

DAG Programming Guide
EDM04-19

EDM04-19 DAG Programming Guide

©2006-2008 Endace Technology Ltd. Confidential - Version 16: November 2008

Protection Against Harmful Interference
When present on equipment this manual pertains to, the statement "This device complies with part 15 of the FCC
rules" specifies the equipment has been tested and found to comply with the limits for a Class A digital device,
pursuant to Part 15 of the Federal Communications Commission [FCC] Rules.
These limits are designed to provide reasonable protection against harmful interference when the equipment is
operated in a commercial environment.
This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in
accordance with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will
be required to correct the interference at their own expense.

Extra Components and Materials
The product that this manual pertains to may include extra components and materials that are not essential to its
basic operation, but are necessary to ensure compliance to the product standards required by the United States
Federal Communications Commission, and the European EMC Directive. Modification or removal of these
components and/or materials, is liable to cause non compliance to these standards, and in doing so invalidate the
user’s right to operate this equipment in a Class A industrial environment.

Disclaimer
Whilst every effort has been made to ensure accuracy, neither Endace Technology Limited nor any employee of
the company, shall be liable on any ground whatsoever to any party in respect of decisions or actions they may
make as a result of using this information.
Endace Technology Limited has taken great effort to verify the accuracy of this manual, but nothing herein
should be construed as a warranty and Endace shall not be liable for technical or editorial errors or omissions
contained herein.
In accordance with the Endace Technology Limited policy of continuing development, the information contained
herein is subject to change without notice.

Website
http://www.endace.com

Copyright 2008 Endace Technology Ltd. All rights reserved.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the
Endace Technology Limited.
Endace, the Endace logo, Endace Accelerated, DAG, NinjaBox and NinjaProbe are trademarks or registered
trademarks in New Zealand, or other countries, of Endace Technology Limited. Applied Watch and the Applied
Watch logo are registered trademarks of Applied Watch Technologies LLC in the USA. All other product or
service names are the property of their respective owners. Product and company names used are for
identification purposes only and such use does not imply any agreement between Endace and any named
company, or any sponsorship or endorsement by any named company.
Use of the Endace products described in this document is subject to the Endace Terms of Trade and the Endace
End User License Agreement (EULA).

 EDM04-19 DAG Programming Guide

©2006-2008 Endace Technology Ltd. Confidential - Version 16: November 2008 i

Contents
Introduction 1

Overview ... 1
Purpose .. 1
Related Documents .. 1

Collecting network data 3
Providing network packet information ... 3
Capture data ... 3
libpcap library ... 3
Native C language .. 3
DAG card functionality ... 4

Overview ... 4
PCI burst m .. 4

C Application Programming Interface 5
Overview ... 5
Receive model ... 5

dag_advance_stream() ... 6
dag_rx_stream_next_record() ... 6
Version 1.4 of DAG API ... 6
Version 1.6 of DAG API ... 6

Version numbering .. 6
Transmit model .. 7

dag_tx_get_stream_space() ... 7
dag_tx_stream_copy_bytes()... 7

dagapi h Header file .. 7
dag_open ... 7
dag_close.. 8
dag_configure ... 8
dag_attach_stream .. 9
dag_detach_stream ... 10
dag_start_stream .. 10
dag_stop_stream ... 10
dag_get_stream_poll .. 11
dag_set_stream_poll ... 12
dag_get_stream_buffer_size ... 12
dag_get_stream_buffer_level .. 13
dag_rx_get_stream_count ... 13
dag_tx_get_stream_count .. 14
dag_tx_get_stream_space .. 14
dag_tx_stream_commit_bytes .. 15
dag_tx_stream-copy_bytes .. 15
dag_rx_stream_next_record .. 16
dag_rx_stream_inline ... 16
dag_advance_stream .. 18

Deprecated functions ... 19
dag_mmap ... 19
dag_start .. 19
dag_stop ... 19
dag_offset... 20
dag_get_pollparams ... 20
dag_set_pollparams ... 20

EDM04-19 DAG Programming Guide

ii ©2006-2008 Endace Technology Ltd. Confidential - Version 16: November 2008

Example usage 21
Introduction ... 21
Single record receive .. 21

Purpose ... 21
Example .. 21

Multiple copy receive ... 22
Purpose ... 22
Example .. 22

Zero copy transmit ... 24
Purpose ... 24
Example .. 24

Copy with transmit ... 25
Purpose ... 25
Function .. 25

Version History 27

 EDM04-19 DAG Programming Guide

©2006-2008 Endace Technology Ltd. Confidential - Version 16: November 2008 1

Introduction

Overview
The DAG cards are a series of high performance PCI cards designed for ATM cell and packet
capture on IP networks. Packet and cell transmission is also supported on some cards.
Various versions have been produced supporting different physical layer interfaces. There
are methods for accessing the DAG cards for both passive packet capture and for packet
transmission.

Purpose
The purpose of this DAG Programming Guide is to identify and explain:

• Collecting Network Data
• The C Application Program Interface
• Examples of Usage

Related Documents
The following document provides additional information relating to ERF formats. This
document is available on the Endace website at www.endace.com/support.

• EDM11-01 ERF types

http://www.endace.com/support�

 EDM04-19 DAG Programming Guide

©2006-2008 Endace Technology Ltd. Confidential - Version 16: November 2008 3

Collecting network data

Providing network packet information
Collecting network data is based on providing network packet information and the DAG
card functions. In passive capture mode all DAG cards reflect the arrival of a packet, or ATM
cell, as a record within a large circular memory buffer provided by the PC host computer
system.
An Extensible Record Format [ERF] record consists of a fixed size header that includes a high
precision time stamp followed by data. This is a portion, or all, of the original packet present
on the network link under observation and a small number of optional padding bytes to
enforce alignment.
There are three methods of using DAG cards in order to provide network packet information
to your application.

Capture data
The first method is using the provided utility program dagsnap as a simple way to capture
network data. dagsnap can write a file to disk containing the packet records in sequential
order as presented by the DAG card. Such a trace file may later be processed by an analysis
package.
If no output filename is specified, dagsnap will write to stdout, allowing the data to be piped
into an analysis package that reads from its stdin. Although simple to prototype, this is not a
high performance interface since all network trace data must pass through the UNIX pipe
causing multiple memory copies and creating a bottleneck in the CPU-memory path.
PC-based computer systems can achieve between 400 – 1000 Mbytes/sec read/write
performance when accessing non-cached data in main memory. When data is copied twice
(or more) the effective throughput lowers to a bandwidth comparable to Gigabit Ethernet.
DAGs can currently deliver up to 6.4 Gigabits per second peak data rate from a single DAG
6.1 OC-192c card to main memory.

libpcap library
The libpcap library available from www.tcpdump.org now includes direct support for DAG
cards. This allows any program written for the libpcap API to capture directly from DAG
cards.
The DAG is not a NIC (network interface card), and much more efficient memory-mapped
access is provided than is possible using NIC cards and drivers. This allows libpcap
applications zero-copy access to packet headers and contents.

Native C language
The third and most efficient method for retrieving network data is the native C language
API. It provides the highest performance by providing a low-overhead zero-copy memory-
mapped interface to the DAG. This API is described in detail in this manual.

http://www.tcpdump.org/�

EDM04-19 DAG Programming Guide

4 ©2006-2008 Endace Technology Ltd. Confidential - Version 16: November 2008

DAG card functionality

Overview
DAG cards consist of:

• Line interface hardware
• A physical layer
• A packet processor that timestamps packet arrivals using the DAG Universal Clock

Kit [DUCK] and creates the packet records
• An optional processing element
• The PCI Burst Manager [PBM] which writes packet records over the PCI bus into the

host computer.

 The physical layer interface is configured with an external tool, the dagthree program for the
DAG 3.6 series for example. These tools report and set all physical layer attributes such as
SONET scrambling and loopback. They are designed to be easily scriptable, and should be
called at least once before the measurement software is run.
 The packet processor controls such things as the ERF record length, and padding options.
These packet processor options are also configurable with external tools.

PCI burst m
The PCI burst manager does not require user configuration apart from controls to start and
stop the measurement of network data and the allocation of memory between streams.
A large memory space is reserved per card at boot time by the dagmem driver. This memory
space can then be divided into one or more large circular buffers, called streams. Receive
streams use even identifiers, 0, 2, 4 for example, while transmit streams use odd identifiers 1,
3, 5 for example.
A particular firmware set for a DAG will have a maximum number of transmit and receive
streams that it can support. The traditional receive-only DAG firmware application that is
supplied with all DAG cards supports a single receive stream (0), and no transmit streams.
Firmware that supports other stream configurations is available under separate licenses.

During receive operations the PCI burst manager receives packet records from the packet
processor, and writes them into a receive stream buffer in host PC memory via Bus
Mastering DMA. The PCI burst manager provides an indication to the driver of where it has
filled the buffer to, the producer pointer, and will cease writing when the buffer is full.
When the buffer becomes full, records are lost until the condition is cleared. Lost packets are
counted and reported both in and out-of-band, described later.
The DAG API manages the consumer pointer, moving it forward as packet records are
consumed by user programs in order to clear more space in the circular buffer. During
transmit operations the user writes packets to be transmitted into a transmit stream buffer,
which is also a large circular buffer in PC memory. The buffer pointers are then updated to
reflect the new data available for transmission.
The PCI burst manager reads the data from the stream via Bus Mastering DMA and sends it
to the physical layer for transmission

 EDM04-19 DAG Programming Guide

©2006-2008 Endace Technology Ltd. Confidential - Version 16: November 2008 5

C Application Programming Interface

Overview
The programmer’s interface to the DAG cards is exposed via a static or shared C library,
libdag. Although it is possible to make operating system calls directly to the DAG device
driver, this is discouraged as the kernel driver interface is subject to change without notice.
The use of this library also aids portability.
 Version 1.3 of the API is intended to provide data capture and transmission functionality.
Functions include:

• Card open
• Buffer memory mapping
• Buffer pointer handling
• Packet record reception
• Packet record transmission
• Card close
• Functions not currently provided by the API include:
• Card reset
• Xilinx image loading
• Hardware configuration
• Status and statistics information

These functions may be included in future versions of the API, presently they should be
addressed through the provided utilities, dagreset, dagld, dagrom, dagthree, dagfour,
dagsix, dagclock. The public interface to libdag is defined in the header file dagapi.h.

Receive model
API v1.1 and APIv1.2 supported DAG cards operating in a passive receive mode only. This
capability was represented as a single receive-only data buffer.
 API v1.3 introduces support for packet transmission, and the concept of multiple buffers per
DAG card, called streams. Each stream consists of a buffer which can be used for either
receiving or transmitting ERF packet records. Each stream can be addressed individually,
with each receive stream presenting similar functionality to the traditional single buffer API.

 Capture on each stream can be started and stopped independently, but the streams cannot
be considered fully independent as some operations such as resets are available only
globally. There are two access methods available for receive streams.

EDM04-19 DAG Programming Guide

6 ©2006-2008 Endace Technology Ltd. Confidential - Version 16: November 2008

dag_advance_stream()
The dag_advance_stream() function operates similarly to the dag_offset() function from API
v1.2. It provides a pair of record aligned pointers into the stream buffer. The bottom pointer
indicates where the next record begins.
The top pointer indicates the upper limit of available data. The user then steps through the
records using the record length field from the ERF header until they reach the top pointer.
They then pass in the top pointer as the new bottom pointer, freeing the processed space in
the buffer. When dag_advance_stream() returns it will indicate the boundaries of a new block
of data.
 The dag_advance_stream() method is the most efficient interface, as it can pass large blocks
of records to the user with a single call.
It does require the user to parse through the buffer content in order to process each record
however. A simpler interface is also provided which is easier to use.

dag_rx_stream_next_record()
The dag_rx_stream_next_record() function can be used in place of the dag_advance_stream()
call. This function can simply be called repeatedly, each time returning a pointer to the
beginning of the next available ERF packet record.
Buffer pointer management, freeing buffer space, and stepping through the available records
are all implemented by the library. The disadvantage is that a function call on every packet is
less efficient than the block oriented dag_advance_stream() method, with approximately 10%
higher overhead.

Version 1.4 of DAG API
Version 1.4 of the DAG API introduces only small changes from API v1.3, primarily to make
the API more consistent by changing some error return codes. The only new function
introduced is dag_get_stream_buffer_level() which can be used to report receive or
transmit stream status.

Version 1.6 of DAG API
Version 1.6 of the DAG API introduces one new function, dag_rx_stream_next_inline(),
which is used for zero-copy inline forwarding of packets on transmit-capable DAG cards.

Version numbering
The version numbering of the DAG API has changed to match the DAG software release
number.

 EDM04-19 DAG Programming Guide

©2006-2008 Endace Technology Ltd. Confidential - Version 16: November 2008 7

Transmit model
The DAG API v1.3 introduced the capability to transmit packets, with appropriate firmware.
Packet transmission firmware is not distributed as part of the standard DAG software
package, and is available separately from Endace.

Packet transmission is accomplished via transmit streams, which can be considered similar
to receive streams operating in reverse. Two access methods are provided for packet
transmission.

dag_tx_get_stream_space()
If the user application can construct its packet in a provided buffer, the user can call
dag_tx_get_stream_space() to get a pointer into the stream buffer at which it can directly
write one or more ERF records.

The user then calls dag_tx_stream_commit_bytes() to commit the appropriate number of
bytes for transmission. This process is repeated to send further packets.

dag_tx_stream_copy_bytes()
If the user wishes to transmit ERF packet records that are already present in memory in a
user buffer, then dag_tx_stream_copy_bytes() is called.
 This call will copy the ERF records from the user buffer into the DAG stream buffer and
commit them for transmission. It is not necessary to call dag_tx_get_stream_space(). This
method is less efficient as the ERF records must be copied at least once by the CPU from the
user buffer to the stream buffer.

ERF records must be 64-bit aligned for transmission.

dagapi h Header file
The C header file contains function prototypes for the DAG application programming
interface [API].

dag_open

Purpose

The dag_open function is used in place of the system open function. The function prototype
is:

int dag_open(char *dagname);

Function

It is passed a string containing the DAG device node, “dag0”, for example and returns a
valid UNIX file descriptor if successful.

If an error occurs it returns -1 with errno set as follows:

• ENOMEM (out of memory)
• ENFILE (too many open files for process)
• EIO (fatal internal error)
• ENODEV (the DAG does not support packet capture)

Error codes as for ioctl(2), mmap(2).

EDM04-19 DAG Programming Guide

8 ©2006-2008 Endace Technology Ltd. Confidential - Version 16: November 2008

dag_close

Purpose

The dag_close close function terminates the access to a given DAG device represented by
dagfd. The function prototype is:

int dag_close(int dagfd);

Function

The function returns zero if successful, otherwise it returns -1 with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)
• Error codes as for close(2)

dag_configure

Purpose

The dag_configure function allows user control over all parameters required to configure a
card for a measurement session to be carried out. The function prototype is:

 int dag_configure(int dagfd, char *params);

Function

The params parameter is a string of configuration words separated by white space. Most
configuration parameters will be identical to the ones used by the configuration tool. For
instance, when operating a DAG 3.8 card, any command which is a valid option to dagthree
will be valid.

Options

At present, only the following options are implemented by dag_configure:

dag_configure Description

slen=<N> Set packet capture length to N bytes. N will be rounded down to nearest multiple of four.
Packets longer than N bytes will be truncated to N.

varlen Set capture record mode to variable length. Packets shorter than slen will produce short
records.

novarlen Set capture record mode to fixed length. Packets shorter than slen will be padded to slen.
fixed Same as novarlen.
ncells=<N> Only for ATM capture mode on the DAG 3.5. N is 0-15, and specifies the number of cells to

return from the start of each AAL5 frame. The DAG 3.5 is capable of tracking the state of
many VPI/VCIs at once. If N is 0 all cells are captured, including OAM and RM cells which
are dropped otherwise.

(no)lcells Only for ATM capture mode on the DAG 3.5, where ncells>0. If set, the last cell of the AAL5
frame containing the AAL5 trailer will always be captured.
For example if ncells=3 and lcell is set, the first, second, third, and seventh cells will be
captured from a seven cell AAL5 frame.

The function returns zero if successful, otherwise it returns -1 with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)
• EINVAL (params contained an invalid token)
• EIO (fatal internal error)
• ENODEV (no such device)
• Error codes as for lseek(2), read(2), fork(2), execvp(2), execlp(2), execve(2),

wait(2)

 EDM04-19 DAG Programming Guide

©2006-2008 Endace Technology Ltd. Confidential - Version 16: November 2008 9

dag_attach_stream

Purpose

The dag_attach_stream function provides the user access to a particular receive or transmit
data stream on a DAG card. The function prototype is:

int dag_attach_stream(int dagfd, int stream_num,
uint32_t flags, uint32_t extra_window_size);

Function

It performs per-stream locking, and memory mapping functions. The DAG descriptor dagfd
is provided by dag_open(). The stream_num is an integer in the range 0 to MAX_INTERFACES
that indicates which stream to attach to. There are currently no flags defined.
 To avoid seeing a packet record wrap over from the top of the circular buffer, a portion of
the circular buffer is mapped into memory twice. This allows a record that would otherwise
be split across the buffer boundary to appear contiguous. Traditionally the entire buffer is
mapped twice.
For example, a physical 32MB buffer space would be mapped into user-space twice,
consuming 64MB of that process’s virtual memory. This permits operation of the circular
buffer with no restriction on how often buffer space must be cleared. When
extra_window_size has the special value 0, this behavior is maintained. This can consume
significant quantities of process virtual memory however when large physical buffers are
used, such as 512MB. The extra_window_size parameter can be used to specify the size of the
second buffer mapping. For example, with a 32MB physical buffer and extra_window_size
set to 4MB, only 36MB of process virtual memory is used.

When using the dag_advance_stream() access method if extra_window_size is non-zero, the
user must never process more than extra_window_size before calling dag_advance_stream()
again. This allows dag_advance_stream() to normalize the buffer pointers into the lower
buffer mapping before the top of the second buffer mapping is reached.

When using the dag_rx_stream_next_record() access method, extra_window_size must be at
least as large as the maximum size packet possible on the link medium. For efficiency
extra_window_size should be at least several megabytes, 4MB is a reasonable default.

When attaching a stream for transmission, extra_window_size must be set equal to or greater
than the maximum sized block of data that is to be transmitted at once. For backwards
compatibility, or if a user is unsure, the extra_window_size is set to zero.

Setting the extra_window_size does not affect the physical memory consumption. Setting the
extra_window_size only conserves the process virtual memory. Endace recommends setting
the extra_window_size to zero unless process virtual memory is at a premium.

The function returns zero if successful, otherwise MAP_FAILED is returned with errno set
as follows:

• EBADF (dagfd is an invalid file descriptor)
• EACCES (stream is locked by another process)
• EINVAL (stream_num is invalid or extra_window_size is too large)
• ENOMEM (stream has no memory allocated)
• ENODEV (the DAG does not support packet capture)
• EIO (fatal internal error)
• Error codes as for ioctl(2), malloc(2), mmap(2)

Obsoletes

The dag_attach_stream function obsoletes dag_mmap (pg 19).

EDM04-19 DAG Programming Guide

10 ©2006-2008 Endace Technology Ltd. Confidential - Version 16: November 2008

dag_detach_stream

Purpose

The dag_detach_stream function releases a stream on a DAG card. The function prototype is:
int dag_detach_stream(int dagfd, int stream_num)

Function

The per-stream lock is released, allowing other processes to attach to the stream, and the
stream buffer is unmapped from user space. It should be called when the stream is no longer
required by the application.
The function returns zero if successful, otherwise it returns MAP_FAILED with errno set as
follows:

• EBADF (dagfd is an invalid file descriptor)
• EINVAL (stream_num is invalid)
• Error codes as for ioctl(2)

dag_start_stream

Purpose

The dag_start_stream function starts a stream on a DAG card. The function prototype is
int dag_start_stream(int dagfd, int stream_num);

Function

The stream must be attached before it can be started. The function returns zero if successful,
otherwise it returns -1 with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)
• EBUSY (the stream is already started)
• ENODEV (the DAG does not support packet capture)
• EINVAL (stream_num is not attached)
• EIO (fatal internal error)
• ETIMEDOUT (communication with card failed)
• Error codes as for ioctl(2)

 Obsoletes

The dag_start_stream function obsoletes dag_start (page 19).

dag_stop_stream

Purpose

The dag_stop_stream function stops the packet capture session. The function prototype is:
int dag_stop_stream(int dagfd, int stream_num);

Function

The function returns zero if successful, otherwise it returns -1 with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)
• EINVAL (stream_num is not attached or stream_num is not started)
• ENODEV (the DAG does not support packet capture)

Obsoletes

The dag_stop_stream function obsoletes dag_stop (page 19).

 EDM04-19 DAG Programming Guide

©2006-2008 Endace Technology Ltd. Confidential - Version 16: November 2008 11

dag_get_stream_poll

Purpose

The dag_get_stream_poll function is to read the polling parameters in use for a particular
stream. The parameters are used in the function prototype:

int dag_get_stream_poll(int dagfd, int stream_num, uint32_t *mindata, struct
timeval *maxwait, struct timeval *poll);

Function

The DAG drivers avoid interrupts due to the associated overheads, using polling methods
instead. The amount of data that must be received before a call to dag_advance_stream() or
dag_rx_stream_next_record() will return is given by mindata. This defaults to 16 bytes, the
size of an ERF record header.

If mindata is zero, the receive functions will return immediately if no data is available,
allowing non-blocking behavior.

 The maxwait parameter is the maximum amount of time the receive functions should wait
before returning. This overrides the mindata parameter, so that even if mindata is non-zero,
the call will return with 0 bytes available after maxwait time. By default the maxwait
parameter is set to the special value zero which means that it is disabled. This means that the
receive calls will block indefinitely for mindata bytes.

 If mindata bytes are not available when the receive function is first called, the library will
sleep for poll time before checking for more data. This sleep avoids excessive polling traffic
to the DAG card that may waste bus bandwidth, and frees the CPU for other processes.

Each time the library wakes from a poll sleep, the timeout as set by maxwait is checked, and
the function will return if maxwait is exceeded. The default value of poll is 10ms, implying a
maximum of 100 polls per second when no data is available. The value of poll should always
be less than or equal to the value of maxwait, as the minimum sleep time is poll.

The poll sleep is implemented in user space using the POSIX.1b nanosleep(2) function. The
current implementation of this call in Linux is based on the normal kernel timer mechanism,
which has a resolution of 1/HZ, or 10ms on Linux/i386. This means that values of maxwait
and poll less than 10ms will result in additional delay up to 10ms.

If the application uses a real time scheduler such as SCHED_FIFO or SCHED_RR, then sleep
values up to 2ms will be performed as busy-waits. This allows for faster and more accurate
polling, but will lead to high CPU utilization due to busy-waiting rather than releasing the
CPU to the scheduler.

 The function returns zero if successful, otherwise it returns -1 with errno set as follows:
• EBADF (dagfd is an invalid file descriptor)
• EINVAL (stream_num is not attached)

Obsoletes

The dag_get_stream_poll function obsoletes dag_get_pollparams (page 20).

EDM04-19 DAG Programming Guide

12 ©2006-2008 Endace Technology Ltd. Confidential - Version 16: November 2008

dag_set_stream_poll

Purpose

The dag_set_stream_poll function is used to configure the polling parameters for an
individual stream when the defaults are not sufficient. The function prototype is:

int dag_set_stream_poll(int dagfd, int stream_num, uint32_t mindata, struct
timeval *maxwait, struct timeval *poll);

Function

The dag_set_stream_poll parameters are as detailed for the dag_get_stream_poll()
described in Topic 3.3.8 of this Chapter, the Section above.

All the parameters must be supplied in each call. The function returns zero if successful,
otherwise it returns -1 with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)
• EINVAL (stream_num is not attached)

Obsoletes

The dag_set_stream_poll function obsoletes dag_set_pollparams (pg 20)

dag_get_stream_buffer_size

Purpose

The dag_get_stream_buffer_size function returns the size of the stream buffer in bytes if
successful. The function prototype is:

int dag_get_stream_buffer_size(int dagfd, int stream_num);

Function

The stream must be attached in order to determine the size of its buffer. On failure it returns
-1 with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)

 EDM04-19 DAG Programming Guide

©2006-2008 Endace Technology Ltd. Confidential - Version 16: November 2008 13

dag_get_stream_buffer_level

Purpose

The dag_get_stream_buffer_level function returns the number of bytes currently
outstanding in the stream buffer. The function prototype is:

int dag_get_stream_buffer_level(int dagfd, int stream_num);

Function

For transmit streams this is the number of bytes that have been committed by the user but
have not yet been transmitted. Space allocated using dag_tx_get_stream_space() which has
not been committed for transmission is not counted.

 For receive streams this is the number of bytes of data available to the user for reading. This
does include bytes that the user may have read but has not yet freed by calling
dag_advance_stream() or dag_rx_stream_next_record().

The dag_rx_stream_next_record() routine may not free buffer space occupied by previously
read packets immediately for efficiency reasons.

The dag_rx_stream_next_record() call reads hardware registers on the DAG card, so each
call will generate bus transactions. If polled at high rates this could potentially interfere with
data capture or transmission operations.

On failure it returns -1 with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)
• EINVAL (stream_num is not attached)

dag_rx_get_stream_count

Purpose

The dag_rx_get_stream_count function returns the number of receive streams supported by
the DAG with the current firmware load. The function prototype is:

int dag_rx_get_stream_count(int dagfd);

Function

This does not imply that all of the streams have memory allocated to their buffers. The DAG
may support a greater or lesser number of streams with different firmware.

The function returns the number of receive streams if successful, otherwise it returns -1 with
errno set as follows:

• EBADF (dagfd is an invalid file descriptor)

EDM04-19 DAG Programming Guide

14 ©2006-2008 Endace Technology Ltd. Confidential - Version 16: November 2008

dag_tx_get_stream_count

Purpose

The dag_tx_get_stream_count function returns the number of transmit streams supported by
the DAG with the current firmware load. The function prototype is:

int dag_tx_get_stream_count(int dagfd);

Function

This does not imply that all of the streams have memory allocated to their buffers. The DAG
may support a greater or lesser number of streams with different firmware.

The function returns the number of transmit streams if successful, otherwise it returns -1
with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)

dag_tx_get_stream_space

Purpose

The dag_tx_get_stream_space function provides a pointer to size bytes of available space for
the indicated stream. The function prototype is:

void *dag_tx_get_stream_space(int dagfd, int stream_num, uint32_t size);

Function

It is necessary to acquire a pointer into the stream buffer at which to write the records to be
transmitted. When packet transmission is being performed using the zero-copy, the
dag_tx_get_stream_space function blocks the transmission until the requested space is
available.

While polling for space to become available, it will sleep in poll time increments as set with
dag_set_stream_poll(), freeing the CPU for other processes.

The function returns a pointer to the requested space if successful, otherwise it returns NULL
with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)
• ENOTTY (stream_num is not a transmit stream)
• EINVAL (stream_num is not attached)
• ENOMEM (stream_num has no memory allocated)

 EDM04-19 DAG Programming Guide

©2006-2008 Endace Technology Ltd. Confidential - Version 16: November 2008 15

dag_tx_stream_commit_bytes

Purpose

The dag_tx_get_stream_commit_bytes function provides a pointer to size bytes of available
space for the indicated stream. The function prototype is:

void *dag_tx_stream_commit_bytes(int dagfd, int stream_num, uint32_t size);

Function

In order to transmit data the first step for the user is to get a pointer to write to using
dag_tx_get_stream_space(), then write their data at that location, and finally call
dag_tx_stream_commit_bytes() to indicate that the data can be sent.

No pointer to the bytes to be sent is required, as the API holds this internally. The parameter
size is the number of bytes that can be sent, this may be less than or equal to the size
requested in the previous call to dag_tx_get_stream_space(), but must not be greater.

 This function returns a pointer to the end of the transmitted block, but no data can be
written at this location until dag_tx_get_stream_space() has been called again to ensure
buffer space is available.

 The function returns a pointer to the end of the transmitted block if successful, otherwise it
returns NULL with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)
• EINVAL (stream_num is not attached or size is larger than the stream buffer size)
• ENOMEM (stream_num has no memory allocated)
• ENOTTY (stream_num is not a transmit stream)

dag_tx_stream-copy_bytes

Purpose

The dag_tx_get_stream_copy_bytes function is used to transmit packets where the packet
records are already present in a user buffer. The function prototype is:

int dag_tx_stream_copy_bytes(int dagfd, int stream_num, void * orig, uint32_t
size);

Function

The records are copied from the user buffer into the stream buffer when space is available,
and committed for transmission. No other functions need be called when using this method,
but it is less efficient as the packet records must be copied by the CPU.

The pointer orig indicates the location of the user buffer to be copies, while size contains
the number of bytes to be copied and sent. The buffer to be sent does not have to be record
aligned, but if the buffer contains only the start of a packet record, that packet will not be
transmitted from the DAG until the remainder of the record is supplied.

This call will block until space is available in the transmit stream buffer for all of the supplied
data to be sent. The function returns the number of bytes successfully written if successful,
otherwise it returns -1 with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)
• EINVAL (stream_num is not attached or size is larger than the stream buffer size)
• ENOMEM (stream_num has no memory allocated)
• ENOTTY (stream_num is not a transmit stream)

EDM04-19 DAG Programming Guide

16 ©2006-2008 Endace Technology Ltd. Confidential - Version 16: November 2008

dag_rx_stream_next_record

Purpose

The dag_rx_stream_next_record function is used for receiving ERF records individually,
rather than the block oriented approach of dag_advance_stream(). The function prototype is:

void *dag_rx_stream_next_record(int dagfd, int stream_num);

Function

This is a simpler approach and may ease porting, but due to the function call per packet the
overhead may be 10% higher. The two methods should not be mixed on a single stream
while the stream is started. The function uses the stream poll parameters described under
dag_get_stream_poll(). These parameters define the blocking or non-blocking behavior, as
well as the optional timeout and poll period.

If not configured with dag_set_stream_poll() the default stream parameters will cause
dag_rx_stream_next_record() to block when no data is available.

The function returns a pointer to a single ERF record if successful (the ERF header contains
an rlen field that specifies the size of the record). Otherwise it returns NULL with errno set
as follows:

• EBADF (dagfd is an invalid file descriptor)
• EINVAL (stream_num is not attached or size is larger than the stream buffer size)
• ENOMEM (stream_num has no memory allocated)
• ENOTTY (stream_num is not a receive stream)
• EIO (ERF record has an invalid ERF type)
• EAGAIN (timeouts are enabled and a timeout occurs when no data is available)
• Error codes as for dag_advance_stream (page 6).

dag_rx_stream_inline

Purpose

The dag_rx_stream_next_inline function is used for processing packets inline. It is the inline
version of dag_rx_stream_next_record(). The function prototype is:

void* dag_rx_stream_next_inline (int dagfd, int rx_stream_num, int tx_stream_num

Function

The function can only be used with a DAG that is capable of transmitting packets and
configured with the overlap option to set up the memory buffers for inline operation:

• For DAG 3 class cards: dagthree –d dagN default overlap
• For DAG 4 class series: dagfour –d dagN default overlap

The dagfwddemo program included in the tools directory of the DAG software release
demonstrates the inline capabilities of a DAG card and serves as a fully-functional example
for programmers.

dagfwddemo applies a user-defined BSD Packet Filter [BPF] expression to each packet
received and only retransmits the packets that pass the filter.

 EDM04-19 DAG Programming Guide

©2006-2008 Endace Technology Ltd. Confidential - Version 16: November 2008 17

Two streams are attached and started before this routine is used. One stream is for receive
and the other for transmit. The main loop of an inline packet processing application using
dag_rx_stream_next_record() will look similar to the following code:

while (keep_processing())

{

uint8_t* record = dag_rx_stream_next inline(uDagfd, RX_STREAM, TX_STREAM);

uint32_t bytes_to_commit;

process(record);

bytes_to_commit = ntohs(((dag_record_t *)record)
->rlen);

dag_tx_stream_commit_bytes(uDagfd, TX_STREAM,
bytes_to_commit);

}

Process Routine

The process() routine has up to three functions to perform:

Function Routine

Determine action for packet Make application-specific determination about whether the packet is to
be dropped or retransmitted.

Set packet to drop.

If the packet is to be dropped then the rx error bit in the ERF header
flags byte must be set to 1.

Adjust iface field. If the packet is to be transmitted out to the opposite interface from
which it arrived, then the iface field in the ERF header flags must be
adjusted.

Interface Transmits

Some DAG card firmware has the capability to automatically rewrite the interface field in the
ERF header so that packets received on interface 0 are transmitted via interface 1 and vice
versa.

If the DAG card has been configured to rewrite the interface field then the software does not
need to perform Step 3 described above.

Record Size

dag_rx_stream_next_inline() returns a pointer to a single ERF record if successful, the ERF
header contains an rlen field that specifies the size of the record. Otherwise it returns NULL
with errno set as follows:

• EBADF (dagfd is an invalid file descriptor.)
• ENOTTY (One of the stream numbers is invalid.)
• EINVAL (One of the streams is not attached.)
• EIO (The ERF record has an invalid ERF type. EIO is usually a fatal error and the

capture session must be stopped.)

EDM04-19 DAG Programming Guide

18 ©2006-2008 Endace Technology Ltd. Confidential - Version 16: November 2008

dag_advance_stream

Purpose

The dag_advance_stream function is used when receiving ERF record. The function prototype
is:

void *dag_advance_stream(int dagfd, int stream_num, void **bottom);

Function

Since it can return more than one record to the user at a time, it can be more efficient than
using dag_rx_stream_next_record(). It operates by returning a pair of pointers into the
stream buffer, which is mapped into the user process space in the dag_attach_stream() call.
The bottom parameter is a pointer to a void pointer. On the first call the void pointer can be
NULL. On subsequent calls, this should contain the address that the user has completed
processing up to. The function can change the value of the bottom pointer to renormalize the
circular buffer, so it is doubly referenced. The return value is a pointer to the top of the
available buffer space. For example:

void *bottom=NULL, *top=NULL;

top = dag_advance_stream(dagfd, 0, &bottom);

Assuming the buffer is mapped into user space at 10000, bottom will now contain 10000, and
if 10000 bytes were received top would contain 20000. Processing can now begin for ERF
records, starting at bottom (10000) and continue until you reach top (20000).

If the first 5000 bytes are processed and it is then decided to call dag_advance_stream() again,
the call would be:

bottom = bottom + 5000;

top = dag_advance_stream(dagfd, 0, &bottom);

After this call bottom may still contain 15000, but top may be 25000 if a further 5000 bytes
were received while process the initial 5000 bytes are being processed. If the circular buffer
needs to be normalized, then bottom can have a lower value after calling
dag_advance_stream() than what was passed in. The process is always started from bottom.
After calling dag_advance_stream() the top pointer will always have a higher value than the
bottom pointer. Further example code is provided below.

The function uses the stream poll parameters described under dag_get_stream_poll().
These parameters define the blocking or non-blocking behavior, as well as the optional
timeout and poll period. If not configured with dag_set_stream_poll() the default stream
parameters will cause dag_advance_stream() to block when no data is available.

The function returns a pointer to the top of the available buffer space if successful, otherwise
it returns NULL with errno set as follows:

• EBADF (dagfd is an invalid file descriptor)
• EINVAL (stream_num is not attached)
• ENOMEM (stream_num has no memory allocated)
• EIO (fatal internal error)

EIO is usually a fatal internal error and the capture session must be stopped and minimally
restarted.

Obsoletes

The dag_advance_stream function obsoletes dag_offset (page 20).

 EDM04-19 DAG Programming Guide

©2006-2008 Endace Technology Ltd. Confidential - Version 16: November 2008 19

Deprecated functions
The following functions are provided in dagapi.h for backwards code compatibility only
and should not be used in new projects.

• dag_mmap
• dag_start
• dag_stop
• dag_offset
• dag_getpollparams
• dag_setpollparams

dag_mmap

Purpose

The dag_mmap function returns an address in user space which corresponds to the base of
the circular packet buffer as utilized by the DAG card dagfd. The function prototype is:

void *dag_mmap(int dagfd);

Function

This buffer pointer is used as the base address to locate valid network capture data as
indicated by the offset pointer. On error the function will report MAP_FAILED with errno set
accordingly.

Obsoleted by:

The dag_mmap function is obsoleted by dag_attach_stream (page 9).

dag_start

Purpose

The dag_start function starts a measurement session on the nominated DAG. The function
prototype is:

int dag_start(int dagfd);

Function

The function returns -1 on error with an indication in errno, otherwise zero is returned.

Obsoleted by:

The dag_start function is obsoleted by dag_start_stream (page 10).

dag_stop

Purpose

The dag_stop function stops a measurement session on the nominated DAG. The function
prototype is:

int dag_stop(int dagfd);

Obsoleted by:

dag_stop_stream (page 10).

EDM04-19 DAG Programming Guide

20 ©2006-2008 Endace Technology Ltd. Confidential - Version 16: November 2008

dag_offset

Purpose

The dag_offset function returns the first address beyond the most recently written packet
record in the circular buffer. The function prototype is:

int dag_offset(int dagfd, int *oldoffset, int flags);

Function

oldoffset is the address of the previous offset as returned by the card or any other address
the application wishes to be acknowledged as having completed the processing at.

The function hides the details of data wrapping across the end of the large memory buffer
and updates the location pointed at by oldoffset.

All data between *oldoffset and the offset value as returned can be considered valid
network measurement data.

The dag_nextpkt() function will eventually allow the processing of this window of data. At
present the processing must be accomplished by user code.

 The flags defined are:

• DAGF_NONBLOCK. This flag causes dag_offset to be non-blocking, otherwise the
function blocks until at least one record is available.

Obsoleted by:

The dag_offset function is obsoleted by dag_advance_stream (page 6).

dag_get_pollparams

Purpose

The dag_getpollparams function reads the polling parameters in use. The function prototype
is:

void dag_getpollparams(int *mindatap, struct timeval *maxwait, struct timeval
*poll);

Function

The parameters are used in dag_offset().

Obsoleted by:

The dag_getpollparams function is obsoleted by dag_get_stream_poll (page 11).

dag_set_pollparams

Purpose

The dag_setpollparams function sets the polling parameters in use. The function prototype
is:

void dag_setpollparams(int mindata, struct timeval *maxwait, struct timeval
*poll);

Functions

The parameters are used in dag_offset().

Obsoleted by:

The dag_setpollparams function is obsoleted by dag_set_stream_poll (page 12).

 EDM04-19 DAG Programming Guide

©2006-2008 Endace Technology Ltd. Confidential - Version 16: November 2008 21

Example usage

Introduction
The functional examples for programming with the API library are based on the dagsnap or
dagbits application programs for network monitoring, and dagflood for packet
transmission.

Single record receive

Purpose
The dag_rx_stream_next_record() used to process captured network packets one at a time
from stream 0.

Example
In this example the extra_window_size parameter of dag_attach_stream() is set to 4MB to
reduce the total amount of memory mapped to user space. The
dag_rx_stream_next_record() function handles this internally.

/* open DAG, configure, and attach to stream 0 (receive) */

if((dagfd = dag_open(”/dev/dag0”)) < 0)

 panic("dag_open %s: %s\n", dagname, strerror(errno));

if(dag_configure(dagfd, ”slen=1536”) < 0)

 panic("dag_configure %s: %s\n", dagname, strerror(errno));

if(dag_attach_stream(dagfd, 0, 0, 4*1024*1024) < 0)

 panic("dag_attach %s: %s\n", dagname, strerror(errno));

if(dag_start_stream(dagfd, 0) < 0)

 panic("dag_start %s: %s\n", dagname, strerror(errno));

/* Initialise DAG Polling parameters. */

timerclear(&maxwait);

maxwait.tv_usec = 100 * 1000; /* 100ms timeout */

timerclear(&poll);

poll.tv_usec = 10 * 1000; /* 10ms poll interval */

/* 32kB minimum data to return */

dag_set_stream_poll(dagfd, 0, 32*1024, &maxwait, &poll);

while(run) {

 rec = (dag_record_t*)dag_rx_stream_next_record(dagfd, 0);

 if (rec) {

 len = ntohs(rec->rlen);

 /* User processing here */

 process_packet(rec, len);

} else { /* rec == NULL */

 if (errno != EAGAIN)

 panic("dag_get_next_record: %s\n",

strerror(errno));

 }
}

/* finished; stop capture, detach from stream and close */

dag_stop_stream(dagfd, 0);

dag_detach_stream(dagfd, 0);

dag_close(dagfd);

EDM04-19 DAG Programming Guide

22 ©2006-2008 Endace Technology Ltd. Confidential - Version 16: November 2008

Multiple copy receive

Purpose
Using dag_advance_stream() to process multiple captured network packets per call from
stream 0.

Example
In this example the extra_window_size parameter of dag_attach_stream() is set to 4MB to
reduce the total amount of memory mapped to user space.

The user must not read more than 4MB of data before calling dag_advance_stream() again in
the dag_advance_stream(). Reading more than 4MB of data may cause segmentation faults.
An alternative is to set extra_window_size to zero, in which case all the data that
dag_advance_stream() provides can be processed.

/* open DAG, configure, and attach to stream 0 (receive) */

if((dagfd = dag_open(”/dev/dag0”)) < 0)

if(dag_configure(dagfd, ”slen=1536”) < 0)

 panic("dag_configure %s: %s\n", dagname, strerror(errno));

if(dag_attach_stream(dagfd, 0, 0, 4*1024*1024) < 0)

 panic("dag_attach %s: %s\n", dagname, strerror(errno));

if(dag_start_stream(dagfd, 0) < 0)

 panic("dag_start %s: %s\n", dagname, strerror(errno));

/* Initialise DAG Polling parameters. */

timerclear(&maxwait);

maxwait.tv_usec = 100 * 1000; /* 100ms timeout */

timerclear(&poll);

poll.tv_usec = 10 * 1000; /* 10ms poll interval */

/* 32kB minimum data to return */

dag_set_stream_poll(dagfd, 0, 32*1024, &maxwait, &poll);

while(run) {

 processed = 0;

 if((top = dag_advance_stream(dagfd, 0, &bottom)) == NULL)

 panic("dag_advance_stream %s: %s\n", dagname,

strerror(errno));

 diff = top - bottom;

 if (diff == 0)

 continue;

/* If more than say 4MB of data has been processed, then go back to main loop and call
dag_advance_stream again. This allows the space in the stream buffer occupied by that 4MB
of processed records to be released */

 while((run) &&

 ((top-bottom)>dag_record_size) &&

 ((processed+dag_record_size)<4*1024*1024)) {

 rec = (dag_record_t*)bottom;

 len = ntohs(rec->rlen);

 EDM04-19 DAG Programming Guide

©2006-2008 Endace Technology Ltd. Confidential - Version 16: November 2008 23

/* break if the whole record is not available */

 if((top-bottom) < len)

 break;

/* break if processing this record would go over our 4MB limit */

 if((processed+len)>4*1024*1024)

 break;

 /* User processing here */

 process_packet(rec, len);

/* increment bottom pointer to next packet in block */

 bottom += len;

/* increment count of data processed since last dag_advance_stream() call */

processed += len;

 }

 }

/* finished; stop capture, detach from stream and close */

dag_stop_stream(dagfd, 0);

dag_detach_stream(dagfd, 0);

dag_close(dagfd);

EDM04-19 DAG Programming Guide

24 ©2006-2008 Endace Technology Ltd. Confidential - Version 16: November 2008

Zero copy transmit

Purpose
Using packet transmission allows users to request space in the transmit stream buffer, and
then directly create their packet in the stream buffer memory, avoiding copies.

Example
Another use would be reading one or more packet records from storage and writing them
directly into the stream buffer, avoiding an intermediate copy.
When requesting buffer space the maximum is requested that is intended to be used.
Committing to less than was requested is permitted.
In the following example it is assumed the user constructs a single ERF record. There is no
requirement for the data supplied to be record aligned and the user may write more than one
ERF record.

/* open DAG and attach to stream 1 (transmit) */

if((dagfd = dag_open(”/dev/dag0”)) < 0)

 panic("dag_open %s: %s\n", dagname, strerror(errno));

if(dag_attach_stream(dagfd, 1, 0, maximum_size) < 0)

 panic("dag_attach %s: %s\n", dagname, strerror(errno));

if(dag_start_stream(dagfd, 1) < 0)

 panic("dag_start %s: %s\n", dagname, strerror(errno));

while (run) {

 /* This will block until space is available */

 if((record=dag_tx_get_stream_space(dagfd, 1, maximum_size))

== NULL) {

panic("dag_tx_get_stream_space %s: %s\n", dagname, strerror(errno));

 }

 /* user constructs packet here at *record */

 actual_size = construct_packet(record, maximum_size);

 if(dag_tx_stream_commit_bytes(dagfd, 1, actual_size) == NULL)

panic("dag_tx_stream_commit_bytes %s: %s\n", dagname, strerror(errno));

}

/* finished; stop stream, detach from stream and close */

dag_stop_stream(dagfd, 1);

dag_detach_stream(dagfd, 1);

dag_close(dagfd);

 EDM04-19 DAG Programming Guide

©2006-2008 Endace Technology Ltd. Confidential - Version 16: November 2008 25

 Copy with transmit

Purpose
The transmit with copy method can be used where the ERF packet record to be transmitted is
already present in a user buffer and must be copied into the stream buffer for transmission.

Function
In the following example it is assumed the user provides a buffer containing an ERF record.

There is no requirement for the buffer supplied to be record aligned and it may contain more
than one ERF record.

/* open DAG and attach to stream 1 (transmit) */

if((dagfd = dag_open(”/dev/dag0”)) < 0)

 panic("dag_open %s: %s\n", dagname, strerror(errno));

if(dag_attach_stream(dagfd, 1, 0, maximum_size) < 0)

 panic("dag_attach %s: %s\n", dagname, strerror(errno));

if(dag_start_stream(dagfd, 1) < 0)

 panic("dag_start %s: %s\n", dagname, strerror(errno));

while (run) {

 /* user has ERF record at *record to transmit */

 record = acquire_packet_from_somewhere(&size);

 if(dag_tx_stream_copy_bytes(dagfd, 1, record, size) == NULL)

panic("dag_ tx_stream_copy_bytes %s: %s\n", dagname,
strerror(errno));

}

/* finished; stop stream, detach from stream and close */

dag_stop_stream(dagfd, 1);

dag_detach_stream(dagfd, 1);

dag_close(dagfd);

 EDM04-19 DAG Programming Guide

©2006-2008 Endace Technology Ltd. Confidential - Version 16: November 2008 27

Version History

Version Date Reason

1-11 Previous versions.
12 June 2006
14 September 2007 New template and removal of some sections.
15 January 2008 Added information re extra_window_asize segmentation fault.
16 November 2008 Updated front matter. Minor formatting changes. Corrected use of

dag_tx_get_stream_space(). Added details about version
numbering change.

	Protection Against Harmful Interference
	Extra Components and Materials
	Disclaimer
	Website
	Copyright 2008 Endace Technology Ltd. All rights reserved.
	Introduction
	Overview
	Purpose
	Related Documents

	Collecting network data
	Providing network packet information
	Capture data
	libpcap library
	Native C language
	DAG card functionality
	Overview
	PCI burst m

	C Application Programming Interface
	Overview
	Receive model
	dag_advance_stream()
	dag_rx_stream_next_record()
	Version 1.4 of DAG API
	Version 1.6 of DAG API

	Version numbering
	Transmit model
	dag_tx_get_stream_space()
	dag_tx_stream_copy_bytes()

	dagapi h Header file
	dag_open
	Purpose
	Function

	dag_close
	Purpose
	Function

	dag_configure
	Purpose
	Function
	Options

	dag_attach_stream
	Purpose
	Function
	Obsoletes

	dag_detach_stream
	Purpose
	Function

	dag_start_stream
	Purpose
	Function
	Obsoletes

	dag_stop_stream
	Purpose
	Function
	Obsoletes

	dag_get_stream_poll
	Purpose
	Function
	Obsoletes

	dag_set_stream_poll
	Purpose
	Function
	Obsoletes

	dag_get_stream_buffer_size
	Purpose
	Function

	dag_get_stream_buffer_level
	Purpose
	Function

	dag_rx_get_stream_count
	Purpose
	Function

	dag_tx_get_stream_count
	Purpose
	Function

	dag_tx_get_stream_space
	Purpose
	Function

	dag_tx_stream_commit_bytes
	Purpose
	Function

	dag_tx_stream-copy_bytes
	Purpose
	Function

	dag_rx_stream_next_record
	Purpose
	Function

	dag_rx_stream_inline
	Purpose
	Function
	Process Routine
	Interface Transmits
	Record Size

	dag_advance_stream
	Purpose
	Function
	Obsoletes

	Deprecated functions
	dag_mmap
	Purpose
	Function
	Obsoleted by:

	dag_start
	Purpose
	Function
	Obsoleted by:

	dag_stop
	Purpose
	Obsoleted by:

	dag_offset
	Purpose
	Function
	Obsoleted by:

	dag_get_pollparams
	Purpose
	Function
	Obsoleted by:

	dag_set_pollparams
	Purpose
	Functions
	Obsoleted by:

	Example usage
	Introduction
	Single record receive
	Purpose
	Example

	Multiple copy receive
	Purpose
	Example

	Zero copy transmit
	Purpose
	Example

	Copy with transmit
	Purpose
	Function

	Version History

