daggen User Guide

EDMO04-06

daggen User Guide

Protection Against Harmful
Interference

When present on equipment this document pertains
to, the statement "This device complies with part 15
of the FCC rules" specifies the equipment has been
tested and found to comply with the limits for a Class
A digital device, pursuant to Part 15 of the Federal
Communications Commission [FCC] Rules.

These limits are designed to provide reasonable
protection against harmful interference when the
equipment is operated in a commercial environment.

This equipment generates, uses, and can radiate
radio frequency energy and, if not installed and used
in accordance with the instruction document, may
cause harmful interference to radio communications.

Operation of this equipment in a residential area is
likely to cause harmful interference in which case the
user will be required to correct the interference at
their own expense.

Extra Components and Materials

The product that this manual pertains to may include
extra components and materials that are not essential
to its basic operation, but are necessary to ensure
compliance to the product standards required by the
United States Federal Communications Commission,
and the European EMC Directive. Modification or
removal of these components and/or materials, is
liable to cause non compliance to these standards,
and in doing so invalidate the user’s right to operate
this equipment in a Class A industrial environment.

Disclaimer

Whilst every effort has been made to ensure
accuracy, neither Endace Technology Limited nor any
employee of the company, shall be liable on any
ground whatsoever to any party in respect of
decisions or actions they may make as a result of
using this information.

Endace Technology Limited has taken great effort to
verify the accuracy of this document, but nothing
herein should be construed as a warranty and Endace
shall not be liable for technical or editorial errors or
omissions contained herein.

In accordance with the Endace Technology Limited
policy of continuing development, the information
contained herein is subject to change without notice.

Website

Copyright 2011 Endace Technology
Ltd. All Rights reserved.

No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or
by any means electronic, mechanical, photocopying,
recording, or otherwise, without the prior written
permission of Endace Technology Limited.

Endace, the Endace logos, and DAG, are trademarks
or registered trademarks in New Zealand, or other
countries, of Endace Technology Limited. All other
product or service names are the property of their
respective owners. Product and company names used
are for identification purposes only and such use does
not imply any agreement between Endace and any
named company, or any sponsorship or endorsement
by any named company.

Use of the Endace products described in this
document is subject to the Endace Terms of Trade
and the Endace End User License Agreement (EULA).

©2011 Endace Technology Ltd. Confidential - Version 6 - December 2011

daggen User Guide

Overview
daggen Configure File Format 3
9710 1T o 3
SiIMPple CoNfig File EXAmMIPIE cuuuu i e e e e e e s et e e s e e e s e e e eaa e e e et e e e e e s s e e raaeeeeraeaeennnaan 4
97510 1T o 4
= 1001 0] [PP PP PRTPR 4
R 00 0] . 2V | =T PP 5
[Tl g o T o PPN 5
VLU g =] PP 5
9710 1T 5
Random Numbers, Patterns and DiStribULIONSuu.iieeiiiiiiii e e rea e e s e s e e e ea s e easean e ranerenares 6
9710 1T o 6
=T < PPN 6
= 110 = P 6
(o= 1001 0] ST PP PP 6
= 1.1 0] LT PP 6
= 1] 0] T P 6
(= [00] 0] ST T PP 6
= 1.1 0] L P 7
(= 1001 0] (PP 7
[1] 0] L P 7
S 1Y 0= [PPN 8
97T 1T o 8
LD (=6 I = 0T T L PP 8
(@e]gler= 1= =1 uTo] d K @(o] g [el=] o PP UPP PPN 8
(00 | =] RPN 9
(€12 a1 =TI 0o u o] o L3 PP 10
9710 1T 10
(@0 o o 1= U RPPPRRE 10
L THL 01U | 1= PPN 10
RV 0 Lo 1T o T =PRI 10
[Tl (o] 4 ST =TT [P PP PPPPPTPIIN 10
Lo F= Lo @ 1U o1 1= PPN 10
(@ 1040 1U L ol = = ol 10
gVt 1=l N = 1 o PP 11
D<ol] o] u] o [P PP 11
[1.1 o] = PPN 11
O LT I 1 ol PSPPI 11
[T Tol g o] u] o [P RUPPP 11
[1] o] = PPN 11
(1= o D= a1 o o PP PP PP PRRPPPPIIN 11
L I =T PP PP P PUPPPPIR 12
D<ol g o] u) o [PR 12
[T (o QDT 1 g1y To) o [PPSR 12
F A T I T 1o PP URPPPINE 13
DT g0 oo o U 13
150125)G 13
(1= ol D= 1T a1 o] o TP PP PTPPTT P PPPPPPPIIN 13
I L ol e aq] 4= g o PSPPI 14
DTl g0 o o P 14
L (o @e 30T 0 1= oo PP PRPRPRPPPN 14
JLILC= L Lol 10181 oL PP 14
DTl g0 o o P 14
daggen Command Line 15
D<o) 1T) PN 15
COMMEANG LINE ArGUMENTSuuiiiiieieiiis s e e e e ee e s e s s e e e res e s s s e s ee e ess s s e e s e e e ae s e s s e e s ee e e s s s e e e eeen e s nsseeseenrnnnnnsssns 15
daggen Configuration File 17
D<ol g] T o PP 17
EXAMPIE ... 17

©2011 Endace Technology Ltd. Confidential - Version 6 - December 2011 i

daggen User Guide

Version History 21

ii ©2011 Endace Technology Ltd. Confidential - Version 6 - December 2011

daggen User Guide - Overview

Overview

daggen is a program which helps in creating traffic files. It can generate Ethernet, POS, ATM and AALS5 traffic files,
in ERF and PCAP formats.

This User Guide describes the following components:
e daggen Configure File Format

e daggen Command Line

e daggen Config Example

©2011 Endace Technology Ltd. Confidential - Version 6 - December 2011 1

daggen User Guide - daggen Configure File Format

daggen Configure File Format

Description
To use daggen, a config file is required where the traffic is specified. Different kinds of packets are defined by the
user who can also specify the order and amount of them.

Several random options are defined for the MAC address and payload of the packets, users can generate many traffic
patterns with few lines.

The output file is a set of Endace Record Format [ERF] records 64-bit aligned containing the traffic specified before
on a PCAP compatible file.

©2011 Endace Technology Ltd. Confidential - Version 6 - December 2011

daggen User Guide - daggen Configure File Format

Simple Config File Example

Description
A simple config file generates 10 equal ethernet packets. Every packet has the:

e Source ethernet address 00:00:10:8a:9F:e2

e Destination ethernet address 01:6b:ca:13:24:bf
e 1500 bytes of payload.

The payload contents are random (dummy) bytes.

Example
The following is an example of a simple daggen config file.

// Our first test
packets {
packet eth 802 3 first packet {
src _addr ab:el:c0:01:9F:e2;
dst addr c0:01:ab:el:24:bf;
payload dummy (1500) ;

}
traffic {
group traf grp {
send first packet 10;
}
}

The first line of the config file is a comment. Every character typed after the *//" and up to the end of the line is a
comment and ignored. The behavior is the same as C++ or Java.

Every packet declaration is done inside the packets block. There must be only one packets block and must be
placed at the beginning of the config file.

In this example it is declared an Ethernet 802.3 packet. Each packet declaration is done in the same way. First used
is the keyword packet. This is followed by specifying the packet type, eth_802_3 in this case. The user then enters a
packet identifier first_packet. The identifier is case sensitive and cannot begin with a number.

All packet parameters are specified between braces. The keywords ‘src_addr’and ‘dst_addr’ refer to the
Ethernet source and destination address.

The syntax of the MAC address is a 6 byte field expressed in hexadecimal notation with the bytes separated with a
colon (:). The hexadecimal characters are case insensitive.

The packet is designated to have a payload size of 1500 bytes. Ethernet payload sizes range from 46 to 1500 bytes.
The payload contents are random (dummy) bytes.

Every packet parameter ends with a semicolon (;).Once a packet is declared, the required traffic pattern is specified
by the user. The commands to send the packets are grouped into a group statement. A user can define several
traffic groups but only one of them is actually executed.

The above example has only one traffic group to be used, traf grp. Traffic commands are specified inside the
traffic group. The example shows the send command. This sentence writes the packet “first packet” 10 times.

4 ©2011 Endace Technology Ltd. Confidential - Version 6 - December 2011

Random Address

Description

More than one packet can be defined by a single packet declaration, by making the address random. Using the “*
character instead of a hexadecimal character makes the hexa-digit random.

daggen User Guide - daggen Configure File Format

As one hexadecimal character represents 4 bits, every **' used randomizes an address in 16 values.

Given the following ethernet mac address:

00:10:ab:7e:5d:3*

With the “*' inserted, every packet within a ‘send’ command becomes different:

The **' can be inserted in different parts of a mac address. For example:

00:10:ab:7e:5d:30
00:10:ab:7e:5d:31
00:10:ab:7e:5d:32
[...]

00:10:ab:7e:5d:3F

O*:**x:f*x:*a3:Dbl:*6

results in an address like:

01:74:£3:9a:bl:46
05:4d:fe:la:bl:66
07:5b:£6:5a:b1:76
03:31:f2:ba:bl:16
Oa:ca:ff:ba:bl:d6
0d:75:f3:ea:bl:26

Numbers

Description

A daggen configuration file uses three ways to write numbers. Wherever a number is required any one of the
following three formats can be used:

In decimal format:

12345678

64

55793

In hexadecimal format(prepending ‘0x"):
0x0123456789%abcdef0123456789ABCDEF
OxaaAbdal

0Oxc001

In binary format (prepending ‘0b’):
0b010010010

0b0001

0b10

Numbers are all considered unsigned.

©2011 Endace Technology Ltd. Confidential - Version 6 - December 2011

daggen User Guide - daggen Configure File Format

Random Numbers, Patterns and Distributions

Description

Packets can be generated with different payload sizes. Daggen syntax enables random size change, following a
pattern or a statistic distribution.

The expressions used for changing payload size can also be used in other parts of the configuration file, so almost
every number can be specified using these expressions.

Packets
The following are expression examples of packets generated by daggen with different payload sizes.

Example 1
Have a constant value:
X7

constant (x) ;

Example 2
Have random values between two numbers, both included:

uniform(x,v);

Example 3
Have distributed values on a normal distribution with center ‘x’ and deviation ‘y’:

normal (x,V);

At present the values of the normal distribution does not fit exactly with a truly normal distribution.

Example 4

Have values increasing between two numbers. When it arrives at the top value continue from the bottom(ROUND):
[x:y]7

For example:
payload dummy ([100:103]);

produces payload lengths:
100, 101, 102, 103, 100, 101, 102, 103, 100,

If y < x values decrease.

Example 5

Have values increasing between two numbers. When it arrives at the top value continue decreasing, and after that
increasing again (BOUNCE):

[x~y]7
For example:

payload dummy ([100~103]);
produces payload lengths:

100, 101, 102, 103, 102, 101, 100, 101,

If y < x values decrease.

6 ©2011 Endace Technology Ltd. Confidential - Version 6 - December 2011

daggen User Guide - daggen Configure File Format

Example 6
Have values ROUND or BOUNCE in steps greater than one:
[x:y] step z;
[x~y] step z;
For example:
payload dummy ([100:106] step 2);
produces payload lengths:
100, 102, 104, 106, 100, 102,...

Example 7
Have values ROUND or BOUNCE in steps following a distribution:

[x:y] step uniform (a,b);

[x:y] step normal (a,b);

[x~y] step uniform (a,b);

[x~y] step normal (a,b);
Example 8

Have values ROUND or BOUNCE in steps ROUND or BOUNCE following a distribution:
[x:y] step [a~b] step normal (c,d);

©2011 Endace Technology Ltd. Confidential - Version 6 - December 2011 7

daggen User Guide - daggen Configure File Format

Payloads

Description
daggen can produce different payload contents with some parts kept random and other parts following distributions.

Fixed Payloads

Description
The following generates 1500 random bytes:

payload dummy (1500);
A fixed payload can be created for packets by writing a hexadecimal string with its contents.

For example:

payload "0123456789%abcdef0123456789%abcdef";

The payload size is automatically calculated from the string length. But the string can have white spaces and carriage
returns. The following payload is an example is from an IP-TCP-SSL packet captured with tcpdump and option -x:

payload "4500 0066 058a 4000 4006 bla9 c0a8 010d
c0a8 0101 d27a 03el 64e4 bc07 158b 0862

8018 8218 8599 0000 0101 080a 0O4be 8fcO

0ad7 cb5e5 1703 0000 2dbc b523 dbae 2el4

dedf 1bb7 a5lb 3e92 3fbb 79b8 f049 e809

la3c";

A captured IPv6, MPLS could also be used, or whatever other protocol and paste into the daggen configuration file.

Concatenation Concept

Description
A packet payload can be constructed as a concatenation of two or more strings:

payload "aaaa" + "bbbb" + "cccc";
Using the three concepts of random payloads, strings and concatenation, a mixed payload can be produced: For
example:

payload "aaaa" + dummy(2) + "cccc";
The sentence creates a payload sized 6 bytes with two random bytes in the middle. As many of these constructions
can be used as are needed:

payload dummy (4) + "abcdef" + dummy ([50:150] step 2)

+ "007" + "008" + dummy (normal (100,5));
Note:
0dd sized strings are appended a trailing zero:

"abc" -> "abcO"

"007" + "008"™ -> "0070 0080"
Payload sizes cannot exceed 65535 bytes. Payload constructions exceeding the limit are truncated to 65535 bytes.
Although payloads can be 64K big, not every link layer technology permits that size.

The final determination on payload size is in the link layer.

8 ©2011 Endace Technology Ltd. Confidential - Version 6 - December 2011

daggen User Guide - daggen Configure File Format

Counters

Description
Another item used in payload generation is counters. Counters are a distribution, random number or pattern stored
in a variable. That variable can be used inside the payload.

Counters follow a distribution. Sizes can be 1, 2 or 4 bytes and are always unsigned. Declaration of counters is done
inside the ‘packets’ group and before any packet declaration.

A simple example is:

packets {
counters {
counter 2 [100:1000] size 2;
counter 3 uniform(10,20) size 4;
cnt A [500~1000] step uniform (2,8) size 4;

packet eth 802 3 packet 2 {
payload counter 2 + counter 3(5) + cnt A[3];
}
}
Three counters are declared:

¢ Onenamed ‘counter 2’ which would have values from 100 to 1000, and again 100, which its size is 2 bytes.

e Another named ‘counter_3’taking random values between 10 and 20 with size 4 bytes.

e Thelast named ‘cnt A’ taking values between 500 and 1000 in random steps with sizes between 2 and 8
bytes. Its size is 4 bytes.

Counters are used in the payload sentence. In the above example the payload is constructed with these three

counters.

e The first one is placed once at the beginning of the packet (2 bytes).

e The second is placed 5 times, with number in parenthesis, adding 4*5 bytes to the payload.

e The last one is placed only once, but not the entire counter (4 bytes) but only 3 bytes, with number in brackets.

e The final payload size is 25 bytes, being 2 + 4*5 + 3.

Example
In the following daggen example, two counters are used to change source and destination ports on a TCP packets.

spc uniform (1024, 65535) size 2;

dpc [6000:7000] size 2;

[...]

Payload "4500 0066 058a 4000 4006 bla9 c0a8 010d
c0a8 0101"
+ spc + dpc +
"64ed bc07 158b 0862
8018 8218 8599 0000 0101 080a 04be 8fcO
0ad7 cbeb5 1703 0000 2dbc b523 dbae 2el4
dedf 1bb7 a5lb 3e92 3fbb 79b8 f049 e809
la3c" + "0000 0000™ + dummy([100~102]);

©2011 Endace Technology Ltd. Confidential - Version 6 - December 2011 9

daggen User Guide - daggen Configure File Format

General Options

Description

Some general options can be set for the daggen config file. All of these options are defined in the block ‘options’ at
the beginning of the file.

Options

The following examples describe the general options for the daggen config file.

Output File

Define the output file for this test. Default value ‘output.dag’

output file <string>;

Verbose Mode
Verbose mode. Shows extra messsages. Default value ‘not verbose'.

verbose;

Random Seed

Set a random seed. Exactly the same traffic pattern can be repeated several times. Without a random_seed
statement different executions of daggen can generate different output files.

random_ seed <number>;

Format Output File

Choose format of output file between ERF or PCAP formats. In an ERF format, there can be more than one link layer
packets. On PCAP format it is only possible to use one link layer format and it is automatically determined with the
type of the first packet declared in the ‘packets’ group.

output format erf; (default)

output format pcap;

Output Interface

Choose which output interface to write the packets. This marks the ERF headers with the value where specified.
Values permited are from 0 to 3. Other values will be truncated. The default value is 0 (interface 0). In PCAP format
this field is ignored.

interface <number>;

10

©2011 Endace Technology Ltd. Confidential - Version 6 - December 2011

daggen User Guide - daggen Configure File Format

Ethernet II Traffic

Description

The only variation from ethernet II frame format to ethernet 802.3 is that Ethernet II frames have a 2 byte protocol

field instead of a 2 byte length field.

Example
The following describes an Ethernet II packet declaration:

packet eth ITI eth2 p {

}

POS Traffic

src_addr ab:el:c0:01:**:**x;
dst addr c0:01l:ab:el:**:*x*;
protocol 0x0800;

payload dummy (100) ;

Description
The generation of POS packets is as easy as generation of Ethernet packets.

Example
The following is an example of generating a POS packet which has all the fields that can be modified:

packet pos posl {

address 0x0f;

control 0x03;

protocol size 2;

protocol 0x0800;

payload uniform(100,9180);

fcs _size 4;

Field Definition
The POS traffic field definitions are described in the following table

Field escription

Address. | One byte. In PPP will take the fixed value Oxff (all stations). On cHDLC can be 0xOf (unicast) or
0x8f (multicast). Default value is Oxff.

Control. One byte. In PPP will take the fixed value 0x03 (unnumbered info) and in cHDLC will be 0x00.
Default value is 0x03.

Protocol One byte. In PPP will take the fixed value 0x03 (unnumbered info) and in cHDLC will be 0x00.

size. Default value is 0x03.

Protocol. | One or two bytes. The protocol in the payload of the POS packet. On cHDLC this field takes the
same values as the protocol field in Ethernet header.
Default value is 0x0000.

Payload. | Specifies POS payload contents.

FCS size. |Indicates how many bytes to use in the FCS (CRC) calculation for the packet.
The values that can be taken are: 0, 2 or 4 bytes.
In the first case there is no CRC calculation, nor appended at the packet.
With 2 bytes FCS size it is used a CRC16 (CCITT) function and with FCS size of 4 bytes a CRC32
function will be used.

©2011 Endace Technology Ltd. Confidential - Version 6 - December 2011

11

daggen User Guide - daggen Configure File Format

ATM Traffic

Description

With daggen ATM traffic based on single cells can be specified. The following example shows the syntax to construct
ATM cells with daggen:

packet atm atm 1 {

type uni;

type nni;

gfc 0x8;

vpi 0x76;

vcei 0x5432;

pt 0b0;

clp 1;

payload dummy (48) ;

// hec auto calculated

Field Definition
The ATM traffic field definitions are described in the following table.

Field escription
Type uni and nni. Can only have two values: uni or nni.
UNI stands for ‘User Network Interface’ and NNI for ‘Network to Network
Interface’.

The difference between them is that UNI has a Generic Flow Control field and
NNI does not, allowing a 12-bit VPI field.

Generic Flow Control. (gfc) |4 bits. Only available in UNI ATM cells, it is ignored if entered in a NNI cell.
Virtual path identifier. (vpi) |8 bits sized in UNI ATM cells and 12 bits in NNI ATM cells.

If the value exceeds the field size limit it will be truncated.

Virtual Channel Identifier. 16 bits

(vai)

Payload Type. (pt) 3 bits.

Cell Loss Priority. (clp) 1 bit.

Header Error Control. (hec) |Is hardware automatically appended and does NOT exist in config file.

Payload. 48 bytes fixed size. Payloads smaller than 48 bytes will be zero padded

The ATM cell format does not exist as a link layer in PCAP files, so they will be ignored and the output file not
created.

12 ©2011 Endace Technology Ltd. Confidential - Version 6 - December 2011

daggen User Guide - daggen Configure File Format

AALS5 Traffic

Description

Another type of traffic that can be defined with daggen is AALS traffic. AALS is not a link layer technology, but DAG
cards support the transmit of this kind of frames doing the fragmentation by hardware.

DAG cards need not only the AAL5 frame but also some information about the ATM cells underlaying. For this reason
it is also needed to specify the header of just one ATM cell for DAG cards to segment the AAL5 frame.

Syntax
The syntax for generating AAL5 with daggen is:

packet aal5 aal5 1 {
// ATM parameters
type uni;

gfc 0x8;

vpi 0x76;

vci 0x5432;

pt 0b0;

clp 1;

// AALS parameters

payload "aa aa 03 000000 0800" + dummy(16);
uu 0xDD;

cpi OxEE;

// if CRC not specified or zero -> auto
crc O0xBBBBBBBB;
}

The first fields are common with ATM cells.

The payload field follows the same rules as other payloads as seen in the example. The first eight bytes specify that
the AALS frame content is following the LLC/SNAP format containing an IP (0800) payload. Although any other
payload can be used. The starting bytes make the frame visible through a PCAP based program, as a LLC/SNAP
frame is expected.

Due to some hardware limitations, the maximum size allowed for the AAL5 payload is 65464 bytes. Automatic
padding is added if necessary.

Field Definition
The AAL5S payload field definitions are described in the following table.

Field escription

User to User Identification. (uu) | One byte.

Common Part Indicator. (cpi) One byte.
Length. Field is automatically calculated and does not appear in the config file.

Cyclic Redundancy Check. (crc) |4 bytes. If not specified or specified with a value of zero, it is automatically
calculated (CRC32).

©2011 Endace Technology Ltd. Confidential - Version 6 - December 2011 13

daggen User Guide - daggen Configure File Format

Traffic Commands

Description
There are two commands available to define complex traffic command patterns.

Traffic Commands
The complex traffic commands are described in the following table.

Field escription
send <packet_id> The send command writes <how_many> packets identified by <packet_id>.
<how_many> The parameter < how_many > can follow a distribution.
send This is a variation of the send command allowing it to specify a snaplength for

<packet_id><how_many > [the packets written in this command. Snaplength can follow a distribution.
snap <snaplength>
loop <how_many> The loop command just iterates <how_many> times over a set of commands,
{ <commands> } which can be send or loop commands.

As in the send command, <how_many> can follow a distribution, very different
traffic patterns can be generated with few lines.

Traffic Groups

Description

Traffic commands are grouped into traffic groups. Several traffic groups can be defined, but only one will be
executed. That way the same config file can be used for many different tests by selecting the traffic group to
execute. This selection is made through the command line.

traffic {
group grpA {

send packet 1;

group grpBBB {
send packet 10;

14 ©2011 Endace Technology Ltd. Confidential - Version 6 - December 2011

daggen User Guide - daggen Command Line

daggen Command Line

Description

Every general option can be overridden from command line arguments. Accordingly, the selection of the config file
and the traffic group to be executed is specified with command line arguments.

Command Line Arguments
The command line arguments are described in the following table.

Command Description

-e <fcs_size> Select global FCS size. Select 0, 2 or 4 bytes.
(default: chosen by packet).

-f <config file> Select the config file. (default: config.dag)

-1 <interface> Select output interface. (default: 0).

-o <output_file> Select the output file. (default: output.dag).

-p Select PCAP as output file format. (default: ERF format).

-r <random_seed> Select the random seed. (default: time dependant).

-s <snaplength> (round down at Truncate packets at some snaplength.

64-bit alignment) (default: no truncation).

-S <snaplength> (round up at 64-

bit alignment)

-v Be verbose.(default: quiet).

-x <group_id> Select traffic group to execute.
(no default, if wrong reports error)

©2011 Endace Technology Ltd. Confidential - Version 6 - December 2011 15

daggen User Guide - daggen Configuration File

daggen Configuration File

Description
What can be done with a daggen configuration file is described in the following example.

Example
[1/710777 77777777 77777777
// daggen script file //
[11777777777777777777777

// General options
options {
output file "output3.erf";
output format erf; // erf or pcap
verbose;
random seed 5188;
interface 2;

packets {

counters {
counter 1 20 size 1;
counter 2 [100:1000] size 2;
counter 3 uniform(0,150000) size 4;
c4 uniform (0x2A00, 0x2D00) size 2;
spc uniform (1024, 65535) size 2;
dpc [6000:7000] size 2;

// Packet type A
packet eth 802 3 packet A {
// when a sentence is specified more than once,
// only the last one is used
src_addr 00:08:71:**:c7:7%;
dst addr **:10:02:93:4A:**;
payload dummy (1500);
payload dummy ([46:1500] step [1:15] step uniform (2,4));

// Packet type B

packet eth 802 3 packet B {
src_addr 0*:0*:0*:0*%:0*:0%*;
dst _addr *0:*0:*0:*0:*0:*0;
payload dummy (100);

// Packet type B -DUPLICATE!

packet eth 802 3 packet B {
src_addr 00:FF:££:00:00:01;
dst _addr 00:FF:££:00:00:02;
payload dummy (100);

// Packet type A -DUPLICATE!
packet eth 802 3 packet A {
src_addr 00:08:71:B6:c7:7E;
dst addr 00:10:02:93:4A:1b;
payload dummy (1500);

©2011 Endace Technology Ltd. Confidential - Version 6 - December 2011 17

daggen User Guide - daggen Configuration File

}
packet eth 802 3 packet D { }

packet eth 802 3 packet E {
src_addr FF:FF:FF:FF:FF:**;

packet eth 802 3 F2004 {
payload dummy (normal (1000,10));

packet pos posl {
address 0x0f;
control 0x03;
protocol size 2; // choose: 1 or 2 bytes
protocol 0x0800; // IP
payload dummy (uniform(100,9180));
fcs size 4; // choose: 0, 2 or 4 bytes

packet pos pos2 {

address 0x8f;

control 0;

protocol size 1;

protocol 113;

payload dummy (100); // size of payload
fcs size 2;

}

packet pos pos3 {
fcs size 07

}

packet eth IT pII {
src_addr ab:el:c0:01:**:**;
dst addr c0:01:ab:el:**:**;
protocol 0x0800; // IP protocol
payload "4500 0066 058a 4000 4006 bla9 cO0a8 010d
c0a8 0101" + spc + dpc +
"64e4 bcO07 158b 0862
8018 8218 8599 0000 0101 080a 0O4be 8fcO
0ad7 c5e5 1703 0000 2dbc b523 dbae 2el4
dedf 1bb7 a5lb 3e92 3fbb 79b8 f049 e809
la3c" + "0000 0000"™ + dummy([100~1021);

packet eth 802 3 packet z {
src_addr 00:01:80:**:** %%,
dst _addr 00:09:AB:**:CA:BA;
payload "Abel" + c4(7) + "f001 beef bad bed
feed dafle ca7 falbe" + dummy (200);

packet atm atm 1 {
type uni;
gfc 0x8;
vpi 0x76;

18 ©2011 Endace Technology Ltd. Confidential - Version 6 - December 2011

vcei 0x5432;
pt 0bO0;
clp 1;

payload dummy (48);

packet aal5 aal5 2 {

// ATM parameters
type uni;

gfc 0x8;
vpi 0x76;
vcil 0x5432;
pt 0bO;

clp 1;

// AALS5 parameters

daggen User Guide - daggen Configuration File

Payload "aa aa 03 000000 0800" +
"6500 0066 058a 4000 4006 bla9 c0a8 010d
c0a8 0101 0123 0321"™ +
"64ed bc07 158b 0862
8018 8218 8599 0000 0101 080a 0O4be 8fcO
0ad7 cb5e5 1703 0000 2dbc b523 dbae 2el4
dedf 1bb7 a5lb 3e92 3fbb 79b8 f049 e809
la3c" + "0000 0000"™ + dummy([100~1027)
+ dummy (16) ;

uu 0xDD;

cpi OxEE;

}

traffic {

group traffic group A {

loop

send

loop

send
send
send

}

send packet A 1;

4 {

send packet A 100;

send packet D 10;

send packet B uniform(100,200);
packet E 2;

normal (100,8) {
loop [10:20] {
send F2004 [9~15] step 2;

posl 1;
pos2 1;
pos3 1;

group traffic group B {

loop [50:150] step uniform (2,8) {

©2011 Endace Technology Ltd. Confidential - Version 6 - December 2011

19

daggen User Guide - daggen Configuration File

send packet z 333;
send pII 2002;

send packet A Oxabc;

loop 0x40 {
send atm 1 0b0101110;
send aal5 2 [100~0x100] step 0bl01;
}

20 ©2011 Endace Technology Ltd. Confidential - Version 6 - December 2011

daggen User Guide - Version History

Version History

Version Date Reason
1
2 August 2005
3 September 2007 New template and correction to config section.
4 June 2008 Updated copyright information.
5 November 2008 Updated front matter. Corrected simple config file example. Monor
reformatting.
6 December 2011 Update branding.

©2011 Endace Technology Ltd. Confidential - Version 6 - December 2011 21

endace.com

