath}/$libi" devs

Step 2: Reading circuit into simulator

switch $anal {
 dc {
 c command ".dc vin -.1 .1 .001"

 set name VPN
 }
}

Step 3: Running analysis

Step 4: Post-processing results
set r [c command ".newfour 1meg VPN"]
set i [lsearch $r "total"]
set d [lindex $r [expr $i+4]]
if {$d==0} {
 set d 0.0001
}
puts $fptr "$vin $d [expr 20*log10($d/100)]"

Step 5: Viewing Results

view $name tamp.$anal.ofile

Figure 5: Examples of Tcl/Tk in the command script

D
ate: Fri Jun 23 13:25:08 2000

File: /hom
e/m

st/doc/distvsfreq.ps
C

reated by: m
st@

cham
pagne

db(THD)

FREQ
1E4 1E5 1E6 1E7

db
(T

HD
)

−120

−110

−100

−90

−80

Figure 6: Distortion vs. Frequency

- 6 -

-

ed

to
at
into
hat
ng

g
e-
y

-
e.
t/
-
r

d.
r-

he
is
Recently, we have written a [incr tcl] Test Circuit class

circuit has been created, other analyses are easily add
manually. Appendix A lists an example of a command
script that was created bymakeproc.

The interface allows a designer to cleanly switch
post-layout sub-circuits, if they are available, so th
parasitic capacitances and resistances can be taken
account. For each analysis, results are stored, so t
they can readily be used in other analyses. For viewi
simulation results, In addition to theview procedure
described above, the interface provides its own plottin
package and data-analysis routines. Two very conv
nient utilities for operating-point design are provided b
the node-voltages and mosfets procedures.
node-voltages displays a legible, sorted list of
operating-point voltages.mosfets displays DC and
small-signal operating point information for each MOS
FET in the design, sorted by subcircuit of appearanc
These utilities are uniquely provided by the Camelo
Celerity interface, since the information which is dis
played comes directly from the simulation engine. Fo
stability design, pzview is a built-in utility for dis-
playing the poles and zeros in the design is provide
The utility cancels identical poles and zeroes for a pa
ticular transfer function, so that the basic features of t
plot are not obscured. An example pole-zero plot
shown in Figure 7.
e-
ia-
s

ng
ll-

d,
k
-
/
-

r
i-
t

ls

l/
to
on-
cl/
or

g
e-
he
is
ch
on
(TestCkt) which makes it easier to add circuit measur
ments to the set of tests in the circuit file. The instant
tion and configuration of the class essentially replace
the command script described earlier. The test circuit
class describes separate measurements for performi
various analyses such as operating-point design, sma
signal analysis, and stability analysis using the pole-
zero Celerity command, . The TestCkt methods embe
monitor, measurement, and command simplify the wor
of writing the various measurrements. For the voltage
regulator example shown below, the temperature/case
analysis panel and analysis windows are shown in Fig
ure 8.
6. Conclusion

In this paper, we have presented an Analog/Mixed-Signal
design environment, which allows a circuit designer to com
pletely customize the set of analyses and operating point
conditions, according to the circuit under investigation. Fo
AMS circuit design involving iterative design cycles, repet
tive characterization, or even optimization, the environmen
is very efficient, placing many simulation and analysis too
within easy reach of the designer.

The Agere Systems circuit simulation tool, Celerity, is Tc
Tk-based, which allows a natural communications link
send and receive information between the simulator and c
trol/analysis tool, Camelot. But other tools need not be T
Tk-based to be integrated into the design environment. F
example, the plotting package is driven by writing to plottin
scripts which are read by the plotting tool. We have also int
grated other circuit simulators and analysis tools into t
environment. For each circuit, only one simulation/analys
script is modified when new tests are added, which is mu
easier to maintain than subdirectories of different simulati
and post-processing run files.

7. Acknowledgements

The authors would like to thank Don Laturell for his com-
ments while developing the interface.

Figure 7: Pole Zero Plot Example

- 7 -

Figure 8: Temperature/Case/Measurement Panel and Anal-
ysis Windows created by [incr tcl] script

	1. Introduction
	2. Analog/Mixed-Signal Circuit Design Tools
	3. Camelot/Celerity Design Environment
	4. Methodology
	5. Using the interface
	6. Conclusion
	7. Acknowledgements

