
Reliable DUCC - Design

Written and maintained by the Apache
UIMATMDevelopment Community

Copyright c© 2012 The Apache Software Foundation

Copyright c© 2012 International Business Machines Corporation

License and Disclaimer The ASF licenses this documentation to you under the Apache License, Version
2.0 (the ”License”); you may not use this documentation except in compliance with the License. You may
obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation and its contents are distributed
under the License on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied. See the License for the specific language governing permissions and limitations under
the License.

Trademarks All terms mentioned in the text that are known to be trademarks or service marks have been
appropriately capitalized. Use of such terms in this book should not be regarded as affecting the validity of
the the trademark or service mark.

Publication date: April 2019

1

http://www.apache.org/licenses/LICENSE-2.0

Multiple DUCC head nodes

This first major section describes support for multiple active DUCC head nodes.

Introduction

DUCC can be configured to run reliably by having multiple head nodes, comprising one master and one or more
backup head nodes. DUCC exploits Linux keepalived virtual IP addressing to enable this capability.

The advantages are that if the master DUCC host becomes unusable, the backup DUCC can take over seamlessly
such that active distributed Jobs, Reservations, Managed Reservations and Services continue uninterrupted. Take
over also facilitates continued acceptance of new submissions and monitoring of new and existing submissions without
interruption.

Daemons

Each head node, whether master or backup, runs a Broker, Orchestrator, PM, RM, and SM.

The Cassandra database is expected to be located on a node(s) separate from the head nodes.

Likewise, the JD node(s) is separate from the head nodes.

The Agents are distributed, as before.

Configuring Host Machines

See Configuring Simple Virtual IP Address Failover Using Keepalived which can be found at this web address:
https://docs.oracle.com/cd/E37670_01/E41138/html/section_uxg_lzh_nr.html.

Sample MASTER /etc/keepalived/keepalived.conf

! Configuration File for keepalived

vrrp_instance VI_1 {

state MASTER

interface eth0

virtual_router_id 51

priority 100

advert_int 1

authentication {

auth_type PASS

auth_pass 1111

}

virtual_ipaddress {

192.168.6.253

}

}

Sample BACKUP /etc/keepalived/keepalived.conf

! Configuration File for keepalived

vrrp_instance VI_1 {

state BACKUP

interface eth0

2

https://docs.oracle.com/cd/E37670_01/E41138/html/section_uxg_lzh_nr.html

virtual_router_id 51

priority 100

advert_int 1

authentication {

auth_type PASS

auth_pass 1111

}

virtual_ipaddress {

192.168.6.253

}

}

Linux Commands

Starting keepalived

> sudo service keepalived start

Starting keepalived: [OK]

Querying keepalived

> /sbin/ip addr show dev eth0

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP qlen 1000

link/ether 00:21:5e:20:02:84 brd ff:ff:ff:ff:ff:ff

inet 192.168.3.7/16 brd 192.168.255.255 scope global eth0

inet 192.168.6.253/32 scope global eth0

inet6 fe80::221:5eff:fe20:284/64 scope link

valid_lft forever preferred_lft forever

Stopping keepalived

> sudo service keepalived stop

Stopping keepalived:

Configuring DUCC

To configure DUCC to run reliable, one required property must be configured in the site.ducc.properties file. Example:

ducc.head = 192.168.6.253

Use the virtual IP address configured for your host machines keepalived. Use of the DNS name is also supported.

Webserver

Webserver for Master

The master DUCC Webserver will display all pages normally with additional information in the heading upper left:

reliable: master

Webserver for Backup

The backup DUCC Webserver will display some pages normally with additional information in the heading upper
left:

reliable: backup

3

Hovering over reliable will yield the following information: Click to visit master

Several pages will display the following information (or similar):

no data - not master

Database

Configure the database to be on a separate machine from the reliable DUCC head nodes. In site.ducc.properties
specify:

Database location

ducc.database.host = dbhost123

ducc.database.jmx.host = dbhost123

ducc.database.automanage = false

The existing administrator commands start ducc and stop ducc will honor the value specified for ducc.database.automanage
in site.ducc.properties.

Code changes

The key changes include a new script (see ducc head mode.py) to interact with Linux to determine virtual IP
address status and corresponding Java code (see common.head.ADuccHead.java) that interprets the status to make
transitions between master and backup states.

new scripts

ducc head mode.py

This is a new script employed at runtime by the various daemons to determine the current mode of operation. Status
is determined though invocation of this script upon receipt of each Orchestrator publication.

purpose: determine reliable ducc status

input: none

output: one of { unspecified, master, backup }

operation: look in ducc.properties for relevant keywords

and employ linux commands to determine if system

has matching configured virtual IP address

existing and new scripts

ducc post install - no need to create webserver request log directory

ducc util.py - incorporate host name into cassandra.pid, cassandra.console path; broker host must be local
host; head node must be eligible with respect to keepalived.conf; head node local components are all daemons
except Database and Agents; fix remote db stop; honor ducc.database.automanage flag in site.ducc.properties

ducc.py - incorporate host name into cassandra.pid, cassandra.console path

start ducc.py - head node local components must on eligible local host

start sim - (example) honor database autostart flag in ducc.properties item stop sim - (example) honor
database autostart flag in ducc.properties

4

configuration files

ducc.properties

The name of the node where DUCC runs.

This property declares the node where the DUCC administrative processes run (Orchestrator,

Resource Manager, Process Manager, Service Manager). This property is required and MUST be

configured in new installation. The installation script ducc_post_install initializes this

property to the node the script is executed on.

Reliable DUCC: if running reliably, then this value must be the same as that specified

for the virtual_ipaddress in /etc/keepalived/keepalived.conf. DUCC CLI and Agents employ

this value to connect to the current reliable DUCC head node.

ducc.head = <head-node>

Although not strictly true, the Orchestrator, RM, SM, PM, Webserver and Broker ”must” all be configured on the
head node. Reliable DUCC may work with other configurations, but it has not been tested as such.

If set to true, DUCC will start and stop the Cassandra database as part of its normal

start/stop scripting.

ducc.database.automanage = true

log4j.xml

Add DUCC_NODENAME to log file name for OR, RM, PM, SM, and system-events.

This allows reliable DUCC head nodes to share the same ducc_runtime directory

in the filesystem without collisions.

agent

DuccWorkHelper - use virtual IP address configured as ducc.head node

AgentEventListener - ignore any incoming publications from backup producer

CGroupsTest - employ changed DuccIdFactory signature

ServiceTester - broker must be on ducc.head node

cli

DuccMonitor - use WS node or virtual IP address configured as ducc.head node

DuccUiUtilities - use virtual IP address configured as ducc.head node (to submit, cancel..)

common

AbstractDuccComponent - remove commented-out code, remove print to console, head node local compo-
nents are all daemons except Database and Agents

ADuccHead - abstract class with reliable DUCC share functionality

IDuccHead - reliable DUCC interface

IDuccEnv - remove DUCC LOGS WEBSERVER DIR, not used

IStateServices - database access control RW or RO

NullStateServices - database access control RW or RO

StateServices - database access control RW or RO

5

DuccDaemonRuntimeProperties - incorporate hostname into logs directory location

InetHelper - incorporate hostname into logs directory location

DuccPropertiesHelper - fetch virtual IP address configured as ducc.head node

DuccPropertiesResolver - Remove key ducc.broker.hostname, broker must be on ducc.head node

IDuccLoggerComponents - Missing PM abbreviation

DuccIdFactory - improved (generalized) to handle DB persisted sequence numbering

database

IDuccHead - reliable DUCC interface

DbOrchestratorProperties - support for OR properties table

IDbOrchestratorProperties - interface of OR properties table

IOrchestratorProperties - interface for OR properties

IOrchestratorProperties - database access control RW or RO

orchestrator

DuccHead - loggable wrapper around common.ADuccHead

OrchestratorCommonArea - add restart capability for transition to master

OrchestratorComponent - reject requests from CLI and JD and publications for Agents when not master,
employ DB for Job and publication number persistence, use active workMap from common area, tag publication
with node identity and producer state master or backup, make transitions between master and backup states

OrchestratorRecovery - employ changed DuccIdFactory initialization requirements

ReservationFactory - employ changed DuccIdFactory signature

StateJobAccounting - log job state changes

StateManager - use active workMap from common area

WorkMapHelper - adding logging

AOrchestratorCheckpoint - refactor checkpointing, suspend when backup resume when master

IOrchestratorCheckpoint - refactor checkpointing

OrchestratorCheckpoint - refactor checkpointing

OrchestratorCheckpointDb - refactor checkpointing

OrchestratorCheckpointFile - refactor checkpointing

OrchestratorConfiguration - employ changed DuccIdFactory for publication sequence numbering

OrDbDuccWorks - specification to DB only when master

OrDbDuccWorks - orchestrator properties to DB only when master

OrchestratorEventListener - record to system events log daemon switches between backup and master

ReservationFactory - employ changed DuccIdFactory for Job numbering

ReservationFactory - employ changed DuccIdFactory signature

JdScheduler - suspend JD host management when backup resume when master

HealthMonitor - use active workMap from common area

6

MaintenanceThread - use active workMap from common area

AOrchestratorState - refactor orchestrator state managements from files to DB

DuccWorkIdFactory - refactor orchestrator state managements from files to DB

IOrchestratorState - refactor orchestrator state managements from files to DB

OrchestratorState - refactor orchestrator state managements from files to DB

OrchestratorStateDb - refactor orchestrator state managements from files to DB

OrchestratorStateDbConversion - refactor orchestrator state managements from files to DB

OrchestratorStateFile - refactor orchestrator state managements from files to DB

AOrchestratorStateJson - refactor orchestrator state managements from files to DB

SystemEventsLogger - record all CLI interactions in system events log

TestSuite - print whether backup or master

pm

DuccHead - loggable wrapper around common.ADuccHead

ProcessManagerComponent - make transitions between master and backup states

sm

DuccHead - loggable wrapper around common.ADuccHead

ServiceHandler - resume operations when state is master, quiesce operations when state is backup

ServiceManagerComponent - make transitions between master and backup states, reject requests when in
backup state, employ changed DuccIdFactory signature ServiceSet - handle new state Dispossessed

transport

JobDriverStateExchanger - use virtual IP address configured as ducc.head node

AbstractDuccEvent - tag publications with producer host identity and state master or backup

DaemonDuccEvent - switch to master or backup state for recording to system event log

DuccEvent - add events SWITCH TO MASTER and SWITCH TO BACKUP

JdEvent - interrogate publications producer state master or backup

IService - add service state Dispossessed, Service is not controlled by this Service Manager

webserver

BrokerHelper - use local host name to find co-located broker

DuccBoot - make boot reusable for switch to master

DuccData - create reset function for switch to master

DuccHead - loggable wrapper around common.ADuccHead

WebServerComponent - make transitions between master and backup states; incorporate hostname info logs
directory location

7

WebServerConfiguration - make boot reusable for switch to master

DuccHandler - servlet to produce reliable DUCC state master or backup

DuccHandlerClassic - servlets to produce n̈o data - not masterẅhen appropriate

DuccHandlerJsonFormat - servlets to produce n̈o data - not masterẅhen appropriate

DuccWebServer - add method getPort; use host as part of request log directory path; incorporate hostname
info logs directory location

DuccWebServerHelper - incorporate hostname info logs directory location

c4-ducc-mon.jsp - web page header location for reliable DUCC state

ducc.js - web page header updating for reliable DUCC state

examples

start sim - broker must be on head node

Installing and Cloning

This second major section describes support for installation of head node master and backup(s).

TBD

Autostart

This third major section describes support for autostart of head node and agent daemons.

TBD

Monitoring and Switching

This fourth major section describes support monitoring of multiple head nodes and switching to an alternate when
the primary is dysfunctional.

TBD

8

	Multiple DUCC head nodes
	Introduction
	Daemons
	Configuring Host Machines
	Configuring DUCC
	Webserver

	Database
	Code changes
	new scripts
	existing and new scripts
	configuration files
	agent
	cli
	common
	database
	orchestrator
	pm
	sm
	transport
	webserver
	examples

	Installing and Cloning
	Autostart
	Monitoring and Switching

